
The Theory of LEGO

A Proof Checker for the

Extended Calculus of Constructions

Robert Pollack

Doctor of Philosophy

University of Edinburgh

1994

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429708173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Atomics is a very intricate theorem and can be worked out with algebra but you

would want to take it by degrees because you might spend the whole night proving

a bit of it with rulers and cosines and similar other instruments and then at the

wind-up not believe what you had proved at all. If that happened you would have

to go back over it till you got a place where you could believe your own facts and

figures as delineated from Hall and Knight’s Algebra and then go on again from

that particular place till you had the whole thing properly believed and not have

bits of it half-believed or a doubt in your head hurting you like when you lose the

stud of your shirt in bed.

Flann O’Brien, The Third Policeman

Abstract

LEGO is a computer program for interactive typechecking in the Extended Calculus of Con-

structions and two of its subsystems. LEGO also supports the extension of these three systems

with inductive types. These type systems can be viewed as logics, and as meta languages

for expressing logics, and LEGO is intended to be used for interactively constructing proofs

in mathematical theories presented in these logics. I have developed LEGO over six years,

starting from an implementation of the Calculus of Constructions by Gérard Huet. LEGO has

been used for problems at the limits of our abilities to do formal mathematics.

In this thesis I explain some aspects of the meta-theory of LEGO’s type systems leading to a

machine-checked proof that typechecking is decidable for all three type theories supported by

LEGO, and to a verified algorithm for deciding their typing judgements, assuming only that

they are normalizing. In order to do this, the theory of Pure Type Systems (PTS) is extended

and formalized in LEGO. This extended example of a formally developed body of mathematics

is described, both for its main theorems, and as a case study in formal mathematics. In many

examples, I compare formal definitions and theorems with their informal counterparts, and

with various alternative approaches, to study the meaning and use of mathematical language,

and suggest clarifications in the informal usage.

Having outlined a formal development far too large to be surveyed in detail by a human

reader, I close with some thoughts on how the human mathematician’s state of understanding

and belief might be affected by posessing such a thing.

i

Acknowledgments

Rather than the usual technical acknowledgements, I have written a history of LEGO (sec-

tion 1.2) and of the project reported in this thesis (section 1.3). In those sections I try to say

who and what were the important influences on this work. I thank all of them, as I have loved

doing the work.

I also want to thank LFCS and the many friends I have here. Rod Burstall, my research

supervisor, has endless enthusiasm for computer aided formal reasoning, and has supported

and encouraged my work. I especially want to thank George Cleland, who, as administrator

of LFCS, has always supported research over red tape. LFCS has always managed to find the

resources I asked for.

Talking about resources, this thesis burned more computer cycles than most, and I don’t

just mean for LATEX. The computing services available at LFCS are the best I have encountered.

Thanks to Paul Anderson, George Cleland, Morna Findlay, and many other CO’s.

Finally, I want to thank two people who have influenced my mathematical aesthetic. Gabe

Stolzenberg taught me most of what I know about constructive mathematics, and encouraged

looking deeply at the meaning of mathematical things. Clint McCrory is a college friend I

haven’t seen in many years. When I was an undergraduate at M.I.T. and he was a postgraduate

at Brandeis, he somehow, through discussion of class problem sets from my second year

analysis course, changed me from a mediocre student who enjoyed mathematics, to someone

obsessed with the exact shape and presentation of proofs.

This work was supported by the ESPRIT Basic Research Actions on Logical Frameworks

(LF) and Types for Proofs and Programs (TYPES), and by grants from the British Science and

Engineering Research Council.

ii

Declaration

I declare that this thesis was composed by myself, and the work contained in it is my own

except where otherwise stated.

Robert A. Pollack

iii

Table of Contents

Abstract : i

Acknowledgments : ii

Declaration : iii

1. Introduction 1

1.1 Proofchecking and Typechecking : 3

1.1.1 The Curry–Howard–Martin-Löf–de Bruijn Isomorphism : : : : : : : 3

1.1.2 Direct Inductive Representation of an Object Theory : : : : : : : : : 3

1.1.3 Logical Frameworks : 4

1.2 A History of LEGO : 4

1.3 A History of the Project to Formalize PTS : : : : : : : : : : : : : : : : 6

1.4 An Overview of the Thesis : 8

1.5 Production of this Thesis and its Verbatim Inclusions : : : : : : : : : : : : 9

1.6 What to Look For : 10

2. Warming Up To LEGO 11

2.1 LEGO : 11

2.1.1 LEGO Term Syntax : 11

2.1.2 LEGO Contexts : 12

2.1.3 Argument Synthesis : 13

2.1.4 The Cut Command : 14

2.1.5 Inductive Definitions : 15

2.2 Some Basic Types : 17

2.2.1 An Aside on Well Founded Induction Principles : : : : : : : : : : : 21

iv

Table of Contents v

3. Lambda Calculus: How to Handle Free Names 23

3.1 Pure Languages : 23

3.1.1 Pure Language Formalized : 24

3.2 Terms : 25

3.2.1 The Length of a Term : 25

3.2.2 Deciding the Shape of a Term : : : : : : : : : : : : : : : : : : : 26

3.2.3 Occurrences of Parameters and Sorts : : : : : : : : : : : : : : : : 26

3.2.4 Substitution : 27

3.2.5 No Free Occurrences of Variables : : : : : : : : : : : : : : : : : 28

3.2.5.1 Formalizing Vclosed. : : : : : : : : : : : : : : : : : : 29

3.2.5.2 VclosedGeneration Lemmas : : : : : : : : : : : : : : : 30

3.2.5.3 A Better Induction Principle for Vclosed. : : : : : : : : : 31

3.2.6 A Technical Digression: Renamings : : : : : : : : : : : : : : : : 34

3.2.6.1 The action of a Renaming : : : : : : : : : : : : : : : : : 35

3.2.6.2 Injective and Surjective Renamings : : : : : : : : : : : : 36

3.2.7 Do Terms Really Exist? : 36

3.3 Reduction and Conversion : 38

3.3.1 One-Step Parallel Reduction : 38

3.3.2 Many-step parallel reduction : : : : : : : : : : : : : : : : : : : 38

3.3.2.1 A Church-Rosser Theorem : : : : : : : : : : : : : : : : 39

3.3.3 Conversion : 40

3.3.3.1 The Second Church-Rosser Theorem : : : : : : : : : : : : 41

3.3.4 Alpha-Conversion : 42

3.3.4.1 Deciding Alpha-Conversion : : : : : : : : : : : : : : : 43

3.3.5 Normal Forms : 45

3.3.5.1 Deciding the Shape of Normal Forms : : : : : : : : : : : 45

3.3.5.2 Deciding Conversion : : : : : : : : : : : : : : : : : : 46

3.3.6 Ordinary Beta-Reduction: Church-Rosser Theorems Revisited : : : : 46

Table of Contents vi

4. Pure Type Systems 50

4.1 What are Pure Type Systems : 50

4.1.1 Pi-Formation : 50

4.1.2 Atomic Weakening : 51

4.1.2.1 Weakening and the Shape of Derivations : : : : : : : : : : 52

4.1.3 Parameters and Variables : 53

4.1.3.1 A Strange Lambda Rule : : : : : : : : : : : : : : : : : 54

4.1.4 A Generalization: Abstract Conversion : : : : : : : : : : : : : : : 54

4.2 Contexts Formalized : 55

4.2.1 Occurrences : 56

4.2.2 Subcontexts : 56

4.3 The Typing Judgement Formalized : 56

4.4 Properties of Arbitrary PTS With Abstract Conversion : : : : : : : : : : : 57

4.4.1 Parameter Lemmas : 57

4.4.2 Start Lemmas : 59

4.4.3 Topsorts : 59

4.4.4 A Better Induction Principle for gts : : : : : : : : : : : : : : : : 59

4.4.4.1 apts is equivalent to gts : : : : : : : : : : : : : : : : : 61

4.4.5 Generation Lemmas : 63

4.4.6 The Thinning Lemma : 64

4.4.6.1 Naive attempt to prove the Thinning Lemma : : : : : : : : 64

4.4.6.2 Some correct proofs of the Thinning Lemma : : : : : : : : 64

4.4.6.3 A Better Solution : 65

4.4.6.4 The Weakening Rule : : : : : : : : : : : : : : : : : : : 66

4.4.7 The Substitution Lemma : 66

4.4.8 Correctness of Types : 67

4.4.8.1 Type Correctnes and Topsorts : : : : : : : : : : : : : : : 67

4.4.9 Subject Reduction Theorem: Closure Under Reduction : : : : : : : : 68

4.4.9.1 Properties of Conversion Needed for Subject Reduction : : : 68

4.4.9.2 Non-Overlapping Reduction : : : : : : : : : : : : : : : 69

Table of Contents vii

4.4.9.3 The Main Lemma : 70

4.4.9.4 Closure Under Reduction : : : : : : : : : : : : : : : : : 72

4.4.9.5 Closure Under Alpha-Conversion : : : : : : : : : : : : : 72

4.4.9.6 Correctness of the LDA Rule : : : : : : : : : : : : : : : 73

4.4.9.7 Alpha-Conversion and the Shape of Derivations : : : : : : 74

4.4.10 Two Other Presentations of PTS : : : : : : : : : : : : : : : : : 74

4.4.10.1 The System of Valid Contexts : : : : : : : : : : : : : : : 75

4.4.10.2 The System of Locally Valid Contexts : : : : : : : : : : : 77

4.4.11 Abstract Conversion Revisited : : : : : : : : : : : : : : : : : : 81

4.4.11.1 cnv and Vclosed : 81

4.4.11.2 A Converse to sStartLem : : : : : : : : : : : : : : : : 82

4.4.11.3 Predicate Conversion : : : : : : : : : : : : : : : : : : 82

4.5 Properties of Arbitrary PTS With Beta-Conversion : : : : : : : : : : : : : 85

4.5.1 The Typing Lemma : 85

4.5.2 Strengthening : 86

4.6 Functional PTS : 86

4.6.1 Uniqueness of Types : 86

4.6.2 Subject Expansion : 87

4.7 Expansion Postponement : 87

4.7.1 Two Different Expansion-Free Systems : : : : : : : : : : : : : : : 87

4.7.1.1 The system `red : 87

4.7.1.2 The system `RED : 88

4.7.2 Expansion Postponement defined : : : : : : : : : : : : : : : : : 89

4.7.3 Expansion Postponement for `red and `RED : : : : : : : : : : : 90

5. Semi-Full and Cumulative PTS : Typechecking ECC 93

5.1 Typechecking Functional, Semi-Full PTS : : : : : : : : : : : : : : : : : 93

5.1.1 Introduction to Type Checking : : : : : : : : : : : : : : : : : : 93

5.1.1.1 Expansion Postponment and Typechecking : : : : : : : : : 94

5.1.2 Towards a Syntax Directed System: Fixing the Lambda Rule : : : : : 98

5.1.2.1 Semi-Full PTS : 98

Table of Contents viii

5.1.2.2 Fixing the Lambda Rule : : : : : : : : : : : : : : : : : 100

5.1.3 A Syntax Directed system: Eliminating the Conversion Rule. : : : : : 100

5.1.3.1 Characterizing gts : : : : : : : : : : : : : : : : : : : 106

5.1.4 Principal Types : 106

5.1.5 Typechecking gts : 108

5.1.5.1 Decidability of Side Conditions : : : : : : : : : : : : : : 109

5.1.5.2 A Typechecking Algorithm : : : : : : : : : : : : : : : : 110

5.1.6 Type Synthesis : 112

5.1.6.1 More on Decidability of Side Conditions : : : : : : : : : : 112

5.1.6.2 A Type Synthesis Algorithm for sdsf : : : : : : : : : : : 114

5.1.6.3 Type Synthesis and Type Checking for gts. : : : : : : : : : 116

5.2 Cumulative PTS : 117

5.2.1 The Cumulativity Relation : 117

5.2.1.1 Cumulativity in ECC : : : : : : : : : : : : : : : : : : : 118

5.2.2 Properties of Cumulativity : 119

5.2.2.1 Decidability of Cumulativity : : : : : : : : : : : : : : : 120

5.2.3 Type Synthesis and Type Checking for Cumulative PTS : : : : : : : 121

5.3 ECC : 123

5.3.1 Definition of ECC : 123

5.3.2 Properties of ECC : 123

5.3.3 Type Synthesis and Type Checking for ECC : : : : : : : : : : : : : 125

5.4 Further Work: Executable Typecheckers? : : : : : : : : : : : : : : : : : 125

5.4.1 Partial Correctness : 125

5.4.1.1 Partial Normalization Functions : : : : : : : : : : : : : : 126

5.4.1.2 Partial TS and TC Functions : : : : : : : : : : : : : : : 127

5.4.2 Efficiency : 128

6. What Does It All Mean? 130

6.1 Is it a Theorem? : 131

6.1.1 A Few Details About Simple Proof Checkers : : : : : : : : : : : : 132

6.1.2 Syntax Must be Explained : 133

Table of Contents ix

6.2 Informal Understanding of a Formal Theorem : : : : : : : : : : : : : : : 134

6.2.1 How to Read a Formal Proof : : : : : : : : : : : : : : : : : : : 134

6.2.1.1 Declarations : 134

6.2.2 Other Representations : 135

Chapter 1

Introduction

I am interested in completely formal mathematics: a proof is ultimately a derivation in some

given formal system. I believe that in practice, this can only be achieved with machine

assistance. LEGO [LP92,JP93,JP94] is an interactive proof development system (proof checker)

for Luo’s Extended Calculus of Constructions (ECC) [Luo90a,Luo94], and for two subsystems

of ECC. To support the interactive construction of typing derivations in these three type

theories, LEGO provides refinement proof, i.e. top-down, or goal-directed proof, and some

non-trivial syntactic sugar. LEGO is a basic proof checker, robust and pragmatic.

The core of LEGO is a typechecker for ECC. In this thesis I develop the theory of a class

of type systems, and based on this theory, give a (parameterized) typechecking algorithm and

prove it correct for all three type systems supported by LEGO. This entire theory is developed

in the formal language of ECC with inductive types [Luo94], and machine checked using

LEGO. This is an important contribution because correctness of typechecking is central for the

approach to proof checking based on the type theoretic representation of logic (section 1.1).

The theory developed to achieve this goal falls into two broad classes:

general type theory: A theory of some reduction, conversion, and typing relations over a

language of explicitly typed (so called Church style) lambda terms. This theory is based

on well known informal mathematics, and includes:� Some basic lambda calculus, e.g. definitions of the language, substitution, reduc-

tion and conversion, and the basic theory of reduction and conversion. The major

result here is the Church-Rosser theorem.� The basic theory of Pure Type Systems (PTS). Here the typing judgement is

defined, and results such as the substitution (cut) lemma, the correctness of types,

and subject reduction (closure under reduction) are proved.

1

Chapter 1. Introduction 2

specific to type checking: Here we develop new mathematics (some of it previously pub-

lished in [vBJMP94]) solving the difficulties encountered in extending previously under-

stood techniques of typechecking to the type theories of LEGO.

Although the material on general type theory mentioned above is based on well known

informal mathematics, our formal presentation is an important contribution of this thesis, as

it is compared with informal presentations, clarifying the meaning of informal statements and

their proofs. (For example, sections 3.2.5, 3.3.6, 4.1.2, 4.1.3.1 and 4.4.6.) Among the interesting

points, our use of named variables, as opposed to de Bruijn nameless variables, throws some

light on where alpha conversion is really necessary, and our formalization of the typing rules

for PTS has suggested several modifications to the informal presentation, improving both

intuitive understanding and technical properties of the system. Many of our proofs are more

elegant than previously published informal proofs of the same results, having, for example,

many fewer cases to check (see section 4.4.9). Viewing from another level, we have a realistic

example of formal development of a non trivial body of mathematics. This work is not focussed

on proving one big theorem, but is a body of formal knowledge that has developed in directions

not originally anticapated, and that I hope will continue to be extended.

The material on typechecking is not beautiful mathematics; it is technology. Although the

derived typechecker program is not a pragmatically acceptable implementation, it contains

some of the detailed optimizations that are necessary to make such a typechecker efficient.

What is of interest is that we are able to reason formally about such things in a straightfoward

manner.

Finally, I suggest an approach to the problem of how to make sense of a big formal

development that you cannot actually read or understand in its entirety. There are two

questions here:� How can you know the meaning of some statement appearing in a big formal develop-

ment?� How can you believe that a statement claimed to be proved in a big development is

actually proved?

The first question is no different for formal mathematics than for informal: you must read

the statement you want to understand, and all of the definitions (hereditarily) used in it. The

second question is more interesting. When presented with several million ascii characters

and the claim “here is a proof of : : : ”, one way to get evidence for believing the claim is to

mechanically check the proof yourself. But human beings are not very good at such things;

instead we can write a computer program to do it. My suggestion is that to believe a big formal

development you write a simple checker for fully annotated proofs of the logic in question,

and check the development with this simple checker.

Chapter 1. Introduction 3

1.1 Proofchecking and Typechecking

I said I am interested in machine checking mathematical proofs. How does an algorithm for

checking typing judgements of various type theories contribute to machine checked mathe-

matics? There are several methods of representing a formal system (loosely the object system)

in another formal system (loosely the meta system) such that derivability of some meta system

judgement implies derivability of some formally related object system judgement. This is

the basic idea behind our reason for studying type theory and our methodology for formally

doing so. Everything I will say about this is well known, but these ideas are not well classified

in the folk wisdom, and there are not accepted names to make clear which method is being

discussed, and what their relationships are.

1.1.1 The Curry–Howard–Martin-Löf–de Bruijn Isomorphism

This is undoubtedly the best known relationship between intuitionistic logic and type theory.

Often called “propositions-as-types” this idea is based on the Heyting explanation [Hey71] of

the intuitionistic connectives. For example, a proof of A and B is a pair of a proof of A and a

proof of B , so the logical notion, conjunction, can be represented by the type theoretic notion of

cartesian product. Similarly disjunction is represented as disjoint union (i.e. sum), implication

as function space, universal quantifier as dependent function space (i.e. general product) and

existential quantifier as dependent product (i.e. general sum). Much ink has been expended

on detailing this idea; a modern and exact treatment is given in [Bar91]. In this sense we

have a conservative embedding of intuitionistic higher order logic in ECC [Luo90b]. With this

approach we develop the internal mathematics of a particular type theory, e.g. ECC, which is

seen to be conservative over (or isomorphic to) some standard logical system.

1.1.2 Direct Inductive Representation of an Object Theory

Some formal systems represent inductively defined objects of some sort. Impredicative sys-

tems such as CC, ECC, or HOL [Gor88] can express “the smallest set (type, relation) con-

taining : : : ”. Some systems (e.g. Coq [PM93]), even predicative ones (e.g. the Martin-Löf

framework [Dyb94] and Feferman’s framework [Fef88]), have explicit forms of controlled in-

ductive definition. Such formal systems can be used as a formal meta theory in which one

can directly represent the inductive definition of derivations of an object system. If this is to

be useful, the meta theory itself must have some internal logic, possibly quite weak; it is folk

wisdom that Primitive Recursive Arithmetic (PRA) is adequate to formalize most of mathe-

matics in this style. This internal logic of the meta theory may be based on the Curry–Howard

isomorphism, as in ECC. With such a representation the object derivations are themselves

Chapter 1. Introduction 4

objects of the meta theory, and one can prove admissible rules of the object theory, although

a weak meta theory will prove fewer admissible rules than a strong one. This is the formal

analogue of how mathematics is usually done informally, i.e. the formal meta theory stands in

for our informal meta language, and the formal object theory stands in for the mathematical

theory under study, e.g. first order logic with set theory. In this thesis I represent the type

systems that are the objects of study in this style, using ECC with inductive definitions as a

meta theory; inductive definitions are used to represent the object syntax (terms, contexts, : : :)

and the relations on that syntax (reduction, conversion, typing, : : :).

1.1.3 Logical Frameworks

This idea appears in Automath [dB80], and is clarified and studied by Martin-Löf [NPS90]

and by Plotkin et. al. [HHP92,AHMP92,Pym90,Gar92]. Here the type system used as a meta

theory may be very weak (e.g. consistency of the Edinburgh Logical Framework (LF) can

be proved in PRA), although stronger systems are also used as meta logics in this way, e.g.

Isabelle [Pau93a], an impredicative higher order logic. An object system is represented as a

signature of constants for its language, axioms and rules. The inductive structure of object

theories is not represented by explicit inductive definitions in the meta theory, but is captured

by the inductiveness of the definition of the meta theory itself (see examples in [HHP92,

AHMP92,Gar92]). With this approach the theorems, proofs, and also derivable rules of the

object theory may be represented, but the object system derivations themselves cannot be

manipulated in the meta system; e.g. we can’t talk about the length of a proof. Various forms

of correctness of representation may be proved, but this depends on details of the object theory

and of the representation. LF, designed to support this style of representation, is one of the

type theories supported by LEGO, and its use depends on a typechecking algorithm.

1.2 A History of LEGO

I have always been interested in completely formal mathematics. Through a conventional

undergratuate education in mathematics, and two years of postgraduate study of mathematical

logic, I heard nothing of such a thing. In 1985, while studying program verification from Dick

Kemmerer, I encountered Martin-Löf type theory and understood that it was, among other

things, about formalization; nnfortunately, I understood nothing else about it. In spring of

1986, for Albert Meyer’s Type Theory seminar, I read Christine Paulin-Mohring’s paper on

“Algorithm Development in the Calculus of Constructions” [Moh86]. In less than two pages

she gives the language and typing judgement of the Pure Calculus of Constructions (CC),

then gets down to some machine-checked examples. CC is beautiful, the most successful

formulation to date of the logicistic program for founding mathematics (see [Ber90b] for that

Chapter 1. Introduction 5

story). CC is also syntactically simple, so I thought I could write a computer program for

checking judgements in this logic, use it to experiment with formal mathematics, and along

the way learn a little about type theory.

It took less than a week to code a CC typechecker in Prolog, my first lambda calculus

implementation, and I began working through the examples in [CH85]. In autumn 1986, at the

University of Texas, Austin, my typechecker was received with enthusiastic interest from Bob

Boyer, J Moore, and the logic seminar meeting at Boyer’s house. In spring 1987, Gérard Huet

came to Austin for a workshop, and gave me his prototype implementation of the Constructive

Engine [Hue89] coded in CAML, which was really the start of my knowledge of typechecking

algorithms (my Prolog typechecker was very slow). Through the recommendation of Boyer and

Moore, and through Rod Burstall’s desire to continue a theorem proving group at Edinbirgh,

I came to LFCS, University of Edinburgh, in October 1987, and began seriously to develop

Huet’s prototype Constructive Engine as a proofchecker for CC and the Edinburgh Logical

Framework1. The name LEGO was suggested by Paul Taylor (the Edinburgh Paul Taylor,

who was the first LEGO user other than myself) to express the fun of formal constructive

mathematics.

Between 1987 and the time I am writing this, April 1994, LEGO was frequently extended

and improved. Major features include Definitions, Argument Synthesis, Universes, Typical

Ambiguity, Sigma Types, Full Cumulativity, Inductive Types, and Modules. While I did most

of the implementation work, including the many theoretical details necessary to make these

features work2, the main ideas are due to others, principally Coquand, Huet, Luo, Martin-Löf,

and Paulin-Mohring.

Also during this time, students and researchers began to use LEGO in their work. (Rod

Burstall, my research supervisor, is mostly responsible for this; he has lectured and written

about how to start using LEGO for many conferences, workshops, summer schools, and

university classes.) There are, to my knowledge, five University of Edinburgh M.Sc. projects

done in LEGO [Mah90,Col90,Bra92,Wan92,Bai93]. There are at present two University of

Edinburgh Ph.D. theses using LEGO proofs as significant case studies [McK92,Alt93a], and

at least one other is in preparation [Mah94]. Papers or public talks based on large LEGO

examples include [Ber90a,Jon93,Men92,Alt93b,MP93,Ciz93]. I know of three Ph.D. students

outside of Edinburgh using LEGO in their research, two in Nijmegen and one in Munich.1My first talk at Edinburgh was about how to view the Edinburgh Logical Framework as a subsystem

of CC, and I implemented it that way from the beginning. For a modern view, see [Bar91,Bar92].2However thanks to Kevin Mitchell who translated LEGO from CAML to SML, and big thanks to

Claire Jones who implemented the syntax for inductive types, including checking that an inductive

specification satisfies Luo’s schema, automatically proving double elimination rules, and other useful

tactics.

Chapter 1. Introduction 6

1.3 A History of the Project to Formalize PTS
While developing LEGO, many questions of theory arose. Could the Constructive Engine, the

abstract machine at the core of LEGO, be described mathematically and proven correct? (This

involves not just a type theory, but a represenation of a type theory; for example the Constructive

Engine’s translation into nameless representation [Pol94].) Could the Constructive Engine be

extended to a type theory with universes [Hue87,HP91]? Type checking is only the start

of the problem. For example, LEGO supports definitions, assigning a name to a (typed)

term; do global definitions preserve normalizability of CC? Do local definitions also preserve

normalizability [SP94]? LEGO also uses meta-variables to implement refinement proof. Are

they handled correctly? Are LEGO’s algorithms correct for testing conversion of types (with

definitions) in a lazy manner, and for unification of types? Then there are the meta-operations

on the state of the proof, such as natural deduction discharge of assumptions, weakening

and strengthening. As a pragmatic system, LEGO has “syntactic sugar”, what I’ve called

“Implicit Syntax” [Pol90], such as LEGO’s argument synthesis, typical ambiguity, and universe

polymorphism; these features have to be explained too. I’ve still only begun to outline the the

questions that actually come up in implementing a proofchecker.

In 1988, Bob Harper and I addressed the problem of typechecking cumulative uni-

verses [HP91]; we were far from formalizing our definitions and theorems, let alone their

proofs, but we reasoned about complex algorithmic issues in terms of formal systems (i.e.

inductively defined relations), and I began to see that it might be possible to formally reason

about the kinds of questions raised above.

Based on what I learned from the work with Harper, I started working on operational

semantics to describe LEGO features such as argument synthesis, typical ambiguity, and the

refinement proof tactic, with something like the SML semantics [MTH90] in mind; that is, a

semi-formal explanation of all, or most, of LEGO’s operation. I was especially encouraged by

Bob Harper and Furio Honsell. My occasional trips to Paris to visit Coquand and Huet opened

up new ideas for me.

In 1989, I learned about Generalized Type Systems [Bar91,Ber90b,GN91,Bar92,vBJ93] from

Barendregt, Berardi, and Geuvers. This is a framework in which many of the questions about

pragmatic extensions to type systems could be expressed. It is also a very beautiful framework,

and interesting in its own right. The extensions I suggested to Generalized Type Systems in

1989-90 (sigma types, definitions, cumulativity) were partially responsible for Barendregt

changing the name of the core system to Pure Type Systems (PTS), the name I will use in

this thesis. PTS is simple enough syntactically to dream of formalizing: five or six term

constructors, six or seven inference rules, beta-reduction and beta-conversion are all that is

required.

Chapter 1. Introduction 7

The direction of my work was changing from a semi-formal explanation of all of LEGO to

a formal explanation of some core part. Many people have expressed disappointment that the

operational semantics of LEGO never matured (and some still hound me with questions about

my early writing on that topic [Pol88]), but my original purpose for LEGO was to do formal

mathematics, and that is what I have started to do.

In 1990 Thierry Coquand suggested using distinct syntactic classes, parameters for free

names and variables for bound names [Coq90,Coq91] as a way to formalize binding with

explicit names. Being interested in “taking symbols seriously”, I found this suggestion very

appealing3.

Also in spring 1990, Bert Jutting and I started discussing type checking for PTS . I thought

the Constructive Engine would generalize easily to PTS , but I hadn’t correctly worked out the

details (Herman Geuvers pointed out my error). In autumn 1990, Henk Barendregt asked the

Expansion Postponement (EP) question (see section 4.7), and by early 1991 Geuvers, Jutting and

I pretty much understood the relationship between typechecking and EP, and were feverishly

experimenting with obscure reduction relations in the proof of subject reduction in order to

solve EP. (Now, typechecking is understood [vBJMP94] but EP is still open.) I was so bored

hand-checking proofs of subject reduction for many closely related systems, and I made so

many mistakes doing it, that I really felt the need for machine assistance.

By 1991 I had started to experiment with formalizing PTS , using the impredicatively de-

fined types of CC to represent formal systems. With help from Christine Paulin-Mohring,

and from reading Stefano Berardi’s LEGO proof of normalization for System F [Ber90a], this

worked well enough to experiment with both nameless representation and Coquand’s named

representation. By that time, however, inductive types had become a hot topic in implementa-

tion as well as in theory. I had seen Martin-Löf’s “encoding” of inductive types implemented

in the first version of ALF [ACN90] and, after discussions with Coquand and Luo, had a crude

implementation of inductive types in LEGO by spring 1991. (I should have also discussed

it with Paulin-Mohring, because I didn’t understand about annotating the dependency of an

inductive type on its constructors, which her implementation in Coq [DFH+ 93] had elegantly

solved from the start.) With inductive types in LEGO, the formalized PTS project became

much more feasible. By this time, my obsession to formalize PTS was driving the development

of LEGO to support larger projects. With Claire Jones’ implementation of user-level syntax for

LEGO to mechanically generate elimination and computation rules from the constructors of

an inductive type, it became quite convenient to define and use new inductive relations.3de Bruijn nameless representation is also a notation that takes symbols seriously. Martin-Löf has

always been concerned with the symbols themselves, but also, more subtly, with where the line is drawn,

below which we may identify entities as being different instances of the same symbol, and above which

we distinguish them. In his recent system, described in [Tas93], this line is at a very concrete level.

Chapter 1. Introduction 8

By spring 1992 I had formalized some basic theory of PTS in Coquand’s named represen-

tation, but was really stuck on the Thinning Lemma (section 4.4.6). James McKinna made a

suggestion to overcome the problem that was mathematically more subtle than the straight-

foward inductions I had been trying. Together we proved the Thinning Lemma and packaged

McKinna’s idea as a theorem that could be used in instances of similar problems. A discussion

with Coquand was also instrumental in generalizing the idea, which is discussed in sec-

tions 3.2.5.3 and 4.4.4. There is a lesson to be learned from this: the problems of formalization

are mathematical problems, and should be addressed as such.

At this point (autumn 1992) all the pieces were present to formalize much of the theory

of PTS . Jutting, McKinna, and I decided to formally check the paper we were writing

on typechecking algorithms [vBJMP94]. While Jutting wrote the entire first draft, McKinna

formalized the lambda calculus and I formalized the type theory; later, when I was travelling

for two months, McKinna did both. By April 1993 it was checked.

1.4 An Overview of the Thesis

In this thesis I present a formal development, checked in LEGO, of an algorithm for type

checking a class of type systems including the type systems of LEGO: �P , CC, and ECC.

However, it is not the correctness of LEGO which I principally wish to communicate (no part

of LEGO code is verified in any sense) or even the derivability of the theorems, but the flavor of

formalizing a non-trivial body of concrete mathematics, and possibly some reasons for doing

it.

Chapter 2 is an introduction to LEGO syntax, and to the basic types supported in the library

distributed with LEGO. It is mainly intended to allow you to read the formalization in

following chapters, although there are a few comments on induction of more general

interest.

Chapter 3 develops the language of PTS , (a Church-style lambda calculus) and its elementary

theory of reduction and conversion. I do not go into much detail about the basic language

theory (substitution, etc.) or the proofs in this section (much of which will be reported

in [McK94]), but concentrate on mathematical techniques of formalization that will

recur in later sections, as well as definitions and theorems needed to understand the

type theory to follow.

Chapter 4 has the most technical interest. It develops the basic theory of PTS through

the subject reduction theorem, using a more general notion of conversion than beta-

conversion, in order to later use the results for ECC, which is not a standard PTS . Many

options and alternatives are examined, and some proofs are described in detail, and

Chapter 1. Introduction 9

compared with published informal arguments. I close with everything I know about the

notorious open problem, Expansion Postponement, which, however, is not very much.

Chapter 5 focuses on a subclass, the semi-full PTS . For these we give an inductive rela-

tion which characterizes the PTS judgements, but which is deterministic enough to

be the basis for a typechecking algorithm. Such an algorithm is constructed from this

deterministic relation, and shown to be correct.

Chapter 6 closes the thesis with some informal suggestions on how the reader’s state of

understanding and belief might be effected by a large formal development. The question

is addressed in two layers: whether a claimed formal judgement is actually derivable

in the given formal system (i.e. correctness of proof checkers), and what informal belief

might be obtained from a formal judgement (i.e. the relationship between formal and

informal presentations).

Acknowledgement The work reported in Chapters 3 and 4 is, to a large extent, joint work

with James McKinna. While I had been working on formalizing PTS for some time, McKinna’s

ideas were instrumental in solving some problems I was stuck on. We continued the collabo-

ration, and McKinna did much of the actual proofchecking. Formal proof is a lonely business;

because of the detail involved it is difficult to discuss problems with people outside the project.

The collaboration between McKinna and me payed off in results and in job satisfaction.

1.5 Production of this Thesis and its Verbatim Inclusions

This thesis is about a formal development, so it is essential I show the reader formal definitions

and statements of the theorems. These are all displayed, in typewriter font, as they appear

verbatim in the source files that LEGO checks. For example, here is a definition of the inductive

type of booleans.Inductive [BB:Prop] ElimOver Type(0) Constructors [tt,ff:BB];
The lemmas and theorems that I claim are machine checked will all start with the LEGO

command Goal, as in this lemma that contraposition is a correct argument.Goal contrapos: {A,B|Prop}(A->B)->(not B)->(not A);
This lemma is formally named contrapos, and may be referred to either by its formal name

(in typewriter font) or informally as in “by contraposition”. I occasionally use displayed

typewriter font for something that is not checked in LEGO (as in “an alternative definition

might be : : : ”), where I believe no confusion will arise, but never for complete, syntactically

Chapter 1. Introduction 10

correct, LEGO statements that are not checked. Proofs are written informally, using LATEX

mathematical notation and formal names. Occasionally, as in section 4.7, I state and prove

some lemmas informally; those are not checked in LEGO, and no formal results depend on

them.

To implement this verbatim display of formal statements I use very simple technology

somewhat inspired by Knuth’s WEB. Notations in the LEGO proof source files, treated by

LEGO as comments, delimit and name sections of LEGO code. There is a program (generated

by ml-lex) that scans a LEGO source file and extracts these marked sections into files that are

given the name of the section; these files are \input into LATEX and printed in verbatimmode.

When I produce a version of the document, I check the whole proof development in LEGO to

see that the current version is correct, and run the extraction program on all the LEGO source

files (say, using Make); thus the document has an up to date and correct version of all the

formal extracts.

It has worked well, but does it guarantee that I’m printing what LEGO actually checked?

No; many things can go wrong, and several of them have, such as inadvertantly having the

same name for different extracted sections, causing one to be overwritten by another. It might

be better (but unwieldy for big proofs) to have LEGO do the extraction itself, and keep the

names of extracted sections in its own context to prevent duplication, i.e. treat these extractions

as formal objects. Would this guarantee that I’m printing what LEGO actually checked? No.

A minor theme of this thesis is that there is no such thing as absolute certainty, and machine

verification of various kinds does not alter that common truth about the world.

1.6 What to Look For

I don’t think I’ve made it all look easy in the following chapters, but I have written them as

ordinary mathematics, if more detailed than is usual. This is to emphasise that formalization is

a mathematical problem; but it is a problem where the interaction between the subject matter

and the underlying formal logic is much more explicit than in most mathematics. By working

with inductively defined notions where intensional equality coincides with book equality [dB91]

of the object theory (e.g. see the comment in section 3.1.1 on equality), I have restricted myself

to subject matter that fits very well with the underlying logic, ECC, and for this reason the

underlying logic doesn’t appear much in the discussion. We are now pretty good at formalizing

such subject matter, but it is a very different matter formalizing some extensional subject, such

as algebra, in type theory.

