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Abstract

This work focuses on the computation of near-optimal inventory policies for a

wide range of problems in the field of nonstationary stochastic inventory control.

These problems are modelled and solved by leveraging novel mathematical pro-

gramming models built upon the application of stochastic programming bounding

techniques: Jensen’s lower bound and Edmundson-Madanski upper bound.

The single-item single-stock location inventory problem under the classical

assumption of independent demand is a long-standing problem in the literature

of stochastic inventory control. The first contribution hereby presented is the

development of the first mathematical programming based model for computing

near-optimal inventory policy parameters for this problem; the model is then

paired with a binary search procedure to tackle large-scale problems.

The second contribution is to relax the independence assumption and investi-

gate the case in which demand in different periods is correlated. More specifically,

this work introduces the first stochastic programming model that captures Book-

binder and Tan’s static-dynamic uncertainty control policy under nonstationary

correlated demand; in addition, it discusses a mathematical programming heuris-

tic that computes near-optimal policy parameters under normally distributed

demand featuring correlation, as well as under a collection of time-series-based

demand process.

Finally, the third contribution is to consider a multi-item stochastic inventory

system subject to joint replenishment costs. This work presents the first math-

ematical programming heuristic for determining near-optimal inventory policy

parameters for this system. This model comes with the advantage of tackling

nonstationary demand, a variant which has not been previously explored in the

literature.

Unlike other existing approaches in the literature, these mathematical pro-

gramming models can be easily implemented and solved by using off-the-shelf

mathematical programming packages, such as IBM ILOG optimisation studio

and XPRESS Optimizer; and do not require tedious computer coding.
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Extensive computational studies demonstrate that these new models are com-

petitive in terms of cost performance: in the case of independent demand, they

provide the best optimality gap in the literature; in the case of correlated demand,

they yield tight optimality gap; in the case of nonstationary joint replenishment

problem, they are competitive with state-of-the-art approaches in the literature

and come with the advantage of being able to tackle nonstationary problems.
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Lay Summary

The aim of stochastic inventory control is to order the right quantity of items, at

the right time, in the right location, with the intention of satisfying uncertain de-

mand. This work focuses on tackling unexplored settings in the field of stochastic

inventory control by using mathematical programming approaches.

A long-standing problem in stochastic inventory control is to find the replen-

ishment plan for the single-item single-stock location inventory system under the

assumption that demand is uncertain over time. The first contribution of this

work is to present the first mathematical programming model for solving this

class of problems to near-optimality.

Since environmental factors, such as economic conditions, market conditions,

and any exogenous conditions, have significant influence on the demand of a prod-

uct, the second contribution of this work is to investigate the case in which item

demand is correlated over time, and to present the first mathematical program-

ming model for tackling the stochastic inventory control problem under correlated

demand.

Finally, the third contribution is to consider a multi-item stochastic inventory

system in which several products are ordered from the same supplier and incur

joint replenishment costs. By ordering products jointly, the ordering cost may

be largely reduced. A mathematical programming model is hence presented for

tackling the stochastic joint replenishment problem.

Extensive computational studies demonstrate that these new models are com-

petitive in terms of cost performance: in the case of independent demand, they

provide the best optimality gap in the literature; in the case of correlated de-

mand, they yield the tight optimality gap; in the case of the joint replenishment

problem, they are competitive with state-of-the-art approaches in the literature

and come with the advantage of being able to tackle more complex settings.
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Chapter 1

Introduction

1.1 Preliminaries

This section first presents motivations for the work presented in this dissertation,

then briefly introduces topics discussed in this dissertation, and lastly outlines

the structure of the rest of this chapter.

1.1.1 Motivations

Inventory control aims at ordering the right quantity of items, at the right

time, in the right location, with the intention of satisfying demand. Optimising

these decisions is becoming increasingly important in nowadays increased glob-

alisation, improved information technology, rapid-updated manufacturing tech-

nologies, radical-changed customer behaviour, shortened product life cycles, and

quicksilver markets (Elms and Low, 2013).

Business keeps $1.43 of inventory on hand for every $1 of sales, and inventory

along with accounts receivable and accounts payable has tied up $1.1 trillion in

cash which is equivalent to 7% of the U.S. GDP (Source: REL, 2017). Despite

the importance of inventory control, only 33% of small business adopt inventory

control systems, nearly 7% never track their inventory at all, 15% use pen and

paper, and another 24% use a spreadsheet to track their inventory (Source: WASP

Barcode, 2016).

Additionally, recent experiments conducted by GS1 and Auburn University’s

RFID Lab showed that the average inventory accuracy threshold for retail oper-

ations is only 63%. In such a case, items will be out of stock more frequently,

customer satisfaction will plummet, and a large amount of capital’s liquidity will

be blocked.

1



Fortunately, inventory control has been getting increasing attention. A recent

study conducted by the Motorola Future of Warehousing shows that investments

in inventory operations technology are increasing; it is predicted that 66% of

retailers will have made a significant investment in warehousing and inventory

management technology through 2018 (Source: ITE, 2016).

In the past century, the Operations Research community has paid significant

attention and developed a large amount of lore to effective inventory control.

The first study in this area dates back to Harris (1913), which proposed the well-

known Economic Order Quantity (EOQ) model to answer the two fundamental

research questions

• how large should an order be?

• when should an order be placed?

Since this pioneering work, research on inventory control has been expanding by

considering different environments, operating parameters, and modelling assump-

tions. The solid theoretical foundations upon which the field of inventory control

make it one of the most well-developed fields of Operational Research.

One of the fundamental issues in the theory and practice of inventory control

has been the modelling of demand uncertainty resulting from inherent quali-

ties of the business and its customer base, or external factors, such as seasonal

fluctuations, and customer preference shift. On the one hand, companies will

experience leftovers if demand suddenly drops; this will consume physical space,

block capital liquidity, and increase the probability of stocks being damaged and

lost. On the other hand, companies will not be able to satisfy customer needs

if demand suddenly increases; this will increase the probability of poor customer

service. Therefore, it is necessary to incorporate demand uncertainty in inventory

control.

A pioneering study in stochastic inventory control is Scarf (1960), which first

characterised the structure of the optimal control policy for an important class

of inventory problems: the single-item single-stock location problem under fixed

as well as proportional ordering cost, linear holding and penalty costs. Later,

Bookbinder and Tan (1988) proposed new policies for approximating the optimal

inventory control policy in Scarf (1960). (Kilic and Tarim, 2011; Tunc et al.,

2011; Dural-Selcuk et al., 2016) conducted comparison studies on inventory poli-

cies. Thorough literature reviews on the determination of near-optimal policy

parameters were conducted by (Aggarwal, 1974; Yano and Lee, 1995; Ullah and

Parveen, 2010; Glock et al., 2014; Bushuev et al., 2015).

2



Existing approaches in the field of stochastic inventory control present several

drawbacks.

• Loose optimality gaps. Previous research has shown that stochastic inven-

tory control started about sixty years ago, but the computation of opti-

mal policy parameters has not progressed substantially over the past thirty

years. As discussed in Dural-Selcuk et al. (2016), this literature still presents

loose optimality gaps.

• Complexity of implementation. Due to the combinatorial nature of stochas-

tic inventory control, several search-based methods (Bollapragada and Mor-

ton, 1999; Özkaya et al., 2006) were presented in the literature to find near-

optimal policies; these approaches require dedicated code. Although some

easy-to-implement methods have been suggested by (Rossi et al., 2015; Tunc

et al., 2018), most existing studies still require considerable implementation

efforts.

• Lack of widely adaptable methodologies. Most existing methods for stochas-

tic inventory control are ad-hoc, e.g., (Askin, 1981; Bollapragada and Mor-

ton, 1999). Due to loose optimality gaps and complexity of implementation

of existing approaches, researchers are motivated to find other techniques

beyond traditional ad-hoc models. Mathematical programming has been

applied in this field, but relevant studies are very limited.

The goal of this work is therefore to develop near-optimal, easy-to-implement,

and widely adaptable mathematical programming models for tackling stochastic

inventory problems.

Mathematical programming is a widely adopted technique to model complex

decision/optimisation problems. Initially introduced during World War II to op-

timise military operations, it was then transferred to many industries, such as

production planning, airline scheduling, resource allocation, and stock and port-

folio selection. These industries constantly benefit from the application of math-

ematical programming. An important subclass of mathematical programming is

mixed-integer linear programming (MILP). MILP has been successfully applied

in a variety of business areas due to the development of readily available mod-

elling languages and MILP solvers such as GUROBI, IBM ILOG optimisation

studio, and XPRESS Optimizer.

Stochastic programming is a technique for modelling optimisation problems

that involve uncertainty. The goal of stochastic programming is to find a policy

that (i) is feasible for all (or almost all) the possible realisations of uncertain
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parameters of a model, and that (ii) optimises the expectation of some func-

tion of the decisions and the random variables. Traditional methods to compute

lower and upper bounds on the optimal objective value of a stochastic program

are to approximate it by a deterministic problem by leveraging Jensen’s and

Edmundson-Madansky inequalities.

Thesis: mathematical programming based heuristics leveraging Jensen’s and

Edmundson-Madansky inequalities can be used to tackle a wide range of problems

that relax long-standing assumptions in stochastic inventory control; the resulting

models are easier to implement than state-of-the-art approaches.

The results discussed in this work fully support this thesis; these approaches

here presented are:

• novel in terms of modelling method. This work presents new mathemat-

ical programming models that are built upon the application of stochas-

tic programming bounding techniques, including Jensen’s and Edmundson-

Madanski inequalities; it applies these models to solve challenging nonsta-

tionary inventory control problems.

• near optimal. Results hereby discussed include both state-of-the-art ap-

proaches featuring the best optimality gaps in the literature, as well as ap-

proaches that - although they do not fully dominate other existing strategies

- are competitive in terms of cost performance.

• easily implemented using standard off-the-shelf mathematical programming

packages. Unlike other existing approaches in the literature, these methods

can be implemented and solved by using off-the-shelf mathematical pro-

gramming packages, such as IBM ILOG optimisation studio and XPRESS

Optimizer; and do not require tedious computer coding.

• broadly applicable. These modelling approaches relax restrictive assump-

tions in the stochastic inventory control literature thus addressing unex-

plored settings, such as computing near-optimal policy parameters under

nonstationary demand, tackling correlated demand as well as a collection of

time-series-based demand processes, and solving joint replenishment prob-

lem under nonstationary demand.

As discussed above, optimal control of complex inventory systems is becoming

increasingly important. It is necessary to develop novel, near-optimal, and easily

implemented approaches for tackling unexplored settings in the field of stochastic

inventory optimisation. The work presented in this dissertation tries to pursue

4



these objectives.

Topic: This thesis investigates the application of new mathematical program-

ming based approximations leveraging stochastic programming bounding techniques

to a wide range of stochastic inventory control problems. Specifically, it first fo-

cuses on the determination of optimal policy parameters of single-item single-

stocking location nonstationary stochastic inventory problems under Scarf ’s set-

ting. It then relaxes the classical assumption of independence of demand distri-

butions and it investigates the case in which demand is correlated between peri-

ods; the resulting analysis is extended to a collection of time-series-based demand

processes. It finally addresses the case of a multi-item nonstationary inventory

system subject to joint replenishment costs. All the resulting models are easily

modelled and solved using standard off-the-shelf mathematical programming pack-

ages. Extensive computational studies show that these approaches can model and

solve optimisation problems that could not be solved or could not be solved exactly

by other existing approaches.

1.1.2 Structure

The rest of this chapter is structured as follows:

• Section 1.2 first presents background information on inventory control,

then it discusses stochastic dynamic programming, stochastic programming

bounding techniques, piecewise linear approximation techniques, and math-

ematical programming related topics.

• Section 1.3 conducts a comprehensive literature study on stochastic inven-

tory control, and in particular on stochastic inventory control policies; in

addition, this section outlines research gaps in the literature.

• Section 1.4 summarises the content of this thesis, highlights contributions

of this work, and presents respective contributions for each of the following

chapters.

• Section 1.5 discusses future research directions. Specifically, it first discusses

which questions remain open for each of the following chapters, and then

presents possible research areas where modelling methods presented in this

work can be successfully applied.

• Section 1.6 draws conclusions.

5



1.2 Formal background

This section first discusses topics in inventory control (Section 1.2.1), then it pro-

vides the relevant formal background in stochastic dynamic programming (Section

1.2.2), stochastic programming bounding techniques (Section 1.2.3), and piece-

wise linear approximation techniques (Section 1.2.4). Finally, mixed integer linear

programming related topics are discussed (Section 1.2.5).

1.2.1 Inventory control

This section aims at discussing related topics in inventory control based on the

classification in Fig. 1.1. It first discusses the single-item inventory control with

deterministic and stochastic demand in Section 1.2.1.1 and Section 1.2.1.2, and

then briefly introduces topics in multi-item inventory control including determin-

istic and stochastic demand in Section 1.2.1.3 and Section 1.2.1.4.

This section is mainly based on (Silver et al., 1998; Zipkin, 2000; Snyder and

Shen, 2011).

1.2.1.1 Single-item deterministic inventory control

Inventory control is a very popular research area. It is categorised into determin-

istic, where the demand is known, and stochastic, where the demand is unknown

but follows a certain type of distribution, based on the nature of demand. It can

be further classified into continuous and periodic based on the inventory review.

In continuous-review systems, the inventory is continuously monitored, and an

order is placed whenever a certain condition is met; while in periodic-review sys-

tems, the inventory is checked every time period, and an order is placed if the

reorder condition is met. This section presents classical models in the literature

of single-item deterministic inventory control.

There are several measures used to assess the amount of inventory in the

system at any given time. Before detailed discussions, three commonly adopted

measures are introduced.

• On-hand inventory: inventory amount available at the location.

• Backorder: demand that has occurred but has not been satisfied because

of lack of on-hand inventory.

• Inventory level (I): equals to the on-hand inventory, minus the backorder.

If the inventory level is positive, then items are available in stock; otherwise,
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no items on-hand are available and one observes backorders.

EOQ model. The oldest and best-known single-item continuous-review de-

terministic inventory control model is the economic order quantity (EOQ) model,

proposed by Harris (1913). It is assumed that the demand is deterministic and

constant with a rate of λ; backorders are not allowed; orders are received immedi-

ately after being placed. The objective is to determine the optimal order quantity

each time an order is placed to minimise the relevant average cost comprising fixed

and unit ordering costs, and holding costs.

• Fixed ordering cost (K): the cost of placing an order. It is independent

of the order quantity and usually accounts for the administrative fee, the

delivery cost, and so on.

• Unit ordering cost (v): the cost of ordering each unit of the item.

• Holding cost (h): the cost of keeping a unit item in inventory. It includes

the cost of storage space, taxes, insurance, breakage, opportunity cost, and

so on.

Note that, since the total order quantity over the planning horizon is constant

in deterministic inventory control, the total unit ordering costs are constant and

do not affect the optimal replenishment plan. Therefore, for simplicity, the unit

ordering cost is neglected in optimising deterministic inventory control problems.

It is well-known that the optimal solution of the EOQ mode has zero inventory

property (Theorem 1.2.1), and constant order sizes (Theorem 1.2.2), graphically

shown in Fig. 1.2.

Theorem 1.2.1 (Zero inventory property). The optimal replenishment plan of

the EOQ model is to place orders when the inventory level is exactly at zero.

Theorem 1.2.2 (Constant order sizes). If Q is the optimal order size at time 0,

then it will also be the optimal order size every other time an order is placed.

The optimal solution of the EOQ model is given as follows.

Theorem 1.2.3. The optimal order quantity Q∗ in the EOQ model is given by

Q∗ =

√
2Kλ

h
, (1.1)

and the minimised cost per time unit is given by

C̄(Q∗) =
√

2Khλ. (1.2)
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Time horizon

Inventory level (I)

−λ

Figure 1.2: EOQ inventory curve

The optimal order quantity Q∗ and the corresponding minimised cost per

time unit C̄(Q∗) in Theorem 1.2.3 are achieved under assumptions that orders

are received immediately after placing, and backorder is not allowed. However,

these assumptions do usually not hold in business practice. Thus, the classical

EOQ model has been extended to incorporate fixed lead time and backorders.

EOQ with lead time. In practice, it usually takes hours, days, weeks, or even

several months to deliver items from suppliers to customers. The delivery time,

known as lead time (L) in inventory management literature, is classified into fixed

or stochastic. This work only discusses fixed lead time related topics. Literature

on stochastic lead time refers to (Liberatore, 1979; Nasri et al., 1990; Parlar and

Berkin, 1991).

In what follows, terminologies are introduced when considering lead times.

• Outstanding order: the order that has been placed, but not received by the

company at inventory review because of stock inspection, and transporta-

tion.

• Inventory position (IP ): the sum of inventory level and outstanding order.

When the lead time is neglected, the inventory position is equal to the

inventory level.

As shown in Fig. 1.3, the optimal solution of the EOQ model does not change

if the fixed lead time is considered; however, decision makers place orders L time

units before inventory levels reach 0. It is more convenient to express this term

as reorder point (s), which accounts for the demand taking place during lead

time, i.e. s = Lλ. Therefore, the optimal replenishment plan is to place an order

quantity Q∗ (Eq. 1.1) when the inventory level reaches reorder point s, and the

associated minimised cost per time unit is C̄(Q∗) (Eq. 1.2).
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Figure 1.3: Inventory curve of EOQ with lead time

EOQ with backorders. When backorders are allowed in the EOQ model,

since demand is constant and deterministic, the number of backorders in every

replenishment cycle is the same.

Let x represent the fraction of demand that is backordered. The penalty cost

is incurred for every unit unsatisfied demand.

• Penalty cost (b): the cost of not having sufficient inventory to meet customer

demand. If the excess demand is backordered, the penalty cost includes

bookkeeping costs, delay costs, and the loss of goodwill. If excess demand

is lost, the penalty cost also includes the lost profit from the missed sale.

The goal is to find the optimal replenishment plan to minimise the total average

cost consisting of fixed ordering costs, holding costs, and penalty costs. The

optimal solution of EOQ with backorders are given in Theorem 1.2.4.

Theorem 1.2.4. The optimal solution of the EOQ model with backorders is,

Q∗ =

√
2Kλ(h+ b)

hb
, (1.3)

x∗ =
h

h+ b
, (1.4)

C̄(Q∗, x∗) =

√
2Kλhb

h+ b
. (1.5)

The cost C̄(Q∗, x∗) in Eq. (1.5) is smaller than or equal to C̄(Q∗) in Eq. (1.2),

since the classical EOQ is a special case of EOQ with backorders in which x = 0.

Additionally, the optimal order quantity Q∗ in Eq. (1.3) is greater than that in

Eq. (1.1), since placing larger orders in the EOQ with backorders does not require

to carry quite as much inventory as it does in the classical EOQ. Therefore, the

EOQ with backorders offers extra flexibility which allows placing larger orders.
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As discussed above, the classical EOQ model and its variants assume constant

demand in continuous-review inventory systems. However, the demand usually

varies in different time periods in practice, which motivated extensive studies in

the determination of optimal ordering plans in time-varying inventory systems.

The inventory is checked at the end of each time period, and the replenishment

is made at the beginning of a time period if a certain condition is met. The rest

of this section surveys two well-known models — the Wagner-Whitin model and

Silver-Meal heuristic — for determining the optimal replenishment plan under

time-varying demand.

The Wagner-Whitin model. The Wagner-Whitin model (Wagner and Whitin,

1958) is one of the most famous periodic review inventory models under time-

varying demand. Consider a T -period planning horizon, let dt represent the

demand rate of period t, t = 1, . . . , T . At the beginning of each time period,

the fixed ordering cost K and the unit ordering cost v are incurred if an order is

placed. At the end of each time period, the holding cost h is charged for every

unit in stock. Backorders are not allowed. Note that the unit ordering cost is

neglected since it is a constant.

Additionally, since orders are issued and delivered immediately, similar to the

EOQ model, the optimal solution has the zero inventory property (Theorem 1.2.1).

Therefore, the problem of deciding when and how much to order is equivalent to

determine in which periods to order, and the optimal order quantity is the toal

demand between two consecutive orders.

Let Ct represent the minimised total cost over periods t, . . . , T given an order

is placed at the beginning of period t. Then, Ct is defined recursively in terms of

Cj for later period j, j = t, . . . , T + 1,

Ct = min
t<j≤T+1

{K + h

j−1∑
i=t

(i− t)di + Cj}, (1.6)

where the boundary CT+1 = 0. Note that the first two terms inside the braces

account for the total cost incurred over periods t, . . . , j − 1 given an order is

placed in period t; the last term Cj accounts the cost over periods j, . . . , T when

an order is placed in period j.

The Wagner-Whitin algorithm is basically a dynamic programming algorithm

(discussed in Section 1.2.2), equivalent to finding the shortest path through the

network with T + 1 nodes in which each node represent a time period and an

arc from period t to period j represents ordering in period t to satisfy demand
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of periods t, t + 1, . . . , j − 1. The shortest path reformulation has been widely

adopted in tackling inventory problems, e.g., (Brahimi et al., 2006; Tarim et al.,

2011).

Example. Consider a 4-period example, the demand of each period dt is

20, 40, 60, and 40, fixed ordering cost K = 100, and holding cost h = 1. By

solving Wagner-Whitin model, the optimal replenishment plan is to order in

period 1 and 3, order quantities 60 and 100, respectively, and the minimised total

cost is 280.

Silver-Meal heuristic. Although the Wagner-Whitin algorithm provides the

optimal replenishment plan, it has some drawbacks from the practitioners point

of view, such as the considerable computational effort, the complex nature of the

algorithm, and additional assumptions. In this regard, Silver and Meal (1973)

proposed a simple variant of the basic EOQ which is commonly adopted in prac-

tice.

Let C̄t,j represent the average cost per period over periods t, . . . , t+j assuming

that an order is placed at the beginning of period t to cover demand in the next

j periods. The optimal replenishment period length j is obtained if C̄t,t+j−1 <

C̄t,t+j. The optimal order quantity Q∗ is the demand convolution over periods

t, . . . , t+ j − 1, i.e.: Q∗ = dt + · · ·+ dt+j−1.

Note that this method only guarantees a local minimum of the average cost

per time unit for the current replenishment. Since the search procedure is stopped

with the first increase in costs per time unit, it is possible to find larger values

of j that yield lower costs per time unit. A computational study in Baker (1989)

indicated that the Silver-Meal heuristic incurs an average cost penalty for using

the heuristic instead of the Wagner-Whitin algorithm of less than 1%. However,

computational experiments in Blackburn and Millen (1980) on a rolling horizon

setting revealed that the Silver-Meal heuristic outperforms the Wagner-Whitin

algorithm.

Example. Consider again the 4-period example of Wagner-Whitin method,

the demand of each period dt is 20, 40, 60, and 40, fixed ordering cost K = 100,

and holding cost h = 1. By adopting the Silver-Meal heuristic, the optimal

replenishment plan is to order in period 1 and 3, order quantities 60 and 100, and

the associated total cost is 280.

For an overview of literature on deterministic inventory control refers to (Silver,

1981; Pentico and Drake, 2011; Drake and Marley, 2014), recent developments

refer to (Cobb, 2016; Dobson et al., 2017; Pervin et al., 2018).
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1.2.1.2 Single-item stochastic inventory control

Early works in the literature of inventory control generally assume that the de-

mand is deterministic, as the EOQ model and its variants, the Wagner-Whitin

algorithm, and the Silver-Meal heuristic discussed in Section 1.2.1.1. However,

in business practice, demand arrives at random, which motivated extensive re-

search in coping demand uncertainty with inventory control, namely stochastic

inventory control.

A key concept in stochastic inventory control is a policy, which is basically

a rule that provides solutions to an inventory problem. When using policies, a

policy should be chosen first and then solving the inventory problem is to calculate

the policy parameters. This dissertation discusses the (s,Q) policy, the base-stock

policy, and the (s, S), (R,Q), and (R, S) policies proposed by Bookbinder and

Tan (1988).

Before detailed discussions, there are two important terminologies introduced

in stochastic inventory control.

• Cycle stock: the amount of on-hand stock which is used to satisfy the

expected demand.

• Safety stock: the extra inventory on-hand to buffer against demand uncer-

tainty.

(s,Q) policy. This continuous review policy features two control parameters:

reorder point s and order quantity Q. Under this policy, decision makers place

an order of size Q whenever the inventory position falls below the reorder point

s, as shown in Fig. 1.4. It should be noted that the inventory position, rather

than the inventory level, is used to trigger an order. This is because the inventory

position includes the outstanding order and it takes proper account of the material

requested but not yet received.

Base-stock policy. The base-stock policy is also known as the order-up-to

policy. It is widely adopted in both continuous and periodic inventory review

systems. However, this dissertation only discusses its application in the periodic

inventory review system. Under this policy, decision makers observe the current

inventory position at the beginning of each time period t and then place an order

to bring the inventory position up to St, where St is a constant and known as the

base-stock level (Fig. 1.5).

Newsvendor problem. The newsvendor problem is one of the classic issues

in the stochastic inventory optimisation (Arrow et al., 1951; Dvoretzky et al.,
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Figure 1.4: The inventory level (Ĩ) and inventory position ( ˜IP ) curve under a
(s,Q) policy

Figure 1.5: The inventory position ( ˜IP t) and inventory level (Ĩt) curves under a
base-stock policy

1952). Key insights stemming from an analysis of this problem have wide-ranging

implications from managing inventory decisions for organisations in, for example,

the airline, and fashion goods industries.

The newsvendor problem is the problem faced by a news vendor who needs

to order newspapers in the early morning. A unit ordering cost is charged with

buying newspaper from suppliers; revenue is received for selling each piece of

newspaper. At the end of the day, a salvage value is received of selling unsold

newspapers back to the supplier. If the newsvendor orders too many, some news-

papers will have to be scrapped at the end of the day. If the newsvendor does

not order enough newspapers, some customer need will not be satisfied and profit

will be lost. The goal is to find the optimal number of newspapers to order that
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will maximise the expected profit given that the demand is uncertain.

As usual, let h and b represent the holding cost and penalty cost. In the

newsvendor problem, the holding cost h typically consists of the purchase cost

of each unit, minus any salvage value, but may also include other costs, such

as processing costs. Note that since inventory cannot be carried to the next

period, this cost is not technically a holding cost, although this work will refer

to it this way. Similarly, the penalty cost consists of the selling price, minus the

unit ordering cost. Therefore, the goal of the original newsvendor problem is

equivalent to finding the optimal order quantity that minimises the total cost,

this is equivalent to the more optimistic view of maximising profit.

It is assumed that demand d is a random variable defined by the distribution

function g(d) and cumulative distribution function G(d) with estimates of the

parameters of the distribution. Let C(Q) represent the expected total cost at the

end of the day with order quantity Q at the beginning of the day. Thus, C(Q)

can be formulated as,

C(Q) = h · E[max(Q− d, 0)] + b · E[max(d−Q, 0)]

= h

∫ Q

0

(Q− d)g(d)d(d) + b

∫ ∞
Q

(d−Q)g(d)d(d). (1.7)

Consider a random variable ω and a scalar variable x . The first order loss

function L(x, ω) is defined as,

L(x, ω) =

∫ +∞

x

(t− x)gω(t)d(t), (1.8)

and its complementary function L̂(x, ω) is defined as,

L̂(x, ω) =

∫ x

−∞
(x− t)gω(t)d(t). (1.9)

Therefore, Eq. (1.7) can be written as follows, by means of the first order loss

function and its complementary function,

C(Q) = hL̂(Q, d) + bL(Q, d). (1.10)

Consider a continuous distribution for d, the optimal quantity Q∗ is obtained

by taking the first order derivative of C(Q) and setting it to zero. Note that

C(Q) is convex since L̂(Q, d)and L(Q, d) are convex, which guarantees C(Q∗) is

a global minimum. This also can be done by checking the second order derivative
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is non-negative.

Theorem 1.2.5. The optimal order quantity Q∗ of the Newsvendor problem is

given by

Q∗ = G−1(
b

h+ b
). (1.11)

The ratio b
h+b

is known as α service level, i.e., the probability to satisfy cus-

tomer demand without facing any backorders or lost sales. In business practice,

decision makers often pre-define a service level and then compute the optimal

order quantity accordingly. The optimal order quantity Q∗ in the Newsvendor

problem can be interpreted as the minimum number of newspapers to satisfy all

customers with probability 100α%

This seminal problem in stochastic inventory control provides useful intuition

and a useful decision-making tool, especially, in balancing the holding cost and

the penalty cost. In what follows, this dissertation considers a special case of the

Newsvendor problem where the demand is normally distributed.

Normal demand distribution. Let d be a normally distributed random vari-

able, d ∼ N (µ, σ), with probability density function φ(·) and cumulative density

function Φ(·). Let zα denote the αth fractile of the standard normal distribution,

i.e., zα = Φ−1(α). According to Theorem 1.2.5, the optimal order quantity is,

Q∗ = Φ−1(
b

h+ b
)

= µ+ zασ. (1.12)

The first term µ in Eq. (1.12) represents the cycle stock which is used to meet

the expected demand; the second term zασ can be interpreted as the safety stock

which is to buffer against demand uncertainty. It is clear that the Newsvendor

problem is a special case of a base-stock policy where the inventory level in the

early morning of that day is zero.

Example. This work illustrates concepts introduced above on the following

example. It is assumed that d ∼ N (100, 20), h = 0.2, and b = 0.8. By apply-

ing Eq. (1.12), to obtain the optimal order quantity is 117, and the associated

expected total cost is 16.

In what follows, the single-period Newsvendor problem is extended to multi-

period where the inventory leftover will be carried to the next time period. The

(s, S), (R,Q), and (R, S) policies originally introduced in Bookbinder and Tan
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(1988) are presented in the rest of this section to effectively tackle this class of

stochastic inventory problems.

(s, S) policy. Under this periodic-review policy, the reorder point st, and order-

up-to position St are fixed for each period t at the beginning of the planning

horizon. Decision makers order up to St if the inventory position at the beginning

of period t is less than the reorder point st (Fig. 1.6).

Figure 1.6: The expected inventory position curve under (s, S) policy

Policy optimality. Consider a dynamic problem where the ordering cost con-

sists of fixed and unit ordering costs, and holding and penalty costs are linear.

Scarf (1960) proved the optimal policy for this class of problem is always of the

(s, S) type.

Let c(Qt) represent the ordering cost of period t, t = 1, . . . , T , with order

quantity Qt,

c(Qt) =

K + c Qt, Qt > 0

0, Qt = 0.

Let Ct(It−1) denote the minimised expected total cost of period t given opening

inventory It−1,

Ct(It−1) = min
Qt

{
c(Qt) + hL̂(It−1 +Qt, dt) + bL(It−1 +Qt, dt)

+ E[Ct+1(It−1 +Qt − dt)]
}
, (1.13)

where “E” represents the expectation operator, and the boundary condition

CT (IT−1) = min
QT

{
c(QT ) + hL̂(IT−1 +QT , dT ) + bL(IT−1 +QT , dT )

}
. (1.14)

17



Scarf (1960) proved the optimality of the (s, S) policy based on the study of

the function

Gt(y) = cy + hL̂(y, dt) + bL(y, dt) + E[Ct+1(y − dt)], (1.15)

where y is the inventory level immediately after an order is received.

In order to demonstrate the optimality of the (s, S) policy, the following def-

inition and lemmas are introduced.

Definition 1.2.1 (K-convexity (Scarf, 1960)). Let K ≥ 0, then f(x) is K-convex

if

K + f(a+ x)− f(x)− a
{f(x)− f(x− b)

b

}
≥ 0,

for all positive a, b and x.

Lemma 1.2.6. Let f be a continuous, K-convex function. Let S∗ be its smallest

global minimizer and s∗ be the largest x ≤ S∗ such that f(x) = f(S∗) +K.

Lemma 1.2.7. The following properties were introduced in Scarf (1960):

• 0-convexity is equivalent to ordinary convexity.

• If f(x) is K-convex, then f(x+ ε) is K-convex for all constants ε.

• If f and g are K-convex and M-convex respectively, then αf + βg is (αK +

βM)-convex when α and β are positive.

Scarf’s proof can be briefly described as follows. According to Lemma 1.2.7,

firstly, the boundary GT (y) = cy + hL̂(y, dT ) + bL(y, dT ) is convex since every

element on the right-hand-side is K-convex; then, the boundary CT (IT−1) =

minQt{−cIT−1 + GT (IT−1)} is K-convex; Scarf recursively proved that GT−1(y),

CT−1(IT−2),. . . , Gt(y) are K-convex. By applying Lemma 1.2.6, there exists a

S∗ minimising Gt(S
∗), and a unique s ≤ S∗ such that Gt(s) = Gt(S

∗) + K.

Therefore,

Ct(It−1) =

−cIt−1 +Gt(It−1), s ≤ It−1 ≤ S∗

−cIt−1 +Gt(S
∗) +K, 0 ≤ It−1 < s.

(1.16)

This is sufficient to demonstrate the K-convexity of Ct(It−1) (Fig. 1.7).

Although Scarf (1960) proved the optimality of the (s, S) policy, only two

approaches (Askin, 1981; Bollapragada and Morton, 1999) are currently available
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in the literature for computing optimal policy parameters. A recent study Dural-

Selcuk et al. (2016) shows that these existing studies yield fairly wide optimality

gaps in terms of cost performance. To fill this gap in the literature, this work

presents models that substantially improve existing optimality gaps; this will be

discussed in Chapter 2 (Paper I).

(R,Q) policy. This policy features two control parameters: time interval between

two consecutive replenishmentsR, and quantity of replenishmentQ. By operating

under this policy, the replenishment period t and the corresponding order quantity

Qt are fixed at the beginning of the planning horizon. At the beginning of each

replenishment period t, decision makers place an order with ordering quantity Qt

(Fig. 1.8).

Figure 1.8: The inventory position curve under the (R,Q) policy

Under the (s, S) policy, the inventory position is checked at the beginning of

each period, but the actual order quantity is decided when the opening inventory
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position is realised. The (R,Q) policy requires decision makers to determine the

size and timing of replenishment at the beginning of the planning horizon.

(R, S) policy. Under this policy, the replenishment cycle length R, and order-up-

to position S, are determined at the beginning of the planning horizon. Decision

makers order up to St at the beginning of replenishment period t (Fig. 1.9).

Figure 1.9: The inventory position curve under the (R, S) policy

The static (R,Q) policy is not sufficiently flexible; while the dynamic (s, S)

policy suffers from “nervousness” of control action (Kilic and Tarim, 2011; Tunc

et al., 2013); the (R, S) policy features characteristics of both the (R,Q) and

(s, S) policies, i.e., the timing of replenishment is pre-fixed, while the actual

replenishment quantity depends on demand realisation.

The (s, S) policy has been proved to be optimal for a dynamic problem where the

ordering cost consists of fixed and unit ordering costs, and holding and penalty

costs are linear, provided that we set the parameters of that policy optimally

(Scarf, 1960). The (R, S) policy has been showed to have the potential to replace

the cost-optimal (s, S) policy for systems with limited flexibility (Kilic and Tarim,

2011). Moreover, it has advantages in organising joint replenishment and ship-

ment consolidation (Tempelmeier, 2013; Silver et al., 1998; Relvas et al., 2013).

The (R,Q) policy is appealing in material requirement planning systems, for

which order synchronisation is a key concern (Kilic and Tarim, 2011).

