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ABSTRACT 

 

The leit motif of this thesis is that binding of visual features is a process that begins 

with input of stimulation and ends with the emergence of an object in working 

memory so that it can be further manipulated for higher cognitive processes. The 

primary focus was on the binding process from 0 to 2500 ms, with stimuli defined by 

location, colour, and shape. The initial experiments explored the relative role of top-

down and bottom-up factors. Task relevance was compared by asking participants to 

detect swaps in bindings of two features whilst the third was either unchanged, or 

made irrelevant by randomization from study to test, in a change detection task. The 

experiments also studied the differences among the three defining features across 

experiments where each feature was randomized, whilst the binding between the 

other two was tested. Results showed that though features were processed to different 

time scales, they were treated in the same way by Visual Working Memory 

processes. Relevant features were consolidated and irrelevant features were inhibited. 

Later experiments confirmed that consolidation was aided by iconic memory and the 

inhibitory process was primarily a post-perceptual active inhibition.  
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NOTES 

 

Throughout this work:  

o The term VSTM refers to one part of VWM. VSTM is conceptualised as an 

intermediate visual memory store that receives input from basic perceptual 

processes, and from which material may be transferred out for further 

processing (for example to the LTM). In contrast, VWM denotes a larger 

complex of stores as well as processes, which enable continuous ‘online’ 

manipulation of information. 

o The terms ‘dimensions’ and ‘features’ are used interchangeably, though it is 

accepted that precisely speaking, dimensions refers to colour, size, shape, 

location etc. whereas features are particular values on these dimensions such 

as red, big, square, top etc.  Since features express specific values on 

dimensions, they are conceptually subordinate to dimensions. A change in 

dimensions would always mean a change in features, though the reverse may 

not be true and feature values may change within a dimension. 

o The research assumes the refresh rate of the monitor to be 0, and 

consequently the study-test intervals are labelled to start from 0 ms.  
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CHAPTER 1 

INTRODUCTION 

 

Binding is the process whereby distinct bits of information, usually represented in 

different areas of the brain, are brought together for the integrated control of 

behaviour. It has been postulated as being basic to a host of cognitive functions, such 

as, parallel processing of different objects or their elements (Von der Malsburg, 

1981), production of language (Fodor & Pylyshyn, 1988), consciousness (Crick & 

Koch, 1990), formation of the phenomenal self (Metzinger, 1995), establishment of 

subjective time frames (Poppel, 1997), memory and reasoning (Halford, Cowan, & 

Andrews, 2007), etc. These ideas however, assume a very broad conceptualization of 

the term ‘binding’. In a more restricted way, the term denotes ‘feature binding’, the 

process whereby different features such as shape, colour, size, orientation, location, 

etc. are linked together to form a coherent representation of the object. It is in this 

sense that binding is a ubiquitous physiological sequence and an essential phase in 

information processing, for it provides the basis of mental representations, which in 

turn, are prerequisites for all cognitive processes.  

It is important to realize though, that binding is not an isolated process; it always 

occurs in a context. There are myriad stimuli impinging on our senses at all times, 

vying to gain entry into our consciousness. Further, not only does sensory input 

emanate from a complex, dynamic environment, but it also enters a neural system 

that is already activated by previous inputs and is oriented towards future goals. 

Which aspects of the momentary sensory input are selected for further processing 

depends as much on the state of the system as it does on the sensory input itself.  

Indeed, the fundamental questions one may ask about binding are whether, why, and 

how, some features are selected for binding at the cost of others. The answers to 

these questions presumably lie in the analysis of the whole information processing 

sequence from when the input from the external world is received, to when the 
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output in the form of behaviour is given. The bottom-up view of information 

processing is that the input received by the brain is processed in a largely automatic 

way to the higher centres in the brain. Thus, stimulus factors primarily determine the 

patterns and objects that are encoded for further processing. Feature binding is 

viewed as an automatic, pre-attentive, transient process that arises from low level 

neural dynamics. The physiological basis of binding is postulated to be either 

conjunctively coded neurons (Baars, 1988; Deheane & Changeux, 2004; Fodor & 

Pylyshyn, 1988), or synchrony among participating neural networks to encode 

features and out of phase neural activity to encode separate objects (Singer & Gray, 

1995; Von der Malsburg, 1981).  

In contrast, the top-down view of information processing contends that concepts such 

as task set, instructions, and goals, determine which features and objects are selected 

for processing. Binding is thus thought to be more influenced by the mechanism of 

selective attention that dictates which features and objects are processed further. The 

top-down processing signals essentially emanate from Working Memory and operate 

in the context demarcated by it (Duncan, 2006). The reentrant processes in the brain 

are emphasised as the physiological basis of binding (Di Lollo, Enns, & Rensink, 

2000; Hochstein & Ahissar, 2002; Lamme & Roelfsema, 2000). These imply 

downward and lateral feedback to the lower areas of the brain, emanating from the 

higher centres of the brain. 

The relative influence of stimulus driven and conceptually driven processing can 

arguably be best studied by analyzing the processes that operate when incoming 

sensations are encoded in the visual system and organised as objects for further 

processing. The maximum interplay between bottom-up and top-down processes 

happens at the interface of perception and memory, and so the scope of this research 

is limited to binding at the threshold where the multidimensional representation of a 

stimulus is transformed and consolidated into an integrated object. This threshold is 

functionally defined rather than temporally delimited. Perceptual representation is 

often enough conceived as feature integration, but how a percept enters into memory 

and what are the processes and factors in this transfer, is the objective of this study. 
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Towards this purpose, the concept of binding, which inevitably involves the 

underlying physiological mechanisms that play a role in binding, is considered first 

in Chapter 2. Thereafter, the processes and stores in information processing which 

affect the process of binding are examined, delineating the debates which raise the 

interesting research questions and suggest possible hypotheses which are addressed 

in this thesis. Chapter 3 is an exposition of the general method and procedure 

adopted to test these hypotheses. The experiments are described next in Chapters 4-8, 

and the final Chapters 9 and 10 present a general discussion of the major findings, 

the limitations of this work, and the implications for future research in this area.   
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CHAPTER 2 

A REVIEW OF LITERATURE 

THE CONCEPT OF BINDING 

Binding is the process whereby separate entities are linked together to form a unified, 

coherent representation of the world around us. Feature binding refers to linking 

various characteristics of the stimulus to form a coherent representation of the 

stimulus. It brings together rather different aspects of an object such as its shape, 

colour, size, orientation, location, movement, etc. Cognitive scientists postulate 

binding to be one of the basic processes in all information processing ranging from 

object identification to consciousness (Crick & Koch, 1990, but see Crick & Koch, 

2003; Singer & Gray, 1995, Zimmer, Mecklinger, & Lindenberger, 2006).  

The reality that is perceived is contingent upon information of diverse kinds located 

in many different areas of the brain. The binding problem exists because information 

about the features of every object in the external world goes to disparate areas of the 

brain. Empirical science focuses on how a person solves the binding problem at the 

neural as well as the behavioural level, and postulates mechanisms whereby the brain 

brings together information that goes to disparate areas of the brain. The modularity 

of the brain for processing different kinds of information is long established. Usually, 

however, we transcend these disparities, and accurately and effortlessly bind this 

myriad information to constitute a whole. So what is the underlying brain process, 

which binds together information that goes to distinct areas of the brain? Almost all 

researchers assume that the answer lies in the identification of specialised neurons or 

networks that participate in the same cognitive process at the same time.  

When Nobel prize winners Hubel and Wiesel provided evidence for conjunctively 

coding cells in the striate cortex of cats (Hubel & Wiesel, 1959; 1962), and monkeys 

(Hubel & Wiesel, 1968), it seemed clear that specialised neurons existed to code the 
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different objects that are encountered in the environment. Researchers soon proposed 

that specialised cells attuned to specific conjunctions of features are responsible for 

binding, and that these cells come together in a workspace that enables the flexibility 

of binding and unbinding, and further processing. Fodor and Pylyshyn (1988) 

distinguished between vertical ‘modular faculties’ and a distinct ‘central horizontal 

system’ capable of sharing information across modules. Baars (1988) distinguished 

between a vast array of unconscious, specialised, parallel processors, and a single, 

limited capacity, serial workspace that allows exchange of information. Deheane and 

Changeux (2004) proposed the ‘neuronal workspace hypothesis’, which distinguishes 

two computational spaces in the brain, each characterised by a distinct pattern of 

connectivity. They proposed a network of ‘specialised processors’, attuned to 

particular types of information, but sharing the characteristics of specialisation, 

automaticity, and fast feed forward processing, as well as ‘cortical workspace 

neurons’ that break the modularity of the cortex because they are able to send and 

receive projections to many distant areas through long range excitatory neurons. 

However, the idea of binding due to specialised neurons had a problem with sheer 

numbers. The quandary was how to grapple with the numerous stimuli, account for 

transience of binding, and at the same time limit the huge number of conjunctively 

coding neurons required for all the binding operations.    

Synchrony was proposed as the alternative physiological explanation for binding. It 

was Von der Malsburg (1981) who first contended that a complex environment 

requires parallel processing of information related to different objects or events, and 

posited neural synchrony as the mechanism whereby such information is bound 

together. Singer and Gray (1995) suggested that binding is explained by transient and 

precise synchronisation of neuronal discharges, discovered in their laboratory by 

Gray, Engel, Konig, and Singer (1992) in the cat striate cortex. Indeed, 

synchronization was later reported in species ranging from locusts (MacLeod, 

Backer, & Laurent, 1998), to cats and monkeys (Gray, 1999), and of course, in 

humans (Singer, 1999). The idea of synchrony assumes that binding occurs 

throughout the brain, synchronous firing of cortical neurons leading to binding of 
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features. The proposal faces two problems. The first is regarding how two (or more) 

bound objects are differentiated. Though oscillation between out of phase firing has 

been proposed as a possible mechanism to encode separate objects, it is rather 

difficult to imagine how such a precise timing mechanism is implemented, 

considering that there are always multiple objects in the external world, and in 

addition to that, the brain itself is a highly noisy environment. The second problem is 

related to the implication that binding is transient, because the same neurons encode 

all binding operations. The problem is how to account for permanence of 

representations after the stimulus is no longer there. Synchrony seems to be an 

adequate explanation of binding, only for a single object, and that too only when it is 

present as a percept.   

Nevertheless, physiological evidence exists for specialised processors as well as 

synchrony, and is hard to refute. Thus, many researchers tried to resolve the dispute 

between synchrony and specialised neurons by proposing different kinds of bindings, 

but in the process merely ended up reiterating the debate.  Crick and Koch (1990) 

differentiated at least three kinds of bindings. First, bindings ‘hardwired’ by genes or 

the experience of distant ancestors that presumably determine the response to natural 

stimuli. Second, bindings learnt due to experience such as those required for 

recognising familiar faces, or the letters of the alphabet; and third, transient bindings 

of novel stimuli, which require focal attention. These are presumably based on neural 

synchrony, and if the stimulus is repeated often enough, develop into the second kind 

of bindings. Baddeley (2007) mentioned two types of bindings, passive binding, 

contingent on automatic processes; and active binding, which requires attention. The 

examples used suggest that while the former refers to binding elements of the natural 

world for which humans are ‘prepared’ in an evolutionary sense, the latter type refers 

to binding of arbitrary, learnt elements. He further adds that long term episodic 

memory provides a third source of binding. Clearly, these ideas are similar to the 

tripartite distinction by Crick and Koch (1990). VanRullen (2009) also distinguishes 

between hardwired binding of natural / frequently encountered objects, and on-

demand binding of meaningless / arbitrary feature conjunctions, asserting that while 
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the latter always requires attention, the former requires attention only if there is 

competition by multiple objects, thus emphasizing the inhibitory function of 

attention. Hommel and Colzato (2009) similarly hold that binding can take place 

through neural synchronization of all features present at a time, or because a stored 

detector exists for real/familiar objects. They too, admit the possibility of both 

processes acting together. 

Despite this measure of acceptance, there is a sense that mere perceptual integration 

of features, whether by synchrony or by specialised neurons, does not even begin to 

capture the connotation of bindings as coherent objects that are fundamental for 

further information processing. The object cannot be defined only as a bundle of 

features. At the very least the features need to be integrated so that the object can be 

distinguished from other objects. This implies manipulation of the basic information 

supplied by separate features. At the physiological level, this is probably done by the 

reentrant processes in the brain. These are the downward and lateral connections that 

feedback information to lower levels in the brain. As in any good communication 

system, the brain too relies on feedback mechanisms. In the visual system, for 

example, the lower level neurons in Area V1 send signals for forward processing, but 

it is also true that all higher visual centres have reentrant (downward) connections 

with Area V1. An important characteristic of reentrant connections is that they not 

only feedback to the original neurons, but also ‘receive’ signals back from them. 

Communication between brain areas is therefore a continuous process.   

Thus, the dichotomy between synchrony and specialised neurons is currently 

transcended by proposals that ascribe paramount importance to the evidence of 

reentrant processes in the brain. These top-down processes are inevitably linked to 

higher cognitive functions. Edelman (1978) first proposed that reentrant signalling 

might be important in integrating disparate cortical areas and higher brain functions. 

Damasio (1989) specifically argued that recall and recognition involve reactivation 

of the same areas that were involved in initial registration of conjunctions. This is 

done by means of ‘convergence zones’ that enable retroactivation of multiple regions 

in the brain.  
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The crux of the reentrant theory is that brain processes are inherently iterative 

because of the hierarchical nature of the system and the fact that as information is 

processed in the higher areas the receptive fields become larger and lose their feature 

specificity. Thus, one or more cycles are required to establish a stable representation. 

Reentrant processes not only help to confirm what is correct but also resolve 

competition and thus allow accurate bindings to take place (Bullier, 2001; Di Lollo, 

Enns, & Rensink, 2000; Hamker, 2003; Hochstein & Ahissar, 2002, Lamme & 

Roelfsema, 2000).  

As far as the visual system is concerned, such signals probably emanate from the 

parietal cortex. Saalmann, Pigarev, and Vidyasagar (2007) studied how parietal 

output influences early sensory areas in macaques performing a visual matching task. 

They found that output from parietal areas increased activity in the early areas, and 

concluded that this represented top-down feedback from the parietal cortex to early 

sensory areas that helped to focus attention on relevant locations. Silvanto, 

Muggleton, Lavie, and Walsh (2009) used triple pulses of TMS over PPC to find that 

they led to excitation in the visual areas when applied unilaterally, demonstrating the 

top-down modulation of the visual areas by PPC.  

Reentrant connections in the brain may also be combined with dynamic changes in 

synchronous activity to explain how the bound object is distinguished from the 

background, or indeed from other objects (Seth, McKinstry, Edelman, & Krichmar, 

2004; Van der Togt, Kalitzin, Spekreijse, Lamme, & Super, 2006). Thus, reentrant 

processes are now accepted to be crucial for binding. Indeed, so compelling is the 

evidence that it has led to a rethink regarding the very concept of binding among 

many researchers. There is a clear and discernible shift from the assessment of 

binding as a product to conceptualising it as a process.    

Treisman (1996) proposed three sequential mechanisms to solve the binding 

problem: selection of particular locations by a spatial attention window, inhibition of 

locations from feature maps containing unwanted features, and top-down activation 

of the location containing the currently attended object for further processing. She 
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also speculated that reentry to area V1 or V2 mediated all these three different 

mechanisms, proposing that reentrant connections from parietal areas mediate spatial 

attention, from extrastriate areas mediate feature based selection, and from the 

inferior temporal cortex mediate object based selection. Treisman (2006) holds that 

the initial response of the brain is to activate feature detectors in the early striate and 

extrastriate areas that automatically connect to compatible temporal lobe object 

nodes, and perhaps inhibit the conflicting ones. Parietal cortex then controls a serial 

reentry scan of the V1 and V2 areas to retrieve the features present in each, and then 

these are combined to form integrated object representations or bindings.  

Humphreys (2001) and his co-workers also propose a two stage account of binding 

(Braet & Humphreys, 2009; Cinel & Humphreys, 2006; Humphreys, Cinel, Wolfe, 

Olson, & Klempen, 2000; Humphreys, Hodsoll, & Riddoch, 2009). The initial 

evidence for this two stage process came from a patient GK with bilateral parietal 

lesions (Humphreys et al., 2000). The patient could bind form elements into shapes, 

but could not integrate shapes with colour. This prompted the idea that the initial 

stage of binding results in shapes, and thereafter, surface features are associated with 

the shapes. Cinel and Humphreys (2006) proposed that in the initial noisy stage, 

visual elements are weakly bound, and these bindings can dissipate unless they are 

consolidated into more stable and stronger representations by being reinforced by 

top-down attentional feedback modulated by the posterior parietal cortex. 

Humphreys et al. (2009) showed that form conjunctions were easier to detect than 

difficult feature targets by controls and parietal patients alike, whereas parietal 

patients were significantly impaired in detecting other cross-domain conjunctions. 

Braet and Humphreys (2009) respectively used feature detection errors and 

conjunction errors as inversely related measures of feature detection and binding, and 

found that a patient with bilateral parietal lesions generated illusory conjunctions 

with unusually long display durations. Also when TMS was applied to the PPC area 

in normal participants, it led to an increase in conjunction errors, but only 150-200 

ms after stimulus onset. Thus, they held that binding occurs due to reentrant 

communication emanating from the PPC.  
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Roelfsema (2006) postulates two mechanisms in the visual system responsible for 

binding, base-grouping and incremental grouping. Base-groupings are coded by 

single neurons tuned to multiple features, and reflect the selectivity of feed-forward 

connections. But, all possible feature combinations cannot be coded by dedicated 

neurons. Therefore, a second, flexible form of grouping called incremental grouping 

needs to be posited. Incremental grouping augments the responses of the set of 

neurons coding separate features that are bound in perception. It takes more time 

than base-grouping because it relies on horizontal and feedback connections, besides 

the feed-forward ones. The modulation of neuronal response strength, i.e, the firing 

rate of neurons, during the incremental grouping stage parallels the behavioural fact 

that attention is directed to features that are indicated by the enhanced neuronal 

response, and those features are then bound together. Base grouping takes place 

initially in the system, followed by incremental grouping in the cortex. This basic 

theory has been enhanced to propose a computational model that predicts figure-

ground separation as well as binding (Jehee, Lamme, & Roelfsema, 2007).  

Zimmer, Mecklinger, and Lindenberger (2006) distinguish between transient binding 

and more durable binding, implying that different mechanisms bind features at 

different points in time, and/or a process of consolidation transforms transient 

bindings into durable bindings. Shifting the focus to a very late stage in the binding 

process, and thus, proposing an integrated model of binding in WM and long term 

memory, Murre, Wolters, and Raffone (2006) also distinguish between transient and 

permanent binding, suggesting that while the former reflects the capacity of WM to 

select task relevant information for processing, the latter is the capacity of the neural 

system to store coherent patterns in LTM. Their emphasis, nevertheless, is that there 

is a constant interaction between these two. “What is transiently bound in WM 

governs what is temporarily and eventually permanently bound in long term 

memory. In turn, what is permanently bound affects transient binding in WM. The 

interplay of these binding processes determines how the brain develops into a 

structured system that is cumulatively correlated with its environment, thus 
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implementing a process that is able to lift itself to higher levels of cognitive 

functioning” (Murre et al., 2006, p. 244).   

Emphasizing the top-down factors even more, Hommel and Colzato (2009) propose 

that memory for a binding is controlled by two kinds of priming processes. Offline 

priming happens before the stimulus is presented, due to foreknowledge about the 

relevant features, task instructions, manipulation of mental set, etc. Online priming is 

induced by stimuli that have entries in long-term memory, such as familiar objects. 

These are detected in a non-selective fast feed-forward sweep, followed by recurrent 

processes refining the input according to the operating principles of the attentional 

set for that task.  

In line with these ideas, this thesis assumes that binding is a continuous process that 

begins with the sensory input which goes to myriad areas of the brain and ends when 

the bound object emerges in memory such that it is strong enough to be manipulated 

further for higher cognitive processes. Features are initially perceived together either 

through synchrony or by neurons coded to detect conjunctions. This integration is a 

largely automatic, non-conscious process, which thereafter is refined by iterative 

processes and ultimately allows differentiation and dissemination of information in 

conscious states.  

The time period within which this process operates is extremely limited.  Studying 

the time course of visual processing using ERPs with natural scenes in human 

participants, Thorpe, Fize, and Marlot (1996) showed that decisions regarding 

presence or absence of animals in a visual scene flashed for 20 ms could be observed 

as ERP negativity in the frontal areas around 150 ms after stimulus onset. VanRullen 

and Thorpe (2001) demonstrated that whereas categorization of targets (animals vs. 

vehicles) in visual scenes flashed for 20 ms could be observed in ERPs 75-80 ms 

after stimulus onset, the difference between targets and non-targets could be 

observed only after 150 ms, reaching significance at 160 ms. Roelfsema, Tolboom, 

and Khayat (2007) used multi-unit recordings from the brains of monkeys and 

observed that features are registered in 48 ms, bound as figures distinct from the 
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background at 57 ms, and relevant figures are selected over irrelevant distracters 

after 137 ms. 

Taken together, these studies suggest that whereas encoding of the stimulus 

dimensions may take less than 50 ms, and the differentiation of the object from the 

background happens shortly thereafter, their categorization takes place only around 

150 ms, to be followed by further refinement of the objects by the mechanism of 

attention. This project is an exploration of the process of binding that results in 

coherent objects for further manipulation by higher cognitive processes, with a view 

to delineate the bottom-up and top-down processes which impact on this process of 

binding.  

TOP-DOWN AND BOTTOM-UP INFLUENCES 

The process of binding inevitably begins with the physical continua impinging on the 

sense organs. So the study of how these stimulus dimensions are represented 

separately and together is obviously a logical starting point for the exploration of the 

process. But it is equally true that the information regarding stimuli does not enter an 

empty box. The brain has its own ideas! The top-down control of behaviour by 

mental representations of goals, instructions, and ideas is perhaps as undeniable as 

the source of behaviour in bottom-up processing of stimulation. A logical assumption 

is that since the reentrant signals emanate from the cortex, they reflect top-down 

modulation of the process of binding. Further, these signals assume even more 

importance when the original stimulus is no longer there, and the participant has to 

rely only on memory to maintain and process the stimulus further.  

The psychological prototype for models emphasizing the utility of memory in online 

processing and manipulation of material in the service of current goals is the idea of 

Working Memory (Baddeley & Hitch 1974; Baddeley & Logie, 1999) which 

emphasized that different kinds of information are processed by distinct mental 

systems that act together to deal effectively with tasks confronting a healthy human 
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adult. Baddeley and Hitch (1974) distinguished two subsystems, the phonological 

loop and visuo-spatial sketchpad, and a control system called the central executive. 

To deal with the fact that the information processed in these subsystems is often 

combined, and indeed, is at some stage also linked to information in the long term 

permanent store, Baddeley (2000) proposed a fourth component, the ‘episodic 

buffer’. The episodic buffer was initially theorized to be controlled by the executive, 

but was primarily a storage system linked to conscious awareness, that binds together 

information from different sources in episodes. Thus, the episodic buffer was 

proposed as the answer to the binding problem (Baddeley, 2003).  

Logie (2003) conceptualized WM as a mental workspace that deals with integrated 

objects identifiable on the basis of prior knowledge. He maintains that sensory input 

reaches WM only after it has activated the knowledge base. Thus, what reaches the 

workspace is the result of an amalgamation of the sensory input and the knowledge 

base. Since another source of input into the workspace is retrieval generated by 

processes in WM such as imagery, he holds that WM does not act as a gateway for 

processing information into LTM (substantiated by Van der Meulen, Logie, & Della 

Sala, 2009). The workspace model implies that feature binding takes place 

concomitantly with or before the object representation evokes prior knowledge, 

which in turn, precedes the manipulation of the object in the mental workspace. 

Nevertheless, other kinds of binding, such as between objects and their semantic 

associates, or between percepts and images, or between images, or among 

sequentially presented objects, presumably takes place in the workspace that is WM. 

The basic units in WM are thus perceived objects. On the other hand, the model can 

also be interpreted to accommodate the idea that features themselves might evoke 

prior representations in LTM and then the processes of WM refine the representation 

so that it emerges as an object.  

Though there are many interpretations of WM as a concept and consequently many 

different models exist in current literature (reviewed by Miyake & Shah, 1999; 

Osaka, Logie, & D’Esposito, 2007), consensus on two characteristics that are 

important for this thesis must be mentioned. First, there is a general assumption that 
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physiological level explanations are tenable for the WM phenomena observed at the 

behavioural level. Second, attention has a crucial and largely inhibitory role to play 

in all models of WM. Both these characteristics imply that WM is the top executive, 

the ‘controller’, managing the stimuli. It is in this sense that one may conceptualise 

WM as the source of top-down influences.  

Certainly, this is how the advocates of top-down processes invoke and use the 

concept in their theories. The biased competition theory by Desimone and Duncan 

(1995) proposed that WM content in terms of instructional set, task goals, etc. 

facilitates the selection of matching sensory input. The biased competition model 

rests on the assumption that attending to an object causes a bias signal to be sent by 

higher areas to the lower sensory areas, which increases their tonic activity without 

necessarily increasing the neural responses evoked by the external stimulus itself. 

Behaviourally, this assumes that incoming sensory stimulation is matched with a 

template which specifies the relevance or otherwise of the received stimulation. 

Though Duncan (2006) concedes that in principle, competitive bias can begin 

anywhere in the system and then spread to the higher and/ or lower levels, he also 

reiterates the role of task relevance and an associated pattern of fronto-parietal 

activity that he calls the multiple demand pattern because it is produced by many 

different kinds of cognitive demands. No wonder then that his theory is usually taken 

to be a prime exemplar of the emphasis on top-down processing. 

Based on studies using single unit recordings in macaques (Chelazzi, Miller, Duncan, 

& Desimone, 1993), it was held that a state of competition always exists among the 

variety of sensory inputs at any moment. Stronger sensory inputs usually win out, but 

the representations in WM bias the competition such that inputs matching them are 

the ones that are strengthened and selected for further processing. The contention that 

competition is essential for attention to emerge is supported by neuroimaging 

evidence that the posterior parietal cortex, which is activated when visuospatial 

attention is focussed, promotes feature binding when there is a potential for 

confusion with the simultaneous presence of other objects. Kastner, De Weerd, 

Desimone, and Ungerleider (1998) used fMRI evidence to substantiate that when 
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stimuli are simultaneously presented, their cortical representations interact in a 

competitive and suppressive way in the ventral (object recognition) pathway. 

However, this was not evident when stimuli were presented sequentially. In a second 

experiment, spatial attention focussed on the objects was found to counteract the 

suppressive effect, and more so in the simultaneous as compared to the sequential 

presentation condition. Using fMRI, Shafritz, Gore, and Marois (2002) established 

that the posterior parietal cortex was active when multiple objects were 

simultaneously presented, but not when they were sequentially presented in the same 

location (at fixation).   

Currently, there is conflicting evidence regarding the level to which distracters are 

represented in the brain. Some researchers propose that all objects and features are 

automatically and implicitly represented in the brain up to a level that excludes 

semantic processing (reviewed by Thoma, Hummel, & Davidoff, 2004). 

Nevertheless some studies indicate that even unattended objects are habitually 

processed to the semantic level (Altman, Grodd, Kourtzi, Bulthoff, & Karnath, 2005; 

Pins, Meyer, Foucher, Humphreys, & Boucart, 2004). Attempting a resolution, 

Martinovic, Gruber, Ohla, and Muller (2009) used EEG evidence to find that induced 

gamma band activity was enhanced due to the presence of distracter objects under 

low load conditions, thus providing evidence for cortical representation of 

distracters. However, as perceptual load increased, attentional selection played a 

more important role, and gamma band activity was limited to the attended object 

with a general suppression of all activity linked to surrounding information. This 

again corroborates Duncan’s views regarding suppression of distracters by attention 

in consonance with top-down directions.   

Emphasizing the integrated nature of processing of objects, Duncan (1996, 1998, 

2006) held that since the object features are encoded in an integrated fashion across 

different cortical regions, if attention is directed to one feature, all features of the 

object, whether relevant or irrelevant, become dominant in their respective regions of 

the brain. Support for this idea came from fMRI data by O’Craven, Downing, and 

Kanwisher (1999a, 1999b) who found that neural activity increased in response to 
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the attended as well as non-attended task irrelevant attribute of the stimulus. 

Nevertheless, their studies also provided evidence for differential levels of activity, 

with the absolute amount of activity being stronger for relevant features than for 

irrelevant ones in the attended object.  More definitive data were provided by 

Schoenfeld et al. (2003) who recorded event related potentials as well as event 

related magnetic fields together with fMRI to find that the irrelevant feature was 

activated rapidly enough to participate in the perceptual integration and binding of 

the attended object. Using event related potentials, Winkler, Czigler, Sussman, 

Horvath, and Balazs (2005) found evidence that pre-attentive binding of relevant as 

well as irrelevant features occurs “normally” in visual as well as auditory modalities, 

and that attention is required for correct binding only under special circumstances 

when high load displays are processed under high time pressure.  

Thus, in considering the difference between relevant and irrelevant information, the 

distinction between features and objects is crucial in Duncan’s theory. Duncan 

(1980) asserted that only targets are selectively processed through the limited 

capacity system, non-target objects are identified and rejected by initial parallel and 

unconscious processes. Nevertheless, this selectivity is not assumed to operate on 

features. Duncan (1984) showed that perceptual identification of properties inherent 

in two different objects is much more difficult than when the features are combined 

in a single object. However, if two features are combined within a single object the 

visual system finds it as easy to encode a combination of two features such as 

orientation and texture, as to encode them separately. Duncan (1998) provided 

evidence that it is also hard to identify two separate targets presented within the same 

modality, though there is no problem in detecting targets that differ between 

modalities. Thus, the features of an object are integrated such that they are processed 

together in an all or none fashion. Directing attention to a selected object enhances 

the representation of all its features together (Duncan, Humphreys, & Ward, 1997; 

Egly, Driver, & Rafal, 1994). The objects compete with each other and the winner is 

processed further at the cost of widespread suppression of the distracters or the to-be-

ignored objects. Competition is biased and ultimately resolved in favour of task 
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relevant objects, and typically, this state is achieved over 100-200 ms and is 

sustained by attention. 

Luck and his associates also contend that the basic units on which VWM operates are 

objects rather than features. Luck and Vogel (1997) held that VWM was object-

based because remembering one feature, such as colour, allowed the recall of another 

without any additional cost. Vogel, Woodman and Luck (2001) confirmed that 

VWM can hold 3-4 chunks of information, be they features or bound objects. This 

evidence suggests that VWM stores integrated objects rather than features, and 

objects rather than features are thus the basic units of VWM. Woodman and Luck 

(2007) tested the prediction of the biased competition model that a match between 

the template held in WM and the sensory input always leads to a facilitation of 

performance. They used a dual task paradigm and asked participants to perform a 

visual search task while maintaining object representations in VWM at the same 

time, but found no such facilitation of performance.  Nevertheless, the reaction time 

was faster for matching distracters. When the participants knew beforehand that the 

target would never match the item retained in memory, they could direct attention 

away from the items that matched the WM representation. Thus, they found an 

inhibitory effect and concluded that participants can use the content of WM 

strategically to inhibit as well as facilitate attentional processing. Moores and 

Maxwell (2008) also found that prior stimuli in WM captured attention even in the 

absence of bottom-up priming, and influenced the response of the participant, despite 

the influence being detrimental to the task. Indeed one important purpose of VWM is 

postulated to be the control of eye movements (denoting attention), specifically the 

initial direction and subsequent correction of gaze towards particular objects in visual 

search (Hollingworth & Luck, 2009; Hollingworth, Richard, & Luck, 2008).  

In contrast to these theories emphasizing the top-down nature of processing of 

integrated objects, are accounts of behaviour that stress the role of different features 

of the stimuli to be processed. These accounts vary in their espousal of top-down 

mechanisms. For example, the feature integration theory (Treisman, 2006; Treisman 

& Gelade, 1980) and contingent capture theory (Folk & Remington, 2006; Folk, 
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Remington, & Johnston, 1992, 1993) ascribe paramount importance to top-down 

factors implemented through attention. At the other extreme are the accounts of 

stimulus driven capture (Theeuwes, 1992, 2004), and dimension weighting (Muller 

& Krummenacher, 2006a, 2006b), which primarily emphasize the importance of 

bottom-up factors in capturing attention. Nevertheless, they are similar in stressing 

one or more features as being important in the process of binding.     

The feature integration theory (Treisman, 1988, 1998; Treisman & Gelade, 1980) 

suggests that attention to particular locations is the most important factor in feature 

binding, implying that all features present at a particular location are inevitably 

bound together if attention is focussed on them. Treisman and Zhang (2006) 

reiterated the importance of locations in binding in VWM as well. This view makes 

binding a relatively automatic process triggered off by attention to particular 

locations. It postulates a master map of locations, and as attention is focussed on any 

area of this map, the object in that location is encoded. Also, while detection of 

features is contingent on independent maps for each feature, other types of searches, 

particularly conjunction search, is driven by the master map of locations that 

integrates information from other maps to produce the signals that make each 

stimulus salient (Treisman & Sato, 1990; Wheeler & Treisman, 2002).  

Kahneman, Treisman, and Gibbs (1992) proposed the object file theory, according to 

which objects are primarily identified by their positional marker or spatial index. 

Thereafter, other properties of the object, colour, shape, etc., are associated with the 

spatial index. Spatiotemporal continuity is essential for maintaining object file 

representations, whereas non-spatial properties such as colour and shape are 

unimportant. Direct evidence in support of this idea comes from the object reviewing 

paradigm (Kahneman et al., 1992; Mitroff & Alvarez, 2007), the multiple object 

tracking paradigm (Pylyshyn, 2004), visual search in dynamic displays (Alvarez, 

Konkle, & Oliva, 2007; Horowitz & Wolfe, 1998); and developmental evidence 

showing that young infants rely on spatiotemporal rather than surface features or 

identity information to make sense of their visual world (Feigenson & Carey, 2005). 
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Applying the feature integration theory and the idea of object files specifically to the 

binding process, Treisman (2006) maintained that pre-attentively, features and 

locations are registered in different maps, and focussed attention binds them together. 

She mentioned three components of the binding process, and suggests that we shift 

attention in space to select one object after another, suppress features of other 

objects, and finally bind selected features together into ‘object files’. Note that she 

contends that initially, features are processed in parallel and stored as separate traces, 

which are only inhibited, but not completely eradicated, in the binding process. 

Revisiting the feature integration theory, Chan and Hayward (2009) have provided 

fresh evidence for dissociation between feature detection and localization, involving 

respectively parallel and focal search.  

To completely grasp the implications of Treisman’s ideas, it is instructive to contrast 

them with Duncan’s model. One difference is their view of binding. For Duncan, 

binding happens at a very early stage in the visual process and the basic units in his 

theory are bound representations or objects. For Treisman, binding is a process of 

continuous refinement, during which features become linked to a master map of 

locations. Features remain bound only as long as attention is focussed on them. Any 

irrelevant features continue to exist in an attenuated form. Another related but 

important point of distinction lies in their disparate view of the role of attention in 

binding. While Treisman views attention to be a selective process essential for 

binding, Duncan assumes that features are already bound into objects (probably 

through conjunctive coding by neural detectors) and then biased competition 

between objects occurs accompanied by a state of attention. Attention is thus an 

emergent property of the system, and the mechanism that aids top-down biased 

selection of some objects over others. It follows that Treisman holds attention to be 

an earlier process than Duncan. Finally, the all important influence in the process of 

attention for Treisman is location, so attention is basically spatial in nature, whereas 

for Duncan, it is an emergent property of the system that is weighted in many ways, 

but essentially by task relevance more than anything else. Despite these differences, 



A Review of Literature 

 

PhD – The University of Edinburgh – 2009                             

31 

both agree that attention is necessary for binding separate features into a coherent 

object. 

Treisman’s insistence that attention was primarily spatial also conflicted with 

experiments showing attention capture by abrupt onsets, the tendency of anything 

unusual in the field to attract involuntary attention, even if participants are set to 

ignore them (Remington, Johnston, & Yantis, 1992). Nevertheless, the contingent 

capture theory (Folk et al., 1992, 1993; Folk & Remington, 2006) holds that 

attentional capture, as for example, by abrupt onsets, is contingent on top-down 

attentional control settings. This was because the original experiments showed that 

abrupt onset cues captured attention when the task was to identify onset target, but 

colour cues captured attention when the task was to respond to colour targets. Folk, 

Leber and Egeth (2008) have established that non spatial attention is also subject to 

capture that is contingent on top-down settings. In their experiments, a change in the 

colour of the distracter such that it matched the target, decreased target detection. 

Folk, Remington, and Wu (2009), showed that even non spatial distracters which did 

not capture attention, nonetheless, influenced responses to a target. 

The guided search model (Wolfe, 1994; Wolfe, Cave, & Franzel, 1989) had a rather 

different concern regarding the feature integration theory. Wolfe et al. (1989) pointed 

out that except for locations, the feature integration theory did not differentiate 

between other features of the stimuli. Further, it presumed that parallel processing of 

features in the initial pre-attentive stage did not have any impact on the later attentive 

serial search. The guided search model proposed that the features, which were 

processed in the parallel stage, guided attention in the subsequent serial stage, 

primarily by dividing the stimuli into distracters and probable targets. Further, they 

provided evidence that search for conjunctions defined by three features was more 

efficient than conjunctions of two features, simply because more number of features 

guided search for triple conjunctions. Wolfe (1994) acknowledged the special role of 

location by modifying the model to suggest that the output of processing in the initial 

massively parallel stage guided spatial attention and thus the second serial stage 

processed input from a limited portion of the visual field. Note that this reverses the 
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sequence of the relative influence of location and other features postulated by the 

feature integration theory, which holds that other features are attached to a master 

map of locations and hence spatial attention precedes and guides attention to features 

(Treisman & Sato, 1990). 

The idea that each feature is coded within its own feature map was extended by 

Vidal, Gauchou, Tallon-Baudry, and O’Regan (2005) to include the notion of 

‘structural gist’. Their Experiments 1, 2, and 3 using a change detection task with a 

study-test interval of 1000 ms showed that it was more difficult to detect changes of 

only colour, only shape, or only orientation, in a target item, if the distracters also 

changed on the same dimension as compared to a condition where there was no 

change in distracters. Experiment 4 showed that change detection was impaired when 

an item that remained on screen during the study-test interval changed in the same 

dimension as the target, demonstrating that encoding relational information was 

possible even when it was not presented simultaneously. In Experiments 5 and 6, 

they compared conditions when distracters could change on the same dimension as 

the target, or on a different dimension. Changes in a different dimension, however, 

did not have an effect on performance, whereas changes in the same dimension did 

affect performance. It was more difficult to detect feature changes when the 

distracters also changed features on the same dimension, as compared to when the 

distracters changed on some other feature dimension. Thus they proposed that each 

item in each feature map is encoded in terms of individual as well as configural 

information. The effects of relational information are particularly strong within each 

feature map. Their experiments considered only changes in colours, shapes, and 

orientation, keeping location constant. However, Jiang, Olson and Chun (2000) had 

earlier reported that detection of changes in colour was impervious to change in 

locations of non-targets.  

The dimension weighting account (Muller & Krummenacher, 2006a, 2006b), which 

may also be considered an extension of the guided search model, holds that 

attentional weights are allocated to basic visual dimensions, (such as colour, 

orientation etc.), on the basis of stimuli defined by features (red, tilted, etc). 
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Enhanced feature contrast within a dimension e.g., red vs. green rather than yellow 

vs. green, and amplified saliency signals about a dimension to the overall saliency 

map, can facilitate detection of targets defined by that dimension, or alternatively 

target detection may be delayed if the target dimension changes across trials, shifting 

the weight to a new target defining dimension. They propose that the dimension 

weight can never be set to zero and indeed, may reflect the speed of processing 

associated with various dimensions. Weighting effects are proposed to be pre-

attentive, influencing dimension based saliency signals before the overall saliency 

computation, which is the basis of attentional selection of objects.  Nevertheless, 

weight shift can be modulated through expectancies set up by cues, instructions, past 

experience etc. In this sense the role of top-down processes is acknowledged. Muller, 

Geyer, Zehetleitner, and Krummenacher (2009) used the singleton salient distracter 

paradigm and showed how distracter influence varied with relevant practice, such 

that participants could learn to suppress distracters depending on the incentive to use 

suppression, which in turn, was presumed to vary with the probability of occurrence 

of the distracter.  Nevertheless the costs of dimensional cueing in these studies could 

be, in part at least, due to task switching in general. Pan, Xu, and Soto (2009) studied 

the effect of dimensional cueing when the relevant dimensions were known to the 

participants. In fact, participants were explicitly instructed to prepare the relevant 

dimension on congruent trials and discard the irrelevant dimension on incongruent 

trials. Participants received a dimensional cue to be held in memory, and were 

subsequently tested on it either before or after a test of attention. Response latency 

was more on incongruent trials and less on congruent trials as compared to neutral 

trials. The benefits of congruency were enhanced when the cued dimension had to be 

held in memory throughout the trial, i.e., when the memory test was given after the 

attention test. This study demonstrates that the contents of WM can have an effect 

and in fact have more positive than negative effects on performance.   

Theeuwes and his colleagues have consistently adhered to a strict bottom-up account 

of behaviour (Theeuwes, 1992, 2004; Theeuwes, Reimann, & Mortier, 2006). Their 

paradigm essentially investigates the effect of a singleton distracter defined by a 
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different dimension than the one defining the singleton target. Theeuwes (1992) used 

a distracter defined by colour (the only red among all green), and a target defined by 

shape (the only diamond among circles). The initial check confirmed that RTs were 

quicker to colour than to shape, showing it to be more salient.  Then participants 

performed under two conditions, one in which the distracter was present, and the 

other in which it was not. Results showed significant distracter interference in that 

RTs to the target were significantly slower when the distracter was present. The 

embarrassing question for adherents of top-down influences was why participants 

were unable to ignore the distracter; despite the fact that they knew the dimensions 

defining the target and the distracters. Recently, Schreij, Owens, and Theeuwes 

(2008) reported that abruptly occurring distracters produce costs in performance even 

in the presence of a top-down set for colour. They argue that these results show that 

abrupt onset of new objects captures attention independent of a top-down set and 

thus, provides conclusive evidence against the idea that attentional capture is 

contingent on top-down attentional control settings. 

It is, of course, possible to take an eclectic view of the tripartite competition among 

researchers who have proposed objects, locations, or features to be the units of visual 

processing. Humphreys (1998) proposing a dual coding account of representation of 

objects in space, contends that we have a rather poor representation of space per se. 

However, objects are spatially represented in two ways, within object 

representations, where elements or features are encoded as part of objects, possibly 

in the ventral stream with some dorsal involvement; and between object 

representations, where objects are coded in relation to each other, presumably 

involving the dorsal stream. Both these kinds of representations exist in parallel. 

Visual processing capacity is limited by the competition to encode elements within 

an object, the number of objects that can be encoded at the same time, and the 

relevance of within object or between object representations to the task. In this view, 

unlike the feature integration theory, there is no attempt to assign a special role to 

locations. Indeed, the bottom line is that the objects in space are important. Space in 

itself is not represented. The feature that is important here is form, for form elements 
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are bound in the absence of focal attention and are later associated with surface 

features such as colour. In giving this account, Humphreys also diverges from 

Duncan, and proposes that competition may exist within the elements of an object as 

well, and further, this competition can be biased by task relevance. Thus, the 

differential effect of features can itself be influenced by top-down factors.  

Linnell and Humphreys (2004) have shown how object based selection can overrule 

the central bias, the fact that attention is primarily directed at fixation and 

performance decreases as eccentricity of the targets increases. Linnell and 

Humphreys (2007) used the odd man out paradigm of visual search and found that 

when the participants knew in advance about the feature defining a target, detection 

was enhanced due to grouping on that target feature, and the participants then limited 

search to that group only. This grouping by features overruled the central attentional 

bias by allowing the grouping of peripheral targets with centrally presented 

distracters. They concluded that visual search can be space, object, or feature based, 

and in fact, performance is often determined by an interaction of all three. The real 

winner is top-down modulation that directs which of these three are relevant to the 

task.  

In fact, current research has largely moved away from this debate among objects, 

locations and features, to focus on how top-down WM factors influence the encoding 

and retention of stimuli. Both the content and capacity of WM are relevant factors in 

top-down influences. Early on, Pratt and Hommel (2003) found that features of 

objects in WM biased the selection of symbols (arrows) in the visual field, which in 

turn produced unintentional shifts in attention. Hester and Garavan (2005) 

demonstrated that both WM load as well as content had an effect on executive 

control of attention measured by task switching as well as a go/no-go paradigm.   

An influential idea delineating how WM influences attention is the load theory of 

selective attention and cognitive control (Lavie & De Fockert, 2005, 2006; Lavie, 

Hirst, De Fockert, & Viding, 2004). It suggests that WM provides goal-directed 

control of visual selective attention by decreasing interference by goal-irrelevant 
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distracters. Lavie and De Fockert (2005) tested this idea with the singleton paradigm. 

They showed that attention capture by an irrelevant colour singleton during shape 

search critically depends on availability of WM to the search task. When WM was 

loaded by a concurrent yet unrelated verbal short-term memory task, capture 

increased. Increasing WM load also results in greater distracter interference in 

Stroop-like tasks (De Fockert, Rees, Frith, & Lavie, 2001; Lavie et al., 2004). In fact, 

increasing WM load leads to greater distracter interference whereas increasing 

perceptual load reduces distracter interference (Lavie et al., 2004). Park, Kim, and 

Chun (2007) demonstrated that the type of WM load is crucial to this effect using the 

flankers task with houses and faces as stimuli. Distracter interference increased when 

the memory load items overlapped with the targets, but decreased when they were 

similar to the distracters. These findings suggest two selective attention mechanisms: 

a perceptual selection mechanism serving to reduce distracter perception in situations 

of high perceptual load that exhaust perceptual capacity in processing relevant 

stimuli and a cognitive control mechanism that reduces interference from perceived 

distracters as long as cognitive control functions are available to maintain current 

priorities (low cognitive load).  

Forster and Lavie (2008) reasoned that in real life situations, there is as much need to 

avoid external irrelevant distracters as there is to suppress relevant distracters. 

Laboratory studies usually focus on relevant distracters alone. Thus they compared 

the effects of perceptual load on task-irrelevant and task-relevant (response 

competing) distracters. They found that an entirely irrelevant distracter can interfere 

with task performance to the same extent as a response-competing distracter. High 

perceptual load in the task eliminated the effect of both types of distracters with 

similar effectiveness. Forster and Lavie (2007) showed that though individual 

differences in reported distractibility was correlated with distractibility in a response 

competition task performed in the laboratory, high levels of perceptual load in the 

task reduced distracter interference for all participants. Forster and Lavie (2009) 

demonstrated how a high perceptual load, demanding task relevant processing, 

concomitantly decreased the frequency of task unrelated thoughts, and thus reduced 
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‘mind wandering’. When one needs to focus on a task, it is easier to inhibit both 

external and internal sources of interference. 

Olivers, Meijer, and Theeuwes (2006) found that singleton distracters interfered 

more with visual search when an additional memory task had to be performed at the 

same time. The interference effect was even stronger when the distracters were 

virtually the same or related to the object held in memory. Houtkamp and Roelfsema 

(2006) studied whether items in WM influence the deployment of attention. Using 

line drawings of simple objects, they asked participants to remember two objects. 

After a blank interval of 1000 ms, while the participant was instructed to search for 

one of the two items as a target, the other memory item was sometimes presented as 

one of the distracters in an array of items. They found that the distracter had an effect 

only if the target was absent. Whenever, the target was present, the memory item had 

no effect as a distracter. Eyes were unlikely to be fixated on the distracter, and if they 

did, fixation duration was very short. Thus attention was primarily oriented towards 

the target, and memory items had an effect only if the target was absent. The special 

processing of the target has been found with objects in real world scenes as well. 

Details of targets and distracters related to targets are better retained than the 

distracters that are unrelated to the targets, maybe because they were looked at more 

frequently as shown by eye movement recordings (Williams, Henderson, & Zacks, 

2005). Brisson, Leblanc, and Jolicoeur (2009) investigated whether contingent 

capture required capacity-limited central resources by incorporating a contingent 

capture task as the second task in a dual-task paradigm using N2pc as a marker of 

spatial attention. The N2pc was significantly reduced in high concurrent central load 

conditions, indicating that even though it is involuntary, the deployment of visual-

spatial attention occurring during contingent capture depends on capacity-limited 

central resources. 

Soto and Humphreys (2008) found that when the WM item that was used as a cue for 

one of the distracters, did not match the subsequent search display, search 

performance was worse as compared to a neutral baseline. This effect of WM content 

on search was reduced when cognitive load was increased, and when articulatory 
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suppression was used. Soto, Hodsoll, Rotshtein and Humphreys (2008) reviewed 

evidence emanating from their lab regarding the influence of WM on search for 

relevant information from the environment. They contend that WM automatically 

guides selection, even if it is detrimental to performance. Further, on the basis of 

fMRI evidence (Soto, Humphreys, & Rotshtein, 2007) they assert that this 

modulation is a top-down process quite distinct from bottom-up processes such as 

priming. When a stimulus held in WM appeared in the search array, there was 

enhanced activity in the superior frontal gyrus, mid-temporal, and occipital areas. In 

contrast, implicit repetition priming (which involves mere repetition of a stimulus) 

elicited a suppressive response. In addition, WM probably affects the early process 

of attention that controls the entry of information into awareness. Soto and 

Humphreys (2009) assessed whether guidance by WM is limited to single task 

relevant dimensions, or does it differentially affect bindings of those dimensions. 

Participants were asked to remember the shape of a coloured object in memory. Then 

they were to search for a target line, amongst distracter lines, each embedded within 

a different object. On some trials, one of the distracter objects in the search display 

matched the memory item on the shape, the colour, or both dimensions. Relative to a 

neutral baseline, where there was no match between the memory and the search 

displays, search performance was reduced when a distracter object matched both the 

colour and the shape of the memory cue, demonstrating that WM had a greater 

impact on bindings as compared to single dimensions. Relevance of stimulus input to 

task goals thus seems to be the overriding factor in the process of binding.  

Setting aside their differences, and focussing on the commonality, all models of top-

down and bottom-up processing do uphold the idea that there is an interaction 

between top-down knowledge and bottom-up information. Essentially top-down 

knowledge helps set up criteria for the evaluation of incoming information, and the 

information that matches the criteria is given more weight and is processed further. 

Experimenters tend to use task instructions to set up such criteria. Vickery, King, and 

Jiang (2005) used different types of cues 200-1000 ms before a search array was 

presented, and thus varied the criteria from trial to trial. They found that detailed 
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visual information such as orientation and size is more helpful in setting up a target 

template in visual search than conceptual properties of schematic or semantic nature, 

though the latter do have some effectiveness, and are better than completely 

uninformative cues. Also, whereas about 200 ms was sufficient time to set up the 

target template when defined by an exact cue (with some improvement shown till 

500 ms), reaction time was faster to the word cues if they were presented 1000 ms 

before the search array. This study supports the idea that knowledge of exact 

stimulus properties may be more helpful in the initial stages of processing because 

these bottom-up features are what the participant relies on in the initial stages. 

Conceptual knowledge can be helpful, given sufficient time, as it takes time to 

encode the conceptual information itself or time is required to analyse and utilise it. 

Thus studying the interaction between bottom-up and top-down factors at various 

time intervals is seemingly an interesting project.   

An experimental task involving binding is uniquely suited to study the factor of 

relevance in the transactions between bottom-up and top-down factors. Since by 

definition binding brings together various stimulus dimensions, the differences 

between dimensions should automatically affect performance. But if the result of this 

process of integration is an ‘object’, the process cannot be completely automatic; for 

it is then directed at the goal of generating a coherent object as defined by the task 

set, pre-existing knowledge, and so on. Which dimensions participate in the process 

can be biased by making some dimensions more relevant to the task as compared to 

the others.   

Experiments 1-7 in this research are an attempt to explore the ambiguity in existing 

research regarding the extent and time course with which top-down signals regarding 

task relevance modulate the differences in the performance of the participants for 

different features in the process of binding. Using a variant of the change detection 

paradigm (described in detail in the next chapter) task relevance of a feature was 

manipulated by either randomising the feature on every presentation, thus making it 

completely irrelevant for performance, or by keeping it unchanged from study to test. 

The instructions to the participants were to ignore the irrelevant feature in both 
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conditions and try to remember the binding between relevant features. The specific 

focus is on the question whether all features are bound together immediately or in the 

incipient stages of the binding process. Or, is it possible to ignore a feature from the 

outset if it is irrelevant to the task? Further, it is of interest to see if different features 

are processed at the same time and in the same way or if there are differences in their 

processing that persist beyond perception. 

Since the aim was to study the effect of an irrelevant feature in an experiment, 

reducing the binding problem to its essentials, one ends up with stimuli which are 

defined concomitantly by at least three properties. The three features chosen to 

define the stimuli were location, shape, and colour. The experimental design renders 

a dimension completely irrelevant by randomising it from study to test. The 

participants know in advance that the dimension is to be ignored, that it is random 

and hence non-informative. This condition is compared with the other condition in 

which the feature remains unchanged from study to test, and hence might be used to 

remember the correct binding, despite instructions to ignore it and detect only the 

binding between the other two features.  

If top-down influences are all-powerful, then the participants should be able to ignore 

the irrelevant dimension easily, and there should be no difference in performance in 

the randomized and unchanged conditions. However, if bottom-up influences are 

dominant, then a difference in performance between the two conditions is expected, 

with better performance in the unchanged condition.  A third possibility is that 

bottom-up processes hold sway initially, but gradually the top-down processes take 

over. In this case, it is of interest to see when this happens.  

It is also of interest to study if the same pattern is obtained for different features. 

Processing of features at different rates would index the importance of bottom-up 

information. Yet if the same pattern is obtained across the diverse range of features 

studied, it would indicate that top-down factors operate in a similar way across 

features.  
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DIFFERENCES BETWEEN FEATURES 

Previous research has shown that there are important differences in the initial 

processing of features. Location is processed differently in comparison to other 

features, and there are differences in the processing of other features as well. 

However, it is not clear what happens when these features are integrated as a 

binding. Is detection and discrimination easier across channels for bindings as well? 

Does memory operate on features in the same way, irrespective of whether they are 

bound or not? Perhaps not, for there are clear benefits and costs to separate features 

when they are integrated in bindings.  

The benefits of binding to the features involved are well understood and documented. 

Despite the fact that binding requires more resources to achieve, binding is usually 

held to be an adaptive process, which increases efficiency by making information 

processing more economical. Conjunction benefits have been demonstrated in visual 

search when the multiple features are all task relevant (Fournier, Bowd & Herbert, 

2000; Fournier, Eriksen, & Bowd, 1998). The ubiquity of binding in all cognitive 

processes further confirms its generally beneficial role in behaviour. As far as 

memory is concerned, binding not only increases the capacity of WM as it allows 

chunking of stimuli impinging on the sense organs, it later facilitates switching 

attention from one object to another (Bao, Li, & Zhang, 2007). Nevertheless, binding 

is not always beneficial to memory. Guerard, Tremblay, and Saint-Aubin (2009) 

presented phonologically similar and dissimilar letters sequentially at different 

locations, to three groups of participants. The first group was asked to remember the 

letters in the original sequence, the second group had to free recall the locations 

(letters simply acting as markers for the locations), whereas the third group had to 

remember both until recall (the binding condition). Following the well-known effect 

of phonological similarity on verbal material, phonological similarity was 

detrimental to the recall of letters. Surprisingly, it was also found to be detrimental to 

the recall of locations. These results held in the single feature as well as the binding 

condition. The authors concluded that when one feature is vulnerable to a source of 
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interference, other features also become vulnerable to that interference, simply 

because the features are held together in the form of a binding. Such benefits and 

costs of binding to memory for separate features argue against the idea that features 

are immune to the effects of binding and the system treats them the same way 

irrespective of whether they occur conjoined or separate.    

One basic difference among features is that they are processed on different time 

scales. Numerous studies have demonstrated that various dimensions of the stimuli 

are processed asynchronously by the visual system (Aymoz & Viviani, 2004; Bedell, 

Chung, Ogmen, & Patel, 2003; Lamberts, 2002; Moutoussis & Zeki, 1997; Nishida 

& Johnston, 2002, Viviani & Aymoz, 2001, Zeki, Watson, Lueck, Friston, Kennard, 

& Frackowiak, 1991). Between colour and shape, it is debatable which is perceived 

first, and the answer depends on the kind of shapes used, but both are definitely 

processed much faster than movement. Psychophysical investigations into memory 

for features also suggest that information in VSTM is encoded in many different 

parallel channels (Magnussen, 2000; Magnussen & Greenlee, 1997; Magnussen, 

Greenlee, & Thomas, 1996). Detection and discrimination is easier across channels 

than within a channel. Multiple decisions required by increasing set size are also 

more difficult within a channel, though it is difficult to explain the step change in 

memory when set size is four vs. when it is more than four.  

Lamberts and Kent (2008) investigated the time course of perception and recognition 

of three features, colour, shape, and orientation, as combined in either one or two 

study stimuli. Their work confirmed that perceptual processing of features happens at 

different rates, colour being processed the fastest, followed by shape, followed by 

orientation. Using a recognition paradigm akin to change detection, they also showed 

that the time course of retrieval of features mirrored that of perception, and thus 

differed for each feature, but only when the memory load exceeded capacity at six 

features (defining two different objects) to be remembered. There were no 

differences when only three features (defining one object) were to be remembered. 

Kent and Lamberts (2006) had already shown a similar linear relationship between 

encoding and retrieval rates in a cued recall task.  
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In keeping with these studies, Bartels and Zeki (2006) have shown that the 

processing of different kinds of binding also happens on different time scales. 

Interestingly, however, there is a reversal in the sense that binding of colours takes 

more time than binding of moving stimuli. Bartels and Zeki (2006) conclude that 

binding is different from, and subsequent to, stimulus processing and that it is an 

attribute-dependent, conscious process.  

Location: A special feature 

Location can be conceptualised in various ways. At the neural level, location can be 

coded in terms of the retinal image, relative to intended action, relative to other 

objects, or in relation to the surrounding environment. Explicitly, location can also be 

conceptualised as a descriptive property of a stimulus, much the same as shape, size, 

orientation, or colour. Among all these features, location seems primus inter pares. 

The importance of location in perception is well established by studies showing that 

it is processed via the dorsal stream (Carlesimo, Perri, Turriziani, Tomaiuolo & 

Caltagirone, 2001; Funahashi, Takeda & Watanabe, 2004; Ruchkin, Johnson, 

Grafman, Canoune & Ritter, 1997; Smith & Jonides, 1995, 1999; Trevarthen, 1968; 

Ungerleider & Mishkin, 1982). The dorsal and ventral pathways are asymmetrically 

related, spatial localization occurring with the help of sub-cortical structures much 

earlier than object recognition and categorization, which are cortical processes, and 

are dependent on information resulting from localization (Vecera & Palmer, 2006; 

Velichkovsky, 1982, 2007).  

Researchers have also contended that the parietal cortex is especially important in 

memory for locations. Patients with parietal lesions have reduced change detection 

performance for location but not colour or shape, patients with non parietal lesions 

showed no such impairment (Pisella, Berberovic, & Mattingley, 2004; Robertson, 

Treisman, Friedman-Hill, & Grabowecky, 1997; Treisman, 1998).   

This is substantiated by psychological studies showing that the effects of location in 

visual search are largely independent of top-down factors such as task relevance. 



A Review of Literature 

 

PhD – The University of Edinburgh – 2009 

44 

Tsal and Lavie (1993) found that when participants were to respond to the colour of a 

dot, its location being task irrelevant, they responded faster to a probe in the same 

rather than a different location. Lamy and Tsal (2000) used a precue procedure to 

compare the effects of cueing for location or for colour and form. They found that 

cued object location was attended whether or not location was task relevant, whereas 

the colour and form were attended only when these were task relevant. Further, Tsal 

and Makovski (2006) assessed the allocation of attention to distracter and target 

locations as a function of participants' top-down expectancies. Participants performed 

a flanker task, and distracter locations remained fixed. On some trials, instead of the 

flanker display, either two simultaneous dots or a horizontal line appeared. The dot in 

the expected distracter location was perceived to occur before the dot in the expected 

empty location, and the line appeared to extend from the expected distracter location 

to the expected empty location, suggesting that attention is allocated, not only to 

targets but also to expected distracter locations, prior to stimulus onset. The authors 

propose that attention is guided to expected locations of all stimuli, regardless of 

whether they are targets or distracters. The differences among features have also 

been shown by Theeuwes and Van der Burg (2007) who used A’ as a measure of 

perceptual sensitivity in a visual search task. Location cueing was effective, but 

knowing in advance, whether the target differed in shape or colour, did not affect 

perceptual sensitivity, though it was easier to detect colour singletons than shape 

singletons. 

Location has been postulated to be especially important in binding. The feature 

integration theory (Treisman, 2006; Treisman & Gelade, 1980) holds that in contrast 

to other stimulus properties, location has the special role of being the basis of binding 

of features into objects. In the prototypical visual search experiment, the participant 

has to find a target in a visual display. If the target is differentiated from non-targets 

only on a single dimension/attribute, the time required to differentiate the target does 

not vary with the number of non-targets present in the visual display. For example, 

when a red X pops out of a field of green Xs or red Os, whatever the number or 

density of the latter, processing is said to be pre-attentive. But if the target varies on 
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the basis of a conjunction of visual attributes, for example if a red X has to be 

differentiated from among red Os (sharing colour) and green Xs (sharing shape), the 

time required to find the target increases with the number of non targets. Presumably, 

the latter requires more time because search is serial and attention can be directed to 

only one point at a time. The more the items in the display, the more the locations 

that must be sampled before the target can be located. Using such evidence, 

Treisman and Gelade (1980) proposed that directing attention to a point in space 

precedes the identification of information, which leads to the conclusion that 

directing attention to a particular spatial location allows the features at that location 

to be bound together so that an item can be identified. Treisman and Schmidt (1982) 

contended that if items are located at unattended locations, their features become 

‘free floating’, and can be combined in an illusory manner. For instance if a red X 

and a green O are at unattended locations, an individual may report having seen a red 

O, wrongly combining one item’s colour with another item’s shape, and thus forming 

an ‘illusory conjunction’. Treisman and Sato (1990) held that different features are 

processed in independent stores, and are attached to a master map of locations in the 

process of binding by the mechanism of focused attention to specific locations.  

