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Abstract 

Since January 2001 it has been necessary for equipment connected to the low voltage public 
distribution network in Europe and Japan to comply with IEC 61000-3-2. The regulation 
IEC 61000-3-2 specifies the level of current that can be drawn for particular harmonics. 
Much equipment today is fitted with a Switch Mode Power Supply (SMPS) at its input to 
interface between the line voltage and internal low voltage electronics. This SMPS must 
not only convert the line voltage, but also ensure that the input current to the device meets 
the IEC regulations. 

To meet these regulations two methods are normally used, passive filtering using a large 
filter inductor or a boost converter cascaded with the main DC/DC SMPS converter with 
isolation. To try and reduce component count, cost and increase efficiency many new single-
stage Power Factor Correction (PFC) topologies have been proposed. In a single-stage 
topology the output voltage regulation and meeting IEC 61000-3-2 are combined into a 
single power stage. Unfortunately very little is known about the behaviour or performance 
of these single-stage topologies. 

In this thesis two of the more promising single-stage topologies: the bi-forward and CS 
S2PFC converters are investigated further. A new topology using a low frequency switch 
(LFSPFC) is introduced. The topologies are analysed investigating input current shape and 
harmonic content, voltage variation on bulk capacitance and component stresses. Simula-
tion in PSpice is used to confirm circuit operation. 

Four 150W output power experimental circuits were built, bi-forward converter, CS S 2PFC 
converter, passive filtering cascaded with a forward converter and a boost pre-regulator 
cascaded with a forward converter. The converters operate from universal input voltage and 
have outputs at 5V and 12V. A 100W test circuit was built for the LFSPFC operating from 
230V input voltage and with an output of 5V. 

Experimental results are presented showing circuit behaviour and performance of the bi-
forward, CS S 2PFC and LFSPFC converters. The bi-forward and CS S 2PFC converters are 
compared to the passive filter and boost converter cascaded with a forward converter. It is 
demonstrated that neither of these single-stage topologies are at present a viable replace-
ment for either present method, but the LFSPFC could be a lighter weight and less bulky 
alternative to passive filtering. 
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Abbrevations 

AC 	Alternating Current 
AC/DC 	Alternating Current to Direct Current 
BIBRED 	Boost Integrated with a Buck Rectifier/Energy storage/Dc-dc converter 
BIFRED 	Boost Integrated with a Flyback Rectifier/Energy storage/DC-dc converter 
BJT 	Bipolar Junction Transistor 
BS 	British Standard 
CCM 	Continuous Conduction Mode 
CS S2PFC Current Source Single-Stage Power Factor Corrector 
DB 	Diode Bridge 
DCM 	Discontinuous Conduction Mode 
DC 	Direct Current 
DC/DC 	Direct Current to Direct Current 
EMI 	Electro Magnetic Interferance 
EN 	European Standard 
ESR 	Equivalent Series Resistance 
IC 	Integrated Circuit 
ICS 	Input Current Shaping 
IEC 	International Electrotechnical Commission 
IGBT 	Insulated Gate Bipolar Transistor 
LC 	Inductor Capacitor 
LFR 	Loss Free Resistor 
LFSPFC 	Low Frequency Switch Power Factor Corrector 
MOSFET Metal Oxide Silcon Field Effect Transistor 
PC 	Personal Computer 
PF 	Power Factor 
PFC 	Power Factor Correction 
PWM 	Pulse Width Modulation 
RCD 	Resistor Capacitor Diode 
RMS 	Root Mean Squared 
SMPS 	Switched Mode Power Supply 
SSIPP 	Single-Stage Isolated Power-Factor-Corrected Power Supply 
TV 	Television 
VMC 	Voltage Mode Control 
UK 	United Kingdom 
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Symbols 

A 	Conduction of Input Current (LFSPFC) 
D 	Duty Ratio for Switch S 

Duty Ratio for Switch S1 when Operating from Bulk Capacitor (LFSPFC) 
D2 	Duty Ratio for Switch 51  during Period 2 (Bi-Forward) 

Duty Ratio for Switch S1 when Supplied Direct from Input (LFSPFC) 
D3 	Duty Ratio for Switch Si during Period 3 (Bi-Forward) 
D4 	Duty Ratio for Switch Si  during Period 4 (Bi-Forward) 

D4A 	Duty Ratio for Switch Si during Period 4A (Bi-Forward) 
Deff 	Effective Duty Ratio for L2 (LFSPFC) 
D1 	Duty Ratio for Fall of DCM Current in Inductor L1 (CS S 2PFC) 

Duty Ratio for Fall of Current in Inductor L1 (LFSPFC) 
D12 	Duty Ratio for Fall of DCM Current in Inductor L1 during 

Period 2 (Bi-Forward) 
D13 	Duty Ratio for Fall of Current in Inductor L1 during Period 3 (Bi-Forward) 

Dmax maximum Duty Ratio (LFSPFC) 
Ec 	Energy lost by Bulk Capacitor 
F 	Line Frequency 
FD S t Displacement Factor 
FD S t 	Distortion Factor 

f3 	Switching Frequency 
I 	RMS Fundamental Current 

'2adif Difference between Current Rise and Fall in Inductor L1 
during Period 2A (Bi-Forward) 

'2amin Minimum Current in Inductor L1 during Period 2A (Bi-Forward) 

'4mm 	Minimum Current in Inductor L1 during Period 4 (Bi-Forward) 

I. 	Average Current in Inductor L1 (LFSPFC) 

iavc 	Average Current in Inductor L1 during CCM (CS S 2PFC) 

'avd 	Average Current in Inductor L1 during DCM (CS S 2PFC) 

Iay2 	Average Current in Inductor L1 during Period 2 (Bi-Forward) 

Iav2a 	Average Current in Inductor L1 during Period 2A (Bi-Forward) 

1av3 	Average Current in Inductor L1 during period 3 (Bi-Forward) 

1.,,4 	Average Current in Inductor L1 during Period 4 (Bi-Forward) 

iav4a 	Average Current in Inductor L1 during Period 4A (Bi-Forward) 

IC 	Current at which Diode D5 Stops Conducting during CCM Operation of 
Inductor L1 (CS S 2PFC) 

10 	Output Current 

'p1 	Current in Inductor L1 and Reflected Current in Inductor L2 (LFSPFC) 
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'p2 	Current in Inductor L1 and Reflected Current in Inductor L2 

Raises too (LFSPFC) 

'pkd 	Peak current in Inductor L1 when Operating in DCM (CS S 2PFC) 

1pk2 	Peak Current in Inductor L1 when Operating in DCM during 
Period 2 (Bi-Forward) 

1pk2a 	Peak Current in Inductor L1 during Period 2A (Bi-Forward) 
I 	RMS Current of Harmonic n 
i 	Bulk Capacitor Recharging Current 

2dir 	Current Flowing Directly to the Output from the Input (Bi-Forward) 
if 	Current Flowing Directly to the Output from the Input (LFSPFC) 

AC Line Current Drawn by Converter 
n 	Turns Ratio between Primary Windings 
Pm 	Input Power 

P. 	Output Power 
T 	Time for a Half Line Period 
T8 	Time for One Switching Cycle 
t 	Overall clock 
t1 	Time after Zero Crossing that Inductor L1 Enters DCM (CS S 2PFC) 

t2 	Time after Zero Crossing that Inductor L1 Enters CCM (CS S 2PFC) 

t3 	Time after Zero Crossing that Inductor L1 Enters DCM Again (CS S 2PFC) 

t4 	Time after Zero Crossing that Inductor L1 Stops Conducting (CS S 2PFC) 

t5 	Time after Zero Crossing that Complete Cycle Ends (CS S 2PFC) 

t2a 	Time after Zero Crossing that Inductor L1 Enters Period 2A (Bi-Forward) 

t3a 	Time after Zero Crossing that Inductor L1 Enters Period 4A (Bi-Forward) 

ta 	Zero Crossing Time (Bi-Forward, LFSPFC) 

tb 	Time after Zero Crossing that Inductor L1 Enters Period 2 (Bi-Forward) 
Time after Zero Crossing that Inductor L1 Starts Conducting (LFSPFC) 
Time after Zero Crossing that Inductor L1 Enters Period 3 (Bi-Forward) 
Time after Zero Crossing that Inductor L1 Stops Conducting (LFSPFC) 

td 

	

	Time after Zero Crossing that Inductor L1 Enters Period 4 (Bi-Forward) 
Half Line Period Zero Crossing Time (LFSPFC) 

te 	Time after Zero Crossing that Inductor L1 Enters Period 3 Again (Bi-Forward) 
tf 	Time after Zero Crossing that Inductor L1 Enters Period 2 Again (Bi-Forward) 
t9 	Time after Zero Crossing that Inductor L1 Enters Period 1 Again (Bi-Forward) 

th 	Half Line Period Zero Crossing Time (Bi-Forward) 
t01 f 	Time after Zero Crossing that S2 is Turned Off (LFSPFC) 
t 	Time before Zero Crossing thst S2 is Turned On (LFSPFC) 

tr 	Time after Zero Crossing Bulk Capacitor Starts Recharging 
V1 	RMS Fundamental Voltage 
VB 	Average Bulk Capacitor Voltage 
V 	Switch Over Voltage 
VD2 	Voltage Across Diode D2 

VD3 	Voltage Across Diode D3 

VD5:5V Voltage Across Diode D5 on the 5V Output 
V8 	MOSFET gate to source voltage 

VIN 	Input Voltage to Converter 
Vi nmin  Minimum Voltage that S2 can turn on and off at (LFSPFC) 

Vmin 	Minimum bulk Capacitor Voltage 
Peak of Line Voltage. 
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V. 	Output Voltage of Converter 

Vs i 	Voltage Across Switch S1 

VSS 	Voltage Source Voltage 
V, 	AC Line Input Voltage 
LID 	Duty Ratio for Rise of Current in Inductor LD (CS S 2PFC) 

Duty Ratio for Rise of Current in Inductor L1 (LFSPFC) 
LID3 	Duty Ratio for Rise of Current in Inductor L1 during Period 3 (Bi-Forward) 
LID4 	Duty Ratio for Rise of Current in Inductor L1 during Period 4 (Bi-Forward) 
LID4A Duty Ratio for Rise of Current in Inductor L1 during Period 4A (Bi-Forward) 
LI12a1 Current Fall in Inductor L1 during Period 2A (Bi-Forward) 
LII2ar  Current Rise in Inductor L1 during Period 2A (Bi-Forward) 
L114 	Current Rise in Inductor L1 during Period 4 (Bi-Forward) 
LII4F Current Fall in Inductor L1 during Period 4 (Bi-Forward) 
Al , 	Current Rise in Inductors L1 and LD during CCM (CS S 2PFC) 
All 	Current Ripple through L2 (LFSPFC) 
W 	Angular Line Frequency 
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Chapter 1 

Introduction 

DC/DC Switched Mode Power Supplies (SMPS) are one of the most common methods to 

provide a DC power source for modern electronic equipment, ranging from office equip-

ment such as personal computers, printers and fax machines to communications and radar 

systems. The increasing demands of modern electronic equipment for lower operating volt-

age, higher efficiency, and lower cost has led to a substanical increase in the use of SMPS. 

The increase in the use of DC/DC SMPS has led to the use of diode bridge rectifiers and ca-

pacitive smoothing to provide an unregulated DC voltage from the mains, which a DC/DC 

SMPS requires. The increase in SMPS usage has degraded line quality to the extent that 

regulations to control the harmonics of the current drawn by the power supply have been 

introduced. 

This chapter reviews power factor, the need for power factor regulations, and the regulation 

itself. 

1.1 The Need for Power Factor Regulations 

SMPS are inherently a DC to DC converter and as such require a DC supply voltage to 

operate from. For converters operating from the AC mains supply a diode bridge rectifier 

and smoothing capacitor are used to give an unregulated DC supply as shown in figure 1.1. 

This also shows the voltage and current waveforms. For a reasonably smooth DC voltage 

the capacitance has to be large, so that the voltage sag across the capacitance is small. The 



diodes will only conduct when the line voltage is greater then the capacitor voltage, and as 

the capacitor voltage does not sag very much, the capacitor is only recharged at the peak of 

the line voltage waveform. The current drawn, is,  is a large spike as shown in figure 1.1, 

(often 5A or more) carrying all the energy required to recharge the capacitor. The current 

waveform shown in figure 1.1 has very poor power factor and is rich in harmonics. 

I 

L ic1, VB

1______ 

CB 	

Load 

VS 

VB  

1. 

t. t i t2 	t3 

Figure 1.1: Diode bridge and capacitive rectification 

1.1.1 Power Factor 

Power Factor (PF) is a measure of useful line current supplied. It can be considered as the 

product of a distortion factor given by equation 1.1 [4], which is a measure of line current 

distortion, and a displacement factor given by equation 1.2 which is a measure of the line 

current lag from source voltage waveform at the fundamental frequency. 

FDSt = 	
Il 	 (1.1) 

F1~2 + 
 

 
2 

OA 



where FD St is the distortion factor, I is the RMS fundamental current, and I is the RMS 

current of harmonic n. 

FDSP 
	P1 	

(1.2) 
v1l1 

where P1 is the average input power from the supply, V1 is the RMS fundamental supply 

voltage, and I is the RMS fundamental supply current. FDiSP can be rewritten as: 

VjIjcosçb 
FDSP = 	 (1.3) 

V1 '1 

where 0 is the amount of phase lag between the current and voltage waveforms. From this 

the displacement factor can be reduced to: 

FD 8p = cos 
	 (1.4) 

Overall Power Factor (PF) is the product of the two factors: 

PF = FD StFDiSP 	 (1.5) 

which is: 

PF= 	 cosq 	 (1.6)  11  

~12 T+12 

The presence of higher order harmonics in the current and the amount of reactive power 

being drawn increases as PF decreases. 

1.1.2 The Effects of Low Power Factor 

It may seem that the effects on the AC distribution system of the circuit in figure 1.1 are 

negligible. This is no longer so as the use of sophisticated electronic equipment continues 
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to increase, and the number of low power quality loads attached to the line increases. There 

are a large number of capacitors being recharged at the peak of the line (as well as many 

other disturbances such as light dimmers, etc) and the cumulative effects of these low power 

factor loads causes a number of problems in the AC distribution system: 

. Excessive neutral currents due to excessive reactive power 

• Flattening of the peak of the sine wave voltage waveform 

• Additional heating of distribution equipment 

. Overvoltages due to resonances 

Poor PF can also cause incandescent lights to flicker with variations in line frequency and 

RMS voltage. More seriously, a poor power factor can cause sensitive equipment to operate 

incorrectly or malfunction. 

1.2 AC Power Quality Regulatory Standards: IEC 61000-3-2 [1, 

2] 

To reduce the problems caused by equipment with low PF, regulatory standards are be-

ing introduced around the world dictating the levels of harmonic current drawn by electri-

cal equipment (not just SMPS). These regulations have been devised by the International 

Electrotechnical Commission (IEC), the worldwide organisation responsible for developing 

most electrical standards. The IEC develops standards for voluntary use, which can then be 

harmonised into regional or national standards. 

IEC 61000-3-2 is the electrical standard for limits of harmonic current per phase. This 

document sets out the levels of current allowable for each harmonic and for different types 

of electrical equipment. IEC 61000-3-2 is mandatory in Europe (where it is known as EN 

61000-3-2 or BSEN 61000-3-2 in United Kingdom), since January 1st 2001, and also in 

Japan. 
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1.2.1 IEC 61000-3-2 

The regulations divide equipment into four different classes, known as classes A to D, for 

which different current harmonic levels are specified. There is no restriction on the phase 

of the current. Most SMPS will usually fall into either class A or class D and are outlined 

below. The remaining two classes are B and C. Class B covers portable tools and class C 

covers lighting equipment. 

The IEC 61000-3-2 regulations only deal with the distortion component of PF, and even then 

current waveforms can still be non-sinusiodal as only the level of certain current harnonics 

is specfied. 1EC 61000-3-2 does not specify anything to do with the displacement factor, so 

a current waveform could be completely out of phase with the voltage waveform (low PF), 

but still comply wth the regulations. Class D is discussed first. 

Class D 

In the latest amendment of JEC 61000-3-2 [2], in 2000, only two types of equipment fall 

into this category, with a power input of 600W or less: 

. Personal Computers (PC) and personal computer monitors 

. Television receivers 

The harmonic regulations for class D limits are applied to the RMS level of the harmonic 

current for all odd harmonics from 3 to 39 and are scaled according to power. The class 

D limits are shown in table 1.1. The testing is carried out at nominal power input: the 

minimum power input specified, which has to comply with the regulations, is 75W. This 

may in the future be reduced to 50W, but this has not been decided yet. 

For Japan the levels need to be multiplied by 2.3 to correct for the voltage difference be-

tween Japan (100V) and Europe (230V). 

Class A 

Class A harmonic regulations cover the following equipment [2]: 
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Harmonic Order, 
n 

Maximum Permissible Current 
per watt, mAJW 

Maximum Permissible 
Harmonic Current, A 

3 3.4 2.30 

5 1.9 1.14 

7 1.0 0.77 

9 0.5 0.40 

11 0.35 0.33 

13 <n<39 3.85/n See Class A 

Table 1.1: Limits for class D equipment [1] 

o Balanced three phase equipment 

. Household appliances, excluding equipment named in class D 

Tools, excluding portable tools 

Dimmers for incandescent lamps 

. Audio equipment 

The limits for class A are absolute limits and apply to RMS current harmonic levels at odd 

and even harmonics up to 40. The limits are outlined in table 1.2 below. Again the same 

applies for Japan as for class D. 

Harmonic Order, 
n 

Maximum Permissible 
Harmonic Current, A 

Odd Harmonics 
3 2.30 
5 1.14 
7 0.77 
9 0.40 
11 0.33 
13 0.21 

15<n<39 0.15 
Even Harmonics 

2 1.08 
4 0.43 
6 0.30 

8<n40 0.23 

Table 1.2: Limits for class A equipment [1] 



For harmonics of the 21st order and above for both class A and D it is possible for the 

measured current to exceed the limits by 50% if the measured odd harmonic current does 

not exceed the partial harmonic current calculated from the limits and all RMS harmonic 

currents are equal to or less than to 150% of the limits. 

1.3 Methods to Comply with IEC 61000-3-2 

At present there are two basic methods used to build SMPS which comply with IEC 61000-

3-2: 

. Passive filtering using a large inductance to smooth current drawn by the bulk capac-

itors. 

. Use of a two stage approach using a boost pre-regulator. 

These two methods will be explained in more detail in chapter 2. It is generally considered 

that the two present methods are expensive, bulky and component intensive. In an attempt 

to reduce these disadvantages many new SMPS topologies have been suggested in the liter-

ature. These topologies are collectively known as single-stage power factor correctors. The 

majority of single-stage topologies combine the process of power factor correction (har-

monic correction) and supplying DC output voltages into one activity, turning the SMPS 

into an AC/DC converter. There is very little known about these new topologies apart from 

all the benefits reported enthusastically in the literature. 

1.3.1 Thesis and Contribution to Knowledge 

Overall this project tests the hypothesis that: "Single-stage power factor correction topolo-

gies for low power SMPS off-line applications can meet the requirements of IEC 61000-3-2 

and supply well regulated low voltage DC outputs". 

Two single-stage power factor correction topologies known as the bi-forward and CS S 2PFC 

converters were selected from the literature and studied in further detail. For each topology 

the ability to meet IEC 61000-3-2, the variation of bulk capacitor voltage, the component 

stress and general operation were investigated using a combination of analysis, simulation 
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and experimental testing. Most of the analysis carried out has not been applied to these 

topologies before. To test the hypothesis of this thesis circuits were designed and built 

using the two single-stage power factor correction topologies and were compared with both 

a forward converter cascaded with a filter inductance and a forward converter cascaded with 

a Power Factor Correction (PFC) boost converter. 

This thesis also presents a new single-stage power factor correction topology using a low 

frequency switch developed during the project. The low frequency switch is in series with 

the bulk capacitor of a forward converter. Analysis and experimental test results investi-

gating the behaviour of this circuit and its ability to meet IEC 61000 classes A and D are 

presented. 

1.4 Objectives of the Research 

This research was to investigate the possiblity of single-stage power factor correctors be-

ing replacements for the current methods of PFC. The objectives of the research were as 

follows: 

To determine the most promising topologies from the literature. 

To study the the most promising topologies in detail so as to learn both the positive 

and negative aspects of these converters, as the literature normally only presents the 

positive aspects. 

To compare the new promising topologies with the two existing PFC methods. 

To suggest improvements to the new topologies, to improve performance. 

To suggest alternative methods to meet IEC 61000-3-2. 

This project was carried out with the cooperation and support of Minebea Electronics (UK) 

Ltd. The possibility of using single-stage PFC topologies as power supplies in personal 

computers was being considered by the company. 



1.4.1 Typical Application 

This research has been carried out with the PC power supply in mind. This application 

has been chosen as it will allow testing of the new topologies to the most demanding part 

of the regulations (class D) and to the tough specifications of a PC power supply. Other 

applications only have to meet class A regulations, but have similar output requirements to 

a PC power supply (low voltage, high current), so testing also considered class A testing. 
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Chapter 2 

PC Power Supplies: The Present 

Personal Computer (PC) power supplies are required to convert AC mains input voltage 

to controlled and isolated DC outputs. A typical power supply needs to operate from the 

"universal" voltage ranges of 90V to 130V and 180V to 265V, while supplying outputs 

at 12V, 5V, 3.3V and -12V. Output power can range from almost zero to full load powers 

ranging from 70W to 300W. Under IEC 61000-3-2 computing equipment [2] such as PCs 

is required to meet class D harmonic regulations. 

In this chapter basic switched mode power topologies are reviewed, and the topologies 

currently used as the main converter and the two most common methods of Power Factor 

Correction (PFC) are briefly presented. The implications of IEC 61000-3-2 on PC power 

supplies are discussed. 

2.1 Basic Switched Mode Power Supplies 

In DC/DC SMPS a solid state device is used as a high frequency (20kHz-i-) electronic switch 

to convert one DC voltage to another. In figure 2.1 the three basic SMPS topologies are 

shown from which almost all other SMPS are derived. 

In the buck converter, the power switch, S1, is turned on and the diode, D1, is reverse 

biassed and energy is tranferred from the supply to the output through the inductor, L1. 

When the switch is turned off the current built up in the inductor freewheels through the 

diode. The output voltage of the buck converter is always lower than the supply voltage and 
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ideally only depends on the expression given in figure 2.1 where D is the ratio of the time 

that S is conducting to the whole switching period. The boost and buck-boost converters 

operate on a similar principle of inductive energy transfer. In a boost converter the output 

voltage is always higher than the supply, and in the buck-boost the output voltage can be 

either higher or lower than the supply, but of the opposite polarity. 

L1  

VIN -t 	f D 	C1 	 RLWd V, 	Vo = DVIN 

Buck Converter 

1-D VIN 	 S1 	 C1 	 RL=d 	
Vo =VIN_L_ 

Boost Converter 

D1  

VIN 	 C1 	 RL=d 10 	Vo 
1-D 

Buck-Boost Converter 

Figure 2.1: Basic switched mode power supply topologies 

2.1.1 Continuous and Discontinuous Conduction Modes 

The filter inductor of a SMPS can operate in either Continuous Conduction Mode (CCM) 

where the current in the inductor never falls to zero, or in Discontinuous Conduction Mode 

(DCM) where inductor current falls to zero and is not flowing for some of the switching 

cycle. The different modes of conduction are shown in figure 2.2. The conduction mode 

depends-on the load current, inductance value and switching frequency. 

The benefits of continuous conduction mode are: 

. Lower peak current through transistors and diodes than in DCM for the same load 

current. This results in lower stress on semiconductor components so reducing power 
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Figure 2.2: Different modes of inductor current 

loss, size and cost. 

. Good open loop regulation. 

The disadvantages are: 

A larger inductor is required than with DCM. 

. Poor closed loop response. It takes time for the current in the inductor to change in 

response to a disturbance. In DCM the current in the inductor can change on a cycle 

by cycle basis. 

2.1.2 Output Voltage Control 

There are a variety of control schemes: 

1. Constant frequency Pulse Width Modulation (PWM). The switching frequency of the 

converter is fixed and the time of the on period (time the power switch is conducting) 

is varied to control the output voltage. The ratio of on time to switching period is the 

duty cycle (D). PWM is the most common method used, as fixed frequency enables 

magnetic components to be better utilized. 
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Variable frequency fixed pulse. Either the on or off time is kept constant while the 

other is varied to control the output voltage. 

Frequency and pulse modulation. Both are varied to control output voltage. 

2.2 Topologies Currently used as the Main Converter in PCs 

There are three topologies that are commonly used as the main converter in personal com-

puters. These are the 

Single switch forward converter 

Double switch forward converter 

Half bridge converter 

There is often also a small auxiliary converter, used for operation in sleep mode, which is 

normally based on the flyback converter. Typically the single switch forward is used at the 

lower end of the power range in supplies of up to 200W, while the double switch forward 

and half bridge are used for higher powers. 

2.2.1 Single Switch Forward Converter 

L1  
D2  

I C1 ,-r. 
VIN I 

•J 

)N, 	 N 	D C2 	
VO 

1 3
Cp.% Di  f 

Figure 23: Single switch forward converter with tertiary reset winding 

The forward converter shown in figure 2.3 is essentially a buck converter with transformer 

isolation. When the power switch S is turned on current flows through the primary of the 

transformer transferring energy to the secondary. Current in the secondary will then flow via 
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diode D2  charging up the inductor L 1 . When S1 is turned off diode D3 becomes forward 

biassed and D2 reverse biassed. The current in L 1  now freewheels via D3. When Si turns 

off the transformer is reset by returning, to bulk capacitors C1 and C2, magnetising current 

built up during the on period via winding N3. 

A PC power supply is designed to operate in CCM for the majority of the time. With 

outputs supplying 20 to 30A this helps to reduce peak current stress in the semiconduc-

tor components as well as power loss. The usual method of output voltage modulation is 

fixed frequency PWM. The conversion ratio for a forward converter operating with PWM 

is shown in equation 2.1. Due to the need to reset the transformer the duty cycle, D, is re-

stricted to 0.5 when N1 = N3. N3 can be reduced to enable longer pulses, but this increases 

the voltage across the power switch. An alternative method of resetting the transformer, 

which is gaining popularity, is to use an Resistor Capacitor Diode (RCD) snubber. 

V0 •N1 

VINN2 
(2.1) 

The main power switch is normally a Metal Oxide Silicon Field Effect Transistor (MOS-

FET); these are used as they can be switched at a high frequency without excessive power 

loss unlike the Bipolar Junction Transistor (BJT) or Insulated Gate Bipolar Transistor (IGBT). 

Unfortunately the MOSFET has to be rated for at least twice the bulk capacitor voltage (due 

to voltage induced in the primary during transformer reset) which is at least 750V when op-

erating at the high end of the input voltage range. For a multiple output converter such as a 

PC power supply there will be multiple transformer secondaries or stacked secondaries. The 

output inductor L 1  will have multiple windings (one winding for each output) on a single 

core to improve cross regulation between the various outputs. The secondary side diodes 

are normally a mixture of Schottky diodes for the lower voltage outputs (5V and 3.3V) to 

reduce loss and normal fast recovery diodes for the 12V outputs. 

2.2.2 Double Switch Forward Converter 

The double switch forward converter shown in figure 2.4 is used in higher power convert- 

ers (300W+) as the losses in the main switch become unmanageable in the single switch 

forward at higher powers. The basic operation is the same as the single switch forward. 
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Figure 2.4: Double switch forward converter 

The two MOSFETs are turned on and off together and the transformer is reset via the two 

diodes D1 and D4. The main difference is that during reset the voltage on the MOSFETs is 

only as high as the bulk capacitor voltage. This allows the use of lower voltage MOSFETs 

that are cheaper and have a lower on state resistance (Rd,,,). There is however an added 

complication, due to the need for transformer coupled drive for MOSFET S1. 

2.2.3 Half Bridge Converter 

L 
D_ 	

1 
 

Figure 2.5: Buck based half bridge converter 

The buck-based half bridge converter shown in figure 2.5 is used for power supplies sup-

plying 200W or more. Requiring a centre-tapped (or full wave rectified) secondary on the 

transformer the operation of this topology is quite different to that of the forward converter. 

Considering a complete switching period, power switch Si is turned on and current flows 

through the transformer primary into the bulk capacitors. Energy is transferred into the top 
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half of the secondary winding, N2A, and current flows through D2 charging up inductor L1. 

When Si turns off the magnetising current freewheels in the primary via D1 or D4 depend-

ing on its direction, as does current in L1 through the secondary side diodes. Then S2 is 

turned on and current flows through the primary of the transformer in the opposite direction 

from the bulk capacitors. This time the current in L1 is increased via the other half of the 

secondary, N2B. As there are two on-periods during a cycle the output filter L1 and C3 is 

operating at twice the switching frequency. The duty cycle for each switch is restricted to 

0.5 to avoid shoot through (this occurs when Si and 82 are on simultaneously). 

2.2.4 Flyback Converter 

D1  

	

VIN 

Cl 
	

RL2C2+ tv. 

	

C2 	
S 

T%_- 

Figure 2.6: Flyback converter 

The flyback converter, shown in figure 2.6, is generally considered a low power converter, 

but it is considered here as many new single-stage topologies are initially developed as a 

variation on the flyback. In this topology the transformer is operated as a coupled inductor. 

The current in the coupled inductor can flow either in CCM or DCM as shown in figure 2.2. 

When the power switch, S1, is turned on current ramps up in L1, either from zero in DCM 

or a non zero value in CCM. When S is turned off the current built up in L1 must keep 

flowing and the only route available is through L2 (L2 is wound on the same core as L1) 

and D1 to the the load. 

2.3 Current PFC Techniques 

The two most common methods of PFC in PC power supplies are the passive filter, which 

is used on converters of up to 200W, and the boost pre-regulator. Both methods are an extra 
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stage preceeding the main isolated power converter. 

2.3.1 Passive Power Factor Correction 

Lia  

CI 	
I 

Down 

D 	 VC  t!t 	Stream 

L  C, 

DC/DC 
Converter 

Figure 2.7: Passive filtering PFC 

The normal method of carrying out passive PFC is shown in figure 2.7. The switch is a volt-

age selector which is open in the 230V range and closed when operating in the 115V range. 

This configuration doubles the voltage possible across the bulk capacitors when operating 

from low line, enabling the down stream SNIPS to be more optimised. The inductor L 1  is 

wound on an iron laminated core as it is operating at low frequency (100/120Hz) and the 

inductance value is large (about 9mH to 40mH for a 150W output power supply, depending 

on whether the voltage selector switch is open). This method is only used for lower power 

supplies due to the bulky nature of the PFC choke. 

When running from the 230V mains the two windings on the inductor are connected in 

series. During a half mains cycle the bulk capacitors Ci and C2 are partially discharged 

reducing the voltage across them, while supplying the converter. When the voltage of the 

supply rises above the voltage across the capacitors current starts to flow via L la,  Ci, C2 

and Llb,  in a resonant manner. The resonance will stop when the current in Li a  and Llb 

tries to go negative as the current is blocked by the diode bridge. The significant waveforms 

are shown in figure 2.8. 

When running from the 115V range the selector switch is closed. The basic operation is 

the same as before. When operating with the selector switch closed the bulk capacitors are 

recharged individually. C1 is recharged through Lia during the positive half cycle and C2 

is recharged during the negative cycle via Llb. 
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Figure 2.8: Passive filtering PFC waveforms 

Further information on how to design and analysis a passive PFC filter can be found in 

[5, 6]. 

The passive PFC filter can exhibit sub-harmonic oscillation, see figure 8.5a taken from the 

prototype passive PFC circuit built for the comparison in chapter 8. The sub-harmonic 

oscillation is undesirable, but even with this phenomenon the circuit can still pass IEC 

61000-3-2 for class D. Power supplies are sold exhibiting this feature. 

2.3.2 Boost Pre-Regulator 

The most common alternative to passive PFC is to have a boost converter pre-regulator 

supplying the main SMPS with a DC voltage source. This configuration is shown in figure 

2.9. The boost converter can be controlled in such a manner as to draw nearly a perfect sine 

wave current from the line. It can supply a reasonably regulated DC voltage (stepped up to 

about 400V) for the main converter from a 90V to 265V input supply. L1 can operate in 

either DCM, CCM or hysteresis mode. There are several different control schemes utilized 

for PFC boost converters including boundary mode and CCM mode. 

The more popular method (which is used by Minebea Electronics UK Ltd) is the CCM 

PFC as shown in figure 2.9. Here the boost converter is operated at a fixed frequency and 

the current in L1 is chopped to follow the input voltage waveform. This produces a 50Hz 
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Figure 2.9: PFC boost pie-regulator operating in CCM 

current sine wave with a high frequency ripple as shown in figure 2.10. The pulse width is 

determined by information from the bulk capacitor voltage (voltage feedback), input voltage 

(voltage feedforward) and average inductor current (average current mode control) (resistor 

Rsense  is used to convert the current to a voltage signal for the controller). 

For further information consult [7]. 

Figure 2.10: PFC boost pie-regulator operating in CCM current waveform 

2.4 Advantages and Disadvantages of Current PFC Methods 

The advantages and disadvantages of passive PFC and the two stage approach using the 

boost pre-converter are discussed below to provide a benchmark for evaluating single-stage 

topologies, as well as highlighting why single-stage PFC topologies are being proposed. 
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2.4.1 Passive PFC 

Advantages: 

. A very simple solution requiring just one additional component, the PFC choke. 

It produces a clean input current with no high frequency noise or ripple. 

Disadvantages: 

. The PFC choke is very large (manufactured on cores such as El 38) and due to the 

iron laminated core, adds weight and takes valuable space in the power supply case. 

. It can suffer from sub-harmonic oscillation. 

It can be difficult to design a passive choke to pass the class D regulations over a wide 

power range. 

2.4.2 Two stage PFC with boost Pre-Regulator 

Advantages: 

. It produces an input current with a very high PF of about 0.99 across a wide power 

range. 

. The boost converter and main isolating SMPS can be individually optimised to their 

own task. 

. The boost converter is highly efficient. 

. Due to the reasonably regulated output voltage from the boost converter, the isolated 

SMPS second stage can be designed to operate from a narrow input voltage range. 

Disadvantages: 

. There are a considerable number of additional components added to the basic DC/DC 

SMPS. This not only includes the power components, but also all its control circuitry 
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and heatsinking for the two extra semiconductors (boost MOSFET and diode). This 

requires additional space on the PCB and will add to the cost. 

The high voltage on the bulk capacitor will typically require the capacitor to be rated 

for 450V, which again is an additional cost. 

. Improved inrush current limiting is required to avoid destroying the boost MOSFET. 

A slightly lower overall efficiency is expected as all power to the output is processed 

twice. Also the additional control circuitry needs powering. 

The disadvantages listed above are enough to spur development of single-stage PFC topolo-

gies to overcome these difficulties. 

2.5 The Regulations and the PC Power Supply 

In chapter 1 it was mentioned that PCs must conform to class D of IEC 61000-3-2, the most 

stringent part. The reason for this is that PCs, PC monitors and TVs have been shown to 

have a significant effect on the supply system. The reasons in turn for this are [2]: 

. The large number of these three appliances in use, 

. The duration of use (many PCs are left on all the time), 

. Their power consumption: although this is not high for individual items, collectively 

the power consumption is large, 

. The harmonic spectrum of the input current. 

It is possible for other equipment to be reclassified to class D if at a later date they fulfill the 

above critria. 

A major problem when designing the PFC stage for a PC power supply is knowing the 

power to design for. Most PC manufacturers consider the power supply last, and normally 

heavily over-specify the power requirements. A typical PC will generally not require more 

than 60W of power, but most PC power supplies have to be able to supply 200W. The figure 

of 200W does allow for system upgrading, but when specifying the power supply output 
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ratings the PC manufacturers always build in a large margin of safety (another reason is that 

many cheap PC power supplies would have trouble supplying their full rated power). A PC 

power supply has to meet EEC 61000-3-2 class D: 

. From 75W to full load, 

In Europe at 230V 501-1z, 

In Japan at bOy 501-1z, but not in the USA where the regulations have not been 

introduced. 
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Chapter 3 

Review of Single-Stage PFC 

Topologies 

Attempts to combine PFC and output voltage regulation into a simple, reliable and cheap 

single-stage converter to overcome the problems identified in Chapter 2 have been proposed 

since the early 1990s, but a single-stage does not necessarily mean the converter has to have 

just one power switch. The various circuits proposed tend to fall into two types: 

• Converters that have a series power flow: this is where all the power to the output is 

processed by both the PFC part of the circuit and the output supply part. There is an 

energy storage element between the two parts of the circuit. 

• Converters that have parallel power flow: this is where the majority of the power 

flows directly from the input to the output normally through the PFC stage of the 

circuit. The rest of the power flows on a parallel route via an energy storage element 

and conversion stage. 

3.1 Series Single-Stage PFC Topologies 

3.1.1 Differ PFC Converters 

One of the earliest attempts was to make use of the differ effect. The conventional differ 

circuit shown in figure 3.1 was introduced in 1988 and is mentioned in [8]. The topology 
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D1 	02  

is the integration of a buck-boost converter and a forward converter. When Si is turned on 

the output is supplied from CB in the the conventional forward manner. At the same time 

L1 is charged up from the supply. When S1 turns off the current built up in L1 freewheels 

and charges GB via D1. This circuit suffers from high voltage on the bulk capacitor when 

the input voltage is low. In [8] the input from the diode bridge is fed into a centre tapped 

primary which helps to control the voltage on GB by reducing the voltage across L1. A 

further differ rectifier based topology is proposed in [9] based on the integration of a boost 

converter and forward converter with a centre tapped secondary. To maintain a constant 

voltage on the bulk capacitor GB,  variable switching frequency (25kHz to 200kHz) control 

is employed with PWM to control output voltage, V0 . 

04 	
L2 

O  
2  fD5 Ci+tvo 

Figure 3.1: The differ single stage PFC topology 

3.1.2 BIFRED and BIBRED 

In 1992 in [10] the Boost Integrated with a Flyback Rectifier/Energy Storage/DC-DC con-

verter (BIFRED) and Boost Integrated with a Buck Rectifier/Energy Storage/DC-DC con-

verter (BIBRED) were developed, the first of many single stage topologies: shown in figures 

3.2 and 3.3. The BIFRED is the integration of a DCM boost converter and a DC/DC fly-

back converter operating in either DCM or CCM, into one stage. The DCM boost converter 

operating with a fixed duty will emulate a resistor. The fixed duty is set in the steady state 

by controlling the output voltage. The energy storage element GB is in series with the main 

power path. The same topology was produced in [11] by placing diode D 1  into a SEPIC 

converter. 

The BIBRED is the integration of a DCM boost converter and buck converter operating in 

either DCM or CCM. The topology was re-produced in [12] by placing diode D1  in a Cuk 

converter. 
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Figure 3.2: BIFRED converter 
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Figure 3.3: BIBRED converter 

Unfortunately when operating with the output inductor L2 in CCM the voltage on capacitor 

GB is load dependant, and when operating at light CCM loads the voltage can be very high, 

especially when operating off the universal voltage range. To reduce the high voltage on 

CB in [13] variable frequency control as well as the normal PWM control is applied. The 

alternative method is to operate the output inductor, L2, in DCM as in [11], which also 

improves the input current waveform. [14] introduces a negative feedback winding wound 

on the transformer placed in series with L1 in the BIFRED converter with L2 operating 

in CCM. The winding is used to feedback the voltage on capacitor GB (seen across the 

flyback transformer when Si is on) and reduce energy absorbed from the line by L1. This 

helps to reduce the voltage on GB at light loads. [15] uses a similar method on the BIBRED 

converter, but instead of using a transformer winding, a magnetic amplifier is used instead. 

To reduce the size of the BIFRED converter [16] integrates the three magnetic components 

onto one core. The integrated core has inherent ripple cancellation, which removes the need 

for a differential mode filter inductor on the input of the converter. In [17] a passive clamp 

is added to the BIFRED to protect the switch from voltage spikes caused by the leakage 

inductance of the transformer. 
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3.13 Single-Stage Isolated Power-Factor-Corrected Power Supply (SSIPP) 

In [18] the energy storage element GB is moved to be in parallel with the main energy 

path but all energy is still processed twice. The resulting topology is shown in figure 3.4 

and is called the Single-Stage Isolated Power-factor-corrected Power supply (SSIPP). This 

topology is the integration of a DCM boost converter and a flyback (or forward) converter 

operating in DCM or CCM sharing the same switch. As with the BIFRED and BIBRED, 

if inductor L2 operates in CCM then the voltage on bulk capacitor GB is load dependant, 

hence it is advised to operate L2 in DCM. When operating with L 1  and L2 in DCM there 

is inherent energy balance, and the voltage on GB is independant of load. The converter is 

controlled by PWM. In [19] the need to operate L2 in DCM is reinforced and design curves 

are presented. 
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Figure 3.4: Single-stage isolated power-factor-corrected power supply(SSIPP) 

Unfortunately it is undesirable to operate the output inductor L2 in DCM for converters 

with high current outputs such as PC power supplies due to increased conduction losses 

and current stress in semiconductors: it is much preferred to operate the output inductor 

in CCM. In view of this there have been various attempts to overcome the problem of the 

high voltage on capacitor GB when operating SSIPP converters with the output inductor in 

CCM. One approach has been to use voltage feedforward to vary the switching frequency 

as in [20]. PWM is still used to control the output voltage. The work in [20] is expanded in 

[21, 221 with the development of a control circuit and experimental results. The same group 

of authors also explore ways of making the SSIPP converter more efficient and in [23] on 

a DCM (L2) version they implement a regenerative clamp to reduce voltage stress on the 

switching device due to leakage inductance and to increase efficiency. This is followed 

up by a CCM version in [24] where an active clamp and soft switching are implemented. 