Additionally, the demand also can be classified into independent and dependent in

stochastic inventory management literature. Above discussions generally assume

that the demand is independent identically distributed with known distribution

parameters, such as normal distribution, and Poisson distribution. However,

Song and Zipkin (1993) pointed out that environmental factors, such as economic
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conditions, market conditions, and any exogenous conditions, have significant

effects on the demand for a product, the supply, and the cost structure. In

this regard, many studies on dependent demand processes have emerged, e.g.,

(Iglehart, 1962; Sethi and Cheng, 1997; Johnson and Thompson, 1975; Dong and

Lee, 2003; Carrizosa et al., 2016).

Literature on dependent demand can be further divided into four categories:

Markov-modulated, time-series-based, stock-dependent, and time-proportional.

This work is limited to model the dependent demand as time-series-based pro-

cesses, such as Autoregressive (AR), Moving average regressive (MA), autoregres-

sive Moving-Average regressive (ARMA), and Autoregressive with autoregressive

conditional heteroskedasticity (AR-ARCH) processes; these processes are fur-

ther discussed in Chapter 3 (Paper II). Literature on Markov-modulated demand

refers to (Fabens and Karlin, 1960; Iglehart, 1962; Song and Zipkin, 1993), stock-

dependent demand refers to (Padmanabhan and Vrat, 1995; Hou, 2006; Wu et al.,

2006), and time-proportional demand refers to (Silver, 1979; Xu and Wang, 1990;

Datta and Pal, 1991).

1.2.1.3 Multi-item deterministic inventory control

This section discusses related topics in multi-item inventory control. It can be

divided into single-echelon where items are held in stock at the same location,

and they share a common supplier or mode of transportation, and multi-echelon

where items are held in stock at different locations. The inventory control of the

single-echelon system focuses on determining the appropriate inventory for each

individual unit within the supply chain; while that of the multi-echelon system

aims at managing inventories across the entire supply chain, where inventories

at each echelon of the supply chain have an impact on the required inventories

at different echelons. The focus of this work on the single-echelon multi-item

inventory problem, particularly, joint replenishment problem (JRP); multi-echelon

inventory problems could refer to (Silver et al., 1998; Zipkin, 2000).

Regarding the JRP, every time a group order is placed, the group fixed or-

dering cost K is incurred regardless the number of items replenished. Moreover,

there are also item-specific fixed ordering costs kn that are charged whenever an

item is included in a replenishment order. The goal of the JRP is to determine the

optimal inventory replenishment plan minimising the total cost of replenishing

multiple items.

EOQ with multiple items. Consider the N -item JRP with constant demand
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(Fig. 1.10), all assumptions behind the derivation of the single-item EOQ are

retained, except that coordination of items is allowed to reduce ordering costs.

Let T denote the group cycle time, and mnT denote the cycle time of item n,

where mn is an integer multiplier, and n = 1, . . . , N . That is item n will be

replenished every mn replenishment of the group. Thus, the order quantity Qn

for item n is λnmnT . The average inventory level of item n is λnmnT
2

. Therefore,

the total cost per unit time is given by

C(T,mn) =
K +

∑N
n=1

kn
mn

T
+ h

N∑
n=1

λnmnT

2
. (1.17)

Time

Inventory level

Item 1

Time

Inventory level

Item 2

Figure 1.10: Two-item EOQ inventory curve

Arkin et al. (1989) proved that the JRP is an NP-hard problem even under de-

terministic demand. Therefore, it is unlikely that there exists a polynomial time

algorithm to solve this problem. Algorithms and heuristics for solving determinis-

tic JRP are discussed in (Silver, 1976; Kaspi and Rosenblatt, 1983; Viswanathan,

1996; Fung and Ma, 2001; Viswanathan, 2002).
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1.2.1.4 Multi-item stochastic inventory control

In the deterministic joint replenishment inventory system, demand for each indi-

vidual item is known to be constant. The problem is to determine the length of

replenishment cycles, and the optimal order quantity of each item which is the

total demand until the next replenishment arrives. In the stochastic joint replen-

ishment inventory system the demand for individual items is unknown but follows

a certain type of distribution. The problem is to decide the optimal parameters of

a given inventory policy. The focus of Chapter 4 (paper III) will be this problem.

This section introduces existing policies in the literature of stochastic JRPs.

(s, c, S) policy. This continuous review policy was introduced by Balintfy (1964).

It features three control parameters: reorder point s, can-order level c, and order-

up-to position S. Under this policy, When the inventory position of an item i

crosses si, a replenishment order is triggered to raise its inventory position to Si;

meanwhile, any other item j with an inventory position at or below its can-order

point, cj(sj < cj < Sj), is also included in the replenishment, raising its inventory

position to Sj.

(Q,S) policy. This continuous review policy was first proposed by Renberg and

Planche (1967). By operating under this policy, whenever the total inventory

position drops to the group reorder point, an order is placed to raise the inventory

position of each item to item-specific order-up-to position S. The combined order

quantity is Q, and the group reorder point is reached when the combined demand

reaches Q.

Q(s, S) policy. This continuous review policy is proposed by (Nielsen and Larsen,

2005). By operating under this policy, the total inventory position is continuously

evaluated while item-specific inventory positions are reviewed only when the total

consumption since the last order reaches Q. Then, every item with inventory

position less than or equal to its respective reorder point s is ordered up to level

S.

(Q,S, T ) policy. This continuous review policy is proposed by Özkaya et al.

(2006). Under this policy, decision makers raise the inventory position of each

item n to its order-up-to position Sn whenever a total of Q demand accumulated

or T time units have elapsed, whichever occurs first.

(σ, ~S) policy. Under this periodic review policy, decision makers order up to ~S

if opening inventory levels ~I ∈ σ and ~I ≤ ~S (~S ∈ RN , N represents the number
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of items); and do not to order, otherwise. The definition of σ is general; its shape

and properties are literately unknown. There is no guarantee of σ by convex, or

even connected.

Optimality of (σ, ~S) policy. Since the landmark study of Scarf (1960) which

proved the optimality of the (s, S) policy for the single-item inventory system,

there have been few attempts to prove the optimality for multi-item inventory

systems. Gallego and Sethi (2005) gave the general definition of K-convexity in

RN , and developed properties of K-convex functions which provide solutions to

JRPs with the cases of both joint setup and individual setup costs.

Definition 1.2.2. Function f(·) : RN → R is K-convex if

f(ax+ (1− a)z) ≤ af(x) + (1− a)[f(z) + Kδ(z − x)],

where x ≤ z, a ∈ [0, 1], and Kδ(z − x) is defined as follows,

Kδ(z − x) = Kδ(e′x) +
N∑
n=1

knδ(xn),

where e′ = (1, 1, · · · , 1)′ ∈ RN , δ(0) = 0, and δ(y) = 1 for all y > 0.

Gallego and Sethi (2005) derived the optimal policy for the joint setup cost

case by studying function

Gt(~y) = hL̂(~y, ~dt) + bL(~y, ~dt) + E[Ct+1(~y − ~dt)], (1.18)

where vector ~y = (y1, . . . , yN), and ~dt = (d1
t , . . . , d

N
t )].

Consider a continuous K-convex function Gt(·), then it has global minimum

at ~St. Define set Σ = {~It−1 ≤ ~St|Gt(~It−1) ≤ Gt(~St) + K}, and set σ = {~It−1 ≤
~St|~It−1 /∈ Σ}. Then, the optimal replenish plan is to order up to ~St if opening

inventory levels ~It−1 ∈ σ and ~It−1 ≤ ~St; and not to order, otherwise (Gallego and

Sethi, 2005).

Due to the complexity of the (σ, ~S) policy, the computation of optimal policy

parameters has not been developed. This work shows that new mathematical

programming based models can be used to determine whether a given initial

inventory level ~I0 belongs to σ. Details refer to Chapter 4 (Paper III).

Example. The following two-item example illustrates concepts discussed

above. Consider an instance in which the group fixed ordering cost is K = 10,

the item-specific ordering cost k is 0, the holding cost is h = 1, the stock-out

24



penalty cost is p = 5. The inventory is controlled for two items over a planning

horizon of T = 4 periods. Let dnt denote the random demand for item n in period

t, which follows a Poisson distribution with rate λnt ; where λ1
t = λ2

t = 3, 6, 9, 6.

Assuming the initial inventory level ~I1
0 ∈ {0, . . . , 6}, and ~I2

0 ∈ {0, . . . , 6}. The

set σ and Σ are plotted in Fig. 1.11. The optimal policy is to place an order up

to ~S = (5, 5) whenever the inventory level vector ~I0 = (I1
0 , I

2
0 ) falls in set σ, and

not to place an order if ~I0 falls in set Σ.

Figure 1.11: Plot of (σ, ~S) policy

(R, T ) policy. Atkins and Iyogun (1988) proposed two periodic-review (R, T )-

type policies, namely periodic policy P and modified periodic policy MP , which

differ only in the way ordering periods Tn are determined. Under this policy,

every Tn periods, the inventory position of item n is raised to Rn. Note that

this policy is equivalent to previous introduced (R, S) policy when the demand

is stationary. Details refer to Chapter 4 (Paper III).

P (s, S) policy. Viswanathan (1997) proposed the periodic-review P (s, S) pol-

icy, in which the inventory position of each item is reviewed at every fixed and

constant time interval. At each review time, the (s, S) policy is applied to each

item, so that any item with inventory position at or below s is ordered up to S.

For a thorough review of literature on the joint replenishment problem re-

fer to (Silver and Peterson, 1985; Goyal and Satir, 1989; Van Eijs et al., 1992;

Khouja and Goyal, 2008; Bastos et al., 2017). Even though various inventory

control policies and methods for computing their parameters were proposed in
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the literature, they could only tackle stationary demand. Chapter 4 (Paper III)

introduces the first model to capture nonstationary demand.

1.2.2 Stochastic dynamic programming

This section presents stochastic dynamic programming (SDP) which is used as a

benchmark for tackling stochastic inventory problems in this dissertation. The

discussion is mainly based on Bellman (1966).

The aim of SDP is to determine a policy that minimises the expected total

cost incurred over a given planning horizon for a stochastic optimisation problem.

Consider a discrete system defined on T stages in which each stage t = 1, . . . , T

is characterised by,

• state, xt ∈ Xt, where Xt is a finite set of feasible states at the beginning of

stage t;

• action, at ∈ At, where At is a finite set of feasible actions at the beginning

of stage t given state xt;

• expected immediate cost, gt(xt, at), represents the cost at the end of stage t

given state xt and action at;

• transition probability, Pr(xt+1|xt, at), denotes the probability that leads the

system to state xt+1 given state xt and action at;

• objective function, ft(yt), represents the optimal expected total cost ob-

tained by following an optimal policy over stages t, . . . , T given state yt. It

takes the following form,

ft(yt) = min
at∈At
{gt(yt, at) +

∑
yt+1∈Xt+1

Pr(yt+1|yt, at)ft+1(yt+1)}, (1.19)

and

fT (yT ) = min
aT∈AT

{gT (yT , aT )} (1.20)

represents the boundary condition of the system.

SDP is a general method aiming at solving stochastic optimisation problems.

It is broadly used in operations research, as many of the problems faced in this

field deal with decision making under uncertainty. It guarantees an optimal so-

lution. However, it is computationally inefficient due to the so-called “curse of
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dimensionality” (Bellman and Dreyfus, 2015). To overcome this limitation, sev-

eral approximations of SDP have been discussed in (Si et al., 2004; Powell, 2007,

2009).

1.2.3 Stochastic programming bounding techniques

Stochastic programming is a widely used approach for modelling optimisation

problems that involve uncertainty. This section presents stochastic programming

and its bounding techniques—Jensen’s lower bound and Edmundson-Madansky

upper bound, which can be used to construct piecewise linear approximations.

This section is mainly based on (Birge and Louveaux, 2011; Kall et al., 1994).

Similar to SDP, recall that gt(xt, at) denotes the expected immediate cost of

stage t given state xt and action at. Then, a T -stage stochastic programming can

be written in the following general formulation,

min
T∑
t=1

gt(xt, at), (1.21)

where state xt follows the transition function xt+1 = F π(xt, at,Wt+1), and Wt+1

represents the realised exogenous information at the beginning of t+ 1.

The traditional method to compute lower and upper bounds on the optimal

objective values of a stochastic program is to formulate a deterministic problem

by replacing all the random variable by their expected values and to use bounding

techniques — Jensen’s lower bound and Edmundson-Madansky upper bound.

Jensen’s lower bound. Consider a convex function φ(ζ) defined on support

Ω = [a, b]. This function can be bounded from below by a linear function L(ζ)

(Theorem 1.2.8), as shown in Fig. 1.12. Additionally, the best lower bound is

tangent to φ(ζ) at point E[ζ] (Kall et al., 1994).

Theorem 1.2.8. If φ(ζ) is convex, then

E[φ(ζ)] ≥ φ(E[ζ]).

Edmundson-Madansky upper bound. Consider a convex function φ(ζ) de-

fined on support Ω = [a, b], and a linear function U(ζ) between the two points

(a, φ(a)) and (b, φ(b)), as shown in Fig. 1.12. This linear function U(ζ) is an
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Figure 1.12: The Jensen’s lower bound and the Edmundson-Madansky upper
bound in a stochastic minimization problem.

upper bound of function φ(ζ) and can be represented by

U(ζ) =
φ(b)− φ(a)

b− a
ζ +

b

b− a
φ(a)− a

b− a
φ(b).

Jensen’s lower bound and Edmundson-Madansky upper bound are common

approaches for approximating the objective values of a stochastic program. One

way to visualise this lower bound is to assume that the probability distribution

in the problem is replaced by a degenerate distribution that put mass only on

the expected values of the random variables. The Edmundson-Madansky upper

bound is obtained by replacing the probability distribution in the problem with

two point distributions that put mass only on the extreme points of the support

of the random variables. These bounding techniques have been extended to many

dimensions (Frauendorfer, 1996; Kuhn, 2006; Natarajan and Teo, 2017).

1.2.4 Piecewise linear approximation technique

This section applies stochastic programming bounding techniques—Jensen’s lower

bound and Edmundson-Madanski upper bound, to approximate the first order

and its complementary function by piecewise linear functions.

This section is mainly based on Rossi et al. (2014).

Recall the first order loss function

L(x, ω) =

∫ +∞

x

(t− x)gω(t)d(t)
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and its complementary function

L̂(x, ω) =

∫ x

−∞
(x− t)gω(t)d(t),

they have a close relationship.

Lemma 1.2.9. The first order loss function L(x, ω) can be expressed as

L(x, ω) = L̂(x, ω)− (x− ω̃), (1.22)

where ω̃ denotes the expected value of random variable ω.

In what follows, this work presents lower bounds of L(x, ω) and L̂(x, ω) by

using Jensen’s inequality (Theorem 1.2.8).

Consider a partition of the support Ω of ω into W disjointed compact subre-

gions Ω1, . . . ,ΩW . Let gω(·) represent the probability density function of ω. This

work defines, for i = 1, . . . ,W ,

pi = Pr{ω ∈ Ωi} =

∫
Ωi

gω(t)dt,

and

E[ω|Ωi] =
1

pi

∫
Ωi

tgω(t)dt.

Let L̂lb(x, ω) denote the lower bound of the complementary of the first order

loss function L̂(x, ω), by applying Theorem 1.2.8,

L̂lb(x, ω) =
W∑
i=1

pi max(x− E[ω|Ωi], 0). (1.23)

This function is equivalent to

L̂lb(x, ω) =


0 −∞ ≤ x ≤ E[ω|Ω1]

p1x− p1E[ω|Ω1] E[ω|Ω1] ≤ x ≤ E[ω|Ω2]

(p1 + p2)x− (p1E[ω|Ω1] + p2E[ω|Ω2]) E[ω|Ω2] ≤ x ≤ E[ω|Ω3]

· · · · · ·

(p1 + p2 + . . .+ pW )x− (p1E[ω|Ω1] + p2E[ω|Ω2] + . . .+ pWE[ω|ΩW ]) E[ω|ΩW ] ≤ x ≤ +∞

(1.24)

which is piecewise linear in x with breakpoints at E[ω|Ω1],E[ω|Ω2], . . . ,E[ω|ΩW ].
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Lemma 1.2.10. Consider the i-th segment of L̂lb(x, ω)

L̂ilb(x, ω) = x
i∑

k=1

pk −
i∑

k=1

pkE[ω|Ωk] E[ω|Ωi] ≤ x ≤ E[ω|Ωi+1], (1.25)

where i = 1, . . . ,W , and the 0-th segment is x = 0, −∞ ≤ x ≤ E[ω|Ω1].

Lemma 1.2.11. The i-th segment of Llb(x, ω) can be written as Eq. (1.26), by

applying Lemma 1.2.9,

Lilb(x, ω) = x

i∑
k=1

pk −
i∑

k=1

pkE[ω|Ωk]− (x− ω̃) E[ω|Ωi] ≤ x ≤ E[ω|Ωi+1],

(1.26)

where i = 1, . . . ,W , and the 0-th segment is x = 0, −∞ ≤ x ≤ E[ω|Ω1].

L̂lb(x, ω) and Llb(x, ω) are direct applications of Jensen’s inequality. This

section next presents upper bounds of L̂(x, ω) and L(x, ω). A piecewise linear

upper bound, i.e. Edmundson-Madanski’s bound, can be obtained by shifting

the lower bound up by a value eW in Lemma 1.2.10 and Lemma 1.2.11.

Lemma 1.2.12. Consider the upper bound of L̂(x, ω).

L̂ub(x, ω) =
W∑
i=1

pi max(x− E[ω|Ωi], 0) + eW (1.27)

is a piecewise linear function with W+1 segments. The i-the segment of L̂ub(x, ω)

is

L̂iub(x, ω) =
i∑

k=1

pk −
i∑

k=1

pkE[ω|Ωk] + eW E[ω|Ωi] ≤ x ≤ E[ω|Ωi+1], (1.28)

where i = 1, . . . ,W , and the 0-th segment is x = eW , −∞ ≤ x ≤ E[ω|Ω1].

Lemma 1.2.13. The i-th segment of Lub(x, ω) can be written as, by applying

Lemma 1.2.9,

Liub(x, ω) =
i∑

k=1

pk −
i∑

k=1

pkE[ω|Ωk]− (x− ω̃) + eW E[ω|Ωi] ≤ x ≤ E[ω|Ωi+1],

(1.29)

where i = 1, . . . ,W , and the 0-th segment is x = eW , −∞ ≤ x ≤ E[ω|Ω1].
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Having established the above results, one must decide how to partition the

support Ω of ω in order to obtain good bounds. Rossi et al. (2015) proposed a

simple and effective approach, which splits the support Ω into W disjoint regions

with uniform probability mass, pi = Pr{ω ∈ Ωi} = 1
W

, i = 1, . . . ,W . Once

the probabilities pi are fixed, E[ω|Ωi] is uniquely determined. The maximum

approximation error eW is attained at one of the breakpoints of its piecewise

linear approximation.

Piecewise linear approximation in normal distribution. Consider a special

case of the standard normally distributed random variable Z. The piecewise linear

approximation of Z can be easily extended to the general case of a normally

distributed variable ζ with mean µ and standard deviation σ via the following

lemma.

Lemma 1.2.14. L̂(x, ζ) can be expressed in terms of the standard normal cumu-

lative distribution function as

L̂(x, ζ) = σ

∫ x−µ
σ

−∞
Φ(x)dt = σL̂(

x− µ
σ

, Z). (1.30)

Example. Consider a standard normal random variable Z, the support Ω =

[−∞,+∞] of Z is partitioned into two segments. The probability mass p1 = 0.5,

the breakpoint E[Z|Ω1] = 0, and the maximum approximation error eW = 1√
2π

are

obtained. This work presents Jensen’s lower bounds and Edmundson-Madanski

upper bounds for the loss function L(x, Z) in Fig. 1.13 and its complementary

function L̂(x, Z) in Fig. 1.14.

Note that the piecewise linear approximation parameters, i.e.: probability

mass, breakpoints, and approximation errors, of L̂lb(x, Z) with up to eleven seg-

ments are reported in Rossi et al. (2014).

1.2.5 Mixed integer linear programming

This section introduces the Mixed Integer Linear Programming (MILP), in which

the piecewise linear functions discussed in the last section can be readily applied.

This dissertation extensively applies MILP models that are built upon these

piecewise linear approximations to tackle a wide range of stochastic inventory

problems. This section is mainly based on Wolsey (1998).
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Figure 1.13: Two-segment piecewise linear lower bound Llb(x, Z) and upper
bound Lub(x, Z) for the loss function L(x, Z)

Figure 1.14: Two-segment piecewise linear lower bound L̂lb(x, Z) and upper
bound L̂ub(x, Z) for the complementary of first order loss function L̂(x, Z)

The general formulation of an MILP is as follows.

min cTx (1.31)

subject to,

Ax ≤ b (1.32)

x ≥ 0 (1.33)

xi ∈ Z, ∀i ∈ I. (1.34)
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Note that c and b are vectors and A is a matrix. The objective function and all

constraints are linear, and decision variables are integers or binaries.

MILP is widely used mainly because of the widespread availability of effective

state-of-the-art MILP solvers, such as GUROBI, IBM-CPLEX, and XPRESS

Optimizer, which incorporate many advanced techniques, e.g. (Jünger et al.,

2009).

Branch-and-Bound. Most state-of-the-art MILP solvers are based on the

branch-and-bound algorithm, which is an implicit enumeration method that uses

a search tree to find an optimal solution. The general scheme is presented in

Algorithm 1. There are three main steps: pick a variable and divide the prob-

lem into two subproblems at this variable (line 5-7); solve the LP-relaxation to

determine the best possible objective function value for the node (line 8); prune

the branch of the tree if either the subproblem is infeasible or the best achievable

objective value is worse than a known optimum (line 10-15).

1 activeset := ∅;
2 bestval := NULL;
3 currentbest := NULL;
4 while activeset 6= ∅ do
5 choose a branching node k ∈ activeset;
6 remove node k from activeset;
7 generate the children of k, child i = 1, . . . , nk;
8 generate optimistic bounds obji for each child i = 1, . . . , nk;
9 for i = 1 to nk do

10 if obji is worse than bestval then
11 kill child i;
12 else if child i is a complete solution then
13 bestval := obji;
14 currentbest:=child i;

15 else
16 add child i to activeset;
17 end

18 end

19 end

Algorithm 1: The Branch-and-Bound algorithm

Big M. It is a very well-known modelling approach in MILP to use a binary

variable δ to control whether linear constraint (1.32) is active or not. Then, this

constraint can be reformulated as big-M , i.e., Ax− b ≤Mδ, M is a large enough

value. However, the choice of values of M is nontrivial; a large M will result in
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computational efficiency issue, while a small M may affect the solution quality.

MILP models presented in this work come with advantage of being able to use

the indicator constraints (Belotti et al., 2016), i.e., δ = 0 ⇒ Ax − b = 0, which

can avoid difficulties arising from the use of big-M .

Piecewise syntax. Consider the piecewise syntax in IBM-CPLEX, by means

of which a piecewise function can be specified by giving a set of slopes which

represent the linear variation for each linear segment, a set of breakpoints at

which slopes change, and the function value at a known point (Leenaerts and

Van Bokhoven, 2013).

piecewise(i in 1..W){

slope[i] -> breakpoint[i];

slope[W+1]

}(<knownpoint>,<valuepoint>)<value>;

Figure 1.15: The syntax of the piecewise command

The piecewise syntax is presented in Figure 1.15. W is the number of break-

points of the piecewise function. slope[i] and breakpoint[i] denote slope and

breakpoint of segment i. Segment i goes from breakpoint (i − 1) to breakpoint

(i). <valuepoint> is the function value at a known point <knownpoint>. Finally,

<value> represents the value at which we evaluate the function.

The piecewise syntax is adopted in Chapter 2 (Paper I) for computing pa-

rameters of the optimal inventory control policy.
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1.3 Related works

This section discusses related works in stochastic inventory control and in partic-

ular on the (s, S) policy in Section 1.3.1, (R, S) policy in Section 1.3.2, and the

Stochastic Joint Replenishment Problem in Section 1.3.3, which are extensively

studied under different settings in this work.

Relevant background on deterministic and stochastic inventory control has

been presented in Section 1.2.1. For a more in depth discussion, readers may re-

fer to textbooks (Silver et al., 1998; Zipkin, 2000; Snyder and Shen, 2011). Since

the pioneer study of Harris (1913) who proposed the EOQ model to answer the

two fundamental questions of how much and how often to place an order, a vast

body of literature has emerged on inventory control. For a thorough overview

of inventory control literature, readers could refer to (Aggarwal, 1974; Yano and

Lee, 1995; Ullah and Parveen, 2010; Glock et al., 2014; Bushuev et al., 2015).

Most existing literature still presents applications to constant and dynamic de-

terministic demand; however, the study regarding stochastic demand has received

increasing attention due to its practical relevance (Bastos et al., 2017). This work

belongs to the growing literature on stochastic inventory control.

1.3.1 (s, S) policy

This section first discusses single-item stochastic inventory problems under (s, S)

policy, and then briefly introduces literature on multi-item and multi-echelon

stochastic inventory problems. A summary of literature surveyed in this section

is presented in Table 1.3.1.

1.3.1.1 Single-item inventory system

This section surveys the literature on single-item (s, S) inventory systems un-

der independent demand, service level, dependent demand, and robust demand

settings.

Independent demand. The first study on proving the optimality of (s, S) pol-

icy could date back to Scarf (1960), which considered the finite horizon dynamic

inventory system with fixed and linear ordering costs, and convex holding and

penalty costs, by leveraging a novel property: K-convexity. Iglehart (1963) later

extended the work of Scarf (1960) to the stationary infinite horizon problem.

Veinott Jr (1966) further replaced Scarf’s (Scarf, 1960) hypothesis that the one

period expected costs are convex by a weaker assumption that the negatives of
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the one period expected costs are unimodal. Moreover, Aneja and Noori (1987)

extended Scarf’s results to a special case where the shortage cost associated with

the failure to meet demand is a combination of a lump-sum cost, incurred when-

ever a stock-out is recognised and a proportional cost which is determined by the

size of the shortage. While these early works proved the optimal policy is (s, S)

for stochastic inventory systems, they did not present any computational study.

Veinott Jr and Wagner (1965) proposed a two-step method for computing

optimal (s, S) policy parameters under assumptions of independent stochastic

demand, constant lead time, fixed and linear ordering costs, and linear holding

and penalty costs. The first step is to find the collection of all (s, S) policies that

minimise the long-run average cost per unit time for some suitably small and

fixed value of initial inventory level; then, to search the optimal (s, S) policies

that minimises the long-run average cost per unit time for every initial inventory

level.

Ehrhardt (1979) pointed out that the iterative methods for computing opti-

mal policies in Veinott Jr and Wagner (1965) is computationally prohibitive for

practical implementation, and requires the complete specification of the demand

distribution. This is particularly unrealistic in practical settings. Therefore, the

author presented the Power Approximation approach for computing the optimal

(s, S) policy parameters, which is easy-to-implement, and requires as input only

the mean and variance of demand over lead time. Computational experiments

showed that the proposed Power Approximation approach yields expected total

costs that typically are well within one percent of optimal.

Additionally, Federgruen and Zipkin (1984) proposed a computationally effi-

cient policy iteration method for computing near-optimal (s, S) policies. Zheng

and Federgruen (1991) proposed a search-based heuristic for approximating op-

timal (s, S) policy parameters built upon a number of new properties of the

long-run average cost, a new upper bound for optimal order-up-to level and a

new lower bound for the optimal reorder point. This algorithm is easy to under-

stand and computationally efficient for both finite and infinite planning horizons.

However, it can only solve stationary stochastic inventory control problems.

Askin (1981) extended the Silver-Meal algorithm and introduced a two-step

heuristic for approximating nonstationary stochastic (s, S) policies. It first deter-

mines the order-up-to level S, and then calculates the reorder point s for which

the minimised expected cost per unit period of placing an order is equal to the

expected cost without placing an order. This heuristic is computationally faster,

easier to implement and less sensitive to distant data. However, Bollapragada
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and Morton (1999) pointed out that it is prohibitively expensive for other distri-

butions except for normal, because it relies on the computation of convolutions

of demand.

In contrast, Bollapragada and Morton (1999) proposed an efficient two-step

stationary approximation approach for computing near-optimal (s, S) policies.

The first step is to tabulate the values of reorder point, order-up-to level, the

expected time between consecutive orders, and the total mean demand over the

optimal expected time between two orders by solving the stationary problem for

values of the mean demand at regular intervals to span all possible values of mean

demand. Here, a large number of efficient algorithms exist for generating the sta-

tionary table, e.g. (Federgruen and Zipkin, 1984; Zheng and Federgruen, 1991).

The second step is to read the optimal (s, S) policy parameters from the precom-

puted table by averaging nonstationary parameters (like mean demand) between

two successive ordering periods. Computational experiments demonstrated that

this approach is on average 400 times faster than dynamic programming, because

it only involves calculating the review interval length followed by a precomputed

table lookup. It does not depend on the system parameters. However, this sta-

tionary approximation approach assumes that only the expected demand varies

across time periods. In a more general situation, more than one demand parame-

ter might vary, which might lead to the computational complexity of this method,

especially for the stationary table generation.

A recent comparison study (Dural-Selcuk et al., 2016) estimated the optimal-

ity gaps of Askin (1981) and Bollapragada and Morton (1999) at 3.9% and 4.9%,

respectively; these figures are in line with those reported in the original works.

Chapter 2 (Paper I) considerably improves these optimality gaps by means of a

novel MILP-based heuristic for tackling this class of problems.

Even though nonstationary stochastic demand is more common in industrial

settings with seasonal patterns, trend, businesses cycles, and limited-life items,

stationary inventory control policies are more preferred in real-life settings. In

this context, Tunc et al. (2011) investigated the cost of using a stationary policy as

an approximation to the optimal nonstationary one. It adopted the cost-optimal

(s, S) policy as a frame of reference, and compared the cost performance of the

optimal nonstationary (s, S) policy with the best possible stationary (s, S) policy.

It showed that stationary policies might be efficient approximations to optimal

nonstationary policies when demand information contains high uncertainty, setup

costs are high, and penalty costs are low.

Service level constraints. In spite of a vast body of literature that has been
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developed on the cost minimisation problem, it has been widely recognised that

penalty costs, and in particular, the cost of losing customer goodwill, are usually

difficult to assess (Brown, 1967). On the contrary, service level measures are

particularly popular in practice. Under this environment, the objective is to

minimise the cost function, defined only in terms of fixed and unit ordering cost

and holding costs, subjects to the constraint that the solution satisfies a prescribed

level of customer service. In the literature, the “fill-rate” service level measure,

the fraction of demand that is met directly from stock on hand, and the γ service

level, the average backlog per period should not exceed a pre-defined level (1−γ)

of the average demand per period, are commonly adopted.

The “fill-rate” service level measure was investigated by Bashyam and Fu

(1998), which proposed a feasible directions procedure that is simulation-based

for periodic review (s, S) inventory system with stochastic lead time and con-

straint of fill-rate service level measure. Computational experiments illustrated

that the algorithm achieved 5% of optimality in 95% of the cases, and within 2%

of optimality in 68% of the cases. Schneider and Ringuest (1990) proposed an

analytic approximation, similar to Ehrhardt (1979), for (s, S) inventory systems

with γ service level constraints. Computational results showed that the approxi-

mation gives a γ service level which is within 1% of the required service level in

most cases.

Dependent demand. Classical inventory models have assumed that the inter-

demand times are identically independent distributed. However, in real life, envi-

ronmental factors, such as economic conditions and market conditions, can have

a significant effect on demand (Song and Zipkin, 1993). It is therefore necessary

to develop inventory models considering demand correlations.

Under the assumption of dependent demand, Markov processes have been

widely used in stochastic inventory models with setup costs for modelling demand.

Song and Zipkin (1993) presented a continuous-time, discrete-state formulation

with a Markov-modulated Poisson demand and with linear costs of inventory and

backlogging. It showed that the optimal policy is of state-dependent (s, S) type

when the ordering cost consists of both a fixed cost and a linear cost. Sethi and

Cheng (1997) generalised the work of Song and Zipkin (1993) to general demand,

state-dependent convex inventory/backlog costs, and proved the optimality of

(s, S) policy. Beyer and Sethi (1997) incorporated convex surplus cost into the

model and proved the optimality from the viewpoint of minimising the long-run

average cost of inventory/backlog and ordering. Similarly, Chen and Song (2001)

proved the optimality of (s, S) policy from the viewpoint of minimising the long-

39



run average holding and backorder costs in the system.

Lian et al. (2009) proposed the first perishable inventory model with Marko-

vian renewal demand, and proved the optimal policy is (s, S) type. Multi-echelon

models incorporating Markov-modulated demand are discussed in (Chen and

Song, 2001; Hu et al., 2016). Other studies have shown that the optimality

of the (s, S) policy can be generalised to cases involving unbounded Markovian

demand (Beyer et al., 1998), unreliable suppliers (Özekici and Parlar, 1999), and

polynomial growth demand, returns, and cost functions (Li, 2013).

Additionally, unlike most studies in the literature only conducted under the

assumption that unsatisfied demand is fully backlogged, (Cheng and Sethi, 1999;

Xu et al., 2010) considered the lost sales situation is occurring in many retail

establishments such as department stores and supermarkets. Cheng and Sethi

(1999) use the analysis of the Markovian demand model with backlogging to

analyse the lost sales case; in particular, they established the optimal (s, S) policy.

Xu et al. (2010) further proved the (s, S) policy is optimal with Erlang distributed

demand and lost sale settings.

Perishable items. Many commodities in practice may undergo deterioration

in quality or functionality while they are in-storage or on-shelf and may have to

be discarded eventually without being used. For example, in supermarkets, the

fresh food may deteriorate gradually before it should get consumed; the electronic

products may age while still in storage; fashion may become out of date when the

seasons change. These perishable goods seize a large proportion of inventory so

that the ordering policies determined by the conventional inventory model are not

appropriate. This setting requires building up a particular perishable inventory

model to study the structure of optimal ordering policies (Lian et al., 2009).

Weiss (1980) proved the optimality of the (s, S)-type policy for the continuous

review perishable inventory system with zero lead time considering both back-

logging and lost-sales. Liu and Lian (1999) relaxed the assumption of Poisson

demand in Weiss (1980) to general renewal demand process. It showed that the

expected total cost is monotone, convex, or unimodal in both the reorder point

and the order-up-to level, and derived a closed-form for computing the optimal

(s, S) policy parameters. Their computational study demonstrated that these

properties are not affected by the coefficient of variation of the demand process.

Hence, it is reasonable to believe that the (s, S) policy is also optimal for models

with general renewal demand process.

Finite lifetime adds another dimension to inventory problems and often makes

the modelling and analysis far more difficult than the corresponding inventory
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models for items with infinite lifetime. As a result, replenishment lead time is

usually not considered in existing literature such as Kalpakam and Arivarignan

(1988). However, replenishment lead time is important in practice since it might

significantly affect the replenishment decisions (Liu and Yang, 1999). Kalpakam

and Sapna (1994) extended the work of Kalpakam and Arivarignan (1988) to

a (s, S) system with exponential lead time and Poisson demand in which items

deteriorate at a constant rate. They derived an exact long-run average cost ex-

pression under assumptions that unsatisfied demand is lost sales and the number

of outstanding replenishment orders are restricted to at most one at any given

time.

Similarly, Liu and Yang (1999) assumed an exponential lifetime and an ex-

ponential lead time (s, S) system. However, compared to existing literature, it

allows backorders and does not limit the number of outstanding replenishment

orders at any given time. Using the matrix analytic approach, they obtained

analytical results on the performance measures and developed a numerical opti-

misation procedure.