My interest in formalism and formalization is based on a fascination with the details of how

and why mathematics goes together. I hope you find in the following that we have examined

the choices made and the reasons for those choices, considered some of the alternatives, and

have been able to throw some light on the mathematics of PTS .

Chapter 2

Warming Up To LEGO

In this chapter I give a brief overview of LEGO, to assist the reader in understanding the

formal definitions and statements of theorems in following chapters. I first present LEGO

syntax (since I am not showing formal proofs, I omit the commands for constructing proofs in

LEGO), and then present a small library of definitions of logical operators and basic types that

will be used in later chapters.

2.1 LEGO

LEGO supports Luo’s Extended Calculus of Constructions (ECC) [Luo90a,Luo94] further ex-

tended with inductive types. �P and CC [Bar91], viewed as subsystems of ECC, are also

supported, and they may also be extended with inductive types. LEGO is freely available by

ftp, along with a User’s Manual [LP92], some documentation on recent changes [JP93,JP94], a

library of definitions and theorems about some basic types [JM93], and some examples. For

more details than contained in this chapter see [LP92,JP93,JP94]. The foundations of this thesis

were laid before the LEGO library existed, so there are some differences between our basic

definitions and [JM93].

In this thesis we use LEGO as a typechecker for ECC extended with inductive types, and for

us ECC is used as a logic, in fact a constructive logic with full annotations for the computational

content of theorems. However I will not write yet another introduction to the Curry-Howard

isomorphism or propositions as types; see [NPS90].

2.1.1 LEGO Term Syntax

Using x as a metavariable for identifiers, and M as a metavariable for terms, the syntax of

terms is given in table 2–1. In this thesis I don’t use the sigma types or the universes of ECC,

11

Chapter 2. Warming Up To LEGO 12M ::= Prop built-in type of propositionsj x vars (ML identifiers)j [x:M]M lambda bindingj [x|M]M implicit lambda bindingj {x:M}M pi bindingj {x|M}M implicit pi bindingj M->M non-dependent pij M M applicationj M|M explicit (forced) applicationj [x=M]M “let” (local definition)j (M:M) type cast

Table 2–1: The Basic Syntax of LEGO Terms

so won’t describe their syntax. Some possibly mysterious notations in this table are explained

below.

Binders The scope of binders goes as far to the right as possible. Implication, ->, is shorthand

for a non-dependent pi, and associates to the right. As usual, application associates to the left.

Parentheses overide these conventions. Multiple bindings may share brackets and type labels,

e.g. {A,B:Prop}A->B->A.

Typecasting in LEGO is similar to typecasting in functional languages such as SML [MTH90].

The term (a:A) has value a and type A , assuming a and A are both well-typed, and the

type of a is convertible with A . (I am being somewhat inexact; see section 5.1.5, especially

remark 5.7, for details)

2.1.2 LEGO Contexts

The context is a list of all the declarations (assumptions) and definitions currently in use. Using� as a meta-variable for contexts, the syntax of contexts is given by:� ::= empty contextj �[x:M] declaration (assumption)j �[x=M] global definition

Contexts are constructed and checked incrementally; the system of locally valid contexts in

section 4.4.10.2 makes this precise.

Chapter 2. Warming Up To LEGO 13

There is special syntax for typecasting at the top-level that is frequently used, for example[x : A = a][y = a : A]
are shorthand for[x = (a:A)][y = (a:A)]
This may not seem too interesting by itself, but it combines with another shorthand common

in functional languages, so that[x = ([y1:A1][y2:A2]b : {y1:A1}{y2:A2}B)]
can be written as[x [y1:A1][y2:A2] = b:B]
which is a significant saving.

2.1.3 Argument Synthesis

In ML we can define a polymorphic identity function- fun id x = x;
which can be called with values of different types- id 3; id "a"; id id;
ECC has explicit polymorphism, and such an identity function needs to be passed a type as well

as a value:[id = [A:Prop][x:A]x];
Now (id id) is not well typed (because id is not a member of Prop); we must also give the

“polymorphic instantiation” to instantiate id at the correct type:id ({A:Prop}A->A) id; id nat three;
You can see this might get tiresome. However, in ECC, given a term we can compute its

type (if it has one), so given an argument to id a typechecker can compute its type, and use

this type for the missing polymorphic instantiation. I call this argument synthesis or implicit

arguments [Pol90], and LEGO has syntax, using |, to indicate positions for term synthesis:[id = [A|Prop][x:A]x];

Chapter 2. Warming Up To LEGO 14

Now (id id) and (id three)have their expected types. Both ELF [Pfe89] and F-sub [Car91]

have similar features, although with different syntax and slightly different semantics. There is

also recent work on this idea [HT94].

With id defined as above, (id nat) is not well typed (because nat is a proposition, not

an inhabitant of a proposition), so LEGO also has syntax to override implicit application:(id|nat)has type nat->nat.

2.1.4 The Cut Command

I describe this command here because it is quite new, and mentioned several times in following

chapters. It implements an admissible rule often called the substitution lemmaG ` a : A G[x:A]H ` b : BG[x=a:A]H ` b : B
The LEGO syntax isCut [x1=a1][x2=a2]...;
where the xi are identifiers and the ai are terms. The command Cut [x=a] changes the

current context fromG[x:A]H
to G[x=a:A]H
if a has type A in context G. In fact Cut is more liberal than this: it is only required that a has

type A in context G after expanding some definitions. For example, if the current context is[A,B:Prop][a:A][b:B][c=a]
then Cut [B=A][b=c] succeeds by first expanding c, returning the context[A:Prop][B=A][a:A][b=a][c=a]

We will prove the substitution lemma constructively in section 4.4.7, but LEGO’s Cut is

implemented as an atomic rule, rather than by “running the constructive proof”, as the latter

would be very slow.

Chapter 2. Warming Up To LEGO 15

2.1.5 Inductive Definitions

LEGO supports inductively defined types and relations [Alt93a,Dyb94,Luo94,CPM90,PM93].

I especially recommend [DFH+ 93] for tutorial treatment of inductive types.

The inductive types in LEGO are “coded” in the style of Martin-Löf, and the implementation

owes much to work of Coquand [ACN90]. For an example, consider the inductive type of

natural numbers, corresponding to the ML datatypedatatype NN = Z of NN | S of NN->NN;
An inductive type is specified by giving the names and types of each of its constructors. (We

will see in a moment that more information is required to specify inductive relations.) In

LEGO, the datatype NN and its constructors are given by[NN:Prop][Z:NN][S:NN->NN];
The constructors are the introduction rules of the type. To give such a type its “inductiveness”,

that is to say that the only objects of the type are those generated by the constructors, we must

also assume an elimination rule[NN_elim:{C:NN->Prop}(C Z)->({x:NN}(C x)->C (S x))->{z:NN}C z];
which is the usual second order induction principle. The idea that we can compute the

elimination rule from the types of the constructors is originally due to Gentzen.

So far we have represented these things merely by assumptions in the LEGO context,

which is what I mean when I call this a coding of inductive types. The elimination rule is

seen to have the same type as the primitive recursion combinator for NN, but NN_elim is just a

variable, without the computational meaning of primitive recursion. For example, predecessor

is definable primitive recursively[pred : NN->NN = NN_elim ([_:NN]NN) Z [x,_:NN]x];
but (pred (S Z)) is a normal form, and does not compute to Z. To “animate” the elimination

rule as the computation of primitive recursion we extend the underlying type theory by adding

new compuation rules to its conversion relation. In this case we add two contractionsNN_elim C fZ fS Z ==> fZNN_elim C fZ fS (S x) ==> fS x (NN_elim C fZ fS x)
whenever(C:NN->Prop),(fZ:C Z),(fS:{x:NN}(C x)->C (S x)) and (x:NN). Again, the

reductions to be added are computed from the shape of the elimination rule, which is computed

from the shapes of the constructors. This is a synthesis of ideas of Gentzen and Gödel, clarified

by Martin-Löf [Mar71a].

Chapter 2. Warming Up To LEGO 16

In LEGO, one can represent an inductive type by explicitly declaring the type, its construc-

tors and elimination rule, and stating the reductions for its computation rule (see [LP92] for

syntax of these specifications). However, the elimination rule and reductions are tedious to

write, and are computable from the introduction rules, so should be constructed mechanically.

Furthermore, it is certainly possible to create inconsistency with arbitrary sets of constructors,

elimination rules and reductions, so some discipline is required to allow only well founded trees,

the correct inductive definitions. For these reasons LEGO supports syntax for defining induc-

tive types by their constructors that checks the constructors against a schema of Luo [Luo94]

for correctness, and, if correct, mechanically generates the elimination rule and the reductions

for the computation rule. For example, the type NN is defined byInductive [NN:Prop] Constructors [Z:NN][S:NN->NN];
I implemented the basic mechanism to support inductive types in LEGO, and Claire Jones

implemented the user-level syntax, the check that it meets the correctness schema, and its

translation into underlying primitives. There are examples of this translation in [JP93,JP94].

A parameterized type Consider now the type of lists, defined in LEGO byInductive [LL:Prop] Parameters [A|Prop] Constructors [NIL:LL][CONS:A->LL->LL];
The keyword Parameters shows this type to be parametric in an arbitrary type, A. After

natural deduction discharge of the parametric assumption A, this generates[LL : Prop->Prop][NIL : {A|Prop}LL|A][CONS : {A|Prop}A->(LL|A)->LL|A][LL_elim : {A|Prop}{C:(LL|A)->TYPE}(C (NIL|A))->({x:A}{y:LL|A}(C y)->C (CONS x y))->{z:LL|A}C z];
with reductionsLL_elim C fNIL fCONS (NIL|A) ==> fNILLL_elim C fNIL fCONS (CONS x y) ==> fCONS x y (LL_elim C fNIL fCONS y)
A family of types The (parameterized) family of types “lists of length n”, or vectors, is

defined by

Chapter 2. Warming Up To LEGO 17Inductive [vect:NN->Prop] Parameters [A:Prop]Constructors [vnil:vect zero][vcons:{a:A}{n|NN}{v:vect n}(vect (suc n))];
While the NN and LL themselves have types only showing arity (respectively Prop andProp->Prop), we see that for families such as vect, the type of the family is significant

and must be specified.

A relation Finally, for an example of a real relation, consider the intensional equality relation

defined byInductive [Q:A->A->Prop] Parameters [A|Prop] Constructors [Q_refl:{a:A}Q a a];
Informally we can say that (Q A) is defined as the smallest reflexive relation over A, or the

intersection of all reflexive relations over A. The type of Q shows that it is a relation.

2.2 Some Basic Types

We use LEGO’s built-in library of impredicative definitions (see [LP92]) for the usual logical

connectives and, or, not, Ex, and their properties, although inductive definitions would do

just as well. For convenience we have defined multi-ary versions of these, so you will seeand3, and4, : : : , Ex3, Ex4, : : : in the following chapters.

Decidability As we are working constructively, we often use the notion of decidable propo-

sition:[decidable [P:Prop] = or P (not P)];
Equality We use LEGO’s library of basic inductive types. These include an inductive equality

relation, Q, which is reflexive, and substitutive, hence also symmetric and transitive:Inductive [Q:A->A->Prop] Parameters [A|Prop] Constructors [Q_refl:{a:A}Q a a];Goal Q_subst: {a,b|A}(Q a b)->{P:A->Prop}(P a)->P b;Goal Q_sym: {a,b|A}(Q a b)->(Q b a);Goal Q_trans: {a,b,c|A}(Q a b)->(Q b c)->(Q a c);
Booleans There is a type of booleans, BB containing tt and ff

Chapter 2. Warming Up To LEGO 18Inductive [BB:Prop] ElimOver Type(0) Constructors [tt,ff:BB];
Notice the optional keyword ElimOver Type(0) in the definition of BB. This generates a

stronger elimination rule for BB than we have seen in previous examples:{C_BB:BB->Type(0)}(C_BB tt)->(C_BB ff)->{z:BB}C_BB z
instead of{C_BB:BB->Prop}(C_BB tt)->(C_BB ff)->{z:BB}C_BB z
This is the only instance of a so-called large elimination rule in the entire formalization, and the

extra strength is used only to proveGoal tt_not_ff: not (Q tt ff);
which is not provable in ECC without a large elimination rule [Smi88]1.BB has the usual classical boolean operators, conjunction andd, disjunction orr and con-

ditional if, together with the lifting functions is_tt and is_ff, which convert booleans to

(decidable) propositions:[is_tt [b:BB] = Q b tt];[is_ff [b:BB] = Q b ff];[if [a:BB][D|Prop][d,e:D] = BB_elim ([_:BB]D) d e a];[andd [a,b:BB] = if a b ff];[orr [a,b:BB] = if a a b];[nott [a:BB] = if a ff tt];[Brec: {C:BB->Type(0)}{d:C tt}{e:C ff}{b:BB}C b = BB_elim];
Notice the definition Brec in this extract. LEGO mechanically generates an elimination rule

for BB, called BB_elim, which is correct according to Luo’s schema for inductive defini-

tions [Luo94], from the Inductivedeclaration of BB shown above. In BB_elim, the variables

have machine generated names, so we define Brec, which is a new elimination rule for BB,

with variable names we prefer; that is, we have proved a new BB-elimination rule from the

machine generated one. The names of variables will appear in the proof states that users see

and in the proof scripts they produce, and control of such intensional aspects of the system

can be quite important in a big development.1We could avoid this use of a large elimination rule by assuming tt not ff instead of proving it.

Stefano Berardi points out that we would not lose any computational content because under normal

order reduction we will never need a proof of tt not ff unless we are actually trying to prove false.

Chapter 2. Warming Up To LEGO 19

Natural numbers An inductive type of natural numbers, NN, is used to support induction on

the length of terms and derivations:Inductive [NN:Prop] Constructors [Z:NN][S:NN->NN];[Nrec : {C:NN->Prop}{Nbase:C Z}{Nstep:{x:NN}{Nih:C x}C (S x)}{a:NN}C a= NN_elim];[add [n,m:NN] : NN = Nrec ([_:NN]NN) m ([_,x:NN]S x) n];[pred : NN->NN = Nrec ([_:NN]NN) Z [x,_:NN]x];[sbt [n:NN] : NN->NN = Nrec ([_:NN]NN) n ([_,x:NN]pred x)];
It has a double induction principleGoal double_induct:{C:NN->NN->Prop}(C Z Z)->({y:NN}(C Z y)->(C Z (S y)))->({x:NN}({y:NN}C x y)->C (S x) Z)->({x:NN}({y:NN}C x y)->{y:NN}(C (S x) y)->C (S x) (S y))->{x,y:NN}C x y;
This formulation and proof of double induction, shown to me by Stefano Berardi, is the

model for a LEGO tactic, written by Claire Jones, to mechanically prove double induction

for ordinary inductive definitions of one type.) We will also use NN variously as a set of

parameters, variables, or constants, so it is useful to know NN has a and decidable structural

equality, defined by structural recursion[nat_eq : NN->NN->BB= Nrec ([_:NN]NN->BB)(Nrec ([_:NN]BB) tt ([_:NN][_:BB]ff))([_:NN][eqn:NN->BB]Nrec ([_:NN]BB) ff ([x:NN][_:BB]eqn x))];
which agrees with intensional equalityGoal nat_eq_character: {m,n:NN}iff (is_tt (nat_eq m n)) (Q m n);
The definition of nat_eq is essentially double recursion, although I have shown an explicit

definition by nested single recursions, and nat_eq_character is proved by double induction.

Furthermore, NN is infinite.Goal NNinf: {l:nats}ex[n:NN] is_ff (member nat_eq n l);
Lists There is a type of polymorphic lists, LL with its induction principle LLrec, and many

common operations such as append and member:

Chapter 2. Warming Up To LEGO 20Inductive [LL:Prop] Parameters [A|Prop] Constructors [NIL:LL][CONS:A->LL->LL];[unit [a:A] = CONS a NIL];[hd [a:A][l:LL] = LL_elim ([_:LL]A) a ([x:A][_:LL][_:A]x) l];[tl [l:LL] = LL_elim ([_:LL]LL) NIL ([_:A][k,_:LL]k) l];[append [k,l:LL] = LL_elim ([_:LL]LL) l ([a:A][_,j:LL]CONS a j) k];[length = LL_elim ([_:LL]NN) Z ([_:A][_:LL]S)];[exist [P:A->BB] : LL->BB =LL_elim ([_:LL]BB) ff ([b:A][_:LL][rest:BB]orr (P b) rest)];[member [eq:A->A->BB][a:A] : LL->BB = exist (eq a)];
Two fold operations are defined, which are respectively right and left associative[B|Prop][g:A->B->B];[foldright [l:LL][strt:B] = LL_elim ([_:LL]B) strt ([a:A][_:LL][b:B]g a b) l];[foldleft = LL_elim ([_:LL]B->B) ([b:B]b) ([a:A][_:LL][f:B->B][b:B]f (g a b))];Goal foldright_append_lem:{G,H:LL}{b:B}Q (foldright (append G H) b) (foldright G (foldright H b));Goal foldleft_append_lem:{G,H:LL}{b:B}Q (foldleft (append G H) b) (foldleft H (foldleft G b));
Remark 2.1 Many relations, such asmember of lists can be defined in boolean-valued form by recursion

(as above), and in Prop-valued form by induction, e.g.member a (CONS b l) (if a = b)
member a lmember a (CONS b l)

Furthermore, using large elimination rules there may be a recursively defined Prop-valued form as wellmember a NIL = Falsemember a (CONS b l) = a=b or member a l
These issues are explained well by Christine Paulin-Mohring in [DFH+93].

Cartesian product There is a type of polymorphic cartesian products, PROD, with pairing Pr,

and projections Fst and Snd:Inductive [PROD:Prop] Parameters [A,B|Prop] Constructors [Pr:A->B->PROD];[Fst = PROD_elim ([_:PROD]A) ([a:A][b:B]a)];[Snd = PROD_elim ([_:PROD]B) ([a:A][b:B]b)];
For our purposes of encoding an object theory, this inductively defined type PROD is more

satisfactory than than the sigma type of ECC because it has surjective pairingGoal PROD_surj_pair: {b:PROD}Q b (Pr (Fst b) (Snd b));
which cannot be proved for the internal sigma type.

Chapter 2. Warming Up To LEGO 21

2.2.1 An Aside on Well Founded Induction Principles

In set theory well-founded induction, based on the well-foundedness of 2 , is taken as primary

and not only structural induction, but structure itself, is (laboriously) defined. (See [Pau93b]

for a formalization of this approach.) In Type Theory we take structural induction as primary,

and derive other induction principles from it. This approach follows the ideas of Per Martin-

Löf, which go back through Prawitz [Pra73,Pra74] at least as far as Gentzen. The general idea

is that types are characterized by their constructors, that is their introduction rules, and that

structural induction is the elimination rule for a type. For discussion of the philosophical

point, and technical schemas for generating an elimination rule from the introduction rules for

a type, see [CPM90,Dyb94,Dyb91,PM93,Luo94]. I will mention some nuts and bolts of using

well founded induction in Type Theory.

We have the type NN of naturals with its structural induction principle Nrec from section 2.2.

Define the “less than” relation by:[Lt [n,m:NN] = Ex[x:NN] Q (add n (S x)) m];
Now we prove complete induction:Goal complete_induction:{P:NN->Prop}{ih:{n:NN}({x:NN}(Lt x n)->(P x))->P n}{m:NN}P m;
using two properties of Ltnot_Lt_n_Z = ... : {n:NN}not (Lt n Z)LtnSm_character = ... : {n,m|NN}(Lt n (S m))->or (Lt n m) (Q n m)
Next well founded induction for any type, over ordertype ! ,Goal WF_induction:{T|Prop}{f|T->NN}{P:T->Prop}{wf_ih:{t:T}({x:T}(Lt (f x) (f t))->(P x))->P t}{k:T}P k;
is proved using complete induction with the predicate[n:NN]{y:T}(Q n (f y))->P y.

This is what is usually meant by “induction over the length of : : :”, where f:T->NN is the

“length” function. Complete induction over NN� NN , i.e. “lexicographic induction”

Chapter 2. Warming Up To LEGO 22Goal complete2_induction:{P:NN->NN->Prop}{wf_ih:{n,m:NN}{ih:{x,y:NN}(or (Lt x n) (and (Q x n) (Lt y m)))->P x y}P n m}{n,m:NN}P n m;
is just nested complete induction: first use predicate [n:NN]{m:NN}P n m and then predicate[m1:NN](P n1 m1)2. There is none of the coding of pairs as single numbers that is necessary

in Primitive Recursive Arithmetic, where the first induction predicate above, with its explicit

quantification {m:NN}, cannot be formulated3. Finally, well-founded induction on any type

over ordertype ! � ! (i.e. “induction on first the length of : : : , then the length of : : :”)Goal WF2_induction:{A|Prop}{f,g:A->NN}{P:A->Prop}{wf_ih:{n:A}{ih:{x:A}(or (Lt (f x) (f n))(and (Q (f x) (f n)) (Lt (g x) (g n))))->P x}P n}{n:A}P n;
is easily proved using complete2_inductionwith the induction predicate[n,m:NN]{x:A}(Q n (f x))->(Q m (g x))->P x.

It is also possible to define higher ordertypes, as inInductive [ord:Prop]Constructors [ozero:ord][osucc:ord->ord][olim:(NN->ord)->ord];
and derive well-founded induction over this datatype directly, but I have not needed such

techniques.

2Thanks to Claire Jones for showing me this proof3Thanks to Alex Simpson and Sean Matthews who pointed this out to me.

Chapter 3

Lambda Calculus: How to Handle Free

Names

In this chapter I discuss a formalization, in LEGO, of the elementary theory of the language of

PTS, including substitution, beta-reduction, and beta-conversion. The major formal results in

this chapter are the Church-Rosser (CR) Theorems for reduction and conversion.

Acknowledgement This chapter and much of the next are joint work with James McK-

inna [MP93].

3.1 Pure Languages

A Pure Language (PL) is a triple (PP; VV; SS) where� PP is an infinite set of parameters, ranged over by p , q . Parameters are the global, or

free, variables.� VV is an infinite set of variables, ranged over by x , v , u . Variables are the local, or

bound, variables.� SS , a set of sorts, ranged over by s , t u . Sorts are the constants.

Informally, the terms of a PL are given by the grammar

atoms � ::= v variablej p parameterj s sort

terms M ::= � atomsj [x:M]M lambdaj fx:MgM pij MM application

23

Chapter 3. Lambda Calculus: How to Handle Free Names 24

As usual, [x:A]B and fx:AgB , bind x in B but not in A . M , N , A , B , C , D , E ,a , b range over informal terms. I will always use typewriter font (e.g. [a:A]a or [a:A]a) for

LEGO syntax, and always use math font (e.g.[a:A]a) for informal terms of a PL. Sometimes

I will be so informal as to drop the distinction between parameters and variables in informal

terms. We informally write A! B and A!! B for one-step and many-step reduction

relations to be defined, and A ' B for beta-conversion.

3.1.1 Pure Language Formalized

Assume there is a type of parameters, PP, that is infinite and has a decidable equivalence

relation. In fact we also assume that the decidable equivalence relation on PP is the same as

intensional equality; this extra assumption may not be necessary but it vastly simplifies our

formal development.[PP:Prop]; (* Parameters *)[PPeq:PP->PP->BB];[PPeq_iff_Q:{p,q:PP}iff (is_tt (PPeq p q)) (Q p q)];[PPs = LL|PP]; (* lists of parameters *)[PPinf:{l:PPs}ex[p:PP] is_ff (member PPeq p l)];PPinf is a “local gensym” operation. It says that for every list of parameters, l, there is a

parameter, p, that is not a member of l. The general list operation member is defined with

respect to some decidable equality; in this case we use PPeq.

These are not mathematical principles we are assuming, but part of the presentation of a

PL. Having developed some theory of PL in LEGO, we may Discharge these assumptions,

making the whole theory parametric in such a type of parameters (see [LP92]). The assumption

that PPeq is equivalent to Q means that we may instantiate PP with, for example the type of

natural numbers and its inductively definable decidable equality, or with the type of lists

of characters, but not with the type of integers defined as a quotient over pairs of naturals,

because in this latter type the intended equality, definable by induction, is not equivalent to Q.

Also, assume a type of variables, VV, with similar properties, VVeq, VVeq_decide, VVinf;

and a type of sorts, SS, which has decidable equality, SSeq, SSeq_decide, but need not be

infinite.

Chapter 3. Lambda Calculus: How to Handle Free Names 25

3.2 Terms

The type of terms is formalized as an inductive type.Inductive [Trm:Prop]Constructors [sort:SS->Trm][var:VV->Trm][par:PP->Trm][pi:VV->Trm->Trm->Trm][lda:VV->Trm->Trm->Trm][app:Trm->Trm->Trm];
Every term is a finitely branching well-founded tree. In particular, the lda and pi constructors

do not have type Trm->(VV->Trm)->Trm, which would create well-founded but infinitely

branching terms. The intended binding structure is not determined by Trm, but by the defini-

tions of substitution and occurrence below.

An induction principle for Trm, named Trm_elim is mechanically generated from the

introduction rules (constructors) given in the definition of Trm. For historical reasons I coerce

the type of Trm_elim to have names I have chosen.[Trec = Trm_elim: {C:Trm->Prop}({s:SS}C (sort s))->({n:VV}C (var n))->({n:PP}C (par n))->({n:VV}{A,B:Trm}{ihA:C A}{ihB:C B}C (pi n A B))->({n:VV}{A,B:Trm}{ihA:C A}{ihB:C B}C (lda n A B))->({A,B:Trm}{ihA:C A}{ihB:C B}C (app A B))->{t:Trm}C t];
LEGO checks that this coercion is correct.

There is a boolean-valued structural equality function, Trm_eq, inductively definable on

terms. Because PPeq, VVeq, and SSeq are equivalent to Q, Trm_eq is also provably equivalent

to Q, hence is substitutive.Goal Trm_eq_subst: {A,B|Trm}(is_tt (Trm_eq A B))->Q A B;
3.2.1 The Length of a Term

We define the length of a term as a measure for well-founded induction (section 2.2.1).

Chapter 3. Lambda Calculus: How to Handle Free Names 26[lngth : Trm->NN =Trec ([_:Trm]NN)([_:SS]one)([_:VV]one)([_:PP]one)([_:VV][_,_:Trm][l,r:NN]S (add l r))([_:VV][_,_:Trm][l,r:NN]S (add l r))([_,_:Trm][l,r:NN]S (add l r))];
Two properties of this measure are important for its applications. First, if A is a proper

subterm of B then lngth A is less than lngth B ; this is the property used in “induction on

the length of terms” as in the proof in section 3.2.5.3. Second, every term has positive length.Goal lngth_is_S: {A:Trm}Ex [n:NN] Q (lngth A) (S n);
This is used, for example, in induction on the “sum of the lengths of the terms in a context”

as in section 5.1.6. Having made the choice to give atomic terms positive length, the “S” is

not needed in the clauses for compound terms in the definition of lngth, but it is convenient;

without it we would have to use lngth_is_S very frequently, and unpack its existential

quantifier each time.

3.2.2 Deciding the Shape of a Term

It is decidable whether or not a term is constructed from a sort:[IsSrt [A:Trm] = Ex [s:SS]is_tt (Trm_eq A (sort s))];Goal decide_IsSrt: {A:Trm}decidable (IsSrt A);
Equivalently, there is a boolean-valued function, isSrt:Trm->BB definable by primitive re-

cursion. The same applies to all the other term constructors.

3.2.3 Occurrences of Parameters and Sorts

The list of parameters occurring in a term is computed by primitive recursion over term

structure, and the boolean judgement whether or not a given parameter occurs in a given term

is computed by the member function on this list of parameters.

Chapter 3. Lambda Calculus: How to Handle Free Names 27[params : Trm->PPs =Trec ([_:Trm]PPs)([_:SS]NIL|PP)([_:VV]NIL|PP)([p:PP]unit p)([_:VV][_,_:Trm][l,r:PPs]append l r)([_:VV][_,_:Trm][l,r:PPs]append l r)([_,_:Trm][l,r:PPs]append l r)];[poccur [p:PP][A:Trm] : BB = member PPeq p (params A)];
Similarly sorts and soccur are defined.[sorts : Trm->SSs =Trec ([_:Trm]SSs)([s:SS]unit s)([_:VV]NIL|SS)([_:PP]NIL|SS)([_:VV][_,_:Trm][l,r:SSs]append l r)([_:VV][_,_:Trm][l,r:SSs]append l r)([_,_:Trm][l,r:SSs]append l r)];[soccur [s:SS][A:Trm] : BB = member SSeq s (sorts A)];
3.2.4 Substitution

For the machinery on terms, we need two kinds of substitution, both defined by primitive

recursion over term structure using the induction principle Trec. Substitution of a term for a

parameter, psub, is entirely textual, not preventing capture. Since parameters have no binding

instances in terms (we may view them as being globally bound by the context in a judgement),

there is no hiding of a parameter name by a binder.[psub [M:Trm][n:PP] : Trm->Trm =Trec ([_:Trm]Trm)([s:SS]sort s)([v:VV]var v)([p:PP]if (PPeq n p) M (par p))([v:VV][_,_,l,r:Trm]pi v l r)([v:VV][_,_,l,r:Trm]lda v l r)([_,_,l,r:Trm]app l r)];
Informally write [N=p]M for (psub N p M).

Substitution of a term for a variable, vsub, does respect variable binders that hide their

bound instances from substitution, but does not prevent capture.

Chapter 3. Lambda Calculus: How to Handle Free Names 28[vsub [M:Trm][n:VV] : Trm->Trm =Trec ([_:Trm]Trm)([s:SS]sort s)([v:VV]if (VVeq n v) M (var v))([p:PP]par p)([v:VV][_,or,nl,nr:Trm]pi v nl (if (VVeq n v) or nr))([v:VV][_,or,nl,nr:Trm]lda v nl (if (VVeq n v) or nr))([_,_,l,r:Trm]app l r)];
Informally write [N=v]M for vsub N v M.

Both of these will be used only in safe ways in the type theory and the theory of reduction

and conversion, so as to prevent unintended capture of variables.

There are abbreviations for substituting a parameter for a variable, and a variable for a

parameter.[alpha [p:PP] = vsub (par p)];[alpha' [v:VV] = psub (var v)];
These are not alpha conversion in the usual sense (see section 3.3.4).

An important lemma, used many times, can now be proved; informally:[N=p][p=v]M = [N=v]M
where p is some fresh parameter not occurring in M . Formally:Goal vsub_is_psub_alpha:{N:Trm}{v:VV}{p|PP}{M|Trm}(is_ff (poccur p M))->is_tt (Trm_eq (psub N p (alpha p v M)) (vsub N v M));
Many other properties of psub and vsub are proved in the formal development.

3.2.5 No Free Occurrences of Variables

What about the variables occurring free in a term? Intuitively parameters are the free names;

variables are the bound names, and we are not interested in free variables at all! We will

define inductively a notion Vclosed of variable-closed term such that only the Vclosed terms

are considered to be well formed, in the same sense that only typable terms will be considered

well formed for the type theory in later sections. (It will turn out that every typable term, and

every type, is Vclosed). Thus Vclosed is used as an induction principle over well formed

terms. As this relation is a simple case of ideas that recur many times in what follows, I will

discuss it at some length.

Chapter 3. Lambda Calculus: How to Handle Free Names 29

Here is an informal definition of the relation Vclosed
VCL-SORT Vclosed(s)
VCL-PAR Vclosed(p)
VCL-PI

Vclosed(A) Vclosed([p=v]B)Vclosed(fv:AgB)
VCL-LDA

Vclosed(A) Vclosed([p=v]B)Vclosed([v:A]B)
VCL-APP

Vclosed(A) Vclosed(B)Vclosed(AB)
In this definition we see a central idea of our formal handling of names: how to “go under

binders”. Of course all terms of form (sort s) and (par p) are Vclosed (rules VCL-SORT

and VCL-PAR), and no terms of shape (var v) are Vclosed (there is no rule to introduceVclosed (var v)), but how do we define Vclosed for the binders? For fv:AgB to beVclosed, we require Vclosed(A) and Vclosed([p=v]B) for some parameter p . That is, to

go under a binder, first fill the hole with some parameter. In cases less trivial than Vclosed we fill

the hole with a sufficiently fresh parameter; see, for example, section 3.3.1.

3.2.5.1 Formalizing Vclosed.

In formalizing this relation (table 3–1), we view the rules as constructors of an inductive

relation. It is clear that for rule Vclosed_pi to construct a proof of Vclosed (pi v A B) it

must actually be given a proof of Vclosed A and a proof of Vclosed (alpha p n B). But p
doesn’t appear in the conclusion of the rule; which parameter are we to use? Does it matter

which one we use? We might require only that there exists a p with Vclosed (alpha p n B)
derivable (which is weaker than actually providing such ap), or thatVclosed (alpha p n B)
be derivable for all p (which is stronger than actually providing such a p).

Rule Vclosed_pi lacks the subformula property, i.e. there are subformulas of the premises

that do not occur in the conclusion. A familiar rule that lacks the subformula property is

Modus Ponens

MP
P!Q PQ

where P occurs in the both premises but not in the conclusion. For MP it does matter which P
we use; in some cases P!Q and P may be provable, and in others not. Thus in formalizing

Chapter 3. Lambda Calculus: How to Handle Free Names 30Inductive [Vclosed:Trm->Prop]Constructors[Vclosed_sort:{s:SS}Vclosed (sort s)][Vclosed_par:{p:PP}Vclosed (par p)][Vclosed_pi:{n|VV}{A,B|Trm}{p|PP}{premA:Vclosed A}{premB:Vclosed (alpha p n B)}(**)Vclosed (pi n A B)][Vclosed_lda:{n|VV}{A,B|Trm}{p|PP}{premA:Vclosed A}{premB:Vclosed (alpha p n B)}(**)Vclosed (lda n A B)][Vclosed_app:{A,B|Trm}{premA:Vclosed A}{premB:Vclosed B}(**)Vclosed (app A B)];
Table 3–1: The inductive property Vclosed

a rule lacking the subformula property we should require a particular derivation for each

premise, hence particular choices for the subformulas not occurring in the conclusion; that is

what we do in rules Vclosed_pi and Vclosed_lda of table 3–1, our “official” definition ofVclosed.

Remark 3.1 Vclosed is equivalent to having no free variables. The only proofs I know use induction

on the length of terms1. This observation may be of informal interest (“the definition of Vclosed is

reasonable”; see section 6.2), but we do not use it formally because Vclosed allows us to avoid all talk

of free variables.

3.2.5.2 VclosedGeneration Lemmas

Suppose you have a proof of Vclosed (pi v A B); without examining it you know it must

be constructed by Vclosed_pi from proofs of Vclosed A and Vclosed (alpha p v B)1Thanks to Thierry Coquand for the suggestion to use length induction.

Chapter 3. Lambda Calculus: How to Handle Free Names 31

because no other rule for Vclosed has a conclusion of shape Vclosed (pi v A B). I have

been using the word rule for constructors of inductively defined relations; e.g. Vclosed_pi is a

rule. The very fact that a relation is inductively defined means that its judgements can only be

derived by using its rules, and the shape of a judgement usually tells us something about which

rules might be used to derive it, and hence something about the immediate subderivations of

any derivation. We call the lemmas that express this property generation lemmas (after [Bar92]),

while Christine Paulin-Mohring calls them inversion properties [DFH+ 93]. As they are very

useful, the generation lemmas are among the first things we prove about an inductively defined

relation.