Unfortunately in this paper the problem of the high voltage on GB is not dealt with and is 



still a problem. [25] adds synchronous rectifiers to the forward output on the secondary, to 

improve the overall efficiency. 

[26] removes D1 completely. The operation is the same as the SSIPP when Si is on, but 

when S1 is off L1 discharges its energy to GB via the transformer primary Ni. [27] moves 

L1 to the line side of the diode bridge rectifier. L1 is operated in DCM mode and Li in 

CCM. [28] applies the SSIPP scheme to a soft-switched half bridge converter. In [29] the 

boost inductor is moved to the line side of the diode bridge and the switches are incorpo-

rated into the diode bridge. This scheme needs two primary windings. In [30] the input 

inductor L1 is implemented as a flyback converter with the input current ramped up in the 

primary and delivered to CB during the off time via the secondary winding of the flyback 

transformer. 
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Figure 3.5: The SSIPP converter with possible topological variations 

Further topological variations of the SSIPP have been proposed, most of which are some 

variation of the circuit shown in figure 3.5 (e.g. a topology may not have inductors L2 and 

L3). Most of the variations have been developed to allow L4 and sometimes L1 to operate 

in CCM without excessive voltage stress on GB.  Working with figure 3.5, the first of the 

many modifications to the basic SSIPP converter is presented in [31], with the addition of 

transformer winding N5 connected between D2 and Si. The converter is operated with L1 

in DCM and L2 in CCM. The additional winding N5 has a positive voltage across it when 

switch Si  is on, reducing the voltage across L1 hence slowing down the current rise in Li 

and the amount of energy transferred to GB during the off time. This scheme increases 

the distortion of the input current by introducing a dead time in the current during the zero 

crossing, but not enough to prevent the topology from meeting IEC 61000-3-2. It also 

prevents the voltage on GB from rising above 450V enabling the converter to be used on 

the universal voltage range. A thorough analysis and design procedure for this scheme is 

presented in [32]. 
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In [33] winding N4 is also added to the converter. Winding N4 comes into effect during 

the off period when the voltage induced across it during transformer reset is added to the 

voltage of CB,  causing current in L 1  to fall more quickly transferring less charge to GB. 

This again helps to reduce the voltage on GB and allow operation on the universal voltage 

range. The converter can be operated in the conventional manner with L1 in DCM and L2 

can operate in CCM or DCM. As a further development this paper proposes the operation 

of L1 in DCM near the zero crossing and in CCM when the input voltage is higher. CCM 

operation of L1 will increase efficiency and again helps keep VGB  reasonable when L2 is 

in CCM and the circuit is lightly loaded. [34, 35] extends the work in [33] by introducing 

a design optimisation. It also considers the effect of additional inductances L2 and L3 in 

series with both of the two extra windings. These inductances can either be transformer 

leakage inductances or external inductances. The topology is further altered, in [36], by 

incorporating windings N4 and N5 into the transformer primary where (N4 + N5) <N1. 

This version still requires both diodes D1 and D2 and can operate with L1 in CCM. The 

same paper also reduces D1 and D2 into one diode and feeding into a centre-tapped primary 

where (N4 + N5) = N1, but this version can only operate with L1 in DCM. 

[37, 38] presents a variation with L3 and N5 added to the basic SSIPP converter. This 

scheme was developed from the concept of a loss-free resistor and a voltage source be-

tween the diode bridge and the bulk capacitor. The practical realisation is an input stage 

based on a forward converter output with an additional inductor to delay the turn off of the 

freewheel diode. The version mentioned here is a simplification of the loss free resistor 

scheme discussed in section 3.1.4. The input current is similar to that in [33] with L1 being 

in CCM for most of the time. The voltage on GB will still vary significantly with load 

when operating with the output inductor operating in CCM. To improve the current shaping 

performance when operating in the universal range, it is suggested that when operating on 

the 180V to 265V part of the range, the switching frequency be half that of when operating 

on the 90V to 130V part. Aspects of the design and operation are analysed in [39]. 

[40] comes up with a number of variations on the scheme, all operating L 1  and L4 in 

CCM for most of the time. The first is a converter with just L3 added with the current in 

L1 operating in CCM, and then a design with just L2 added to the basic SSIPP. The next 

modification is to feed the D2 and L3 branch into a centre-tapped primary winding (Ni) on 

the transformer. The centre-tapped version with L3 is modified in [41] by the addition of a 



low frequency switch across diode D2 and the bottom half of the primary winding directly 

to switch S1. The low frequency switch is turned on during the zero crossing periods. 

The scheme is also shown working on the version discussed in [31] where the switch is 

placed across N5 and D2. The low frequency switch is used to improve the current shape 

by allowing conduction of L1 right up to the zero crossing which was lost (conduction of 

L1 up to the zero crossings) in [31] and subsequent papers. Another method to remove 

the dead angle where L1 does not conduct when operating L 1  in CCM is proposed in [42] 

where inductor L2 and N5  are fitted, and L2 is coupled to L1. The winding N4 is moved to 

the L1 side of the D2 branch in [43] (L 1 , L2, L3 and N5 are not fitted). This reduces the 

major magnetic components onto one core. A small inductor is added to soft-switch diodes 

D1 and D2. Both the input and output inductors can be operated in CCM with reasonable 

voltage on the bulk capacitor GB. 
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Figure 3.6: SSIPP converter with resonance based variations 

Instead of using diodes, inductors and transformer windings to improve the SSIPP converter 

another method is to use resonant methods as shown in the circuit in figure 3.6 [40]. Another 

resonant version [44] uses the charge pump concept. The SSIPP version is shown in [45, 46] 

where Lr  is not fitted. [45, 46] modifies the circuit with the addition of an extra diode and 

capacitor. Half bridge versions are shown in [47, 481. This topology is mainly for use as 

a fluoresent lamp ballast. [49, 501 proposes a LC resonant half-bridge converter also based 

on electronic ballasts with PFC. 

3.1.4 Two Terminal SSIPP 

The topologies discussed so far have what is known as a three terminal ICS (Input Current 

Shaping) cell [51]. The branch connected in series with S1 (the branch with D2 on it in 
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figure 3.5) is the charging branch for L1 and the branch connected to GB (the branch with 

D1 on it) is the discharging branch for L1. There is another type known as a two terminal 

ICS cell where the charging and discharging paths are in parallel with each other between 

L1 and GB.  In [51] rules are developed to convert between ICS cell types. 

The magnetic-switch power supply [52] shown in figure 3.7 uses the transformer winding 

N4 on the input to control the current in L1. L1 is operated in DCM and L2 in CCM. 

When Si  is on the voltage on N4 is positive (dot notation) and adds onto the input voltage, 

causing the current in L1 to ramp up. When S1 turns off the voltage on N4 reverses causing 

the current in L1 to fall. In [53] a soft switching scheme is added. A similar layout is 

developed in [54], but with quite a different operating sequence where the current in L is 

ramped up and down during the off period of Si. 
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Figure 3.7: Magnetic-switch power supply 
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Figure 3.8: Loss free resistor and voltage source PFC converter 

The first converter to have the arrangement shown in figure 3.8, in [55], does not have 

inductor L2. Without this inductor the input current shaping circuit is a forward style output 

placed on the input current path. The current in L1 is designed to be in DCM so that it will 

draw a sinusiodal shape automatically with steady state PWM. The output inductor L3 is 

operating in CCM, so to keep the voltage of GB reasonable variable frequency control is 
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also used applying a voltage feedforward signal. Futher work in [56, 57] operates L2 in 

DCM and without variable frequency control, so the voltage on GB is not a problem, but 

the converter in this paper has a high voltage (54V) low current (3A) output whereas [55] 

was a 5V 10A output. 

The complete configuration shown in figure 3.8 is introduced in [37, 38] and uses the con-

cept of a loss free resistor and a voltage source between the diode bridge and the bulk 

capacitor. As mentioned earlier the practical realisation is an input stage based on a forward 

converter output with an additional inductor to delay the turn off of the freewheel diode. The 

input current is similar to that in [33] being in CCM for most of the time. [58] compares 

several designs of the basic converter. [59] implements the current shaping scheme on a 

complementary controlled half bridge with synchronous rectifiers on the output rectifier. In 

[60, 61] the scheme is implemented on a non-isolated buck converter. In [62, 63] the steady 

state analysis is carried out on a variety of topologies with the current shaper on the front 

end; these are the flyback, forward, SEPIC, Cuk, half-bridge, full-bridge, push-pull buck, 

boost and buck-boost converters. [64] alters the the input current shaping circuit to oper-

ate with converters with symmetrically driven transformers such as the full bridge and half 

bridge. [65] adds synchronous rectifiers to the output of [64]. In [66] the design principles 

developed in earlier papers are re-appraised with the introduction of the 2000 amendment 

to IEC 61000-3-2 where PCs and TVs need only comply with class D, and the removal of 

the class D shape. In [67] the D2 branch in figure 3.8 is moved so that it is connected across 

the diode bridge on the DC side, and diode D1 is removed. 

The circuits discussed so far can be based on most DC/DC topologies such as the forward 

converter shown in the figures or using the flyback converter. In [68] an interleaved version 

of the SSIPP is introduced. This topology, shown in figure 3.9, requires a symetrically 

driven transformer so is constucted from a half-bridge converter. The two inductors L1 and 

L2 are both operated in DCM but are 180 1  out of phase due to the opposite wound windings 

N1 and N2 (N1 = N2), but due to the interleaving the input current seems continuous. 

[69, 70, 71, 72] presents the SSIPP type converter shown in figure 3.10. The power switch 

of the converter has been moved to the boost position and and the primary of the transformer 

has been split into two parallel primaries. The new transformer capacitor arrangement re-

moves the voltage spike caused by the leakage inductance of the transformer. Both L1 and 

flyback transformer inductors N1A, NiB and N2 are operated in DCM so voltage on the 

31 



L1 	D. 	
N4

• 	 L3 
D3  

DI I 
	N2 

N 	 i _ 	 vo  

I_ 
CB, 

D4  

S. 
	D8 

Figure 3.9: DCM interleaved SSIPP converter 

two capacitors CB, and CB2  is not a problem. The inductors L2A and L2B are replaced 

by diodes in [73]. Another topology is generated in [74, 75] by the combination of a boost 

PFC cell and an aysmmetrical half-bridge. 
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Figure 3.10: Double primary Winding SSIPP converter 

3.2 Parallel PFC Converters 

The concept of parallel PFC was introduced by Jiang [76] in 1993. The scheme proposed is 

shown in figure 3.11. Conversion stage 1 delivers 68% of the total output power and stage 

2 the remaining 32%. Figure 3.12 shows the power waveforms for a line period. Ideally 

input power PO.PFP  is a sin  function, and output power POUT is a constant power. As 

can be seen PO.PFP  can be anything between 0 and twice POUT,  hence PO.PFP  cannot 

be delivered directly to POUT all the time. When PO.PFP  is greater than POUT  (assuming 
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efficiency of 100%) the output is supplied directly by the stage 1 converter and the excess 

input power, PSTO,  is sent to the energy storage element, bulk capacitor GB.  When PO.PFP 

falls below POUT then GB releases its stored energy to the load via stage 2, FAUX,  to 

maintain POUT  constant. It is believed that since 68% of the power is delivered directly to 

the load this method is more efficient than the two stage approach. In [76] Jiang feels this 

method is more suitable for high power and shows a practical realisation based on a boost 

full-bridge. 
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Stage _________ 	2 Capacitor 'N 	
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Figure 3.11: Parallel PFC power flow 

Figure 3.12: Powerfiow in a line period [3] 

The concept is developed further in [77] with a change to how the power is processed. The 

improved scheme is shown in figure 3.13. The main difference to that of [76] is that there 

is only one power stage. The single power stage processes all the power at least once with 

about 68% going directly to Po and the remainder stored on GB. When PIN falls below 

P0 the same stage reprocesses the energy from GB to keep Po constant. This improved 

scheme produces a simpler converter topology. It is implemented as a flyback converter 

with two extra switches and a boost converter. 
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Figure 3.13: Parallel PFC with altered power flow 

presents a topology based on a flyback converter with a transformer with two secondary 

windings for the output. When input power is higher than the output power the excess 

power is stored in the capacitive element of the second output, and when input power is 

lower than the output power the deficiency is made up by taking power from that capacitor. 

introduces, with subsequent work presented in [80, 81], a parallel PFC topology based 

on the forward converter operated in DCM. The converter makes use of the magnetising 

energy of the transformer to reduce the output voltage ripple at 100/120Hz. Instead of a 

reset winding on the primary the converter has a second secondary winding for the output 

based on the flyback output. Following this output is a second switch which is used to 

compensate the output voltage ripple. 

In [82] both parts of the converter (the main converter and the auxiliary converter) are moved 

to the primary side of the converter. The topology consists of a buck-boost converter which 

supplies energy to a storage capacitor (when the input voltage is high enough). This is 

followed by a forward converter which is fed by the mains connected in series with the 

storage capacitor, so even during the mains zero crossing there will be an input supply for 

the forward converter. [83] has two flyback converters in parallel both supplying power to 

the output (about 1/2 each). The first is fed from the bulk capacitor and its prime function 

is to regulate the output voltage. The second performs the PFC function and regulates the 

voltage on the bulk capacitor. [84] presents a converter with a flyback converter with two 

output diodes, one supplying the load and the other an auxiliary boost converter on the 

secondary side of the transformer. 
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3.2.1 Parallel Single-Stage PFC using Pre-Regulator with Two Output Ca-

pacitors and Auxiliary DC/DC Converter 

Another family of parallel PFC topologies is introduced by Garcia in [3]. The scheme is 

shown in figure 3.14. The first module is the power factor correction circuit which has two 

capacitors C1 and C2 in series on its output. Capacitor C1 is the output capacitor and is 

in parallel with the load. Capacitor C2 is the main energy storage element and is in series 

with the load (Cl  is floating so the voltage across C1 and the load is constant, but Ci and 

the load will be sitting on the ripple). A second stage or auxiliary module is supplied with 

C2 as its input and supplies the load as well. A low frequency ripple (100/120Hz) will 

appear across C2. The basic power management is the same as in [77], where the main 

module has to process all the power, Po with about 1/2, PDIR, going to the load and the 

rest, PSTO,  being stored in CB. The auxiliary module will supply the additional load power, 

FAUX, that the main module is unable to supply, and provides fast regulation of the output 

voltage. POUT = PAUX + PDIR. Each module has its own control circuit, with the main 

module including isolation if required. The main module can be almost any converter, a 

PFC converter such as a boost or flyback or even a forward. The auxiliary module has a 

requirement that the negative input terminal will be connected to the positive output terminal 

or vice versa. This limits the choice of converter to buck-boost, cuk or an isolated topology. 

The input current waveform is almost sinusoidal. 
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Figure 3.14: Parallel single-stage PFC using pre-regulator with two output capacitors 
and auxilary DC/DC converter 

In [85] the concept is reapplied to a low output voltage (3.3V) power supply using syn-

chronous rectifiers. 

The concept is slightly modified in [86] with a slight change to the configuration of C1 and 
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Figure 3.15: Parallel single-stage PFC using pre-regulator with two output capacitors, 
with different connection, and auxilary DC/DC converter 

C2 as shown in figure 3.15. The advantage of this new configuration is that the voltage on 

C2 becomes a degree of freedom and can be designed to improve aspects of performance 

such as hold up time or efficiency. To implement this method the main module has to have 

two windings on the transformer for each output if it has an LC filter output stage, or if 

using a flyback then two transformers in parallel. The main module should work in DCM. 

The auxiliary module can be any converter operating in DCM or CCM. Both modules are 

again individually controlled. The input current is nearly sinusoidal. 

takes the first version of the scheme in figure 3.14 and implements it using a single 

control stage driving both modules with the same gate signal. This reduces the component 

count. The scheme is implemented with a flyback as the main module and a buck-boost 

as the auxiliary module [87]. The main module should operate in DCM and the auxiliary 

module in DCM or CCM. When operating with the auxiliary module in CCM the voltage 

on C2 becomes load dependant and at light load and high line it becomes very high (as with 

the series circuits). When operating with both modules in DCM the distortion of the input 

current is dependant on the voltage on C2, V2, and the harmonics decrease as the input 

voltage, VIN,  increases. The input current is no longer sinusoidal. The voltage on C2 limits 

operation on the universal voltage input range. 

considers both versions of the scheme and applies a single control stage to both ver-

sions. To improve energy management a trade-off between input current harmonics and the 

percentage of power processed once is made (ie increase power delivered directly to above 

50% as it is in the previous papers) up to a maximum of 70% when working with both 

modules in DCM. When operating with the auxiliary module in CCM PDIR  can only be 

50%. 
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In [89] another variation is proposed where a forward type output is placed at the input of 

the auxiliary module. The main module is a converter that has an inductor at its input such 

as a boost or flyback. The auxiliary module can be any topology. The inductive front end 

and the inductor in the forward stage change the way the scheme takes energy from the 

supply. Different control methods are investigated to see their effect on the input current, 

but no prototype circuits were presented. 

3.2.2 Single Switch Parallel PFC Topologies 

Bi-Flyback and Bi-Forward 
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Figure 3.16: Bi-Flyback converter 
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Figure 3.17: Bi-Forward converter with single transformer 

The bi-flyback converter was proposed in [90] and is shown in figure 3.16. The output is 

fed directly from the line and from CB.  When Si is turned on the current in N1 and N3 

ramps up. When S1 turns off the energy is delivered to the load from both transformers. The 

ratios of the transformers determine how much of the output power it transfers. It should be 

designed so that most of the power goes via N1 and N2 so that as much power as possible 

is processed once. A good feature of this converter is that the capacitor GB is peak charged 
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and hence the voltage on it does not rise above the peak of the line, even when operating 

in CCM. The current wavefrom (similar waveform to that shown in figure 4.3) is far from 

ideal and the authors only design the converter to meet the class A part of JEC 61000-3-

2. In [91] the idea is extended to the forward converter and design curves are presented. 

[92] evalutes the different conduction modes that the two transformers in the bi-flyback can 

work in (any combination except both in CCM) and their effect on the line current. The 

bi-forward converter has the transformer integrated into single device as shown in figure 

3.17. Doing this changes the way the converter operates. Now N1 is the primary when the 

input voltage is high. When the input voltage falls during the zero crossings N2 becomes 

the primary winding. The point when N2 takes over the power transfer is determined by the 

turns ratio. Again the converter is only designed to meet class A. In [93] design curves and 

guidelines are developed for the version in figure 3.17 of the bi-forward. [94] uses the bi-

flyback as a small AC/DC adapter. In [95] the final version is shown to be just able to meet 

the class D regulation. The authors suggest the addition of the inductor L1 in figure 3.18. 

The transformer is also converted to be centre-tapped to reduce the number of windings. 

The addition of L1 improves the current shaping ability and the topology is able to meet 

class D with ease. 

D2  N 
Ll 	DI 	 L2 

jN 2  

it D3 	0 

	

N, 	N 3 	D5  C1 	tv. 
N4  

Figure 3.18: Bi-Forward converter with centre tapped primary winding and boost type 
input inductor 

Bi-Flyback 2: A Different Topology with the same Name 

Another topology which integrates two flyback converters operating in DCM into a topol- 

ogy with one switch is presented in [96], and the basic topology is shown in figure 3.19. 

A similar topology is presented in [97] which was developed from the BIFRED. The input 

'I1 



. N4 	D1  

T 	 T 
._A_A.Aj 	P1 	

• 	c 

fl N2C1TI tv. 

Figure 3.19: The other bi-flyback converter 

flyback transformer T2 is operated under DCM and the output flyback transformer T1 in 

CCM. When the input voltage is low (during the zero crossing) both transformers operate 

as flyback converters, both supplying the output. When the input voltage is high the trans-

former T1 still operates as a flyback and supplies all the power to the output. The other 

transformer T2 operates as a boost inductor (N4 is not used). The converter is operating in 

a similar manner to the BIFRED during this period. [98] implements the converter with an 

active clamp with a modified control scheme. [99] applies the PFC scheme to the asymet-

rical half bridge. [100] applies the scheme to the converter proposed in [73], and in [101] 

additional boost inductance is added in series with N1  and a lossless snubber is added to the 

basic topology. [102] converts the input PFC cell (transformer T2) into a "flyboost" with 

the addition of a diode in series with N1. The operating principle is very much the same as 

the topology in [97]. A converter with similar operating principles but based on a flyback 

current fed push-pull converter is introduced in [103], where the converter operates in boost 

mode during the zero crossings of the input voltage and buck mode when the input voltage 

is high. 

3.3 Operation of Conventional Converters as Single-Stage PFC 

Converters 

Another method of achieving single-stage PFC is to use an existing converter, but operate 

it so that it carries out both current shaping and output voltage control. Topologies suitable 

for this are ones that have an inductor on the front end such as the boost, flyback and Cuk 

converters. The Cuk converter in [104] is operated with DCM inductors and with normal 
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voltage feedback, hence the Cuk converter automatically draws almost sinusoidal current. 

The converter also features integrated magnetics. [105] uses coupled inductor SEPIC and 

Cuk converters with non-linear charge carrier control as single-stage PFC circuits, and [106] 

presents a PFC SEPIC converter with multiple outputs. In [107] a flyback converter using 

charge control is presented as being able to operate as a PFC converter while operating in 

CCM. A digital control scheme for a PFC flyback converter is presented in [108]. In [109] 

an active clamp flyback converter for PFC in distributed power systems is presented. The 

Sheppard-Taylor topology (which can be considered as a modified boost and a buck con-

verter sharing the same switch) is used as a single stage PFC topology in [110]. [111] uses 

quasi-resonant flyback converters for PFC. The converter can be operated with the input 

inductor in DCM and the output inductor in CCM using PWM, or with the input inductor 

operating in CCM and the output inductor operating in DCM using frequency modulation to 

control the output voltage. When operated in the latter case the input current suffers negligi-

ble distortion. In [112] a class D series resonant half bridge converter with fixed frequency 

with close to unity power factor is presented. In [113] discontinuous capacitor voltage mode 

converters for single stage PFC are presented. The discontinuous capacitor voltage mode 

converters are derived from the conventional DCM buck, buck-boost and boost converters. 

Unfortunately they do not build any of the converters presented. [114] applies the principle 

to a flyback converter, but with experimental results. In [115] isolated capacitive idling con-

verters operating in DCM for PFC are presented. The capacitive idling converters shown are 

based on the flyback, Cuk, SEPIC and inverse SEPIC. In [116] a SEPIC capacitive idling 

converter operating in CCM and an auxiliary switch network is developed. A new current 

shaping technique in CCM is shown in [117] using inductor voltage sensing in the isolated 

Cuk, SEPIC and flyback converters. 

3.4 Selection of the Most Promising Topologies 

Keeping in mind that the topologies selected are to be considered as being used as PC power 

supplies, they will need to be simple and cost effective. Since there are two broad families 

(the series power delivery and parallel power delivery) of single stage converters then the 

most promising from each family is selected for further study. 

Most of the parallel based topologies with more than one converter are not suitable for the 
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application of PC power supply. As most of the auxiliary converters are on the secondary 

of the transformer and a PC power supply has multiple secondaries this option will be 

expensive due to a large increase in components. Also complexity is increased. The second 

bi-flyback was unfortunately proposed too late to be considered for study, but may still 

suffer from the same variable voltage on the bulk capacitor as the BIFRED does. The one 

converter that stands out in this group is the bi-forward shown in figures 3.17. The bi-

forward does not suffer from load dependant voltage stress when the output is operating 

in CCM as the series PFC circuits do. The basic converter has a simple operation, only 

requiring the addition of an extra transformer winding and three diodes on the basic forward 

converter. It should also have no problems with multiple outputs. Even though the topology 

is only designed to meet class A in [92] it may be possible to redesign it for class D. If 

that is not possible the addition of inductor L 1  in figure 3.18 can be implemented with little 

detriinentral effect (it is claimed that adding L 1  in [95] will not cause the voltage on the 

bulk capacitor to change appreciably). 

From the series PFC topologies it was decided to study the topology in figure 3.8 introduced 

in [37]. This topology is considered promising as it operates with the output inductor in 

CCM, but also as the input inductor operates in CCM for some of the time input filtering 

requirements are reduced. Also it was considered that this topology deals with the bulk 

capacitor voltage problem to a reasonable extent, allowing the use of the converter on the 

universal voltage range. Most of the other options do not deal with the voltage on the 

bulk capacitor satisfactorily. It is undesirable to operate with a variable frequency due to 

increased complexity or to operate the output inductor in DCM since the output currents are 

quite high. Other topologies were considered to be too complicated for this application. 
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Chapter 4 

Bi-Forward Converter 

4.1 Introduction 

The simplest version of the bi-forward is presented in [92] and [93]. This version has a 

single transformer core wound with two primary windings as shown in figure 4.1. The 

converter can be made more compact by integrating the two primary windings into one 

with a centre tap as shown in figure 4.2. This version was presented in [95]. Converting 

the primary windings into a single winding with a centre tap does not change the basic 

operation of the converter. In the centre tapped version N1A + NiB is equal to N1A of the 

the version in figure 4.1. 

v(t) 

• 	D4 	L2 

Di 

  

____ 	

D+ tv., 
N3  

NiBs 	D 

Figure 4.1: Bi-Forward converter with two primary windings 

The original bi-forward and bi-flyback presented in [92] were only designed to pass the 

class A part of IEC 61000-3-2. The version with the centre tapped transformer in [95] is 

claimed to pass the class D regulations at low line with only a 60W output. These statements 

indicate that the basic converter will find it very difficult to pass the class D regulations, but 
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Figure 4.2: Bi-Forward converter with centre-tapped primary winding 

not necessarily impossible. If the basic bi-forward is shown to be unable to meet class D 

regulations then it can be modified along the lines in [95] with the addition of an inductor 

placed between the diode bridge and the D1  D2 junction. The main reason that makes this 

topology worth investigating is that the bulk capacitor voltage is independent of the load, 

normally being charged to the peak of the mains input. 

4.2 Operation 

The converter operation of the circuit in figure 4.2 is simple; the output is supplied either 

from GB via N1A + NiB when the input voltage is low or from the input voltage source 

V S  (t) via NIA  when the input voltage is high. The bi-forward operates in the same fashion 

as an ordinary forward converter, which is either being fed from GB or v 3  (t) depending 

on the line voltage level. When operating from v 3  (t) the duty cycle has to alter to keep V0  

constant as v 8  (t) changes. The bulk capacitor is recharged by peak charging. 

The change over between feeding the output from GB to v8  (t) or vice versa is controlled 

by the primary of the transformer. When operating from v3  (t) the instantaneous voltage of 

V, (t) is applied across NIA  when Si is turned on. A voltage is thus induced in winding 

NiB; if the voltage across N1A + NiB is higher than the bulk capacitor voltage then diode 

D3  is reverse biassed and the output is still supplied from v 3  (t) via D2. If the voltage across 

N1A + NiB is lower than 1TB  then the output is supplied from GB. When GB is supplying 

the load the voltage across N1A  will be higher than the input voltage v3  (t), reverse biassing 

D2. The diode D1  only conducts during bulk capacitor recharge, and is there to disconnect 

GB from N1A and prevent it from supplying the load via NIA  instead of v 3  (t). The typical 
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input current waveform is shown in figure 4.3. 

Figure 4.3: Typical input current waveform for a half line period showing the conduc-
tion periods 

4.3 Analysis And Design 

The main parameter in the design of a basic bi-forward converter is the turns ratio between 

NIA and NiB. This turns ratio has several important effects: 

It determines the conduction angle of the input current (length of time v 8  (t) supplies 

the output directly). 

Following on from the conduction angle, the turns ratio also determines the conduc-

tion angle of GB.  If the mains conduction angle is long then the bulk capacitor has to 

supply the output for a short time and the recharging current is low and vice versa. 

It determines the current and voltage stress across S1. 

- Points 1 and 2 affect the level of the input current harmonics which must meet the regula-

tions, but point 3 should not be neglected. 

To examine the bi-forward converter, a test circuit was designed and built. 
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4.3.1 Specification 

The specification for the test circuit is a simplified representation of a PC power supply 

specification and is outlined below; 

. Operate from 90 - 130VRMS and 180 - 265VRMS at 47 - 63Hz 

. Output power of0- l48Wat5V,0-2OA and l2V, 0-4A 

Efficiency of over 65% 

. Meet IEC 61000 -3-2 Class D and A at 100VRMS and 230VRMS at 50Hz 

• Switching frequency of about 100kHz 

The bi-forward is loosely based on a 150W forward converter PC power supply designed 

and manufactured by Minebea Electronics (UK) Ltd. The bi-forward does not have a volt-

age doubler front end (a scheme was later suggested in [95] after the converter was built) so 

the converter must be designed to operate from 90VRMS to 265VRMS as a single range. 

4.3.2 Assumptions 

The following assumptions were made during the analysis and design of the bi-forward and 

are also used in chapters 5, 6 and 7: 

Switching frequency is 100kHz. 

Semiconductors are ideal. That is, they have zero voltage drop and resistance when 

conducting, infinite resistance when off and instantaneous switching transitions. 

Magnetising inductance is infinite so magnetising current is zero and leakage induc-

tance is zero. 

4. All inductances, capacitances and resistances are ideal with no parasitic elements. 
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43.3 Analysis 

All the analysis and design calculations were carried out using MathCad 2000. The analysis 

carried out follows that presented in [92, 93], so most of it is not presented. 

The input voltage is defined as: 

V S  (t) = Vpk • sin (. .t) 	 (4.1) 

and the turns ratio between NIA  and N1A + NiB is defined as: 

NIA + N18 

= 	
(4.2) 

N1A  

If power, P0 , is supplied, then the energy lost (Es) by GB supplying the load during the zero 

crossings is: 

E = P0  . (2 . ti) 	 (4.3) 

where t1 is the time from the start or stop of conduction to the zero crossing point. 

Considering the energy loss across GB in equation 4.4, the voltage G3 falls to (Vm in) can 

be found. 

E = 	GB .  (v, - 	 (4.4) 

The recharge current for GB is: 

dv 8  
c  (t) = GB 	= GB Vpk w cos (w . t) 	 (4.5) 

dt 

The recharging of GB starts when v 3  (t) = Vmjn  which gives a recharge start time of tr  

(equation 4.6) after the zero crossing of the input voltage. GB has been chosen to be 165F 

formed from two 330 jtF capacitors in series. This value was chosen since it is the corn- 
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bination being used in the 150W power supply produced by Minebea. When the design 

procedure was started CB was initially chosen to be 470tF, but this is large and expensive 

hence the change to 165F. The implications of this change are mentioned in section 4.4.1. 

) 
tr = 
	VV —pr 	 (4.6) 
w 

The input current waveform can now be constructed. The current, idi,  (t), supplied directly 

to the output from the input can be considered as: 

_ 
• (t) -

Po 
(4.7) dir 

	v 8  (t) 

Using figure 4.3 the input current, i 8  (t), for a half period of the input voltage can be con-

sidered as: 

i 3 (t)= 0 	 0<t<t1 t4<t<t5 

dir (t) 	ti < t < t2 t3 < t < t4 	 (4.8) 

dir (t) + i c  (t) t2 < t < t3 

If the bi-forward is built with a tertiary transformer reset winding then N3 has to at most, 

equal N1A to ensure that the transformer will reset during the Si off time. The reset winding 

can only be placed across GB,  thus during transformer reset the voltage seen across S1, Vsi, 

is: 

Vi = VB + NIA + NiB. VB 	 (4.9) 
N3 

Since N3 = NIA, then 

VS1=VB+n•VB 	 (4.10) 

When operating from 265VRMS the peak voltage on GB is 375V. Si  is realized as a MOS- 

FET (normal practise in current PC power supplies), and MOSFETs are only produced up 

to a maximum voltage of 1500V. At this voltage the devices are expensive and the range 
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limited. 1200V devices are also manufactured and are slightly more common. It is thus 

desirable that the voltage on Si should be kept below I 200V. From equation 4. 10, n has to 

be kept below = 2.2 to be able to build a prototype. n was chosen as 2, 1.3, 1.57 and 

1.16 SO that design curves could be plotted. 

The rms harmonic currents of the input current can be found from the Fourier series for 

i 8  (t). 

0.8 0.8 

0.6 - 

hreg200 

b(2) 

0.4 - 

L b(1.57) 
 

bm( 1.16) 	

•,3 \J,_: 
02 - 

2.0610  
0 	 10 	 20 	 30 	 40 

Harmonic Number (Odd Plotted Only) 

Figure 4.4: RMS input current harmonics compared to class D (breg200 curve) for 
230V input with an input power of 200W with n as 2, 1.3. 1.57 and 1.16. 
Traces are listed by side of graph. 

Shown in figures 4.4 and A.1 (in appendix A as both the plots look similar) are the harmonic 

plots at 200W (assuming about 70% efficiency) input power at 230V and IOOV compared 

to the class D regulation values. Figures 4.4 and A. I show that all four of the design curves 

are exceeding the class D limits at 200W at both lOOV and 230V for a large number of the 

odd harmonics. Similar curves produced for 75W input power show a similar behaviour. 

Figures 4.5 and A.2 (in appendix A) show plots for harmonic levels to class A at 230V and 

IOOV, but only at full expected input power. At IOOV in figure A.2 all the design curves are 

below the regulation values. For 230V in figure 4.5 the design curves are very close to the 

class A limit, but they are still just exceeding it, but are close enough to possibly pass in 

practice. The effect of the value of CB on the input current harmonics is shown in appendix 
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Figure 4.5: RMS input current compared to class A (curve bA)  for 230V input with an 
input power of 200W with n as 2, 1.3, 1.57 and 1.16. Traces are listed by 
side of graph: 1st value is n, 2nd value is the input voltage and 3rd value 
is the power. 

From figures 4.5 and A.2 values of n around 2 seem to produce realisable designs which 

has the best chance to meet class A. The 8th, 10th, 12th, 15th, 17th, 20th, 22nd, 32th, 34th, 

35th are the harmonics it fails on at 230V. The even harmonics are expected to be low (see 

the simulation results in section 4.4.1). Thus N1A = N I B appears to be the best design to 

pursue. It would appear to be impossible to meet class D with any value of n. Even though 

it is shown in figure 4.5 that some harmonics are just exceeding the limits, it is likely that in 

a prototype converter that they could meet the class A regulation as the current shape will 

not be as sharp as shown in figure 4.3. 

Design of Transformer Turns and Output Filter 

It was decided to use the same output filter design for the bi-forward as is used in a Minebea 

150W supply. That is 

Ez 



L2.5v 	 15.4/2H 

L2.12v 	 64/tH 

C1:5v 2200iF (changed from 1800F as this is rare part to find) 

Ci12v 	 470F 

Since the transformer for the bi-forward has a different structure to a conventional forward 

converter transformer it was decided to design a completely new one. When the converter 

is supplying the output directly from the mains the minimum voltage across NIA  is 63.5V 

when n = 2, and when the converter is operating from GB via N1A + NiB the mini-

mum voltage is 86V. When the converter is operating from 265 VRMS  the maximum voltage 

across N1A + NiB or N1A is only 375V. Considering this, N1A + NiB was chosen to be 44 

turns, with N1A  and N3 as 22 turns for n = 2. The number of secondary turns were chosen 

to be 5 turns on the 5V output and 11 turns on the 12V output, which are just large enough 

to ensure that the secondary transformer voltage would be high enough to still produce the 

desired output voltages when running from GB at 127V with the existing output LC filters. 

The transformer was designed and built for the case where GB is 470aF and the drop in 

voltage is only to about 100V. When GB was changed to. 165 itF  the voltage dropped to 

86V. This late design change is shown later to cause a slight problem with a loss of output 

voltage regulation at 90V input voltage when suppling the output from GB and is discussed 

in section 4.4.1. 

When operating from GB the duty cycle is given by 

D
V, -  N2 

(4.11) 
- VB - (N1A + NiB) 

and when operating from the input supply v (t) 

V0-N2 	
(4.12) 

V 8  (t) . N1A 

Figure 4.6 shows how the duty ratio varies over a half-mains period for 90V and 265VRMS. 

The duty ratio is below 0.5 for the 90VRMS and not too low at 265VRMS so that the control 

IC has problems turning S1 on properly. 
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Figure 4.6: Variation of duty cycle over a line half period at 90V and 265V input with 
n as 2. Traces are listed by side of graph, 1st value is n, 2nd value is the 
input voltage and 3rd value is the number of turns on N1A. 

Sizing of Semiconductors 

Design equations are presented in general terms so that they can be used for different values 

of n. Devices used are heavily over-rated to reduce the risk of component failure on the 

prototype converter. 

MOSFET (Si) 

The voltage across the MOSFET for ii = 2 is 1125V. Following the method outlined in 

[118] the RMS current through S1 at 90V is 2.73A. The peak current from inspection in 

S1 is 7.33A, when the converter operates from 265V input voltage. For this application the 

APT1201R2BLL, a 1200V 12A 1.211 Rd,  device was selected. A small 1200V diode, the 

BYD33U, was chosen for the reset winding N3. 

Secondary Diodes (D4 : 5v 9  D5 :5v, D4 : 12v and D5:120 

The 5V diodes have a total average current of 20A through the pair 'D4:5V + 'D5:5V, SO 

a 20A (average) diode was used for each since the average current in each diode will be 

below 20A. 

When operating from a 265V mains input the voltage seen across the diode D5:5v, VD5:5V, 
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is expressed in equation 4.13 and is calculated to be 86V when n = 2, and a BY51-200, a 

200V 20A device was chosen. This means that ordinary diodes are used instead of Schottky 

diodes on the low voltage high current output which will have a noticeable effect on effi-

ciency (voltage drop across ordinary diodes is approximately twice that of Schottky diodes). 

VD5:5V = Vpk 
N2:5v 	

(4.13) 
N1A 

Applying equation 4.13 to the 12V secondary the voltage across the diodes is expected to 

yield 188V with n = 2. The 12V diodes have a total average current of 4A through the 

Pair 'D4:12V + 'D5:12V, so the BYT08P-400, an 8A (average) diode was used for each (8A 

diodes were the easiest/cheapest to use). 

Diodes D1, D2 and D3 

The voltage seen across D3, VD3,  is expressed in equation 4.14. The worst condition is if 

GB is completely discharged and the input voltage is at its maximum of 375V. This gives 

VCB as a possible 750V with n = 2. Again following the methods in [118] the average 

current in D3 at 90V is 0.378A. From inspection of the current waveform the peak current 

through D3 is 3.64A at 265V input. 

\. 

/ N1B\ 
VD3 = v8  (t) (1 - 

NAj 
I - VB 	 (4.14) 

A similar procedure is used for D2 and the average current is calculated to be 0.949A with 

m = 2 at 90V input. The peak current for D2 is the same as for Si when operating from 

N1A which is 7.33A for n = 2. The voltage across D2, VD2, can be deduced from equation 

4.15. The worst case scenario for this diode is when the input voltage V 3  (t) is zero and the 

bulk capacitor voltage is at its maximum. This gives VD2  as 750V when n = 2. 

VD2 = VB m - v8  (t) (4.15) 

Diode D1  only conducts when the bulk capacitor GB is being recharged and thus the average 

current through D1, ',,,:Dl,  is: 
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T 
2 

'av:Dl =  .JCB Vpk.WC0S(W . t)dt 	 (4.16) 

tr 

This is calculated to be 0.439A with n = 2. The maximum voltage seen across D1 is the 

bulk capacitor voltage which is 375V. 

Diode Bridge 

The voltage seen across the bridge diodes is v8  (t), and the average current is the average 

of i 3  (t). These are calculated to be 375V for 265VRMS input and 0.968A when the input 

voltage is 90VRMS. The GBU6J was chosen, which is a 600V, 6A device. 

Control Circuit 

Single stage PFC topologies such as the bi-forward are designed to perform current shaping 

as part of regulating the output voltage (ie it is a by-product). Since this is the case, the 

simple method of output voltage regulation was chosen which is fixed frequency PWM 

with voltage mode control. The UC 3524 control IC was used. 

4.4 Simulation of the Bi-Forward Converter 

To confirm the operation, and to check that the design produced would work, the bi-forward 

was simulated using PSpice. As in this case simulation is only used as a confirmation tool 

and not a detailed design method, the models used in the simulation are the more basic ones. 

Figure 4.7 shows the circuit schematic entered into the schematic editor of PSpice. 