Moreover, Ravichandran (1995) showed that the perishable inventory model of

(s, S) type with realistic assumptions, like non-instantaneous lead time, constant

lifetime, and Poisson demand process, is complex and intractable. They presented

an expression representing the long-run average cost per unit time in operating

under the (s, S) policy, which may be used as an objective to identify the optimal

reorder level for a specified ageing phenomenon. The closed-form expression

allows a numerical search procedure to obtain optimal parameters.

Liu (1990) considered a continuous review, exponential life time (s, S) inven-

tory system in which demand occurs in single units following a Poisson process.

Liu and Shi (1999) provided a comprehensive treatment of the model in Liu (1990)

with a general renewal demand process. They presented a simple but important

relation of two system performance measures, the expected inventory level and

cycle time, with whom the total cost function can be easily constructed. By

means of the supplementary variable method, the authors built a Markov process

so as to obtain the expected length of the cycle time.

Lian et al. (2009) further extended the work of Liu and Shi (1999) to the

continuous review, exponential life time (s, S) inventory system with a general

Markovian renewal demand process. They presented the first perishable inventory

model with Markovian renewal demand and derived the analytical expression for

the expected recycle time, the expected total cost rate function, and the optimal

ordering policies.
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Robust demand. In the literature, many researchers have made great effort to

identify effective inventory policies to determine when and how much to order of

a product. Establishing an effective inventory policy often requires an in-depth

analysis of the nature of the target business. Traditional inventory models, par-

ticularly for a multi-period setting, usually assume that the demand distribution

of a product and all of its parameters are completely known. However, these as-

sumptions may not hold in many practical situations. Thus, the solutions based

on such assumptions may lead to severe constraint violations even under very

small perturbations (Beyer and Sendhoff, 2007). As pointed out in Bertsimas

and Thiele (2006), an optimal inventory policy heavily tuned to a particular

demand distribution may perform very poorly for another demand distribution

bearing the same uncertainty parameter.

Therefore, Qiu et al. (2017) investigated a finite-horizon single-product periodic-

review inventory system with uncertainty in demand probability distributions.

They proved that the (s, S) policy is optimal for nonstationary distribution-free

inventory problems, and proposed a dynamic robust model for approximating op-

timal policy parameters for the box and the ellipsoid uncertainty sets, which can

be transformed into tractable linear and second-order cone programmes. How-

ever, the proposed models and solution approaches are only validated for the

boxes, and the ellipsoid uncertainty sets.

1.3.1.2 Multi-item inventory system

The (s, S) policy is also adopted in the multi-item periodic-review stochastic

inventory system. It is represented by (σ, ~S) since multiple items are involved,

where σ ⊂ RN , and ~S ∈ RN . Note that the definition of σ is general; its

shape and properties are literately unknown. There is no guarantee of σ by

convex, or even connected. Johnson (1967) characterised the optimal policy for

the stationary case and introduced the (σ, ~S) policy, in which σ ⊂ RN and
~S ∈ RN ; in this policy one orders up to ~S if the inventory level ~I is in set σ

and ~I ≤ ~S, otherwise one does not order. Kalin (1980) showed that, when ~I ∈ σ
and ~I � ~S, there exists ~S(~I) ≥ ~I such that the optimal policy is to order up

to ~S(~I), this policy is named as (σ, ~S(·)) policy. Ohno et al. (1994) proposed an

algorithm for computing an optimal ordering policy (σ, ~S(·)) for a periodic view

multi-item inventory system. Ohno and Ishigaki (2001) further proposed a policy

iteration method to compute an exact optimal policy by leaving properties of the

optimal policy for continuous-time inventory problems with compound Poisson

demand. Gallego and Sethi (2005) gave the general definition of K-convexity in
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RN , which encompasses both the joint ordering and individual ordering case; it

derived an optimal policy for the two-item deterministic inventory problem with

a joint ordering cost. However, the computation of the optimal (σ, ~S) policies is

still a difficult task.

Due to the complexity of the (σ, ~S) policy, literature on the computation of

the optimal policy parameters is still lacking. Chapter 4 (Paper III) presents

models can be used to identify whether a given initial inventory level ~I0 is in set

σ.

1.3.1.3 Multi-echelon inventory system

Cohen et al. (1988) considered the multi-echelon inventory system which is char-

acterised by the use of emergency shortage shipments, since demand not met at

each stocking location is passed up to higher echelons, and can be viewed as a

lost sales at a local stocking location. Therefore, demand at a particular loca-

tion is composed of normal replenishment orders coming from lower echelons, and

emergency shipment orders from both lower echelons and local stocking locations.

They introduced an approximate model for the (s, S) inventory system with the

lost sale setting, which is the first model that distinguishes between classes of pri-

oritised demand under the assumptions, and developed an efficient and effective

solution heuristic for solving the fill-rate service level measure optimisation prob-

lem. The computational study indicated good performance which deteriorates as

the fill rate requirement and lead time increase.

1.3.2 (R, S) policy

This section surveys literature on the stochastic (R, S) policy. It first presents

works on computing stochastic (R, S) policies with service level constraints, back-

orders, and the combination of service level constraints and backorders, and then

on the multiple sourcing (R, S) inventory system. A summary of the literature

surveyed in this section is presented in Table 1.2.

Although the (s, S) policy is proved to be optimal for both stationary and

nonstationary stochastic demand under certain conditions (Scarf, 1960; Iglehart,

1963; Veinott Jr, 1966; Aneja and Noori, 1987), it performs poorly with respect to

the system nervousness resulting from revisions in the original plan which in turn

result in different replenishment decisions in successive planning cycles (De Kok

et al., 1997; Heisig, 1998, 2001). In this regard, the (R, S) policy, in which

the timing and the order-up-to level are fixed at the beginning of the planning
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horizon, and the actual order quantities are determined after realised demand,

provides a means of dampening the system nervousness (Silver et al., 1998). Kilic

and Tarim (2011) revealed that the (R, S) policy has the potential to replace the

(s, S) policy, especially for systems characterised by a low degree of flexibility

to setup changes. Furthermore, Tunc et al. (2013) pointed out that the (R, S)

policy performs nearly as good as the (s, S) policy, and it is an effective policy

for coordinating supply chain inventories especially when setup-oriented system

nervousness is of concern.

To find the optimal (R, S) policy parameters is known to be a difficult prob-

lem. As a result, the literature on computing policy parameters was not well-

established until the recent three decades.

Service level constraints. Bookbinder and Tan (1988) is probably the first

work for computing nonstationary stochastic optimal (R, S) policy parameters.

It proposed a two-stage method for computing the minimised expected total

cost comprising fixed ordering cost and holding cost under the α service level

constraint. It firstly computes the timing of replenishments at the beginning of

the planning horizon by using the Wagner-Whitin algorithm (Wagner and Whitin

(1958)); then, determines buffer stock levels by solving a linear programming

model.

Bookbinder and Tan (1988) ignored the unit ordering cost since it is assumed

to be a constant, and has no effect on the determination of the best schedule.

However, Tarim and Kingsman (2004) showed that the unit ordering cost could

not be neglected since it will affect the objective function. It formulated a mixed

integer programming (MIP) model for simultaneously determining the timing of

replenishment and the corresponding order-up-to levels. However, this paper does

not address computational performance issues.

Since the work of Tarim and Kingsman (2004), considerable attention has

been given to address the computational performance under the same assump-

tion. Rossi et al. (2008) suggested a novel concept, global chance-constraints,

based on which they proposed an exact stochastic constraint programming ap-

proach for computing (R, S) policy parameters. However, the number of binary

variables increases polynomial in the number of periods. In contrast, Tarim and

Smith (2008) proposed the constraint programming formulation which reduces

the number of decision variables. The computational study showed that the con-

straint programming formulation is more solvable than the MIP model. Two inde-

pendent domain reduction methods were proposed to improve the computational

performance of the MIP model and the constraint programming formulation.
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Instead of considering the α service level as discussed in (Bookbinder and

Tan, 1988; Tarim and Kingsman, 2004; Rossi et al., 2008; Tarim and Smith,

2008), Tempelmeier (2007) claimed that this criterion does not provide much

information about the performance of an inventory system as it may be zero

although the system works almost perfectly. Thus, Tempelmeier (2007) proposed

a new formulation for computing the optimal (R, S) policies under the αp service

level constraint, the expected proportion of order cycles with no stock-outs, and

the β service level constraint, the expected proportion of demand routinely filled

from stock.

Tarim et al. (2011) relaxed the original MIP model in Tarim and Kingsman

(2004) to the shortest path problem. Numerical experiments demonstrated that

feasible solutions are obtained in the majority of test instances; in the case of

infeasibility, the solution can be used to generate a feasible one, which provides

an upper bound. A simple branch-and-bound procedure that implements the

relaxation approach at each node of the search tree is used to search for an optimal

solution. Numerical evidence shows that these bounds are tight, leading to an

efficient and fast search procedure. Tunc et al. (2014) reformulated the original

MIP model as a deterministic equivalent MIP model, analytically verified the

linear relaxation of the reformulation is stronger, and numerically showed the

computational efficiency of the reformulation.

Above-mentioned works assume zero supplier lead time. However, the lead

time uncertainty, which in various industries is an inherent part of the business

environment, has a detrimental effect on inventory systems. For this reason,

there exist two inventory control studies analysing the impact of supplier lead

time uncertainty on the (R, S) policy under the α service level constraints. Rossi

et al. (2010) proposed a stochastic constraint programming model to address this

issue. This is the first work in the literature. Rossi et al. (2012a) developed two

constraint-based local search methods based on a coordinate descent strategy for

finding the near-optimal (R, S) policy parameters under nonstationary stochastic

demand and lead time.

Additionally, Pauls-Worm et al. (2014) considered the single-item single-stock

location inventory control problem for a perishable item under the α service-level

constraint. They first formulated the stochastic programming model, and then

proposed an MILP approximation originally introduced in Tarim and Kingsman

(2004) for computing the optimal (R, S) policies for nonperishable items. Com-

putational experiments demonstrated that the MILP model guarantees that in

96.4% of the periods the service level requirements are met with an error tolerance
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of 1%.

Penalty costs. Tarim and Kingsman (2006) addressed the single-item, non-

stationary stochastic (R, S) inventory control problem under the assumption of

backorders being allowed. They presented an MILP model for computing the

optimal policy parameters by adopting a piecewise linear approximation to the

nonlinear terms in the cost function. They derived an explicit formulation for a

special case of the standard normally distributed demand.

The power of the MILP model of Tarim and Kingsman (2006) is the ability to

be reused for any normally distributed demand; however, to evaluate the accuracy

of the piecewise linear approximation technique is not easy. Therefore, Rossi et al.

(2012b) provided an exact constraint programming formulation for computing the

optimal (R, S) policies, and proposed a dedicated cost-based filtering method to

improve the performance of the search. The proposed solution approach can

be further used to gauge the solution quality of the MILP model in Tarim and

Kingsman (2006).

Hua et al. (2009) further proposed a static-dynamic uncertainty model under

the rolling horizon setting. It determines the timing of replenishment and the

corresponding order-up-to levels over the planning horizon but implements only

the decisions of the first period. It then uses the rolling horizon approach in the

next period when the inventory level and the demand distribution are updated

based on the demand realisation.

Service level constraints and penalty costs. There are few attempts for

building models to incorporate both service level constraints and penalty costs.

Özen et al. (2012) developed a mathematical model and dynamic programming

based solution algorithm for computing near-optimal (R, S) policy parameters.

To solve large-scale problems, an approximation heuristic is proposed to approx-

imate the true cost function, and a relaxation heuristic is proposed to relax a

constraint in the original problem. Computational experiments illustrated that

both heuristics perform well in terms of solution quality and computation time.

Rossi et al. (2015) generalised the above-discussed models on computing (R, S)

policy parameters, and presented a unified MILP model which applies both when

the unmet demand is backordered and in lost sale settings and accommodates

variants of service level constraints such as α, β and βcyc (the expected fraction

of demand that is routinely satisfied from stock for each replenishment cycle).

Computational studies demonstrated the effectiveness and flexibility of the pro-

posed approach.
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Recently, Tunc et al. (2018) presented an extended MIP model that blends

heuristic methods originally introduced by Tunc et al. (2014) and Rossi et al.

(2015). As a result, this formulation features the computational efficiency of

Tunc et al. (2014) and the modelling variety of Rossi et al. (2015). The pro-

posed formulation is essentially designed to approximate the original nonlinear

cost function with a prior piecewise linear function. Nonetheless, it also devel-

oped a dynamic cut generation approach to deploy the model with a non-prior

approximation of the function while guaranteeing an arbitrary level of precision.

Multiple sourcing. The (R, S) policy is also adopted in the multiple sourcing

inventory system. Janssen and de Kok (1999) considered an inventory system

with two suppliers. General supply agreements are made with the main supplier

to deliver a fixed quantity Q at every review period. An order is placed at

the second supplier such that the inventory position is raised to the order-up-to

position S if the inventory position at the beginning of the review period is below

the order-up-to position S. An algorithm for the determination of the decision

parameters Q and S was developed such that the long-run expected average costs

per time unit (the summation of the holding, and fixed and unit ordering costs)

are minimised subject to a service level constraint. The computational results

illustrated the effectiveness and profitability of the multiple sourcing strategy

above the single sourcing strategy.

1.3.3 Joint replenishment problem

The problem of controlling inventory of a multi-item system under joint replen-

ishment has been receiving considerable attention for the past several decades.

For a thorough review of literature readers could refer to (Silver and Peterson,

1985; Goyal and Satir, 1989; Van Eijs et al., 1992; Khouja and Goyal, 2008; Bas-

tos et al., 2017). This section focuses on the literature for tackling stochastic

JRPs. In particular, control policies that have been extensively studied, e.g.:

(s, c, S) policy (Balintfy, 1964), (R, T ) policy (Atkins and Iyogun, 1988), (Q,S)

policy (Renberg and Planche, 1967), (s, S) policy (Kalpakam and Arivarignan,

1993), P (s, S) policy (Viswanathan, 1997), Q(s, S) policy (Nielsen and Larsen,

2005), and (Q,S, T ) policy (Özkaya et al., 2006). A detailed discussion on these

policies can be found in Chapter 4 (paper III). However, this dissertation adopts

the existing (R, S) policy, originally introduced in Bookbinder and Tan (1988) for

tackling single-time stochastic inventory problems, to tackle stochastic multi-item

inventory problems subject to joint ordering costs. Additionally, this work differs
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from existing literature in being able to solve stationary as well as nonstationary

demand.
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1.4 Thesis statement

This section summarises works described in this dissertation in Section 1.4.1, and

then highlights contributions of this dissertation in Section 1.4.2, followed by the

respective summary for each of the following chapters.

1.4.1 Summary

This work mainly concentrates on the application of mathematical programming

based models for a wide range of problems in the field of stochastic inventory

control.

An important problem in inventory control is the determination of near-

optimal inventory control policies under nonstationary stochastic demand for

the classical setting captured in Scarf (1960). As discussed in Section 1.2 and

1.3, this problem is of importance in business practice, and significant research

has emerged in recent decades. We consider different existing formulations of

this problem under modelling assumptions of independent demand, correlated

demand, and joint replenishment settings. For these formulations, existing ap-

proaches in the literature have revealed three drawbacks.

Firstly, existing approaches for computing near optimal policy parameters for

the classical setting captured in Scarf (1960) provide fairly wide optimality gaps.

A recent study Dural-Selcuk et al. (2016) shows that the only two approaches

available in the literature (Askin, 1981; Bollapragada and Morton, 1999) provide

fairly loose optimality gaps approximately 3.9% and 4.9%.

Secondly, most existing approaches are not easily implementable. Due to the

combinatorial nature of stochastic inventory control, numerical approaches pro-

posed in the literature are search-based (Viswanathan, 1997; Bollapragada and

Morton, 1999; Özkaya et al., 2006), which results in considerable effort in com-

puter coding. Although some easy-to-implement methods have been presented

in (Rossi et al., 2015; Tunc et al., 2018), most literature still requires tedious

computer coding.

Thirdly, no approach in the literature relaxes the assumption of independence

under nonstationary demand. Models hereby presented close this gap, and are

also able to compute near-optimal replenishment policies under a wide range of

time-series-based demand processes.

Finally, even though various policies exist in the literature for solving stochas-

tic joint replenishment problems, these works only consider stationary demand.

In order to overcome drawbacks of existing approaches in the literature, novel,
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near-optimal, easy-implementabl, and broadly applicable mathematical program-

ming heuristics are discussed in the following chapters. These approaches are built

upon stochastic programming bounding techniques, i.e., Jensen’s lower bound and

Edmundson-Madanski upper bound, and can relax restrictive assumptions in the

stochastic inventory control literature thus addressing unexplored settings.

These models are used to compute near-optimal policy parameters under the

classical setting in Scarf (1960), they are also used to relax the classical assump-

tion of independent demand and investigate the case in which demand is corre-

lated, including a collection of time-series-based demand processes. Finally, they

are used to compute near optimal control policies for a nonstationary multi-item

inventory system.

Unlike other existing approaches in the literature, these methods can be im-

plemented and solved by using off-the-shelf mathematical programming packages,

such as IBM ILOG optimisation studio and XPRESS Optimizer, and do not re-

quire tedious computer coding.

Computational studies on the approximation of nonstationary (s, S) policy pa-

rameters showed that the proposed models provide the best optimality gaps (gen-

erally below 0.3%) in the literature for the single-item single-location stochastic

inventory problem. By applying the same model for tackling correlated demand,

computational experiments demonstrated a tight optimality gap (2.28%). When

considering stochastic joint replenishment problems, these models produced com-

petitive optimality gaps against existing policies in the literature.

1.4.2 Contributions

This work contributes to the literature of stochastic inventory control by apply-

ing these novel, near-optimal, and easy-to-implement models to a wide range of

problems.

• Application 1. Chapter 2 applies new mathematical programming based

models to compute the near optimal inventory control policy parameters

for single-item single-stock location stochastic inventory problems under

the classical assumption of independent demand. This is the first MILP-

based heuristic for computing near-optimal (s, S) policies since it was ini-

tially proved to be optimal for this class of problems by Scarf (1960). This

chapter also combines the previously introduced MILP model and a binary

search procedure to solve large-scale problems. Computational experiments

demonstrate that both models yield the best optimality gap, i.e., generally
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below 0.3%, and guarantee reasonable computational time.

• Application 2. Chapter 3 relaxes the long-standing assumption of inde-

pendent demand in the literature of stochastic inventory control and in-

vestigates the case in which demand is correlated, including a collection

of time-series-based demand processes. This chapter develops a stochastic

model which captures the (R, S) policy under correlated demand. This is

the first time the (R, S) policy has been expressed in the form of a func-

tional equation. This chapter also presents an MILP-based heuristic for

approximating optimal (R, S) policies under normally distributed demand

featuring correlation across periods as well as under a collection of time-

series-based demand processes. Computational experiments show that the

optimality gap is 2.28%, and the average computational time is acceptable.

• Application 3. Chapter 4 introduces an MILP model to approximate

the inventory control policy parameters of joint replenishment under non-

stationary demand. This is the first work to tackle nonstationary joint

replenishment problems in the literature. This modelling method can also

be used to approximate the optimal control rule for this class of problems,

known as (σ, ~S) policy. A computational study shows that the proposed

method is competitive in terms of cost performance. Most importantly,

this model has the advantage of being able to tackle nonstationary joint

replenishment problems which have not been addressed in the literature.

1.4.3 Chapter 2 (Paper I): Computing non-stationary (s, S)

policies using mixed integer linear programming

This paper is a joint work with Roberto Rossi, Belen Martin-Barragan, and S.

Armagan Tarim.

The computation of nonstationary (s, S) policies is a long-standing problem in

the literature of stochastic inventory control. Since the pioneering work of Scarf

(1960) which proved the optimality of (s, S) policies for a class of dynamic in-

ventory models, several approaches were proposed to compute the optimal policy

parameters.

In the literature, studies on this topic can be categorised into stationary and

nonstationary. A number of studies investigated the computation of stationary

(s, S) policy parameters, such as (Federgruen and Zipkin, 1984; Zheng and Fed-

ergruen, 1991; Feng and Xiao, 2000), whereas only two approaches (Askin, 1981;
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Bollapragada and Morton, 1999) exist for approximating nonstationary (s, S)

policies. A recent comparative research Dural-Selcuk et al. (2016) estimated the

optimality gap of these two approaches at 3.9% and 4.9%, respectively.

In order to find simple and yet effective heuristic methods for computing (s, S)

policy parameters, this work presents two MILP-based heuristics, which leverage

two key building blocks: a modelling technique initially discussed in Rossi et al.

(2015) (presented in Section 1.2.4) and K-convexity of the problem cost function

originally discussed in Scarf (1960) (presented in Section 1.2.1.2).

First, an MINLP-based heuristic is built, which can be linearized via the

approach originally discussed in Rossi et al. (2014) and can be implemented in

OPL by adopting a piecewise expression (presented in Section 1.2.4). The

resulting mathematical programming models can be solved by using off-the-shelf

optimisation packages, such as IBM ILOG OPL studio and XPRESS Optimizer.

To tackle larger instances, we then combine the previously introduced MINLP

model and a binary search procedure; this latter approach requires dedicated

codes but scales better than the previous one.

Extensive computational experiments are conducted to demonstrate the com-

putational performance of the proposed MILP-based heuristics. This paper first

investigates the performance of both models by contrasting costs of the policy ob-

tained with our models against costs of the optimal policy obtained via stochastic

dynamic programming. We observe optimality gaps are generally below 0.3%. We

then assess the computational performance of the binary search based heuristics.

Computational experiments show that the computational efficiency is reasonable:

around 748.20 seconds on average.

In this work, my contribution can be summarised as follow. I survey the lit-

erature related to the long-standing problem of the computation of single-item

single-location nonstationary (s, S) policies under independent demand. I adapt

the results in Rossi et al. (2015) (piecewise linear approximations) and in Scarf

(1960) (K-convexity) to implement the MILP model and the binary search strat-

egy in IBM ILOG optimisation studio. I also implement the benchmark stochastic

dynamic programming in Matlab. I conduct numerical studies on small instances

and large-scale instances both including 540 instances. I organise all material and

write the paper.

1.4.4 Chapter 3 (Paper II): (R, S) policy with correlated

demand

This paper is a joint work with Roberto Rossi, Belen Martin-Barragan, and S.
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Armagan Tarim.

A long-standing assumption in existing studies is that random demand in each

period is independent of demand in other periods. However, as Song and Zipkin

(1993) pointed out, environmental factors, such as economic conditions, market

conditions, and any exogenous condition, have significant effects on the demand

for a product, the supply, and the cost structure. This paper relaxes the assump-

tion of independent demand in Chapter 2 (Paper I).

Correlated demand has been previously investigated in the inventory litera-

ture. Authors attempted to either prove the optimality of the (s, S) policy or

compute optimal policy parameters with different types of demand correlations

over the planning horizon. However, to the best of our knowledge, no study on

computing (R, S) policies under correlated demand and time-series-based demand

processes exists.

This paper considers a periodic-review single-item single-stock location lot-

sizing problem under non-stationary stochastic correlated demand. We develop

a stochastic model which captures the (R, S) policy under correlated demand.

Note that it is also the first time that the (R, S) policy has been expressed in the

form of a functional equation.

We then leverage properties of conditional distributions and present an MILP-

based heuristic for approximating optimal (R, S) policies under normally dis-

tributed demand featuring correlation across periods as well as under a collection

of time-series-based demand processes. Our approach offers a stable replenish-

ment plan while effectively hedging against uncertainty. Our model can be easily

implemented and solved by using off-the-shelf mathematical programming pack-

ages such as IBM ILOG optimisation studio.

This work further illustrates how to adapt the model to a collection of time-

series-based demand processes: the autoregressive (AR) process, the moving av-

erage (MA) process, the autoregressive moving-average (ARMA) process, and

the autoregressive with autoregressive conditional heteroskedasticity (AR-ARCH)

process.

An extensive computational study is carried out to investigate the perfor-

mance of the proposed MILP heuristic. We first assess the behaviour of the

optimality gap and the computational efficiency of the MILP heuristic on multi-

variate normally distributed demand. Computational experiments show that the

optimality gap is 2.28%, and the average computational time is 0.1s. We then

assess the computational performance of the MILP model on time-series-based

demand processes. Computational experiments demonstrate that the average
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computational time is 0.68s.

The computational study demonstrate that the proposed MILP model is com-

putationally efficient and accurate. Moreover, in contrast to existing approaches

in the literature, it can tackle higher order time-series-based demand processes.

In this work, my contribution can be summarised as follow. I survey the

literature related to the computation of near-optimal policies under correlated

demand. I implement the stochastic dynamic programming under correlated

demand in Matlab, then implement the MILP-based model for approximating

optimal (R, S) policies under normally distributed demand featuring correlation

across periods, and then extend this model to cover a wide range of time-series-

based demand processes including AR, MA, ARMA, and AR-ARCH processes.

Moreover, I implement these models under receding horizon control settings in

Java with the help of Prof. Rossi. I conduct computational experiments on the

test bed including 432 instances. I organise all material and write this paper;

during the writing process Dr Martin-Barragan provides valuable help in the

derivation of the (R, S) policy in the form of a functional equation.

1.4.5 Chapter 4 (Paper III): Nonstationary (R, S) policies

for joint replenishment inventory systems

This paper is a joint work with Roberto Rossi, Belen Martin-Barragan, and S.

Armagan Tarim.

This paper extends Chapter 3 (Paper II) to a multi-item nonstationary stochastic

inventory system under the joint replenishment setting, which has been receiv-

ing increasing attention over the past decades. A number of policies has been

presented for tackling stochastic joint replenishment problems, e.g.: the (Q,S, T )

policy (Özkaya et al., 2006), Q(s, S) policy (Nielsen and Larsen, 2005), P (s, S)

policy (Viswanathan, 1997), (Q,S) policy (Pantumsinchai, 1992), MP policy

(Atkins and Iyogun, 1988), (s, c, S)M policy (Melchiors, 2002), and (s, c, S)F pol-

icy (Federgruen et al., 1984).

This work considers the stochastic joint replenishment problem under the

(R, S) policy. We present an MILP model, built upon the piecewise linear ap-

proximation technique originally introduced in Rossi et al. (2014) (presented in

Section 1.2.4) for approximating the optimal policy parameters. In contrast to

existing methods, this model can be easily implemented and solved by using

existing off-the-shelf optimisation packages.

We then demonstrate that our MILP model can be used to approximate the
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optimal control rule for stochastic joint replenishment problems, known as (σ, ~S)

policy. Due to the complexity of σ, it is impractical to derive a closed form

expression for it. However, our MILP model can be used to determine whether

given initial inventory levels ~I0 ∈ σ. This allows a decision maker to decide if it

is optimal or not to trigger a joint replenishment order at a given period.

We assess the cost performance of the (R, S) policy by comparing its cost

performance against existing policies on data sets of Atkins and Iyogun (1988)

and Viswanathan (1997). We notice that both data sets contain some unusual

lot sizing instances; more specifically, instances for which the group as well as

item fixed ordering costs become negligible in comparison to holding costs. To

focus on meaningful lot sizing instances, we filter test instances of both data sets

by using the following conditions: K > b ≥ h, which are broadly accepted in the

lot sizing literature. We also check the order frequency in each period, and we

discard instances in which joint orders for all items are issued too frequently, and

for which the optimal policy essentially degenerates to a base stock policy.

Computational experiments on the data set of (Atkins and Iyogun, 1988)

demonstrate that the (R, S) policy fully dominates other competing policies in

the literature in 2 out of 10 test instances considered. The (R, S) policy performs

better than the Q(s, S), (Q,S), MP , (s, c, S)M , and (s, c, S)F policies with av-

erage cost improvement of 0.07%, 1.74%, 0.89%, 2.84%, and 7.02%, respectively;

however, the (Q,S, T ) and P (s, S) policies perform slightly better than the (R, S)

policy with average cost improvement of 0.09% and 0.17%.

Computational experiments on the data set of (Viswanathan, 1997) illustrate

that the (R, S) is the best policy in 13 out of 31 test instances. The (R, S)

performs better than the Q(s, S), P (s, S), (Q,S), MP , and (s, c, S)F policies

with average cost improvement of 0.37%, 0.37%, 1.81%, 1.71%, and 1.67%; while

(Q,S, T ) policy performs slightly better than them with an average cost improve-

ment of 0.19%.

Extensive computational studies indicate that although the (R, S) policy does

not fully dominate all existing policies, it comes with the additional advantage

of being able to tackle stationary and nonstationary demand. To the best of our

knowledge, this is the first work on computing (R, S) policies for nonstationary

joint replenishment problems.

In this work, my contribution can be summarised as follow. I survey the liter-

ature on tackling the joint replenishment problem. I implement the MILP model

on computing near-optimal (R, S) policy parameters in IBM ILOG optimisation

studio and the shortest path formulation in Matlab and IBM ILOG optimisation
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studio. I conduct computational experiments on both data sets of Atkins and

Iyogun (1988) and Viswanathan (1997). I organise all material and write the

paper.
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1.5 Future work

This section first summarises which questions remain open for each of the follow-

ing chapters, and then describes potential research areas where the mathematical

programming based models can be successfully applied.

Chapter 2. This chapter presents the first MILP-based model for computing

optimal (s, S) policy parameters, which provides the best optimality gaps in the

literature, and can be implemented and solved without tedious computer coding.

However, this MILP-base model only can effectively tackle small-size instances.

To preserve the advantage of relying on an MILP model, it is useful to investigate

efficient reformulations, valid inequalities, or to explore cut generation techniques

that enhance computational performance. We believe that the investigation of

efficient reformulations and techniques to improve the computational performance

of the proposed MILP-based models is a promising research direction.

Chapter 3. This chapter proposes the first MILP model for computing the

optimal (R, S) policies under normally distributed demand featuring correlation

across periods as well as under a collection of time-series-based demand processes.

It is possible to explore the cost of using an independent demand policy as an

approximation to the optimal dependent demand policy. A future research di-

rection is to adopt the (R, S) policy as a frame of reference, and compare the

cost performance of the (R, S) policy under independent demand with the best

possible (R, S) policy under correlated demand.

Chapter 4. This chapter proposes an MILP model for tackling stochastic

joint replenishment problem under an (R, S) policy. Although this model does

not dominate all existing policies in the literature, it comes with the additional

advantage of being able to tackle nonstationary demand which has not been

addressed in the literature. It is worthwhile to investigate the cost performance

of the proposed method under a rolling horizon setting.

All presented mathematical programming based models are novel, near-optimal,

and easy-to-implement; most importantly, they share a common underpinning

modelling strategy. The application of this modelling strategy to other problems

in the field of stochastic inventory control is a promising area to investigate.

A first direction worth investigating is stochastic lead time. As discussed in

Section 1.3.1, only Bashyam and Fu (1998) proposed a simulation-based method

and Song and Zipkin (1993) proposed a search-based algorithm for computing

optimal (s, S) policies. As discussed in Section 1.3.2, (Rossi et al., 2010, 2012a)

introduced constraint programming models for approximating the optimal (R, S)
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policies. It would be interesting to investigate if the near-optimal and easy-

to-implement mathematical programming models presented in this work can be

adapted to tackle stochastic lead time.

Secondly, many commodities may undergo deterioration in quality or func-

tionality while they are in-storage or on-shelf and may have to be discarded

eventually without being used (Lian et al., 2009). In this setting, optimal or-

dering policies determined by the conventional (nonperishable) inventory models

are not appropriate. As discussed in Section 1.3.1, a number of studies have

been done to either prove the optimality of the (s, S) policy under perishable

items or compute near-optimal policy parameters. Additionally, as discussed in

Section 1.3.2, Pauls-Worm et al. (2014) proposed an MILP model for computing

the near-optimal (R, S) policies. However, this model might only work well for

a very high in-stock probability. Also in this case it would be interesting to in-

vestigate if the near-optimal and easy-to-implement mathematical programming

models presented in this work can be adapted; a first step in this direction has

been discussed in Gutierrez-Alcoba et al. (2016).

Thirdly, it is natural to integrate stochastic inventory control with other busi-

ness operations, such as carbon emissions. As pointed out in Bushuev et al.

(2015), the literature on this aspect has been scattered, and the EOQ and Newsven-

dor are the most frequently used models for sustainable lot sizing. The integration

of other business operations is therefore a promising area to which one may apply

the modelling strategy that underpins all the mathematical programming models

discussed in this work.
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1.6 Conclusions

This work presents novel, near-optimal, and easy-to-implement mathematical

programming based models that are built upon the application of stochastic pro-

gramming bounding techniques: Jensen’s lower bound and Edmundson-Madansky

upper bound. It applies these modelling methods to a wide range of problems in

the field of stochastic inventory control under nonstationary demand.

A long-standing problem in stochastic inventory control is the approximation

of nonstationary (s, S) policy parameters for the single-item inventory problem

under the assumption of independent demand. Chapter 2 (Paper I) presents the

first MILP-based heuristc for computing near-optimal policies. To tackle larger

instances, it combines the MILP model and a binary search procedure. Extensive

computational studies illustrated that these MILP-based heuristics yielded an

average optimal gap 0.03% which is the best in the literature.

Chapter 3 (Paper II) relaxes the independence assumption and investigates the

case in which demand is correlated. This is the first time that a stochastic model

has been developed, which captures the (R, S) policy under correlated demand.

An MILP model is presented for approximating optimal (R, S) policies under

normally distributed demand featuring correlation across periods as well as under

a collection of time-series-based demand processes. Computational experiment

shows that the optimality gap is 2.28% and the average computational time is

acceptable.

Finally, Chapter 4 (Paper III) tackles nonstationary joint replenishment prob-

lems under (R, S) policy. Computational experiments show that the proposed

model is competitive in terms of cost performance with other state-of-the-art

policies. It fully dominates existing policies in 2 out of 9 test instances on the

data set of (Atkins and Iyogun, 1988) and in 13 out of 31 test instances on the

data set of (Viswanathan, 1997). Although it does not fully dominate all exist-

ing competitor strategies, it comes with the advantage of being able to tackle

nonstationary demand which has not been addressed in the literature.

Extensive computational studies show that the proposed models are easily

implemented and solved by using existing off-the-shelf mathematical packages.

Most importantly, they do not require tedious computer coding.

In summary, stochastic inventory control is an active research area in Opera-

tional Research. This work contributed to the literature of stochastic inventory

control by tackling a wide range of problems under unexplored settings using

near-optimal and easy-to-implement mathematical programming heuristics that
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are built upon stochastic bounding techniques. Future contributions to the lit-

erature on stochastic inventory control may focus on improving these modelling

methods, applying these models to further relax long-standing assumptions in the

literature such as fixed lead time and fixed lifetime, and integrating with other

research areas such as routing problems and carbon emissions.
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Chapter 2

Paper I: Computing

non-stationary (s, S) policies

using mixed integer linear

programming

Abstract

This paper addresses the single-item single-stock location non-stationary

stochastic lot sizing problem under the (s, S) control policy. We first present

a mixed integer non-linear programming (MINLP) formulation for deter-

mining near-optimal (s, S) policy parameters. To tackle larger instances,

we then combine the previously introduced MINLP model and a binary

search approach. These models can be reformulated as mixed integer linear

programming (MILP) models which can be easily implemented and solved

by using off-the-shelf optimisation software. Computational experiments

demonstrate that optimality gaps of these models are less than 0.3% of the

optimal policy cost and computational times are reasonable.