The idea that location is especially important in feature binding is supported by 

experimental evidence from a variety of sources. Keele, Cohen, Ivry, Liotti, and Yee 

(1988) found that there is no tendency for synchronicity of features to cause binding 

unless they came from the same location, and thus concluded that location rather 

than temporal synchronicity is the essential cue for binding. Fahle and Koch (1995) 

used the ambiguous figure of the Kanizsa triangle to test whether the dominant 

percept is determined by spatial alignment or simultaneity of presentation of all 

elements. Spatial displacement destroyed figural binding, but even major temporal 

asynchronies had no effect on figural binding. Wheeler and Treisman (2002) showed 

that participants were better at remembering locations than colours. In fact, they 

obtained ceiling effects for the memory for locations, which also did not show any 

decrease as the number of stimuli increased from 3 to 6, thus substantiating their 

assumption that location is a special feature of multidimensional stimulus 
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representations. In one of the reported experiments, they also randomized location to 

control its effect when the binding of shape and colour was tested, but they did not 

directly compare the effect of relevance of location on binding. Recent experiments 

by Treisman and Zhang (2006), however, showed that binding is more dependent on 

location than single features, though more so at 100 ms than at longer study-test 

intervals. Mitroff and Alvarez (2007) reported that contiguity in space and time 

rather than surface features, guides the persistence of objects, even if the object 

disappears for as long as 3 seconds. 

When compared with other features, such as shape and colour, it appears that the 

distinctiveness of locations persists in memory as well. In ground-breaking research, 

Logie and Marchetti (1991) differentiated between the visual and spatial aspects of 

visuo-spatial memory. One group of participants were presented with arrays of 

squares, all in different shades of the same colour, for a very short duration, thus 

making verbal coding almost impossible. The second group saw the array presented 

sequentially. A recognition test followed 10 seconds later with the recognition 

sequence being identical except for a single change in either the shade of the colour 

or the order of presentation. The retention interval was either unfilled, or filled by 

unseen arm movements, or by irrelevant pictures. Results showed that arm 

movements disrupted memory for spatial sequences, whereas irrelevant pictures 

disrupted memory for colour shades. This indicated a distinction between memory 

for colour, and memory for location. Consequently, Logie (1995, 2003) postulated a 

distinction between memory for appearance of objects and for locations.  

The difference in the study by Logie and Marchetti (1991), however, could also have 

arisen due to differences in simultaneous and sequential presentation. Darling, Della 

Sala, and Logie (2009) tested memory for visual appearance (font size) versus 

memory for locations, with the stimuli being presented either sequentially or 

simultaneously. Spatial interference from tapping or visual interference from DVN 

was presented during the retention interval. Although type of interference 

differentially affected memory for appearance and locations, results were not 

different for sequential and simultaneous presentation.  
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In the interim, other studies have substantiated the distinction between object and 

location memory using the dual task paradigm. For example, Postma and De Haan 

(1996) used a spatial reconstruction task with 4, 7, or 10 items presented 

simultaneously, asking participants either to pinpoint the locations or to put items in 

their original locations.  Memory for locations was not affected by the number of 

items, but assigning items to locations was affected by set size and consequent 

cognitive load. Using an n back task, Postle, D’Esposito, and Corkin, 2005) found 

that object memory was sensitive to verbal rather than motion distraction, whereas 

spatial memory was more disrupted by motion than verbal distraction. They argued 

that object encoding necessarily involved semantic information, but this was not the 

case with spatial memory. Thus, the distinction between object and spatial memory 

was substantiated.   

Using a change detection task to assess VWM for colour or form, Woodman, Vogel, 

and Luck (2001) found that performance on this task was the same irrespective of 

whether the subject processed 4, 8, or 12 squares in a visual search task given during 

the retention interval of the VWM task. However, when Woodman and Luck (2004) 

tested spatial WM, and inserted the same visual search task during the retention 

interval, they found a significant effect of set size of the search task. As the search 

task became more demanding, accuracy of memory for locations as well as the time 

taken to do the search task decreased. Thus performance was worse under dual task 

conditions than when either task was performed alone. Taken together, the two 

studies suggest that visual search reduced performance when spatial, but not object 

memory, was tested.   

Turning to physiological evidence, Courtney, Ungerleider, Keil, and Haxby (1996) 

using PET found differential patterns of activation in the prefrontal cortex associated 

with memory for location and memory for object identity. Xu and Chun (2006) 

found that whereas memory for identity of objects recruited the superior intraparietal 

sulcus and the lateral occipital complex, memory for locations involved the inferior 

intraparietal sulcus.  
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All these studies substantiate the idea that visuo-spatial WM has two components, a 

visual cache that stores visual appearance in terms of colour, shape, size, etc., and an 

inner scribe that retains spatial information about locations, and movements between 

locations (Logie, 1995, 2003; Logie & Van der Meulen, 2009).  

In all these studies, however, location was relevant for task performance. Though 

location holds sway irrespective of its relevance in the perception of stimuli, it may 

not be so for memory. One does not remember the location of every object 

encountered in the world. At some point, information about locations is lost from the 

system, unless it is crucial for achieving a goal. There are indications in literature 

that VWM is relatively immune to the importance of location of stimuli if it is not 

relevant to the task performance. In experiments by Phillips (1974) performance was 

better at short durations when test arrays were presented at the same location as the 

sample array, suggesting a retinotopic memory store. But, at inter-pattern intervals of 

300 ms or greater, changes in the retinal location of test arrays had little effect on 

accuracy. Nevertheless, increasing complexity of the arrays significantly reduced 

performance. Consequently, he held that at longer intervals, performance was reliant 

on a limited capacity, short term store that was also relatively immune to masking.  

Studying the characteristics of trans-saccadic integration, Irwin (1991) used 4×4 

arrays of dots as the experimental stimuli, and in one experiment, found that 

displacement of the second pattern disrupted performance at 1 and at 70 ms, but had 

no effect at 600 and 5000 ms, the only inter-pattern intervals studied. Another 

experiment, studying the effects of spatial displacement over inter-pattern intervals 

of 70, 200, 350 and 600 ms, however, found null effects. Together, these experiments 

suggest that the disruption due to displacement disappears only at longer inter-pattern 

intervals. Irwin (1991) concluded that trans-saccadic memory is akin to the visual 

STM identified by Phillips (1974), in that it is a non-detailed, limited-capacity, 

relatively long lasting memory, which is not tied to absolute spatial position. Irwin 

(1992) reported that after an eye movement had occurred, the identity of letters 

presented in an array was retained much better than their position/ location, when 

tested using the partial report paradigm. Jiang et al. (2000), using a change detection 
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task with the probe display presented 907 ms after the study display, reported that 

detection of changes in single items was reduced when the spatial configuration of 

array elements was changed. They concluded that though memory for the absolute 

location of single items is not important, the global configuration is important, and 

relational processing does take place for items in VWM.  

Comparing memory at different time intervals, Van der Stigchel, Merten, Meeter, 

and Theeuwes (2007) asked participants to remember the location of a dot. When a 

task irrelevant stimulus was shown abruptly during the retention interval, not only 

did performance deteriorate in comparison with a control condition with no abrupt 

onset external event, but they found that the remembered location of the dot was 

shifted towards the location of the task irrelevant stimulus, suggesting an internal 

spatial map, when the onset was close to the memory representation. Wyble, 

Bowman, and Potter (2009) found enhancement in detection of a second target in 

changing arrays of 8 items when both targets were presented at the same location and 

the SOA between the two targets was 107 ms but not at 213 ms, as compared to a 

baseline condition with no leading target. When the targets were at different 

locations, performance was reduced.  

However, none of these researchers explicitly studied memory for binding of other 

features in the absence of information regarding locations. Their focus was on testing 

memory for already bound objects. While Phillips (1974) used randomly lit cells of a 

square matrix as his test stimuli, Irwin (1991) used a 4×4 array of dots, Irwin (1992) 

used letters of the alphabet, Jiang et al. (2000) used green squares, geometric shapes, 

and novel shapes in different experiments, Van der Sigchel et al. (2007) used dots, 

Wyble et al. (2009) used letters. Perhaps the only research directly focussing on 

memory for binding of identifiable shapes and colour by studying swaps between 

these features is by Treisman and Zhang (2006). They showed that the impact of 

changing locations was much reduced at longer study-test intervals than at 100 ms. 

All these studies show that VWM is virtually immune to changes in locations, but 

only if it is not relevant for performance. It appears that task-relevance of a feature is 

a more important factor than the differential processing of features in memory.  
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Shapes versus colours 

Shapes and colours were chosen as the two other features to define the stimuli in the 

experiments because of their differences as they represent respectively, boundary and 

surface features. Despite that shape and colour are both processed by the ventral 

stream, differences between the processing of these features have often been noted in 

perception. Which of the two is processed faster really varies from one research 

study to another, probably because of differences in the kind of stimuli used. Often, 

colour seems to be processed faster than shapes, but this may simply be because the 

colours used are more meaningful in terms of associations evoked, more 

distinguishable, or easily labelled. 

Certainly, developmental and neuropsychological evidence suggests that shapes are 

‘primary’ as compared to colours. There is a developmental dissociation between 

shape and colour processing. Needham (1999) has shown that infants can interpret 

objects as separate and distinct based on shape, but not colour at 4 months of age. 

They exhibit surprise when distinctly shaped objects move together, and when 

distinctly coloured objects move separately. One-year old children, use both shape 

and colour to individuate objects, but they still fail to notice colour changes after the 

object is hidden for a while, though they notice changes in shapes (Tremoulet, Leslie, 

& Hall, 2000). Thus, developmentally, the use of shape information occurs before 

colour information, in object individuation, as well as memory for objects.      

The FACADE model of visual processing proposed that segregation of form 

elements is primary, and is followed by binding between forms and other features 

(Grossberg & Mingolla, 1985; Grossberg & Pessoa, 1998). The initial process of 

binding operates via a ‘boundary contour system’ to define shapes from the basic 

sensory input, and is sensitive to Gestalt grouping factors. Thereafter a ‘feature 

contour system’ fills in the surface properties. Still later, these interact with object 

recognition systems and spatial maps with the aid of attention (Grossberg, 1997).   
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Neuropsychological evidence with a binding task that was assessed on the basis of 

illusory conjunctions made by the patient GK, led Humphreys et al. (2000) to 

propose a two stage account of binding. In stage 1, form conjunction errors were 

more prevalent, and even more so when stimuli were presented simultaneously 

(allowing perceptual grouping) rather than sequentially, and to the same hemi field. 

Thereafter, in stage 2, form and surface conjunction errors were made. These were 

unaffected by grouping factors as well as whether items fell in the same or different 

hemi fields, suggesting that stage 1 occurred earlier in the visual processing system 

than stage 2. Additional evidence comes from Humphreys et al. (2009), who report 

that form conjunctions were easier to detect than cross-domain conjunctions between 

form, colour, and size, by controls and parietal patients alike. 

In contrast, Song and Jiang (2006) held colour to be a simple feature, and form to be 

a complex one. They showed a sample array for 200 ms followed by a single probe 

after 900 ms. The stimuli were 1 to 7 coloured polygons and participants were asked 

to remember their colour, shape, or both. Behavioural performance showed that 

VWM capacity was 3 colours, 2 shapes, and 2 compound objects. Since colour was 

deemed a simple feature, whereas shape was conceptualised as a complex one, they 

concluded that capacity differences were affected by complexity of the stimuli. They 

also used fMRI and ascertained that the posterior parietal cortex was sensitive to 

difference between simple features as well as VWM load, the prefrontal regions to 

WM load, and the occipital-temporal cortex to differences among features.  

Using a change detection task, Alvarez and Cavanagh (2008) have shown that 

storage capacity of VSTM was nearly twice as large for objects defined by boundary 

contour rather than surface texture. Since shapes are defined by contours and colour 

is a surface feature, this study implies distinctions between them too. In the detection 

of named targets among real life pictures shown in an RSVP stream, Meng and 

Potter (2008) found that even if 30% of the picture was occluded by dots, there was 

no effect on target detection, though recognition memory was reduced. Occlusion 

reduced detection if the picture was inverted, but merely taking colour away from the 

picture did not matter. Thus, form was more crucial than colour. The differential 
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effects of colour-shape bindings on identification and memory for objects have also 

been documented by Lloyd-Jones and Nakabayashi (2009). Whereas identification 

was facilitated by the correct binding of the shape and colour of objects, this was not 

essential for memory.  

The top-down vs. bottom-up debate in binding translates, in one way, as the relative 

importance ascribed to features. The bottom-up view holds that features are powerful 

enough to capture attention by themselves, and there are differences in the processing 

of different dimensions. Espousing a less extreme view either way, many researchers 

hold that location is a special feature in that it provides a framework to which other 

features may be attached.  In contrast, the top-down view is that attention is 

essentially object focussed and only task relevant features are processed further. 

Empirically, the comparison between bottom-up and top-down processes in 

information processing has usually focussed on stimuli defined by single features. 

Proulx (2007) found evidence that bottom-up processes do play a role in visual 

search for conjunctions. Nevertheless, he also showed that bottom-up or top-down 

processing, or a combination of the two is a search strategy adopted by the 

participant according to the task demands, and in this sense, top-down processing is 

dominant.  

Indeed, it appears that task goals and relevance to them are more important in VWM. 

Using eye movement technology, Richard et al. (2008) found that though it is 

possible to generate a saccade to the position of an object without encoding the 

surface features of that object, the reverse is never true. Whenever an oculomotor 

response is required, encoding of location is mandatory, whereas surface feature 

information is not a requirement.  In this sense then, location is more important than 

surface features. Nevertheless, they also found that information regarding location as 

well as surface features, both helped to establish object correspondence, the 

information being weighted according to task relevance. If the participants were cued 

to look at a particular location, then spatial position dominated, but if they were cued 

to look at a particular colour, then colour played a dominant role in object 
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correspondence. In this sense, the information regarding relevance of features 

overrides the differences in the features themselves.  

Thus it is debatable whether the differences in features that are prevalent in visual 

attention and perception would apply in the operation of VWM in the few seconds 

after stimulus offset. In the present research, on the basis of the differences in the 

processing of the three features, it is expected that there would be differences in the 

time required to bind the two relevant features and ignore the third irrelevant one, 

across experiments 2, 3, and 4, as well as 5, 6, and 7. These differences among the 

three experiments in each set would also indicate the relative importance of the three 

features in the process of binding. However, if VWM treats all features the same 

way, then one might expect these differences to be present only in the initial stages 

denoted by the shorter study-test intervals, but not at the longer study-test intervals. 

Hence, a convergence of performance and an interaction effect over time is expected 

in each experiment, pertaining to locations, shapes, and colours, as well as across 

experiments. 

THE SPOTLIGHT OF ATTENTION 

Attention is the mechanism which implements the dictates of the top executive. It is 

essentially a selective mechanism that allows processing of only a few stimuli from 

among the multitude which the world comprises.  

Since the embryonic stages of psychology, it is recognized that attention may be 

involuntarily captured by stimulus events, or it may be voluntarily allocated as 

derived from immediate task goals (James, 1890; Wundt, 1897). Accordingly, Posner 

(1980) classified attention as exogenous or endogenous. The former depends on cues 

in the external world that automatically draw attention, and is thus reflexive. Spatial 

cues, abrupt visual onsets, or salient visual features ‘capture’ attention (Foulsham & 

Underwood, 2009; Itti & Koch, 2000; Remington et al., 1992; Theeuwes, 1991, 

1992). This ‘bottom-up’ stimulus driven attention is deployed automatically and 
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rapidly, in about 100 ms, but is transient. In contrast, endogenous attention is 

deployed voluntarily, is effortful and slower to develop (takes about 200- 300 ms), 

but is sustained over a period of time (Muller & Rabbitt, 1989; Nakayama & 

Mackeben, 1989). It is also ‘top-down’ goal driven attention (Yantis, 1998). 

Prinzmetal, Zvinyatskovskiy, Gutierrez, and Dilem (2009) have suggested that 

voluntary endogenous attention functions by perceptual enhancement of the stimulus 

focussed on, but involuntary attention affects the tendency to respond, irrelevant cues 

capturing attention away from the motor response.  

 

Neurophysiological evidence suggests that whereas bottom-up exogenous attention 

involves both subcortical as well as cortical neurons, endogenous attention is entirely 

cortical in nature (Corbetta & Shulman, 2002; Kastner & McMains, 2007; Kastner & 

Ungerleider, 2000; Serences, Shomstein, Leber, Golay, Egeth, & Yantis, 2005). 

Using a rapid event related fMRI design with a visual search task, Talsma, Coe, 

Munoz, and Theeuwes (in press) showed that, in addition to a common network of 

parietal areas, the medial frontal cortex is uniquely involved in top-down orienting, 

whereas bottom-up control is mainly served by a network of occipital and parietal 

areas. Also, participants who were better able to suppress orienting to the colour 

singleton showed middle frontal gyrus activation, and the degree of top-down control 

correlated with insular activity. Thus, separate brain areas were involved in top-down 

and bottom-up driven attentional control, and frontal areas played a role in the 

suppression of attentional capture by an irrelevant feature, in this case colour. 

Generally, everyone agrees that there are complex interactions between bottom-up 

input and top-down mental set.   

The role of attention in binding was first emphasized by Treisman and Gelade (1980) 

and has recently been substantiated by Hyun, Woodman, and Luck (2009) who used 

the N2pc component of ERPs as a measure of attention. They observed a larger N2pc 

component in the binding condition in comparison to a feature detection condition. In 

the interim, there have been a host of studies that have either supported or criticised 

the idea that attention is essential for binding. Recent experimental supportive 
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evidence comes from Fougnie and Marois (2009), who found that memory for 

colour-shape binding, was more disrupted than the memory for single features when 

an attention demanding multiple object tracking task was given during the retention 

interval. On the other hand, some researchers have found that the same amount of 

attention is required for detection of features as for binding them together (e.g., Allen 

Baddeley, & Hitch, 2006; Johnson, Hollingworth, & Luck 2008; Joseph, Chun, & 

Nakayama, 1997; Kim & Cave, 1995; Theeuwes, Van der Burg, & Belopolsky, 

2008) while others contend that bindings can be detected and maintained without 

attention (e.g., Eckstein, 1998; Gajewski & Brockmole, 2006; Mordkoff & 

Halterman, 2008; Palmer, Verghese, & Pavel, 2000). This equivocal evidence might 

result from different experimental paradigms, but it is more probable that it is due to 

the complexity inherent in the concept of attention itself.       

Nevertheless, one point of agreement about attention is that it operates like a 

bottleneck because it has a limited capacity. The focus of attention determines what 

is selected for further processing. There is a debate though, as to exactly what it 

selects – objects, features or locations.  

Feature based attention facilitates the guidance of attention to a target object only 

when location information is unavailable (Moore & Egeth, 1998, Shih & Sperling, 

1996). Neurophysiological evidence suggests that spatial and feature based attention 

may not function additively (McMains, Fehd, Emmanouil, & Kastner, 2007). Zhang 

and Luck (2009a) have recently demonstrated that feature (colour) based attention 

can affect feed forward processing within 100 ms of stimulus onset, even for stimuli 

presented at an unattended location. The only condition for this effect seems to be 

that the stimuli must be presented simultaneously, i.e., under conditions of 

competition. Sequential presentation destroyed the effect. Spatial attention still 

remains special because it alone affects early processing even in the absence of 

competition.   

While spatial attention may be contrasted with feature based attention on one hand, 

both are also distinct from object based attention. There is ample evidence for object 
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based attention. It is easier to identify two features within a single object as 

compared with two features in two different objects, even if the two different objects 

were superimposed on each other in the same location (Awh, Dhaliwal, Christensen, 

& Matsukura, 2001; Duncan, 1984; Lee & Chun, 2001; Vecera, 1997; Vecera & 

Farah, 1994), and even when one object is partially occluded by another object 

(Behrmann, Zemel, & Mozer, 1998), and even when spatial cues were used to direct 

attention to a part of the display (Law & Abrams, 2002). The fact that visual search 

can be feature based has also been shown using a priming paradigm, where search is 

facilitated if the target shares features with the preceding target (Kristjansson, 2006). 

If the features lend themselves easily to object formation, then priming effects can be 

object based, but if they do not, then priming effects remain feature based 

(Kristjansson, Ingvarsdottir, & Teitsdottir, 2008). 

 It takes longer to move the focus of attention a particular distance between two 

different objects than it does to traverse the same distance if it is within an object 

(Egly, Driver & Rafal, 1994). When a cued object moves to a new location, attention 

moves with the object, rather than being tied to the same location (Kahneman et al., 

1992). It is also possible to identify targets appearing within a cued object faster than 

an uncued object (Moore, Yantis, & Vaughan, 1998). Object based effects have been 

found for single region (Watson & Kramer, 1999) as well as multiple region objects 

as long as the multiple regions can be perceptually grouped together (Matsukura & 

Vecera, 2006). Proximity and connectedness of parts of the object promote the 

memory of objects as compared to features (Xu, 2006).  

In all these cases, however, attention is directed to the relevant object with a cue 

prior to the response being given by the participants. Thus, these results can be 

attributed to the sensory enhancement of all features belonging to objects that have 

been already selected by attention. When Richard, Lee, and Vecera (2008) directly 

compared the prioritization (of location) and enhancement accounts of object based 

attention, the results supported the enhancement account. Using eye tracking, Becker 

and Rasmussen (2008) have shown with real world scenes that attention is first 

directed to locations and then to objects, and both are guided by familiarity coded in 
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LTM for scenes. Even more pertinent for the present research were results by 

Shomstein and Behrmann (2008) who have shown that object based effects show up 

better at longer exposure durations (1000 ms) than at shorter exposure durations (200 

ms). Crucially, they also found that whereas 200 ms preview time is sufficient for 

object configuration to guide target detection, it is not powerful enough to show its 

effect in a more difficult target discrimination search task. It seems that attention to 

locations precedes attention to objects. All these studies support a rather speculative 

physiological account which suggests that early in the visual processing system, 

when magnocellular neurons are engaged by spatial attention, there is a concomitant 

inhibition of the parvocellular neurons which are sensitive to features such as colour 

and shape (Yeshurun & Levy, 2003; Yeshurun, 2004). In general, location seems to 

be a more powerful guide for attention.  

Moving beyond the types of attention, consider how it functions. The oft used 

metaphor for attention is that of a spotlight. Does the spotlight simply tell us where 

or what to look at, or does it also blur our impression of the surround? The limited 

capacity hypothesis emphasizes the orientation function of attention (Eriksen & St. 

James, 1986; Henderson, 1996; Posner, 1980), whereas the noise reduction 

hypothesis suggests that attention excludes irrelevant noise that might otherwise 

interfere with stimuli in the focus of attention (Pashler, 1994; Shiffrin & Gardner, 

1972; Shiu & Pashler, 1994).  Behavioural evidence with spatial cueing seems to 

favour the limited capacity hypothesis, for spatial pre-cues shorten response latency 

and facilitate target discrimination even in an otherwise empty field (Henderson, 

1996). Nevertheless, recent studies have shown that visual attention also suppresses 

the processing of irrelevant objects. Folk and Remington (1998) suggested that in the 

presence of irrelevant noise, voluntary attention imposes a filter on the incoming 

stimulation so that the target can be easily detected. It is the imposition of this filter 

that slows the detection or discrimination of the target. Wuhr and Frings (2008) 

found evidence for enhancement of relevant objects as well as inhibition of irrelevant 

objects as compared to a baseline, using the magnitude of the Stroop effect to assess 

the relative processing of objects.  
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Evidence from neurophysiological studies also suggests that a concomitant inhibition 

shows up whenever focussing of attention is studied. Two underlying neural 

mechanisms, gain and tuning, have been proposed to describe the effects of attention 

on populations of neurons (Hillyard, Vogel, & Luck, 1998; Lee, Williford, & 

Maunsell, 2007; Martinez-Trujillo & Treue, 2002, 2004; Maunsell & Treue, 2006; 

McAdams & Maunsell, 1999; Reynolds & Chelazzi, 2004). The gain model holds 

that the overall response to a stimulus is increased by a multiplicative factor across 

all feature detectors, increasing the effective signal strength. The tuning model holds 

that attention does not increase the response of any of the neurons. Rather it 

suppresses the response to irrelevant noise, leading to a narrower population profile. 

Of course, there remains a third possibility of a combination of these two. Ling, Liu, 

and Carrasco (2009) showed that whereas spatial attention operates by boosting the 

gain of the response, feature based attention operates by both boosting the gain and 

sharpening the tuning of the response. In keeping with these ideas, a psychophysical 

model, the Perceptual Template Model (Dosher & Lu, 2000, Lu & Dosher, 2005, 

2008) postulates three mechanisms through which attention leads to performance 

improvements, stimulus enhancement, external noise exclusion, and multiplicative 

noise reduction. Lu and Dosher (2005) admit that they have never empirically 

observed multiplicative noise reduction. Nevertheless, stimulus enhancement and 

external noise exclusion are easy to distinguish empirically. Whereas the former 

improves performance only in zero or low external noise conditions, and is primarily 

associated with peripheral cuing, the latter modulates performance only in high 

external noise conditions, and is related to both peripheral and central cuing. Though 

the model systematizes the data in the field, it does not offer any new insights or 

make predictions beyond what the empirical data already show.   

More recently, another function of attention, which may be called attentional 

protection, has been of interest. Matsukura, Luck, and Vecera (2007), used a double 

cue paradigm to compare the protection and prioritization functions of attention. The 

display was first cued to one side, and then to the other side during the maintenance 

interval. Their logic was that if attention merely prioritizes cued items in comparison 
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to the others, then performance should be equally good for first cued or second cued 

item; whereas if it protects items from degradation during the maintenance interval, 

then participants should show superior performance for items cued first than second 

because the second cue is given to an already degraded set of items. They ensured 

that participants did not ignore the first cue by including some single cue trials. Their 

results showed that attention preserved items from decay and degradation during the 

study-test interval, thus essaying a protective function. This function of attention 

transcends the boundaries of perception and highlights how attention has a direct 

effect in the domain of memory.  

Nevertheless, the role of attention in memory goes beyond protection, for memory is 

not only about storage, but also manipulation of memoranda. Attention has always 

been crucial in the models of WM (e.g., Baddeley & Hitch, 1974; Cowan, 1995; 

Engle, 1996), but it has been ascribed different functions in different models. 

The multiple components model prescribes a paramount place for attention as a 

control process that directs all operations in WM. The initial concept of the central 

executive (Baddeley & Hitch, 1974) was that of a limited capacity pool of general 

processing resources that could be used for storage as well as attentional control (and 

possibly other functions too). But, Baddeley and Logie (1999) conceptualised it as an 

attentional control system alone, casting out storage from the central executive. 

Baddeley (2007) reiterates that the central executive functions in three different 

ways: focussing attention, switching attention, and dividing attention. However, 

ousting storage from the central executive necessitated the postulation of the episodic 

buffer as a storage system that brings together a variety of information from the other 

components of WM, perceptual input, as well as LTM (Baddeley, 2000). The buffer 

was not directly linked to the phonological and visuo-spatial stores, however, and 

presumably if phonological or visuo-spatial memoranda were to enter the buffer, 

they could do so only with the aid of the central executive. Attention was thus 

indispensible for storage and manipulation in the episodic buffer.  
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A central feature of the episodic buffer was “binding information from diverse 

sources into unified chunks” (Baddeley, 2007, p.148). Thus, attention was presumed 

to be essential for binding. Allen, Hitch, and Baddeley (2009) recently compared 

stimuli defined by binding of colour and shape presented visually, with cross modal 

stimuli for which either the colour was spoken as the shape was presented, or the 

shape was named as a shapeless blob of colour was presented. Performance was 

reduced by backward counting by threes, showing that the central resource of 

attention was important for performing the task, but cross modal binding was no 

more attention demanding than unified visual stimuli. Yet, revising their earlier idea 

(Allen et al., 2006) that bindings could be maintained automatically without using 

central resources, and the episodic buffer did not host visual feature binding, as a 

result of this and other fresh evidence (Karlsen, Allen, Baddeley, & Hitch, cited in 

Allen et al., 2009, p. 86), they speculate that binding does occur in the episodic 

buffer, which provides an arena for ambient attention, and is fed by a range of 

features and modalities. Focused attention merely serves to bias the contribution of 

these different features and modalities. This idea may be extended for the present 

thesis to suggest that focussed attention may influence the encoding and maintenance 

of goal-relevant features in binding, though it is not necessary for storage of 

bindings. Nevertheless, in a still more recent paper, available online in July 2009, 

based on work on binding or ‘chunking’ in sentences, Baddeley, Hitch, and Allen 

(2009) have again asserted that the episodic buffer is a passive store, which receives 

information from perception, LTM, as well as the phonological and visuo-spatial 

subsystems, with the process of binding as well as processing of bound 

representations occurring elsewhere, outside the buffer. They also hold that whilst 

the process of binding is automatic, processing of already bound representations uses 

the executive resource of attention. It appears that they believe binding to be the 

initial perceptual representation, which is the starting point of the binding process as 

conceptualised in this thesis, a process that results in a coherent object ready for 

further processing. From both the papers published in 2009, it also appears that the 

role of attention in the still developing concept of episodic buffer, especially with 

regard to the process of binding in VWM, remains to be resolved.  
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In contrast, the idea of focussed attention is the leitmotif of the embedded processes 

model (Cowan, 1995, 1999, 2005; Oberauer, 2002, 2007). Reminiscent of the 

spotlight metaphor, Cowan (1999) holds that the focus of attention is a subset of 

activated memory, which in turn is a subset of LTM.  The focus of attention is 

controlled by voluntary as well as involuntary processes, and may be directed 

outwards at incoming stimulation, or inwards at the content of LTM, or away from 

irrelevant information in LTM as in inhibition. In the multiple component model of 

WM, attention is required for processing and some maintenance, but not memory 

storage itself, and thus tradeoffs within different domains of the model are held to be 

due to interference and not due to the limited capacity of attention. In contrast, 

Cowan’s model conceptualises attention as a limited resource for which storage and 

processing are in incessant competition. Bunting, Cowan, and Colflesh (2008) 

demonstrated this by showing that when attention cannot be fully deployed at the 

time of encoding, it needs to be deployed at a later stage to bring the contents of 

passive memory in the focus of attention.    

In keeping with his idea that attention is a domain general limited capacity resource, 

Cowan (2005) holds that attention is essential for binding. Indeed, binding happens 

as the object comes into the focus of attention, and a continued focus is necessary to 

maintain and retrieve bound objects from memory. While the focus of attention is 

limited by capacity, activated memory is limited by time. All stimuli activate some 

elements of memory, and when attention is focussed on some stimuli, their activation 

is enhanced. Thus one remains aware of at least the physical features of all stimuli, 

though one might habituate to them over time. Nevertheless, semantic features are 

not processed automatically, and require focussed attention.   

Cowan (2001) also specifies that one can hold only about 4 items in the focus of 

attention, though he admits that items within this limited capacity set do not possess 

equal status. Oberauer (2002) formalized this idea to suggest that out of four it is 

possible to process and operate on only 1 or 2 items. In his model, the limited 

capacity region that Cowan calls the focus of attention is called the region of direct 
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access. Within this region, Oberauer (2002, 2007) suggests a one chunk focus of 

attention.  

A different function of attention, inhibition, is emphasized by researchers advocating 

an individual differences approach to WM (Conway & Engle, 1994; Engle, 1996; 

Engle, Conway, Tuholski, & Shisler, 1995; Engle, Kane, & Tuholski, 1999; Poole & 

Kane, 2009). Assigning a central role to attention in their executive attention theory, 

Engle, Kane and Tuholski (1999) postulate that WM equates attention plus STM 

(which they consider an activated portion of LTM). They also state that “WM 

capacity is not really about storage or memory per se, but about the capacity for 

controlled, sustained attention in the face of interference or distraction” (Engle, 

Kane, & Tuholski, 1999, p.104). Individual differences in WM capacity are shown in 

situations that require controlled attention of the type that inhibits irrelevant 

information, competing responses, and conflicting goals. It is used whenever the task 

demands errorless, perfect performance. The theory asserts that individual 

differences in WM capacity predict differences in a variety of tasks involving 

attention. For example, Unsworth and Engle (2005) demonstrated that WM capacity 

differences in learning sequences of asterisks in four locations emerged under 

intentional but not incidental learning conditions. Awareness was crucial for learning 

by high capacity participants.  

In an attempt to specify the boundaries of the association between WM and 

perception, Kane, Poole, Tuholski, and Engle (2006) reported a series of experiments 

showing that WM capacity was unrelated with performance on visual search tasks 

which required a simple target present/absent decision irrespective of set size or 

complexity of the targets. In contrast, Poole and Kane (2009) tested participants on 

search tasks that involved either a short (300 ms) or long (1500 ms) focus on target 

locations either presented alone or mixed with distracter locations. They found that 

participants with higher WM capacity outperformed those with lower WM capacity, 

but only over long fixation delays and only in the presence of distracters. This 

suggests that the advantage of higher WM capacity is shown only in tasks when 

attention needs to be used to stop a response or to limit the focus, or in the words of 
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Poole and Kane (2009) for ‘restraint or constraint’. Both these are anyway highly 

correlated (Friedman & Miyake, 2004) and may be considered different aspects of 

inhibition. Lower WM capacity participants cannot sustain a limited focus and are 

more susceptible to distracters.         

To recapitulate the functions of attention in various models, while the perceptual 

models highlight what focussed attention can do – it selects stimuli, it prioritizes 

stimuli, it protects them from degradation; the memory models go beyond the focus 

to explore the boundaries of attention to specify what it does not do – it is limited in 

capacity, is relatively unimportant in maintenance, and it is not necessary for storage. 

They also differ from the perceptual models in their insistence that attention not only 

facilitates stimulus encoding, but is also crucial for the control process of inhibition. 

Finally, while perceptual models debate the crucial role of the bottom-up processes 

of ‘attention capture’, memory models are primarily concerned with attention as the 

central executive control mechanism.  

Physiological evidence from ERPs also differentiates between the initial encoding 

involving attention and the later stages when the stimulus is maintained in VWM.   

The N2pc, a greater negativity at posterior electrodes on the side contralateral to an 

attended visual stimulus, usually lasting about 100 ms between 180 and 280 ms, is 

thought to reflect the moment-to-moment deployment of visual-spatial attention. It is 

established as the lateralized ERP component primarily underlying distracter 

suppression in tasks involving spatial attention (Luck, 1998; Luck, Girelli, 

McDermott, & Ford, 1997; Luck & Hillyard, 1994a, 1994b). Robitaille and Jolicoeur 

(2006) confirmed that N2pc is not related to the target alone. Rather it reflects 

processing related to the presence of a distracter. When a cue for the target was 

presented 100 ms earlier than the target, N2pc occurred earlier, and thus allowed 

earlier spatial selection and led to less interference from the distracter. Also, the 

offset of the N2pc was delayed when more interference from the distracter was 

expected.  
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A delayed contralateral negativity, named CDA, is also shown when participants are 

performing a VWM task with the amplitude of negativity proportional to the number 

of elements held in VWM as long as they do not exceed the capacity of four (Vogel  

& Machizawa, 2004). CDA is virtually identical with sustained posterior 

contralateral negativity (SPCN) that often begins about 300-400 ms after stimulus 

onset and that persists for the duration of the retention interval. A positive-going 

deflection at around 300 ms often separates the N2pc and the SPCN. The SPCN is 

also observed in tasks that are not defined as memory tasks, but that presumably 

engage visual short-term memory as an intermediate processing buffer (e.g., in order 

to make a choice response to a briefly-presented visual stimulus).  

Using a masking paradigm, Robitaille and Jolicoeur (2006) found no differences in 

N2pc generated among a backward mask, forward mask, and no mask conditions. 

However, they did observe that the backward masking effect was significantly 

associated with sustained posterior contralateral negativity (SPCN; called CDA by 

Vogel & Machizawa, 2004) from 300 ms to 800 ms. This suggests that whereas the 

initial allocation of attention and concomitant distracter suppression is not affected 

by a pattern mask at the neural level, SPCN activity underlying VWM can be 

masked.   

Jolicoeur, Brisson, and Robitaille (2008) dissociated spatial attention and 

maintenance of items in VWM indicated by these separate underlying ERP 

components, N2pc and SPCN. When memory load across trial blocks was 

manipulated by instructions either to encode only one stimulus or two stimuli, there 

was an increase in the amplitude of the SPCN as memory load increased, with no 

concomitant increase in the amplitude of the N2pc that immediately preceded it. The 

results provide a clear dissociation between the N2pc (spatial attention, not affected 

by memory load) and the SPCN (visual short-term memory, sharply sensitive to 

memory load). Thus, there is dissociation between attention and VWM maintenance 

in EEG measures, with different electro-cortical markers.  
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As may be clear from the foregoing account, the present work assumes that attention 

is a complex mechanism that has many roles to play in the binding process. 

Comparisons across experiments using blocked and mixed presentation of stimuli 

from among experiments 1-8, reported in Chapters 5, 6, and 7, specifically evaluate 

the effects of using an attentional set focussed exclusively on the task by clearly 

defined goals dictated by blocked presentation, against focussed attention on the task 

within a trial and shifts in set from trial to trial demanded by mixed presentation of 

trials. The experiments also yield interesting insights into the effects that various 

other types of attention have at different stages of the binding process, and are noted 

in the relevant discussions.   

YINYANG: PROCESSES AFFECTING BINDING 

Two processes which are often aided by the mechanism of attention but are basically 

different from it as they continue unabated in the information processing sequence 

are the opposite processes of consolidation and inhibition. Extremely difficult to 

separate empirically, they are conceptually quite distinct.  

Consolidation 

Over a century ago, Muller and Pilzecker (1900) proposed that initially fragile 

memories gradually consolidate over a period of time. The whole brain participates 

in this process of reorganizing and stabilising information. The dual trace hypothesis 

suggested that stabilization of reverberating cell assemblies underlying STM led to 

LTM (Gerard, 1949, Hebb, 1949). McGaugh (2000) reviewed evidence showing the 

selective action of drugs on STM and LTM to suggest that they are not sequentially 

linked and may be based on independent consolidation processes acting in parallel.  

In this research, the primary concern is with consolidation in the initial few seconds 

after the stimulus is presented. It is quite well known that consolidation of one 

stimulus does not allow the consolidation of a subsequent stimulus that follows 
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closely in time. The bottleneck may be at the encoding stage (Hommel & Doeller, 

2005), or at the response selection stage (Pashler, 1994). Researchers have exploited 

this fact to their advantage by studying the time course and rate of consolidation 

when the participant is faced with doing two things at the same time.  Consolidation 

problems are often cited as the primary reason for attentional blink and costs of dual 

task performance.  

In the attentional blink paradigm, stimuli are presented at rates of up to 20 per 

second, and results show that if a second target is presented about 500 ms after the 

first target, it cannot be detected. Interestingly, if the second target appears in +1 

position, it maybe processed together with the first one, and is reported reliably. This 

is known as Lag-1 sparing (Chun & Potter, 1995). Since studies have demonstrated 

that the second stimulus is perceived but not reported (Jolicoeur & Dell Acqua, 2000; 

Vogel, Luck, & Shapiro, 1998) explanations of AB have been proposed in terms of 

post perceptual processes, particularly the process of consolidation. Attentional blink 

has been thought to demonstrate that 200-500 ms was attentional ‘dwell time’ when 

attention was exclusively focused on a particular target, i.e., the initial target was 

being encoded or consolidated (Duncan, Ward, & Shapiro, 1994). The WM resource 

depletion explanation of attentional blink is that the first target is being processed by 

a limited capacity processor, and this impairs the ability of the system to process the 

second target (Broadbent & Broadbent, 1987; Chun & Potter, 1995; Dux, Asplund, 

& Marois, 2008; Giesbrecht & DiLollo, 1998; Jolicoeur, 1998; Nieuwenstein, Potter, 

& Theeuwes, 2009; Vogel & Luck, 2002). Most recently, this explanation has been 

confirmed across three experiments by Dell'Acqua, Jolicoeur, Luria, and Pluchino 

(2009) who found no lag 1 sparing whenever the preceding target was correctly 

identified. However, Di Lollo, Kawahara, Sharab-Ghorashi, and Enns (2005) showed 

that participants can accurately report several target items if they occur in direct 

succession without any distracters. Thus, an increasingly popular explanation is in 

terms of inhibition of subsequent targets while distracters which follow the first 

target are being processed, either due to temporary loss of control (Di Lollo et al., 

2005) or conversely, due to strengthening of control (Olivers, Van der Stigchel, & 
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Hulleman, 2007). In support of the inhibition view, Sy and Giesbrecht (2009) found 

that the magnitude of impairment in attentional blink was more when targets were 

similar on a task relevant dimension than on a task irrelevant dimension.  

Research by Potter and colleagues throws light on the processes of consolidation in 

the incipient stages. Potter, Staub, and O’Connor (2002) used words presented in 

different streams in rapid serial visual presentation (RSVP) at 53 ms/item, with SOA 

varied from 0 to 213 ms. From 13-53 ms the second word was more likely to be 

reported, but at 213 ms, the advantage shifted to the first word, confirming two 

stages in processing, identifying a target, followed by consolidation of that target. 

The initial stage of target identification can be further subdivided into encoding and 

selection. Nieuwenstein and Potter (2006) compared partial report and whole report 

in an RSVP task arguing that both conditions required encoding, though only partial 

report required selection. The inferiority of partial report as compared to whole 

report was inferred as the cost of selection, which followed the initial encoding stage. 

Jolicoeur and Dell’Acqua (1998) used the dual task paradigm, with the stimuli in the 

two tasks being presented in different modalities to reduce modality specific 

interference. The visual stimuli were 1 or 3 uppercase letters or keyboard symbols, 

whereas the auditory stimuli were pure tones of 400 or 1200 hz presented for 100 ms. 

Participants gave a speeded response to tones, pressing different keys in response to 

high pitched and low pitched tones, and thereafter, remembered and typed in the 

keyboard character(s) they had seen. Results showed that with increasing SOAs, the 

proportion of correct responses to tones increased, while the reaction time decreased. 

Also, a dual task slowing was observed, effects on the auditory RT being larger with 

a greater number of visual stimuli to be encoded. Jolicoeur and Dell’Acqua (1998) 

concluded that short-term consolidation is a highly capacity limited, slow, laborious 

process. Regarding the time course of consolidation their work suggests that 

encoding an item into WM begins shortly after the presentation of the visual display, 

and is almost always finished by 350 ms for single items. For a more complex task 

involving perceptual integration of arrays, Brockmole, Wang, and Irwin (2002) 

demonstrated that beyond 133 ms, performance improves and reaches an asymptote 
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between 1000 and 1500 ms. Brockmole and Irwin (2005) assume that 1500 ms is the 

time required for the consolidation of a seven item stimulus into VSTM. 

The masking paradigm has also been successfully used to study consolidation. Masks 

were initially used with the assumption that an immediate mask would eradicate the 

effects of iconic memory, but the delayed one would not. Thus Loftus, Johnson, and 

Shimamura (1985) used naturalistic pictures for varying durations followed either by 

an immediate noise mask or one after 300 ms. They found that the information 

available after the mask increased with an increase in the duration of stimulus 

exposure, though the decay of this information remained the same. They surmised an 

icon’s worth to be equivalent to an additional 100 ms of stimulus exposure. Loftus, 

Duncan, and Gehrig (1992) replicated this work using stimulus arrays of four digits 

to be reported in their correct locations, for six durations ranging from 30 to 300ms, 

followed by a noise mask at six or seven stimulus-mask intervals ranging from 0 to 

250 ms after stimulus offset. In all cases, they found that longer stimulus exposure 

durations yielded more information, suggesting that consolidation continued at least 

till 300 ms, though the rate of decay of the icon was the same irrespective of the 

stimulus–mask interval.  

Bacon-Mace, Mace, Fabre-Thorpe, and Thorpe (2005) used dynamic patterns as 

backward masks at various delays to study the incipient stages of processing using 

gray scale natural images flashed for 6.25 ms, and found that performance steadily 

increased and reached an asymptote at about 40-60 ms after stimulus onset. They 

concluded that before 40-60 ms, the mask had essentially no effect because 

performance was largely determined by feed forward activity of neurons in the brain. 

The asymptotic performance observed in their study is remarkably similar to the 50 

ms per item rate of consolidation reported by Vogel, Woodman, and Luck (2006) 

who studied the time course of consolidation in VWM for coloured squares using 

masks placed on the locations of the items in the visual array. They found that the 

first item is consolidated in about 60 ms, and thereafter the rate of consolidation is 

approximately 50 ms per item. Smith and Wolfgang (2007) compared the effects of 

simultaneous and trailing noise and pattern masks on detection of Gabor patches. 
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Though weak effects for integration masking were noted for simultaneous noise 

masks with low energy in one of the experiments, their major finding was that 

masking effects were larger with delayed masks presented 60-90 ms later, regardless 

of the kind of mask (noise or pattern), and the energy ratios for the mask and the 

target, again suggesting that detection of Gabor patches in the very initial stages 

could not be masked, and is probably dependent on feed-forward activity in the 

brain.  

The rate of consolidation as 50 ms per item suggested by these studies is 

considerably faster than the estimates of about 500 ms for single items suggested by 

studies using the dual task paradigm such as those by Chun and Potter (1995), and 

Jolicoeur and Dell’Acqua (1998). Though none of these experiments studied the 

consolidation of bindings, in view of the fact that Vogel et al, (2001) believe that 

storage of features, conjunctions, and objects does not differ, it might be presumed 

that consolidation of bindings follows a course similar to consolidation of features. 

This easy inference, however, is complicated by the fact that complex stimuli require 

considerably more time for consolidation. Anaki, Boyd and Moscovitch (2007) have 

found that integration of three horizontal parts of faces presented sequentially 

requires about 700 ms. If bindings involve more information to be consolidated, and 

consolidation is resource dependent, then consolidation of bindings would certainly 

take more time, especially if there are irrelevant bits of information to be removed at 

the same time.  

Woodman and Vogel (2008) used masks to study whether consolidation into VWM 

is a selective process. They used the change detection task showing the sample array 

for 23 ms followed by masks after 35, 105, 140, or 176 ms. The mask was shown for 

500 ms and after a blank interval the whole display probe was given such that the test 

of memory was always 1500 ms after the initial display. Participants were to detect 

changes in colour, orientation, or conjunctions of three items in Experiment 1. In 

Experiment 2, the array consisted of seven items, and changes were to be detected in 

colour, shape, or conjunctions. Results showed that performance for colour was 

better than orientation, shape, and conjunction conditions; and this distinction 
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emerged gradually as the stimulus-mask SOA increased. The results were 

substantiated by studying the CDA component of ERPs while the participants were 

asked to remember colour, orientation or conjunctions. The CDA component was 

larger for orientation and conjunction conditions as compared to the colour condition 

from 300 to 900 ms after the initial memory array was shown to the subject, 

confirming the selective maintenance of colour. It is to be noted that selective 

maintenance of relevant features emerges only with the passage of time, and is not 

shown during the initial stages.  

It is clear from the foregoing review that though the term consolidation is used in 

many different ways, in this thesis it refers to the gradual encoding of material in 

VWM and is limited to the transfer of information from the sensory register to a 

relatively more stable representation in VWM. This is how many other researchers 

(Jolicoeur and Dell’ Aqua, 2000; Vogel, Woodman and Luck, 2006) have used the 

term in the study of this process in the incipient stages of visual processing. Whether 

this transfer is aided by maintenance or elaborative rehearsal is beyond the purview 

of this thesis. The focus here is whether this transfer happens in an abrupt, all or none 

fashion. 

Whether bound stimuli are processed in an all or none manner, or if consolidation is 

selective, implies the question if consolidation simply means transfer of objects from 

one store to another, or is it a continuous process of refinement of stimulus input. 

Basically, this asks whether consolidation is accompanied by inhibition.  

Inhibition 

Inhibition means the ability not to remember irrelevant information. Again, though 

the term is used in many different ways as will be clear from the following section, in 

the present work, it is used to refer to the process that is manifested by a lower initial 

performance in comparison with a higher performance when tested with an increased 

interval.  
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Inhibition is a critical component of an effective information processing system. In 

order to remember something, it is essential not only to consolidate the relevant 

information, but also to inhibit irrelevant information. Indeed the two processes are 

complementary and extremely difficult to disentangle in experiments. Nevertheless, 

the ingenuity of researchers knows no bounds, and a variety of experimental 

paradigms have been used to generate evidence for inhibition.  

Object specific inhibitory effects are shown using the paradigm of negative priming 

(Tipper, 1985). In this case, participants are slower to respond to probes that serve as 

distracters on previous trials (usually the trial immediately before). The implication 

is that ignored items on previous trials were actively suppressed, and this inhibition 

is carried over to the new trial. Pictures can prime words and vice versa, indicating 

that this type of inhibition occurs at a semantic level (Tipper & Driver, 1988). 

Interestingly, such inhibitory effects are observed only when the target appears about 

400 ms after the cue.   

The phenomenon of inhibition of return illustrates location specific inhibition. It 

refers to the observation that participants show a transient bias against returning to 

locations that have been visited earlier. In experimental studies using the cueing 

paradigm, it has been found that cues facilitated target detection at specific locations, 

but only if the target appeared within 300ms. After 300 ms, target detection was 

slower (Posner & Cohen, 1984).  

Feature specific inhibitory effects distinct from inhibition of objects and/or locations 

are relatively difficult to obtain. However, fruitful efforts in this direction have been 

made by Humphreys and colleagues. Watson and Humphreys (1997) devised the 

preview search paradigm in which a preview comprising a set of distracters (e.g., 

blue Hs) is shown for some time before showing the full display consisting of the 

target (blue A) as well as all the old (blue Hs) and new distracters (green As). Search 

for the target is much more efficient with the preview than without the preview. In 

fact search times often match the search times with only the new set of distracters 

present. It is as if the old distracters do not exist! As an explanation of the preview 
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benefit, Watson and Humphreys (1997) proposed the mechanism of visual marking 

whereby the old items are inhibited. Since the preview benefit was disrupted by a 

secondary task done during the preview period (shadowing a series of digits at centre 

screen), they concluded that visual marking was a top-down process that was used 

only when necessary and when there were sufficient resources. Humphreys, Watson, 

and Jolicoeur (2002) found the disruptive effect with an auditory secondary task. 

Olivers and Humphreys (2002) presented an RSVP stream in which a target letter 

was to be identified, followed by a preview of green H distracters, followed by a set 

of blue items in which a target blue H was to be identified. By presenting the first 

target early or late in the RSVP stream, the attentional blink period was manipulated 

so that it coincided with the previewed distracters or not. When attentional blink and 

preview of distracters happened at the same time, the preview benefit was reduced, 

for attentional blink took away the resources, which would have been otherwise used 

for inhibition of previewed distracters. In contrast, when preview of distracters 

occurred outside the attentional blink, and one of them was made the target in the 

next subsequent display, search was slowed as the distracter inhibition carried over to 

the target in the next display (much like negative priming). All these studies 

substantiate that central attentional resources were being used for visual marking.    

Several studies (reviewed by Olivers, Humphreys, & Braithwaite, 2006) show that 

the preview benefit is reduced if the new items share features such as colour, 

orientation, location etc. with the previewed distracters. Further, when participants 

are required to search for target letters among a set of randomly coloured distracter 

letters, search times can be reduced by giving information about the target colour, or 

presenting a preview of distracters in that colour. In fact, search times are best when 

both information and a preview are given. When there is a clash between prior 

information and preview, the preview effect holds irrespective of foreknowledge, 

suggesting that the effects are additive. This also indicates that the effect is feature 

based, though it may extend to objects as well. Allen, Humphreys, and Mathews 

(2008) extended the preview effect to photographs of houses and faces, which can be 

considered relatively complex stimuli. Goolsby, Shapiro, and Raymond (2009) also 
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provided evidence of feature based rather than object based inhibition associated 

with distracter devaluation. Indeed, their data suggested that this inhibition is not 

only cognitive but also reduces the emotional value of stimuli (faces) which were 

shaded in a similar colour as previously seen distracters (Goolsby et al., 2009).   

Visual marking, as originally envisaged by Watson and Humphreys (1997), was 

applied to the locations of the original items, but it is clear from the above studies 

regarding features that it is applicable to features other than location. It is thus, that 

visual marking is defined in a way that makes it agnostic to the feature vs. object, or 

location vs. objects debate. As Olivers et al. (2006, p.717) put it, “Visual marking is 

the top-down inhibition of irrelevant old information, in anticipation of the 

appearance of relevant new information”. Nevertheless, Braithwaite, Humphreys, 

Hulleman, and Watson, (2007) have somewhat reverted to the original emphasis on 

locations, holding that colour grouping enables the marking of locations, which are 

then inhibited.  

Despite these myriad experimental paradigms contributing to the concept of 

inhibition, most of the literature is agnostic regarding further subdivisions of the 

concept of inhibition. Clearly however, not giving a response because of past 

experience is quite different from not giving a response due to present distracting 

influences, and both in turn seem distinct from suppressing a response to achieve a 

goal. In an attempt to delineate the boundaries of the concept, Friedman and Miyake 

(2004) used latent variable analysis to test whether the factor structure of inhibition 

followed their a priori tripartite division of inhibition. They started by postulating 

that inhibition is of three types: capacity to inhibit a prepotent response, distracter 

inhibition, proactive interference. Capacity to inhibit a prepotent response was 

assessed by a Stroop task, another task requiring the participant to respond to a stop 

signal, and an anti-saccade task. Distracter inhibition was measured by word naming, 

or matching shapes, under distracting conditions, and with a flankers task. Proactive 

interference was tested using the Brown-Petersen task, verbal learning for paired 

associates, and a cued recall task.  
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Results showed that a single latent variable accounted for inhibition of a prepotent 

response and distracter inhibition. This is understandable if one considers that a 

prepotent response also acts as a distracter at the time of deciding when or what 

response to give. A careful analysis of the six tasks used also allows the conclusion 

that all of them assessed interference during the decision phase before the response is 

given. A significantly different second variable underlying tasks involving proactive 

interference was identified. Both latent variables were found to be related with WM 

assessed by the reading span task, the correlation with the first one being -0.23, and 

the correlation with proactive interference being +0.33.  Friedman and Miyake 

(2004) also found that the single latent variable accounting for inhibition of prepotent 

task and distracter inhibition was highly correlated (0.73 to 0.55) with tasks requiring 

the participants to switch attention, between semantic categories, or between number 

and letters, or between local and global features of a complex array. There was also a 

modest but significant correlation with the Cognitive Failures Questionnaire 

(Broadbent, Cooper, Fitzgerald, & Parkes, 1982), which assesses people on the 

frequency of everyday slips of action and attention. This pattern of correlations is 

important because the central executive in the multiple component model is ascribed 

three functions: focussing attention, switching attention, and dividing attention 

(Baddeley, 2007; Baddeley & Logie, 1999).  

Within the WM framework, an inhibitory process was first proposed by Hasher and 

Zacks (1988). They suggested that the cognitive decline that comes with ageing is 

related to a reduced capacity for inhibition, i.e., keeping irrelevant information out. 

Lustig, May and Hasher (2001) hypothesized that this inability to keep irrelevant 

information out makes the elderly particularly susceptible to proactive interference. 

They tested this idea by abandoning the traditional way of assessing span by starting 

with one or two sentences, and instead tested the elderly starting with longer 

sequences. The elderly did indeed perform better when tested in this way. Younger 

participants did not show any benefit from this type of testing, but they did show a 

benefit from short breaks in testing which is traditionally associated with minimizing 

proactive interference. Based on his experiments comparing young (mean age 19 
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years) and old (mean age 69 years) participants on an arithmetic updating task and a 

recognition task, Oberauer (2005) concluded that older adults do not have problems 

in updating information and thus can inhibit current information as well as younger 

adults. But they find it difficult to reject intrusions from the LTM, which results in 

poorer performance on the recognition task. Hasher, Lustig, and Zacks (2007) 

reiterated that inhibition is the primary regulatory mechanism in WM and delineate 

three types of inhibition, access, deletion, and restraint (or suppression). Access 

represents the selection of relevant over irrelevant information for further attentional 

processing and is thus important at the time of encoding. Deletion refers to forgetting 

old irrelevant information, and works during storage. Restraint or suppression refers 

to the inhibition of response during the retrieval and response stage. Their research 

shows that all three vary within and across individuals, and across the life span.  

Inhibition was also explored by Engle and his colleagues. In an experiment by 

Cantor and Engle (1993) participants were made to learn either a set of unrelated 

facts, or different facts relating to the same person (the fan condition). Then they 

were probed with a single fact to be assessed by them as right or wrong. The 

verification time was the measure of interest. Verification times increased with the 

size of the fan. They also showed that the fan effect was greater in participants with 

low WM span. Noting the similarity of this task with the probe technique used by 

Sternberg (1966) Conway and Engle (1994) found that low span participants showed 

a steeper decline in reaction times as set size increased. However, if the sets did not 

have any repeated items, the slopes were equivalent for low and high span 

participants, suggesting that low span participants were more susceptible to proactive 

interference.  

Thus, Engle (1996) proposed the inhibition resource hypothesis proposing that all 

cognitive activity requires the capacity to inhibit input from competing stimuli and 

output in terms of alternative response tendencies, and asserted that WM is nothing 

but this capacity for inhibition. Kane and Engle (2000) used the classic proactive 

interference design with lists of words to demonstrate that low span participants were 

more vulnerable to proactive interference as compared to high span participants. 
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They also found a low but significant correlation between memory span and speed of 

response in the Stroop task, a classic measure of response inhibition. Low span 

participants found it particularly hard to give the correct response when the task was 

modified so that the ink and word were consistent 75% of the times. Conway, 

Cowan, and Bunting (2001) revisiting the cocktail party phenomena, asked 

participants to shadow a message played to one ear, while ignoring another message 

being played to the other ear. Unknown to the participants, the message to the other 

ear was interspersed with their own name. 65% of low span participants reported 

hearing their name, whereas only 20% of high span participants did so, showing that 

low span participants found it difficult to ignore distracters.     

Since inhibition is linked to WM capacity, it follows that it is a resource demanding 

process, which is used only when necessary. Watson and Humphreys (1997) 

suggested that visual marking was used only in the presence of distracters and only if 

there were sufficient resources. Olivers et al. (2006) propose that the attention system 

may employ two independent sets: a positive set for target properties, and a negative 

set for distracter properties. The former allows consolidation and enhancement of 

target features, whereas the latter actively inhibits the distracter properties. Each is 

used as required.  

Even more suggestive of top-down influences on feature binding, Hommel (2004) 

holds that initial binding of features is dependent on the task relevance of individual 

features, though he admits the possibility that highly salient but irrelevant features 

may also be activated to some extent. Extending the importance of relevant features 

beyond initial binding, Colzato, Raffone and Hommel (2006) showed that shape-

colour binding effects disappeared with increasing practice when only one of the 

features involved was relevant to the task. Munneke, Van der Stigchel, and 

Theeuwes (2008) also found evidence for active inhibition when they cued the 

location of an upcoming distracter. This was found to reduce the effects of the 

distracter on the time required for target processing. They concluded that this was 

caused by active inhibition of the distracter location, which was cued 1500 ms 

earlier, the inhibitory mechanism being controlled by top-down settings.  
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Pylyshyn, Haladjian, King, and Reilly (2008) used a multiple object tracking task to 

yield evidence that non targets were inhibited if and only if they shared the criteria 

defining the target. The criterion in the multiple-objects tracking task being to track 

moving objects, they ascertained that non-targets were inhibited only if they were 

moving in the same plane. If they did not move, or if they moved in a different plane, 

they were not inhibited. In contrast even differently shaped targets were inhibited if 

they were moving.    

Alvarez and Oliva (2008, 2009) have a somewhat different view regarding how 

distracters are dealt with. They propose that features outside the focus of attention 

are represented as ‘ensemble features’, a statistical summary, which compensates for 

the fact that representations lack precision and detail when attention is reduced or 

withdrawn. This also suggests a processing and consequent inhibition of features 

outside the focus.   

The idea that inhibition is essentially a post-perceptual WM process is also 

substantiated by the fact that it takes time to develop. Attentional blink occurs at 

about 500 ms (Chun & Potter, 1995). Reaction times to targets at cued locations are 

stronger than those to uncued locations, but after 200 ms the reverse is true, and with 

inhibition of return, reaction times at uncued locations are stronger than those to cued 

locations (Maruff, Yucel, Danckert, Stuart, & Currie, 1999). The inhibitory effect of 

visual marking takes time to develop. In their original work, Watson and Humphreys 

(1997) found that the preview effect was much reduced when previews were given 

for durations less than 300 ms. Humphreys, Stalmann, and Olivers (2004) attempted 

to study the time course of visual marking. They compared probes presented at 200 

ms and at 800 ms after previews to find that the preview benefit was much reduced at 

200 ms. In fact, probes were more difficult to detect on old distracters than when 

they fell on the new distracters or neutral locations at 800 ms. In contrast, at 200 ms, 

detection of probes that fell on old distracters was facilitated as compared to when 

they appeared at neutral or new distracter locations. Braithwaite et al. (2007) have 

shown that in contrast to colour-grouping effects, which occur in the first 150 ms, 
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colour-based inhibition takes time to develop and was best evident with a preview 

time of 1000 ms.   

How behavioural data showing inhibition is implemented in the brain is crucial to 

our understanding the time course of inhibition. The basic fact to understand is that 

there is a relative lack of long range inhibitory projections in the neocortex, 

inhibitory activity of neurons being mostly local. Thus behavioural inhibition is 

actually represented as enhanced activity, i.e., excitation of neurons/ areas in the 

brain. The idea that behavioural inhibition is an expression of neural excitation is 

intriguing, but not really new. Indeed, it goes back to Descartes! fMRI studies clearly 

show enhanced activity in areas representing irrelevant information to be inhibited. 