To speed up simulation times the two outputs have been reduced to one 5V output operating 

with the full output power (148W). The transformer is made up from inductances L 1  to L4 

which are coupled using linear coupling coefficients K1 to K6. The coupling coefficients 

of K1 to K6 are set to 1 which represents ideal coupling. For a SNIPS transformer a typical 

coupling coefficient is 0.999, since this is so close to 1 it was rounded up to make the sim-

ulations run more efficiently. The magnetising inductance of the primary is approximately 

the inductance value of the inductor L1. The inductance value of L1 is chosen as the value 
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Figure 4.7: PSpice circuit schematic 
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measured from a standard PC power supply transformer. The turns ratio is set by the induc-

tance ratios as shown in equation 4.17. The diodes are the simple Dbreak models (with the 

area set to 500 for D1  to D5). The MOSFET (Si) is represented by a voltage controlled 

switch. 

L 2 = ()2 .L 1 	 (4.17) 
NIA 

El V2 
AND2 	 V3' 
 EVALUE 	 35~ 

EVALUE 
Limit(V(%INc.%IN-)'l 0000;5) 

I 
Figure 4.8: PSpice voltage mode controller 

The bi-forward needs to have a feedback loop to keep the output voltage constant when 

operating directly from the line (an ordinary forward converter could be simulated with D 

set to a constant value and produce a constant voltage output). In figure 4.8 the feedback and 

gate driving pulse generator part of the simulation circuit is highlighted. The first EVALUE 

box E1  is used as an error amplifier. The output voltage is fed back to the negative input 

and the positive is connected to the reference voltage, which in this case is set to be the 

required output voltage. The resistor and capacitor network (R2 and C3) provides error 

compensation. The values of R2 and C3 were determined by trial and error. The limit term 

specifies the open loop gain of the amplifier (100, set low to avoid convergence errors) and 

the maximum and minimum output voltages. The second EVALUE box E2 is used as a 

comparator. The two inputs are the output of the error amplifier and a clock signal. The 

clock signal is a modified ramp from 0 to 5V at 100kHz. The signal ramps up for half of 

a cycle and then sits at 5V until the start of the next cycle; this is used to limit the duty 

ratio to 0.5. The limit term is set up in the same manner as for E1 . The output of E2 is 

a square wave driving signal. The AND gate and voltage source V4 are included to avoid 

convergence problems when the simulation starts by delaying the application of the driving 
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signal to the voltage controlled switch. 

The part of the schematic in figure 4.7 formed from F2, C12 and R14 is used to produce an 

averaged version of the input current, as otherwise all that is seen is a set of high frequency 

DCM current pulses giving no clue to the overall waveform shape. The component F1 is a 

current controlled current source and C12 and R14 form a filter. 

The simulations are carried out with the accuracies in PSpice set as shown in table 4.1, 

so that the simulations are not too slow and can reach a steady state result in a reasonable 

time. The capacitors and inductors have been set with initial conditions close to expected 

operating conditions so that the simulation will quickly reach a steady state. This also 

reduces the transient effects of the first cycle which may have a bearing on the measured 

current harmonics. The simulations were carried out at 90V, 100V, 230V and 265V RMS. 

The simulations at bOy and 230V are to examine the input current, and the 90V and 265V 

simulations are to check current and voltage stresses. 10% or better agreement is hoped for 

between simulation results and analysis predictions. 

Setting Name New Setting 
ABSTOL 10A 

ITL2 50 
ITL4 500 

LIMPTS 10k 
RELTOL 0.005 
VNTOL 0.1mV 

Table 4.1: PSpice settings that have been changed 

4.4.1 Simulation Results 

Tables El and E2 in appendix F show the current harmonics for full power input at 230V 

and 100V compared to the regulation values for class D and A. The input power was cal-

culated in PSpice. From table El, PSpice predicts that the topology at 230V will only pass 

class D for the 3rd and 5th harmonic (Mathcad for 200W predicts passes at the 3rd, 5th, 7th, 

9th, 11th, 25th, 27th, 29th, and 33rd), and fails class A at the 15th, 17th, 23rd, 31st and 37th 

harmonics (Mathcad predicts 8th 10th, 12th, 15th, 17th, 20th, 22nd, 32th, 34th, 35th). For 

ioov in table F.2 Pspice predicts that the bi-forward will only pass the 3rd, 5th, 7th, 15th, 

25th and 31st harmonics for class D (Mathcad predicts 3rd, 5th, 7th, 9th, 11th, 25th, 27th, 
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29th, and 33rd) and completely passes class A (as does Mathcad for 200W). 

Table 4.2 shows the peak voltages and currents (ignoring spikes) for the semiconductors as 

predicted by PSpice with a 265 VRMS  input voltage. When comparing the average and RMS 

currents for 90VRMS input calculated in Mathcad in section 4.3 and predicted by PSpice, 

the difference between them was found to be above the desired 10%. The calculations 

were redone, but considering diode voltage drops, switch losses, the same input power as 

PSpice and considering the discharging of the bulk capacitor GB while it was supplying the 

output, the results of which are shown in table 4.3, but not including the values calculated 

in section 4.3. These modifications brought the calculated values to within 10% of the 

simulated values. The diode voltage drops when conducting were measured to be 0.705V 

for D1 to D5 in PSpice and D7 to D10 as 1.5V. The voltage across Si was measured to be 

33V when D3 was conducting and 6.8V when D2 was conducting in PSpice. These were 

the values used in the recalculation. The voltage on the capacitor was calculated to fall from 

125.6V to 84.8V with a 90V input. The peak voltages for D1 to D3 were recalculated for 

normal operating conditions. When simulating at 90V the output voltage fell from 5V to 

4.7V when the output was supplied from GB.  This is due to GB becoming discharged to 

below a voltage where the duty cycle cannot open up any more (duty is limited to 0.5), to 

maintain output voltage. This happens as the circuit was originally designed to operate with 

GB as 470F where VCB  was only expected to fall to 11OV. The problem could be solved 

by reconnecting the two 330iF capacitors in parallel when operating from the low line, but 

as this is only a minor defect they are left in series. 

Device Peak Voltage/V Peak Current/A 
PSpice Mathcad PSpice Mathcad 

S1 1183 1122 7.12 7.33 
D1 213 375 3.87 - 

372 375 7.15 7.33 
363 375 3.55 3.64 

D45v 84 86 N/A N/A 
D55v 84 86 N/A N/A 

Table 4.2: Peak voltage and current on key components at 265V measured in PSpice 
compared to Mathcad predictions 
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4. OV 

2. OV 

ov 
ç -V(R14:2) 

10A 

OA 

-10A 

Device Average or RMS 
Current/A 

PSpice Mathcad 
Si 3.22ARMS 3.11ARMS 

D1 0.491A 0.545A 

D2 1.30A 1.21A 
0.490A 0.521A 

DB 0.853A 0.968A 

Thble 4.3: Average or RMS currents in key components at 90V measured in PSpice 
compared to Mathcad predictions including device voltage drops 

40mg 	 45mg 	 50mg 	 55mg 	 60ms 	 65ms 

c I(V1) 

Time 

Figure 4.9: Line frequency waveforms produced by PSpice at 230V input voltage and 
150W output power. Top trace) averaged input current seen as a voltage 
across R14 and, bottom trace) unaveraged input current 
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4.4.2 Simulation Waveforms 

Figure 4.9 shows the unfiltered input current at line frequency of the bi-forward for n = 2 

at 230VRMS input which is just 100kHz current pulses superimposed onto the recharging 

of CB (the triangular section). The top trace is the averaged current displayed as the voltage 

across R14. This is very similar in shape to the predicted shape from equation 4.8. The 

waveforms for 100V and 75W input are not shown as they are very similar. 

40ms 	 45ms 	 5Oms 	 55mg 	 60mS 	 65mg 

r I(D2) 
Time 

Figure 4.10: Simulated line frequency current through diode D3 (top trace), inductor 
L 1  and S1 (middle trace) and diode D2 (bottom trace) for 230V and full 
load output at line frequency 

Figure 4.10 shows the line frequency waveforms for the current through D3, L 1  and D2. 

They show D3 only conducts during the zero crossings (the part between conduction peri-

ods is pulses which occur on the switching transitions). A similar effect can be seen for D2 

which is conducting when the input voltage is high. The current in L1 and S1 is a combi-

nation of both. The current waveforms for D3, L1 and D2 at switching frequency are very 

similar to CCM current waveforms in a normal forward converter. 
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4.5 Experimental Results 

The prototype circuit could be run from either an isolation transformer and vanac or a 

transformer coupled AC source. When running via the isolation transformer and variac the 

input voltage waveform to the circuit had a flattened peak due to a distorted mains voltage 

waveform in the laboratory. Shown in figure 4.11 is the final circuit schematic for the circuit 

that was tested and in figure 5.20 is a photograph of the experimental circuit with an input 

inductor. Table G.1 in appendix G lists the components. 
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Figure 4.11: Final and complete circuit schematic for the bi-forward converter 

4.5.1 Changes to the Prototype 

To improve the current waveform drawn by the converter a 1 /'IF capacitor, C2 was placed 

across the diode bridge rectifier. This helps to stabilise the voltage on the DC side of the 

bridge. The other change was to place a RCD snubber across MOSFET Si to reduce turn off 

losses, as S1 was suffering from thermal run away at high voltage and power. The snubber 

circuit is shown in figure 4.11. The snubber was designed following the procedure in [119]. 
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4.5.2 Harmonic Tests 

The harmonic tests were carried out at 75W and full load input power, both at 100V and 

230V, but not at 230V and full load as the converter was operating incorrectly. The tests 

were carried out using a Hewlett Packard AC source and harmonic measuring program at 

Minebea Electronics. The results are shown in figures 4.12, 4.13 and 4.14. These figures 

show that the converter is unable to meet class D, particularly at 75W where the converter 

fails at almost every odd harmonic apart from the 3rd and 5th at 230V and a large number 

at 100V. At full load the performance is better, only failing at the 11th, 13th, 15th, 35th and 

37th at IOOV. Many of the class D harmonic limits are exceeded by a large margin. These 

results compare well with the PSpice results in table E2 and the results from the Mathcad 

analysis shown in figures A. I and A.2. At I OOV full load the converter passes the class A 

regulations. This is the same as predicted by both PSpice and the analysis. 

2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 IX 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 33 36 37 38 39 4)) 

HaimonzNunther 

•Measwed OCIas., D Lnn*. QCIas A Lirni 

Figure 4.12: Measured RMS input current harmonics at lOOV and full load compared 
to class D and A 

4.5.3 Voltage Stress on MOSFET S 1  

The voltage on S1 was measured to be 845V at 265V input. This is lower than expected 

from PSpice and the analysis, both of which predicted over 1 IOOV. The reason this voltage 

is lower is because the MOSFET snubber circuit is resetting the transformer instead of the 
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Figure 4.13: Measured RMS input current harmonics at IOOV and 75W input power 
compared to class D 
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Figure 4.14: Measured RMS input current harmonics at 230V and 75W input power 
(77W) compared to class D 
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tertiary winding N3. This was proven, since when the voltage across the reset winding 

diode D6 was measured it never became forward biassed. This occured across the whole 

input voltage range. The snubber primary purpose is as a switching aid and not to reset the 

transformer. In [93] a RCD snubber is used to reset the transformer and the reset winding, 

N3, is removed. 

4.5.4 Efficiency 

Efficiency readings taken during harmonic tests are given in table 4.4 

Input Voltage/V Output Power/W Input Power/W Efficiency/% 

bOy 57.8 76 76 

bOy 143 214 66.8 

230V 56.6 77.7 72.9 

Table 4.4: Efficiency measurements for the bi-forward converter at 100V and 230V 

4.6 Conclusion 

This study shows that the bi-forward converter is not as attractive as was expected. It was not 

expected to pass the class D regulations, but it was expected to meet the class A regulations, 

and was predicted to have difficulties at 230V full load. The use of an RCD MOSFET 

snubber was found to be useful in that it was resetting the transformer at a lower voltage 

than expected, meaning that a lower voltage device could be used. Using an RCD snubber 

would also allow the duty cycle to extend beyond 0.5. The efficiency reading at full load is 

dissapointing. This is due to the use of ordinary diodes on the 5V output instead of Schottky 

diodes normally used in this sort of application. 

In light of the fact that the basic bi-forward converter is not able to pass class D, and since 

it is class D which PC power supplies need to pass, it was decided not to do any more tests 

on this version and to work on the modified version to be described in the next chapter 

and showing more promise. The basic bi-forward is most likely ideal for use in low power 

applications (100W or less output) which only have to meet class A. 
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Chapter 5 

Bi-Forward Converter with Input 

Inductor 

5.1 Introduction 

In chapter 4 the bi-forward converter was investigated. It was found to be unable to pass 

the class D regulations and only just meet the class A regulations at low powers (200W at 

bOy). In spite of this the bi-forward converter in chapter 4 has a simple operation, and the 

voltage on the bulk capacitor does not rise above the peak voltage of the line. To improve the 

PFC performance of the bi-forward converter an inductor, L1, was added to the converter as 

shown in figure 5.1, by Zhao in [95]. The inductor changes the current shape and increases 

the conduction period of the input current. With the addition of L1 the converter in [95] was 

able to meet class D with ease and with little detriment to the voltage level on GB (it rises a 

small amount above the peak of the line). 

5.2 Operation 

In figure 5.2 the input current waveform is shown for a half line period: the dashed lines are 

transitions between different conduction methods that occur. 
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Figure 5.1: Bi-Forward converter with input inductor L1 
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Figure 5.2: Typical input current waveform for a half line period showing the different 
- 	conduction periods of L 1  

65 



Li 

I. 

L2 

t 

I C  

t 

II 

t 

t 

t 

t 
Lo 	

b a 

Period 1: ta to tb and tg  to th 

During the zero crossings from ta to tb and tg  to th the output is supplied entirely from GB 

and no current is flowing through the input part of the circuit. 

Period 2: tb to t and tf to t9  

Figure 5.3: a: 	Current waveforms for L1, D3  and L2 when in- 
put voltage is low between tb to t 	and t1 to t 9 , 

b: Current waveforms for L1, D3 and L2 when input voltage is 
higher between t to td and te  to t1. 

At low input voltages from tb to tc  and t1 and t9  in figure 5.3a L1 is in DCM. Shown in 

figure 5.3a are the key switching frequency waveforms for this period. The device S1 is 

turned on at t0 and the current in L1 ramps up from zero. This current also flows in NIA  of 

the transformer supplying the output. This is topped up by supplying the remaining output 

power from the capacitor CB via diode D3 and both parts of the transformer primary. The 

current in L2, 'L2,  is formed from 

'L2 = (N1A/N2) 'Li + ((N1A + NIB) /N2) 1D3 	 (5.1) 

As the voltage across L1 is small the current never rises high enough to supply the output 

on its own. At t1, S1 is turned off and the current in L1 is discharged into GB until t2. At 



.1/ 

13kj 

t3 the cycle repeats. 

Period 3: t to td and te  to t1 

Further on in the cycle from t to td and t to tf the switching frequency behaviour is now 

as shown in figure 5.3b. The current in L1 ramps up quickly from to when S1 is turned on 

as the voltage across L1 is higher. Again the output current is topped up by current from 

GB. At t1 the current in L1 equals the current in L2 (seen through the transformer by turns 

ratio N2 : NIA) and the two connect in series supplying the complete output power directly 

from the input. At t2, Si is turned off and L1 discharges into GB until t3. At t4 the cycle 

repeats. 

Period 4: td to t e  

to 	
a 
	 t o 	

b 

Figure 5.4: a: 	Current 	waveforms 	for 	L1, 	D3 	and 	L2 

when input voltage is high between td to te , 
b: Current waveforms for L1, D3 and L2 when converter enters 
period 2A. 

Across the peak of the line from td to te  the converter enters a fourth operating condition 

where the current in L1 is in CCM. The switching frequency waveforms are shown in figure 

5.4a. When S1 turns on at t0 there is already current flowing in L1. The current in L1 

now starts to ramp up. The current is topped up by current from GB.  At ti the current in 
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L1 equals the current in L2 (seen through the transformer) and the two connect in series 

supplying the complete output power directly from the input. At t2 Si turns off and the 

current in L1 discharges into CB until t3 when Si is turned on again for the next cycle. 

Period 2A 

While carrying out the analysis it was found that there was another possible operating mode 

for L1 during period 2. This is where L1 goes into CCM, but the current has not reached 

the reflected secondary current, so the output is also supplied from CB for the whole of the 

on period. Shown in figure 5.4b is the switching frequency waveforms for this period. It is 

possible from this period to enter period 4 directly. 

At t0 S1 is turned on. The current in L1 is already flowing and will now start to ramp up. 

At t1 S1 will turn off and the current in L1 will ramp down until t3 when the cycle repeats 

itself. The current in L never reaches the reflected secondary current so the output is also 

supplied from GB for the whole period. If the current in L1 reaches the reflected secondary 

current during the on time of Si then the converter will enter period 4. 

5.3 Analysis 

All the analysis and design calculations were carried out using MathCad 2000. 

5.3.1 Assumptions 

In addition to the assumptions in section 4.3.2 the following assumptions were made: 

The secondary current is assumed to be a constant dc value without any inductor 

ripple on L2 when seen from the primary side of the transformer. This makes the 

equations developed solvable for the period t to th, which they are not if the inductor 

L2 current ripple is considered. 

The voltage on the bulk capacitor is constant during a line cycle. 

During a switching cycle the input voltage is constant. 



5.3.2 Analysis at Switching Frequency 

The input voltage is defined as: 

v8 (t)=Vpk• sin (-t) 	 (5.2) 

Period 1: ta to tb and te to t1 

The output is supplied completely from GB and the input current is zero. The converter is 

operating just like an ordinary forward converter. 

Period 2: tb to t and t1 to tg  

During this period the output is supplied by both the input and GB jointly for the complete 

duty cycle as shown in figure 5.3a. The duty ratio, D2, is set by the bulk capacitor, GB, 

where the voltage on GB is  VB. 

(NIA + NiB) . V. 

N2 . V. 
(5.3) 

	

The inductor L1 is operating in DCM. Applying v = 	during the on time of Si gives: dt 

N1A 	 'pk2 Is 

	

V 8  (t) 
- N1A + NiB VB = 	D2 	

(5.4) 

where f5 is the switching frequency. 

When S1 turns off L1 discharges into GB until the current reaches zero and is blocked by 

diode D1. The discharge equation for L1 is 

VB - v3  (t) 
- L1 . 'pk2 f3 (5.5) 
- 	 D12 

Equating 5.4 and 5.5 the fall time duty ratio, Df 2 , can be found: 



N1A+N1B B) D2 (vs(t)_ _N1A 
(5.6) D12= 	

VB — v s (t) 

The peak current, 'pk2,  in L 1  for one switching cycle is: 

V, 	NIA 
N1A+N1B VB) D2 ( (t) - 

(5.7) 'pk2 	
L1•f5 

The average current, 1av2,  in L1 during one switching cycle of this period is: 

Iav2 
= 2 Jpk2 (5.8) 

This period will begin when the input voltage v (t) is higher than the voltage at the centre 

tap of the transformer primary windings: 

NIA 
V, (t)> 

I'1A + NiB VB 
	 (5.9) 

Period 3: t to td and t9  to th 

This period is when L1 is still operating in DCM, but the current in L1 reaches the reflected 

load current and takes the complete throughput load current causing CB to stop conducting 

(see figure 5.3b). 

The period will start and end when the current ramping up in L1 reaches the reflected current 

in L2 (current in L2 is I) seen through winding N1A  at time t1 (figure 5.3a). Rearranging 

equation 5.4 and solving for t when 'pk2  is the reflected average current in L2 gives: 

i L 

___ 	
N1A•VB sin_ 	 + D•V,k 	(N1A+N1B)•VPkj 	

(5.10) tc= 	 w 

From figure 5.3b the current in L1 will ramp up from zero to the reflected current of L2 

through N21N1A  from t0 to t1. This period is considered as a small part of the duty cycle 

zD3. Taking account of assumption 1 (section 5.3.1), iD3 is calculated to be: 
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AD3
- 	 •VB 

) - 
(5.11) 

Following the same assumption the duty D13 for the discharge of L1 into CB during the 

switch S1 off period is calculated to be: 

J2 .1 L 
. f 

D13 = N1A 

 VB - V (t) 
(5.12) 

Equations 5.11 and 5.12 are formed from applying v = L to L1 over the relevant period. dt 

During the remaining conduction period between ti and t2 ((D3 - LD3) expressed as a 

duty) the current in L1 is considered constant as: 

N2 
1L1 	 'o 

N1A  
(5.13) 

The overall duty cycle D3 for S1 during this period can be calculated from the flux balance 

for L2 shown in equation 5.14: 

N1A+NlB . 
VB - 

	

RA A 	
(t) - v0) . (D3 - zD3) 	N2 	 AD  

V0 (1—D3)  + 
L2 	- 	( i1A\ 2 .L +L2 	

L2 
N2) 	1 

(5.14) 

Equation 5.14 is rearranged to give D3, 

NZ  
N1A+N1B ) 	

+ 	

V 8 (t)_V'o) D3 
NiA 

L2 	
()2.Li+L2 

	

= 	
+ 	

(5.15) 
NI 	 V  

(J_)2.Li±L2 	
L2 

NIA 

The average current, ',,v3,  in L1 during this period is calculated to be: 

N2 
Iav3 = 	. 10 . (2 D3 + D13 - D3) 	 (5.16) 
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Period 4: td to te  

Period 4 will be entered if- 

	

1 = D3 + D13 	 (5.17) 

This equation can be solved to give the time after the zero crossing that period 4 is entered 

by substituting from equations 5.15, 5.12 and 5.11 for D3, D13 and zD3. During this 

period assumption 1 (section 5.3.1) is still valid. The current rise, LI4, in L will be from a 

non zero value to the reflected secondary current. This is expressed in equation 5.18 where 

assumption 1 is still valid. This is shown in equation 5.18: 

(v3  (t) - N1A 	
. VB) . 

AI4
N1A+N1B (5.18) 

= 	 L1.f. 

where /D4 is the duty ratio for the rise of current in L1 from the turn on of S1 to the 

reflected secondary current from to to ti in figure 5.4a. 

The current fall in L1 during the off time (t2 to t3) is similarly expressed in equation 5.19: 

(V—v s (t)) (1—D4) 
(5.19) 

L1•f8  

It is assumed that during one switching cycle the current in L1 will make one full excursion 

and return to the current at the start of the cycle, ie the flux balances. Duty cycle D4, the 

overall duty ratio for S1, can be expressed in the same way as the duty D3 in equation 5.15 

Equations 5.18 and 5.19 can be equated to give D4, as in equation 5.20. 

( B (t)
N1A  

-N1A+N1B . 
VB) . LD2 + v (t) - V 

(5.20) 
V, (t) - VB 

Equating equations 5.15 and 5.20 gives zD4 to be: 
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LD4=-j- 

L2 

(vs(t)—VB) (2-.v 8 t_Vo  

(N ) 2  
NIA 

L1+L2 

V  - 	N2 	.VB).(V3(t)VB)VO '-' 

(vs(t)—VB) (v s (t)_Vo) 

I N2 •Li+L2 

v8(t)— N1A - VB 
N1A +Nj 

+ 

--2-.v(t)—V 0 	 ________ N1 	 _______________ N1A 	
• 2 	v 8  (t) + 

N1A+N1B B) 

N1A •Li+L2 

(5.21) 

D4 can then be substituted to give D4 in equation 5.15. The current in L1 at the beginning 

('4mm) and end (14max)  of the switching cycle is: 

N2 
14mm 

=NIA 
 I. - zI4 	 (5.22) 

The average current, 'av4  in L1 during a switching cycle for period 4 is: 

N2 	 LI4 
av '4 = 	. 1. - 	(1 - iD4 + D4) 	 (5.23) 

N1A 

Period 2A 

This is when L1 is operating in CCM but the current in L1 has not reached the reflected 

secondary current. This operation mode will occur when the duty cycle, D2 (set by CB), 

and the fall duty cycle, D12, together are greater than 1. From equation 5.24 the time t2A 

after the zero crossing that period 2A occurs is; 

(p ))N1 A+ 
t2a = 
	pk 	 N1B 	 (5.24) 

W 

where D2 is as expressed in equation 5.3. During the on time the current in L1 will rise by: 

(vs(t)_ _ N1A 	
B 

'2Ar = 
	 N1A+N1B 	) 	

(5.25) 
L1 f8 
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The current in L 1  during the off time will fall by: 

I. 	
(VB —v s (t)) (1—D) 	

(5.26) i2Af = 	L1 f3 

The current rise LI2A r  and fall LI2Af are not equal since the duty cycle is set by the flux 

balance on L2 and not L1. This means that the current in L1 at the end of a switching cycle 

is not the same as at the beginning. The difference between the two is 

'2Adif = Al2A, - '2Af 	 (5.27) 

The peak current, 'pk2A,  during a switching cycle in Li will be: 

'pk2A = 2 12Ar - '2Af 	 (5.28) 

The average current, 'av2A,  for a switching cycle during this period in L1 is approximated 

by: 

'.,,,2A = '2Adif + 	 (5.29) 

Period 4A 

The period 4 style conduction following period 2A is considered slightly differently to pe-

riod 4 when entered from period 3. Because of this it is renamed period 4A. 

Period 4A conduction will be entered when the current in L1 reaches the reflected secondary 

current which is as assumed in assumption 1 in section 5.3.1. From equation 5.28 solved 

for when the peak current in L1 is N2 . 10, this occurs at t3A after the zero crossing and is 

as shown in equation 5.30: 

(Ll.f s -lo . N2  +VB-(2-D2_ N1A±N1B _D2+1)) 
sin— 	 NiA 	

(1—D2)•V,k 

t3A = 	 (5.30) 
W 
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As for period 2A, period 4A is considered to not have the flux on L1 balance during a 

switching cycle as the the duty cycle is again set by the flux balance of L2 and the current 

in L 2  at the end of the cycle will not be the same as at the start. Using the minimum value 

of the current in L 1  calculated for period 2A, the duty ratio for the rise in current in L 1  up 

to the reflected load current is LD4A and is expressed as: 

(N2 . I - I2Amin) - L 
. f5 

D4A 	 (5.31) 
V S  (t) - N1A+N1B 

NIA 
- VB 

where 

'2Arnin = 'pk2A - tI2Af 	 (5.32) 

This value of LD4A can be substituted into equation 5.15 to give the on time duty cycle 

D4A. During the off period the current in Li is assumed to fall back to '2Arnin• 

The average current in L 1  during this period is approximated to: 

J12 - 10  + 12Amin 
'av4A = 7T1A 
	

2 	
(1+ ID4A - D4A) + N1A -- . (D4A - IXD4A) 	(5.33) 

5.3.3 Analysis over a Half Line Period 

Depending on the output power and the size of L 1  the converter will not necessarily work 

in all the four periods. If the current in L 1  is unable to meet the reflected load current at 

all during the on time of Si during a half mains cycle, the converter will only operate in 

periods 1 and 2, and the input current, i. (t) is defined as: 

is (t) 	0 	ta <t<tb tg <t<th 
(5.34) 

1,,2 (t)tb<t<tg 

If the current in L 1  is able to meet the reflected secondary then the converter will also 

operate in period 3 as well, but if the current in L 1  always falls to zero before the start of 
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the next switching cycle it will not enter period 4. The input current for this operation state 

is: 

0 	ta<t<tb tg <t<th 

1,,,,2 (t) tb < t < tc  t1 < t < tg 	 (5.35) 

1,,3 (t)tc <t<tf 

All four periods will occur if L1 enters CCM. The input current will then be defined as: 

0 	ta <t<tb tg <t<th 

1,,2 (t)tb<t<tc  tf<t<tg  
(5.36) 

Ia0(t) tc <t<td te <t<tf 

1.,,,4 (t)td<t<te  

If the converter does enter period 2A conduction, but not period 4A conduction, then the 

input current is: 

i8 (t) 	0 	ta <t<tb te <t<tf 

1,,,2 (t) 	tb < t < t4  td <t < te 	 (5.37) 

',,2A (I) tc  < t <td 

If the converter enters periods 2A and 4A the input current is expressed as: 

i 8 (t) 	0 	ta <t<tb tg <t<th 

1,,2 (t)tb<t<tc  tf<t<tg  
(5.38) 

'av2A (t) t c  < t < td te  < t < tf 

'av4A (t) td < t < te  

The input power to the converter can also be expressed in five different ways depending on 

the number of operation periods the converter is operating in. 

For operation in periods 1 and 2. 

T 

Pin = ;•Jt Iav2 (t) - v (t) dt 	 (5.39) 
b 
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where T is the half line period. 

For operation in periods 1, 2 and 3. 

2 

Jtb 

t  
T 

Pin= -. 
	

1.,,2 (t) V5 (t) dt + 	1av3 (t) V (t) dt 	(5.40) 
tc 

For operation in periods 1, 2, 3 and 4. 

T 

•Itb 

Iav2(t)vs(t)dt+I
tc  

Iav3(t)v s (t)dt+fIav4(t)s(t)dt 

	

T

2 	td 

	

 I 	 d 

(5.41) 

For operation in periods 1, 2 and 2A. 

T 

Pin = - f 	(t) . v 5  (t) dt + 	J 	(t) v 8  (t) dt 	(5.42) 
c b  

For operation in periods 1, 2, 2A and 4A. 

2 	rtc 	 2 	[•tj 	 2 
Pin _j Ia0 (t)v s (t)dt+J 1av2a (t)v s (t)dt+j 1av4a (t)v s (t)dt 

7 t 
(5.43) 

The RMS current harmonic levels can be calculated from the Fourier series for the wave-

form and compared to the IBC 61000-3-2 regulation values. 

5.4 Converter Design 

This version of the bi-forward (with input inductor L1) is a modified version of the basic 

bi-forward converter of chapter 4 with the addition of input inductor L1. This reduces the 

number of design parameters to just one, which is the inductance value of L1 (the only 

additional component). if the converter was being designed from scratch then the important 

design parameters would be 
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• The value of L1 

• Transformer turns ratio - in particular between NIA  and NiB 

• The value of L2 

The specification for this circuit is the same as in section 4.3.1. 

5.4.1 Effect of Inductance Value of L 1  on Input Current RMS Harmonics 

In [95] the value of inductance for L1 is low at only 20jiH, hence low values of L1 around 

that area are investigated. An efficiency of about 70% is assumed so when the converter is 

working at full output power the input power will be about 200W. L 1  was set to be 10, 20, 

50, and 100H. 

Shown in figure 5.5 is the odd harmonic spectrum for 230V and 200W input power. Har-

monic 27 for 20iH is very large (exceeding the regulations) and is most likely just an 

anomaly due to the current waveform being too ideal, or a Mathcad calculation error. 50iLH 

just exceeds the regulations at the 9th and 11th harmonics. All the rest of the current har-

monics are below the class D regulation values for all values of L 1 . The plot for lOpH is 

operating in periods 1, 2 and 3, the plot for 20H is operating in just periods 1 and 2 and 

the plots for 50zH and 100iH are both operating in periods 1, 2 and 2A. Similar curves for 

75W input power show all the current harmonics are below the class D regulation values 

for all values of L1, but have not been included in the thesis. At 75W the curves for 10 and 

20H are operating in periods 1, 2 and 3, the curve for 50H is operating in just periods 1 

and 2 and the curve for 100H is operating in periods 1, 2 and 2A. 

Shown in figure 5.6 is the odd harmonic spectrum for 100V and 200W input power. All 

three values of L1 (10, 20 and 50tH) shown pass the class D regulation. The plot for 10iH 

is operating in periods 1, 2 and 3, the plot for 20,tH is operating in periods 1, 2, 2A and 4A 

and the plot for 50H is operating in periods 1, 2 and 2A. The plot for 100 jiH is not shown 

as the voltage on the bulk capacitor GB was calculated to be less than the peak of the line 

which would cause GB to peak charge and distort the current waveform. A similar set of 

curves for 75W indicated that all values of L1 (10, 20, 50 and 100tH) passed the class D 

regulation. The curves observed for 10 and 201zH are operating in periods 1, 2 and 3, the 
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Figure 5.5: Input current class D (trace breg200) harmonics for 230V input with an 
input power of 200W with L 1  as 10, 20. 50 and 100,uH. Traces are listed 
by side of graph, 1st value is the voltage on CB and the 2nd value is the 
value of L 1 . 

curve for 501iH is operating in periods 1, 2, 2A and 4A and the curve for 100tH is operating 

in periods 1,2 and 2A. 

Shown in figures 5.7, 5.8, 5.9, 5.10 and 5.11 are predicted (filtered) current waveforms for 

the different possible conduction periods the converter operates in. These figures show the 

variety of different current waveform shapes the converter could draw depending on the 

power, input voltage and size of L1. Figures 5.7 (operation in periods 1, 2 and 3), 5.8 

(operation in periods I and 2) and 5.9 (operation in periods 1, 2 and 2a) are all at 230V and 

200W input and show the different current waveforms possible depending on the size of L1. 

Figures 5.10 and 5.11 are included to illustrate the current waveform in the remaining two 

periods 4 and 4A. When the converter enters period 3 (in figures 5.7 and 5.10) the current 

waveform takes on a much shallower slope due to the output current being fed from the 

input. In 5.10 the slope of the current increases again when period 4 is entered. 
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Figure 5.7: Predicted input current waveform at 200W input power at 230V with L1 
as 10tH. The current is flowing in periods 1, 2 and 3. VB is 360V. 
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Figure 5.8: Predicted input current waveform at 200W input power at 230V with L 1  

as 20iiH. The current is flowing in periods 1 and 2. Vu is 365V. 
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Figure 5.9: Predicted input current waveform at 200W input power at 230V with L1 

as 50iH. The current is flowing in period 1, 2 and 2a. VB is 341V. 
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Figure 5.10: Predicted input current waveform at 25W input power at 90V with L 1  as 
lOpH. The current is flowing in period 1, 2, 3 and 4. VB is 128V. 
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Figure 5.11: Predicted input current waveform at 25W input power at 100V with L1 

as 20pH. The current is flowing in period 1, 2, 2a and 4a. VB is 159V. 

5.4.2 Effect of Inductance Value of L 1  on the Bulk Capacitor Voltage 

Figures 5.12, 5.13. 5.14 and 5.15 show how the bulk capacitor voltage vanes with power 

for L1 equal to 10, 20, 50 and 100H with input voltages of 90V, 115V, 230V and 265V 

respectively. The way the bulk capacitor voltage varies is different for each value of L1 

because of the different periods the converter operates in. 

In all four figures (5.12, 5.13, 5.14 and 5.15), when L1 is 10H the voltage on VB rises as 

the throughput power rises. When L1 is 101tH, L1 is operating in conduction periods 1, 2, 

and 3, except at 90V and 25W input where L1 just enters period 4 as well. The voltage 

on bulk capacitor GB is rising so as to keep the input and output charge from CB equal 

during the line cycle. Charge is taken from GB during the whole line period. This charge is 

replaced by an equal amount from L1 discharging during the off periods. At light loads most 

of the charge to the output is delivered directly from the input, L1 is in period 2 for a short 

period and AD is also short, but GB is still supplying the output completely during period 

1. To balance the input and output charge from GB,  the voltage on GB at low powers falls 

to give L1 a long discharge time (D1 and D12), as the peak current level is low. At higher 

powers the reflected output current flowing in L1 is much higher. Therefore to deliver the 

charge GB needs to keep the output supplied, a shorter discharge time is possible as the 

current starts much higher, so the overall charge delivered to GB is much more than at low 

power. The only way then to balance the charge in and out of GB over a line cycle is for the 

voltage on GB to rise as power increases. 

When L1 is 20 and 50iH the voltage on GB rises as power increases and then falls again 

10 

0 



at higher power. At low power they are operating in periods 1, 2 and 3 so the voltage is 

rising when the power goes up. When L1 is at 501iH it leaves conduction period 3 at about 

50W and just operates in periods 1 and 2, plus sometimes 2A and possibly 4A. At this point 

the voltage will level off and start to fall as power goes up. When L1 is 20H operation in 

period 3 is lost much higher in the power range and a drop in voltage only starts to appear 

around 200W. 
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I 	I 	 I 
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P 	 .20Q 
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Figure 5.12: Predicted voltage on bulk capacitor GB at 90V input for L 1  = 10, 20, 
50 and lOOpH. Traces are listed by side of graph. 1st value is the input 
voltage and the 2nd value the value of L 1 . 
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Figure 5.13: Predicted voltage on bulk capacitor GB at 1 15V input for L 1  = 10, 20, 
50 and lOOpH. Traces are listed by side of graph. 1st value is the input 
voltage and the 2nd value the value of L i . 

When direct conduction from the input to the output occurs, the charge balance on GB 

83 



42I.1 I. 450 

V B230_I0 
- 400 

'B23O_20 

V B230 50 
> - - - - 
	350 

V B230_100 

327.41, 300 1  0  

25, 

-7-7-7- 

50 	100 	150 	200 

P 	 ..2oq 
Power /W 

Figure 5.14: Predicted voltage on bulk capacitor GB at 230V input for L 1  = 10, 20, 
50 and 10OH. Traces are listed by side of graph. 1st value is the input 
voltage and the 2nd value the value of L 1 . 
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Figure 5.15: Predicted voltage on bulk capacitor GB at 265V input for L 1  = 10. 20. 
50 and 1001AH. Traces are listed by side of graph. 1st value is the input 
voltage and the 2nd value the value of L1. 
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causes voltage to rise as power goes up. When direct conduction does not occur it causes 

the voltage on CB to fall as power goes up. When direct conduction occurs the duty cycle 

is only affected by the voltage on GB by a small amount, hence the only way to control the 

charge balance on CB is with the discharge of L1. When GB is conducting significantly 

during a line cycle, duty cycle can be used to balance the charge in and out of CB.  This 

causes the voltage on GB to fall as power goes up to deliver the required charge to the 

output, or to cause the voltage to rise at low power to reduce charge taken from GB. 

The voltage on C8 when is L1 equal to lOO1iH is falling across the whole power range, as 

the converter is operating almost all the time in periods 1, 2 and 2A, where there is no direct 

conduction between the input and output. 

5.4.3 Duty Cycle Variation 

Figure 5.16: Predicted duty cycle variation for 100V 200W input over a half line cy -
cle. Red trace is D2 the duty cycle when supplied from GB,  blue dot 
trace is D3 the on duty cycle for S 1 , green dash trace is D3 the duty 
of the period where L 1  is charged up to the load current, lilac dash-dot 
trace is D13 the duty for the fall of current in L 1  to zero and light blue 
trace is D1 + Df2  the overall condution duty for L 1  with V8  at 361V 
and L1 equal to 101iH. 

Shown in figure 5.16 is the plot of the different duty ratios that occur when operating in 

periods 1 to 3 plotted to show how they vary over a half line cycle. The three most important 
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lines are the red line for duty cycle for D2 (duty cycle when the output is supplied from CB 

for the whole of the on time), the blue dot curve for D3 (duty cycle when operating in period 

3) and the green dash curve for LD3 (the duty for the rise of current in L1 in period 3). The 

converter will operate with duty D2 until the point where the curves for D2, D3 and LD3 

all intersect. In figure 5.16 this occurs after about 0.002s where D3 and LD3 gently fall 

through D2: from this point the converter will operate with duty cycle D3 and is in period 

3. At the same intersection LD3 falls below D3. LD3 is the charging up duty cycle for L1 

and has to be below D3 when in period 3. At the similar crossing point just before 0.008s 

the converter again reverts to operating with D2. D13 is shown for completeness. D3 + D13 

is shown to check if the converter will enter period 4: this occurs when the curve exceeds 1. 

If the D3 and tD3 curves do not fall below the D3 curve the converter will not enter period 

3. 

5.44 Selection of L 1  

From the harmonic plots and voltage on GB plots it was decided to set L1 to be 10 or 20iH. 

When operating in the low voltage range of 90V to 130V the 100H inductance produced 

a voltage on GB lower than the peak of the mains at 200W which will cause peak charging, 

and distort the input current waveform. Also the converter does not enter period 3 very often 

as it should do. Because of these two reasons 1001tH was considered to be too high. With L1 

at 50H the class D regulation was exceeded at 230V 200W. Looking at the bulk capacitor 

voltage figures 5.15 and 5.14, the voltage goes very high to 423V with a 265V input (it does 

with all the other values of L1, but it also goes that high (421V) when operating from 230V 

input, whereas it does not with the other values). Due to these two reasons a value for L1 of 

50tH was also considered too high. 

It was decided to test the prototype using L1 set to 10 or 20iH (it only requires the removal 

of a couple of turns of the L1 inductor to change its value from 20 to 10H). These two 

values were considered to give the best design based on what had been investigated because 

It would appear that they will pass class D regulations from 75W to 200W at both 

100V and 230V. 

. They both operate mainly with period 3 type conduction. 



All four values for L1 have very high peak voltages shown in table 5.4.4 and figure 5.15 

There is very little difference between them, all being around 420V, but L1 equal to 10H 

gives the lowest at 415V. Since they are all similarly high this has very little effect on which 

value to use, but there is a slight benefit of using L1 equal to lOpH. 

Inductance/pH Voltage/V 
10 415 
20 425 
50 423 
100 423 

Thble 5.1: Peak voltage seen on the bulk capacitor CB with 265V input 

5.4.5 Sizing of Semiconductors 

It is expected that the current stresses in this version of the bi-forward will be about the 

same as in the bi-forward converter in chapter 4. The only concern converting from the 

bi-forward converter to this version with input inductor L1 is the voltage seen across certain 

components due to the increase of peak voltage on CB from 375V to 425V. 