2.1 Introduction

Stochastic lot sizing is an important research area in inventory theory. One of the

landmark studies is Scarf (1960), which proved the optimality of (s, S) policies

for a class of dynamic inventory models. The (s, S) policy features two control
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parameters: s and S. Under this policy, the decision maker checks the opening

inventory level at the beginning of each time period: if it drops to or below the

reorder point s, then a replenishment should be placed to reach the order-up-to

level S. Unfortunately, computing optimal (s, S) policy parameters remains a

computationally intensive task.

Since Scarf’s landmark study, the (s, S) policy has been object of extensive

research. For instance, (Johnson and Thompson, 1975; Sethi and Cheng, 1997;

Chen and Song, 2001; Hu et al., 2016) investigated demand correlation; more re-

cently, (Qiu et al., 2017; Lim and Wang, 2017) investigated demand distributional

ambiguity.

In the literature, studies on (s, S) policy can be categorized into stationary

and non-stationary. A number of studies investigated the computation of station-

ary (s, S) policy parameters, e.g. (Iglehart, 1963; Veinott Jr and Wagner, 1965;

Archibald and Silver, 1978; Stidham, 1977; Sahin, 1982; Federgruen and Zipkin,

1984; Zheng and Federgruen, 1991; Feng and Xiao, 2000). However, there has

been an increasing recognition that lot-sizing studies need to be undertaken for

non-stationary environments (Graves, 1999).

In this work, we focus on the single-item single-stock location stochastic lot-

sizing problem under non-stationary demand, fixed and unit ordering cost, hold-

ing cost and penalty cost. Only two studies investigated computations of (s, S)

policy under non-stationary stochastic demand (Askin, 1981; Bollapragada and

Morton, 1999).

Askin (1981) adopted the “least cost per unit time” approach in selecting

order-up-to levels and reorder points under a penalty cost scheme. Decision

makers first determine desired cycle lengths and order-up-to levels. Then, reorder

points are decided by means of a trade-off analysis between expected costs per

period in cases of ordering and not ordering.

As Bollapragada and Morton (1999) pointed out, the approach discussed by

Askin (1981) is computationally expensive because of the need of convolving de-

mand distributions. In contrast, Bollapragada and Morton (1999) proposed a

stationary approximation heuristic for computing optimal (s, S) policy parame-

ters. Firstly, decision makers precompute pairs of (s, S) values for various demand

parameters and tabulate results. Here, a large number of efficient algorithms ex-

ist for generating the stationary table, e.g. (Federgruen and Zipkin, 1984; Zheng

and Federgruen, 1991; Feng and Xiao, 2000). Secondly, order-up-to levels and

reorder points can be read from stationary tables by averaging the demand pa-

rameters over an estimate of the expected time between two orders. However,
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this algorithm relies upon complex code, particularly for generating stationary

tables.

(Askin, 1981; Bollapragada and Morton, 1999) do not provide a satisfactory

solution to the problem of computing near-optimal (s, S) policy parameters: they

rely on ad-hoc computer coding and provide relatively large optimality gaps. A

recent computational study (Dural-Selcuk et al., 2016) estimated the optimality

gap of (Askin, 1981; Bollapragada and Morton, 1999) at 3.9% and 4.9%, respec-

tively; these figures are in line with those reported in the original works. These

drawbacks motivate the investigation of simple and yet effective heuristic meth-

ods for computing (s, S) policy parameters; methods that do not need dedicated

computer coding and that can provide better optimality gaps.

The aim of this paper is to introduce two new heuristics to compute near-

optimal (s, S) policy parameters. We build upon Rossi et al. (2015), which dis-

cussed mixed-integer linear programming (MILP) heuristics for approximating

optimal (R, S) policy parameters — under this policy, the replenishment inter-

vals R and order-up-to levels S are determined at the beginning of the planning

horizon, while associated order quantities are decided only when orders are is-

sued. The (R, S) policy is effective in dealing with system nervousness (Tunc

et al., 2013), while the (s, S) policy is cost-optimal (Scarf, 1960). Our two mixed-

integer nonlinear programming (MINLP)-based heuristics leverage two key build-

ing blocks: modeling techniques originally discussed in Rossi et al. (2015), and

K-convexity of the problem cost function, originally discussed in Scarf (1960).

In contrast to other approaches in the literature, our heuristics can be easily im-

plemented and solved by using off-the-shelf mathematical programming packages

such as IBM ILOG optimisation studio.

Our contributions to literature on stochastic lot-sizing are the following.

• We introduce the first mixed integer non-linear programming (MINLP) model

to compute near-optimal (s, S) policy parameters.

• We show that this model can be approximated as a mixed integer linear

programming (MILP) model by piecewise linearising the cost function; this

approximation can be solved by using off-the-shelf software.

• To tackle larger instances, we combine the previously introduced MINLP

model and a binary search procedure; this latter approach requires dedicated

code, but scales better than the previous one.

• Computational experiments demonstrate that optimality gaps of our models

are tighter than existing algorithms (Askin, 1981; Bollapragada and Morton,
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1999) in the literature, and computational times of our models are reason-

able.

The rest of this paper is organised as follows. Section 2.2 describes the prob-

lem setting and a stochastic dynamic programming (SDP) formulation. Section

2.3 discusses the notion of K-convexity and introduces relevant K-convex cost

functions which are approximated by an MINLP model in Section 2.4. Section 2.5

presents an MINLP heuristic for approximating (s, S) policy parameters. Section

2.6 introduces an alternative binary search approach for computing (s, S) policy

parameters. A detailed computational study is given in Section 2.7. Finally, we

draw conclusions in Section 2.8.

2.2 Problem description

We consider a single-item single-stock location inventory management system

over a T -period planning horizon. We assume that orders are placed at the

beginning of each time period, and delivered instantaneously. Ordering costs c(·)
comprise a fixed ordering cost K for placing an order, and a linear ordering cost

c proportional to order quantity Q. Demand dt in each period t = 1, . . . , T is a

independent random variable with known probability distribution. At the end of

period t, a linear holding cost h is charged on every unit carried from one period

to the next; and a linear penalty cost b is occurred for each unmet demand at the

end of each time period.

For a given period t = 1, . . . , T , let It−1 denote the opening inventory level

and Qt represent the order quantity.

The immediate expected holding and penalty costs at period t can be ex-

pressed as

ft(It−1, Qt) = E[hmax(It−1 +Qt − dt, 0) + bmax(dt − It−1 −Qt, 0)], (2.1)

where “E” denotes the expectation taken with respect to the random demand dt.

The ordering cost c(Qt) is defined as:

c(Qt) =

K + c Qt, Qt > 0

0, Qt = 0

Let Ct(It−1) represent the expected total cost of an optimal policy over periods

t, . . . , T when the initial inventory level at the beginning of period t is It−1. We
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model the problem as a stochastic dynamic program (Bellman, 1966) via the

following functional equation

Ct(It−1) = min
Qt
{c(Qt) + ft(It−1, Qt) + E[Ct+1(It−1 +Qt − dt)]} (2.2)

where

CT (IT−1) = min
QT
{c(QT ) + fT (IT−1, QT )}

represents the boundary condition.

2.3 The optimality of (s, S) policies in stochastic

lot sizing

Scarf (1960) proved that the optimal policy in the dynamic inventory problem is

always of the (s, S) type based on a study of the function Gt(y) + cy, where

Gt(y) = ft(y) + E[Ct+1(y − dt)], (2.3)

and y is the stock level immediately after purchases are delivered (see Scarf, 1960,

Eq. (4)).

Since we consider a non-stationary environment, values of the (s, S) policy

parameters will depend on the given period t. Let (st, St) denote the policy

parameters for period t. Function Gt(y) + cy can be used to identify optimal

policy parameters (st, St). In particular, the order-up-to level St is defined as

the value minimising Gt(y) + cy; whereas the parameter st is given by the value

st < St such that Gt(st) + cst = Gt(St) + cSt + K (see Scarf, 1960, Eq. (5)).

K-convexity of the function Gt(y)+cy ensures the uniqueness of st and St (Scarf,

1960).

Example. We illustrate the concepts introduced on a 4-period example.

Demand dt is normally distributed in each period t with mean µt = 20, 40, 60, 40,

for t = 1, . . . , 4 respectively. Standard deviation σt of demand in period t is equal

to 0.25µt. Other parameters are K = 100, h = 1, b = 10, and c = 0. We plot

G1(y) in Fig. 2.1 for initial inventory levels y ∈ [0, 200]. Note that this problem is

solved via the stochastic dynamic programming model presented in Section 2.2.

The order-up-to level is S1 = 70, G1(S1) = 263, the reorder point is s1 = 14, and

G1(s1) = 363. Note that G1(s1) + cs1 = G1(S1) + cS1 + K. The optimal policy

is to order to 70 if the initial inventory drops below 14.
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Figure 2.1: Plot of G1(y)

2.4 MINLP approximation of Gt(y) function

In this section, we exploit an MINLP model to approximate the function Gt(y) in

Eq. (2.3). Our model follows the control policy known as “static-dynamic uncer-

tainty” strategy, known as (R, S) policy, originally introduced in Bookbinder and

Tan (1988). Under this strategy, the timing of orders and order-up-to levels are

expected to be determined at the beginning of the planning horizon, while associ-

ated order quantities are decided upon only when orders are issued. As illustrated

in Rossi et al. (2015), this strategy provides a cost performance which is close to

the optimal “dynamic uncertainty” strategy. However, optimal (s, S) parameters

cannot be immediately derived from existing mathematical programming models

operating under a static-dynamic uncertainty strategy, such as (Graves, 1999;

Rossi et al., 2015). We next illustrate how a model operating under a static-

dynamic uncertainty strategy can be used to approximate the function Gt(y) in

Eq. (2.3). In the rest of this section, without loss of generality, we focus on the

case G1(y).

Consider a random variable ω and a scalar variable x. The first order loss

function is defined as L(x, ω) = E[max(ω − x, 0)], where E denotes the expected

value with respect to the random variable ω. The complementary first order loss

function is defined as L̂(x, ω) = E[max(x − ω, 0)]. Like Rossi et al. (2015), we

will model non-linear holding and penalty costs by means of this function.

Let t = 1, . . . , T and consider three sets of decision variables: Ĩt, the expected

closing inventory level at the end of period t, with I0 denoting the initial inventory

level; δt, a binary variable which is set to one if an order is placed in period t;
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Pjt, a binary variable which is set to one if the most recent replenishment up to

period t was issued in period j, where j ≤ t — if no replenishment occurs before

or at period t, then we let P1t = 1, this allows us to properly account for demand

variance from the beginning of the planning horizon in Constraints (2.9) and

(2.10). Let d̃jt denote the expected value of the demand over periods j, . . . , t, i.e.

d̃jt = d̃j + · · ·+ d̃t. Decision variables Ht ≥ 0 and Bt ≥ 0 represent end of period t

expected excess inventory and back-orders, respectively. An MINLP formulation

for the non-stationary stochastic lot-sizing problem under the “static-dynamic”

uncertainty strategy, obtained following the modelling strategy in Rossi et al.

(2015), is shown in Figure 2.2.

min
( T∑
t=1

(Kδt + hHt + bBt) + cĨT + c
T∑
t=1

d̃t − cI0

)
(2.4)

Subject to, t = 1, 2, . . . , T

δt = 0→ Ĩt + d̃t − Ĩt−1 = 0 (2.5)

Ĩt + d̃t − Ĩt−1 ≥ 0 (2.6)
t∑

j=1

Pjt = 1 (2.7)

Pjt ≥ δj −
t∑

k=j+1

δk, j = 1, 2, . . . , t (2.8)

Pjt = 1→ Ht = L̂(Ĩt + d̃jt, djt), j = 1, 2, . . . , t (2.9)

Pjt = 1→ Bt = L(Ĩt + d̃jt, djt), j = 1, 2, . . . , t (2.10)

Pjt ∈ {0, 1}, j = 1, 2, . . . , t (2.11)

δt ∈ {0, 1} (2.12)

Figure 2.2: The formulation of the non-stationary stochastic lot-sizing problem

The objective function (2.4) minimizes the expected total cost over the plan-

ning horizon. In the objective function, expected variable ordering costs are refor-

mulated via c
∑T

t=1 Qt = cĨT +c
∑T

t=1 d̃t−cI0 by using the reformulation strategy

originally introduced in Tarim and Kingsman (2004) at p. 112 — note that term

c
∑T

t=1 d̃t − cI0 is a constant. Constraints (2.5) are indicator constraints (Belotti

et al., 2016) capturing the reorder condition. Constraints (2.6) are the inventory

balance equations. Constraints (2.7) indicate the most recent replenishment be-

fore period t was issued in period j. Constraints (2.8) identify uniquely the period

in which the most recent replenishment prior to t took place. Constraints (2.9)
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and (2.10) are indicator constraints modelling end of period t expected excess

inventory and back-orders by means of the first order loss function.

We now discuss how to adapt the model in Fig. 2.2 in order to compute, for a

given y, an approximate value of G1(y) + cy; see Eq. (2.3). We call this modified

model MINLP-s, and use superscript s to label decision variables in this model.

In addition to constraints in Fig. 2.2, MINLP-s features constraint

δs1 = 0, (2.13)

which forces the model not to issue an order in period 1. When δs1 = 0, the

objective function (2.4) becomes

Gs
1(Is0) = hHs

1 + bBs
1︸ ︷︷ ︸

f1(Is0)

+
T∑
t=2

(Kδst + hHs
t + bBs

t )︸ ︷︷ ︸
fixed ordering, holding, and

penalty cost for t = {2, . . . , T}

+ cĨsT + c

T∑
t=2

d̃t − cĨs1︸ ︷︷ ︸
proportional ordering cost

for t = {2, . . . , T}︸ ︷︷ ︸
≈

E[C2(Is0 − d1)]

(2.14)

which denotes the expected total cost of controlling the system optimally over

the planning horizon 1, . . . , T when the initial inventory level is Is0 and no order

is issued in period 1; hence c(Ĩs1 + d̃1 − Is0) = 0.

MINLP-s can be approximated as an MILP model by using the approach

discussed in Rossi et al. (2015) to piecewise linearise loss functions in constraints

(2.9) and (2.10). For further details please refer to Appendix 2.A.

Example. In Fig. 2.3, we plot Gs
1(y) obtained via the MILP-s for the same

4-period numerical example in Fig. 2.1 with initial inventory level Is0 ∈ [0, 200].

Since Gs
1(y) approximates G1(y), we can now use Gs

1(y) + cy to find approxi-

mate values Ŝ1 and ŝ1 for S1 and s1.

2.5 An MINLP-based model to approximate (s, S)

policy parameters

In this section we exploit the results presented in the previous section to introduce

an MINLP-based heuristic for approximating optimal (s, S) policies. To the best

of our knowledge, this is the first MINLP model in the literature for computing

near-optimal (s, S) policy parameters.

In a similar fashion to “MINLP-s”, we introduce “MINLP-S” to be the ap-
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Figure 2.3: Plot of Gs
1(y)

proximation of Ct(It−1) in Eq. (2.2). Similarly to Eq. (2.14), let the objective

function CS
1 (I0) of MINLP-S denote the expected total cost of controlling the

system optimally over the planning horizon 1, . . . , T given the initial inventory

level I0. We use the superscript S to represent decision variables in MINLP-S,

CS
1 (I0) =

T∑
t=1

(KδSt + hHS
t + bBS

t ) + cĨST + c
T∑
t=1

d̃t − cI0. (2.15)

MINLP-S imposes the constraint

δS1 = 1, (2.16)

which forces the model to place a replenishment in period 1.

In the MINLP-S model, Ŝ1 denotes an approximation of the optimal order-

up-to level S1. Since Gs
1(Is0) is an approximation of G1(Is0), by leveraging Scarf’s

result (see Scarf, 1960, Eq. (4)) on the study of G(y)+cy, we can identify ŝ1 = Is0

such that Gs
1(Is0) + cIs0 = Gs

1(Ŝ1) + cŜ1 + K. Therefore, we can approximate s1

by imposing the constraint

Gs
1(Is0) + cIs0 = CS

1 (IS0 ) + cIS0 , (2.17)

in which IS0 represents an approximation Ŝ1 of the optimal order-up-to level S1
1.

Note that CS
1 (IS0 ) includes the fixed ordering cost K because of Constraint (2.16);

1IS0 , which is a dummy variable, should not be confused with the actual initial inventory
level I0, which is needed to account for variable ordering costs.
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variable ordering cost in CS
1 (IS0 ) is zero because IS0 is its global minimizer. There-

fore, Eq. (2.17) is equivalent to Gs
1(Is0) + cIs0 = Gs

1(Ŝ1) + cŜ1 +K.

Finally, since s1 ≤ S1, we introduce an additional constraint to ensure that

the reorder point is not greater than the order-up-to level,

Is0 ≤ IS0 . (2.18)

Note that, in contrast to the true value G1(y) + cy, there is no guarantee

that K-convexity holds for its approximation Gs
1(y) + cy. For some instances

we may therefore have multiple values ŝ1 such that Eq. (2.17) holds. As we

will demonstrate in our computational study, leaving to the solver the freedom

to choose one of such values in a non-deterministic fashion leads to alternative

results.

MINLP-S and MINLP-s are connected by Eq. (2.17), in such a way that the

order-up-to level S1 and the reorder point s1 are approximated simultaneously.

For the joint MINLP model, in addition to decision variables in MINLP-S and

MINLP-s, we consider IS0 , a dummy variable representing the approximate order-

up-to level Ŝ1; and Is0 , which captures the approximate reorder point ŝ1.

Our holistic MINLP model objective features two parts: the first part, CS
1 (I0),

comes from MINLP-S; the second part, Gs
1(Is0)+cIs0−f1(Is0) ≈ E[C2(Is0−d1)], from

MINLP-s. Note that the term f1(Is0), which enhances computational performance

of the model, can be introduced because holding and penalty costs in period 1 for

model MINLP-s are already uniquely determined by Eq. (2.17). After dropping

the constant term c
∑T

t=1 d̃t−cI0 in the first part and the constant term c
∑T

t=1 d̃t

in the second part, we minimise the following holistic objective function

min
( T∑
t=1

(KδSt + hHS
t + bBS

t ) + cĨST +
T∑
t=2

(Kδst + hHs
t + bBs

t ) + cĨsT

)
; (2.19)

Constraints of the joint MINLP model are those of both MINLP-S and MINLP-

s in addition to the linking constraints (2.13), (2.16)-(2.18). After solving the

joint MINLP model over planning horizon k, . . . , T , the estimated order-up-to

level Ŝk is equal to ISk−1, and the estimated reorder point ŝk is equal to Isk−1. As

previously discussed, the joint MINLP model can be linearised via the piecewise-

linear approximation proposed in Rossi et al. (2014). In our MILP model, (2.9)

and (2.10) are modelled via the piecewise OPL expression (IBM, 2011). For a

complete overview of the MILP model refer to Appendix 2.B.

Example. We now use the same 4-period numerical example in Fig. 2.3 to
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demonstrate the modelling strategy behind the joint MINLP heuristic (MP). We

observe that, for period 1, the approximated order-up-to level is S1 = 70.3, the

reorder point is s1 = 15.0, and Gs
1(s1) = 366 (363, after simulation) as shown

in Fig. 2.1. By solving the joint MINLP repeatedly, st, St, and Gs
t(st), for

t = 1, . . . , 4, are estimated as shown in Table 2.1. We also compare our results

against the optimal solutions obtained via SDP in Table 2.1; note that although

different order-up-to levels, e.g. S2, are obtained, the optimal expected total costs

are similar.

MP SDP
t 1 2 3 4 1 2 3 4
st 15.0 29.0 58.1 29.0 14.0 29.0 58.0 28.0
St 70.3 54.0 117 54.0 70.0 141 114 53.0
Gs
t(st) 366 311 193 118 363 303 190 118

Table 2.1: Optimal (s, S) policy parameters obtained via the joint MINLP heuris-
tic and the stochastic dynamic programming

2.6 A binary search approach to approximate

(s, S) policy parameters

The joint MINLP heuristic presented in the last section is valuable, since it can be

easily linearised into an MILP model that can be solved by off-the-shelf solvers.

However, according to our experience, it can only effectively tackle small-size

instances. To preserve the advantage of relying on an MILP model, one may

investigate efficient reformulations, valid inequalities, or may explore cut genera-

tion techniques that enhance computational performances; we however choose to

leave this investigation as future work.

In order to tackle larger-size problems, in this section we introduce an effi-

cient approach that combines the model MINLP-s discussed in Section 2.5 and

a binary search strategy. This approach relies on the MINLP models previously

introduced, but it has the disadvantage of requiring dedicated code for the search

procedure.

Our binary search strategy (Algorithm 2) is structured as follows.

Computation of S (line 2-3). We first let Is0 to be a decision variable in

MINLP-s and minimise Gs
1(Is0) + cIs0 to estimate the order-up-to level Ŝ1.

Computation of s (line 5-17) Since Gs
1(Is0) is an approximation of G1(y),

we can conduct a binary search to approximate the reorder point ŝ1 by Is0 ≤ Ŝ1
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at which Gs
1(Is0) + cIs0 = Gs

1(Ŝ1) + cŜ1 +K. When the binary search terminates,

the estimated reorder point ŝk is equal to Isk−1.

By repeating this procedure (line 1) over the planning horizon k, . . . , T , we

find pairs of Ŝk and ŝk, where k = 1, . . . , T .

Data: costs (ordering cost, holding cost, penalty cost), mean demand and
standard deviation of each period, stepsize

Result: pairs of s and S for each period

1 for k = 1 to T do
2 Minimize MINLP-s in Section 2.5 in OPL;

3 Obtain Gs
k(Ŝk) and Ŝk;

4 low = a large negative integer; high = Ŝk;

5 while low < high do
6 mid = low + round((high− low)/2);
7 Run the MINLP-s with Isk−1 = mid in OPL;
8 Obtain current cost Gs

k(I
s
k−1);

9 if Gs
k(I

s
k−1)−Gs

k(Ŝk)−K − c(Ŝk − Isk−1) < 0 then
10 high = mid− stepsize;

11 else if Gs
k(I

s
k−1)−Gs

k(Ŝk)−K − c(Ŝk − Isk−1) > 0 then
12 low = mid+ stepsize;
13 else
14 ŝk = Isk−1;
15 low = high;

16 end

17 end

18 end

Algorithm 2: The binary search algorithm

Example. We illustrate the solution method discussed via the same 4-period

numerical example presented in Fig. 2.1. We assume the step size of the binary

search is 0.01. The order-up-to level Ŝ1 = 70.3 and Gs
1(70.3) = 266. We then

set low = −200, high = 70.3. While low < high, the mid is updated via the

comparison of Gs
1(Is0) + K and Gs

1(Ŝ1) + K. Eventually, we obtain the reorder

point ŝ1 = 15 at which Gs
1(ŝ1) + cŝ1 = Gs

1(Ŝ1) + cŜ1 + K. By repeating this

procedure we obtain Ŝt, ŝt, and Gs
t(st), for each period t = 1, . . . , 4 as displayed

in Table 2.2. After simulation, we obtain the expected total cost 363.
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t 1 2 3 4
st 15.0 29.0 58.1 29.0
St 70.3 54.0 116 54.0
Gs
t(st) 366 311 193 118

Table 2.2: Near-optimal (s, S) policy parameters obtained via the binary search
approach

2.7 Computational experiments

In this section we present an extensive analysis of the heuristics discussed in

Sections 2.5 (MP) and 2.6 (BS). We first design a test bed featuring instances

defined over an 8-period planning horizon (Section 2.7.1). On this test bed,

we assess the behaviour of the optimality gap and the computational efficiency of

both the MP and BS heuristics. Then we assess the computational performance of

the BS heuristics on a test bed featuring larger instances on a 25-period planning

horizon (Section 2.7.2). For all cases, MINLP models are solved by employing

the piecewise linearisation strategy discussed in Rossi et al. (2015), which can

be easily implemented in OPL by means of the piecewise syntax. Numerical

experiments are conducted by using IBM ILOG CPLEX Optimization Studio

12.7 and MATLAB R2014a on a 3.2GHz Intel(R) Core(TM) with 8GB of RAM.

2.7.1 An 8-period test bed

We consider a test bed which includes 540 instances. Specifically, we incorporate

ten demand patterns displayed in Fig. 2.4. These patterns comprising two life

cycle patterns (LCY1 and LCY2), two sinusoidal patterns (SIN1 and SIN2), a

stationary pattern (STA), a random pattern (RAND), and four empirical patterns

(EMP1, ..., EMP4). Full details on the experimental set-up are given in Appendix

2.C. Fixed ordering cost K ranges in {200, 300, 400}, proportional ordering cost

c ranges in {0, 1}, and the penalty cost b takes values in {5, 10, 20}. We assume

that demand dt in each period t is independent and normally distributed with

mean µt and coefficient of variation cv ∈ {0.1, 0.2, 0.3}; note that σt = cvµt.

Since we operate under the assumption of normality, our models can be readily

linearised by using the piecewise linearisation parameters available in Rossi et al.

(2014). However, the reader should note that our proposed modelling strategy is

distribution independent, see Rossi et al. (2015).

We set the SDP model discussed in Section 2.2 as a benchmark. We compare

against this benchmark in terms of optimality gap and computational time. First
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Figure 2.4: Demand patterns in our computational analysis
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of all, we obtain optimal parameters for each test instance by implementing an

SDP algorithm in MATLAB. Then, we solve each instance by adopting both

modelling heuristics presented in Section 2.5 and 2.6. Specifically, for the MP

heuristic we employ seven segments in the piecewise-linear approximations of

Bt and Ht (for t = 1, . . . , T ) in order to guarantee reasonable computational

performances; for the BS heuristic, whose computational performance is only

marginally affected by an increased number of segments in the linearisation, we

employ eleven segments and a step size 0.1. To estimate the cost of the policies

obtained via our heuristics, we simulate all policies via Monte Carlo Simulation

(10,000 replications).

Table 2.3 gives an overview of optimality gaps (%) of methods discussed in this

study for different pivoting parameters. It is difficult to make a general remark

with respect to demand pattern, and fixed ordering cost; while the proportional

ordering cost has a negative correlation with the optimality gap. An increase in

proportional ordering cost slightly reduces the optimality gap. While an increase

in penalty cost increases the optimality gap. Specifically, when penalty cost

increases from 10 to 20, the optimal gap rises from 0.25% to 0.42% and from 0.27%

to 0.35%, respectively. Similarly, an increase in coefficient of variation increases

the optimality gap. For example, the optimality gap of the BS heuristic increases

significantly from 0.16% to 0.40% as the coefficient of variation increases from

0.1 to 0.3. Overall, the average optimality gap of the MP heuristic is 0.29%, and

that of the BS heuristic is 0.26%. This discrepancy ought to be expected, since

in the case of the BS method a higher number of segments has been employed.

Existing heuristics Askin (1981) and Bollapragada and Morton (1999) were

reimplemented by Dural-Selcuk et al. (2016) and assessed on a test bed that

neatly resembles the one adopted in this work. As shown in Dural-Selcuk et al.

(2016), Askin’s optimality gap is 3.9%, and Bollapragada and Morton’s is 4.9%.

The optimality gap of our heuristic is 0.29% when seven segments are employed

in the piecewise linearisation, and it drops to 0.26% when eleven segments are

employed. Our models outperform both Askin (1981) and Bollapragada and

Morton (1999) in terms of optimality gap on the test bed here considered.

We also assess the accuracy of our models by comparing the costs predicted

by our models against the costs obtained via simulation. We note that both MP

and BS heuristics have high accuracy for the 8-period numerical experiments. For

further details please refer to Table 2.8 in Appendix 2.D.

Table 2.4 shows computational times of our models for different pivoting pa-

rameters. Note ”STDEV” in Table 2.4 represents the standard deviation. Overall,
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Modelling methods MP BS
Demand pattern
LCY1 0.25 0.33
LCY2 0.11 0.18
SIN1 0.13 0.20
SIN2 0.10 0.19
STA 0.50 0.14
RAND 0.16 0.22
EMP1 0.41 0.35
EMP2 0.86 0.52
EMP3 0.15 0.19
EMP4 0.28 0.28
Fixed ordering cost
200 0.31 0.29
300 0.24 0.22
400 0.34 0.27
Proportional ordering cost
0 0.33 0.29
1 0.26 0.23
Penalty cost
5 0.21 0.16
10 0.25 0.27
20 0.42 0.35
Coefficient of variation
0.1 0.22 0.16
0.2 0.26 0.22
0.3 0.40 0.40
Average 0.29 0.26

Table 2.3: Average optimality gaps % of the 8-period numerical experiment for
different pivoting parameters

the computational time of BS method remains stable for different set-up param-

eters; while that of MP and SDP algorithms fluctuate. We observe that the fixed

ordering cost, proportional ordering cost, penalty cost, and coefficient of varia-

tion do not have significant effect on the computational efficiency of BS and SDP

algorithms. However, the computational time of MP heuristic drops significantly

with the increase of fixed ordering cost, and proportional ordering cost; while

grows greatly with the increase of the coefficient of variation. On average, the

computational time of MP, BS, and SDP are 7.89, 7.01, and 53.03 seconds.
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Settings
MP BS SDP

Mean STDEV Mean STDEV Mean STDEV
Demand pattern
LCY1 3.54 0.98 7.17 1.21 13.58 0.86
LCY2 6.26 4.52 7.29 1.06 13.61 0.81
SIN1 4.67 3.20 6.48 0.69 13.31 1.11
SIN2 4.15 1.89 6.41 0.630 13.60 0.82
STA 5.52 3.68 6.48 0.72 9.95 2.29
RAND 3.60 0.87 7.11 1.32 710.12 2.95
EMP1 7.65 6.21 7.32 0.96 121.81 28.60
EMP2 14.03 13.60 7.28 1.19 107.20 7.37
EMP3 14.32 11.81 7.02 0.83 104.41 10.17
EMP4 15.12 15.35 7.52 1.20 122.71 27.79
Fixed ordering cost
200 10.29 11.18 7.11 1.00 53.03 51.94
300 7.17 6.94 6.99 1.00 53.07 51.98
400 6.19 5.40 6.93 1.08 52.99 51.91
Proportional ordering cost
0 8.49 9.06 7.64 0.99 60.21 60.12
1 7.28 7.57 6.38 0.59 45.85 40.85
Penalty cost
5 8.05 7.92 6.96 0.90 53.08 52.03
10 8.72 10.60 6.86 1.02 52.74 51.94
20 6.84 8.84 7.17 1.14 52.97 51.85
Coefficient of variation
0.1 6.42 6.16 7.00 1.08 53.06 51.96
0.2 7.98 8.92 7.02 0.99 53.01 51.92
0.3 9.26 9.43 7.01 1.03 53.02 51.95
Average 7.89 8.39 7.01 1.03 53.03 51.85

Table 2.4: Average computational time(seconds) of the 8-period numerical for
different pivoting parameters
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2.7.2 A 25-period test bed

As shown in Section 2.7.1 for the 8-period test bed, both the MP and the BS

methods provide tight optimality gaps and acceptable computational efficiency.

We now extend the 8-period test bed to 25 periods with larger instances. De-

mand of LCY1, LCY2, SIN1, SIN2, STA, and RAND are generated with expres-

sions (2.20), (2.21), (2.22), (2.23), (2.24), and (2.25) in Fig. 2.5. Demand of

EMP1, EMP2, EMP3 and EMP4 are derived from Strijbosch et al. (2011). Full

details are given in Appendix 2.C. Assume that fixed ordering cost ranges in

{500, 1000, 1500}, proportional ordering cost ranges in {0, 1}, penalty cost takes

values {5, 10, 20}, and the coefficients of standard deviations are {0.1, 0.2, 0.3}.

dt = round(
190× e−(t−13)2

2× 52
), t = 1, 2, . . . , T (2.20)

dt = round(
170× e−(t−13)2

2× 62
), t = 1, 2, . . . , T (2.21)

dt = round
(

70× sin(0.8t) + 80
)
, t = 1, 2, . . . , T (2.22)

dt = round
(

30× sin(0.8t) + 100
)
, t = 1, 2, . . . , T (2.23)

dt = 100, t = 1, 2, . . . , T (2.24)

dt = round(random(0, 250)), t = 1, 2, . . . , T (2.25)

Figure 2.5: Expressions for generating demand data

We obtain optimal (s, S) parameters and record computational time obtained

via the BS algorithm. For the first 15 periods we perform binary search with

step size 1 in order to ensure fast convergence; for the last 10 periods, we adopt

a step size 0.1 to enhance accuracy. The number of segments used in the piece-

wise linearisation is eleven. To estimate the cost of the policy obtained via our

approximation, we simulate each instance ten thousand times in MATLAB.

We observe that the BS algorithm has high accuracy even for the large-size

numerical experiments. We report detailed model accuracy in Table 2.9 in Ap-

pendix 2.D.

In Table 2.5, we summarise computational times of the BS model for different

pivoting parameters. It is difficult to make a general remark with respect to

demand patterns. An increase in fixed ordering cost significantly decreases the

computational time. For instance, the computational time drops from 934.92 to

546.75 seconds as the fixed ordering cost increases from 500 to 1500. An increase
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in proportional ordering cost decreases the computational time. In contrast, an

increase in coefficient of variation increases the computational time. For instance,

when the coefficient of variation rises from 0.1 to 0.2, the computational time

increases from 679.34 to 809.34 seconds. On average, the computational time is

748.20 seconds and the standard deviation is 616.43 seconds.

Settings Mean standard deviation
Demand pattern
LCY1 531.66 204.45
LCY2 740.73 322.92
SIN1 500.44 177.17
SIN2 1622.92 624.58
STA 1709.00 706.67
RAND 407.08 131.11
EMP1 633.09 126.63
EMP2 188.19 37.45
EMP3 974.93 305.16
EMP4 173.95 44.87
Fixed ordering cost
500 934.92 811.90
1000 762.96 540.73
1500 546.75 341.41
Proportional ordering cost
0 827.15 680.28
1 669.25 534.88
Penalty cost
5 713.45 564.80
10 782.53 669.09
20 744.28 612.21
Coefficient of variation
0.1 679.34 567.29
0.2 755.92 619.07
0.3 809.34 656.18
Average 748.20 616.43

Table 2.5: BS heuristic on a 25-period test bed, average computational
time(seconds) with different parameter settings

2.8 Conclusion

In this paper we discussed two MINLP-based heuristics for tackling non-stationary

stochastic lot-sizing problems under (s, S) policy.

Our first heuristic — the first MINLP heuristic for computing near-optimal
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non-stationary (s, S) policy parameters — is based on mathematical program-

ming models that can be solved by using off-the-shelf optimization packages.

These MINLP models can be linearised via the approach discussed in Rossi et al.

(2015) and can be implemented in OPL by adopting the piecewise expression.

Our second heuristic is a binary search strategy that leverages the aforemen-

tioned MINLP models and can tackle larger-size problems. However, this latter

heuristic requires dedicated code.

We conducted an extensive computational study comprising 540 instances.

We considered ten demand patterns, three fixed ordering costs, two proportional

ordering cost, three penalty costs and three coefficients of variation.

We first conducted a numerical study on small instances (8-period). We in-

vestigated the performance of both models by contrasting costs of the policy

obtained with our models against costs of the optimal policy obtained via the

stochastic dynamic programming. Optimality gaps observed are generally below

0.3%. Our sensitivity analysis showed that the optimality gap is tighter when

the demand keeps stable, and it deteriorates with the increase of the penalty cost

and the coefficient of variation; both heuristics provide tighter gaps than those

reported in the literature (Askin, 1981; Bollapragada and Morton, 1999).