The generation lemmas we expect from the definition of Vclosed are (in a context[u|VV][A,B|Trm])(Vclosed (var u))->absurd;(Vclosed (pi u A B))->and (Vclosed A) (Ex[p:PP] Vclosed (alpha p u B));(Vclosed (lda u A B))->and (Vclosed A) (Ex[p:PP] Vclosed (alpha p u B));(Vclosed (app A B))->and (Vclosed A) (Vclosed B);
(Notice how existential quantifiers in the lemmas for pi and lambda express the failure of the

subformula property in Vclosed.) However, having mentioned that a particular parameter

must be supplied in the right premise of rules Vclosed_pi and Vclosed_lda, I will now

turn around and observe that in the case of Vclosed it intuitively seems not to matter which

parameter, p, we use. In practice, it would be very convenient to have stronger pi- and

lambda-generation lemmas for Vclosed expressing this observation, for example(Vclosed (pi u A B))->and (Vclosed A) ({p:PP}Vclosed (alpha p u B));
This is directly provable, but we have something much better in store.

3.2.5.3 A Better Induction Principle for Vclosed.

Table 3–2 defines a relation aVclosed (alternative Vclosed), differing from Vclosedonly in the

rules for lambda and pi, in which the right premise requires aVclosed (alpha p n B) for

every p (i.e. a function of type {p:PP}aVclosed (alpha p n B)). We will show that Vclosed
and aVclosedhave the same judgements.

It is worth saying that Vclosed can be seen as a type of well-founded finitely branching

trees; i.e. Vclosed_sort and Vclosed_par are the leaves, and Vclosed_pi, Vclosed_lda,

and Vclosed_app are binary branching nodes. On the other hand, aVclosed should be

thought of as containing infinitely branching (but well-founded) trees, where aVclosed_pi
and aVclosed_ldacreate a branch for each parameter p. Notice also that for any term, A, there

is at most one derivation of (aVclosed A), while this is certainly not the case for Vclosed.

Chapter 3. Lambda Calculus: How to Handle Free Names 32Inductive [aVclosed:Trm->Prop]Constructors[aVclosed_sort:{s:SS}aVclosed (sort s)][aVclosed_par:{p:PP}aVclosed (par p)][aVclosed_pi:{n|VV}{A,B|Trm}{premA:aVclosed A}{premB:{p:PP}aVclosed (alpha p n B)}(**)aVclosed (pi n A B)][aVclosed_lda:{n|VV}{A,B|Trm}{premA:aVclosed A}{premB:{p:PP}aVclosed (alpha p n B)}(**)aVclosed (lda n A B)][aVclosed_app:{A,B|Trm}{premA:aVclosed A}{premB:aVclosed B}(**)aVclosed (app A B)]NoReductions;
Table 3–2: The inductive property aVclosed

Generation Lemmas for aVclosed By aVclosed-structural induction we have:Goal aVclosed_var_gen : {v|VV}not (aVclosed (var v));Goal aVclosed_pi_gen : {A,B|Trm}{v|VV}(aVclosed (pi v A B))->and (aVclosed A) ({p:PP}aVclosed (alpha p v B));Goal aVclosed_lda_gen : {A,B|Trm}{v|VV}(aVclosed (lda v A B))->and (aVclosed A) ({p:PP}aVclosed (alpha p v B));Goal aVclosed_app_gen : {A,B|Trm}(aVclosed (app A B))->and (aVclosed A) (aVclosed B);
Equivalence of Vclosed and aVclosed. It is trivial to proveGoal aVclosed_Vclosed : {A|Trm}(aVclosed A)->Vclosed A;
by structural induction on the derivation of (aVclosed A), as we may always choose fresh

parameters.

For the converse, first prove a lemma.

Chapter 3. Lambda Calculus: How to Handle Free Names 33Goal aVclosed_alpha:{B|Trm}{p|PP}{v|VV}(aVclosed (alpha p v B))->{q:PP}aVclosed (alpha q v B);
This proof is by induction on the length of B, for the usual reason that statements about change

of names are proved by length induction rather than structural induction,because, for example,(alpha q v A) is not generally a subterm of (alpha p v (pi n A B))but it is shorter than(alpha p v (pi n A B)). Still, there is something missing in this explanation: it is not that

we replaced structural induction over terms by length induction over terms; rather we replaced

structural induction over aVclosedby length induction over terms. This works because every

term appearing in a premise of a rule of aVclosed is shorter than the term appearing in its

conclusion; the typing relations to be considered later do not have this property, and more

subtle proofs will be required (section 4.4.4.1).

Proof of aVclosed alpha. By well-founded induction on lngth(B), we have the goal8A : (8X : lngth(X) < lngth(A))8p; v : aVclosed([p=v]X)) 8q : aVclosed([q=v]X)))8p; v : aVclosed([p=v]A)) 8q : aVclosed([q=v]A)
Now using term structural induction on A , we have six cases, for sort, variable, parameter,

pi, lambda and application (only case analysis is necessary here; we don’t use the structural

induction hypotheses). Consider the case for pi: we must showaVclosed([q=v]fn:AgB) i.e. aVclosed(fn:[q=v]Ag(if (v = n) B [q=v]B))
under the assumptions

ih : 8X : lngth(X)< lngth(fn:AgB))8p; v : aVclosed([p=v]X)) 8q : aVclosed([q=v]X)
vclp : aVclosed([p=v]fn:AgB)

i.e. aVclosed(fn:[p=v]Ag(if (v = n) B [p=v]B))
By aVclosed generation on assumption vclp we also know

h1 : aVclosed([p=v]A)
h2 : 8r : aVclosed([r=n](if (v = n) B ([p=v]B)))

(Here we are using a aVclosed generation lemma, in place of aVclosed structural induction,

to destruct a derivation which we already know has a certain form. This is typical of how

generation lemmas are used.) By aVclosed_pi, it suffices to showaVclosed([q=v]A) and 8r : aVclosed([r=n](if (v = n) B [q=v]B))
Noticing that alpha (i.e. [p=v]B) doesn’t change length, the first of these holds by ih and

h1. For the second, let r be an arbitrary parameter, and consider cases. If v = n then we

Chapter 3. Lambda Calculus: How to Handle Free Names 34

are done by ih and h2; i.e. [q=v]B doesn’t actually appear in the goal, and [p=v]B doesn’t

actually appear in h2. Finally the interesting case: if v 6= n we use a straightfoward lemma8v;w : v 6= w) 8r; q; A : [r=v][q=w]A = [q=w][r=v]A
to rewrite the goal to aVclosed([q=v][r=n]B)
By ih it suffices to show aVclosed([p=v][r=n]B)
which follows by h2 after again rewriting the order of substituting p and r .

Using this lemma, it is easy to proveGoal Vclosed_aVclosed : {M|Trm}(Vclosed M)->aVclosed M;
by structural induction on the derivation of (Vclosed A).

What have we gained? By defining aVclosed and showing it to be extensionally equivalent

to Vclosed, we can view aVclosed_elim, the elimination rule for aVclosed, as an induction

principle for the extension of Vclosed. This is clearly stronger than Vclosed_elim. Notice

that we could directly prove the analogue of aVclosed_alpha for Vclosed (the same proof

outlined above works), but it is not just the stronger premises of aVclosedwe are after (i.e. the

generation lemmas), it is the stronger induction hypotheses.

3.2.6 A Technical Digression: Renamings

A renaming is, informally, a finite function from parameters to parameters. They are represented

formally by their graphs as lists of ordered pairs.[rp = PROD|PP|PP];[Renaming = LL|rp];
We use rho and sigma (informally, � , �) to range over renamings. Renamings are applied to

parameters by assoc, and extended compositionally to Trm, GB and Cxt.

Chapter 3. Lambda Calculus: How to Handle Free Names 35[renPar [rho:Renaming][p:PP] : PP = assoc (PPeq p) p rho];[renTrm [rho:Renaming] : Trm->Trm =Trec ([_:Trm]Trm)([s:SS]sort s)([v:VV]var v)([p:PP]par (renPar rho p))([v:VV][_,_,l,r:Trm]pi v l r)([v:VV][_,_,l,r:Trm]lda v l r)([_,_,l,r:Trm]app l r)];[renGB [rho:Renaming] : GB->GB =GBrec ([_:GB]GB) ([p:PP][t:Trm](Gb (renPar rho p) (renTrm rho t)))];[renCxt [rho:Renaming] : Cxt->Cxt = map (renGB rho)];
This is a “tricky” representation. First, if there is no pair (Pr p q) in rho,(assoc (PPeq p) p rho) returns p (from the second occurrence of p in this expression),

so (renPar rho) is always a total function with finite support. Also, while there is no as-

sumption that renamings are the graphs of functional or injective relations, the action of a

renaming (e.g. renTrm) is functional, because assoc only finds the first pair whose domain

matches a given parameter. Conversely, consing a new pair to the front of a renaming will

“shadow” any old pair with the same domain. Interestingly, we do not have to formalize these

observations.

3.2.6.1 The action of a Renaming

Renaming is really iterated psub; informally,((p; q)::�)M = [q=r](�([r=p]M)) if r not in � or M
Formally:Goal renTrm_is_conjugated_psub:{r|PP}{M|Trm}(is_ff (poccur r M))->{rho|Renaming}(is_ff (member PPeq r (lefts rho)))->(is_ff (member PPeq r (rights rho)))->{p,q:PP}Q (renTrm (CONS (Pr p q) rho) M)(psub (par q) r (renTrm rho (psub (par r) p M)));
From this analysis it is easy to show that renaming respects any relation that psub respects;

e.g.

Chapter 3. Lambda Calculus: How to Handle Free Names 36Goal psub_resp_renTrm_resp:{P|Trm->Trm->Prop}{psub_resp_P:{N|Trm}(Vclosed N)->{A,B|Trm}(P A B)->{p:PP}P (psub N p A) (psub N p B)}{rho:Renaming}{A,B|Trm}(P A B)->P (renTrm rho A) (renTrm rho B);
(By the way, this lemma is stronger, not weaker, because of the apparently ugly occurrence ofVclosed in the hypotheses; we need this strength.) Similar results hold for n-ary relations P.

3.2.6.2 Injective and Surjective Renamings

It will be useful to have bijective renamings (e.g. in section 4.4.4.1). The definitions are standard.[inj [rho:Renaming] ={p,q|PP}(is_tt (PPeq (renPar rho p) (renPar rho q)))->is_tt (PPeq p q)];[sur [rho:Renaming] ={p:PP}Ex [q:PP]is_tt (PPeq (renPar rho q) p)];
It’s a little difficult to construct bijective renamings in general because of the trickyness of

the representation mentioned above. However it’s clear that any renaming that only swaps

parameters, e.g. fq 7! p; p 7! qg , is bijective.[swap [p,q:PP] : Renaming = CONS (Pr p q) (unit (Pr q p))];Goal swap_sur : {p,q:PP}sur (swap p q);Goal swap_inj : {p,q:PP}inj (swap p q);
This is enough for our purposes.

3.2.7 Do Terms Really Exist?PP, VV and SS, are not concretely given types, but types we have assumed to exist, and to

have certain properties. Although we have formalized these three types in identical ways

there are clearly two different meanings involved. For one thing, we have defined, not a

particular language, but a class of languages. SS can be instantiated to suit different purposes.

For example, SS might be instantiated with BB for the language of the lambda cube, with the

interpretation ? = tt and2 = ff; or withNN for the language of ECC, with the interpretationProp = Z and Type(n)= Sn . Thus SS is universally (i.e. functionally) quantified: when

we Discharge SS the type Trm should be functionally dependent on the type SS and its

properties SSeq and SSeq_iff_Q.

Chapter 3. Lambda Calculus: How to Handle Free Names 37

On the other hand, PP, VV are merely part of the machinery. We don’t intend to support

theorems of the form “If PP has property : : : then : : : ”2. There is, however, a reason for using

abstract declaration of PP, VV and their properties, rather than a particular instance, such as

lists of characters or natural numbers: the formalization will not use any particular properties

of such an instance, but only the properties we have assumed. Thus it is apparent that PP andVV should be viewed as abstract datatypes, i.e. as existentially quantified. Our meta language

doesn’t really have syntax for this. In ECC, a declared parameter can only be discharged as

Pi-bound (i.e. universal) or Sigma-bound (i.e. strong existential). Our universal assumption

of PP and VV is certainly strong enough for what we intend to say, but we demand too much

of the user of the type Trm, so that user, before taking delivery of Trm, should insist on seeing

some concrete instance of these types. NN is the simplest such instance, and we can get LEGO

to check this fact, and instantiate PP, VV and their properties, byCut [PP=NN][PPeq=nat_eq][PPeq_iff_Q=nat_eq_character][PPinf=NNinf][VV=NN][VVeq=nat_eq][VVeq_iff_Q=nat_eq_character][VVinf=NNinf];
(The Cut command is described in section 2.1.4.) Since this changes the context destructively,

we should now re-load from the definition of PP to regain abstractness.2 [GN91,Geu93] do put structure on VV, partitioning it into disjoint countably infinite sets, one for

each sort. This can be formalized as VV�SS, rather than partitioning VV, so Trm depends on SS but VV
does not.

Chapter 3. Lambda Calculus: How to Handle Free Names 38

3.3 Reduction and Conversion

In this section I outline the theory of reduction and conversion of Pure Languages. The main

result is the Church-Rosser Theorem.

As in the definition of Vclosed (section 3.2.5), the interesting point in defining reduction is

how the relation goes under binders: replace the free variable occurrences by a suitably fresh

parameter, operate on the closed subterm, and undo the “closing up”. For an example of how

this works, consider informally one-step beta-reduction of untyped lambda calculus. In our

style the � and � rules are:� (�x:M)N ! [N=x]M� [q=x]M ! [q=y]N�x:M ! �y:N q 62M; q 62 N
where [q=x]M is our (alpha q x M). Here is an instance of � , contracting the underlined

redex: [q=x](�v:�x:v) x = (�v:�x:v) q ! �x:q = [q=y]�x:y�x:((�v:�x:v) x) ! �y:�x:y
After removing the outer �x , replacing its bound instances by a fresh parameter, q , and

contracting the closed weak-head redex thus obtained (there is no possibility of variable capture

when contracting a closed weak-head redex), we must re-bind the hole now occupied by q .

According to the rule � , we require a variable, y , and a term, N , such that [q=y]N = �x:q .

Such a pair is y , �x:y (the one we have used above), as is z , �x:z for any z 6= x . Howeverx , �x:x will not do, for vsub will not substitute q for x under the binder �x .

3.3.1 One-Step Parallel Reduction

Table 3–3 informally shows the relation par_red1, the one-step parallel reduction used in the

Tait–Martin-Löf proof of the Church-Rosser property for beta-reduction. The formal definition

of par_red1 is shown in table 3–4.

Note that, since vsub is not a correct substitution operation, there is something fishy about

the use ofvsub in the conclusion of the beta rule, whereA'may not be Vclosed. See remark 3.2.

3.3.2 Many-step parallel reduction

The transitive closure of par_red1, named par_redn, is defined.

Chapter 3. Lambda Calculus: How to Handle Free Names 39

PAR-R1-REFL A! A
PAR-R1-BETA

A! A0 [p=u]B ! [p=v]B0([u:U]B)A ! [A0=v]B0 p 62 B; p 62 B0
PAR-R1-PI

A! A0 [p=u]B ! [p=v]B0fu:AgB ! fv:A0gB0 p 62 B; p 62 B0
PAR-R1-LDA

A! A0 [p=u]B ! [p=v]B0[u:A]B ! [v:A0]B0 p 62 B; p 62 B0
PAR-R1-APP

A! A0 B ! B0AB ! A0B0
Table 3–3: 1-Step Parallel Reduction (Informal)Inductive [par_redn: Trm->Trm->Prop] Constructors[par_redn_red1: {A,B|Trm}(par_red1 A B)->par_redn A B][par_redn_trans: {t,u,v|Trm}(par_redn t u)->(par_redn u v)->par_redn t v];

Recall that par_red1 is reflexive, so par_redn inherits this property.

3.3.2.1 A Church-Rosser Theorem

Using the argument of Tait and Martin-Löf, as beautifully modernized in [Tak], we prove the

first CR theorem.[CommonReduct [R,S:Trm->Trm->Prop]= [b,c:Trm]Ex [d:Trm]and (S b d) (R c d)];[DiamondProperty [R:Trm->Trm->Prop]= {a,b,c|Trm}(Vclosed a)->(R a b)->(R a c)->CommonReduct R R b c];[StripLemma [R,S:Trm->Trm->Prop]= {a,b,c|Trm}(Vclosed a)->(R a b)->(S a c)->CommonReduct R S b c];Goal comp_dev_par_red1_DP : DiamondProperty par_red1;Goal par_redn_red1_SL : StripLemma par_redn par_red1;Goal par_redn_DP : DiamondProperty par_redn;
The proofs are by structural induction, and there is no need define or reason about the no-

tion of �-conversion (but see section 3.3.4). See [McK94] for a detailed description of the

formalization.

Chapter 3. Lambda Calculus: How to Handle Free Names 40Inductive [par_red1:Trm->Trm->Prop] Constructors[par_red1_refl: {t:Trm}par_red1 t t][par_red1_beta: {U:Trm}{A,A',B,B'|Trm}{u,v|VV}{p|PP}{premA:par_red1 A A'} {noccB:is_ff (poccur p B)}{noccB':is_ff (poccur p B')}{premB:par_red1 (alpha p u B) (alpha p v B')}(**)par_red1 (app (lda u U B) A) (vsub A' v B')][par_red1_pi: {A,A',B,B'|Trm}{u,v|VV}{p|PP}{premA:par_red1 A A'} {noccB:is_ff (poccur p B)}{noccB':is_ff (poccur p B')}{premB:par_red1 (alpha p u B) (alpha p v B')}(**)par_red1 (pi u A B) (pi v A' B')][par_red1_lda: {A,A',B,B'|Trm}{u,v|VV}{p|PP}{premA:par_red1 A A'} {noccB:is_ff (poccur p B)}{noccB':is_ff (poccur p B')}{premB:par_red1 (alpha p u B) (alpha p v B')}(**)par_red1 (lda u A B) (lda v A' B')][par_red1_app: {A,A',B,B'|Trm}{premA:par_red1 A A'}{premB:par_red1 B B'}(**)par_red1 (app A B) (app A' B')];
Table 3–4: 1-Step Parallel Reduction

3.3.3 Conversion

One must take care in defining conversion, conv, or the second Church-Rosser property will

fail. We have only proved the diamond property for Vclosed terms, and while reduction

preserves Vclosed, expansion does not. We define conv so that only Vclosed terms can

participate in conv (because of conv_redn).

Chapter 3. Lambda Calculus: How to Handle Free Names 41Inductive [conv : Trm->Trm->Prop] Constructors[conv_redn:{A,B|Trm}(Vclosed A)->(par_redn A B)->conv A B][conv_sym:{t,u|Trm}(conv t u)->conv u t][conv_trans:{A,D,B|Trm}(conv A D)->(conv D B)->conv A B];
This relation conv is a proper subrelation of the conversion defined in [MP93], being (exten-

sionally) that relation intersected with Vclosed�Vclosed.

Remark 3.2 (Vclosed and reduction) The reason so many Vclosed hypotheses are required in the

CR theorem, the definition of conv, and other places, is the occurrence of vsub in the conclusion of

the rule par_red1_beta (table 3–4), where, if A' is not Vclosed, variable capture may occur. In

retrospect, we might better have defined par_red1 differently, replacingpar_red1_refl in table 3–4

with[par_red1_refl: {t|Trm}(Vclosed t)->par_red1 t t]
With this new definition, all instances of vsub in table 3–4 would substitute only Vclosed terms, in

which case vsub is a correct substitution operation. It would be provable that{A,B|Trm}(par_red1 A B)->Vclosed B;
but not that{A,B|Trm}(par_red1 A B)->Vclosed A;
because the type label, U, is forgotten in the conclusion of par_red1_beta. This alternative packaging

of the Vclosed requirements would better capture the informal meaning, and might remove the need

for Vclosed side conditions in many places.

A more beautiful way to get the same effect is to replace par_red1_refl with “atomic” reflexivity

rules3[par_red1_refl_par: {p:PP}par_red1 (par p) (par p)][par_red1_refl_sort: {s:SS}par_red1 (sort s) (sort s)]
Compare this with the atomic weakening of section 4.1.2.

3.3.3.1 The Second Church-Rosser Theorem

It is now straightfoward to prove the CR theorem for conversion.Goal convCR: {A,B|Trm}(conv A B)->CommonReduct par_redn par_redn A B;3This observation appears in [Tak], and was pointed out to me by James McKinna.

Chapter 3. Lambda Calculus: How to Handle Free Names 42Inductive [alpha_conv : Trm->Trm->Prop] Constructors[alpha_conv_refl:{t:Trm}alpha_conv t t][alpha_conv_pi:{A,A',B,B'|Trm}{u,v|VV}{p|PP}{premA:alpha_conv A A'} {noccB:is_ff (poccur p B)}{noccB':is_ff (poccur p B')}{premB:alpha_conv (alpha p u B) (alpha p v B')}(**)alpha_conv (pi u A B) (pi v A' B')][alpha_conv_lda:{A,A',B,B'|Trm}{u,v|VV}{p|PP}{premA:alpha_conv A A'} {noccB:is_ff (poccur p B)}{noccB':is_ff (poccur p B')}{premB:alpha_conv (alpha p u B) (alpha p v B')}(**)alpha_conv (lda u A B) (lda v A' B')][alpha_conv_app:{A,A',B,B'|Trm}{premA:alpha_conv A A'}{premB:alpha_conv B B'}(**)alpha_conv (app A B) (app A' B')];
Table 3–5: Alpha-Conversion

3.3.4 Alpha-Conversion

Acknowledgement Special thanks to James McKinna for his work on this section.

As an implementor I’m pathologically interested in the names of variables. One motivation

for the use of distinct classes of bound variables and free parameters was to avoid the need to

reason about alpha-conversion or alpha-equivalence classes. I have described formal proofs

of both Church-Rosser theorems without using the notion of alpha-conversion. In Chapters 4

and 5, and in [MP93], we apply this theory of reduction and conversion to PTS, proving

significant type theory results without any mention of alpha-conversion. However, I will

argue in the following two subsections, 3.3.5 and 3.3.6, that this point of view is misleading. It

is only possible to pursue type theory without using alpha-conversion because our type theory

uses reduction and conversion relations, par_redn and conv, that contain alpha-conversion.

Further, decidability of conversion for normalizing terms depends on decidability of alpha-

conversion.

Table 3–5 shows a definition ofalpha_convdueto James McKinna. We informally write
�'

Chapter 3. Lambda Calculus: How to Handle Free Names 43

for alpha_conv. Note that alpha_conv is exactlypar_red1without the rule par_red1_beta,

so par_red1 contains alpha_conv.Goal alpha_conv_par_red1 : {A,B|Trm}(alpha_conv A B)->par_red1 A B;
Remark 3.3 par_red1 contains alpha_conv, but does not respect alpha-conversion classes. For

example ([x:q]xx) ([w:q]w) par red1 ([y:q]y) ([y:q]y) for every y ,

but

not ([x:q]xx) ([w:q]w) par red1 ([y1:q]y1) ([y2:q]y2) for y1 6= y2 .par_redn, being transitive, does respect alpha-conversion classes.

The properties of alpha_conv include:Goal alpha_conv_refl_pocc:{X,Y|Trm}(alpha_conv X Y)->{p|PP}(is_tt (poccur p Y))->is_tt (poccur p X);Goal Vclosed_resp_alpha_conv:{A,B|Trm}(alpha_conv A B)->(Vclosed A)->Vclosed B;Goal alpha_conv_sym : sym alpha_conv;Goal alpha_conv_trans : trans alpha_conv;
Informally, alpha-conversion is used for changing the names of variables. We do not havefx:AgB �' fy:Ag([y=x]B) because [y=x]B (i.e. (vsub (var y) x B)) is not neces-

sarily correct as an informal substitution. However, we do have:Goal true_alpha_conv_pi:{v|VV}{A,B|Trm}(Vclosed (pi v A B))->{u:VV} Ex [C:Trm] alpha_conv (pi v A B) (pi u A C);Goal true_alpha_conv_lda:{v|VV}{A,B|Trm}(Vclosed (lda v A B))->{u:VV} Ex [C:Trm] alpha_conv (lda v A B) (lda u A C);
3.3.4.1 Deciding Alpha-Conversion

Alpha-conversion is decidable for Vclosed terms:Goal decide_alpha_conv:{A,B|Trm}(Vclosed A)->(Vclosed B)->decidable (alpha_conv A B);
This is a straightfoward but messy proof, by double induction on (aVclosed A) and(aVclosed B).

Chapter 3. Lambda Calculus: How to Handle Free Names 44

BN-SORT beta norm(s)
BN-PAR beta norm(p)
BN-PI

beta norm(A) 8p : beta norm([p=u]B)beta norm(fu:AgB)
BN-LDA

beta norm(A) 8p : beta norm([p=u]B)beta norm([u:A]B)
BN-APP

beta norm(A) beta norm(B)beta norm(AB) A is not a lambda

Table 3–6: Inductive definition of beta-normal forms (informal).Inductive [beta_norm:Trm->Prop] NoReductions Constructors[bn_sort:{s:SS}beta_norm (sort s)][bn_par:{p:PP}beta_norm (par p)][bn_pi:{A,B|Trm}{v|VV}{lprem:beta_norm A}{rprem:{p:PP}beta_norm (alpha p v B)}(***************************************)beta_norm (pi v A B)][bn_lda:{A,B|Trm}{v|VV}{lprem:beta_norm A}{rprem:{p:PP}beta_norm (alpha p v B)}(***************************************)beta_norm (lda v A B)][bn_app:{A,B|Trm}{sc:is_ff (isLda A)}{lprem:beta_norm A}{rprem:beta_norm B}(***************************************)beta_norm (app A B)];
Table 3–7: Inductive definition of beta-normal forms (formal).

Chapter 3. Lambda Calculus: How to Handle Free Names 45

3.3.5 Normal Forms

A term is beta normal, beta_norm, if it has no beta redexes (tables 3–6 and 3–7). All beta_norm
terms are Vclosed:Goal beta_norm_Vclosed: {A|Trm}(beta_norm A)->Vclosed A;
A relation, normal form, and a property, normalizing, are defined:[normal_form [N,A:Trm] = and (beta_norm N) (par_redn A N)];[normalizing [A:Trm] = Ex [B:Trm] normal_form B A];
Our many-step reduction, par_redn, is reflexive, so there is reduction from a normal form,

but every reduct of a normal form is a normal form.Goal par_redn_bnorm_is_bnorm:{A,B|Trm}(par_redn A B)->(beta_norm A)->beta_norm B;
Any reduct of a normal form alpha-converts with that normal form.Goal par_redn_bnorm_is_alpha_conv:{A,B|Trm}(par_redn A B)->(beta_norm A)->alpha_conv A B;
Hence, by Church-Rosser, normal forms of a term are unique up to alpha-conversion.Goal nf_unique:{A|Trm}(Vclosed A)->{M,N|Trm}(normal_form M A)->(normal_form N A)->alpha_conv M N;
This lemma says that the class of normal forms of a (Vclosed) term is contained in an alpha-

conversion equivalence class. Since alpha-conversion is contained in par_red1, if a term has

a normal form it has an an entire alpha-conversion equivalence class of normal forms.Goal nf_alpha_class:{A|Trm}(Vclosed A)->{M,N|Trm}(normal_form M A)->(alpha_conv M N)->normal_form N A;
Thus the class of normal forms of a (Vclosed) term is either empty or exactly an alpha-

conversion equivalence class.

3.3.5.1 Deciding the Shape of Normal Forms

The normal forms of normalizing terms are computable, so it is decidable what their shape is

(see section 3.2.2). For example, define what it means to reduce to a sort or reduce to a pi[RedToSort [A:Trm] = Ex [s:SS] par_redn A (sort s)];[RedToPi [A:Trm] = Ex3 [X,Y:Trm][v:VV] par_redn A (pi v X Y)];
and these properties are decidable.

Chapter 3. Lambda Calculus: How to Handle Free Names 46Goal normalizing_decides_RedToSort:{A|Trm}(Vclosed A)->(normalizing A)->decidable (RedToSort A);Goal normalizing_decides_RedToPi:{A|Trm}(Vclosed A)->(normalizing A)->decidable (RedToPi A);
These lemmas are used for typechecking in Chapter 5.

3.3.5.2 Deciding Conversion

Conversion is decidable for normalizing terms.Goal normalizing_decides_conv:{A,B|Trm}(Vclosed A)->(normalizing A)->(Vclosed B)->(normalizing B)->decidable (conv A B);
This proof depends on Church-Rosser; since normal forms are unique only up to alpha-

conversion, it also depends on decidability of alpha-conversion (section 3.3.4.1).

3.3.6 Ordinary Beta-Reduction: Church-Rosser Theorems Revisited

We have proved the first and second CR theorems for par_rednand for conv (which is defined

using par_redn). The usual argument now is to show that par_redn is (extensionally) the

same relation as ordinary many-step beta-reduction, hence the CR theorem holds for ordinary

beta-reduction (e.g. see p. 62 in [Bar84]).

Ordinary one-step beta-reduction, red1, is defined informally in table 3–8 and formally in

table 3–9; Redn is the reflexive-transitive closure of red1.Inductive [Redn:Trm->Trm->Prop] Constructors[Redn_red1:{A,B|Trm}(red1 A B)->Redn A B][Redn_refl:{t:Trm}Redn t t][Redn_trans:{t,u,v|Trm}(Redn t u)->(Redn u v)->Redn t v];
We observed above that alpha_conv is contained in par_red1, hence alpha_conv is con-

tained in par_redn. On the other hand, red1 must actually contract a beta-redex, so surely

does not contain alpha_conv. Thus Redn also does not contain alpha_conv, andGoal not {M,N|Trm}(par_redn M N)->Redn M N;
is provable.

In fact (DiamondProperty Redn) is not provable. For example[x:q]([x:q]x)x red1 [w:q]w for every w , (�)

Chapter 3. Lambda Calculus: How to Handle Free Names 47

RED1-BETA ([u:U]B)A ! [A=u]B
RED1-PI-L

A! A0fu:AgB ! fv:A0gB
RED1-PI-R

[p=u]B ! [p=v]B0fu:AgB ! fv:AgB0 p 62 B; p 62 B0
RED1-LDA-L

A! A0[u:A]B ! [v:A0]B
RED1-LDA-R

[p=u]B ! [p=v]B0[u:A]B ! [v:A]B0 p 62 B; p 62 B0
RED1-APP-L

A! A0AB ! A0B
RED1-APP-R

B ! B0AB ! AB0
Table 3–8: One-step beta-reduction (Informal)

and [w:q]w has no red1-reducts at all. Choosing w1 6= w2 , we have[x:q]([x:q]x) x red1 [w1:q]w1 and [x:q]([x:q]x) x red1 [w2:q]w2
where [w1:q]w1 and [w2:q]w2 have no common Redn-reduct. James McKinna claims that

the correct CR theorem for Redn is{A,Bl,Br|Trm}(Vclosed A)->(Redn A Bl)->(Redn A Br)->Ex2 [Cl,Cr:Trm] and3 (Redn Bl Cl) (Redn Br Cr) (alpha_conv Cl Cr);
Another possible solution is to change the definition of red1 or Redn to containalpha_conv. Then it would be provable that par_redn and Redn are the same relation, thus

proving the CR theorem for ordinary beta-reduction. The choice between these two approaches

is an informal question: does the informal notion of reduction contain alpha-conversion or

not?

Remark 3.4 The notion beta_norm of beta-normal form can be used to define

Chapter 3. Lambda Calculus: How to Handle Free Names 48

Inductive [red1 : Trm->Trm->Prop] Constructors[red1_beta:{u:VV}{U,A,B:Trm}red1 (app (lda u U B) A) (vsub A u B)][red1_pi_l:{A,A'|Trm}{premA:red1 A A'}(***){v:VV}{B:Trm}red1 (pi v A B) (pi v A' B)][red1_pi_r:{u,v|VV}{B,B'|Trm}{p|PP} {noccB:is_ff (poccur p B)}{noccB':is_ff (poccur p B')}{premB:red1 (alpha p u B) (alpha p v B')}(***){A:Trm}red1 (pi u A B) (pi v A B')][red1_lda_l:{A,A'|Trm}{premA:red1 A A'}(***){v:VV}{B:Trm}red1 (lda v A B) (lda v A' B)][red1_lda_r:{u,v|VV}{B,B'|Trm}{p|PP} {noccB:is_ff (poccur p B)}{noccB':is_ff (poccur p B')}{premB:red1 (alpha p u B) (alpha p v B')}(***){A:Trm}red1 (lda u A B) (lda v A B')][red1_app_l:{A,A'|Trm}{premA:red1 A A'}(***){B:Trm}red1 (app A B) (app A' B)][red1_app_r:{B,B'|Trm}{premB:red1 B B'}(***){A:Trm}red1 (app A B) (app A B')];
Table 3–9: One-step beta-reduction

Chapter 3. Lambda Calculus: How to Handle Free Names 49Redn_normal_form N A = (beta_norm N) and (Redn A N)
Unlike the case for par_redn, there are no Redn steps starting from a normal form, so the class

of Redn_normal_forms of a normalizing term may not be a complete alpha_conversion class.

On the other hand such a class may not be a singleton (see equation (�) above) because the rulesred1_pi_r and red1_lda_r allow non-deterministic choice of the variable v that gets re-bound

after the contraction. Thus deciding Redn-conversion for normalizing terms requires decidability of

alpha-conversion.

Chapter 4

Pure Type Systems

A PTS is a PL (PP; VV; SS) along with two relations� [ax:SS->SS->Prop], a set of axioms, written informally as ax(s1:s2)� [rl:SS->SS->SS->Prop], a set of rules, written informally as rl(s1; s2; s3)
that parameterize an inductively defined typing judgement. We usually intend ax and rl to

be decidable, but this assumption is not used in the basic theory of PTS . If we are interested

in algorithms for typechecking (see Chapter 5), even stronger assumptions about decidability

are needed.

4.1 What are Pure Type Systems

The typing judgement has the shape � ` M : A , meaning that in context � , term M has

type A . Informally we call M (or (G;M)) the subject and A the predicate of the judgement.

Also we informally write � for the empty context. In original papers such as [Ber90b,Bar91,

GN91,vBJ93] the typing judgement of a PTS is given as the inductive closure of (something

like) the rules in table 4–1. (In this section I am not distinguishing between parameters and

variables; I will use x , y , : : : , and use the word “variable”.)

4.1.1 Pi-Formation

In 1990 I suggested to Henk Barendregt that the rule LDA of table 4–1 should be replaced with

LDA
�[x:A] ` M : B � ` fx:AgB : s� ` [x:A]M : fx:AgB

This formulation shows that formation of Pi-types is only allowed by the rule PI, not inde-

pendently by the LDA rule; it is the presentation used in [Bar92], the “bible” of PTS . It’s

50

Chapter 4. Pure Type Systems 51

AX � ` s1 : s2 ax(s1:s2)
START

� ` A : s�[x:A] ` x : A x 62 �
WEAK

� ` M : C � ` A : s�[x:A] ` M : C x 62 �
PI

� ` A : s1 �[x:A] ` B : s2� ` fx:AgB : s3 rl(s1; s2; s3)
LDA

� ` A : s1 �[x:A] ` M : B �[x:A] ` B : s2� ` [x:A]M : fx:AgB rl(s1; s2; s3)
APP

� ` M : fx:AgB � ` N : A� ` MN : [N=x]B
TCONV

� ` M : A � ` B : s� ` M : B A ' B
Table 4–1: An old, informal, formulation of PTS

easy to see that the two formulations have the same judgements (they are extensionally the

same relation), but don’t have the same derivations of these judgements (they are intensionally

different relations), so the elementary theory is slightly different in the two formulations.

