## A.L. Targonskii

## Extremal problems for partially non-overlapping domains on equiangular system points.

Let $\mathbb{N}, \mathbb{R}$ - the sets natural and real numbers conformity, $\mathbb{C}$ - the plain complex numbers, $\overline{\mathbb{C}}=\mathbb{C} \bigcup\{\infty\}$ - the Riemannian sphere, $\mathbb{R}_{+}=(0, \infty)$.

For fix number $n \in \mathbb{N}$ system points

$$
A_{n}=\left\{a_{k} \in \mathbb{C}: k=\overline{1, n}\right\}
$$

the define $n$-equiangular system points, if by all $k=\overline{1, n}$ realize relation:

$$
\begin{equation*}
\arg a_{k}=\frac{2 \pi}{n}(k-1), k=\overline{1, n} . \tag{1}
\end{equation*}
$$

System be considered the angular domains:

$$
P_{k}=\left\{w \in \mathbb{C}: \frac{2 \pi}{n}(k-1)<\arg w<\frac{2 \pi}{n} k\right\}, \quad k=\overline{1, n}
$$

For arbitrary $n$-equiangular system points "controlling" functional to be considered

$$
\mu\left(A_{n}\right):=\prod_{k=1}^{n} \chi\left(\left|\frac{a_{k+1}}{a_{k}}\right|^{\frac{n}{4}}\right) \cdot\left|a_{k}\right|,
$$

where $\chi(t)=\frac{1}{2}\left(t+\frac{1}{t}\right), t \in \mathbb{R}_{+}$.
Let $D, D \subset \overline{\mathbb{C}}$ - the arbitrary open set and $w=a \in D$, this $D(a)$ the define connected component $D$, the contain point $a$. For arbitrary $n$ equiangular system points $A_{n}=\left\{a_{k}\right\}_{k=1}^{n}$ and open set $D, A_{n} \subset D$ the define $D_{k}\left(a_{p}\right)$ connected component set $D\left(a_{p}\right) \bigcap \overline{P_{k}}$, the contain point $a_{p}, k=\overline{1, n}$, $p=k, k+1, s=\overline{1, m}, a_{n+1}:=a_{1}$. Let $D_{k}(0)$ (conformity $\left.D_{k}(\infty)\right)$ the define connected component set $D(0) \bigcap \overline{P_{k}}$ (conformity $D(\infty) \bigcap \overline{P_{k}}$ ), the contain point $w=0$ (conformity $w=\infty$ ).

The define, what open set $D,\{0, \infty\} \cup A_{n} \subset D$ satisfy the conditions nonoverlapping relatively $n$-equiangular system points $A_{n}$ if be satisfied condition

$$
\begin{gather*}
{\left[D_{k}\left(a_{k}\right) \bigcap D_{k}\left(a_{k+1}\right)\right] \bigcup\left[D_{k}(0) \bigcap D_{k}\left(a_{k}\right)\right] \bigcup\left[D_{k}(0) \bigcap D_{k}(\infty)\right] \bigcup} \\
\bigcup\left[D_{k}(\infty) \bigcap D_{k}\left(a_{k}\right)\right] \bigcup\left[D_{k}(\infty) \bigcap D_{k}\left(a_{k+1}\right)\right] \bigcup\left[D_{k}(0) \bigcap D_{k}\left(a_{k+1}\right)\right]=\varnothing \tag{2}
\end{gather*}
$$

$k=\overline{1, n}$ on all angular domains $\overline{P_{k}}$.
System domains $\left\{B_{k}\right\}_{k=1}^{n}, k=\overline{1, n}$, the define system partially nonoverlapping domains, if

$$
\begin{equation*}
D:=\bigcup_{k=1}^{n} B_{k}, \tag{3}
\end{equation*}
$$

is open sets, the satisfied condition (2).
Let $r(B ; a)$ - inner radius domain $B \subset \overline{\mathbb{C}}$ with respect to a point $a \in B$.
Theorem. Let $\gamma \in \mathbb{R}_{+}, n \in \mathbb{N}, n \geq 3$. Then for arbitrary $n$-equiangular system points (1), the satisfied condition

$$
\mu\left(A_{n}\right)=1,
$$

and arbitrary set partially non-overlapping domains $\left\{B_{0}, B_{k}, B_{\infty}\right\}$, the satisfied condition (3), $a_{k} \in B_{k} \subset \overline{\mathbb{C}}, k=\overline{1, n}, 0 \in B_{0} \subset \overline{\mathbb{C}}, \infty \in B_{\infty} \subset \overline{\mathbb{C}}$, be satisfied inequality

$$
\begin{aligned}
& \left(r\left(B_{0} ; 0\right) \cdot r\left(B_{\infty} ; \infty\right)\right)^{\gamma} \cdot \prod_{k=1}^{n} r\left(B_{k} ; a_{k}\right) \leq \\
\leq & \left(r\left(B_{0}^{0} ; 0\right) \cdot r\left(B_{\infty}^{0} ; \infty\right)\right)^{\gamma} \cdot \prod_{k=1}^{n} r\left(B_{k}^{0} ; a_{k}^{0}\right) .
\end{aligned}
$$

The equality obtain in this inequality, when points $\left\{a_{k}^{0}\right\}$ and domains $\left\{B_{0}^{0}, B_{k}^{0}, B_{\infty}^{0}\right\}$, $k=\overline{1, n}$ are, conformity, the poles and the circular domains of the quadratic differential

$$
Q(w) d w^{2}=-\frac{\gamma w^{2 n}+\left(n^{2}-2 \gamma\right) w^{n}+\gamma}{w^{2}\left(w^{n}-1\right)^{2}} d w^{2} .
$$