One proposal is that inhibition is accompanied by the reentrant activity of long-range 

excitatory neurons which leads to more activity being recorded through fMRI in 

regions involving the to-be-ignored stimulus. This hypothesis may be termed 

‘directed inhibition’. fMRI studies have shown increased activation in brain regions 

associated with behavioural results showing inhibition in anticipation of distracters 

(Serences, Yantis, Culberson, & Awh, 2004), with negative priming (Wright et al., 

2006) and with the preview search procedure (Allen et al., 2008). Building on this, 

Herd, Banich, and O'Reilly (2006) have proposed that behavioural inhibition is 

‘generated’ by excitation at the neural level. In contrast to directed inhibition, 

however, they propose that inhibition is an emergent property that reflects increased 

competition between various areas representing different features. This competition 

is modulated by task relevant representations in PFC. Active maintenance in itself 

involves competition, which is manifested in behavior as inhibition. 

Many studies have shown the importance of the superior frontal sulcus and the 

intraparietal sulcus in visuo-spatial WM (e.g., Klingberg, 2006). Combining fMRI 

data and EEG recordings while a visuospatial task (reproducing sequential order of 

circles presented in a 4×4 grid) was performed, with a computational model, Edin, 

Klingberg, Stodberg, and Tegner (2007) have suggested a hierarchy in that stimuli 

(including distracters) enter the network primarily through the intraparietal sulcus, 

but directed strong activity from the superior frontal sulcus to the intraparietal sulcus 
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offers protection against distracters, and this is the dominant network activity 

underlying visuo-spatial WM maintenance. Such a hierarchical network fits well 

with the idea that activity in the reentrant connections is responsible for inhibition of 

distracting stimulation which is such a vital aspect of maintenance in WM. McNab 

and Klingberg (2008) found that fMRI recorded activity in the prefrontal cortex and 

the basal ganglia preceded the filtering of irrelevant information, and predicted the 

extent to which only relevant information is stored in the parietal areas. This activity 

was also related to individual differences in WM capacity. In line with previous 

studies, McNab, Leroux, Strand, Thorell, Bergman, and Klingberg (2008) identified 

the right parietal region and the right inferior frontal gyrus to be activated together 

among participants who performed three tasks assessing inhibition and two WM 

tasks. Again, this supports the idea of a large overlap between WM and inhibition.  

Considering the two processes of consolidation and inhibition together, the above 

physiological evidence suggests that the difference between the two is sequential. 

Initially, all features and objects are processed by the feed-forward mechanism 

presumably reflecting consolidation, but soon thereafter the inhibitory process kicks 

in and modulates the initial input. Eventually the object that emerges is a result of 

transactions between these bottom-up and top-down processes.     

SPOTS OF TIME: MEMORY STORES 

The percept, of course, persists beyond the time that it is actually present, as a 

rapidly decaying icon. So, what is the role of the icon in the arena where bottom-up 

and top-down processes are already competing? Does its influence simply decrease 

with time, or is it manipulated by the visual system. If the latter, does the visual 

system merely hold the information present in iconic memory as a template to match 

with the subsequent incoming stimulation, or does it continuously process and 

manipulate the information to facilitate further higher order processing?  



A Review of Literature 

 

PhD – The University of Edinburgh – 2009 

80 

Research on iconic memory really started with Sperling (1960). In one experiment, 

he presented three rows of four letters each to his participants for 50 ms. Participants 

recalled only about four letters. But when he presented a tone immediately after the 

array of letters, and asked the participants to report the top, middle, or bottom line, if 

respectively a high, medium, or low tone was presented, participants could still 

report about three out of the four letters shown. Since they did not know which row 

was to be reported, they must have had at least three letters from each row, i.e., nine 

items in their memory. When the interval between the offset of the array and the 

presentation of the cue was varied systematically, it was found that the partial report 

advantage steadily declined and disappeared at about 500 ms. Sperling (1963) varied 

the brightness of the blank field occurring before and after the stimulus array was 

presented, and found that if the stimulus array was preceded and succeeded by a dark 

field, the array could be retained for several seconds longer. This was evidence that 

people retained the array in a temporary store called ‘iconic memory’ (term coined 

by Neisser, 1967) heavily dependent on sensory stimulating conditions. 

It was generally assumed that partial report performance relied on the persistence of 

the stimulus as an icon after the stimulus itself was no longer physically present. As 

the icon decayed, the superiority of the partial report performance over whole report 

was also lost. For example, using a change detection task in their experiments which 

showed that a location cue during the inter-stimulus interval resulted in better 

performance as compared to performance after a blank inter-stimulus interval, 

Becker, Pashler, and Anstis (2000) inferred that the first display is encoded as an 

icon, which is completely wiped out by the second display, unless the information is 

shielded from overwriting by focussed attention. However, this ‘traditional’ 

simplistic view of iconic memory as a passively decaying storage mechanism was 

challenged almost as soon as the seminal experiments on iconic memory were 

reported by Sperling (1960, 1962, 1963).  

Averbach and Coriell (1961) used two rows of eight letters each followed by a bar as 

a location cue to indicate which letter was to be recalled by the subject. The accuracy 

of identification of the target letter decreased as the temporal interval between onset 
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of the letter array and cue increased, but it never really dropped to zero. Rather 

performance stabilized or reached a plateau at about 30%. Thus Averbach and 

Coriell (1961) suggested that even before the cue was presented, the subject 

transferred information from iconic memory to a more durable store through a 

process of ‘non-selective readout’.  

Erwin (1976) compared whether the icon was just a neural copy or echo of the 

stimulus, or a decaying non-functional one, or whether it reflects post sensory 

processes that organise and structure the information. His experiment compared a 

blank interval that allowed visual persistence, and a condition where persistence was 

substituted by the actual presence of the stimulus by cycling it with a noise mask for 

the duration that the visual persistence was estimated to last, and an immediate mask 

condition. He found that performance was best in the condition that allowed visual 

persistence, and thus concluded that processing of information continues after it is no 

longer present. The icon is a functional entity that interacts with and enables further 

processing of information into the STM. It is not just a copy of the stimulus that 

decays over time.      

Averbach and Coriell (1961) also used a mask to limit the amount of time the icon 

was available for the process of non-selective readout, and estimated the duration of 

the icon to be about 250 to 300 ms. Averbach and Sperling (1961) estimated that the 

icon may last for as long as 2 seconds when presented in dark fields, but less than 0.5 

seconds for light fields. However, this duration of iconic memory by the indirect 

method was found to be a gross overestimate when the more direct method of asking 

the subject to click to the offset of the visual image was used by Appelman (1980), to 

find that the icon lasted barely for 150 ms. Since a memory load of retaining 

distracter items affected the partial report estimate (Chow & Murdock, 1975; Sakitt 

& Appelman, 1978), but not the estimate from the direct click method (Appelman, 

1980), it further indicated that studies of iconic memory using the partial report 

procedure were measuring performance based on iconic as well as a more durable 

non-visible memory component to which some information is transferred even 

before the probe occurs.    
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Coltheart (1980) explicitly recognised three kinds of ‘persistences of vision’; visible/ 

phenomenological, neural, and informational. After a careful review of the empirical 

properties of each, he proposed that visible persistence was the experiential correlate 

of neural persistence in the early visual system, and these were distinct from 

informational persistence or what he called ‘iconic memory’ (in the sense that 

information was retained but not ‘visible’). He used dissociation logic for this 

distinction, based on evidence that stimulus intensity and duration had inverse effects 

on visible and neural persistence, but they had no effect on informational persistence. 

He suggested that iconic memory (as he defined it) or informational persistence was 

not a peripheral sensory store; rather it was evidence for a central and relatively late 

stage of information processing. The distinction between visible and informational 

persistence was empirically confirmed by Loftus and Irwin (1998) who found inverse 

duration effects on objective as well as subjective measures of visible persistence, 

but not partial report performance. Di Lollo and Dixon (1988) using long stimulus 

durations and bright stimuli, did find evidence for an inverse duration effect in partial 

report performance, but only under high spatial demand conditions. This can also be 

considered as support for the idea that iconic memory relies on two components, one 

of which is retinotopic, whereas the other is spatiotopic (Breitmeyer, Kropfl, & 

Julesz, 1982, Feldman, 1985). McRae, Butler, and Popiel, (1987) tested this idea 

using four consonants to be reported in a left to right order. Local masks were used 

for a retinotopic representation, a spatiotopic representation, or both, and had similar 

masking effects resulting in lowered performance as compared to no mask as well as 

a meta-contrast mask control conditions. Given the temporal elements in the study, 

the researchers concluded that a spatiotopic buffer follows a retinotopic buffer.  

Based on such evidence Smithson and Mollon (2006) asked whether a mask can 

really terminate an icon. They compared part report and whole report recall of an 

array of letters (<10ms) followed by a checkerboard mask (<20ms) after 0 or 100 ms. 

After the mask they presented a location cue (<20ms), asking the participants to 

recall the letter at the cued location.  Six cue delays ranging from 100 to 600 ms were 

used. Performance was at chance when the mask was presented immediately after the 
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array of letters for whole report as well as partial report. But, after the delayed mask 

(100 ms) there was a partial report advantage. Further, this advantage was greatest at 

the short cue delays, and gradually declined as the cue delays increased. Smithson 

and Mollon (2006) concluded that there is a second stage store which represents 

letters in terms of their higher level features, which the mask cannot penetrate, and 

hence the mask does not really terminate the icon.  

Despite the debate regarding the nature of iconic memory, there is agreement that as 

per the classic model of information processing (Broadbent, 1958, Murdock, 1974) 

iconic store feeds a more durable memory store. The distinction between a sensory 

store and a relatively more permanent store was elegantly demonstrated in a series of 

studies by Phillips (1974), and Phillips and Christie (1977). Phillips (1974) 

differentiated between sensory storage and short term storage using checkerboard 

patterns varying in complexity by 4 to 25 cells, each of which could be lit up 

individually. A given pattern was presented and then shown again after a while with 

either a change in one of the cells or no change at all. The subjects were to respond 

same or different. Initially, performance was almost perfect, but it declined sharply 

thereafter. The initial levels of performance were immune to the complexity of the 

patterns, but with increasing delays, performance was higher for less complex (e.g., 

4×4) patterns rather than more complex (e.g., 8×8) ones. There was also evidence 

that initial performance was dependent on a retinotopic trace, because when the 

second pattern was slightly shifted to the left or right rather than superimposed, the 

very high level of initial performance disappeared and performance reflected pattern 

complexity. Further, experiments using pattern masks showed that initial 

performance was affected more than delayed performance. The masks were 

checkerboard patterns comprising a 10×10 matrix with the same cell size as the test 

stimuli, and were presented so that there was a blank interval of 15 ms between 

pattern 1 and the mask and between the mask and pattern 2.  Performance tests were 

at delays of 40, 80, 120, 300, and 600 ms. Masking was fully effective at the delay of 

40 ms, even though the mask was barely detectable. Later, Phillips and Christie 

(1977) studied serial position effects for sequences of matrix patterns to conclude 
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that visual memory had two distinct components, a one item recency component, 

which was unaffected by the rate of presentation, and a stable component which 

improved with slower rates of presentation, and had significantly longer recognition 

time than the recency component. The single item recency effect was observed 

whether or not the items were masked, but it was obliterated when the stimulus 

pattern was followed by mental arithmetic. They specifically stated that the stable 

component is not activation of LTM, and explained the distinction between recency 

and the ‘stable component’ by postulating a distinction between processing and 

storage within visual memory, with the processor having its own specialized storage 

system, analogous to a computer. Taken together, these studies provided evidence for 

the separation of a large capacity but transient sensory store, highly sensitive to 

masking; and a limited capacity, but more durable short term store (or multiple such 

stores), relatively immune to masking.      

Once a distinct short term store for visual memory was identified, researchers veered 

towards ascertaining the capacity of this store. In an early experiment on immediate 

memory by Irwin and Andrews (1996), participants viewed a display containing 

letters in different colours. As they moved their eyes away, one of the letters was 

replaced by an asterisk. Thereafter, participants had to report either the colour of the 

letter, the letter itself, or both. Across set sizes from one to twelve, people could 

retain 3-4 items, and performed equally well whether both or single features were 

required. The stimuli used by Irwin and Andrews (1996) were verbal in nature. Luck 

and Vogel (1997) focussed exclusively on VWM using bars with different 

orientations as stimuli, combining them with colours and textures, to find that 

participants still encoded about four stimuli regardless of the number of features 

involved. In a subsequent extension of this study, Vogel et al. (2001) ruled out verbal 

coding by using shorter presentation times, difficult to name shapes, and a verbal 

load of two digits to be repeated throughout the trial. They found that subjects could 

still remember four objects, regardless of the number of features of which they were 

composed. Accuracy declined with increase in set size, but no forgetting was shown 

despite an increase in retention interval to 4900 ms. Cowan (2001) substantiated the 
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limited capacity of VWM when he asserted that the focus of attention could cope 

with only about four chunks of information of any kind.  

Wheeler and Treisman (2002) agreed that the capacity of VSTM is limited to 3-4 

objects but held that features were independently coded in feature maps, and binding 

simply chunked the features together. Further, they asserted that binding required 

focussed attention, and costs of binding are evident only when whole display probes 

are used. Providing a signal detection theory account of change detection, Wilken 

and Ma (2004) have also agreed to the 3-4 item limit, but hold that it is explained by 

increasing noise in the internal representations due to set size. Otherwise, participants 

probably code stimuli independently and in parallel.  

The fact that only 3-4 items can be consolidated into VWM (Luck & Vogel, 1997; 

Vogel et al., 2001) has been developed into the theory that only 3-4 ‘slots’ for 

discrete fixed resolution representations exist in VWM. Zhang and Luck (2008) 

assumed the probability of correct report to be a measure of capacity and standard 

error of mean (standard deviation divided by square root of N abbreviated in their 

paper as s.d) to be an independent measure of resolution. Using a recall test for 

coloured stimuli and set sizes of 1, 2, 3, and 6, they provided evidence that the 3 

items encoded into VWM were of fixed resolution and were encoded in an all or 

none fashion. Similar results were obtained for shapes as well. Further, Zhang and 

Luck (2009b) studied the colour representations after 1, 4, and 10 seconds to 

conclude that the representations also decayed in an all or none fashion, dying a 

‘sudden death’, in their words.  However, in both studies the results for resolution are 

based on no differences in the data. Second, the set sizes of 4 and 5 were not studied, 

neither were the time intervals between 4 and 10 seconds. Thus, it is hard to draw 

conclusions regarding the nature of representations for these set sizes and durations, 

and therefore to adequately test the ‘all or none’ nature of representations.    

Nevertheless, neuropsychological evidence for lateralized electrophysiological 

activity that represents encoding and maintenance in VWM also suggested that this 

activity reached an asymptote on an average around 4 objects, but the precise time 
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when the asymptote was reached showed individual differences, as high capacity 

individuals reached the plateau much later than low capacity individuals (Vogel & 

Machizawa, 2004). Evidence from fMRI investigations of the posterior parietal 

cortex has also supported VWM capacity of only about 4 objects (Todd & Marois, 

2004).  

An advance on these results is research showing that, whereas the inferior intra-

parietal sulcus represents objects at four different locations irrespective of 

complexity, the superior intraparietal sulcus and the lateral occipital complex track 

these objects held in the VSTM, and represent fewer than four objects as the 

complexity of the objects increases (Xu & Chun, 2006). Further, the intraparietal 

sulcus and the inferior gyrus are involved in selection and processing of both spatial 

as well as non spatial features, such as colour and orientation (Vossel, Weidner, 

Thiel, & Fink, 2009). Together, both these studies indicate that complexity of the 

stimuli is an important consideration in capacity estimates of processing in the 

parietal cortex. 

Not surprisingly, researchers who emphasise that complexity or information load is 

the critical factor determining capacity of VWM have posed a significant challenge 

to the view that there are 3-4 fixed slots in VWM. These researchers hold that VWM 

is a resource that can be flexibly allocated to more or less representations depending 

on the complexity of the objects and the precision of the representation required. 

Alvarez and Cavanagh (2004) studied a broad range of stimuli using the change 

detection paradigm to conclude that performance declined with increasing 

information load. Franconeri, Alvarez, and Enns (2007) reported that when precise 

selection was demanded, only 2-3 locations could be selected, but when the selection 

region could be coarser, 6-7 locations could be easily selected. In contrast to studies 

showing that participants can track a maximum of four objects, Alvarez and 

Franconeri (2007) found that at slower speeds it was possible to track up to eight 

objects, whereas it was possible to track only a single object at fast speeds. Curby 

and Gauthier (2007) tested whether perceptual expertise enhances the capacity of 

VWM. Using a change detection task with upright and inverted faces as stimuli, they 
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concluded that perceptual expertise in detecting upright faces did increase capacity. 

Makovski and Jiang (2008) compared VWM for simple and complex objects 

(defined in terms of goodness of figure) to find that visual search for embedded 

targets rather than distracters was faster, though this advantage diminished with 

increasing memory load. All these studies, however, studied within-category 

changes. Awh, Barton and Vogel (2007) compared within-category changes to cross-

category changes using Chinese characters and shaded cubes as stimuli. They found 

that for within-category changes, capacity estimates decreased with increasing 

complexity (a result similar to Alvarez & Cavanagh, 2004). However, complexity of 

the stimuli had no effect on cross-category changes. Scolari, Vogel, and Awh (2008) 

compared small (within-category) changes with big (cross-category) changes to find 

that the latter were more easily detected but capacity estimates still did not exceed 4 

items. They asserted that they had thus separately assessed VWM representations in 

terms of numbers and resolution. They concluded that perceptual expertise, having a 

greater effect on the detection of small changes and no effect on big changes, 

enhanced the resolution but not the number of representations in VWM. Franconeri, 

Lin, Pylyshyn, Fisher, and Enns (2008); and  Shim, Alvarez, and Jiang (2008) 

established that it is object crowding which accompanies increased speed that is 

responsible for lower performance in tracking multiple objects at fast speeds.  

Obviously then, this debate about capacity and complexity seems to be heading for 

some sort of solution by considering number of items to be distinct from their 

resolution.  

The view that out of the plethora of input, only 3-4 objects survive to enter VWM 

faces a more direct challenge by the evidence for larger capacity estimates in terms 

of number itself. Various studies have shown superior performance after a retro-cue 

than performance with no cues or with after cues (Griffin & Nobre, 2003; Landman, 

Spekreijse, & Lamme, 2003; Lepsien, Griffin, Devlin, & Nobre, 2005; Lepsien & 

Nobre, 2007; Makovski & Jiang, 2007; Makovski, Sussman, & Jiang, 2008). All of 

these studies have interpreted the result that the retro cue works by directing attention 

to the cued item, and thus enhancing its representation, making it resistant to 
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interference from subsequent probe displays, or protecting it from forgetting. Though 

the cue is usually presented after a time delay well beyond the usual period 

associated with iconic memory, none of these studies was designed to rule out the 

conclusion that performance after a retro cue benefitted from iconic memory. 

However, Sligte, Scholte, & Lamme (2008) used the retro cue paradigm with masks 

presented before the cues to conclude that before the emergence of four objects in 

memory there is an intermediate stage which they named ‘fragile VSTM’ with a 

capacity of at least ten objects. More importantly, they contend that this store is 

‘information based’ rather than retinotopic, and is thus distinct from iconic memory 

as well. This conclusion is based on their use of energy and pattern masks to disrupt 

retinotopic traces. Further, the retro-cue was presented much later than the duration 

that iconic memory is thought to last. Nevertheless they do acknowledge that 

performance of the participants might include a benefit from spatiotopic 

representation, in line with evidence from McRae et al. (1987). They also link this 

store to recurrent processing (and not feed forward sweep) in the brain which has 

been shown to be important for feature binding (Landman, Spekreijse, & Lamme, 

2003) as well as figure ground separation (Landman, Spekreijse, & Lamme, 2004). 

Using a mask to reveal effects 

As is manifest from the foregoing discussion, masking has often been a useful 

paradigm to differentiate the effects of iconic memory and VSTM on performance as 

well as to study the process of consolidation. Thus it was also used in this research 

for these purposes. Masking may be generally described as the effect of one visual 

stimulus on another. At least three different kinds of masks may be distinguished, 

tied to the effects they achieve; energy, pattern, object substitution.  

The use of a bright flash of light to impair reading an array of letters was first 

reported as early as the 19th nineteenth century by Baxt (1871). He also found that 

the number of reported letters increased in a linear fashion as the interval between 

the presentation of the items and the flash of light was increased.  This was replicated 

and extended as a complete study of masking by Crawford (1940, 1947) following 
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which backward masking was named as the ‘Crawford effect’. He used a circular 

pattern of light presented in foveal view for 524 ms as the mask, and a 10 ms flash of 

light as the target, presented before, during, and after the mask. The target was most 

easily detected when presented simultaneously with the mask. He also noted that the 

mask influenced the target till about 100ms after the presentation of the target.  

Pattern masking may be achieved by masking by noise or masking by structure 

(Breitmeyer & Ogmen, 2006, 2007). Kinsbourne and Warrington (1962) first 

reported masking by random dot patterns where there is no relation at all between the 

target and the mask. Many researchers assume it to be the archetype of masks. 

Perhaps this is why it is often used in various studies requiring masking but with 

little effect, except when the target stimulus is structurally similar. In contrast to 

noise masks, masking by structure involves varying degrees of resemblance between 

the target and masks in selected relevant dimensions, such as contours, colours, 

orientation, depth etc. Oyama, Watanabe, and Funakawa (1983) systematically 

investigated the effects of test-mask similarity on forward and backward masking 

over SOAs ranging from -100 to +100. They concluded that similarity yielded almost 

symmetrical forward and backward masking effects, but asymmetry in the masking 

effects maybe, and is often, caused by other factors.    

Object substitution masking is a late and new entrant to the field. It was first 

described by Di Lollo, Enns, and Rensink (2000). They asked the participants to 

detect a target in an array which was labelled by four surrounding dots. Whenever 

the four dots remained visible after the target had disappeared, participants were 

unable to report the target identity. They argued that the masking mechanism here is 

object substitution. When the target information is relayed by feedforward 

mechanisms to higher processing levels in the brain, a perceptual hypothesis is 

formed. When masking occurs, it is because reentrant processes in the brain are 

unable to confirm this hypothesis, because the target is substituted by the four dots. 

Some researchers suggest that the input from the mask obliterates the initial object 

token (Jiang & Chun, 2001), whereas others suggest that object files are updated 

rather than created new (Enns, 2002; Lleras & Moore, 2003; Moore & Enns, 2004). 
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There is no doubt, however, that top-down processing plays a part in this type of 

masking. Masking is greatly affected by expectancies set up through task 

instructions, and is specifically reduced if there are expectancies regarding the target 

location (Enns, 2004). Woodman and Luck (2003) provided support for this idea 

from their ERP study showing that the target is identified and triggers a shift of 

attention, but by the time attention shifts to the target, only four dots are visible and 

so behavioural detection performance decreases. Weidner, Shah, and Fink (2006) 

used fMRI to identify the primary visual cortex, higher visual areas, and the 

intraparietal sulcus as the areas that are activated in effective four-dot masking, 

confirming that it is a central, cognitive kind of masking. 

Comparing different kinds of masks, Jacewitz and Lehmann (1972) used energy and 

pattern masks to conclude that both affected memory performance for letters 

presented in a 3×3 matrix for 50 ms, though the pattern mask had a slightly greater 

effect. Letters and masks were presented to different eyes and yet interference was 

found. Following suggestions by Haber and Standing (1969), they concluded that at 

least a portion of iconic memory had a central rather than peripheral location. Turvey 

(1973) also explored the difference between different kinds of masking. An 

important feature of a brightness mask is the energy it contains. According to 

Bloch’s law, the effect it has is a multiplicative function of its brightness and 

duration. Hence if a flash of light is presented for 200 ms rather than 100 ms, it will 

be twice as effective. Turvey substantiated Bloch’s law for brightness masks. Also, a 

brightness mask was effective only if presented to the same eye as the target, 

suggesting that the mask interfered at the retinal level. In the case of pattern masking, 

however, presenting the mask to the same eye as the target, or to the other eye, made 

no difference. This suggests that the pattern mask affects processes beyond the point 

at which input from the two eyes is combined, i.e., at a central level. The crucial 

variable for the pattern mask was the interval between the target and the mask. The 

effect was additionally contingent on the target duration. Thus, the inference is that 

the onset-onset duration was the critical factor for the pattern mask.  



A Review of Literature 

 

PhD – The University of Edinburgh – 2009                             

91 

Bongartz and Scheerer (1976) used a backward mask specifically to interrupt the 

process of ‘naming’ which was assumed to follow the initial process of ‘selection’, 

which transferred information from the sensory store to the short term store. They 

used a partial report procedure with the target being 4 rows of 12 letters or numbers 

shown for 100 ms, and either a colour or a location cue of 50 ms. In the first 

experiment, the cue preceded and followed the target by inter-stimulus intervals 

ranging from -500 to +500 ms. Performance measured in terms of percent correct 

was better for location cues than for colour cues, but converged and reached an 

asymptote at +250 ms. This led to the conclusion that the selection process which 

transferred items from the sensory to the short term store was complete by 250 ms. 

The second experiment was conducted to test the effect of a backward mask on the 

‘naming’ process that enables the participants to report from the short term store, and 

which was presumably contingent on the completion of the initial selection process. 

The cue was presented 0, 150, and 300 ms after the target, and was followed by a 

pattern mask comprising mutilated letters and digits for 50 ms. The mask was 

presented 200, 300, 400, or 600 ms after the cue. Note that the lowest onset-onset 

target-mask interval was 300ms.  Results showed that the amount of masking 

depended on the cue-mask interval, rather than the target-mask interval, in keeping 

with the idea that the mask was affecting the second naming process rather than the 

initial selection process. They concluded that with a delay in presenting the mask, 

masking of a higher, more central, cognitive process was possible.  

Potter (1976) also postulated two distinct kinds of masking effects, perceptual and 

conceptual masking, the former affecting perceptual processes, while the latter affect 

conceptual processes, the assumption being that perceptual processes require the 

presence of the stimulus itself or the icon, whereas conceptual processes operate on 

the output of the perceptual processes and transfer information to a more permanent 

memory store. She tried to identify the stimulus exposure required for participants to 

identify a picture preceded and followed by a mask (a collage of random shapes and 

colours). A 120 ms exposure was sufficient for 80% recognition rate. She compared 

this with another experiment where a 113 ms exposure of sequentially presented 
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pictures secured a recognition rate of 11%, and with an earlier experiment (Potter & 

Levy, 1969) where the recognition rate was 11% for an exposure of 125 ms. She 

argued that 100 ms were enough for identification of a picture; and a mask 

comprising meaningless collage of shapes and colours had no effect on this process; 

but several hundred milliseconds more of processing was required before memory 

became immune to masking by a meaningful, conceptually similar picture that 

followed it in a sequence. Based on such evidence, Potter (1993) proposed a ‘very 

short term conceptual memory’ that was distinct from STM (comprising the 

phonological loop that permits rehearsal). She proposed that CSTM was a dynamic 

structure building process that was contingent on conceptual representations in LTM, 

and was in turn, crucial for transfer and retention of current information in LTM.  

Potter’s idea of conceptual masking was tested by Intraub (1984). Recognition 

memory for series of pictures each presented for 112 ms was tested, when the 1.5 sec 

inter-stimulus interval contained a blank field, a familiar repeating picture, a new 

picture, a new nonsense picture, or a new inverted picture. The maximum disruption 

of recognition performance occurred when the new pictures were used which showed 

objects which fell into the same super-ordinate category, such as people or foods, 

(though not exactly the same object), thus supporting the conceptual masking 

hypothesis. To compare perceptual and conceptual masking in a single experimental 

design, Loftus and Ginn (1984) presented a mask immediately after a stimulus 

picture or after a delay of 300 ms. In an attempt to specify the qualities that might 

affect perceptual and conceptual masking, they tested the effects of mask luminance 

and attention demand of a mask. Attention demand was operationalized as a noise 

mask (low demand) and a photo similar to the target picture, but changing on each 

trial (high demand). Results established a double dissociation. In the immediate mask 

condition, a brighter mask was more effective than a dim mask, but attention demand 

had no effect. Conversely, in the delayed mask condition, mask luminance had no 

effect, but the photo mask was more effective than a noise mask.   

Hollingworth and Henderson (2003) tested whether the inconsistent object advantage 

(the fact that an inconsistent object in a scene is better detected) had a conceptual 



A Review of Literature 

 

PhD – The University of Edinburgh – 2009                             

93 

locus or whether it derived from the short term memory of the context provided by 

the scene. Assuming that the pattern mask (comprising overlapping lines, curves and 

angles) interrupted subsequent perceptual processing of the scene but allowed 

conceptual processing to continue, whereas the conceptual mask (comprising a line 

drawing of a different scene)  interrupted both perceptual and conceptual processing, 

they compared if the two kinds of masks had a differential effect on inconsistent 

object advantage. The results were not different due to the two types of masks. They 

also contrasted the effect of the pattern mask when presented for 30 ms and 400 ms, 

thus allowing a greater time for conceptual processing; that too, had no differential 

effect on the detection of inconsistent vs. consistent objects. Thus they concluded 

that the inconsistent object advantage did not result from a conceptual locus, but was 

derived from the contextual information provided by short term memory for the 

scene.  

More recently, masks of the same type presented after different time intervals have 

been used to study the process of consolidation, i.e. the transfer of information into 

VWM. Woodman and Vogel (2005) used masks to separate the processes of 

consolidation and maintenance. They compared a consolidation-baseline condition 

with a consolidation-during-maintenance condition, hypothesizing that if 

consolidation and maintenance were drawing on the same resources, then 

performance would be poorer in the maintenance condition. However, the rate of 

consolidation remained the same in both conditions. Thus, they asserted that 

consolidation and maintenance are independent processes. Vogel et al. (2006) used 

masks at the locations of previously presented stimuli to study the rate of 

consolidation of coloured squares into VWM. They found the rate of consolidation to 

be about 50 ms per item and capacity limited to about 4 items.  

Indeed masks have been used to interrupt consolidation in WM beyond the visual 

domain. Saults and Cowan (2007) used both visual and auditory masks to study the 

central capacity of WM. They argued that if the storage limits of WM are defined by 

the focus of attention to be 3-4 items, then storage limits should not be modality 

specific, and should also apply to information from different modalities. Using a 
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change detection task, they presented simultaneously a six square visual array and a 

4 digit auditory array for 600 ms, followed by either visual or auditory masks after 0, 

400, or 600 ms. The duration of the mask was 600 ms and then a whole display probe 

followed after 3000 or 4000 ms. Overall, they found that bi-modal capacity did not 

exceed the unimodal capacity. In fact, it was slightly but not significantly lower than 

the unimodal capacity for visual items alone. Thus they concluded that the limit of 3-

4 items is applicable across domains. The mask presented at 0 ms (600 ms after 

stimulus onset) did yield lower capacity estimates, indicating that consolidation into 

WM was reduced by the presentation of the mask.  

Sligte et al. (2008) used an energy mask (a uniform, full screen, non-informational 

flash of light) to disrupt iconic storage, and both an energy mask and a pattern mask 

to disrupt VSTM. The paradigm they used was a combination of change detection 

and probe technique in that they presented a cue just after offset of the study display 

(iconic-cue), 1000 ms after offset of study display but immediately after a mask 

(retro-cue) or after onset of probe array (post-cue). They found that the energy mask 

significantly disrupted performance assessed with the iconic-cue, but had no effect 

with the retro-cue, whereas irrelevant pattern masks disrupted performance with the 

retro-cue. Nevertheless, this performance was much higher than the performance 

after the post-cue, which indicated the presence of a high capacity, ‘fragile VSTM’ 

between iconic memory and the ‘traditional’ more durable VSTM with a capacity of 

four items. 

In the experiments by Sligte et al. (2008) and indeed, in earlier work on perceptual 

and conceptual masking, the effects of the kind of mask and the timing of the mask 

are often confounded. Perhaps, it is more accurate to regard the perceptual-

conceptual distinction as a single bipolar continuum. In principle, any mask can and 

probably has both effects, but to different degrees. Energy masking is primarily 

sensory / perceptual, object substitution masking is largely conceptual, whereas 

different pattern masks may be placed at different points on this continuum. The 

mask itself is a multidimensional object and has various properties – luminance, 

similarity to the target, meaningfulness etc, any or all of which might affect 
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performance on the target. The basic assumption of the masking paradigm is that a 

target and mask compete for the resources required for the processing ongoing at that 

time. The perceptual and/or conceptual properties of the mask that have an effect are 

therefore critically contingent on the time at which the mask is presented, and 

ultimately on the processes that are taking place at that time.  

To fully appreciate the role of time in masking, it is also important to consider the 

various explanations for the masking effect. The very existence of the masking effect 

is paradoxical. If a target can be recognised when presented alone for less than 1 ms, 

why should it become unrecognizable simply because it is followed by a mask? How 

does the mask act backwards in time to affect the target?  

Traditionally, the interruption explanation was favoured for backward masking 

(Averbach & Coriell, 1961; Haber 1969, 1970; Sperling, 1960, 1963; Turvey, 1973). 

It was based on the evidence that the iconic image persisted well over 100 ms. But 

the image could not be recognized or reported from the iconic store, unless it was 

encoded/ consolidated. This further encoding took time. A mask could disrupt this 

process, and thus erase the icon at the initial stage, or if presented after a delay, 

prevent consolidation and read out. Physiologically, the mask interrupted a post 

sensory central process. It is on the basis of this explanation that a mask is used to 

study the speed or amount of consolidation into WM (e.g., Vogel et al., 2006; 

Woodman & Vogel, 2005, 2008; Zhang & Luck, 2008) 

The phenomenon of forward masking, however, is difficult to accommodate in the 

interruption account. So an alternative explanation, the ‘integration’ account, was 

proposed (Coltheart & Arthur, 1972; Di Lollo, 1980; Eriksen, 1980; Eriksen & 

Schultz, 1978; Felsten & Wasserman, 1980; Scheerer, 1973). This was based on 

evidence that the visual system lacks fine temporal resolution. Thus the target and 

the mask are treated as if they occur simultaneously. Masking occurs because of 

temporal integration of the two patterns in the visual cortex. More similar the 

patterns, easier is the integration process, and greater the masking effect. Sequential 

presentation at short SOAs encourages integration, but very long delays between the 
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target and the mask hamper integration. Physiologically, sensory and early visual 

processes underlying pattern recognition and the lack of temporal resolution in these 

processes was held to be the cause of masking.  

More recently, concomitant with technological advances in the measurement of 

processes in the brain, another explanation of masking which is an advance on both 

the interruption and integration account, has been put forth. This holds that masking 

interrupts the reentrant processes in the brain, not only when the mask is a four dot 

mask (Di Lollo et al., 2000), but also when it is a pattern mask (Enns & Oriet, 2007; 

Fahrenfort, Scholte, & Lamme, 2007). This view accepts that initial sensory 

processes are not sufficient for distinguishing objects and require confirmation by 

recurrent processes. The mask interrupts these recurrent processes or interferes with 

them because it competes with the resources required by the recurrent processes.  

Di Lollo et al. (2000) first proposed that interference with reentrant processes was 

the cause of four-dot masking. Enns and Oriet (2007) proposed that top-down factors 

in terms of goals and expectancies set up through task instructions affect reentrant 

processes before the separation of processing in the dorsal and ventral streams, for 

both these streams begin with using object representations. This speculative 

hypothesis was formulated on the basis of their study with pattern masks and target 

objects defined either by colours or by shapes, which showed that target-mask 

similarity on only task relevant features increased the masking effect; but if the 

features were irrelevant to the task, masking was not effective. Fahrenfort et al., 

(2007) also used a pattern mask and EEG measurements to determine what happens 

in the human visual cortex in masked as well as non masked conditions. Though 

extrastriate visual areas were activated early on in both conditions, showing that 

feed-forward processing was preserved, EEG derivatives associated with reentrant 

processing were absent in the masked condition. That masking competes for 

resources utilised by cognitive processes and can act as an interfering mechanism is 

also substantiated by physiological evidence showing that TMS interferes with visual 

processing and causes reduced performance similar to visual masking with the 
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maximum effect for SOAs of 80-100 ms (Amassian, Cracco, Maccabee, Cracco, 

Rudell, & Eberle, 1989; Kammer, 2007).  

In the present research, assuming that the timing of the mask is the crucial variable, a 

single type of mask was created to have both perceptual and conceptual masking 

properties. The mask was created by splitting each of the 36 stimuli used in the 

experiment into four parts, and then randomly splashing these 144 images on a 

rectangular area larger than the one occupied by the stimuli by 3 pixels on all sides. 

Thus the mask covered virtually the same area covered by the stimuli, and was 

identical in brightness and the hues used. It was also decided that the contents of the 

mask would be randomized for every trial, so that there is no relation whatsoever to 

the targets as well as the previously presented masks. If the contents of the backward 

mask are related to previously attended stimuli presented as a pre-mask, the 

backward mask is considerably less effective, an effect called repeated mask 

reduction (Drew & Vogel, 2008). 

This mask was presented immediately after the study display in one experiment, and 

after a delay of 300 ms in the other experiment, to assess its effect on performance. 

Experiment 8 essentially replicated experiments 1, 2, and 5 and established the 

baseline against which performance in the masking experiments was compared. It 

was hypothesized that the immediate mask in Experiment 9 would obliterate the 

effects of iconic memory in performance, and reduce the gap between the unchanged 

location and random locations conditions at the initial study-test interval of 100 ms. 

The delayed mask in Experiment 10 presented 300 ms after study-display offset was 

also hypothesized to reduce the gap between the unchanged and random locations 

conditions, but because it interfered with the processes of consolidation and 

inhibition happening at that time. These hypotheses, the experiments done to test 

them, and the results are discussed in detail in Chapter 7. 
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Entering the Storage Space 

Chapter 8 reports the final experiments done to test the factors attendant at the time 

of encoding in the results of the previous experiments. In Experiment 11, the 

exposure time of the study display was increased to test whether it would 

differentially affect performance at the short and long study-test intervals. Increasing 

the study-display duration should generally improve performance though Busey and 

Loftus (1994) and Loftus and Maclean (1999) have empirically shown that there is a 

threshold before performance can ‘liftoff’ and there is a duration at which it reaches 

an asymptote. Pashler (1988) found a small but significant increase in performance in 

a change detection paradigm studying memory for 10 letters as the study display was 

shown for 100, 300, and 500 ms, with the test display presented after 67 ms in each 

case. Liu and Jiang (2005) asked participants to remember objects in scene images to 

find that 250 ms allows only about one object to be retained in memory whereas 

about five objects and many more details about the scene could be remembered if 

participants were allowed to take as much time as they liked. In the latter condition 

the mean time taken by the participants was 16 seconds. The time based resource 

sharing model (Barrouillet, Bernardin, & Camos, 2004; Barrouillet, Bernardin, 

Portrat, Vergauwe, & Camos, 2007; Barrouillet & Camos, 2007) assumes that 

attention, a limited resource, is required for both processing and maintenance in WM. 

Even maintaining the goal set or task instruction while performing the processes 

required for task fulfilment can be attention demanding. The central bottleneck is 

serial and allows only one process at a time. Dual tasks can be successfully 

performed only by rapidly and frequently switching attention back and forth. Thus if 

there is no time constraint, all tasks can be performed with relative ease. Conversely, 

even simple tasks can become demanding if they are time limited. Cognitive load is 

thus determined by the duration of attention demanded. Portrat, Barrouillet, and 

Camos (2008) have shown that decay in WM is also time based. The model is not an 

alternative to established models of WM, it simply urges that time be considered as a 

factor in the deployment of central resources presumably required to complete any 

task. With regard to the present experiments, all this evidence predicts that increasing 
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the exposure durations would ensure better performance. Nevertheless, the primary 

motive for this manipulation was to study whether increasing the study-display 

duration would have any differential effect on the performance of the participants in 

the unchanged and randomized conditions at the different study-test intervals. The 

rationale and the associated hypotheses are given in Chapter 8. 

Another perceptual factor that might have influenced the results was configural 

encoding. The experiments with masks had demonstrated the effects of iconic 

memory, but it was desirable to further test the effect of disrupting configural factors 

at the time of encoding itself. Sequential presentation of stimuli has often been used 

with the logic that it prevents perceptual grouping and/or configural encoding (e.g., 

Alvarez & Cavanagh, 2008; Woodman & Luck, 2004). In so far as the participants’ 

performance is contingent on configural encoding, sequential presentation would 

affect performance. If performance is aided by configural encoding, as presumably it 

is in the unchanged locations condition, sequential presentation should disrupt 

performance. If performance is hindered by configural encoding, as it might be in the 

random locations condition then sequential presentation should improve 

performance. 

An important issue to consider is that sequential presentation also provides an 

additional code for remembering stimuli. Sequential viewing allows attention to be 

exclusively focussed on the object presented and this may lead to better performance. 

Yamamoto and Shelton (2009) investigated memory for room sized spatial layouts. 

Sequential viewing of objects in this context led to performance that was similar or 

superior to simultaneous viewing. This performance was maintained when viewing 

was directed sequentially, though objects were presented simultaneously. Thus, the 

conclusion was that sequential presentation gained from the deployment of focal 

attention to the locations of particular objects. On the other hand, Mackworth (1962) 

suggested that the functioning of attention in simultaneous and sequential 

presentation might favour simultaneous presentation because simultaneous 

presentation allows voluntary and flexible allocation of spatial attention, and if 

sufficient time is allowed, rescanning is also possible. In contrast, sequential 
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presentation imposes the order of encoding and precludes rescanning, particularly if 

the previous stimulus vanishes as the next one is presented. This would suggest that 

simultaneous presentation should result in superior performance as compared to 

sequential presentation when sequential presentation does not allow rescanning.     

Thus two experiments with different types of sequential presentation were designed. 

In Experiment 12, stimuli were presented one by one as the study display was 

gradually built up. In Experiment 13, the stimuli were presented one by one such that 

the first one vanished as the next was presented. Both experiments could be 

contrasted with the performance in Experiment 11, which used simultaneous 

presentation of stimuli.   

Empirically, distinctions in performance have not been easily or regularly obtained 

when stimulus presentation is directly contrasted in terms of simultaneous vs. 

sequential. In an early study, Igel and Harvey (1991) studied the accuracy of 

reconstruction of 1 to 10 locations presented simultaneously or sequentially, with 

similar results up to six locations. In the sequential condition errors increased 

gradually with an increase in set size. In the simultaneous condition, errors increased 

up to six locations, but thereafter there was no change in errors made, despite the 

stimuli increasing up to 10. They reasoned that stimuli up to six were encoded 

serially even in the simultaneous condition, but more stimuli afforded a chance of 

configural encoding and thus aided performance in the simultaneous condition. This 

was not possible in the sequential condition, and hence performance was poorer for 

the sequential condition after six stimuli.  

Zimmer, Speiser, and Seidler (2003) postulated that a rehearsal process termed 

‘spatial marking’ is required to maintain the link between spatial locations and 

temporal order in the Corsi block test. However, in their experiment, concurrent 

tapping reduced performance to the same extent whether memory was tested for 

locations or temporal order. Their explanation was that the sequential order was 

being remembered by the participants whether or not they were asked to do so. Dent 

and Smyth (2006) did find differential performance effects, but again differences 
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emerged only under high cognitive load with set sizes beyond capacity. They argued 

that up to 3 locations are remembered independently, whereas 6 to 10 locations are 

subjected to a configural representation. This being more difficult for sequential 

presentation, differences between mode of presentation favour simultaneous 

presentation at larger set sizes. Such evidence can also be interpreted to indicate that 

cognitive load which presumably increases with set size, is a significant factor in the 

difference between simultaneous and sequential presentation. Thus, it may be argued 

that the similarity of performance between simultaneous and sequential conditions is 

maintained by devoting more cognitive resources to the sequential task, but when 

these resources are taxed in a high cognitive load condition, performance suffers.  

Fisk and Sharp (2003) had first demonstrated the involvement of central executive in 

visuo-spatial memory using a running memory span task with visuo-spatial 

sequences. Specifically 4 to 10 cells were highlighted in a sequence on each trial, 

with the length unknown to the participant. Their task was to report the last four cells 

in serial order. Thus they needed to constantly update their memory, presumably 

utilising executive memory resources. This was confirmed by the finding that using 

random generation in a dual task procedure significantly reduced performance. 

However, in contrast to results in running memory span tasks with verbal sequences, 

the effect of random generation did not vary with increasing list length. In fact, it 

reduced the primacy effect by reducing the recall of early serial positions.   

Lecerf and De Ribaupierre (2005) studied the effect of simultaneous vs. sequential 

presentation using a 6×6 matrix, 2-7 cells of which were coloured white either 

simultaneously or sequentially in a random or ordered way. Three kinds of memory 

tests were used across experiments, though all required participants to say same or 

different. On different trials, one cell was displaced either in a whole display probe 

or a single cell probe, or the whole pattern was displaced, though the relative 

positions of the cells remained the same. Thus the experiments tested the role of 

extra-figural encoding, intra-figural pattern encoding, and spatial path encoding. 

Performance was best in the simultaneous condition whether a whole display probe 

or single cell probe was used, probably because while all three types of encoding are 
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possible with simultaneous presentation, sequential presentation does not allow 

pattern encoding. Ordered sequential presentation was better than random sequential 

presentation, as it allowed path encoding. Simultaneous presentation lost its 

advantage only in the third experiment when the whole display, displaced probe was 

used to test memory. Across experiments, performance decreased with increasing set 

size, and attention/perceptual factors were also clearly relevant.   

Rudkin, Pearson, and Logie (2007) studied the difference between simultaneous vs. 

sequential presentation testing performance on the Matrix Patterns and Corsi Block 

tests. They used the dual task procedure using tasks highly demanding of central 

executive resources, random digit generation, and random interval repetition, as the 

second task. Results showed greater involvement of executive resources in the 

sequential rather than simultaneous task performance. However, in these 

experiments, sequential presentation was linked with the requirement to recall 

sequential order, whereas simultaneous presentation did not require retention of 

serial order. Darling et al. (2009) directly compared simultaneous and sequential 

presentation and tested the memory for appearance or location of items with no 

requirement for the participants to retain serial order. Mode of presentation had no 

differential effect on performance, nor did it interact with any of the secondary tasks 

in the dual task conditions. Comparing the evidence from these two studies, it seems 

that it is not the mode of presentation per se, but the retention and retrieval of serial 

order which draws on executive resources.  

Mode of presentation, however, does seem to be more important in feature binding. 

Allen et al. (2006) reported significantly lower accuracy for remembering bindings 

with sequential as compared to simultaneous presentation, even with a single item 

probe which did not require reproduction of serial order. It is important to note that 

sequential presentation in their experiment comprised four stimuli, each presented for 

250 ms and each followed by a 250 ms blank interval, whereas simultaneous 

presentation comprised all four stimuli presented for 250 ms in all. Presumably, this 

was done because the rationale for the experiment was to study the fragility of 

bindings in comparison to single features. This paradigm, however, not only 
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increased the exposure for each separate stimulus, but the blank intervals might have 

made it more difficult to remember the stimuli as a whole pattern, whereas the whole 

pattern might have been remembered in the simultaneous presentation condition. 

Furthermore, the set size was well within capacity of VWM, and did not tax 

attentional resources.  

Fougnie and Marois (2009) tested memory for colour-shape bindings using a single 

probe and gave an attention demanding multiple object tracking task during the 

retention interval. In one experiment, the initial display presented all stimuli 

simultaneously, whereas in another experiment they were presented sequentially in 

the same location (at fixation). Greater interference from the tracking task was 

observed for the binding condition as compared to the single feature conditions in 

both experiments, but it was much more in the simultaneous presentation experiment 

than in the sequential presentation experiment. Note that the display comprising three 

items was shown for 400 ms, and the probe was given after 6800 ms (nearly 7 

seconds) later. 

As mentioned earlier, the experiments with sequential presentation (Experiments 12 

and 13) were done essentially to study the effect of disrupting the encoding of 

bindings on the pattern of results observed in the earlier experiments. In so far as 

performance was affected by configural encoding, it was expected that the pattern of 

results would differ in these experiments as compared to the baseline Experiment 11 

which used simultaneous presentation. The alternative hypotheses are clearly 

delineated in Chapter 8.   

Dwelling on the abode 

Given that the stimuli in experiments 12 and 13 were presented sequentially, they 

also yielded an opportunity to study serial position effects in the results. The serial 

position effect is the empirical observation that the initial and the final items 

presented in a series are better retrieved than the items in the middle positions. 
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Primacy refers to better retrieval of the first few items, whereas recency refers to 

better recall of the last few items in a series.  

The initial explanation for the primacy effect was that the first few items entered 

LTM and were retrieved from there, whereas the last few items showing the recency 

effect were retrieved from the STM. The primacy effect thus was held to be proof of 

the existence of LTM.  Hardly anybody disputes the actuality of LTM, nevertheless, 

alternative explanations of the primacy effect have been offered. Covert rehearsal is 

one process which might explain the primacy effect. When participants are asked to 

rehearse aloud, they produce the first few items more often than any others (Rundus, 

1971; Tan & Ward, 2000). Thus, the primacy effect is a kind of recency effect, in the 

sense that the participants represent the initial items to themselves instead of 

focussing on the last few items presented by the experimenter (Ward, Tan, & 

Bhatarah, 2009). In such conditions of rehearsal, a negative recency effect is also 

observed, whereby recall is weaker for the last few items as compared to the initial or 

middle items, and in contrast to the robust recency effect usually observed (Craik, 

Gardiner, & Watkins, 1970). Rehearsal helps to form a stable representation, but the 

last few items suffer because they were neither rehearsed (and so did not achieve a 

stable representation), nor can they be retrieved from primary memory. Note that 

rehearsal alone cannot explain why primacy and recency occur together.  

In contrast to these studies for verbal items, in the visuo-spatial domain, when 

immediate serial recall was assessed for sequentially presented dots, and eye 

movements were recorded as measures of overt rehearsal during presentation and 

afterwards during the retention interval, it was found that though rehearsal increased 

the overall recall performance, it had no differential effect on the serial position 

curves that were obtained, showing both primacy and recency effects (Tremblay, 

Saint-Aubin, & Jalbert, 2006). This study suggests that rehearsal may not be a 

significant factor in retention according to serial positions in the visuo-spatial 

domain.  
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Another factor influencing primacy is distinctiveness. The primacy effect is 

markedly reduced if the items are crowded, i.e., they are presented at a faster rate. 

This lack of primacy is explained by lack of distinctiveness of earlier items. In 

keeping with this idea, in the domain of VWM, Phillips and Christie (1977) noted 

that an increased rate of presentation had no effect on the single item recency effect 

they found, but it had a significant negative effect on the ‘stable component’ of the 

serial position curve, thus reducing the recall of the first few matrices in the series.   

The recency effect was initially cited as the strongest evidence for the existence of 

STM. The effect was exterminated by a filled delay of even a few seconds 

irrespective of whether the material presented during the delay was similar or 

different to the material to be remembered (Glanzer & Cunitz, 1966), and if 

instructions were to begin recall from the beginning of the list (Dalezman, 1976). 

Recency effect was found in amnesic patients who had virtually no LTM, (Baddeley 

& Warrington, 1970) and was absent in patients with reduced STM (Shallice & 

Warrington, 1970). Soon, however, studies began to emerge which showed that the 

recency effect was not limited to STM. Tzeng (1973) and Bjork and Whitten (1974) 

used a continuous distracter free recall paradigm to show that if the items to be 

recalled were each separated by a filled delay, the recency effect was not eradicated 

by presenting a filled delay afterwards, in contradiction to Glanzer and Cunitz 

(1966). Baddeley and Hitch (1977) found a recency effect extending over several 

weeks when they tested the recall of rugby players asking them the names of teams 

against whom they had played.  

It is now agreed that the recency effect can be manifest in any memory system and is 

a generally robust phenomenon (Baddeley, 1998, Nairne, 2002). Baddeley (2007) 

holds that the constant ratio rule describes the recency effect precisely, “Over a wide 

range of situations extending from seconds to years, the probability of recalling a 

given item is a constant function of two variables, the temporal distance between that 

item and its nearest competitor (∆t) divided by the interval between item presentation 

and test (t). This is termed the discrimination ratio, and has been demonstrated to 

hold constant under a very wide range of circumstances. With immediate recall, this 
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favours the more recent items, an advantage that is eroded as recall is delayed” 

(Baddeley, 2007, p.104). This was first proposed and tested as a hypothesis by Hitch, 

Rejman, and Turner (1980) as well as Glenberg et al. (1980) using the continuous 

distracter technique. Clearly, the recency effect does not occur simply because the 

interval between presentation and test is very short. Temporal distance from other 

competitors of the item is also a factor. But as McGeoch (1932) famously stated, 

time per se can have no effect, and so one needs to look closely at why recency 

occurs.  

Baddeley (1976) suggested that retrieval from memory involved two stages, 

accessing a general cluster of memory traces, and then discriminating among them. 

Longer delays might lead to greater trace decay, or more noise in the system, or 

‘general interference’ (Baddeley, 2007, p.109), and thus make specific memories less 

distinct. Though this suggests that the recency effect would vanish at longer delays, 

if this argument is reversed and stretched, it also implies that the recency effect might 

be obliterated at even very short delays if the interval between presentation and test 

is a filled interval and thus involves interference (whether due to similar or different 

material). This is exactly what Glanzer and Cunitz (1966) found. To a large extent, 

Baddeley’s explanation of the recency effect is in terms of interference at the time of 

storage and retrieval.  Both proactive interference from within-list previous items as 

well as retroactive interference from subsequent material presented are relevant 

factors. 

A more complex explanation was proposed by Baddeley and Hitch (1977, 1993).  

Besides decay and interference, it involves priming of presented items, limited 

capacity of activation, and hence strategic retrieval of most readily accessible items. 

To use an analogy, suppose one is lighting a series of candles. A sudden draught of 

air through the door blows them out. The task is to light the candles again. Once a 

candle is lit it is easier to light it again as compared to ones that were never lit; and 

out of all the candles which were lit, it is easiest to light the last one, because it still 

retains heat. Analogously, the process of encoding, results in the priming (activation) 

of those items, such that they are easier to reactivate. Since the total capacity of 
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activation within WM is limited, as each successive item is presented, the activation 

level of previous items is reduced. The recency effect occurs due to a retrieval 

strategy that uses the fact that the most recently presented items retain their level of 

activation, and are thus most easily accessible. The priming of encoded items is 

passive and automatic, but the recency effect is the result of an active strategy that 

may or may not be used.  

More advanced models to explain the serial position effect, and the results of various 

experimental manipulations, have also been proposed. The basic aim of these models 

has been to explain how the serial order of any sequence is encoded. Across models, 

rehearsal is conceptualized as repeated retrieval. This confluence is well-expressed in 

a recent review article as, “rehearsal is simply a controlled sequence of retrievals and 

re-encodings of items into the focus of attention” (Jonides, Lewis, Nee, Lustig, 

Berman, & Moore, 2008, p.206). Almost all models also agree on competitive 

queuing, the mechanism that dictates that the most strongly activated item is selected 

for retrieval, and is inhibited immediately thereafter to enable the retrieval of the next 

strongly activated item, and then slowly recovers from inhibition. This mechanism is 

also supported by the fact that participants often fail to remember a repeated item 

(Jahnke, 1969). In fact, suppressing previous responses seems to be a general process 

in sequential behaviour (Houghton & Tipper, 1996). It also makes logical sense 

because otherwise the participant would never get away from the first response, that 

being the most potent one! 

The difference between the models largely rests on how they conceptualise the items 

are encoded in the first place. Many experiments have confirmed distinctions 

between memory for items and memory for order (review by Marshuetz, 2005). 

Items are encoded faster than information about their order (McElree & Dosher, 

1993), recognising an item is much easier than recalling the next item when probed 

(Sternberg, 1967), and order information is lost faster than item information (Bjork 

& Healy, 1974). Irrelevant speech, articulatory suppression, and concurrent finger 

tapping impair order memory more than item memory, whereas temporal grouping 
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improves order memory more than item memory (Henson, Hartley, Burgess, Hitch & 

Flude, 2003).  

Returning to a comparison of models on this issue, many of them hold that items are 

encoded separately from the order in which they are presented. The order of the 

items is thus not a property of the items themselves, and order information is 

provided autonomously by an evolving context signal (Burgess & Hitch, 1999, 2005, 

2006), or a temporal signal from an oscillator (Brown, Preece, & Hulme, 2000), or 

by positional markers (Henson, 1998). In contrast, other models emphasize that order 

information is inherent in the items themselves, the first item being encoded most 

strongly, the second less so, the third even lesser, and so on, with the last item being 

with the weakest encoding strength. For instance, the primacy model (Page & Norris, 

1998) proposes that serial order is coded by associating each successive item with the 

first item presented, but with decreasing strength. This generates the primacy 

gradient, for the quality of information available for retrieval decreases across serial 

positions. In addition to competitive queuing, the primacy gradient is held to be 

sufficient to generate the serial position curve in simple forward recall. Farrell and 

Lewandowsky (2002) adhered to a similar idea, though in their recent C-SOB model, 

Lewandowsky and Farrell (2008) have included a context marker. Testing whether 

order memory is driven by a temporal signal, Farrell (2008) found that instructing 

participants to group the digits had similar effects on recall of order and recall of 

timing, the timing of recall mirrored the timing of input, and temporally isolated 

items were better recalled. The exception to the dichotomy between the models 

(which propose a separate source of order information and which say that it inheres 

in items themselves), is OSCAR (Brown et al., 2000) which uses the primacy 

gradient as well as an oscillator.  

Though the aim of these models has been to explain the retention of the serial order, 

many of them focus on, and are able to explain, only one part of the serial position 

curve, either the primacy or the recency part. One notable exception is the start end 

model (SEM) that incorporates both a primacy and recency gradient (Henson, 1998). 

SEM assumes that the position of each item in the list is dual coded by a start marker 
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and an end marker. The start marker is strongest at start of a sequence, and decreases 

in strength towards the end, resulting in the primacy gradient. The end marker is 

weakest in the beginning, but gradually grows in strength. Thus, just as an item in a 

plane is coded in relation to the length and breadth of the plane, the relative strengths 

of the start and end markers provide a two-dimensional code for each position in a 

sequence. Further, each item is coded as an episodic token in short term memory, all 

tokens being unordered. The ordering occurs at the time of retrieval with the help of 

positional cues. For any token to be retrieved successfully, it must win not only 

against other tokens but also against long term memory representations. 

Another recent model that uses evidence from the serial position curve to reiterate 

the dual store model insists on two memory components: an episodic contextual 

system with changing context, and an activation based short term memory buffer that 

drives the encoding of item-context associations (Davelaar, Goshen-Gottstein, 

Ashkenazi, Haarmann, & Usher, 2005; Davelaar, Usher, Haarmann, & Goshen-

Gottstein, 2008; Usher, Davelaar, Haarmann, & Goshen-Gottstein, 2008). Two key 

predictions of their model, validated through simulations as well as empirical studies 

are: first, dissociation between long term and short term recency due to proactive 

interference, and second, shift from recency to primacy with an increased rate of 

presentation. They hold that long term recency is due to contextual retrieval based 

mechanisms which are susceptible to proactive interference, whereas short term 

recency is the result of unloading the content of the activation buffer which is 

immune to proactive interference. The shift from recency to primacy with increased 

rate of presentation arises from the internal dynamics of the activation buffer. At 

slow rates of presentation, each new item accumulates enough activation for self-

support, and to overcome inhibition from previous items, so early items are more 

easily displaced, and recency ensues.  At faster rates of presentation, however, later 

items do not have enough activation to overcome competition from previous items 

and a primacy effect is shown with a corresponding lack of recency.   

All the models discussed heretofore have been proposed based on studies with verbal 

material. In comparison to the countless studies in the verbal domain, very few 
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researchers have explored whether similar mechanisms may be involved in the 

domain of visuo-spatial memory. In fact, the serial position effect itself is not always 

obtained with sequences of visually presented non-verbal items. Tydgat and Grainger 

(2009) explored the form of the serial position curve in the identification of letters, 

digits, and symbols, to find that the end position advantage was greater for letters and 

digits than for symbols. The multiple component view of WM that the phonological 

loop and the visuo-spatial sketchpad are independent systems accommodates the idea 

that different factors might operate across these domains in the retention of 

sequences. In fact, the visuo-spatial sketchpad has been further bifurcated into the 

visual and spatial systems with the tasks assessing each being respectively 

simultaneous and sequential (Della Sala, Gray, Baddeley, & Wilson 1999; Logie & 

Marchetti, 1991).  

Early on, Phillips and Christie (1977) tested recognition memory for sequences 

formed by lighting up randomly selected cells in a 4 × 4 matrix. A single item 

recency effect was obtained irrespective of whether participants were tested in a 

reversed presentation order of all stimulus sequences, or were probed by a single 

stimulus sequence; whether or not stimuli were masked; and for stimulus sequences 

of different lengths. This effect however, vanished when a simple five digit adding 

task followed the last item. They also found that an increase in presentation rate 

decreased performance in the early sequential positions (1-4), thus affecting the 

‘stable component’ of the serial position curve, but had no effect on the one item 

recency noted in the experiment. Notably, they did not observe a bow shaped serial 

position curve. Rather, they found a flat gradient for the earlier items, and one-item 

recency, probably because of the complexity of the stimuli used. 

Jones, Farrand, Stuart, and Morris (1995) did find bow-shaped serial position curves 

with a simpler task testing memory for the spatial position of a sequence of dots. For 

the recall test, all the spatial positions were displayed and the subject had to recall the 

sequence by pointing to the spatial positions. They also observed an increase in error 

with increasing list length. Avons (1998) noted the fact that serial report yielded 

serial position curves in Jones et al. (1995) study and applied the recall method to 
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6×6 block matrix patterns with half the cells filled. The patterns were presented 

sequentially, each for 1.55 secs with blank intervals of 0.46 secs. The test phase 

involved simultaneous presentation of all patterns, with the participant required to 

indicate the serial order in which the matrices had been presented. Results showed 

markedly bowed serial position curves, for sequences of 4, 5, and 6 matrices. 