4.1.2 Atomic Weakening

I recently suggested that the weakening rule, WEAK, should be restricted to atomic subjects,

i.e. replaced by the two rules

VWEAK
� ` y : C � ` A : s�[x:A] ` y : C x 62 �

SWEAK
� ` s : C � ` A : s�[x:A] ` s : C x 62 �

Chapter 4. Pure Type Systems 52

Whereas WEAK can be used to derive any judgement with a non-empty context, these rules can

only be used to derive a judgement with a variable or a sort, respectively, for its subject. Further,

given a judgement, �[y : A] ` x : B , with a variable as its subject, there is no confusion

whether it is derived by START or VWEAK: use START if x = y and VWEAK otherwise. Similarly,

given a judgement, � ` s : B , with a sort as its subject, there is no confusion whether it is

derived by AX or SWEAK: use AX if � is empty and SWEAK otherwise. Thus, with atomic

weakening, any judgement may only be derived by TCONV or by exactly one of the remaining

rules.

4.1.2.1 Weakening and the Shape of Derivations

Given any derivation with atomic weakening, just replace every instance of VWEAK or SWEAK

with an instance of WEAK to obtain a derivation of the same judgement in the system with

WEAK. However, using WEAK there are more derivations of most of these judgements. For

example, the following derivation works in both systems���� ` M : A!B����� weakening ��� ` M : A!B ���� ` N : A����� weakening ��� ` N : A
APP�� ` MN : B

while the next one only works in the system with WEAK.���� ` M : A!B ���� ` N : A
APP� ` MN : B����� weakening ��� ` MN : B

With atomic weakening all uses of weakening have been pushed as close as possible to the

leaves. Consequently, the system with atomic weakening is closer in shape of derivations

to the other standard presentation of type systems, where validity of contexts is defined by

mutual induction with the typing judgement (the relations vtyp and vcxt in section 4.4.10.1).

In fact, by restricting the derivations we get a more beautiful development of the basic theory,

and this will be presented below.

From the observations above, the question whether the two systems derive the same judge-

ments reduces to whether WEAK is an admissible rule in the system with atomic weakening. I

show this to be the case in section 4.4.6.

Chapter 4. Pure Type Systems 53

AX � ` s1 : s2 ax(s1:s2)
START

� ` A : s�[p:A] ` p : A p 62 �
VWEAK

� ` q : C � ` A : s�[p:A] ` q : C p 62 �
SWEAK

� ` s : C � ` A : s�[p:A] ` s : C p 62 �
PI

� ` A : s1 �[p:A] ` [p=x]B : s2� ` fx:AgB : s3 p 62 B; rl(s1; s2; s3)
LDA

�[p:A] ` [p=x]M : [p=y]B � ` fy:AgB : s� ` [x:A]M : fy:AgB p 62M; p 62 B
APP

� ` M : fx:AgB � ` N : A� ` MN : [N=x]B
TCONV

� ` M : A � ` B : s� ` M : B A ' B
Table 4–2: The Informal Typing Rules of PTS

4.1.3 Parameters and Variables

Table 4–2 is a formulation of the system we have been discussing where the distinction be-

tween parameters and variables is made. First observe that the handling of parameters and

variables in the PI and LDA rules is similar to that in the rules of table 3–4: to operate under

a binder, locally extend the context replacing the newly freed variable by a new parameter,

do the operation, then forget the parameter and bind the variable again. Huet’s Constructive

Engine [Hue89,Pol94], “weaves” back and forth between named global variables and local de

Bruijn indices in a manner similar to that of table 4–2.

All instances of [M=v]N in table 4–2 have M Vclosed (compare with remark 3.2).

Chapter 4. Pure Type Systems 54

4.1.3.1 A Strange Lambda Rule

The LDA rule allows “alpha converting” in the conclusion. Informal presentations [Bar92,

Ber90b,GN91] suggest the rule

LDA’
�[p:A] ` [p=x]M : [p=x]B � ` fx:AgB : s� ` [x:A]M : fx:AgB p 62M; p 62 B

To see why I use the rule LDA instead of LDA’, consider an example in the Pure Calculus of

Constructions.

Example 4.1 Let � be the context [A:?][P :A!?] . Using LDA we have the natural derivation

...�[p:A][q:Pp] ` q : Pp ...
LDA�[p:A] ` [x:Pp]x : fy:PpgPp ...

LDA� ` [x:A][x:Px]x : fx:Agfy:PxgPx
With LDA’ we must use TCONV to alpha-convert in order to derive this judgement, for example

...�[p:A][q:Pp] ` q : Pp ...
LDA’�[p:A] ` [x:Pp]x : fx:PpgPp ...

TCONV�[p:A] ` [x:Pp]x : fy:PpgPp ...
LDA’� ` [x:A][x:Px]x : fx:Agfy:PxgPx

The judgement � ` [x:A][x:Px]x : fx:Agfx:PxgPx is not derivable with either rule, as it

should not be.

The two systems derive the same judgements (see section 4.4.9.6), but I feel the system we

informally have in mind does not use instances of TCONV solely for alpha-conversion. I will

ask whether we have really eliminated the need to do this in section 4.4.9.7.

4.1.4 A Generalization: Abstract Conversion

The side condition of rule TCONV in table 4–2 mentions beta-conversion, the relation formally

called conv (section 3.3.3) and informally written A ' B . In fact, very few properties of '
are used in the theory of PTS until we come to prove the Subject Reduction Theorem (where

we finally see that ' must be related to contraction of redexes as constructed by the rule

TLDA), and even that proof is far from determining what relation ' must be.

Chapter 4. Pure Type Systems 55

There are several reasons to be interested in exactly what properties ' must have. For

one thing, the type theory ECC (see section 5.3), implemented in LEGO, is not actually a PTS
because it uses a generalized notion of conversion called cumulativity. ECC is of special interest

to us, so we want to discuss an extension of PTS which includes ECC. ECC’s cumulativity

relation elegantly solves the difficulties in typechecking cumulative hierarchies (discussed

in [HP91]). (Typechecking for ECC will be discussed in chapter 5.)

Even for PTS , there is a notorious open problem, the Expansion Postponement prob-

lem [vBJMP94] (EP), which asks if the conversion relation in table 4–2 can be replaced by

beta-reduction without changing the typability of any terms. (EP will be briefly discussed in

section 4.7.)

In the formalization I use an arbitrary relation, cnv (informally writtenA � B), in place

of conv, and keep track of the properties that � must be assumed to have in order to prove the

basic results about PTS , starting off with only three: reflexivity, transitivity, and invariance

under psub (see section 4.3 for the exact properties).

Among the properties of ' that do not generally hold for � are symmetry (which is

why I use an asymmetric symbol for �), s1 ' s2) s1 = s2 , A ' s) A!! s
and A!! s) s 2 A .

4.2 Contexts Formalized

The type of global bindings, [p:A] , that occur in contexts, is a cartesian product of PP by Trm.

We also give the two projections of global bindings, and a defined structural equality that is

provably equivalent to Q.[GB : Prop = PROD|PP|Trm];[Gb : PP->Trm->GB = Pr|PP|Trm];[namOf : GB->PP = Fst|PP|Trm];[typOf : GB->Trm = Snd|PP|Trm];[GBeq [b,c:GB] = andd (PPeq (namOf b) (namOf c))(Trm_eq (typOf b) (typOf c))];
Contexts are lists of global bindings.[Cxt = LL|GB];[nilCxt = NIL|GB];
Notice that informally we are writing contexts as being extended (“consing”) on the right,

while formally they cons on the left.

In a context �1[p:A]�2 we informally say that the distinguished occurrence of p binds

occurrences of p in �2 (but not in �1 or A).

Chapter 4. Pure Type Systems 56

4.2.1 Occurrences

Occurrence of a global binding in a context is defined using the member function and the

defined structural equality GBeq.[GBoccur [b:GB][G:Cxt] : BB = member GBeq b G];
Now we define the list of parameters bound by a context, and, using the member function as

before, the boolean relation deciding whether or not a given parameter is bound by a given

context.[globalNames : Cxt->PPs = map namOf];[Poccur [p:PP][G:Cxt] : BB = member PPeq p (globalNames G)];
4.2.2 Subcontexts

The subcontext relation is defined by containment of the respective occurrence predicates.[subCxt [G,H:Cxt] = {b:GB}(is_tt (GBoccur b G))->is_tt (GBoccur b H)];
We say, informally, G is a subcontext of H , or H extends G . This is exactly the definition used

informally in [Bar92,GN91,vBJ93]. It would require a very different, and more complicated

definition to express a similar property in a representation using de Bruijn indices for global

variables.

4.3 The Typing Judgement Formalized

We begin with arbitrary relations ax and rl[ax:SS->SS->Prop][rl:SS->SS->SS->Prop];
and the abstract conversion relation discussed in section 4.1.4.[cnv:Trm->Trm->Prop];
The three properties of cnv[cnv_refl:{A|Trm}(Vclosed A)->cnv A A];[cnv_trans:{A,D,B|Trm}(cnv A D)->(cnv D B)->cnv A B];[psub_resp_cnv:{N|Trm}(Vclosed N)->{A,B|Trm}(cnv A B)->{p:PP}cnv (psub N p A) (psub N p B)];
are all that will be needed until we come to the Subject Reduction theorem in section 4.4.9.

Recall from section 3.2.6.1 that the third of these assumptions allows us to prove

Chapter 4. Pure Type Systems 57Goal renTrm_resp_cnv:{A,B|Trm}(cnv A B)->{rho:Renaming}cnv (renTrm rho A) (renTrm rho B);
which is used without further comment.

The typing rules, formalized as the constructors of an inductive relation, gts, are shown

in table 4–3. The discussion in section 3.2.5 may be of use in understanding why we claim gts
is the correct formalization of table 4–2.

Validity. The notion of Valid context is defined as participation in any derivable judgement.[Valid [G:Cxt] = Ex2 [M,A:Trm] gts G M A];
The tail of a Valid context is Valid.Goal {G|Cxt}(Valid G)->Valid (tl G);
No free variables. All well-typed terms are Vclosed.Goal gts_Vclosed_lem:{G|Cxt}{M,A|Trm}(gts G M A)->and (Vclosed M) (Vclosed A);
4.4 Properties of Arbitrary PTS With Abstract Conversion

This section follows the general outline of the similarly titled section of [Bar92], although

I include more material, and some details of the formalization. The idea is to present the

elementary theory of PTS using the atomic weakening rules (section 4.1.2).

4.4.1 Parameter Lemmas

All parameter occurrences in a judgement are bound.Goal free_params_lem1:{G|Cxt}{M,A|Trm}(gts G M A)->{p|PP}(is_ff (Poccur p G))->and (is_ff (poccur p M)) (is_ff (poccur p A));Goal cxt_free_params_lem:{H|Cxt}{M,A,B|Trm}{p|PP}(gts (CONS (Gb p B) H) M A)->{q|PP}(is_ff (Poccur q H))->is_ff (poccur q B);
The binding instances in a Valid context are all distinct parameters, and terms in a Valid
context can only mention parameters that are already bound.Goal CxtCorrect0:{H|Cxt}{M,A,B|Trm}{p|PP}(gts (CONS (Gb p B) H) M A)->is_ff (Poccur p H);Goal CxtCorrect1:{H|Cxt}{M,A,B|Trm}{p|PP}(gts (CONS (Gb p B) H) M A)->is_ff (poccur p B);

Chapter 4. Pure Type Systems 58Inductive [gts:Cxt->Trm->Trm->Prop] Constructors[Ax:{s1,s2|SS} {sc:ax s1 s2}gts nilCxt (sort s1) (sort s2)][Start:{G|Cxt}{A|Trm}{s|SS}{p|PP} {noccG:is_ff (Poccur p G)}{prem:gts G A (sort s)}(***)gts (CONS (Gb p A) G) (par p) A][vWeak:{G|Cxt}{D,A|Trm}{s|SS}{n,p|PP} {noccG:is_ff (Poccur p G)}{l_prem:gts G (par n) D}{r_prem:gts G A (sort s)}(***)gts (CONS (Gb p A) G) (par n) D][sWeak:{G|Cxt}{D,A|Trm}{t,s|SS}{p|PP} {noccG:is_ff (Poccur p G)}{l_prem:gts G (sort t) D}{r_prem:gts G A (sort s)}(***)gts (CONS (Gb p A) G) (sort t) D][Pi:{G|Cxt}{A,B|Trm}{s1,s2,s3|SS}{p|PP}{n|VV} {sc:rl s1 s2 s3}{noccB:is_ff (poccur p B)}{l_prem:gts G A (sort s1)}{r_prem:gts (CONS (Gb p A) G) (vsub (par p) n B) (sort s2)}(***)gts G (pi n A B) (sort s3)][Lda:{G|Cxt}{A,M,B|Trm}{s|SS}{p|PP}{n,m|VV} {noccM:is_ff (poccur p M)}{noccB:is_ff (poccur p B)}{l_prem:gts (CONS (Gb p A) G) (vsub (par p) n M) (vsub (par p) m B)}{r_prem:gts G (pi m A B) (sort s)}(***)gts G (lda n A M) (pi m A B)][App:{G|Cxt}{M,A,B,L|Trm}{n|VV}{l_prem:gts G M (pi n A B)}{r_prem:gts G L A}(***)gts G (app M L) (vsub L n B)][tCnv:{G|Cxt}{M,A,B|Trm}{s|SS} {sc:cnv A B}{l_prem:gts G M A}{r_prem:gts G B (sort s)}(***)gts G M B];
Table 4–3: The PTS Judgement as an Inductive Relation

Chapter 4. Pure Type Systems 59

4.4.2 Start Lemmas

Every axiom is derivable in every valid context.Goal sStartLem:{G|Cxt}{M,A|Trm}(gts G M A)->{s1,s2|SS}(ax s1 s2)->(gts G (sort s1) (sort s2));
The global bindings of a valid context are all derivable.Goal vStartLem:{G|Cxt}{M,A|Trm}(gts G M A)->{b|GB}(is_tt (GBoccur b G))->gts G (par (namOf b)) (typOf b);
4.4.3 Topsorts

We digress to consider a pretty notion due to Berardi [Ber90b].

Definition 4.2 A typedsort is a sort that occurrs on the left of some axiom; a topsort is a sort

that is not a typedsort.[typedsort [s:SS] = Ex[t:SS] ax s t];[topsort [s:SS] = not (typedsort s)];
I use the informal notation SST for the set of typedsorts.

A topsort cannot occur in the subject of a derivable judgement, and cannot occur as a proper

subterm of the predicate of a derivable judgement. Since we are working constructively, these

observations are stated positively.Goal only_typedsort_in_left:{G|Cxt}{M,A|Trm}(gts G M A)->{s|SS}(is_tt (soccur s M))->typedsort s;Goal topsort_maybe_in_right:{G|Cxt}{M,A|Trm}(gts G M A)->{s|SS}{ts:topsort s}(is_tt (soccur s A))->is_tt (Trm_eq A (sort s));
These are proved by structural induction on the derivation of (gts G M A), and in the order

given.

4.4.4 A Better Induction Principle for gts
As for the relations Vclosed and par_red1 we define an alternative relation, called apts
(table 4–4). apts differs from gts only in the right premise of the PI rule and the left premise

of the LDA rule. In these premises we avoid choosing a particular parameter by requiring the

Chapter 4. Pure Type Systems 60Inductive [apts:Cxt->Trm->Trm->Prop] Constructors[aAx:{s1,s2|SS}{sc:ax s1 s2}apts nilCxt (sort s1) (sort s2)][aStart:{G|Cxt}{A|Trm}{s|SS}{p|PP} {noccG:is_ff (Poccur p G)}{prem:apts G A (sort s)}(***)apts (CONS (Gb p A) G) (par p) A][avWeak:{G|Cxt}{D,A|Trm}{s|SS}{n,p|PP} {noccG:is_ff (Poccur p G)}{l_prem:apts G (par n) D}{r_prem:apts G A (sort s)}(***)apts (CONS (Gb p A) G) (par n) D][asWeak:{G|Cxt}{D,A|Trm}{t,s|SS}{p|PP} {noccG:is_ff (Poccur p G)}{l_prem:apts G (sort t) D}{r_prem:apts G A (sort s)}(***)apts (CONS (Gb p A) G) (sort t) D][aPi:{G|Cxt}{A,B|Trm}{s1,s2,s3|SS}{n|VV} {sc:rl s1 s2 s3}{l_prem:apts G A (sort s1)}{r_prem:{p|PP}{noccG:is_ff (Poccur p G)}apts (CONS (Gb p A) G) (vsub (par p) n B) (sort s2)}(***)apts G (pi n A B) (sort s3)][aLda:{G|Cxt}{A,M,B|Trm}{s|SS}{n,m|VV}{l_prem:{p|PP}{noccG:is_ff (Poccur p G)}apts (CONS (Gb p A) G) (vsub (par p) n M) (vsub (par p) m B)}{r_prem:apts G (pi m A B) (sort s)}(***)apts G (lda n A M) (pi m A B)][aApp:{G|Cxt}{M,A,B,L|Trm}{n|VV}{l_prem:apts G M (pi n A B)}{r_prem:apts G L A}(***)apts G (app M L) (vsub L n B)][atCnv:{G|Cxt}{M,A,B|Trm}{s|SS} {sc:cnv A B}{l_prem:apts G M A}{r_prem:apts G B (sort s)}(***)apts G M B]NoReductions;
Table 4–4: The inductive relation apts

Chapter 4. Pure Type Systems 61

premise to hold for all parameters for which there is no reason it should not hold, that is, for

all “sufficiently fresh” parameters. As before, we will show that gts and apts have the same

judgements.

It is interesting to compare the side conditions of PI with those of API. In PI, as in the rules of

table 3–4, we need (is_ff (poccur p B)) so that no unintended occurrences of p (i.e. those

not arising from occurrences of the bound variable, n) are bound in the right premise; we do

not need (is_ff (Poccur p G)), because the validity of (CONS (Gb p A) G) is obvious

from the right premise. In aPi, we cannot require the right premise for all p, but only for

those such that (CONS (Gb p A) G) remains valid, i.e. those not occurring in G. However the

condition (is_ff (poccur p B)) is not required because of “genericity”, that is, the right

premise of aPi must hold for the infinitely many parameters not occurring in G, while only

finitely many of these instances can involve unintended binding in B.apts identifies all those derivations of a gts judgement that are inessentially different

because of parameters occurring in the derivation but not in its conclusion.

4.4.4.1 apts is equivalent to gts
One direction is straightfoward by structural induction.Goal apts_gts : {G|Cxt}{M,A|Trm}(apts G M A)->gts G M A;

To prove the interesting direction, first prove a lemma that bijective renamings respectapts.Goal bij_ren_resp_apts :{rho|Renaming}(inj rho)->(sur rho)->{G|Cxt}{M,A|Trm}(apts G M A)->apts (renCxt rho G) (renTrm rho M) (renTrm rho A);
This is easy by apts-structural induction. Injectivity of a renaming is enough for it to preservegts judgements, but surjectivity is needed as well to preserve apts, because of the negative

occurrence of Poccur in the premises of aPi and aLda.

Recall from section 3.2.6.2 that for all p and q, (swap p q) is bijective. Now we can

proceed.Goal gts_apts : {G|Cxt}{M,A|Trm}(gts G M A)->apts G M A;
Proof. By structural induction on a derivation of � ` M : A . All cases are trivial except for

the rules Pi and Lda. Consider the case for Pi: we must proveG `apts fn:AgB : s3

Chapter 4. Pure Type Systems 62

under the assumptions

sc : rl(s1; s2; s3)
noccB : p 62 B
l prem : G ` A : s1
r prem : G[p:A] ` [p=n]B : s2
l ih : G `apts A : s1
r ih : G[p:A] `apts [p=n]B : s2

By rule aPi (using l ih) it suffices to showG[r:A] `apts [r=n]B : s2
for arbitrary parameter r 62 G . Thus, using the free parameter lemmas of section 4.4.1, we

know

noccG : r 62 G
norA : r 62 A from l prem and noccG

nopG : p 62 G from r prem

nopA : p 62 A from r prem

Taking � = (swap r p) = fr 7! p; p 7! rg;
we have �(G[p:A]) `apts �([p=n]B) : �s2 is derivable using bij_ren_resp_apts to

rename r ih. Thus we are finished if we can show�(G[p:A]) = G[r:A] and �([p=n]B) = [r=n]B:
It is clear that the first equation holds from nopG, noccG, norA and nopA. For the second

equation, notice that if r = p then � is the identity renaming, and we are done, so assumer 6= p , and hence r 62 [p=n]B (from r prem and noccG). Now we use a lemma easily proved

by Trm-structural induction8�;N;M; v : [�N=v]�M = �([N=v]M)
to reason �([p=n]B) = fp 7! rg([p=n]B) (r 62 [p=n]B)= [fp 7! rgp=n](fp 7! rgB)) (lemma above)= [r=n]B (noccB)
as required.

Chapter 4. Pure Type Systems 63

4.4.5 Generation Lemmas

In the presentation of PTS with the weakening rule WEAK, say [Bar92], uniqueness of genera-

tion holds only up to conversion and weakening. More precisely, going up the leftmost branch

of a derivation tree from the root, there may be instances of both TCONV and WEAK before

the syntax-directed rule (AX, START, PI, LDA, or APP) that constructed the subject of the root

judgement. For this reason, the proof of the generation lemmas in [Bar92] uses the Thinning

Lemma (section 4.4.6) to undo this weakening. In our presentation with atomic weakening,

uniqueness of generation holds up to conversion (recall the discussion in section 4.1.2), so the

generation lemmas are provable before the Thinning Lemma, and their proofs are straight-

foward structural induction. I’ve given the strong versions of the pi and lambda cases, derived

from the equivalence of gts and apts proved in section 4.4.4.1.Goal gts_gen_sort:{G|Cxt}{s|SS}{C|Trm}(gts G (sort s) C)->Ex [s1:SS]and (ax s s1) (cnv (sort s1) C);Goal gts_gen_par:{G|Cxt}{C|Trm}{p|PP}(gts G (par p) C)->Ex [B:Trm]and (is_tt (GBoccur (Gb p B) G)) (cnv B C);Goal apts_gen_pi:{G|Cxt}{A,B,C|Trm}{v|VV}{d:gts G (pi v A B) C}Ex3 [s1,s2,s3:SS]and4 (rl s1 s2 s3)(gts G A (sort s1))({p|PP}{noccG:is_ff (Poccur p G)}gts (CONS (Gb p A) G) (vsub (par p) v B) (sort s2))(cnv (sort s3) C);Goal apts_gen_lda:{G|Cxt}{A,N,C|Trm}{v|VV}{d:gts G (lda v A N) C}Ex3 [s:SS][B:Trm][u:VV]and3 (gts G (pi u A B) (sort s))({p|PP}{noccG:is_ff (Poccur p G)}gts (CONS (Gb p A) G) (vsub (par p) v N) (vsub (par p) u B))(cnv (pi u A B) C);Goal gts_gen_app:{G|Cxt}{M,N,C|Trm}(gts G (app M N) C)->Ex3 [A,B:Trm][v:VV]and3 (gts G N A)(gts G M (pi v A B))(cnv (vsub N v B) C);

Chapter 4. Pure Type Systems 64

4.4.6 The Thinning Lemma

The Thinning Lemma is important to our formulation because it shows that full weakening is

derivable in our system from atomic weakening (see section 4.1.2).Goal thinning_lemma: {G|Cxt}{M,A|Trm}{j:gts G M A}{G'|Cxt}{sub:subCxt G G'}{val:Valid G'}gts G' M A;
When we come to prove the Thinning Lemma, a serious difficulty arises from our use of

parameters.

4.4.6.1 Naive attempt to prove the Thinning Lemma

By induction on the derivation of G ` M : A . Consider the case for the Pi rule: the

derivation ends with

PI
G ` A : s1 G[p:A] ` [p=x]B : s2G ` fx:AgB : s3 p 62 Brl(s1; s2; s3)

left IH For any valid K extending G , K ` A : s1 .

right IH For any valid K extending G[p:A] , K ` [p=x]B : s2 .

to show For any valid G0 extending G , G0 ` fx:AgB : s3 .

So let G0 be a valid extension of G . Using the Pi rule, we need to show G0 ` A : s1 andG0[p:A] ` [p=x]B : s2 . The first of these is proved by the left IH applied to G0 . In order to

use the right IH applied to G0[p:A] to prove the second, we need to show G0[p:A] is valid.

However, this may be false, e.g. if p occurs in G0 !
The left premise of the LDA rule presents a similar problem. All other cases are straight-

foward.

Naive attempt to fix the problem Let us change the name of p in the right premise. We easily

prove that any injective renaming preserves gts judgements (see section 4.4.4.1). However,

this does not help us finish the naive proof of the Thinning Lemma, for the right IH still

mentions p , not some fresh parameter q . That is, although we can turn the right subderivationG[p:A] ` [p=x]B : s2 into a derivation of G[q:A] ` [q=x]B : s2 for some fresh q , this

is not a structural subderivation of the original proof of G ` fx:AgB : s3 , and is no help in

structural induction.

4.4.6.2 Some correct proofs of the Thinning Lemma

We present three correct proofs of the Thinning Lemma, based on different analyses of what

goes wrong in the naive proof. The two proofs in this section are, perhaps, possible to formalize.

Section 4.4.4 gives the formalization we have chosen.

Chapter 4. Pure Type Systems 65

Changing the names of parameters. Once we say “by induction on the derivation : : : ” it

is too late to change the names of any troublesome parameters, but one may fix the naive

proof by changing the names of parameters in a derivation before the structural induction. First

observe, by structural induction, that if d is a derivation of G ` M : A , G0 is a Valid ex-

tension of G , and no parameter occurring in d is in globalNames(G0)\globalNames(G),

then G0 ` M : A by the naive structural induction above. Now for the Thinning

Lemma, given G , G0 , and a derivation d of G ` M : A , change parameters in d to

produce a derivation d0 of G ` M : A such that no parameter occurring in d0 is in

globalNames(G0)\globalNames(G).

This proof takes the view that it is fortunate there are many derivations of each judgement,

for we can find one suited to our purposes among them. To formalize it we need technology for

renaming parameters in derivations, which is much heavier than the technology for renaming

parameters in judgements that we have presented.

Induction on length. A different analysis of the failure of the naive proof shows that it is the

use of structural induction that is at fault. Induction on the height of derivations appears to

work, but we must show that renaming parameters in a derivation doesn’t change its height;

again reasoning about derivations rather than judgements. Induction on the length of the

subject term, M , does not seem to work, as some rules have premises whose subject is not

shorter than that of the conclusion (see the discussion in section 3.2.5.3).

4.4.6.3 A Better Solution

We take the view that there are too many derivations of each judgement, but instead of giving

up on structural induction, we prove the Thinning lemma by structural induction on apts,

which we have shown to have the same judgements as gts, while identifying derivations that

differ only by parameter names not occurring in the root judgement.

Proof of the Thinning Lemma using apts. Using the equivalence of gts and apts it suffices

to proveGoal apts_thinning_lem:{G|Cxt}{M,A|Trm}{j:apts G M A}{G'|Cxt}{sub:subCxt G G'}{val:Valid G'}apts G' M A;
by structural induction on the derivation of G `apts M : A ; all goes as in the naive proof

except for the aPi and aLda rules. Consider the case for aPi.

left IH For any Valid K extending G , K `apts A : s1 .

right IH For any p 62 G , and any Valid K extending G[p:A] ,K `apts [p=x]B : s2 .

Chapter 4. Pure Type Systems 66

to show For any valid G0 extending G , G0 `apts fx:AgB : s3 .

By rule aPi and the left IH it suffices to show

for any p 62 G0 , G0[p:A] `apts [p=x]B : s2
So choose p 62 G0 . Using the right IH applied to p and G0[p:A] we have only to showG0[p:A] Valid, which follows by the aStart rule and the left IH.

The case for aLda is handled similarly.

4.4.6.4 The Weakening Rule

Now the full weakening rule, WEAK (section 4.1.2) is seen to be admissible.Goal weakening: {G|Cxt}{M,B|Trm}(gts G M B)->{p|PP}(is_ff (Poccur p G))->{A|Trm}{s|SS}(gts G A (sort s))->gts (CONS (Gb p A) G) M B;
This is the only case of the thinning lemma that is used in all the type theory we have formalized.

4.4.7 The Substitution Lemma

This is a cut property, informally� ` N : A �[p:A]� ` M : B�([N=p]�) ` [N=p]M : [N=p]B
Formally:Goal substitution_lemma:{Gamma|Cxt}{N,A|Trm}(gts Gamma N A)->{q:PP}[sub = psub N q][subGB = GBsub N q]{Delta:Cxt}{M,B|Trm}(gts (append Delta (CONS (Gb q A) Gamma)) M B)->gts (append (map subGB Delta) Gamma) (sub M) (sub B);
The proof is by induction on the derivation of �[p : A]� ` M : B .

From substitution_lemmawe trivially get the cut ruleGoal cut_rule: {G|Cxt}{N,A|Trm}(gts G N A)->{q:PP}{M,B|Trm}(gts (CONS (Gb q A) G) M B)->gts G (psub N q M) (psub N q B);
which is the commonly used case.

Chapter 4. Pure Type Systems 67

4.4.8 Correctness of Types

Among the principal correctness criteria for type systems is that every type is itself well formed

in some sense. In PTS we define correct type[correct_type [G:Cxt][A:Trm] = Ex [s:SS] or (is_tt (Trm_eq A (sort s)))(gts G A (sort s))];
and have the theorem:Goal type_correctness: {G|Cxt}{M,A|Trm}(gts G M A)->correct_type G A;
The proof is a simple structural induction. The only non-trivial case is the APP rule, which

uses the substitution lemma and vsub_is_psub_alpha (section 3.2.4).

4.4.8.1 Type Correctnes and Topsorts

The statement of type_correctness seems unsatisfactory; by sStartLem (section 4.4.2), the

only way a sort can be untyped is to be a topsort, so why not make the disjunction more

informative, as in � ` M : A) A is a topsort or 9s : � ` A : s : (z)
This is too informative to be proved without some extra assumption:

Lemma 4.3 For PTS where the relation cnv is instantiated with � -conversion, property (z) implies8s : s 2 SST or s 62 SST (�)
Proof. Given a PTS (SS; ax; : : :) let ? be a fresh symbol, not in SS , and consider the PTS(SS [f?g; ax [f ?:s j s 2 SS g; : : :) . In this expanded PTS we have � ` ? : s for

every s 2 SS, hence by implication (z)8s9t : s 62 SST or � ` s : t
and by the generation lemma gts_gen_sort (section 4.4.5) property (�) holds as claimed. (It

is in the last step that we use the assumption that cnv is � -conversion; see section 4.4.11.2.)

Any PTS with SS infinite may fail to have property (�), and thus fail to have property (z) ,

and because of the existential quantifier in the definition of typedsort, this may happen even

when ax is decidable. For example, let T(i; n) mean “the ith Turing machine, when started

with i on it’s input tape, halts in exactly n steps”, and consider a PTS whose set of sorts is

the natural numbers and whose axiom relation is f (i:n) j T(i; n) g . For any i ,i 2 SST , 9n : ax(i:n) , the ith Turing machine halts on input i

Chapter 4. Pure Type Systems 68

which we cannot decide in general. Thus, such a PTS fails to have property (z) even though

it has decidable axioms.

Conversely to lemma 4.3, property (�) implies property (z) for all PTS .Goal decideTypedsort_type_correctness:{dTs:{s:SS}decidable (typedsort s)}{G|Cxt}{M,A|Trm}{d:gts G M A}Ex [s:SS]or (and (is_tt (Trm_eq A (sort s))) (topsort s))(gts G A (sort s));
Proof. By type_correctness,A 2 SS or 9s : G ` A : s . In the second case we are done.

In the first case, by decideTypedsort, either A 62 SST (and we are done) or A 2 SST , in

which case G ` A : s for some s , by sStartLem.

Remark 4.4 By lemma 4.3, we cannot replace the assumption decideTypedsort in the statement

of lemma decideTypedsort_type_correctness with the weaker assumption8s : s 62 SST or (:s 62 SST):
4.4.9 Subject Reduction Theorem: Closure Under Reduction

An important property of type systems is that a term does not lose types under reduction,

thus types are a classification of terms preserved by computation. In fact we will show entiregts-judgements are closed under reduction.

4.4.9.1 Properties of Conversion Needed for Subject Reduction

Now we need more properties of the abstract conversion relation cnv.[cnv_red1:{A,B|Trm}(par_red1 A B)->(Vclosed A)->cnv A B];[cnv_red1_sym:{A,B|Trm}(par_red1 A B)->(Vclosed A)->cnv B A];[cnvCR_pi:{u,v|VV}{A,A',B,B'|Trm}{c:cnv (pi u A B) (pi v A' B')}and (cnv A' A) ({q:PP}cnv (alpha q u B) (alpha q v B'))];
Using cnv_red1 and cnv_red1_sym, transitivity of cnv, and Church-Rosser, we can prove

that cnv contains conv.Goal cnv_redn: {A,B|Trm}(par_redn A B)->(Vclosed A)->cnv A B;Goal cnv_redn_sym: {A,B|Trm}(par_redn A B)->(Vclosed A)->cnv B A;Goal cnv_conv: {A,B|Trm}(conv A B)->cnv A B;
Thus it would be equivalent to replace the two assumptions, cnv_red1 and cnv_red1_sym,

by the single assumption cnv_conv. However I chose to keep the two directions of reduction

Chapter 4. Pure Type Systems 69

seperate in hope of learning something about Expansion Postponement (section 4.7). � is a

transitive relation containing an equivalence relation, ' , so � is well defined on '-classes.

I think of the third assumption, cnvCR_pi, as an internal Church-Rosser property: if two

terms of the same shape (in this case pi) are related by � , then their corresponding components

are similarly related. (In section 4.4.11.3 we will consider external Church-Rosser properties

required of � .) For beta-conversion, cnvCR_pi, is a corollary of the Church-Rosser property.

4.4.9.2 Non-Overlapping Reduction

In [GN91,Bar92] a lemmaG ` M : A) (M!M 0) G ` M 0 : A) & (G!G0) G0 ` M : A)
is proved by induction on the structure of G ` M : A , where ! is one-step-reduction,red1, of section 3.3.6. (The reason for this simultaneous proof is that in some of the typing

rules, terms move from the subject to the context, e.g. PI.) This approach produces a large

number of case distinctions, based on which subterm of the subject contains the one redex

which is contracted, all of which are inessential except to isolate the one non-trivial case where

the redex contracted is the application constructed by rule APP. Also (recall section 3.3.6),

we have a strategy of using reduction relations that contain alpha-conversion; red1 and its

transitive-reflexive closure do not. Thus, in place of one-step-reduction, we use a new relation

of non-overlapping reduction, no_red1, that differs from par_red1 only in the � rule1.[no_red1_beta: {u:VV}{U,A,B:Trm}no_red1 (app (lda u U B) A) (vsub A u B)]
We informally write ! for no_red1. Clearly no_red1 is contained in par_red1Goal no_par_red1: {A,B|Trm}(no_red1 A B)->par_red1 A B;
so the assumed properties cnv_red1 and cnv_red1_sym extend to no_red1.