The computational study carried out on larger instances (25-period) showed

that the computational efficiency of the binary search approach is reasonable:

around 748.20 seconds on average.

Appendix

2.A The piecewise OPL constraint

Rossi et al. (2015) piecewise linearised loss functions in constraints (2.9) and

(2.10) by employing piecewise linear approximations based on Jesen’s and Edmundson-

Madanski inequalities. An alternative strategy is to model these non-linear func-

tions by exploring the piecewise syntax in OPL. By using this syntax, a piecewise

function is specified by giving a set of slopes which represent the linear variation

for each linear segment; a set of breakpoints at which slopes change; and the

function value at a known point.

The piecewise syntax in OPL is given in Figure 2.6. W is the number of

breakpoints of the piecewise function. slope[i] and breakpoint[i] denote slope

and breakpoint of segment i. Segment i goes from breakpoint (i−1) to breakpoint

(i). <valuepoint> is the function value at a known point <knownpoint>. Finally,
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piecewise(i in 1..W){

slope[i] -> breakpoint[i];

slope[W+1]

}(<knownpoint>,<valuepoint>)<value>;

Figure 2.6: The syntax of the piecewise command in OPL

<value> represents the value at which we evaluate the function.

For the OPL piecewise syntax, there are three key components: slope, break-

point, and function value at a known point. The following lemmas will demon-

strate how to deduce their values. Let Ω be the support of ω. Let (Ωi)i=1,...,W+1

be a partition of Ω in W + 1 segments.

Lemma 1. The slope of ith segment is written as

li =
i−1∑
k=1

pk, i ∈ {1, 2, . . . ,W + 1},

where pi = Pr{ω ∈ Ωi} =
∫

Ωi
gω(t)dt, gω(·) denotes the probability density func-

tion of ω.

Proof. Observation from Rossi et al. (2014), Lemma 11.

Lemma 2. The ith breakpoint can be written as

Xi = E[ω|Ωi], i ∈ {1, 2, . . . ,W}.

Proof. Observation from Rossi et al. (2014), Lemma 11.

Note that when ω follows a normal distribution with mean µ and standard

deviation σ, then L̂up(x, ω) = σL̂up(x−µ
σ
, Z), where Z follows a standard normal

distribution, see Lemma 7 in Rossi et al. (2014).

Lemma 3. Assume that the partition of Ω is symmetric with respect to 0, then

the function value L̂up(x, ω) at point 0 can be written as follows.

L̂up(0, ω) =

−
∑W+1

2
k=1 pkE[ω|Ωk] + eW , W is odd

−1
2
(
∑W

2
k=1 pkE[ω|Ωk] +

∑W
2

+1

k=1 pkE[ω|Ωk]) + eW , W is even

where eW represents the approximation error.
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Proof. Since the partition of Ω is symmetric when W is odd, x = 0 is the central

breakpoint. Hence, the function value at this breakpoint can be calculated di-

rectly. However, when W is even, the function value at point x = 0 is the average

of nearest two symmetric breakpoints XW
2

and XW
2

+1.

Following Lemma 1, 2 and 3, constraint (2.9) and (2.10) in Fig. 2.2 can be

expressed as Eq. (2.26) and (2.27) in Fig. 2.7, for t = 1, . . . , T .

Pjt = 1→ Ht = piecewise{li → Xi; 1}(0, L̂up(0, djt))Ĩt,
i = 1, . . . ,W ; j = 1, . . . , t. (2.26)

Pjt = 1→ Bt = piecewise{−1 + li → Xi; 0}(0, L̂up(0, djt))Ĩt,
i = 1, . . . ,W ; j = 1, . . . , t. (2.27)

Figure 2.7: Rewriting holding and penalty costs by adopting piecewise syntax

2.B The MILP model

The joint MILP model to calculate near-optimal (s, S) policy parameters for the

non-stationary stochastic lot-sizing problem is presented below.2 In the joint MP

model, constraints (2.30) represent the costs of controlling the system optimally

when the initial inventory level is Is0 ; constraints (2.41) denote the costs of con-

trolling the system optimally when the initial inventory level is Is0 , and no order

is placed in period 1. These two constraints are connected via constraints (2.54)

such that the order-up-to level S1 and reorder point s1 are approximated by IS0

and Is0 respectively.

2The loss function is piecewise linearized via constraints (2.37), (2.38), (2.49), and (2.50).
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min
( T∑
t=1

(Kδ
S
t + hH

S
t + bB

S
t ) + cĨ

S
T +

T∑
t=2

(Kδ
s
t + hH

s
t + bB

s
t ) + cĨ

s
T

)
(2.28)

Subject to, t = 1, . . . , T (2.29)

C
S
1 (I

S
0 ) =

T∑
t=1

(Kδ
S
t + hH

S
t + bB

S
t ) + cĨ

S
T + c

T∑
t=1

d̃t − cIS0 (2.30)

Ĩ
S
t + d̃t − ĨSt−1 ≥ 0 (2.31)

δ
S
t = 0→ Ĩ

S
t + d̃t − ĨSt−1 = 0 (2.32)

t∑
j=1

P
S
jt = 1 (2.33)

P
S
jt ≥ δ

S
j −

t∑
k=j+1

δk, j = 1, . . . , t (2.34)

δ
S
1 = 1 (2.35)

I
S
0 = Ĩ

S
1 + d̃1 (2.36)

H
S
t ≥ (I

S
t +

t∑
j=1

djtP
S
jt)

i∑
k=1

pk −
t∑
j=1

(
i∑

k=1

pkE[djt|Ωi]− eW )P
S
jt, i = 1, · · · ,W (2.37)

B
S
t ≥ −I

S
t + (I

S
t +

t∑
j=1

djtP
S
jt)

i∑
j=1

pk −
t∑
j=1

(
i∑

k=1

pkE[djt|Ωi]− eW )P
S
jt, i = 1, · · · ,W (2.38)

P
S
jt ∈ {0, 1}, j = 1, . . . , t (2.39)

δ
S
t ∈ {0, 1} (2.40)

G
s
1(I

s
0 ) = (hH

s
1 + bB

s
1) +

T∑
t=2

(Kδ
s
t + hH

s
t + bB

s
t ) + cĨ

s
T + c

T∑
t=1

d̃t − cIs0 (2.41)

Ĩ
s
t + d̃t − Ĩst−1 ≥ 0 (2.42)

δ
s
t = 0→ Ĩ

s
t + d̃t − Ĩst−1 = 0 (2.43)

t∑
j=1

P
s
jt = 1 (2.44)

P
s
jt ≥ δj −

t∑
k=j+1

δ
s
k, j = 1, . . . , t (2.45)

δ
s
1 = 0 (2.46)

P
s
jt = 1→ H

s
t = piecewise{li → Xi; 1}(0, L̂up(0, djt))Ĩ

s
t ,

i = 1, . . . ,W

j = 1, . . . , t
(2.47)

P
s
jt = 1→ B

s
t = piecewise{−1 + li → Xi; 0}(0, L̂up(0, djt))Ĩ

s
t

i = 1, . . . ,W

j = 1, . . . , t
(2.48)

H
s
t ≥ (I

s
t +

t∑
j=1

djtP
s
jt)

i∑
k=1

pk −
t∑
j=1

(
i∑

k=1

pkE[djt|Ωi]− eW )P
s
jt, i = 1, · · · ,W (2.49)

B
s
t ≥ −I

s
t + (I

s
t +

t∑
j=1

djtP
s
jt)

i∑
j=1

pk −
t∑
j=1

(
i∑

k=1

pkE[djt|Ωi]− eW )P
s
jt, i = 1, · · · ,W (2.50)

P
s
jt ∈ {0, 1}, j = 1, . . . , t (2.51)

δ
s
t ∈ {0, 1} (2.52)

I
s
0 ≤ I

S
0 (2.53)

G
s
1(I

s
0 ) = C

S
1 (I

S
0 ) + c · (IS0 − I

s
0 ) (2.54)

2.C Test bed

Expected demand patterns under the eight period computational study are dis-

played in Table 2.6. The demand of each period under the twenty-five periods

numerical example is shown in Table 2.7. The first column represents period
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indexes; the rest columns denote various demands.

Period LCY1 LCY2 SIN1 SIN2 STA RAND EMP1 EMP2 EMP3 EMP4
1 15 3 15 12 10 2 5 4 11 18
2 16 6 4 7 10 4 15 23 14 6
3 15 7 4 7 10 7 26 28 7 22
4 14 11 10 10 10 3 44 50 11 22
5 11 14 18 13 10 10 24 39 16 51
6 7 15 4 7 10 10 15 26 31 54
7 6 16 4 7 10 3 22 19 11 22
8 3 15 10 12 10 3 10 32 48 21

Table 2.6: Demand data of the 8-period computational analysis

Period LCY1 LCY2 SIN1 SIN2 STA RAND EMP1 EMP2 EMP3 EMP4
1 11 23 130 122 100 178 2 47 44 49
2 17 32 150 130 100 178 51 81 116 188
3 26 42 127 120 100 136 152 236 264 64
4 38 55 76 98 100 211 467 394 144 279
5 53 70 27 77 100 119 268 164 146 453
6 71 86 10 70 100 165 489 287 198 224
7 92 103 36 81 100 47 446 508 74 223
8 115 120 88 103 100 100 248 391 183 517
9 138 136 136 124 100 62 281 754 204 291
10 159 150 149 130 100 31 363 694 114 547
11 175 161 121 118 100 43 155 261 165 646
12 186 168 68 95 100 199 293 195 318 224
13 190 170 22 75 100 172 220 320 119 215
14 186 168 11 71 100 96 93 111 482 440
15 175 161 42 84 100 69 107 191 534 116
16 159 150 96 107 100 8 234 160 136 185
17 138 136 140 126 100 29 124 55 260 211
18 115 120 148 129 100 135 184 84 299 26
19 92 103 114 115 100 97 223 58 76 55
20 71 86 60 91 100 70 101 0 218 0
21 53 70 18 73 100 248 123 0 323 0
22 38 55 14 72 100 57 99 0 102 0
23 26 42 50 87 100 11 31 0 174 0
24 17 32 104 110 100 94 82 0 284 0
25 11 23 144 127 100 13 0 0 0 0

Table 2.7: Demand data of the 25-period computational analysis

2.D Model accuracy

We employ the index of model accuracy (= |model result−simulation result|
simulation result

× 100%)

to evaluate the cost measure. We report the model accuracy of the 8-period
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numerical experiment in Table. 2.8, and the 25-period numerical experiment in

Table. 2.9.

Modelling methods MP BS
Demand pattern
LCY1 1.52 0.66
LCY2 7.47 3.42
SIN1 0.99 0.37
SIN2 0.84 0.30
STA 1.25 0.66
RAND 4.57 2.10
EMP1 8.75 4.50
EMP2 6.82 3.05
EMP3 1.83 0.81
EMP4 2.59 0.73
Fixed ordering cost
200 3.14 1.36
300 3.71 1.66
400 4.15 1.96
Proportional ordering cost
0 4.00 0.58
1 3.33 4.72
Penalty cost
5 5.29 2.47
10 3.27 1.33
20 2.42 1.18
Coefficient of variation
0.1 2.94 1.33
0.2 3.74 1.60
0.3 4.31 2.05
Average gap 3.66 1.66

Table 2.8: Model accuracy of the 8-period numerical experiments
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Modelling method BS
Demand pattern
LCY1 2.32
LCY2 2.97
SIN1 2.65
SIN2 2.50
STA 1.90
RAND 2.81
EMP1 4.15
EMP2 5.19
EMP3 3.79
EMP4 5.55
Fixed ordering cost
500 3.27
1000 3.46
1500 3.42
Proportional ordering cost
0 3.52
1 3.24
Penalty cost
5 2.56
10 3.23
20 4.34
Coefficient of variation
0.1 1.68
0.2 3.13
0.3 5.34
Average gap 3.38

Table 2.9: Accuracy of the 25-period numerical experiments
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Chapter 3

Paper II: (R, S) policy with

correlated demand

Abstract

This paper considers the single-item single-stock location non-stationary

stochastic lot-sizing problem under correlated demand. By operating un-

der a nonstationary (R, S) policy, in which R denotes the length of the

replenishment interval and S the associated order-up-to level, we introduce

a mixed integer linear programming (MILP) model which can be easily

implemented by using off-the-shelf optimisation software. Our modelling

strategy can tackle a wide range of time-series-based demand processes,

such as autoregressive (AR), moving average (MA), autoregressive moving

average (ARMA), and autoregressive with autoregressive conditional het-

eroskedasticity process (AR-ARCH). In an extensive computational study,

we compare the performance of our model against the optimal policy ob-

tained via stochastic dynamic programming. Our results demonstrate that

the optimality gap of our approach averages 2.28% and that computational

performance is good.

3.1 Introduction

Stochastic lot sizing is an important area of research in inventory control (Graves,

1999). Scarf’s pioneering work (Scarf, 1960) proved the optimality of (s, S) poli-

cies for a class of dynamic inventory models. Since then a sizeable literature fo-
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cused on the computation of the optimal policy parameters (see e.g. (Veinott Jr,

1965; Askin, 1981; Federgruen and Zipkin, 1984)). The (s, S) policy allows deci-

sion makers to decide dynamically at each time period whether or not to place

an order, by checking if the inventory level is below the reorder threshold s; and

how much to order, by “topping” inventory up to level S. However, as pointed

out in Tarim and Smith (2008), this policy performs poorly in terms of “ner-

vousness” of the control action, i.e. it suffers from planning instability. In this

regard, Bookbinder and Tan (1988) discussed the other two policies: static, and

static-dynamic uncertainty. The static uncertainty strategy, also known as (R,Q),

enables decision makers to decide the timing (R) and size (Q) of replenishments

at the beginning of the planning horizon. The static-dynamic uncertainty strat-

egy, known as (R, S) policy, provides an effective means for reducing planning

instability and coping with demand uncertainty. Under this policy, both inven-

tory reviews (R) and associated order-up-to levels (S) are fixed at the beginning

of the planning horizon, while actual order quantities are decided upon only after

demand has been observed. In this paper, we focus our attention on the (R, S)

policy.

Several approaches for computing optimal (R, S) policy parameters have been

proposed, e.g. (Bookbinder and Tan, 1988; Tarim and Kingsman, 2004, 2006;

Rossi et al., 2015). A common assumption in all these studies is that random

demand in each period is independent of demand in other periods. However, as

discussed in Song and Zipkin (1993), environmental factors, such as economic

conditions, market conditions, and any exogenous conditions, have major effects

on the demand for a product, the supply, and the cost structure. In this regards,

the goal of this paper is to relax the assumption of independence of demand in

different periods.

Correlated demand has been previously investigated in the inventory litera-

ture. Authors attempted to either prove the optimality of (s, S) policy, or com-

pute optimal policy parameters with different types of demand correlations over

the planning horizon. However, to the best of our knowledge, no study on com-

puting (R, S) policies under time-series-based demand processes exists.

In this paper, we consider a periodic-review single-item single-stocking loca-

tion lot-sizing problem under non-stationary stochastic correlated demand. We

build upon Rossi et al. (2015), which discussed a mixed integer linear pro-

gramming (MILP) heuristic for approximating the optimal (R, S) policies under

stochastic demand independent from period to period. We leverage properties of

conditional distributions, and present an MILP-based heuristic for approximating
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optimal (R, S) policies under normally distributed demand featuring correlation

across periods as well as under a collection of time-series-based demand pro-

cesses. Our approach offers a stable replenishment plan while effectively hedging

against uncertainty. Our model can be easily implemented and solved by using

off-the-shelf mathematical programming packages such as IBM ILOG optimisa-

tion studio.

Our contributions to the literature on stochastic lot-sizing are the following.

• We developed a stochastic model which captures the (R, S) policy under

correlated demand — to the best of our knowledge this is the first time the

(R, S) policy has been expressed in the form of a functional equation.

• We present an MILP-based heuristic for approximating optimal (R, S) poli-

cies under normally distributed demand featuring correlation across periods;

our MILP model can be easily solved by using off-the-shelf software.

• We illustrate how to adapt the model to a collection of time-series-based de-

mand processes: the autoregressive (AR) process, the moving-average (MA)

process, the autoregressive moving-average (ARMA) process, and the au-

toregressive with autoregressive conditional heteroskedasticity (AR-ARCH)

process.

• Our computational experiments demonstrate that the MILP heuristic pro-

vides tight optimality gaps and good computational times.

The rest of this paper is organised as follows. Section 3.2 surveys the re-

lated literature. Section 3.3 discusses relevant properties of multivariate normal

distribution, and the stochastic dynamic programming (SDP) formulation under

correlated demand. Section 3.4 derives a stochastic model which captures the

(R, S) policy. Section 3.5 presents our MILP model under correlated demand.

Section 3.6 shows how our MILP model can be extended to cover a collection

of time-series-based demand processes. In Section 3.7 we present an extensive

computational study. Finally, we draw conclusions in Section 3.8.

3.2 Literature review

In this section, we first survey literature on the (R, S) policy addressing the case of

independently and identically distributed demand in each period. We then survey

literature on correlated demand; in this stream of literature most studies focused

on establishing the optimality of (s, S) policies under a range of time-series-based

demand processes. This paper differs from existing research by considering (R, S)
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policy under normally distributed demand featuring correlation across periods,

as well as under a collection of time-series-based demand processes.

The (R, S) policy with independently and identically distributed demand has

been extensively studied. In Bookbinder and Tan (1988) the authors proposed a

two-stage deterministic equivalent heuristic which first fixes replenishment peri-

ods, and then determines order quantities for a single item inventory system with

fixed and proportional ordering costs, holding cost, and service level constraints.

Later, Tarim and Kingsman (2004) formulated a mixed integer programming

(MIP) model for determining both timing and quantity of orders simultaneously.

In a follow-up study, Tarim and Kingsman (2006) incorporated penalty costs.

Tarim et al. (2011) relaxed the original MIP model of Tarim and Kingsman

(2004), and solved it as a shortest path problem which does not require the use

of any MIP or constraint programming (CP) commercial solver. In addition,

Özen et al. (2012) showed a DP-based algorithm for solving small-size problems,

and an approximation heuristic and a relaxation heuristic for tackling larger-size

problems; Tunc et al. (2014) suggested a deterministic equivalent MIP model. Re-

cently, Rossi et al. (2015) generalised the discussions above, developed a unified

MILP model with service level constraints, penalty costs, and lost sale settings

by adopting the piecewise linear approximation technique in Rossi et al. (2014).

Although various efficient modelling approaches were proposed, they generally

assume that demand is independently and identically distributed, which is of-

ten unrealistic. In this paper we build upon Rossi et al. (2015) and present an

MILP-based heuristic for approximating (R, S) policies under correlated demand.

Literature on correlated demand can be roughly classified into two streams.

The first stream focused on establishing the optimality of (s, S) policy; while

the second stream focused on performances of different policies with different

time-series-based demand processes.

In relation to establishing the optimality of (s, S) policy under correlated de-

mand, Iglehart (1962) studied the case of Markovian demand considering fixed

and unit ordering cost, holding cost and shortage cost. Sethi and Cheng (1997)

established optimality of (s, S) policy for a generalization of classical inventory

models, including non-ordering periods, finite storage capacities, and service lev-

els. Beyer and Sethi (1997) incorporated convex surplus cost into the model and

proved the optimality from the viewpoint of minimising the long-run average cost

of inventory/backlog and ordering. Lian et al. (2009) proposed the first perishable

inventory model with Markovian renewal demand, and proved the optimal policy

is (s, S) type. Multiechelon models incorporating Markov-modulated demand are
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discussed in (Chen and Song, 2001; Hu et al., 2016). Other studies have shown

that the optimality of the (s, S) policy can be generalized to cases involving un-

bounded Markovian demand (Beyer et al., 1998), unreliable suppliers (Özekici

and Parlar, 1999), and polynomial growth demand, returns, and cost functions

(Li, 2013).

Regarding performances of different policies under time-series-based demand

processes, a widely adopted policy is the “base stock” policy. Under this policy,

if the opening inventory level is less than the base stock level, then an order is

issued to increase its inventory level to the base stock level; otherwise, no order

is issued. Johnson and Thompson (1975) proved the optimality of the base stock

policy for single-item periodic ordering systems with proportional holding and

stock-out costs and zero lead time for both Autoregressive (AR) and Moving

Average (MA) demand processes under the condition that demand falls between

certain lower and upper bounds, but without actually computing the optimal

values.

Graves (1999) developed a single-item inventory model under a determinis-

tic lead-time and an integrated moving average process. Dong and Lee (2003)

approximated the optimal base stock level when the demand is time-correlated

with a Martingale model of forecast evolution, and provided a simple, easy-to-

compute closed form expression for base stock level and average system costs

under, in particular, the AR(1) process.

Further policies under time-series-based demand processes are the following.

Ray (1981) focused on calculating the “reorder level” policy with random lead

time, and AR and MA demand processes. Fotopoulos et al. (1988) presented a

straightforward method for computing optimal policies with correlated AR and

MA demand process, and arbitrary lead times for the (s, S) policy. Recently,

Carrizosa et al. (2016) adopted a robust approach to explore the single-item

news-vendor problem with AR(P) demand processes. A close-form expression

for computing optimal order quantity is found for the AR(1) process; for the

remaining higher order AR processes, the problem is expressed as a solvable non-

linear convex optimization program. On the basis of our survey, no study has

been found in the literature that addresses the (R, S) policy with time-series-

based demand processes.

Capturing the behaviour of the demand process is integral to the analysis of

inventory management systems (Nasr and Maddah, 2015). All studies we sur-

veyed either address (R, S) policy with independently and identically distributed

demand, or investigated specific demand correlations under the (s, S) policy, the
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base stock policy, or the reorder level policy. The contribution of this paper is

to present an MILP-based heuristic for approximating the optimal (R, S) poli-

cies with a collection of time-series-based demand processed, which has not been

addressed yet in the literature.

3.3 A stochastic dynamic programming formu-

lation

We consider a stochastic lot-sizing problem over a T -period planning horizon.

Demand dt in each period t = 1, . . . , T is a normally distributed random variable

with probability density function gdt(·). We assume that distributions of demand

in successive periods are not identically distributed, and generally are correlated.

A full list of symbols is available in Appendix 3.A.

Let d be a n-variate multivariate normal random variable with mean µ and

variance-covariance matrix Σ, abbreviated d ∼MVN (µ,Σ), where

d =


d1

d2

...

dn

 µ =


µ1

µ2

...

µn

 Σ =


Var(d1) Cov(d1, d2) . . . Cov(d1, dn)

Cov(d2, d1) Var(d2) . . . Cov(d2, dn)
...

...
. . .

...

Cov(dn, d1) Cov(dn, d2) . . . Var(dn)

 .

We present two fundamental theorems for conditional distribution and linear

transformation.

Theorem 3.3.1 (Conditional distribution (Billingsley, 2008)). Let d = [d1 d2]T

be a partitioned multivariate normal random n-vector, d1 = [d1 . . . dp]
T ,

d2 = [dp+1 . . . dn]T , with mean µ = [µ1 µ2]T and variance-covariance matrix Σ =[
Σ11 Σ12

Σ21 Σ22

]
. Then the conditional distribution of d2 given d1 = η1 is multivariate

normal with

E[d2|d1 = η1] = µ2 + Σ21Σ−1
11 (η1 − µ1) (3.1)

Cov(d2|d1 = η1) = Σ22 − Σ21Σ−1
11 Σ12. (3.2)

Theorem 3.3.2 (Linear transformations (Taboga, 2012)). If d ∼ MVN (µ,Σ),

then any linear combinations of the di for i ∈ {1, . . . , n}, say aTd = a1d1 + . . .+

andn, is normally distributed as aTd ∼MVN (aTµ, aTΣa).

Let Dt = (η1, . . . , ηt−1) represent demand realisations at the beginning of
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period t, then the demand of period t has the conditional probability density

function gdt(ζt|Dt).
In what follows, we define variables It, and Qt. It, the inventory level at the

end of period t, and the opening inventory level of period t+ 1 before replenish-

ment. Qt, the ordering quantity at the beginning of period t. Let I0 represent

the given initial inventory level at the beginning of the planning horizon.

We further assume that orders are placed at the beginning of each time period,

and delivered instantaneously. There exist ordering costs c(·) comprising a fixed

ordering cost K for placing an order, and a linear ordering cost c proportional to

the order quantity Qt; which takes the following form.

c(Qt) =

K + c ·Qt Qt > 0

0 Qt = 0
(3.3)

Additionally, at the end of period t, a linear holding cost h is charged on every

unit carried from one period to the next; a linear penalty cost b is occurred for

each unit of unmet demand.

Given the above problem description, the objective is to schedule ordering

plans so as to minimize the expected total cost. The problem can be formulated as

a stochastic dynamic program (Bellman, 1966) comprising the following elements.

1. Stage. A stage represents a time period t = {1, . . . , T} for a T -period

stochastic lot-sizing problem.

2. State. Let St denote the state of the system at the beginning of period

t before replenishm ent. State St = {It−1,Dt} includes the opening inven-

tory level It−1 of period t, and the realised demand information set Dt =

(η1, . . . , ηt−1).

3. Action. An action means to schedule an order with quantity Qt at the

beginning of period t, Qt ∈ [0,∞).

4. Immediate cost. Let ft(It−1,Dt, Qt) denote the expected immediate cost

comprising ordering, holding, and penalty costs, given state St = {It−1,Dt}.

ft(It−1,Dt, Qt) = c(Qt) + h

∫
dt

max(It−1 +Qt − ζt, 0)gdt(ζt|Dt)d(ζt)

+ b

∫
dt

max(ζt − It−1 −Qt, 0)gdt(ζt|Dt)d(ζt)

= c(Qt) + hEdt [max(It−1 +Qt − dt, 0)
∣∣Dt]

+ bEdt [max(dt − It−1 −Qt, 0)
∣∣Dt]

(3.4)
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5. Objective function. Let Ct(It−1,Dt) denote the expected total cost of

an optimal policy over period t, . . . , T with state St = {It−1,Dt}. Then

Ct(It−1,Dt) can be written as, for t = 1, . . . , T − 1,

Ct(It−1,Dt) = min
Qt≥0
{ft(It−1,Dt, Qt) +

∫
dt

Ct+1(It−1 +Qt − ζt,Dt+1)gdt(ζt|Dt)d(ζt)}

= min
Qt≥0
{ft(It−1,Dt, Qt) + Edt [Ct+1(It−1 +Qt − dt,Dt+1)|Dt]},

(3.5)

where

CT (IT−1,DT ) = min
QT≥0
{fT (IT−1,DT , QT )} (3.6)

represents the boundary condition.

Example. We now introduce a 4-period example. Demand dt in successive

periods are correlated with covariance coefficient ρ = 0.5, dt in each time period

are normally distributed with means µt = 20, 40, 60, 40, and standard deviations

0.25µt. Other parameters are K = 100, h = 1, b = 10, c = 0, and I0 = 0. By

solving the stochastic dynamic program, we obtain an expected total cost equal

to 378.06.

3.4 Towards an (R, S) policy

The (R, S) policy, proposed by Bookbinder and Tan (1988), features two pa-

rameters: R and S. Under this policy, the review times R and the respective

order-up-to levels S are fixed at the beginning of the planning horizon. However,

actual ordering quantities are decided at the beginning of each review period to

reach the order-up-to level.

In this section we introduce a stochastic model which captures the (R, S) pol-

icy. We begin by reformulating the stochastic dynamic program with fixed tim-

ing of replenishments, defined as the “static-dynamic uncertainty” policy (Book-

binder and Tan, 1988). We then fix the order-up-to level of replenishments, thus

obtaining a stochastic dynamic program under (R, S) policy (Tarim and Kings-

man, 2004). Finally, we produce a stochastic model which captures the (R, S)

policy.
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3.4.1 “Static-dynamic uncertainty” policy

The “static-dynamic uncertainty” policy (Bookbinder and Tan, 1988) requires the

timing of replenishments to be fixed at the beginning of the planning horizon,

while the actual replenishment quantities are decided at the beginning of each

ordering period.

We first introduce a binary variable δt, for t = 1, . . . , T , which takes value 1

if a replenishment is placed in period t and 0 otherwise. Then, the ordering cost

in Eq. (3.3) is replaced as follows,

c(Qt) = Kδt + c ·Qt, (3.7)

for t = 1, . . . , T , and Qt ≥ 0. Thus, the timing of replenishments are given by the

values of t such that δt = 1; the quantities of replenishments are given by values

of Qt.

At the beginning of the planning horizon, before demand information becomes

available, the system state is S1 = {I0}. The objective is to decide the ordering

periods over the planning horizon, and the ordering quantity of period 1 so as to

minimise the expected total cost. Let Ĉ1(I0) represent the expected total cost of

an optimal policy over periods 1, . . . , T , given the initial inventory level I0 at the

beginning of period 1.

Ĉ1(I0) = min
δ1, . . . , δT

0 ≤ Q1 ≤Mδ1

{f1(I0, Q1) +

∫
d1

Ĉ2(I0 +Q1 − ζt,D2)gd1(ζt)d(ζt)}. (3.8)

Note that the constraint 0 ≤ Q1 ≤ Mδ1 represents the order quantity must lie

between 0 and a sufficiently large number, M . If an order is placed in period 1,

i.e. δ1 = 1, the order quantity must be an non-negative integer; otherwise, it is 0.

Since the timing of replenishments are decided at the beginning of period 1,

the objective in period t, for t = 2, . . . , T , is to decide replenishment quantities

such that the expected total future cost is minimised under the given system

state St = {It−1,Dt}. Therefore, the expected total cost Ĉt(It−1,Dt) is, for

t = 2, . . . , T − 1

Ĉt(It−1,Dt) = min
0≤Qt≤Mδt

{ft(It−1,Dt, Qt) +

∫
dt

Ĉt+1(It−1 +Qt − ζt,Dt+1)gdt(ζt|Dt)d(ζt)},

(3.9)
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where

ĈT (IT−1,DT ) = min
0≤QT≤MδT

{fT (IT−1,DT , QT )} (3.10)

represents the boundary condition.

3.4.2 Modelling the (R, S) policy via stochastic dynamic

programming

In the last section, under the “static-dynamic uncertainty” policy (Bookbinder

and Tan, 1988), the replenishment periods are decided at the beginning of the

planning horizon, and the actual order quantities are decided at the beginning of

each ordering period. In this section, we follow the (R, S) policy introduced in

Tarim and Kingsman (2004), where not only the timing of replenishments (R),

but also the corresponding order-up-to levels (S) are fixed at the beginning of the

planning horizon. Thus, the actual ordering quantities Qt are uniquely decided,

at the beginning of each ordering period, by the associated order-up-to levels St

and opening inventory levels It−1, i.e. Qt = St − It−1 if δt = 1, and Qt = 0

otherwise.1

At the beginning of the planning horizon, before demand information becomes

available, the system state is St = {I0}. The objective is to determine {δ1, . . . , δT}
and {S1, . . . , ST} so as to minimise the expected total cost. Let C̆1(I0) represent

the expected total cost of an optimal policy over periods 1, . . . , T , given the initial

inventory level I0 at the beginning of period 1.

C̆1(I0) = min
δ1,...,δT

min
S1, . . . , ST

Q1 = (S1 − I0)δ1

{f1(I0, Q1) +

∫
d1

C̆2(I0 +Q1 − ζt,D2)gd1(ζt)d(ζt)}

(3.11)

Note that the actual order quantity of period 1 is uniquely decided by Q1 = S1−I0

if a replenishment is placed, and 0 otherwise.

Since replenishment review periods and order-up-to levels are decided at the

beginning of period 1, the objective in period t, for t = 2, . . . , T , is to determine

the ordering quantity under the ordering schedule fixed at the beginning of the

planning horizon. Therefore, the expected total cost over period t, . . . , T with

given opening inventory level It−1 and realised demand information set Dt is as

1Note that the probability that the opening inventory level It−1 is greater than the order-
up-to level St is generally small and can be safely neglected Rossi et al. (2008).
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follows, for t = 2, . . . , T − 1,

C̆t(It−1,Dt) = min
Qt = (St − It−1)δt

{ft(It−1,Dt, Qt)

+

∫
dt

C̆t+1(It−1 +Qt − ζt,Dt+1)gdt(ζt|Dt)d(ζt)}, (3.12)

where

C̆T (IT−1,DT ) = min
QT = (ST − IT−1)δT

{fT (IT−1,DT , QT )} (3.13)

represents the boundary condition.

Since the ordering schedule is decided at the beginning of the planning horizon,

the function C̆t(It−1,Dt), for t = 2, . . . , T , only represents its linear relationship

with order quantity Qt. Then, the “min” symbol in Eq. (3.12)-(3.13) can be

dropped. Therefore, the stochastic dynamic program under (R, S) policy can be

rewritten as follows.

C̆1(I0) = min
δ1,...,δT

min
S1, . . . , ST

Qt = (St − It−1)δt

{f1(I0, Q1) +

∫
d1

C̆2(I0 +Q1 − ζt,D2)gd1(ζt)d(ζt)}

(3.14)

C̆t(It−1,Dt) = ft(It−1,Dt, Qt) +

∫
dt

C̆t+1(It−1 +Qt − ζt,Dt+1)gdt(ζt|Dt)d(ζt)

(3.15)

where t = 2, . . . , T − 1, and

C̆T (IT−1,DT ) = fT (IT−1,DT , QT ) (3.16)

represents the boundary condition.

3.4.3 A stochastic programming model under (R, S) policy

In this section we reformulate the stochastic dynamic program as a stochastic

programming model capturing the (R, S) policy. This reformulation is done by

compacting Eq. (3.14)-(3.16), and replacing the immediate costs with Eq. (3.4).

Then the stochastic programming formulation is given in Fig. 3.1.

The objective (3.17) is to decide the timing and order-up-to level of replen-

ishment at the beginning of the planning horizon so as to minimise the expected
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C̆1(I0) = min
δ1,...,δT

min
S1,...,ST

∫
d1

· · ·
∫
dT

T∑
t=1

(
Kδt + c ·Qt + hmax(It−1 +Qt − ζt, 0)

+ bmax(ζt − It−1 −Qt, 0)
)
gd1(ζ1|D1) · · · gdT (ζT |DT )d(ζ1) · · · d(ζT ) (3.17)

subject to, for t = 1, . . . , T

Qt = (St − It−1)δt (3.18)

It = I0 +
t∑
i=1

(Qi − ζi) (3.19)

Qt, St ≥ 0, It ∈ R, δt ∈ {0, 1} (3.20)

Figure 3.1: A stochastic program under (R, S) policy with correlated demand

total cost comprising ordering, holding, and penalty costs. Constraints (3.18)

ensure the ordering quantity must be equal to order-up-to level St, minus the

opening inventory level It−1 if an order is placed, and 0 otherwise. Constraints

(3.19) are the inventory conservation constraints, the closing inventory It must

be equal to the initial inventory level, plus all orders received, minus all condi-

tional demand realised up to period t. Constraints (3.20) set order quantity and

order-up-to level to be non-negative; inventory level could be any real number; δt

is a binary variable.

We now simplify the stochastic program in Fig. 3.1 as follows by applying the

law of total expectation (Weiss, 2006).