The diodes D1 to D3 are already rated for 1000V, so the slight increase in bulk capacitor 

voltage will not affect these three devices. The voltages across the MOSFET S1 and the 

secondary diodes D45v, D5:5v, D4 : 12v and D512v  are the ones that need checking. 

MOSFET S1 

Using equation 4.10 the voltage across S1 (when there is no snubber across Si) is 1275V 

when VB is at its peak of 425V (L1 is 20H), which is 75V higher than what the MOSFET 

for S is rated for. The snubber which is fitted to the bi-forward converter in chapter 4 must 

therefore, be left across Si to reduce the reset voltage of the transformer. In chapter 4 it 

reduced the voltage across Si  from an expected 1120V to 845V and it was expected to have 

a similar effect on this variation of the topology. It was measured as 830V. 



Secondary Diodes 

Using equation 4.13 the voltage across the secondary diodes without a snubber across S1 

was calculated to be: 

D4 :5, D5:5v 	96V 
D4:12, D5:12v 213V 

The diodes used for the 5V output are already rated for 200V and for the 12V output they 

are rated for 400V. There should be no danger of these voltage ratings being exceeded. 

5.5 Simulation 

Figure 4.7 shows the simulation schematic used in PSpice, with an inductor called L 12  

added between F2  and the D1  and D2 junction. The simulation was carried out in the same 

manner as in chapter 4. Again the output voltage is 5V and the transformer was made up of 

coupled inductors with values set to give the correct turns ratio. The network formed from 

F2 , C12 and R14 was used to see the averaged input current shape as in section 4.4. 

5.5.1 Simulation Results 

In tables E3 and F.4, in appendix F, are the RMS harmonic currents measured in PSpice 

for a 150W output power at bOy and 230V respectively. For L 1  equal to 10 and 20/-H 

the simulation results at full output power show the converter passing class D at both 100V 

and 230V. The class D harmonics shown are for the simulation with lowest input power. 

This does not change any harmonic that would have passed into one that fails for the other 

simulations, as the measured RMS harmonic currents are far smaller than the regulation's 

values. There is only a couple of watts between the higher powered simulation and lower 

power simulation. This is a similar prediction to the Mathcad analysis of the two designs 

passing class D (without the large harmonic current seen for the 27th harmonic in some of 

the analysis). 

The simulations were also run at 265V input with 150W output to find the capacitor bulk 

voltage and the voltages across S1, D4 and D5  without a MOSFET snubber. The results 

are shown in table 5.2. These results confirm that the snubber across the MOSFET will be 



required to keep the transformer reset voltage below 1200V. 

Device I Voltage/V 
L1 = 1OiH 

GB 413 
S1 1238 
D4  93 
D5  65.6 

L1 = 201iH 

GB 432 

Si 1298 
D4  97.6 

D5  56.5 

Table 5.2: Simulated voltage on key components with 265V input and 150W output 

5.5.2 Simulation Waveforms 

In figure 5.17 are shown the waveforms of the input current for an output of 150W with 

a bOy input and L1 equal to 10iH. The "averaged current" seen across resistor R14 is 

similar in shape to the predicted averaged current in figure 5.7. The slight lean to the left 

of the waveform is due to the voltage on the bulk capacitor changing during the line cycle 

(charging up). The current in L1 is entering period 3. The lower trace shows how the current 

will look before filtering. It is noted that the switching frequency current always returns to 

zero. 

In figure 5.18 is the same set of waveforms but for L1 equal to 20jtH. In this case the 

converter is only operating in periods 1 and 2. Due to this the averaged waveform is slightly 

different, but is still similar in shape to the predicted waveform in figure 5.8. Again the 

unfiltered switching waveform is returns to zero. 

Figure 5.19 shows the switching frequency waveforms for operation in period 3 when op-

erating at 100V with L1 as 10[H. The bottom trace is the current in L, and shows the 

current ramping up from zero to the reflected secondary current where the up-slope changes 

and then the discharge into GB;  the top trace shows the current in N, the current sup-

plied from GB: this is a failing ramp as L1 takes more of the output current. This current 

stops flowing when the current in L1 reaches the reflected secondary current. The mid-

die trace shows both currents added together flowing through Si.  Simulating at 230V and 
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Figure 5.17: Simulated averaged and non average input current waveforms for 230V 
and L1 = lOiiH. The converter is operating in periods 1 to 3. The top 
trace is the averaged current shown as a voltage across R14 and the bot-
tom trace is the non averaged current shown as a current. 
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Figure 5.18: Simulated averaged and non averaged input current waveforms for 230V 
and L1 = 20tH. The converter is operating in periods 1 and 2. The 
top trace is the averaged current shown as a voltage across R14 and the 
bottom trace is the non averaged current shown as a current. 



L1 =20pH, period 2 switching frequency waveforms were observed as was period 4A 
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Figure 5.19: Switching frequency simulation results showing period 3 conduction for 
100V and L 1  = 10,iH. Top trace is the current in NiB  (or L 2  in the 
simulation), the centre trace is the current in S1 and the bottom trace is 
the current in L 1 . 

The switching frequency current waveforms seen in the simulations are of the expected 

amplitude for a 150W output, as are the voltages measured at 265V. The voltages on the 

bulk capacitor are also similar to the predicted values as in table 5.3. Since the predicted 

voltages are for 100% efficiency and the simulation is not 100% efficient, the predicted 

values will be slightly different (but still within 10%) to those shown as the predicted values 

for 150W input and output power. 

Through 
power/W 

PSpice input 
power/W 

Voltage 
MathCad/V 

Voltage 
Pspice/V 

L1 = 101iH 
150W 1 	168 353 354 

L 1 =20iH 
150W 1 	170 369 369 

ThbIe 5.3: Predicted and simulated bulk capacitor voltages for 150W throughput 
power at 230V 

4. 

2. 

SE! 
-1. 
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5.6 Experimental Results 

Figure 4.11 shows the final and complete circuit schematic tested, inductor L 1  is added 

between C2 and the D 1  D2  junction. The actual components used are listed in table G.1 

in appendix G except L 1  which is 20jjH, and a photograph of the final circuit is shown in 

figure 5.20 

Figure 5.20: Photograph of the bi-forward converter with L1 

5.6.1 Changes Made to the Prototype Circuit 

To see if the voltage seen across S1 could be lowered a second transformer was wound 

during testing, after the design work was done, with NIA = 32 and NIB = 12 (N1A + NIB 

is still 44 turns in total). The voltage expected across S1 with this transformer would be 

lower as the total primary turns are only 12 turns more than the tertiary reset winding N3. 

With the voltage on CB going up to 425V this reduces the voltage seen on S1 without 

a snubber to 1009V (which is below the MOSFET rating). Design curves are shown in 

appendix C. 
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5.6.2 Harmonic Tests 

Shown in figures 5.21. 5.22, 5.23 and 5.24 are the harmonic plots compared to the class D 

regulations. The three different designs, L 1  equal to lO1iH and 20 ItH as well as 20tH with 

the alternative transformer design are all plotted together. The class D regulation values are 

compared to the values calculated for the converter with L 1  = 20iH and NIA = N 1 8 = 22 

turns. It was checked that doing this would not alter a pass or fail reading for the other two 

variations. 

Figure 5.21: Measured RMS current harmonic levels for 230V and full load output 
compared to class D 

At 230V and full load (150W output power) all three design variations are below the class 

• harmonic levels. At 230V and 75W input power (figure 5.22) with L1 as 101tH the class 

• level for the 9th harmonic is exceeded by 0.01 88A (class D is 0.039). The version with 

N1A = 32 turns failed on the 9th, 11th and 13th harmonics by a considerable amount. The 

version with L1 as 20itH was below all the class D levels. 

In figure 5.23 the versions with L 1  as 10 and 20 pH at IOOV and full load, the measured 

harmonics are below the class D values. With the transformer changed to NI A = 32 turns 

the converter failed on the 9th, 11th, 13th and 15th harmonics. 

In figure 5.24 for IOOV and 75W input power all three variations were below the class D 
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Figure 5.22: Measured RMS current harmonic levels for 230V and 75W input power 
compared to class D 
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Figure 5.23: Measured RMS current harmonic levels for IOOV and full load output 
compared to class D 
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Figure 5.24: Measured RMS current harmonic levels for IOOV and 75W input power 
compared to class D 

The version with N1A = 32 turns and NI B = 12 turns failed the harmonic tests. This was 

because the conduction period of the input current is shorter since the input voltage at which 

period 2 starts is higher due to the turns ratio between N1  and N 1 A  + NIB decreasing. 

The only design that passes at both 75W and full load input power at both IOOV and 230V 

is L1 equal to 201jH with NIA and NIB  equal to 22. Since this was the only version that 

passed the harmonic testing completely, it was decided to only test this design completely, 

even though the version with L1 as lOitH only failed on one harmonic at 230V 75W input 

power. All 3 versions pass class A. 

5.6.3 Input Current Waveform 

Shown in figure 5.25 are the input current waveforms for L1 equal to 20pH at 100V and 

230V input voltage. The input current has had the switching frequency currents filtered 

out by the output transformer of the AC source, leaving only the line frequency current 

showing. In 5.25a is the input current at full load output power and 230V. From inspection 

of the current in L 1  (this is shown in figure 5.26a) the converter is operating only in periods 
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I and 2. This is the same behaviour predicted in the simulation and the analysis. In 5.25b 

the input voltage is 230V with 75W input power. The shape of the current waveform (figure 

5.25b) suggests the converter operated in periods 1, 2 and 3: this would also back up the 

analysis in section 5.4, which predicts the converter operating in these three periods with a 

75W input power. Inspection of the current in L 1  at 83W confirmed operation in periods 1, 2 

and 3. In 5.25c is shown the input current at full load and 100V input voltage. Investigating 

the L1 current at 115V (not shown) shows the converter operating in periods 1, 2 and 2A 

modes. The waveform was similar in shape to that predicted by simulation and analysis for 

operation up to period 2A or 4A. The waveform leans to the left due to the bulk capacitor 

charging up. Figure 5.25d shows the input current at 100V with 75W input power. The 

waveform shape suggests operation in periods 1, 2 and 3, which the analysis backs up. 

Looking at the current in L1, but at 115V, confirms that the converter is operating with 

period 3 conduction, but not period 4. 

In figure 5.26 are shown switching frequency waveforms taken over the peak of the input 

voltage. In 5.26a (taken at full load and 230V) the current in L 1  can be seen to rise during 

the on time (shown in the top trace for Vd 3 ) and then fall back to zero, before the next 

switching cycle starts. This shows that the converter is operating in period 2 and will not 

enter period 3. In 5.26b are the same waveforms but for a 75W input at 115V. In this case 

the current in L1 is seen to rise from zero, until about halfway through the on period (shown 

in the top trace for V) when it reaches the reflected load current and the slope becomes 

less steep. After turn off of S1 the current in L 1  falls back to zero long before the next 

cycle starts. The converter is then operating in period 3. When the current in L1 reaches the 

reflected load current, the current in L 1  actually falls for 3.96 /LS, before it starts rising for 

960ns when in series with L2. Looking at the voltage waveform for D1 (trace 3) it seems 

that D 1  becomes forward biassed (raising the voltage at that end of L1 to the bulk capacitor 

voltage, hence current starts to fall) and on checking the current in D1 (not shown), there 

is a small amount of current flowing through it (small ramp down from about 0.78A). This 

could be a resonance. 

5.6.4 Voltage on the Bulk Capacitor CB and Efficiency 

In table I-Li in appendix H are the measured input and output powers, efficiency and bulk 

capacitor voltages. The efficiency and bulk capacitor voltage are plotted in figures 5.27 and 
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Figure 5.25: Measured a) filtered input current at full load and 230V, b) filtered input 
current at 75W and 230V, c) filtered input current at full load and 100V 
and d) filtered input current at 75W and 100V for L 1  as 20jH. Top trace 
input voltage, 2nd trace down input current (except a) where it is the 
voltage on CB), 3rd trace down voltage across D6  (except a) where it is 
input current) and bottom trace voltage across S1. 
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Figure 5.27: Efficiency of the bi-forward converter with input inductor L 1  

At 90V input the efficiency falls from about 76% at 37W output to about 63% at 138W 

output. The final output power at 90V is low as the converter loses output regulation (duty 

cycle hits 0.5) towards the end of period I when CB has been discharged. This can be solved 

by increasing the bulk capacitor value up from I 65tF (two 3301tF in series). Changing the 

bulk capacitor capacitance will not have a large effect on the average voltage seen across 

the bulk capacitor, as the voltage is determined by the balance of energy in and out of the 

capacitor, not its capacitance. A similar behaviour is seen at 115V and 130V where the 



efficiency falls from about 75% at 37W output to 68% at 144W output. At 100V input and 

above the voltage on GB does not fall sufficently low for the converter to lose regulation. 

When operating in the high voltage range the efficiency of the converter is just above 70%, 

being slightly lower at high output power and low output power. The efficency is acceptable, 

but a little low as ordinary fast recovery diodes have been used on the 5V output, instead of 

Schottky diodes which are normally used, due to the need to withstand higher voltages than 

in a normal forward converter. 
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Figure 5.28: Variation of bulk capacitor voltage with output power at various voltages 

The bulk capacitor voltage shown in figure 5.28 rises with input voltage, as expected. The 

peak value measured was 430V at 109W output at 265V input. The trend for variation of 

bulk capacitor voltage with power is a rise from low power and then a drop at full output 

power (about 144W). The reason for this is explained in section 5.4.3. 

In figures 5.29 and 5.30 the measured bulk capacitor voltage is compared to the predicted 

voltage from MathCad. From 5.29 the predicted values are higher than the measured values 

for both 90V and 115V, with the difference increasing as the input power goes up. The 

difference between the predicted values and measured values is less than 10%, except for 

full input power at 115V where it is 11%. This is considered to be reasonable estimation 

of the bulk capacitor voltage on the low input voltage range. Shown on 5.30 the predicted 

values are lower at high input power (about 200W) and low input power (about SOW). In 
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the middle of the power range the predicted voltage values are higher than the measured 

values. The shape of the predicted voltage and measured voltage curves are similar. The 

difference between predicted bulk capacitor voltage and measured bulk capacitor voltage is 

less than 3%, which is again considered acceptable. 

In table 5.4 are the voltages measured on GB for L1 = lOjiH and N1A = 32 turns taken 

while carrying out the harmonic level measurements. These measurements are to show that 

the other two designs, while not passing all the current harmonic tests, could have lower 

voltage stress on the bulk capacitor and hence other components in the circuit. For L1 equal 

to lOitH the voltage for full load at 230V is actually higher than for L1 equal to 20H by 

about 13V. If the graph in figure 5.14 is extended, it would predict a similar result. At about 

75W input the voltage on GB is lower (this is also seen in figure 5.14). 

For the version with N1A equal to 32 turns the voltage seen on GB is lower than that with 

N1A equal to 22 turns by about 20V to 30V. In the version with N1A = 32 turns the reflected 

secondary current is lower so the converter is more likely to operate in period 3 and a lower 

amount of energy is delivered to GB during the off periods since the current is not so high. 

Setting Voltage/V 
L1 = 10jtH  
100V 72.98W in 149 
100V 211W in 150 

230V 75.7W in 338 
230V212Win 376 

L1 = 20H N1A = 32 
100V75.3Win 136V 
100V 192W in 131V 
230V 82W in 322V 

230V 188.7W in 332V 

Table 5.4: Voltage measured across bulk capacitor CB with L 1  = 10tH and with 
L i  = 20iH and N1A = 32 

5.6.5 Hold Up Time and Output Voltage Ripple 

Hold Up Time 

Hold up time is how long the converter can operate until the loss of output voltage regulation 

after the loss of the input voltage. This was measured from the loss of the input supply until 
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the point that the 5V output voltage started to drop at full output load of 5V 20A and 12V 

4A. It was not possible to control the precise point that the input voltage was lost so these 

numbers are approximate. The ideal test point for this is just before the bulk capacitor starts 

recharging. Hold up time is normally at least lOms for a PC power supply. 

Input Voltage/V Hold up time/ms 
115 8.6 
230 48.6 

Table 5.5: Hold up times for 115V and 230V 

Hold up time is short at 8.6ms for 115V input as the voltage on GB does not have to fall far 

before regulation is lost. The opposite is true for the 230V reading. Increasing the size of 

the bulk capacitor will improve the hold up time for low line. 

Output Voltage Ripple 

The output voltage ripple was measured on both the 5V and 12V output at both 75W output 

load and full output load (150W) at the same input voltages as for the efficiency measure-

ments. 

The output voltage ripple seen on the two outputs are shown in table 5.6. Some are higher 

than normally specified for a PC power supply (50mV peak to peak maximum on the 5V 

output and 120mV peak to peak on the 12V output), but then this was not an important 

design consideration for the prototype converter. The 100kHz ripple on the 5V output ranges 

from about 45mV to 65mV on the 5V output and from 109mV to 165mV on the 12V output. 

This is not the only ripple seen at the output of the converter as there is also a 100Hz ripple 

ranging from about 15mV to 50mV on the 5V output and 47mV to 115mV on the 12V 

output. This ripple appears partly from the control loop being overdamped and partly from 

having the two different voltage sources, v 8  (t) and GB. 

5.6.6 Voltage seen on key devices 

The voltages on S1 and the various diodes are shown in table 5.7, measured at 265V. 

The voltage seen across S1 is only 830V, much lower than the possible 1275V that could 
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Output Combination 5V 100kHz 
p-p Ripple 

/mV 

5V 10011z 
p-p Ripple 

/mV 

12V 100KHz 
p-p ripple 

/mV 

12V 100Hz 
p-p Ripple 

/mV 

Input Voltage: 90V  
5.17V 10.2A, 11.54V 1.9A 45 50 109 115 

4.96V 19.9A, 11.78V 3.9A 33 938 90.6 2.18 

Input Voltage: 115V  
5.17V 10.4A, 11.57V 2A 62 45.3 109 87.5 

5.05V 19.4A, 12.02V 3.9A 45.3 28.1 112 75 

Input Voltage: 130V  
5.17V 10.2A, 11.56V 1.9A 42.2 40.6 103 87.5 

5.05V 19.4A, 11.56V 1.9A 50 29.7 112 59.4 

Input Voltage: 180V 
5.16V 10.2A, 11.54V 2A 68.8 50 116 100 

5.01V 20.4A, 11.97V 3.9A 48.4 31.3 115 59.4 

Input Voltage: 230V 
5.15V 10.2A, 11.51V 2A 48.4 35.9 115 78.1 

5.04V 20.4A, 12.00V 3.9A 90 15.6 165 46.9 

Input Voltage: 265V 
5.14V 10.2A, 11.52V 2A 53.1 28.1 109 53.1 

5.04 20.4A, 11.99V 3.8A 65.6 15.6 156 56.3 

Table 5.6: Peak to peak ripple voltage on output voltages 

Device Voltage/V 
S1 830 
D1 188 

438 
469 

D4.5v 25 

D55v 89 

D5.12v 222 

Table 5.7: Voltage measured across key semiconductor components with 265V input 
voltage 
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occur. This is due to the MOSFET snubber (figure 4.11) resetting the transformer instead 

of the tertiary winding N3. At low voltages of around 100V input and higher power (144W 

output) the reset winding is still resetting the transformer instead of the snubber. The voltage 

seen across D5:5v at 89V is lower than the predicted 96V and across D5:12v  at 222V is 

higher than the predicted 213V, but both are within 10% of the predicted value. D4:5v  has 

only 25V across it (maybe allowing the use of a Schottky diode). The blocking voltages 

for D1 to D3 were not calculated for this version of the bi-forward as 1000V diodes were 

already being used, and the voltage was never expected to go that high. 

5.7 Conclusions 

Analysis has been produced that predicts the bulk capacitor voltage, input current shape and 

input current harmonics reasonably well. It can be used to test designs with different values 

of L1, different turns ratios and any power where L2 is in CCM. PSpice simulation of the 

circuit has been carried out, to confirm the analysis. 

A prototype converter has been built with L1 as 201iH that passes class D with acceptable 

efficiency. However VGB  is very high and the circuit will not operate in all the conduction 

modes mentioned in [95]. The same prototype, but with L1 as 10,iH produced a more 

satisfactory input current waveform with more consistent operation periods, but failed on 

just one harmonic setting at 100V and 75W input power. A final design to see if bulk 

capacitor voltage could be lower with N1A as 32 and NiB as 12 performed badly on the 

harmonics but had a lower bulk capacitor voltage. The design with L1 as 20H and N1A = 

NIB = 22 was investigated further and voltage on the bulk capacitor was found to rise 

to 430V and the voltage across Si  was 830V, D5 : 5v was 89V and D5:12v  was 222V. The 

efficiency was found to be above 68% when operating properly. It was also found that 

10014z ripple appeared on the output voltage. To meet hold up time requirements and to 

operate correctly at 90V the size of the bulk capacitor needs to be increased. 

When power is increased it is difficult to produce a design that has low voltage on GB and 

will operate in period 4 in the way [95] intended and meet IEC 61000-3-2 class D. Due to 

this the behaviour of the circuit, when operating in particular combinations of conduction 

of L1, has been investigated and the effects on current harmonics and bulk capacitor voltage 

shown. In particular it is noted that when not operating in period 4 the voltage on the bulk 
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capacitor rises to a very high level. 

The use of snubber transformer reset, instead of a tertiary winding, where the voltage seen 

by S is up to three times VCB,  is advised as this allows the use of a lower voltage MOSFET 

for S1 even when the bulk capacitor voltage is high. 
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Chapter 6 

High Frequency Current Source 

Single-Stage PFC Converter (CS 

S2PFC) 

6.1 Development of the High Frequency Current Source Single-

Stage Converter 

In an attempt to produce an off-line converter with low cost and high efficiency with an 

input current harmonic content which can meet IEC 61000-3-2, Sebastian et a! in [1 20] 

introduced a single stage PFC converter based on the concept of the series connection of a 

loss free resistor and a voltage source. 

6.1.1 The Series Connection of a Loss Free Resistor and a Voltage Source 

Concept 

In figure 6.1 is shown the concept of a Loss Free Resistor (LFR) in series with a voltage 

source. If the input voltage v 3  (t) <VB - which will occur around the zero crossing 

area, then the diode bridge DB will be reverse biased and no input current will flow. When 

V S  (t) has risen to v (t) = VB - the diode will just be able to start conducting. When 

V S  (t) > VB - 	the diode bridge is conducting and the input current is: 
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Figure 6.1: Loss free resistor and voltage source PFC converter 

i3  (t) = (v3  (t) + Vg - VB)/RLF. 

6.1.2 The Practical Implementation of the Series Connection Loss Free Re-

sistor and a Voltage Source 

The practical implementation of the series connection of a loss free resistor and a voltage 

source applied to the forward converter is shown in figure 6.2. It is basically a forward 

output stage operating mainly in CCM with an additional inductor LD in series with the 

forward diode D4 placed on the input of the converter. The inductor LD is used to extend 

the freewheeling time of diode D4. This configuration produces an input current similar to 

that of the LFR. 

L0 	, 	N4  

v(t) 

02  

DB 	 C'  t)N, fl[NM 	T+j  V. 

•'1 N3  
D,  4 

Figure 6.2: Loss free resistor and voltage source PFC converter or Current Source 
Single Stage PFC Converter (CS S 2PFC) 

The CS S2PFC converter proposed in [120] is designed to operate with the input and output 

inductors L1 and L2 in CCM. This means that the voltage on GB is expected to rise as the 

input voltage goes up and as the load goes down, but it does appear the voltage on GB can 

be maintained at a reasonable level. 
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6.1.3 Application of a Voltage Doubler Scheme 

A voltage doubler is considered desirable as this gives a smaller voltage range across the 

bulk capacitors when operating from 115V range. This means the transformer can be de-

signed to operate over a smaller voltage range leading to a more optimised design with 

smaller duty cycle range. An advantage for the PFC circuit is that a doubler circuit can be 

included, thus it will be able to perform reasonably well on both input voltage ranges. 

In [120] to enable the converter to operate from both the 90v-130V and 180V-265V ranges 

and still have an input current that meets IEC 61000-3-2, the switching frequency is halved 

on the high line range. 

N4 I 

04*  CB1  
v(t) 	141 	

(

DB 

I D4 
 

L1B LDB 	D,B  • N4  

Nfl 	
:::citvo 

0 
•1 	ii.i ii 

N 

Figure 6.3: Cs S 2 PFC converter with voltage doubler 

Based on the scheme presented in [121], [122] produced the version of the converter seen 

in figure 6.3. When the switch is open the converter is operated from the high voltage 

range of 180V to 265V. The A and B sides of the PFC circuit connect in series and operate 

together. As the A and B side inductors are coupled the inductance of the complete winding 

is four times higher than either L1A or L1B or LDA  or LDB.  When the switch is closed 

the A and B side inductors work independently. When the line voltage is positive the A 

side functions delivering energy to just CB1.  When the line voltage is negative the B side 

functions delivering charge to CB2. 

It was decided to investigate and build the voltage doubler version of the CS S 2PFC con-

verter. This version was chosen as it is more likely to meet the harmonic regulations at both 

ioov and 230V and because of the advantages of the voltage doubler mentioned above. 

IE 



6.2 Operation of the High Frequency Current Source Single-

Stage Converter 

6.2.1 Operation at Line Frequency 

Shown in figure 6.4 is a conceptual average input current waveform over a half line cycle 

drawn by the circuit in figures 6.2 (or 6.3). The waveform shown is produced whether the 

converter is operating in voltage doubler mode or normal mode. 

I8  

0 t 

to 	ti 	t2  - 	t3 	t4 	t5 

Figure 6.4: Conceptual average input current 

From t0 to t1 and t4 to t5  the current in L1 is zero and hence the input current is also zero. 

Inspecting figure 6.2 the current in L1 can only rise when the voltage at the D4 end of N4 

in figure 6.2 (when S1 is turned on) is lower than the input voltage v 8  (t). During the zero 

crossing area the input voltage v 3  (t) is lower than that at the D4 N4 point. From t1 to t2 and 

t3 to t4 the current in L1 is operating in DCM. v (t) is now higher than the voltage at the 

D4 N4 point so current in L .  (and LD) can rise, but since the voltage across the inductors 

is low the current does not rise very far and can reset before the next switching cycle. From 

t2 to t3 the current in L1 is operating in CCM. Now v8  (t) and the load are high enough so, 

that the current in L1 cannot fall to zero in a switching cycle. Operation in the DCM and 

CCM periods is described in detail in the next section. 
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6.2.2 Operation at Switching Frequency 

DCM 

Shown in figure 6.5 are important waveforms for when the input current shaper is operating 

in DCM. 

S 

go 
t 

* V 
N1  I 

t 

N4A * V 
N1 	

B 

Pkd 

t 

) 

t 

1 

'pkd1 

t 

Figure 6.5: Waveforms in the current shaper at switching frequency when operating 
in DCM 
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ta to tb 

At ta S1 is turned on. The secondary and the load are supplied from GB via N1. A negative 

voltage is applied across N4 reducing the voltage at the D4 end to VB - VN4. The input 

voltage v3  (t) is higher than this, so current in L1 and LD in series ramps up from zero. 

tb to t or td 

At tb S1 is turned off. The current in the secondary now freewheels. 

td to t, 

All the primary current has reset to zero. Only the secondary freewheeling current is flow-

ing. 

CCM 

Shown in figure 6.6 are important waveforms for the input current shaper when operating 

inCCM. 

ta to tb 

At ta, S1 is turned on. The secondary and the load are supplied from GB via N1. A negative 

voltage is applied across N4 reducing the voltage at the D4 end to VB - VN4. The current in 

L1 is freewheeling (decreasing) via D5 to GB,  hence the voltage at the L1 and LD junction 

is at VB.  Current in LD starts to ramp up from zero. The current flowing in D5 starts to 

commutate to the D4 branch as the current in LD increases. 

tb to t 

At tb the current in LD has risen to that in L1 and D5 stops conducting. L1 and LD connect 

in series and the current in the pair now ramps up. The charging current in L1 has effectively 

shortened the "on" time of L1 by tb - ta . 
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Figure 6.6: Waveforms in the Current Shaper at Switching Frequency when operating 
in CCM 
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t to td 

At t S1 is turned off. The secondary current is now freewheeling. An opposite voltage is 

induced across N4 as the transformer resets, raising the voltage at D4 above the capacitor 

voltage VB. This voltage is also higher than v 8  (t) and the current in L1 and LD starts to 

ramp down, but at a different rate. D5 has now become forward biassed: the voltage across 

L1 is v (t) - VB and that across LD is VN4.  The current in L1 is split between the D5 

and D4 paths. LD reaches zero at td and stops conducting. The current in L1 keeps on 

freewheeling via D5. 

td tOt e  

The current in L1 and on the secondary keep on freewheeling. At te  the next cycle starts 

when S1 is turned on again and the process repeats. 

L1 and LD in CCM 

If LD is too large it will enter CCM over the peak of the mains. It is undesirable to operate 

the converter in this condition as the current waveform becomes distorted and reduces its 

chance of passing the class D harmonics. The design should avoid this if possible. 

6.3 Analysis 

In [120] and [39] analysis was carried out by Sebastian based on the loss free resistor and 

voltage source, but when this method was attempted, it was not able to produce the design 

shown in the later work of Zhang in [122]. The loss free resistor method was producing 

designs with values of inductance in mH, not in jiH which the work in [122] was using. 

Because of this the following analysis was carried out. 

To further understanding, and to assist with the design of a prototype of the circuit, a detailed 

analysis was carried out. When carrying out the analysis for operation in normal mode 

(switch open, high voltage range) the A and B PFC cells can be combined and considered 

as a single unit. Hence the inductances LDA and LDB, L1A and L1B  and the turns on the 
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transformer N4A  and N4B can be combined into single values. In voltage doubler mode, 

when the A and B cells operate alternately on either the positive or negative part of the 

cycle, only a single cell needs considering. The analysis only considers the converter with a 

single output. In this topology this does not matter as the PFC current and the output current 

do not interact. 

In addition to the assumptions made in section 4.3.2 the following assumptions are made: 

Bulk capacitor voltage is constant over a mains cycle. 

The input voltage is constant over a switching cycle. 

For the analysis when operating in normal mode with the switch open, the inductances LD 

and L1 can be considered to be as in equations 6.1 and 6.2. The times four factor is due to 

the A and B inductances being coupled. The A and B turns add up as in equation 6.3. 

LD =4. LDA = 4. LDB 	 (6.1) 

L1 = 4. LlA = 4 L1B 	 (6.2) 

N4=2•N4A=2N4B 	 (6.3) 

When operating in voltage doubler mode L1, LD and N4 are: 

LD = LDA = LDB 	 (6.4) 

L1 = L1A = L1B 	 (6.5) 

N4 = N4A = N4B 	 (6.6) 
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Since the CS S 2PFC is a forward converter and it is the capacitor voltage VB that is seen 

across the transformer primary, the duty ratio D is: 

N1 V0  
D= - •- 	 (6.7) 

N2 VB 

where VB is the bulk capacitor voltage. 

The input voltage v 3  (t) is assumed to be sinusoidal and is expressed in equation 6.8. 

V 8  (t) = Vk . sin (w .t) 	 (6.8) 

where 

(6.9) 

and F is the line frequency. 

6.3.1 Analysis when Operating in DCM for One Switching Cycle 

From examining figure 6.4, the current in L1 (unfiltered input current) is discontinuous from 

ti to t2 and t3 to t4. If the input current is low (ie low power throughput) then L1 will not 

enter CCM. Looking at figures 6.5 and 6.2 when Si is on (ta  to tb),  applying the inductor 

equation (v = L 	) to L1 yields: dt 

N41 	(Li +LD)•Ikd.f 8  
V S  (t) - [i - 
	

V 
= 	D 	

(6.10) 

Rearranging equation 6.10 to give the peak current, 'pkd,  in L gives: 

- [v3(t)_ (1—p) 
.VB] •D 

(6.11) 'pkd 	(Li +LD).fs  

When S turns off the current in L1 and LD falls to zero. Considering the inductor equation 

for L1 
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'pkd (6.12) V 5  (t) - VB = 
Df 

where f is the switching frequency. 

Rearranging 6.12 to give the current fall duty ratio Df for L1: 

L1 'pkd f., (6.13) D1= 
VB — v s (t) 

The average current in L1, 'avd,  during DCM is: 

D+DF 

	

2 	Ipkd 	 (6.14) 

The DCM period starts at t1 after a period of no conduction during the zero crossing. The 

period of no conduction occurs while: 

V S  (t) ~ 1 - 	
j 

) VB 	 (6.15) 
( 

Ni   

	

The moment v8  (t) rises above (i 
- 	

VB the DCM period can start, hence the time ti 
Ni 

can be found from: 

sin— 1 ly 
. - 

	

LvPk 	Nj)] 
tl 	 (6.16) = 

W 

6.3.2 Analysis when Operating in CCM For one Switching Cycle 

In figure 6.4 the current in L1 enters the CCM stage at t2. Looking at figures 6.6 and 

6.2 the current in L1 keeps falling until the current in LD ramps up to meet it. From 

ta to tb the inductor equation for LD is expressed in equation 6.17. AD is the ratio of 

(tb - ta) / (te - ta) or the duty cycle of that part of the cycle. 

N4 I.LDf 3  

N1 

	

- 	

AD VB = 	 (6.17) 
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Rearranging this gives the current, I, at which L1 and LD have the same current flowing 

in them: 

• N4 VB LID 

= N LD fa 	
(6.18) 

At tb L1 and LD connect in series and the overall inductor equation is: 

	

1— N4) 
 . VB = V S  M — ( 
	N, 	

(Li +LD).LIIC•fS 	
(6.19) 

D—LID 

Rearranging gives Al, the current rise in L1 from tb to t: 

Ai,- [v3  (t) - 1 1 - I) . Vn] (D - LID) 	
(6.20) Ni  

- (Li +LD).f s  

From t to tb on the next cycle the current in L1 is freewheeling and this is governed by the 

inductor equation: 

—M• f (6.21) v8(t)—VB= 1—D+LID 

If 6.19 and 6.21 are equated then LID can be found. 

[

V, (t) - (i - 

	

	
. VB] . (D - LID) 	(VB - V 

	

 (t)) . (1 - D + LID) 	
(6.22) 

Ll+LD 	 L1 

Rearranging 6.22: 

	

D . L1 {v8  (t) - ( i - 	
V,,] + (Li + LD) . [v3  (t) - VB + D (VB - v 8  (t))] 

LID=
Ni  

[v3  (t) - ( i - 	
VB] L1 + (Li + LD) (VB - v 3  (t)) Ni 

(6.23) 

For L1 to enter CCM, LID has to be greater than zero. This condition is fulfilled when the 

numerator of 6.23 is greater than zero. Rearranging the numerator of 6.23 gives: 
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V,, - [D L1 (i - 
	

+ (Li + LD) . (1— D)] Ni 

	

v3  (t)> 	
(Ll+LD)D.LD 	

(6.24) 

This equation can then be solved to give t2 (figure 6.4): 

D.Ll.(1_)+(LI+LD)(1_D)1 
sin—  _V

L VPk 	 (Ll+LD)-D•LD 	
j 

t2 = 	 (6.25) 
W 

The average current in L1, 'avc, for one switching cycle is: 

I. =  C + 
z.Ic 	 (6.26) 

6.3.3 Analysis at Line Frequency 

At line frequency the input power and input current of the converter needs to be considered. 

The input power, P2 , is: 

T 
t2 

	

Pin = 	Iavd(t) - Vs (t)dt+ 	
• JI' 

vc(t) . (t)dt 	(6.27) 

ti 	 t2 

where T is the half line period. 

When the input power is low L1 only operates in DCM, and the input power can be ex-

pressed by: 

2 

_.fIavd(t).V S (t)dt 	 (6.28) 

ti 

The input current can be formed piecewise from the various current modes of L1. For a 

half cycle of the mains the input current is defined in equation 6.29 and in equation 6.30 for 

operation in just DCM. 
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i8 (t)= 0 	0 <t<t1 t4<t<t5 

	

Iavd(t) ti <t<t2 t3 <t <t4 	 (6.29) 

Iavc (t) t2<t<t3 

	

0 	0<t<t1 t4<t<t5 	
(6.30) 

Iavd(t) ti<t<t4 

The RMS current harmonics can be found by analysing the Fourier series for i3  (t). 

6.4 Design Procedure 

The specification for this converter is the same as for the bi-forward converter specified in 

section 4.3.1. 

6.4.1 Converter Design 

It was decided to keep the primary turns on the transformer the same as the total number of 

primary turns (44) for the bi-forward converters. 

Design of the PFC Stage 

The key design parameters are L1A and L1B, LDA and LDB as well as the number of turns 

on N4A and N4B. These need to be determined for the best design compromise which will 

meet IEC 61000-3-2 and keep the bulk capacitor voltage reasonable at below 500V, but 

preferably closer to 400V. The diodes D4A, D4B, D5A and D5B can then be sized. For 

design purposes the converter is assumed to be about 75% efficient, hence the maximum 

input power will be about 200W. Before the PFC stage can be designed the turns ratio 

N2 N1 should be chosen, as this determines the duty cycle of the converter (equation 6.7) 

and it also affects the operation of the PFC stage. The converter in [122] has transformer 

turns as N1 = 52 and N2 = 3 (5V output) which gives a lower turns ratio than normal for 

this sort of design where N1 = 34 is common. The primary turns have been increased so as 

to increase the duty ratio of the converter and give a longer period for the processes shown 
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in figure 6.6 to occur. Following on from this example the number of secondary turns (as 

used in the other converters) was reduced from 5 to 3 for N2.5v and from 11 to 7 for N2.12. 

[122] shows that the value of L1A and L1B does not affect the level of the input current 

harmonics, particularly when they test a 200W output CS S 2PFC circuit with L1A set at 

values between 45tH and 190jtH. The same paper shows that higher values of L1A  produce 

converters with lower levels of VB, but VB is only reduced by 10V between L1A equal to 

781iH and 178H. As L1A and L1B have only a minor effect on the converter performance, 

it was decided to set them to 100jtH. The value of L1 will determine how much switching 

frequency ripple will need to be filtered on the input of the converter, but this not a concern 

for this study. 

Evaluating equation 6.27, it is possible to plot power against bulk capacitor voltage for 

different values of LDA and LDB,  and N4A  and N4B. Initially considering the input voltage 

as 230VRMS, power vs VB plots were produced for: 

LDA/LDB 10, 30, 50, 70H 

N4A/N4B 	6, 12, 18 turns 

Ni 
	 0.136, 0.27, 0.41 

These particular values were chosen based on the work in [122]. The plots are displayed in 

figure 6.7. Other designs can be deduced from these curves. 

The point where slope of the curves changes dramatically is where the input power has 

dropped low enough for L1 to operate only in DCM. From figure 6.7 it is possible to see 

that curves around N4A and N4B = 6, with LDA and LDB at 30-70pH, as well as N4A 

and N4B = 12 with LDA/LDB at 50-70H are not acceptable, as the voltage VB is too low 

at high power (below the peak of the supply voltage). The voltage on GB should be above 

the peak of the mains (325V with 230VRMS input) at full load input power, as otherwise 

the action of the PFC stage is lost and the bulk capacitors peak charge via L1 distorting the 

current shape (the peak charging was not predicted in the analysis carried out, but a lower 

average voltage was). At low power the bulk capacitor voltage was high so as to limit the 

amount of energy being taken to and from the bulk capacitors. As the voltage rises the duty 

cycle becomes narrower, reducing the amount of energy taken from GB as the output power 

reduces. The narrowing of the duty cycle also reduces the amount of energy delivered to 

GB via L1 so balancing the energy in and out of GB.  At high output power a large amount 
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Figure 6.7: Graphs showing power against bulk capacitor voltage for 230VRMS input 

for LDA/LDB = 10, 30, 50, 701iH with 1V4A  and N4 R as either 6, 12, or 

18 Turns. Traces are listed by side of graph, 1st value is the value of LDA 

and LDB  and 2nd value is the number of turns on N4A  and N4B. 

of energy needs delivering to the output: to get an equivalent amount of energy into the bulk 

capacitor the duty cycle needs to be wider to get the energy through the PFC network. To 

balance the input and output energy from GB the duty cycle needs to be wider to get the 

required energy in and out of GB;  this can only occur if the bulk voltage is low. 

The input current i (t) can be constructed as in equation 6.29 and can be evaluated to see 

if they meet JEC 61000-3-2 class D at 200W and 75W. 

Figure 6.8 shows the odd harmonic spectrum for the remaining design curves at 200W input 

power. Figure 6.8 shows that the curves for LD.4 and LDB = l0iH and N4A and N4B = 6, 

12 or 18 all exceed the class D regulation for 230 V 200W input by a considerable margin. 