The distinction between a redex in the term and a redex in the context is also inessential in

the proof of subject reduction, so we extend no_red1 compositionally to contexts1 I discovered that non-overlapping reduction works well in the proof of subject reduction while

“feverishly” trying to prove Expansion Postponement as described in section 1.3

Chapter 4. Pure Type Systems 70Inductive [red1Cxt: Cxt->Cxt->Prop] NoReductions Constructors[red1CxtNIL: red1Cxt nilCxt nilCxt][red1CxtCONS: {b,b'|GB}{G,G'|Cxt}{sc:and (Q (namOf b) (namOf b'))(no_red1 (typOf b) (typOf b'))}{premG:red1Cxt G G'}red1Cxt (CONS b G) (CONS b' G')];
and to pairs of a context and a term (suggesting again that the correct meaning of subject of aPTS judgement G ` M : A is the pair hG;Mi).Inductive [red1Subj: Cxt->Trm->Cxt->Trm->Prop] NoReductions Constructors[red1SubjCT: {G,G'|Cxt}{premC:red1Cxt G G'}{A,A'|Trm}{premT:no_red1 A A'}red1Subj G A G' A'];
The important point is that we allow non-overlapping reduction throughout the subject (con-

text and term), rather than restricting to a single redex, not that we package it in the form ofred1Subj, which is only a funny conjunction after all.

We also define the transitive closure of no_red1Inductive [no_redn: Trm->Trm->Prop] NoReductions Constructors[no_redn_red1: {A,B|Trm}(no_red1 A B)->no_redn A B][no_redn_trans: {t,u,v|Trm}(no_redn t u)->(no_redn u v)->no_redn t v];
and show it is extensionally the same as par_redn.Goal no_par_redn: {A,B|Trm}(no_redn A B)->par_redn A B;Goal par_no_redn: {A,B|Trm}(par_redn A B)->no_redn A B;
4.4.9.3 The Main LemmaGoal subject_reduction_lem: {G|Cxt}{M,A|Trm}(gts G M A)->{G'|Cxt}{M'|Trm}(red1Subj G M G' M')->gts G' M' A;
Proof. By structural induction on G ` M : A . I show two cases

Start: Given

noccG : p 62 G
prem : G ` A : s
ih : 8k; r : (hG;Ai ! hk; ri)) k ` r : s
red subj : hG[p:A]; pi ! hK;Ri

we must show K ` R : A . From red subj we have R = p and K = G0[p:A0] , whereA! A0 and G! G0 , so we need to show G0[p:A0] ` p : A . By ih G0 ` A0 : s , and

by START, G0[p:A0] ` p : A0 . We need to expand the predicate, A0 , back up to A : by

Chapter 4. Pure Type Systems 71

TCNV and cnv_red1_sym it suffices to show G0[p:A0] ` A : s . This follows from ih (henceG0 ` A : s) and weakening.

App: Given

l prem : G ` M : fn:AgB
r prem : G ` L : A
l ih : 8k; r : (hG;Mi ! hk; ri)) k ` r : fn:AgB
r ih : 8k; r : (hG;Li ! hk; ri)) k ` r : A
red subj : hG;M Li ! hK;Ri

we must show K ` R : [L=n]B . By induction hypotheses

gtsKM : K ` M : fn:AgB
gtsKL : K ` L : A

By type correctness of gtsKM, for some s
gtsKpi : K ` fn:AgB : s

By the pi-generation lemma, for some s1 , s2 and p 62 B
gtsKB : K[p:A] ` [p=n]B : s2

By the cut rule on gtsKL and gtsKB (we also use vsub_is_psub_alpha (section 3.2.4) here,

and several more times in this case)

gtsKBsub : K ` [L=n]B : s2:
Now there are two subcasesR = M 0 L0 where M !M 0 and L! L0 . The goal is K ` M 0 L0 : [L=n]B ; by rule

APP and the induction hypotheses we easily have K ` M 0 L0 : [L0=n]B . Use rule

TCNV and gtsKBsub to expand L0 in the predicate back to L as required (this once again

uses cnv_red1_sym).R = [L=v]b where M = [v:A0]b . The goal is K ` [L=v]b : [L=n]B . By l ihK ` [v:A0]b : fn:AgB and by the lambda-generation lemma, for some w , B0 ands0
gtsKpi’ : K ` fw:A0gB0 : s0
gtsKb : 8p 62 K : K[p:A0] ` [p=v]b : [p=w]B0
c’ : fw:A0gB0 � fn:AgB

By (cnvCR_pi c') (this is the only time it is used in this proof)

cnvA : A � A0
cnvB : 8q : [q=w]B0 � [q=n]B

Chapter 4. Pure Type Systems 72

By a generation lemma on gtsKpi’

gtsKA’ : K ` A0 : s10
By (tCnv cnvA gtsKL gtsKA')

gtsKL’ : K ` L : A0
By TCNV, cnvB and gtsKBsub, it suffices to show K ` [L=v]b : [L=n]B0 which fol-

lows by cut on gtsKL’ and gtsKb.

The only other use of cnv_red1_sym in this proof is for the LDA rule, where the domain type,A , may get reduced, and its occurrence in the type must be expanded back, much as in the

START case.

4.4.9.4 Closure Under Reduction

It is now easy to show what is usually called the Subject Reduction theorem.Goal gtsSR: {G|Cxt}{M,A|Trm}(gts G M A)->{M'|Trm}(par_redn M M')->gts G M' A;
From this we have a useful corollary.Goal gtsPR: {G|Cxt}{M,A|Trm}(gts G M A)->{A'|Trm}(par_redn A A')->gts G M A';
Proof. By type correctness, either A 2 SS or 9s : G ` A : s . In the first case A0 = A and

we are done. In the second case, by gtsSR, we have G ` A0 : s , so by rule TCNV we are

done.

Finally, extending par_redn compositionally to contexts, gts is closed under beta-reduction.Goal gtsAllRed: {G|Cxt}{M,A|Trm}(gts G M A)->{G'|Cxt}(rednCxt G G')->{M'|Trm}(par_redn M M')->{A'|Trm}(par_redn A A')->gts G' M' A';
4.4.9.5 Closure Under Alpha-Conversion

From gtsAllRed and the fact that alpha_conv is contained in par_red1, it is trivial to show

that gts judgements are preserved by alpha_conv. First extend alpha_conv to contexts:Inductive [alphaCxt : Cxt->Cxt->Prop] NoReductions Constructors[alphaCxtNIL: alphaCxt nilCxt nilCxt][alphaCxtCONS: {b,b'|GB}{G,G'|Cxt}{sc:and (Q (namOf b) (namOf b'))(alpha_conv (typOf b) (typOf b'))}{premG:alphaCxt G G'}alphaCxt (CONS b G) (CONS b' G')];
Then we have:

Chapter 4. Pure Type Systems 73Goal gts_alpha_closed: {G|Cxt}{M,A|Trm}(gts G M A)->{GG|Cxt}(alphaCxt G GG)->{MM|Trm}(alpha_conv M MM)->{AA|Trm}(alpha_conv A AA)->gts GG MM AA;
This is a good result for an implementor: it says an implementation may typecheck a judgement

as stated by a user, rather than checking an alpha-equivalent judgement constructed for some

intensional property such as no reuse of bound variable names. Still, from an intensional

view this result is not completely satisfactory. It doesn’t say that alpha-equivalent judgements

have “alpha-equivalent derivations”; in fact, the proof of subject reduction explicitly uses

rule tCnv, and the proof of gts_alpha_closed will insert instances of tCnv that do only

alpha-conversion. We return to this point in section 4.4.9.7.

4.4.9.6 Correctness of the Lda Rule

Acknowledgement Special thanks to James McKinna who did the proofs of this section.

Recall the discussion about rules LDA and LDA’ in section 4.1.3.1. Although I gave “philosoph-

ical” motivations for our choice of LDA over LDA’, the real reason was to make the proof of

subject reduction go smoothly. It is time to consider whether we have cheated or not.

Define an inductive relation rlts (restricted lambda type system) whose rules are the same

as those of gts except for the lambda rule, which expresses our informal LDA’ rule.[rlLda:{G|Cxt}{A,M,B|Trm}{s|SS}{p|PP}{n|VV} {noccM:is_ff (poccur p M)}{noccB:is_ff (poccur p B)}{l_prem:rlts (CONS (Gb p A) G) (vsub (par p) n M) (vsub (par p) n B)}{r_prem:rlts G (pi n A B) (sort s)}(***)rlts G (lda n A M) (pi n A B)]
Every rlts-derivation is a gts-derivation, so:Goal rlts_gts: {G|Cxt}{M,A|Trm}(rlts G M A)->gts G M A;
It is not very easy to show the converse, even though we know gts is closed under alpha-

conversion, because our present lemmas on changing names are not strong enough: intrue_alpha_conv_pi (page 43) we don’t know how C is related to B . A proof would

go through if we knew that rlts was closed under alpha-conversion, but we are trying to

avoid proving subject reduction for rlts directly. James McKinna suggested proving directly

that rlts is weakly closed under alpha-conversion.

Chapter 4. Pure Type Systems 74Goal rl_weak_alpha_lem: {G|Cxt}{M,A|Trm}(rlts G M A)->{G'|Cxt}(alphaCxt G G')->{M'|Trm}(alpha_conv M M')->Ex [A':Trm]and (rlts G' M' A') (alpha_conv A A');
(Weakness means that the type is also only up to alpha-conversion.) The proof is similar in

outline to that of subject reduction, but much simpler in detail. With this lemma McKinna

showed that rlts and gts derive the same judgements.Goal gts_rlts: {G|Cxt}{M,A|Trm}(gts G M A)->rlts G M A;
Of course they do not have the same derivations, as example 4.1 shows.

4.4.9.7 Alpha-Conversion and the Shape of Derivations

Informally consider a presentation of PTS using de Bruijn nameless variables for bound vari-

ables, and using our parameters for free variables (I call these locally nameless terms in [Pol94]).

It is clear that every gts derivation can be translated into a correct locally nameless deriva-

tion just by replacing the variable names with appropriate binding depths throughout. Some

derivations, such as the second one in example 4.1, when translated to the locally nameless

system, will have redundant instances of the conversion rule where it was used for alpha-

conversion in the named system. Translating in the other direction, from nameless derivations

to named derivations, there are choices to make for the names of variables, and this leads to

the question: can every nameless derivation be translated to some named derivation? Stated

differently, is there always some translation of the root of a nameless derivation (the derived

judgement) that can be extended to a translation of the full nameless derivation? (It is clear that

not every translation of the root of a nameless derivation can be extended to a translation of

the full nameless derivation.) I do not know the answer, and it surprises me that the difference

between nameless terms and named terms is not generally taken more seriously.

4.4.10 Two Other Presentations of PTS
The rules of table 4–2 define a single relation, the typing judgement. Every leaf of every

derivation has an empty context, each branch uses START and (atomic) weakening to build

the context it needs, and the only way to access a context is by START. Validity of contexts is

defined as participating in some derivable judgement. This presentation is convenient for meta

theory because there is a single induction principle for the single relation. Intuitively, however,

validity is often considered a different concept, mutually inductive with typing. Then every

axiom holds in every valid context, and access to a valid context is by lookup, rather than

by construction. Dependent type theories have often been presented in this way, e.g. [CH88,

Chapter 4. Pure Type Systems 75

Luo90a]. In section 4.4.10.1 I give the usual system of valid contexts; in section 4.4.10.2 I give

a system for implementation, with much smaller derivations of the same judgements as gts.

This entire section uses very little of the gts theory developed so far, and can be checked

before section 4.4.3 on topsorts. However I deferred the presentation to this point because it

uses arguments similar to that needed for the gts thinning lemma. It is of pragmatic interest

for the purpose of efficient typechecking algorithms, and of technical interest because it shows

the use of mutual inductive definition, and of dependent elimination of a relation (as opposed

to a type, such as Trm), both for the first time in this thesis.

4.4.10.1 The System of Valid Contexts

Table 4–5 shows the system of valid contexts. It is a mutually inductive definition of two

relations: vcxt, validity of contexts, and vtyp, the typing judgement. As this is the first

mutually inductive definition in this thesis, here, edited for clarity, is the structure of the

elimination rule generated for vcxt2.$vcxt_elim :(* predicates for each type defined *){C_vcxt:{x1|Cxt}(vcxt x1)->TYPE}{C_vtyp:{x1|Cxt}{x2,x3|Trm}(vtyp x1 x2 x3)->TYPE}(* cases for each constructor of each type defined *)(C_vcxt vcNil)->({G|Cxt}{p|PP}{A|Trm}{s|SS}{noccG:is_ff (Poccur p G)}{prem:vtyp G A (sort s)} (* premises *)(C_vtyp prem)-> (* induction hypotheses ... *)C_vcxt (vcCons noccG prem))->({G|Cxt}{s1,s2|SS}{sc:ax s1 s2}{prem:vcxt G}(C_vcxt prem)->C_vtyp (vtSort sc prem))->(* cases omitted *)(* the conclusion for vcxt only *){x1|Cxt}{z:vcxt x1}C_vcxt z
We have chosen to have an elimination rule for each type defined,even though each elimination

rule has all the same cases, so for vtyp we have2Thanks to Claire Jones and Zhaohui Luo who specified and implemented the inductive types tactic.

Chapter 4. Pure Type Systems 76Inductive [vcxt:Cxt->Prop][vtyp:Cxt->Trm->Trm->Prop] Constructors(** vcxt **)[vcNil:vcxt nilCxt][vcCons:{G|Cxt}{p|PP}{A|Trm}{s|SS} {noccG:is_ff (Poccur p G)}{prem:vtyp G A (sort s)}(***)vcxt (CONS (Gb p A) G)] (** vtyp **)[vtSort:{G|Cxt}{s1,s2|SS} {sc:ax s1 s2}{prem:vcxt G}(***)vtyp G (sort s1) (sort s2)][vtPar:{G|Cxt}{p|PP}{A|Trm} {sc:is_tt (GBoccur (Gb p A) G)}{prem:vcxt G}(***)vtyp G (par p) A][vtPi:{G|Cxt}{A,B|Trm}{s1,s2,s3|SS}{p|PP}{n|VV} {sc:rl s1 s2 s3}{noccB:is_ff (poccur p B)}{l_prem:vtyp G A (sort s1)}{r_prem:vtyp (CONS (Gb p A) G) (vsub (par p) n B) (sort s2)}(***)vtyp G (pi n A B) (sort s3)][vtLda:{G|Cxt}{A,M,B|Trm}{s|SS}{p|PP}{n,m|VV} {noccM:is_ff (poccur p M)}{noccB:is_ff (poccur p B)}{l_prem:vtyp (CONS (Gb p A) G) (vsub (par p) n M) (vsub (par p) m B)}{r_prem:vtyp G (pi m A B) (sort s)}(***)vtyp G (lda n A M) (pi m A B)][vtApp:{G|Cxt}{M,A,B,L|Trm}{n|VV}{l_prem:vtyp G M (pi n A B)}{r_prem:vtyp G L A}(***)vtyp G (app M L) (vsub L n B)][vttCnv:{G|Cxt}{M,A,B|Trm}{s|SS} {sc:cnv A B}{l_prem:vtyp G M A}{r_prem:vtyp G B (sort s)}(***)vtyp G M B]NoReductions;
Table 4–5: The System of Valid Contexts

Chapter 4. Pure Type Systems 77$vtyp_elim : (* same as above *)(* the conclusion for vtyp only *){x1|Cxt}{x2,x3|Trm}{z:vtyp x1 x2 x3}C_vtyp zvtyp and gts are equivalent It is easy to show that vtyp is sound for gts by structural

induction on vtyp, where we specify induction predicates for both relations, vcxt and vtyp.Goal vtyp_gts: {G|Cxt}{M,A|Trm}(vtyp G M A)->(gts G M A);Refine vtyp_elim ([G|Cxt][_:vcxt G]or (Q G nilCxt) (Valid G))([G|Cxt][M,A|Trm][_:vtyp G M A]gts G M A);
There is a companion theorem, by eliminating vcxt with the same induction predicates.Goal vcxt_Valid: {G|Cxt}(vcxt G)->or (Q G nilCxt) (Valid G);
By the way, vcxt is not the same as Valid because if ax is empty then there are no derivablegts judgements, hence no Valid contexts, but the empty context is still a vcxt.

After developing generation lemmas and weakening for vtyp, we prove that vtyp is

complete for gts by gts-structural induction.Goal gts_vtyp: {G|Cxt}{M,A|Trm}(gts G M A)->(vtyp G M A);
The proof of weakening for vtyp is no easier than for gts, and follows from a thinning lemma

proved via an alternative version of vtyp, similar to sections 4.4.4 and 4.4.6.

4.4.10.2 The System of Locally Valid Contextsvtyp-derivations are not very different in shape from gtsderivations; all leaves are vcNil and

all branches must build their own context with vcCons. This is very inefficient, as the rules

for pi, lambda, application and conversion all mention the same context in both premises, so

it must be checked in branches leading to both premises. This is apparently exponential in

the length of the context. If an implementation actually checked in this way it wouldn’t get

very far. I now give a system with much smaller derivations, and show that it can be used to

check gts judgements. The idea is originally due to Martin-Löf, but I learned it from Gérard

Huet [Hue89].

The system of locally valid contexts has a typing judgement, lvtyp (table 4–6), similar

to vtyp except it doesn’t check validity of the context at all. More precisely a derivation oflvtyp G M A does not check the validity of G; however, each time a context in a derivation is

extended, the extension is checked, assuming the original context is valid. For example, the

rule lvtPi checks that A has a sort and p is fresh for G. There is also a validity judgement,

Chapter 4. Pure Type Systems 78Inductive [lvtyp:Cxt->Trm->Trm->Prop] Constructors[lvtSort:{s1,s2|SS} {sc:ax s1 s2}{G:Cxt}lvtyp G (sort s1) (sort s2)][lvtPar:{G|Cxt}{p|PP}{A|Trm} {sc:is_tt (GBoccur (Gb p A) G)}lvtyp G (par p) A][lvtPi:{G|Cxt}{A,B|Trm}{s1,s2,s3|SS}{p|PP}{n|VV} {sc:rl s1 s2 s3}{noccB:is_ff (poccur p B)}{noccG:is_ff (Poccur p G)}{l_prem:lvtyp G A (sort s1)}{r_prem:lvtyp (CONS (Gb p A) G) (vsub (par p) n B) (sort s2)}(***)lvtyp G (pi n A B) (sort s3)][lvtLda:{G|Cxt}{A,M,B|Trm}{s|SS}{p|PP}{n,m|VV} {noccM:is_ff (poccur p M)}{noccB:is_ff (poccur p B)}{noccG:is_ff (Poccur p G)}{l_prem:lvtyp (CONS (Gb p A) G) (vsub (par p) n M) (vsub (par p) m B)}{r_prem:lvtyp G (pi m A B) (sort s)}(***)lvtyp G (lda n A M) (pi m A B)][lvtApp:{G|Cxt}{M,A,B,L|Trm}{n|VV}{l_prem:lvtyp G M (pi n A B)}{r_prem:lvtyp G L A}(***)lvtyp G (app M L) (vsub L n B)][lvtCnv:{G|Cxt}{M,A,B|Trm}{s|SS} {sc:cnv A B}{l_prem:lvtyp G M A}{r_prem:lvtyp G B (sort s)}(***)lvtyp G M B];Inductive [lvcxt:Cxt->Prop] Constructors[lvcNil:lvcxt nilCxt][lvcCons:{G|Cxt}{p|PP}{A|Trm}{s|SS} {noccG:is_ff (Poccur p G)}{sc:lvtyp G A (sort s)}{prem:lvcxt G}(***)lvcxt (CONS (Gb p A) G)];
Table 4–6: The System of Locally Valid Contexts

Chapter 4. Pure Type Systems 79lvcxt, similar to vcxt except for using lvtyp in place of lvtyp. (Notice, however, that

since lvtyp does not check validity, it doesn’t depend on lvcxt, so the two are not mutually

inductive.)

The locally valid system characterizes gts. We will show:Goal iff_gts_lvcxt_lvtyp:{G:Cxt}{M,A:Trm}iff (gts G M A) (and (lvcxt G) (lvtyp G M A));
Direction) is trivial, asG ` M : A) G `vtyp M : A) (G `lvtyp M : AG `vcxt) G `lvcxt
Direction (can be proved directly by lexicographic induction, first on the sum of the

lengths of the derivations of G `lvtyp M : A and G `lvcxt , and second on the length of

the derivation of G `lvtyp M : A . Here I will unwind this lexicographic dependency into

two simple inductions using vtyp as an intermediate system. (Another reason to use an

intermediate system is that lvtyp-typable terms and their types may not be Vclosed becauselvtyp does not restrict its contexts.)

The first step is to showGoal lvtyp_vcxt_vtyp: {G|Cxt}{M,A|Trm}(lvtyp G M A)->(vcxt G)->vtyp G M A;
by easy lvtyp-structural induction. This lemma says that an lvtyp-derivation starting with

a context that is vcxt (i.e. “really valid”), can be transformed to a vtyp-derivation of the same

judgement (which, we saw above, can be transformed to a gts-derivation). It is easy because

except for accepting unvalidated contexts at its leaves (where the vcxt assumption is used),lvtyp is just as strict as vtyp.

The hard part, the main lemma of this section, is to show that this requirement on the

context can be weakened from vcxt to lvcxt.Goal lvtyp_lvcxt_vtyp: {G|Cxt}{M,A|Trm}{t:lvtyp G M A}{c:lvcxt G}vtyp G M A;
This is hard because lvcxt-derivations are much smaller than vcxt-derivations; we must

give a terminating procedure for recomputing the annotations that are omitted in lvcxt-

derivations3. The proof will be by induction on the sum of the lengths of (lvtyp G M A)
and (lvcxt G). Here is the general well-founded induction whose measure is an NN-valued

function on pairs of judgements (lvtyp G M A), (lvcxt G).3Thanks to Stefano Berardi for this point of view.

Chapter 4. Pure Type Systems 80Goal wc_wt_WF_ind:{f:{G|Cxt}{M,A|Trm}(lvtyp G M A)->(lvcxt G)->NN}{C:{G|Cxt}{M,A|Trm}(lvtyp G M A)->(lvcxt G)->Prop}{wf_ih:{G|Cxt}{M,A|Trm}{t:lvtyp G M A}{c:lvcxt G}{ih:{g|Cxt}{m,a|Trm}{xt:lvtyp g m a}{xc:lvcxt g}(Lt (f xt xc) (f t c))->C xt xc}C t c}{G|Cxt}{M,A|Trm}{t:lvtyp G M A}{c:lvcxt G}C t c;
The proof follows that of WF_induction in section 2.2.1. The lengths of lvtyp- and lvcxt-

derivations, lvtyp_ln and lvcxt_ln, are defined in the obvious way using structural recur-

sion, lvtyp_elim and lvcxt_elim respectively. The sum of these lengths[wc_wt_ln [G|Cxt][M,A|Trm][t:lvtyp G M A][c:lvcxt G] : NN= add (lvcxt_ln c) (lvtyp_ln t)];
is the right shape to use as the function, f, in the well-founded induction principle above.

Finally we can prove the main lemma.

Proof of lvtyp lvcxt vtyp. Here is an informal outline. The proof goes by well-founded

induction on the sum of the lengths of the assumed derivations, t of G `lvtyp M : A and c
of G `lvcxt . Then, by structural induction (for case analysis) on t, there are cases for the six

constructors of lvtyp. I will give two cases.

lvtSort t derives G `lvtyp s1 : s2 and c derives G `lvcxt . We must show G `vtyp s1 : s2
knowing ax(s1:s2) . By structural induction (again for case analysis) on c, there are two

cases: lvcNil and lvcCons. The former is immediate by vtSort and vcNil. In the latter,G = K[p:B] for some K , p and B . ByK `vtyp B : s vcConsK[p:B] `vcxt vtSortK[p:B] `vtyp s1 : s2
it suffices to show K `vtyp B : s . By the well-founded induction hypothesis, we need

derivations lt of K `lvtyp B : s and lc of K `lvcxt such thatlngth(lt) + lngth(lc) < lngth(t) + lngth(c)
But c, which derives K[p:B] `lvcxt , contains immediate subderivations of K `lvtyp B : s
and K `lvcxt , so this case is complete.

lvtPi t derives G `lvtyp fn:BgC : s3 , and c derives G `lvcxt . We must showG `vtyp fn:BgC : s3 knowing

sc : rl(s1; s2; s3)
l prem : G `lvtyp B : s1
r prem : G[p:B] `lvtyp [p=n]C : s2

Chapter 4. Pure Type Systems 81

By vtPi it suffices to show G `vtyp B : s1 and G[p:B] `vtyp [p=n]C : s2 . Assuming

the first of these for the moment, the second follows from the lemma lvtyp_vcxt_vtyp by

r prem and vcCons. To prove the first by the well-founded induction hypothesis requires a

derivation lt of G `lvtyp B : s1 such thatlngth(lt) + lngth(c) < lngth(t) + lngth(c)
But t, contains an immediate subderivation of G `lvtyp B : s1 (in fact, l prem), so this case

is finished.

Formalizing this proof is delicate. Our relations do not carry the heights of their derivations

in the judgement syntax, so in the case lvtPi above,we can’t read off that l prem is shorter than

t. Several approaches suggest themselves to solve this problem. In this case, needing only to

know that immediate subderivations are shorter than their parents, I used dependent elimination

when doing the structural case analyses, so that the elimination step itself instantiated the

well-founded induction hypothesis. For example in the lvtPi case, t is instantiated with(Pi sc noccB l_prem r_prem)which is apparently longer than l_prem.

4.4.11 Abstract Conversion Revisited

It is remarkable how little aboutcnv is needed for the theory we have developed. In this section

we explore a few simple properties that beta-conversion PTS have but are not provable for

abstract conversion PTS without extra assumptions. Much as I would like to present a few

extra assumptions that yield all the PTS properties we use, and a satisfying justification of the

assumptions I have chosen, I cannot do this. The axiomatization of cnv to this point is very

weak, and it is not at all clear what other properties the “real” cnv should have. In this section

I’m guided mainly by what is needed for typechecking ECC in Chapter 5.

4.4.11.1 cnv and Vclosed
Let me first assume:[cnv_Vclosed: {A,B|Trm}(cnv A B)->and (Vclosed A) (Vclosed B)];
This is a hygienic assumption: for our purposes, any relation that doesn’t have such a property

is just a badly defined version of one that does (see remark 3.2). It hasn’t been needed yet

because the typing judgement already enforces Vclosed. It probably isn’t needed in what

follows either, but it is not worth the trouble to find out.

Chapter 4. Pure Type Systems 82

4.4.11.2 A Converse to sStartLem
For beta-conversion PTS we can proveG ` s1 : s2) ax(s1:s2)
using a generation lemma and the fact s1 ' s2) s1 = s2 . We cannot prove it in general

because of derivations likeax(s:t)
AX` s : t ax(u:r)

AX` u : r t � u
TCNV` s : u

This gives a flavor of how the relations cnv and ax can interact. For example, there may be

fundamentally different derivations of the judgement ` s : u , some using the rule TCNV in a

non-trivial way. Notice however, by gts_gen_sort, that a sort has a type if an only if it is a

typedsort.

To prove this lemma we need an extra hypothesis, cnv_ax_full.[cnv_ax_full ={s1,s2,t|SS}(ax s1 s2)->(cnv (sort s2) (sort t))->(typedsort t)->ax s1 t];Goal gts_reflects_ax:{caf:cnv_ax_full}{G|Cxt}{s1,s2|SS}(gts G (sort s1) (sort s2))->ax s1 s2;
This is cheating grossly, as cnv_ax_fullmerely throws in enough axioms to make the lemma

true. cnv_ax_full is not only philosophically annoying, but counterproductive in practice:

for typechecking algorithms we want functional PTS , while cnv_ax_full forces us to have

extra axioms in a system that might otherwise be presented functionally. We do not actually

make the assumption cnv_ax_full above, and will not refer to it again.

4.4.11.3 Predicate Conversion

For PTS with beta-conversion we have a trivial but useful lemma

Lemma 4.5 (Predicate conversion) for PTS with beta-conversion(� ` M : A and A ' s)) � ` M : s :
Proof. A ' s , so A!! s , so � ` M : s by predicate reduction.

The point is that we don’t ask whether s has a type or not. Of course it’s clear that A must

contain s , so if s is a topsort, A = s by the topsort lemmas; otherwise the conversion rule

applies.

Chapter 4. Pure Type Systems 83

Conversion and Weak Head Normal Forms. The question is how to generalize this argument

to abstract conversion, where we do not have that A � s implies A!! s or that A � s
implies A contains s . Both of these implications fail for ECC, our motivating example of

abstract conversion. We have already assumed cnvCR_pi (section 4.4.9) which I called an

internal CR property. I now assume three external CR properties: if A is related by � to some

weak-head normal form, then A has a weak-head normal form of the same shape.[cnv_sort_character_l:{s|SS}{A|Trm}{c:cnv A (sort s)}Ex [t:SS] par_redn A (sort t)];[cnv_sort_character_r:{s|SS}{B|Trm}{c:cnv (sort s) B}Ex [t:SS] par_redn B (sort t)];[cnv_pi_character_l:{A,Bl,Br|Trm}{v|VV}{c:cnv A (pi v Bl Br)}Ex3 [u:VV][Al,Ar:Trm] par_redn A (pi u Al Ar)];
I consider these three properties to be unproblematically part of what a conversion relation is,

and make them as general assumptions whose use we will not keep track of.cnv_sort_character_l, for example, does not tell us that t � s , but � contains ' , so

from cnv_sort_character_l (and cnv_Vclosed) we can proveGoal cnv_sort_Character_l:{s|SS}{A|Trm}{c:cnv A (sort s)}Ex [t:SS]and (par_redn A (sort t)) (cnv (sort t) (sort s));
and similarly cnv_sort_Character_r and cnv_pi_Character_l. We might needcnv_pi_character_r someday, but it hasn’t come up yet. As conversion is only useful

for types, and no type has weak head normal form of shape [v:A]M , no such assumptions

for lambda are required. If I was formalizing ECC’s sigma types, we would need similar

assumptions for sigma.

Now we can attempt to prove Predicate Conversion for abstract conversion.

Proof attempt. A � s so for some t , A!! t � s , and G ` M : t by predicate reduction.

If s 2 SST we are done by the conversion rule. Otherwise what to do?

Conversion and Typedsorts. It is now clear that topsorts are a difficulty with abstract conver-

sion. Unfortunately our motivating example, ECC, is of little help, since ECC has no topsorts!

Here are four possible anti-topsort properties arranged in roughly increasing strength:

Chapter 4. Pure Type Systems 84[cnv_preserves_typedsort_dn ={s1,s2|SS}(cnv (sort s1) (sort s2))->(typedsort s2)->typedsort s1];[cnv_preserves_typedsort_up ={s1,s2|SS}(cnv (sort s1) (sort s2))->(typedsort s1)->typedsort s2];[cnv_range_typedsort ={s1,s2|SS}(cnv (sort s1) (sort s2))->or (is_tt (SSeq s1 s2)) (typedsort s2)];[cnv_only_typedsort ={s1,s2|SS}(cnv (sort s1) (sort s2))->or (is_tt (SSeq s1 s2)) (and (typedsort s1) (typedsort s2))];
Clearly every beta-conversion PTS has all these properties. It is easy to see some relations

between them.Goal crt_cptd_cpt:{crt:cnv_range_typedsort}{cptd:cnv_preserves_typedsort_dn}cnv_only_typedsort;Goal cpt_and3: {cpt:cnv_only_typedsort}and3 (cnv_range_typedsort)(cnv_preserves_typedsort_dn)(cnv_preserves_typedsort_up);cnv_only_typedsort is the strongest, and we will need its whole strength to derive a syntax

directed characterization of gts in section 5.1.3, but I prefer to think of it as the conjunction ofcnv_range_typedsort and cnv_preserves_typedsort_dn.

Now we can prove:Goal gtsPC:{crt:cnv_range_typedsort}{G|Cxt}{M,A|Trm}(gts G M A)->{s|SS}(cnv A (sort s))->gts G M (sort s);
Proof. A � s so for some t , A!! t � s , and G ` M : t by predicate reduction. Bycnv_range_typedsort either t = s (and we are done), or s is a typedsort, and we can use

rule TCNV to finish.

Remark 4.6 (on Topsorts) Every PTS with cnv_range_typedsort can be extended to a newPTS that is, in a sense, conservative over the original one, and has property cnv_only_typedsort.

The idea is to “top off” every topsort of the original PTS with a completely fresh sort symbol.

Definition 4.7 A sort is isolated if it is a topsort that participates in no rules, and converts only with

itself. A sort, s , is a pseudo topsort if whenever ax(s:T) then T is an isolated sort.

There is a lemma that if G ` M : A and t is a psuedo topsort then t 2M) t =M andt 2 A) t = A .

Now let `t be a PTS with some distinguished topsort t , and `T the same PTS , but with t
made into a pseudo topsort by adding an isolated sort T and an axiom ax(t:T) . We can prove (using

Chapter 4. Pure Type Systems 85cnv_range_typedsort)G `T M : A; t 62 G; t 62M , G `t M : A
I haven’t checked this in LEGO.

4.5 Properties of Arbitrary PTS With Beta-Conversion

Let us now use conv for the conversion relation of PTS , as the following would be messy to

state and prove for our abstract conversion relation. So far we have the abstract conversion

relation, cnv, and several of its properties, as assumptions in the LEGO context; i.e. as declared

variables. We can tell LEGO to cut in the defined relation conv, and its proved properties, for

these declared variables.Cut [cnv=conv][cnv_refl=conv_refl][cnv_trans=conv_trans][psub_resp_cnv=psub_resp_conv][cnv_red1=conv_red1][cnv_red1_sym=conv_red1_sym][cnvCR_pi=cOnvCR_pi_lem][cnv_Vclosed=conv_Vclosed_lem][cnv_sort_character_l=conv_sort_character_l][cnv_sort_character_r=conv_sort_character_r][cnv_pi_character_l=conv_pi_character_l];
(The Cut command is described in section 2.1.4.) LEGO verifies that conv really has the

properties assumed for cnv.

4.5.1 The Typing Lemma

I want to mention, because of its beauty, a lemma that explains the possible variations in the

type of a given term. This lemma is originally due to Luo for ECC [Luo90a], where it explains

cumulativity. A very similar result was found independently by Jutting [vBJ93] in his work to

prove strengthening for PTS . I state it informally, and have not formalized the proof.

Lemma 4.8 (Typing Lemma) If � ` a : A and � ` a : B then

either A ' B
or 9sA; sB; n � 0; C1; : : : ; Cn :A!! fx1:C1g : : : fxn:CngsA and B !! fx1:C1g : : : fxn:CngsB

Chapter 4. Pure Type Systems 86

4.5.2 Strengthening

We have formalized the proof of strengthening in [vBJMP94].Goal gts_strengthening:{Gamma|Cxt}{c,C,d,D|Trm}{Delta:Cxt}{q|PP}{noccd:is_ff (poccur q d)}{noccD:is_ff (poccur q D)}{noccDelta:is_ff (POCCUR q Delta)}{premD:gts (append Delta (CONS (Gb q C) Gamma)) d D}gts (append Delta Gamma) d D;
This project develops several systems similar to PTS , and by “cutting and pasting” existing

proofs we have been able to effectively reuse some of the vast amount of work expended so

far.

LEGO uses strengthening in its Discharge command.

4.6 Functional PTS
We are still using beta-conversion as the conversion relation of PTS .

Definition 4.9 A PTS is functional if� ax(s:t) and ax(s:u) implies t = u , and� rl(s1; s2; t) and rl(s1; s2; u) implies t = u .