Articulatory suppression, and concurrent tapping, reduced performance, but had no 

effect on the shape of the serial position curve. However, when tested using two-

choice item recognition, a flat gradient was obtained with no primacy or recency. 

Consequently, Avons (1998) concluded that the form of the serial position curve for 

visual patterns depended on the task used to assess memory. Ward, Avons, and 

Melling (2005) investigated item and order memory for sequences of seen unfamiliar 

faces and heard non-words. Results showed bowed serial position curves with faces 

as well as non-words, when the task was serial reconstruction of order. However, 

when a two-alternative forced choice test of item recognition was used, limited 

recency, no primacy, and above chance performance on all items was found. Since 

the results were similar across visual and auditory modalities but different for the 

tasks used, it was reiterated that serial position functions were task rather than 

modality dependent.  

Tremblay, Parmentier, Guerard, Nicholls and Jones (2006) used an order 

reconstruction task and in a single experiment with a repeated measures design, 

compared auditory-spatial, auditory-verbal, visual-spatial, and visual-verbal stimuli. 

Strikingly similar serial position curves with primacy as well as recency effect were 

obtained. In keeping with the modality effect, recency was stronger for auditory than 

visual presentation for spatial as well as verbal stimuli. Lewandowsky, Brown, and 

Thomas (2009) also used an unconstrained reconstruction task with consonants as 

stimuli (but with articulatory suppression, thus consonants being akin to recognizable 

shapes). They found a recency effect in immediate but not delayed reconstruction, 

and tendencies to recall temporally isolated items first, to recall in forward order, and 

for output orders that minimized travel through memory space. 



A Review of Literature 

 

PhD – The University of Edinburgh – 2009 

112 

Smyth, Hay, Hitch, and Horton (2005) presented sequences of faces followed by a 

complete set for reconstruction of the sequence in serial order. Analogous to studies 

with verbal material, they found a substantial primacy effect, one-item recency, 

errors mainly limited to adjacent serial positions, and a visual similarity effect. Serial 

position effects were found when faces had been seen for as little as 300 ms and after 

a 6-second retention interval filled with articulatory suppression. Articulatory 

suppression did not interact with the serial position effect or with the similarity 

effect. Thus, they reasoned that although serial position effects found with unfamiliar 

faces are not based on verbal encoding strategies, memory for serial order may be 

general across modalities. Hay, Smyth, Hitch, and Horton (2007) also confirmed that 

verbal encoding does not affect memory for faces, as verbal suppression did not have 

any effect on overall performance or the shape of the serial position curve. Hurlstone, 

Hitch, and Baddeley (2009) used evidence from transposition latencies to show that 

analogous to results obtained with verbal sequences; visuo-spatial sequences are also 

coded by a primacy gradient coupled with positional markers.  

More recently, Johnson and Miles (2009a, 2009b) have studied the serial position 

curve across modalities. Johnson and Miles (2009a) tested whether the serial position 

function is task, rather than modality dependent. The same non-word sequences, 

presented either visually or orally, tested with a two alternative forced choice 

paradigm, produced similar serial position functions. Forward testing produced a flat 

serial position function, while backward testing produced two-item recency in the 

absence of primacy. This result was found with and without articulatory suppression 

at the time of encoding. However, the observation of two-item recency contradicted 

the single-item recency observed for backward recognition testing of visual stimuli 

(Phillips & Christie, 1977). Johnson and Miles (2009b) compared lists of 

sequentially presented odours, unfamiliar faces, and pure tones. Employing single-

probe serial position recall and following a correction for a response bias, 

qualitatively different serial position functions were observed across stimuli. Odours 

produced an absence of serial position effects, unfamiliar faces produced both 

primacy and recency, and pure tones produced recency but not primacy. The authors 
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support the modular conceptualization of short-term memory, but also note that the 

results can be explained by the SIMPLE model on the basis of differences in 

distinctiveness across the various sense modalities (Brown, Neath, & Chater, 2007, 

2008).  

As is evident from above, in domains other than verbal memory, interest in memory 

for serial order is at the stage where similarities and differences in the serial position 

effects found in various domains and tasks have been noted, but formal models and 

theories explaining the effect, and making contrasting predictions to be tested, are yet 

to be proposed. Analogous to the ideas in the verbal domain one may speculate that 

serial order might inhere in the items themselves, or alternatively, serial order may be 

separate from item information, and might be controlled by a mechanism, which is 

agnostic with regard to the kind of material it operates on. Saito, Logie, Morita, and 

Law (2008) confirmed the differences between visual and verbal WM by showing 

differential impact of phonological similarity on the recall of Kanji characters, but 

obtained remarkably similar serial position curves in each domain. Thus they affirm 

that any memory system which stores serial order will generate a serial position 

curve.  

Burgess and Hitch (2006) speculate that the context/timing signal in their revised 

model is not specific to the verbal domain and works in the non-verbal domain as 

well. Significantly, Burgess and Hitch (2005, 2006) also extend their model to LTM, 

by emphasizing that the connection of each item to the context signal that provides 

order information in their model is capable not only of large decay over the short 

term, but also small incremental long term modification. This implies that the 

encoding of any item can influence connections to the context signal independently 

in short-term and long-term memory. In contrast to Henson (1998), who postulates 

that LTM affects only the retrieval stage, Burgess and Hitch (2005) posit a link with 

LTM at the time of encoding. Burgess and Hitch (2006) explicitly state that context 

signals are agnostic to the traditional distinction between STM and LTM, and play an 

important role in the transition of information from STM and LTM, in keeping with 

the idea of an episodic buffer (Baddeley, 2000).  



A Review of Literature 

 

PhD – The University of Edinburgh – 2009 

114 

The activation of LTM representations in the early process of binding is, however, a 

matter of debate.  Certainly, evidence regarding implicit processing of sensory input, 

especially in patients with unilateral spatial neglect, shows that LTM can affect 

current behaviour, without any ‘active’ processing in WM. Such patients indicate a 

preference for good over bad (e.g. an intact house rather than a burning one, an intact 

banknote rather than a torn one, or an intact wine glass rather than one with a broken 

rim). This preference is observed despite the fact that they cannot ‘see’ any 

differences between the images of the two objects, as that they are unaware of the 

stimuli in one-half of the perceptual field (Bisiach & Rusconi, 1990; Cantagallo & 

Della Sala, 1998; Marshall & Halligan, 1988).  

Nevertheless, most versions of the gateway model, including the multiple component 

model (Baddeley, 2000; Baddeley & Hitch, 1974) assume that sensory input cannot 

activate representations in LTM, except through WM. In contrast, Cowan (1995, 

1999, 2005) believes that the focus of attention, which would host bound objects, 

with a capacity limit of four items is simply an activated portion of LTM and thus is 

embedded within LTM. With a similar logic as Logie (1995), Cowan (2005) points 

out that sensory memory must have some contact with LTM before information can 

be passed on to the STM because some sort of categorization must precede encoding 

of information as objects. Second, even unattended, irrelevant information that enters 

sensory memory remains in an attenuated form (Cherry, 1953), possibly for 

comparison with new stimulation. If it is not attended, it cannot be a part of the short 

term store which is delimited by the focus of attention. Thus, it must be stored in 

LTM directly. This view implies that items would have activation levels according to 

the LTM representation that they evoke, and not necessarily according to their input 

sequence.    

Activated representations of LTM are one important source of information that may 

be manipulated in WM as a workspace (Logie, 1995, 2003; Logie & Della Sala, 

2005). Indeed, this model emphasizes that activation of a knowledge base occurs 

before stimulation reaches the workspace that is WM. Whereas the gateway model 

assumes that raw sensory information is ascribed meaning and interpretation by 
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processes in WM, the workspace model asserts that “the meaning that arises from 

object identification through perception becomes part of the mental representation 

held in WM” (Logie & Della Sala, 2005, p.97). Further processing in the workspace 

is primarily in terms of manipulation of these representations, presumably to fulfil 

the demands of the task at hand. Thus, the workspace model revises the textbook 

notion of WM as a gateway, to hold that the sensory input is perceived in the light of 

the long term knowledge base, and it is the result of this interface that enters WM. 

Yet, it is not as extreme a view as Cowans’ in amalgamating separate stores. Further, 

it emphasizes presentation sequence in the encoding of items. Indeed, Saito et al. 

(2008) explicitly propose that any system, which stores a serial order will generate a 

serial position curve. 

As mentioned at the beginning of this section, the two experiments with sequential 

presentation, Experiment 12 and 13, made it possible to explore serial position 

effects. Experiment 14 was a partial replication of Experiment 13. If no serial 

position effects are obtained, it would show that stimuli were processed in a manner 

similar to simultaneous presentation, with the participants either remembering the 

whole pattern with the sequential presentation, or focussing on a selected few one by 

one in simultaneous presentation. If only a primacy effect is shown, rehearsal would 

be an adequate explanation. If only the recency effect is shown, it would imply that 

the stimuli in the beginning of the sequence are overwritten by the last or last few 

stimuli. If both primacy and recency are shown, it would show that stimuli are 

activated and encoded in the context of their serial position in a sequence. This 

would be important considering that automatic, instantaneous bindings are usually 

considered transient and extremely fragile representations. In contrast, activation in a 

context would suggest links to more stable representations, in a way completing the 

journey of stimuli that started from input as a multidimensional representation, and 

reiterating the emergence of a coherent stable object.  
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RECAPITULATION   

As a recap of the debates and key points that emerge from the foregoing review of 

literature, consider the following: 

1. At the physiological level, there is a discernible shift in the conceptualization 

of binding, from an instantaneous but transient integration of features reliant 

on synchrony or conjunctively coded neurons, to a process that is initiated by 

feed-forward processes, but is heavily contingent on recurrent processes.   

2. On the psychological plane, there is a debate regarding the role of bottom-up 

and top-down factors in the process of binding, with some theorists 

emphasizing the role of the different features in binding, particularly location, 

whilst others propose that the relevance of features to task goals is the factor 

of overriding importance. This inevitably implies a guiding role for Working 

Memory as it is the arena for online processing to achieve extant goals.    

3. The role of attention in the binding process is also a contentious issue, with 

some researchers holding that attention has no special role in binding, while 

others proposing that it is the major factor in binding. The review indicates 

that attention itself is of many kinds, and these myriad types may have 

different roles to play in the process of binding. 

4. Two ongoing processes, consolidation and inhibition, are seemingly 

important in the process of binding. The relative importance of each process 

remains to be assessed. More importantly, it is important to investigate the 

nature of these processes by studying the extent of their reliance on 

representations in memory. 

5. It is also important to consider the role of stored representations in the 

process of binding, particularly those in iconic memory as well as those in 

VSTM. It is of primary interest to assess whether the transfer of information 

from the iconic register to VSTM happens in an all or none fashion, or if it is 
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a selective process, based on transfer of relevant features and ignoring the 

irrelevant ones.        

To preview the experiments to be reported in this work, Chapter 4 reports the initial 

pilot Experiment 1 which studied the effect of unchanged and random locations on 

detection of shape-colour bindings. The study-test intervals used were 0, 200, 1500, 

2800, and 4100 ms. Chapter 5 reports Experiments, 2, 3, and 4, which studied the 

effects of randomizing location, shape, and colour respectively on detection of shape-

colour, location-colour, and location-shape bindings for six study-test intervals 

ranging from 0 – 2500 ms, changing in steps of 500 ms. Chapter 6 reports 

Experiments 5, 6, and 7 which differed from 2, 3, and 4 only in that the study-test 

intervals were presented in a random order rather than in blocks as they were in 

Experiments 2, 3, and 4. Chapter 7 reports Experiments 8, 9, and 10, Experiment 8 

being a replication of experiments 1, 2, and 5 in that it tested the effect of 

randomizing locations on the detection of shape-colour bindings for study-test 

intervals ranging from 0 to 2500 ms, but all conditions in the experiment were 

randomly mixed and presented to the participants. It was also the baseline 

experiment for Experiment 9, which used an immediate mask after the study display, 

and Experiment 10, which used a delayed mask 300 ms after the study display. 

Chapter 8 reports Experiments 11, 12, 13, and 14. Experiment 11 tested the effect of 

increasing the duration of the study display with simultaneous presentation of 

stimuli, on the detection of shape-colour bindings for the study-test intervals of 0 and 

2000 ms, whilst locations were unchanged and randomized. Experiments 12 and 13 

differed from Experiment 11 only in that they used sequential presentation, the study 

display being gradually built up as the items were presented one by one in 

Experiment 12, while in Experiment 13, the sequential presentation was such that the 

first item vanished as the next one was presented. Experiment 14 was a partial 

replication of Experiment 13. 
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CHAPTER 3 

METHODOLOGICAL CONSIDERATIONS 

THE TASK: SWAP DETECTION 

Myriad methods have been used to assess the process of binding. Researchers aiming 

to uncover the physiological bases of the process of binding use methods such as 

EEGs, MEGs, fMRI, and PET scans to study binding. Those who seek to understand 

binding at the molar level of cognitive behaviour and focus on the factors affecting 

this process have often used variants of change detection as the experimental task.   

The change detection task presents two visual displays to the participant who has to 

decide whether there is a change in the two displays. The first is the study display, 

which the participants have to memorise. In the intervening period either a masking 

or blank display of varying study-test intervals is presented. Then the second display, 

i.e., the test display is presented, which is the same as the first one, or slightly 

different.  The difference happens to the target stimuli, and the rest are known as the 

distracters. The varieties of this archetypal description and their implications have 

been extensively reviewed by Rensink (2002).  

Hyun, Woodman, Vogel, Hollingworth, and Luck (2009) have suggested that the 

detection of difference in a change detection task which requires comparison and 

response to arrays is similar to a visual search task that requires the detection of a 

target defined by a simple feature among many distracters. They contend that the 

detection of change is related to overt and covert shifts of attention analogous to 

what happens in target detection in visual search tasks. However, the detection of 

change is not directly related to the manual response, the way a single feature in a 

visual search task is related to the manual response. They propose that a limited 

capacity intervening process of ‘consideration’ occurs before the manual response 

can be given in a change detection task, and the response is consequently delayed.  
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Nevertheless, it needs to be recognised that the change detection task requires not 

only the formation of mental representations, but also the maintenance or storage of 

these representations across time so that they can be compared in successive frames. 

The task is a perceptual as well as a memory task, and in this sense, particularly 

suited to the present research, for it yields a single dependent measure of the 

differences between these two processes. Simply by manipulating the study-test 

interval one can change it from a test of perception to a test of memory. 

Change detection, though, provides only the general rubric for the task used in the 

present research.  Generally, the difference in the change detection task, if it occurs, 

may be in terms of the addition of a new stimulus, deletion of an old one, or a swap 

in the already presented stimuli. The present research uses only the last kind of 

change, a swap between two stimuli. This task was introduced by Wheeler and 

Treisman (2002) specifically to study bindings. It is not possible to perform this task 

by remembering which features were presented, for all the same features appear in 

the study as well as the test display. It is essential to remember how the features were 

combined to find which ones swapped. Alvarez and Thompson (2009) have used the 

term ‘feature switch detection’ to describe this task. Their work has also shown that 

though this task underestimates the binding capacity of VWM, it is an efficient 

paradigm for studying the factors affecting the fragile nature of bindings.  

The stimuli in the present research are defined by three features: location, colour, and 

shape. Three features were necessary so that one feature could either remain 

unchanged or rendered irrelevant through randomization, whilst the binding between 

the other two was swapped on the test trials, to be detected by the participant. The 

unchanged and randomized conditions were to be compared to study how far the 

relevance of this feature affected the detection of swaps between the other two 

features.  

The operational problem was how to design a task that would ‘break off’ one of these 

elements to study the link or ‘binding’ between the other two. One solution could 

have been to hold this element constant. For example, presenting various shapes in 
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various locations, and swapping any two, whilst keeping the colour of all the stimuli 

unchanged. Indeed this has been the procedure followed by many researchers in the 

field (e.g., Vogel et al., 2001; Wheeler & Treisman, 2002). However, it is 

questionable how far this manipulation prevents the inclusion of the irrelevant 

feature in the bound representation on each trial. If a feature is present constantly, it 

can still function as an informative cue. In fact, other features may be accessed 

through this feature. On the other hand, it may also block the effect of other features. 

In the literature on conditioning, following Rescorla (1967), it is well established that 

the way to make a stimulus truly irrelevant and non-informative, is to randomize it. 

This idea was applied to the design of the present experiments by randomizing one 

feature between the study and test displays to render it non-informative, while testing 

memory for the combinations of the remaining two features of each object in the 

array. Using the swap detection task, location was randomized between the study and 

the test display with memory tested for the colour-shape combinations in the study 

display. Analogously, shape was randomized to study the link between location and 

colour, and colour was randomized to study the link between shape and location.  

The task in the randomized condition used in the present research is a further variant 

of the feature swap detection task in the sense that in the test display, not only does 

the target change, but the distracters also change. The task becomes even more 

difficult, for participants have to decide whether there is a change in the binding of 

two features, when the third feature also changes. They have to ignore the changes in 

the one feature, and focus on finding the swap in the other two. This presumably 

involves a more demanding and central cognitive process in which the subject has to 

consider each of the stimuli in the test array, and compare whether the binding is the 

same as for the ones he holds in his memory. As such it is more like a test of 

recognition, the only difference being, that in this case, the correct response is 

recognising not what has been seen before, but what has not been seen before. Figure 

3.1 shows the swap detection task as it appears to the participant in the randomized 

location condition.  
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Figure 3.1Figure 3.1Figure 3.1Figure 3.1    
An example of the swap detection task An example of the swap detection task An example of the swap detection task An example of the swap detection task ((((randomized location conditionrandomized location conditionrandomized location conditionrandomized location condition))))    

Same

Different

STUDY

TEST

INTERVAL

 

ARTICULATORY SUPPRESSION  

To get a relatively pure assessment of VWM, most researchers give the participants 

some verbal load whilst they perform a visual task (e.g., Allen et al., 2009; Zhang & 

Luck, 2008). Despite that Treisman and Zhang (2006) found that articulatory 

suppression has little differential effect on memory for shape and colour bindings at 

100 and 900 ms, it was decided to use articulatory suppression in the present 

research. This was because even longer study-test intervals than Treisman and Zhang 

(2006) were being used. Further, the stimuli were nameable, being a combination of 

geometrical shapes in easily recognizable colours. Due to the relative ease of coding 

such stimuli in linguistic terms, it was argued that participants might try to remember 

those using verbal codes, particularly in the conditions with longer study-test 
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intervals. To preclude such effects, articulatory suppression (saying ‘the’ repeatedly 

and rapidly) was used from fixation until after the response was given in all 

conditions. Studies show that even the repetition of a single item disrupts verbal 

coding of visual material, and more complex manipulations, such as increasing the 

load to several items, are not necessarily more effective (reviewed by Baddeley, 

1986).   

SIX STIMULI 

The general consensus regarding the capacity of VWM is in the vicinity of 3-4 items 

(Cowan, 2005, 2009; Luck & Vogel, 1997; Vogel et al., 2001; Wheeler & Treisman, 

2002; Zhang & Luck, 2008). Jiang et al. (2000) used a set size of eight, i.e., they 

presented eight stimuli with the response accuracy being about 74%. But they did not 

study memory for bindings. A perusal of Wheeler and Treisman, (2002) showed that, 

with a whole display that randomized location at test, and with set sizes varying from 

2 to 6, they obtained 70% correct responses for the binding condition in one 

experiment, and 82% in another. It was decided to use six stimuli in the present 

research to avoid ceiling effects and make the experimental task difficult enough to 

ensure adequate variability in the performance of the participants, and yet to get 

performance above chance levels. 

APPARATUS 

On each trial, displays consisted of six stimuli created by randomly combining six 

shapes and six colours, placed within an imaginary 3×4 grid subtending 6.1º × 7.8º 

vertically and horizontally. Each stimulus subtended 1.6º×1.7º of visual angle. All 

stimuli were displayed on a grey background on a 43 cm (41 cm viewable) computer 

screen in a room lit by overhead lighting. Participants viewed these stimuli from an 

unconstrained distance of approximately 1 metre and could move their eyes freely 

during the task.  
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The experiments were designed using E Prime software (Psychology Software Tools, 

2002). Responses were collected through a response box. Participants reported if 

there was any change from the initial to the test display by pressing the key to the 

extreme left for ‘same’ and the key to the extreme right for ‘different’. They used the 

index fingers of both hands, pressing ‘same’ with the left hand, and ‘different’ with 

the right hand. Buttons were not counterbalanced to avoid spatial conflict and 

because accuracy of response was the dependent variable anyway.  

PROCEDURE 

All participants were students of University of Edinburgh. They all reported normal 

colour vision and normal or corrected to normal visual acuity. Though informed 

consent was obtained from them, they were naïve to the experimental hypotheses. 

They came on two successive days at roughly the same time of the day for the two 

experimental sessions (except for Experiments 8, 9, 10 and 14 which were done in 

single sessions). First of all, they read through a detailed description of the study 

presented on the computer monitor. They were informed that they could pause any 

time between the trials simply by not pressing any key to move to the study display 

from the fixation screen. They were also told that change would occur on 50% trials. 

Participants were asked to aim for maximum possible accuracy, without any regard 

to speed of response.  

Then they practised each experimental condition. There were a total of 40 practice 

trials in each session of Experiment 1 and 48 in all subsequent experiments. 

Participants could ask questions anytime, the experimenter being present throughout 

the study. Thereafter the actual trials commenced. Two small breaks were enforced 

in each experimental session, though the participants could take rest pauses at their 

own convenience as well. At the conclusion of each session, participants wrote a 

retrospective report describing any strategies/methods used to hold the relevant 

features together in their mind. They were fully debriefed at the end of the 
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experiment. The variations from this general procedure are indicated as each 

experiment is detailed in the following chapters. 

TRANSFORMATION OF SCORES AND STATISTICAL ANALYSES  

Accuracy of response being the dependent variable, scores were transformed into d-

primes for individual subjects. Hits were defined as a response of ‘different’ on the 

trials where a swap occurred. False alarms were defined as a response of ‘different’ 

when there was no change in the two displays. Following convention, hits of 1 and 

false alarms of 0 were converted using the standard method of subtracting 1/(2N) 

from a hit rate of 1 and adding 1/(2N) to a false alarm rate of 0, before d-prime and 

beta were calculated. However, these were rare occurrences.  

Beta was also calculated and is reported in the appendices. In all experiments, there 

was a bias to respond ‘Same’ which varied in degree with the study-test intervals, 

rendering A’ inaccurate as a measure of sensitivity. In all analyses in this thesis, d-

prime is used, as it takes account of bias, and is a pure measure of sensitivity.  

A new sample of participants was used in each of the experiments. The samples 

being drawn from a normally distributed population based on random independent 

sampling, Analysis of Variance was the statistical technique used for analysing the 

results. There were no gross violations of normality in the data for any of the 

experiments, except for outliers in a couple of experiments, which were not deleted. 

Where sphericity was violated as indicated by a significant Mauchly’s test, F values 

with Greenhouse-Geisser correction applied to the degrees of freedom are reported, 

though in no case did this lead to a different conclusion than when sphericity was 

assumed. For all statistical tests, probabilities less than .001 are reported as .001. 

Partial η2 is reported as a measure of effect size. It was chosen over other measures 

because the successive experiments in this thesis reflect changes to the basic 

paradigm by using additional variables. In such a scenario, partial η2 is 

recommended as an easily understandable measure of comparisons of effect sizes 
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across experiments (Cohen, 1973, Levine & Hullett, 2002). All relevant tables appear 

as Appendices A, B, C, D, and E, respectively for Chapters 4, 5, 6, 7, and 8. 

To enable easy comparison across experiments, all graphs are drawn to the same 

scale on the y-axis, expressing d-primes from 0 to 4, even though in a few 

experiments the scores of the participants have a lower range. However, the results of 

serial position analyses in Chapter 8 are shown with the y-axis expressing d-prime 

from 0 to 2.5 to depict the serial position effects with greater clarity. The error bars 

in all graphs represent ±1 standard error of the respective means.

 

 



Experiment 1 

 

PhD – The University of Edinburgh – 2009                             

127 

CHAPTER 4 

EXPERIMENT 1 

 

Among the three features defining the stimuli in the present work, location, colour 

and shape, it seemed logical to use location as a starting point, for it is ascribed a 

special status by many different researchers (Treisman & Gelade, 1980; Moore & 

Egeth, 1998; Wolfe, 1994; Zhang & Luck, 2009a). Not only is it held to be the basis 

of binding of other features (Kahneman et al., 1992; Treisman, 1996, 1998, 2006), 

but it is also processed in the dorsal stream, which allows faster and relatively more 

automatic processing as compared to the ventral stream processing other features 

(Ungerleider & Mishkin, 1982; Vecera & Palmer, 2006; Velichkovsky, 1982, 2007).  

Location is such an overwhelming cue for encoding stimuli and their features, that it 

is invariably used if present (Jiang et al., 2000; Hollingworth, 2007; Mitroff & 

Alvarez, 2007; Richard, Luck, & Hollingworth, 2008; Van der Sigchel et al., 2007; 

Wyble et al., 2009). Even when the stimuli vanish, location aids retinotopic as well 

as spatiotopic representation of information in iconic memory (Breitmeyer et al., 

1982; Feldman, 1985; McRae et al., 1987; Sligte et al., 2008). 

In the domain of visual perception, the feature integration theory (Treisman & 

Gelade, 1980; Treisman & Sato, 1990) holds that, in contrast to other stimulus 

properties, location plays a key role in binding. According to the theory, while basic 

visual features are detected relatively automatically, participants cannot know which 

of these features go together unless attention is focused on particular locations. 

Treisman and Gelade (1980) noted that directing attention to a point in space 

precedes the identification of information at that location. This leads to the 

conclusion that focusing attention on a particular spatial location allows the features 

at that location to be bound together so that an item can be identified. Empirical 
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research supports the idea that location is important in feature binding in perception 

(Fahle & Koch, 1995; Keele et al., 1988).  

However, the significance of locations may prevail only in the initial identification of 

the stimulus or its features. Once established, the representations can become 

independent of location. There is clear evidence that when locations are not crucial 

for task performance, representations in VSTM do not necessarily include or rely on 

information regarding absolute locations. Indeed this is one fact that serves to 

distinguish VSTM from iconic memory. Phillips (1974) showed that change 

detection performance for displays of matrix patterns was enhanced when test 

displays were presented at the same retinal location as the sample display at short 

study-test intervals. However, the results also suggested that these representations in 

iconic memory are short lived, whereas performance over longer study-test intervals 

which relied on VSTM representations did not benefit from constancy in location 

between study and test. 

Irwin (1991) investigated trans-saccadic integration using patterns of dots. He 

compared three experimental conditions. In the saccade condition, two patterns were 

presented in the same location, but were viewed in separate fixations, i.e., the 

participant was instructed to move his eyes between fixations. In the retinal + spatial 

condition, patterns were presented in the same location whilst the subject maintained 

fixation. In the no overlap condition, the patterns were presented in different 

locations with no retinal or spatial overlap, with the subject maintaining fixation at 

the location of the second pattern. The assumption was that the retinal + spatial 

condition would engage sensory memory, whereas the no overlap condition would 

rely on VSTM. He found that the pattern of performance in the saccade condition 

was similar to the no overlap condition, and thus concluded that trans-saccadic 

integration relied on conceptual, diffuse, capacity limited, short term memory store. 

Interestingly, he also noted an initial rise in performance in the no overlap condition 

in two experiments, and attributed it to the idea that it took a while to build a durable 

code in VSTM, i.e., consolidation of the first pattern took a while. This rise was also 

observed in the saccade condition, particularly when the second pattern was 
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displaced relative to the first. He did not consider why such an increase was not 

found in the retinal + spatial condition, where it would have been further augmented 

by the patterns being presented at the same location. Irwin (1992) showed that the 

identities and not the positions of items in an array filled with letters of the alphabet 

were important for trans-saccadic memory, further substantiating that trans-saccadic 

memory or VSTM was object rather than location dependent.  

Jiang et al. (2000) used a change detection task where the participants had to detect 

changes in colour, or in shape, or in location. They found that the global spatial 

configuration was important for all these detections, and thus concluded that VSTM 

stores relational information. They also proposed that remembering item locations in 

relation to each other plays an integral role in the memory for other features such as 

colour, implying that location was in some sense more important than other features. 

Disrupting the spatial layout interfered with retrieval of location as well as colour 

and shape, though disruption of the pattern of colours had no effect on memory for 

locations. The complexity of the global configuration apparently has no effect on 

performance. Alvarez and Oliva (2007) derived an index of spatial regularity and 

confirmed that change detection was easier when the change altered spatial 

regularity, than when it did not, though the overall level of spatial regularity in any 

one display had no effect on probability of change detection. Note however, that both 

these studies using change detection, also addressed changes in single features, and 

did not study changes in bindings.  

Yet, using real objects as stimuli in a change detection task with 900 ms between the 

study and the probe display, Hollingworth (2007) reported better performance when 

the object remained in the exact same position. However, if all the other objects 

changed their relative spatial relationships, this same position advantage for the 

target was lost, indicating that the map of the visual space as a whole is a critical 

factor in the memory for objects even at 900 ms. The importance of location for 

bindings in VSTM has been established not only for objects placed in a two-

dimensional single plane, but also when they are placed in 3-D surfaces. A greater 

number of objects could be held in VSTM when they were placed in two different 
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3D surfaces (either vertical or horizontal) than in a single plane. This advantage was 

evident, however, only when participants had to bind which colour appeared where. 

When the colour-location binding was not required, and participants were to 

remember only colours, no benefit accrued from the extra spatial dimension. In other 

words, the extra dimension, being germane to locations, was important for the 

response only when locations were a relevant feature in the memory of bindings (Xu 

& Nakayama, 2007).  

This circuitous evidence allows the inference that VWM is not influenced by 

absolute location of items except when location is bound with other features as in 

real objects or is relevant to task performance. Nonetheless, applying feature 

integration theory to memory, Treisman (2006) held that location has an important 

role in the binding process because it provides the basic framework to which other 

features are attached. As attention is directed to each spot in visual space, selecting 

one location after another, other features are bound to a master map or template of 

locations by the glue of attention. In this sense, she is proposing that location is 

important even in memory whether or not it is task relevant. She argues further that 

both individual features and bound objects are held in the VSTM.  

To assess whether or not individual features were held in memory independently of 

object files, Treisman and Zhang (2006) examined the impact of changing locations 

between the presentation and the test display on memory for bindings of shape and 

colour of three objects. In effect, this is one of the few studies directly addressing the 

‘special role’ of location in memory for feature bindings, Changing location 

disrupted memory for bindings with a 100 ms study-test interval between stimulus 

offset and the test display. The disruptive effect was much smaller when the study-

test interval was 900 ms, and there was no disruptive effect of changing locations 

with study-test intervals of three or six seconds. While Treisman and Zhang (2006) 

infer from this that individual features are held in memory separately from bound 

objects, the evidence can also be taken to suggest that bindings of other stimulus 

features (e.g. colour and shape) might be stored in VSTM independently of location 

if they are required for the task, even if location is crucial for the initial detection of 
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those other features and their encoding. That is, location may be important for 

initially generating object representations but may not be so crucial once those 

representations are transferred to VSTM. 

One often can recognise or recall objects, without remembering where they were 

initially seen. Exactly when location loses the paramount place it has in perception is 

the focus of this study. In terms of the top-down vs. bottom-up debate, the 

experiment asks whether it is possible to selectively bind the relevant features while 

ignoring the irrelevant features. Whether locations are inevitably bound in the 

stimulus representations or if it is possible to selectively bind colour and shape and 

ignore information about locations is the focus of this initial experiment designed to 

assess the role of relevance of locations in feature binding at different study-test 

intervals.     

EXPERIMENT 1 

Experiment 1 was designed and conducted in early 2006 without the knowledge of 

the experiments reported by Treisman and Zhang (2006). To ensure that the 

experiment covered the whole period during which VWM might affect the stimuli, a 

broad range of study-test intervals – 0, 200, 1500, 2800 and 4100 ms were used.  

On the basis of earlier studies by Phillips (1974) and Irwin (1991), it was predicted 

that location would be important at the shorter study-test intervals, but would cease 

to be important at the longer study-test intervals. Thus, it was expected that 

randomizing locations from study to test would disrupt performance to a great extent 

at 0 and 200 ms when performance would be primarily driven by the contents of 

iconic memory, but not so much at 1500, 2800, and 4100 ms, when the iconic 

representation would have decayed. At these longer intervals, performance would be 

driven by integrated object representations in VSTM comprising colour and shape. In 

the unchanged locations condition, location should benefit performance at the shorter 

study-test intervals when the locations in the test array match the locations in iconic 
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memory. In the randomized locations condition, there being a mismatch between the 

study and test displays, performance would be disrupted at the shorter study-test 

intervals while the iconic memory for the study display still lingers. At the longer 

study intervals, iconic memory would have faded, and locations being task irrelevant, 

would not be part of the representations in VSTM. A match or mismatch between the 

study and test arrays would have no effect at the longer study-test intervals in either 

the unchanged or randomized locations condition. Thus, an interaction showing a 

large discrepancy between conditions at short intervals but a convergence of 

performance levels at longer intervals would occur.  It was a special interest to assess 

exactly when the interaction happens, for this would also dictate the study-test 

intervals to be used in future experiments. Planned comparisons using paired samples 

directional t ratio would be used to test differences between performance under 

unchanged and randomized locations conditions at each study-test interval. 

Thus, Experiment 1 tests the impact of unchanged and randomized locations at 

study-test intervals of 0, 200, 1500, 2800, and 4100 ms on the accuracy of response. 

The experiment uses a change-detection task in which participants judged whether 

two temporally separated study and test displays of six items were the same or 

different in their colour-shape bindings. Critically, for half of the trials, the location 

of items in the test display was randomized as compared to the study display to make 

location non-informative and irrelevant for the performance of the participants. On 

the other half of the trials, locations of objects remained unchanged from study to 

test.  To assess memory for bindings, for the trials on which a binding change 

occurred, the colour-shape pairings of any two items were swapped.  

The task for the participants in the experiment was to detect a swap either in shape or 

in colour. Given that the stimuli were defined by three features, in the unchanged 

condition, when either of the two dimensions swapped, there was no change in the 

relationship of the second dimension with the third. So a colour swap meant that two 

colours changed shapes as well as locations, but the shape-location relationship did 

not change. Analogously, a shape swap entailed two shapes swapping colours as well 

as locations, but no change in colour-location relationship. In the randomized 
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condition, when a change was made in any of the two target features, because the 

irrelevant feature randomly changed as well, the third dimension automatically 

changed. This implied a change in all three possible relationships – colour-shape, 

colour-location, and shape-location. Thus the appearance of the test display was 

different in the unchanged and randomized locations condition as illustrated by 

Figure 4.1. It was also possible that the type of swap would differentially affect 

performance in the unchanged and randomized locations condition. This despite the 

fact that the participant did not know beforehand whether shapes would swap or 

colour would swap. Additional analyses were planned, separately in the unchanged 

and randomized conditions, to explore if the type of swap affected the performance 

of the participants and if the differential processing of the features involved in the 

swap might affect performance.  

Participants 

Ten postgraduates (5 men and 5 women) in the age range 23-35 years voluntarily 

participated in the experiment.  

Stimuli 

The stimuli were created by randomly combining six shapes (circle, plus, right 

triangle, horseshoe, diamond, parallelogram) and six colours (yellow, cyan, magenta, 

blue, red, green) without replacement, and were randomly placed within an 

imaginary 3×4 grid. 

Design and Procedure 

The experiment was designed as a 2×5 factorial experiment with repeated measures 

on both factors. The first independent variable was location manipulated at two 

levels: unchanged locations vs. randomized locations. In each trial, stimuli appeared 

in any six locations within an imaginary 3×4 grid. In the unchanged locations 

condition, they remained in the same locations in the test display. In the randomized 

locations condition, any six out of twelve locations were again randomly selected to 
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present the stimuli in the test display, and thus locations were randomized from study 

to test. The second independent variable was the study-test interval between the 

initial and test display. The study-test intervals of 0, 200, 1500, 2800, and 4100 ms 

were chosen as the five levels of this factor. These different study-test intervals were 

chosen with the assumption that whereas perceptual factors would dominate at the 

shorter study-test intervals, the longer study-test intervals would yield a relatively 

pure measure of memory. The test display itself requires visual scanning and has a 

large element of visual search. This was necessitated in order to investigate the 

impact of one of the main experimental manipulations, namely, randomizing 

locations between study and test to render it irrelevant as a condition of the first 

independent variable.  

Each trial commenced with a ‘fixation’ display of a small pinpoint of light at centre-

screen. When the participant was ready, any key on the response box was pressed to 

see the study display. It showed six stimuli presented simultaneously in randomly 

chosen locations for 200 ms. After a blank interval, the test display was shown, 

which was different from the initial display on 50% of the trials. On ‘different’ trials, 

the combination of colour and shape was swapped randomly for any two items. 

When the location of the stimuli was unchanged from the initial to the test display, 

on half of the ‘different’ trials, two stimuli swapped colour at their locations, whereas 

on the other half, two stimuli swapped shapes at their locations. When the location of 

the stimuli was randomized from the initial to the test display, swapping one feature 

implied swapping the other too.  

With three blocks for each study-test interval in each location condition, 30 blocks of 

20 trials each were counterbalanced within and across participants to preclude 

immediate sequential effects. Each participant completed 600 trials in the whole 

experiment. A brief rest pause was given after every five blocks. Participants were 

tested on two consecutive days at the same time of the day. On the first day, half of 

them were tested with randomized locations, and the other half were tested with 

unchanged locations, with the remaining condition completed on the successive day 

at roughly the same time. Before each of the two experimental sessions, participants 
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practised eight trials of each block type, starting from the longest study-test interval, 

and working gradually through all the study-test intervals to the shortest one of 0 ms. 

Figure 4.1 elucidates the design and procedure. 

Figure 4.1Figure 4.1Figure 4.1Figure 4.1    
Sequence of events in Experiment 1Sequence of events in Experiment 1Sequence of events in Experiment 1Sequence of events in Experiment 1    
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Same Different Same

DifferentNote: Stimuli are not drawn to scale

Fixation

 

Results 

Mean change detection performance calculated from d-primes is shown in Figure 

4.2. Repeated measures ANOVA revealed a reliable main effect of 

unchanged/randomized locations, F(1,9)=86.481, MSE=.193, p<.001, partial 

η
2=.906, in that, overall, swap detection was reduced when locations of stimuli were 

randomized between study and test than when locations did not change. The main 

effect of study-test interval was also reliable, F(4,36)=19.922, MSE=.175, p<.001, 

partial η2=.689, indicating that swap detection varied across study-test intervals. 
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These factors interacted, F(4,36)=34.466, MSE=.184, p<.001, partial η2=.793. 

Separate single degree of freedom polynomial tests within each condition were 

conducted to further investigate the nature of the interaction. In the unchanged 

locations condition, performance across study-test intervals was characterized by 

negative-slope linear F(1,9)=125.461, MSE=.271, p<.001, partial η2=.933, and 

quadratic, F(1,9)=16.819, MSE=.231, p<.003, partial η2=.651, trends. In contrast, for 

randomized locations, performance was characterized by a positive-slope quadratic 

trend, F(1,9)=5.819, MSE=.073, p<.039, partial η2=.393.  

Figure Figure Figure Figure 4.24.24.24.2    
Mean performance for unchanged and randomized locationsMean performance for unchanged and randomized locationsMean performance for unchanged and randomized locationsMean performance for unchanged and randomized locations    
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Planned comparisons using paired samples directional t tests with Bonferroni 

adjustment showed that differences between the means for the unchanged and the 

randomized condition were reliable at 0 ms, t(9)=16.222, p<.001, and 200 ms, 
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t(9)=5.004, p<.001, but not thereafter. Thus randomizing locations was disruptive of 

performance only at the shorter study-test intervals.  

The bias in all conditions was to respond ‘same’ as noted in the section on statistical 

analyses in Chapter 3. It is interesting to note that the participants have a tendency to 

respond ‘same’ even in the randomised location condition at the very short study-test 

intervals of 0 and 200 ms, despite that the phenomenal experience in these conditions 

is that ‘everything is changed’. Indeed, one might interpret the bias to respond ‘same’ 

in these conditions as a testimony to the motivation of the participants to respond 

‘different’ if and only if they actually perceive a change in the binding between 

colour and shape. In other words, they respond ‘different’ only when they are certain. 

Comparing swaps 
Additional analyses were done to test if the type of swap had any effect on the 

performance of the participants. Analyses for swaps in the randomized locations 

condition did not reveal any significant effects. However, in the unchanged locations 

condition, there was a significant main effect of swaps, F(1,9)=4.947, MSE=0.224, 

p<.053, partial η2=.355. Overall, a shape swap was detected more often than a 

colour swap. The swap × study-test interval interaction was also significant, 

F(4,36)=16.552, MSE=0.123, p<.001, partial η2=.648. Planned comparisons using 

paired samples t tests with Bonferroni adjustment showed that whereas a shape swap 

was detected more often than a colour swap at 200 ms, t(9)=6.082, p<.001, a colour 

swap was detected more often than a shape swap at 2800 ms, t(9)=3.798, p<.004.  

Separate single degree of freedom polynomial tests for each kind of swap were also 

conducted to investigate the nature of the interaction. For colour swaps, linear 

F(1,9)=27.405, MSE=.623, p<.001, partial η2=.753, and quadratic, F(1,9)=19.058, 

MSE=.262, p<.002, partial η2=.679, trends were significant. For shape swaps, linear 

F(1,9)=312.361, MSE=0.170, p<.001, partial η2=.972, quadratic, F(1,9)=12.450, 

MSE=0.170, p<.006, partial η2=.580, and cubic, F(1,9)=7.719, MSE=0.181, p<.021, 

partial η2=.462, trends were significant. Figure 4.3 depicts this result.  
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Figure Figure Figure Figure 4444.3.3.3.3    
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Discussion 

As expected, results show that location is a significant factor in binding only at 

shorter study-test intervals, the difference ceasing to be significant at longer study-

test intervals. The differential performance obtained at short study-test intervals (0 

and 200 ms) offers support for the predictions of the feature integration theory and 

the broader literature on iconic memory suggesting that location has an important 

role in the initial processing of visual displays. At longer study-test intervals, even if 

location information is made uninformative by randomization, it makes no difference 

to the retrieval of bindings, because the performance levels are indistinguishable 

from the unchanged locations condition.  

In the main result depicted in Figure 4.2, three features of the data are striking. The 

very high levels of performance in the unchanged locations condition at 0 ms suggest 
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that location was a highly effective cue in binding. But, this beneficial effect 

disappears for study-test intervals of 1500 ms or more, with performance for 

randomized locations statistically identical to performance for unchanged locations. 

This suggests that changing locations does not have an impact on bindings of task-

relevant features held in VWM. From these results, it seems that binding between 

location, shape, and colour takes place during stimulus presentation and the period 

shortly thereafter comprising iconic memory. As the study-test interval increases, 

location becomes irrelevant as a cue for maintaining bindings in memory, even in the 

unchanged locations condition when it might potentially be useful. Second, 

extending the study-test interval beyond 1500 ms does not appear to result in any 

reliable change in performance, suggesting that the bindings available at 1500 ms can 

be maintained at the same level for more than four seconds following presentation 

regardless of whether or not location changes. Third, performance in the randomized 

locations condition generally improves with increased study-test intervals, suggesting 

that there may be a process of removal or inhibition of the task-irrelevant feature as 

bindings comprising the relevant features, colour and shape, are consolidated in 

VWM.  

One possible account, considering the findings above collectively, is that up to 

around 1000 ms, information is available from a rapidly decaying iconic trace, but 

there is progressive formation of a representation in VSTM of the task-relevant 

feature bindings. The decaying iconic trace would contain both task-relevant features 

and the task-irrelevant feature of location for items in the study array. So, based on 

this decaying representation, location acts as an effective cue for the unchanged 

location condition, but is disruptive in the randomized location condition. During that 

same period of around 1000ms, only the task-relevant features are transferred into a 

representation in VSTM, and so memory performance would rely progressively less 

on the decaying icon and progressively more on a more stable representation of the 

task-relevant features in VSTM. The formation of the more stable representation 

might be thought of as a form of 'consolidation' in VSTM (e.g., Brockmole et al., 

2003; Jiang et al., 2000). Since location is not task relevant, it would not be included 
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in this more stable representation, and so with increasing study-test delays, location 

becomes progressively less effective as a memory cue in the unchanged condition 

(contributing to progressively poorer performance), and progressively less disruptive 

in the randomized condition (resulting in progressively better performance). This 

idea that performance is supported concurrently by two changing, and possibly 

conflicting memory codes over the first 1000 ms - a decaying iconic trace and 

progressive consolidation in VSTM - is supported by the observation that 

performance in the two conditions converges as the study-test interval is increased, 

and at 1500 ms performance is no different for the randomized and the unchanged 

conditions, when on this account, performance is supported solely by VSTM.  

The difference between unchanged and randomized location conditions in the initial 

stages might also reflect the operation of top-down factors through two different 

kinds of attention. Participants may rely on spatial attention in the unchanged 

location condition, whilst using an object or feature based attention in the 

randomized location condition. Since spatial attention can operate only in the 

presence of spatial information present at the time of perception and shortly 

thereafter in iconic memory, performance in the unchanged location condition is 

higher at the short study-test intervals and gradually decreases thereafter. In the 

randomized location condition, participants, unable to rely on spatial attention, use 

an object based or feature based strategy. They select only the relevant information 

regarding the objects presented to them, and suppress all the bits of information that 

they know are task irrelevant. This process of selective consolidation and active 

inhibition takes time and therefore, performance shows a gradual increase in this 

condition.  

The results are remarkably similar to the results of Treisman and Zhang (2006) who 

also found that changing locations between study and test had a disruptive effect on 

performance at a study-test interval of 100 ms, but this disruptive effect was greatly 

reduced at a delay of 900 ms, and disappeared at longer delays of three and six 

seconds. Nevertheless, it is important to realise that the motivation for the study by 

Treisman and Zhang (2006) was to assess whether object files are the only memory 
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traces available, or are separate features stored in VSTM as well. The rationale for 

the experimental manipulation whereby bindings were changed in the probe at 

various intervals was that this would disrupt memory for features as well, if object 

files were the only memory traces. Since memory was not disrupted at longer study-

test intervals it allowed the conclusion that VSTM stored separate features as well as 

object files.  

The question for the present experiment was that given an attention demanding task, 

is binding instantaneous and automatic for all features, or whether it is possible to 

ignore or delete irrelevant features and selectively bind only the relevant features 

over a course of time in VWM. The similarity of the experimental manipulation to 

Treisman and Zhang (2006) and the consequent data obtained should not detract 

from the fact that Treisman and Zhang (2006) are silent on the matter of task-

relevance of features, whereas it is the central issue in the present experiment. Going 

beyond their insistence that features continue to exist in an attenuated form in 

separate feature maps in VWM, the present proposal is that once features are 

categorised as relevant and irrelevant, they are differentially processed thereafter. 

There is no going back to previous stages. Further, Treisman and Zhang (2006) 

assume location to be a crucial feature for binding, but the argument presented here 

is that the times for processing different features reflect differential processing in the 

underlying neural system for each feature, but the way VWM deals with the features 

is the same; they are selected for further processing if they are relevant and inhibited 

if they are not relevant.  

The results of additional analyses which showed differences in performance between 

colour swaps and shape swaps in the unchanged locations condition substantiates the 

notion that differences in the processing of the three features may be reflected in the 

performance of the participants. At the shorter study-test intervals, the participants 

may be remembering colour-location and shape-location bindings, rather than colour 

shape bindings. This implies that colour-shape bindings may be encoded via the 

attachment of separate feature maps to the underlying spatial map which presumably 

exists only until iconic memory decays. Alternatively, these differences may simply 
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reflect the asynchronous processing rates of different features by the visual system. 

These different ideas augment the impetus to study whether a similar pattern of 

results would be obtained when either colours or shapes are made irrelevant to the 

task, which is the focus of the experiments reported in the next chapter. 

There is no significant difference in performance beyond the study-test interval of 

1500 ms. Also, it is not clear how performance is characterized at intermediate study-

test intervals between 200 and 1500 ms; for example, whether the trends are linear, 

suggesting a gradual process of binding, or whether there is a step change that would 

indicate a discrete point when bindings of task-relevant features are formed. This is 

important, given the large variability, in the estimates for consolidation in VWM. 

With these factors in mind, it was decided to use finer gradations between the 

different study-test intervals ranging from 0 to 2500 ms in the experiments 

comparing the effects of randomising the three different features, reported in the next 

chapter. This should make it possible to identify when the disruptive effect of 

randomizing a feature disappears, and whether or not the effect is a gradual change. 
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CHAPTER 5 

EXPERIMENTS 2, 3, AND 4 

 

The guiding enquiry for the experiments reported in this and the next chapter is 

whether all features are inevitably bound together instantaneously or in the 

embryonic stages of the binding process; or is it possible to ignore a feature from the 

start if it is irrelevant, and if not, when does this become possible. Further, across 

three experiments, the effect of assigning different features as task irrelevant was 

examined to ascertain whether differential processing of features is present beyond 

their initial perception. In Experiment 2, location was task irrelevant, with shape-

colour binding being tested. In Experiment 3, shape was task-irrelevant with colour-

location binding being tested, and in Experiment 4, colour was task-irrelevant with 

shape-location binding being tested.  

If performance is dictated only by top-down task set, then the participants would 

process the relevant dimensions and simply ignore the irrelevant dimension. There 

would be no difference in performance in the randomized and unchanged conditions 

because in each case the test display would need to be matched with the 

representation comprising only relevant features. However, if bottom-up influences 

are important and all features are processed irrespective of their relevance to the task, 

then performance in the randomized condition would be lower than performance in 

the unchanged condition, because of the greater mismatch between the mental 

representation and the test display in the randomized condition.  

Previous empirical evidence and Experiment 1 suggest the third possibility that top-

down processes gradually take over and win against the bottom-up, fast feed forward 

processing of all features. This would show up as an interaction such that the initial 

difference between unchanged and randomized conditions would vanish with the 

passage of time. Thus in all three experiments, randomization of a feature may result 

in lower performance as compared to the unchanged condition. The question of 
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theoretical importance here is whether this disruption is maintained when study-test 

intervals are sufficiently long to have allowed the consolidation of stimulus 

representations into VSTM. If the disruption continues with long study-test intervals 

then it suggests that features, even if task irrelevant, remain in the representations 

and continue to affect the performance of the participants. If the disruption is no 

longer present at longer intervals, then it suggests that, over time, task-irrelevant 

features can be ignored, and the remnants would be the bindings between relevant 

features required for the task. This would be manifest as an interaction in the results 

of the experiment. 

Such an interaction is expected not only because of the literature reviewed regarding 

locations in the previous chapter, and because the results of Experiment 1 may be 

generalized to other features, but also on the basis of theoretical notions regarding 

task relevance being the most important factor in top-down control of processing. 

Hommel (2004) proposes that task relevance of features is more important than their 

salience in the binding that takes place in event files, and asserts that it influences 

bindings in the incipient stages itself. The biased competition model (Duncan, 2006) 

holds that competition between objects is biased by task relevance more than 

anything else. The dimension weighting account (Muller et al., 2009; Muller & 

Krummenacher, 2006a, 2006b) which is essentially a feature based account of 

processing, acknowledges that weights assigned to different features can be 

modulated by expectancies set up through factors such as instructions, practice, past 

experience etc. Though the perceptual system initially processes all features, the 

selection of features for further processing is presumably based on task relevance.  

It is also of interest to study if the interaction effect will be obtained for different 

features. When the experiments require different sets of features to be bound but the 

same pattern is obtained, it would indicate that top-down factors operate in a similar 

way across features. It is expected that the initial disruption in performance will 

differ in the three experiments to the extent that the bottom-up stimulus factors 

dictate the performance of the participants. Many studies have shown that features 

are processed differentially during perception (Aymoz & Viviani, 2004; Moutoussis 
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& Zeki, 1997; Nishida & Johnston, 2002; Viviani & Aymoz, 2001, Zeki et al., 1991). 

The experiments reported here explore the extent to which these differences in the 

perceptual phase of the binding process persist in memory for bindings. Some 

researchers contend that features are encoded in separate channels (Magnussen, 

2000; Magnussen & Greenlee, 1997; Magnussen et al., 1996) or maps (Treisman, 

2006) even in VWM. Still others have found evidence for memory performance 

reflecting processing differences in perception (Kent & Lamberts, 2006; Lamberts & 

Kent, 2008). Yet evidence from Lamberts and Kent (2008) also shows that when the 

features to be remembered are bound within a single object (as compared to 

appearing in two different objects), then no differences in the recognition of different 

features are shown. In fact, the differences between features emerged only when the 

participants had to remember six features in two different objects. Though they 

interpreted this as being due to memory load exceeding capacity, in view of evidence 

suggesting that capacity for remembering features within an object is virtually 

unrestricted (Luck & Vogel, 1997; Vogel et al., 2001), it is more likely that their 

results showed differences due to the occurrence of features in the same vs. two 

different objects.  

Mitroff and Alvarez (2007) found that contiguity in space and time rather than 

surface features aids the persistence of objects, even when the object disappears for 

as long as 3 seconds. Nevertheless, Mitroff, Arita, and Fleck (2009) also report that 

objects are constrained by the boundaries of a closed contour, all parts and properties 

being contained within the object, and by the context in which they occur, and this is 

a significant factor in object persistence. Bartels and Zeki (2006) found that binding 

of features imposes a different schedule of processing, and in fact there is a reversal, 

in so far as the binding of colours takes more time than binding of stimuli that move 

and hence change location. This is in contrast to processing of individual features 

where movement is perceived much earlier than colours. They propose that whereas 

perceptual delays in feature processing reflect neuronal processing delays, the time 

required for binding reflects the velocity of signal conduction in distinct processing 

systems, substantiating the view that binding implies interactions among various 
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areas of the brain. They conclude that binding is different from, and subsequent to, 

stimulus processing though it is an attribute-dependent process. 

All this evidence suggests that binding of features within an object may lead to 

processing that is different from the processing of features otherwise (e.g., in the 

incipient stages of object formation, or when the object is not present, or when 

‘unbinding’ is required). The experiments reported in this thesis do not compare 

processing of single features with processing of bindings. Rather, the differential 

processing of three features, which together define an object is the focus of study. In 

so far as features are processed in parallel independent channels, differences in 

performance across features are expected, reflecting bottom-up processing. If the 

features interact and accrue costs and benefits from being aspects of a single object, 

then performance should be exactly the same across the three experiments. If there is 

an interaction over time, it would suggest that features lose their individual identities 

only gradually over time as the top-down processes take over, maintaining only the 

relevant features in memory. Except that different features are randomized in each 

experiment, the experiments were exactly the same.    

Assuming location to be a property of the stimulus, just like shape and colour, and to 

make it possible to compare locations with colours and shapes, Experiments 2, 3, and 

4 were designed to be identical in procedural details, though this meant that 

Experiment 2 virtually replicates Experiment 1. Nonetheless, these experiments 

differed from Experiment 1 in that the study-test intervals used were restricted to 0-

2500 ms, with binding performance being assessed at equal intervals of 500 ms. This 

ensured a more precise focus on the time course of the convergence of performance 

found in Experiment 1 and allowed an appraisal of whether or not the effects 

observed show a gradual or step change.  

EXPERIMENT 2 

As in Experiment 1, the detection of swaps between bindings of colour and shape 

was assessed when locations were unchanged from study to test or were rendered 
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irrelevant through randomization. The study-test intervals were 0, 500, 1000, 1500, 

2000, and 2500 ms.  On the basis of the previous literature surveyed in Chapter 4 and 

the results of Experiment 1, it was expected that randomizing locations between 

study and test would be more disruptive of memory for shape-colour bindings at the 

shorter study-test intervals than at longer intervals. Analogous to Experiment 1, 

additional analyses were planned to study if the type of swap affected the 

performance of the participants and if the differential processing of the features 

shown in Experiment 1 might be manifest in performance. 

Participants 

Twelve students (3 men and 9 women) in the age range 18-25 years participated in 

the experiment and were given an honorarium of £10.00. 

Stimuli 

The stimuli, identical to Experiment 1, were random combinations of six colours and 

six shapes, placed at random locations in an invisible 3×4 square grid.  

Design and Procedure 

The experiment was designed as a 2×6 factorial experiment with repeated measures 

on both factors.  The first independent variable was location manipulated at two 

levels: unchanged locations vs. randomized locations. The second independent 

variable was the study-test interval between the initial and test display. The study-test 

intervals of 0, 500, 1000, 1500, 2000, and 2500 ms were chosen as the six levels of 

this factor. With three blocks for each study-test interval in each location condition, 

36 blocks of 20 trials each were counterbalanced within and across participants, 720 

trials in all for each participant to complete the experiment. A brief rest pause was 

given after every six blocks.  

Each trial commenced with a ‘fixation’ display of a small pinpoint of light at centre-

screen. When the participant was ready, any key on the response box was pressed to 

see the study display. It showed six stimuli presented simultaneously in randomly 
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chosen locations for 200 ms. After a blank interval, the test display was shown, 

which was different from the initial display on 50% of the trials. On ‘different’ trials, 

the combination of colour and shape was swapped randomly for any two items. 

When the location of the stimuli was the same from the initial to the test display, on 

half of the ‘different’ trials, two stimuli swapped colour at their locations, whereas on 

the other half, two stimuli swapped shapes at their locations. When the location of 

the stimuli was randomized from the initial to the test display, swapping one feature 

implied swapping the other too. Figure 5.1 illustrates the procedure.  

Figure Figure Figure Figure 5555.1.1.1.1    
Sequence of events in Experiment 2Sequence of events in Experiment 2Sequence of events in Experiment 2Sequence of events in Experiment 2    

0 ms
500 ms
1000 ms
1500 ms
2000 ms
2500 ms

Randomized 
Locations

Unchanged 
Locations

Same Different Same

Different

Study Display 
200 ms

Fixation

Note: Stimuli are not drawn to scale  

 

Participants were tested on two consecutive days at the same time of the day, half of 

them being tested with location changing randomly from initial to test display on the 

first day, and the other half being tested with unchanged locations on the first day. In 

each session, they practised 8 trials of each block type, starting from the longest 
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study-test interval, and working gradually through all the study-test intervals to the 

shortest one of 0 ms. 

Results 

Mean change detection performance calculated from d-primes across study-test 

intervals and for the unchanged location/randomized locations conditions is shown in 

Figure 5.2.  

Figure Figure Figure Figure 5555.2.2.2.2    
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A reliable main effect of locations condition was observed, F(1,11)=44.958, 

MSE=0.606, p<.001, partial η2=.803, in that, overall, memory for bindings was 

reduced when locations of stimuli were randomized between study and test. The 

main effect of study-test interval was also reliable, F(5,55)=27.903, MSE=0.151, 

p<.001, partial η2=.717, indicating that memory for bindings varied across study-test 

intervals. As with Experiment 1, these factors interacted, F(5,55)=33.517, 
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MSE=0.228, p<.001, partial η2=.753. Planned comparisons using paired samples 

directional t tests with Bonferroni adjustment showed that the differences between 

the means for the unchanged and the randomized condition was significant at 0 ms, 

t(11)=12.784, p<.001, 500 ms, t(11)=3.419, p<.003,  and 1000 ms, t(11)=2.823, 

p<.008.  

Separate single degree of freedom polynomial tests within each condition were 

conducted to investigate the nature of the interaction. In the unchanged locations 

condition, performance across study-test intervals was characterized by  negative-

slope linear F(1,11)=131.030, MSE=.288, p<.001, partial η2=.923, quadratic, 

F(1,11)=53.584, MSE=.220, p<.001, partial η2=.830, and cubic trends, 

F(1,11)=53.422, MSE=.126, p<.001, partial η2=.829. In contrast, for the randomized 

locations, performance was characterized by positive-slope quadratic trend, 

F(1,11)=7.114, MSE=.156, p<.022, partial η2=.393. One slope being negative, and 

the other being positive, performance converged between the two conditions.  

Thus, Experiment 2 generally replicated Experiment 1 in showing that randomizing 

location between study and test was highly disruptive of memory for colour-shape 

bindings, but this disruptive effect gradually disappeared. 

Comparing swaps 
On the lines of Experiment 1, additional analyses were done to test if the type of 

swap had any effect on the participants’ performance. Neither the main effect for 

swaps, nor the interaction between swaps and study-test intervals was significant. 

This was true for the randomized as well as the unchanged locations conditions.  

Discussion  

Empirical and theoretical views regarding locations have suggested that location is 

the most important cue in perceptual binding.  The results of Experiments 1 and 2 

suggest that this may only be true during the stimulus display and for a short period 

thereafter. When tested immediately after stimulus offset, unchanged locations 

resulted in almost ceiling performance for reporting shape and colour combinations. 
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When location was randomized, performance decreased substantially at 0 ms 

between study and test (though it was still above chance levels). Gradually, however, 

this disruption was overcome and randomizing location had no influence on 

performance.  

One possible interpretation of the results is that consolidation of the bound object as 

a whole in VWM takes place over a period of more than 1000 ms. Once consolidated 

the objects are impervious to disruptions by a test display that has a very different 

spatial configuration from the study display. However, the consolidation of bound 

objects over such a long period of time is difficult to reconcile with estimates of time 

required for object identification or recognition, which are usually around 50 ms, and 

object differentiation (usually around 130 ms). Therefore, it seems extremely 

unlikely that the results reflect a gradual consolidation of whole objects. 