C̆1(I0) = min
δ1, . . . , δT

S1, . . . , ST

∫
d1

· · ·
∫
dT

T∑
t=1

(
Kδt + c ·Qt + hmax(It−1 +Qt − ζt, 0)

+ bmax(ζt − It−1 −Qt, 0)
)
gd1(ζ1) · · · gdT (ζT )d(ζ1) · · · d(ζT ) (3.21)

The correlated demand case is similar to the independent demand case, which

has been extensively discussed in Rossi et al. (2015). We will demonstrate how

to approximate it in the next section.
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3.5 Towards a Mixed Integer Linear Program-

ming model

In this section we present a Mixed Integer Linear Programming (MILP) model for

computing (R, S) policies. We begin by illustrating in Section 3.5.1 how to model

a single replenishment cycle over periods i, . . . , j as well as multiple replenishment

cycles. We then present in Section 3.5.2 an MILP model for computing optimal

(R, S) policy parameters under correlated demand.

3.5.1 Fixed replenishment cycle problem

Consider a single replenishment cycle over periods i, . . . , j, where the only replen-

ishment is placed at the beginning of period i with order-up-to level Si, and the

initial inventory level is Ii−1.

Let d = [di . . . dj] ∈ Rj−i+1 be a random vector. We assume that d has a

multivariate normal distribution with mean d̃ = E[d] = [d̃i . . . d̃j], and variance-

covariance matrix
∑

= Cov(dm, dn) = E[(dm − d̃m)(dn − d̃n)], m = i, . . . , j, and

n = i, . . . , j.

Let a random variable dit represent the convolution di+. . .+dt, for t = i, . . . , j.

Since the vector [di . . . dt] has multivariate normal distribution, dit is normally

distributed with mean d̃it equal to the sum of element means,

d̃it = d̃i + . . .+ d̃t, (3.22)

and variance

Var(dit) = 1TΣ1, (3.23)

where 1 is an all ones vector in Rt−i+1 (Theorem 3.3.2), abbreviated as dit ∼
N (d̃it, 1T

∑
1).

We next introduce the first order loss function L(x, ω) =
∫∞
−∞max(t−x, 0)gω(t)d(t)

and its complementary function L̂(x, ω) =
∫∞
−∞max(x − t, 0)gω(t)d(t), where ω

is a random variable with probability density function gω(·), and x is a scalar

variable. In what follows, we model the excess back-orders and on-hand stocks

in the form of first order loss function and its complementary function.

Let ζit denote the value of random variable dit, for t = i, . . . , j. Since the only

replenishment is placed at the beginning of period i, the closing inventory level of

period t must equal to the order-up-to level at the beginning of period i, minus
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the demand convolution over periods i, . . . , t, i.e. It = Si − ζit. Therefore, the

expected excess back-orders of period t in Eq. (3.4) can be reformulated as,∫
di

. . .

∫
dt

max(ζit − Si, 0)gdi(ζi) . . . gdt(ζt)d(ζi) . . . , d(ζt) = L(Si, dit), (3.24)

and the expected on-hand stocks of period t can be reformulated as,∫
di

. . .

∫
dt

max(Si − ζit, 0)gdi(ζi) . . . gdt(ζt)d(ζi) . . . , d(ζt) = L̂(Si, dit). (3.25)

Therefore, the expected total cost Cij(Ii−1, Si) over periods i, . . . , j, given

initial inventory Ii−1, and order-up-to level Si at the beginning of period i, can

be written as follows,

Cij(Ii−1, Si) =

j∑
t=i

(
Kδt + c ·Qt + hL̂(Si, dit) + bL(Si, dit)

)
, (3.26)

where δt = {0, 1}, and Qt = (Si − It−1)δt, for t = i, . . . , j. It is clear that, for the

single replenishment cycle problem, δi = 1, Qi = Si − Ii−1, δt = 0, and Qt = 0,

for t = i+ 1, . . . , j.

We now extend the above discussion to a N -replenishment cycle problem over

periods i, . . . , j. We assume that the initial inventory level Ii−1, the replenishment

cycle n, and the corresponding order-up-to levels Sn are fixed at the beginning of

period i, where n = 1, . . . , N . Therefore, the expected total cost Cij(Ii−1, Sn) over

periods i, . . . , j is the sum of the expected total cost of each single replenishment

cycle n. The order quantity Qn of replenishment period n is uniquely decided by

the opening inventory level In−1 and the order-up-to level Sn, i.e. Qn = Sn−In−1,

for n = 1, . . . , N .

Example. We now demonstrate the multi-replenishment cycle problem

discussed above on the 4-period problem presented in Section 3.3. We assume that

the only two replenishments are placed in period 1 and 3, and the corresponding

order-up-to levels are 60 and 100. The resulting expected total cost is 433.88.

3.5.2 An MILP model for computing (R, S) policies

We now present our MILP model for determining optimal (R, S) policies; to

approximate the expected holding and penalty cost, we employ the piecewise

linear approximation technique proposed by Rossi et al. (2015).

We introduce a binary variable Pjt which is set to one if the most recent
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replenishment up to period t was issued in period j, where j ≤ t; if no replenish-

ment occurs before or at period t, then we let P1t = 1, this allows us to properly

account for demand variance from the beginning of the planning horizon. We

observe that if Pjt = 1, the closing inventory level of period t must be equal

to the order-up-to level of period j minus the demand convolution over periods

j, . . . , t, i.e. It = Sj − ζjt. Then, following Eq. (3.24)-(3.25), the expected ex-

cess back-order and on-hand stock of period t can be written by means of the

first order loss function and its complementary function,
∑t

j=1 L(Sj, djt)Pjt, and∑t
j=1 L̂(Sj, djt)Pjt. Additionally, since period j must be the most recent order

received up to period t, the following constraints must be satisfied.

t∑
j=1

Pjt = 1, (3.27)

Pjt ≥ δj −
t∑

k=j+1

δk, j = 1, . . . , t. (3.28)

In what follows, let B̃t ≥ 0 and H̃t ≥ 0 denote upper bounds to true values of∑t
j=1 L(Sj, djt)Pjt, and

∑t
j=1 L̂(Sj, djt)Pjt. We next employ the piecewise linear

approximation technique proposed in Rossi et al. (2014, 2015) for djt to approxi-

mate the expected back-orders and on-hand stocks. This technique requires first

to partition the support Ω of djt into W disjoint subregions Ω1, . . . ,ΩW . We define

the probability mass pi =Pr{djt ∈ Ωi}, and the conditional expectation E[djt|Ωi]

with associated region Ωi. Then, the Edmundson-Madansky upper bound can be

applied to the expected back-order and on-hand stock.2 Therefore, B̃t, and H̃t

are formulated as follows,

B̃t ≥ −Ĩt +
t∑

j=1

SjPjt

i∑
k=1

pk +
t∑

j=1

(
ejtW −

i∑
k=1

pkE[djt|Ωi]

)
Pjt, (3.29)

H̃t ≥
t∑

j=1

SjPjt

i∑
k=1

pk +
t∑

j=1

(
ejtW −

i∑
k=1

pkE[djt|Ωi]

)
Pjt, (3.30)

t = 1, . . . , T , i = 1, . . . ,W , and ejtW denote the approximation error. Note that∑t
j=1 SjPjt = Ĩt +

∑t
j=1 d̃jtPjt.

For the special case in which demand follows a standard normal distribution,

the piecewise linear approximation parameters pi, E[djt|Ωi], and ejtW are provided

in Rossi et al. (2014), for i = 1, . . . ,W , t = 1, . . . , T , and j = 1, . . . , t. These

2Similarly, the Jensen’s lower bound can be applied for approximating the expected excess
inventory and back-orders as well, details refer to Rossi. et al. (2015).
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parameters can be applied to general normal distributions by using the stan-

dardisation formula L̂(Sj, djt) = σjtL̂(
Sj−d̃jt
σjt

, Z) in Rossi et al. (2014), Lemma 7,

where σjt represents the standard deviation of the joint distribution djt, and Z

is a standard normal random variable. Note that, since in our case demand is

correlated, the mean d̃jt and standard deviation σjt of the demand convolution

djt over periods j, . . . , t must be calculated via Eq. (3.22) and (3.23).

Finally, the expected proportional ordering cost can be reformulated as c
∑T

t=1 Qt =

cĨT +c
∑T

t=1 d̃t−cI0 by adopting the reformulation strategy originally introduced

in Tarim and Kingsman (2004) at p. 112. Therefore, the formulation in Fig. 3.1

can be reduced to an equivalent deterministic MILP model given in Fig. 3.2.

min
δt
−cI0 + c

T∑
t=1

d̃ +
T∑
t=1

(Kδt + hH̃t + bB̃t) + cĨT (3.31)

Subject to, for t = 1, . . . , T ,

Ĩt + d̃t − Ĩt−1 ≥ 0 (3.32)

δt = 0→ Ĩt + d̃t − Ĩt−1 = 0 (3.33)

t∑
j=1

Pjt = 1, (3.34)

Pjt ≥ δj −
T∑

k=j+1

δk, j = 1, . . . , t (3.35)

H̃t ≥ (Ĩt +

t∑
j=1

d̃jtPjt)
i∑

k=1

pk +
t∑
j=1

ejt
W
−

i∑
k=1

pkE[djt|Ωi]

Pjt, i = 1, . . . ,W (3.36)

B̃t ≥ −Ĩt + (Ĩt +
t∑
j=1

d̃jtPjt)
i∑

k=1

pk +
t∑
j=1

ejt
W
−

i∑
k=1

pkE[djt|Ωi]

Pjt, i = 1, . . . ,W (3.37)

δt ∈ {0, 1} (3.38)

Pjt ∈ {0, 1}, j = 1, . . . , t (3.39)

Figure 3.2: An MILP model for computing (R, S) policies with correlated demand

The objective (3.31) is to decide the timing and order-up-to level of replen-

ishments so as to minimise the expected total cost comprising ordering, holding,

and penalty costs with given initial inventory level I0. Constraints (3.32) ensure

the non-negativity of replenishments. Constraints (3.33) are indicator constraints

(Belotti et al., 2016) capturing the reorder condition. Constraints (3.34) indicate

that the most recent replenishment before period t was issued in period j. Con-

straints (3.35) uniquely define in which period the most recent replenishment

prior to t took place. Constraints (3.36)-(3.37) are approximations of expected

end of period t holding and penalty costs by means of the first order loss function.

Constraints (3.38)-(3.39) set binary variables.

By solving the model in Fig. 3.2, the optimal (R, S) policies are obtained.

Specifically, replenishment periods are obtained from δt and Pjt once and for all,
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before demand becomes known. The respective order-up-to levels St are obtained

by Ĩt + d̃t.

Example. We now use the same 4-period example in Section 3.3 to demon-

strate the modelling strategy. We solve the MILP model presented in Fig. 3.2,

and observe that the review periods are 1 and 3, and corresponding order-up-to

levels are 72.15 and 120.01. The simulated expected total cost (ETC) of this pol-

icy is 381.75, the computational time required to solve the MILP model is 0.19

seconds. Additionally, in Table 3.1, we compare these results against the optimal

policy obtained via SDP.

ETC Computational times
MILP 381.75 0.19
SDP 362.55 29.26

Table 3.1: Comparison of the MILP model and the stochastic dynamic program

Our model generalises the discussion in Rossi et al. (2015), which discussed

MILP model for approximating optimal (R, S) policy parameters when the de-

mand is independently and identically distributed. Our MILP model exploits

the law of total expectation and properties of joint distribution for computing

optimal (R, S) policies under correlated demand. As we will show in the next

section, our model can be immediately applied to a broad range of time series

models drawn from the literature.

3.6 Applications to time-series-based demand pro-

cesses

In this section we apply the MILP model in Fig. 3.2 for approximating the

optimal (R, S) policies with time-series-based demand processes. Our discussion

incorporates the AR, MA, ARMA, and AR-ARCH process.

Recall that the MILP model in Fig. 3.2 is built upon properties of the joint

distribution of demand convolution djt over periods j, . . . , t. Once the mean and

covariance matrix of demand convolution djt are decided, the MILP model can

be easily implemented and solved by using existing off-the-shelf software such as

IBM ILOG Optimisation Studio. Therefore, in this section we mainly focus on

presenting the mean, and covariance matrix regarding different time-series-based

demand processes.

We first consider the AR process of order P (AR(P )), the MA process of

order Q (MA(Q)), and the ARMA process of order P and Q (ARMA(P ,Q))
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presented in Box et al. (2015). The AR(P ) process predicts demand by using

past P time periods’ demand and a new noise; while the MA(Q) process forecasts

demand on previous Q time periods’ noises and a new noise. Putting these two

processes together yields the complete class of ARMA process of order P and Q

(ARMA(P ,Q)). For further details please refer to Appendix 3.B. We illustrate

associated expressions for means and covariances in Table 3.3.

The AR, MA, and ARCH processes represent the correlations of current de-

mand with realised information. We also consider the AR process with ARCH

of order P and M (AR(P )-ARCH(M)) introduced in Engle (1982), where not

only the current demand, but also the current noise depends upon the realised

information. For further details please refer to Appendix 3.B.4. We present the

mean and covariance of an AR(P )-ARCH(M) process in Table 3.3.

Time series Mean Covariance

AR(P) β0
1−
∑P
p=1 βp

γ|k| =

{∑P
p=1 βpγp + σ2, k = 0;∑P
p=1 βpγ

|k−p|, |k| ≥ 1.

MA(Q) θ
′
0 γ|k| =

{∑Q−k
i=0 θiθi+kσ

2, 0 < |k| ≤ Q, θ0 = 1;

0, |k| > Q.

ARMA(P, Q) β0
1−
∑P
p=1 βp

N.A.

AR(P)-ARCH(M) β0
1−
∑P
p=1 βp

γ|k| =

{∑P
p=1 βpγ

|p−k|, |k| ≥ 1;∑P
p=1 βpγ

p + α0

1−
∑M
m=1 αm

, k = 0.

Figure 3.3: Time series processes

3.7 Computational experiments

In this section we present an extensive numerical study to investigate performance

of our MILP heuristic discussed in Section 3.5.2. We first design a test bed

featuring instances defined over an 8-period planning horizon in Section 3.7.1. On

this test bed, we assess the behaviour of the optimality gap and the computational

efficiency of our MILP heuristic on multivariate normally distributed demand.

We then assess the computational performance of our MILP model on time-

series-based demand processes over a 15-period planning horizon in Section 3.7.2.

Numerical experiments are conducted by using IBM ILOG CPLEX Optimization

Studio 12.7 and MATLAB R2016a on a 3.2GHz Intel(R) Core(TM) with 8GB of

RAM.

3.7.1 Multivariate normal distribution

We consider a test bed which includes 320 instances. Specifically, we consider ten

general multivariate normal distributed demand patterns displayed in Fig. 3.4,
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comprising two life cycle patterns (LCY1 and LCY2), two sinusoidal patterns

(SIN1 and SIN2), a stationary pattern (STA), a random pattern (RAND), and

four empirical patterns (EMP1, ..., EMP4). Full details on the experimental

set-up are given in Appendix 3.C. We assume that the current demand is only

related to the past one period demand with covariance coefficient ρ = {0.25, 0.5}.
The fixed ordering cost K ranges in {200, 400}, the proportional ordering cost c

ranges in {0, 1}, and the penalty cost b takes values {10, 20}. The proportional

holding cost h = 1. We further assume that the demand is normally distributed

with coefficient of standard deviation cv = {0.15, 0.3} (note that σdt = cv · µt).
Since we operate under the assumption of normality, our models can be readily

linearised by using the piecewise linearisation parameters available in Rossi et al.

(2014).

We utilize the stochastic dynamic program (SDP) model discussed in Section

3.3 as a benchmark. We compare against this benchmark in terms of optimality

gap and computational time. We first obtain optimal parameters for each test

instance by implementing the SDP algorithm in Matlab. We then solve each

test instance by implementing the MILP model in IBM ILOG CPLEX Optimiza-

tion Studio. Specifically, for the MILP model, we employ eleven segments in the

piecewise-linear approximations of Bt and Ht (for t = 1, . . . , T ) in order to guar-

antee reasonable computational performance. To estimate the cost of the policies

obtained via our heuristics, we simulate all policies via Monte Carlo Simulation

(100,000 replications).

Table 3.2 gives an overview of optimality gaps (%) of the MILP model dis-

cussed in Section 3.5.2 for different pivoting parameters. The optimality gap is

defined as the difference between the simulated expected total cost obtained via

the MILP model and the SDP model. We observe that it is difficult to make a

general remark on the demand patterns. An increase of fixed ordering cost, pro-

portional ordering cost, and covariance coefficient slightly reduces the optimality

gap; conversely, an increase of penalty cost and coefficient of variation tends to

increase the optimality gap. More specifically, when the fixed ordering cost in-

creases from 200 to 300, the optimality gap decreases from 2.59% to 1.99%; while

the optimality gap increases from 0.98% to 3.58% as the coefficient of variation

increases from 0.15 to 0.3. On average, the optimality gap of the MILP heuristic

on the multivariate demand is 2.28%.

We assess the accuracy of the MILP model by comparing the cost predicted

by our model against the cost obtained via simulation in Table 3.2. We notice

that the average model accuracy is 0.47%.
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Figure 3.4: Demand patterns in our computational analysis
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MILP RHC
MILP gap(%) MILP accuracy (%) RHC gap(%)

Demand pattern
LCY1 4.88 0.72 3.16
LCY2 1.30 0.33 0.90
SIN1 1.44 0.49 0.99
SIN2 1.51 0.50 1.12
RAND 1.09 0.31 0.95
STA 1.97 0.51 1.49
EMP1 3.81 0.49 1.94
EMP2 2.71 0.42 0.74
EMP3 0.63 0.34 0
EMP4 3.45 0.55 1.67
Fixed ordering cost
200 2.57 0.50 1.31
300 1.99 0.43 1.27
Proportional ordering cost
0 2.38 0.50 1.37
1 2.18 0.43 1.21
Penalty cost
10 1.86 0.33 1.11
20 2.70 0.60 1.47
Coefficient of variation
0.15 0.98 0.35 0.72
0.3 3.58 0.58 1.86
Covariance coefficient
0.25 2.30 0.46 1.61
0.5 2.26 0.48 0.98
Average gap 2.28 0.47 1.29

Table 3.2: Computational behaviours of the multivariate normally distributed
demand processes for different pivoting parameters
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We also investigate a receding horizon control (RHC) implementation (Kwon

and Han, 2006), in which we repeatedly solve the lot-sizing problem at each

time period to determine an up-to-date optimal plan which takes into account all

information available. We use Monte Carlo simulation to estimate the expected

total cost; as a stopping criterion we impose a maximum estimation error of 0.03%

of the estimated cost at 95% confidence. In Table 3.2 we present the RHC gap3

and the differences between the expected total cost obtained via RHC and SDP.

We observe that the average RHC gap is 1.29%.

We present computational times of both the MILP model discussed in Section

3.5.2 and SDP model in Table 3.3. Note that “STDEV” in Table 3.3 represents

the standard deviation. We observe that the computational time of the MILP

model is not significantly affected by the demand patterns; while that of the SDP

algorithm fluctuates widely. Furthermore, we observe that the fixed ordering cost,

proportional ordering cost, penalty cost, coefficient of variation, and covariance

coefficient do not have significant effect on the computational efficiency of both

the MILP and SDP algorithm. In general, the average computational time of the

SDP and MILP algorithm are 192.17 and 0.10 seconds; their standard deviations

are 164.89 and 0.10 seconds.

3.7.2 Time-series-based demand processes

In this section we demonstrate that the MILP algorithm discussed in Section

3.5.2 can also be extended to solve lot-sizing problems with time-series-based

demand. Existing algorithms in the literature can only tackle lower order AR,

MA, or ARMA processes; in what follows we will show that higher order time-

series-based demand processes are tractable with our MILP model.

We only assess the model accuracy and computational efficiency of the MILP

algorithm on the time-series-based demand processes, since time series processes

are built upon the multivariate normal distribution and we have already investi-

gated optimality gaps in Section 3.7.1 (on average, 2.28%). Additionally, using

SDP to tackle higher order time-series-based demand processes is computation-

ally prohibitive even for very small instances.

We consider a 15-period test bed which includes 112 instances. Specifically, we

assess the computational performance of the MILP model on eight different time-

series-based processes, comprising AR(1), AR(3), MA(1), MA(3), ARMA(1, 1),

ARMA(3, 3), AR(1)-ARCH(1), and AR(3)-ARCH(3). These time-series-based

3Computational experiments are conducted by using the IBM ILOG CPLEX Optimization
Studio 12.7 and Eclipse 4.7.3 on a 1.2GHz Intel Core i5 with 4GB 1600MHz DDR3.
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Settings
SDP MILP

Mean STDEV Mean STDEV
Demand pattern
LCY1 65.37 1.92 0.10 0.07
LCY2 55.76 1.10 0.08 0.04
SIN1 55.49 0.96 0.12 0.17
SIN2 55.02 0.35 0.08 0.04
RAND 57.69 0.25 0.12 0.07
STA 56.11 1.18 0.10 0.06
EMP1 394.66 7.20 0.17 0.22
EMP2 393.21 2.34 0.08 0.03
EMP3 394.16 1.26 0.09 0.03
EMP4 394.26 1.32 0.10 0.03
Fixed ordering cost
200 192.12 164.83 0.10 0.06
300 192.22 164.96 0.11 0.13
Proportional ordering cost
0 192.22 165.15 0.11 0.07
1 192.13 164.81 0.10 0.13
Penalty cost
10 192.53 165.39 0.12 0.13
20 191.81 164.39 0.09 0.05
coefficient of variation
0.15 192.02 164.48 0.11 0.09
0.3 181.73 165.30 0.10 0.11
covariance coefficient
0.25 191.96 164.55 0.11 0.12
0.5 192.39 165.24 0.10 0.07
Average 192.17 164.89 0.10 0.10

Table 3.3: Computational times of the multivariate normally distributed demand
processes for different pivoting parameters
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processes are generated with expressions in Fig. 3.5. We assume that the coef-

ficient of variance cv = {0.15, 0.3}, the fixed ordering cost K = {200, 300}, the

proportional ordering cost c = {0, 1}, the holding cost h = 1, and the penalty

cost b = {10, 20}.

• AR(1): dt = 25 + 0.75dt−1 + εt, εt ∼ WN (0, (cv ∗ d̃t)2);

• AR(3): dt = 25+0.5dt−1+0.2dt−2+0.1dt−3+εt, εt ∼ WN (0, (cv∗d̃t)2);

• MA(1): dt = 100 + 0.75εt−1 + εt, εt ∼ WN (0, (cv ∗ d̃t)2);

• MA(3): dt = 100+0.5εt−1+0.2εt−2+0.1εt−3+εt, εt ∼ WN (0, (cv∗d̃t)2)

• ARMA(1, 1): dt = 25+0.75dt−1+0.75εt−1+εt, εt ∼ WN (0, (cv∗d̃t)2);

• ARMA(3, 3): dt = 25+0.5dt−1 +0.2dt−2 +0.1dt−3 +0.5εt−1 +0.2εt−2 +
0.1εt−3 + εt, εt ∼ WN (0, (cv ∗ d̃t)2);

• AR(1)-ARCH(1): dt = 25 + 0.75dt−1 + εt, εt = µt
√

100 + 0.75ε2t−1,
where µt ∼ IIN (0, 1);

• AR(3)-ARCH(3): dt = 25 + 0.5dt−1 + 0.2dt−2 + 0.1dt−3 + εt, εt =
µt
√

1 + 0.3ε2t−1 + 0.2ε2t−2 + 0.1ε2t−3, where µt ∼ IIN (0, 1).

Figure 3.5: Expressions for time-series-based demand patterns

Table 3.4 demonstrates computational times of the MILP algorithm discussed

in Section 3.5.2 for different pivoting parameters.4 It is difficult to draw a gen-

eral remark on different demand patterns. We observe that an increase of fixed

ordering cost slightly increases the computational time; while the increase of pro-

portional ordering cost, penalty cost, and coefficient of variation decreases the

computational time. For instance, the computational time increases from 0.59 to

0.77 seconds as the fixed ordering cost increases from 200 to 300; Additionally,

when the proportional ordering cost increases from 0 to 1, the average computa-

tional time drops from 0.77 to 0.59 seconds. On average the computational time

is 0.68 seconds, and the standard deviation is 0.26 seconds.

Table 3.5 presents the model accuracy of the MILP algorithm on time-series-

based demand processes. We observe that the average model accuracy is 3.41%.

4Please note that the coefficient of variation has no effect on the AR-ARCH processes,
therefore, only AR, MA, and ARMA processes are considered in doing sensitivity analysis.

111



Settings
Computational time (s)
Average STDEV

Demand patterns
AR(1) 0.63 0.23
AR(3) 0.63 0.15
MA(1) 0.90 0.20
MA(3) 0.69 0.10
ARMA(1,1) 0.69 0.41
ARMA(3,3) 0.51 0.35
AR(1)-ARCH(1) 0.75 0.28
AR(3)-ARCH(3) 0.68 0.34
Fixed ordering costs
200 0.59 0.30
300 0.77 0.27
Proportional ordering costs
0 0.77 0.35
1 0.59 0.20
Penalty ordering costs
10 0.72 0.26
20 0.64 0.33
Coefficient of variation
0.15 0.72 0.24
0.3 0.63 0.36
Average gap 0.68 0.26

Table 3.4: Computational efficiency of the time-series-based demand processes
for different pivoting parameters
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Settings Model accuracy (%)
Demand patterns
AR(1) 7.41
AR(3) 2.50
MA(1) 4.10
MA(3) 0.67
ARMA(1,1) 2.50
ARMA(3,3) 3.53
AR(1)-ARCH(1) 6.30
AR(3)-ARCH(3) 0.24
Fixed ordering costs
200 3.39
300 3.46
Proportional ordering costs
0 3.91
1 2.95
Penalty ordering costs
10 2.86
20 4.00
coefficient of variation
0.15 3.03
0.3 3.96
Average gap 3.41

Table 3.5: Model accuracy of the time-series-based demand processes for different
pivoting parameters
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3.8 Conclusion

In this paper, we consider a single-item single-stock location inventory lot-sizing

problem under non-stationary stochastic correlated demand, fixed and unit or-

dering cost, holding cost, and penalty cost. We present an MILP-based model

for approximating optimal (R, S) policies under normally distributed demand

featuring correlation across periods as well as under a collection of time-series-

based demand processes. In contrast to other approaches in the literature, our

model can be easily implemented and solved by using off-the-shelf mathematical

programming packages such as IBM ILOG optimisation studio.

We conducted an extensive numerical study comprising 432 instances. We first

investigated the behaviours of the optimality gap and computational efficiency of

the MILP heuristic on a 8-period test bed with 320 instances. We observe that

the optimality gap is 2.28%, and the average computational time is 0.1 seconds.

We then assessed the computational efficiency of the proposed MILP model on

time-series-based demand processes over a 15-period planning horizon comprising

112 instances. We observe that the average computational time is 0.68 seconds.

Our computational study demonstrates that our model is computationally effi-

cient and accurate. Moreover, in contrast to existing approaches in the literature,

it can tackle higher order time-series-based demand processes.

Appendix

3.A List of symbols

In this section we present a list of symbols used in this paper.

T periods in the planning horizon

dt random variable

g(·) probability density function

d a vector

ηt realisation of random variable dt

Dt realised demand set at the beginning of period t

ζt value of random variable dt

It inventory level at the end of period t

Qt ordering quantity placed at the beginning of period t

I0 initial inventory level at the beginning of the planning horizon

c(·) ordering cost
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K fixed ordering cost

c proportional ordering cost

h proportional holding cost

b proportional penalty cost

St system state at the beginning of period t, St = {It−1,Dt}
ft(It−1,Dt, Qt) immediate cost of period t with opening inventory level It−1,

realised demand set Dt, and order quantity Qt

Ct(It−1,Dt) the expected total cost of an optimal policy over period t, . . . , T

with opening inventory level It−1 and realised demand set Dt
St order-up-to level of period t

δt binary variable

Ĉt(It−1,Dt) expected total cost over periods t, . . . , T under the “static-

dynamic uncertainty” policy with opening inventory level It−1

and realised demand set Dt
M a large number

C̆t(It−1),Dt expected total cost over period t, . . . , T under (R, S) policy with

opening inventory level It−1 and realised demand set Dt
d̃t the expected value of random variable dt

djt a random variable denotes the demand over period j, . . . , t, i.e.

djt = dj + . . .+ dt

d̃jt expected value of the convolution d̃j + . . .+ d̃t

ζjt value of random variable djt

ω a random variable

x a scalar value

L(x, ω) first order loss function

L̂(x, ω) complementary of first order loss function

Cij(Ii−1, Si) the expected total cost over periods i, . . . , j with opening inven-

tory level Ii−1 and order-up-to level Si at the beginning of period

i

Pjt a binary variable which is set to one if the most recent replenish-

ment up to period t was issued in period j, where j ≤ t — if no

replenishment occurs before or at period t, then we let P1t = 1,

this allows us to properly account for demand variance from the

beginning of the planning horizon

Ω support of djt

W number of regions in a partition of Ω

i region index ranging in 1, . . . ,W
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Ωi the ith subregion of Ω

pi Pr(djt ∈ Ωi)

E[djt|Ωi] conditional expectation of djt in Ωi

H̃t the upper bound to the true value of
∑t

j=1 L̂(Sj, djt)Pjt

B̃t the upper bound to the true value of
∑t

j=1 L(Sj, djt)Pjt

ejtW approximation error

σjt the standard deviation of djt

Z a standard normal random variable

Table 3.6: A list of symbols

3.B Time series processes

In this section we present the AR, MA, ARMA, and AR-ARCH processes.

3.B.1 AR process

An AR process operates under the assumption that there is some linear correlation

between values in a time series.

Definition 3.B.1. (Autoregressive process of Order P). Consider a random vari-

able dt, t = {1, . . . , T}, the AR process of order P , abbreviated AR(P), is defined

by the equation

dt = β0 +
P∑
p=1

βpdt−p + εt, where {εt} ∼ N (0, σ2) (3.40)

where β0, β1, . . . , βP are parameters of this model, and {εt} is a sequence of nor-

mally distributed independent random variables with mean 0 and variance σ2.

AR(P) process has the following properties.

• Since the AR(P) is a weakly stationary process, it has constant mean E[dt],

E[dt] = β0

1−
∑P
p=1 βp

;

• Let Var(dt) denote the variance of the AR(P) process, Var(dt) = σ2

1−
∑P
p=1 β

2
p
;

• Let γ|k| be the covariance of dt with itself at a different point in time, as the

kth auto-covariance. Then,

γ|k| =


∑P

p=1 βpγp + σ2, k = 0;∑P
p=1 βpγ

|k−p|, for |k| ≥ 1.
(3.41)
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With the properties presented above and Theorem 3.3.2, the mean and covari-

ance matrix of the demand convolution djt over period j, . . . , t are pre-computed.

Therefore, the stochastic lot-sizing problems with AR(P) demand process can

be easily adjusted and solved with the MILP model in Fig. 3.2. This prob-

lem is also resolvable via stochastic dynamic programming. However, since the

current demand is linearly correlated to past P periods, the stochastic dynamic

programming formulation is complex and hard to solve.

We note that, this AR demand process permits negative demand. However, in

most industrial contexts, negative demand is unlikely or not allowed. Hence, as

with any model, some judgement is required as to the applicability of this model

of the demand process to the real world.

3.B.2 MA process

Regarding the AR(P) demand processes, the demand in period t depends on the

realised demand of last P periods, while its realised noises have no effects on

its current value. In this session we present the MA process where the current

demand depends on only current noise and realised noises instead of demand.

Definition 3.B.2. (Moving Average process of Order Q). An MA process of

order Q (MA(Q)) has dynamics which follows

dt = θ
′

0 +

Q∑
q=1

θqεt−q + εt, where {εt} ∼ N (0, σ2) (3.42)

where θ
′
0, θ1, . . . , θQ are parameters of this model, and {εt} is a sequence of nor-

mally distributed independent random variables with mean 0 and variance σ2.

The MA(Q) process has the following properties.

• Since the MA(Q) is a weakly stationary process, it has constant process mean

E[dt], E[dt] = θ
′
0;

• Let Var(dt) denote the variance of the MA(Q) process, Var(dt) = (1 +∑Q
q=1 θ

2
q)σ

2;

• Let γ|k| be the covariance of dt with itself at a different point in time, as the

kth auto-covariance. Then,

γ|k| =


∑Q−k

i=0 θiθi+kσ
2, 0 < |k| ≤ Q, where θ0 = 1;

0, |k| > Q.
(3.43)
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3.B.3 ARMA process

The AR process stipulates that the current value depends on its previous values

and a new noise; while the current value in a MA process depends on both a

new noise and previous noises. By putting these two processes together yields

the complete class of ARMA process.

Definition 3.B.3. (Autoregressive Moving Average process of Order P and Q).

An ARMA process with orders P and Q (ARMA(P,Q)) is defined as follows,

dt = β0 +
P∑
p=1

βidt−p +

Q∑
q=1

θqεt−q + εt, where {εt} ∼ N (0, σ2) (3.44)

Where β0, β1, . . . , βP , and θ1, . . . , θQ are parameters of this model, and {εt} is a

sequence of normally distributed independent random variables with mean 0 and

variance σ2.

The ARMA(P, Q) process has constant mean E[dt] = β0

1−
∑P
p=1 βp

, while the

variance Var(dt) cannot be easily expressed.We take the ARMA(1,1) process as

an example to show its mean, variance, and auto-covariance. The ARMA(1,1) is

defined as,

dt = β0 + β1dt−1 + θ1εt−1 + εt, εt ∼ N (0, σ2). (3.45)

It has the following properties.

• Since the ARMA(1,1) is a weakly stationary process, it has constant process

mean E[dt] = β0

1−β1
;

• Let Var(dt) denote the variance of ARMA(1,1) process, Var(dt) =
1+θ2

1+2θ1β1

1−β2
1

σ2;

• Let γ|k| be the covariance of dt with itself at a different point in time, as the

kth auto-covariance. Then,

γ|k| =

β1γ
|k|−1 + θ1σ

2, |k| = 1

β1γ
|k|−1, |k| ≥ 2

(3.46)

3.B.4 AR-ARCH process

We have discussed in previous sections that the AR, MA, and ARMA processes

represent the correlations of current demand with realised information. This

section will present a class of models where not only the current demand, but
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also the current noise depend upon the realised information. We first present the

linear ARCH progress originally introduced by Engle (1982), the time varying

conditional variance is postulated to be a linear function of the past M squared

innovations. We further present the AR-ARCH process.

Definition 3.B.4. (Autoregressive Conditional Heteroskedasticity progress) An

ARCH progress of order M (ARCH(M)) has dynamics which follows

εt = µt

√√√√α0 +
M∑
m=1

αmε2t−m, µt ∼ N (0, 1) (3.47)

where α0, α1, . . . , αM are positive parameters.

Let Ft denote the information set available at time t. The conditional mean

of εt is E[εt|Ft] = E[µt|Ft] ·
√
α0 +

∑M
m=1 αmε

2
t−m = 0 since E[µt|Ft] = 0. The

conditional variance of εt is Var(εt|Ft−1) = E[Var(ε2t |Ft−1)] − E[εt|Ft−1]2 = α0 +∑M
m=1 αmε

2
t−m.

Therefore, the unconditional mean of εt is E[εt] = 0. The unconditional

variance of εt is Var(εt) = E[εt|Ft−1] + Var(E[εt|Ft−1]) = α0 +
∑M

m=1 αmVar(εt−m).

Since the ARCH(M) is a stationary process, Var(εt) = α0

1−
∑M
m=1 αm

.