The other curves for LD4 and LDB = 30, 50 or 70tH and N4A  and N413 = 12 or 18 (only 

one for 12) are either very close to the regulation curve or below it. A similar set of curves 

for 75W input power showed that all the design curves are exceeding the class D regulation 

at 75W with the two curves for LDA and LDB = lO/LH and N4A and N4B = 6 or 12 being 

the worst. From figure 6.8 and its 75W counterpart it was decided that curves for LDA and 

LDB = 10.tH and Ns, and N4B = 6, 12 or 18 all exceeded the regulation curves by far too 
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Figure 6.8: Odd harmonic spectrum for input power and voltage of 200W 230Vmvis 
for the remaining curves (only odd harmonics are plotted). The red trace 
(b req200) is the class D limits for 200W. Traces are listed by side of graph: 
1st value is the voltage on CB,  2nd value is the value of LDA  and LDB 

and 3rd value is the number of turns on N4A  and N4B. 

large a margin to be considered and were thus rejected. The other designs were considered 

close enough to the design curve (even if they exceeded it by a small amount) that if they 

were built it is likely that they would meet the class D regulations at least at full input power 

(about 200W). 

The remaining design possibilities (4) were checked at 265VRMS input to see how high 

the bulk capacitor voltage would go. The plot of power against VB for 265Viis input 

is shown in figure 6.9. The line PW is a plot of the CCM/DCM boundary for the output 

inductors L25v  and L212v and is defined by equation 6.31. 

p 	0.5 Vo5 2  (1 - D (VB)) + 0.5 Vo12v2 . ( 1 - D (VB)) 	
(6.31) 

2:5V Is 	 2:12V S 

Where this curve intersects the design curves is the highest bulk capacitor voltage that the 

design will experience. At this point the output inductor is in DCM and the bulk capacitor 

voltage is no longer dependent on power. The curve for LDA and LDB as 301LH and N. 

and N4B as 12 has a peak voltage of about 438V which is under a desired maximum voltage 
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Figure 6.9: Graphs showing power against bulk capacitor voltage for 265VRl1S input 
for LDA and LDB = 30ILH with N4A/N4B  as 12 and LDA  and LDB = 
30, 50 and 70jiH with N4A/N4B. Traces are listed by side of graph: 1st 
value is the value of LDA  and LDB  and 2nd value is the number of turns 
on N4A  and  N4B. 

of 450V. The other remaining design curves have a higher peak voltage, but LDA and LDB 

as 70jiH and N4A  and N4B as 18 gives about 486V, which is still acceptable if two 250V 

capacitors are used. With LDA and LDB as 30p.H and N4A and N4B  as 18 the peak voltage 

expected is 538V, and for LDA and LDB as 50/LH and N4A and N4B as 18 the peak voltage 

is 511 V. both of which are too high if two 250V capacitors are to be used. If the output filter 

inductors L25v  and L212v  were redesigned so that they entered DCM at a higher current, 

then designs based on other curves would be possible (in this case they are not redesigned 

as they were kept the same as the other converters). It was decided that the two design 

curves with the bulk capacitor below 500V (that is LDA  and LDB as 30tH and N4 1 1 and 

N4B as 12, and LDA  and LDB as 701iH and N4A and N4B  as 18), were the most likely to 

be worth pursuing, but the other two could not be neglected at this stage. These remaining 

designs were checked to see if they meet the regulation at 100VRj5 input voltage in the 

same manner as for 230V. The graphs are shown in figures 6.10 and 6.11. 

Figure 6.10 shows the variation of bulk capacitor voltage with power for one bulk capacitor 

and for I OOV input voltage. It is noticed that all four design curves have an average bulk 

capacitor voltage below the peak of the line voltage (141V) at full load input power of 

200W. To see how a curve which does have a bulk capacitor at full power above the line 
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Figure 6.10: Graphs showing power against bulk capacitor voltage for IOOVRMS in-
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LDB = 30. 50 and 70jiH with N4A  and N4B. Traces are listed by side 

of graph: 1st value is the value of LDA  and LDB  and 2nd value is the 

number of turns on N4A  and N4B. 

2.594<I0 	00 	 10 	 20 	 30 	 40 

13, 	 n 1 .n 	 39, 
Harmonic Number (Odd Only) 

Figure 6.11: Odd harmonic spectrum for input power and voltage of 200W 1 OOVRMS 

for the remaining curves (only odd harmonics are plotted). The red trace 
(hrg200100) is the class D limits for 200W. Traces are listed by side of 

graph: 1st value is the voltage on a single CB, 2nd value is the value of 

LDA and LDB and 3rd value is the number of turns on N4A  and N4B. 
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voltage peak, a fifth design curve has been iterated and is LDA and LDB as 121iH and N4A 

and N4B as 12. Figure 6.11 shows the RMS current harmonics compared to class D at 

200W input, and again four of the curves are very close to the class D limits, the exception 

being LDA and LDB as 121LH and N4A and N4B as 12. A similar plot for 75W input power 

showed all the design curves are above the class D limit (most are just above) for the low 

harmonics below about the 11th harmonic. The worst offender is LDA  and LDB as 121iH 

and N4A and N4B  as 12. 

From the final five design curves left it was decided to construct a prototype converter based 

around the LDA and LDB as 30H and N4A and N4B as 12 curve. LDA and LDB  as 30 

and 50tH and N4A  and N4B as 18 have already been shown to have a peak bulk capacitor 

voltage in excess of 500V, which is far too high. LDA and LDB  at 12H and N4A  and 

N4B at 12 would most likely not have any chance of meeting the regulations at any power 

or voltage. LDA and LDB  at 70H and N4A and N4B at 18 has a bulk capacitor voltage 

which is too low at bOy input for the converter to operate in the proper and expected 

manner, even when considering that the calculated figures for bulk capacitor voltage should 

be within 10% of the values seen on a prototype. It is felt a design around LDA and LDB 

as 30H and N4A and N4B as 12 gave the best compromise in ability to meet the class 

D harmonic regulations and for voltage seen across the bulk capacitor. The RMS current 

harmonics calculated were close to the class D regulation curves. The peak voltage at 265V 

input was the lowest, and the average voltage at bOy was below the peak of the line voltage 

but it was higher than LDA and LDB as 70jiH and N4A  and N4B  as 18, and voltages within 

10% of these would be above the peak of the line voltage. Figure 6.12 shows the predicted 

input current at 230V and bOY. 

The final choice was: 

• LDA/LDB 33H, later changed to 43H during testing. 

• N4A/N4B 11 turns 

6.4.2 Sizing of Semiconductor Components 

The average or RMS current through the components cannot yet be calculated, as at 90V 

input voltage the analysis predicts the bulk capacitor voltage to be below the peak of the line 
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Figure 6.12: Predicted input current waveforms for 200W input power at a) 230V and 
b) 100V input voltage with LDA  and LDB = 33tH and N4A  and N4B = 

11 

voltage. This causes some of the current change to slope in the wrong direction. Instead the 

currents predicted by PSpice in table 6.2 are used. The analysis was only written for when 

the bulk capacitor voltage is above the peak of the line voltage. 

When operating at 265V input voltage the peak bulk capacitor voltage was measured in 

figure D.3 as 423.76V when the output inductors L25v  and L2 : 12 go into DCM. 

Switch S and Reset Winding Diode D 1  

When the transformer is being reset the voltage seen across S, Vsi, is 

Ni  
Vs1=VB+VB (6.32) 

Since N1 and N2 are the same the peak voltage seen across Si is 847V: to provide a rea-

sonable safety margin a 1000V MOSFET is used. Heavily over-designing for survivability 

the IXFH12N100, a 1000V 12A device, was used. 

The same voltage is seen across diode D1 when Si  is on. In the bi-forward of chapters 4 

and 5 the BYD33U diode was used, but this only has an average current rating of 1.26A. 

In this topology the tertiary winding N3 will carry more than just magnetising current, 

as transformer windings N4A  or N4B will also be carrying current during the off-time of 

S1, and this current will be transferred to the tertiary winding N3 while the transformer is 
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resetting. Due to this, D 1  is replaced by the plentiful and over-rated BY329-1000 (1000V 

8A diode). 

Secondary Diodes D2 :5, D3:5v, D2.12v and D3:12v 

The peak voltage seen across the secondary diodes, VD2,  is: 

N2 
VD2 = V. 	 (6.33) 

N1 

For the 5V output (N2 = 3) this is calculated to be 28.9V and for the 12V output (N2 :12V = 

7) this is calculated to be 67.4V. The total average current in the 5V diodes is 20A and the 

total average current in the 12V diodes is 4A. For the 12V output, where diode losses are 

not so severe, the BYT08P-400 (400V 8A device) is used. For the 5V output where the 

losses are higher, 20A Schottky diodes are used to reduce losses, as the voltage is now low 

enough to allow their use. The device chosen was a STPS20H100CT (100V 20A). 

Diodes D4A,  D4B, D5A and D5B 

During normal operation the peak voltage seen across D4A  or D4B, VD4, is: 

VB + 2 N4A.V

2 	

— V. 
VD4 - 
	N3 	B 	czri 	

(6.34) 
-  

This situation occurs across the zero crossing. The voltage V is the voltage across ca-

pacitors C2A  and C2B  in figure 6.16 that are fitted across the DC side of the diode bridge 

rectifier. During the time when current is flowing through the input of the circuit these ca-

pacitors have the input voltage across them. However, during the zero crossing when no 

current is flowing through the input of the converter the voltage on the capacitors remains at 

the instantaneous supply voltage that L1A  or L1B stopped conducting, this the input voltage 

(V) at time t1. Vi,, for this case is 212V when the input voltage is 265V. This gives a 

normal operating peak voltage across D4A or D4B  of 212V. To cover for the situation where 

there is no voltage at the input and if one of the diodes D4A or D4B turns off slower than 

the other, then the voltage, VD4E,  across the diode will be: 
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VD4E=VB+ VB 	 (6.35) 
3 

In this situation the voltage across D4A or D4B  is 530V. 

During normal operation the voltage, VD5 seen across D5A or D5B is 

VB - Vj 
VD5 = 	 (6.36) 

2 

This calculates to be 106V. Again, to cover the same situation as mentioned for D4A or D4B 

the maximum possible voltage is the bulk capacitor voltage of 424V. 

The diode used for D4A, D4B, D5A and D5B is the BY329-1000 as there was a plentiful 

supply and they had ratings well in excess of what was required, again building in surviv-

ability. 

6.5 Simulation 

In figure 6.13 is the PSpice simulation schematic. The simulation settings are the same as 

used for the bi-forward converters in chapters 4 and 5. The averaging circuit shown in figure 

4.7 is not included in this simulation as the input current is mainly in CCM and the filtered 

(averaged) shape of the input current can be seen without it. To convert the schematic for 

simulation on the 90 to 130V input voltage range an additional bulk capacitor is added in 

series with GB  and their values are changed to 330 jtF. Also a connection is made between 

the bulk capacitors and diodes D-, and D8. When simulating at 265V input voltage, to 

find the voltage across the semiconductors a capacitance of liiF  is put across the DC side 

of the diode bridge to stabilize the voltage when the diode bridge is not conducting (this 

capacitor is fitted to the prototype converters at all voltages). This capacitor does not effect 

the working of the rest of the simulation. The simulation was run in the same way as in 

chapters 4 and 5. 
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Figure 6.13: PSpice schematic for simulation on the 180 to 265V Range 

6.5.1 Simulation Results 

Table F.5 in appendix F shows the input current harmonics for 230V input voltage and 150W 

output power (174W input power) compared to class D. The simulation waveform fails on 

the 5th and 7th harmonics, by a small amount, which is the same two harmonics predicted 

by Mathcad in figure D.1. 

Table E6 in appendix F shows the input current harmonics for 100V input voltage and 

150W output power (174W input power) compared to class D. The simulation waveform 

passes on all the odd harmonics, whereas the Mathcad prediction in figure D.2 shows that 

the waveform just exceeds the class D regulation for 200W on the 3rd and 5th harmonics; 

again they are close. 

Table 6.1 shows the voltage across the semiconductors measured in PSpice. They are 

slightly lower (but within 10%), than that predicted in the analysis, as the bulk capacitor 

voltage is lower at 400V instead of 424V. 

The average current in the semiconductor components is shown in table 6.2. These are 

sensible values for a converter with a 150W ouput power and for the particular transformer 
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Device Voltage/V 

S1 802 
26.6 
26.5 

D4A/D4B 199 

D5A/D5B 97.3 
D6  800 

DB 374 

Table 6.1: Peak voltage across key semiconductors at 265V input and 40W output 
measured in PSpice. Average voltage across CB, and CB2 was 400V. 

turns ratios used. 

Device Average or RMS 
Current/A 

Si RMS 1.44 

S, AV 0.84 

D4A/D4B per diode 0.306 

D5A/D5B per diode 0.509 

D6 0.00926 

DB per diode 0.811 

Table 6.2: RMS or average current through key semiconductors at 90V input and 
150W output (176W input) measured in PSpice 

6.5.2 Simulation Waveforms 

The lower trace in figure 6.14 shows the input current waveform predicted by PSpice at 

100V input voltage. The shape is similar to that predicted in analysis shown in figure 6.12b, 

but the PSpice waveform has a slight lean to the left due to the charging and discharging 

of the bulk capacitor causing its voltage to change. The top trace shows the current in L1A 

(this current only flows every other half line cycle due to the voltage doubler switch being 

closed). The inductor LIB  is conducting during the half line periods that L1A is not. The 

peak of the input current is just under 6A. The waveform predicted by the analysis in figure 

6.12b has a peak of 6.77A. They are different to the analysis above, as the power used in 

Mathcad was 200W. 

Figure 6.15 shows switching frequency current waveforms for L1A,  D4A and D5A at 230V 

input voltage and 150W output when L1A is operating in CCM. It can be seen that at turn 
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Figure 6.14: Input current at 150W output and 100V input measured in PSpice (bot-
tom trace) and current in L1A  (top trace). The input power is 177W 

on of S1 the current in D4A (and LDA)  ramps up from zero and the current in D5A is 

commutating to D4A;  at the same time the current in L1A is still falling as the voltage 

across L1A  has not changed. The current in L1A starts rising when the current in D4A 

reaches that in D5A,  and D5A stops conducting. The voltage across L1A is now positive 

so current rises. At turn off of Si the current in D4A slowly commutates to D5A and the 

current in L1A  starts falling again. This is most obvious in the last cycle shown. 

6.6 Experimental Results 

Figure 6.16 shows the final and complete circuit schematic tested. The components used 

are listed in table G.2 in appendix G and a photograph of the final circuit is shown in figure 

6.17. 
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Figure 6.15: Switching frequency current in inductor L1A  (bottom trace), D4A (mid-
dle trace) and D5A (top trace) across the peak of the line input voltage at 
230V input measured in PSpice 
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Figure 6.16: Final and complete circuit schematic for the CS S 2 PFC converter 
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Figure 6.17: Photograph of the CS S 2PFC converter 

6.6.1 Changes Made to Prototype Circuit 

The value of LD was varied to try and make the converter pass the class D harmonic regu-

lations at 75W input power. The values tried were 33, 22, 43, 371jH. 

All values of LD tried failed class D at 75W input power at both voltages. In the end 431H 

was used because it produced a lower bulk capacitor voltage. 

A MOSFET turn-off snubber shown in figure 6.16 was fitted early during testing. 

6.6.2 Harmonic Tests 

Figures 6.18, 6.19, 6.20 and 6.21 show the measured input RMS current harmonics com-

pared to class D. In figures 6.18 and 6.20 the converter is shown to meet class D at full 

power at bOy and 230V. This is better than that predicted by PSpice and in the analysis, 

both of which predicted slight failure at 230V on the low harmonics. At 100V PSpice pre-

dicted a pass and the analysis a slight failure at the low harmonics. At 75W input power the 

converter failed to meet the regulation for the 7th, 9th, 11th and 13th harmonics at 230V 

(figure 6.19) and for the 7th and 9th harmonics at 100V (figure 6.21). Further testing found 

that the lowest power that the converter would comply with the class D limits was at 97W 
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for both 100V and 230V input voltage. The converter passes class A. 

Figure 6.18: Measured RMS current harmonic levels for 230V and full load output 
power with LD as 431iH compared to class D: input power is 197W 

6.6.3 Input Current Waveform 

Figure 6.22 shows the input current waveform at: a) 230V full load where the converter 

meets class D, b) 230V 75W input where the converter failed class D, c) 100V 97W input 

where the converter started to meet class D and d) 100V full load where the converter meets 

class D. In 6.22a and c, with the two waveforms at full power, it is noticeable that the peak 

of the current waveform is flattened. Otherwise their basic shapes are very similar to each 

other. It is possible to see the DCM part of the waveform at the beginning and end of the 

current waveforms, where the slope is shallow. 

There is possibly some distortion in figure 6.22c due to peak charging of GB2  during the 

negative parts of the cycle (this is hard to see). This does not seem to have affected the 

current harmonics much. 

It is not possible to show switching frequency waveforms which clearly show the operation 

of the converter as resonances were present on the waveforms, hiding the actual power trans- 

fer voltages and currents. The resonances did not seem to hinder or change the operation of 
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Figure 6.19: Measured RMS current harmonic levels for 230V and 75W input power 
with LD as 43j.tH compared to class D: input power is 74W 
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Figure 6.20: Measured RMS current harmonic levels for 100V and full load output 
power with LD as 431,tH compared to class D: input power is 199W 
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Figure 6.21: Measured RMS current harmonic levels for 100V and 75W input power 
with LD as 43H compared to class D: input power is 76W 

the converter. 

6.6.4 Efficiency and Voltage Across the Bulk Capacitors, CB,  and CB2 

In table H.2 in appendix H are presented the measured input and output powers, efficiency 

and bulk capacitor voltages. The efficiency and bulk capacitor voltages are plotted in figures 

6.23 and 6.24. The efficiency is very good, ranging from 72% at about 40W output power 

with 265V input voltage to 78% at 74W output power at 180V input voltage. Most of the 

efficiency readings are in the mid-70s. When dividing the low line bulk capacitor voltages 

by two to give an indication of the voltage across a single capacitor, the voltage given 

is below the peak of the line voltage and checking the waveforms recorded for when the 

output was 150W for all three voltages (90V, 115V and 130V) peak charging is observed, 

but different amounts are occurring on the positive and negative parts of the cycle. 

The voltage across both bulk capacitors is shown in figure 6.24 ranging from 230V to 408V. 

The range is narrower than the line voltage range due to the voltage doubler. This can be 

seen since the bulk capacitor voltage at 130V is close to that seen at 265V, the 115V bulk 

capacitor voltage is close to that of 230V, and the 90V bulk capacitor voltage is close to 
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Figure 6.22: Measured a) Input current at 230V and full load, b) Input current at 
230Vand 75W input power, c) Input current at IOOV and full load and 
d) Input current at IOOV and 97W input power. All have LD as 43oH. 
Top trace is input voltage, middle trace is input current and the bottom 
trace is the drain-source voltage of S. 
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Figure 6.23: Efficiency of the CS S 2 PFC across the input voltage range 

that of 1 80V. Figure 6.25 compares the bulk capacitor voltage measured at 265V with that 

predicted for 265V. The measured voltage is higher than the predicted voltage for the same 

input power by about 20V, but it is following the same shape, except when the input power 

is low (at 8W). Even with a IOV difference predicted voltages are still within 10% of the 

measured voltages. 

6.6.5 Hold Up Time and Output Voltage Ripple 

Hold Up Time 

Hold up is measured in the same way as in section 5.6.5. The results for 115V and 230V 

are shown in table 6.3 and both are acceptable, being above lOms. 

Input Voltage/V Hold up time/ms 
115 18.4 
230 27.6 

Table 6.3: Hold up time for 11 5V and 230V 
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compared to the Mathcad prediction 
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Output Voltage Ripple 

Table 6.4 shows the 100kHz and 100Hz ripple on both outputs at 75W and full load output 

power. The 100kHz ripple on the 5V output ranges from 12.lmV to 20.3mV and on the 

12V output from 81.3mV to 181mV. The 12V ripple voltages are higher than that normally 

specified for a PC power supply (50mV on the 5V output and 120mV on 12V output). The 

100Hz ripple on the 5V output ranges from 28mV to 40.6mV and from 93mV to 131mV on 

the 12V output. 

Output Combination 5V 100kHz 

p-p 
Ripple/mV 

5V 1001-lz 

p-p 
Ripple/mV 

12V 100kHz 

p-p 
Ripple/mV 

12V 1001-lz 

p-p 
Ripple/mV 

Input Voltage: 90V 
5.05V 1A, 12.71V 2.1A 15.6 28 125 106 

Input Voltage: 115V 
5.07V 10.1A, 12.75 2.1A 15.6 35.9 112 112 

4.98V 19A, 13.19V 4.2A 18.8 31.3 156 118 

Input Voltage: 130V 
5.06V 1A, 12.73V 2.15A 14.1 34.4 118 100 

4.98V 19A, 13.17V 4.2A 17.2 40.6 168 131 

Input Voltage: 180V  
5.06V 10.2A, 12.78V 2.1A 20.3 29.7 137 106 

4.99V 19A, 13.2V 4.2A 18.8 26.6 181 93 

Input Voltage: 230V  
5.08V 10A, 12.71V 2.15A 15.6 34.4 81.3 103 

4.98V 19.1A, 13.2V 4.2A 20.3 34.4 121 112 

Input Voltage: 265V  
5.07V 10.2A, 12.73V 2.15A 12..1 35.9 87.5 103 

4.99V 19.2A, 13.17V 4.2A 20.3 34.4 140 109 

Table 6.4: Ripple voltage seen on the 5V and 12V outputs at 100kHz and 1001-lz 
across the input voltage range 

6.6.6 Voltage seen on Key Devices 

Measured at 265V input, the voltages on Si  and the diodes are shown in table 6.5. 

The voltage measured across S1 was about 813V, which is about the expected value for a 

bulk capacitor of 408V. The 5V diodes at 25V are close to their expected voltages of 28V for 

a bulk capacitor voltage of 408V, as are the 12V diodes at about 57V when their expected 

voltage is 65V (more than 10%). The voltage measured across D4A  or D4B and D5A or 
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Device Voltage/V 
S1 813 

25.6 
D3.5v 25 
D2:12v 57.8 

56.3 

D4A/D4B 312 
D5A/D5B 231 

Table 6.5: Voltage measured across key semiconductor components with 265V input 
voltage 

D5B is about 100V higher than what would be expected (202V for D4 and 100V for D5) 

due to the resonance on the voltage seen across them. 

6.7 Conclusion 

Analysis has been produced that predicts bulk capacitor voltage, and input RMS current 

harmonics at an acceptable level. The analysis can be used to test designs with different 

values of inductances and turns ratios. The analysis needs further work to add an improved 

method of calculating current when the bulk capacitor voltage is below the line voltage 

peak, when the bulk capacitors may be peak charged. 

The converter was simulated at 100V and 230V with a 150W 5V output to check the har-

monies. At 90V the converter was simulated to find the RMS or average current in the 

semiconductor devices and at 265V to find the peak voltage across the devices. 

A prototype converter was built and tested. This converter has good efficiency percentage 

around the mid 70s. The converter passed class D at full load (150W output) at 100V and 

230V, but not down at 75W input power. The lowest input power that it passed at was 97W. 

The bulk capacitor voltage rises to 408V. This has the knock-on effect, requiring a 1000V 

MOSFET to be used, which is expensive. 
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Chapter 7 

Forward Converter with Low 

Frequency Switch - LFSPFC 

7.1 Introduction 

The bi-forward converter in both forms (with and without input inductor) and the CS S 2PFC 

converter have a number of undesirable characteristics which have been highlighted in the 

previous three chapters. The bi-forward suffers from: 

. Variable and high voltage on the bulk capacitor when operated with the input inductor 

. High voltage stress across MOSFET S1 (up to 1 100V) and the secondary diodes due 

to the centre tapped primary winding on the transformer 

High current stress in the MOSFET S1 when operating via the lower tap of the pri-

mary winding 

Due to these three problems the bi-forward has low conversion efficiency and a high cost. 

The CS S2PFC suffers from: 

. Variable and high voltage on the bulk capacitor 

High voltage stress across MOSFET Si  (up to 1000V) 

. Does not meet IEC 61000-3-2 at lower powers 
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High cost 

It would be advantageous if a 800 V/900V MOSFET could be used for S1: this would reduce 

both cost and losses. Further benefit could be gained by the use of Schottky diodes on the 

5V output (bi-forward), giving a much needed increase in efficiency. 

The main cause for the problems in the bi-forward is the centre tapped primary transformer 

winding, but this winding is important as it performs most of the current shaping and power 

management. It would be useful if there was some other method of performing exactly the 

same task as the centre tapped primary winding (as in the bi-forward without Li), but al-

lowing the primary winding of the transformer to reduce back to its usual forward converter 

form. This would reduce the current and voltage stress on the power MOSFET. 

7.2 The LFSPFC Converter 

In figure 7.1 is shown the schematic for the LFSPFC converter. This converter was devel-

oped in this project as an attempt to solve the problems of the bi-forward and CS S 2PFC 

dicussed above. A converter based on the flyback topology with a similar switch and diode 

arrangement has just been presented in [123], but this converter is operating in a very dif-

ferent manner to the one proposed here. 

v8(t) 
N3  

D2 	
L2 

• M 

N2  fD3 
Ci tVo 

Figure 7.1: Forward converter with auxiliary switch and diode in series with the bulk 
capacitor GB 

7.2.1 Operation 

The switch S1, transformer and secondary side form an ordinary forward converter that 

operates in the normal manner, such as voltage mode control with fixed frequency PWM 
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with duty adjusted to keep the output voltage V0  constant. When the input voltage is high 

the auxiliary switch S2 is turned off and the output is supplied directly from the converter's 

input at the main high switching frequency of S1, in the same manner as the bi-forward in 

chapter 4 does. The duty cycle is adjusted to keep the output voltage V0  constant as the input 

voltage v 8  (t) changes. When the input voltage is low S2 is on and the output is supplied 

from CB via S2 in the ordinary manner of a forward converter fed from a capacitor. S2 is 

left on all the time when the voltage is low. The bulk capacitor CB is peak charged through 

D1 . All that has happened is that the power processing function of the centre tapped primary 

winding of the bi-forward is now done by switch S2. 

7.2.2 Input Current Waveform 

The input current waveform is exactly the same as in the bi-forward converter discussed 

in chapter 4 ( and which is shown in figure 4.3) because the converter is drawing current 

directly from the supply in the same manner as the bi-forward converter. This means that 

the converter as it stands should not pass class D and should only just meet class A. 

7.2.3 Advantages and Disadvantages of the LFSPFC 

The advantages over the bi-forward are: 

The voltage seen across Si is only twice the bulk capacitor voltage as in a conven-

tional forward converter. 

. The current stress in Si is similar to that of a conventional forward converter and not 

double as in the bi-forward when operating from just the lower tap. 

• These two points allow the use of a 800V/900V MOSFET for Si  giving a significant 

reduction in overall cost (including the auxiliary switch and its control and drive 

circuitry). 

• A probable increase in efficiency over the bi-forward. 

The disadvantages of this converter are: 
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. It draws the same shape current as the conventional bi-forward converter which will 

not meet class D (but will meet class A). 

. It still has a sharp change in input current, which is still discontinuous. 

. There is a step change in duty cycle. 

7.2.4 Operation of the Auxiliary Switch S 2  

Figure 7.2 shows a method of controlling switch S2. This is based on a simple comparator 

(eg LM3 11) which compares the input voltage seen through the voltage divider R1 and R2 

at the negative input of the comparator, with the reference voltage set by voltage divider R3 

and R4 from the control IC and gate drive supply for S1. When the input voltage seen at the 

negative input falls below the voltage at the positive input of the comparator, S2 is turned 

on. When the input voltage seen at the negative terminal rises above that at the positive 

terminal then S2 will turn off. 

D, 

C6  

Figure 7.2: Comparator control of auxiliary switch S2 

This arrangement will also turn S2 on if there is a loss of line voltage, allowing the output 

to be supplied from GB.  The input voltage at which 52  turns on and off can be adjusted so 

as to give the best current harmonics once a circuit is built by making, say, R4 a variable 

resistor. 

The gate drive for the auxiliary switch S2 can be implemented using several methods such as 

a gate drive transformer or a level shift gate drive IC. If the topology is used in an application 

such as a PC power supply there is an auxiliary converter supplying isolated outputs to the 

drive circuitry and to the PC. An extra winding on this converter could be used to supply 

power for the gate drive of 82 and an opto-coupler, or level shift IC, could be used to level 
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shift the gate drive signal. 

73 The LFSPFC Converter with Input Inductor 

To try and improve the input current shape and ability of the circuit to meet class D regu-

lations the familiar technique of adding an input inductor is used, as shown in figure 7.3. 

This looks similar to the circuit in [123], but it operates differently with auxiliary switch 

S2 operating at a low frequency unlike the same switch in [123] which operates at a high 

frequency (the same as Si). 

 

L2  
D2  

FN D3  C 

N3  v8(t) 

Figure 7.3: Forward converter with auxiliary switch and diode in series with the bulk 
capacitor GB with input boost type inductor L 1  

7.3.1 Operation 

The switch S2 is operated in the same way as described in section 7.2.4. When the input 

voltage is low the forward part of the converter is fed from GB and operates just like an 

ordinary forward converter as described in section 7.2.1. 

Shown in figure 7.4 are the switching frequency waveforms for the current in L1, Si and 

D1 when S2 is off. The current in L2 is operating in CCM and in L 1  it is DCM. When Si 

is turned on at t0 the inductor L1 has applied across it the full line voltage, as turning on Si 

connects the right hand end of L1 to zero voltage. The current in L1 starts to ramp up from 

zero to the reflected load current as seen through the transformer. While the current in L1 

is ramping up the current in L2 will keep on free wheeling via diode D3. At t1 the current 

in L has ramped up to the current in L2 seen through the transformer and the current in L 

stops free wheeling and starts to rise via diode D2. At this point L1 and L2 also connect in 
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Figure 7.4: Switching frequency waveforms for when S2 is off 

series through the transformer and the current in the pair rises together supplied from the 

input source v 3  (t). At t2 switch Si  is turned off. The current in L2 again freewheels via 

diode D3. The current in L1 is discharged into CB via diode D1. At t3 the current in L1 

reaches zero and stops flowing. At t4 the cycle is repeated. 

7.4 Development of a Prototype Converter 

To test if the basic concept of the LFSPFC converter and the LFSPFC converter with input 

inductor work in practice a test circuit was built which could operate with or without the 

input inductor L1. The specifications are; 

. Up to 100W output at 5V and OA to 20A 

. Input voltage is 180VRMS to 265VRMS 

. Conform to EN 61000 -3-2 class A at full load 

. Conform to EN 61000 -3-2 class D at full load 

t 

t 

t 

Switching frequency of 100kHz 
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The converter is based on the normal forward converter built for the comparison in chapter 

8. The basic details are; 

. Transformer turns; N1 , N3: 44 turns, N2: 5 turns 

• Secondary filter L2: 15.4H and C1 : 180OF 16V electrolytic 

Voltage mode control using the UC3524 IC 

• D2 and D3 are STPS20H100CT, 20A Schottky diodes with a forward voltage drop 

of O.71V 

• S is the 2SK2611 and is a 900V 9A device with an Rd,  of  I- IQ 

• D4 is a BYD33U 1200V diode and DB is the GBU6J 

As for the other single stage topologies built there was a RCD snubber across the MOSFET 

Si to the design shown in figure 7.19. 

The drive and control for 82 is shown in figure 7.19 and was implemented using the common 

LM3 11 comparator and a signal level shift IC. 

The two main design parameters left were the input voltage at which 82 is turned on and 

off at and the inductance of L1 (for the version with input inductor). Another parameter to 

consider if the converter is designed from scratch and not adapted from an existing design 

would be the transformer turns ratio, as this determines the amplitude of the reflected sec-

ondary current and the charging up time of L1 and the amount of energy transferred to CB 

when L1 is discharged. 

7.5 Analysis 

7.5.1 Assumptions 

The following assumptions are made in addition to those made in section 4.3.2: 

1. During a switching cycle the input voltage is assumed constant. 
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2. Bulk capacitor voltage for the LFSPFC with input inductor is constant over a half line 

cycle. 

7.5.2 Basic LFSPFC 

The input voltage is defined as: 

V S  (t) 	Vk .sin( .t) 	 (7.1) 

Turn On and Turn Off Voltage of Switch S2 for the Basic LFSPFC 

	

The lowest voltage at which S2 can be turned on or off, 	is determined by the maxi- 

mum duty ratio possible, Dmax, and can be expressed as: 

N1. V0  
Vinmin = 	 (7.2) 

N2 Amax  

For the UC3524 the maximum duty is 0.45, so the lowest voltage at which S2 can be turned 

on and off is 98V rising to the peak of the line voltage. 

For a particular turn on/off voltage, V2,  the time after input voltage zero crossing that S2 

turns off is: 

—1 
Sifl 	

Vk) 
to! I = 	 (7.3) 

and it turns back on again at: 

T 
ton  = - toff (7.4) 

where T is a half line period 

The conduction angle of the input current is expressed (in degrees) as: 
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A 
c

= ( - 

 	180- w 	
(7.5) 

ir 

Equation 7.5 is plotted in figure 7.5 for 230V input for different values of turn on/off voltage 

down to 98V where the converter would lose regulation of the output voltage. 
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Figure 7.5: Graph of conduction angle of input current against switch 82 turn on/off 
voltage 

Duty Cycle Variation 

When operating from GB when S2 is on, the duty cycle is: 

D1= N1•V0 

N2 . VB 
	 (7.6) 

where VB is Vk. 

When the converter is operating directly from the line the duty cycle is: 

N1•V0  = 	 (7.7) 
N2.1v3(t)l 

For a half line period the duty can be defined as: 
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D= D1 0<t<t011 t<t<T 	
(7.8) 

D2 t011<t<t 

Equation 7.8 is plotted in figure 7.6 for 230V. This plot is slightly different to that for the 

bi-forward converter shown in figure 4.6 where the duty change between operating from 

CB and v3  (t) is smooth: in this converter it is a step change. This is due to there only being 

one primary winding from which both conduction paths supply the output. 

jL314 0.4 

0.3 
0 

D(tj40) 0.2 

jJ.135 

U 

0.005 	 0.01 

t 	 JJ.OL 
Time / S 

Figure 7.6: Variation of duty cycle over a line half cycle for 230V 

Bulk Capacitor Recharge 

This is exactly the same as for the bi-forward converter discussed in section 4.3.3. 

Overall Input Current 

The averaged switching frequency current drawn by the converter from the line can be 

assumed to be: 

P. (7.9) if (t) = v
8  (t) 

and the input current for a half line period is: 
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i8 (t)= 0 
	

0<t<toff t on <t< 

if (t) 
	

to11 <t<tr T <t<tOfl 	(7.10) 

if (t) + ic (t) 
	

br < t < T 

Figure 7.7 shows the current waveform produced by equation 7.10. Comparing it to the 

waveforms shown in figure 4.3, the shape is identical to that drawn by the bi-forward con-

verter. Changing the size of the bulk capacitor will change the height of the recharging peak, 

as will changing the turn on or turn off voltage of S2 (as was the case for the bi-forward in 

appendix B). 

5 
4 

- 	ij(t,150,14q 	2 

0 

-1 
0 	 0.005 	 0.01 

L0 	 t 	 jI.0L 
Time / s 

Figure 7.7: Predicted input current waveform for 150W input power at 230V with GB 

as 165iH and turn on/off of S2 at 140V 

From equation 7.10 the RMS current harmonics can be calculated from the Fourier series. 

Input Current Harmonics to Class A 

For this converter the only variable is the turn on/off voltage of S2. The bulk capacitor 

capacitance is left at 165F, the same as is used in the bi-forward and forward converter used 

elsewhere, but this would be another possible variable when trying to reduce the converter's 

harmonics below the regulation values. Since the converter will draw the same current 

shape as the bi-forward converter it is pointless looking at class D as it has already been 

shown in figure 4.4 as well as in the simulation results shown in table El that the current 

waveform will not meet class D. Since the other converters (the passively filtered forward 

converter, the two stage cascaded boost and forward converters, the SS S 2PFC converter and 
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bi-forward converters) have already been tested, it was decided to assume an efficiency of 

75% giving an input power of 133W. Figure 7.8 shows various turn on/off voltage designs 

compared to the class A limit. 

	

.2 	
5 

.3. 2.  

b  

133. 140) 1.5 

b rms (n, 133. 60) 

133,180) 

b(n.I33.200) 

b rnm(1 33, 220) 

IM 

	

3.407xI0 	1) — 
(1 
	

5 	10 	15 	20 	25 	30 	35 	40 

Harmonic Number 

Figure 7.8: RMS input current harmonics compared to the class A (trace bA) limits 
for 230V input with the turn on/off voltage of S2 as 140, 160, 180, 200 
and 220V. Traces are listed by side of graph: 1st value is power and 2nd 
value is the turn on/off voltage for S2. 

Since the input power is lower, this converter is better able to meet the class A regulation 

than the bi-forward shown in figure 4.5 All five of the different values of S2 turn on/off 

voltage just exceed the regulations a little (barely noticeable) from above the 17th harmonic. 

If the input power of the converter was a little lower, at about 100W, then it will pass class 

A with ease for all five values. It is likely that when a prototype converter is tested it will 

pass class A with a 100W output, since the bulk capacitor recharging current will be more 

smooth, as will the smaller peaks at the start and end of the waveform. The input power 

may also be lower (similar to the bi-forward of chapter 4). It was decided to turn S2 on/off 

at 140V. This value has the lowest harmonic levels with only the 21st harmonic exceeding 

the class A limit and will give the best chance of meeting the class A limits in practice. If 

140V exceeds the limits it will be easy to change the voltage at which 82 turns on/off by 

fitting a variable resistor in the voltage divider on the reference leg of the comparator. 
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Component Stress 

The method used was similar to that used in chapters 4, 5 and 6. The predicted values 

are shown in tables 7.1 and 7.2 on pages 164 and 165 together with simulation values for 

component stress. 

7.5.3 LFSPFC with Input Inductor L 1  

The analysis for the turn on and off for S2 is the same as in section 7.5.2. 

Operation of Converter During S 2  off time 

From figure 7.4 and applying v = L - 	the inductor equation for the time to to ti is: 
dt 

V, (t) 
- L1 . 'p1 f 

AD-  
(7.11) 

where Ip , is the current in L 1  and the reflected current in L2 at ti (both the same) and f is 

the switching frequency. 

At t1 the current in L 1  reaches the reflected current in L2 and the two connect in series. The 

equation becomes: 

(L1+ 12 .L2) (1p2 — Ipl Ni 	 )fs Ni 1 

(7.12) 
DeI 

where 'p2  is the peak current in L 1  and the reflected current in L2 rises to between t1 and 

t2. D,f f is defined as 

D11 = D - 	 (7.13) 

Deii is the effective duty ratio for the current in L 1 , D is the duty ratio of S1 and AD is 

the duty ratio for the rise of current in L1 from zero. 

When S turns off at t3, L1 discharges into GB.  This is defined by: 
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'p2 Is (7.14) VB - v5  (t) = L1  
D1 

Now considering L 2 , the up ramp for the current is defined by: 

(L2 + ()2 	
(7.15) (t) _ 0 =  

N2 

Ni 
.v5 

 

and the down ramp, AI,, for L2 is defined by: 

VII

L2 . 	 . f 
= 

(7.16) 
1 - Dejf  

Considering the flux balance across L2, equations 7.15 and 7.16 can be equated and solved 

to give Deij as: 

V,  • (L2+()2 

Deff 	

.L1) 

(7.17) = 
N1 	- v0) . L + V0 . 

(
L2 +) 

(N2\2 . L i ) 

LI0  can be found by substituting Dj1 into equation 7.16 or 7.15. From AI, the peak and 

minimum values of the ripple current can be found and transferred to the primary as: 

N2 / 	zI0 \ 

NI  
'pl 	1o) 	 (7.18) 

'p2 = 
N2 
	+ 	 (7.19) 
NI  ( 	2 ) 

where 10  is the average output current. 

Substituting 'p1  into equation 7.11 the duty AD can be found, and substituting 11,2 into 

equation 7.14 the fall duty, D1, can be found. 

Figure 7.9 shows how the various parts the duty cycle change when operating from v (t). 

AD is very small which in turn makes the difference between D and D11 also very small. 
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Figure 7.9: Duty cycle variation over a half line period showing AD, Deff, D and 
D1 for L1 as 20pH and VB as 336.68V (Value of VB for a turn on/off 
voltage of 220V at an input power of 133W) 

This is different to the bi-forward with input inductor where AD is much longer (see figure 

5.16). 

The average current, 'at'  in L1 during this period is considered as: 

'p 1 	Dj (Ip' + 'p2)  
= 	

+ D1I2 	
(7.20) 

2 	 2  

The complete input current, i (t), to the converter is: 

i 8  (t) = 0 	ta <t<tb tc <t<td 
(7.21) 

iav (t) tb<t<te 

The input power, Pm , is: 

ton 

Pin=. 
j 

 V, (t) - i,,,, (t) dt 	 (7.22) 

Of 1 
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The RMS current harmonics can be worked out from the Fourier series. 

RMS Input Current Harmonics 

Figures E.1, E.2 and E.3 in appendix E show the current harmonics for 82 turned on/off at 

140, 160, 180, 200 and 220V with L1 as 10, 20 and 30pH respectively for an input power of 

133W. Figure E.1 shows all the curves are exceeding the class D limit (different harmonics 

for each curve). For L1 at 20zH (figure E.2) all the curves still exceed the class D limits, 

but they are now closer to the class D limit. The black curve, which is for a 220V turn 

on/off voltage, looks to be the closest to the class D limit. Similarly, for L1 at 30pH (Figure 

E.3) the curves exceed the class D regulation values for certain harmonics, but the curves 

have become closer to the class limit, and the black curve for 220V turn on/off of S2 seems 

closest to them. The light blue curve (turn on on/off voltage of 200V) in figure E.2 has what 

is likely to be an anomaly for the 27th harmonic, as it is very large. 

