Targonskii A.L. (Zhitomir, Ukraine)

Extremal problem on $(2 n, 2 m-1)$-system points on the rays.
For fix number $n \in \mathbb{N}$ system points

$$
A_{2 n, 2 m-1}=\left\{a_{k, p} \in \mathbb{C}: k=\overline{1,2 n}, p=\overline{1,2 m-1}\right\},
$$

we will called on the $(2 n, 2 m-1)$-system points on the rays, if at all $k=\overline{1,2 n}$, $p=\overline{1,2 m-1}$ the relations are executed:

$$
\begin{align*}
& 0<\left|a_{k, 1}\right|<\ldots<\left|a_{k, 2 m-1}\right|<\infty ; \\
& \arg a_{k, 1}=\arg a_{k, 2}=\ldots=\arg a_{k, 2 m-1}=: \theta_{k} ; \tag{1}\\
& 0=\theta_{1}<\theta_{2}<\ldots<\theta_{n}<\theta_{n+1}:=2 \pi
\end{align*}
$$

Let's consider system of angular domains:

$$
P_{k}=\left\{w \in \mathbb{C}: \theta_{k}<\arg w<\theta_{k+1}\right\}, \quad k=\overline{1,2 n} .
$$

Let $D, D \subset \overline{\mathbb{C}}$ - arbitrary open set and $w=a \in D$, then $D(a)$ the define connected component D, the contain point a. For arbitrary ($2 n, 2 m-1$)-system points on the rays $A_{2 n, 2 m-1}=\left\{a_{k, p} \in \mathbb{C}: k=\overline{1,2 n}, p=\overline{1,2 m-1}\right\}$ and open set $D, A_{2 n, 2 m-1} \subset D$ the define $D_{k}\left(a_{s, p}\right)$ connected component set $D\left(a_{s, p}\right) \cap \overline{P_{k}}$, the contain point $a_{s, p}, k=\overline{1,2 n}, s=k, k+1, p=\overline{1,2 m-1}, a_{n+1, p}:=a_{1, p}$.

The open set $D, A_{2 n, 2 m-1} \subset D$ satisfied condition meets the condition of unapplied in relation to the system of points $(2 n, 2 m-1)$-system points on the rays $A_{2 n, 2 m-1}$ if a condition is executed

$$
\begin{equation*}
D_{k}\left(a_{k, s}\right) \bigcap D_{k}\left(a_{k+1, p}\right)=\varnothing \tag{2}
\end{equation*}
$$

$k=\overline{1,2 n}, p, s=\overline{1,2 m-1}$ on all corners $\overline{P_{k}}$.
The define $r(B ; a)$ inner radius domain $B \subset \overline{\mathbb{C}}$ with respect to a point $a \in B$.
Subject of studying of our work are the following problem.
Problem. Let $n, m \in \mathbb{N}, n \geq 2, m \geq 2, \alpha \in \mathbb{R}_{+}$. Maximum functional be found

$$
\begin{aligned}
I= & \prod_{k=1}^{n} \prod_{p=1}^{m} r^{\alpha}\left(D, a_{2 k-1,2 p-1}\right) \cdot \prod_{k=1}^{n} \prod_{p=1}^{m-1} r\left(D, a_{2 k-1,2 p}\right) \times \\
& \times \prod_{k=1}^{n} \prod_{p=1}^{m-1} r^{\alpha}\left(D, a_{2 k, 2 p}\right) \cdot \prod_{k=1}^{n} \prod_{p=1}^{m} r\left(D, a_{2 k, 2 p-1}\right)
\end{aligned}
$$

where $A_{2 n, 2 m-1}$ - arbitrary $(2 n, 2 m-1)$-system points on the rays, satisfied condition (1), D - arbitrary open set, the satisfied condition (2), $a_{k, p} \in D \subset \overline{\mathbb{C}}$, and all extremal the describe $(k=\overline{1,2 n}, p=\overline{1,2 m-1})$.