An AR(P) process has an ARCH-free white-noise process {εt} with variance

σ2. If we assume that the white noise process {εt} now is a ARCH(M) process,

we have a more complicated AR(P) process with ARCH(M) effects.

Definition 3.B.5. (Autoregressive process with Autoregressive Conditional Het-

eroskedasticity effects). An AR process of order P with ARCH of order M (AR(P)-

ARCH(M)) has dynamics which follows

dt = β0 +
P∑
p=1

βpdt−p + εt, εt = µt ·

√√√√α0 +
M∑
m=1

αmε2t−m (3.48)

where µt ∼ N (0, 1), β0, β1, . . ., βP , and α0, α1, . . ., αM are parameters of this

model. Additionally, to ensure that εεt ≥ 0, we need α0 > 0, and αm ≥ 0 for

m ∈ {1, . . . ,M}.

Like the AR(P) process, the AR(P)-ARCH(M) process is a weakly stationary

process, it has stationary mean, variance, and covariance as follows.

• The unconditional mean of the AR(P)-ARCH(M) is, E[dt] = β0

1−
∑P
p=1 βp

;

• the variance is, Var(dt) = α0

(1−
∑P
p=1 β

2
p)(1−

∑M
m=1 αm)

;
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• The kth auto-covariance is,

γ|k| =


∑P

p=1 βpγ
|p−k|, |k| ≥ 1;∑P

p=1 βpγ
p + α0

1−
∑M
m=1 αm

, k = 0.
(3.49)

3.C Test bed

Periodic demand with different demand patterns under our eight period com-

putational study are displayed in Table 3.7. The first column represents period

indices; other columns represent demand patterns.

Period LCY1 LCY2 SIN1 SIN2 STA RAND EMP1 EMP2 EMP3 EMP4

1 15 3 15 12 10 2 5 4 11 18
2 16 6 4 7 10 4 15 23 14 6
3 15 7 4 7 10 7 26 28 7 22
4 14 11 10 10 10 3 44 50 11 22
5 11 14 18 13 10 10 24 39 16 51
6 7 15 4 7 10 10 15 26 31 54
7 6 16 4 7 10 3 22 19 11 22
8 3 15 10 12 10 3 10 32 48 21

Table 3.7: Expected demand data of the 8-period computational analysis
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Chapter 4

Paper III: Nonstationary (R, S)

policies for joint replenishment

inventory systems

Abstract

This paper considers the periodic-review nonstationary stochastic joint re-

plenishment problem (JRP) under Bookbinder and Tan’s static-dynamic

uncertainty control policy. According to a static-dynamic uncertainty con-

trol rule, the decision maker fixes timing of replenishments once and for all

at the beginning of the planning horizon, inventory position is then raised

to a predefined order-up-to position at the beginning of each replenish pe-

riod. We present a mixed integer linear programming (MILP) model for

approximating optimal static-dynamic uncertainty policy parameters. We

further demonstrate that our MILP model can be used to approximate the

optimal control rule for the JRP, also known as (σ, ~S) policy. An exten-

sive computational study illustrates the effectiveness of our approach when

compared to other competitor approaches in the literature.

4.1 Introduction

The Joint Replenishment Problem (JRP) occurs when several items are ordered

from the same supplier, or several products have the same means of transporta-

tion, or several products are processed on the same piece of equipment (Salameh
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et al., 2014). Every time an order is placed, the group fixed ordering cost is

incurred regardless the number of items replenished; in addition there are also

item-specific fixed ordering costs that are charged whenever an item is included in

a replenishment order. The goal of the JRP is to determine the optimal inventory

replenishment plan that minimises the cost of replenishing multiple items.

Literature on JRP can be roughly categorised into deterministic and stochas-

tic based on the nature of demand. In the deterministic joint replenishment

inventory system, demand for each individual item is assumed to be known over

an infinite time horizon and replenishments are made at equally spaced time in-

tervals; the problem is to determine the length of replenishment cycles and the

frequency of replenishing individual items, e.g., (Goyal and Belton, 1979; Kaspi

and Rosenblatt, 1991; Viswanathan, 1996; Wildeman et al., 1997; Hariga, 1994;

Goyal and Deshmukh, 1993; Boctor et al., 2004; Nilsson et al., 2007). In the

stochastic joint replenishment inventory system, the demand for each individual

item is unknown, but follows a certain type of distribution; the problem is to

decide the optimal parameters of a given inventory policy, e.g., (Balintfy, 1964;

Atkins and Iyogun, 1988; Renberg and Planche, 1967; Kalpakam and Arivarignan,

1993; Viswanathan, 1997; Nielsen and Larsen, 2005; Özkaya et al., 2006). Most

literature still presents applications to deterministic demand; however, the study

regarding stochastic demand has received increasing attention due to its practical

relevance (Bastos et al., 2017). This work belongs to the growing literature on

the stochastic joint replenishment.

This paper applies the static-dynamic strategy, proposed by Bookbinder and

Tan (1988) for tackling single-item lot-sizing problems, in the context of a JRP

system. The static-dynamic strategy, known as (R, S), features two control pa-

rameters: R, timing of replenishment, and S, order-up-to position. At each review

period, the decision maker places an order so as to increase the inventory position

(net inventory level + outstanding orders) to a given order-up-to position. In the

context of the JRP system, a periodic-review (R, S) policy is adopted for each

item. The (R, S) policy is an appealing strategy since it eases the coordination

between supply chain players (Kilic and Tarim, 2011), and facilitates managing

joint replenishment (Silver et al., 1998).

Our goal is to tackle the periodic-review stochastic JRP under (R, S) policy.

We first present a mixed-integer linear programming (MILP) model for computing

optimal policy parameters that optimise the expected total cost comprising group

fixed ordering costs, item-specific ordering costs, holding costs, and penalty costs

over the planning horizon. Our model generalises Rossi et al. (2015), which
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discussed an MILP model for approximating (R, S) policy parameters for single-

item lot-sizing problems. We further show that our MILP model can be used

to approximate (σ, ~S) policies, which are known to be optimal for this class of

problem (Liu and Esogbue, 2012). Under this policy, decision makers order up

to ~S if opening inventory positions fall in σ (~S ∈ RN , N represents the number

of items) at the beginning of each time period. The definition of σ is general;

its shape and properties are literately unknown. There is no guarantee of σ by

convex, or even connected. Numerical experiments illustrate the effectiveness of

our models.

We contribute to the literature on the stochastic JPR as follows.

• We present an MILP model for tackling the nonstationary stochastic JRP

under (R, S) policy.

• We demonstrate that the MILP model can be used to approximate (σ, ~S)

policies.

• In an extensive computational study based on existing test beds drawn from

the literature we demonstrate the effectiveness of our models when compared

to other competing approaches in the literature.

The rest of this paper is organised as follows. Section 4.2 surveys relevant

literature. Section 4.3 describes problem settings. Section 4.4 presents an MILP

model for computing (R, S) policy parameters. Section 4.5 extends the MILP

model for approximating the optimal (σ, ~S) policy parameters. An extensive

computational study is conducted in Section 4.6. We draw conclusions in Section

4.7.

4.2 Literature review

The problem of controlling the inventory of a multi-item system under joint re-

plenishment has received increasing attention over the past several decades. For

a thorough review of literature readers could refer to (Silver and Peterson, 1985;

Goyal and Satir, 1989; Van Eijs et al., 1992; Khouja and Goyal, 2008; Bastos

et al., 2017). In this section, we focus our attention on existing policies for tack-

ling stochastic JRPs. In particular, we survey control policies that have been

considered in the literature.

(σ, ~S) policy. Since the landmark study Scarf (1960) proved the optimality for

the single-item inventory problem, there have been several attempts to prove the
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optimality for multi-item inventory systems. Johnson (1967) proved the optimal

policy in the stationary case is a (σ, ~S) policy, where σ ⊂ RN and ~S ∈ RN , and

one orders up to ~S if inventory levels ~I ∈ σ and ~I ≤ ~S and one does not order if
~I /∈ σ. Kalin (1980) showed when ~I ∈ σ and ~I 6≤ ~S, there exists ~S(~I) ≥ ~I such

that the optimal policy is to order up to ~S(~I), this policy is named (σ, ~S(·)) policy.

Ohno and Ishigaki (2001) proved the optimality of (σ, ~S(·)) policy for continuous-

time inventory problems with compound Poisson demand. Gallego and Sethi

(2005) gave the general definition of K-convexity in RN , which encompasses

both the joint ordering and individual ordering case.

(s, c, S) policy. Several works on stochastic JRPs have focused on comput-

ing (s, c, S) policies, introduced by Balintfy (1964). This policy features three

control parameters: s, reorder point; c, can-order level; S, order-up-to position.

Under this policy, decision makers order up to S when either at a demand epoch

the inventory position drops to or below s; or when at a special replenishment

opportunity the inventory position is at or below c. Under the assumption of

Poisson-distributed demand, Ignall (1969) proved that the (s, c, S) policy is not

optimal even for two-item problems. Silver (1974) proposed the decomposition

method to compute (s, c, S) policy parameters, where the multi-item problem

is decomposed into several single-item problems. This approximation technique

was followed by (Melchiors, 2002; Johansen and Melchiors, 2003). Kayiş et al.

(2008) modelled the two-item JRP problem as a semi-Markov decision model, and

proposed an enumerative approach to approximate (s, c, S) policies. In addition,

(Schaack and Silver, 1972; Thompstone and Silver, 1975; Silver, 1981; Federgruen

et al., 1984) studied JRPs with compound Poisson-distributed demand.

(R, T ) policy. Atkins and Iyogun (1988) proposed two periodic-review (R, T )-

type policies, namely periodic policy P and modified periodic policy MP , which

differ only in the way the ordering periods Ti are determined. Under this policy,

every Ti periods, the inventory position of item i is raised to Ri. Numerical

experiments demonstrate that the MP policy performs consistently better than

the (s, c, S) policy, and the P policy generally outperforms the the (s, c, S) policy

excepting problems involving small values of group fixed ordering cost.

(Q,S) policy. This policy was first proposed by Renberg and Planche (1967).

Under this policy, whenever the total inventory position drops to the group re-

order point, an order is placed to raise inventory position of each item to item-

specific order-up-to position S. The combined order quantity is Q, and the group

reorder point is reached when the combined usage reaches Q. Pantumsinchai

(1992) evaluated the computational performance of the (Q,S) policy by compar-
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ing it against the (s, c, S) policy, P policy and MP policy on the basis of long-run

total average costs. Computational experiments showed that the MP policy con-

sistently outperforms the (s, c, S) policy on the test instances, and both MP and

(Q,S) policy perform better as the group ordering cost increases. The study

showed that the (Q,S) policy is appropriate for items for which the stock-out

costs are low and the major set-up cost is high relative to the minor set-up cost.

P (s, S) policy. This policy was proposed by Viswanathan (1997) for periodic-

review inventory systems, in which inventory position of each item is reviewed at

every fixed and constant time interval. At each review time, the (s, S) policy is

applied to each item, so that any item with inventory position at or below s is or-

dered up to S. For a fixed review period, the algorithm of Zheng and Federgruen

(1991) is adopted to compute the optimal (s, S) policy parameters. Computa-

tional studies indicated that although the proposed policy requires more com-

putational effort, it generally dominates the MP policy, and dominates (s, c, S)

policy, and (Q,S) policy for most test instances.

Q(s, S) policy. Nielsen and Larsen (2005) combined features of (Q,S) policy

and P (s, S) policy, and proposed the Q(s, S) policy. By operating under this

policy, the total inventory position is continuously reviewed while the item-specific

inventory positions are reviewed only when the total consumption since the last

order reaches Q. Then every item with inventory position less than or equal to its

respective reorder point s is ordered to S. An analytic solution is derived by using

the Markov decision theory in Nielsen and Larsen (2005). Computational study

demonstrated that the Q(s, S) policy outperforms P (s, S) policy, and dominates

(Q,S) policy in 17 of 18 test instances on the data set of Atkins and Iyogun

(1988).

(Q,S, T ) policy. This continuous-review policy was proposed by Özkaya et al.

(2006). Decision makers raise the inventory position of each item i to its order-

up-to position Si whenever a total of Q demand accumulated or T time units have

elapsed, whichever occurs first. This policy is a hybrid of the continuous review

(Q,S) policy, proposed by Renberg and Planche (1967), and the periodic review

(R, T ) policy, proposed by Atkins and Iyogun (1988). Thus, it features benefits

of two separate policies. The comprehensive numerical study indicates that the

proposed policy dominates the P (s, S) policy, (Q,S) policy, Q(s, S) policy, and

(s, c, S) policy in 100 of 139 instances.

(R, S) policy. This policy is proposed by Bookbinder and Tan (1988) for

controlling single-item inventory system. The time intervals between two consec-

utive orders R, and order-up-to positions S in replenishment periods are required
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to be fixed at the beginning of the planning horizon. Decision makers raise the

inventory position to S at the beginning of each replenishment period. This pol-

icy has been widely studied in the stream of literature on single-item lot-sizing

problems. (Tarim and Kingsman, 2004, 2006) formulated a mixed integer pro-

gramming (MIP) model for computing optimal (R, S) policy parameters. Tarim

et al. (2011) relaxed the MIP model, and solved it as a shortest path problem

which does not require the use of any MIP or Constraint Programming (CP) com-

mercial solver. In addition, Özen et al. (2012) proposed a DP-based algorithm

for solving small-size problems, and an approximation heuristic and a relaxation

heuristic for tackling larger-size problems; Tunc et al. (2014) suggested a de-

terministic equivalent MIP model. Recently, Rossi et al. (2015) generalised the

discussions above and developed a unified MILP model for approximating (R, S)

polices by adopting the piecewise linear approximation technique in Rossi et al.

(2014). Although various efficient modelling methods for computing (R, S) pol-

icy parameters were proposed, they generally control the single-item inventory

system. The main purpose of this work is to apply the (R, S) policy for the

multi-item inventory system. In the context of the JRP, a periodic-review (R, S)

policy is adopted for each item.

The stochastic JRP is an open research area for the development of more

efficient computational methods and control policies. In this study, we apply the

periodic review (R, S) policy, originally proposed by Bookbinder and Tan (1988)

for tackling single-item lot sizing problems, to JRPs with stochastic demand and

fixed lead time. In the context of the JRP system, a periodic review (R, S) policy

is adopted for each item. Note that when the demand is stationary stochastic, the

(R, S) policy is the same as the MP policy proposed by Atkins and Iyogun (1988),

which every Tn periods, raises the inventory position of item n to the order-

up-to position Rn. However, the (R, S) policy also deals with non-stationary

stochastic demand which was not addressed in Atkins and Iyogun (1988). In this

paper, we present an MILP approach for approximating (R, S) policies under non-

stationary stochastic demand. Nonlinear costs are approximated by leveraging

the technique introduced in Rossi et al. (2014). Numerical experiments investigate

the effectiveness of our approach against competing policies from the literature.

4.3 Problem description

Consider a periodic-review N -item inventory management system over a T -period

planning horizon. We assume that demand dnt of item n, n = 1, . . . , N , in pe-
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riod t, t = 1, . . . , T are independently distributed random variables with known

probability density function gnt (·).

We assume that ordering decisions are made at the beginning of each time

period. There is a group fixed ordering cost K and an item-specific fixed ordering

cost kn. The group fixed ordering cost is incurred whenever an order is placed

at a given time period, no matter which and how many items are included in

this order. The item-specific fixed ordering cost is incurred whenever an order for

item n is placed at a given time period, no matter how many items are included

in this order.

We define Qn
t as the quantity of item n ordered in period t, which will be

received after lead time Ln. Then, the ordering cost of item n in period t with

ordering quantity Qn
t can be written as,

cnt (Qn
t ) =

kn, Qn
t > 0,

0, Qn
t = 0.

(4.1)

Let ct( ~Qt) denote the ordering cost of period t with ordering quantity vector
~Qt = (Q1

t , . . . , Q
N
t ). ct( ~Qt) has the following structure

ct( ~Qt) =

K +
∑N

n=1 c
n
t (Qn

t ), ∃Qn
t |Qn

t > 0,

0, otherwise.
(4.2)

A penalty cost bn is incurred for each unit of backorder demand for item n

per period, and a holding cost hn is charged for each unit of item n carried from

one period to the next. The immediate penalty and holding cost of period t can

be expressed as

Lt(~y) =
n∑
t=1

(
bn · E[max(dnt − yn, 0)] + hn · E[max(yn − dnt , 0)]

)
, (4.3)

where vector ~y = (y1, . . . , yN) is the inventory level immediately after orders are

received at the beginning of period t, and “E” denotes the expectation taken with

respect to the random demand.

Let Int denote the net inventory level of item n at the end of period t, which is

also the opening inventory level of period t+ 1, and Ct(~It−1) denote the expected

total cost of an optimal policy over period t, . . . , T , given opening inventory level
~It−1 = (I1

t−1, . . . , I
N
t−1) at the beginning of period t. Note that there is no out-

standing order at the beginning of the planning horizon. Then, Ct(~It−1) can be
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written as,

Ct(~It−1) =

min ~Qt

{
ct( ~Qt) + Lt(~It−1 + ~Qt−~L) + E[Ct+1(~It−1 + ~Qt−~L − ~Dt)]

}
, t ≥ ~L+ 1,

min ~Qt

{
ct( ~Qt) + Lt(~It−1) + E[Ct+1(~It−1 − ~Dt)]

}
, otherwise;

(4.4)

where ~Dt = (d1
t , · · · , dNt ), ~L = (L1, · · · , LN), and

CT (~IT−1) =

min ~Qt

{
cT ( ~QT ) + Lt(~IT−1 + ~QT−~L)

}
, t ≥ ~L+ 1,

min ~Qt

{
cT ( ~QT ) + Lt(~IT−1)

}
, otherwise;

(4.5)

represents the boundary condition. Moreover, let us define, t = Ln + 1, . . . , T ,

Gt(~It−1) = Lt(~It−1 + ~Qt−~L) + E[Ct+1(~It−1 + ~Qt−~L − ~Dt)]. (4.6)

Example. We consider an instance in which the group fixed ordering cost

K = 10, the item-specific ordering cost k = 0, the holding cost h = 1, the stock-

out penalty cost b = 5. We control inventory for two items over a planning horizon

of T = 4 periods. We assume that the demand of item n in period t follows a

Poisson distribution with rate λnt ; where λ1
t = λ2

t = 3, 6, 9, 6. For simplicity, we

assume that the lead time is 0 for every item. The expected total cost, i.e. C1(~I0),

of an optimal policy, given initial inventory level I1
0 = I2

0 = 0, can be obtained

via stochastic dynamic programming (SDP) and is equal to 65.4. In Fig. 4.1 we

plot G1(~I0) for I1
0 ∈ [0, 14] and I2

0 ∈ [0, 14].

4.4 An MILP model for approximating non-stationary

stochastic (R, S) policies

In this section, we formulate the stochastic JRP problem under the (R, S) policy

as an MILP model. Under the (R, S) policy, the replenishmeng periods and

associated order-up-to positions are fixed at the beginning of the planning horizon,

while actual order quantities are decided at the beginning of each replenish period.

Note that in the context of JRP, a periodic-review (R, S) policy is adopted for

each item. We first introduce a stochastic programming formulation in Section

4.4.1 and then we reformulate it as an MILP model in Section 4.4.2.
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Figure 4.1: Expected total cost, i.e. G1(~I0), contour plot for the two-item joint
replenishment numerical example

4.4.1 A stochastic program

Consider the periodic-review N-item T-period JRP described in Section 4.3. We

introduce binary variables δt and ynt , t = 1, . . . , T , and n = 1, . . . , N ; δt takes

value 1 if a group order is made in period t no matter how many types of items

are involved, otherwise 0; ynt is set to 1 if item n is replenished in period t.

We further assume that the system is forced to place an order in period 1,

and all orders should be received by the end of the planning horizon.

We reformulate the stochastic dynamic programming model in Section 4.3 as

the stochastic program in Fig. 4.2.

The objective is to find the optimal replenishment plan so as to minimise

the expected ordering costs, penalty costs, and holding costs of N items over

the T -period planning horizon. Constraints (4.8) imply that if at least one item

is ordered, then a group replenishment is issued. Constraints (4.9) force the

system to replenish every item in period 1. Constraints (4.10) are inventory

conservation constraints in periods 1, . . . , Ln: inventory level at the end of period

t is equal to the initial inventory level, minus demand realised up to period

t. Constraints (4.11) ensure all replenishments are received by the end of the

planning horizon. Constraints (4.12) are the inventory conservation constraints

in periods 1 + Ln, . . . , T : inventory level at the end of period t is equal to the

initial inventory level, plus all orders received before the end of period t, minus

demand realised up to period t. Constraints (4.13)- (4.16) state domains of ynt ,
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min

T∑
t=1

(
K · δt +

N∑
n=1

(kn · ynt + bnE[max(−Int , 0)] + hnE[max(Int , 0)])
)

(4.7)

Subject to, n = 1, . . . , N ,

δt ≥ ynt t = 1, . . . , T (4.8)

yn1 = 1 (4.9)

Int = In0 −
t∑

j=1

dnj t = 1, . . . , Ln (4.10)

ynt = 0 t = T − Ln, . . . , T (4.11)

Int = In0 +

t−Ln∑
i=1

Qni −
t∑

j=1

dnj t = Ln + 1, . . . , T (4.12)

ynt =

{
1, Qnt > 0,

0, Qnt = 0.
(4.13)

Qnt ≥ 0 (4.14)

δt = {0, 1} (4.15)

Int ∈ R (4.16)

Figure 4.2: Stochastic programming formulation of the JRP.

Qn
t , δt, and Int .

4.4.2 An MILP model

The stochastic programming formulation in Fig. 4.2 can be reformulated into an

MILP model via the piecewise approximation approach in Rossi et al. (2014).

In the rest of this paper, let “∼” denote the expectation operator. We intro-

duce the first order loss function

L(x, ω) =

∫ ∞
x

max(t− x, 0)gω(t)d(t)

and its complementary function

L̂(x, ω) =

∫ x

−∞
max(x− t, 0)gω(t)d(t),

where ω is a random variable with probability density function gω(·), and x is a

scalar variable.

Consider a partition of the support Ω of ω intoW disjoint subregions Ω1, . . . ,ΩW ,

the probability mass pi =Pr{ω ∈ Ωi} =
∫

Ωi
gω(t)d(t), and the conditional ex-
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pectation E[djt|Ωi] = 1
pi

∫
Ωi
tgω(t)dt, i = 1, . . . ,W . By applying Jensen’s lower

bound,1 L(x, ω) and L̂(x, ω) can be approximated as piecewise linear functions,

as presented in the following lemma.

Lemma 4.4.1. For the first order loss function and its complementary function,

the lower bounds Llb and L̂lb, where E[ω|Ωi] ≤ x ≤ E[ω|Ωi+1], i = 1, . . . ,W ,

L(x, ω) ≥ Llb(x, ω) = x

i∑
k=1

pk +
i∑

k=1

pkE[ω|Ωk] + (x− ω̃), (4.17)

L̂(x, ω) ≥ L̂lb(x, ω) = x
i∑

k=1

pk +
i∑

k=1

pkE[ω|Ωk] (4.18)

are piecewise linear functions with W + 1 segments.

We introduce two sets of variables B̃n
t ≥ 0 and H̃n

t ≥ 0 represent lower

bounds of E[max(−Int , 0)] and E[max(Int , 0)] , t = 1, . . . , T , n = 1, . . . , N . Then,

the objective function (4.7) in Fig. 4.2 can be rewritten as

min
T∑
t=1

(
K · δt +

N∑
n=1

(
kn · ynt + bnB̃n

t + hnH̃n
t

))
. (4.19)

We next construct constraints by separating the discussion into two parts.

The first part involves periods 1, . . . , Ln, n = 1, . . . , N , where no order is

received. Recall that there is no outstanding order at the beginning of the plan-

ning horizon, and the system is forced to issue an order in period 1, then the

inventory level Int must equal to the initial inventory level of item n at the begin-

ning of the planning horizon, minus the demand convolution over periods 1, . . . , t,

i.e., Int = In0 − dn1,t, where dn1,t is the demand convolution of item n over periods

1, . . . , t, i.e., dn1,t = dn1 + . . .+ dnt . We rewrite the expected back-orders and excess

on-hand stocks using the first order loss function and its complementary function,

L(In0 , d
n
1,t) and L̂(In0 , d

n
1,t). By applying Lemma 4.4.1, B̃n

t and H̃n
t can be written

as follows, t = 1, . . . , Ln, n = 1, . . . , N , i = 1, . . . ,W ,

B̃n
t ≥ −Ĩnt +

i∑
k=1

pkI
n
0 −

i∑
k=1

pkE[dn1,t|Ωi], (4.20)

H̃n
t ≥

i∑
k=1

pkI
n
0 −

i∑
k=1

pkE[dn1,t|Ωi]. (4.21)

1Similarly, the Edmundson-Madansky upper bound can be applied for approximating the
expected excess inventory and back-orders as well, for further details refer to (Rossi et al.,
2014).
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Additionally, constraints (4.10) in Fig. 4.2 can be rewritten as,

Ĩnt + d̃nt − Ĩnt−1 = 0, t = 1, . . . , Ln. (4.22)

The second part involves periods 1 + Ln, . . . , T , n = 1, . . . , N . Consider a

single cycle of item n over periods i, . . . , j, in which a single order is received at

the beginning of period i, and the next order will be received at the beginning of

period j + 1. Since the lead time of item n is Ln, the order that arrives in period

i must be issued in period i − Ln with order-up-to position Sni−Ln . Thus, Int ,

t = {i, . . . , j}, must equal to the order-up-to position Sni−Ln , minus the demand

convolution over periods i− Ln, . . . , t, i.e. Int = Sni−Ln − dni−Ln,t.
We introduce a binary variable P n

jt which is set to one if the most recent order

received before period t arrived in period j, where j ≤ t, j = 1 + Ln, . . . , t,

t = 1 + Ln, . . . , T , and n = 1, . . . , N ; and we introduce the following constraints,

t = 1 + Ln, . . . , T , n = 1, . . . , N ,

t∑
j=1+Ln

P n
jt = 1, (4.23)

P n
j,t ≥ ynj−Ln −

t−Ln∑
k=j−Ln+1

ynk , j = 1 + Ln, . . . , t. (4.24)

Constraints (4.23) indicate that the most recent order received before period t ar-

rived in period j, 1+Ln ≤ j ≤ t. Constraints (4.24) identify uniquely the period in

which the most recent order received before period t has been received. Therefore,

the inventory level Int =
∑t

j=1+Ln(Snj−Ln − dnj−Ln,t)P n
jt, where t = 1 + Ln, . . . , T ,

and Snj−Ln represents the order-up-to position of item n in period j − Ln. We

write the back-orders and excess inventory as the first order loss function and its

complementary,
∑t

j=1+Ln L(Snj−Ln , d
n
j−Ln,t)P

n
jt and

∑t
j=1+Ln L̂(Snj−Ln , d

n
j−Ln,t)P

n
jt.

By applying Lemma 4.4.1, B̃n
t and H̃n

t can be written as, t = 1 + Ln, . . . , T ,

n = 1, . . . , N , i = 1, . . . ,W ,

B̃n
t ≥ −Ĩnt + (Ĩnt +

t∑
j=1+Ln

d̃nj−Ln,tP
n
jt)

i∑
k=1

pk −
t∑

j=1+Ln

i∑
k=1

pkE[dnj−Ln,t|Ωi]P
n
jt,

(4.25)

H̃n
t ≥ (Ĩnt +

t∑
j=1+Ln

d̃nj−Ln,tP
n
jt)

i∑
k=1

pk −
t∑

j=1+Ln

i∑
k=1

pkE[dnj−Ln,t|Ωi]P
n
jt. (4.26)

Note that Snj−Ln = Ĩnt + d̃nj−Ln,t. In addition, constraints (4.12)-(4.14) in Fig. 4.2

132



can be reformulated as follows,

ynt−Ln = 0→ Ĩnt + d̃nt − Ĩnt−1 = 0, t = 1 + Ln, . . . , T , (4.27)

Ĩnt + d̃nt − Ĩnt−1 ≥ 0, t = 1 + Ln, . . . , T . (4.28)

We now present the overall model in Fig. 4.3. The objective function (4.29)

minimise the expected group fixed ordering costs, item-specific fixed ordering

costs, penalty costs, and holding costs of N items over the T -period planning

horizon. Constraints (4.30) imply an individual item can only be included in a

group replenishment if that replenishment is made. Constraints (4.31) - (4.32)

assume that the first order is issued at the beginning of period 1, and there is no

outstanding replenishment at the beginning of the planning horizon. Constraints

(4.33) - (4.34) represent the expected back-orders and on-hand stocks of item

n over periods 1, . . . , Ln. Constraints (4.35) state all orders are received by the

end of the planning horizon. Constraints (4.36) - (4.37) are inventory balance

constraints. Constraints (4.38) - (4.39) ensure the most recent replenishment

that has arrived before period t was received in period j. Constraints (4.40)

- (4.41) represent the expected back-orders and on-hand stocks of item n over

periods 1 + Ln, . . . , T . Constraints (4.42) - (4.44) indicate domains of binary

variables δnt , ynt , and P n
jt.

By solving the model in Fig. 4.3, the optimal replenishment plan including

group replenish periods δt, and item-specific replenish periods ynt , and the item-

specific order-up-to positions Snt = Ĩnt+Ln + d̃nt,t+Ln are obtained, for t = 1, . . . , T ,

and n = 1, . . . , N .

Example. We demonstrate the modelling strategy behind the MILP model

on a 5-item 10-period example. It is assumed that the demand is Poisson-

distributed with rate λnt presented in Table 4.1. The initial inventory level

is taken as zero. Other parameters are: K = 500, b = 10, h = 2, kn =

120, 100, 80, 120, 150, and Ln = 1, 2, 3, 1, 3. We employ eleven segments in the

piecewise-linear approximations of B̃n
t and H̃n

t , for n = 1, . . . , 5, and t = 1, . . . , 10.

The resulting expected total cost is 14236.24. Replenishment plans of each

item are presented in Fig. 4.4. Items 1, 2 and 4 are replenished in periods 1, 3,

5, and 8; while items 3 and 5 are replenished only in periods 1, 3, and 5 since

orders in period 8 could not be received by the end of the planning horizon.

Additionally, item 1 is expected to be ordered every two periods with the same

order-up-to position 123 by the nature of stationary demand, while it is ordered
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min

T∑
t=1

(
K · δt +

N∑
n=1

(
kn · ynt + hnH̃n

t + bnB̃nt
))

(4.29)

Subject to, n = 1, . . . , N

δt ≥ ynt t = 1, . . . , T

(4.30)

yn1 = 1 (4.31)

Ĩnt + d̃nt − Ĩnt−1 = 0 t = 1, . . . , Ln

(4.32)

Bnt ≥ −Ĩnt +
i∑

k=1

pkI
n
0 −

i∑
k=1

pkE[dn1,t|Ωi], t = 1, . . . , Ln, i = 1, . . . ,W

(4.33)

Hn
t ≥

i∑
k=1

pkI
n
0 −

i∑
k=1

pkE[dn1,t|Ωi], t = 1, . . . , Ln, i = 1, . . . ,W

(4.34)

ynt = 0 t = T − Ln, . . . , T
(4.35)

Ĩnt + d̃nt − Ĩnt−1 ≥ 0 t = 1 + Ln, . . . , T
(4.36)

ynt−Ln = 0→ Ĩnt + d̃nt − Ĩnt−1 = 0 t = 1 + Ln, . . . , T

(4.37)

t∑
j=1+Ln

Pnjt = 1 t = 1 + Ln, . . . , T

(4.38)

Pnj,t ≥ ynj−Ln −
t∑

k=j−Ln+1

ynk t = 1 + Ln, . . . , T , j = 1, . . . , t

(4.39)

Bnt ≥ −Ĩnt + (Ĩnt +

t∑
j=1+Ln

d̃nj−Ln,tP
n
jt)

i∑
k=1

pk −
t∑

j=1+Ln

i∑
k=1

pkE[dnj−Ln,t|Ωi]P
n
jt t = 1 + Ln, . . . , T, i = 1, . . . ,W

(4.40)

Hn
t ≥ (Ĩnt +

t∑
j=1+Ln

d̃nj−Ln,tPjt)
i∑

k=1

pk −
t∑

j=1+Ln

i∑
k=1

pkE[dnj−Ln,t|Ωi]P
n
jt t = 1 + Ln, . . . , T, i = 1, . . . ,W

(4.41)

δt = {0, 1} t = 1, . . . , T
(4.42)

ynt = {0, 1} t = 1, . . . , T
(4.43)

Pnjt = {0, 1} t = 1 + Ln, . . . , T , j = 1 + Ln, . . . , t

(4.44)

Figure 4.3: MILP model for approximating (R, S) policies

up to a higher position 164 in period 5 to cover demand in the next 3 periods in

order to coordinate with other items.
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Figure 4.4: Replenishment plans of the 5-item 10-period example
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item

λnt period
1 2 3 4 5 6 7 8 9 10

1 40 40 40 40 40 40 40 40 40 40
2 5 64 29 54 70 50 54 45 13 50
3 40 55 72 86 78 51 42 38 30 26
4 41 58 75 63 40 35 33 18 29 39
5 45 40 22 31 38 46 59 62 46 40

Table 4.1: Demand rates λnt of the 5-item 10-period example

4.5 MILP model for approximating the optimal

(σ, ~S) policies

Since Scarf (1960) proved the optimality of (s, S) policy for the classical single-

item inventory problem, there have been several attempts to prove the optimality

of (σ, ~S) policy for the multi-item inventory problem, e.g.: (Johnson, 1967; Kalin,

1980; Ohno and Ishigaki, 2001; Gallego and Sethi, 2005). However, the computa-

tion of optimal (σ, ~S) policy parameters is still a difficult task. In this section we

show how the MILP model proposed in Section 4.4.2 can be used to approximate

the optimal replenishment plan under (σ, ~S) policy for the JRP.

Definition 4.5.1 (Gallego and Sethi (2005)). Function f(·) : RN → R is K-

convex if

f(ax+ (1− a)z) ≤ af(x) + (1− a)[f(z) + Kδ(z − x)],

where x ≤ z, a ∈ [0, 1], and Kδ(z − x) is defined as follows,

Kδ(z − x) = Kδ(e′x) +
N∑
n=1

knδ(xn),

where e′ = (1, 1, · · · , 1)′ ∈ RN , δ(0) = 0, and δ(y) = 1 for all y > 0.

Gallego and Sethi (2005) showed the optimal policy for the joint setup cost

case by studying function

Gt(~y) = Lt(~y) + Ct+1(~y − ~dt). (4.45)

Consider a continuous K-convex function Gt(·), and it has a global minimum

at ~St. Define set Σ = {~It−1 ≤ ~St|Gt(~It−1) ≤ Gt(~St) + K}, and set σ = {~It−1 ≤
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~St|~It−1 /∈ Σ}. Then, the optimal replenish plan is to order up to ~St if opening

inventory levels ~It−1 ∈ σ and ~It−1 ≤ ~St; otherwise, not to order (Gallego and

Sethi, 2005).

We next show that the MILP model in Fig. 4.3 can be adjusted to approximate

set σ and ~S. Since Gallego and Sethi (2005) showed that the (σ, ~S) policy is

optimal when expected total costs only consist of group fixed ordering costs,

holding costs and penalty costs, we first drop the item-specific fixed ordering

cost, i.e., kn · ynt , in the objective function (4.29). Additionally, since the lead

time is not considered in Gallego and Sethi (2005), we then set the lead time of

all items to 0, i.e.: Ln = 0, n = 1, . . . , N , and drop constraints (4.31) - (4.35).