From figures E.1, E.2 and E.3 the 220V curve gives a result closest to the class D limit 

at 133W input. Further investigation around this figure showed that a turn on/off voltage 

for S2 of 230V performed far better harmonically. This is shown in figures 7.10 for 133W 

input power where the turn on/off voltage is 230V with L 1  at 10, 20, 30 and 35/1H. With 

an input power of 133W the curves for 20, 30 and 351iH are almost the same as the class D 

regulation curve (except 201tH on the 9th harmonic). The low harmonics of the 3rd, 5th and 

7th are below the regulation curve. With L 1  at 10,iH the harmonic levels are still exceeding 

the class D Limit by a large margin. 

The addition of the inductor reduces the harmonic level considerably, but not enough to 

meet the class D regulations. It is worth comparing the RMS harmonic levels with class A 

as well. This is shown in figure 7.11 for L1 at 10pH for an input power of 133W. lOjiH 

was shown to have harmonic levels in excess of class D in figure E.1, but when compared 

to class A with the same set of turn on/off voltages curves are all below the class A limits. 

A similar result is seen for L1 at 201iH and 30tH. This is quite an improvement over the 

basic LFSPFC and the basic bi-forward, where it is possible that the design (turn on/off as 

140V) with the lowest harmonic levels for 133W may not pass class A. 

157 



0.2 

O.l S 

b ivgI33 

b J., 23o.32g.os IG io) 

I b.(n.230.33558.2GIo_6) 
 01 

t b(n,230.345.53.30I1016) 

23O,5l.463 

0.05 

.3.531Kb 
/ 

'U.::/ •• 

I......,. 0 Ii 20  30 35 	 4 

.3. 	 -39- 

Harmowc Number (Odd Plotted Oidy) 

Figure 7.10: RMS input current harmonics compared to the class D (trace b reg i:s:s) 
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value is the turn on/off voltage for S2, 2nd value is the voltage on GB 
and 3rd value is the value of L 1 . 

	

2.5 	 I 	 I 

b 	
2 

b ç(n. 140.334.45. 10.1 o_ 6) 

<b 	 n, 160.332.12. 10.io_6) 1.5 

180.330.49, 10,10F 6) 

b(n, 200,329 . 31 . I0.l0_ 6) 
	I 

b(n.220, 328.42, 10.10_6) 
0.5 

010 	 20 	 30 	- 40 

2 	 n a' n 	 4Q 
Harmonic Number 

Figure 7.11: RMS input current harmonics compared to the class A (trace bA) limits 
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similar result. Traces are listed by side of graph: 1st value is the turn 
on/off voltage for 52,  2nd value is the voltage on GB and 3rd value is the 
value of L 1 . 
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Voltage on the Bulk Capacitor CB 

Figures 7.12, 7.13 and 7.14 show the variation of bulk capacitor voltage for turn on/off 

voltages of 140, 160, 180, 200, 220 and 230V with L1 at 10, 20 and 30 4ttH. All the curves 

for the different turn on/off voltages with different inductance values follow the same shape, 

which is a rise in voltage as the power increases. Bulk capacitor voltage also rises as the the 

turn on/off voltage falls. So for each set of L1 the turn on/off voltage of 140V always has 

the highest voltage across the bulk capacitor and the 230V curve the lowest. This is good 

because a turn on/off of 230V also has the lowest harmonic content, giving the best current 

shape with the lower bulk capacitor voltages. The reason for this behaviour is similar to 

that for the bi-forward with input inductor. Over a half line cycle the energy (charge) into 

and out of the bulk capacitor will balance. At low output power this balance is achieved at 

a lower bulk capacitor voltage. 

Remembering that S1 is a 900V MOSFET, the voltage across the bulk capacitor should not 

exceed much more than 400V. In figure 7.12 where L1 is 101jH the voltage across the bulk 

capacitor is below 400V for all the turn on/off curves, with the highest being 390V for 140V 

turn on/off. In figure 7.13 where L1 is 201zH, the maximum voltage is 428V which is again 

for the 140V on/off curve. This is too high, as is the 414V for the 160V curve. The lowest 

maximum is 392V from the 230V curve. In figure 7.14 where L1 is 30H all the maximum 

voltages are above 400V. The curve for 230V turn on/off is just acceptable at 410V. The 

curves for 220 (VB = 414V), 200 (VB = 424V), 180 (V1 = 438V), 160 (V8 = 458V) and 

140V (V8 = 489V) have bulk capacitor voltages that are too high. 

From figures 7.12, 7.13 and 7.14 and cross-referencing with the RMS harmonic level graphs 

E.1, E.2, E.3, 7.10, and 7.11, then: 

. A turn on/off voltage of 230V and L1 as lOpE should meet class A with the lowest 

bulk capacitor voltage. 

A turn on/off voltage of 230V with L1 as 201iH or 30jH may meet class D with the 

lowest bulk capacitor voltage. 

Figure 7.15 shows the predicted input current waveform. 
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Figure 7.12: Voltage on bulk capacitor CB against power with L 1  as l0iH with turn 
on/off voltages for S2 of 140V, 160V, 180V, 200V, 220V and 230V. 
Traces are listed by side of graph: 1st value is the input voltage, 2nd 
value is the turn on/off voltage for S2 and 3rd value is the value of Li. 
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Figure 7.13: Voltage on bulk capacitor CB against power with L 1  as 20/1H with turn 
on/off voltages for S2 of 140V, 160V, 180V, 200V, 220V and 230V. 
Traces are listed by side of graph: 1st value is the input voltage, 2nd 
value is the turn on/off voltage for S2 and 3rd value is the value of L 1 . 
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Figure 7.14: Voltage on bulk capacitor CB against power with L 1  as 30pH with turn 
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Component Stress 

Following the same procedure as for the basic LFSPFC, the peak voltage across the semi-

conductors are shown in table 7.1 on page 164 for an input voltage of 265V. Also following 

the same method as for the basic LFSPFC, the average or RMS currents for the semicon-

ductor components are given in table 7.2 on page 165 for an input voltage of 180V. The 

current through S1 is assumed not to contain the ramp up from zero during time ti to t2, 

which is a small part of the current waveform. 

At 180V input voltage the analysis shows that L1 will enter CCM. The analysis for when 

L1 is operating in CCM has not been investigated thoroughly as the intention is to operate 

L1 in DCM at 230V input voltage where the converter has to meet IEC 61000-3-2. This is 

why the current in D1 is not calculated and the current rise in Si is not considered. They 

are checked in simulation. 

For diode D1 the BY329-1000, 1000V 8A diode is used and for S2 the IRG4BC30W a 

600V IGBT is used. 

7.6 Simulation 

Figure 7.16 shows the PSpice simulation schematic used without L1. The input inductor L1 

is placed between C4 and D5 when required. Diode D5 is added to make the simulation run 

more quickly. For the basic LFSPFC, simulation was carried out with a turn on/off voltage 

for S2 of 140V. For the LFSPFC converter with input inductor, simulation was carried out 

with L1 at 20H and a turn on/off voltage for S2 of 230V. 

7.6.1 Simulation Results 

Table F.7 in appendix F shows the simulated input RMS current harmonics compared to 

class A and D for an input power of 115W (output power is 100W). For class A all the 

simulated harmonics are below the regulation values for the converter with and without L1. 

For class D the 9th, 11th, 23rd, 27th, 35th and 39th harmonics exceed the regulation for the 

converter with L1. The analysis predicts failure on the 9th, 11th and 17th harmonics so there 

is some agreement. All of the simulated failures apart from the 9th and 11th harmonics are 
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LFSPFC LFSPFC 
withL 1  

Device PSpice 
Voltage/V 

Mathcad 
Voltage/V 

PSpice 
Voltage/V 

Mathcad 
Voltage/V 

S1 746 749 769 785 

S2 233 235 143 162 
232 235 143 162 

D2 41.6 42.6 42.9 44.6 

D3 41.3 42.6 42.7 44.6 
743 750 - - 

DB 374 375 374 375 

Table 7.1: Peak voltage across key devices predicted by PSpice simulation and com-
pared to predicted voltages from the analysis for an input voltage of 265V 
at 100W output (about 115W input). L 1  is 20bLH. 

within 10% of the regulation level for that harmonic, so there is a possibility it could pass 

class D. Without L1, and with an on/off voltage for S2 of 140V the converter fails class D 

from the seventh harmonic onwards by a considerable margin. 

Table 7.1 shows the peak voltages predicted by PSpice simulation compared to that calcu-

lated in the analysis. All figures are within 10 010 of each other giving reasonable agreement. 

The PSpice voltages for Si,  S2 and D1 for the converter with L1 are about 20V below the 

calculated values: this is due to the average bulk capacitor voltage in the simulation being 

about 10V (384V) lower than that predicted in the analysis (393V). This partly is due to the 

analysis figures being produced at an assumed input power of 133W instead of the 114W 

of the simulation. The voltage stresses in this converter are reasonable and allow the use of 

cheaper, lower rated devices. 

Table 7.2 compares the average or RMS current through the semiconductors at 180V input 

voltage predicted by PSpice with that predicted by analysis both considering and not con-

sidering semiconductor losses. The losses considered are the diode forward bias voltage and 

switch on-state voltage. The simulated results agree well with the results from the analysis 

considering losses and are within 10% of each other. The analysis results not considering 

losses are outside of 10% of the simulated results for Si, S2 and D2 with L1 in the converter. 
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Device PSpice average 
or RMS Current/A 

Mathcad average 
or RMS Current/A 

Mathcad average 
or RMS Current/A 
including Diode! 

Switch drops 

Basic LFSPFC Converter  
S1 (RMS) 1.12 1.01 1.10 

S2 (RMS) 0.654 0.576 0.632 

S2 (Av) 0.183 0.146 0.176 

0.170 0.148 0.178 

4.69 3.94 4.66 

D3 15.1 16.1 15.3 

16.3m - - 

DB(per diode) 0.286 0.225 0.253 

LFSPFC Converter with L1  
S1 (RMS) 1.06 0.95 1.05 

82 (RMS) 0.892 0.798 0.885 

82 (Av) 0.346 0.28 0.344 

D1 0.336 - - 
D2 4.32 3.49 4.22 

15.5 16.5 15.8 

Dn(per diode) 0.269 - - 

Table 7.2: Average or RMS current in key devices predicted by PSpice for an out-
put power of 100W and an input power of 116W compared to predicted 
average or RMS current for 100W throughput power in the analysis, and 
predicted values from analysis including diode and switch voltage drops 
for a throughput power of 100W. 
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7.6.2 Simulation Waveforms 

Figure 7.17 shows the input current, the averaged input current and the gate driving voltage 

of switch 52  showing when it is on and off for the LFSPFC converter without L1 and a 

turn on/off voltage for S2 of 140V. The input current (bottom trace) unless filtered will be 

formed of 100kHz current pulses. The triangular part of the waveform is the bulk capacitor 

being recharged. The middle trace shows the averaged or filtered input current waveform 

represented as a voltage across R14. This waveform is the same shape as that drawn by the 

basic bi-forward shown in figure 4.9. 

Time 

Figure 7.17: Simulated input current at 230V input and 100W output power for a turn 
on/off voltage of 140V. Top trace: Gate voltage of switch 52. Middle 
trace: averaged current seen across as a voltage across R14. Bottom 

trace: Input current. 

Figure 7.18 shows the input current, the averaged input current and the turn on/off of 52 

for the LFSPFC converter with L1. The input current (bottom trace) is again made up of 

lOOkHzpulses, but this time there is no continuous bulk capacitor recharging current as 

it is charged at 100kHz after each switching cycle. The averaged or filtered input current 

(middle trace) shows a similar shape to that predicted in the analysis in figure 7.15, but 

leaning to the left due to the change in voltage on the bulk capacitor over a line half period. 
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Figure 7.18: Simulated input current at 230V input and 100W output power. Top 
trace: gate voltage of switch 82.  Middle trace: averaged current seen 
across as a voltage across R14. Bottom trace: Input current with L1 as 
20tH and a S2 turn on/off voltage of 230V. 

7.7 Experimental Results 

Figure 7.19 shows the final and complete circuit schematic tested. The actual components 

used are listed in table G.3 in appendix G and a photograph of the final circuit is shown in 

figure 7.20. 

This converter was developed after the tests on the other converters were completed and 

the test equipment used previously was not available. Thus testing was carried out using 

an isolation transformer and auto-transformer for the input voltage. As the supply voltage 

waveform in the laboratory is not very sinusoidal an LC tuned filter was used on the output 

of the transformers to produce a more sinusoidal voltage source when carrying out the input 

current harmonic measurements. 

The test equipment previously used either filtered the input current or displayed what the 

averaged input current looked liked. The transformers achieved a similar effect, apart from 

when using the LC tuned filter. To see the current shape an additional LC current filter was 

added on the input of the converter (see figure 7.21). This filter also helped give an idea of 
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Figure 7.19: Final and complete circuit schematic for the LFSFPFC converter with 
L1 

Figure 7.20: Photograph of the LFSFPFC converter without L1 



the filtering requirements of this converter and the bi-forward converter. 

iF 

Figure 7.21: Input current filter to filter switching frequency current. Set to a resonant 
frequency of 4.7kHz 

The LFSPFC converter with input inductor was built with L 1  as 20jjH and an S2 turn on/off 

voltage of 230V. To show the effect of adding L1 to the converter, the power supply was 

also tested without L1 with a turn on/off voltage of S2 as 230V. The main testing for the 

LFSPFC converter without L1 was done with a turn on/off voltage for S2 of 140V. 

7.7.1 RMS Input Current Harmonic Levels Compared to Classes A and D 

Figure 7.22 shows the RMS input current harmonics for a 230V input voltage compared to 

class A. Only the odd harmonics are shown as all the even harmonics are well below the 

class A limits. The input filter was fitted. Figure 7.22 shows that all the harmonics are well 

below the class A limits for all three versions tested. The version without L1 and a turn 

on/off voltage for S2 of 140V shows a better performance than predicted by Mathcad and 

PSpice. The main reason for this is the smoothed bulk capacitor recharging peak which in 

Mathcad and PSpice is shown as sharp and short; in practise it is filtered slightly by circuit 

parasitics and filtering. 

Figure 7.23 shows the RMS input current harmonics for a 230V input voltage compared to 

class D for the converter with and without L 1 . The input filter was fitted. The version of 

the converter without L1 and a turn on/off voltage of 230V exceeded the class D regulations 

for the 11th, 13th, 15th, 17th, 19th, 21st, 23rd, 25th, 27th and 29th harmonics. While the 

version with a turn on/off voltage of 140V exceeded class D on the 7th, 9th, 11th, 15th, 17th, 

19th, 23rd, 29th and 31st harmonics. When L1 is fitted the converter only exceeds on the 

13th harmonic by about 50% and 23rd harmonic by about 19%. Both PSpice and Mathcad 

did not predict failure on the 13th harmonic, but did predict a failure on the 11th. Even 
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Figure 7.22: Odd harmonics compared to the class A limits for a full load input power 
of 127W at 230V and a turn on/off voltage for S2  of 140V and 230V with 
and without L 1  (20ILH) 

though this is not a pass at class D, it is a considerable improvement. The 23rd harmonic 

is not a serious concern if a method can be found to reduce the 13th harmonic, such as 

increasing the size of L1 or changing the turn on/off voltage of S2. Harmonics above the 

21st can exceed the regulation by 50% if certain conditions are met [2]. 

7.7.2 Waveforms 

Figure 7.24 shows the filtered input current waveform for a switch on/off voltage for S2 of 

140V. 

Figure 7.25 shows the input current waveform with L1 in the circuit at full output load and 

with the input current filter fitted, and figure 7.26 shows the same converter input current 

waveform without L 1 . They are not dissimilar, but the waveform in figure 7.25 is smoother. 

Investigating the current in L 1 , without the input current filter, the current flows in DCM 

at 230Vfi19, but at 180VRJS the current in L1 was entering CCM from about half load 

and higher. With the input current filter fitted the current in L 1  also operates in CCM at 

230VRAJS but not at full load. 
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Figure 7.23: Odd harmonics compared to the class D limits for a full load input power 
of 127W at 230V and a turn on/off voltage for S2 of 140V and 230V with 
and without L 1  (20jiH) 

 low  13: Z33.5v 	Rk(2): 7mA 	I 

Figure 7.24: Input current without L 1  and a turn on/off voltage for '2  of 140V. lop 
trace: Input voltage. Middle trace: Input current. Bottom trace: Output 
voltage from the comparator. 
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Figure 7.25: Input current with L1 as 20H and a turn on/off voltage for S2 of 230V. 
Top trace: Bulk capacitor voltage. Middle trace: input voltage. Bottom 
trace: input current. 

Figure 7.26: Input current without L 1  and a turn on/off voltage for S2 of 230V. Top 
trace: input voltage. Middle trace: input current. bottom trace: output 
voltage from the comparator. 
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7.7.3 Efficiency and Bulk Capacitor Voltage 

The efficiency and bulk capacitor voltage were measured without the input current filter 

fitted and are displayed in table H.3 for a turn on/off voltage of 140V and table H.4 for a 

turn on/off voltage of 230V with L1, both tables are in appendix H. 

Figure 7.27 shows the efficiency across the output power range for I 80VRMS and 230VRMS 

input voltage. The efficiency is good at around the high seventies and low eighties for a turn 

on/off voltage of S2 of 140V without L 1 . For a turn on/off voltage of S2 of 230V with L1 

the efficiency is also good with similar values. With the addition of the input current filter 

the efficiency was observed to drop to about 76% at full output power of about 100W. 
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Output PowerfW 

-.---- 230V Li at I80V input voltage 	 —a-- 140V at 180V input voltage 

—e-230V LI at 230V input voltage 	 -a- I40V at 230V input voltage 

Figure 7.27: Efficiency across the power range without L 1  fitted and a turn on/off 
voltage for S2 of 140V. Efficiency across the power range with L 1  as 
201iH and a turn on/off voltage of 230V. 

Figure 7.28 shows the bulk capacitor across the output power range for a 230VRMS input 

voltage with an input voltage peak of 312V for a turn on/off voltage of 230V and with L1 

fitted. The bulk capacitor voltage rises from 320V at about 25W output power to 325V at 

full load. As the input voltage is not sinusoidal the result cannot be compared easily with 

Mathcad predictions. For a turn on/off voltage of 140V without L1 fitted, the average bulk 

capacitor voltage stays constant at 306V across the power range, with a peak input voltage 

of 313V for a RMS input voltage of 230V. 
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Figure 7.28: Voltage across the bulk capacitor over the output power range with a 
peak input voltage of 312V for a turn on/off voltage of 230V and L 1  at 
201jH 

7.7.4 Semiconductor Voltage Stress 

Table 7.3 shows the voltage stress on the semiconductors, measured without the input filter 

and with the peak of input the voltage at 306V or 313V. The values are lower than predicted 

due to non-ideal input voltage waveform with a depressed peak voltage. Simulation and 

analysis values are for a peak voltage of 375V. Recalculation with a non-ideal input voltage 

predicts that S1 has a voltage of 612V. 

Device Voltage/V 
Basic 

Voltage/V 
with L1 

S1 625 656 

S2 140 362 
175 325 

D2 39.1 28.1 
D3 32.8 35.9 

Table 7.3: Voltages measured across key semiconductors with a peak input voltage of 
306V for the basic LFSPFC converter without L 1  and 313V for the LF-
SPFC converter with L 1 . 
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Basic LFSPFC LFSPFC with L 1  

Output 100kHz 
Voltage p-p 
Ripple/mV 

100Hz 
Voltage p-p 
Ripple/mV 

100kHz 
Voltage p-p 
Ripple/mV 

100Hz 
Voltage p-p 
Voltage/mV 

Input Voltage: 230V  
5.13V 1OA 78 484 75 250 

5.1V 19.6A 94 484 65.6 281 

Input Voltage: 200V  
5.13V 10A 94 406 68.8 168 

5.1V 19.4A 94 391 93.8 187 

Input Voltage: 180V  
5.15V 10A 94 359 75 100 

5V 19.6A 78 344 87.5 112 

Table 7.4: Ripple on the output voltage at 100kHz and 10011z 

7.7.5 Output Voltage Ripple 

Table 7.4 shows the measured voltage ripple on the output voltage. For the LFSPFC con-

verter without L 1  the 100kHz ripple maximum was 94mV. This ripple is mainly determined 

by the ESR of capacitor C1. The 100Hz ripple on the output voltage ranges from 359mV to 

484mV. This ripple is caused by the switching on and off of switch S2. The switching of 52 

causes a step-change in input voltage being applied at the transformer (either a change from 

instantaneous line voltage to bulk capacitor voltage or vice-versa). As there is a step input 

in the voltage the control circuit has to deal with the disturbance. Voltage mode control is 

used, and as the voltage feedback loop is slightly over-damped this exaggerates the effect 

of the disturbance seen on the output voltage. The use of a control strategy such as peak 

current mode would be more appropriate as this can respond to an input voltage disturbance 

in one switching cycle. The same comments apply for the version with L 1 , but the 100Hz 

ripple is lower in this version at a maximum of 281mV. This is because the switch S2 is 

turned on/off at a higher voltage and hence the voltage change at the transformer when 

switching between line and bulk capacitor is smaller, producing a smaller disturbance. The 

values of ripple are a lot higher than that specified for a PC power supply (50mV on a 5V 

output), but this can be reduced by adding an additional stage of filtering on the output or 

by using current mode control to reduce the response time to the disturbances. 
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7.8 Conclusion 

A new single-stage PFC converter using a low frequency switch has been introduced. The 

proposed converter can be built with or without a boost style input inductor depending on 

how low the input current harmonics need to be. The technique and operation has been 

explained. Analysis has been carried out on the duty cycle variation, input current wave 

shape and input current harmonics for the converter without an input inductor. In addition 

the behaviour of the bulk capacitor voltage has been explored for the version with an input 

inductor. The analysis has been carried out for operation in DCM and will need extending 

to CCM. Simulation has also been carried out as have some practical measurements. 

A 100W prototype was built and tested with and without the input inductor. The converter 

with and without the input inductor will pass class A, but without the input inductor there 

is little chance of passing class D. The converter with the input inductor is close to passing 

class D. With the input inductor the voltage on the bulk capacitor behaves in a similar 

manner as predicted in the analysis. The efficiency of both versions was in the high seventies 

and component stress was reasonable. 

From the analysis and testing so far it is desirable to have the turn on/off voltage of switch S2 

as high as possible. This will still meet the input current harmonic regulations, and reduces 

the disturbance when turning 82 on/off, and when fitted with an input inductor keeps the 

bulk capacitor voltage low. 

This converter could be a possible alternative to the use of passive filtering to meet IEC 

61000 -3-2 as the semiconductor components suffer a similar voltage stress and the auxiliary 

switch arrangement will take less space and be lighter than a PFC choke. 

Further testing with a more sinusoidal input supply is needed and investigation for operation 

of the input inductor operating in CCM is required. 
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Chapter 8 

Comparison 

8.1 Introduction 

In the previous chapters three single-stage PFC topologies, the bi-forward, bi-forward with 

input inductor and the CS S 2PFC have been investigated. Also a new single stage PFC 

topology has been presented, the LFSPFC. The basic bi-forward was found to only meet 

the class A regulations, which lead to the study of the bi-forward with input inductor which 

met the class D regulations. The LFSPFC has only just been developed and further testing 

is necessary for this topology. 

To determine if the hi-forward with input inductor or the CS S 2PFC are as attractive as 

described in the literature, in this chapter the pair will be compared with two current PFC 

solutions; a forward converter with a passive filter on the input shown in figure 2.7 and 

a boost pre-regulator cascaded with a forward converter shown in figure 2.9. This is to 

determine if the bi-forward or CS S 2PFC would be a suitable replacement for either the 

passive PFC or boost pre-regulator methods. The comparison will also show how well the 

two single-stage topologies generally perform in comparison to current methods of meeting 

IEC 61000-3-2. So far the results have only been shown separately and give no compara-

tive indication as to how well the topologies performs. The specification used for all four 

converters is 

• Operate from 90 - 130VRMS and 180 - 265VRMS at 47 - 63Hz 

• Output power of 0 - 148W at 5V, 0 - 20A and 12V, 0 - 4A 
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. Meet IEC 61000-3-2 class D at 100VRMS and 230VRMS at 50Hz from 75W input 

power to full load 

In addition to this the following is standardized between the four topologies: 

Switching frequency 	 100kHz 

Control method 	 voltage mode using the UC3524 

5V Output filter 	 = 15.4itH, C1:5v = 1800iF 

12V Output filter 	 Liw = 64jiH, Ci:12v = 470itF 

12V Diodes D112v and D212v 	 BYT08P-400 400V 8A 

Input Diode Bridge 	 GBU6J 600V 6A 

Transformer 	 ETD44 using ferroxcube ferrite material 3C90 

Core for L2.5v and L212v 	 MMG Sailcrest G56VH 

Also the same design of heat sink is used for the secondary side diodes in all the converters 

and the switch S1 - 

This study has been carried out with the end application of a PC power supply in mind, 

which has to meet the class D regulation. Because of this the basic bi-forward converter 

is not considered as it does not meet class D at all. The LFSPFC with input inductor is 

considered where it is possible to make some form of comparison, as it is only a single 5V 

output 100W converter operating from 180V to 265V. 

8.2 Passive Filter Inductor Cascaded with a Forward Converter 

This was introduced in section 2.3.2. 

The PFC inductor is made up of two 9mH windings on an E142 iron laminated core and the 

two bulk capacitors are 330F 250V components. The remaining aspects of the design are 

outlined below: 

Switch Si 	 2SK2611 900V 9A MOSFET 

5V diodes D1:5v and D2.5v 	 STPS20H100CT 100V 20A Schottky 	diodes 

Transformer turns 	 Ni = N3 = 44turns; N2:5v  = 5turns; N2.12v = ilturns 

Diode D3 	 BYD33U 1200V 	1.26A 

The converter passed the class D regulations at 75W and full load input power at both 100V 
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and 230V. Table H.5 in appendix H shows the measured input and output power, efficiency 

and bulk capacitor voltage for this converter. 

8.3 Two Stage Active PFC using a Boost Pre-Regulator Cas-

caded with a Forward Converter 

This was introduced in section 2.3.3. The boost converter operates with fixed frequency 

PWM at 100kHz and inductor L 1  operates in CCM. The boost converter was produced by 

following [7]. 

The forward converter part of the circuit is identical to the forward converter used with the 

passive filter inductor in section 8.2. The boost converter is constructed using the following 

components: 

Switch 82 

Diode D4 

Diode D5  

Control IC 

Boost Inductor L 1  

Bulk capacitor CB 

Capacitor C3 

STW20NB50 500V 20A 

STTH806TTI 600V 8A 

BYV28-600 

UC3854A 

lmH on a G56VH core 

1001SF 450V 

11SF 

On top of this are the resistors and capacitors required around the control IC to make it 

function. Also required is some soft start and start up current limiting circuitry to ensure 

the converter does not destroy it self during starting. 

The converter passed the class D regulations at 75W and full load input power at both 100V 

and 230V. Table H.6 in appendix H shows the measured input and output power, efficiency 

and bulk capacitor voltage for this converter. 
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8.4 Comparison 

8.4.1 PFC Method 

On top of a basic forward converter additional components have been added to carry out the 

input current shaping. The additional components are outlined in table 8.1. 

Passive 2 x 9mH PFC inductance windings wound 
on E142 iron laminated core 

Boost lmH boost inductor 
500V 20A MOSFET 

600V 8A diode 
Control IC and associcated 

components 
CS S2PFC 2 x 100H windings on the same core 

2 x 43iH windings on a second core 
2 x 11 turns extra on the transformer 

4 x 1000V 8A diodes 
Bi-forward 20jH inductor 

Centre tapped transformer primary winding 
3 x 1000V 8A diodes 

LFSPFC 2O1H inductor 
1 x 1000V 8A diode 

1 x 600V IGBT  
Comparator _and _gate _drive components 

Table 8.1: Additional components added to a forward converter to achieve PFC 

In the single-stage converters some parts of the forward part of the converter had to be 

altered; these are shown in table 8.2. 

Converter MOSFET 5V Diode 

Passive 900V 9A 100V 20A Schottky 

Boost 900V 9A 100V 20A Schottky 

CS S2PFC 1000V 12A and snubber 100V 20A Schottky 
Bi-forward 1200V 10A and snubber 200V 20A fast recovery 
LFSPFC 900V 9A*  and snubber 100V 20A Schottky 

Table 8.2: Components altered in the forward converter. * Only 100W converter. 

The passive PFC method only requires the addition of one extra component, the PFC choke. 

A disadvantage is that the PFC choke is heavy and bulky, but no other modification is 

required. 
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The two stage approach using a boost converter certainly adds the most components to the 

basic forward converter, as a full extra converter is added. The advantages of this method 

are the very good input current waveform, and that the forward converter can be operated 

from a narrow voltage range. This method also allows each converter to be optimised to its 

task. Again the forward converter requires no modification. 

The single stage converters offer a compromise between the passive and the two stage meth-

ods, as they do not have the large number of components of the two stage or the large and 

heavy PFC choke of the passive. The CS S 2PFC has two small inductor cores (with four 

inductors on them) and four diodes added and the bi-forward has one small inductor and 

three diodes added. The gain made in component number and weight is lost in component 

stress and cost as both converters require high voltage MOSFETS which are expensive; this 

is illustrated in section 8.4.7. The LFSPFC requires the addition of some simple and com-

mon components which do not significantly increase cost for a 100W converter. If power is 

increased then from figures 7.12, 7.13 and 7.14, a high voltage MOSFET like the bi-forward 

and CS S2PFC will be required. 

8.4.2 Measured Harmonic Content to Class D 

Figures 8.1, 8.2, 8.3 and 8.4 show the harmonic content for the four topologies at 230V 

full load, 230V 75W input power, bOy full load and 100V 75W input power compared to 

the class D regulation values for that setting. Only harmonics up to the 19th are shown for 

clarity. All harmonics above the 19th pass with a large margin. The measured harmonics 

were measured at slightly different powers and have been adjusted to be at the same power. 

For the 75W readings all the measurements for the four converters were adjusted to 75W. 

At full load the values have been adjusted to the input power of the passive converter. 

At full load at both 100V and 230V all four topologies met the class D regulations. At 75W 

input power the passive, two stage and bi-forward converters met the class D regulations at 

both 100V and 230V. The CS S 2PFC failed the 75W harmonic tests at both 100V on the 

7th and 9th harmonics and 230V from the 5th to the 13th harmonics. It started to pass the 

regulations at about 100W input power. All the results for the two stage method show very 

low harmonic content well below the class D limits (they can hardly be seen in figures 8.1, 

8.2, 8.3 and 8.4). The harmonic levels for the passive solution are sitting just below the class 
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D limits in particular for the 3rd and 5th harmonic. The bi-forward converter has harmonic 

levels that are lower than the passive, but still much higher than the two stage approach. At 

full load the harmonic levels for the CS S 2 PFC are between the levels for the bi-forward 

converter and the passive PFC and forward converter. The LFSPFC converter with input 

inductor at 127W input power exceeded the class D harmonic levels for the 13th and 23rd 

harmonics, but passes class A. 

The passive, bi-forward, and CS S 2 PFC all have measured harmonics which are close to the 

class D limits. This may cause problems if the regulations are tightened. 
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0 Passive 

0.5 	 OTwoStage 

(_) 0.4 	 •CSS2PFC 

0.3 	 OBI-Forward 

03 
0.2 

0.1 - 	I k L. 
Harmonic Number 

Figure 8.1: Harmonic content at full load input power (about 198W) at 230V com-
pared to class D 

8.4.3 Input Current Waveform 

Figures 8.5A, 8.5B, 8.5C and 8.5D show the input current waveforms at 230V and full 

power. As can be seen the current waveform does not have to look particularly sinusoidal 

to pass the class D regulation. The two stage with the boost pre-regulator has the best 

current shape, shown in figure 8.513, and is virtually sinusoidal. The passive method in figure 

8.5A has quite a narrow conduction angle and is suffering from a sub-harmonic oscillation. 

Even when suffering from this oscillation the converter still passes class D and they are 
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Figure 8.2: Harmonic content at 75W input power at 230V compared to class D 

Figure 8.3: Harmonic content at full load input power (about 203W) at IOOV corn-
pared to class D 
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Figure 8.4: Harmonic content at 75W input power (about 198W) at 230V compared 
to class D 

sold exhibiting this behaviour. The CS S 2 PFC current waveform shown in figure 8.5C 

also has a narrow conduction angle, but does have a slight similarity in basic wave shape 

with the passive in figure 8.5A. It is possible to see the DCM part of the waveform at 

the beginning and end of the current waveform. The bi-forward converter input current 

waveform shown in figure 8.51) has a wider conduction angle and is somewhere between 

the passive waveform and the two stage waveform. The waveform has a slight triangular 

shape. Figure 7.25 shows the input current of the LFSPFC converter and the waveform is 

quite different to that of the CS S 2 PFC and bi-forward with sharp rises in current at the start 

and end of conduction. Other than that the shape has the same rise to a peak in a rounded 

triangular type shape. 

8.4.4 Efficiency 

Figures 8.6 and 8.7 shows the measured efficiency across a wide output power range from 

about 37W to 150W output power at 230V and 115V. The passive filter PFC and forward 

converter exhibited the highest efficiency of around 80%. The CS S 2 PFC and the two stage 

are both showing efficencies of around 75%. This confirms the result in [124]. The bi- 
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Figure 8.5: A) Measured full load bulk capacitor voltage top trace, input voltage 
(2nd from top), input current (3rd from top) and voltage drain source 
of the MOSFET (bottom) at 230V input for the passive filter circuit. 

Measured full load input voltage (top), input current (bottom) and 
bulk capacitor voltage (middle) at 230V input for the two stage circuit. 

Measured full load input voltage (top), input current (middle) 
and gate drive signal (bottom) at 230V input for CS S 2 PFC circuit. 

Measured full load input voltage (top), input current (bottom) and bulk 
capacitor voltage (middle) at 230V input for the bi-forward circuit. 

185 



forward converter is showing an efficiency of about 70%. The reason for the lower efficiency 

is the use of standard fast recovery diodes on the 5V output instead of Schottky diodes used 

in the three other converters. Normal diodes have to be used in the bi-forward as the voltage 

seen across them is higher due to the centre tapped primary winding on the transformer and 

the high bulk capacitor voltage. If Schottky diodes could be used in a future design of the 

bi-forward converter then the efficiency would be more comparable with the CS S 2 PFC and 

two stage approaches. It should be noted that the two single-stage topologies are fitted with 

RCD snubbers to reduce MOSFET turn off losses. 

Table 8.3 compares the efficiency of the LFSPFC at 100W with the other converters. The 

single output LFSPFC converter at 100W output power has an efficiency of about 77%. 

This makes it comparable to the CS S 2PFC and two stage method at that power. Ranking 

them by efficiency the passive leads, followed by the CS S 2 PFC (and LFSPFC) then the two 

stage and finally the bi-forward. 

The efficiency of all four converters is highest at about 75W. This is due to some aspects of 

their design coming from production PC power supplies which are rated at 150W or more, 

but operate most of the time at between 60W and 70W, so the converters are designed to be 

most efficient at that output power. 
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Figure 8.6: Measured efficiency with input voltage as 230V 
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Figure 8.7: Measured efficiency with input voltage as 115V 

Topology Efficiency/% 
LFSPFC 77 

Passive 80 
Two Stage 77 
CSS2 PFC 77 
Bi-forward 72 

Table 8.3: Measured efficiency at 100W compared to measured efficiency of the LF-
SPFC 
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8.4.5 Voltage Across the Bulk Capacitor 

Figure 8.8 shows the measured variation of bulk capacitor voltage with power at 265V input 

voltage. The two stage method has a bulk capacitor voltage which is virtually constant, 

only varying across a by range from 395 to 385V as the throughput power goes up. The 

passive and forward converter has the lowest bulk capacitor voltage from 366V at almost 

no output to 355V at 150W output power. The voltage across the CS S 2PFC falls from 

408V at almost no load to 376V at 149W output power. The bi-forward has the highest bulk 

capacitor voltage at 430V. The voltage across the bulk capacitors in the bi-forward varies 

between 386V and 430V. The results for the LFSPFC do not allow comparison 1  but the 

analysis predicts the voltage to rise from 375V to 392V at 133W. Table 8.4 shows the bulk 

capacitor voltage at about 112W for the measured circuits at 265V compared to expected 

bulk capacitor voltage for the LFSPFC. 

The reasons for the variation of bulk capacitor voltage for the CS S 2 PFC and the bi-forward 

with input inductor have been explained in their respective chapters. The voltage across 

the bulk capacitors in the passive converter is set by a combination of the load and the 

resonant circuit conditions between L 1  and CBI  and CB2.  The voltage on GB in the boost 

pre-regulator is reasonably well regulated. 

Topology Bulk Capacitor Voltage/V 
at 112W Output 

Bulk Capacitor Voltage/V 
at 37W Output 

LFSPFC 392 378 

Passive 389 355 

Two Stage 389 394 

Cs S2  PFC 383 400 

Bi-forward 430 386 

Table 8.4: Measured bulk capacitor voltage compared to predicted bulk capacitor volt-
age for LFSPFC at 265V input 

Figure 8.9 shows the bulk capacitor voltages at the other end of the input voltage range 

at 90V. This figure shows that the voltage across the bulk capacitor in the two stage is 

the same at 90V as it is at 265V at just below 400V. The bi-forward has the lowest bulk 

capacitor voltage at just above the peak of the input voltage (the peak of the input voltage 

is 127V). This is because the bi-forward has the widest bulk capacitor voltage range as it 

'the equipment used would not supply voltage up to 265V and as the input voltage peak was flattened 
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Figure 8.8: Measured bulk capacitor voltage with input voltage as 265V 

does not have any method of raising the capacitor voltage at low input voltage. The passive 

and CS S 2 PFC both have similar voltages of about 250V across the bulk capacitor, though 

the CS S 2 PFC is slightly higher due to the boost nature of L1. These two converters are 

both operating in voltage doubler mode. The LFSPFC was not designed to work on the low 

voltage range. 

8.4.6 Voltage Measured Across Components 

Table 8.5 compares the voltage stress across some of the forward converter components at 

265V input voltage. The voltage across switch S1 is not as high as expected (1 200V) in the 

bi-forward converter due to the MOSFET snubber resetting the transformer core at 830V. 

This makes the voltage across S1 105V higher than that in the passive and forward converter 

method. If the snubber was designed for resetting the core it could be used to reduce the 

voltage of the bi-forward and CS S 2 PFC to a similar level as observed on the switch Si in 

either the passive or two stage methods. The voltage across the secondary diodes on the 5V 

and 12V output in the CS S 2PFC are both very low compared to the other converters: this is 

due to the lower turns ratios used. Schottky diodes could be used on both outputs, but have 

only been used on the 5V output. The passive and the two stage methods produce higher 

voltages across both sets of diodes, requiring normal fast recovery diodes to be used on the 
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Figure 8.9: Measured bulk capacitor voltage with input voltage as 90V 

2V output. The bi-forward has the highest voltage across both the 5V and 12V diodes. At 

89V, across one of the 5V diodes, this requires that ordinary fast recovery diodes have to 

be used for the 5V output. This value is almost five times that across the same diode in the 

CS S 2 PFC and twice that in the passive and two stage. The same is seen for the 12V output 

diodes. 

Device Passive Boost CS S 2PFC Bi-forward 
Switch S1 725 800 850 830 
5V diodes 37.8 31.3 25 89 
I2V diodes 84.4 107 57 222 

Table 8.5: Voltages measured across S1. 5V diodes and 12V diodes at 265V input 
voltage 

8.4.7 Cost 

Table 8.6 shows the normalised cost of the converters with the passive PFC and forward 

converter as the base value of one. 

The passive PFC method was found to be the cheapest, with the boost converter second 

even with all the additional components. The two single-stage topologies were the most ex- 



Converter Cost Single-Stage Cost 
with 900V MOSFET 

Passive 1 1 
Boost 1.39 1.39 

CSS2 PFC 1:46 1.14 
Bi-Forward 1.455 1.03 

Table 8.6: Costs of the converters compared to the passive filtering with forward con-
verter 

pensive with the CS S 2 PFC being marginly more expensive. The reason for the bi-forward 

and the CS S 2 PFC being the most expensive was the cost of the 1000V or 1200V MOSFET. 

The cost of a I000V MOSFET compared to a 900V MOSFET is considerably greater even 

though the voltage difference between them is only 100V. Using an RCD snubber instead of 

the tertiary winding to reset the transformer will lower the reset voltage of the transformer 

to a level low enough to allow the use of a 900V MOSFET in the bi-forward or CS 2 PFC 

making their cost more comparable to the passive with forward converter method, this is 

illustrated in the final column of table 8.6. 