Formally:[Functional =and ({s,t,u|SS}(ax s t)->(ax s u)->is_tt (SSeq t u))({s1,s2,t,u|SS}(rl s1 s2 t)->(rl s1 s2 u)->is_tt (SSeq t u))];
Functional PTS are well behaved and are, perhaps, the only ones that occur in practice. For a

functional PTS , ax and rl are the graphs of partial functions, but we do not necessarily have

procedures to compute these functions.

4.6.1 Uniqueness of Types

It is well known that functional PTS have uniqueness of types up to conv:[conv_unique_types ={G|Cxt}{M,A|Trm}(gts G M A)->{B|Trm}(gts G M B)->conv A B];Goal types_unicity: {f:Functional}conv_unique_types;
This is easily proved by structural induction. The proof uses symmetry of conv, and the CR

property that if s1 ' s2 then s1 = s2 .

Chapter 4. Pure Type Systems 87

4.6.2 Subject Expansion

Any PTS with uniqueness of types also has a subject expansion property:Goal subject_expansion:{UT:conv_unique_types}{G|Cxt}{M,N,A,B|Trm}{r:par_redn M N}{j:gts G N A}{j':gts G M B}gts G M A;
Proof. From G ` M : B , M !! N and SR, we have G ` N : B , so A ' B by unique-

ness of types. By type correctness, G ` A : s or A is a sort. In the former case, we are done

by the conversion rule; in the latter it must be that B !! A , and we are done by predicate

reduction.

In general, non-functional PTS do not have subject expansion: a reduct of a term may

have more types than the original term. There are examples of different ways this can happen

in [vBJMP94].

4.7 Expansion Postponement

There is an open question about PTS called Expansion Postponement (EP) (see [vBJMP94]),

proposed by Henk Barendregt. In this section I define the problem, and point out some of the

difficulties that arise.

4.7.1 Two Different Expansion-Free Systems

4.7.1.1 The system `red
Informally I write `conv for the system gtswith the abstract conversion relation, cnv instanti-

ated to beta-conversion, conv (`conv is the PTS relation of [Bar92]); I write `red for gtswith

the abstract conversion relation instantiated to reduction, par_redn. Thus the “conversion”

rule of `red is

TRED
� `red M : A � `red B : s� `red M : B A!! B

Since par_redn is contained in conv, `red is contained in `conv . Since conv satisfies all the

assumptions on cnv in sections 4.3 and 4.4.9, `conv has every property we have proved forgts. On the other hand par_redn fails to have property cnv_red1_sym of section 4.4.9, so

while `red has the substitution lemma and type correctness, we have no reason to believe it

has SR or PR.

Chapter 4. Pure Type Systems 88

Example 4.10 (`red does not have SR for CC.) Let G = [A:?][F :fY :?gY] be a context in

CC, and write I for [X:?]X . G `red F (I A) : (I A) is derivable, but, contracting the redex

in the subject, G `red F A : (I A) is not derivable; in fact G `red F A : A is the only `red
judgement derivable for G and F A , because every type appearing in the “natural” derivation���G `red F : fY :?gY ���G `red A : ?

APPG `red F A : A
is already in normal form.

On the other hand, we can hope `red has weak SR:[G `red M : A and M !! N]) 9B [A!! B and G `red N : B]
I do not know how to prove this.

4.7.1.2 The system `RED
The relation `conv has as its conversion rule

TCONV
� `conv M : A � `conv B : s� `conv M : B A ' B

Let us split this rule for converting the predicate of a judgement into two, one for expanding

the predicate and one for reducing the predicate. Knowing that `conv has PR suggests it

is safe to drop the type correctness premise in the rule for reducing the predicate, giving a

relation, `er , having the same rules as `conv except for TCONV, which is replaced by the rules

TRED
� `er M : A� `er M : B A!! B

TEXP
� `er M : A � `er B : s� `er M : B B !! A

In fact this suggestion is correct, and, using the Church-Rosser and Predicate Reduction prop-

erties of `conv , it is easy to show [vBJMP94] that `conv and `er have the same derivable

judgements: for all PTS ,8�;M;A : � `conv M : A , � `er M : A :
Now consider a relation `RED having the same rules as `er , but without the expansion

rule TEXP. The difference between `RED and `red is that the the conversion rule of `red ,

Chapter 4. Pure Type Systems 89

TRED on page 87, has the type correctness premise that we dropped from rule TRED; otherwise`red and `RED are the same. However `RED is not obviously an instance of the relationgts, and a priori we know nothing about it. In fact, by the same proof as for gts, it has the

substitution lemma, but the proof of type correctness used for gts (which works for `red)

fails for `RED because it is precisely the type correctness condition that we dropped from the

rule TRED. On the other hand `RED clearly has PR, whereas `red is not known to. (This

suggests an interesting duality between type correctness and PR.) Finally, as in example 4.10`RED does not in general have SR; and I hope, but cannot prove, `RED has weak SR.

Comparing the systems. We know that every `red -derivation is a `RED -derivation, every`RED -derivation is an `er -derivation, and to every `er -derivation there corresponds a`conv -derivation of the same judgement. Somewhat incorrectly I write`red � `RED � `er = `conv :
4.7.2 Expansion Postponement defined

Definition 4.11 (Expansion Postponement) Let `R be, for each PTS (PL; ax; rl) , a subre-

lation of `conv (i.e. every `R judgement is a `conv judgement) for which the following rule is

admissible

TR
� `R M : A � `R B : s A!! B� `R M : B

that is, whenever � `R M : A , � `R B : s , and A!! B , then � `R M : B . A PTS has

R-expansion postponement (R-EP) iff8G;M;A : G `conv M : A) 9B : A!! B and G `R M : B :
Some easy observationsR-EP implies `R has weak Subject Reduction, for if G `R M : A and M !! N thenG `conv N : A , and by R-EP G `R N : B for some B with A!! B .R-EP implies `R type correctness, for if G `R M : A then G `conv M : A , and by`conv type correctness, A is a sort or G `conv A : s for some s . In the first case we

are finished; in the second, by R-EP, G `R A : s .R-EP implies `R has Predicate Reduction, for if G `R M : A and A!! B then by `R
type correctness, either A is a sort (and we are done) or G `R A : s for some s . In the latter

case, G `R B : s by `R weak Subject Reduction, so G `R M : B by rule TR.

Chapter 4. Pure Type Systems 90

4.7.3 Expansion Postponement for `red and `RED
For `red and `RED , weak SR is equivalent to EP.

Lemma 4.12 If `red (resp. `RED) has weak SR, then it has EP.

Proof. Let `R stand for `red (resp. `RED). By induction on the structure of a derivation ofG `conv M : A , show that for some B , A!! B and G `R M : B . I do two cases.

Lda The `conv -derivation has shape���G[x:A] `conv b : B ���G `conv fx:AgB : s
LDAG `conv [x:A]b : fx:AgB

By induction hypothesis

l ih : 9C : B !! C andG[x:A] `R b : C
r ih :G `R fx:AgB : s

Now we claim G `R [x:A]b : fx:AgC ; by the LDA rule for `R and l ih it only remains to

show G `R fx:AgC : s , which follows from r ih by weak SR, which we have assumed for`R .

This is the essential difficulty in attempts to prove EP; in the LDA rule of `conv , B appears on

the right of the colon in one premise and on the left of the colon in the other premise. However,

in expansion-free systems we can only hope for induction hypotheses “up to reduction” on

the right of the colon, and weak SR is the only obvious way to bring the two parts together.

The LDA rule is not the only problem however, for in the conversion rule B moves from the

right of the colon in the conclusion to the left of the colon in the right premise.

tCnv The `conv -derivation has shape���G `conv M : A ���G `conv B : s A ' B
TCNVG `conv M : B

By induction hypothesis

l ih : 9C : A!! C andG `R M : C
r ih :G `R B : s

By CR let D be such thatC !! D and B !! D . By weak SR G `R D : s , so both systems,`red and `RED , prove G `R M : D where B !! D as required.

Chapter 4. Pure Type Systems 91

Lemma 4.13 For functional PTS , if `red (resp. `RED) has predicate reduction,decideTypedsort and decideTypedsort_type_correctness (section 4.4.8), then it has EP4.

It is frustrating to observe that `red does have decideTypedsort_type_correctness, and`RED does have PR, but neither system obviously has both properties.

Proof. Let `R stand for `red (resp. `RED). Show, by induction on the length of a derivation

of G `conv M : A , that for some B , A!! B and G `R M : B . I do two cases.

Lda The `conv -derivation has shape����G[x:A] `conv b : B ���� dG `conv fx:AgB : s
LDAG `conv [x:A]b : fx:AgB

By induction hypothesis

l ih : 9C : B !! C andG[x:A] `R b : C
r ih :G `R fx:AgB : s

Now we claim G `R [x:A]b : fx:AgC ; by the LDA rule for `R and l ih it only remains

to show G `R fx:AgC : t for some sort t . As in lemma 4.12 this is the essential difficulty.

Here, not having weak SR, we push the problem back into `conv .

By type correctness of `R applied to l ih, we have

tc :G[x:A] `R C : sC
(Notice, it cannot be that C is a topsort, for then C , being atomic, would occur in B , which

is forbidden by the topsort theorem on the right premise.) By a generation lemma, derivationd contains subderivations of

l pi :G `conv A : s1
r pi :G[x:A] `conv B : s2

where rl(s1; s2; s) . By induction hypothesis on l pi

l pi ih :G `R A : s1
If we can only show sC = s2 then we are done by the PI rule of `R using l pi ih and tc.

From tc we know G[x:A] `conv C : sC . By subject expansion (using functionality and r pi)G[x:A] `conv B : sC . Finally, by uniqueness of types, and r pi, sC = s2 as required.4At a workshop in Båstad, Sweden (May 1992), I incorrectly claimed this argument proves “EP for

functional PTS”, because I failed to distinguish between the systems `red and `RED . Thanks to Eric

Poll for pointing out the error.

Chapter 4. Pure Type Systems 92

tCnv The `conv -derivation has shape���G `conv M : A ���G `conv B : s A ' B
TCNVG `conv M : B

By induction hypothesis

l ih : 9C : A!! C andG `R M : C
By CR let D be such that C !! D and B !! D . By PR of `R , G `R M : D whereB !! D as required.

Remark 4.14 Reading this proof carefully, you will see we use more than structural induction (i.e.

immediate subderivations have the induction property), and less than length induction (i.e. all smaller

derivations have the induction property). In fact subderivation induction is perfect; all subderivations

have the induction property. This observation may be useful in formalizing the argument above, because

it uses a “strong” generation lemma, that requires apts to prove. Recall that apts, defined by infinitely

branching trees, does not have an easily definable length or height function.

Chapter 5

Semi-Full and Cumulative PTS:

Typechecking ECC

What has come before is about beauty; what comes next is about technology. We want an

algorithm for typechecking a class of PTS that includes the three type systems of LEGO,

and we’ll do grungy things to get it. We first show how to typecheck a class of PTS under

many obscure assumptions about the abstract relation cnv (�) and about the axioms and

rules of the PTS (section 5.1). Next (section 5.2) we give a parameterized class of conversion

(cnv) relations, called cumulativity, that satisfy the restrictions on cnv of section 5.1. Finally,

section 5.3 concretely presents the axioms and rules of a cumulative PTS that is very close to

Luo’s ECC and satisfies the remaining assumptions of section 5.1. We will thus have a verified

typechecking algorithm for our variant of ECC depending only on the assumption that ECC

is normalizing, which is not provable in ECC.

5.1 Typechecking Functional, Semi-Full PTS
5.1.1 Introduction to Type Checking

The Type Checking Problem (TCP) for a relation `R is, given G , M and A , to decide

whether or not G `R M : A . Since (G;M) may have different types, this is usually solved

by computing some type, B , for G and M , and checking that B � A and that A is well-

formed in some way, e.g. that G `R A : s for some sort s . This suggests the Type Synthesis

Problem (TSP): given G and M , compute some type, B , for G and M , if possible, and fail

if no such type exists.

Our strategy for solving TSP for some class of PTS is to find an inductive relation that is

equivalent in some way to PTS , but deterministic in the sense that, given G and M , there

93

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 94

will be no serious choice of which rule is the root of any derivation over G and M , or of

what type is derived by that rule. Such a rule application will have premises which need to be

satisfied, and the subjects of these subgoals should be determined by the subject, G and M , of

the previous goal. Further, all the side conditions of the rules should be solvable. In [vBJMP94]

we give definitions of nearly syntax directed (roughly, only one rule can be used over any G
and M) and syntax directed (roughly, only one rule can be used over any G and M , and it can

be used in only one way). These definitions are not really satisfactory to capture the intuitive

idea, and anyway a completely deterministic system is not required (see section 5.1.4), so I

prefer to remain informal on this point. Of course it is not clear that computing just any type

will be good enough, so we want the deterministic relation to select a type which is principal

in some sense. I have hinted at how such a computation for TSP might unfold, but there is

one remaining issue: termination. We will have a formal induction whose measure proves

termination of a computation for TSP.

There are difficulties in transforming gts1 into a syntax directed presentation that can

be used for solving TSP. Only the conversion rule is not syntax directed, so our plan is to

eliminate it by permuting it through all the other rules. However the lambda rule prevents

this program from being carried out. In section 5.1.1.1 I indormally clarify the difficulty (there

is also discussion of this point in [vBJMP94]); in the rest of this chapter I show how to solve

this difficulty for a class of PTS including all three of LEGO’s logics. First we take advantage of

a special property, semi-fullness (section 5.1.2.1), to change the troublesome right premise of

the LDA rule (system sfts in section 5.1.2.2), then eliminate the conversion rule (system sdsf
in section 5.1.3). We show that sdsf characterizes the judgements of gts (section 5.1.3.1), and

introduce the notion of principal types in section 5.1.4. From this it follows (section 5.1.5) that

TCP for gts is decidable assuming that TSP for sdsf is decidable and that some classes of side

conditions are decidable. In section 5.1.6, we show that TSP for sdsf is decidable, assuming

that some classes of side conditions are decidable. Putting these results together we get TS

and TC for a class of PTS .

5.1.1.1 Expansion Postponment and Typechecking

This section is explanatory, and not referred to in the formal development that follows.

Our approach to typechecking is to use the shape of the subject of a judgement to determine

which inference rule to use in deriving that judgement. Our system ` of table 4–2, formalized1For an efficient algorithm, we should start with the system of locally valid contexts, lvtyp, of

section 4.4.10.2, but that would be too grungy even for this section, so we start with the system gts,

which has many nice properties.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 95

in table 4–3, is almost satisfactory for this, except for the conversion rule2. For example, a

derivation of a judgement with shape G ` fx:AgB : C must end with either the PI rule or

the conversion rule; a derivation of a judgement with shape � ` s : C must end with either

the AX rule or the conversion rule; a derivation of a judgement with shape G[p:A] ` s : C
must end with either the START rule or the conversion rule. Similarly, every shape of subject

determines which rule must be used to derive it, up to possible use of the conversion rule. Since

the conversion rule doesn’t change the subject between its major premise and its conclusion,

the shape of the subject gives no information on when to use this rule.

Our technique to remove this ambiguity is due originally to Martin-Löf [Mar71b], and

made known to me by [Hue89]. Since the subject of a judgement determines its predicate, at

best, only up to conversion, it is clear that the conversion rule must be available at the end of a

derivation to “fix up the type” if necessary. We will try to permute the conversion rule down

through every premise of every other rule in order to move all instances of TCONV to the end

of derivations. We can’t quite do this, as some rules require particular shapes in premises. For

example the START rule

START
� ` A : s�[p:A] ` p : A p 62 �

requires the type of A in the premise to be a sort, and TCONV might be used to meet this

requirement, as in G ` A : C G ` s : t C ' s
TCONV� ` A : s

START�[p:A] ` p : A
However, we don’t need arbitrary conversion before the START rule, only reduction to a sort,

so permuting conversion past the START rule leaves a residue behind. The rule becomes:� ` A : X X !! s�[p:A] ` p : A p 62 �
Notation 5.1 I will write � ` A : X !! s instead of � ` A : X and X !! s .

Similarly the right premises of both weakening rules and both premises of the PI rule are

modified to allow reduction in the premise.2For the present informal discussion I will use � -conversion, ' , rather than abstract conversion,� .

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 96

The APP rule is more interesting, as conversion might be used before both premises, as in

(I omit some premises):� ` M : X : : : X ' fx:AgB
TCONV� ` M : fx:AgB � ` N : Y : : : Y ' A

TCONV� ` N : A
APP� ` MN : [N=x]B

There are some inessential choices to be made in permuting conversion through both premises.

For this discussion, replace APP with:� ` M : X !! fx:AgB � ` N : Y ' A� ` MN : [N=x]B
Notice that fx:AgB is a weak-head-normal form, so we could use weak-head reduction, or,

non-deterministically, parallel reduction for the left premise. For the right premise, both Y
and A are determined by other parts of the derivation.

Finally the LDA rule. It is easy to see that conversion is never needed before the right

premise. Conversion might be used before the left premiss in the following way:�[p:A] ` [p=x]M : X : : : X ' [p=y]B
TCONV�[p:A] ` [p=x]M : [p=y]B � ` fy:AgB : s

LDA� ` [x:A]M : fy:AgB
By analogy with the discussion above, we want to replace LDA with�[p:A] ` [p=x]M : X !! [p=y]B � ` fy:AgB : s� ` [x:A]M : fy:AgB p 62Mp 62 B

Now the the conversion rule can be eliminated, since, by construction, it is not needed

before any premiss of any rule. This gives the system I will call `bad (table 5–1). We have

the following lemma characterizing `bad in terms of `RED of section 4.7.1.2 (see section 1.3

in [vBJMP94]):

Lemma 5.2 (`bad and `RED)� � `bad a : A) � `RED a : A� � `RED a : A) 9A0 [A0 !! A and � `bad a : A0]
Recall that `RED is sound for ` , but that its completeness for ` is the Expansion Postpon-

ment problem for `RED . Thus `bad is sound for ` , but we don’t know how to prove its

completeness, and the difficulty in the completeness proof (section 4.7.3) is caused by the right

premise of the LDA rule.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 97

AX � `bad s1 : s2 ax(s1:s2)
START

� `bad A : X !! s�[p:A] `bad p : A p 62 �
VWEAK

� `bad q : C � `bad A : X !! s�[p:A] `bad q : C p 62 �
SWEAK

� `bad s : C � `bad A : X !! s�[p:A] `bad s : C p 62 �
PI

� `bad A : X !! s1 �[p:A] `bad [p=x]B : Y !! s2� `bad fx:AgB : s3 p 62 B;rl(s1; s2; s3)
LDA

�[p:A] `bad [p=x]M : X !! [p=y]B � `bad fy:AgB : s� `bad [x:A]M : fy:AgB p 62Mp 62 B
APP

� `bad M : X !! fx:AgB � `bad N : Y ' A� `bad MN : [N=x]B
Table 5–1: Incomplete and non syntax-directed presentation of PTS

In any case, `bad is not syntax directed, as the subject of the right premise of the LDA rule

depends on the non deterministic reduction in the left premise. We can make a syntax directed

system (call it `worse) by replacing the LDA rule of `bad with:�[p:A] `worse [p=x]M : [p=y]B � `worse fy:AgB : s� `worse [x:A]M : fy:AgB p 62Mp 62 B`worse is obviously sound for `bad , hence for ` , and we can construct a sound typechecker

for a large class of PTS based on it. In [Pol92] I show by example that `worse is not in general

complete for `bad , and even it were, we don’t know how to show that `bad is complete for` . These two difficulties are both caused by the structural feature of PTS that the subject of

the right premise of the LDA rule is not determined by the subject of its conclusion. Now we

show how to fix this problem for a class of PTS.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 98

5.1.2 Towards a Syntax Directed System: Fixing the Lambda Rule

5.1.2.1 Semi-Full PTS

A PTS is called full iff for all s1 , s2 there exists s3 with rl(s1; s2; s3) . In full PTS the

troublesome second premise of the LDA-rule can be simplified. Focus on the LDA-rule:

LDA
�[p:A] ` [p=x]M : [p=y]B � ` fy:AgB : s� ` [x:A]M : fy:AgB p 62M; p 62 B

The purpose of premise � ` fy:AgB : s is to assure type correctness. But we know

from the premise �[p:A] ` [p=x]M : [p=y]B that � ` A : sA for some sA . As long

as �[p:A] ` [p=y]B : sB for some sB (e.g. by type correctness), for full PTS we conclude

there exists s with rl(sA; sB ; s) , so fx:AgB is well typed. This suggests replacing the

right premise of the LDA-rule by the requirement that B is not a topsort, or, making a pos-

itive statement, that B 2 SS implies ax(B:sB) for some sB . We can generalize this idea

somewhat beyond full PTS .

Definition 5.3 (Semi-Full) A PTS is semi-full iff8s1 : (9s2; s3 : rl(s1; s2; s3))) 8s2 9s3 : rl(s1; s2; s3) :
Formally:3[semiFull = {s1|SS}(Ex2 [s2,s3:SS]rl s1 s2 s3)->{s2:SS}Ex [s3:SS]rl s1 s2 s3];
While the Pure Calculus of Constructions, CC, and various extensions with type universes are

full (ECC is full, as we will trivially show in section 5.3), the Edinburgh Logical Framework,�P , is semi-full. CC and �P are the only semi-full systems in the �-cube.

To the best of my knowledge, this definition first appeared in [Pol92] where I used it to

give a syntax directed presentation of a class of type theories including CC and �P . That

paper, in improved form, is published as a section in [vBJMP94]. Here I present a similar

development, extended to a class of type systems including ECC as well. The concept is also

used, for different purposes, in [Geu93], where it is credited to [vBJMP94].

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 99Inductive [sfts:Cxt->Trm->Trm->Prop] NoReductions Constructors[sfAx:{s1,s2|SS} {sc:ax s1 s2}sfts nilCxt (sort s1) (sort s2)][sfStart:{G|Cxt}{A|Trm}{s|SS}{p|PP} {noccG:is_ff (Poccur p G)}{prem:sfts G A (sort s)}(***)sfts (CONS (Gb p A) G) (par p) A][sfvWeak:{G|Cxt}{D,A|Trm}{s|SS}{n,p|PP} {noccG:is_ff (Poccur p G)}{l_prem:sfts G (par n) D}{r_prem:sfts G A (sort s)}(***)sfts (CONS (Gb p A) G) (par n) D][sfsWeak:{G|Cxt}{D,A|Trm}{t,s|SS}{p|PP} {noccG:is_ff (Poccur p G)}{l_prem:sfts G (sort t) D}{r_prem:sfts G A (sort s)}(***)sfts (CONS (Gb p A) G) (sort t) D][sfPi:{G|Cxt}{A,B|Trm}{s1,s2,s3|SS}{p|PP}{n|VV} {sc:rl s1 s2 s3}{noccB:is_ff (poccur p B)}{l_prem:sfts G A (sort s1)}{r_prem:sfts (CONS (Gb p A) G) (vsub (par p) n B) (sort s2)}(***)sfts G (pi n A B) (sort s3)][sfLda:{G|Cxt}{A,M,B|Trm}{s,s2,s3|SS}{p|PP}{n,m|VV} {sc:rl s s2 s3}{sc_ts:{t:SS}(is_tt (Trm_eq B (sort t)))->typedsort t}{noccM:is_ff (poccur p M)}{noccB:is_ff (poccur p B)}{l_prem:sfts (CONS (Gb p A) G) (vsub (par p) n M) (vsub (par p) m B)}{r_prem:sfts G A (sort s)}(***)sfts G (lda n A M) (pi m A B)][sfApp:{G|Cxt}{M,A,B,L|Trm}{n|VV}{l_prem:sfts G M (pi n A B)}{r_prem:sfts G L A}(***)sfts G (app M L) (vsub L n B)][sftCnv:{G|Cxt}{M,A,B|Trm}{s|SS} {sc:cnv A B}{l_prem:sfts G M A}{r_prem:sfts G B (sort s)}(***)sfts G M B];
Table 5–2: The system for semi-full PTS .

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 100

5.1.2.2 Fixing the Lambda Rule

Define a correctness relation sfts (formally defined in table 5–2) by replacing rule LDA of gts
with

SFLDA
�[p:A] `sf [p=x]M : [p=y]B � `sf A : s� `sf [x:A]M : fy:AgB p 62M; p 62 B;rl(s; s2; s3)B 2 SS) B 2 SST

(Recall B 2 SST means B is a typedsort.) To show that for semi-full PTS , sfts has the

same derivable judgements as gts, we treat the two directions separately.Goal gts_sfts: {G|Cxt}{M,A|Trm}(gts G M A)->sfts G M A;
Proof. Induction on the derivation � ` M : A . Only the LDA rule is interesting:� ` [x:A]M : fx:AgB as a consequence of �[x:A] ` M : B and � ` fx:AgB : s .

By induction hypothesis �[x:A] `sf M : B and � `sf fx:AgB : s . By generation of

the right ih, there are s , s2 , s3 with � `sf A : sA and rl(s; s2; s3) . By SFLDA it only re-

mains to show B 2 SS) B 2 SST , so assume B 2 SS . By only_typedsort_in_left
(section 4.4.3) on the right premise, B 2 SST as required.Goal sfts_gts: {sf:semiFull}{G|Cxt}{M,A|Trm}(sfts G M A)->gts G M A;
Proof. Induction on the derivation of � `sf M : A . For the case SFLDA,

have � `sf [x:A]M : fx:AgB from �[x:A] `sf M : B and � `sf A : s , withrl(s; s2; s3) and B 2 SS) B 2 SST . By ih �[x:A] ` M : B and � ` A : s . By

type correctness of the left ih, B = t or �[x:A] ` B : sB . In the first case, t must be a

typedsort, so let sB be such that ax(t:sB) . By semi-full there exists u with rl(s; sB ; u) ,

and by LDA and PI it only remains to show �[x:A] ` B : sB by sStartLem (section 4.4.2).

In the second case, again by semi-full, exists u with rl(s; sB; u) , and we are finished as

before4.

5.1.3 A Syntax Directed system: Eliminating the Conversion Rule.

The system sfts still has a conversion rule, SFTCNV, which is not syntax directed. For this

system, with its tractable lambda rule, we can remove the conversion rule in favor of some3semiFull is a definition, not an assumption in the global context, so each lemma using semiFull
will assume it explicitly.4My original proof used the assumptiondecideTypedsort. Thanks to Bert Jutting for this improved

argument.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 101

SDSFAX � `sdsf s1 : s2 ax(s1:s2)
SDSFPAR

� `sdsf A : X�[p:A] `sdsf p : A X !! s; p 62 �
SDSFPWK

� `sdsf q : C � `sdsf A : X�[p:A] `sdsf q : C X !! s; p 62 �
SDSFSWK

� `sdsf s : C � `sdsf A : X�[p:A] `sdsf s : C X !! s0 ; p 62 �
SDSFPI

� `sdsf A : X �[p:A] `sdsf [p=x]B : Y� `sdsf fx:AgB : s3 rl(s1; s2; s3)p 62 BX !! s1; Y !! s2
SDSFLDA

� `sdsf A : X �[p:A] `sdsf [p=x]M : [p=y]B� `sdsf [x:A]M : fy:AgB rl(s1; s2; s3)X !! s1p 62M; p 62 BB 2 SS) B 2 SST
SDSFAPP

� `sdsf M : X � `sdsf N : Y� `sdsf MN : [N=x]B X !! fx:AgB ; Y � A
Table 5–3: Syntax-directed semi-full PTS (Informal)

local reductions, obtaining a syntax directed system, sdsf, defined informally in table 5–3,

and formally in table 5–4. I call this system “syntax directed”, but I mean it is syntax directed

for functional PTS , for which ax and rl are partial functions. In this case, given � and M ,

there is at most one derivation whose root has the shape � `sdsf M : . If we can compute

the partial functions ax and rl, and decide the other side conditions, we can compute TSP

for sdsf (section 5.1.6).

In order to use decidability of sdsf to decide gts, we need to prove a relationship betweensdsf and gts, using the intermediate system sfts.

Lemma 5.4 (sdsf is sound for sfts)Goal sdsf_sf: {sf:semiFull}{G|Cxt}{M,A|Trm}(sdsf G M A)->sfts G M A;

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 102Inductive [sdsf:Cxt->Trm->Trm->Prop] NoReductions Constructors[sdsfAx:{s1,s2|SS} {sc:ax s1 s2}sdsf nilCxt (sort s1) (sort s2)][sdsfStart:{G|Cxt}{A,X|Trm}{s|SS}{p|PP} {noccG:is_ff (Poccur p G)}{redX:par_redn X (sort s)}{prem:sdsf G A X}(***)sdsf (CONS (Gb p A) G) (par p) A][sdsfvWeak:{G|Cxt}{D,A,X|Trm}{s|SS}{n,p|PP} {noccG:is_ff (Poccur p G)}{redX:par_redn X (sort s)}{l_prem:sdsf G (par n) D}{r_prem:sdsf G A X}(***)sdsf (CONS (Gb p A) G) (par n) D][sdsfsWeak:{G|Cxt}{D,A,X|Trm}{t,s|SS}{p|PP} {noccG:is_ff (Poccur p G)}{redX:par_redn X (sort s)}{l_prem:sdsf G (sort t) D}{r_prem:sdsf G A X}(***)sdsf (CONS (Gb p A) G) (sort t) D][sdsfPi:{G|Cxt}{A,B,X,Y|Trm}{t1,t2,t3|SS}{p|PP}{n|VV} {rlt:rl t1 t2 t3}{noccB:is_ff (poccur p B)}{redX:par_redn X (sort t1)}{redY:par_redn Y (sort t2)}{l_prem:sdsf G A X}{r_prem:sdsf (CONS (Gb p A) G) (vsub (par p) n B) Y}(***)sdsf G (pi n A B) (sort t3)][sdsfLda:{G|Cxt}{A,M,B,X|Trm}{s1,s2,s3|SS}{p|PP}{n,m|VV} {rls:rl s1 s2 s3}{sc_ts:{t:SS}(is_tt (Trm_eq B (sort t)))->typedsort t}{noccM:is_ff (poccur p M)}{noccB:is_ff (poccur p B)}{redX:par_redn X (sort s1)}{l_prem:sdsf (CONS (Gb p A) G) (vsub (par p) n M) (vsub (par p) m B)}{r_prem:sdsf G A X}(***)sdsf G (lda n A M) (pi m A B)][sdsfApp:{G|Cxt}{M,A,Y,B,L,X|Trm}{n|VV} {redX:par_redn X (pi n A B)}{sc:cnv Y A}{l_prem:sdsf G M X}{r_prem:sdsf G L Y}(***)sdsf G (app M L) (vsub L n B)];
Table 5–4: The syntax directed system for semi-full PTS .

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 103

Proof. Easy induction on the derivation G `sdsf M : A using predicate reduction for sfts,

which we have by the equivalence of gts and sfts.

Lemma 5.5 (sdsf is complete for sfts)Goal sfts_sdsf:{cf:cnv_full_below}{cpt:cnv_preserves_typedsort_dn}{cp:cnv_pi}{G|Cxt}{M,A|Trm}(sfts G M A)->Ex [E:Trm]and (sdsf G M E) (cnv E A);
The proof of this lemma will use the conversion character assumptions from sec-

tion 4.4.11.3 without explicit mention (recall these are general assumptions in the con-

text) as well as one of the conversion/typedsort assumptions from the same section,cnv_preserves_typedsort_dn, which is not a general assumption, and must be explicitly

assumed when needed.

Two other properties are needed, which we do not make as general assumptions, so they

will also be explicitly assumed when needed. First[cnv_pi = {va,vb|VV}{Al,Ar,Bl,Br|Trm}{p|PP}{npoA:is_ff (poccur p Ar)}{npoB:is_ff (poccur p Br)}{l_prem:cnv Bl Al}{r_prem:cnv (vsub (par p) va Ar) (vsub (par p) vb Br)}(**)cnv (pi va Al Ar) (pi vb Bl Br)];
tells how to construct a cnv judgement for pi-types. This is clearly motivated by the notion of

cumulativity. A version of this rule where the domains are not contravariantly relatedAl ' Bl Ar � BrfvA:AlgAr � fvB:BlgBr
is used in the definition of cumulativity for ECC as presented in [Luo94,Luo90a]. We will

define cumulativity concretely in section 5.2, and that definition has a rule of the same shape

as cnv_pi. Use of the assumption cnv_pi now shows that we are not really speaking of an

abstract conversion relation anymore, but of an abstract cumulativity relation.

The next property seems ad hoc.[cnv_full_below = {s1,s2,t1,t2,t3|SS}{cv1:cnv (sort s1) (sort t1)}{cv2:cnv (sort s2) (sort t2)}{rlt:rl t1 t2 t3}Ex [s3:SS] and (rl s1 s2 s3) (cnv (sort s3) (sort t3))];
It is a technical point for the mechanics of typechecking, saying that for any rule that can

be used after some conversions (i.e. rl(t1; t2; t3) can be used after s1 � t1 and s2 � t2),

there’s another rule that delays conversion (i.e. rl(s1; s2; s3) with s3 � t3).

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 104

I needed these properties to prove an equivalence between gts and sdsf, but there are

other combinations of properties that would also do. I am not satisfied with these somewhat

arbitrary choices, but all of these assumptions will be discharged in section 5.3, where we show

that ECC actually has these properties. Notice that every beta-conversion PTS (e.g. CC and�P) has these properties.

There is a delicate point in formalizing the proof, requiring a technical lemmaGoal shape_lemma:{p:PP}{M:Trm}Ex2 [v:VV][M':Trm] and (is_tt (Trm_eq M (alpha p v M')))(is_ff (poccur p M'));
saying that any term M can be expressed as [p=v]M 0 for any p , where p does not occur inM 0 . Also, in order to prove sfts_sdsf as stated, without assuming the PTS is semi-full, we

first prove a version of typedsort_maybe_in_right (section 4.4.3)Goal sfts_typedsort_maybe_in_right:{G|Cxt}{M,A|Trm}(sfts G M A)->{s|SS}(is_tt (soccur s A))->(is_ff (Trm_eq (sort s) A))->typedsort s;
for sfts directly by induction, rather than translate back to gts using sfts_gts, which

assumes semi-fullness.

Proof of sfts sdsf. By induction on the derivation of sfts G M A. Consider the case forsfLda: we must show9E : G `sdsf [n:A]M : E and E � fm:AgB
from

sc : rl(s; s2; s3)
sc ts : 8t : B = t) t 2 SST
noccM : p 62M
noccB : p 62 B
l prem : G[p:A] `sf [p=n]M : [p=m]B
r prem : G `sf A : s

After unpacking the existential quantifier in the induction hypotheses, we also have

hX1 : G[p:A] `sdsf [p=n]M : X
hX2 : X � [p=m]B
hY1 : G `sdsf A : Y
hY2 : Y � s

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 105

Now one problem is clear: to use sdsfLda to solve the goal, we need to express X in the form[p=] , so we use the shape lemma to get

eqX : X = [p=v]X 0
noccX’ : p 62 X 0

There is now enough information to instantiate the existential quantifier of the goal: we claimG `sdsf [n:A]M : fv:AgX 0 and fv:AgX 0 � fm:AgB
Addressing the second goal first, by (cnvPi noccX' noccB) it suffices to show A � A
(since A is Vclosed by r prem) and [p=v]X 0 � [p=m]B (by hX2 and eqX).

For the first goal, by sdsfLda, sc, noccM, noccX’, hY2, and hY1, it suffices to show8t : X 0 = t) t 2 SST and G[p:A] `sdsf [p=n]M : [p=v]X 0
The second of these is trivial by eqX and hX1.