Another account of the results is that an amalgamation of features occurs during the 

200 ms stimulus display, and this initial, rapid integration into object representations 

includes location as well as colour and shape. At the shorter study-test intervals when 

the test display is shown in the randomized condition, so great is the mismatch 

between study and test displays that performance is severely disrupted. Therefore, 

the positive slope in the randomized locations condition simply reflects a gradually 

dissipating inhibition, such that the location information is suppressed to create 

refined object representations comprising only the combinations of colour and shape.  

Selective consolidation of relevant features and inhibition of the irrelevant features 

occurs concomitantly. 

The initial rapid integration of features is clear in the unchanged locations condition. 

With none of the features being task irrelevant, there is no cause for inhibition in this 

condition. In fact, spatial attention and a location-reliant strategy, probably augments 

the participants’ performance. The match of the test display with the iconic memory 

of the first display is also helpful in consolidating the overall pattern of the display, 

and in discerning swaps when they do occur. However, there does appear to be a loss 

of information over time. This probably reflects forgetting from a complex display 

that has more items than can be that can be transferred to or held in VSTM. 
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Forgetting over time may be happening in the randomized condition as well, but it 

becomes evident only after the randomization of location is no longer disruptive.  

EXPERIMENT 3 

Among the three features that are the focus of the present experiments, shape is a 

relatively stable property of an object. It allows an object to be identified regardless 

of its location, or changes in surface features such as colour. In contrast, location is 

often a transient property of an object, defining its momentary position in space 

rather than its permanent properties. Therefore, it is possible that location can be 

easily removed from a stimulus representation.  

For many researchers in perception, form is as important as locations, if not more so. 

Early on, European psychology, including the Gestalt school, emphasized form to be 

fundamental to perception. Even today, despite the general emphasis on spatial 

attention, some theorists argue that form being distinct from spatial location, is at 

least as basic as location, and is certainly more important than colour or other surface 

features (Grossberg, 1997; Humphreys et al., 2000; Humphreys et al., 2009). 

Experiment 3 assesses the extent to which shape is required for forming and retaining 

bound representations in VWM.   

Psychophysical studies reviewed in the beginning of this chapter suggest differential 

processing of various features. Physiological evidence also suggests that features 

such as colour and shape are processed via the ventral pathway whereas location is 

processed in the dorsal pathway (Ruchkin et al., 1997; Smith & Jonides, 1995; 1999; 

Funahashi et al., 2004; Trevarthen, 1968; Ungerleider & Mishkin, 1982). Thus, some 

difference in the pattern of results, i.e., the amount of disruption at the shorter study-

test intervals is expected. 

The dissociation between the ventral and dorsal processing streams might suggest 

that colour-shape bindings should be particularly strong given that these features are 

processed along the same (ventral) pathway and can define an object. In contrast, 

location allows the object to be detected initially in the stimulus display but might be 
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much less relevant for defining a target object after it has been perceived. If colour-

shape bindings in VWM are normally strong because they define an object, while 

location is not normally a defining feature of an object, then changing shape as a 

task-irrelevant feature might turn out to be even more disruptive of memory tested at 

longer study-test intervals than changing location.  

There is ample experimental evidence that location and object identity appear to be 

processed separately in memory as well (Darling, Della Sala, & Logie, 2007; 

Jonides, Smith, Koeppe, Awh, Minoshima, & Mintun, 1993; Logie & Marchetti, 

1991; Logie & van der Meulen, 2009), and indeed this is in line with the distinction 

between the visual and spatial aspects of the visuo-spatial sketchpad (Logie, 1995). 

Thus, differences in the experimental results might be expected when shape is 

randomized or colour is randomized in comparison to the unchanged conditions, 

even at longer study-test intervals, thus presenting a pattern quite dissimilar to that 

obtained in Experiments 1 and 2 where locations were randomized. However, this 

differential pattern in memory would suggest that features were still being processed 

separately in memory and were not consolidated and inhibited based on task 

relevance.  

Contrarily, if the top-down factor of task relevance is indeed the overriding factor, 

(Proulx, 2007; Richard et al., 2008) then a pattern similar to Experiments 1 and 2 

would occur when shapes or colours are randomized.  Despite an initial difference in 

the unchanged and randomized conditions, gradually a convergence of performance 

would be shown, with task relevant features being consolidated as bindings, and 

shapes, being irrelevant, removed from the representations. This would be a post-

perceptual process within VWM of inhibiting an irrelevant and unhelpful feature 

from the initial representation.  

From the first two experiments, this process appears to take approximately 1500 ms 

for the randomized locations conditions. If shape is as crucial as location for 

bindings, then it might take a similar amount of time to remove it from the initial 

representation. However, if shape is not as crucial, then the interaction might occur 

earlier than for locations.  
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The task for the participants in this experiment was to detect a swap in colour-

location binding. The stimuli being defined by three features, in the unchanged 

condition, a colour swap meant that the colour-shape and colour-location 

relationships changed, but the shape-location relationship did not change. 

Analogously, a location swap entailed a change in location-colour and location-shape 

relationships, but no change in the colour-shape relationship. In the randomized 

condition, when a change was made in any of the two target features, because the 

irrelevant feature randomly changed as well, the third dimension automatically 

changed. This implied a change in all three possible relationships, colour-shape, 

colour-location, and shape-location. Thus, there was a difference in the appearance 

of the test display in the unchanged condition, but not in the randomized condition as 

shown in Figure 5.3. It was possible that the type of swap would differentially affect 

performance in the unchanged and randomized shapes condition, even though the 

participant did not know beforehand about the type of swap. In fact, performance 

might show processing differences in the features involved. So it was planned that 

the difference between the types of swaps would also be tested separately in the 

unchanged and randomized conditions, the expectation being that location swaps 

would be easier to detect than colour swaps. 

Participants 

Twelve students (6 men and 6 women) in the age range 18-25 years participated and 

were given £10 as an honorarium.   

Stimuli  

This experiment also presented six stimuli to the participant, but in six fixed 

locations in an invisible 3×4 grid of squares.  The six colours were the same as 

Experiments 1 and 2 (cyan, yellow, magenta, red, green, blue). In each display, they 

were combined with any six of twelve shapes (circle, plus, right triangle, horseshoe, 

diamond, parallelogram, doughnut, star, wave, pentagon, triangle, trapezium) to form 

the stimuli.  
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Design and Procedure 

The experiment was designed as a 2×6 factorial experiment with repeated measures 

on both factors. Figure 5.3 illustrates the procedure.  

Figure Figure Figure Figure 5555.3.3.3.3    
Sequence of events in Experiment 3Sequence of events in Experiment 3Sequence of events in Experiment 3Sequence of events in Experiment 3    

0 ms
500 ms
1000 ms

1500 ms
2000 ms
2500 ms

Randomized 
Shapes

Unchanged 
Shapes

Same Different Same

Different

Study Display 
200 ms

Fixation

Note: Stimuli are not drawn to scale  

The first independent variable was shapes manipulated at two levels: unchanged 

shapes vs. randomized shapes. In each trial six shapes were randomly chosen from a 

set of twelve shapes. In the unchanged shapes condition, all six shapes remained the 

same from study to test display. In the randomized shape condition six shapes were 

again randomly chosen (with replacement) from the set of twelve shapes for the test 

display and reallocated to different stimuli from study to test. Participants were asked 

to ignore the shapes and to remember the combinations of colour and location, for 

the task was to detect whether the location-colour binding had changed. The test 

display was different from the initial display on 50% of the trials. On these 

‘different’ trials, the combination of colour and location was swapped randomly for 
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any two items. In the unchanged shapes condition, on half of the ‘different’ trials, 

two stimuli swapped colour, whereas on the other half, two stimuli swapped 

locations. In the randomized shapes condition, swapping one feature implied 

swapping the other too. Study-test intervals of 0, 500, 1000, 1500, 2000, and 2500 

ms were chosen as the six levels of the second independent variable. Other 

procedural details were the same as Experiment 2.  

Results 

Mean change detection performance calculated from d-primes across study-test 

intervals for unchanged shapes and randomized shapes is shown in Figure 5.4. The 

main effect of shape condition was reliable, F(1,11)=24.096, MSE=0.444, p<.001, 

partial η2=.687, in that, overall, memory for location-colour bindings was reduced 

when the shapes of the stimuli were randomized between study and test.  

The main effect of study-test interval was also reliable, F(2.744,30.189)=13.594, 

MSE=0.446, p<.001, partial η2=.553, with Greenhouse-Geisser correction,  

indicating that memory for location-colour bindings varied across study-test 

intervals. These factors interacted, F(5,55)=24.105, MSE=0.183, p<.001, partial 

η
2=.687.  

As for previous experiments, the interaction was further investigated with separate 

single degree of freedom polynomial tests within each condition. In the unchanged 

shapes condition, performance across study-test intervals was characterized by a 

negative-slope linear F(1,11)=46.931, MSE=.532, p<.001, partial η2=.810, quadratic 

F(1,11)=30.468, MSE=.229, p<.001, partial η2=.735, and cubic F(1,11)=20.213, 

MSE=.193, p<.001, partial η2=.648, trends. The significant higher order trends 

indicate that the rate of decrease in accuracy was not constant across all study-test 

intervals. In the randomized shape condition, only the quadratic trend, 

F(1,11)=17.283, MSE=.084, p<.002, partial η2=.611, was reliable, indicating a 

curvilinear function. From Figure 5.4, it seems clear that randomizing shape between 

study and test is disruptive of memory for location-colour bindings at 0 ms, but at 
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longer study-test intervals performance is not far below the level obtained in the 

unchanged condition. 

Figure 5.4Figure 5.4Figure 5.4Figure 5.4    
Mean performance for unchanged and randomized shapesMean performance for unchanged and randomized shapesMean performance for unchanged and randomized shapesMean performance for unchanged and randomized shapes    
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Planned comparisons using paired samples directional t tests with Bonferroni 

adjustment showed that the differences between the means for the unchanged and the 

randomized condition was significant at 0 ms t(11)=11.703, p<.001, and approached 

significance at 500 ms, t(11)=2.561, p<.013.   

Comparing swaps 
Additional analyses were done to test if the type of swap had any effect on the 

participants’ performance. Analyses for swaps in the randomized shapes condition 

did not reveal any significant effects. Figure 5.5 shows the result of the unchanged 

shapes condition. There was a significant main effect of swaps, F(1,11)=6.754, 

MSE=0.229, p<.025 partial η
2=.380, overall, a location swap being detected more 
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often than a colour swap. The was also a significant interaction between swaps and 

study-test intervals, F(5,55)=4.460, MSE=0.107, p<.002, partial η2=.288. 

Figure Figure Figure Figure 5555.5.5.5.5    
Mean performance for location swaps and colour swaps Mean performance for location swaps and colour swaps Mean performance for location swaps and colour swaps Mean performance for location swaps and colour swaps     
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Planned comparisons using paired samples directional t tests with Bonferroni 

adjustment showed that location swaps were detected more often than a colour swap 

at 0 ms, t(11)=3.441, p<.003, and at 500 ms, t(11)=3.605, p<.002. Without 

Bonferroni adjustment, the difference was also significant at 1000 ms, t(11)=1.938, 

p<.039, again favouring location swaps. There were no significant differences 

thereafter. Separate single degree of freedom polynomial tests for each kind of swap 

showed similar trends for both kinds of swaps with negative slopes. For colour 

swaps, linear F(1,11)=25.672, MSE=0.548, p<.001, partial η2=.700, quadratic, 

F(1,11)=19.628, MSE=0.349, p<.001, partial η2=.641, and cubic, F(1,11)=16.479, 

MSE=0.256, p<.002, partial η2=.600, trends were significant. Similarly, for location 

swaps too, linear F(1,11)=58.818, MSE=0.570, p<.001, partial η2=.842, quadratic, 
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F(1,11)=46.962, MSE=0.099, p<.001, partial η2=.810, and cubic, F(1,11)=7.978, 

MSE=0.256, p<.017, partial η2=.420, trends were significant.  

Discussion 

It seems clear from this experiment that changing shape between study and test was 

disruptive of memory for location-colour bindings for short study-test intervals, but 

not for intervals of 500 ms or more. At these longer intervals, performance was 

identical to the unchanged condition. There was a tendency for performance to 

improve in the randomized condition between 0 ms and 500 ms, and to join the 

unchanged condition in showing forgetting as the study-test interval increases 

beyond 2000 ms. The pattern is broadly similar to that shown in Experiment 2 except 

that the initial level of disruption in the randomized condition is not so dramatic in 

Experiment 3. This has the consequence of leaving less scope for the improvement in 

performance with increasing study-test intervals, as found in Experiments 1 and 2.  

In sum, results of Experiment 3 indicate that randomizing shape as a task-irrelevant 

feature is disruptive of change detection performance for location-colour bindings, 

but only at the shortest study-test interval of 0 ms. There is no reliable disruptive 

effect at intervals of 500 ms or more. This indicates that some initial bundling of 

shape, colour, and location occurs during stimulus presentation, and that shape as a 

task-irrelevant feature has to be removed during the process of forming a bound 

representation of location and colour in VWM. Once that representation has been 

formed, there is no impact of changing shape as a task-irrelevant feature.  

When comparing these results to those in Experiment 2, it is clear that the disruptive 

effect of randomizing shape is less than the disruptive effect of randomizing location 

as a task-irrelevant feature. This might indicate that location does indeed have a 

powerful impact on the initial formation of bindings in visual perception. However, 

shape also makes a contribution to the initial binding even if it has a less dramatic 

disruptive effect when changed. There is then no strong evidence to support the idea 

that shape-colour binding would be any stronger than location-colour binding simply 

because colour and shape are both thought to be processed by the same ventral 
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pathway. It is very striking however, that both shape and location result in disruption 

at shorter intervals, although they differ in initial, perceptual ‘binding potency’ and 

the disruptive influence of shape lasts for about 1000 ms less than the influence of 

location. In other words, shape has a lesser initial disruptive effect, and it takes less 

time to remove its effects than the effects of location. 

EXPERIMENT 4 

The motivation for Experiment 4 was broadly the same as for Experiment 3 except 

that here, the impact of randomizing colour between study and test was considered, 

to examine binding of location and shape. Colour being a property of the object 

processed in the ventral stream, whilst locations are processed in the dorsal stream, 

performance levels were expected to be different from Experiment 2. Also, in line 

with theoretical ideas that binding of form happens prior to binding of colours 

(Grossberg, 1995; Grossberg & Pessoa, 1998; Humphreys et al., 2000; Humphreys et 

al., 2009) and studies showing differences between ‘surface’ and ‘boundary’ features 

(Alvarez & Cavanagh, 2008) differences in the performance levels as compared to 

the Experiment 3 where shapes were made irrelevant were also anticipated, colour 

being a ‘surface’ feature and shape a ‘boundary’ feature. As reviewed  in Chapter 2, 

developmental studies also hold binding of shapes to be primary as compared to 

colour (Needham,1999; Tremoulet et al., 2000) and so does evidence from 

experiments with real life pictures (Meng & Potter, 2008).   

Thus, out of the three features that defined the stimuli, location, shape and colour, 

colour is seemingly least important. It was expected, therefore, that the disruption 

caused by randomizing colours would be lesser than that caused by randomizing 

shapes or locations. Nevertheless, it was also expected that the general pattern of 

results found in Experiments 2 and 3 would be replicated in terms of the interaction. 

Making colour irrelevant by randomization would be disruptive of performance as 

compared to the unchanged colours condition, to the extent that there would be a 

mismatch between the study and test display, but this disruption would reduce over 
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time as the irrelevant feature of colour is removed from the representation in VWM, 

and only the shape-location bindings are selectively consolidated. Price and 

Humphreys (1989) showed that colours help object naming only if they are presented 

within the surface of the object, not when they form the background. Recent work by 

Lloyd-Jones and Nakabayashi (2009) indicated that this correct binding of shape and 

colour was not required for memory. They found that transforming the colour of an 

object reduced priming of coloured object decision making, suggesting that colour 

plays an important role in memory, but performance was similar whether the colour 

was presented within the shape of the object or appeared as the background to the 

object in gray scale. Together, the two studies suggest that correct colour-shape 

binding may be important in perception, but not in memory. Thus randomizing 

colour should be disruptive at the shorter but not the longer study-test intervals.     

In the present experiment, the primary task was to detect a swap in shape-location 

binding. In the unchanged condition, a shape swap meant that the shape-colour and 

shape-location relationships changed, but the colour-location relationship did not 

change. A location swap meant a change in location-colour and location-shape 

relationships, but no change in the colour-shape relationship. Figure 5.6 clarifies this 

difference. In the randomized condition, when a change was made in any of the two 

target features, because the irrelevant feature randomly changed as well, the third 

dimension automatically changed. This implied a change in all three possible 

relationships, colour-shape, colour-location, and shape-location. Separate analyses in 

the unchanged and randomized conditions were planned to study if the differences 

between the types of swaps affected the performance of the participants, the 

expectation being that location swaps would be easier to detect than shape swaps, 

manifesting processing differences between these features.  

Participants 

Twelve students (6 men and 6 women) in the age range 18 - 25 years participated 

and were given £10 as an honorarium.   
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Stimuli 

This experiment also presented six stimuli to the participant, in six fixed locations (as 

shown in Figure 5.6) in an invisible 3×4 grid of squares.  The six shapes were the 

same as in Experiment 2 (circle, plus, right triangle, horseshoe, diamond, 

parallelogram) but they were combined with any six of twelve colours (cyan, yellow, 

magenta, red, green, blue, brown, dark green, dark blue, violet, white, and pink) to 

form the stimuli in each display.  

Design and Procedure 

The experiment was a 2×6 factorial design with repeated measures on both factors. 

Figure 5.6 illustrates the design and procedure. The first independent variable was 

colours manipulated at two levels: unchanged colours vs. randomized colours. In 

each trial six colours were randomly chosen from a set of twelve colours. In the 

unchanged colours condition, all six colours remained the same from study to test 

display. In the randomized colours condition six colours were again randomly chosen 

(with replacement) from the set of twelve colours for the test display and reallocated 

to different stimuli from study to test.  Participants were asked to ignore the colours 

and to remember the combinations of shape and location, the task being to detect 

whether the location-shape binding had changed.  

The test display was different from the initial display on 50% of the trials. On these 

‘different’ trials, the combination of shape and location was swapped randomly for 

any two items. In the unchanged colours condition, on half of the ‘different’ trials, 

two stimuli swapped shapes, whereas on the other half, two stimuli swapped 

locations. In the randomized colours condition, swapping one feature implied 

swapping the other too. 

The second independent variable was the study-test interval manipulated at six 

levels, 0, 500, 1000, 1500, 2000, and 2500 ms, as in Experiments 2 and 3. Other 

procedural details were also the same as Experiments 2 and 3.  
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Figure Figure Figure Figure 5555....6666    
Sequence of events iSequence of events iSequence of events iSequence of events in Experiment 4n Experiment 4n Experiment 4n Experiment 4    
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Note: Stimuli are not drawn to scale  

Results 

Mean change detection performance calculated from d-primes across study-test 

intervals for unchanged colours and randomized colours conditions is shown in 

Figure 5.7. The main effect of colour condition was reliable, F(1,11)=23.573, 

MSE=0.627, p<.001, partial η2=.682, in that, overall, memory for location-shape 

bindings was reduced when the colours of the stimuli were randomized between 

study and test. The main effect of study-test interval was also reliable, 

F(2.282,25.101)=35.548, MSE=0.559, p<.001, partial η2=.764, with Greenhouse-

Geisser correction, indicating that memory for location-shape bindings varied across 

study-test intervals. These factors interacted, F(5,55)=11.493, MSE=0.237, p<.001, 

partial η2=.511.   
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Figure Figure Figure Figure 5555....7777    
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Planned comparisons using paired samples directional t tests with Bonferroni 

adjustment showed that the differences between the means for the unchanged and the 

randomized condition was significant at 0 ms t(11)=9.074, p<.001, and approached 

significance at 500 ms, t(11)=2.333, p<.020,  and 1000 ms, t(11)=2.129, p<.029.  

In the unchanged colours condition, single degree of freedom polynomial tests 

showed a negative slope linear, F(1,11)=92.285, MSE=.423, p<.001, partial 

η
2=.893, quadratic, F(1,11)=50.036, MSE=.241, p<.001, partial η2=.820, and cubic 

F(1,11)=5.105, MSE=.259, p<.045, partial η2=.317 trends. For the randomized 

colours condition as well, single degree of freedom polynomial tests showed a 

negative slope linear trend, F(1,11)=14.549, MSE=.389, p<.003, partial η2=.569, 

this slope being shallower than that for the unchanged colours condition. 
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Comparing swaps 
Analyses for types of swaps separately in the randomized and unchanged conditions 

revealed no significant difference in the randomized condition. In the unchanged 

condition, there was a significant main effect of swaps, F(1,11)=6.569, MSE=0.193, 

p<.026 partial η2=.374, overall, a location swap being detected more often than a 

shape swap. Figure 5.8 shows the result of comparing swaps in the unchanged 

colours condition. The interaction between swaps and study-test intervals was not 

significant.   

Figure Figure Figure Figure 5555.8.8.8.8    
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Planned comparisons using paired samples directional t tests with Bonferroni 

adjustment showed that location swaps was detected more often than a colour swap 

at 1000 ms, t(11)=2.896, p<.007. Without Bonferroni adjustment, the difference was 

also significant at 2000 ms, t(11)=2.288, p<.022, again favouring location swaps.  
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Separate single degree of freedom polynomial tests for each kind of swap showed 

similar trends for both kinds of swaps with negative slopes. For colour swaps, linear 

F(1,11)=104.199, MSE=0.353, p<.001, partial η2=.905, and quadratic, 

F(1,11)=33.059, MSE=0.387, p<.001, partial η2=.750, trends were significant. 

Similarly, for location swaps too, linear F(1,11)=62.573, MSE=0.484, p<.001, partial 

η
2=.850, and quadratic, F(1,11)=40.685, MSE=0.178, p<.001, partial η2=.787, trends 

were significant.  

Discussion 

Randomizing colours as a task-irrelevant feature between study and test was 

disruptive of memory for location-shape bindings for the study-test interval of 0 ms 

but not thereafter. This early stage disruption was much less than that observed for 

randomizing locations or randomizing shapes in Experiments 2 and 3. Even for the 0 

ms study-test delay, performance in the randomized colour condition is higher than it 

is for longer delays in both the randomized colour and in the unchanged colour 

conditions. Though the disruptive effect of randomizing colour is less than that for 

randomizing location or shape in the earlier experiments, the convergence of 

performance levels between the unchanged and randomized conditions still appeared. 

The gradual suppression of the disruption caused by the task-irrelevant feature 

remains clear as the study-test interval increases. The results also suggest that colour 

(and shape) are less strong as features than location, and it takes less time to remove 

them from the initial stimulus representation in VWM than it does to remove 

location.  

COMPARING EXPERIMENTS 2, 3, AND 4 

A 3×2×6 ANOVA with features (between subjects), unchanged/randomized 

conditions (repeated measures), and study-test intervals (repeated measures) was 

carried out to compare Experiments 2, 3, and 4. The three-way interaction was not 

significant, nor was the two way interaction between unchanged/randomized 
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condition and features. However, there were significant two way interactions 

between unchanged/randomized conditions and study-test intervals, F(5,10)=65.033, 

MSE=0.216, p<.001, partial η2=.663, and between study-test intervals and features, 

F(10,165)=3.152, MSE=0.217, p<.001, partial η2=.160. The main effects were 

significant for unchanged/randomized conditions, F(1,33)=90.728, MSE=0.559, 

p<.001, partial η
2=.733, and study-test intervals, F(3.179,104.900)=70.253, 

MSE=0.341, p<.001, partial η2=.680, with Greenhouse-Geisser correction; and 

features, F(2,33)=3.841, MSE=1.975, p<.032, partial η2=.189.  

Two way ANOVAs were also conducted separately under unchanged and 

randomized conditions. Figure 5.9 depicts the result of the 3×6 ANOVA for the  
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unchanged condition with features as between subjects variable and study-test 

intervals as within subjects variable. 
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There was a significant main effect only for study-test intervals, F(5,165)= 115.667, 

MSE=0.249, p<.001, partial η
2=.778. Neither the main effect for feature, nor its 

interaction with study-test intervals was significant.  As Figure 5.9 clarifies, the slope 

for all three features is similar and negative. 

Figure 5.10 depicts the result of the 3×6 ANOVA for the randomized condition with 

features as between subjects variable and study-test intervals as within subjects 

variable.   

Figure Figure Figure Figure 5555....10101010    
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There was a significant main effect for feature, F(2,33)=6.051, MSE=1.127, p<.006, 

partial η
2=.268. Pairwise comparisons with Bonferroni correction showed 

significantly lower performance when locations were randomized as compared to 

shapes as well as colours, with no significant difference between shapes and colours. 

The main effect for study-test intervals was also significant, with Greenhouse-

Geisser correction applied, F(3.780,124.744)=2.586, MSE=0.243, p<.043, partial 



Experiments 2, 3, and 4 

 

PhD – The University of Edinburgh – 2009                             

169 

η
2=.073. There was also a significant interaction between the two variables, 

F(10,165)=4.179, MSE=0.184, p<.001, partial η2=.202. Figure 5.10 clarifies that the 

interaction is driven by the difference between the features at the shorter study-test 

intervals and the difference in the slopes of the trends. 

Single degree of freedom polynomial tests for each feature showed that for 

randomized locations, performance was characterized by a positive-slope quadratic 

trend, F(1,11)=7.114, MSE=.156, p<.022, partial η2=.393. For randomized shapes, 

the quadratic trend, F(1,11)=17.283, MSE=.084, p<.002, partial η2=.611, showed 

the curvilinear function. For randomized colours there was a negative-slope linear 

trend, F(1,11)=14.549, MSE=.389, p<.003, partial η2=.569. 

GENERAL DISCUSSION  

In three experiments, the extent to which relevance of location, colour, and shape 

contributes to bindings of these features in perception and memory was examined. It 

is clear from these experiments that designating one feature as irrelevant and then 

randomizing it between study and test is disruptive of performance between the other 

two features at shorter, but not at longer study-test intervals. Results also showed that 

all features play a differential role in initial phases of binding. When task-irrelevant, 

locations were not important after 1500 ms, nor were colour and shape after 500 ms.  

Indicating the role of bottom-up processes, the results suggest that features are 

processed at different rates in VWM. Location seems to be the most important 

feature because randomising location disrupts performance at the shorter study-test 

intervals to a greater extent than randomising colours or shapes. The participants also 

take more time to reach the point when location ceases to be relevant for processing. 

This indicates that location is a more difficult feature to ignore than colour or shape. 

The improvement in performance with increasing study-test intervals when locations 

are randomized also seems to be unique to locations, for no similar enhancement is 

found when colour or shapes are randomized.  
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Finding a swap in two dimensions, whilst a third also changes, is certainly a more 

difficult task as compared to finding a swap when the third dimension remains 

unchanged. But the difficulty level varies with the dimensions that change. This 

condition clearly demonstrates the differential processing of features.  At 0 ms, 

performance is lowest when locations need to be ignored, better when shapes are to 

be ignored, and best when colours are to be ignored. Colours are easiest to ignore, 

whilst locations are the most resource demanding, with shapes somewhere in 

between. In fact so hard it is to ignore locations that performance is actually lower at 

the initial study-test intervals than the later ones. Gradually however, the three trends 

converge as the top-down WM processes presumably filter out the irrelevant 

information and retain only the relevant features as bindings. 

The results of the additional analyses for different types of swaps corroborate that 

location is a special feature because changes in location are apt to be better detected 

than changes in other features, i.e., colour and shape in these experiments, when all 

other stimuli in the display remain unchanged. Analyses in the condition where the 

features are unchanged illustrates the relative importance of features in terms of what 

is to be remembered, i.e., the target swap to be remembered. The score in this 

condition is a composite of two distinct possibilities in each experiment. When 

location is held same, the target stimuli may swap either colour or shapes. When 

shape is held same, the change may be either in colour or locations. When colour is 

held same, the target stimuli may swap either shapes or locations. The difference is 

not significant for shape swap and colour swap, but location swap is easier to 

remember as compared to colour swap, as well as a shape swap.  

The significance of non linear trends is indicative of the differences in the general 

performance of the participants at different stages across the study-test intervals in 

these experiments. Perhaps this implies that the initial stimulus representation is 

giving way to the development of an object but not in a gradual monotonically 

increasing way, and that there are factors, which may potentially affect the retrieval 

of bindings or the development of objects at each stage denoted by the different 

study-test intervals.  
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The fact that the greatest disruption to performance by randomizing irrelevant feature 

values between study and test occurs when the test display is presented immediately 

following stimulus offset suggests that the initial representations comprise both task-

relevant and task-irrelevant features. Therefore, the test display fails to match any 

items in the representation of the study display, and this causes the poorer detection 

of changes in the pairing of task-relevant features between two objects.  

The apparent improvement in performance with increasing study-test interval when 

locations were randomized in Experiments 1 and 2 appears to be unique to locations, 

for this was very weak with shapes in Experiment 2, and non-existent with colours. 

However, the increase in performance could be driven by the much greater disruptive 

effect of randomizing location at short study-test intervals. Performance in the 

unchanged condition after 1500 ms most likely represents the highest level of 

performance that can be obtained after that study-test interval, regardless of whether 

or not there was a disruption in the interim. Therefore, only the low performance at 0 

ms in the randomized locations condition offers the scope to show a clear increase to 

the maximum level possible at 1500 ms.  

What is critical is not whether performance improves in the randomized conditions, 

but that performance levels between the unchanged and the randomized conditions 

converge as study-test intervals increase. This convergence is clear in the interactions 

observed in all four experiments and indicates that the study-test interval chosen in 

any particular study of feature bindings has a fundamental impact on the pattern of 

results observed. 

A possible account for the interactions between the randomized and the unchanged 

conditions over study-test intervals is that as the iconic trace decays, the more 

performance is reliant on bindings being formed between only the task-relevant 

features in VWM. The representation in VWM then allows a closer match for 

comparison with the combinations of task-relevant features in the test display, and 

therefore there is less of an impact of the randomization of the irrelevant feature. 

Object representations involving shape-location bindings are formed most easily or 

are the strongest, followed by colour-location bindings, followed by shape-colour 
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bindings. After 500 ms when shape and colour were task-irrelevant and after 1500 

ms when location was task-irrelevant, the process of forming task-relevant bindings 

as object representations in VWM is complete, and the task-irrelevant feature 

becomes irrelevant for performance as well. However, the difference in the rate of 

processing in the three features under consideration makes an explanation based 

solely on iconic decay rather less plausible, unless substantial assumptions regarding 

selection within the icon are made. 

The initial differential processing of features is supported by physiological evidence 

(Aymoz & Viviani, 2004; Lamberts, 2002, Moutoussis & Zeki, 1997, Zeki et al., 

1991) as well as psychophysical studies (Magnussen, 2000; Magnussen & Greenlee, 

1997; Magnussen et al., 1996). Processing disparities suggest that features are bound 

at different rates and are thus being selectively processed. Differential processing of 

colour has been similarly interpreted as selective consolidation of features by 

Woodman and Vogel (2008), and indeed, has been linked to WM capacity. The 

much greater disruption of performance due to randomization of locations than 

shapes or colours supports the assertion that locations are special when compared to 

other features (Treisman, 1998). However, it is also true that over time, it is possible 

to ignore locations, just as it is possible to ignore colours or shapes. As suggested by 

Duncan (1998, 2006), task relevance is the top-down factor of overriding 

importance. Though his focus is on objects rather than features, it appears that task 

relevance affects differential processing of features as well, and the irrelevant 

features are ‘biased out’. Hommel (2004) has also proposed that task relevance is the 

primary factor affecting binding.  

The overall pattern of results is best explained by a confluence of ideas regarding 

bottom-up and top-down processing, such as those by Muller and Krummenacher 

who give a feature based account (Muller & Krummenacher, 2006a, 2006b) yet 

acknowledge that the weights assigned to features might be modulated by top-down 

factors (Muller et al., 2009). The present experiments have delineated a time course 

for this adjustment of weights according to task relevance. It appears that the 

differential effect of features is driven largely bottom-up and is thus evident at the 
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shorter study-test intervals, but in the workspace of VWM (Logie, 2003) all features 

are treated in a similar way. They are consolidated if relevant, and discarded if 

irrelevant. Further, in accordance with task instructions, participants can only 

gradually consolidate relevant information and inhibit irrelevant information 

expending time and effort on this process. The nature of the mechanism, which aids 

this process, is the focus of the next chapter. 
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     CHAPTER 6 

EXPERIMENTS 5, 6, AND 7 

 

In the set of experiments reported in this chapter, it was of interest to study how far 

consolidation of relevant features, and inhibition of irrelevant ones, can happen with 

a change in the nature of attention and top-down inputs at various study-test 

intervals. Experiments 5, 6, and 7 were designed to be analogous to Experiments 2, 

3, and 4. The only difference was that the study-test intervals were randomly mixed 

on every trial within a block, and the participant had no information regarding the 

length of the study-test interval in each trial. This manipulation precluded the build 

up of any differential strategies by the participants before the start of the trial for 

shorter and longer study-test intervals (though it did not prevent them from using 

strategies within the trial). On the other hand, mixed presentation requires continuous 

shifts in focus before and within the trial, and requires intra-trial as well as inter-trial 

processing.  

Blocked vs. mixed presentation is a simple way of testing the interaction of top-down 

strategic processes with transient processing effects that occur trial by trial. The point 

is not that one type of format is correct and another is incorrect. Rather, the point is 

that participants' mental activity is sensitive to format of presentation. Some 

researchers in the area of binding have used blocked presentation (e.g., Treisman & 

Zhang, 2006) while others have used mixed presentation (e.g., Woodman & Vogel, 

2008), but the two have not been directly compared. Nevertheless, there is some 

related evidence in literature regarding the effects of these presentation formats on 

other performance measures.  

One such comparison between blocked versus mixed designs was made by 

Ballesteros, Reales, and Manga (2000) who studied the effect of eight levels of word 

fragmentation on inhibition and facilitation observed in the Stroop task. They found 

that inhibition and facilitation effects showed up even at the most fragmented level in 
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the blocked design, whereas only inhibition showed up in the mixed design, and 

facilitation disappeared. Thus they concluded that performance in the blocked 

condition reflected the operation of an expectancy or mental set that allowed implicit 

processing, whereas in the mixed design, performance was contingent only on 

explicit and/or semantic processing. Martens and Johnson (2005) tested if the 

attentional blink can be reduced if the time interval between the two stimuli is known 

in advance. Neither giving the trials in blocks, nor mixing them randomly had any 

effect on performance. However, explicitly cueing the target onset asynchrony on 

every trial did reduce the attentional blink.  In a study involving a paired associate 

recall task to be encoded using imagery vs. rote learning, Price, Hertzog, and 

Dunlosky (2008) found that participants performed better and rated the imagery 

strategy to be more effective when tested under blocked conditions as compared to 

mixed conditions. Further, the awareness of strategy effectiveness was more 

pronounced in younger (mean age 19) than older (mean age 69) adults.  
 

Contrasting blocked vs. mixed presentation is much more prevalent in studies using 

physiological measures. Johnson, Nolde, Mather, Kounios, Schacter, and Curran 

(1997) demonstrated processing differences in recognition memory for old, new, and 

lure words due to blocked vs. randomized trials using ERP. In blocked conditions, 

old and lure items were processed differently, but in the mixed condition, they were 

processed in a similar way. Early fMRI researchers often used either blocked or 

mixed presentations. Comparing performance for recall and recognition, Donaldson 

and Rugg (1999) found that though different areas were activated under blocked 

conditions, the same areas were activated under mixed conditions, suggesting that 

under mixed conditions, it is difficult to maintain the functionally differential 

strategies used in blocked conditions. Mechelli, Price, Henson, and Friston (2003) 

compared the error variance to study the relative efficiency of blocked vs. mixed 

design using fMRI. They found that the early visual areas did not show differential 

error variance for the two kinds of presentation, but most areas in the visual cortex 

did show greater error variance with mixed presentation. Statistically, blocked 

presentation often results in contrasts that are more significant. 
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These studies confirm that performance in response to blocked presentation is better 

and more stable because of the operation of top-down mental set. Top-down 

processes associated with sets, goals, or strategies can be established and sustained 

across trials within a block; although it may be difficult to control and maintain a 

specific cognitive state for the whole period of each block. In this sense, blocked 

presentation is also prone to potential confounds such as rapid habituation, 

anticipation, or other strategy effects. In contrast, performance in mixed conditions 

reflects transient processing effects that occur within trials and is affected by bottom-

up processes to a greater extent. With randomly intermixed trials, participants may 

rely more on perceptual details of each trial to discriminate between them. 

Attention is the mechanism through which these top-down processes are 

implemented. But as reviewed in Chapter 2, attention is itself a complex concept and 

plays many different roles. Generalised attention may be more prevalent in blocked 

presentation, but mixed presentation requires specific focus on each trial, excluding 

interference from previous and subsequent trials.  Slagter, Giesbrecht, Kok, 

Weissman, Kenemans, Woldorff and Mangun (2007) studied generalised and 

specialised components of attentional control in a combined fMRI design. The 

design allowed the study of higher order processes manipulated in blocked 

conditions, and the study of within trial, transient, or event related effects in mixed 

conditions; whilst also allowing a study of the interaction between the two. There 

were no differences in activation between blocked and mixed conditions when 

participants were asked to respond to either location cues or colour cues, even though 

different brain regions were activated in response to these cues. Nevertheless, 

additional activity in the sub-regions of the fronto-parietal control areas was found to 

reflect shifting of attention, irrespective of task relevant information. With a similar 

combined design, Engelmann, Damaraju, Padmala, and Pessoa (2009) studied the 

effect of cash incentive manipulated in blocks and spatial attention assessed by 

mixed trials within blocks in a Posner type visual search task. Detection performance 

increased with incentive value. fMRI analyses showed that incentive motivation 

enhanced evoked responses in several  sites associated with attention. The observed 
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effect of incentive motivation was greater during invalid than valid trials, and the 

authors suggest that this was possibly because motivation has a larger effect on 

reorienting than orienting of attention. If it is accepted that the cash incentive 

provided a top-down cognitive and motivational set, this study seems to provide 

interesting evidence for interactions between global and transient types of attention 

in the performance of a perceptual task, suggesting that global attention has an effect 

at later, but not earlier stages of information processing.     

Despite the focussing of attention required within each trial, mixed presentation also 

requires switching mental set from trial to trial. In this respect it certainly requires a 

more rigorous use of WM resources due to continuous attention switching, which is 

one of the three primary functions of the attentional control system (Baddeley, 2007; 

Baddeley & Logie, 1999, Monsell, 2003). This actually requires the participants to 

be prepared for all conditions of the experimental task. One might expect that more 

rigorous use of attentional resources might lead to better memory performance with 

mixed presentation. The contextual interference effect (review by Magill & Hall, 

1990) suggests that this is indeed true. When contextual interference is high (as in 

mixed presentation), performance is suppressed during acquisition, but enhanced in 

tests of memory or transfer. The effect holds in the verbal (Schneider, Healy, & 

Bourne, 2002) as well as motor domain (Shea & Morgan, 1979), and is often used in 

various training programs.  

Explanations of the contextual interference effect suggest that better retention in 

mixed presentation is due to more intensive use of WM processes at the time of 

acquisition because the participants engage in reconstructive activity as they need to 

rehearse the task goal every time they are faced with a new trial (Lee & Magill, 

1985) and need to use intra-task as well as inter-task processing (Shea & Zimny, 

1988; Wright, Li, & Whitacre, 1992, Wright, Shea, Li, & Whitacre, 1992). Accepting 

that contextual interference is high in mixed condition as against blocked condition 

Li and Wright (2000) directly compared the attentional demands of mixed and 

blocked presentation using dual task methodology. The primary task was key 

pressing in which the participants had to press four keys in a sequence, according to 
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timing requirements displayed on the screen. Auditory choice reaction time was the 

secondary task given either before the response to the primary task or in the inter-

trial interval. In line with the contextual interference effect, they found lesser error in 

the blocked condition in the primary task at the time of acquisition, but lesser error in 

the mixed condition after retention intervals of 10 minutes as well as 24 hours. They 

also found much longer RT on the secondary task in the mixed conditions as 

compared to the blocked condition (though both generated significantly longer RTs 

compared with baseline RT performance). This was proof that the mixed condition 

was much more attention demanding. No differences were observed between the two 

conditions when the secondary task was given before the response or during the 

inter-trial interval, and thus the effects of global or within trial attention could not be 

separated. 

There is considerable evidence (review by Wulf & Shea, 2002) that the contextual 

interference effect is not obtained for complex cognitive skills such as computer 

based problem solving in a distillery (De Croock & Van Merrienboer, 2007) or tasks 

in a fight simulator (Goettl, 1995). It is acknowledged that the effect is being used as 

the basis of hypotheses regarding feature binding possibly for the first time in this 

thesis, and thus the prediction is speculative. This is particularly true because the 

previous studies use longer time-periods and primarily assess performance on 

perceptual motor tasks, and the effect often does not emerge for complex cognitive 

tasks. Nevertheless, binding being a much less complex process might well show the 

contextual interference effect. For the present experiments, this would predict that 

performance would be superior at longer study-test intervals for mixed presentation 

than for blocked presentation.  

Performance in Experiments 2, 3, and 4 was tested under blocked conditions. 

Experiments 5, 6, and 7 were designed to have mixed presentation of trials, to enable 

a comparison between blocked and mixed presentation. The expectation was that 

there would be differences in the levels of the performance of the participants due to 

these different formats of presenting the trials, specifically that performance with 

mixed presentation will be lower at the shorter study-test intervals, but higher at the 
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longer study-test intervals in keeping with the contextual interference effect. No 

differential predictions were made for the randomized and unchanged conditions, 

because only study-test intervals were being mixed. However, the variable was 

entered in the analyses to explore its interactive effects.  

Despite the above prediction regarding difference between the experiments, it was 

anticipated that the pattern of the overall result of Experiments 2, 3, and 4 would 

hold, and the interaction effect would be observed in each experiment. It was of 

particular interest to explore when the convergence of performance, which denoted 

that randomizing a feature no longer had a differential effect on performance, would 

be manifest. For this reason planned comparisons at each study-test interval were 

used to test the differences between performance under unchanged and randomized 

conditions. Analogously, the effects of types of swaps were also tested through 

planned comparisons to see if they too followed the results obtained in the earlier 

Experiments 2, 3, and 4.   

In Experiments 2, 3, and 4, the six study-test intervals were presented in three blocks 

of 20 trials each, to sum up to 60 trials for each of the study-test intervals and 360 

trials in all within each of the feature unchanged/ randomized conditions. Since it 

was desirable to have the same number of trials in the Experiments 5, 6, and 7, four 

trials for each of the six study-test intervals were given in a randomly mixed order 

within each block of 24 trials. Within each of the feature unchanged/randomized 

conditions, the total number of blocks was 15, so that there were 60 trials for each of 

the study-test intervals, and 360 trials in all. Note that only the study-test intervals 

were presented in a mixed order, and the feature unchanged/randomized condition 

was not mixed. In all experiments, each participant completed 720 trials for the entire 

experiment. 

EXPERIMENT 5 

This experiment tested the effect of unchanged and randomized location on shape-

colour binding at study-test intervals ranging from 0 to 2500 ms. In keeping with 
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Experiments 1 and 2, an interaction was expected with disruption of performance due 

to randomizing locations at the shorter but not the longer study-test intervals.  

Participants  

Twelve students (6 men and 6 women) in the age range 18-25 years participated in 

the experiment and were given an honorarium of £10. 

Stimuli, Design, and Procedure 

The stimuli, identical to Experiment 1 and 2 were random combinations of six 

colours and six shapes, placed at random locations in an invisible 3×4 square grid. 

The experiment was a 2 (unchanged / randomized locations) × 6 (study-test intervals) 

factorial design with repeated measures on both factors. Participants were tested on 

two consecutive days at the same time of the day, half being tested with randomized 

locations, and the other half being tested with unchanged locations on the first day. 

There were 15 blocks of 24 trials in each experimental session. The six levels of the 

second variable (study-test intervals) – 0, 500, 1000, 1500, 2000, and 2500 ms, were 

randomly mixed within each block of 24 trials. A brief rest pause was enforced after 

every five blocks. 

In each session, participants initially practiced six trials of each type of study-test 

intervals, starting from the longest study-test interval, and working gradually through 

all the study-test intervals to the shortest one of 0 ms, and then finished off with a 

block of 12 trials in which the six study-test intervals were mixed (as they were in 

the real experiment). Thus, in all they had 48 practice trials in each session, exactly 

as in Experiment 2. All other procedural details were the same as in Experiment 2. 

Results 

Mean change detection performance calculated from d-primes across study-test 

intervals and for the unchanged/randomized locations conditions is shown Figure 

6.1. There was a significant main effect of locations conditions, F(1,11)=46.974, 

MSE=.600, p<.001, partial η2=.810, showing that memory for bindings was 
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significantly reduced when location of stimuli was changed between study and test. 

The main effect of study-test intervals was also significant, F(5,55)=30.557, 

MSE=.127, p<.001, partial η2=.735 indicating that memory for bindings was 

significantly different across the study-test intervals chosen in this experiment. There 

was a significant interaction between these variables, F(5,55)=62.222, MSE=.133, 

p<.001, partial η2=.850.  

Figure 6.1Figure 6.1Figure 6.1Figure 6.1    
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Single degree of freedom polynomial tests for unchanged locations showed a 

negative slope linear trend, F(1,11)=245.114, MSE=.191, p<.001, partial η2=.957, 

quadratic trend, F(1,11)=68.704, MSE=.129, p<.001, partial η2=.862, and cubic 

trend, F(1,11)=7.809, MSE=.159, p<.017, partial η2=.415. For randomized locations, 

single degree of freedom polynomial tests showed a positive slope linear trend, 
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F(1,11)=17.800, MSE=.102, p<.001, partial η2=.618, and cubic trend, 

F(1,11)=8.726, MSE=.089, p<.013, partial η2=.442. The significant higher order 

trends indicate a non-linear relationship between study-test interval and performance.  

Planned comparisons using paired samples directional t tests with Bonferroni 

adjustment showed that the difference between the means for the unchanged and the 

randomized condition was significant at 0 ms, t(11)=14.958, p<.001; 500 ms, 

t(11)=4.003, p<.001;  and 1000 ms, t(11)=4.849, p<.001, and approached 

significance at 1500 ms, t(11)=2.240, p<.024.  

Comparing swaps 
Additional analyses were done to test if the type of swap had any effect on the 

participants’ performance. Analyses for swaps in the randomized locations condition 

did not reveal any significant effects. In the unchanged locations condition, though 

the main effect for swaps was not significant, the interaction between swaps and 

study-test intervals was significant, F(5,55)=2.434, MSE=0.106, p<.046, partial 

η
2=.181, as shown in Figure 6.2. 

Planned comparisons using paired samples directional t tests with Bonferroni 

adjustment showed that shape swaps were detected more often than a colour swaps at 

2500 ms, t(11)=2.980, p<.005. Without Bonferroni adjustment, the difference was 

also significant at 500 ms, t(11)=2.481, p<.015, again favouring shape swaps. 

Separate single degree of freedom polynomial tests for each kind of swap showed the 

difference in trends for both kinds of swaps, though the slope was negative in each 

case. For colour swaps, linear F(1,11)=244.090, MSE=0.180, p<.001, partial 

η
2=.957, quadratic, F(1,11)=37.528, MSE=0.143, p<.001, partial η2=.773, cubic, 

F(1,11)=7.262, MSE=0.200, p<.021, partial η2=.398, and quintic,  F(1,11)=5.620, 

MSE=0.287, p<.037, partial η2=.338, trends were significant.  

For shape swaps only the linear F(1,11)=189.516, MSE=0.246, p<.001, partial 

η
2=.945, and quadratic, F(1,11)=72.070, MSE=0.160, p<.001, partial η2=.868, trends 

were significant.  
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Figure Figure Figure Figure 6666.2.2.2.2    
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Comparing Experiments 5 and 2 

A 2×2×6 ANOVA with experiments (between subjects), unchanged/randomized 

conditions (repeated measures), and study-test intervals (repeated measures) was 

carried out to compare Experiments 5 and 2. The three-factor interaction was not 

significant. The main effect for experiment was also not significant, nor was the 

interaction of experiment with unchanged/randomized condition.   

However, the interaction between experiments and study-test intervals was 

significant, F(5,110)=3.913, MSE=0.139, p<.003, partial η2=.151, indicating that the 
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performance of the participants differed in the two experiments across the various 

study-test intervals. Figure 6.3 shows this result.  

Single degree of freedom polynomial tests showed negative slope reliable linear, 

F(1,11)= 77.546, MSE=.086, p<.001, partial η2=.876, quadratic, F(1,11)= 16.346, 

MSE=.087, p<.002, partial η2=.598, and cubic F(1,11)= 66.796, MSE=.035, p<.001, 

partial η2=.859, trends for blocked presentation in Experiment 2.  

For mixed presentation in Experiment 5, only the linear F(1,11)= 70.364, MSE=.107 

p<.001, partial η2=.865, and quadratic F(1,11)= 31.134, MSE=.053, p<.001, partial 

η
2=.739, trends were significant.  
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Paired comparisons using independent samples t tests showed that the only 

significant difference occurred at 2000 ms, t(22)=2.389, p<.0246, favouring blocked 

presentation, but with Bonferroni adjustment this was not significant. 
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Discussion 

From the results of Experiments 1 and 2, and the empirical and theoretical literature 

reviewed in Chapter 2, it was expected that randomizing location would interrupt 

performance at the shorter but not the longer study-test intervals. The results of 

Experiment 5 confirmed this prediction.   

Differences between colour swaps and shape swaps occurred at 0 and 500 ms, 

favouring the detection of shape swaps, confirming that shape has a more important 

role to play in binding than colour. The comparison of blocked and mixed 

presentation used in Experiments 2 and 5 showed that blocked presentation aided 

performance at the longer study-test interval of 2000 ms, contrary to the expectation 

from the contextual interference effect. The possible reasons for this result are 

delineated in the general discussion of this chapter. 

EXPERIMENT 6 

This experiment studied the impact of randomizing shapes between study and test on 

the binding of locations and colours. In keeping with the results of Experiment 3, it 

was expected that performance will be disrupted due to randomization of shapes at 

the short but not the longer study-test intervals. From, Experiment 3, it was also 

expected that location swaps would be easier to detect than colour swaps in the 

unchanged shapes condition. 

Participants 

Twelve students (6 men and 6 women) between the ages of 18 and 25 years 

participated and were given £10 as an honorarium.   

Stimuli, Design, and Procedure  

Stimuli were the same as in Experiment 3.  Six colours (cyan, yellow, magenta, red, 

green, blue) were combined with any six of twelve shapes (circle, plus, right triangle, 
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horseshoe, diamond, parallelogram, doughnut, star, wave, pentagon, triangle, 

trapezium). In each trial six shapes were randomly chosen from a set of twelve 

shapes, randomly combined with six colours and presented in six fixed locations in 

an invisible 3×4 grid of squares. 

The experiment was designed as a 2×6 factorial experiment with repeated measures 

on both factors. The first independent variable was shapes manipulated at two levels: 

unchanged shapes vs. randomized shapes. Participants were asked to ignore the 

shapes and to remember the combinations of colour and location, and the task was to 

detect whether the location-colour binding had changed. They were tested on two 

consecutive days at the same time of the day, half being tested with randomized 

shapes, and the other half being tested with unchanged shapes on the first day. There 

were 15 blocks of 24 trials in each experimental session. The six levels of the second 

independent variable (study-test intervals) – 0, 500, 1000, 1500, 2000, and 2500 ms, 

were randomly presented within each block of 24 trials. A brief rest pause was 

enforced after every five blocks. 

In each session, participants initially practised six trials of each type of study-test 

intervals, starting from the longest study-test interval, and working gradually through 

all the study-test intervals to the shortest one of 0 ms, and then finished off with a 

block of 12 trials in which the six study-test intervals were given in a random order 

(as they were in the real experiment). Thus, they had 48 practice trials in total in each 

session, the same as in Experiment 3. All other procedural details were also the same 

as in Experiment 3. 

Results  

Mean change detection accuracy across study-test intervals for unchanged shapes 

and randomized shapes conditions is shown in Figure 6.4.  

There was a significant main effect of unchanged/randomized shapes, F(1,11)=9.681, 

MSE=0.783, p<.010, partial η2=.468, in that memory for bindings was significantly 

reduced when shapes of stimuli were changed between study and test. The main 
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effect of study-test intervals was also significant, F(5,55)=2.853, MSE=0.233, 

p<.023, partial η2=.206, indicating that memory for bindings differed across the 

study-test intervals. The two variables interacted, F(5,55)=23.820, MSE=0.215, 

p<.001, partial η2=.684. As study-test intervals increased, performance decreased in 

unchanged shapes condition, whereas it increased in the randomized shapes 

condition. Single degree of freedom polynomial tests showed a reliable negative 

slope linear trend, F(1,11)= 40.991, MSE=0.437, p<.001, partial η2=.788, and 

quadratic trend, F(1,11)= 17.828, MSE=0.163, p<.001, partial η2=.618, for 

unchanged shapes. For randomized shapes, only the linear trend, F(1,11)= 17.848, 

MSE=0.298, p<.001, partial η2=.619, was significant, and it had a positive slope. 
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Planned comparisons using paired samples directional t tests with Bonferroni 

adjustment showed that the difference between the means for the unchanged and the 
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randomized condition was significant at 0 ms, t(11)=8.297, p<.001, and 500 ms, 

t(11)=2.809, p<.008.  

Comparing swaps 
Analyses for swaps in the randomized shapes condition did not reveal any significant 

effects. However, in the unchanged shapes condition, there was a significant main 

effect of swaps, F(1,11)=48.871, MSE=0.101, p<.001, partial η2=.816, location 

swaps being detected more often than colour swaps at all study-test intervals. Figure 

6.5 shows this result.  
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Planned comparisons using paired samples directional t tests with Bonferroni 

adjustment showed that the differences were reliable at  1000 ms, t(11)=4.193, 

p<.001, at 1500 ms, t(11)=3.247, p<.004; at 2000 ms, t(11)=3.285, p<.004, and at 

2500 ms, t(11)=5.574, p<.001. The interaction between swaps and study test 
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intervals was not significant. Separate single degree of freedom polynomial tests for 

each kind of swap showed similar trends with negative slopes for both kinds of 

swaps. For colour swaps, linear F(1,11)=49.051, MSE=0.410, p<.001, partial 

η
2=.817, and quadratic, F(1,11)=16.723, MSE=0.179, p<.002, partial η2=.603, trends 

were significant. Similarly, for location swaps, linear, F(1,11)=35.830, MSE=0.450, 

p<.001, partial η2=.765, and quadratic, F(1,11)=11.969, MSE=0.196, p<.005, partial 

η
2=.521, trends were significant.  

Comparing Experiments 6 and 3 

A 2×2×6 ANOVA with experiments (between subjects), unchanged/randomized 

conditions (repeated measures), and study-test intervals (repeated measures) was 

carried out to compare Experiments 6 and 3. The three-factor interaction was not 

significant. The main effect for experiment was also not significant, nor was the 

interaction of experiment with unchanged/randomized condition. However, the 

interaction between experiments and study-test intervals was significant, 

F(5,110)=2.617, MSE=0.239, p<.028, partial η2=.106, indicating that the 

performance of the participants differed in the two experiments across the study-test 

intervals studied. Figure 6.6 shows this result. 

Paired comparisons using independent samples t tests showed that the only 

significant difference occurred at 2500 ms, t(11)=1.897, p<.035, favouring mixed 

presentation, but with Bonferroni adjustment this was not significant.  

The significant interaction is better explained by the different nature of trends 

observed with the two kinds of presentation. Single degree of freedom polynomial 

tests showed negative slope linear, F(1,11)= 26.014, MSE=0.259, p<.001, partial 

η
2=.703, quadratic, F(1,11)= 6.126, MSE=0.085, p<.031, partial η2=.358, and cubic, 

F(1,11)= 6.809, MSE=0.117, p<.024, partial η2=.382, trends for blocked 

presentation in Experiment 3. For mixed presentation in Experiment 6, none of the 

trends was significant. 
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Figure Figure Figure Figure 6666.6.6.6.6    
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Discussion 

Changing shapes between study and test was disruptive of memory for location-

colour bindings for the study-test intervals of 0 and 500 ms, but not thereafter. The 

pattern is similar to that shown in Experiment 3 except that here the difference 

between unchanged and randomized shapes is significant at 500 ms as well, and thus 

the convergence of performance happens later. The analyses of swaps confirmed the 

importance of locations as a special feature by showing that location swap is easier to 

remember as compared to colour swaps in the unchanged shapes condition.  

The comparison of blocked and mixed presentation used respectively in Experiments 

3 and 6 showed an interaction effect, following the prediction from the contextual 

interference effect that performance would be lower at shorter study-test intervals but 

higher at the longer study-test intervals with mixed presentation. Though the gradual 
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divergence of performance in the two conditions is clear from the graph, the 

difference significantly favoured mixed presentation only at the longest study-test 

interval.  

EXPERIMENT 7 

In this experiment the impact of randomizing colour between study and test was 

considered on the binding of location and shape. From the results of Experiment 4, it 

was expected that performance would be disrupted due to randomization of colour at 

the shorter but not the longer study-test intervals. It was also expected that location 

swaps would be better detected than shape swaps in the unchanged colours condition. 

Participants 

Twelve students (6 men and 6 women) between the age of 18 and 25 years 

participated and were given £10 as an honorarium.   

Stimuli, Design, and Procedure  

Stimuli were the same as in Experiment 4. Six shapes (circle, plus, right triangle, 

horseshoe, diamond, parallelogram) were combined with any six of twelve colours 

(cyan, yellow, magenta, red, green, blue, brown, dark green, dark blue, violet, white, 

and pink) to form the stimuli. These were presented in six fixed locations in an 

invisible 3×4 grid of squares. 

The experiment was designed as a 2×6 factorial experiment with repeated measures 

on both factors.  The first independent variable was colours manipulated at two 

levels: unchanged colours vs. randomized colours. In the unchanged colours 

condition, all six colours remained the same from study to test display. In the 

randomized colours condition six colours were randomly chosen (with replacement) 

from the set of twelve colours and reallocated to different stimuli from study to test.  

Participants were asked to ignore the colours and to remember the combinations of 

shape and location, and the task was to detect whether the location-shape binding had 
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changed. They were tested on two consecutive days at the same time of the day, half 

being tested with randomized colours, and the other half being tested with unchanged 

colours on the first day. There were 15 blocks of 24 trials in each experimental 

session. The six levels of the second independent variable (study-test interval) – 0, 

500, 1000, 1500, 2000, and 2500 ms, were randomly presented within each block of 

24 trials. A brief rest pause was enforced after every five blocks. In each session, 

participants practiced six trials of each type of study-test intervals, starting from the 

longest study-test interval, and working through all to the shortest one of 0 ms, and 

then finished off with a block of 12 trials in which the six study-test intervals were 

given in a random order (as in the real experiment). Thus they had 48 practice trials 

in total in each session, exactly the same as in Experiment 4. All other procedural 

details were the same as in Experiment 4. 

Results  

Mean change detection accuracy across study-test intervals for unchanged colours 

and randomized colours conditions are shown in Figure 6.7.  

There was a significant main effect of colour condition F(1,11)=15.504, MSE=.446, 

p<.002, partial η2=.585, in that memory for bindings was significantly reduced 

when the colour of stimuli was randomized from study to test display. The main 

effect of study-test interval was also significant, F(5,55)=36.515, MSE=.240, p<.001, 

partial η2=.768 indicating that memory for bindings was significantly different for 

different study-test intervals. There was a significant interaction between these 

variables, F(5,55)=14.491, MSE=.126, p<.001, partial η2=.568.  

Planned comparisons with paired samples t test with Bonferroni adjustment showed 

that differences between the means for the unchanged and the randomized condition 

were reliable at 0 ms, t(11)=6.939, p<.001 and 500 ms, t(11)=4.643, p<.001  but not 

thereafter.  
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Despite the significant interaction effect, there is a decrease in performance as the 

study-test interval increases when colour remains unchanged as well as when the 

colour of stimuli is randomized from initial to test display. 

Figure Figure Figure Figure 6666....7777    
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Single degree of freedom polynomial tests for unchanged colours showed negative 

slope linear trend, F(1,11)=137.514, MSE=.258, p<.001, partial η2=.926, quadratic 

trend,   F(1,11)=47.001,  MSE=.179 , p<.001, partial η2=.810, and cubic trend, 

F(1,11)=13.679,  MSE=.136, p<.004, partial η2=.554. For randomized colours, 

single degree of freedom polynomial tests also showed a negative slope trend. The 

linear, F(1,11)=21.215, MSE=.210, p<.001, partial η2=.659, cubic, F(1,11)=17.372, 

MSE=.083, p<.002, partial η2=.612, and quartic, F(1,11)=10.409, MSE=.092, 

p<.008, partial η2=.486, trends were significant.  
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The fact that the higher order trends were also significant indicates that a linear trend 

does not fit the data too well, and both slopes are characterised by an initial decline 

followed by a levelling out. However, in both cases, the slope is negative. This is in 

contrast to the location and shape experiments, where performance improved with 

increasing study-test intervals when each feature was randomized.  

Comparing swaps 
Analyses for swaps in the randomized colours condition did not reveal any 

significant effects. However, in the unchanged colours condition, there was a 

significant main effect of swaps, F(1,11)=6.669, MSE=0.101, p<.025, partial 

η
2=.377, overall, location swaps being detected more often than shape swaps. The 

interaction effect was not significant. Figure 6.8 depicts the result.  
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Planned comparisons at the various study-test intervals using paired samples 

directional t tests with Bonferroni adjustment showed no significant differences. 