8.4.8 Hold Up Time 

Table 8.7 shows the hold up times at 115V and 230V. For the two stage and passive models 

the hold up time at 115V and 230V are similar. This is because the voltage across the bulk 

capacitors is similar at 115V and 230V: in the two stage the boost converter is controlled 

to give an output voltage of 400V from both input voltages, and a voltage doubler is used 

in the passive PFC. The two stage has the second longest hold up time at 39ms as the bulk 

capacitor is charged to 400V and the forward converter will not lose regulation until the bulk 

capacitor voltage reaches 100V. The passive is only falling from 287V at 230V and 291V 

at 115V, but the capacitance is 65,4F higher. The CS S 2 PFC has hold up times similar to 

that of the passive with forward converter (at 115V it is lower and at 230V it is higher). At 

115V the voltage across the bulk capacitors is 309V and 230V it is 326V, but the converter 

loses output voltage regulation at a bulk capacitor voltage of 163V due to the lower number 

of secondary turns. The passive, two stage and CS S 2 PFC all have hold up times at both 

input voltages above that typically set for a PC power supply of lOms. At 115V the bi-

forward converter has a hold up time of only 8.6ms: this converter does not have a voltage 

doubler arrangement and the bulk capacitor voltage only has to fall from 176V to IOOV 
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before regulation is lost. At 230V the bi-forward has the longest hold up time of 48ms; this 

is a fall of bulk capacitor voltage from 360V to 100V, but the capacitance is 65F higher 

than that in the two stage. 

Converter Hold Up Time 
at 115V /ms 

Hold Up Time 
at 230V /ms 

Passive 23.8 25.2 
Two stage 38 39.2 
Cs SPFC 18.4 27.6 
Bi-Forward 8.6 48.6 

Thble 8.7: Hold up time of the converters at 115V and 230V input voltage at 150W 
output power 

8.4.9 Output Voltage Ripple 

Table 8.8 compares the ripple on the output voltages of the four converters. The passive and 

two stage have hardly any 100Hz ripple appearing on the output voltages. This is due to the 

PFC stage of the converter being separated from the part of the converter that controls the 

output voltage. On the bi-forward the maximum 100Hz ripple on the 5V output is 50mV 

and 115mV on the 12V output, and for the CS S 2PFC it is 40mV on the 5V output and 

131mV on the 12V output. The LFSPFC has 281mV of ripple on its output. This is not 

as bad as it seems as typically a PC power supply is allowed ripple within 1% of the 5V 

and 12V output, which these figures meet except for the LFSPFC. 100Hz ripple appears on 

the output voltages as the output voltage controlling part of the circuit is also shaping the 

input current (they are only controlled to keep output voltage constant). In the bi-forward 

the ripple appears due to the step change in transformer turns transferring energy to the 

output. A similar reason causes the same to happen with the LFSPFC where the duty ratio 

will suddenly change when switch 82 turns on/off. In the CS S 2PFC the ripple appears as 

there is PFC stage current flowing in the transformer while it is supplying the output. 

Additional output filtering or post regulation would remove the 100Hz ripple. The voltage 

ripple seen on the output voltage is produced from two sources; the voltage on the output 

capacitor changing as it charges or discharges, and from the current to and from the capaci-

tor flowing through the capacitor equivalent series resistance (ESR). The voltage across the 

ESR is the main contributer to voltage ripple and this is linked to the inductor ripple current. 
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At 100kHz the two stage has a ripple over a small range, from 28.1mV to 39.3mV on the 5V 

and on the 12V from 90.6mV to 125mV. This small range is to be expected as the voltage on 

the bulk capacitor is regulated and so a fairly constant voltage is seen across the secondary 

inductors L25v and L2: 12V between each switching cycle. The passive ranges from 42.5mV 

to 76.6mV on the 5V and on the 12V from 103mV to 137mV at 100kHz. The CS S 2PFC 

ranges from 15.6mV to 20.3mV on the 5V output and on the 12V output from 81.3mV to 

125mV. The ripple on the CS S 2PFC is lower than the other converters due to the lower 

turns ratios on the transformer which produce a lower voltage on the secondary windings 

and makes the duty cycle longer. The bi-forward 100kHz ripple ranges from 45mV to 90mV 

on the 5V output, a similar value appears on the LFSPFC converter, and from 90.6mV to 

165mV on the 12V output. The bi-forward converter operates over a wide voltage range 

and with two different sets of transformer turns ratios, so a wide range is not unexpected, 

but it is not much wider than the passive circuit. 

The 100kHz ripple can be improved by additional filtering or post regulation. Care would 

have to be taken when changing the inductance of L2, as in the bi-forward and LFSPFC this 

forms part of the PFC action of the circuit and will modify the current shaping behaviour 

and the voltage across the bulk capacitors, as it would in the CS S 2PFC as L2 sets where 

the output goes into DCM. 

Converter 5V 100kHz 
p-p Ripple/mV 

5V 100Hz 
p-p Ripple/mV 

12V 100kHz 
p-p Ripple/mV 

12V 100Hz 
p-p Ripple/mV 

Passive 76.6 0 137 0 

Two stage 39.3 3.13 125 7.8 

CS S 2PFC 20.3 40.6 181 131 

Bi-Forward 90 50 165 115 

LFSPFC 93.8 281 - - 

Table 8.8: Maximum Output Voltage Ripple, not considering the bi-forward at 90V 
input voltage and full load 

8.5 Discussion 

The bi-forward with or without input inductor and the CS S 2PFC both exhibited that what 

was gained in losing a stage was lost elsewhere in the converter, and some of this is reflected 

in the performance of the converter. The loss from going to a single-stage in all topologies 
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was an increase in voltage stress. Single-stage converters such as the CS S 2PFC and bi-

forward with input inductor converters both suffered from high bulk capacitor voltage in 

excess of 400V when operating from 265V input voltage, and this appears in all single stage 

topologies (including the LFSPFC) with a boost converter style inductor on the input when 

operating with the output inductor in CCM. This occurs as it is the only way the converter 

can balance input and output power. This high voltage requires the use of a MOSFET 

capable of withstanding 1000V or more as the power switch (tertiary reset forward); these 

are very expensive, losing the assumed cost saving of the converter when compared to either 

two stage approach. The problem of a high voltage MOSFET can be removed, but with an 

increase of components by using a two switch forward converter or snubber transformer 

reset (more common now). Another method is to try changing the PFC part of the converter 

so that it keeps the bulk capacitor voltage lower. 

One thing that may make the bi-forward and the CS S 2 PFC more desirable is the fall in cost 

of high voltage MOSFETS. For the bi-forward, the development of higher voltage Schottky 

diodes would help with the bi-forward's lower efficiency. At the moment the passive filter-

ing or boost pre-regulator and ordinary forward converter are conventional. Due to this the 

components they are constructed from are popular and used in high quantities, which makes 

them cheap and more likely to have been subject to development to reduce factors such as 

Rd.,,,, in 900V MOSFETs. On the other hand 1000V and 1200V MOSFETS are not used 

in high quantities, and as such they have had less development and are more expensive. 

The present single-stage topologies are at the moment unlikely to be viable as a PC power 

supply. The main reason from the view of a manufacturer is that they are too expensive. 

From a more engineering point of view the bi-forward and CS S 2PFC present little benefit 

over the two current methods studied. They suffer from high voltage stress on the switch 

S and the bulk capacitor. They do not reduce the amount of space a converter needs when 

compared to the passive filtering method, and will require additional filtering to remove 

switching frequency currents on the input. A clear reason that the CS S 2PFC is unlikely to 

be used is that it does not meet the class D regulations at the lower end of the power range. 

Also 100Hz ripple is appearing on the output voltages, which does not occur with either 

two-stage circuit. The efficiency of all the four topologies studied was at an acceptable 

level for a PC power supply. 

In [94] the flyback version of the basic bi-forward converter is presented as being a possible 
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converter in a low power AC/DC adapter with the benefit of reduced bulk capacitance. 

There is a possibility that there could be some advantage in using either the CS S 2PFC or 

the bi-forward with input inductor converters in particular applications where only class A 

has to be met (almost anything else apart from PCs) and where the output power does not 

vary over a wide range. The bi-forward in the form investigated is more suitable for use on 

a single input voltage range. For the bi-forward an input inductor is required even to meet 

class A once output power is above 100W. The basic version has difficultly meeting class 

A at higher power. To meet class A the bi-forward's transformer turns ratios can be made 

so as to reduce the voltage seen across the switch S1 (if L1 is fitted also reduce the voltage 

across the bulk capacitors). 

The bi-forward converter with input inductor is more suitable for low power of around 

100W or less, as the converter is more likely to operate in the intended manner. At low 

power the bulk capacitor voltage is lower for a particular input voltage and the efficiency is 

slightly better. 

The CS S 2PFC converter, on the other hand, is likely to be more suitable for medium powers 

of around 200W. At this level it should have no problem meeting class D if needed and the 

bulk capacitor voltage should be close to the peak of the mains. 

The LFSPFC converter has been briefly compared with the other topologies where it is 

possible as the converter was only designed to operate at 100W on a 5V output from the 

high volage range, but also due to the poor quality voltage supply available in the laboratory. 

It has been found to have reasonable bulk capacitor voltage (predicted) up to 133W when 

compared to the bi-forward and CS S 2PFC converters. It is expected that the if throughput 

power is increased then the bulk capacitor voltage will rise to a higher value. Hence it is 

expected that a high voltage MOSFET similar in rating to that used in the bi-forward and 

CS S2PFC converters is required for a 150W output. The efficiency was comparable with 

the two stage method and CS S 2PFC converter. Cost has not been investigated, but with a 

100W output it will be close to the passive method as the additional components are cheap. 

It is felt that this converter is most suited to lower powers of about 100W where voltage 

level is not a problem, and could with some work be a lighter, less bulky replacement for 

the passive method at those lower powers and with comparable cost. 
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8.6 Conclusion 

Table 8.9 summarises the vices and virtues of the various topologies 2 . would seem that 

the passive and forward combination has the best efficiency, lowest cost and is able to meet 

the class D regulations at 150W output. 

Characteristic 
Passive 	Two Stage 

Topology 
CS S 2PFC 	Bi-Forward 

Additional Components 1 9+ 8 5 

Regulations Pass Pass Fails 75W Pass 

Average Efficiency at 230V/% 79.4 75.6 76.2 71.7 

Average Efficiency at 115V/% 78.3 73.9 75.5 72.6 
Cost 1 1.39 1.46 1.455 

Highest Voltage on CB/V 366 397 408 430 
Shortest Hold Up Time/ms 23.8 38 18.4 8.6 
Highest 5V Output Voltage 76.6 

Ripple at 100kHz/mV  
39.3 20.3 90 

Highest 5V Output Voltage 0 
Ripple at 100Hz/mV  

3.13 40.6 50 

Table 8.9: Summary of topology performance 

If an RCD transformer reset was to be used with the bi-forward converter and on the CS 

S2PFC this would reduce the voltage seen across switch Si during transformer reset, allow-

ing the use of a cheaper device and making the converters more comparable on cost to the 

passive and forward converter. Re-design may also bring the bulk capacitor voltage down to 

a lower level, ideally 400V or less, and in the bi-forward allow the use of Schottky diodes on 

the 5V output. This would increase the efficiency of the bi-forward to be more comparable 

to the other three converters. 

It is believed that the CS SS 2PFC converter is more suited to applications where meeting 

the class D regulation is only required at a single power and that the bi-forward is more 

suited to low power applications. 

The LFSPFC had the highest ripple, but did have reasonable efficiency and bulk capacitor 

voltage for a 100W output converter. It is felt that 100W is about the maximum power 

output that this converter can work up to. It could, with some more work, be a possible 

lighter weight replacement for the passive method in some applications. 

2except the LFSPFC as the results for this converter are limited due to using different test equipment 



Overall the passive filtering and forward converter solution would still seem the most at-

tractive choice of converter to use. 
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Chapter 9 

Conclusions and Further Work 

In addition to the conclusions drawn at the end of the preceeding chapters the following 

final conclusions can be drawn. 

9.1 Final Conclusions 

The project has shown that the bi-forward with input inductor and the CS S 2PFC converters 

are not suitable replacements for passive filtering or a boost converter cascaded with a for-

ward converter for a 150W output power supply operating on an universal input voltage and 

able to meet IEC 61000-3-2 class D. It was found that the passive, boost pre-regulator and 

bi-forward methods met IEC 61000-3-2 class D at 100V and 230V from 75W input power 

to full load power, but the CS S 2PFC would not pass at input powers lower than about 

100W. The test results showed that both converters suffered from high voltage on the bulk 

capacitor which had knock-on effects when compared to the passive and two stage methods. 

The high bulk capacitor voltage (and the centre tap primary on the bi-forward) required the 

bi-forward and CS S 2PFC converters to have MOSFETs rated for 1000V and above, which 

made their costs much higher than either the passive method or boost pre-regulator. The 

high voltage due to the the centre-tapped primary in the bi-forward converter made it the 

least efficient converter as it required normal fast recovery diodes on the 5V output and not 

Schottky diodes as in the other converters, but the CS S 2PFC had an efficiency comparable 

to the boost pre-regulator method. Both the bi-forward with input inductor and CS S 2PFC 

had noticeable 100Hz ripple on the output voltage since a large mains frequency component 

198 



is seen in the main converter. The only immediate benefit of using the bi-forward with input 

inductor or the CS S 2 PFC converters is a saving in space or weight. It was found that the 

passive filtering with forward converter method was the cheapest, most efficient, had output 

voltages with minimal 100Hz ripple and met class D at both 100V and 230V from 75W in-

put power to full load at 150W output power. If the regulations were to be tightened up then 

the all the converters studied except the boost pre-regulator could have problems meeting 

the improved regulations. 

The basic bi-forward converter as described in the literature is only able to meet class A, 

but a MOSFET rated up to 1200V may be needed due to increased voltage seen across 

the transformer primary side during core reset. It was found that cost could be reduced if 

snubber transformer resetting circuits were used allowing a lower voltage MOSFET. This 

topology is suitable for low power (100W or less) operating from just one voltage range 

(230V or 115V). 

For bi-forward converter with input inductor the performance was quite different to that 

presented in [95]. It was difficult to produce a converter that operated with the input inductor 

in CCM, but the converter could pass class D with the input inductor operating in DCM. 

It was found the converter could operate in five different ways depending on the value of 

input inductance and output power. The way the converter operated also determined how the 

bulk capacitor voltage varied with power. The peak bulk capacitor voltage was found to be 

430V which was the highest recorded. It was found that a snubber to reset the transformer 

was essential as otherwise the voltage would exceed the rating of a 1200V MOSFET. This 

topology is probably suitable for low power (100W or less) operating from just one voltage 

range (230V or 115V) for an application that has to meet class D. 

The CS S 2PFC converter performed fairly well, in line with what was reported in [122]. 

It was found that the converter can meet class D at full load when bulk capcitor voltage is 

below the peak of the line and some of the current shaping action is lost. This converter is 

suitable for applications where compliance with class D is not required across a wide power 

range. Its cost could be reduced if snubber transformer resetting circuits were used allowing 

a lower voltage MOSFET. 

In chapter 7 a new topology, the LFSPFC converter was introduced. This converter has 

a low frequency switch in series with the bulk capacitor of a forward converter controlled 

by a comparator looking at the rectified input voltage of the converter. This converter can 
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be built with or without an input inductor. The 100W converter built operates as expected 

with and without input inductor, proving the concept to work. With or without an input 

inductor the converter passes class A with ease and has reasonable efficiency of about 77%. 

Without a low value input inductor, the converter fails class D on many harmonics, but with 

the inductor in it only fails on two harmonics, the 13th and 23rd. Using an input inductor 

analysis showed that the bulk capacitor voltage should stay below 400V with careful design. 

With the input inductor the bulk capacitor voltage is higher when the low frequency switch 

is turned on at lower voltages for a given power, and that the voltage rises with power. 

Extrapolating the plots of bulk capacitor voltage against power it is likely that at 150W 

output power the bulk capacitor voltage will be high as in the bi-forward with input inductor 

or Cs S 2PFC converters requiring an expensive high voltage MOSFET, hence this converter 

should only be used up to about 100W. This converter could be a possible lighter and less 

bulky replacement for the passive method at about 100W output power. 

9.2 Further Work 

To further this study there are several areas which should be explored. The first would 

be further investigation into filtering the input current so as to remove the switching com-

ponents of the current waveform. Along with this the EMI filtering requirements for a 

single-stage converter, such as the ones studied, should be considered along with the input 

current filtering as the two may be combinable. 

Other areas of investigation for the bi-forward converters and CS S 2PFC converters would 

be 

The use of a snubber for transformer reset. 

Operation and design of the converters with different transformer turns ratio, output 

filters and input inductances. 

Circuit optimisation could also be carried out. 

Another area which needs further work (this applies to the LFSFPFC as well) is the use of 

more advanced control methods such as current mode control. 
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The LFSFPFC converter needs to be studied with operation of the input inductor in CCM. 

Also further work will be required to enable the converter to comply with the class D limits. 

Expansion to other converter types could also be tried. 

In the analysis, further work should be done to investigate the effects of the charging and 

discharging of the bulk capacitor and its effect on the input current shape and harmonics. 

Prediction of losses and converter efficiency is another area of interest and will highlight 

areas where the most losses occur. 
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Appendix A 

Predicted Harmonic Content at 100V 

for the Bi-Forward Converter 

Shown in figures A.1 and A.2 are the harmonic plots at bOy and 200W input power for the 

bi-forward converter for class D and A respectively. 
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Figure A.1: RIvIS input current compared to class D (trace b,,.,200 100) for IOOV input 

with an input power of 200W with n as 2, 1.3, 1.57 and 1.16. Traces are 

listed by side of graph, 1st value is n, 2nd value is the input voltage and 

3rd value is the power. 
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Figure A.2: RMS input current harmonics compared to class A (curve bAloo) for 

l(X)V input with an input power of 200W with n as 2. 1.1 1.57 and 1.16. 

Traces are listed by side of graph. 1st value is n, 2nd value is the input 
voltage and 3rd value is the power. 
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Appendix B 

Effect of Bulk Capacitance Value on 

the Bi-Forward 

To demonstrate the effect that the value of CB has on the harmonics shown in figures 13.1, 

B.2, B.3 and B.4 show harmonic plots for CB at values of 1651iF, 2201iF, 330F and 4701F 

at 100V and 230V with a 200W input. From these figures it can be seen that 1651iF gives 

the lowest harmonics for class A and D at both voltages. This is because the bulk capacitor 

is recharging over a longer period. 
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Figure B.1: RMS input current harmonics compared to class D (curve brcg200100)  for 
I OOV input with an input power of 200W with n as 2 and CB as I 65;iF, 
2201iF, 330jjF and 470pF. Traces are listed by side of graph. 1st value 
is n, 2nd value is the input voltage, 3rd value is the power and 4th the 
capacitor value. 
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Figure B.2: RMS input current harmonics compared to class D (curve breg200) for 
230V input with an input power of 200W with n as 2 and CB as I 651tF, 
220iF, 330jiF and 4701tF. Traces are listed by side of graph, 1st value 
is n, 2nd value is the input voltage, 3rd value is the power and 4th the 
capacitor value. 
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Figure B.3: RMS input current harmonics compared to class A (curve bAloo)  for 
IOOV input with an input power of 200W with n as 2 and CB as 165tF, 
220jF, 330tF and 4701jF. Traces are listed by side of graph, 1st value 
is n, 2nd value is the input voltage, 3rd value is the power and 4th the 
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Appendix C 

Predicted Results for NIA as 32 and 

NIB as 12 for the Bi-Forward with 

Input Inductor 

Shown in figure C.1 is the predicted bulk capacitor voltage for 265V input for NIA  =32 

and NIB  =12. The peak voltage is about 386V which much lower than the 430V predicted 

for N1A = NIB = 22. 
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Figure C.!: Predicted voltage on bulk capacitor CB at 265V input for L1 = 20tH and 
NIA =32 and NiB = 12 
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As shown in figure C.2 for 100V and 75W, input the converter is predicted to meet the class 

D regulation. This is the same as for the measured result for N1A = 32 turns in figure 5.24. 

The analysis shows that the converter will operate in periods 1, 2, 3 and 4. 
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Figure C.2: Input current class D (trace brgg75l00) harmonics for 100V input with an 
input power of 75W with L 1  as 20tH and N1A as 32 turns and NiB  as 12 
turns (other trace, 1st value is voltage on CB and 2nd value is the value 
of L 1 ) 

Figure C.3 shows that the converter with N1A = 32 turns will fail on the 3rd, 5th and 7th 

harmonics for 100V and 200W input. The measured results shows failure on the 9th, 11th, 

13th and 15th harmonics. These are not the same harmonics, but both are failures. The 

analysis shows the converter operating in periods 1, 2 and 2A. 

Figure C.4 shows that the converter with N1A = 32 turns will fail on the 11th and 13th 

harmonics for 230V and 75W input. The measured results shows failure on the 9th, 11th 

and 13th harmonics. These are more or less the same harmonics and both are failures. The 

analysis shows that the converter operates in periods 1, 2 and 3 and 4. 

Figure C.5 shows that the converter with N1A as 32 turns will fail on the 3rd, 5th, 7th, 9th, 

11th, 13th and 15th harmonics for 230V and 200W input. The measured results showed 

that all the harmonics measured were below the class D limit. The prediction shows that the 

design will not meet class D, but in practice it did. This is the first case where the predicted 

RMS harmonic current did not produce a result close to measured RMS harmonic current 
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values. The analysis shows the converter operating in periods 1, 2 and 2A. 
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Figure C.5: Input current class D (trace breg200) harmonics for 230V input with an 
input power of 200W with L 1  as 20jiH and N1A  as 32 turns and NiB 

as 12 turns (other trace, 1st value is voltage on CB and 2nd value is the 
value of L 1 ) 
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Appendix D 

Predicted Performance of Final CS 

S2PFC Designs 

To give some idea of the performance of the final converter design and altered converter 

design, figures D.1 and D.2 show their predicted harmonic content for 200W input power 

at bOy and 230V and figure D.3 shows how the bulk capacitor voltage varies with power 

at 265V input. Figures D.1 and D.2 both show that harmonics for LDA and LDB  as 33 

or 43jtH are very close to the class D harmonic limit at bOy, just exceeding the 3rd and 

5th harmonics and at 230V just exceeding the limit on the 5th and 7th harmonics for 200W 

input power (assuming 75% efficiency) and thus has a good chance of passing class D at 

full load. For both of these designs the average bulk capacitor voltage is lower than the peak 

of the line voltage, but are within 10% of the line voltage peak. In figure D.3 the peak bulk 

capacitor voltage is shown to be about 430V for both designs. The predicted input current 

waveform at 230V and 100V and 200W input are shown in figures 6.12a and 6.12b. The 

obvious difference is that the 100V current waveform has a higher peak current, but more 

subtle is that L1 spends less time in DCM at bOy. 
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Figure D.1: Odd harmonic content of LDA  and LDB = 331iH with N4A and N48 = 

II and LDA  and LDB = 431iH with N4A  and N4B = ii at 200W in-
put power and 230V input voltage compared to class D limits (b reg200). 

Traces are listed by side of graph. 1st value is the voltage on C8, 2nd 
value is the value of LDA  and LDB  and 3rd value is the number of turns 
on N4A  and N4B. 
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Figure D.2: Odd harmonic content of LDA  and LDB = 33jiH with N4A  and NIB = 
11 and LD.4  and LDB = 431zH with N4A  and N4B = 11 at 200W input 
power and IOOV input voltage compared to class D limits (b reg200100). 

Traces are listed by side of graph. 1st value is the voltage on GB,  2nd 
value is the value of LDA and LDB  and 3rd value is the number of turns 
on N4A  and N4B. 
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Appendix E 

Predicted Harmonic Content at 230V 

for the LFSPFC Converter 

Shown in figures El, E.2 and E.3 are the harmonic plots compared to class D at 230V and 

133W input power for the LFSPFC converter for input inductances of 10, 20 and 30jiH 

respectively. 
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Figure E.1: RMS input current harmonics compared to the class D (trace breg  133) 

limits for 230V, 133W input with the turn on/off voltage of S2 as 140, 
160, 180. 200 and 220V and L 1  as 101iH. Traces are listed by side of 
graph: 1st value is the turn on/off voltage for S2. 2nd value is the voltage 
on CB and 3rd value is the value of L i . 
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Figure E.2: RMS input current harmonics compared to the class D (trace bre9133) 

limits for 230V, 133W input with the turn on/off voltage of S2 as 140, 
160, 180, 200 and 220V and L 1  as 201.zH. Traces are listed by side of 
graph: 1St value is the turn on/off voltage for S 2 . 2nd value is the voltage 
on CB and 3rd value is the value of L 1 . 
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Figure E.3: RMS input current harmonics compared to the class D (trace brg13:5) 

limits for 230V, 133W input with the turn on/off voltage of S2 as 140, 
160, 180, 200 and 220V and L1 as 30jiH. Traces are listed by side of 
graph: 1st value is the turn on/off voltage for S 2 . 2nd value is the voltage 
on CB and 3rd value is the value of L 1 . 
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Appendix F 

R1VIS Harmonic Currents Measured 

in PSpice 

El Bi-Forward Converter 

Tables El and E2 show current harmonics measured in PSpice for full input power at 230V 

and 100V respectively. 

E2 Bi-Forward Converter with Input Inductor 

Tables F.3 and E4 show current harmonics measured in PSpice for full input power at 100V 

and 230V respectively. 

F.3 CS S2PFC Converter 

Tables F.5 and F.6 show current harmonics measured in PSpice for full input power at 230V 

and 100V respectively. 

217 



Harmonic Number RMS Harmonic 
Current/A 

Class A 
Limits/A 

Class D 
Limits/A 

2 1.793m 1.08  
3 0.175 2.3 0.5882 
4 1.758m 0.43  
5 0.166 1.14 0.3297 
6 1.783m 0.3  
7 0.308 0.77 0.173 
8 1.875m 0.23  
9 0.214 0.4 0.0865 
10 1.764m 0.184  
11 0.214 0.33 0.06055 
12 1.706m 0.153  
13 0.163 0.21 0.0512 
14 1.819m 0.131  
15 0.158 0.15 0.0444 
16 1.850m 0.115  
17 0.258 0.182 0.0392 
18 1.729m 0.102  
19 0.0742 0.118 0.0351 
20 1.693m 0.092  
21 0.0976 0.107 0.0317 
22 1.845m 0.0836  
23 0.115 0.0978 0.029 
24 1.934m 0.0766  
25 0.0668 0.09 0.0266 
26 1.708m 0.0708  
27 0.0623 0.0833 0.0247 
28 1.694m 0.0657  
29 0.0430 0.0776 0.0230 
30 1.692m 0.0613  
31 0.0757 0.0726 0.0215 
32 1.68m 0.0575  
33 0.0534 0.0682 0.0202 
34 1.594m 0.0541  
35 0.0327 0.0643 0.01903 
36 1.562m 0.0511  
37 0.0623 0.0608 0.0180 
38 1.701m 0.0484  
39 0.0474 0.0577 0.0171 
40 1.672m 0.046  

Table F.!: RMS current harmonics measured for the bi-forward converter in PSpice 
for 230V at full Load with an input power of 173W for classes A and D. 
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Harmonic Number RMS Harmonic 
CurrentJA 

Class A 
Limits/A 

Class D 
Limits/A 

2 3.575m 2.484  

3 0.515 5.29 1.392 

4 2.792m 0.989  

5 0.545 2.622 0.778 

6 2.398m 0.69  

7 0.215 1.771 0.4094 

8 2.727m 0.529  

9 0.330 0.92 0.2047 

10 3.429m 0.4252  

11 0.248 0.759 0.1433 

12 3.818m 0.352  

13 0.312 0.483 0.1212 

14 3.495m 0.3013  

15 0.0961 0.345 0.1051 

16 2.828m 0.2645  

17 0.137 0.3036 0.0927 

18 2.160m 0.2346  

19 0.0668 0.2714 0.0830 

20 2.534m 0.2116  

21 0.130 0.2461 0.0751 

22 3.412m 0.1923  

23 0.0926 0.2249 0.0685 

24 3.165m 0.1762  

25 0.170 0.207 0.0630 

26 3.459m 0.163  

27 0.0594 0.192 0.0584 

28 2.832m 0.151  

29 0.0742 0.1785 0.0544 

30 1.099m 0.141  

31 0.0308 0.1670 0.0508 

32 2.202m 0.1323  

33 0.0813 0.1569 0.0478 

34 2.980m 0.1244  

35 0.0482 0.1479 0.0450 

36 3.369m 0.1175  

37 0.111 0.1398 0.0426 

38 3.324m 0.1113  

39 0.0519 0.1327 0.0404 

40 2.699m 0.1058  

Table E2: RMS current harmonics measured for the bi-forward converter in PSpice 
for 100V at full Load with an input power of 178W for classes A and D 
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Harmonic 
Number 

RMS Harmonic Current 
for L 1  = 10iH IA 

RMS Harmonic Current 
for L1 = 20tH /A 

Class D 
Limits/A 

3 0.6453 0.9023 1.381 

5 0.2248 0.2040 0.772 

7 0.06305 0.1706 0.406 

9 0.1335 0.0630 0.203 
11 0.04079 0.02483 0.1422 
13 0.0927 0.04451 0.1203 
15 0.05192 0.01939 0.1043 

17 0.04821 0.01124 0.092 
19 0.02799 0.01267 0.0823 
21 0.01517 0.01393 0.0745 
23 0.01739 0.0094 0.0680 
25 0.01604 0.01014 0.0626 
27 0.01541 0.0097 0.0579 
29 0.01541 0.0064 0.0539 
31 0.0014 0.0049 0.0504 
33 0.002 0.0049 0.0474 
35 0.0088 0.0024 0.0447 
37 0.0027 0.0006 0.0423 
39 0.0048 0.0022 0.0401 

Table F.3: Class D harmonics measured for the bi-forward converter with input induc-
tor in PSpice for 100V 150W output for L 1  as lOjtH (input power measured 
as 179W) and 20zH (input power measured as 177W). Class D harmonics 
are calculted for L 1  = 20tH input power, since those for L 1  = 10H are 
similar. 
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Harmonic 
Number 

RMS Harmonic Current 
for L1 = 10,H /A 

RMS Harmonic Current 
for L1 = 20H IA 

Class D 
Limits/A 

3 0.2596 0.3828 0.5725 

5 0.05487 0.04895 0.3199 

7 0.00757 0.04747 0.1684 

9 0.07418 0.00899 0.0842 

11 0.00013 0.01018 0.05894 

13 0.03116 0.00713 0.04987 

15 0.01335 0.00919 0.04322 

17 0.01632 0.00563 0.03814 

19 0.01114 0.00507 0.03412 

21 0.00791 0.00661 0.03087 

23 0.00058 0.00255 0.02819 

25 0.00095 0.00022 0.02593 

27 0.003 0.0019 0.02401 

29 0.0011 0.00355 0.02236 

31 0.00087 0.00123 0.02091 

33 0.00156 0.00198 0.01965 

35 0.00022 0.00187 0.01852 

37 0.00347 0.00106 0.01752 

39 0.00105 0.00061 0.01662 

Thble E4: Class D harmonics measured for the bi-forward converter with input induc-
tor in PSpice for 100V 150W output for L 1  as lOitH (input power measured 
as 168W) and 20H (input power measured as 170W). Class D harmonics 
are calculated for L 1  = 20iH input power since those for L 1  = 10/LH are 
similar. 
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Harmonic Number RMS current/A Class D Limits/A 
3 0.593 0.593 

5 0.377 0.331* 

7 0.199 0.174* 

9 0.0682 0.0872 
11 0.0252 0.0611 

13 0.0460 0.0517 

15 0.0371 0.0448 
17 0.0134 0.0395 
19 0.0107 0.0353 
21 0.0178 0.0320 
23 0.0134 0.0292 
25 0.00375 0.00269 
27 0.00735 0.0249 

29 0.0101 0.0232 
31 0.00634 0.0217 

33 0.00139 0.0204 
35 0.00542 0.0192 
37 0.00570 0.0182 

39 0.00266 0.0172 

Table E5: Class D harmonics measured for the CS S 2 PFC converter in PSpice for 
230V 150W output for LD as 33itH (input power measured as 174W). * 
indicates harmonics that exceeded the regulation. 
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Harmonic Number RMS current/A Class D Limits/A 

3 1.320 1.383 

5 0.735 0.773 

7 0.297 0.407 

9 0.104 0.203 

11 0.134 0.142 

13 0.0926 0.120 

15 0.0334 0.104 

17 0.0482 0.0921 

19 0.0445 0.0824 

21 . 0.0181 0.0746 

23 0.0234 0.0681 

25 0.0256 0.0626 

27 0.0128 0.0580 

29 0.0125 0.0540 

31 0.0171 0.0505 

33 0.0087 0.0474 

35 0.00728 0.0447 

37 0.0107 0.0423 

39 0.00676 0.0401 

Table F.6: Class D harmonics measured for the CS S 2 PFC converter in PSpice for 
100V 150W output for LD as 33pH (input power measured as 177W) 

F.4 LFSPFC Converter 

Table F.7 shows current harmonics measured in PSpice for full input power at 230V. 
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Harmonic 
Number 

RMS Harmonic 
Current/A 

Basic 

RMS Harmonic 
Current/A 
with L1  

Class A 
Limits/A 

Class D 
Limits/A 

2 26m 0.208m 1.08  

3 0.0714 0.245 2.3 0.390 

4 2.16m 0.0843m 0.43  

5 0.0863 0.0346 1.14 0.218 

6 1.61m 0.134m 0.3  

7 0.21* 0.0148 0.77 0.115 

8 1.56m 0.224m 0.23  

9 0.109* 0.0801* 0.4 0.0574 

10 0.71m 0.214m 0.184  

11 0.109* 0.0623* 0.33 0.0402 

12 0.529m 0.157 0.15  
13 0.131* 0.0208 0.21 0.0340 

14 0.226m 0.0842m 0.131  
15 0.117* 0.0208 0.15 0.0295 

16 0.438m 0.0258m 0.115  

17 0.0877* 0.0257 0.132 0.0260 

18 0.314m 0.105m 0.102  
19 0.0813* 0.0267 0.118 0.0233 

20 0.595m 0.0878m 0.092  

21 0.106* 0.0158 0.107 0.0210 

22 0.707m 0.0152m 0.0836  
23 0.0504* 0.0198* 0.0978 0.0192 

24 0.162m 0.0839m 0.0766  
25 0.0554* 0.0119 0.09 0.0177 

26 0.39m 0.0332m 0.0708  
27 0.0778* 0.0178* 0.0833 0.0164 

28 0.192m 0.101m 0.0657  

29 0.0257* 0.00989 0.0776 0.0152 

30 0.335m 0.208m 0.0613  
31 0.0425* 0.00168 0.0726 0.0143 

32 0.079m 0.205m 0.0575  
33 0.0455* 0.00791 0.0682 0.0134 

34 0.509m 0.09971m 0.0541  
35 0.0337* 0.0138* 0.0643 0.0126 

36 0.371m 0.0936 0.0511  
37 0.0257* 0.00707 0.0608 0.0119 

38 0.13m 0.175m 0.0484  
39 0.0238* 0.0119* 0.0577 0.0113 

40 0.238m 0.170m 0.046  

Table E7: RMS current harmonics measured for the LFSPFC converter in PSpice for 
230V at full load compared to class A and D harmonic levels. The basic 
LFSPFC converter has an input power of 116W and the LFSPFC converter 
with input inductor has an input power of 115W and L 1  as 20iH. Class D 
values are for 115W*  indicates measured harmonics that exceed the regu-
lation for class D. 
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Appendix G 

Components Used in Test Circuits 

G.1 Bi-Forward and Bi-Forward with Input Inductor Convert-

ers 

Table G.1 shows the components used to build the bi-forward converter. 

G.2 CS S2PFC Converter 

Table G.2 shows the components used to build the CS S 2PFC converter. 

G.3 LFSPFC Converter 

Table G.3 shows the components used to build the LFSPFC converter. 
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Device 	I 	Component 
APT1201R2BLL 

D1 , D2, D3  BY329-1000 

D4:5v, D5:5v BY51-200 

D4:12v, D5:12v BYT08P-400 

D6, D7 BYD33U 

DB GBU6J 

CB 2 x 330 jtF 250V Electrolytic 

C1:5v 2200 jtF 16V Electrolytic 

C1:12v 470F 25V Electrolytic 

C2 1F 400V Polyester 

C3 47pF 1500V Polyester 

R 1  2x47011 2W 

L2:5v 15,iH 

L2.12v 641tH 
Transformer ETD44 3C90 Material 

N1A = NiB = N3  = 22 

N25v = 5 N2i = 11 

UC3524 
MC33152P 
D8  

C4 

C5 

C6, C7 
C8 

C9 

R2, R3, R4 

R5 

R7 

R8A 

R8B 
Rg 

R10 

R 11  

VMC Controller 
MOSFET Driver 

1N4148 
100iF 35V Electrolytic 

47/.LF 35V Tantalum 
IMF Ceramic 

2.2nF Ceramic 
44mF Ceramic 

2.7kg 
lOkIl 

10Q 0.5W 
12k1 
39k11 
3.9kcl 

lkIl 
2.9kg 
18k1 

Table G.1: Components used in the bi-forward converter and its control circuit 
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Device 
Si 
D1, D4A 2  D4B, D5A, D5B 

D2:5v, D3:5v 

D2:12v, D3:12v 

DB 

CB1, CB2 

Ci5v 

C1 :12V 

C2A, C2B 
C3 

R1 

LDA, LDB 

L1A, L1B 

L25v 

L2:12v 

Transformer 

Component 
IXFH12N100 
BY329-1000 

STPS2OH100 
BYTO8P-400 

BYD33U 
GBU6J 

330uF 250V Electrolytic 
2200 jtF 16V Electrolytic 

470 AF 25V Electrolytic 
1F 400V Polyester 

47pF 1500V Polyester 
2x470l 2W 

43jH on the same core 
lOOttH on the same core 

15H 
64iH 

ETD44 3C90 Material 
N1=N3=44 

N2:5v = 3 	= 7 

N4A = N4B = 11 

Table G.2: Components used in the CS S 2PFC converter. The control circuit compo-
nents are the same as listed in table G.1 for the bi-forward converter 
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Device Component 

S1 2SK2611 

S2 IRG4BC30W 

D 1 , D2 BY329-1000 
D3 , D4  STPS2OH100CT 

D5 , D6 BYD33U 

DB GBU6J 

CB 2x330F 250V Electrolytic 

C1 2200F 16V Electrolytic 

C2 1F 400V Polyester 

C3 47pF 1500V Polyester 

R1 2x4701l2W 

L 1  201iH 

L 2  15H 

Transformer ETD44 3C90 Material 
N1 = N3 = 44 N2:5V = 5 

UC3524 VMC Controller 
MC33152P MOSFET Driver 

1N4148 

C4 100tF 35V Electrolytic 

C5 471SF 35V Tantalum 

C6, C-, 11tF Ceramic 

C8 2.2mF Ceramic 

C9 44mF Ceramic 

R2,R3,R4 2.7k11 
10kl 

R6 10l 0.5W 

R7 12k1 

R8A 2.7kl 

R9 1k1 

Rio 2k1 

Ril  18kl 

LM 311 Comparator 

1R2117 Signal Level Shifter 

D8  UF5407 

C10 lOOpF Polyester 

C11, C13 100F 35V Electrolytic 

C12 47F 35V Electrolytic 

C14, C15 1F Ceramic 
1M1 

R13 lOOkII 
39kg 
12kg 

3.9kg 
10kg 

R18 lOkIl 

R19 47l 0.5W 

V1 16V 

Table G3: Components used in the LFSPFC converter and its control circuit 
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Appendix H 

Measured Efficiency and Bulk 

Capacitor Voltage 

H.! Bi-Forward Converter with Input Inductor 

Table H.1 presents the measured efficiency and bulk capacitor voltage for the bi-forward 

converter with input inductor. 

H.2 CS S2 PFC Converter 

Table H.2 presents the measured efficiency and bulk capacitor voltage for the CS S 2PFC 

converter. 

H.3 LFSPFC Converter 

Table H.3 presents the measured efficiency and bulk capacitor voltage for the LFSPFC 

converter with a turn on/off voltage of 140V and table H.4 presents the measured efficiency 

and bulk voltage for the LFSPFC converter with input inductor and a turn on/off voltage of 

230V. 