Finally, the heart of the matter; assume X 0 is a sort, t , and show t 2 SST . Notice thatX 0 , being a sort, is Vclosed, sot = X 0 = [p=v]X 0 = X � [p=m]B:
Thus, by cnv_sort_character_r there is a sort, u , with

uh1 : [p=m]B!! u
uh2 : t � u

Notice u must occur in B by uh1. By (cnv_preserves_typedsort_dn uh2) it suffices to

show u 2 SST . Either B = u (and we are done by sc ts), or B 6= u , and u 2 SST bysfts_typedsort_maybe_in_right applied to l prem.

In summary putting sfts_sdsf and gts_sfts together we have:Goal gts_sdsf:{cf:cnv_full_below}{cpt:cnv_preserves_typedsort_dn}{cp:cnv_pi}{G|Cxt}{M,A|Trm}(gts G M A)->Ex [E:Trm]and (sdsf G M E) (cnv E A);
and putting sdsf_sf and sfts_gts together we have:Goal sdsf_gts:{sf:semiFull}{G|Cxt}{M,A|Trm}(sdsf G M A)->gts G M A;

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 106

5.1.3.1 Characterizing gts
Lemmas gts_sdsf and sdsf_gts do not yet characterize gts in terms of sdsf. We have:Goal sdsf_characterizes_gts:{sf:semiFull}{cf:cnv_full_below}{cpt:cnv_preserves_typedsort_dn}{cp:cnv_pi}{crt:cnv_range_typedsort}{G:Cxt}{M,A:Trm}iff (gts G M A)(Ex [E:Trm] and3 (sdsf G M E)(cnv E A)(Ex2 [D:Trm][s:SS]or (is_tt (Trm_eq A (sort s)))(and (sdsf G A D)(par_redn D (sort s)))));
As well as the assumptions used in gts_sdsf and sdsf_gts, this lemma depends oncnv_range_typed, which authorizes the predicate conversion lemma from section 4.4.11.3.

Proof. of sdsf characterizes gts) By gts_sdsf we have E with � `sdsf M : E � A . Also by type correctness of gts,

for some sort s , A = s or � ` A : s . In the first case we are done. In the second case9D : � `sdsf A : D � s by gts_sdsf, and D reduces to some sort.(By sdsf_gts we have � ` M : E � A . If A = s we are done by predicate conver-

sion of gts. Otherwise � ` A : D !! s and we are done by predicate reduction and the

conversion rule.

5.1.4 Principal Types

We have gone to a lot of trouble to make sdsf deterministic. In section 5.1.6 we will see

that the effort has payed off, and type synthesis is computable for sdsf under some assump-

tions. The last lemma is very suggestive of an algorithm for typechecking gts given type

synthesis for sdsf: to decide G ` M : A , compute an sdsf-type for (G;M) , see if that

type converts with A , and check if A itself is a correct sdsf-type. This lemma is still un-

satisfactory for typechecking for two reasons. The first of these is that the quantifier 9E insdsf_characterizes_gts not only allows M to fail to have an sdsf type in G , (in which

case M fails to have a gts type in G) but also requires us to search through all sdsf types

of M in G . Although sdsf stands for syntax-directed-semi-full, there are still four sources

of non-determinism in sdsf.

1. If the PTS is not functional (section 4.6) the rules SDSFAX and SDSFPI can produce different

types for the same subject. To handle non-functional systems requires the technique of

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 107

sort variables and schematic terms (see [HP91,vBJMP94]) which is not discussed in this

thesis. I will assume the PTS is functional when necessary (it has not been used yet

in this chapter), as this covers almost every case of practical interest including the three

type systems of LEGO.

2. The parameter p in the rules SDSFPI and SDSFLDA is not determined by our intended

syntax-directed computation because p does not occur in the conclusion of the rule (this

issue is discussed in section 3.2.5.3 for the case of Vclosed and in section 4.4.4 for gts).

This is a non-determinism of derivations, not of judgements, and for type synthesis it

suffices to pick a fresh enough parameter5.

3. The rule SDSFLDA allows a free choice of the variable m bound in the type (pi m A B).

For our present purposes it does no harm to accept that sdsf types are unique, at best,

only up to alpha-conversion.

4. In the rule SDSFAPP the side condition redX:par_redn X (pi n A B) allows non-

deterministic reduction as long as it stops at a pi. Many of the other rules have non-

deterministic reduction to a sort, but a sort is a normal form, so this causes no multiplicity

of types. A pi is not necessarily a normal form, but is a weak-head normal form, and

we should, for moral purity, replace par_redn with weak-head reduction in redX.

(James McKinna [McK94] has formalized a theory of weak-head reduction and weak-

head normal forms in our setting that is adequate for this example. It is used to handle

similar issues in formalizing [vBJMP94].) Instead, for our present purposes, we will

accept that sdsf types are unique, at best, only up to beta-conversion. That is, we

succeed in reasoning with less information about the reduction sequence used in this

side condition, but are still free to compute this side condition using weak-head reduction

when we construct an algorithm in section 5.1.6.

This motivates the lemma:Goal sdsf_unique_types:{sf:semiFull}{f:Functional}{G|Cxt}{M,A|Trm}{j:sdsf G M A}{B|Trm}{k:sdsf G M B}conv A B;
This lemma is proved by structural induction on the derivation j:sdsf G M A. In each case

of this induction the derivation k:sdsf G M B is destructed using an appropriate sdsf gen-

eration lemma, thereby avoiding the need for double induction.5However, as for previously discussed relations, in order to have an adequate induction principle

we need to prove sdsf has the same judgements as a relation without freely occurring parameters in

the rules for PI and LDA. This proof is very much like that in section 4.4.4.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 108

Remark 5.6 I believe that assumption sf:semiFull of sdsf_unique_types is not required. I

used it to save some work in the proof by translating sdsf judgements to gts (using sdsf_gts, which

does require semi-fullness) to take advantage of already proved properties of gts.

Principal Types The collection of gts-types of a subject may contain many conv-classes.

However sdsf_characterizes_gts and sdsf_unique_typesmake it clear that all the gts
types of a subject are characterized by one conv-class, namely the sdsf-type of the subject. To

formalize this we have the definition from [Luo90a,Luo94]:[principal_type [G:Cxt][M,A:Trm] =and (gts G M A)({B:Trm}iff (gts G M B) (and (correct_type G B) (cnv A B)))];
(correct_type is defined in section 4.4.8.) Obviously principal types are unique up to conv.

More interestingly, sdsf types are principal types.Goal sdsf_type_is_principal:{f:Functional}{cp:cnv_pi}{sf:semiFull}{crt:cnv_range_typedsort}{cf:cnv_full_below}{cpt:cnv_preserves_typedsort_dn}{G|Cxt}{M,A|Trm}(sdsf G M A)->principal_type G M A;
Proof. Given G `sdsf M : A (hence also G ` M : A), and any B , we must showG ` M : B , (correct type G B) and A � B
Consider the two directions.) G ` M : B by hypothesis, so by lemma type_correctness (section 4.4.8) it suf-

fices to show A � B . Also G `sdsf M : E � B by gts_sdsf, so A ' E bysdsf_unique_types, and we are done by transitivity A ' E � B .(We have A � B and (9s : B = s or G ` B : s). In case of the first disjunct, we are

done by predicate conversion (section 4.4.11.3) because A � B = s . The second disjunct is

even easier by rule TCNV.

5.1.5 Typechecking gts
I mentioned that lemma sdsf_characterizes_gts is suggestive of an algorithm for type-

checking gts given a type synthesis algorithm for sdsf, but not adequate for two reasons. The

first problem has been dealt with by the lemma sdsf_type_is_principal; now we address

the second problem. From the algorithmic viewpoint suggested at the start of section 5.1.4,

the statement of sdsf_characterizes_gts is misleading. Since the conversion relation,cnv, is only decidable for well-typed terms, an algorithmically more satisfactory statement

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 109

(although logically equivalent, and uglier) delays checking conversion until after A is seen to

be well-typed:G ` M : A ,9E : G `sdsf M : E and

either (9s; t : A = s; E !! t and t � s)
or (9D; s : G `sdsf A : D; E � A and D!! s) (y)

Notice that in the case A = s , cnv_sort_character_lhas been used to further analyse the

condition E � A .

Remark 5.7 This characterization may be simplified in two cases of special interest. First, for PTS
without topsorts, the first disjunct may be removed. (You may object that this is not an algorithmic

improvement!) More interestingly, in some cases the test for D!! s may be removed from the second

disjunct. For example, for beta-conversion PTS (i.e. after cutting in conv and its properties for cnv
and its properties, as in section 4.5) we can proveGoal beta_gts_levels :{f:Functional}{G|Cxt}{M,E|Trm}(gts G M E)->{A,D|Trm}(conv E A)->(gts G A D)->Ex [s:SS] par_redn D (sort s);
Proof. By type correctness, for some t either E = t or G ` E : t. In the first case A!! t ,

so G ` t : D by subject reduction, and D reduces to some sort by the generation lemma. In the

second case, let X be a common reduct of E and A . Then G ` X : t and G ` X : D by subject

reduction, so D reduces to some sort by types_unicity of functional PTS (section 4.6).

In fact all beta-conversion PTS have this property, using the typing lemma (section 4.5.1, not yet

checked in LEGO) in place of types_unicity in this proof.

Guided by this informal statement, we are almost ready to use a program for the sdsf-TSP

to decide gts judgements. First we need to consider decidability of some side conditions

occurring in equivalence (y) .

5.1.5.1 Decidability of Side Conditions

Define what it is to be a gts_term and a gts_type[gts_term [M:Trm] = Ex2 [G:Cxt][A:Trm] gts G M A];[gts_type [A:Trm] = Ex2 [G:Cxt][M:Trm] gts G M A];
and assume that gts_terms are normalizing:[gts_term_Normalizing = {M|Trm}(gts_term M)->normalizing M];
By type_correctness gts_types are also normalizing:

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 110Goal gts_type_normalizing:{gtn:gts_term_Normalizing}{M|Trm}(gts_type M)->normalizing M;
Recalling section 3.3.5.1 on decidability of the shape of normal forms, these lemmas are what

we need to conclude that it is decidable whether a gts_term or gts_type reduces to a sort or

to a pi.

Decidability of cnv. In section 3.3.5.2 we proved that conv (') is decidable for normalizing

terms; however, this is not enough to prove that cnv (�) is decidable for normalizing terms.

The reason for this is that cnv is an abstract relation which is only assumed to exist; without

a closure property, e.g. an induction elimination rule, there is little hope to prove decidability.

In section 5.2 we define a particular inductive relation, cumulativity, which is the example

motivating our assumptions about cnv. For the moment, we explicitly keep track of uses ofnormalizing_decides_cnv:[normalizing_decides_cnv ={A,B|Trm}(Vclosed A)->(normalizing A)->(Vclosed B)->(normalizing B)->decidable (cnv A B)];
As the condition s � t occurs in equivalence (y) , page 109, notice that from a proof ofnormalizing_decides_cnv it is trivial to prove that cnv is decidable on sorts:Goal ndc_dcs:{ndc:normalizing_decides_cnv}{s,t:SS}decidable (cnv (sort s) (sort t));
Also, by the assumption that gts_terms are normalizing, normalizing_decides_cnv im-

plies cnv is decidable for gts_terms and gts_types.

Decidability of type synthesis. We are also assuming type synthesis is computable for sdsf
(this will be proved, under some assumptions, in section 5.1.6), so define “M is an sdsf-well-

typed term in G”[sdsfTS [G:Cxt][M:Trm] = Ex [A:Trm] sdsf G M A];
We will assume this is decidable.

5.1.5.2 A Typechecking Algorithm

With these assumptions, TCP for gts is decidable.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 111Goal decide_sdsfTS_decide_gts:{f:Functional}{sf:semiFull}{cf:cnv_full_below}{cptd:cnv_preserves_typedsort_dn}{cp:cnv_pi}{crt:cnv_range_typedsort}{ndc:normalizing_decides_cnv}{dec_sdsf:{G:Cxt}{M:Trm}decidable (sdsfTS G M)}{gtn:gts_term_Normalizing}{G:Cxt}{M,A:Trm}decidable (gts G M A);
Proof. With our assumptions, all the questions on the RHS of equivalence (y) (page 109) are

decidable: if G `sdsf M : E for some E , and either A is a sort and E reduces to a sort that

converts with A , or G `sdsf A : D for some D that reduces to a sort and E � A , thenG ` M : A . This positive outcome is the easy part of the proof; more tedious is showing

that if one of the conditions fails then G ` M : A is not derivable.

(does M have a type?) By (dec_sdsf G M)
either 9E : G `sdsf M : E or :9E : G `sdsf M : E .

In the latter case, choosing the negative result, we want to prove(:9E : G `sdsf M : E)) G 6` M : A
which follows by contraposition from gts_sdsf. Thus we may assume G `sdsf M : E for

some E , and by sdsf_type_is_principal, have G ` M : E andGME : 8B[G ` M : B , (correct type G B) and E � B]
(is A a sort?) Either A is a sort or not (there is a boolean-valued function that decides this).

(A = s ; does E reduce to a sort?) E is a gts_type, so either E reduces to a sort or not. In

the latter case, by cnv_sort_character_l, it must be that E 6� s , hence by (GME s) , we

have proved the negative outcome G 6` M : s . Thus we may assume E !! t .

(A = s , E !! t ; does t � s?) By normalizing_decides_cnv either t � s or t 6� s . In

the first case, conclude E � s , so G ` M : s by (GME s) . In the second case G 6` M : s
by contraposition and (GME s) . This finishes the cases for A = s , so we may assume A is

not a sort.

(A not a sort; does A have a type?) By (dec_sdsf G A)
either 9D : G `sdsf A : D or :9D : G `sdsf A : D .

In the latter case, choosing the negative result we want to prove(:9D : G `sdsf A : D)) G 6` M : A

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 112

which follows by contraposition fromtype_correctnessofgts andgts_sdsf. Thus we may

assume G `sdsf A : D for some D , so also, by sdsf_type_is_principal, G ` A : D
and GAD : 8B[G ` A : B , (correct type G B) and D � B]
(A not a sort; G `sdsf A : D ; does E � A?) A is a gts_term and E is a gts_type, so

by normalizing_decides_cnv either E � A or E 6� A In the latter case, choosing the

negative result, we want to proveE 6� A) G 6` M : A
which follows (by contraposition) from (GME A) . Thus we may assume E � A .

(A not a sort; G `sdsf A : D ; E � A ; does D reduce to a sort?) D is a gts_type, so

either 9s : D!! s or :9s : D!! s .

In the first case we have G ` A : s by gtsPR, so the positive outcome, G ` M : A , holds

by (GME A) . In the second case, choosing the negative result, by contraposition we want to

prove G ` M : A) (9s : D!! s)
Assuming G ` M : A , by type_correctnesseither A is a sort (contradicting the assump-

tion that A is not a sort, so we are done) or 9t : G ` A : t . In this last case, D � t by(GAD A) , so 9s : D!! s by cnv_sort_character_l.

This proof is not as hard to check in LEGO as it is to explain!

5.1.6 Type Synthesis

Finally we are going to formalize decidability of type synthesis for sdsf: given (G;M)
compute an sdsf-type of (G;M) (and the typing derivation) if one exists, otherwise return

a proof that (G;M) has no sdsf-type. This result easily gives Type Synthesis for gts.

5.1.6.1 More on Decidability of Side Conditions

Recall that by sdsf_gts (assuming semi-fullness) every sdsf-term (-type) is a gts-term

(-type), so the lemmas and assumption in section 5.1.5.1 are relevant here as well.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 113

Decidable properties of ax and rl . Three more restrictions on the PTS are needed. I have

not assumed that the axiom and rule relations are decidable, but we will need something

stronger than this to have a program that decides TSP. Consider running a type-synthesis

algorithm on the input (�; s1) ; it must return either a type for s1 , showing that s1 is atypedsort (i.e. 9s2:ax(s1:s2) , section 4.4.8), or a proof that s1 has no type, showing thats1 is not a typedsort. That is,9s2 : ax(s1:s2) , 9X : � `sdsf s1 : X
because the only possible derivation of � `sdsf s1 : X has shape:ax(s1:s2)

SDSFAX� `sdsf s1 : s2 :
As ax is an arbitrarily given relation, we cannot hope to decide typedsort in general, even ifax is decidable; in order to prove that type synthesis is decidable for `sdsf we must assume

that typedsort is decidable. Similarly, if ax(t1:s1) and ax(t2:s2) , we have9u : rl(s1; s2; u) , 9X : � `sdsf fv:t1gt2 : X
i.e. a type synthesis algorithm decides 9u:rl(s1; s2; u) , because the only possible derivation

of � `sdsf fv:t1gt2 : X has shape� `sdsf t1 : s1 ���[p:t1] `sdsf t2 : s2 rl(s1; s2; u)
SDSFPI� `sdsf fv:t1gt2 : u :

Also, with the same condition9u2; u3 : rl(s1; u2; u3) , 9X : � `sdsf [x:t1]t2 : X
i.e. a type synthesis algorithm decides 9u2; u3:rl(s1; u2; u3) , because the only possible

derivation of � `sdsf [x:t1]t2 : X has shape� `sdsf t1 : s1 ���[p:t1] `sdsf t2 : s2 rl(s1; u2; u3)
SDSFLDA� `sdsf [x:t1]t2 : fy:t1gs2 :

Thus we will assume the properties ruledsort and ruledsorts[ruledsort [s1:SS] = Ex2 [s2,s3:SS] rl s1 s2 s3];[ruledsorts [s1,s2:SS] = Ex [s3:SS] rl s1 s2 s3];
are decidable

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 114

Remark 5.8 One might think that a solution to the Type Checking Problem requires only that ax be

decidable, not that typedsort be decidable, as TCP differs from TSP in having no existential quantifier

in the statement of the problem. However this is not the case, because the derivation skeletonax(s:?)
AXIOM� ` s : ?

START[p:s] ` p : s
shows (I omit some details) that[p:s] ` p : s , 9t : ax(s:t) :
For example, let T(i; n) mean “the ith Turing machine, when started with i on it’s input tape, halts

in exactly n steps”, and consider the PTS whose set of sorts is the natural numbers, whose axiom

relation is f (i:n) j T(i; n) g and whose rule relation is empty. For any i ,[p:i] ` p : i , 9n : ax(i:n) , the ith Turing machine halts on input i
This PTS is functional, semi-full, strongly normalizing (there are no well typed redexes), and has

decidable ax and rl relations, but a solution to its TCP also solves the halting problem! Similarly, one

can see that decidability of TCP implies decideRuledsort and decideRuledsorts.

5.1.6.2 A Type Synthesis Algorithm for sdsf
In view of the syntax directedness of sdsf, the most interesting remaining problem is termi-

nation of a type synthesis algorithm. We will use well founded induction on the sum of the

lengths of the terms in the input (G;M) .[Cxt_ln : {G:Cxt}NN = LLrec ([_:LL|GB]NN) Z([b:GB][_:Cxt][ih:NN]add (lngth (typOf b)) ih)];[Cxt_Trm_ln [G:Cxt][M:Trm] : NN = add (lngth M) (Cxt_ln G)];
We require a principle of well founded induction on objects of shape (G;M)Goal Cxt_Trm_WF_ind:{f:{G:Cxt}{M:Trm}NN}{C:{G:Cxt}{M:Trm}Prop}{wf_ih:{G:Cxt}{M:Trm}{ih:{g:Cxt}{m:Trm}(Lt (f g m) (f G M))->C g m}C G M}{G:Cxt}{M:Trm}C G M;
which is trival to prove from the lemma complete_induction on natural numbers (sec-

tion 2.2.1).

Now we can construct the type synthesis algorithm.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 115Goal sf_typSyn:{sf:semiFull}{f:Functional}{dt:{s:SS}decidable (typedsort s)}{dr:{s:SS}decidable (ruledsort s)}{drs:{s1,s2:SS}decidable (ruledsorts s1 s2)}{ndc:normalizing_decides_cnv}{gtn:gts_term_Normalizing}{G:Cxt}{M:Trm}decidable (sdsfTS G M);
Proof. By Cxt_Trm_WF_indusing Cxt_Trm_ln on (G;M) , it suffices to showClaim {M:Trm}{K:Cxt}{wf_ih:{g:Cxt}{m:Trm}(Lt (Cxt_Trm_ln g m) (Cxt_Trm_ln K M))->or (Ex ([A:Trm]sdsf g m A)) (not (Ex ([A:Trm]sdsf g m A)))}or (Ex ([A:Trm]sdsf K M A)) (not (Ex ([A:Trm]sdsf K M A)));
which we do by cases on the shape of M (i.e. by structural induction on M , not using the

induction hypotheses). For each shape of term M , use the appropriate rule(s) of sdsf to

compute its type. We do two cases.

(M is a sort: M = s) SDSFAX and SDSFSWK are the only rules constructing an sdsf-type for

a sort. If � = � then only SDSFAX can apply. By the assumption typedsort is decidable,9t : ax(s:t) or :9t : ax(s:t) :
In the first case use SDSFAX to return a proof of � `sdsf s : t ; in the second case, no rule can

apply, so return a proof of :9A : � `sdsf s : A .

Now we may assume � 6= � , so � = �[q;A] . Only rule SDSFSWK can apply. Fail (i.e. return

a proof of :9A : �[q;A] `sdsf s : A) if q 2 � because SDSFSWK cannot apply, so assumeq 62 � . Addressing the left premise, by induction hypothesis on (�; s) ,9X : � `sdsf s : C or :9X : � `sdsf s : C :
Fail in case of the right disjunct, otherwise � `sdsf s : C for some C . Now address the

right premiss; by induction hypothesis on (�; A)6,9X : � `sdsf A : X or :9X : � `sdsf A : X :
Fail in case of the right disjunct, otherwise � `sdsf A : X for some X . X is a PTS-type, so

it is decidable if X reduces to a sort; if not then fail, if so use SDSFSWK to return � `sdsf s : C .6Here we use that lngth(s) is positive, so Cxt Trm ln(�;A) < Cxt Trm ln(�[q;A]; s) .

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 116

(M is an application: M = N L) The only rule that can apply is SDSF-APP By induction

hypothesis on (�;N) ,9X : � `sdsf N : X or :9X : � `sdsf N : X :
Fail if the right disjunct holds, otherwise � `sdsf N : X for some X . Similarly for the right

premise: fail if it is not derivable, or � `sdsf L : Y for some Y . Fail if X does not reduce to

some pi, otherwise haveX !! fv:AgB for some v , A and B . Now we have � ` N : X ,

so by predicate reduction � ` N : fv:AgB , by type correctness � ` fv:AgB : Z , and

by the generation lemma for pi, A is a PTS-term. Thus we can decide if Y ' A ; fail if not,

and use SDSFAPP to return � `sdsf N L : [L=v]B if so.

5.1.6.3 Type Synthesis and Type Checking for gts.

From sf_typSyn, sfts_gts and gts_sfts (section 5.1.3) we have Type Synthesis for gts:[gtsTS [G:Cxt][M:Trm] = Ex [A:Trm] gts G M A];Goal gts_typSyn:{sf:semiFull}{f:Functional}{cf:cnv_full_below}{cpt:cnv_preserves_typedsort_dn}{cp:cnv_pi}{dt:{s:SS}decidable (typedsort s)}{dr:{s:SS}decidable (ruledsort s)}{drs:{s1,s2:SS}decidable (ruledsorts s1 s2)}{ndc:normalizing_decides_cnv}{gtn:gts_term_Normalizing}{G:Cxt}{M:Trm}decidable (gtsTS G M);
However, sf_typSyn is just as good for our purposes

Putting decide_sdsfTS_decide_gts and sf_typSyn together, we have Type Checking

for gts:Goal decide_gts:{sf:semiFull}{f:Functional}{cfb:cnv_full_below}{cpt:cnv_preserves_typedsort_dn}{cp:cnv_pi}{crt:cnv_range_typedsort}{dt:{s:SS}decidable (typedsort s)}{dr:{s:SS}decidable (ruledsort s)}{drs:{s1,s2:SS}decidable (ruledsorts s1 s2)}{ndc:normalizing_decides_cnv}{gtn:gts_term_Normalizing}{G:Cxt}{M,A:Trm}decidable (gts G M A);
This looks terrible, but we will now (section 5.2) define a natural class of PTS , including

the three type systems supported by LEGO, that has many of the properties assumed in

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 117

CUMCONV A � B A ' B
CUMSORT sa � sb CumBase(sa; sb)
CUMPI

Bl � Al [p=vA]Ar � [p=vB]BrfvA:AlgAr � fvB:BlgBr p 62 Ar; p 62 Br
CUMTRANS

A � B B � CA � C
Table 5–5: Informal definition of Cumdecide_gts, and then (section 5.3) specialize further to prove that ECC satisfies all the assum-

tions of decide_gts except normalization.

5.2 Cumulative PTS
We will define a particular conversion relation, Cum, and show that it satisfies the assumptions

for an abstract conversion relation that have been used to prove sdsf_characterizes_gts.

Luo’s notion of cumulativity for ECC is our motivating example.

5.2.1 The Cumulativity Relation

As with the ax and rl parameters in the definition of PTS , the cumulativity relation is

parameterized by a given relation, called CumBase:[CumBase : SS->SS->Prop];Cum, written informally � , is defined informally by the rules of table 5–5, which are formalized

in table 5–6. There is one technical point about this formalization which is different than

previous inductive definitions in this thesis, and needs to be explained.

Free-Conclusioned Rules The rule CUMSORT could have been formalized as[CumSort:{sa,sb|SS}{A,B|Trm}{base:CumBase sa sb}Cum sa sb]
which is similar to rule AX (section 4.3) and the AX rules in all of our formal systems so far.

Such a rule can only be applied in LEGO to solve a goal of form (Cum s1 s2), so if the actual

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 118Inductive [Cum:{A,B:Trm}Prop] NoReductions Constructors[CumConv:{A,B|Trm} {cnvAB:conv A B}Cum A B][CumSort:{sa,sb|SS}{A,B|Trm} {eqA:is_tt (Trm_eq A (sort sa))}{eqB:is_tt (Trm_eq B (sort sb))}{base:CumBase sa sb}Cum A B][CumPi:{va,vb|VV}{Al,Ar,Bl,Br|Trm}{A,B|Trm}{p|PP} {npoA:is_ff (poccur p Ar)}{eqA:is_tt (Trm_eq A (pi va Al Ar))}{npoB:is_ff (poccur p Br)}{eqB:is_tt (Trm_eq B (pi vb Bl Br))}{l_prem:Cum Bl Al}{r_prem:Cum (vsub (par p) va Ar) (vsub (par p) vb Br)}(***)Cum A B][CumTrans:{A,B,C|Trm}{l_prem:Cum A B}{r_prem:Cum B C}(***)Cum A C];
Table 5–6: The Cumulativity Relation

goal is (Cum A B) where we may have A = s1 and B = s2 in the context of current

assumptions, it is necessary to do the equality substitutions before using rule AX. Our present

formulation of CUMSORT applies to any goal of shape (Cum A B), and returns some equality

side conditions as subgoals. This does not make a very big difference (especially since LEGO’sClaim command allows this same kind of deferring of goals), but I wanted to experiment with

such free-conclusioned rules.

5.2.1.1 Cumulativity in ECC

This definition of Cum generalizes Luo’s (definition 2.3 in [Luo94]) in two ways. As mentioned

in section 5.1.3, our assumption cnv_pi, and the rule CUMPI intended to discharge that as-

sumption, are contravariant in function domains, whereas Luo chose to require ' on function

domains. Also we use an arbitrary relation CumBase in place of Luo’s particular base for ECCProp � Type(0) � Type(1) : : : :
We do not require CumBase to be transitive.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 119

Luo also requires � to be a partial order with respect to ' . While our Cum is reflexive

with respect to ' (i.e. contains ') and transitive, it is not necessarily antisymmetric, as this

property is not needed for the argument.

5.2.2 Properties of Cumulativity

We must check that Cum satisfies all the assumptions on cnv made so far. Most of this

is straightfoward and tedious use of techniques described above. For example, we use a

generalized inductive definition (similar to the systems aVclosed and apts of sections 3.2.5.3

and 4.4.4) to prove a better “structural induction principle” for Cum.The requirements of section 4.3. Cum is reflexive because it contains the reflexive

relation conv:Goal Cum_refl: {A|Trm}(Vclosed A)->Cum A A;Cum is transitive by rule CUMTRANS. Also:Goal psub_resp_Cum:{N|Trm}{vclN:Vclosed N}{A,B|Trm}(Cum A B)->{p:PP}Cum (psub N p A) (psub N p B);
At this point it makes sense to define cumulative PTS (CPTS) as a PTS with its abstract

conversion instantiated by Cum. Every CPTS has the PTS properties of section 4.4 through

type correctness.

The requirements of section 4.4.9. We haveGoal Cum_red1:{A,B|Trm}(par_red1 A B)->(Vclosed A)->Cum A B;Goal Cum_red1_sym:{A,B|Trm}(par_red1 A B)->(Vclosed A)->Cum B A;Goal CumCR_pi:{u,v|VV}{A,A',B,B'|Trm}{c:Cum (pi u A B) (pi v A' B')}and (Cum A' A) ({q:PP}Cum (alpha q u B) (alpha q v B'));
Now we know that every CPTS has subject reduction.

The requirements of section 4.4.11. We haveGoal Cum_Vclosed: {A,B|Trm}(Cum A B)->and (Vclosed A) (Vclosed B);

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 120Goal Cum_sort_character_l:{s|SS}{A|Trm}{c:Cum A (sort s)}Ex [t:SS] par_redn A (sort t);Goal Cum_sort_character_r:{s|SS}{B|Trm}{c:Cum (sort s) B}Ex [t:SS] par_redn B (sort t);Goal Cum_pi_character_l:{A,Bl,Br|Trm}{v|VV}{c:Cum A (pi v Bl Br)}Ex3 [u:VV][Al,Ar:Trm] par_redn A (pi u Al Ar);
In general we know nothing about cnv_only_typedsort for CPTS , but we do have that ifCumBase has the property cnv_only_typedsort then so does Cum.[CumBase_only_typedsort ={s1,s2|SS}(CumBase s1 s2)->or (is_tt (SSeq s1 s2)) (and (typedsort s1) (typedsort s2))];Goal Cum_only_typedsort:{CBpt:CumBase_only_typedsort}{s1,s2|SS}(Cum (sort s1) (sort s2))->or (is_tt (SSeq s1 s2)) (and (typedsort s1) (typedsort s2));
The requirements of section 5.1.3. We haveGoal Cum_pi: {va,vb|VV}{Al,Ar,Bl,Br|Trm}{p|PP}{npoA:is_ff (poccur p Ar)}{npoB:is_ff (poccur p Br)}{l_prem:Cum Bl Al}{r_prem:Cum (vsub (par p) va Ar) (vsub (par p) vb Br)}(**)Cum (pi va Al Ar) (pi vb Bl Br);
Again, we know nothing in general about cnv_full_below; in section 5.3.2 we will check that

the particular CPTS , ECC, actually satisfies cnv_only_typedsort and cnv_full_below.

5.2.2.1 Decidability of Cumulativity

In sections 5.1.5.2 and 5.1.6.2 we use that normalizing_decides_cnv (page 110) is inhabited,

although this could not be proved for the abstract relation cnv. Cum is still too abstract to have

this property, since it depends on the abstract relation CumBase. Now we can prove only that

if Cum is decidable on sorts then it is decidable on all normalizing terms:[decideCumSorts = {s,t:SS}decidable (Cum (sort s) (sort t))];

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 121Goal normalizing_decides_Cum:{dcs:decideCumSorts}{A,B|Trm}(Vclosed A)->(normalizing A)->(Vclosed B)->(normalizing B)->decidable (Cum A B);
It is clear that we want to prove this by some induction on A and B in order to handle the case

where A and B reduce to pi-types, and A � B depends on cumulativity of some shorter

terms, by the rule CUMPI. For definiteness, assume A and B are in normal form (weak-head

normal form would do as well). Thus the main lemma required isGoal beta_norm_decides_Cum:{dcs:decideCumSorts}{A,B|Trm}(beta_norm A)->(beta_norm B)->decidable (Cum A B);
Looking again at rule CUMPI, the contravariance of Cum on domains and covariance on ranges

suggests that neither induction on A or on B will prove this lemma; we use induction on the

sum of the lengths of A andB . With this idea the proof is straightfoward.

5.2.3 Type Synthesis and Type Checking for Cumulative PTS
We can cut in the properties proved about Cum in section 5.2.2Cut [cnv=Cum][cnv_refl=Cum_refl][cnv_trans=CumTrans][psub_resp_cnv=psub_resp_Cum][cnv_red1=Cum_red1][cnv_red1_sym=Cum_red1_sym][cnvCR_pi=CumCR_pi][cnv_Vclosed=Cum_Vclosed][cnv_sort_character_l=Cum_sort_character_l][cnv_sort_character_r=Cum_sort_character_r][cnv_pi_character_l=Cum_pi_character_l];
The type synthesis algorithm, sf_typSynof section 5.1.6.2 now has most of its global assump-

tions instantiated. For CPTS we have

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 122Goal cpts_typSyn:{sf:semiFull}{f:Functional}{cf:cnv_full_below}{cpt:cnv_preserves_typedsort_dn}{dt:{s:SS}decidable (typedsort s)}{dr:{s:SS}decidable (ruledsort s)}{drs:{s1,s2:SS}decidable (ruledsorts s1 s2)}{dcs:decideCumSorts}{gtn:gts_term_Normalizing}{G:Cxt}{M:Trm}decidable (gtsTS G M);
Putting together decide_gts from section 5.1.6.2 with the results of the present section, we

have a typechecking algorithm for CPTSGoal decide_cpts:{sf:semiFull}{f:Functional}{cfb:cnv_full_below}{cpt:cnv_preserves_typedsort_dn}{crt:cnv_range_typedsort}{dt:{s:SS}decidable (typedsort s)}{dr:{s:SS}decidable (ruledsort s)}{drs:{s1,s2:SS}decidable (ruledsorts s1 s2)}{dcs:decideCumSorts}{gtn:gts_term_Normalizing}{G:Cxt}{M,A:Trm}decidable (gts G M A);
These depend on no unstated assumptions except the parameterization of CPTS onPP, VV and SS. In the next section we discharge all the stated assumptions exceptgts_term_Normalizing.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 123

5.3 ECC

I will define ECC as a particular CPTS , and give type synthesis and typechecking algorithms

for ECC which depend only on the stated assumption that typed terms are normalizing.

5.3.1 Definition of ECC

Taking the sorts of ECC to be NN with its decidable equality (section 2.2), we define the sorts,

axioms and rules of ECC.[ECCprop = Z];[ECCtype [n:NN] = S n];[ECCax [s1,s2:NN] = Q s2 (S s1)];[ECCrl [s1,s2,s3:NN] =or (and (Q s2 Z) (Q s3 Z)) (* impredicative rules *)(and (not (Q s2 Z)) (Q s3 (max s1 s2)))]; (* predicative rules *)[ECCbase [s1,s2:NN] = Q s2 (S s1)];
We can cut in these definitions.Cut [SS=NN][SSeq=nat_eq][SSeq_iff_Q=nat_eq_character][CumBase=ECCbase][ax=ECCax][rl=ECCrl];
Although ECCbase, ECCax, and ECCrl occur in the context after CumBase, ax, and rl, these

cuts can be made correct by expanding some definitions; this is what LEGO does.

Remark 5.9 (On intensionality of presentation.) Is ECC a set of derivable judgements or a set of

derivations? We could replace the definition of ECCax above with[ECCax [s1,s2:NN] = Lt s1 s2];
This new system has the same derivable judgements as the old one, but it has strictly more derivations

of these judgements, and is not functional, so our developed theory of typechecking for functional PTS
does not directly apply. We have been reasoning about a set of derivations, using intensional knowledge

for inductive proofs.