Without Bonferroni adjustment, the significant difference was at 500 ms, 

t(11)=2.256, p<.022, favouring location swaps. Separate single degree of freedom 

polynomial tests for each kind of swap showed similar trends for both kinds of swaps 

with negative slopes. For shape swaps, linear F(1,11)=64.297, MSE=0.449, p<.001, 

partial η2=.854, quadratic, F(1,11)=55.539, MSE=0.122, p<.001, partial η2=.835, 

and cubic, F(1,11)=9.134, MSE=0.273, p<.012, partial η2=.454, trends were 

significant. Similarly, for location swaps too, linear F(1,11)=155.472, MSE=0.214, 

p<.001, partial η2=.934, and quadratic, F(1,11)=19.016, MSE=0.329, p<.001, partial 

η
2=.634, trends were significant.  

Comparing Experiments 7 and 4 

A 2×2×6 ANOVA with experiments (between subjects), unchanged/randomized 

conditions (repeated measures), and study-test intervals (repeated measures) was 

carried out to compare Experiments 7 and 4. The main effect for experiments was not 

significant, though there was a trend towards significance F(1,22)=3.245, 

MSE=2.350, p<.085, partial η2=.129. None of the interactions involving experiments 

were significant. Planned comparisons at the various study-test intervals using paired 

samples directional t tests with Bonferroni adjustment showed no significant 

differences. Without Bonferroni adjustment, the significant difference was at 1500 

ms, t(11)=1.803, p<.043, and 2000 ms, t(11)=1.969, p<.031, in both cases favouring 

mixed presentation. Figure 6.9 shows how mixed presentation in Experiment 7 

increased performance at all study-test intervals.  

Separate single degree of freedom polynomial tests showed similar trends with 

negative slopes. For blocked presentation, linear F(1,11)=52.724, MSE=0.353, 

p<.001, partial η2=.827, and quadratic, F(1,11)=39.534, MSE=0.089, p<.001, partial 

η
2=.782, trends were significant. Similarly, for mixed presentation, linear 

F(1,11)=91.437, MSE=0.178, p<.001, partial η2=.893, quadratic, F(1,11)=37.931, 
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MSE=0.099, p<.001, partial η2=.775, and cubic, F(1,11)=24.783, MSE=0.066, 

p<.001, partial η2=.693, trends were significant.   
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Discussion 

This experiment too replicated the interaction obtained in the previous experiments 

showing that the effects of the irrelevant feature were gradually removed and the 

bindings between the relevant features strengthened over time. Randomizing colours 

is disruptive of performance at 0 ms and 500 ms though the extent of disruption is 

not as much as that obtained in earlier experiments randomizing locations or shapes. 

The analyses comparing location swaps and shape swaps provide supportive 

evidence that it is easier to detect changes in locations than in shapes, affirming the 

importance of location as a feature.  
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Comparison with Experiment 4 clearly showed that mixed presentation helped 

performance at all study-test intervals in this experiment. The divergence is more 

clear at the study-test intervals of 1500 and 2000 ms. It appears that the more 

intensive use of WM resources entailed by mixed presentation has helped 

performance in the simple task of detecting changes to shape-location bindings, 

whilst the colour of the object changes.  

COMPARING EXPERIMENTS 5, 6, AND 7 

A 3×2×6 ANOVA with features (between subjects), unchanged/randomized 

conditions (repeated measures), and study-test intervals (repeated measures) was 

carried out to compare Experiments 5, 6, and 7. There was a significant three way 

interaction, F(10,165)=4.622, MSE=0.158, p<.001, partial η2=.219, and significant 

two way interactions between unchanged/randomized conditions and features, 

F(2,33)=3.750, MSE=0.610, p<.034, partial η2=.185, between study-test intervals 

and features, F(10,165)=7.132, MSE=0.200, p<.001, partial η2=.302, and between 

unchanged/randomized conditions and study-test intervals,  F(3.633,119.881)=8.270, 

MSE=0.217, p<.001, partial η2=.728, with Greenhouse-Geisser correction applied. 

The main effects were significant for unchanged/ randomized conditions, 

F(1,33)=62.499, MSE=0.610, p<.001, partial η
2=.654, and study-test intervals, 

F(3.641,120.144)=52.279, MSE=0.275, p<.001, partial η2=.613, with Greenhouse-

Geisser correction applied, and features, F(2,33)=11.271, MSE=2.195, p<.001, 

partial η2=.406.  

To investigate the three-way interaction further, two way ANOVAs were conducted 

separately under unchanged and randomized conditions.  

The 3×6 ANOVA for the unchanged condition with features as between subjects 

variable and study-test intervals as within subjects variable revealed a significant 

main effect for features, F(2,33)=5.093, MSE=1.185, p<.012, partial η
2=.236. 

Pairwise comparisons with Bonferroni adjustment showed a significant difference in 

the overall performance only between unchanged locations and shapes, with 



Experiments 5, 6, and 7 

 

PhD – The University of Edinburgh – 2009                             

199 

performance being significantly lower for locations. The main effect for study-test 

intervals was also significant, F(3.952,130.410)= 125.184, MSE=0.245, p<.001, 

partial η
2=.791, with Greenhouse-Geisser correction applied. There was also a 

significant interaction, F(10,165)=2.645, MSE=0.193, p<.005, partial η2=.138. 

Figure 6.10 shows these results.  
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The interaction was further explored by using single degree of freedom polynomial 

tests conducted separately for each feature. Negative slope linear, F(1,11)=245.114, 

MSE=.191,  p<.001, partial η2=.957, quadratic, F(1,11)=68.704, MSE=.129,  p<.001, 

partial η2=.862,  and cubic, F(1,11)=7.809, MSE=.159,  p<.017, partial η2=.415,  

trends were found for locations. For shapes,  reliable negative slope linear, F(1,11)= 

40.991, MSE=.437,  p<.001, partial η2=.788,  and quadratic, F(1,11)= 17.828, 

MSE=.163,  p<.001, partial η2=.618,  trends were obtained. For colours, reliable 
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negative slope linear, F(1,11)=137.514, MSE=.258,  p<.001, partial η2=.926,  

quadratic, F(1,11)=47.001, MSE=.179,  p<.001, partial η2=.810,  and cubic, 

F(1,11)=13.679, MSE=.136,  p<.004, partial η2=.554, trends were obtained. Figure 

6.10 clarifies that though the slope for all three features is negative, the interaction is 

primarily driven by the differences in the rate of decrease in performance over the 

different study-test intervals, and the significantly lower performance for locations at 

the longer study-test intervals. 

The 3×6 ANOVA for the randomized condition with features as between subjects 

variable and study-test intervals as within subjects variable revealed results shown in 

Figure 6.11.  
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There was a significant main effect for feature, F(2,33)=12.961, MSE=1.620, 

p<.001, partial η
2=.440. Pairwise comparisons with Bonferroni correction showed 

significantly lower performance when locations were randomized as compared to 
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shapes as well as colours, with no significant difference between shapes and colours. 

The main effect for study-test intervals was not significant, but there was a 

significant interaction between the two variables, F(10,165)=9.985, MSE=0.165, 

p<.001, partial η2=.377.  

The interaction was further investigated using separate single degree of freedom 

polynomial tests for each feature. For randomized locations, single degree of 

freedom polynomial tests showed a reliable positive slope linear trend, 

F(1,11)=17.800, MSE=.102,  p<.001, partial η2=.618,  and cubic trend, 

F(1,11)=8.726, MSE=.089,  p<.013, partial η2=.442. For randomized shapes, only 

the linear trend, F(1,11)= 17.848, MSE=.298,  p<.001, partial η2=.619,  was 

significant, and it had a positive slope. For randomized colours, single degree of 

freedom polynomial tests shows a reliable negative slope linear trend, 

F(1,11)=21.215, MSE=.210,  p<.001, partial η2=.659,  cubic trend, F(1,11)=17.372, 

MSE=.083,  p<.002, partial η2=.612, and quartic trend, F(1,11)=10.409, MSE=.092,  

p<.008, partial η2=.486.   

GENERAL DISCUSSION 

Experiments 5, 6, and 7 tested the participants’ ability to ignore changes in location, 

shape, and colour, with the study-test intervals randomly mixed in each block. This 

was in contrast with Experiments 2, 3, and 4, which used blocked presentation. In 

line with the expectation based on previous work on the contextual interference 

effect (Lee & Magill, 1985; Li & Wright, 2000; Shea & Zimny, 1988; Wright et al., 

1992), mixed presentation did result in better performance at longer study-test 

intervals in the experiments where shapes were to be ignored, and at all study-test 

intervals when colours were to be ignored. However, when locations were to be 

ignored, there was an interaction with blocked presentation resulting in better 

performance at 2000 ms.  

This contrary result regarding locations might have occurred because detection of 

colour-shape bindings whilst locations are to be ignored is a more complex task than 
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detecting bindings of shape or colour to locations. As reviewed by Wulf and Shea 

(2002) the contextual interference effect is not obtained for complex tasks. The result 

is also understandable if the different kinds of attention that are operational in these 

experiments are considered. In the experiments where location is to be ignored, 

attention needs to be either object based or based on the features of colour and shape; 

it cannot be location based. Essentially these experiments explore the role of 

locations in object-based attention. There is an attentional set to focus on the features 

of the objects, which is aided by blocked presentation. The effect is most clear at 

2000 ms after the features have been selectively bound and irrelevant locations have 

been deleted from the object representation. Object or feature based attention, 

operates subsequent to the identification of stimuli. By definition, it is tied to the 

stimuli in the visual field, and thus benefits from the narrow focus on features of the 

stimuli in each trial that is dictated by blocked presentation. This conjecture is 

supported by evidence that the object facilitates the guidance of attention to a target 

object only when location information is unavailable (Moore & Egeth, 1998, Shih & 

Sperling, 1996).  

However, in Experiments 3/6 and 4/7 where the stimuli were presented in the same 

six locations in every trial and every presentation, attention is location based as well 

as object and feature focussed.  The question being addressed in these experiments is 

regarding the relevance of shapes and colours in the context of spatial attention. 

Physiological evidence regarding processing of locations and objects in different 

streams supports theoretical notions that spatial attention is different from object or 

feature based attention (Treisman, 2006; Velichkovsky, 2007), and empirical studies 

that locations are attended to before objects or their features (Becker & Rasmussen, 

2008; Shomstein & Behrmann, 2008). Spatial attention is not contingent on the 

presence of specific stimuli in the visual field. In the extent of its focus, it operates 

more like a global set or expectancy for the occurrence of the stimuli. In a way, it 

provides the context for object-based attention to operate. Mixed presentation 

favours this type of attention, because it utilizes generalized expectancies rather than 

only task focussed ones.  
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There is certainly a greater use of WM resources in the mixed condition. Resources 

are required for both inter-trial and intra-trial processing. Switching task set from one 

trial to another is resource demanding, and participants cannot settle into performing 

each trial the same way. As soon as the expectancy of the test stimuli occurring at 

short study-test interval is disconfirmed, mental rehearsal might be used to maintain 

the spatial configuration of stimuli. This intensive use of WM resources leads to 

better performance with mixed presentation, especially at longer study-test intervals 

in line with the contextual interference effect. In all these analyses, the unchanged/ 

randomized variable was neither significant as a main effect, nor did it interact with 

any of the other effects.   

With regard to the driving question of these experiments, whether and how top-down 

processes dictated by task relevance of features overcome the basic fast-feed forward 

processing differences among features, the results echoed the pattern of results, i.e., 

the interaction obtained in Experiments 2, 3, and 4. The results of each experiment 

show that the differences in the three experiments are largely driven by the disruption 

of performance at the shorter study-test intervals, and the differences in the time 

taken to overcome this disruption.  

Taken together, the significant interaction observed in experiments 1-7 shows that 

the randomization of the ‘to be ignored’ features affects performance negatively 

immediately after the stimulus is presented. However, after some time, it is possible 

to overcome this disruption, and performance is not significantly different from when 

the feature remains unchanged. Thus a process of selection does operate, whereby 

relevant features are consolidated, and irrelevant features are suppressed or inhibited. 

This process however, is not immediate and takes some time. Presumably, all 

features are initially bundled together, and gradually a process of selection refines the 

representation, eventually to comprise only the binding of relevant features.  

The experiments also suggest that different features are processed at different rates, 

because the time it takes for the visual system to recover from the disruption varies 

with individual features. As compared to shape and colour, randomising location is 

most disruptive of performance, and consequently, the visual system takes the 
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maximum time to inhibit changes in location, and the differences between unchanged 

and random location cease to be significant only around 1500 ms. Shape appears to 

be the next in importance, the disruption caused by its randomization being almost 

half of the disruption caused by the randomization of locations. The visual system 

takes only about 1000 ms to overcome this disruption. Out of the three features tested 

here, colour seems to be least important, the disruption caused by randomized 

colours being the least, and the graph line for randomized colours largely follows the 

one for unchanged colours. Yet randomising colour does disrupt performance to 

some extent, which is overcome at 1000 ms. Thus, the gradual process of selection of 

relevant features and inhibition of irrelevant features follows a different time course 

for each kind of binding. Additional analyses of swaps support these differences, as 

they show that location swaps are more easily detected as compared with shape 

swaps and colours swaps.  

Nevertheless, Experiments 1-7 all show that it is possible to ignore irrelevant 

features, however strong they may be initially. There is a gradual process of 

selection, whereby relevant features are selected for binding and irrelevant ones are 

inhibited, which leads to well-defined objects, which lend themselves to further 

processing.   
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CHAPTER 7 

EXPERIMENTS 8, 9, AND 10 

 

The experiments described in this and the next chapter were conducted only for the 

feature of locations. Although differences in the rates of processing among the three 

features were noted in the previous experiments, the effect of top-down inhibitory 

process acting on these features was similar. Specifically, when irrelevant, the 

feature had an initial effect that was, nevertheless, no longer present at the longer 

study-test intervals. In this sense, location was not special. In addition, the disruptive 

effect was clearest for experiments in which location was the irrelevant feature, and 

the role of the factors explored in further experiments was most likely to be 

displayed in a significant manner in experiments involving locations.   

The motivation for the experiments delineated in this chapter was to distinguish 

further between bottom-up and top-down factors in the process of binding by using a 

backward mask. An immediate mask was used to interfere with percept driven iconic 

memory, and a delayed mask to interfere with the central, cognitive processes of 

consolidation and inhibition at 300 ms after stimulus offset. This follows earlier 

literature reviewed in Chapter 2, which has shown differential effects of masks when 

presented immediately after the target presentation or after a delay, presumably 

because an immediate mask interrupts peripheral, perceptual, lower level processes, 

whereas a delayed mask interrupts central, conceptual, higher level cognitive 

processes (Bongartz & Scheerer, 1976; Jacewitz & Lehmann, 1972; Loftus & Ginn, 

1984; Potter, 1976; Turvey, 1973). A recent study by Sligte et al. (2008) used an 

energy mask (a non-informational flash of light) to disrupt iconic storage, and a 

pattern mask to disrupt VSTM. Based on differences in performance due to these two 

masks, they proposed three stages in visual information processing (a) an iconic 

memory disrupted by a flash of light, (b) a long lasting but fragile VSTM with a 

larger capacity than (c) a robust VSTM with a capacity of four items. Their 

conclusions about these three stages in processing as well as the previous literature 
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on the perceptual-conceptual distinction in processing, suggest that the timing of the 

mask is more important than its type. But, as discussed in Chapter 2, in most 

previous studies, the kind of mask and the timing of the mask are confounded.  Thus 

a single type of mask was used in the present experiments, either immediately or 

after a delay, so that any differences in performance could be attributed only to the 

effect of the timing of the mask.  

In Experiment 9, the mask was presented immediately after the study display. The 

traditional view of masking suggests that the mask would completely wipe out the 

contents of iconic memory (e.g., Becker et al., 2000; Neisser, 1967; Sperling, 1960, 

1963). If it is assumed that performance is driven by iconic memory alone, then it 

would be predicted that there would be no difference between the unchanged and 

randomized locations conditions in Experiment 9 for there would be no remnants of 

the study display to be matched with the test display in the unchanged location 

condition or mismatched with the test display in the randomized location condition. 

Iconic storage being automatic and the order of presentation of the trials being mixed 

in these experiments, participants would not know whether the test display would 

match or mismatch the study display and thus would not be able to use differential 

strategies to encode items during the study display in the randomized and unchanged 

location conditions. Indeed, if taken to an extreme, the view that the mask terminates 

the icon would suggest performance at chance levels in both cases.  

Nevertheless, theoretical and empirical evidence regarding persistence of information 

suggests that the mask does not erase all information. Not only is there a transfer of 

information into a durable storage or VSTM before the mask appears (Averbach & 

Coriell, 1961; Gegenfurtner & Sperling, 1993) there are active ongoing processes 

that act on the contents of the icon to transform them into meaningful bits of 

information (Erwin, 1976). In the present experiments, the participant knows in 

advance that location is irrelevant and can try to delete it from the representation and 

remember only the relevant features right from the outset. However, as shown by 

previous experiments, this selective process is not immediate and takes time. As far 

as location is inevitably a part of the stimulus representations in VSTM, which 
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survive the mask, performance would differ in the unchanged and randomized 

location conditions in Experiment 9. In the randomized locations condition 

performance would be disrupted because there would be a mismatch between the 

contents of VSTM and the test display. In the unchanged condition, the test display 

would match the preserved contents in VSTM making the swap easier to discern. 

Nonetheless, the effects of retinotopic iconic memory would be removed from the 

performance of the participant. It also seems that in previous Experiments 2 and 5, it 

is the performance in the unchanged location condition at shorter study-test intervals, 

which benefits from the iconic memory of the study display. So the immediate mask 

might be expected to have a greater effect in the unchanged locations condition than 

in the randomized locations condition, particularly at the short study-test intervals. 

In Experiment 10, the mask was presented after a delay. Masks presented after 

various delays have been often used to study higher processes such as categorization 

and grouping (Kurylo, 1997), selective attention (Di Lollo et al., 2000), consolidation 

in VWM (Vogel et al., 2006), and to assess whether the encoding of VWM 

representations is an all or none process (Zhang & Luck, 2008). In the present study, 

a delayed mask was used to interrupt the central, top-down process, which 

presumably leads to selective consolidation of relevant features and inhibition of 

irrelevant features, which was evident in the experiments detailed in the previous 

chapter.  

If it were assumed that differential performance at the shorter study-test intervals in 

the earlier experiments is driven by iconic memory alone, then performance in 

Experiment 10 would be lower than that in Experiment 9, for the mask would 

interrupt a decayed icon. On the other hand, the assumption might be that the mask 

interrupts the process of transfer of information from the icon to VSTM, an 

assumption made by all researchers using masks to study consolidation into VSTM 

(e.g., Vogel et al., 2006). Since the delayed presentation of the mask allows a greater 

amount of information to be transferred into VSTM, performance levels would be 

higher than those in the Experiment 9, otherwise the differences between unchanged 

and randomized condition remain and would reflect the ones found in Experiment 9. 
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Even this view, however, is limited, for it assumes that participants’ performance 

reflects only the process of consolidation or non-selective transfer of objects from the 

study display and its iconic memory to VSTM; it assumes that the flow of 

information is only feed-forward.  

If the mask can interfere with the process of consolidation, it is plausible that it also 

interrupts the top-down process of inhibition. There seems to be no direct evidence in 

literature of a mask being used to interrupt the process of inhibition. However, using 

the preview search paradigm, Watson and Humphreys (2005) have shown that if 

another set of related distracters is introduced in the preview period, the preview 

benefit is reduced. Also, blinking a set of distracters on and off in the beginning of 

the preview period disrupts performance, whether or not the distracters are related to 

the target. The former probably is due to central masking after a delay, while the 

blinking distracters would be similar to an energy mask and have a peripheral or 

perceptual masking effect. In this context, it is important to note the similarity 

between the preview search paradigm devised by Watson and Humphreys (1997) and 

the present experimental task. In both cases, the participants are shown two displays 

one after the other. They encode and maintain a representation of the first display in 

memory, and search for the ‘target’ among distracters in the second display. The 

difference essentially lies in how the target is defined. In preview search, the target is 

not present in the preview, but it is pre-defined by the experimenter. In the present 

experiments, the participant focuses on a few stimuli, the task being beyond VWM 

capacity anyway, and thus self selects the targets to be remembered. 

Many recent studies have shown that a mask interrupts top-down recurrent activity, 

not only with four dot masking (Di Lollo et al., 2000), but also when a pattern mask 

is used (Enns & Oriet, 2007; Fahrenfort et al., 2007). The top-down process of 

attentional control, which inhibits irrelevant information, is theoretically and 

empirically, well established by studies of attentional blink and preview benefit 

reviewed in Chapter 2. Further, EEG studies by Luck and his co-workers, and 

Jolicoeur and his associates, clearly show that inhibition lags behind consolidation in 

temporal sequence. Logically, there has to be something to inhibit before the process 
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begins! There is also ample empirical evidence that the process of active inhibition is 

especially dominant around 300 ms after offset or 500 ms after onset of the stimulus 

(Braithwaite et al., 2007; Chun & Potter, 1995; Humphreys et al., 2004; Maruff et al., 

1999; Watson & Humphreys, 1997, 2000, 2002). This is substantiated by 

physiological evidence as well (Edin et al., 2007). 

As per the discussion of results in previous chapters, the performance of participants 

manifests inhibition in the randomized locations condition. If the mask interrupts this 

process of inhibition, the performance of the participants would show a rebound at 

the initial test, and would manifest whatever has been selectively consolidated in 

VSTM at that point. Thereafter, the trend for the randomized and unchanged 

conditions would be similar in that both would reflect forgetting from the VSTM.  

Such a rebound is not expected in the unchanged locations condition, because 

performance in this condition anyway does not manifest the inhibitory effect. Based 

on their studies of visual marking, Watson and Humphreys (1997) proposed that 

inhibition is used only if required. This also fits with research showing that WM can 

be strategically used to facilitate or inhibit the process of attentional selection 

(Woodman & Luck, 2007). This specific prediction that the delayed mask will have a 

greater effect on performance as compared with performance with no mask or an 

immediate mask in the randomized locations condition will be tested with planned 

comparisons of performance at the initial study-test interval in the randomized 

locations condition for all the three experiments.  

Analogously, the specific prediction that an immediate mask would have a greater 

effect on performance as compared with performance with no mask or a delayed 

mask in the unchanged condition will be tested with planned comparisons of 

performance at the initial study-test interval in the unchanged locations condition for 

all three experiments. This prediction is made based on the assumption that iconic 

memory has a greater role to play in the unchanged locations condition, but its 

effects persist only for a limited period. Studies by Phillips (1974) and Loftus et al. 

(1982) and Loftus et al. (1995) extensively reviewed in Chapter 2, suggest that the 

icon does not persist beyond the initial 100 ms or so with a display duration of 200 
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ms. Thus, the delayed mask given at 300 ms after stimulus offset is not likely to have 

an effect on iconic memory. 

Thus, three experiments were designed together. Experiment 8 provided the baseline 

for the masking experiments. Experiment 9 studied the effect of an immediate mask, 

whereas Experiment 10 studied the effect of a delayed mask.  

EXPERIMENT 8 

Experiment 8 was carried out to provide a baseline to compare with the masking 

experiments. It was essentially a replication of Experiments 1, 2, and 5, but with the 

important difference that all levels of both factors were randomly mixed and then 

presented to the participant. The effect of mixing study-test intervals was tested in 

the experiments reported in Chapter 6. Experiment 8 mixed unchanged and 

randomized conditions as well. Mixed presentation of conditions compels 

participants to adopt strategies that allow them to prepare for all different task 

possibilities (Kleinsorge, Heuer, & Schmidtke, 2004; Slagter et al., 2006). Thus 

Experiment 8 tested whether the difference in participants’ performance in 

unchanged and randomized conditions could be due to the use of different strategies, 

as these conditions were administered in different blocks, and indeed on different 

days in earlier experiments. If the difference in the participants’ performance in the 

unchanged and randomized conditions at the shorter study-test intervals observed in 

earlier experiments occurred due to different strategies being used by the 

participants, then that difference was expected to be significantly reduced in this 

experiment, for mixed presentation precludes differential strategies. If the results 

obtained are similar to Experiments 2 and 5, it would strengthen the idea that 

difference in performance at the shorter study-test intervals and similar performance 

at longer study-test intervals in the previous experiments is probably not due to 

differential strategies deliberately adopted by the participants in unchanged and 

randomized locations conditions; rather it indicates the gradual impact of top-down 

processes to ignore the irrelevant feature.  
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In keeping with the contextual interference effect, it is also possible that performance 

in the longer study-test intervals shows an upsurge in both the unchanged and 

randomized conditions. The contextual interference effect is the observation that 

mixed random presentation of experimental conditions results in poorer performance 

if tested immediately, but in superior performance when memory is tested after a gap 

of time (reviewed by Magill & Hall, 1990). It is suggested that this is due to greater 

use of WM resources as the participants shift from one kind of task to another (Lee 

& Magill, 1985) and need to use extra resources for intra-task as well as inter-task 

processing (Shea & Zimny, 1988; Wright et al., 1992).  Performance did not show 

the contextual interference effect for the locations experiments among the 

experiments reported in the Chapter 6. However, Experiment 5 only mixed the 

presentation of study-test intervals, where the participant merely needs to wait 

passively for the test display to occur in the different conditions. In contrast, 

Experiment 8 involved mixed presentation of unchanged and randomized conditions 

as well. Thus it is expected that mixed presentation might boost performance at the 

longer than the shorter study-test intervals in both the unchanged and randomized 

locations conditions in keeping with the contextual interference effect. 

Participants 

Twelve students (6 men and 6 women) in the age range 18-25 years were given an 

honorarium of £10 for their participation in the experiment.  

Stimuli, Design and Procedure 

These were identical to Experiment 1, 2, and 5 except that the experiment was 

completed in a single session with reduced total number of trials, and all the 

conditions of the experiment were randomly mixed within each block. Thus, within 

each block of trials, on half of the trials, stimuli were presented in unchanged 

locations, and on the other half they were presented in randomized locations, both 

types of trials randomly intermixed. The six study-test intervals were also presented 

in a random sequence within each block. To enable completion in a single session, 
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the total number of trials was reduced and each participant completed 10 blocks of 

48 trials in a single session, doing 480 trials in all.  

Results 

All statistical tables for this chapter appear in Appendix D. Mean swap detection 

performance calculated from d-primes across study-test intervals for the 

unchanged/randomized locations conditions is shown in Figure 7.1.  
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A 2×6 ANOVA was carried out to analyze the results. A reliable main effect of 

unchanged/ randomized locations was observed, F(1,11)=208.196, MSE=0.199, 

p<.001, partial η2=.950, showing that memory for bindings was reduced when 

locations of stimuli were randomized between study and test. The main effect of 

study-test intervals was also reliable, F(5,55)=14.021, MSE=0.160, p<.001, partial 

η
2=.560, indicating that memory for bindings varied across study-test intervals. As 
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with Experiments 1, 2, and 5, these variables interacted, F(5,55)=35.666, 

MSE=0.105, p<.001, partial η2=.764.  

Planned comparisons using paired samples t test with Bonferroni adjustment showed 

that differences between the means for the unchanged and the randomized condition 

were reliable at all study-test intervals except the last one of 2500 ms, though the 

unadjusted t-ratio was significant for 2500 ms too, t(11)=2.817, p<.017. The exact 

figures for the other study-test intervals were, t(11)=19.521, p<.001, for 0 ms; 

t(11)=9.644, p<.001, for 500 ms; t(11)=6.242, p<.001, for 1000 ms; t(11)=4.297, p<   

.001, for 1500 ms; and t(11)=5.133, p<.001, for 2000 ms.  

Separate single degree of freedom polynomial tests within each condition were also 

done. In the unchanged locations condition, performance across study-test intervals 

was characterized by reliable negative-slope linear F(1,11)=99.034, MSE=.202,  

p<.001, partial η2=.900, quadratic, F(1,11)=48.612, MSE=.105, p<.001, partial 

η
2=.815, cubic, F(1,11)=12.958, MSE=.230, p<.004, partial η2=.541, and quartic 

trends F(1,11)=8.720, MSE=.058, p<.013, partial η2=.442.  In contrast, for the 

randomized locations, performance was characterized by reliable positive-slope 

linear trend, F(1,11)=5.547, MSE=.130, p<.038, partial η2=.335.   

Comparing swaps 
Additional analyses to test if colour swaps and shape swaps had a differential effect 

on the participants’ performance, showed that in the randomized as well as 

unchanged locations conditions, neither the main effect of swaps, nor the interaction 

between swaps and study-test intervals was significant. 

Comparing Experiment 8 with Experiments 2 and 5   
A 3×2×6 ANOVA with experiments (between subjects), unchanged/randomized 

locations (repeated measures), and study-test intervals (repeated measures) was 

carried out to compare Experiments 2, 5, and 8. Though the main effect for 

experiments was not significant, there was a significant two way interaction between 

experiments and study-test intervals, F(10,165)=2.886, MSE=.146, p<.002, partial 

η
2=.149, and also a significant three way interaction, F(10,165)=2.144, MSE=.155, 
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p<.024, partial η2=.115. This indicated that the nature of interaction between study-

test intervals and experiments differed under unchanged and randomized conditions. 

To investigate the three-way interaction, two way ANOVAs were conducted 

separately under unchanged and randomized conditions. Figure 7.2 shows the results 

of the 3 ×6 ANOVA for unchanged locations with experiments as the between 

subjects variable and study-test intervals as the within subjects variable.  
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As Figure 7.2 shows, in the unchanged locations condition, though the main effect of 

experiments was not significant, the interaction between experiments and study-test 

intervals was significant F(10,165)=2.930, MSE=0.175, p<.002, partial η2=.151. As 

the graph clearly shows, performance at the shorter study-test intervals is similar, but 

diverges at the longer study-test intervals, with best results for mixed presentation of 

all conditions in Experiment 8. Single degree of freedom polynomial tests for the 

unchanged locations condition showed that in Experiment 2, with blocked 
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presentation, performance across study-test intervals was characterized by reliable 

negative slope linear F(1,11)=131.030, MSE=0.288, p<.001, partial η2=.923, 

quadratic, F(1,11)=53.584, MSE=0.220, p<.001, partial η2=.830, and cubic trends, 

F(1,11)=53.422, MSE=0.126 p<.001, partial η2=.829.  In Experiment 5 with mixed 

presentation of study-test intervals, there was a reliable negative slope linear trend, 

F(1,11)=245.114, MSE=0.191, p<.001, partial η2=.957, quadratic trend, 

F(1,11)=68.704, MSE=0.129, p<.001, partial η2=.862, and cubic trend, 

F(1,11)=7.809, MSE=0.159, p<.017, partial η2=.415. In Experiment 8, with mixed 

presentation of all conditions, performance was characterized by reliable negative 

slope linear F(1,11)=99.034, MSE=0.202, p<.001, partial η2=.900, quadratic, 

F(1,11)=48.612, MSE=0.105, p<.001, partial η2=.815, cubic, F(1,11)=12.958, 

MSE=0.230, p<.004, partial η2=.541, and quartic F(1,11)=8.720, MSE=0.058, 

p<.013, partial η2=.442,  trends. 

Figure 7.3 shows the results of the 3×6 ANOVA for randomized locations with 

experiments as the between subjects variable and study-test intervals as the within 

subjects variable. Again, the main effect for experiments was not significant, but 

there was a significant interaction, F(10,165)=1.913, MSE=0.126, p<.047, partial 

η
2=.104. As the graph shows, the performance in the three experiments varies 

inconsistently across the three experiments for the various study-test intervals, 

though the slope is positive in all cases.  

Single degree of freedom polynomial tests for randomized locations showed that in 

Experiment 2, with blocked presentation, performance was characterized by reliable 

positive-slope quadratic trend, F(1,11)=7.114, MSE=.156,  p<.022, partial η2=.393. 

In Experiment 5, with mixed presentation of study-test intervals, performance 

showed a reliable positive slope linear trend, F(1,11)=17.800, MSE=.102, p<.001, 

partial η2=.618, and cubic trend, F(1,11)=8.726, MSE=.089, p<.013, partial 

η
2=.442. In Experiment 8, with mixed presentation of all conditions, performance 

was characterized only by a reliable positive-slope linear trend, F(1,11)=5.547, 

MSE=.130, p<.038, partial η2=.335.   
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Figure 7.3Figure 7.3Figure 7.3Figure 7.3    
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Discussion 

Experiment 8 essentially replicated Experiment 1, 2, and 5, in showing that 

randomizing location between study and test was highly disruptive of detection of 

colour-shape bindings. This disruption gradually decreases and yields a significant 

interaction effect. The graph for this experiment does not show a convergence and 

differences between unchanged and randomized conditions are significant at all but 

the last study-test interval. This actually reflects the superior performance in 

Experiment 8 in the unchanged locations condition at the longer study-test intervals, 

as was manifest in the ANOVA comparing Experiments 2, 5, and 8. 

This increase in detection at the longer study-test intervals and the non-significant 

but slight decrease at 0 ms follows the contextual interference effect. The question is 

why performance follows the contextual interference effect only in the unchanged 



Experiments 8, 9, and 10 

 

PhD – The University of Edinburgh – 2009                             

217 

locations condition and not in the randomized locations condition. In answer, it is 

important to consider how the participants might have approached this experiment. 

The participants do not know whether the trial is with the test display unchanged or 

randomized, or what is the study-test interval. Consequently, compelled to adopt 

strategies that ensure success in all conditions (Kleinsorge et al., 2004; Slagter et al., 

2006) they prepare for and are set for the worst-case scenario of randomized 

condition. When the test display is indeed randomized as compared to the study 

display, they simply give their response. But, when the test display is unchanged, it 

requires a shift in task set, which uses additional WM resources and results in the 

contextual interference effect being manifest only in the unchanged locations 

condition. In a way, the occurrence of this pattern of results confirms that the 

participants followed the same strategy of focussing on the relevant features and 

deleting the irrelevant ones in both the unchanged and randomized experimental 

conditions.  

It is noteworthy that at the shorter study-test intervals, levels of performance in the 

unchanged as well as randomized conditions are close to those obtained in 

Experiment 2 and 5, and overall, the results essentially replicate the results of 

Experiment 2 and 5. The experiment thus provides an adequate and sound baseline 

performance to compare with the masking experiments 9 and 10. 

EXPERIMENT 9 

Experiment 9 used a pattern mask to study the role of early stage percept driven 

iconic memory in the performance of the participants. The archetypal view suggests 

that masking immediately after or at short time delays after the target completely 

terminates the icon (Sperling, 1960, 1963; Neisser, 1967; Becker, et al., 2000). It is 

questionable though, how far a mask can affect performance based on iconic 

memory. A conceptualization of iconic memory as a non-selective, large capacity but 

short-term buffer is quite simplistic. There is little agreement even on its duration. 

An indication of further complexity comes from studies by Dick (1969) and 
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Townsend (1973) who found that errors in iconic memory were location errors rather 

than intrusion errors, suggesting that it is the location, rather than identity of objects, 

which deteriorates over time. Phillips (1974) distinguished between sensory storage 

and VSTM, showing that the former could be masked, whereas the latter was 

immune to a mask. Erwin (1976) demonstrated that the icon is not mere visible 

persistence of the stimulus, and post sensory processes relentlessly organize the 

information in iconic memory.  

Some researchers specifically suggested that iconic storage can been distinguished as 

an early retinotopic buffer, followed by a spatiotopic representation of stimuli 

(Breitmeyer et al., 1982; Feldman, 1985; McRae et al., 1987). Analogous to these 

ideas, Coltheart (1980) affirmed that iconic memory is neither visible nor neural 

(retinal) persistence rather it is informational persistence. This was empirically 

confirmed by Loftus and Irwin (1998). In line with this assertion, Smithson and 

Mollon (2006) asked whether a mask can completely obliterate an icon. In their 

experiments, they presented a cue after a backward checkerboard pattern mask, 

which still allowed selection within a target array with a target-mask interval of 100 

ms, though performance was at chance at 0 ms. They concluded that the mask cannot 

penetrate higher levels of visual analysis and representation of stimuli in terms of 

conceptual, abstract properties or categorical objects.  

Therefore, it was of interest to explore how far the pattern mask used in the present 

experiment would disrupt iconic memory, and if it would affect performance 

differentially in unchanged and randomized locations at various study-test intervals.  

It was expected that the effect would be greater at shorter study-test intervals (until 

the icon persists). In line with abovementioned studies, which suggest that in the later 

stages, iconic memory is spatiotopic rather than retinotopic, it might be expected that 

the immediate pattern mask would have a greater effect on performance in 

unchanged locations condition. These spatiotopic representations can also be thought 

of as VSTM representations, the distinction between the two being more theoretical 

rather than empirical. Both are present at a stage subsequent to the initial retinotopic 

representations, and neither seems vulnerable to a mask.  
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Thus, as mentioned in the introduction of this chapter, to the extent that locations are 

a part of the stimulus representations that survive the mask, performance would 

differ in the unchanged and randomized location conditions in this experiment. The 

match between the surviving representations and the test display would make the 

swap easier to detect in the unchanged locations condition, but the mismatch in the 

randomized locations condition would make it more difficult.  

Nevertheless, the effects of retinotopic iconic memory would be eradicated from the 

performance of the participant. Since performance in the unchanged location 

condition presumably benefits more from iconic memory of the study display than 

the randomized conditions in Experiment 8 (and also 2 and 5), the immediate mask 

would have a greater effect in the unchanged locations condition than in the 

randomized locations condition, particularly at the shorter study-test intervals.     

Participants  

Twelve students (6 men and 6 women) in the age range 18-25 years participated in 

the experiment and were given an honorarium of £10. 

Stimuli, Design and Procedure  

The stimuli, design and procedure were identical to Experiment 8, except that a 

pattern mask was presented for 100 ms immediately after the study display. This 

necessarily meant that the shortest study test interval in this experiment was 100 ms. 

The other study test intervals were the same as Experiment 8. The mask was a 

random arrangement of four parts of all the 36 possible stimuli used in the 

experiment. It was like a noise mask in its randomness, but like a conceptual mask in 

that the parts of some stimuli could be distinguished in the mask.  

A different pattern was created for each of the 480 trials presented to each participant 

so that there was no habituation to the mask. The order of presentation of these 480 

masks was randomized without replacement across participants. Figure 7.4 illustrates 

the procedure of this experiment.  
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Figure 7.4Figure 7.4Figure 7.4Figure 7.4    
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Results 

Mean change detection performance calculated from d-primes across study-test 

intervals for the unchanged location/randomized locations conditions is shown in 

Figure 7.5. 2×6 ANOVA was carried out to analyze the effects of unchanged/ 

randomized locations and study-test intervals.  

A reliable main effect of unchanged/ randomized locations was observed, 

F(1,11)=46.401, MSE=.346, p<.001, partial η2=.808 showing that memory for 

bindings was reduced when locations were randomized between study and test as 

compared to the unchanged locations condition. Neither the main effect of study-test 

intervals, nor the interaction was significant. 
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Figure 7.5Figure 7.5Figure 7.5Figure 7.5    
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Comparing swaps 
Additional analyses were conducted to test if the type of swap had any effect on the 

participants’ performance. Analyses for swaps in the randomized locations condition 

did not reveal any significant effects. In the unchanged locations condition, though 

the main effect of swaps was not significant, there was a significant interaction 

between swaps and study-test intervals, F(5,55)=2.579, MSE=0.143, p<.036, partial 

η
2=.190. Figure 7.6 depicts the interaction.  

Planned comparisons using paired samples directional t tests showed that shape 

swaps were detected more often than a colour swaps at 0 ms, t(11)=2.420, p<.017, 

and 2000 ms, t(11)=2.768, p<.009. Neither was significant with Bonferroni 

adjustment. Separate single degree of freedom polynomial tests for each kind of 

swap showed no significant trends.   
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Figure 7.6Figure 7.6Figure 7.6Figure 7.6    
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Discussion 

The fact that the difference between unchanged and randomized conditions remained 

significant in Experiment 9 despite the presentation of an immediate mask, confirms 

that the difference between these two conditions obtained in previous experiments is 

not due to iconic memory alone, which was disrupted here by the immediate mask. 

Many researchers have shown that a backward mask presented immediately or 

shortly after the target stimuli only terminates the perceptual characteristics of the 

icon and has relatively lesser or no effect on conceptual properties, which are 

presumably represented by entries into VSTM (e.g., Phillips, 1974; Sligte et al., 

2008; Smithson & Mollon, 2006). These stimulus representations that survive the 

mask apparently automatically include locations. This makes the swap easier to 

detect in the unchanged locations condition as compared to the randomized locations 

condition, leading to the difference in the performance between these two conditions.   
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It is also interesting to note that varying the study-test intervals in this experiment 

had no significant effect on the performance of the participants, and the graph shows 

essentially flat lines. This suggests that performance in this experiment is only a read 

out of the contents of VSTM at the different study-test intervals. Nevertheless, these 

representations are robust enough to be maintained in VSTM at least until 2500 ms.  

EXPERIMENT 10 

Experiment 10 used the same pattern mask as in Experiment 9, but it was presented 

after a delay of 300 ms. However, the rationale for the use of a delayed mask was 

quite different from Experiment 9. The idea was to allow the initial perceptual 

processes so that the central, conceptual processes could be studied. The assumption 

was that the delayed mask would interrupt the VWM processes of consolidation and 

inhibition that were presumably being used in this experimental task.  

Many researchers have used delayed masks to interrupt the process of consolidation. 

Loftus et al. (1985) used a noise mask with naturalistic pictures as stimuli, 

immediately or after 300 ms, to find that the presence of an icon for this duration 

contributed information similar to an additional 100 ms of stimulus exposure. Loftus, 

Duncan, and Gehrig (1992) replicated and extended this work for stimuli presented 

for six durations ranging from 30 to 300ms, followed by a noise mask at stimulus-

mask intervals ranging from 0 to 250 ms after stimulus offset. In all cases, longer 

stimulus exposure durations yielded more information, though the rate of decay of 

the icon remained the same across different stimulus-mask intervals. They concluded 

that consolidation continued for at least 300 ms after stimulus onset. Recent 

examples of the use of a delayed pattern mask to study consolidation in VWM are 

found in studies by Luck and his associates. Woodman and Vogel (2005) used 

randomly generated checkerboard masks at delays varying from 35 to 316 ms to 

study whether consolidation and maintenance in VWM are independent processes. 

Vogel et al. (2006) used pattern masks at delays from 17 to 484 ms, to conclude that 

consolidation of objects in VWM is at the rate of about 50 ms per item. Zhang and 



Experiments 8, 9, and 10 

 

PhD – The University of Edinburgh – 2009 

224 

Luck (2008) used masks at delays of 10 ms and 240 ms with a set size of four items 

to verify that durable representations in VWM are created in an all or none way for 

simple items. Using a change detection task, Woodman and Vogel (2008) studied the 

effect of a mask shown for 500 ms after stimulus-mask SOAs of 35, 105, 140, or 176 

ms with the memory test after 1500 ms. Better performance for detection of colours 

than for shapes, orientation, or conjunctions was found. However, this distinction 

gradually emerged over time and was not initially evident. As such, it suggests not 

only selective consolidation and maintenance, but also concomitant selective 

inhibition. 

If the mask is conceptualised as a source of interference in ongoing processes, then it 

would be expected to interfere with inhibition as well as consolidation. No evidence 

of a mask being used to interrupt the process of inhibition seems to exist in literature. 

Yet, associated phenomena, which are taken to be evidence for inhibition, are 

disrupted by tasks that draw on resources needed in the period when inhibition is 

presumably developing. The clearest evidence comes from studies of the preview 

benefit. Watson and Humphreys (1997) found that the preview benefit was reduced if 

a series of digits at centre screen were to be shadowed during the preview period. 

Humphreys et al. (2002) found the disruptive effect with an auditory secondary task. 

Olivers and Humphreys (2002) found that preview benefit was markedly reduced 

when the previewed items were presented during the attentional blink period, 

suggesting that if there is competition for resources required for inhibition, then the 

effects of inhibition in the performance of the participants is reduced. Watson and 

Humphreys (2005) established that irrelevant onsets disrupted the preview effect 

only if they shared features (colour) with the target items, thus drawing attentional 

resources away from the inhibitory process. Empirical evidence also suggests that 

inhibition is especially prevalent around 500 ms after the stimulus is first presented 

(Braithwaite et al., 2007; Chun & Potter, 1995; Edin et al., 2007; Humphreys et al., 

2004; Maruff et al., 1999; Watson & Humphreys, 1997).  

If the performance of the participants in the randomized condition in the earlier 

experiments does indeed show the effects of inhibition, the mask presented at 300 ms 
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after stimulus offset and 500 ms after stimulus onset would interfere with this 

process, and performance at the initial test at 400 ms would be better as compared to 

performance at the initial test at 0 ms in Experiment 8. This would happen because 

the reduction in performance at 0 ms due to inhibition that was observed in earlier 

experiments with no mask would not happen if the delayed mask interrupts the 

process of inhibition that caused this reduction in the first place. Thus, a rebound of 

performance will occur with the delayed mask as compared to Experiment 8 as well 

as Experiment 9. As mentioned in the introduction to this series of experiments, this 

specific prediction will be tested with planned comparisons. 

A similar upsurge is not expected in the unchanged locations condition simply 

because inhibition is not used to the same extent in this condition and is certainly not 

manifest in the performance in the same way. Among others, Watson and 

Humphreys (1997) and Woodman and Luck (2007) have proposed that inhibition is 

used only when required. In the unchanged locations condition, the delayed mask 

would remove the effects of iconic memory to the extent that it affects performance 

at 300 ms offset. Following earlier studies which have used masks to interrupt 

consolidation (e.g., Vogel et al., 2006) performance would manifest the information 

that is present in VSTM 300 ms after stimulus offset.  

To summarize, the shorter study test intervals seem to be the primary arena for the 

interplay of three forces – iconic storage, consolidation of the binding of relevant 

features, and inhibitory control of irrelevant information. The mask would compete 

for resources with these forces and consequently have the greatest impact on the 

dominant factor in each condition. In the unchanged locations condition, it would 

interfere with, delete the effect of iconic memory, and stop further consolidation into 

VWM. In the randomized locations condition, the mask would interfere with and 

delete the effect of inhibition from the performance of the participants. Thus, it is 

predicted that both conditions in Experiment 10 would manifest the information that 

is present in VSTM as a result of selective consolidation until 300 ms after stimulus 

offset. Thereafter, the trend for the randomized and unchanged conditions should be 
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similar in that both conditions would show further maintenance or forgetting of 

VSTM representations.  

Participants 

Twelve students (6 men and 6 women) in the age range 18-25 years were given an 

honorarium of £10 for their participation in the experiment.  

Stimuli, Design and Procedure 

These were identical to Experiment 9, except that the mask of 100 ms duration was 

presented after a delay of 300 ms after the study display, and thus the initial test 

occurred at 400 ms. Figure 7.7 illustrates the procedure.  

Figure 7.7Figure 7.7Figure 7.7Figure 7.7    
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Results 

Mean change detection performance calculated from d-primes across study-test 

intervals and for the unchanged location/randomized locations conditions is shown in 

Figure 7.8. A 2×6 repeated measures ANOVA was done to analyse the effects of 

unchanged/randomized locations and study-test intervals. A reliable main effect of 

unchanged/randomized locations was observed, F(1,11)=36.724, MSE=0.391, 

p<.001, partial η2=.770, because memory for bindings was reduced when locations 

of stimuli were randomized from study to test. The main effect of study-test intervals 

was also reliable, F(5,55)=3.585, MSE=0.205, p<.007, partial η
2= =.246, indicating 

that accurate detection of bindings varied across study-test intervals, gradually 

decreasing over time. However, there was no significant interaction. This is clearly 

depicted in Figure 7.8. 

Figure 7.8Figure 7.8Figure 7.8Figure 7.8    
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Separate single degree of freedom polynomial tests for unchanged locations showed 

a significant linear trend, F(1,11)=5.210, MSE=0.294, p<.043, partial η2=.321. In the 

randomized locations condition the linear, F(1,11)=26.922, MSE=0.062, p<.001, 

partial η2=.710, and cubic F(1,11)=13.988, MSE=0.076, p<.003, partial η2=.560, 

trends were significant.   

Comparing swaps 
Additional analyses were conducted to test if the type of swap had any effect on the 

participants’ performance. In the unchanged locations conditions, neither the main 

effect for swaps, nor the swap × study-test interval interaction effect was significant. 

In the randomized locations condition too, the main effect of swaps was not 

significant, though the swap × study-test interval interaction effect approached 

significance, F(5,55)=2.327, MSE=0.186, p<.055, partial η2=.175. Figure 7.9 depicts 

this interaction.  

Figure 7.9Figure 7.9Figure 7.9Figure 7.9    
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Planned comparisons using paired samples t tests with Bonferroni adjustment 

showed that shape swaps were detected more often than a colour swaps at 2500 ms, 

t(11)=2.225, p<.048. Considering that none of the earlier experiments showed 

significant differences between shape swap and colour swap in the randomized 

condition, this single difference could have occurred by chance, and is otherwise 

inexplicable. The tendency towards a significant interaction is more likely due to 

different trends for colour and shape swaps. Separate single degree of freedom 

polynomial tests for each kind of swap showed that for colour swaps, linear 

F(1,11)=34.781, MSE=0.180, p<.001, partial η2=.760,  and cubic, F(1,11)=11.747, 

MSE=0.180, p<.006, partial η2=.516, trends were significant, but for shape swaps 

only the linear trend, F(1,11)=5.202, MSE=0.144, p<.043, partial η2=.321, was 

significant.   

Discussion 

Performance levels were overall higher in the unchanged locations condition, as 

compared to the randomized locations condition as Figure 7.8 shows. This suggests 

that the preserved representations in VSTM probably include some information 

about locations which aided change detection in the unchanged locations condition. 

The main effect of study-test intervals was also significant, performance gradually 

decreasing from the shortest to the longest study- test interval.  

The lack of significance of the interaction in this experiment, contrary to all previous 

experiments is clear in the graph where the slope of the trend in unchanged as well as 

randomized conditions is negative, and is driven by the statistically similar 

performance of the participants at the initial study-test interval. The implications of 

this result will be discussed after the results reported in the next section. 

COMPARING EXPERIMENTS 8, 9, AND 10 

The primary motivation for Experiments 8, 9 and 10 was to compare the 

performance of the participants under no mask, immediate mask, and delayed mask 
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conditions with unchanged and randomized locations at the various study-test 

intervals. It is recognised that the three experiments have a different initial study-test 

interval as a necessary concomitant of the 100 ms mask being given immediately and 

after a 300 ms delay. Thus, whereas the initial study-test interval for Experiment 8 

was 0 ms with no mask, it was 100 ms for the Experiment 9 where an immediate 

mask was used, and it was 400 ms where a delayed mask was used.  The graphs 

show this difference clearly, as they are drawn to a time-scaled x-axis. The statistical 

analysis reported below treated these as equivalent, for the trend of changes in 

performance was of interest. Nevertheless, in respect of these differences in the 

initial study-test interval, separate analyses for the initial study-test interval alone, 

and the later study-test intervals (500 to 2500 ms) were also carried out. The one-way 

analysis comparing the three experiments separately for unchanged and randomized 

conditions also allowed planned comparisons using independent samples t tests with 

Bonferroni adjustment, as indicated in the introduction to this series of experiments.  

A 3×2×6 ANOVA with experiments (between subjects), unchanged/randomized 

locations (repeated measures), and study-test intervals (repeated measures) was 

carried out to compare performance across experiments. There was a significant 

three way interaction, F(10,165)=8.403, MSE=0.159, p<.001, partial η2=.337, and 

significant two way interactions between unchanged/randomized locations and 

experiments, F(2,33)=6.935, MSE=0.312, p<.003, partial η2=.296, between study-

test intervals and experiments, F(10,165)=3.250, MSE=0.210, p<.001, partial 

η
2=.165, and between unchanged/randomized locations and study-test intervals,  

F(5,165)=9.930, MSE=0.159, p<.001, partial η2=.231. The main effect for 

experiments was not significant, but the effects were significant for 

unchanged/randomized location, F(1,33)=216.470, MSE=0.312, p<.001, partial 

η
2=.868, and study-test intervals, F(3.788,125.088)=8.298, MSE=0.277, p<.001, 

partial η
2=.201, with Greenhouse-Geisser correction applied.   

To investigate the three-way interaction further, two way ANOVAs were conducted 

separately under unchanged and randomized locations conditions. The 3 × 6 

ANOVA with experiments as the between subjects variable and study-test intervals 
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as the within subjects variable for unchanged locations revealed significant main 

effects for experiments, F(2,33)=4.399, MSE=0.762, p<.020, partial η
2=.210, and 

study-test intervals, F(5,165)=15.112, MSE=0.205, p<.001, partial η
2=.314. There 

was also a significant interaction between experiments and study-test intervals, 

F(10,165)=7.873, MSE=0.205, p<.001, partial η2=.323. Figure 7.10 shows the 

results. 
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The interaction was further explored by conducting single degree of freedom 

polynomial tests separately for each experiment. In Experiment 8, performance 

across study-test intervals was characterized by reliable negative-slope linear 

F(1,11)=99.034, MSE=.202, p<.001, partial η2=.900, quadratic, F(1,11)=48.612, 

MSE=.105, p<.001, partial η2=.815,  cubic, F(1,11)=12.958, MSE=.230, p<.004, 

partial η2=.541, and quartic trend F(1,11)=8.720, MSE=.058, p<.001, partial 

η
2=.442.  For Experiment 9, no significant trends were found. In Experiment 10, 
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performance across study-test intervals was characterized only by a reliable negative-

slope linear trend, F(1,11)=5.210, MSE=.294, p<.043, partial η2=.321. 

One way analysis, comparing experiments at the initial study-test interval was 

carried out, followed by planned comparisons using independent samples t tests with 

Bonferroni adjustment. The result showed a significant difference between 

experiments, F(2,33)=32.821, MSE=.316, p<.001. Performance with no masks in 

Experiment 8 was significantly better than when an immediate mask, t(22) = 7.683, 

p<.001, or delayed mask,  t(22) = 6.557, p<.001, was used, with no difference 

between the latter two. It should be recognized, however, that this one-way analysis 

does not consider the time difference in the initial study-test interval in the three 

experiments. A clearer picture emerges from Figure 7.10. In Experiment 9, the 

immediate mask disrupts iconic storage relative to performance in Experiment 8 at 

100 ms post stimulus. In Experiment 10, performance after the delayed mask (400 

ms after stimulus offset) is very similar to what might be assumed from linear 

interpolation in the plot of performance in Experiment 8 at 400 ms, and is very 

similar to that actually found for test at a 500 ms study-test interval without a mask. 

In other words, performance after delayed mask is similar to what was found for a 

similar delay without a mask in Experiment 8, and there appears no effect of a 

delayed mask in this condition as compared to the baseline performance without a 

mask. Thus in this condition, only the immediate mask had an effect on performance.    

A separate 3 ×5 ANOVA was also carried out to test if performance differed in the 

three experiments from 500 to 2500 ms. Neither, the main effect of experiments, nor 

the interaction with study-test intervals was significant. However, the overall effect 

of study-test intervals was significant, F(4,132)=5.486, MSE=0.181, p<.001, partial 

η
2=.143, with only a linear trend with a negative slope, F(1,33)=15.069, MSE=0.258, 

p<.001, partial η2=.313, that was significant. This suggests that performance 

manifests a steadily decaying trace from VSTM.  

One may infer that in the unchanged locations condition in Experiment 8, 

performance is driven by iconic memory at the shortest study-test interval and 

thereafter it shows a gradual forgetting from VSTM. The immediate mask disrupts 
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iconic storage, so performance is dictated only by the contents of VSTM, which are 

maintained across the study-test intervals in Experiment 9. Performance is slightly 

but not significantly higher in Experiment 10 than in Experiment 9, because the 

delayed mask allows a little more consolidation and more information to be 

transferred into VSTM as compared to an immediate mask.  

The 3 × 6 ANOVA for randomized locations with experiments as the between 

subjects variable and study test intervals as the within subjects variable found no 

significant main effects, but a significant interaction effect, F(10,165)=2.478, 

MSE=0.164, p<.009, partial η2=.131. Figure 7.11 shows the results.  

Figure 7.11Figure 7.11Figure 7.11Figure 7.11    
Mean performance with randomized locationsMean performance with randomized locationsMean performance with randomized locationsMean performance with randomized locations    

for each studyfor each studyfor each studyfor each study----test interval in Experiments 8, 9, and 10test interval in Experiments 8, 9, and 10test interval in Experiments 8, 9, and 10test interval in Experiments 8, 9, and 10    
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The interaction was further investigated using separate single degree of freedom 

polynomial tests within each experiment. For Experiment 8, in consonance with 

previous experiments 1, 2, and 5, performance was characterized by a positive slope 

trend, F(1,11)=5.547, MSE=0.130, p<.038, partial η2=.335, which was linear. For 
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Experiment 9, no significant trends were found. For the Experiment 10, significant 

negative slope linear, F(1,11)=26.922, MSE=0.062, p<.001, partial η2=.710, and 

cubic, F(1,11)=13.988, MSE=0.076, p<.003, partial η2=.560, trends were observed. 

One way analysis, comparing experiments at the initial study-test interval was 

carried out, followed by planned comparisons using independent samples t tests with 

Bonferroni adjustment. The result showed a significant difference between 

Experiments, F(2,33)=12.752, MSE=.173, p<.001. Performance with delayed masks 

(Experiment 10) was significantly different from performance with no masks in 

Experiment 8, t(22)=3.854, p<.001 and performance with an immediate mask in 

Experiment 9, t(22)=4.240, p<.001, with no significant difference between the latter 

two. Indeed, post hoc paired comparisons with Bonferroni adjustment showed that 

this performance was also significantly higher than the performance at 500 ms with 

no mask, t(22)=3.604, p<.002, and immediate mask, t(22)=3.354, p<.003.   

A separate 3(Experiment) ×5(Study-test interval) ANOVA was also carried out to 

check if performance differed in the three experiments from 500 to 2500 ms. Neither 

the main effect of experiments, nor the interaction with study-test intervals was 

significant.  

This result clearly shows that in the randomized locations condition, performance is 

not driven by iconic memory, for the immediate mask has virtually no effect as 

compared to the baseline performance in Experiment 8. This is in contrast to its 

effect in the unchanged locations condition. It is the delayed mask, which is effective 

in the randomized condition, performance being significantly different from 

Experiment 8 as well as Experiment 9.  

In contrast to the usual masking effect that decreases performance, however, there is 

an increase in performance after the delayed mask. This increase is not only more 

than the performance in Experiments 8 and 9, but is also more than the asymptotic 

performance at the later study-test intervals in Experiment 10. As noted in the 

discussion of Experiment 10, this upsurge results in statistically no difference 

between unchanged and randomized location conditions when performance was 
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tested at 0 ms. This result also contradicts the results obtained in this condition in all 

previous experiments with locations (Experiments 1, 2, 5 and 8) where the lowest 

performance was found in this condition.  

This increase is interpreted as showing the interfering effect of the delayed mask on 

the VWM process of inhibition which was evident in the earlier Experiments 1, 2, 5, 

and 8. This process maintains a selection of the total set of stimuli in terms of 

relevant features, and actively inhibits irrelevant features as well as the unselected 

stimuli. It is this inhibitory control process, which is interrupted by the delayed mask 

resulting in performance levels higher than when there is no mask or an immediate 

mask at the initial test, with a decrease to asymptotic performance based on 

representations maintained in VSTM thereafter. The implications of this rebound in 

performance are further analysed in the general discussion.   

GENERAL DISCUSSION 

The use of masks in both Experiments 9 and 10 was effective and revealed a 

complex but interesting pattern of results.   

The immediate mask had the greatest effect in the unchanged locations condition, 

particularly at the shorter study-test intervals, which presumably benefit most from 

the presence of the icon in Experiment 8 and earlier experiments. Nevertheless, the 

effect of iconic memory alone cannot explain the results of these experiments.  

The importance of consolidation is evident from the slight, but non-significant, 

increase in performance in Experiment 10 as compared to Experiment 9, at the 

various study-test intervals, in both randomized and unchanged conditions. The 

delayed mask presumably allowed a slightly greater amount of consolidation of 

information into VSTM as compared to the immediate mask. However, as noted in 

the review in Chapter 2, consolidation is a very slow process and 300 ms more of 

processing time did not yield a significant difference.   

The results also showed that performance in the randomized condition is higher 

when tested at 400 ms after a delayed mask, than in the immediate mask condition, 
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which does not allow the beneficial effect of consolidation or transfer of information 

from the icon to VSTM. Sligte et al. (2008) have recently shown that a very large 

number of items are present in ‘fragile’ VSTM for a considerable time after stimulus 

offset, and certainly beyond the duration that iconic memory is traditionally held to 

last. But, the consolidation interpretation of the result at the initial test at 400 ms in 

the randomized condition in Experiment 10 cannot be reconciled with the same 

condition in Experiment 8. Why is the large effect of consolidation, higher than the 

asymptotic performance at the later study-test intervals, not evident in Experiment 8, 

or indeed in every other condition in every other experiment? Surely, the mask 

cannot create the effects of consolidation in the randomized locations condition of 

Experiment 10 alone?  

Instead, if the mask is conceptualised essentially as an interfering mechanism with 

whatever process is prevalent at that time, then it is possible that in the randomized 

condition, it interferes with the inhibitory process that is dominant in this condition. 

When this happens, performance rebounds, dictated only by the bindings of relevant 

features in VSTM at that time. Maybe it is not right to invoke inhibition as an 

explanation whenever performance is seen to fall below a baseline condition 

(MacLeod, Dodd, Sheard, Wilson, & Bibi, 2003). But the deduction here is 

supported by the result in Experiment 10. It rests on a significant difference obtained 

due to the presentation of the mask in one experiment and not in the other. It does not 

allow alternative explanations. This result forces the conclusion that there must be a 

process of active inhibition or suppression, that was most clearly evident in previous 

experiments when locations were randomized, and it is this process that the mask 

interrupts when presented at 300 ms after stimulus display offset. Thus, this 

performance is driven by a recovery from inhibition and selective consolidation of 

bindings of relevant features into VSTM. Thereafter, performance is dictated by the 

representations maintained in and gradually lost from in VSTM. 