Due to the complexity of σ, it is impractical to derive a closed form expression

for it. Alternatively, one may propose a strategy to determine whether given

initial inventory levels ~I0 ∈ σ. By solving our modified MILP model over planning

horizon k, . . . , T , k = 1, . . . , T , we observe the minimised expected total cost

Gk(~Sk), order-up-to levels ~Sk, and the order decision δk. If δk = 1, then ~Ik−1 ∈ σ,

which means decision makers have to order up to ~St; otherwise, ~Ik−1 ∈ Σ, which

means decision makers do not need to place orders. Therefore, our MILP model

can be used to determine whether decision makers need to place orders with

given initial inventory levels. Moreover, by repeating this procedure, one can

approximate the optimal replenishment strategy for every period k = 1, . . . , T .

Example. We illustrate the concept introduced on the 2-item 4-period exam-

ple presented in Section 4.3. Assuming the initial inventory level ~I1
0 ∈ [0, . . . , 20],

and ~I2
0 ∈ [0, . . . , 20], we plot the expected total cost contours, obtained via the

modified MILP in Fig. 4.5(a). Note that there are two similar minima, which is

expected since the ordering cost is relatively small and the demand variance is

large. We plot set σ and ~S obtained via the modified MILP model, and compare

them with that obtained via stochastic dynamic programming in Fig. 4.5(b).

The optimal policy is to place an order whenever inventory levels ~I0 = (I1
0 , I

2
0 )

fall in set σ, and not to place an order if ~I0 fall in Σ. We observe that set σ and
~S obtained via the modified MILP model neatly approximate those obtained via

stochastic dynamic programming.

4.6 Computational Experiments

In this section we assess the cost performance of the (R, S) policy by comparing

its cost performance against (Q,S, T ) policy (Özkaya et al., 2006), Q(s, S) policy

(Nielsen and Larsen, 2005), P (s, S) policy (Viswanathan, 1997), (Q,S) policy
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Figure 4.5: Plot of expected total costs for the two-item joint replenishment
numerical example

(Pantumsinchai, 1992), MP policy (Atkins and Iyogun, 1988), (s, c, S)M policy

(Melchiors, 2002), and (s, c, S)F policy (Federgruen et al., 1984), on data sets

of Atkins and Iyogun (1988) and Viswanathan (1997). These data sets consider

stationary demand over an infinite horizon. Unfortunately, computing (R, S)

policy parameters for infinite horizon JRPs via our MILP model is computation-

ally expensive; however, since demand is stationary, it is possible to derive an

efficient shortest path reformulation, which we present in 4.A and we use in our

computational study.

Computational experiments are conducted by using IBM ILOG CPLEX Op-

timization Studio 12.7 and Matlab R2016a on a 3.20 GHz Intel Core i5-6500 CPU

with 16.0 GB RAM, 64 bit machine.

Since the shortest path reformulation operates over a finite horizon, in or-

der to compare the cost performance of the (R, S) policy with continuous-review

(s, c, S), (Q,S), and (Q,S, T ) policy, we discretize each time period into 20 small

periods. We consider a planning horizon length of 6.6 periods for a total of 132

small periods. For each test instance, we first obtain the optimal replenishment

plan by solving the shortest path reformulation presented in 4.A. The computa-

tional time is limited to 5 minutes, if a timeout occurs, the best solution available

is adopted. Next, we simulate the expected average cost of each test instance via

Monte Carlo Simulation (100,000 replications). Finally, we compare the average

cost per small period against the average cost under existing policies.

The data set of Atkins and Iyogun (1988) assumes that the demand of each

item follows stationary Poisson distribution with rate λn, n = 1, . . . , 12. The

item-specific fixed ordering cost Kn, expected demand λn, and lead time Ln are
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displayed in Table 4.2. Items share the same penalty cost b = 30, holding cost

h ∈ {2, 6, 20}, and group fixed ordering cost K ∈ {20, 50, 100, 150, 500}.

items 1 2 3 4 5 6 7 8 9 10 11 12
Kn 10 10 20 20 40 20 40 40 60 60 80 80
λn 40 35 40 40 40 20 20 20 28 20 20 20
Ln 0.2 0.5 0.2 0.1 0.2 1.5 1.0 1.0 1.0 1.0 1.0 1.0

Table 4.2: Kn, λn, and Ln of data set Atkins and Iyogun (1988)

The data set of Atkins and Iyogun (1988) contains some unusual lot sizing

instances; more specifically, instances for which the group as well as item fixed

ordering costs become negligible in comparison to holding costs. In the lot-

sizing literature the fixed ordering cost is commonly assumed to be greater than

the holding cost (see Axsäter, 2010, p. 62, Property 2); moreover, the penalty

cost should not be smaller than the holding cost. Additionally, we observe that

the fixed ordering cost should be no greater than the penalty cost, otherwise

the inventory system tends to place orders in every period instead of penalising

backorders. To focus on meaningful lot sizing instances — instances in which a

trade off between fixed ordering and holding/penalty cost is sought — we filter

test instances of the data set of Atkins and Iyogun (1988) by using the following

conditions: K > b ≥ h. We also check the order frequency in each period and

we discard instances in which orders are issued too frequently — i.e. instance in

which a replenishment is issued more than twice per time period, as it turns out

that for these instances order coordination is straightforward due to negligible

item fixed ordering costs: if a group order is placed, all items are ordered. We

present the filtered computational results in Table 4.3, and complete results in

the Appendix (Table 4.5).

K b h (R, S)
Average cost improvement ∆%

(Q,S, T ) Q(s, S) P (s, S) (Q,S) MP (s, c, S) M (s, c, S) F
50 30 2 936.94 -0.91 -0.84 -0.33 4.38 0.68 0.79 2.14

100 30 2 990.50 -0.05 -0.45 0.75 2.57 1.77 4.39 6.81
150 30 2 1046.56 -0.24 -1.01 -0.35 0.52 0.65 5.68 8.36
200 30 2 1072.97 1.32 0.47 1.11 1.34 2.12 8.34 12.31
100 30 6 1639.75 -0.23 -1.52 -1.02 2.15 0.00 1.24 3.31
150 30 6 1707.05 0.64 -0.60 -0.07 1.46 0.95 2.34 6.68
200 30 6 1766.38 1.16 0.08 0.65 1.17 1.67 3.08 9.04
150 30 20 2718.47 0.77 4.32 -1.26 1.27 -0.21 -0.59 6.20
200 30 20 2812.52 -3.23 0.14 -0.72 0.77 0.34 0.25 8.34
Average cost improvement ∆% -0.09 0.07 -0.14 1.74 0.89 2.84 7.02

Table 4.3: Computational results on the data set of Atkins and Iyogun (1988)

Let ∆% denote the percentage gap between the expected average cost of

existing policies and that of the proposed (R, S) policy, over the expected average
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cost of the (R, S) policy. By definition, a positive ∆% represents the (R, S) policy

outperforms existing policy. Note that expected average costs under (Q,S, T ),

Q(s, S), P (s, S), (Q,S), and (s, c, S)M policy are obtained from Özkaya et al.

(2006), that of (s, c, S)F policy is obtained from Melchiors (2002), and that of

MP policy is obtained from Viswanathan (1997).

We observe that the (R, S) policy fully dominates all policies in 2 of 9 test

instances; (Q,S, T ) is the best policy in 2 instances; Q(s, S) is the best policy in

4 instances; P (s, S) is the best policy in 1 instance. Moreover, the (R, S) policy

outperforms the (Q,S) and (s, c, S)F policy, and there is no dominant policy, on

all test instances. The average cost improvement ∆% increases with the increase

of group fixed ordering cost, and decreases with the increase of holding cost

compared with (s, c, S)M and (s, c, S)F policy. That means an increase in group

fixed ordering cost or a decrease in holding cost improves the cost performance of

(R, S) policy. It is difficult to make a general remark with respect to group fixed

ordering cost and holding cost compared with (Q,S, T ), Q(s, S), P (s, S), (Q,S),

and MP policy. On average, the (R, S) policy performs better than Q(s, S),

(Q,S), MP , (s, c, S)M , and (s, c, S)F policy with an average improvement of

0.07%, 1.74%, 0.89%, 2.84%, and 7.02%, respectively; however, the (Q,S, T ) and

P (s, S) policies performs slightly better than the (R, S) policy with an average

improvement of 0.09% and 0.14%, respectively.

Viswanathan (1997) adopts the same experimental setup as Atkins and Iyogun

(1988), except h ∈ {2, 6, 10, 200, 600, 1000}, K ∈ {20, 50, 100, 200, 500}, and b ∈
{10, 50, 100, 200, 1000, 5000, 10000, 20000}.

We filter the computational results by using the same conditions previously

adopted. We present computational results of the (R, S) policy on the data

set of Viswanathan (1997) in Table 4.4, and complete computational results in

Table 4.6. We observe that the (R, S) policy dominates 13 of 31 test instances;

(Q,S, T ) is the best policy in 13 instances; Q(s, S) is the best policy in 9 instances;

P (s, S) is the best policy in 1 instances. There is once more no dominant policy

on all test instances. Regarding the comparison with other policies, the average

cost improvement ∆% decreases as the penalty cost increases; while there is no

obvious trend with respect to the group fixed ordering cost, and penalty cost.

On average, the (R, S) policy performs better than Q(s, S), P (s, S), (Q,S), MP ,

and (s, c, S)F policy with average cost improvements of 0.37%, 0.37%, 1.81%,

1.41%, and 1.67%; while the (Q,S, T ) policy performs slightly better than the

(R, S) policy with average cost improvement 0.19%.

Even though the (R, S) policy does not fully dominate other competing poli-
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K b h (R, S)
Average cost improvement ∆%

(Q,S, T ) Q(s, S) P (s, S) (Q,S) MP (s, c, S)F
20 10 2 772.25 -0.03 0.48 0.76 8.30 1.79 1.80
50 10 2 813.94 -0.48 0.12 0.62 0.47 1.64 1.74

100 10 2 861.05 0.23 0.70 1.17 3.68 2.20 2.38
200 10 2 932.86 1.62 1.83 2.38 2.88 3.42 3.73
500 10 2 1131.42 0.14 0.14 0.59 0.18 1.60 2.12
20 10 6 1166.06 0.85 2.84 0.01 7.99 1.08 1.04
50 10 6 1222.82 -0.15 1.83 0.62 5.53 1.68 1.73

100 10 6 1283.92 1.33 2.50 1.26 4.49 2.34 2.46
200 10 6 1413.72 0.30 1.23 1.02 1.82 2.10 2.33
500 10 6 1658.48 2.26 2.20 2.52 2.30 3.59 4.03
50 10 10 1420.63 1.57 5.30 -0.03 5.88 1.07 1.07

100 10 10 1497.96 1.67 4.28 0.75 4.37 1.87 1.93
200 10 10 1637.27 0.66 2.18 1.15 2.16 2.28 2.44
500 10 10 1935.07 1.60 1.60 1.79 1.60 2.90 3.27
100 50 2 1043.31 -1.95 -0.79 -0.23 1.98 0.78 0.92
200 50 2 1132.61 -1.29 -0.48 0.30 0.50 1.31 1.97
500 50 2 1327.95 0.08 0.08 0.82 0.13 1.83 2.30
100 50 6 1794.60 -1.37 -2.65 -2.09 0.94 -1.09 -0.97
200 50 6 1938.25 -0.27 -1.56 -0.89 -0.05 0.13 0.34
500 50 6 2244.01 -0.27 -0.27 0.43 -0.26 1.44 1.87
200 50 10 2448.79 -3.83 -2.11 -1.55 -0.75 -0.53 -0.34
500 50 10 2796.29 0.35 0.35 0.97 0.35 2.00 2.40
200 100 2 1200.38 -1.61 -0.94 -0.11 -0.01 0.90 1.13
500 100 2 1406.67 -0.76 -0.83 0.16 0.16 1.17 1.60
200 100 6 2106.78 0.44 -1.23 -0.48 0.94 0.54 0.73
500 100 6 2449.51 -0.88 -0.88 -0.07 -0.07 0.94 1.33
200 100 10 2728.08 -3.41 -1.90 -1.29 -0.49 -0.27 -0.10
500 100 10 3108.05 0.22 0.22 0.94 0.94 1.96 2.33
500 200 2 1470.29 -0.90 -0.90 0.05 0.05 1.05 1.45
500 200 6 2620.77 -0.91 -0.91 0.08 0.08 1.09 1.45
500 200 10 3421.28 -0.94 -0.94 -0.04 -0.04 0.97 1.30
Average cost improvement ∆% -0.19 0.37 0.37 1.81 1.41 1.67

Table 4.4: Computational results on the data set of Viswanathan (1997)

cies, it presents a key advantage: in contrast to all other policies in the literature,

it is able to tackle stationary as well as nonstationary demand.

4.7 Conclusion

In this paper, we presented a mathematical programming approach for controlling

the multi-item inventory system with joint replenishment under the (R, S) policy.

We first present an MILP-based model for approximating optimal (R, S) policies,

which is built upon the piecewise-linear approximation technique proposed by

Rossi et al. (2014). We further demonstrate that the MILP model can be used

to approximate the (σ, ~S) policy.

We conducted an extensive computational study comprising 40 instances. We
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first evaluated our approach on the data set of Atkins and Iyogun (1988). This

evaluation demonstrates that the (R, S) policy fully dominates other competing

policies in the literature in 2 out of 9 test instances considered. The (R, S) pol-

icy performs better than Q(s, S), (Q,S), MP , (s, c, S)M , and (s, c, S)F policies

with an average improvement of 0.07%, 1.74%, 0.89%, 2.84%, and 7.02%, respec-

tively; however, the (Q,S, T ) and P (s, S) policies performs slightly better than

the (R, S) policy with an average improvement of 0.09% and 0.14%. Computa-

tional experiments on the data set of Viswanathan (1997) indicates that (R, S) is

the best policy in 13 out of 31 test instances. (R, S) performs better than Q(s, S),

P (s, S), (Q,S), MP , and (s, c, S)F policies with average cost improvements of

0.37%, 0.37%, 1.81%, 1.41%, and 1.67%; while (Q,S, T ) policy performs slightly

better than it with an average cost improvement 0.19%. Most importantly, the

(R, S) policy comes with the additional advantage of being able to tackle station-

ary and nonstationary demand. Future research may focus on investigating the

cost performance of (R, S) policy in a rolling horizon setting.

Appendix

4.A Shortest path reformulation for approximat-

ing stationary stochastic (R, S) policies

In this section we present an efficient shortest path reformulation for computing

stationary (R, S) policies.

Consider a network G = (N ,A) with nodes N = {1, . . . , T} representing time

periods, and arc (i, j) between each pair of (i, j) representing a possible decision

to issue an order in period i to satisfy demand in periods i, . . . , j. Assigning a

cost to this arc, solving the optimisation problem in Fig. 4.4 is equivalent to

finding the shortest path between nodes 1 and T in the network G. In the rest

of this section, we first present how to compute the cost of each arc, and then

present the shortest path reformulation.

Consider a replenishment cycle i, . . . , j, where the only order is issued in

period i with order-up-to position Snij, and the next order is issued in period

j + 1, for i = 1, . . . , T , j = i, . . . , T , n = 1, . . . , N . We assume dnt follows Poisson
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distribution with rate λn. Then, Snij is calculated by Askin (1981),

j∑
t=i

Gdni,t+Ln
(Sni,j) =

(j − i+ 1) · bn

hn + bn
. (4.46)

Note that the order-up-to position Sni,j actually accounts for demand variances

over periods i, . . . , j +Ln, which is reflected on the cumulative distribution func-

tion Gdni,t+Ln
(·) on the left-hand-side of Eq. (4.46).

Since the demand of item n follows Poisson distribution with rate λn, we

could approximate the cost of the replenishment cycle i, . . . , j by that of the

cycle i + Ln, . . . , j + Ln as shown in Fig. 4.6. As a result, the cycle cost cnij can

be calculated as follows,

cnij = kn + hn
j∑
t=i

L̂(Sni,j − Lnλn, dit) + bn
j∑
t=i

L(Sni,j − Lnλn, dit). (4.47)

i i+ Ln j + 1 j + 1 + Ln k + 1 k + 1 + Ln

Inventory

Sni,j Snj+1,k

Ln Ln Ln

IP n
t

Int

Figure 4.6: Expected inventory curve under (R, S) policy.

At the beginning of the planning horizon, the initial inventory level is In0 . We

check the cost of not issuing an order in period 1, c̄n1j, and update cn1j with c̄n1j if

c̄n1j ≤ cn1j, for j = 1, . . . , T .

c̄n1j = hn ·
j∑
t=1

L̂(In0 , d1t) + bn ·
j∑
t=1

L(In0 , d1t). (4.48)

Additionally, we introduce an auxiliary binary variable P n
j , which is equal to 1 if

an order is placed in period 1 to satisfy demand in cycle 1, . . . , j, otherwise 0.

We now present the shortest path reformulation in Fig. 4.7. Let binary

variable Y n
ij equal to 1 if an order is issued in period i to cover demand in periods

143



i, . . . , j, otherwise 0. The objective is to find the optimal replenishment plan that

minimising the expected group fixed order costs, item-specific fixed order costs,

holding costs and penalty costs over periods 1, . . . , T for items 1, . . . , N .

min
T∑
i=1

K · δi +
N∑
n=1

T∑
i=1

T∑
j=i

c
n
ij · Y

n
ij (4.49)

subject to, n = 1, . . . , N ,

δ1 ≥
T∑
j=1

Y
n
1j · P

n
j (4.50)

δi ≥
T∑
j=i

Y
n
ij i = 2, . . . , T (4.51)

T∑
j=1

Y
n
1j = 1 (4.52)

T∑
j=i

Y
n
ij −

i−1∑
k=1

Y
n
ki = 0 i = 2, . . . , T − 1 (4.53)

T∑
i=1

Y
n
iT = 1 (4.54)

Figure 4.7: Shortest path formulation for approximating stationary stochastic
(R, S) policies

Recall that P n
j represents the item-specific first period purchase decision,

which is set to 1 if an order is issued in period 1, otherwise 0. Therefore, Con-

straints (4.50) guarantee the group fixed order cost in period 1 is properly counted.

Constraints (4.51) ensure that the group fixed order cost is encountered when-

ever any item is replenished in period 2, . . . , T . Constraints (4.52) ensure that

there is no more than one outgoing arc from period 1. Constraints (4.53) are

flow balance equations. Constraints (4.54) guarantee that period T is included

in a replenishment cycle. By solving Fig. 4.7, the group order decision δnt and

item-specific order decision ynt are obtained,2 for t = 1, . . . , T , n = 1, . . . , N .

4.B Computational results

This section presents detailed computational results of the (R, S) policy by adopt-

ing the shortest path reformulation discussed in Section 4.A, and compares that

against (Q,S, T ) policy (Özkaya et al., 2006), Q(s, S) policy (Nielsen and Larsen,

2005), P (s, S) policy (Viswanathan, 1997), (Q,S) policy (Pantumsinchai, 1992),

MP policy (Atkins and Iyogun, 1988), (s, c, S)M policy (Melchiors, 2002), and

(s, c, S)F policy (Federgruen et al., 1984), on data sets of Atkins and Iyogun

2This can be obtained by adding constraints yn1 =
∑T

j=1 Y
n
1jP

n
j and yni =

∑T
j=2 Y

n
ij , i =

2, . . . , T , to Fig. 4.7.
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(1988) and Viswanathan (1997) in Table 4.5 and 4.6. Note that “frequency”

denotes the replenishment frequency.

K b h (R, S)
average cost improvement ∆%

frequency
(Q,S, T ) Q(s, S) P (s, S) (Q,S) MP (s, c, S)M (s, c, S)F

20 30 2 907.02 -3.10 -2.75 -2.30 5.18 -1.30 -3.87 -3.75 0.07

50 30 2 936.94 -0.91 -0.84 -0.33 4.38 0.68 0.79 2.14 0.06

100 30 2 990.50 -0.05 -0.45 0.75 2.57 1.77 4.39 6.81 0.05

150 30 2 1046.56 -0.24 -1.01 -0.35 0.52 0.65 5.68 8.36 0.05

200 30 2 1072.97 1.32 0.47 1.11 1.34 2.12 8.34 12.31 0.04

100 30 6 1639.75 -0.23 -1.52 -1.02 2.15 0.00 1.24 3.31 0.08

150 30 6 1707.05 0.64 -0.60 -0.07 1.46 0.95 2.34 6.68 0.07

200 30 6 1766.38 1.16 0.08 0.65 1.17 1.67 3.08 9.04 0.06

20 30 20 2388.07 -3.91 1.79 -2.63 5.82 -1.55 -3.11 -2.85 0.16

50 30 20 2469.10 -2.98 1.55 -1.69 4.49 -0.63 -1.40 -0.29 0.14

100 30 20 2596.50 -2.41 1.07 -1.34 2.80 -0.26 -0.99 3.49 0.13

150 30 20 2718.47 0.77 4.32 -1.26 1.27 -0.21 -0.59 6.20 0.10

200 30 20 2812.52 -3.23 0.14 -0.72 0.77 0.34 0.25 8.34 0.09

Table 4.5: Computational results on the data set of Atkins and Iyogun (1988)

K b h (R, S)
average cost improvement ∆%

frequency
(Q,S, T ) Q(s, S) P (s, S) (Q,S) MP (s, c, S)M (s, c, S)F

20 10 2 772.25 -0.03 0.48 0.76 8.30 1.79 - 1.80 0.06

50 10 2 813.94 -0.48 0.12 0.62 0.47 1.64 - 1.74 0.05

100 10 2 861.05 0.23 0.70 1.17 3.68 2.20 - 2.38 0.05

200 10 2 932.86 1.62 1.83 2.38 2.88 3.42 - 3.73 0.04

500 10 2 1131.42 0.14 0.14 0.59 0.18 1.60 - 2.12 0.02

20 10 6 1166.06 0.85 2.84 0.01 7.99 1.08 - 1.04 0.10

50 10 6 1222.82 -0.15 1.83 0.62 5.53 1.68 - 1.73 0.08

100 10 6 1283.92 1.33 2.50 1.26 4.49 2.34 - 2.46 0.07

200 10 6 1413.72 0.30 1.23 1.02 1.82 2.10 - 2.33 0.05

500 10 6 1658.48 2.26 2.20 2.52 2.30 3.59 - 4.03 0.04

20 10 10 1357.89 3.17 7.01 -0.05 8.02 1.06 - 0.98 0.11

50 10 10 1420.63 1.57 5.30 -0.03 5.88 1.07 - 1.07 0.09

100 10 10 1497.96 1.67 4.28 0.75 4.37 1.87 - 1.93 0.08

200 10 10 1637.27 0.66 2.18 1.15 2.16 2.28 - 2.44 0.06

500 10 10 1935.07 1.60 1.60 1.79 1.60 2.90 - 3.27 0.05

20 50 2 949.62 -4.70 -2.79 -2.16 5.46 -1.16 - -1.18 0.08

50 50 2 1002.10 -4.80 -2.92 -2.32 2.28 -1.33 - -1.27 0.06

100 50 2 1043.31 -1.95 -0.79 -0.23 1.98 0.78 - 0.92 0.05

200 50 2 1132.61 -1.29 -0.48 0.30 0.50 1.31 - 1.97 0.04

500 50 2 1327.95 0.08 0.08 0.82 0.13 1.83 - 2.30 0.03

20 50 6 1635.64 -2.97 -3.96 -3.53 4.58 -2.52 - -2.55 0.12

50 50 6 1701.44 -1.91 -3.08 -2.61 2.84 -1.62 - -1.57 0.09

100 50 6 1794.60 -1.37 -2.65 -2.09 0.94 -1.09 - -0.97 0.09

200 50 6 1938.25 -0.27 -1.56 -0.89 -0.05 0.13 - 0.34 0.07

500 50 6 2244.01 -0.27 -0.27 0.43 -0.26 1.44 - 1.87 0.05

20 50 10 2056.14 -6.72 -3.40 -3.16 5.26 -2.14 - -2.17 0.14

50 50 10 2131.28 -5.78 -2.60 -2.09 3.80 -1.08 - -1.05 0.12

100 50 10 2237.94 -4.87 -1.91 -1.43 2.12 -0.41 - -0.31 0.11

200 50 10 2448.79 -3.83 -2.11 -1.55 -0.75 -0.53 - -0.34 0.08

500 50 10 2796.29 0.35 0.35 0.97 0.35 2.00 - 2.40 0.06

20 100 2 1015.96 -5.02 -4.31 -3.43 4.28 -2.43 - -2.47 0.08

50 100 2 1054.36 -3.16 -2.49 -1.94 2.77 -0.95 - -0.91 0.06

100 100 2 1114.82 -2.67 -2.03 -1.34 0.84 -0.34 - -0.23 0.06

200 100 2 1200.38 -1.61 -0.94 -0.11 -0.01 0.90 - 1.13 0.05

500 100 2 1406.67 -0.76 -0.83 0.16 0.16 1.17 - 1.60 0.03

20 100 6 1806.52 -4.40 -5.30 -5.00 3.82 -4.01 - -4.05 0.14

50 100 6 1863.01 -2.25 -3.27 -2.73 3.87 -1.74 - -1.71 0.11

100 100 6 1965.83 -1.72 -2.90 -2.22 0.80 -1.22 - -1.13 0.09

200 100 6 2106.78 0.44 -1.23 -0.48 0.94 0.54 - 0.73 0.07

500 100 6 2449.51 -0.88 -0.88 -0.07 -0.07 0.94 - 1.33 0.05

20 100 10 2326.30 -6.76 -4.75 -4.51 4.45 -3.51 - -3.55 0.14

50 100 10 2414.57 -5.74 -3.67 -3.18 2.74 -2.18 - -2.16 0.14

100 100 10 2527.82 -4.82 -2.80 -2.16 1.45 -1.15 - -1.07 0.11

200 100 10 2728.08 -3.41 -1.90 -1.29 -0.49 -0.27 - -0.10 0.09

500 100 10 3108.05 0.22 0.22 0.94 0.94 1.96 - 2.33 0.06

20 200 2 1074.45 -6.18 -5.53 -4.32 3.53 -3.33 - -3.38 0.08

Continued on next page
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Table 4.6 – continued from previous page

K b h (R, S)
average cost improvement ∆%

frequency
(Q,S, T ) Q(s, S) P (s, S) (Q,S) MP (s, c, S)M (s, c, S)F

50 200 2 1106.76 -3.50 -2.86 -2.16 2.85 -1.16 - -1.14 0.06

100 200 2 1166.92 -2.56 -1.96 -1.28 0.99 -0.28 - -0.18 0.06

200 200 2 1257.42 -1.62 -1.14 -0.19 -0.09 0.82 - 1.03 0.05

500 200 2 1470.29 -0.90 -0.90 0.05 0.05 1.05 - 1.45 0.03

20 200 6 1952.00 -5.02 -5.85 -5.53 3.73 -4.54 - -4.59 0.13

50 200 6 2006.29 -2.56 -3.37 -2.70 3.04 -1.70 - -1.69 0.11

100 200 6 2114.10 -1.66 -2.84 -2.07 0.95 -1.07 - -0.99 0.09

200 200 6 2307.10 -1.65 -3.09 -2.26 -1.34 -1.26 - -1.10 0.08

500 200 6 2620.77 -0.91 -0.91 0.08 0.08 1.09 - 1.45 0.05

20 200 10 2585.83 -7.26 -6.15 -5.83 3.39 -4.83 - -4.88 0.15

50 200 10 2660.60 -5.21 -4.04 -3.48 2.51 -2.49 - -2.48 0.15

100 200 10 2795.72 -4.68 -3.65 -2.87 0.61 -1.87 - -1.81 0.11

200 200 10 2993.97 -3.17 -2.26 -1.37 -0.78 -0.36 - -0.21 0.09

500 200 10 3421.28 -0.94 -0.94 -0.04 -0.04 0.97 - 1.30 0.07

20 1000 200 19742.15 -7.94 -5.39 -5.33 0.55 -4.32 -6.13 -4.39 0.50

50 1000 200 20093.33 -7.30 -5.08 -4.77 -0.00 -3.76 - -3.81 0.50

100 1000 200 20557.35 -6.61 -4.72 -4.29 -0.75 -3.27 -5.03 -3.31 0.50

200 1000 200 21241.56 -5.85 -4.00 -3.43 -1.30 -2.42 - -2.40 0.33

500 1000 200 22847.92 -4.07 -2.94 -2.32 -1.84 -1.31 -2.73 -1.22 0.25

20 1000 600 36291.82 -5.74 -3.34 -5.74 -1.12 -4.70 -5.45 -4.80 1.00

50 1000 600 36948.40 -6.36 -4.15 -5.68 -2.19 -4.66 - -4.73 1.00

100 1000 600 37339.42 -5.90 -3.87 -4.67 -1.99 -3.63 -5.27 -3.69 0.67

200 1000 600 40175.00 -10.25 -8.40 -8.77 -7.13 -7.79 - -7.81 0.66

500 1000 600 40150.15 -4.05 -2.86 -2.56 -2.16 -1.52 -2.85 -1.49 0.33

20 1000 1000 46309.40 -3.89 -2.82 -6.15 -2.40 -5.11 -6.62 -5.21 1.00

50 1000 1000 46886.02 -4.10 -3.36 -5.70 -2.97 -4.67 - -4.76 1.00

100 1000 1000 47878.62 -5.13 -4.19 -6.07 -4.00 -5.03 -6.53 -5.11 1.00

200 1000 1000 48371.67 -4.34 -3.46 -4.46 -3.22 -3.42 - -3.47 0.51

500 1000 1000 51354.21 -5.40 -4.44 -4.66 -4.26 -3.62 -4.93 -3.63 0.50

20 5000 200 28377.00 -10.13 -6.96 -6.73 -1.13 -5.74 -7.62 -5.80 1.00

50 5000 200 28692.13 -9.12 -6.00 -5.61 -1.37 -4.63 - -4.67 0.60

100 5000 200 29200.60 -8.29 -5.45 -4.84 -1.79 -3.85 -6.06 -3.88 0.47

200 5000 200 29989.61 -7.39 -4.72 -4.09 -2.26 -3.10 - -3.09 0.40

500 5000 200 31630.17 -4.75 -2.92 -2.08 -1.79 -1.09 -3.28 -1.02 0.25

20 5000 600 61029.16 -6.88 -5.71 -5.39 -1.71 -4.40 -5.99 -4.45 1.00

50 5000 600 61655.38 -6.69 -5.44 -5.16 -2.03 -4.17 - -4.21 1.00

100 5000 600 62421.80 -6.14 -5.10 -4.73 -2.73 -3.74 -5.32 -3.77 0.60

200 5000 600 63682.80 -5.59 -4.69 -4.23 -2.98 -3.23 - -3.25 0.59

500 5000 600 66527.80 -4.78 -4.05 -3.38 -3.29 -2.39 -4.14 -2.36 0.49

20 5000 1000 85618.15 -8.09 -5.53 -5.28 -2.62 -4.28 -5.87 -4.33 1.00

50 5000 1000 86331.93 -7.89 -5.23 -5.01 -2.92 -4.02 - -4.06 1.00

100 5000 1000 87138.18 -6.90 -4.85 -4.52 -2.99 -3.52 -5.19 -3.56 1.00

200 5000 1000 89113.52 -6.98 -5.07 -4.56 -3.80 -3.57 - -3.59 1.00

500 5000 1000 91330.15 -4.69 -3.44 -2.80 -2.51 -1.80 -3.58 -1.79 0.50

20 10000 200 31507.52 -9.31 -6.49 -6.25 -0.72 -5.26 -7.06 -5.32 0.67

50 10000 200 31897.92 -8.60 -5.78 -5.41 -1.25 -4.43 - -4.46 0.65

100 10000 200 32101.59 -6.61 -4.23 -3.72 -0.54 -2.72 -4.82 -2.75 0.50

200 10000 200 33213.78 -6.61 -4.31 -3.62 -1.98 -2.63 - -2.62 0.35

500 10000 200 35110.43 -4.90 -3.10 -2.27 -2.18 -1.28 -3.60 -1.22 0.25

20 10000 600 71079.04 -5.62 -5.33 -4.91 -1.77 -3.92 -5.59 -3.97 1.00

50 10000 600 71700.59 -5.29 -4.97 -4.63 -2.25 -3.64 - -3.68 1.00

100 10000 600 72599.59 -5.01 -4.77 -4.35 -2.62 -3.35 -5.01 -3.38 1.00

200 10000 600 74654.19 -5.51 -5.34 -4.92 -3.69 -3.94 - -3.95 1.00

500 10000 600 77718.34 -4.78 -4.71 -3.97 -3.96 -2.99 -4.84 -2.97 0.49

20 10000 1000 102578.36 -6.10 -5.05 -4.70 -2.42 -3.71 -5.38 -3.75 1.00

50 10000 1000 103239.08 -5.72 -4.67 -4.34 -2.52 -3.35 - -3.38 1.00

100 10000 1000 104099.67 -5.21 -4.22 -3.89 -2.45 -2.89 -4.56 -2.92 1.00

200 10000 1000 106197.20 -5.25 -4.35 -3.88 -3.30 -2.88 - -2.91 1.00

500 10000 1000 110044.84 -4.94 -4.18 -3.54 -3.44 -2.55 -4.44 -2.54 0.67

20 20000 200 34612.69 -8.16 -6.54 -6.31 -1.07 -5.33 -7.16 -5.38 1.00

50 20000 200 34853.07 -6.94 -5.45 -5.08 -1.00 -4.09 - -4.13 0.60

100 20000 200 35734.53 -7.04 -5.70 -5.23 -2.39 -4.25 -6.53 -4.27 0.60

200 20000 200 36354.40 -5.59 -4.33 -3.61 -2.07 -2.62 - -2.63 0.40

500 20000 200 38670.01 -4.80 -3.99 -3.12 -2.93 -2.14 -4.62 -2.09 0.38

20 20000 600 80553.66 -5.34 -5.07 -4.51 -1.65 -3.52 -5.38 -3.57 1.00

50 20000 600 81237.00 -5.05 -4.74 -4.24 -2.04 -3.26 - -3.29 1.00

100 20000 600 82250.96 -4.75 -4.55 -4.05 -2.51 -3.06 -4.77 -3.08 1.00

200 20000 600 83710.17 -4.38 -4.19 -3.76 -2.79 -2.77 - -2.78 0.67

500 20000 600 87509.30 -4.48 -4.31 -3.71 -3.61 -2.73 -4.25 -2.70 0.67

20 20000 1000 119658.22 -6.30 -5.36 -4.98 -2.98 -3.99 -5.61 -4.04 1.00

50 20000 1000 120589.66 -6.28 -5.18 -4.83 -3.21 -3.85 - -3.88 1.00

100 20000 1000 121241.99 -5.63 -4.57 -4.16 -2.91 -3.18 -4.86 -3.20 1.00

200 20000 1000 123056.41 -5.16 -4.30 -3.90 -3.14 -2.92 - -2.93 0.67

Continued on next page
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Table 4.6 – continued from previous page

K b h (R, S)
average cost improvement ∆%

frequency
(Q,S, T ) Q(s, S) P (s, S) (Q,S) MP (s, c, S)M (s, c, S)F

500 20000 1000 127225.38 -4.71 -4.07 -3.54 -3.35 -2.55 -4.42 -2.55 0.67

Table 4.6: Computational results on the data set of Viswanathan (1997)
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