5.3.2 Properties of ECC

This presentation of ECC is functional (section 4.6), with ax and rl given by total functions.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 124Goal ECC_functional: Functional;
ECC is trivially semifull, in fact full.Goal ECC_semiFull: semiFull;
Since ECC has no topsorts, we easily meet our anti-topsort requirementsGoal ECC_no_topsorts: {s:SS}typedsort s;Goal ECC_preserves_typedsort_dn:{s1,s2|SS}(cnv (sort s1) (sort s2))->(typedsort s2)->typedsort s1;Goal ECC_range_typedsort: {s1,s2|SS}(cnv (sort s1) (sort s2))->or (is_tt (SSeq s1 s2)) (typedsort s2);
and for the same reason, decideTypedsort is trivial:Goal ECCdecideTypedsort: {s:SS}decidable (typedsort s);
For ECC, conversion of sorts is the same as � on natural numbers.Goal ECC_Cum_Le: {t1,t2|SS}(cnv (sort t1) (sort t2))->Le t1 t2;Goal Le_ECC_Cum: {t1,t2|SS}(Le t1 t2)->cnv (sort t1) (sort t2);
Thus it is easy to show:Goal ECC_full_below: {s1,s2,t1,t2,t3|SS}{cv1:cnv (sort s1) (sort t1)}{cv2:cnv (sort s2) (sort t2)}{rlt:rl t1 t2 t3}Ex [s3:SS] and (rl s1 s2 s3) (cnv (sort s3) (sort t3));
From ECC_Cum_Le, Le_ECC_Cum, and decidability of Le we easily have that cnv (� , which is

now also �) is decidable on sorts (i.e. � on natural numbers):Goal decideECCSorts: {s,t:SS}decidable (cnv (sort s) (sort t));
Combining this with normalizing_decides_Cum (section 5.2.2.1), we have finally proved

that, for ECC, cumulativity is decidable for all normalizing terms.

Also every sort is a ruledsort, and the decidability of ruledsorts is trivial.Goal ECC_all_ruledsorts: {s1,s2:SS}ruledsorts s1 s2;Goal ECCdecideRuledsorts: {s1,s2:SS}decidable (ruledsorts s1 s2);Goal ECCdecideRuledsort: {s:SS}decidable (ruledsort s);

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 125

5.3.3 Type Synthesis and Type Checking for ECC

Specializing cpts_typSynwe have a type synthesis algorithmGoal ECC_typSyn: (gts_term_Normalizing)->{G:Cxt}{M:Trm}decidable (gtsTS G M);
Specializing decide_cptswe haveGoal decide_ECC: gts_term_Normalizing->{G:Cxt}{M,A:Trm}decidable (gts G M A);
These both depend on the parameterization of ECC on PP and VV . Instantiating PP and VV
with NN as in section 3.2.7Cut [PP=NN][PPeq=nat_eq][PPeq_iff_Q=nat_eq_character][PPinf=NNinf][VV=NN][VVeq=nat_eq][VVeq_iff_Q=nat_eq_character][VVinf=NNinf];ECC_typSyn and decide_ECC now depend only on the explicit assumptiongts_term_Normalizing.

5.4 Further Work: Executable Typecheckers?

In section 5.1.6.3 we have a type synthesis algorithm, gts_typSyn, and a type checking

algorithm, decide_gts, for a class of PTS . These two lemmas depend on many properties;

while in many cases of interest these assumptions are satisfied, there are examples where

we cannot prove that some assumption is satisfied (e.g. normalizability of well-typed terms

in ECC), or where some assumption is actually not satisfied (e.g. decidability of typedsort
in the PTS of remark 5.8). It is derirable to be able to program typechecking algorithms

that are sound, even if incomplete7. As non-normalizability of well-typed terms is the most

interesting example of this problem, I will consider partial correctness of TS and TC given a

partially correct normalization program, and then, briefly, consider questions of efficiency.

5.4.1 Partial Correctness�P meets the assumptions of decide_gts, and I expect to be able to formally prove that �P
is normalizing, and produce a normalization algorithm for it. The Calculus of Constructions

meets the assumptions ofdecide_gts, but it is a real challenge to formally prove normalization

of CC in ECC. It is very probably not possible to prove that ECC is normalizing within ECC.7We might want a semi-decision procedure, or just pragnatic incompleteness. I am not being too

precise in this section, as it is partiality I want to discuss, not algorithmic content.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 126

Further, we might be interested in typechecking a system like �� [Bar91] which gives types to

non-normalizing terms, but otherwise meets all the assumptions of decide_gts.

It is possible to write a program in ECC that, for any n , computes n steps of reduction on

any lambda term (I leave open how to count the steps), and thus to write a partially correct

normalization function that returns either a normal form, or indication that (up to n steps) no

normal form has been found. This is enough to write a partially correct type synthesis program

and a partially correct typechecker for any PTS meeting all the assumptions of decide_gts
except, possibly, normalization.

Representing partial functions. To represent partiality in ECC, I will use the notion of an

option type. For example, in SML there is the typedatatype 'a option = SOME of 'a | NONE;
There are two ways to produce an element of'a option, one of them,SOME, requires evidence,

i.e. an object of type 'a, while the other, NONE, requires nothing. An object of type 'a option
can be destructed to see if it contains evidence or not. For our purpose of representing partiality,NONE is better named MAYBE, because it contains no information at all, not the information that

some computation actually fails to terminate.

5.4.1.1 Partial Normalization Functions

Inductively define a predicate optNormalizing(M) with the constructorsnormalizing(M)
ONSOMEoptNormalizing(M) ONMAYBEoptNormalizing(M) :

Any proof of 8M : : : :) optNormalizing(M)
is a sound normalization program: given M (and possibly some other data) it returns either

a normal form of M , or no information.

The particular normalization function required by gts_typSyn and decide_gts instanti-

ates the specification gts_term_Normalizing,8M : gts term(M)) normalizing(M): (5.1)

It is worth considering the use of the premise gts term(M) in specification (5.1). For the sup-

plier of a program meeting this specification, this premise provides a “recursor” necessary for

normalizing M , as general recursion is not available in ECC. Since our plan for implementing

partial normalization is just to compute n steps of some unspecified reduction strategy, we

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 127

don’t need this premise. However, for the user of the normalization program, i.e. a TS or TC

program, this premise is hygienic: it prevents such a user from committing to normalization of

a term until it is known that this term is really well typed, thus preventing possible incomplete-

ness. If we hope to program a semi-decision procedure for ECC, we must keep this premise.

Even for a non-normalizing PTS such as �� , it is hard to find non-normalizing typable terms,

so we might well decide to keep this premise in a specification of partial normalization, even

though this premise is not used in the computation of partial normalization.

If we are satisfied to typecheck PTS that we believe are normalizing, then the reduction

strategy used in a partial normalization program is not of (theoretical) importance. However,

if we want to typecheck non-normalizing PTS , it would be wise to use a reduction strategy,�! , that is cofinal in the sense that if A!! B then 9C:A �!�! C and B !! C . An

example of such a strategy is complete development, that contracts all the redexes in a term at

once. (In section 7 of [vBJMP94] we use this relation for reasoning about non-normalizingPTS .) This relation, which we use for our proof of Church-Rosser, is already formalized in

LEGO.

5.4.1.2 Partial TS and TC Functions

Inductively define a relation optTypChk(�;M;A) with the constructors� ` M : A
OTCSOMEoptTypChk(�;M;A) OTCMAYBEoptTypChk(�;M;A) :

Any proof of8�;M;A : : : :) optTypChk(�;M;A) (5.2)

is a sound typechecker: given � , M , A (and possibly some other data) it returns either

a derivation of � ` M : A , or no information. Slightly modifying the specification ofdecide_gtswe have:8�;M;A : : : :(8M : gts term(M)) optNormalizing(M)))optTypChk(�;M;A): (5.3)

A proof of specification (5.3) is at hand: the proof of decide_gts given above will do, except

that we call the partial normalization program instead of a total normalization program, and

fail if the normalization program fails. Also we can omit the reasoning justifying the negative

disjuncts of that lemma, as we have now allowed ourselves to return “no information” without

any evidence at all.

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 128

Remark 5.10 We could throw away less information than I have suggested by having a third construc-

tor for optTypChk :� ` M : A
OTCNONEoptTypChk (�;M;A) :

With this definition, the proof of specification (5.3) can retain the information on failure that the proof

of decide_gts already contains.

Remark 5.11 For brevity I have shown the partial versions of only the normalizing and TypChk
relations. In fact, partiality propagates throughout a proof of specification (5.3), and we need partial

versions of several other relations I have mentioned, such as whether a term reduces to a sort, and

whether two terms convert.

Although we can see that the only cause of failure of our partial typechecker is failure of the

given partial normalization program, specification (5.3) is very weak, as it allows returning

OTCMAYBE without any justification. In order to be more precise, we can fix a reduction

strategy, and index all our relations with the number of steps of reduction they may use. Then

we can express that “if a judgement is derivable there is some n such that the typechecker

succeeds on that judgement when allowed at least n steps of reduction”. This can work even

for non-normalizing PTS if we use a cofinal reduction strategy (see section 5.4.1.1). Some

technical details of such an approach are worked out in section 7 of [vBJMP94].

5.4.2 Efficiency

A proof of decide_gts or specification (5.3) is a (partially) correct typechecking program for

some type theories we are interested in. Can we expect to actually run such a type checker?

One reason why we cannot actually run our typechecker is that the number of rule applica-

tions in an sdsf-derivation tree is exponential in the size of the root (the conclusion). The reason

for this is discussed in section 4.4.10.2, where a system, lvtyp, which avoids this blow-up is

presented. lvtyp is more difficult to reason about than gts, and I have not yet carried its

development through to a typechecking algorithm, but we cannot expect to execute infeasible

algorithms, so must be able to handle such difficult arguments.

Another reason we cannot run our partially correct typechecker on the currently distributed

LEGO is that LEGO is very slow at computing in its object languages. Sorting short lists has

been known to take hours; an enterprising user [Bai93] actually burned 56 hours on a big

workstation factoring a small polynomial. One reason for this is that LEGO, built to be an

interactive proofchecker, does not use internal representation selected for fast computation,

but for simplicity and a clear correspondence with the user’s concrete representation. How-

ever, there is some recent work on the problem of “intensional representations” with efficient

Chapter 5. Semi-Full and Cumulative PTS : Typechecking ECC 129

computation, e.g. [NW93], and there is no reason why a proofchecker cannot be much better

than LEGO in this regard.

Finally, and most difficult in the long term, is the problem of efficiently executing the compu-

tational content of constructive proofs. There is now much literature about program extraction

from constructive proofs, and some type theory implementations, such as Nuprl [Con86] and

Coq [DFH+ 93] have an extraction mechanism, although LEGO does not. Whether such ap-

proaches can produce feasible programs from a proof of something like decide_gts remains

to be seen.

Chapter 6

What Does It All Mean?

At the moment you find an error, your brain may disappear because of the Heisen-

berg uncertainty principle, and be replaced by a new brain that thinks the proof is

correct.

Leonid A. Levin, Boston University, quoted in [Hor93]

This chapter is entirely informal, and somewhat tentative. It expresses my currently held

opinion about some questions underlying the whole enterprise of mechanized mathematics.

In previous chapters I have outlined a large formal development that is checked in LEGO.

Consider one theorem in the development, for example strengthening for arbitrary PTS (sec-

tion 4.5.2).Goal gts_strengthening:{Gamma|Cxt}{c,C,d,D|Trm}{Delta:Cxt}{q|PP}{noccd:is_ff (poccur q d)}{noccD:is_ff (poccur q D)}{noccDelta:is_ff (POCCUR q Delta)}{premD:gts (append Delta (CONS (Gb q C) Gamma)) d D}gts (append Delta Gamma) d D;
To check this theorem requires checking over 24,000 lines of LEGO source in over 60 files,

which create over 2000 definitions and theorems in the LEGO state. LEGO itself is a program,

written in SML, of around 7,000 lines of code. LEGO is usually compiled in New Jersey

SML, itself a large programming system, and runs on computer networks whose complexity

is incalculable. What are you to conclude from my claim that “we have formally checked a

proof of strengthening for arbitrary PTS in LEGO”?

I consider this question in two parts, and examine some wider implications. In section 6.1 I

ask “is it a theorem”, e.g. is what I have called the strengthening lemma a derivable judgement

in ECC? This is the question of correctness of LEGO, and of proof checkers in general, with

respect to some given underlying formal system.

130

Chapter 6. What Does It All Mean? 131

The second part of the question is about the meaning of a derivable judgement that may be

too large to examine in detail yourself. What I have called the strengthening lemma, including

all the definitions (hereditarily) used in its statement, is very long. The proof of what I have

called the strengthening lemma is much longer still. Assuming that this proof derives a correct

judgement in ECC, what does it tell you about the strengthening lemma? For example, how

can you experience belief in strengthening for arbitrary PTS? These questions are addressed

in section 6.2.

6.1 Is it a Theorem?

I bring you my 60 LEGO source files and say “Here is a derivation in ECC, you can check it in

LEGO” (we are leaving aside the question of what it is a derivation of until section 6.2). How

can you believe this thing is a correct derivation in ECC? One immediate question is how to

parse the 60 files, or, more generally, how to read them; this is asked in section 6.1.2. Leaving

that aside, I suggest that the way for you to believe that some abstract formal entity is a correct

derivation is to check it yourself; but if you can’t read it all with your own eyes, and interpret

it all with your own brain, you reason indirectly, as we almost always do anyway. In this case,

you write a proofchecker for the logic in question.

Any entity I call a theorem prover will check derivations in some formally specified object

logic, and produce a fully annotated proof object that is independently checkable to witness each

claimed theorem. Such a prover may use all kinds of tactics, search, unification, etc, but at the

end must produce proof objects that are checkable in some elementary and formally specified

way, such as syntactically matching with the rules of the object logic. This is not a completely

new idea (for example [DB93]), but I mean to take it as part of a serious answer to the question

of surveyability of formal proofs.

If you want to believe that some judgement constructed in such a prover is “really” deriv-

able, you write a simple checker for the object logic, and check the proof object generated by the

prover to witness that judgement. If your simple checker doesn’t accept the proof object, you

can go back to the proof creator (who developed the proof with some user-friendly theorem

proving tool) and say “step 3946782 claims to use rule X, but premise 2 is not satisfied”. Then

you must work out the problem between you: did you understand rule X when you wrote

your simple checker, is there an error in the complex theorem proving tool, or did some more

complicated misunderstanding show up?

I’m addressing the psychological question of belief. To me this approach of writing your

own proof checker is both mathematically and psychologically more satisfactory than using

someone else’s “completely verified” proof system; if you are given a completely verified proof

system, all you really have is another big proof (its verification) to check. In my approach the

creator of the proof is responsible for providing all the information necessary to understand

Chapter 6. What Does It All Mean? 132

and believe the theorem, but the reader is responsible for actually understanding and believing

it. You don’t expect to directly read and understand large proofs that are completely formal

and partially machine generated; but you understand the means of checking them (i.e. the

mathematics of deciding derivability of judgements in the logic), you implement those means

yourself, and if that implementation accepts a large proof object, you have evidence to believe

it is a theorem.

If the responsibity mentioned in the previous paragraph is interpreted in terms of “safety

critical” software, my suggestion is also organizationally more satisfactory. A mathematician

using a full-featured proof tool proves that a specification is met. This can be checked inde-

pendently, and there the mathematician’s responsibility ends; s/he is not responsible for the

characteristics of a physical product based on this specification.

6.1.1 A Few Details About Simple Proof Checkers

I have made it too simple above. For most logics of serious interest, a feasible checker

cannot just syntactically match against the rules of the logic, but depends on its mathematical

properties. Let me informally use the words simple proof checker (SPC) for one that only checks

fully annotated proofs in some given object logic. An SPC needs no form of user programmed

extensibility (but it may use tactics to keep the kernel small). It may be designed to check

top down or bottom up. I am not suggesting that an SPC ever be used by a human being for

formalizing known proofs, much less discovering proofs. An SPC should be used to check

proofs discovered and constructed on more user-friendly proof checkers.

We have to be a little careful in detail; for example LEGO checks judgements incrementally,

as in the system lvtyp (section 4.4.10.2), and writes out annotated objects incrementally. (This

is how LEGO’s seperate compilation of modules works; the .o files LEGO produces are the

annotated objects.) When these annotated objects are later checked, LEGO again incrementally

maintains a state that represents a correct judgement. This clearly needs some explanation, butlvtyp is most of that explanation1; we don’t require an explanation of unification, refinement,

rewriting, etc. None of this is necessary to check .o files.

Another point to be careful about is outstanding assumptions. In LEGO’s incrementally

constructed judgements there may be assumptions in the context that are not explicit in the

statement of a particular theorem. Since I do not want to require the human mathematician

to read the whole annotated proof, we should require that the proofchecker alerts you to all

such assumptions. That is, the “official” judgements of the object logic are themselves too big

to read, so we should define some derived, or specialized, judgement form, which flags things

we are interested in. For example, we could define a judgement of shape G `names M : A ,1The main thing required, that I haven’t discussed at all in this thesis, is definitions.

Chapter 6. What Does It All Mean? 133

where names is a list of the names of undischarged assumptions in G ; alternatively we

might require that for “official” checking, only assumption-free, fully discharged contexts are

accepted.

An important issue for an SPC is computational feasibility of proofchecking. For example,

it is completely infeasible to build an SPC for ECC based on the system gts. LEGO is based

on combining the ideas of lvtyp and sdsf, and I don’t know any other way to build an SPC

for ECC that could check the strengthening theorem. This shows that the idea of this section

is not as black and white as I may have made it appear. We cannot, in practice, take just any

formal system and make it the specification of an SPC, if we hope to check non-trivial theorems.

Mathematical work will be required to find a feasibly implementable specification and show

its correctness. Beyond that it may be necessary to prove some rules to be admissible, such

as weakening or strengthening, since actually executing the algorithm that shows they are

admissible may also be infeasible.

6.1.2 Syntax Must be Explained

What I have called a proof of the strengthening lemma is actually a very long ascii string

(ignoring the organization into files). In order to ask questions about correctness, we must

know how to parse it, and this should be formally explained. Fortunately, parsing is one of the

formally best understood areas of computer science, so this should be no problem. Extensible

parsers are often used in proof systems, and this is a useful thing, but it is not always observed

that proof system implementors and users must accept the limits of formal parsing.

Chapter 6. What Does It All Mean? 134

6.2 Informal Understanding of a Formal Theorem

Having suggested in section 6.1 how one might come to believe that a large object is a derivation

of a judgement in ECC, there is still a question: whether this formalization correctly represents

our informal notions of term, substitution, reduction, : : : . This is an essentially informal

question which cannot be settled by appeal to some formal system or machine; to answer it

we must read (some part of) the formal development and decide for ourselves. In section 6.2.1

I bite the bullet and discuss how to experience understanding of a formal development. In

section 6.2.2 I relent slightly to consider how choosing suitable representations can simplify the

task of understanding a formal development. In light of section 6.1, I assume you believe some

“thing” is a correct judgement, and want to know what informal understanding it represents.

6.2.1 How to Read a Formal Proof

You receive a document in the post from an unknown mathematician, claiming to be a proof

of the euclidean algorithm. You read it, understand it, and believe it. It is not a completely

formal proof, but you believe that “in principle” it could be formalized in some system that

you and the author agree on. As part of reading and understanding the document, you have

read the statement of the theorem and whatever definitions it depends on, and have decided

that the statement agrees with your informal understanding of the euclidean algorithm (i.e.

the meaning of its statement). This last involves, besides your informal understanding of

the euclidean algorithm, some “in principle” understanding of how to associate informal

understanding with statements in the implicitly agreed formal system.

In order to believe strengthening for PTS , at the least, you must read the statement of the

theorem, and decide if that satisfies your informal understanding. Of course, the statement will

use some defined notions, which you must also read and decide about for yourself, continuing

this process until you have decided for yourself about all the definitions used (hereditarily) in

the statement. It seems to me that this process is both tractable and unavoidable; that is how

informal mathematics is done. Importantly, to know if the formal statement is the theorem we

have in mind, it is not necessary to read any of the auxiliary definitions and lemmas used in

the proof but not occurring in the (fully expanded) statement.

6.2.1.1 Declarations

Is deciding about the hereditarily occurring definitions enough? No, we must also examine

all of the declarations, i.e. the variables that are assumed to inhabit types. In LEGO this is

complicated by two issues:

Chapter 6. What Does It All Mean? 135

1. use of declarations in our coding of inductive types (section 2.1.5),

2. use of declarations for some kinds of generality and abstraction (e.g. section 3.2.7).

Declarations Coding Inductive Types Declarations generated by LEGO’s inductive types

tactic are justified by Luo’s schema [Luo94], and are part of the mechanics of ECC, not logical

assumptions that we must understand and agree with. Although you may feel the need to read

an inductive definition and decide that it satisfies your informal understanding, you should

not feel the need to examine the various declarations that are mechanically generated for its

implementation.

Declarations for Generality and Abstraction In section 3.2.7 I said that you should insist on

concrete instances of PP and VV, and proofs that they have the properties assumed for these

types, but that you should accept the abstraction SS as part of the meaning of a theorem about

pure languages or PTS . I think that ax and rl are in the latter category, while cnv is in the

former. If you are trying to believe some theorem because of a formal proof, it is up to you to

decide which formal assumptions are “abstract datatypes”, like PP and VV, which you want to

see instantiated, and which are really part of the theorem itself.

My style of formalization is unsatisfactory in that it does not formally distinguish these

two classes of assumption. I don’t know whether it is my use of ECC that is deficient, or ECC

itself. This is a serious area for further work.

6.2.2 Other Representations

You may find a formalization too obscure to understand at all. For example, our formalization

of lambda calculus is very idiosyncratic, with its two classes of names and funny substitution

operations. Given that binding and substitution are notoriously prone to incorrect definition,

you might well feel that what we call the Church-Rosser theorem is not convincing for you.

Then you must find a representation you can accept, and show it is equivalent in some sense

with the given formalization. The idea is not to re-prove all the theorems, but only to translate

an obscure development into another representation.

There are obviously advantages to having several related formal representations. One

representation may be more natural for some readers, while other readers prefer a different

representation; some theorems are easier to state or prove in one representation than in an-

other. I believe one reason informal mathematics seems natural is that, implicitly, different

representations are used for different purposes. For example, it is common in writing on

lambda calculus to use informal named terms, with the caveat that if some question of name

clash ever arises the “official” notation is nameless terms.

Chapter 6. What Does It All Mean? 136

For the purposes of this section on how to read a formal proof, an important point is that

one representation might require us to read significantly less of the formal development than

another. For example we might define a type of nameless terms, give a translation between

this type and our type Trm, and show that this translation commutes with reduction. Then a

version of the Church-Rosser Theorem for nameless terms could be proved very easily, just by

translating our theorem for Trm, but the list of definitions hereditarily used in the statement of

this nameless CR theorem might be much shorter than for our statement of CR in section 3.3.2.1;

for example, it won’t contain anything related to Vclosed.

Bibliography

[ACN90] L. Augustsson, Th. Coquand, and B. Nordstrom. A short description of another

logical framework. In Informal Proceedings of First Workshop on Logical Frameworks,

Antibes, May 1990. Available by ftp.

[AHMP92] Arnon Avron, Furio Honsell, Ian Mason, and Robert Pollack. Using typed lambda

calculus to implement formal systems on a machine. Journal of Automated Reasoning,

9:309–352, 1992.

[Alt93a] Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD

thesis, University of Edinburgh, 1993.

[Alt93b] Thorsten Altenkirch. A formalization of the strong normalization proof for System

F in LEGO. In Proceedings of the International Conference on Typed Lambda Calculi and

Applications, TLCA’93. Springer-Verlag, LNCS 664, March 1993.

[Bai93] Anthony Bailey. Representing algebra in LEGO. Master’s thesis, University of

Edinburgh, 1993.

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of

Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,

revised edition, 1984.

[Bar91] Henk Barendregt. Introduction to Generalised Type Sytems. J. Functional Program-

ming, 1(2):125–154, April 1991.

[Bar92] Henk Barendregt. Lambda calculi with types. In Abramsky, Gabbai, and Maibaum,

editors, Handbook of Logic in Computer Science, volume II. Oxford University Press,

1992.

[Ber90a] Stefano Berardi. Girard normalization proof in LEGO. In Informal Proceedings of First

Workshop on Logical Frameworks, Antibes, May 1990. Available by ftp.

[Ber90b] Stefano Berardi. Type Dependence and Constructive Mathematics. PhD thesis, Diparti-

mento di Informatica, Torino, Italy, 1990.

137

Bibliography 138

[Bra92] Steven Bradley. A model of CCS in LEGO. Master’s thesis, University of Edinburgh,

1992.

[Car91] Luca Cardelli. F-sub, the system. Technical report, DEC Systems Research Centre,

1991.

[CH85] Thierry Coquand and Gérard Huet. Constructions: A higher order proof system

for mechanizing mathematics. In Proceedings of the European Conference on Computer

Algebra, EUROCAL’85. Springer-Verlag, April 1985. LNCS 203.

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Information and

Computation, 76(2/3):95–120, February/March 1988.

[Ciz93] Petr Cizek. A variation on Lagrange’s theorem in LEGO: Characterizing the num-

bers that are the sum of two squares. Talk given at the Nijmegen Workshop on Types

for Proofs and Programs, May ’93, 1993.

[Col90] Andrew Coleman. Simulating VDM in LEGO. Master’s thesis, University of Edin-

burgh, 1990.

[Con86] Robert L. Constable, et. al. Implementing Mathematics with the Nuprl Proof Development

System. Prentice–Hall, Englewood Cliffs, NJ, 1986.

[Coq90] Thierry Coquand. Some comments on Pure Type Sytems. Unpublished lecture

notes from the Summer School and Conference on Proof Theory, Leeds University,

July 1990.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In G. Huet

and G. D. Plotkin, editors, Logical Frameworks. Cambridge University Press, 1991.

[CPM90] Th. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Löf

and G. Mints, editors, Proceedings of Colog’88, number 417 in LNCS. Springer-Verlag,

1990.

[dB80] Nicolas G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and J. R.

Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and

Formalism, pages 589–606. Academic Press, 1980.

[dB91] N. de Bruijn. A plea for weaker frameworks. In G. Huet and G. D. Plotkin, editors,

Logical Frameworks. Cambridge University Press, 1991.

[DB93] Gilles Dowek and Robert Boyer. Towards checking proof checkers. In Herman

Geuvers, editor, Informal Proceedings of the Nijmegen Workshop on Types for Proofs and

Programs, May 1993.

Bibliography 139

[DFH+ 93] Dowek, Felty, Herbelin, Huet, Murthy, Parent, Paulin-Mohring, and Werner.

The Coq proof assistant user’s guide, version 5.8. Technical report, INRIA-

Rocquencourt, February 1993.

[Dyb91] Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-

theoretic semantics. In G. Huet and G. Plotkin, editors, Logical Frameworks, pages

213–230. Cambridge University Press, 1991.

[Dyb94] Peter Dybjer. Inductive families. Formal Aspects of Computing, 6:1–26, 1994.

[Fef88] Solomon Feferman. Finitary inductively presented logics. In Logic Colloquium ’88,

Padova. August 1988.

[Gar92] Philippa Gardner. Representing Logics in Type Theory. PhD thesis, University of

Edinburgh, July 1992.

[Geu93] Herman Geuvers. Logics and Type Systems. PhD thesis, Department of Mathematics

and Computer Science, University of Nijmegen, 1993.

[GN91] Herman Geuvers and Mark-Jan Nederhof. A modular proof of strong normalization

for the calculus of constructions. Journal of Functional Programming, 1(2):155–189,

April 1991.

[Gor88] Michael Gordon. HOL: A proof generating system for higher-order logic. In

Birtwistle and Subrahmanyam, editors, VLSI Specification, Verification and Synthe-

sis, pages 73–128. Kluwer Academic Publishers, 1988.

[Hey71] A. Heyting. Intuitionism, An Introduction. Studies in Logic. North-Holland, 1971.

[HHP92] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.

Journal of the ACM, 40(1):143–184, 1992. Preliminary version in LICS’87.

[Hor93] John Horgan. The death of proof. Scientific American, pages 74–82, October 1993.

[HP91] Robert Harper and Robert Pollack. Type checking with universes. Theoretical Com-

puter Science, 89:107–136, 1991.

[HT94] Masami Hagiya and Yozo Toda. On implicit arguments. In N. Jones, M. Hagiya,

and M. Sato, editors, Logic, Language and Computation, pages 10–30. Springer-Verlag,

LNCS 792, 1994. Festschrift in honor of Satoru Takasu.

[Hue87] Gérard Huet. Extending the calculus of constructions with Type:Type. Unpublished

manuscript, April 1987.

Bibliography 140

[Hue89] Gérard Huet. The constructive engine. In R. Narasimhan, editor, A Perspective

in Theoretical Computer Science. World Scientific Publishing, 1989. Commemorative

Volume for Gift Siromoney.

[JM93] Claire Jones and Savi Maharaj. The LEGO library. Available by ftp with LEGO

distribution, 1993.

[Jon93] Claire Jones. Completing the rationals and metric spaces in LEGO. In G. Huet

and G. Plotkin, editors, Logical Environments, pages 297–316. Cambridge University

Press, 1993. Proceedings of the Second Workshop of the ESPRIT BRA on Logical

Frameworks.

[JP93] Claire Jones and Randy Pollack. Incremental changes in LEGO: 1993. Available by

anonymous ftp with LEGO distribution, May 1993.

[JP94] Claire Jones and Randy Pollack. Incremental changes in LEGO: 1994. Available by

anonymous ftp with LEGO distribution, May 1994.

[LP92] Zhaohui Luo and Robert Pollack. LEGO proof development system: User’s manual.

Technical Report ECS-LFCS-92-211, LFCS, Computer Science Dept., University of

Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ, May 1992. Updated version.

Available by anonymous ftp with LEGO distribution.

[Luo90a] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, Department of

Computer Science, University of Edinburgh, June 1990.

[Luo90b] Zhaohui Luo. A problem of adequacy: Conservativity of calculus of constructions

over higher-order logic. Technical Report ECS-LFCS-90-121, LFCS, Edinburgh Uni-

versity, 1990.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. International

Series of Monographs on Computer Science. Oxford University Press, 1994.

[Mah90] Savitri Maharaj. Implementing Z in LEGO. Master’s thesis, University of Edin-

burgh, 1990.

[Mah94] Savitri Maharaj. Encoding Z schemas in type theory. In Henk Barendregt and Tobias

Nipkow, editors, Types for Proofs and Programs: International Workshop TYPES’93,

Nijmegen, May 1993, volume 806 of LNCS, pages 238–262. Springer-Verlag, 1994.

[Mar71a] Per Martin-Löf. Haupsatz for the intuitionistic theory of iterated inductive defini-

tions. In J.E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium,

pages 179–216. North Holland, 1971.

Bibliography 141

[Mar71b] Per Martin-Löf. A theory of types. Technical Report 71-3, University of Stockholm,

1971.

[McK92] James McKinna. Deliverables: a Categorical Approach to Program Development in Type

Theory. PhD thesis, University of Edinburgh, 1992.

[McK94] James McKinna. Typed �-calculus formalized: Church-Rosser and standardisation

theorems. In preparation, 1994.

[Men92] Nax Mendler. A model of constructive set theory in LEGO. Talk given by Peter

Aczel at the Båstad Workshop on Logical Frameworks, May ’92, 1992.

[Moh86] Christine Mohring. Algorithm development in the calculus of constructions. In

Proceedings of the Symposium of Logic in Computer Science, June 1986. Cambridge

Mass.

[MP93] James McKinna and Robert Pollack. Pure Type Sytems formalized. In M.Bezem and

J.F.Groote, editors, Proceedings of the International Conference on Typed Lambda Calculi

and Applications, TLCA’93, pages 289–305. Springer-Verlag, LNCS 664, March 1993.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT

Press, 1990.

[NPS90] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s Type

Theory. An Introduction. Oxford University Press, 1990.

[NW93] Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms I: A gen-

eralization of environments. Technical Report Technical Report CS-1993-22, Duke

University, 1993.

[Pau93a] Lawrence C. Paulson. The Isabelle reference manual. Technical Report 283, The

University of Cambridge Computer Laboratory, 1993. Available by ftp, along with

the implementation.

[Pau93b] Lawrence C. Paulson. Set theory for verification: II. induction and recursion. Techni-

cal Report 312, The University of Cambridge Computer Laboratory, 1993. Available

by ftp.

[Pfe89] Frank Pfenning. Elf: A language for logic definition and verified metaprogramming.

In Proceedings of the Fourth Annual Symposium on Logic in Computer Science, Asilomar,

California, June 1989.

[PM93] Christine Paulin-Mohring. Inductive definitions in the system coq; rules and prop-

erties. In M.Bezem and J.F.Groote, editors, Proceedings of the International Conference

Bibliography 142

on Typed Lambda Calculi and Applications, TLCA’93, pages 328–345. Springer-Verlag,

LNCS 664, March 1993.

[Pol88] Robert Pollack. The theory of LEGO. Thesis proposal, October 1988.

[Pol90] Robert Pollack. Implicit syntax. Informal Proceedings of First Workshop on Logical

Frameworks, Antibes, May 1990.

[Pol92] R. Pollack. Typechecking in Pure Type Sytems. In Informal Proceedings of the 1992

Workshop on Types for Proofs and Programs, Båstad, Sweden, pages 271–288, June 1992.

Available by ftp.

[Pol94] Robert Pollack. Closure under alpha-conversion. In Henk Barendregt and Tobias

Nipkow, editors, Types for Proofs and Programs: International Workshop TYPES’93,

Nijmegen, May 1993, volume 806 of LNCS, pages 313–332. Springer-Verlag, 1994.

[Pra73] D. Prawitz. Towards a foundation of a general proof theory. In P. Suppes et. al.,

editor, Logic, Methodology, and Philosophy of Science IV, 1973.

[Pra74] D. Prawitz. On the idea of a general proof theory. Synthese, 27, 1974.

[Pym90] David Pym. Proofs, Search and Computations in General Logic. PhD thesis, Department

of Computer Science, Edinburgh University, 1990.

[Smi88] Jan Smith. The independence of Peano’s fourth axiom from Martin-Löf’s type theory

without universes. Journal of Symbolic Logic, 53(3), 1988.

[SP94] Paula Severi and Erik Poll. Pure type systems with definitions. In LFCS’94, number

813 in LNCS, pages 316–328. Springer-Verlag, 1994.

[Tak] Masako Takahashi. Parallel reductions in �-calculus (revised version). Information

and Computation. To appear. Previous version in Journal of Symbolic Computation (7)

113-123 (1989).

[Tas93] A. Tasistro. Formulation of Martin-Löf’s theory of types with explicit substitutions.

Master’s thesis, Chalmers Tekniska Högskola and Göteborgs Universitet, May 1993.

[vBJ93] L.S. van Benthem Jutting. Typing in Pure Type Sytems. Information and Computation,

105(1):30–41, July 1993.

[vBJMP94] L.S. van Benthem Jutting, James McKinna, and Robert Pollack. Checking algo-

rithms for Pure Type Systems. In Henk Barendregt and Tobias Nipkow, editors,

Types for Proofs and Programs: International Workshop TYPES’93, Nijmegen, May 1993,

volume 806 of LNCS, pages 19–61. Springer-Verlag, 1994.

Bibliography 143

[Wan92] Paul Wand. Functional programming and verification with LEGO. Master’s thesis,

University of Edinburgh, 1992.