Considering what is being suppressed in the randomized locations condition, one has 

to imagine how the participants are doing the task. Faced with six stimuli in the study 

display, a few are selected and maintained in memory. They do not know which ones 
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to select because any two might change. Indeed, best performance can be ensured 

only if they try to remember as many bindings as they can. Nevertheless, they do 

know that the location of the stimuli is irrelevant right from the outset, through task 

instructions as well as the practice trials with randomized locations. Therefore, this 

feature is actively suppressed and deleted from the representation. The most efficient 

strategy dictates that the maximum possible information is maintained in VWM. 

Since the task taxes the limited storage capacity of the visual store, it is important to 

select and store only relevant information in the form of bindings; but it is also 

equally important to delete unwanted features. This process of deletion, however 

takes time. It is presumably at its peak at around 300 ms after stimulus offset or 500 

ms after stimulus onset as shown by previous studies of preview benefit, attentional 

blink, and physiological evidence from EEG studies extensively reviewed in Chapter 

2 in the section on inhibition. This inhibitory process is interrupted by the delayed 

mask in Experiment 10, such that the performance is then determined only by the 

bindings that are present in VWM because of selective consolidation until that time. 

Taken together, the results of the three experiments reported in this chapter confirm 

that the performance of the participants in earlier experiments is determined by the 

interplay of forgetting from iconic memory, selective consolidation of relevant 

features and inhibition of irrelevant features by VWM. 
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CHAPTER 8 

EXPERIMENTS 11, 12, 13, AND 14 

 

The motivation for the experiments reported in this chapter was to explore further the 

nature of top-down process of inhibition to study how far it is contingent on the 

initial processes that operate at the time of the encoding of the stimulus. Two 

encoding factors were considered – study-display duration, and simultaneous vs. 

sequential presentation of stimuli. Specifically, the aim was to investigate how the 

interaction obtained in earlier experiments was affected by these encoding factors. 

The study-display durations chosen were 200, 900, and 1500 ms. Only two study-test 

intervals, 0 and 2000 ms, were used. Previous experiments had shown that these two 

intervals would capture the maximum and minimum difference between the 

unchanged and randomized locations conditions. In addition, the pattern of results for 

the intervening study-test intervals was already known. 

In all the experiments reported in the previous chapters, the study-display was shown 

for 200 ms, and it could be argued that this study-display duration was insufficient to 

encode all the six stimuli in the display. Research evidence clearly suggests that 

increasing the study-display duration should generally improve performance though 

there is a threshold before performance can ‘liftoff’ and there is a duration at which it 

reaches an asymptote (Busey & Loftus, 1994; Loftus & Maclean, 1999). Using a 

change detection paradigm, Pashler (1988) reported a significant but small increase 

in performance for 10 consonants presented for 100, 300, and 500 ms, with the test 

display presented after 67 ms. Liu and Jiang (2005) asked participants to remember 

objects in scene images to find that 250 ms allows only about one object to be 

retained in memory whereas much more time (up to 16 seconds) was required to 

retain more veridical details of about five objects. The time-based resource-sharing 

model of WM (Barrouillet et al., 2004; Barrouillet & Camos, 2007) also suggests 

that increasing the study-display duration should improve performance for it allows 
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more time for encoding and processing of stimuli. Thus, it was predicted that 

increasing the study-display duration would generally improve performance.  

The focus in the present experiments was, however, not only to study what happens 

due to an increase in the study-display duration beyond 200 ms, but also to test 

whether this increase modulates the interaction obtained between the unchanged and 

randomized conditions across study-test intervals. Assuming that an inhibitory 

mechanism is indeed at work in the previous experiments, it was of interest to 

identify when this mechanism came into play. This was particularly important in the 

light of evidence from fMRI and ERP studies, which show that irrelevant features are 

also activated along with the relevant ones (O’Craven et al.,1999a, 1999b; 

Schoenfeld et al., 2003; Winkler et al., 2005), and inhibition occurs later. In contrast, 

Hommel (2005) has proposed that task-relevant features are more likely to be 

integrated into an object than task-irrelevant ones at the encoding stage itself.  

If the inhibitory mechanism operates at the time of encoding, then increasing the 

study-display duration would allow inhibition to proceed during the presentation of 

the study display itself, and performance measured after study-display durations of 

900 ms or 1500 ms would be similar to what was observed at these time intervals in 

the earlier experiments. This would consequently decrease the gap between the 

unchanged and randomized locations conditions at 0 ms. This would also necessarily 

predict a significant three factor interaction among unchanged/randomized locations, 

study-test intervals, and study-display durations, because study-display duration 

would modulate the interaction between locations and study-test intervals obtained in 

the earlier Experiments 1, 2, 5, and 8.  

However, if inhibition is a post-encoding factor, working as a top-down factor in 

tandem with the gradual process of consolidation, after all the features of the stimuli 

are initially bundled together as a weak representation, then increasing the study-

display duration should not affect the amount of disruption experienced, expressed 

by the gap between the two experimental conditions at 0 ms and 2000 ms.  

The second encoding factor under consideration in this chapter is simultaneous vs. 

sequential presentation. With regard to the mechanism of attention, which 
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implements top-down control, Mackworth (1962) suggested that simultaneous 

presentation allows voluntary and flexible allocation of spatial attention and 

rescanning, and therefore results in better performance. In contrast, sequential 

presentation imposes an orderly sequence that directs attention, and precludes 

rescanning, especially if previous stimuli vanish as new ones are presented. Evidence 

from fMRI studies reviewed in Chapter 2 also suggests that inhibition of irrelevant 

information shows up only in simultaneous presentation conditions and is not evident 

with sequential presentation (Kastner et al., 1998; Shafritz et al., 2002). However, 

behavioural studies have shown equivocal results, often showing no differences 

between simultaneous and sequential presentation unless cognitive load exceeds 

capacity. This has led researchers to postulate that when items are few, even 

simultaneously presented stimuli are processed one by one, and thus performance is 

similar. A greater number of stimuli makes configural encoding possible and hence 

makes simultaneous performance better (Dent & Smyth, 2006; Igel & Harvey, 1991; 

Lecerf & De Ribaupierre, 2005; Zimmer et al., 2003). A detailed review of these 

studies appears in Chapter 2. 

Sequential presentation has often been used with change detection tasks by 

researchers in the area of VWM to prevent configural encoding of the stimuli in the 

initial test display (e.g., Alvarez & Cavanagh, 2008; Woodman & Luck, 2004). With 

regard to binding, in the domain of perception, many studies have shown either, the 

superiority of simultaneous presentation over sequential presentation, or similarity 

between the two conditions (e.g., Fahle & Koch, 1995).  

Specifically testing memory for colour-shape bindings, Allen et al. (2006) reported 

better performance with simultaneous than sequential presentation. Intending to 

study the fragile nature of bindings, they presented four stimuli one by one for 250 

ms with blank intervals of the same duration between the stimuli, thus making the 

exposure duration for each single stimulus equivalent to the total exposure with 

simultaneous presentation of all four stimuli. All stimuli were presented in four set 

locations, followed by a single item probe. In their experiment, however, not only 

was the set size well within capacity, relational encoding was presumably precluded 
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in the sequential condition. Thus, the advantage of simultaneous presentation might 

also have occurred due to configural encoding.  

Two recent studies have shown superior performance with sequential presentation. 

Fougnie and Marois (2009) tested memory for colour-shape bindings with a single 

probe. Using the dual task paradigm, they found greater interference from an 

attention-demanding task with simultaneous rather than sequential presentation, 

suggesting that maintaining bindings in VWM in the face of interference is more 

attention demanding. In their study, the display consisted of only three items, was 

shown for 400 ms and the test was after 6800 ms. The small number of stimuli to be 

retained would not have required configural encoding, affording no advantage to 

simultaneous presentation. Further, as sequential presentation makes stimuli more 

distinct than simultaneous presentation, they might have been easier to retain over 

the long study-test interval. Using real life scenarios to test memory for objects, 

Yamamoto and Shelton (2009) have shown that sequential presentation yields better 

performance than simultaneous presentation for it allows focal attention to be 

directed at stimulus objects. In both these studies, the focus was clearly on 

maintaining bound objects in memory. In such cases, sequential presentation might 

be superior for it simply increases the distinctiveness of stimuli, and the negative 

effects of crowding are precluded. In addition, benefits might accrue in the sequential 

condition because it provides an additional code for encoding and remembering 

stimuli in VWM.   

Taken together, these studies indicate that research evidence is equivocal regarding 

the relative superiority of sequential and simultaneous presentation. To enable the 

contrast between sequential presentation, that provides an additional code without 

completely destroying configural encoding, versus sequential presentation that 

obliterates configural encoding, two experiments were designed with sequential 

presentation. Both could be also contrasted with simultaneous presentation in 

Experiment 11. Experiment 12 presented stimuli one by one to gradually build up the 

study display, thereby retaining configural information. Experiment 13 presented 
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stimuli one at a time such that each stimulus vanished as the next was presented. 

Figure 8.1 illustrates both types of sequential presentations.  

Figure 8.1Figure 8.1Figure 8.1Figure 8.1    
Sequential presentation of stimuliSequential presentation of stimuliSequential presentation of stimuliSequential presentation of stimuli    

    
To build up the StudyTo build up the StudyTo build up the StudyTo build up the Study----display in Experiment 12display in Experiment 12display in Experiment 12display in Experiment 12    

 

    
One at a time sequential presentation of stimuli in Experiment 13One at a time sequential presentation of stimuli in Experiment 13One at a time sequential presentation of stimuli in Experiment 13One at a time sequential presentation of stimuli in Experiment 13    

Note: Stimuli are not drawn to scale     
In all experiments, the test display comprised the presentation of all stimuli together. 

To the extent that performance is affected by configural encoding, it was expected 

that the pattern of results would differ in these experiments. When locations are 

unchanged, and hence configural encoding is beneficial, participants’ performance 

should benefit from simultaneous presentation, but when locations are randomized, 

configural encoding actually hampers performance and thus simultaneous 

performance might be worse. 

The question here is not really, whether simultaneous presentation is better or worse 

than sequential presentation. Rather the focus is on how the type of presentation 

influences the interaction between unchanged and randomized conditions. Since the 

immediate masking experiment reported in Chapter 7 had shown that configural 

encoding allowed by iconic memory was a greater factor in the unchanged locations 

condition at the initial study-test interval, it was specifically expected that 
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performance in the unchanged condition at 0 ms would deteriorate from Experiment 

11 with simultaneous presentation, through Experiment 12 with sequential 

presentation with configural information available as stimuli remain on the screen to 

build up the study display, to Experiment 13 which precludes configural encoding by 

never presenting all stimuli together. This would also change the overall pattern of 

interaction obtained in the three experiments and yield a significant three-factor 

interaction among experiments, unchanged/randomized locations, and study-test 

intervals.  

The two experiments with sequential presentation, Experiments 12 and 13, yielded 

an opportunity to explore serial position effects. Serial position effects may occur 

due to a variety of reasons extensively reviewed in Chapter 2. In the present 

experiment, if no serial position effects were obtained, it  would indicate that stimuli 

were being essentially processed as a whole pattern, much the same as with 

simultaneous presentation, or that the participants randomly selected a few of the six 

stimuli and focussed on those, using object focussed attention. If only a primacy 

effect is shown, it would imply that the initial stimuli were processed and rehearsed, 

but not the last few. If only the recency effect is shown, it would be evidence that the 

initial stimuli were overwritten by the last few stimuli. If both primacy and recency 

are shown, it would show that stimuli are activated and encoded in the context of 

their serial position in a sequence. 

To anticipate the results, serial position effects were obtained. Formal ANOVA on 

the data from Experiments 11 and 12 to test higher order interactions was precluded 

because stimuli were swapped randomly, and in some of the experimental conditions, 

at least one subject was not tested with one of the 15 swap combinations. Experiment 

14 was designed to overcome this limitation. It ensured that each swap was presented 

an equal number of times to all participants. The experiment tested the effects of 

study-test intervals and study-display durations on serial position effects. Since it 

was a partial replication of Experiment 13, results were expected to follow those 

from Experiment 13. The specific hypotheses are detailed in the introduction to 

Experiment 14. The primary interest was to explore the interactions.  
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To recap, Experiment 11 tested the effect of increasing the study-display duration on 

swap detection performance for simultaneously presented stimuli. Experiments 12 

and 13 do the same for sequentially presented stimuli. Experiment 14 was a partial 

replication of Experiment 13. To design a stringent test of the influence of these 

factors, blocked presentation was used. Thus, it was being tested whether these 

encoding factors affected performance despite the maximum task focus that is 

allowed by blocked presentation, and while participants devoted maximum resources 

for top-down inhibitory control rather than diverting them for switching sets.  

EXPERIMENT 11 

Experiment 11 was designed to test the effect of increasing the study-display 

durations on swap detection performance shown by the participants in the previous 

experiments with simultaneous presentation. The study-displays were shown for 200 

ms, 900 ms, and 1500 ms. Their effect on the participants’ performance was tested at 

the study-test intervals of 0 and 2000 ms. It was predicted that increasing the study-

display duration would, in general, lead to superior performance.  

Competing predictions were tested for the effect of increasing study-display duration 

on the gap between the performance for unchanged and randomized conditions 

obtained at 0 and 2000 ms. If inhibition occurred during encoding, increasing the 

study-display duration should reduce the gap at 0 ms, and yield a significant 

interaction between study-display durations and study-test intervals. If inhibition was 

a post-encoding factor, then increasing study-display duration should have no 

differential effect on performance at 0 and 2000 ms, and the interaction between 

study-display durations and study-test intervals would not be significant.  

Participants  

Twelve students (6 men and 6 women) in the age range 18-25 years were given an 

honorarium of £10 for their participation in the experiment.  
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Stimuli, Design, and Procedure  

The stimuli used were identical to Experiments 1, 2, 5, and 8. The experiment was 

designed as a 2×2×3 factorial experiment with repeated measures on all factors. 

Figure 8.2 illustrates the procedure. 

Figure 8.Figure 8.Figure 8.Figure 8.2222    
Sequence of events in Experiment 11Sequence of events in Experiment 11Sequence of events in Experiment 11Sequence of events in Experiment 11    

Study-test intervals
0 ms and 2000 ms

Study-display durations
200 ms
900 ms
1500 ms

Randomized 
Locations

Unchanged 
Locations

Same Different Same

DifferentNote: Stimuli are not drawn to scale

 

The first independent variable was location manipulated at two levels: unchanged vs. 

randomized locations. Participants were tested on two consecutive days at the same 

time of the day, half of them being tested with unchanged locations on the first day, 

and the other half being tested with randomized locations on the first day. The 

second independent variable was the study-test interval between the initial and test 

display. The study-test intervals of 0 ms and 2000 ms were chosen as the two levels 

of this factor. The third independent variable was study-display durations. The three 

levels selected were 200 ms (the same as in earlier experiments), 900 ms, and 1500 
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ms. The combination of three study-display durations and two study-test intervals 

resulted in six experimental conditions, each of which was administered in three 

blocks each for the unchanged and randomized locations conditions. With 20 trials in 

each of the 36 blocks, each participant completed 720 trials for the whole 

experiment. Participants practiced 8 trials of each block type in each of the two 

experimental sessions, starting from the longest study-display duration of 1500 ms 

and the longest study-test interval of 2000 ms, and working gradually through all the 

blocks to the shortest one of 200 ms study-display duration and 0 ms study-test 

interval. 

Results 

Mean change detection performance calculated from d-primes for all experimental 

conditions is shown in Figure 8.3. 

Figure 8.3Figure 8.3Figure 8.3Figure 8.3    
Mean performance for unchanged and randomized locationsMean performance for unchanged and randomized locationsMean performance for unchanged and randomized locationsMean performance for unchanged and randomized locations    

for each studyfor each studyfor each studyfor each study----display duration and each studydisplay duration and each studydisplay duration and each studydisplay duration and each study----test interval in Experiment 11test interval in Experiment 11test interval in Experiment 11test interval in Experiment 11    

Error  ba rs  s how

 s tandard er rors  o f  means

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 2000

S tu d y-tes t in te rva ls  in  m s

d
'

UL 200

UL 900

UL 1500

RL 200

RL 900

RL 1500

 



Experiments 11, 12, 13, and 14 

 

PhD – The University of Edinburgh – 2009 

248 

In the legend to this and subsequent graphs in this chapter, the letters UL and RL 

stand for unchanged locations and randomized locations, and the numbers refer to the 

study-display durations. The relevant statistical tables appear in Appendix E. 

As found in previous experiments, detection of swaps in binding was significantly 

reduced when location of stimuli was randomized from initial to test display, 

F(1,11)=726.058, MSE=.108, p<.001, partial η2=.985. The main effect of study-test 

intervals was also significant, F(1,11)=115.429, MSE=.339, p<.001, partial η2=.913 

indicating that memory for bindings was significantly different for the two study-test 

intervals chosen in this experiment, i.e., 0 ms and 2000 ms. There was a significant 

interaction between location and study-test intervals, F(1,11)=214.424, MSE=0.289, 

p<.001, partial η2=.951. Randomizing locations significantly disrupted performance 

at 0 ms but not at 2000 ms.  

The main effect for study-display durations was also significant, F(2,22)=8.444, 

MSE=0.150, p<.002, partial η2=.434. Pairwise comparisons with Bonferroni 

adjustment showed that the main effect of study-display duration was driven only by 

a significant difference between the study-display durations of 200 ms and 1500 ms. 

Neither the interaction of study-display durations with unchanged/randomized 

locations, nor with study-test intervals, was significant. The three factor interaction 

among unchanged/randomized locations, study-test intervals, and study-display 

durations, was also not significant. 

Planned comparisons using directional paired samples t tests showed significant 

differences between performance at 200 and 1500 ms at both 0 ms, t(11) = 3.188, 

p<.005, and 2000 ms, t(11) = 2.080, p<.031, for randomized locations, and for 2000 

ms for unchanged locations t(11) = 2.379, p<.018. The difference between 200 ms 

and 900 ms was also significant at 0 ms for randomized locations, t(11) = 2.623, 

p<.024. With Bonferroni adjustment, however, only the difference between 200 and 

1500 ms at the study-test interval of 0 ms for randomized locations, t(11) = 3.188, 

p<.005, remained significant. Inspection of Figure 8.2 confirms that increasing the 

study-display duration raises the performance level for randomized locations from 

200 to 1500 ms for the study-test intervals of both 0 and 2000 ms. This happens for 
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unchanged location as well at 2000 ms, but not at 0 ms. The latter is probably due to 

ceiling effects in the participants’ performance, the average proportions for all three 

study-display durations converging near a d-prime of 3.5.  

Comparing swaps 
Additional analyses were done to test if the type of swap had any effect on the 

participants’ performance in the randomized and the unchanged locations conditions. 

Neither the main effect for swaps, nor any of the interactions involving swaps were 

significant.  

Discussion 

In keeping with the expectation from previous literature (Barrouillet et al., 2004; 

Barrouillet & Camos, 2007; Liu & Jiang, 2005; Pashler, 1988) that increasing 

exposure would enhance performance, better swap detection occurs with longer 

study-display durations in randomized locations conditions at both study-test 

intervals, and also at 2000 ms unchanged locations. This effect is, however, not 

present for unchanged locations at 0 ms, probably because performance is at ceiling 

in that condition. 

Nevertheless, there is no differential effect of increasing study-display duration from 

200 to 1500 ms on performance at the two different study-test intervals. This is 

particularly clear in the randomized condition where the graph lines for the study-

display durations of 200 ms and 1500 ms are parallel to each other. One may infer 

that increasing the study-display duration may increase performance in each 

condition, but it does nothing to the sheer amount of disruption experienced due to 

randomized locations. Thus the inhibition of irrelevant features is most likely a post-

encoding process. Hommel (2005) suggested that the processing of an object results 

in feature binding such that when one feature is encountered again, the whole set is 

activated, and aids performance to the extent that the feature overlap is complete. 

Indeed, in his view relevance of features is a primary determinant of which features 

participate in binding in the initial encoding stage itself. However, this experiment 

shows that relevance of features assumes importance at the post encoding stage. This 
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suggests that participants cannot inhibit features whilst the stimuli remain in view, 

probably because during encoding, all resources are devoted to remembering as 

many bindings of relevant features as possible in this task, which is beyond the 

capacity of VSTM. This is also in consonance with studies showing that brain areas 

pertaining to all features are initially activated whether the features are relevant or 

irrelevant (O’Craven et al.,1999a, 1999b; Schoenfeld et al., 2003; Winkler et al., 

2005). 

EXPERIMENT 12 

Experiment 12 presented the stimuli one by one such that the study display was 

gradually built up. Each stimulus appeared after equal intervals, with a random 

selection of each stimulus to be presented. Other details remained the same as 

Experiment 11.  The experiment was essentially designed to test the effect of 

providing an extra temporal code by sequential presentation of stimuli. This factor 

could enhance performance; or alternatively, disruption in configural encoding could 

decrease performance. In so far as the disruption of configural encoding was 

important, it was also expected that performance in the unchanged condition would 

decrease more than in the randomized condition, and hence the gap between the 

unchanged and randomized conditions would decrease, particularly at 0 ms, which 

was more affected by configural encoding than 2000 ms as per previous experiments. 

Nevertheless, in comparison to presenting stimuli in a way that only one of them 

appears in the display at a time, by building up the display gradually, and allowing 

stimuli to remain on the screen as subsequent stimuli are presented, participants got 

the opportunity to use configural information regarding the relative location of each 

item in the display. If they use this information effectively, then this form of 

sequential presentation would have little, if any, effect on performance compared to 

Experiment 11.    
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Participants  

Twelve students (6 men and 6 women) in the age range 18-25 years were given an 

honorarium of £10 for their participation in the experiment.  

Stimuli, Design, and Procedure  

The stimuli were identical to Experiment 8, the only difference being that in this 

experiment the study-display involved sequential rather than simultaneous 

presentation of stimuli. The study display was ‘built up’ by presenting the six stimuli 

one by one at equal intervals as illustrated in Figure 8.1 in the introduction to this 

chapter. Each item was randomly allocated to each serial position without 

replacement. The design and procedure were the same as Experiment 8. Figure 8.4 

illustrates the procedure. 

Figure 8.4Figure 8.4Figure 8.4Figure 8.4    
Sequence of events in Experiment 12Sequence of events in Experiment 12Sequence of events in Experiment 12Sequence of events in Experiment 12    

Study-test intervals
0 ms and 2000 ms

Study-display durations
200 ms / each item appears after 33.3 ms
900 ms / each item appears after 150 ms
1500 ms / each item appears after 250 ms

Randomized 
Locations

Unchanged 
Locations

Same Different Same

DifferentNote: Stimuli are not drawn to scale
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Results 

Mean change detection performance calculated from d-primes for all experimental 

conditions is shown in Figure 8.5.  

Figure 8.5Figure 8.5Figure 8.5Figure 8.5    
Mean performance for unchanged and randomized locationsMean performance for unchanged and randomized locationsMean performance for unchanged and randomized locationsMean performance for unchanged and randomized locations    
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Detection of change in bindings was significantly reduced when location of stimuli 

was randomized from study to test display, F(1,11)=101.460, MSE=0.566, p<.001, 

partial η2=.902. The main effect of study-test intervals was also significant, 

F(1,11)=114.295, MSE=0.311, p<.001, partial η2=.912 indicating that memory for 

bindings was significantly different for the two study-test intervals chosen in this 

experiment, i.e., 0 ms and 2000 ms. Analogous to previous experiments, there was a 

significant interaction between location and study-test intervals, F(1,11)=133.661, 

MSE=0..353, p<.001, partial η2=.924. Randomizing location significantly disrupted 

performance at 0 ms but not at 2000 ms.  
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The main effect for study-display durations was also significant, F(2,22)=15.958, 

MSE=0.153, p<.001, partial η2=.592. Pairwise comparisons with Bonferroni 

adjustment showed that the main effect of study-display durations was driven by a 

significant difference between the study-test interval of 200 ms and 900 ms, as well 

as 1500 ms, with no difference between the latter two. The interaction between 

study-display durations and study-test intervals was also significant, F(2,22)=3.978, 

MSE=0.168, p<.034, partial η2=.266. The interaction of study-display duration with 

unchanged/randomized locations was not significant. The three factor interaction 

among unchanged/randomized locations, study-test intervals, and study-display 

durations, was also not significant. 

Planned comparisons using directional paired samples t tests with Bonferroni 

adjustment, showed significant differences between performance with study-display 

durations of 200 and 900 ms, t(11) = 3.323, p<.004,  and 200 and 1500 ms, t(11) = 

3.411, p<.003, at the study-test interval of 0 ms for unchanged locations. Similarly 

for randomized locations, the differences were significant at a study-test interval of 0 

ms, between study-display durations of 200 and 900 ms, t(11) = 5.513, p<.001,  and 

2000 and 1500 ms, t(11) = 3.880, p<.001. There were no significant differences in 

performance at 2000 ms. The lower performance with a study-display duration of 

200 ms as compared to display durations of 900 and 1500 ms when tested 

immediately afterwards at 0 ms but not when tested after a study-test interval of 2000 

ms precisely illustrates the significant interaction between study-test intervals and 

study-display durations.   Inspection of Figure 8.5 confirms that increasing the study-

display duration raises the performance level from 200 ms to 900 ms as well as 1500 

ms with no difference between the latter two, especially for the study-test interval of 

0 ms.  

Comparing colour swaps and shape swaps 
Additional analyses were done to test if the type of swap had any effect on the 

participants’ performance. Both, in the randomized as well as unchanged locations 

conditions, neither the main effect for swaps, nor any of the interactions involving 

swaps were significant.  
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Serial position analyses 
Sequential presentation of stimuli allowed an analysis of serial position effects. 

There were six stimuli, with 15 possible combinations of any two stimuli, which 

could swap on any trial. Despite that all these 15 possible combinations were not 

presented an equal number of times to all participants, as they were randomly 

determined over 8640 trials in the experiment, serial position effects were explored 

by calculating proportions of hits, and then converting these into d-primes.  

One way analysis of d-primes based on all 15 possible swaps was significant 

F(14,154)=2.300, MSE=0.101, p<.007, partial η2=.173, and Figure 8.6 illustrates the 

differences in d-prime scores for performance with the different combinations of 

swap stimuli. This data was also arranged for each stimulus position to clearly 

illustrate the serial position effects. These six figures appear together as Figure 8.7.   

Figure 8.6Figure 8.6Figure 8.6Figure 8.6    
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Figure 8.7Figure 8.7Figure 8.7Figure 8.7    

Serial position effects for each stimulus position in Experiment 12Serial position effects for each stimulus position in Experiment 12Serial position effects for each stimulus position in Experiment 12Serial position effects for each stimulus position in Experiment 12    
Error bars show standard errors of means 
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To conduct the serial position analyses, the many possible combinations, were 

combined into four categories – (A) swaps between 1 and 6, (B) 1 with 2,3,4,5, (C) 

between 2,3,4,5, and (D) 6 with 2,3,4,5. One way analysis for these four categories 

was also significant F(1.735,19.081)=8.350, MSE=0.087, p<.001, partial η2=.432 

with Greenhouse-Geisser correction applied. Pairwise comparisons with Bonferroni 

adjustment showed that C was significantly different from A, t(11) = 3.896, p<.001, 

and B, t(11) = 3.692, p<.002. Without Bonferroni adjustment, C was also different 

from D, t(11) = 2.240, p<.023. Figure 8.8 depicts these results.  

Figure 8.8Figure 8.8Figure 8.8Figure 8.8    
Serial position effects in the four categories of swaps in Experiment 12Serial position effects in the four categories of swaps in Experiment 12Serial position effects in the four categories of swaps in Experiment 12Serial position effects in the four categories of swaps in Experiment 12    
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To explore whether the pattern of serial position effects varied with the three 

independent variables in this experiment, two way ANOVAs were conducted.  

A repeated measures 2 × 4 ANOVA showed a reliable main effect of locations, 

F(1,11)=39.004, MSE=0.502, p<.001, partial η2=.780, as well as swaps, 
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F(3,33)=10.097, MSE=0.097, p<.001, partial η2=.479, but the interaction between 

unchanged/randomized locations and swaps was not significant. The similar serial 

position effects obtained in unchanged and randomized locations conditions are clear 

in Figure 8.9. 

Figure 8.Figure 8.Figure 8.Figure 8.9999    
Serial position effects for unchanged and randomized locations Serial position effects for unchanged and randomized locations Serial position effects for unchanged and randomized locations Serial position effects for unchanged and randomized locations     
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A repeated measures 2×4ANOVA showed a reliable main effect of study-test 

intervals, F(1,11)=56.434, MSE=0.217, p<.001, partial η2=.837, as well as swaps, 

F(3,33)=10.348, MSE=0.090, p<.001, partial η2=.485, but the interaction was not 

significant. The similar serial position effects obtained at the two study-test intervals 

are clear in Figure 8.10. 

Figure 8.Figure 8.Figure 8.Figure 8.10101010    
Serial position effects at Serial position effects at Serial position effects at Serial position effects at sssstudytudytudytudy----testtesttesttest intervals of 0 and 2000 ms   intervals of 0 and 2000 ms   intervals of 0 and 2000 ms   intervals of 0 and 2000 ms      
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A repeated measures 3 × 4 ANOVA showed a reliable main effect of study-display 

durations, F(1,11)=12.546, MSE=0.152, p<.001, partial η2=.533, as well as swaps, 

F(3,33)=10.816, MSE=0.118, p<.001, partial η2=.496, but the interaction between 

the two was not significant. The similar serial position effects obtained at the three 

study-display durations are clear in Figure 8.11. 
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FFFFigure 8.1igure 8.1igure 8.1igure 8.11111    
Serial position effects at Serial position effects at Serial position effects at Serial position effects at sssstudytudytudytudy----display durationdisplay durationdisplay durationdisplay durations 200, 900 and 1500 ms  s 200, 900 and 1500 ms  s 200, 900 and 1500 ms  s 200, 900 and 1500 ms      
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The analysis to test the three-way interaction between these variables was not 

conducted because when further bifurcated, in each experimental condition, there 

was at least one participant who was not presented with at least one combination of 

swaps. Indeed, three values, which were other wise indeterminate, were substituted 

by an imaginary close value to enable the study of the interaction between swaps and 

study-display durations.   

Discussion 

This experiment also replicated the pattern found in earlier experiments in that 

performance was impaired by randomizing locations at 0 ms but not at 2000 ms. The 

experiment also resulted in a significant interaction between study-display durations 

and study-test intervals. The short duration of 200 ms resulted in poorer performance 
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as compared with 900 ms as well as 1500 ms when tested immediately afterwards at 

0 ms. A possible reason for this is that the faster rate of presentation in the 200 ms 

condition means that every 33.33 ms a new stimulus is presented in the display. Not 

only is each item encoded by itself, but also, it is to be encoded in relation to the 

other stimuli. This resource demanding process becomes even more difficult due to 

the limited time available in this condition, and hence performance is decreased. In 

contrast, 900 ms or 1500 ms allow respectively 150 and 250 ms per item, which is 

sufficient time to process each individual stimulus in itself, and in relation to other 

stimuli.  

The serial position analyses showed that processing of sequentially presented stimuli 

does occur according to the serial positions. Overall, the primacy effect seems to be 

stronger in this experiment. Nevertheless, none of the three main independent 

variables had significant interactions with serial position, suggesting that serial 

position effects were immune to the differences in these variables. A more detailed 

discussion of serial position effects and of the comparison of this experiment with 

Experiments 11 and 13 is deferred until after the separate report of all experiments in 

this chapter.  

EXPERIMENT 13 

The motivation for Experiment 13 was similar to Experiment 12 in that stimuli were 

presented sequentially to disrupt configural encoding. This disruption was designed 

to be considerably more as compared to Experiment 12, because each previous 

stimulus vanished as the next one was presented, and the participant never saw the 

whole configuration together. It was expected that this disruption of configural 

encoding would reduce the gap between unchanged and randomized conditions at 0 

ms, which was more affected by configural encoding than 2000 ms. Nevertheless, if 

performance followed Experiment 9 with an immediate mask (which also disrupted 

the effects of configural encoding, though at a later stage), it was expected that a 
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small but significant difference would remain between the unchanged and 

randomized location conditions.   

Participants  

Twelve students (6 men and 6 women) in the age range 18-25 years were given an 

honorarium of £10 for their participation in the experiment. 

Stimuli, Design, and Procedure 

The sequence of events in Experiment 13 is shown in Figure 8.12.  

Figure 8.Figure 8.Figure 8.Figure 8.11112222    
Sequence of events in Experiment 13Sequence of events in Experiment 13Sequence of events in Experiment 13Sequence of events in Experiment 13    

Study-test intervals
0 ms and 2000 ms

Randomized 
Locations

Unchanged 
Locations

Same Different Same

DifferentNote: Stimuli are not drawn to scale

Study-display durations
200 ms / each item appears for 33.3 ms
900 ms / each item appears for 150 ms
1500 ms / each item appears for 250 ms

    
 

The apparatus and stimuli used were identical to Experiment 8 and 9, the only 

difference being that in this experiment the study display involved sequential 

presentation such that each stimulus vanished as the next was presented in the study 
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display as illustrated in Figure 8.1 in the introduction to this chapter. Thus, all stimuli 

were never present together at any time. In a way, the task for the participants was to 

build up an image of the stimulus display in their mind. Each stimulus was randomly 

allocated to each serial position without replacement. Except for this change in the 

sequential presentation of stimuli, the design and procedure were the same as 

Experiments 11 and 12. 

Results 

Mean change detection performance calculated from d-primes for all experimental 

conditions is shown in Figure 8.13.  

Figure 8.Figure 8.Figure 8.Figure 8.11113333    
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The main effect of unchanged/randomized locations was significant, F(1,11)=5.133, 

MSE=.365, p<.045, partial η2=.318. The main effect of study-test interval was not 

significant. However, there was a significant interaction between location and study-
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test intervals, F(1,11)=7.424, MSE=0.072, p<.020, partial η2=.403. Randomizing 

location significantly disrupted performance at 0 ms but not at 2000 ms.  

The main effect for study-display durations was not significant, but the interaction 

between study-display durations and study-test intervals was significant, 

F(1.205,13.253) =16.721, MSE=0.124, p<.001, partial η2=.603 with Greenhouse-

Geisser correction applied. However, the interaction of study-display durations with 

randomized/unchanged locations was not significant. The three-factor interaction 

among randomized/unchanged locations, study-test intervals, and study-display 

durations, was also not significant. 

Planned comparisons using directional paired samples t tests with Bonferroni 

adjustment, showed significant differences between performance with a study-

display duration of 200 and 900 ms, t(11) = 4.496, p<.001,  and 200 and 1500 ms, 

t(11) = 5.833, p<.001, at a study-test interval of 0 ms for randomized locations. In 

fact, post hoc comparisons with Bonferroni adjustment showed that the mean 

performance for randomized locations for the study-test interval of 0 ms with study-

display duration of 200 ms was significantly different from all other means in the 

dataset. 

Comparing colour swaps and shape swaps 
Additional analyses to test if the type of swap had any effect on swap detection 

performance showed that neither the main effect for swaps, nor any of the 

interactions involving swaps were significant in the randomized as well as 

unchanged locations conditions.  

Serial position analyses 
Sequential presentation of stimuli allowed an analysis of serial position effects. 

There were six stimuli, with 15 possible combinations of any two stimuli that could 

swap on any trial. As for Experiment 12, despite that all these 15 possible 

combinations were not presented an equal number of times to all participants, as they 

were randomly determined for 8640 trials in the experiment, serial position effects 
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were explored by calculating proportions of hits, and then converting these into d-

primes.  

One way analysis of d-primes based on all 15 possible swaps was significant 

F(14,154)=5.015, MSE=0.130, p<.001, partial η2=.313, and Figure 8.14 illustrates 

the differences in d-prime scores for performance with the different combinations of 

swap stimuli. This data was also rearranged for each stimulus position to clearly 

illustrate the serial position effects. These six figures appear together as Figure 8.15. 

Figure 8.Figure 8.Figure 8.Figure 8.11114444    
Serial position effects in ExpSerial position effects in ExpSerial position effects in ExpSerial position effects in Experiment 1eriment 1eriment 1eriment 13333    
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Figure 8.Figure 8.Figure 8.Figure 8.11115555    
Serial position effects for each stimulus position in Experiment 1Serial position effects for each stimulus position in Experiment 1Serial position effects for each stimulus position in Experiment 1Serial position effects for each stimulus position in Experiment 13333    

Error bars show standard errors of means. 
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For further analyses, the many possible combinations were combined into four 

categories – (A) swaps between 1 and 6, (B) 1 with 2,3,4,5, (C) between 2,3,4,5, and 

(D) 6 with 2,3,4,5. One way analysis for these four categories was also significant 

F(3,33)=17.952, MSE=0.069, p<.001, partial η2=.620. Pairwise comparisons with 

Bonferroni adjustment showed that C was significantly different from A, t(11) = 

6.446, p<.001, and B, t(11) = 3.052, p<.011, and D, t(11) = 3.445, p<.005. Figure 

8.16 illustrates these differences. 

Figure 8.1Figure 8.1Figure 8.1Figure 8.16666    
Serial position effects in the four categories of swaps in Serial position effects in the four categories of swaps in Serial position effects in the four categories of swaps in Serial position effects in the four categories of swaps in Experiment 13Experiment 13Experiment 13Experiment 13    
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To explore whether the pattern of serial position effects varied with the three 

independent variables in this experiment, two way ANOVAs were conducted.  

A repeated measures 2×4 ANOVA testing the effects of unchanged/randomized 

locations and swaps showed a reliable main effect of locations, F(1,11)=10.185, 

MSE=0.193, p<.009, partial η2=.481, as well as swaps, F(3,33)=19.215, MSE=0.135, 
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p<.001, partial η2=.636, but the interaction between unchanged/randomized 

locations and swaps was not significant. The similar serial position effects obtained 

in unchanged and randomized locations conditions are clear in Figure 8.17. 

    
Figure 8.Figure 8.Figure 8.Figure 8.11117777    
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A repeated measures 2 × 4 ANOVA testing the effects of study-test intervals and 

swaps showed no reliable main effect of study-test intervals (F<1), but significant 

main effect of swaps, F(3,33)=22.471, MSE=0.157, p<.001, partial η2=.671, as well 

as a significant interaction between study-test intervals and swaps F(3,33)=5.229, 

MSE=0.036, p<.005 partial η2=.322. The significant interaction is clear in Figure 

8.18, showing a primacy effect at 0 ms, but a recency effect at 2000 ms. 
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A repeated measures 3 × 4 ANOVA testing the effects of study-display durations and 

swaps showed a reliable main effect of study-display durations, F(1,11)=3.638, 

MSE=0.205, p<.043, partial η2=.249, as well as swaps, F(3,33)=16.914, MSE=0.236, 

p<.001, partial η2=.606. The interaction between study-display durations and swaps 

was also significant, F(3,33)=3.230, MSE=0.132, p<.008, partial η2=.227. The 

different pattern of serial position effects for the three study-test intervals is shown in 

Figure 8.19. 
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Figure 8.Figure 8.Figure 8.Figure 8.19191919    
Serial position effects at Serial position effects at Serial position effects at Serial position effects at sssstudytudytudytudy----display durationdisplay durationdisplay durationdisplay durations 200, 900 and 1500 ms  s 200, 900 and 1500 ms  s 200, 900 and 1500 ms  s 200, 900 and 1500 ms      
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The analysis to test the three-way interaction between these variables was not 

conducted because when further bifurcated, in each experimental condition, there 

was at least one participant who was not presented with at least one combination of 

swaps. Indeed, values which were otherwise indeterminate, were substituted as 

missing values to study the interaction of swaps with study-test intervals (two values 

substituted) as well as with study-display durations (three values substituted). To 

ameliorate this limitation, Experiment 14 was done.   

Discussion 

This experiment is another demonstration of the role of iconic memory in the 

performance of the participants. Since the participant could only imagine the study 

display and never experienced all the stimuli together, configural encoding was 
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precluded to a much greater extent than in Experiments 11 and 12. Performance in 

the unchanged locations condition at 0 ms deteriorates to a very large extent. 

However, the small difference between unchanged and randomized locations still 

emerges to be significant, substantiating the results of Experiment 9 with the 

immediate mask, where also this difference was reliable. As noted earlier, sequential 

presentation might disrupt the explicit configural information in the display, but 

participants might still attempt to create a mental representation of that configural 

information in VWM. This mental representation might confer some advantage on 

the unchanged condition because there is some information in VWM that matches 

the test display. In Experiment 9, an icon was initially available from the 

simultaneous display but then the contents of the icon were wiped by the mask. In 

the current experiment, the sequential presentation prevents the icon being formed in 

the first place, so again the icon cannot support performance.  The difference 

between unchanged and randomized conditions occurs because there is some 

information in VWM that matches the test display in the unchanged locations 

condition or mismatches it in the randomized locations condition. Another notable 

fact in this experiment is the significantly poorer performance in the randomized 

locations condition at the study-test interval of 0 ms, with 200 ms study-display 

duration. 

Clear serial position effects were shown in this experiment, with the data showing 

both primacy and recency effects. Study-test intervals as well as study-display 

durations interacted with swaps to change the pattern observed for the serial position 

effects. However, higher order interactions could not be statistically analyzed. This 

became one of the major reasons for designing Experiment 14. 

EXPERIMENT 14 

In both the experiments for sequential presentation, serial position effects were 

obtained with different levels of clarity when the analyses were conducted according 

to the serial position of the stimuli that were swapped on each trial. Nevertheless, the 
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limitation to these results was that the analyses were post hoc and the swaps occurred 

randomly. Thus, some participants were not tested with some of the swaps in some 

of the experimental conditions. For example, participant 1 might not be tested with a 

swap between stimuli 3 and 4 in the experimental condition where study-test interval 

was 2000 and study-display duration was 200, participant 2 might not be tested with 

a swap between 5 and 6 in another experimental condition, and so on. Though this 

happened for different swap stimuli in different conditions with different 

participants, it was decided to overcome this limitation by designing a new 

experiment, which ensured that each swap was presented an equal number of times 

to all participants in all conditions.  

To simplify the experimental design, the experiment was carried out only for the 

randomized locations condition, as the unchanged/ randomized locations had no 

significant interaction with the serial position effects in Experiment 12 as well as 13. 

Further, the randomized condition was chosen because it is the condition that is 

unaffected by the use of iconic memory, and therefore should offer an experiment 

that is focused primarily on VWM. Experiment 14 thus allowed the examination of 

the effects of study-test intervals and study-display durations on the serial position 

effects obtained in Experiments 12 and 13. Following the pattern of results in 

Experiment 13, it was predicted that these variables would have a significant 

interaction with swaps, and thus affect the primacy and recency effects obtained in 

the data. The three factor interaction was also of interest.   

Participants  

Twelve students (6 men and 6 women) in the age range 18-25 years were given an 

honorarium of £10 for their participation in the experiment. 

Stimuli, Design, and Procedure 

The stimuli were identical to Experiment 13, the study display involving sequential 

presentation such that each stimulus vanished as the next was presented. The 
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experiment was designed a replication of the randomized location condition of 

Experiment 13. Figure 8.20 illustrates the procedure.  

Figure 8.Figure 8.Figure 8.Figure 8.22220000    
Sequence of events in Experiment 14Sequence of events in Experiment 14Sequence of events in Experiment 14Sequence of events in Experiment 14    

Study-test intervals
0 ms and 2000 ms

Randomized Locations

Same Different

Note: Stimuli are not drawn to scale

Study-display durations 
200 ms / each item appears for 33.3 ms
900 ms / each item appears for 150 ms
1500 ms / each item appears for 250 ms

 

The three independent variables were study-display durations (200, 900, and 1500 

ms), study-test intervals (0 and 2000 ms), and swaps (all 15 possible combinations 

used for experimental design, grouped into four categories for analyses). Each 

participant was given 4 trials where there was a swap and thus experienced 360 

‘different’ trials, and 180 ‘same’ trials, all mixed randomly in a single session 

comprising 540 trials. 

Results 

Despite the small procedural differences, the results of this experiment almost 

duplicated the results obtained in the randomized location condition of Experiment 

13 as illustrated by Figure 8.21. A 2×4 ANOVA testing the effects of experiments 
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and swaps confirmed that although the main effect of swaps was significant, 

F(3,66)=15.476, MSE=0.085, p<.001, partial η2=.413, neither the main effect of 

experiments nor the interaction between experiments and swaps was significant (both 

F<1).  

Figure 8.Figure 8.Figure 8.Figure 8.22221111    
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A repeated measures 2 (Study-test intervals) × 3 (Study-display durations) × 4 

(Categories of swaps) ANOVA was used to analyze the results of Experiment 14. All 

the three main effects were significant. There was a reliable main effect of study-test 

intervals, F(1,11)=13.367, MSE=1.538, p<.004, partial η2=.549, with better 

performance at 2000 than at 0 ms. There was a significant effect of study-display 

duration, F(2,22)=3.715, MSE=0.795, p<.041, partial η2=.252, with the mean 

performance for 200 ms significantly lower in comparison to 900 and 1500 ms, with 
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no difference between the latter as shown by paired comparisons using Bonferroni 

adjustment. There was a reliable difference in the four categories of swaps, 

F(3,33)=9.347, MSE=0.700, p<.001, partial η2=.459. However, there was also a 

significant interaction between study-test intervals and swaps, F(3,33)=4.782, 

MSE=0.406, p<.007, partial η2=.303. This is shown in Figure 8.22. No other effects 

were significant. 

Figure 8.Figure 8.Figure 8.Figure 8.22222222    
Interaction between Interaction between Interaction between Interaction between sssstudytudytudytudy----testtesttesttest intervals and  intervals and  intervals and  intervals and sssswapswapswapswaps    
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Since the primary motive for this experiment was to test the effects of study-display 

durations and study-test intervals on the serial position effects, a 2 (Study-test 

intervals) × 3 (Study-display duration) × 3 (Categories of swaps) repeated measures 

ANOVA was also done after excluding the data for swaps between 1 and 6, because 

that performance reflected both primacy and recency. Results showed a significant 

three factor interaction, F(4,44)=2.718, MSE=0.163, p<.042, partial η2=.198, a 
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reliable interaction between study-test intervals and swaps, F(2,22)=3.696, 

MSE=0.299, p<.041, partial η2=.251, and a significant main effect of study-test 

intervals, F(1,11)=10.874, MSE=0.815, p<.007, partial η2=.497. No other effects 

were significant. Figure 8.23 depicts the interaction.  

FFFFigure 8.igure 8.igure 8.igure 8.22223333    
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As is clear from Figure 8.23, the interaction denotes the different pattern of serial 

position effects with different study-display durations at the two study-test intervals. 

When the study-display duration was 1500 ms, at 0 as well as 2000 ms, both primacy 

and recency effects appear in the graph, though only the recency effect is significant 

at 2000 ms, t(11)=2.466, p<.015. When the study-display duration is 900 ms, no 

serial position effect is evident at 0 ms, but both primacy and recency appear in the 
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graph at 2000 ms, though again, only the recency effect is significant, t(11)=2.924, 

p<.007. When the study-display duration is 200 ms, there is actually an interaction. 

At 0 ms, there is a significant primacy effect, t(11)=1.943, p<.039, with negative 

recency. However, at 2000 ms, there is a significant recency effect, t(11)=4.930, 

p<.001, with negative primacy shown in the graph.  

The significance of primacy and recency effects in all cases was tested using 

directional paired samples t-tests. With Bonferroni adjustment, only the recency 

effect at 2000 ms with the study-display duration of 200 ms remained significant. 

This however, must be set against the fact that 18 means were tested through a lesser 

number of 12 selected planned comparisons specifically evaluating primacy and 

recency. These comparisons are protected by the significant interaction. Further, the 

experiment was a replication. These results are reported with the acknowledgement 

that the experiment lacks sufficient power, but the trend of results is clear and is 

interesting enough for future exploration.  

To summarize the significant differences, the recency effect emerged clearly 

significant at 2000 ms for all study-display durations, whereas the primacy effect is 

significant only for the study-display duration of 200 ms when the study-test interval 

was 0 ms. Thus, the interaction between study-display durations and swaps is 

modulated by the effect of study-test intervals. 

Discussion 

Experiment 14 was conducted primarily to explore the effects of study-display 

duration and study-test intervals on primacy and recency effects. There was a general 

increase in performance from 0 to 2000 ms. The increase was primarily in recency. 

The decrease in primacy and increase in recency was most evident with the study-

display duration of 200 ms.  

The interesting result was that with a study-test interval of 0 ms, performance was 

less than what it was at 2000 ms. To speculate regarding the reasons for this result, at 

least three possible explanations may be considered.  
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The increase in performance at 2000 ms could be due to rehearsal, but the study-test 

interval of 2000 ms is rather short for explicit strategic rehearsal. Also, the increase 

is principally in recency, and it occurs in conjunction with a decrease in primacy 

from 0 to 2000 ms. If the participants were rehearsing, surely they would have 

rehearsed the initial few items which they remember at 0 ms. Rehearsal would have 

resulted in an increase or at least maintenance of primacy from 0 to 2000 ms. 

Further, if primacy was simply due to rehearsal, then the participant would be 

rehearsing the earlier items at the cost of the later ones, and no recency effect would 

have been obtained. However, the results show decrease in primacy, and increase in 

recency. As such, it is more likely that the primacy effect simply shows the effect of 

activation of representations, an activation that, nonetheless, reduces over time, and 

rehearsal is applicable only to the recency component, if at all.  

Another explanation of the improvement in performance from 0 to 2000 ms is that it 

is evidence of inhibition. This implies that the substantial increase in recency from 0 

to 2000 ms occurs because the last few items are encoded but inhibited at 0 ms. This 

inference would be consistent with the interpretation of results of previous 

experiments with simultaneous presentation at study display duration of 200 ms, 

which showed similar results.   

Still another explanation of the lower performance at 0 ms could be that the test 

display interferes with the representation of the study display, reducing performance 

at 0 ms. This would be in line with the larger literature on the recency effect 

reviewed in Chapter 2, showing that it is abolished by even unrelated activity during 

the retention interval. However, these studies (e.g., Phillips and Christie, 1977) use 

paradigms such as recall, recognition, or reconstruction, and much longer retention 

intervals.  

All of the above speculations are post hoc for this essentially exploratory experiment 

conducted merely to substantiate an interesting result. Clearly, much further research 

is required to disentangle these different explanations. 
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COMPARING EXPERIMENTS 11, 12, AND 13 

A four way ANOVA was conducted to compare Experiments 11, 12, and 13 with 

experiments as the between subjects variable and unchanged/randomized locations, 

study-test intervals, and study-display durations, as within subjects measures.   

There was a reliable main effect of Experiments, F(2,33)=34.262, MSE=0.850, 

p<.001, partial η2=.675, with performance in Experiment 13 significantly lower than 

performance in Experiment 11 and 12, with no difference between the latter two.  

Though the four factor interaction was not significant, the three way interaction 

between experiments, study-display durations, and study-test intervals was 

significant F(4,66)=3.146, MSE=0.137, p<.020, partial η2=.160, as was the three 

way interaction between experiments,  unchanged/randomized locations , and study-

test intervals F(2,33)=62.820, MSE=0.238, p<.001, partial η2=.792, indicating that 

in each case the factor of experiment modulated the significant two way interactions 

between the other two factors. The two way interactions of experiments with all the 

three other factors were also significant, with F(2,33)=46.166, MSE=0.346, p<.001, 

partial η2=.737 with unchanged/randomized locations; F(2,33)=56.261, MSE=0.289, 

p<.001, partial η2=.773 with study-test intervals; and F(4,66)=3.044, MSE=0.156, 

p<.023, partial η2=.156 with study-display durations, indicating that the factor of 

experiments also modulated the significant main effects of these three factors.  

A brief look again at Figures 8.3, 8.5, and 8.13 would clarify the differences between 

these experiments and enable a better grasp of results reported above. Performance is 

quite similar in Experiments 11 and 12, except that the interaction between study-test 

intervals and study-display durations  is significant in Experiment 12 but not 11, with 

a lower performance in Experiment 12 in the unchanged locations condition at 0 ms 

with a study-display duration of 200 ms. The performance in Experiment 13 is 

completely different from Experiments 11 and 12, in that the gap between the 

unchanged and randomized location conditions is severely reduced, though not 

absolutely eliminated. Essentially, the difference between these two conditions in 

Experiment 13 is due to the significantly lower performance in the randomized 
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locations condition at 0 ms, with the study-display duration of 200 ms. The 

performance in this condition replicates the performance in the same condition in the 

results of other previous experiments 1, 2, 5, and 8 reported in this thesis.   

GENERAL DISCUSSION 

Experiment 11 aimed to assess the effect of increasing the study-display duration on 

the interaction obtained in previous experiments. Though increasing the study-

display duration from 200 to 900 and 1500 ms did result in a significant 

improvement in performance, it had no differential effect on performance at the two 

different study-test intervals. Consequently, it had no effect on the interaction 

between unchanged/randomized locations and study-test intervals. This allowed the 

conclusion that the inhibition of the disruption due to randomized locations and the 

lowering of performance that is evidenced in the randomized location condition at 0 

ms is largely a post perceptual factor rather than an encoding factor. Not only is this 

supported by the host of studies suggesting that active inhibition is a higher order 

process that follows the initial registration of the stimulus (e.g. Braithwaite et al., 

2007, Watson & Humphreys, 1998, 2005), it is also supported by the results reported 

in the previous chapter with the masking experiments.  

Experiment 12 was designed to check whether sequential presentation aided 

performance by yielding an extra temporal code or alternatively, hampered 

performance by disrupting configural encoding. The results of the experiment almost 

replicated the results of Experiment 11. This might be because sequential 

presentation in this experiment gradually built up the study display, and was not 

sufficiently distinct from simultaneous presentation in terms of allowing configural 

encoding. Following the argument of Zimmer, Speiser, and Seidler (2003), it is also 

possible that participants probably used sequential encoding even with simultaneous 

presentation because the stimuli exceed VWM capacity and they are anyway free to 

move their eyes and head, though for the study-display duration of 200ms, the 

possible amount of such movement would have been very limited. 
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Yet, despite the general similarity of the results of Experiments 11 and 12, the 

interaction between the study-display durations and study-test intervals is significant 

in Experiment 12, in contrast to the lack of significance of the same effect in 

Experiment 11. The only difference between the two experiments is simultaneous vs. 

sequential presentation of the study display. And this difference is one possible 

reason for the significant interaction in Experiment 12. The difference in the 

performance in the two experiments lies in the lower performance in the unchanged 

location condition at 0 ms with the study-display duration of 200 ms in Experiment 

12. Each stimulus was presented after 33.3 ms in this condition, and it is quite likely 

that this duration was simply insufficient for encoding the stimulus in itself as well as 

updating the configural representation in memory. Updating being resource 

demanding, resulted in lower performance. The time based resource sharing model of 

WM (Barrouillet et al., 2004; Barrouillet & Camos, 2007) suggests that lack of time 

makes any task more resource demanding. With more time in the conditions 

presenting each stimulus after 150 and 250 ms, the available resources could be 

easily allocated for updating the configuration. Overall, this result supports the 

argument that performance with sequential presentation can be maintained at levels 

equivalent to simultaneous presentation only by devoting more resources to it, and 

when these resources are taxed, performance with sequential presentation suffers.  

Experiment 13 showed the maximum disruption in performance due to sequential 

presentation which precluded direct configural encoding from the display by 

presenting stimuli such that the previous stimulus vanished as the next one appeared. 

This allowed the participants to conjure up the pattern only in their imagination, if at 

all. The reliance on iconic memory, which aided performance at the short study-test 

intervals in the unchanged locations condition in other experiments, was markedly 

reduced, resulting in a severe disruption of performance. Nevertheless, reflecting the 

results of the Experiment 9 with immediate masks, a small but significant difference 

still remained between the unchanged and the randomized locations conditions at the 

study-test interval of 0 ms. This difference is due to the representations retained in 

VWM which match the test display and hence lead to better performance in the 
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unchanged condition compared with the performance arising from a mismatch with 

the test display in the randomized condition 

The serial position analyses for the experiments with sequential presentation showed 

primacy as well as recency effects. Finding serial position effects at the early stage 

process of binding was surprising because of the following reasons: (a) Binding is 

normally considered to involve simultaneous processing and the assumption is that as 

one object is selected, others recede to the background and are eventually lost from 

the system (Duncan, 1980, 2006). This does not appear to be so from the present 

results. In fact, it appears that the process of binding utilizes the presence of other 

objects in the visual field. (b) The participants were not explicitly asked to remember 

sequential order. The fact that serial order still dictates performance suggests that it is 

a factor in the encoding of stimuli rather than something, which is relevant only to 

retrieval. (c) The change detection task with whole displays is akin to recognition. 

Bow shaped serial position effects are usually not found with recognition tasks. In 

fact, Avons (1998) has contended that the serial position effect is task dependent. 

Recognition tasks are presumed to test item memory rather than memory for serial 

order. Thus, to find both primacy and recency despite these constraints indicates the 

importance of serial order in the binding process.  

The results of serial position analyses in Experiments 13 and 14, showing lower 

performance at 0 ms than at 2000 ms, may be construed to be consistent with the idea 

of inhibition, as this result in randomized location condition is a virtual replication of 

the result in this condition in earlier experiments with simultaneous presentation. 

This explanation would suggest that inhibition is more applicable to the last few 

stimuli than to the first few, for primacy is reduced but the recency effect appears 

with increasing study-display durations. Why this effect should be particularly 

prominent with the study-display duration of 200 ms remains to be explored. 

Another explanation is in terms of rehearsal. Why participants should rehearse the 

last few items rather than the first few, which they tend to remember better at 0 ms as 

shown by the primacy effect at 0 ms, is however, a problem for this explanation.    
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Still another explanation seems more plausible when the larger literature regarding 

recency is considered (reviewed in Chapter 2). This suggests that the recency effect 

vanishes at 0 ms and appears at 2000 ms simply because of interference from the 

subsequent test display, an interference which is greater at 0 ms than at 2000 ms. 

This would be in line with earlier studies in the verbal (Glanzer & Cunitz, 1966) and 

visual domains (Phillips and Christie, 1977), showing that recency is abolished by a 

filled delay of even a few seconds irrespective of whether the material presented 

during the delay is similar or different to the material to be remembered. These 

studies, however, use study-display durations much longer than 200 ms and different 

paradigms to assess memory. 

Clearly, much further research is needed to unravel the implications of these different 

explanations. 
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CHAPTER 9 

THE PROCESS OF BINDING 
 

The aim of the thesis was to explore the process of binding whereby different 

features such as location, shape, colour, and others, are linked together to form a 

coherent representation of the object, with a specific focus to study the top-down and 

bottom-up influences in this process. The swap detection paradigm offered a means 

to track this process and study the relative influence of these factors by increasing the 

interval between the study and test displays at regular intervals. The stimuli were 

reduced to three basic features, location, colour, and shape, with the binding between 

two of them being studied whilst the third was rendered irrelevant through 

randomization. The focus was to study how far performance would be disrupted 

when a feature was rendered irrelevant through randomization in comparison to a 

condition in which it was unchanged. If there were no differences between 

unchanged and randomized conditions, it would indicate that participants can remove 

the unwanted irrelevant features right from the outset in accordance with task 

instructions. Reduced performance in the randomized feature condition would 

suggest that all features automatically participate in the initial representation even if 

they are irrelevant to the task. If a convergence occurs over time, it would suggest 

that relevant features can be consolidated and irrelevant features can be inhibited 

only gradually through the control processes of VWM. Further, it was of interest to 

study what other factors and processes affected this basic process of binding. 

THE IMPORTANCE OF BEING RELEVANT 

The input from the external world goes to different areas in the brain. Acting like a 

prism, the brain diffracts the whole input to various areas, and the ‘binding problem’ 

is how this information is integrated again to result in coherent objects that serve as a 

basis for cognitive processing (see Brockmole & Franconeri, 2009, p.1). If top-down 
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factors are important, only information relevant to the task goals should be retained. 

In the present experiments, task goals were defined by instructions to the participants 

to remember the binding of two features and ignore the third. They were aided in this 

process by the randomization of the third feature to render it irrelevant. Performance 

in the randomized feature condition was compared to when the feature was 

unchanged to study whether and when the feature could be deleted from the visual 

system.   

It was expected that performance in detecting change in bindings would be reduced 

when a feature is randomized from study to test as compared to when it is 

unchanged, if the feature had an initial representation, despite that the instructions 

were to ignore the feature and it was rendered completely non-informative and 

irrelevant to performance. It was also expected that as the visual system consolidated 

the binding of relevant features, this irrelevant feature would be inhibited, leading to 

a convergence of performance at longer study-test intervals.  

This expectation was confirmed for locations in Experiment 1 which showed a 

convergence of performance at a study-test interval of 1500 ms. Experiments 2, 5, 

and 8 found a similar gap at the short study-test intervals and a later convergence in 

performance at the longer study-test intervals irrespective of whether the trials for the 

different experimental conditions were presented as blocks or randomized. A similar 

pattern of interaction was also found when shapes were randomized to study colour-

location binding, and when colours were randomized to study shape-location 

bindings. This not only suggests that the effect is very robust, but also attests to the 

overriding importance of top-down factors in binding irrespective of the features 

involved. All features are treated the same way in VWM. They are selectively 

consolidated if they are relevant, and removed from the mental representation if they 

are irrelevant.  

Nonetheless, there is no denying the differential processing of features. In line with 

physiological studies (Aymoz & Viviani, 2004; Lamberts, 2002, Moutoussis & Zeki, 

1997, Zeki et al., 1991) and psychophysical evidence (Magnussen, 2000; Magnussen 
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& Greenlee, 1997; Magnussen et al., 1996), differential processing of features was 

found. There is greater disruption of performance when locations are randomized 

than when shapes or colours are randomized, with the disruption due to 

randomization of colours being the least. In addition, the removal of locations from 

the initial representation takes a much longer time than the removal of shapes or 

colours.  

The results of the additional analyses comparing the two types of swaps possible in 

the trials when a swap occurred, confirmed that there are differences among features 

and that location is special as compared to other features. In the unchanged 

condition, the analyses comparing these different types of swaps yielded information 

about the relative importance of the features that swap during the test trials. 