Output Power/W I Input PowerlW Efficiency/% I Bulk Capacitor Voltage/V 

Input Voltage: 90V  
2.73 5 54.6 129 

36.68 48.41 75.62 133 

72.82 99.02 73.54 135 

108.89 155.02 70.24 135 

138.62 218.6 63.41 131 

Input Voltage: 115V  
2.72 5 54.33 162 

36.68 48.64 75.41 170 

72.82 97.85 74.52 172 

108.89 151.57 71.84 178 

144.43 210.77 68.53 1 	176 

Input Voltage: 130V  
2.72 5 54.33 183 

36.68 48.93 74.97 194 

72.82 97.72 74.52 196 

108.89 150.82 72.20 1 	 204 

144.03 207.86 69.29 201 

Input Voltage: 180V  
2.72 6 45.28 257 

36.68 50.34 72.87 277 

72.82 98.66 73.81 281 

108.89 150.21 1 	72.49 290 

144.43 203.9 70.83 283 

Input Voltage: 230V  
2.7 8 33.74 334 

36.68 51.24 71.59 336 

72.82 100.53 72.44 366 

109.04 151.48 1 	71.98 1 	373 

144.63 1 	204.14 70.85 360 

Input Voltage: 265V  
2.7 8 33.61 385 

36.73 52.3 70.23 386 

72.92 102.35 71.25 426 

109.19 153.1 71.32 430 

144.63 205.04 70.41 416 

Table H.!: Measured efficiency and voltage on the bulk capacitor for the bi-forward 
with input inductor for L 1  = 20H across the input voltage range 
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Output Power/W Input PowerlW Efficiency/% Bulk Capacitor Voltage/V 

Input Voltage: 90V  
3.25 6 54.09 283 

37.36 49.14 76.03 272 

74.35 96.08 77.38 257 

111.63 146.5 76.20 243 

148.46 199.2 74.53 230 

Input Voltage: 115V  
3.21 8 40.08 355 

37.36 50.71 73.68 343 

74.35 97.00 76.65 332 

111.78 146.20 76.46 320 

148.46 197.2 75.28 309 

Input Voltage: 130V  
3.21 8 40.07 398 

37.42 51.82 72.20 387 

74.45 97.99 75.96 377 

111.48 146.75 75.96 364 

148.66 197.3 75.34 355 

Input Voltage: 180V  
3.25 6 54.09 285 

37.36 48.82 76.53 276 

74.15 94.98 78.06 275 

111.63 144 77.53 256 

148.46 194.8 76.21 246 

Input Voltage: 230V  
3.23 8 40.39 356 

37.47 50.5 74.17 350 

74.45 96.3 77.31 339 

111.48 144.6 77.09 332 

148.46 194.7 76.25 326 

Input Voltage: 265V  
3.21 8 40.1 408 

37.36 51.93 71.95 400 

74.45 97.57 76.30 391 

111.48 145.66 76.53 1 	 383 

148.66 195.38 76.09 1 	376 

Table H.2: Measured efficiency, input and output power and bulk capacitor voltage 
across the input range for the CS S 2PFC converter 
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Output 
Power/W 

Input 
Power/W 

Efficiency/% Bulk Capacitak of Supply 
Voltage/V 

Input Voltage: 180V  
24.9 30.5 81.64 242 250 

49.7 61.4 80.94 237.5 243 

74.25 95.6 77.67 237.5 243 

96.628 125.8 76.81 237.5 243 

Input Voltage: 200V  
24.9 30.4 81.91 265 266 

49.7 60.7 81.88 265 266 

75.24 95.1 79.12 270 266 

97.614 125.3 77.90 268 266 

Input Voltage: 230V  
24.95 31.3 79.71 306 313 

49.7 61.7 80.55 306 313 

74.25 93.4 79.5 306 313 

96.628 123.8 78.05 306 313 

Table H.3: Measured efficiency, input and output power and bulk capacitor voltage 
across the available input voltage range for the LFSPFC converter without 
L 1  and a S2 turn on/off voltage of 140V 

Output 
Power/W 

Input 
Power/W 

Efficiency/% Bulk Capacitor 
Voltage/V 

Peak of Supply 
Voltage/V 

Input Voltage: 180V  
24.95 30.1 	J 82.89 240.6 237 

49.7 60.6 82.01 240.6 237 

74.25 94 78.99 239.1 237 

96.614 126.2 77.35 239.3 237 

Input Voltage: 200V  
24.451 29.1 81.78 276.7 268.7 

49.7 62.5 79.52 277.6 268 

75.735 97.7 77.52 277.3 268.7 

95.642 123.6 77.38 276.6 268.7 

Input Voltage: 230V  
24.95 31.3 79.71 320 312 

49.7 62.6 79.39 321 312 

75.24 97.1 77.49 323 312 

97.121 126.7 76.65 325 312 

Table H.4: Measured efficiency, input and output power and bulk capacitor voltage 
across the available input voltage range for the LFSPFC converter with L 1  
and a S2 turn on/off voltage of 230V 
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H.4 Pasive Filter and Forward Converter 

Table H.5 presents the measured efficiency and bulk capacitor voltage for the passive filter 

and forward converter. 

H.5 Two Stage Active PFC 

Table H.6 presents the measured efficiency and bulk capacitor voltage for the boost con-

verter cascaded with a forward converter method. 
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Output Power/W Tnput Power/W Efficiency/% Bulk Capacitor Voltage/V 

Input Voltage: 90V  
2.83 5 56.6 245 

37.64 46.18 81.51 236 

74.98 93.54 80.16 228 

112,49 146.23 76.93 224 

149.78 205.4 72.92 223 

Input Voltage: 115V  
2.74 6 45.6 313 

37.64 47.42 79.37 306 

74.94 93.72 79.97 298 

112.55 143.73 78.31 293 

149.86 197.9 75.73 291 

Input Voltage: 130V  
2.76 6 45.94 360 

37.64 48.31 77.91 349 

74.94 94.25 79.51 340 

112.37 143.3 78.42 335 

149.75 195.83 76.47 332 

Input Voltage: 180V  
2.82 6 47.08 247 

37.5 45.91 81 234 

72.96 92.16 79.16 225 

112.7 142.32 78.95 221 

150 199.9 75.04 222 

Input Voltage: 230V  
2.74 7 39.12 318 

37.5 47.11 79.6 305 

74.94 92.71 80.84 296 

112.55 141.49 79.55 290 

150.04 193.6 77.5 287 

Input Voltage: 265V  
2.76 7 39.43 366 

37.5 48.24 77.73 355 

74.94 93.54 80.11 345 

112.52 141.71 79.40 339 

149.77 192.51 77.8 336 

Thble H.5: Measured efficiency, input and output power and bulk capacitor voltage 
across the input range for passive PFC method 
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Output Power/W I Input Power/W Efficiency/% Bulk Capacitor Voltage/V 

Input Voltage: 90V  
2.85 7 40.67 394 

37.69 54.16 69.58 392 

74.94 101.14 74.1 390 

112.64 151.60 74.3 387 

149.85 204 73.46 382 

Input Voltage: 115V  
2.85 8 35.58 394 

37.74 53.7 70.27 392 

75.02 100 75.02 390 

112.58 149.13 75.49 387 

149.81 200.43 74.75 383 

Input Voltage: 130V  
2.85 11 25.88 394 

37.74 53.57 70.44 392 

75.02 99.66 75.23 390 

112.58 148.41 75.86 387 

149.81 199.22 75.2 383 

Input Voltage: 180V  
2.85 13 21.9 395 

37.74 52.22 72.26 393 

75.02 98.98 75.80 391 

112.58 147.11 76.53 387 

150.01 197.1 76.11 384 

Input Voltage: 230V  
2.85 14 20.33 397 

37.74 52.14 72.38 394 

75.02 97.98 76.57 391 

112.58 146.35 76.93 388 

150.01 195.97 76.55 385 

Input Voltage: 265V  
2.85 7 40.67 397 

37.74 51.41 73.40 394 

75.02 97.37 77.05 392 

112.58 145.54 77.35 389 

150.01 195.16 76.87 385 

Table H.6: Measured efficiency, input and output power and bulk capacitor voltage 
across the input range for boost converter cascaded with a forward con-
verter method 
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Abstract 
The comparison of two promising single-stage PFC topo1oies, the bi-fornr1 and high frequency 
current: uite single stage power factor collector, with con:ventional power factor correction PFC) 
solutions is presented. The two new topologies are briefly intrnduced The comparison considers 
efficiency, component stress, cost., and. ability to meet: IEC1000-3-2 class a 

Introduction.  
In Europe and Japan it is now a requirement for a SMIPS connected to the line to meet EN 61000-3-2 
[1] standard and it's Japanese equivalent. The standard sets strict limits for harmonic content of the 
input current of.'i power supply. The strictest part of the regulation is for equipment such as personal 
computers (PC:), which are specifically classified as class 1) [2]. To meet the reulatiou normally 
either passive filtermn usIng a large inducLrnce as in fiture :1 or a boost pre -ngu1ator as in. figure 2 is 
placed in front of the main converter. These two methods are either bulky or component intensive and 
are often considered expensive. Recently many siiigle-sta'e !L'FC topologies have been proposed in an 
attempt to address these problems, with varying, degrees of success. Two ofthe more promising single-
stage PFC topologies, the bi-forward and CS SPPC con%urters, have been selected and examined,, and 
compared to the two conventional PFC sol uti ons. Areas of interest are efficiency, ability to meet: EN 
61000-3-2, component stresses and cost. The comparison is carried out with the application of a 150W 
forward converter based PC power supply in mind. 

Passive FiIt:ering PEC 

L1,, • 
11 3  

180-201f 	

D, Sim  

Lin 

N3  

Figure 1: Passive PFC: using a large smoothing choke and a for. ward converter 
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Shown in Figure 1 is a passive PVC scheme. When operating from the low voltage ranpe the switch 
is closed and when operating from the high voltage range the switch is open.. Inductor 1, 1  increases 

the charging time of the bulk capacitors C and C. The inductor L 1  is normally constructed on an 

iron laminated core. For a 150W output power supply typically each winding of L 1  is 9niI-1 and the 
core size is an E142. This method can only just meet the regulations and is bulky, but it: is simple and 
inexpensive. 

To Stage PVC 

L1 	 ,, 	
L•2 

47-1b 5, 

Figurc : Forward Converter with 'PFC Boost: Pre-Regulator 

The two stage scheme is shown in figure. 2 implemented using a Ixost pre-regulator for current shap-
in cascaded with a forward converter to control the output voltage, The inductorL is typically 
operated in continuous conduction mode (CCM) and is controlled so that the input current thllows the 
input voltage. hence producing an input current which is nearly sinusoidal with low harmonic content. 
The 

 

voltage cm Is micAerately m ec,iilated at about 40O\ unlike many sin8le stage topologies TJn 
fdrtuuatel.y this method requires the addition of an additional converter with many extra components 
such as S .L1 fli and associate.d contml circuitry increasing cost:. Efficiency is at-a reduced as the 
throughput xwer is Processed twice, even though each stage is hipht.v efficient i0% to 90%) and can 
be optin'iised to its ovii task. 

Bi-Forward Converter 

f 0Zj 
IDU  265V ­­t~ a 

F igure 3 Bi-Forward Converter 

The concept for the bi-forward, shown in figure 3 (without L1), was initially proposed in Li based 

on a flyback converter. The hi-forward was developed and. improved LIIX)fl in [4, 5]. The basic idea 
is that there are two cotwer.ion paths 011%. is from the Input directly to the output via winding V 1  
and is used to supply the output when the :1 nput voltage is high When the input voltage is low (close 
to the zero crossings) the output is supplied from the bulk capacitor Up via windings N 1 A .  and N 1  

Capacitor Cig is peak dmarged. The peleiitage of energy delivered directly to the load is determined 
by the turns ratios between NM and N jjt. The converter proped was not desiined to meet: class I) 
regulations. 

.niprovemerits to the currents - aping performance were suggested in [6] with the addition of an induc- 
tor L 1  after the diode bridge, which enabled the converter to meet the class ID regulations with greale:r 
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Pigiir 1- A: Current wavetkiims when input voltage is low. B: Current %vivefornis, when input: voltage 
is low 

ease. (61 also converts the primary,  transformer windings into a single wi:ndin with a centre tap.. This 
iiiial version. is shown, in figure 3.  The addition of L,, changes the wny the power to the output is 
delivered. During: the zero crossings the output is supplied entirely from Cj. At low input voltages 
as shown in figure 4A the device S, is turned on at: tu and the current in L 1  ramps up from zero. This 
current also flows in I of the transformer sup pli ng. the output. This is topped up by supplying the 
remaining., output paw er ti omu the capacitor Covia  diode  D  md both parts of the traimfmier pnniarv 
Ii Ii i I i \ I Ui ix Ii As the voltage across - Li is smndII the current 
never rises high enotih tosupplvtheoutput on its own. At i  Si.is,  turned off and the current in Li is 
discharged into t. Llfltll t. 

In figure 4B the input voltage is high. The current in.L-.i, ramps up quickly from to when Si is turned 
on. Again the output current is topped up by current from (. At t'.i the current. in L1 equals the 
uii tent in I seen t1uviia11 the tnnfornierj and the two connect in euecupphring the ioniplete 
output p-: er  directly trorn the input. At 3 1  is turned off and L 1  discharges into CH until ta. In 
[6] there is a third operotion stage where L 1  goes into CCM, but the converter that was built for this 
investigation. does not operate in this mode. The expected input current shape is shown in. figure 5 

which was measured when the converter was opa.ratin at 1 30V inpuL 

(, 

Figure 5- Measured half load input voltage (top), input current (middle) and bulk capacitor voltage 
(bottom) at '130V input: for the bi-forward circuit. 
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This topology is attiuctive as it maintains the voltage on Cl at a reasonable level close to the peak 
of the mains and as PFC is achieved as a consequence of supplying the output directly from the line 
lriput..A further advantage is the small number of additional components required three diodes, a 
small inductor and a redesigned transformer primary to include a centre tap. No additional control 
circuitry is necessary. 

Current-Source  Sing1e-Stag P FC Converter (CS SPFC) 

Fitnr. : Forward Based CS SPFC Converter with. Voltage  Doubler input 

The basic sclienie for the CS S 2IPFC converter without voltage doubling, was introduced in [7, 81. The 
scheme .istlie practical implementation of 11 oss  freeresistor and a voltage source. The voltage doubler 
scheme is added in [9] and the complete converter is shown in figure 6. When the switch is open the A 
side is in series with the B side and is operated off the high voltage range.. When the switch is closed 
the two sides work. independently and the converter is supplied from the low voltage range. When Si 
is turned on there is already a current flowing in L1. A negative voltage is applied across .N1, causing 

the current in L to rise (at the same time current in i.) falls).. When. the current: in .L.p reaches the 

current  in L 1  the two connect in series and all the current flows in. the L;j path. Vlien S is turned off 

the current: in LD starts to fall and the current in L 1  commutates back into 0r  (L path and the D. 
path share current until t:he current in L reaches zero). This procedure reduces the duty ratio seen by 
L I .  and so helps to keep the voltage on the hulk capacitors reasonably low at about. 400V atlightload 

The advantages of this topology are that the voltage. on the bulk capacitors remains reasonable over 
a wide power range and it produces an acceptable. input current waveform. Also the voltage doubler 
input allows the transformer to operate with a narrow primary voltage range. The CS S PFC converter 

is also shown In be promising in [10] where it is compared to a CCM boost: pie-regulator scheme at 
450W. 

E.iperiiiientaI Circuit Specification 

To enable the comparison to be carried out the two single-stage tologies the bi-forward and CS 
S2'PFC. as well as a conventional forward with either a passive or active-boast pie-regulator have been 
tested The test circuits were developed using a mixture of analysis to determine values for key circuit 
parameters and simulation to verify operation. The specifications for the test circuits are: 

• Up to 150W output at 5V 20A and 12V4A. 

• Input supply is bath the 90 to 130' and 180 to 265V ranges. 

• Ability to confturn to IEC1000-3-2. class I) from 75W input: to full load input power (when 
supplying 150W output). 

. Circuits are as similar as possible.. 

In the passive P.FC and two stage pjc ciituit the values of the key forward converter components 
are: transformer Ni, Na - 44 turns, N2 5V output - 5 turns, .N2 12V output - 7 turns; Semiconductor 
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devices S- MOSFEf OUV; LI Z , D,5 5V output - I(X)V 20A Schottky diodes; 02, D,5  12V output - 
400V 8A diodes. The passive filter for the passive PFC circuit consists of C1, 082 - 33OpF 250V and 
a inH per winding(L li  or .L j jj) IPFC inductor on an iron laminated E142 core. The istprereg.ulator 
consists of C! - I00pF450V; LI- IinFf;S2 - MOSFE.T M)OV: LI 4  - GOOV SA. 

Thii diffienes in the hi forward art \4 \ 	V, 22 turns " MOSF'ET 12{X)\ fl, Dj 5\ 

output - 200V 20A diodes; Cjj is made Up from two 330aF 250\' capacitors connected in series: 
with additional components n, v. i: 1  -buOy SA diodes and .L 1  - 20j41-l.. The differences in the CS 
S2 PFC are N2  5V output - 3 turns.-  N2  12' output - 7 turns; S - MOSFE'T 1000V; with additional 
cornpznents .L and L - iOOjili each on the same core; Lt,' and LIJB - 401i11 each on the same 
core: 04A, DIE. D. D - WOOV 8A diodes; additional transformer turns NIA. - 11 turns. 

All circuits are operated at  switching frequency of'! OOkHz:_ 

Nomiaily the boost pre-regulator.. bi-forward. and the CS s2  FFC would require a filter on the input to 
remove switching frequency noise, but since the test circuits are being operated from a transformer 
isolated AC source, the transformer and a lpF on the DC side of the diode bridge rectifier is used 
instead. The two single stage topologies also have 'a RCD snubber across the MOSFEF to reduce turn 
off losses. 

Design (oiisidration 
The following considerations were used to design the single stage converters. The basic forward 
converter design from above was used as the start point: for the designs. 

.Bi4orward 

The bi-krward design was initially produced for the version of the converter without: Li (his was to 
see if that: version was able to tneett:he regulations. L1 was added after it was conflirned the circuit 
would not comply). Transformer primary turns NL for the fhrward convener is 44. This was split in 
half so that N 14  v... N1 p 1  .v.: 22 turns (simulation in Pspice was used to confirm that this design 
would produce a reasonable input current). This design means that the change over between direct 
power transfer from the supply and. the hulk capacitor occurs when the input: is at 163V (input voltage 
230V) or 188V when operating of 265V mains. This gives a total voltage of about 3. x iThV . .. 1. 1.25V 
(peak of the mains at 265V input) across the MOSFET during transformer reset: requiring the use 
of a 1200' device, When supplying the output directly from. the mains the voltage seen across the 
freewheel diode /i4 is V/N >.: :17W . &V. This is high, so it was decided to use 200V normal 
diodes for the 5V output for safety, instead of the 1 OOV sehottky diodes as used for the forward 
converter. This will increase loss. The maximurn voltage seen across D1 and .D is the bulk capacitor 
voltage, about 375V (during th zro crossings). The maximum voltage .seen by J),. is 2 x, when 
the input voltage is zero piving about: 750V. Due to this high voltage on 14,  l000V SA diodes were 
used for all three.. Using these over rated diodes will not have much effect on cost or efficiency. From 
a cctpoiut of view the high voltage MOSFET is a key factor and the use of normal diodes on the 5V 
output is a key factor from an efficiency point. of view. 

CS S2PFC 

To allow Lj to have enough time to ramp up to the current in L 1  the turns on the transformer secon-
daries wesereduc..edto 3 turns on the 5V output and 7 turns on the 12V output so asto increase the duty 
cycle. The voltage across C  and C is expect Led to be about 420V at worst hence: the MOSF.ET will 
need Lobe rated for at least twi:ce that:, 50V a I 000V device was used. The possible voltage across the 
I.) sis the bulk LapaLitot oltage of about 42O the voltage on the LI 1  s is I I (\j4 / Vi, 
which is about 525V Since I 000 diciles were already available these were used for LIlA through to 

was chosen following the method set out in [] which produced a value of25pH this was 
increased to 40jml:1 from experimentation. L 1  was set to 100pM. 
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The lx,ost pre-regulator ww developed following an Unit,tde application now [1 1] and the passive 
filter inductor vows taken from a 150W commercial power supply. 

Comparison of Results 
Harmonic Content 

Shown in flures 7A. 713. 7C and 71) is the harmonic content for the four circuits at 230V and IOOV 
Lit full load input power. and 230V and lOW at 75W input power. At full input power all four circuits 
pass at bh oiten, but at 75W the CS S*PFC: circuit exceeded the reuWion I innts frnm the 5th to 
I 3tIi hannoiiics at 73W input and on the 7th and 9th harmonic at 1 OOV inpuL The lowest: input power 
at which the CS S2PFC circuit complied was at 100W input power at 230V and at 97W input power 
at I OW input:. The tnn stage circuit passes each harmonic with very low harmonic CLUTCJIL whereas 
the other topologies are much closer to the harmonic limit.. 

C 	 p 

Figiir 7 A: Flmrnotiic content at Thu load (about. 198W) input power at: 230V. 13: Harmonic conten.t 
at full load (about 203W) input:power at lOW C: Harmonic content: at 75W input power at 23W, 1): 
Harmonic content at 75W input pwer at: I OOV. 

Current Waveforin 

In figures &&, tB, & and 8D are shown the input current waveforms at 230V and lull power. As can 
be seen the currentwaveform does not have to be part:ic.ularly sin usoidal to pass the class I) regulation. 
The two stage with 1xxst converter pre-regulator has the best current shape, shown i.n figure 8B, ,xhich 
is almost:sinusoidal. The passive solution, shown in figure 8Ahas quite a.narrow conduction angle and 
as can. be  seen is sLiffering: from a subharmonic oseillation. Even with this it still passes the reeulations. 
The CS S2PFC waveform is shown in figure $C and is again showing a fairly naritiw conduction mile. 
It is also possible to see the different conduction modes of the input current mentioned in ii The 
.DCM part is at the beginning and end of the current waveform where the slope is shallow and the 
CCTvI part IS the main part of the wiweforni. The bi-frward input current waveform is shown in ltD 
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and has a wider conduction an-le.. The waveform is slightly triangular in shape. This was different 
to what was expected. The current waveform shown in figure 5 is similar to the waveshape predicted 
for the inductor smoothed bi-forward: as power and voltage increased the waveshape became more 
triangular, but the converter was All able to meet the class I) retulation. The reason for the change in 
shape- is that reflected secondary current seen bv.-.'V'IA  by.-.'V'IA is quite high (6-7A) at- higher lxwers and at high 
voltage the duty is very narrow. This nieant thatthe current in Lj was not able to reach the reflected 
load current hence the change in shape. 

C 	 0 

Fi.uro t: A: Measux full load bulk capacitor voltage top trace s  input voltage (2nd ftorn top) input 
current (3rd from top) and voltage drain source of the MOSFIET (bottoLn) at 230V input for passive 
flier circuit, B: Mlcasured, full load input voltage (top), input current (bottom) and bulk capacitor 
voltage (middle) at 230V input fur the two stagecircuit. C: Measured full load input rollage (top), 
input: current (middle) and gate drive signal (bottom) at 230V input: for CS S 21'FC circuit, 0: Measured 
full load input voltage (top), input current (bottom) and bulk capacitor voltage (niiddk) at 230V input 
for the hi -forward circuit. 

Eflieien 

Figures 9A and 9B show the efficiency of--the- four converters across a wide output power mnge from 
about 37W output. to 1.5-0W output for input voltages of 115V and 230V. The passive filter PFC and 
forwnrd converter shows the best efficiency of around 50% for both voltages. The CS S2 PFC and the 
two stage are both showing efficiencies of about 75%. This result confinns the result from [10] that 
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the CS S2IPFC and the two stage will have similar efficiencies. Thebi-forwarti is showing an efficiency 
of about 703,1 . The reason for this is the use of standard diodes on the 5V output instead of schotticy, 
diodes which are used in the other circuits. The reason for usinrr normal diodes was explained in the 
design considerations section. 11 schottky diodes could be used in a future design the efficiency would 
be comparable with. the CS S 2PFC and two stage approach. It is worth remembering that the two snle 
stage topologies are fitted with RCID snubbers to reduce MOSFET turn off losses. 

.5 	71 	( 

A 

F. 	0: A: Measured efficiency with input voltage at [15V, 13: Measured efficiency with input 
voltage at 220V 

Bulk Capacitor Voltage 

In figure 10 the variation of voltage across the bulk capacitors as the power increases is shown. The 
two stage bulk capacitor voltage sta%s virtually constant in a I.OV iane between 395V 'mid 18\ 

showing a small decrease as the converter is loaded up. The passive-PFC. has the lowest bulk capacitor 
voltage range &orn 366V at light load to 355%' at full load. This variation happens as the resonant 
circuit conditions between L11 and (]pi. and .. change as the load increases.. The CS S 2 PFC voltage 
ranges from 40EV at light load to 376V at full load which is close to expectation. The hi-forward has 
a voitae of about 3t6V from. virtually no load to 37W output; the voltage then ju:lnps to 42EV at half 
poverreachin a niaxiniuni of 430V at 34 of full load falling slightly at full load. The bulk capacitor 
voltage for the b:i.-fôrrd was expected to stay dose to the peak of the mains at about' 380V This is 
due to the same reason as explained in the current shape section. An alternative design with N set 
to 32 tunis and NI..p set to 12 tunis was also tried out.. This design did have bulk capacitor voltage 
close to the peak of the mains at .330V when operating with a 230V input, hut it did not meet all ofthe 
harmonic tests.  

42(( 

••____ '______-.4.'-- 

1(X! 

Figu.ro 10: Measured bulk capacitor voltage with input voltage at 265V 
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Component Stress 

Shown in table I are the measured voitare stresses for the MOSFETS and diodes. The voliage on the 
switches in the hi-forward is lower than expected as the MOSFET snubber circuits were resetting the 
transformer instead of the tertiary winding. The snubber circuit was also resetting the transformer in 
the CS S2 E'FC. The 5V diode voltage for the hi-forward is slightly higher than expected (95V) since 
the bulk capacitor voltage is higher than expected. 

Device Eli-forward C.S5 4.PFC 

Si 930 850 
SVdiodes 100 29 

Fable L Vbllate stress on key semiconductor components 

Cost 

Shown in table II is the normalised cost of the four converters, the passive with forward converter is 
the base value it one, the rest are compared to this. 

Converter Cost 
Passive I 
Boost 

cSSPFC 
1.39 
1,46 

Bi-Forward j1.455 

Th.blo 11: Costs of the converters compared to the passive filtering with forward converter 

The passive solution came out cheapest, with the lxxst converter second even with all those extra 
con1panents The two single stage topologies are about the same and are the most expensive. The 
main reason they are the; roost: expensive is that they both have high voltage; MOSFErs I000V and 
1200k' compared to the 900V device in the forward converter). If RCD snubber transfornier reset is 
used instead of tertiary windingresetthenthe same MOSFET as in the normal forwardconverter could 
he used and there cost would be comparable to the passive with forward coiweiler method. 

Conclusion 

From the results it seems that the passive with forward converter has the best efficiency and lowest 
cost. and is able to meet the class D regulations. The lxxst pie-regulator scheme is most: likely to 
complicated for a 150W power level. The two single stage topologies have come out worse being the 
most expensive. the bi-forwaid least. efficient: and the CS SPFC: not able to meet. the iegLlIatiOfl.S Over 
a wide power range lithe two single stage topologies were built using snubber transformer reset and 
with minor redesign to keep capacitor voltage lower they would most likely start: being competitive 
with the passive with converter solution. Single stage topologies with the improvements are also better 
suited to applications where compliance with the regulations is only required at certain power and not 
a wide power range. 
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Abstract 

In this paper a new single-stage .PFC lopoloy, to meet l.EC 

6 1.000 -3-2, based on the forward converter with a low fre-

quency switch is presented. The proposed converter is simple 

and suffers flout lower component stresses than other si ngle-

state PFC converters. Due to this it is erpectul that the con-

vener will operate with highercon'rcsion eftciency and lower 

cost. The harmonic content of the input current, efficiency and 

component stress nit investigated. 

I Introduction 

In recent vests many new so-called single-stage FEC topolo-

gies  lvwc been introduced. The sun of these conveiteis is to 

meet LEC 61030 -3-2 and supply the output load with goad 

output sltage regulation in a single power stage. These types 

of converter are intended for low/medium power supplies. 

One of the mere promising topologies is the bi-liarwanli intro-

duced in [U, but this could only meet the class A part of the 

regulations. Also it suffers from high voltage and current stress 

(when compared to a forwaid cOnverte1) on the the main switch 

possibly re-quiring the use of a !'4OSFET isted up to U200V. 

Stich a highly rated device is required when tisiagtextiaiy wind-

ing transformer reset as the primary winding in the tirinsfonner 

is centre tapped, hence during reset three times the bulk capac-

itor volta9c. will be seen across the switch if all three windings  

have the same number of thins. In [3] an inductor was added 

onto the fuantend of the converter; which enabled it to pass the 

class D regulations but in [2] this was shown to suffer from 

high voltage stress on the bulk capacitor and main switch. 

To try and iniproveon this poor voltage and current stress per- 

fomiancea new converter topology, shown in figure 1. is pro- ro- 

C% 

Figtte Figure 1: Forward converter with additional low frequency 

switch in series with the bulk capacitor 52 can also be an 

tGBT. 

posed in this paper mi rug a law frequency switch added onto a 

forwatdcomertCL The aim of the low frequency switch far the 

additional transformer winding in [i] IS to provide a mettuad 

of releasing energy stored in CB to the output when the input 

voltage is low. This converter should have the same ability to 

meet tEC 61030 -3-2 as the hi-forward in [1] and only meet 

class A. 

L Y..J 
Figure 2.: Forward converter with additional low frequency 

switch in series with the bulk capacitor and an input inductor: 

S2 can also beaniCtiT. 

Figure 2 shows the proposed converter with additional input 

indtretor Li. This version is expected to meet class D. 

2 Operation 

2.1 Operraflonof Low Frsuency SwItch 52 

S witch Sa is turned on and off by a comparator inking at the 
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Figute 3: Control of the low facquencyswitch using asimple 

comparator 

iripuoltiiofthe com'erter as shown infigure 3. When the 

input voltage is low. S2 is on and the output is supplied com-

pletely from C. Switch Si  is switching at a high frequency 

leg. lOOkl-l:), and high frequency current pulses flow through 

St. but 52 stays on all the time. When the voltage at the in-

put rises above the voltage set for the cornpaicatot. St will turn 

off. The output load is now supplied directly from the line. The 

duty cycle for 51 will reduce as the line voltage rises to keep 

the output voltage constant. 

2.2 OpeiutInof line Coirre,ter with Input Inductor L1 

If L1 is not fitted the bulk capacitor C5 is peak chaied in 

the normal inannerof a capacitorsiunotheddiode bridge. recti-

fier and the converter draws the saint shape ctiruent as the hi-

forward in [I]. With the addition of L1 the ..echnjig of C5 is 

spread out serene the whaleperiod.that S2  is turned off. Figure 

4 shows the current wavetotni 63r .1 1  operating in disco ntirru-

ous conduction made 0CM with L, operating in continunuc 

conduction !ICCM  during the off period .of S. L1 could also 

be operated in CCtSI. 

At f. S1 is turned on. the full line voltage is applied arrone 

L 1 and the current ramps up. At f, the current in L5 reaches 

the reflected current in L2 and the two inductors connect in 

series through the transformer and energy is transferred to the 

secondary side of the circuit. At f, is turned off and L 

discharges into C5 until fa  when the current in L1 reaches 

zero. 

3 Design Considerations 

3,1 Dusk Com'er*er 

The main design parameter for setting the conduction time 

of the input current and the magnitude of the bulk capacitor 

recharging current is the turn on and off voltage of switch 52. 

Another is the turns ratio of the transformer which will deter- 

Figure 4: Current in L1, S and D1 far one switching cycle 

mine the voltage and current stresses in key components and 

the duty cycle. 

The iiiinimtmi voltage 	that St  can he properly opei 

ated is 

N1 . V 	
(ji 

= .ntt . 

where 	is the maximum duty cycle lnorrnallv 05 f.i a 

forward converteti. 

Figure 5 shows htw,  the duty cycle  of the converter changes 

over a half lire cycle. Where the plot is flat the output is sup-

plied from Cr, and the curved part is where the output is sup-

plied direct from the line. It is noted that there is a jump in 

the din cycle at the switching of 52. due to a sudden change 

in volvire seen at the transformer; which the conve.iters con-

troller has to respond to quickly to keep the output voltage in 

regulation. In figure 5 the turn onruid off voltage is L4OV; if the 

turn on and off voltage is increased rhejtunp in duty cycle will 

be reducedas the difference between bul k capacitor so Itage and 

input voltage at turn on and off is reduced. 

Figure 6 abawu that as the turn on and. off voltage for 52 in-

creases input current conduction angle decreases. This can 

be translated to give an indication of the filtered input current 

shapeassbawn in figures 7 ands. 
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Figuto : Duty cycle variation over a lIne half cycle fe r a turn 

onnnd off voltage ofi40V for S. 

Figure 7: Input current waveform for 150W with 5 turned 

on and off at 140V 

CLJ : J 
C 	 0055 	 CCL 
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Figure 8: Conduction angle of the input current as the turn 

on and off voltage ofS2 increases 

In figure 7 where the input current conduction angle is long 

(I D) the conduction angle for supplying the output from the 

bulk cap.icitoris low t67") which ie,ducm the peak of the bulk 

capacitor recharging current. When the turn on and off voltage 

is high 200V1 as in figure 8 the input currentconduction angle 

is reduced 1760) and the lxii k:capacitor supplies the output for 

longer making the peak of its techiuging current higher. 

3.2 Comertsrwftb luput 1nthj0orL1 

In addition to the considerations for the basic Co nyc rter the ef-

fect of adding inductor L1 needs to be considered. Figure 9 

shows how various parts of the duty cycle change over a half 

line cvcle. when the converter is auppliedfiom the line input. 

One of the effects of adding inductor L5 is that the bulk ca-

pacitor Ca is no longer peak charged and hence the voltage 

requires analysis to predict its average value. Figure 10 shows 

how the calculated bulk capacitor voltage varies. The voltage 

rises as the output power increases. 

Figute 8: Input current waveform for 150W with 52 turned 

on and off at 200V 

off voltage for St of 230'.' and L1 as 20H. Compared to fig-

ures 7 and 8 the waveform is smoothed otit and more balanced 

about the centre of the time period. The peaks at the ends of 

the wa'rfarm in figures 7 and 8 will appear if the turn on and 

off voltage of 52  is redired. 

33 DrIving of Ssrttch & 

The switch 52 can be driven using several different metluds, 

such as using a level shift IC, gate pulse transformer or opto-

isolator with an independent power supply. The toe of a sepa-

rate power supply is not a problem is most converters in pear-

tire have an auxiliary power supply to power items such as the 

control circuits. For the prototype converter presented in the 

next section switch S2  is driven using a signal level shift IC 

and a bench supply to power the floating side to represent an 

auxiliary power supply. 

4 Experimental Verification 

A prototype converter with the following speci.ficzitioro has 

been built and tested 

Figure It shows the predicted current shape fora turn on and 	• Output power 1)W 
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Figure : Variation of duty cycle for 172 turned on and off at 

231W with L1 as 20jH. AD is the duts for the petted t to 

#,, D11 is the duty for the period , to , .D is the overall on 

duty for 51 from to 4. and B1 is the discharge ditty for L1 

from ± to id . 
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C 	 •OO1. 

Figute 11: l.nputctiirrnt waveform for 100W with St  turned 

on andoff at '- .30V with L1 as 20aH 

• Si turn onioff voltaeat _2  30V, and with L1 

S S2 turn onIoffoltageat 230V. and without L1 

• 5, mu, on/otfsoltageat 14OV, and wittuutLj 

On the input of the piototype. conveilera filter formed horn a 

LI4mH inductance and lmF capacitance hint been added to 

fliterotit the discontinnnus switching frequency current pulses. 

IJ Hzirmo.nk Centent of LnpUt Current 

Figure 12 shows the input RIrIS current harmonic levels for 

the odd harmonics up to the 19th harmonic compared to chiit 

J 	
A. The eveit haitian nics for all three cotivexters was -.,err low - 	40 	 40 	 0 ID) 	 and hence. tbey are not shown. All three velsions of the con- 

verter paaned all the class A I irnits by a wide margin as figure 

12 shows. 
Figure 10: Variation of bulk' capacitorvoltage with load, fox 

different turn on and off voltages for S2 of 1.4041. 160V, 181W. 

201W and 231W IL1 as uHi 

	 [:r 
LI S Output voltage and . current 5V, OA-20A 

j 	 j 	 j 	 J~ 

S input voltage, ISOV- 16V 

The ke'i' cornonrrent values are: for the transformer Xi = 
Nn =44 and 	= 5; the inductors L1 = 20rrH and 

= 15rH. The switch 5 is a MO WET rated for coov Figure 12: inptitctin'entodd haranonics up to the 19th hai-

and.52 is an iGBT rated for 501W. The diodes D2 and D are monic for thn three conwrtervanations compared to the clam 

schattky diodes. A Limits 

The prototype converter can be configuind with or without the 

input jndmtox Li, and the i:nput voltage at which Si turns on Figure 13 shawstbe input RMS current harmonic levels foithe 

and offcan be adjusted tong a variable resistor on the pnxitve. oddharimnnirt up to the 19th haimoniccornparedto clam 0 for 

input voltage divider of- thc comparator. The fiolloming set ups an input power of 127W. The hamionics for the Two versions 

were tested; wit hatit ii are shown to compare them to the version with Li. 



The converter with the turn on &iii off of 52  as 140V fails class 

0 on the 7th. 11th, 13th, 17th, 19th, 23rd and 29th harmonics 

and the veisiot, with a 5, tULTI on and off at 230V failed class 

Don the llth, 13th, 15th, 17th, 19th,21at.23id,25th.27thand 

29th. Once £1 has been a&ledto the vemion with a S turn 

on and off voltage at 230 1W the converter only fails class Don 

the 13th and 23id harmonics. Further investigation is needed to 

reduee the level of the 13th hiurnonie i harmonics above the 21st 

we allowed to erceeded the iegttlion value by SOtb if certain 

othercorditiora are eeij. This .mabe achieved by ineneasing 

the size of Li and?or changing the turn on and off voltage. of 

52. 

Figure :14: input current with L1 and a torn on andoff w21tagt 

for 52  of23OV. Top trace: bulk capacitor voltage, middle trace: 

input 'mItage and bottom trace: input current. 

Figure 13: Input current ricld harmonics up to the 19th bar - 

monic for the three converter variations compared to the class Ftgte 15: Input current without 
L1 and a turn on aid off 

0 limits for an input power of 127w 	
voltagefot52 of 230V Top trace: bulk capacitor voltage. rnid- 

die trace. input witne and bottom trace: output voltage from 

comparator. 

The addition of even a small inductance ionly 2O..rH was 

added) on the front end of the converter reduces the levels of 

the cuilent harmonics quite conside:rably. The irductanee is 

just estending the conduction time of each switching cycle by 

adding the charging and discharging of itself onto the current 

being ttsnsfeimdto the output flowing through L1. 

4.2 input Current Woiernis 

Figure 14 shows the filtered input current wavomni for the con-

verter with L-1 and a turn on and off voltage for 52 Of 230V, 

and figure t5 shows the same converter, but without L1. The 

cuitent'a'as'eform in figure [4 is smootherth.ai, that in figure L5 

and does net suffer ftom rises in current cicee to turn on or off to 

the some extent. Figure 16 where turn on or off is 140V shows 

this effort more clearly. Also the peak part of the waveform is 

mom. spread out'whnn.Lj is fitted Figure 16 when comparedto 

the wa'refomi drawn by the hi-forward is very similar in shape. 

43Ef&lenci and Component Stress 

Figure 17 shows the efficienet' for the converter'xith 52 turn On 

and off voltagu at 230V with L1 and figure 18 shows the effi- 

ciency for the converter without Li with a 'tr voltage of 140V. 

The measured efficienev is reasonable being around about 77% 

at frill load and neutral input voltage of23OV for both versions 

of the corr.rerter with and without L1. This could he improved 

with optimization of the converters. 

The indreton L1 acts like an inductor in a boost converter salt-

lag the bulk capacitor roltsre above the. input voltage. Unlike a 

boost eons'erter the bulk:capacitor 'arltage is uncontrolled. Fig-

ure 19 shows bow the bulk capacitor-voltage, varies with output 

power fir the maximum input voltage available from the test 

supply. .&n$ynis carried out predicts the peak voltage arioss 

CB to be 394V when operating from a5V input. This value 

is acceptable, being similar to that tvpicall'e seen on the bulk 

capacitor in a FFC boost pre-regulator. In the versions without 

the bulk capacitor is only ever charged up to the peak of the 

supply roltage. 

The bulk capacitor voltage rises as the output power increases. 

This is the opposite to most single-stage FEC topologies with 

a boost style inductor where the voltage on the bulk capaci-

tor rises increases at low puwec The bulk capacitor roltage 
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Figure iI: triput current without L1 and a tOLD on and off 

voltage for Sr of L-IOV. Top if: input vo ltage, inidffie tia 	FigUte 18: Efficiency aciass the output pawer tangewithtrt 
input current and bottom trace: output voltage. from the om- 	fitted and  tutu on andoff'voltagefor 5, of 140V 
parator 

Figure 17: Efflcieny across the output powzriangewith Li 
fitted and aturnon and off voitage for 5- of 231W 

changes so as to balance the enerv  in andout of the capacitor 

over a half line cde. 

5 Conclusions 

A single-stage PFC topology with a simple operation has been 

presented. The con'certer will pass class A arsi is 'vets close to 

passing class 0 with an input inductor fitted The con'vetter 

has a ieasonable bulk capacitor 'mitage and efficiency, ,. The 

converter could be used instead of passive .fi Itering. redwing 

weight and volume ofa power supply. 
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