Detection of location swaps is consistently easier than the detection of either shape 

swaps or colour swaps and yields higher levels of performance. However, the 

difference between colour swaps and shape swaps is not consistently found across 

experiments, despite the fact that it was large and clear in Experiment 1. 

Nevertheless, the study-test intervals where this happened in Experiment 1 were 200 

ms and 2800 ms. Those study-test intervals were not used in later experiments. This 

suggests that there is a possibility that features are retained in separate feature maps, 

before and after binding at around 1500 ms. In some measure, this too corroborates 

the notion that binding of relevant features is not instantaneous, and features 

converge in a coherent object only somewhere around 1500 ms, at least in the 

paradigm used in this research.  

The differences among the three features studied, locations, shapes and colours, 

follow the differential perceptual processing of these features. Location swaps are 

easiest to detect and location is the most difficult feature to ignore. Colour swaps are 

the most difficult to detect initially, and colour is the easiest feature to ignore. The 

results for shape fall in-between these two. This is in consonance with researchers 

showing that locations are processed in the dorsal stream, which is relatively 

automatic and works on an earlier time scale than the ventral stream (Vecera & 

Palmer, 2006, Velichkovsky, 1982, 2007). Between shape and colour, differentiation 
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of forms happens before the surface features are filled in (Cinel & Humphreys, 2006; 

Humphreys et al., 2000, Humphreys et al., 2009). To be speculative, the differential 

processing of features might happen with other features such as orientation, size, 

textures, etc., as well, though these were not tested in the present research. 

Bartels and Zeki (2006) had shown that although different kinds of bindings were 

processed at different time scales, the order of processing times did not follow the 

order of processing of single features. In contrast, Kent and Lamberts (2006) and 

Lamberts and Kent (2008) noted how processing of features in memory is analogous 

to basic perceptual processing. But Lamberts and Kent (2008) noted these 

differences only when memory load exceeded capacity at six features appearing in 

two different objects. There were no differences among features when only three 

features in a single object were to be remembered. It is noteworthy that memory load 

exceeds capacity in the present experiments too. Perhaps load is the critical factor, 

which explains these inconsistent results in literature, and features are processed in a 

manner analogous to basic perceptual processing whenever load exceeds capacity. 

Certainly, this is what would be predicted by the load theory of selective attention 

and cognitive control (Lavie & De Fockert, 2005, 2006; Lavie et al., 2004), if it were 

to be applied to this issue, for it suggests that greater WM load leads to more 

interference by distracters, implying that perceptual factors dominate when WM is 

loaded beyond capacity.  

The differences in the amount of disruption experienced by the participants in the 

three experiments at 0 ms, imitate the importance of the ‘to be ignored’ feature in our 

daily lives. The disruptive effect is least when colour is the feature to be ignored, 

with a greater amount of disruption when shape is to be ignored, and the maximum 

disruption when location is to be ignored. The correct perception of the location of 

objects in space has survival value in our daily navigation of the world, and 

reflecting that importance, randomizing location disrupts performance to the greatest 

extent in these experiments.  

The results support Treisman and Zhang (2006) as far as they demonstrated the 

reduced importance of location as a cue in binding at longer study-test intervals. 
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Similar to their results, using equidistant study-test intervals up to 2500 ms, the 

present experiments show that there comes a time, when location is no longer 

important as a cue for bindings in VWM. Our results, however, go against the 

overwhelming importance accorded to locations by Treisman in general. Perception 

may be location based, but memory may be not only location based, it might well be 

object-based, and also feature-based. Just as it is possible to ignore other features, it 

is possible to ignore locations too. It is only more difficult, not impossible. As 

compared to other features, location is special. But, in itself, it loses its importance in 

the binding process if it is not relevant. Thus relevance of features overrides the 

differential processing of features. 

Duncan (1996, 1998, 2006) had suggested that all features, whether relevant or 

irrelevant, are activated, and as attention is focussed on an object, all features of the 

object are strengthened. Thus his concept of top-down biased selection, dictated by 

task relevance more than anything else, applies only at the level of objects and does 

not apply to features. He makes no prediction as to what happens as the 

representation is committed to memory. From the present results, however, it appears 

that encoding of features into VWM is also contingent on task relevance. As the 

representation is encoded into VWM for further manipulation, only the relevant 

features survive and the irrelevant ones are suppressed. This is, however, a gradual 

process, which also involves the differential processing of each feature. In a way, this 

extends Duncan’s concept of biased competition to features in VWM. Nevertheless, 

to be clear, in his view, binding is not a process. He assumes objects as the 

foundation of his theoretical edifice (Duncan, 2006). If anything, the suggestion is 

that binding happens due to conjunctively coded neurons.  

In contrast, Humphreys (2001) has come to view binding as a process; and in fact, a 

process that can be further fractionated into the binding of forms, and thereafter, 

binding of surface features such as colour, to form. But his concern is mainly with 

features processed in the ventral stream, form and colour. The evidence cited is 

neuropsychological, based on patient population, and the use of TMS (Braet & 

Humphreys, 2009; Cinel & Humphreys, 2006; Humphreys et al., 2000; Humphreys 
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et al., 2009).The fractionation of the binding process that is proposed on the basis of 

neuropsychological evidence and using TMS, is manifest here in the present research 

in behavioural experiments with normal healthy adults, thus generalizing the idea of 

differential processing of shape and colour. It also attests to the process of binding 

being one that is amenable to the relatively coarse behavioural assessment in 

experiments, and suggests the utility of the experimental paradigm in studying this 

process. It makes large scale studies using aspects of the experimental design to 

investigate individual or group differences in the binding process a feasible project, 

as well as correlational researches to study its relationship with other cognitive 

variables a distinct possibility. 

Treisman (1998, 2006) also views binding as a process. She holds that there is a pre-

attentive representation of features in separate feature maps, which are attached to 

the master map of locations as spatial attention is focussed on each location. 

Location and attention are thus both held to be essential for binding. Except for her 

emphasis on the importance of locations, she does not concern herself with the 

relevance of other features or any differentiation among them. The present results 

support her idea that location is special as compared to other features, viz., colour 

and shape. Nevertheless, just as locations are ignored if they are irrelevant, so are the 

other features. In this sense, location is not special. It is just another feature of the 

object that is dealt with the same way as are the other features by WM.  

To be fair, Treisman and Zhang (2006) did report similar results as obtained in 

Experiments 1, 2, and 5 in this thesis. However, the motivation for their experiment 

was to assess whether features are available in separate feature maps even after being 

bound in object files. They did not interpret their findings in terms of relevance of 

features. Nevertheless, their results did show a convergence of performance over 

time when locations were held same or when stimuli moved to new locations, 

suggesting the reduced importance of locations over time in the detection of colour-

shape bindings. The present research extends this finding to colours and shapes. 

Further, in an attempt to explain why the unique importance of any feature may be 
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reduced over time, the experiments indicate that top-down processes, which organize 

basic information according to relevance, are of crucial importance. 

The results are also in tandem with Woodman and Luck (2007) who have argued that 

the contents of VWM affect attentional selection during visual search, and strategic 

inhibition is possible in a visual search task, and that this can be taken as evidence of 

top-down processes affecting what is chosen to be perceived through attentional 

selection. This work is extended in the present thesis to show the time course over 

which top-down processes work, inhibit irrelevant features, and bind together 

relevant features.  

Unlike researchers who insist that features, as represented in bottom-up processes, 

guide the process of search for objects (Muller & Krummenacher, 2006a, 2006b; but 

see Muller et al., 2009; Wolfe, 1994; Wolfe et al., 1989), or capture the vital resource 

of attention (Schreij et al., 2008; Theeuwes, 1992, 2004; Theeuwes et al., 2006), and 

thus may affect binding as a process, the present experiments show that the top-down 

factor of task relevance overrides the differences in the basic features involved in the 

process of binding. The results also contrast with Hommel (2004) who postulates the 

importance of task relevance as a factor at the time of initial binding. In the present 

results, it appears that the inhibition of irrelevant features occurs over time and is 

thus presumably a process within WM.  

The account of the binding process that emerges is that features may not be bound 

together instantaneously and all at the same time. Instead, their processing in the 

visual system continues at different rates. This differential processing affects when 

they are bound in object representations. Object representations involving shape-

location bindings are formed most easily or are the strongest, followed by colour-

location bindings, followed by shape-colour bindings.  

In the introductory chapter to the thesis, whether, why, and how some features were 

selected for binding over others were raised as fundamental questions about the 

binding process. From the experiments reported in this thesis, it is clear that there is a 

selective process that binds some features together. Further, the task relevance of 
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features determines whether or not they are bound into the object representation, i.e., 

they are bound in the object weighted by their task relevance. Features are 

consolidated if relevant, and discarded if irrelevant. Certainly, there is no clear, 

coherent, strong object right from the outset. The next sections of this chapter discuss 

how this process of selection is implemented, and what other variables impact the 

process. 

FOCUS ON ATTENTION 

In all experiments, what is critical is that there is a convergence of performance 

between the unchanged and the randomized conditions as the study-test intervals 

increase. Time per se however, does not bring about this convergence. It merely 

allows other processes and variables to operate, and manifest their effects in the 

process of binding. In almost all experiments, the non-linear trends were also found 

to be significant.  The significant non linear trends indicate that the development of 

the object from the initial stimulus representation is not a linear, gradual, monotonic 

increase with time, but there are other factors which affect the process of binding. 

One of these factors is the mechanism of attention. 

Attention is not a singular entity; it has many facets and functions in a variety of 

ways in the process of binding. It is acknowledged that some researchers hold that 

bindings can happen without attention (Allen et al., 2006; Gajewski & Brockmole, 

2006; Johnson et al., 2008; Mordkoff & Halterman, 2008). It is interesting to note 

that in such cases, the premise is that binding is the instantaneous strong integration 

of all features in the visual system, to be maintained or manipulated further in VWM. 

This substantially differs from the premise of this thesis that binding is a process that, 

over a period of time, results in a coherent meaningful object ready for further 

manipulation. Further, the experimental evidence is based on (a) equal amounts of 

attention required for detecting single features and bindings, which merely shows 

that detection of bindings is no more attention-demanding than single features, but 

does not allow the conclusion that binding happens in the complete absence of 
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attention (b) maintenance of bindings over a period of generally around 900 ms after 

a 250 ms study display (e.g., Allen et al., 2006). The present experiments show that 

the process of encoding colour-shape bindings into VWM when locations are 

randomized is virtually over by 1500 ms, and much earlier for bindings involving 

locations. Thereafter, bindings are easily maintained up to 2500 ms. Other evidence 

(Mitroff & Alvarez, 2007; Treisman & Zhang, 2006) suggests that this maintenance 

is possible up until study-test intervals of 7-8 seconds. It is accepted that 

maintenance of bindings is not very attention demanding, but this cannot be taken to 

mean that attention is not required for the formation of bound objects, in the earlier 

process of binding which ends in coherent objects. This process is necessarily 

selective considering that the organism is faced with multitude stimuli and stimulus 

dimensions, all of which cannot possibly be bound together; and this selective 

process is resource demanding.  

Certainly, the present experimental task, which not only presented stimuli beyond the 

four that are proposed to be the capacity limit of VWM (Cowan, 2001, 2009; Luck & 

Vogel, 1997; Zhang & Luck, 2008), but also required selection of relevant features 

over irrelevant ones, was designed to be attention demanding. In fact the 

experimental results go beyond showing that binding requires attention, to 

demonstrate how various kinds of attention are being used by the participants in the 

process of binding.  

Comparisons between experiments with blocked and mixed presentation of trials 

were particularly instructive of the role of attention in the process of binding. The 

review of literature regarding blocked and mixed presentation had indicated that 

whereas blocked presentation enhanced the task focus, mixed presentation required 

extra resources for intra task as well as inter task processing. As such, though 

performance with mixed presentation is either similar or worse than blocked 

presentation when tested immediately, it results in superior memory when tested 

after an interval. This is known as the contextual interference effect (Lee & Magill, 

1985; Li & Wright, 2000; Shea & Zimny, 1988; Wright et al., 1992). 
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Whilst Experiments 2, 3, and 4 used blocked presentation, Experiments 5, 6, and 7 

used mixed presentation of study-test intervals. In line with the contextual 

interference effect, it was expected that mixed presentation would result in better 

performance at the longer than at the shorter study-test intervals. Results showed that 

mixed presentation led to improved performance at the longer study-test intervals in 

the experiments where shapes were to be ignored, and there was a trend towards 

better performance with mixed presentation at all study-test intervals when colours 

were to be ignored. However, when locations were to be ignored, an interaction was 

obtained with blocked presentation being no different from mixed presentation 

initially, but resulting in better performance at 2000 ms. 

It was concluded that the increase in generalized attention, which was associated 

with mixed presentation, favoured the distributed spatial attention that was engaged 

in the experiments where colours and shapes were randomized, locations being fixed 

in these experiments. The participants were required to remember the bindings of 

colours or shapes with locations. All six stimuli occurred in fixed locations, so the 

task was essentially to maintain in memory, the configuration of the stimuli in terms 

of the colours or shapes. This is to say that the performance of the participants could 

have been aided by remembering which colours were where, or which shapes were 

where, in six fixed locations.   

In contrast, object-focussed attention was presumably being used in the Experiments 

2 and 5 where locations were rendered irrelevant. Even in the unchanged locations 

condition, the focus was on remembering colour-shape bindings with the six stimuli 

occurring in different random locations on each trial, and the instructions were to 

ignore locations. The task focus that accompanies blocked presentation favoured 

object based attention, but only at 2000 ms, presumably once the object had clearly 

evolved, the relevant features being consolidated and the irrelevant one deleted from 

the representation. Otherwise, no clear differences emerged between blocked and 

mixed presentation. 

In Experiment 8, not only were the study-test intervals given in a mixed order, but 

the unchanged and randomized locations conditions were also randomly mixed, and 
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the whole experiment was done in a single session. Comparing Experiments 2, 5, and 

8, the three-way interaction between unchanged/randomized locations, study-test 

intervals, and experiments was significant. When further ANOVA was conducted 

separately in the unchanged and randomized locations conditions, and performance 

in Experiment 8 (all conditions mixed) was contrasted with Experiments 2 (blocked 

presentation) and 5 (mixed study-test intervals), no clear or consistent differences 

between the three types of presentation were discernible in the randomized locations 

condition, though the interaction was significant. However, for unchanged locations 

condition performance in Experiment 8 (all conditions mixed) was better at the 

longer study-test intervals and thus showed the contextual interference effect.  

It was surmised that when all conditions were mixed for presentation in Experiment 

8, the participants were prepared for the worst-case scenario of a randomized trial, 

and had to switch their mental set when an unchanged locations trial occurred. This 

set switching, utilized more WM resources, and thus resulted in the contextual 

interference effect being evident in performance. Lee and Magill (1985), and Li and 

Wright (2000) have explained the contextual interference effect by proposing that 

there is greater use of WM resources in the mixed condition because resources are 

required for both inter-trial and intra-trial processing. Switching task sets is among 

the three primary functions ascribed to the central executive (Baddeley, 2007) and it 

is well established that switching frequently is resource demanding (Monsell, 2003).  

To summarise this section, it seems that the contextual interference effect appears in 

performance only when spatial attention is engaged and configural information can 

be used by the participants. In such conditions, mixed presentation yields better 

performance at longer study-test intervals, because the more intensive use of 

attentional resources probably aids the retention of configural information. When 

attention is object-based as in the randomized locations condition, the contextual 

interference effect is not observed, and there is no clear difference between mixed 

and blocked presentation.  With regard to the features in the binding process, this 

suggests that binding involving locations would benefit from extra attentional 

resources, but binding of other features may not benefit from global, endogenous 
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attention in the same way. The role of different types of attention in different kinds 

of feature-bindings is therefore, deserving of more focussed attention in future! 

SPOTS OF TIME: THE MEMORY STORES  

Experiments 8 – 14 helped to study the influence of different memory stores and 

processes in the process of binding. These experiments were conducted only for the 

feature of locations, because the previous experiments had already shown that 

although the different features were processed to different time scales, the pattern of 

performance was similar across features. In all cases, despite an initial disruption of 

performance due to randomization, there was a convergence at the longer study-test 

intervals, indicating that WM operated in the same way across features, consolidating 

relevant features and inhibiting the irrelevant ones.  

One possible explanation of the results of Experiments 1-7 was that the superior 

performance in the unchanged condition was due to iconic memory of the study 

display. Though there was no denying that iconic memory had a role to play in 

performance, it was important to ascertain exactly to what extent it contributed to the 

difference in performance between the unchanged and randomized conditions. It was 

also important to assess the role it played in the randomized locations condition.  

Since the classic experiments on iconic memory by Sperling (1960, 1963) masks 

have often been used to study iconic memory. Following these original experiments, 

many researchers assume that a mask completely obliterates the icon (e.g., Becker et 

al., 2000). Nevertheless, many others also recognized that some information is 

transferred out to VSTM almost as soon as the stimulus is presented and this 

information is relatively immune to the mask (Averbach & Coriell, 1961). Others too 

recognized informational persistence (Coltheart, 1980, Haber and Standing, 1969) 

and a few proposed that iconic memory had two components, an early retinotopic 

one and a later spatiotopic one (Breitmeyer et al., 1982; Feldman, 1985, McRae et 

al., 1987). In a recent study, Smithson and Mollon (2006) concluded that information 
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in terms of higher-level features persisted despite a mask, and thus a mask did not 

really terminate the icon.  

Thus, three experiments were designed. Experiment 8 provided the baseline 

performance without masks. In Experiment 9 an immediate mask was used to disrupt 

iconic memory, whereas in Experiment 10, a delayed mask was used to disrupt the 

central processes of consolidation and inhibition. Recognizing the confound between 

the type of mask and timing of a mask in the previous literature, a single type of 

mask with both perceptual and conceptual properties was designed and used in both 

experiments, so that differences between the performance in the two experiments 

could be attributed only to the timing of the mask.   

It was found that the immediate mask presented for 100 ms severely disrupted 

performance in the unchanged locations condition. When presented after a delay of 

300 ms, however, performance tested at 400 ms was no different than performance 

with no mask at 500 ms (also indicative of what it might have been at 400 ms). The 

immediate mask had no effect on performance in the randomized locations condition. 

Thus, it was concluded that iconic memory had a role to play in performance in the 

unchanged locations condition at 0 ms, but not at a delay of 300 ms or thereafter.  

Since iconic memory played a role in performance only in the unchanged locations 

condition, but not in the randomized locations condition, it indicated that preserved 

configurational information in the icon aided performance in the unchanged 

condition. Experiments 11, 12, and 13 tested the importance of configural encoding   

in the performance of the participants by contrasting simultaneous and sequential 

presentation of stimuli in the study display. Experiment 11 used simultaneous 

presentation. Experiment 12 used sequential presentation such that stimuli were 

presented one by one to build up the study display, preserving configurational 

information to a large extent. Experiment 13 used sequential presentation, such that 

the previous stimulus vanished as the next was presented, and thus did not allow the 

participants to view the configuration of the display at all. In this case, any configural 

encoding would have been dependent on building a memory-based representation of 

the array as each item was presented. Results showed no difference between 
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performance in Experiments 11 and 12, but a severe disruption of performance in the 

unchanged locations condition in Experiment 13, reiterating the role of 

configurational information in this condition, analogous to the experiments using 

masks.  

Nevertheless, in the immediate mask experiment as well as in Experiment 13 which 

precluded configurational encoding, a small but significant difference remained 

between the unchanged and randomized locations conditions. This was evidence of 

items transferred to a more durable store than iconic memory and in which they were 

maintained till at least 2500 ms, the longest study-test interval in this research.  

The representations in this more durable store would have to be spatiotopic, at least 

initially, for that would explain some of the difference between the unchanged and 

randomized locations condition. The items in this store match the test display in the 

unchanged locations condition, mismatch the test display in the randomized locations 

condition, and thus yield a difference between the two conditions. This store could be 

the  large capacity, fragile VSTM postulated by Sligte et al. (2008) but for the 

finding that the difference remained significant till about 2500 ms, far outlasting the 

time period associated with the proposed large capacity fragile VSTM. Thus, it was 

concluded that performance after the mask manifested the items that were held as 

bound objects in a relatively robust and more permanent store, possibly similar to 

VSTM proposed by Phillips (1974).  

This relatively permanent store was also explored with the help of subsequent 

Experiments 12, 13, and 14, which used sequential presentation of stimuli. The data 

from these experiments showed both primacy as well as recency effects. This finding 

is important because of three reasons. First, binding is usually considered to be the 

result of simultaneous processing. Adherents of synchrony would find it rather hard 

to explain how stimuli would be encoded according to their positions in a sequence. 

Indeed, studies of perceptual binding show that temporal synchrony, or simultaneous 

presentation, is crucial for feature binding (Fahle & Koch, 1995; Keele et al., 1988). 

Those who hold that binding occurs due to conjunctively coded neurons also assume 

that as one object is selected, the others are deselected or recede to the background 
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and are perhaps eventually lost from the system (Duncan, 2006). From the 

experiments on sequential presentation, it is clear that the stimulus is also encoded 

according to the context in which it appears; a context that is provided by the 

position it occupies in a series. Thus, the process of binding utilizes the other 

representations in the field – whether presented at the same time or not. 

A second reason why the serial position effects are important is that the participants 

were not explicitly asked to remember sequential order. Indeed the request was to 

remember selected features, colour and shape, and ignore locations. Such instructions 

would have increased the focus on the items to be remembered rather than the 

sequence in which they were presented. Obtaining serial position effects in spite of 

such instructions suggests that serial positions were automatically encoded along 

with the stimulus representations.   

The task used in the present research is a third reason why the observation of both 

primacy and recency effects is interesting. The change detection task with whole 

displays is akin to a recognition task in that the representations held in memory need 

to be matched with each of the items in the study display one by one, and a decision 

is to be made whether or not each one is same or different in the binding of relevant 

features. Indeed, Allen et al. (2006) used a recognition score as the dependent 

measure in their experiments on bindings in VWM. As indicated by the review of 

research in the area of visuo-spatial WM, bow shaped serial position effects are 

found in tasks requiring serial reconstruction, but are rarely found with recognition 

tasks. In fact recognition tasks are often presumed to test item memory rather than 

memory for serial order. Avons (1998) contended that the serial position effect is 

task dependent. Ward, Avons and Melling (2005) provided subsequent confirmatory 

evidence with bow shaped curves obtained for serial reconstruction of order, but not 

when a two alternative forced choice test of recognition was used. Finding primacy 

and recency effects despite such contrary theorizing and research evidence, in a task 

similar to recognition, is therefore, exciting.  

It appears that serial positions of the stimuli in the present experiments are a factor in 

encoding rather than an artefact of retrieval. The regularity in the pattern supports the 
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idea the serial position effects simply manifest the activation of items according to 

the sequential position of their presentation. The interactions obtained in Experiment 

14, also confirm this inference. In this experiment, the three-factor interaction 

between study-test intervals, study-display durations, and serial position effects was 

found to be significant. It was found that the pattern of serial position effects with the 

three study-display durations varied between 0 and 2000 ms. Especially with the 

study-display duration of 200 ms, i.e., 33.3 ms per item, it was found that the 

primacy effect shown at 0 ms decreased at 2000 ms, whereas a recency effect which 

was not apparent at 0 ms, was shown at 2000 ms. It was surmised that the primacy 

effect was shown at 0 ms, but was lost at 2000 ms as the level of activation gradually 

reduced. The primacy effect shown at 0 ms cannot be explained as rehearsal as the 

exposure of the stimulus is only 33.3 ms per item, and thus too short for any explicit 

strategy to become operational. In contrast, the recency effect does not appear at 0 

ms. With regard to the recency effect, it is noteworthy that there was a trend towards 

negative recency at 0 ms, when the study-display duration was 200 ms. There was no 

such negative recency shown at study-test intervals of 900 and 1500 ms. This implies 

that the lack of recency with the study-display duration of 200 ms could not be due to 

interference from the test display, for there is no reason for interference to be any 

less with study-display durations of 900 or 1500 ms. Also, the lack of recency at 0 

ms, but a significant recency effect shown at 2000 ms, with a study-display duration 

of 200 ms, could be due to inhibition of irrelevant features and selective 

consolidation of relevant features over a period of time, which was also evident in 

the randomized locations condition in the previous experiments in this research.    

MORE YIN THAN YANG: THE PROCESS OF INHIBITION 

The robust finding across experiments that performance improved over the study-test 

intervals studied in the randomized location condition was evidence that the process 

of inhibition was at work in these experiments. Nevertheless, this same finding can 

also be construed as a slow process of consolidation in the randomized locations 
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condition. Indeed the two processes are complementary and probably difficult to 

disentangle.  

Nevertheless, to a substantial extent this was achieved by the experiments using a 

mask. Immediate and delayed masks were used to dissociate the peripheral and 

central processes that follow the initial registration of stimuli. Turvey (1973) and 

Bongartz and Scheerer (1976) had also used masks at different delays to distinguish 

between early peripheral processes in the visual system and the later, central 

processes. Analogous to claims that information persisted beyond the retinotopic 

stage of iconic memory (Breitmeyer et al., 1982; Coltheart, 1980; Feldman, 1985, 

McRae et al., 1987; Smithson & Mollon, 2006), Potter (1976) had postulated two 

kinds of masking effects, perceptual and conceptual, affecting respectively, the 

perceptual processes which required presence of the stimulus or an icon, and the 

subsequent conceptual processes which built on the perceptual processes. This idea 

was used by Intraub (1984) as well as Loftus and Ginn (1984), and more recently by 

Sligte et al. (2008).  

Masks have also been used to study the process of consolidation in VWM by many 

researchers (Vogel et al., 2006; Woodman and Vogel, 2005, 2008; Zhang and Luck, 

2008). In contrast, there is little evidence of a mask being used to study inhibition. 

Nevertheless, using the preview search procedure, which is an experimental 

paradigm very close to the one used in the present research, Watson and Humphreys 

(2005) reported that when another set of related stimuli are introduced in the preview 

period, they diminish the advantage associated with the preview of the first set of 

distracters. However, flashing a set of distracters on and off, in the beginning of the 

preview period disrupted the preview benefit, whether or not the distracters were 

related to the original preview stimuli. Introducing another set of related stimuli 

during the preview period is similar to using a using a conceptual mask after a delay, 

while flashing a set of distracters at the beginning of the preview period is similar to 

an immediate perceptual mask or energy mask, and presumably affecting peripheral 

processing of the initial set of distracters, thus reducing the preview benefit.  
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Recognizing the confound between the kind of mask and the timing of mask in most 

earlier studies, and desirous of attributing any effects of the mask only to its timing, a 

single type of mask having both perceptual and conceptual properties was created 

and used in the present research. The mask was presented to the participants for 100 

ms either immediately after the study display (Experiment 9) or after a delay of 300 

ms (Experiment 10), and both were compared with baseline performance without a 

mask (Experiment 8). It is the randomized locations condition in these experiments, 

which is the focus of this discussion, for it is in this condition that inhibition was 

applicable and manifest in Experiment 8. The results showed that when tested 

immediately after a delayed mask, performance improved, not only in comparison to 

the no mask and immediate mask experiments, but also in comparison to the 

asymptotic performance observed later on. Indeed, this improvement removed the 

gap between unchanged and randomized conditions observed in all other 

experiments and made this performance statistically similar to the one in the 

unchanged locations condition.  

It is inferred that this performance showed what was in VWM at that point of time. 

That it was more and not less than the asymptotic performance is explained by the 

fact that a factor of inhibition influences performance in all previous experiments in 

the randomized locations condition. This inhibitory factor, which is otherwise the 

dominant force in the randomized locations condition, is interrupted or interfered 

with by the mask. This experiment demonstrated that consolidation of bindings is a 

selective process, for the increased performance after the mask at 400 ms, represents 

the consolidation of relevant features into VWM which is statistically no different in 

the unchanged and randomized locations condition. What is deleted from among the 

factors affecting performance at the post-mask test at 400 ms is inhibition. The factor 

of inhibition is most prevalent in performance around 500 ms after stimulus onset as 

shown by studies of attentional blink (Chun & Potter, 1995), and preview search 

(Humphreys et al., 2004; Watson & Humphreys, 1997). In the present research, this 

process of inhibition presumably peaks around 500 ms after stimulus onset, was 
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interrupted by the mask, and hence the post mask performance is dictated only by 

what was selectively consolidated into VWM before the mask.  

Woodman and Vogel (2008) have also concluded that consolidation is selective from 

their study using masks at various delays after the sample array in a change detection 

task. Their conclusion is based, however, on the differential processing of colour, in 

that performance for colour was better than orientation, shape, and conjunction, 

conditions. This was also substantiated by studying the CDA component of ERPs. It 

is noteworthy that this distinction emerged gradually as the stimulus-mask SOA 

increased.  

Thus the ongoing process that results in a coherent object is the process of selective 

consolidation and concomitant inhibition. The mask essentially interrupts this basic 

ongoing process. It is a source of interference in consolidation as well as inhibition. 

The target features as dictated by task instructions are selectively consolidated and 

the irrelevant feature is inhibited by the participants.  The delayed mask interrupts 

both these central processes, and performance reflects only what has been selectively 

consolidated into VWM up until the mask appears. 

Though the present studies are all behavioural and did not use any physiological 

measures, it is speculated that the delayed mask affected the reentrant processes that 

confirm the representation of the stimuli initially fed into the visual system by feed 

forward processes. This speculation is supported by two kinds of evidence available 

in current literature. First inhibition is postulated to be accompanied by the reentrant 

activity of long range excitatory neurons in the brain, yielding increased activation in 

brain regions that are associated with behavioural results of inhibition as assessed by 

distracter suppression (Serences et al., 2004), negative priming (Wright et al., 2006), 

and the preview search procedure (Allen et al., 2008).  The second line of evidence 

comes from studies showing that a mask affects reentrant processes (Di Lollo et al., 

2000; Enns & Oriet, 2007; Fahrenfort et al., 2007). Indeed, Fahrenfort et al. (2007) 

established that a delayed mask interrupts reentrant but not feed forward processing. 

There is also converging evidence that TMS affects reentrant processes and disrupts 

binding (Braet & Humphreys, 2009). It is well known that the TMS pulse is similar 
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to a mask in its effects (Amassian et al., 1989; Kammer, 2007). Nevertheless, the 

contention that the delayed mask affected reentrant processes is a speculation, not a 

conclusion from the present data, and a hypothesis to be explored in future by 

combining this paradigm with physiological measures.  

The different result of the delayed mask experiment as compared to the experiment 

with no mask also belies the suggestion that in all the other experiments in the 

present research, the test display acts like a mask, overwriting the memory of the 

study display. Such a suggestion is inherent in the analysis of the switch detection 

task by Alvarez and Thompson (2009). They allege that the poor performance on the 

switch detection task is due to problems in maintaining bound objects in VWM 

because new perceptual input from the test display presumably overrides the 

previous one and forces rebinding of information. But this argument for similarity 

between the test display and a mask is true only to the extent that the test display as 

well as a mask might act to interfere with the processing of the study display. 

Empirically, they are associated with different cognitive demands. The mask is to be 

ignored, whereas the test display cannot be ignored. Indeed, it has to be compared 

with the representations from the study display, and hence both the study and the test 

display must be available for comparison. The test display is like a conjunction 

search task (if compared with visual search tasks), and like a test of recognition (if 

compared to a test of memory), in that the stimuli held in the target template, or 

memory, need to be matched with each of the items in the study display one by one, 

and a decision is to be made whether or not each one is same or different in the 

binding of relevant features.  

To return to the nature of the process interrupted by the mask, Experiment 11 

confirmed that the kind of inhibition seen in these experiments is a post perceptual 

VWM process. In this experiment the display duration was increased from 200 to 

900 and 1500 ms. This improved performance overall, but had no differential effect 

at the two study-test intervals of 0 and 2000 ms. This indicated that the inhibition of 

irrelevant features did not happen during the presentation of the study display, and is 

not a factor operational during encoding, but that it is a post-perceptual process 
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within WM. Analogously a number of studies with the preview search procedure 

have suggested that ‘active inhibition’ is a higher order process that follows the 

initial registration of the stimuli (reviewed by Soto et al., 2008).  

It is proposed that the emergence of the bound object in VWM is a result of the 

inhibitory process. It is recognized that the concept of inhibition has many different 

connotations. It may also be used in the present experimental paradigm in different 

ways. The task being above capacity, focusing is required to select a region, objects, 

or features, to manage the task even before the trial begins. This uses the 

prioritization function of attention. This selection process necessitates that the rest of 

the locations, objects, and features are deselected. These would not influence or 

reappear in performance at 2000 ms. Thereafter, from the selected representations, of 

features, objects, or locations, there is a process of removal of the irrelevant, 

unwanted feature. This process begins only when capacity is full and as much as 

possible of the study display has been encoded. This crucial process is presumably a 

part of the central executive component of WM, and comes into play to extract 

meaning from an otherwise confusing array of stimulus dimensions. Gradually, this 

inhibitory process is complete, and the object comprising relevant features emerges 

to be maintained in WM, ready for further processing. Supportive evidence comes 

from fMRI studies by Sala and Courtney (2007) who found reduced activity over 

time in reaction to ‘conjunction’ stimuli in cortical regions dedicated to ‘what’ and 

‘where’ stimuli. Interestingly, this reduction does not happen for only ‘what’ or only 

‘where’ stimuli. It happens only following bound stimuli which use both these 

streams of processing. 

This inhibitory process is rather different from the orientation function of attention 

that allows selection of locations and/or objects from the stimulus display that is 

presented. Indeed it is possible to focus and use this latter type of attention even 

before the stimuli are displayed or in the complete absence of distracters (Henderson, 

1996). In contrast, the inhibitory process occurs after stimulus presentation and 

seems to be directed at everything that is irrelevant in the stimulus display – be it 

features or objects. In this sense, it is similar to distracter suppression, which appears 
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only after the distracters are identified (Luck, 1998; Luck et al., 1997; Luck & 

Hillyard, 1994a, 1994b).  

In the area of WM, an inhibitory process was first proposed by Hasher and Zacks 

(1988) to account for differences among older and younger adults in WM. They 

proposed that successful processing implied allowing relevant information in and 

keeping irrelevant information out. However, they did not apply this idea to features 

within bindings, and restricted their view to objects in WM. Subsequent studies have 

shown that the memory problems of older adults are not so much regarding 

individual features but about bindings of those features (Chalfonte & Johnson, 1996; 

but see Brockmole, Parra, Della Sala, & Logie, 2008). The gradual process of 

deleting or inhibiting a feature that is task-irrelevant and possibly disruptive has been 

identified as an important aspect of WM executive functions (Friedman & Miyake, 

2004; Miyake, Friedman, Emerson, Witzki, Howerter, & Wager, 2000). 

Presumably all features and objects, indeed the whole display, enter the sensory 

register of the participants, and gradually, from this representation, the relevant 

features and objects are selected and retained, and the irrelevant ones are discarded. 

Whether the features participate in a preliminarily integrated percept to be refined 

thereafter or whether the features are held in separate features maps is a moot point. 

The vast literature on information processing theory has shown that parallel 

representation of stimulation followed by serial decision making is a much more 

efficient procedure, than selecting each object one by one and making decisions 

about it (e.g., Sternberg, 1966, 1967). It being easier to encode all stimuli and then 

make the decisions, participants might loosely represent the irrelevant as well as 

relevant features initially, deleting the irrelevant ones only after the display is gone, 

and no more relevant features can be committed to memory. Certainly, however, 

there is no clear, coherent, strong object right from the outset. The deletion of 

features from within a representation, such that it becomes a coherent strong object 

capable of further manipulation, takes time and resources, and is a preliminary phase 

in the online processing of objects in WM.  
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It is debatable whether this process happens in the episodic buffer, for the concept of 

the episodic buffer itself is yet to be fully explored and delineated. It is accepted that 

Baddeley and associates no longer think of feature binding as taking place within the 

buffer (Allen et al., 2006; Baddeley et al., 2009; but see Allen et al., 2009). It is 

contended that this is essentially because they view feature binding as an automatic, 

instantaneous integration of features. They do allow the notion that further 

processing of bindings (as per their definition) can and probably does occur in the 

buffer. As conceptualized in this thesis however, the process of binding is the 

preliminary phase of object processing in VWM.  

THE PROCESS OF BINDING 

The process of binding as understood on the basis of the experiments reported in this 

thesis is illustrated in Figure 9.1 with some of the stimuli used in this research taken 

as exemplars.  

The five stages represent cross-sections of the process to aid understanding, 

otherwise the process is assumed to be continuous. The area covered by the ovals 

gradually reduces to depict the decrease in the amount of information available to the 

participant, and also increasingly focused attention.  It is, nevertheless, accepted that 

attention plays different kinds of roles in this process. The gradual completion of the 

boundaries is used to show the increasing clarity of the representations. 

The whole process is dictated and delimited by instructions from WM which define 

the goal for the participant. Even before the trials begin, the participant is set to 

ignore the irrelevant feature. Stage 1 represents stimuli in the real world. Stage 2 is 

the initial representation of the stimulus dimensions, which includes almost all the 

various features defining the stimuli. However, there is some loss of information 

even at this early stage, as a proportion of the stimuli impinging on the sense organs 

are selected to be processed further. This stage contributes to the binding process by 

holding information as an almost veridical representation of reality which can be 

organized and further consolidated. It corresponds to the retinotopic iconic memory, 
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and is vulnerable to an immediate mask. It is also difficult to build up this 

representation with sequential presentation such that one item vanishes as the 

subsequent one is presented, as shown by Experiment 13. 

Figure 9.1Figure 9.1Figure 9.1Figure 9.1    
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in the next stage. The delayed mask probably disrupts these reentrant processes. 

Stage 4 represents only the relevant features, with increasing overlap between them 

to show the strength of binding at this stage. Stage 5 shows features bound as objects 

in VWM ready for further processing. Though the illustration uses location as the 

feature to be ignored, it is assumed that analogous processes operate if colour or 

shapes (or other stimulus dimensions) are to be ignored. The total duration of this 

process will vary with the stimulus dimensions involved. As per the evidence from 

Experiments 2, 3, and 4, replicated by Experiments 5, 6, and 7, the duration of the 

process is shorter when shapes or colours are to be ignored.   

Can any information be directly transferred to WM at all? Is it possible for some 

information to bypass these stages and appear in VWM? One may speculate that the 

stage sequence is invariant, though the time scale can be considerably shortened if 

the broad attentional window includes a narrowly focussed mechanism that achieves 

this. This narrow focus may be due to top-down factors, say, an ‘intention’ to 

remember all red items, or all curved items, or the first item presented, or a red plus 

because it evokes associations with the Red Cross. Such an intentional focus would 

necessarily involve activated representations in LTM. Alternatively, it may at times, 

result from the higher activation level of a particular item due to bottom-up stimulus 

factors such as salience, first or last serial position, etc. It is the transactions between 

top-down and bottom-up processes which determine the course of the binding 

process, though the final outcome is contingent on the dictates of the task goals held 

in WM. 

RECAPITULATION 

To summarize, the leit motif of this thesis is that binding is a process, not a static 

entity. This process involves bottom-up information by features but is directed by 

top-down factors. Among the top-down processes, inhibitory control, achieved 

though attention, is of major importance, considering that the external world 

comprises a plethora of physical dimensions as stimuli that may be relevant or 
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irrelevant to the task. As James affirmed over a century ago in the conclusion of his 

chapter on Will, “Inhibition is therefore not an occasional accident; it is an essential 

and unremitting element of our cerebral life” (James, 1890, Vol. II, Chapter 26, 

p.583, his italics). 
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CHAPTER 10 

THE STORY SO FAR…  …AND NEW BEGINNINGS 
 

The present work explored the role of top-down and bottom-up factors in the process 

of binding of visual features. Researchers have often assumed binding to be an 

instantaneous integration of all diverse features into a coherent object. In a large 

measure this might have been dictated by the precision of the measurement tools and 

techniques available to cognitive science. The empirical results here show that 

binding is a process that takes time to finally result in a coherent object, and during 

this time it is affected by many different variables. The process is not immune to 

perceptual differences among features. Hence it is neither instantaneous nor 

automatic. Attention plays myriad roles in this process. Further, post-perceptual, 

active inhibition of irrelevant elements is the top-down WM process that plays a 

dominant role in the process of binding. This thesis indicates that a revision of the 

assumption that instantaneous binding results in strong objects, is requisite.  

 

Nevertheless, this research is not a demolition exercise. It took extant theories and 

literature as the basic groundwork to explore the process of binding. Being 

exploratory, it necessarily has a broad focus and could consider only some of the 

major issues and debates in this area, such as the role of different features, attention, 

consolidation, and inhibition. Moreover, it was decided to study this process at equal 

time intervals varying by 500 ms, rather than time-intervals indicated by literature 

(and subsequently confirmed), to be more important in this process. Since it was 

important to explore the trends in the process, this was a necessary choice, but it is 

nevertheless an important limitation of this work.  

 

But future studies can ameliorate the limitations of the present ones, add new 

knowledge, and will possibly throw up new questions! The experiments fall in rather 

distinct groups, and indeed, each set of experiments provide a foundation for the 
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visualization of further studies. To aid the latter process, an exploration of the 

possible avenues of future research and experiments is in order. 

 

Experiments 1-7 which compared the differential role of location, shape, and colour 

in the binding process until 2500 ms can be extended beyond that study-test interval 

to assess how far features are maintained as bindings, and when, and why, a bound 

object disintegrates. It would also be interesting to explore what happens to features 

once they are bound. Do they interact such that they inherit the costs and benefits 

associated with other features? A recent study by Guerard et al. (2009) suggests that 

this might be so. They found that phonological similarity was detrimental to the 

recall of letters as well as locations when they are bound together. The same, 

however, may or may not apply in the visuospatial domain of WM. 

 

On the other hand, there can also be a downward extension of the project, keeping in 

mind the limitation that after 0 ms, the lowest study-test interval used here was 500 

ms (except in Experiment 1, which used 200 ms as well). The experiments with 

masking show that what happens during the first 500 ms or so is crucial in this 

process which otherwise lasts till about 1500 ms. Thus studies with finer gradations 

of study-test intervals are necessary. Since behavioural measures are rather coarse, it 

would be judicious to use temporally precise physiological measures such as the 

ERPs in conjunction with the experimental paradigm used here to fully explore the 

variables affecting binding from 0-1500 ms. ERPs have been combined with change 

detection tasks (e.g., Luria, Sessa, Gotler, Jolicoeur, & Dell Acqua, 2009). Using 

N2pc, the role of spatial attention in the binding process has been shown (Hyun et al. 

(2009). It is quite well established that N2pc is an early measure of distracter 

suppression (Luck, 1998; Luck et al., 1997; Luck & Hillyard, 1994a, 1994b; 

Robitaille & Jolicoeur, 2006), whereas CDA or SPCN is associated with VWM 

(Jolicoeur et al., 2008; Robitaille & Jolicoeur, 2006; Vogel & Machizawa, 2004). It 

would be interesting to study whether these two ERP components are differentially 

affected by the immediate and delayed masks.   



The story so far… …and new beginnings 

 

PhD – The University of Edinburgh – 2009                             

311 

An entirely new area of exploration has been opened up with the observation of 

serial position effects in binding with sequentially presented stimuli. Bow shaped 

curves suggest that stimuli are activated according to their serial positions and this 

differential encoding affects the detection performance of the participants. It is 

debatable how far these activations involve LTM. There are many views which 

postulate that activation at the time of encoding involves associations with LTM 

(Burgess & Hitch, 2005, 2006; Davelaar, Goshen-Gottstein et al., 2005; Davelaar, 

Usher et al., 2008; Logie, 1995, 2003). Thus the role of LTM in the binding process 

is also an interesting avenue to explore. One way to tease out if the stimuli are 

evoking LTM representations would be to combine a priming paradigm with the 

present one. Priming operates due to activation of LTM representations (e.g., 

Kristjansson, 2008). There is evidence that visual search for features or objects can 

be primed (Kristjansson, 2006; Kristjansson et al., 2008). If swap detection 

performance can be primed, it would be one way of demonstrating that LTM 

representations are being evoked even at the early stage of binding. If the sequential 

presentation paradigm is used, and priming modulates the serial position effects 

observed in the present research, it would shed light on the debate regarding whether 

activation is limited to STM, or if LTM representations are concomitantly evoked in 

the process of binding. 

These offshoots are but some examples of the potential inherent in the paradigm used 

in the present research. They are also testimony to the worth of knowledge that it has 

already generated about the process of binding.  

To conclude, the main findings presented in this thesis are: 

1. Binding of task-relevant visual features coupled with removal of the 

influence of task-irrelevant features, such that a coherent object capable of 

further manipulation emerges, is a process that takes time. 
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2. This process is influenced by bottom up factors as manifested by differential 

processing of features (Comparisons of Experiments 2, 3, and 4; and 5, 6, and 

7).  

3. Nevertheless, the task relevance of features is the overriding factor of 

importance in the binding process. Relevant features are selectively 

consolidated and irrelevant features are inhibited (Experiments 1-8).  

4. Iconic memory has a role to play in the process of binding of relevant visual 

features (Experiment 9).  

5. The inhibition of irrelevant features is post-perceptual active inhibition 

(Experiments 10 and 11). 

There were, at least, two other interesting findings, which require further thorough 

investigation. First, different kinds of attention – object based, feature based and 

spatial attention – seemingly affect binding in a different manner, dependent on 

which features are involved in binding (Comparisons involving Experiments 2, 3, 4, 

5, 6, 7 and 8). Second, if stimuli are presented in a sequence, serial position seems to 

be inevitably encoded (Experiments 12, 13, and 14).   

Based on these empirical contributions with the relatively novel experimental 

paradigm, the thesis ends with proposing a model of the binding process (Chapter 9) 

that summarizes the findings so far, and may be used as a rudimentary framework for 

future research.  
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APPENDIX A  

TABLES FOR CHAPTER 4 

 
Table 4.1 

d primes and beta for each study-test interval 
for unchanged and randomized locations in Experiment 1 (N=10) 

 

Experiment 1 d' beta 

Study-test interval 
Unchanged 

locations 
Randomized 

locations 
Unchanged 

locations 
Randomized 

locations 

 Mean SD Mean SD Mean SD Mean SD 

0 ms 3.049 0.708 0.501 0.518 5.133 3.361 2.073 2.665 

200 ms 1.986 0.505 0.636 0.677 4.913 2.799 2.140 1.744 

1500 ms 1.122 0.562 0.815 0.406 1.873 1.286 1.673 0.784 

2800 ms 0.893 0.412 0.964 0.595 1.727 1.346 1.757 0.671 

4100 ms 0.680 0.323 0.728 0.458 1.284 0.398 1.452 0.501 

Average 1.546 0.502 2.986 1.838 0.729 0.531 1.819 1.273 

 
 

 
Table 4.2 

ANOVA for each study-test interval 
for unchanged and randomized locations in Experiment 1 (N=10) 

 

Source df MS F p partial η² 

Unchanged/Randomized (A) 1 16.705 86.481 0.000 0.906 

Error(Unchanged/Randomized) 9 0.193    

Study-test intervals (B) 4 3.481 19.922 0.000 0.689 

Error(Study-test intervals) 36 0.175    

A × B 4 6.347 34.466 0.000 0.793 

Error(A × B) 36 0.184    
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Table 4.3 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized locations in Experiment 1 (N=10) 
 

Experiment 1 Unchanged locations Randomized locations 

Study-test interval Colour swap Shape swap Colour swap Shape swap 

 Mean SD Mean SD Mean SD Mean SD 

0 ms 2.759 0.743 3.212 0.646 0.589 0.649 0.411 0.530 

200 ms 1.477 0.542 2.623 0.702 0.685 0.782 0.580 0.654 

1500 ms 1.020 0.571 1.231 0.599 0.723 0.408 0.907 0.481 

2800 ms 1.109 0.413 0.693 0.473 0.912 0.514 1.049 0.845 

4100 ms 0.877 0.538 0.537 0.376 0.727 0.479 0.731 0.494 

Average 1.449 0.561 1.659 0.559 0.727 0.566 0.735 0.601 

 

Table 4.4 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the unchanged locations condition in Experiment 1 (N=10) 
 

Source df MS F p partial η² 

Swaps (A) 1 1.108 4.947 0.053 0.355 

Error(Swaps) 9 0.224    

Study-test intervals (B) 4 18.117 44.725 0.000 0.832 

Error(Study-test intervals) 36 0.405    

A × B 4 2.037 16.552 0.000 0.648 

Error(A × B) 36 0.123    
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Table 4.5 

ANOVA for colour swaps and shape swaps for each study-test interval 
in the randomized locations condition in Experiment 1 (N=10) 

 

Source df MS F p partial η² 

Swaps (A) 1 0.002 0.010 0.923 0.001 

Error(Swaps) 9 0.169    

Study-test intervals (B) 4 0.661 2.291 0.078 0.203 

Error(Study-test intervals) 36 0.288    

A × B 4 0.118 0.970 0.436 0.097 

Error(A × B) 36 0.122    
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APPENDIX B  

TABLES FOR CHAPTER 5 

 
Table 5.1 

d primes and beta for each study-test interval 
for unchanged and randomized locations in Experiment 2 (N=12) 

Experiment 2 d' beta 

Study-test interval 
Unchanged 

locations 
Randomized 

locations 
Unchanged 

locations 
Randomized 

locations 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.600 0.648 0.510 0.587 7.661 2.501 1.496 0.636 

500 ms 1.764 0.919 0.806 0.487 4.657 3.367 2.011 1.284 

1000 ms 1.364 0.501 0.809 0.495 2.417 2.374 1.762 1.268 

1500 ms 1.212 0.560 0.977 0.416 2.390 2.565 1.689 0.703 

2000 ms 1.363 0.550 1.138 0.457 2.214 1.589 2.545 2.520 

2500 ms 0.905 0.524 0.750 0.440 1.521 0.589 1.461 0.471 

Average 1.701 0.617 3.477 2.164 0.832 0.480 1.827 1.147 

 
 

 
Table 5.2 

ANOVA for each study-test interval 
for unchanged and randomized locations in Experiment 2 (N=12) 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 27.233 44.958 0.000 0.803 

Error(Unchanged/Randomized) 11 0.606    

Study-test intervals (B) 5 4.210 27.903 0.000 0.717 

Error(Study-test intervals) 55 0.151    

A × B 5 7.640 33.517 0.000 0.753 

Error(A × B) 55 0.228    
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Table 5.3 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized locations in Experiment 2 (N=12) 
 

Experiment 2 Unchanged locations Randomized locations 

Study-test interval  Colour swap Shape swap Colour swap Shape swap 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.434 0.652 3.525 0.432 0.489 0.648 0.528 0.632 

500 ms 1.670 0.946 1.895 0.951 0.861 0.610 0.752 0.494 

1000 ms 1.342 0.401 1.406 0.666 0.803 0.532 0.809 0.518 

1500 ms 1.211 0.659 1.220 0.521 0.983 0.499 0.978 0.450 

2000 ms 1.334 0.617 1.424 0.619 1.103 0.589 1.177 0.376 

2500 ms 0.907 0.634 0.928 0.509 0.672 0.393 0.834 0.576 

Average  1.650 0.651 1.733 0.616 0.819 0.545 0.846 0.508 

 

 

Table 5.4 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the unchanged locations condition in Experiment 2 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.251 1.099 0.317 0.091 

Error(Swaps) 11 0.229    

Study-test intervals (B) 5 20.302 47.649 0.000 0.812 

Error(Study-test intervals) 55 0.426    

A × B  5 0.036 0.410 0.840 0.036 

Error(A × B) 55 0.087    
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Table 5.5 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the randomized locations condition in Experiment 2 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.027 0.191 0.671 0.017 

Error(Swaps) 11 0.143       

Study-test intervals (B) 5 1.099 3.415 0.009 0.237 

Error(Study-test intervals) 55 0.322       

A × B  5 0.049 0.566 0.726 0.049 

Error(A × B) 55 0.086       

 
 
 

Table 5.6 
d primes and beta for each study-test interval 

for unchanged and randomized shapes in Experiment 3 (N=12) 
 

Experiment 3 d' beta 

Study-test interval 
Unchanged 

shapes 
Randomized 

shapes 
Unchanged 

shapes 
Randomized 

shapes 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.440 0.703 1.171 0.547 6.720 3.261 1.386 0.406 

500 ms 1.875 0.402 1.482 0.551 3.416 2.389 2.145 1.161 

1000 ms 1.809 0.474 1.510 0.517 2.428 1.220 2.181 1.211 

1500 ms 1.436 0.804 1.465 0.682 2.404 2.390 2.434 2.342 

2000 ms 1.618 0.792 1.386 0.538 2.685 2.505 1.891 1.195 

2500 ms 1.254 0.757 1.146 0.487 1.728 0.595 1.491 0.561 

Average 1.905 0.655 1.360 0.554 3.230 2.060 1.921 1.146 
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Table 5.7 
ANOVA for each study-test interval 

for unchanged and randomized shapes in Experiment 3 (N=12) 
 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 10.706 24.096 0.000 0.687 

Error(Unchanged/Randomized) 11 0.444       

Study-test intervals (B) 3 6.059 13.594 0.000 0.553 

Error(Study-test intervals) 30 0.446       

A × B 5 4.409 24.105 0.000 0.687 

Error(A × B) 55 0.183       

Underlined df indicates value after applying Greenhouse Geisser correction 

 

Table 5.8 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized shapes in Experiment 3 (N=12) 
 

Experiment 3 Unchanged shapes Randomized shapes 

Study-test interval Colour swap 
Location 

swap 
Colour swap 

Location 
swap 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.122 0.725 3.543 0.495 1.210 0.890 1.199 0.442 

500 ms 1.648 0.496 2.175 0.474 1.522 0.720 1.472 0.500 

1000 ms 1.653 0.645 2.033 0.499 1.589 0.578 1.456 0.592 

1500 ms 1.375 0.764 1.529 0.912 1.541 0.846 1.420 0.645 

2000 ms 1.676 0.81 1.582 0.825 1.497 0.550 1.307 0.645 

2500 ms 1.349 0.946 1.202 0.65 1.188 0.469 1.133 0.625 

Average 1.804 0.731 2.011 0.642 1.425 0.676 1.331 0.575 
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Table 5.9 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the unchanged shapes condition in Experiment 3 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 1.545 6.754 0.025 0.380 

Error(Swaps) 11 0.229       

Study-test intervals (B) 5 13.050 25.660 0.000 0.700 

Error(Study-test intervals)                 55 0.509       

A × B  5 0.477 4.460 0.002 0.288 

Error(A × B) 55 0.107       

 
 
 
 

Table 5.10 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the randomized shapes condition in Experiment 3 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.313 1.031 0.332 0.086 

Error(Swaps) 11 0.304       

Study-test intervals (B) 5 0.593 1.737 0.141 0.136 

Error(Study-test intervals) 55 0.341       

A × B  5 0.026 0.175 0.971 0.016 

Error(A × B) 55 0.148       
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Table 5.11 
d primes and beta for each study-test interval 

for unchanged and randomized colours in Experiment 4 (N=12) 
 

Experiment 4 d' beta 

Study-test interval 
Unchanged 

colours 
Randomized 

colours 
Unchanged 

colours 
Randomized 

colours 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.807 0.733 1.827 0.810 8.430 2.797 2.974 2.595 

500 ms 2.205 0.891 1.607 0.581 4.048 2.915 2.776 2.443 

1000 ms 1.864 0.597 1.395 0.632 3.112 2.503 2.225 2.386 

1500 ms 1.444 0.662 1.289 0.461 2.133 1.253 1.805 1.177 

2000 ms 1.352 0.621 1.084 0.880 1.853 1.238 2.031 1.623 

2500 ms 1.386 0.562 1.013 0.702 1.950 1.225 1.671 1.226 

Average 2.010 0.678 1.369 0.678 3.588 1.988 2.247 1.908 

 
 

Table 5.12 
ANOVA for each study-test interval 

for unchanged and randomized colours in Experiment 4 (N=12) 
 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 14.774 23.573 0.001 0.682 

Error(Unchanged/Randomized) 11 0.627       

Study-test intervals (B) 2 19.863 35.548 0.000 0.764 

Error(Study-test intervals) 25 0.559       

A × B 5 2.727 11.493 0.000 0.511 

Error(A × B) 55 0.237       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 5.13 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized colours in Experiment 4 (N=12) 
 

Experiment 4 Unchanged colours Randomized colours 

Study-test interval 
Location 

swap 
Shape swap 

Location 
swap 

Shape swap 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.582 0.694 3.654 0.59 1.706 0.983 2.045 0.794 

500 ms 2.306 0.941 2.132 0.888 1.726 0.696 1.537 0.677 

1000 ms 2.047 0.591 1.674 0.61 1.459 0.648 1.348 0.671 

1500 ms 1.553 0.802 1.367 0.805 1.215 0.434 1.393 0.591 

2000 ms 1.529 0.682 1.21 0.678 1.181 0.852 0.993 0.978 

2500 ms 1.488 0.617 1.339 0.661 1.016 0.722 1.026 0.747 

Average 2.084 0.721 1.896 0.705 1.384 0.723 1.390 0.743 

 

 

Table 5.14 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the unchanged colours condition in Experiment 4 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 1.269 6.569 0.026 0.374 

Error(Swaps) 11 0.193       

Study-test intervals (B) 5 17.852 38.300 0.000 0.777 

Error(Study-test intervals) 55 0.466       

A × B  2.361 0.306 0.941 0.417 0.079 

Error(A × B) 25.968 0.325       

Underlined df indicates Greenhouse Geisser correction was applied  
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Table 5.15 

ANOVA for colour swaps and shape swaps for each study-test interval 
in the randomized colours condition in Experiment 4 (N=12) 

 

Source df MS F p  partial η² 

Swaps (A) 1 0.002 0.011 0.918 0.001 

Error(Swaps) 11 0.146       

Study-test intervals (B) 2.725 4.661 5.295 0.006 0.325 

Error(Study-test intervals) 29.984 0.880       

A × B  5 0.276 1.900 0.109 0.147 

Error(A × B) 55 0.145       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 5.16 
ANOVA comparing Experiments 2, 3, and 4  

 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 7.586 3.841 0.032 0.189 

Error 33 1.975       

Within-Subjects           

Unchanged/Randomized (B) 1 50.712 90.728 0.000 0.733 

A × B 2 1.001 1.791 0.183 0.098 

Error(Unchanged/Randomized) 33 0.559       

Study-test interval (C) 3 23.963 70.253 0.000 0.680 

Error(Study-test interval) 105 0.341       

A × C 10 0.684 3.152 0.001 0.160 

Error(Study-test interval) 165 0.217       

B × C 5 14.051 65.033 0.000 0.663 

A × B × C 10 0.363 1.680 0.089 0.092 

Error(B × C) 165 0.216       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 5.17 
ANOVA comparing Experiments 2, 3, and 4 (Unchanged condition) 

 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 1.771 1.258 0.297 0.071 

Error 33 1.407       

Within-Subjects           

Study-test intervals (B) 5 28.810 115.667 0.000 0.778 

A × B 10 0.278 1.118 0.352 0.063 

Error(Study-test intervals) 165 0.249       

 
 
 

Table 5.18 
ANOVA comparing Experiments 2, 3, and 4 (Randomized condition) 

 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 6.816 6.051 0.006 0.268 

Error 33 1.127       

Within-Subjects           

Study-test intervals (B) 4 0.629 2.586 0.043 0.073 

Error(Study-test intervals) 125 0.243       

A × B 10 0.768 4.179 0.000 0.202 

Error(Study-test intervals) 165 0.184       

Underlined df indicates value after applying Greenhouse Geisser correction  
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APPENDIX C  

TABLES FOR CHAPTER 6 

 
Table 6.1 

d primes and beta for each study-test interval 
for unchanged and randomized locations in Experiment 5 (N=12) 

 

Experiment 5 d' beta 

Study-test interval 
Unchanged 

locations 
Randomized 

locations 
Unchanged 

locations 
Randomized 

locations 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.513 0.493 0.431 0.461 8.914 1.654 1.504 1.240 

500 ms 1.939 0.572 0.741 0.660 5.396 3.436 1.639 1.230 

1000 ms 1.664 0.423 0.951 0.348 2.906 1.590 1.790 1.153 

1500 ms 1.136 0.234 0.823 0.405 1.511 0.363 1.465 0.585 

2000 ms 0.982 0.309 0.789 0.551 1.363 0.396 2.413 2.604 

2500 ms 0.889 0.325 1.080 0.502 1.323 0.318 2.330 2.416 

Average 1.687 0.393 0.802 0.488 3.569 1.293 1.857 1.538 

 

 
Table 6.2 

ANOVA for each study-test interval 
for unchanged and randomized locations in Experiment 5 (N=12) 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 28.173 46.974 0.000 0.810 

Error(Unchanged/Randomized) 11 0.600       

Study-test intervals (B) 5 3.885 30.557 0.000 0.735 

Error(Study-test intervals) 55 0.127       

A × B 5 8.305 62.222 0.000 0.850 

Error(A × B) 55 0.133       
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Table 6.3 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized locations in Experiment 5 (N=12) 
 

Experiment 5 Unchanged locations Randomized locations 

Study-test interval Colour swap Shape swap Colour swap Shape swap 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.325 0.583 3.599 0.338 0.532 0.494 0.336 0.537 

500 ms 1.806 0.543 2.094 0.697 0.774 0.680 0.715 0.716 

1000 ms 1.772 0.652 1.61 0.449 1.044 0.525 0.834 0.431 

1500 ms 1.06 0.324 1.213 0.364 0.721 0.461 0.930 0.529 

2000 ms 1.029 0.357 0.951 0.36 0.680 0.568 0.902 0.613 

2500 ms 0.734 0.368 1.067 0.391 1.066 0.399 1.096 0.729 

Average 1.621 0.471 1.756 0.433 0.803 0.521 0.802 0.593 

 

 

Table 6.4 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the unchanged locations condition in Experiment 5 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.651 2.502 0.142 0.185 

Error(Swaps) 11 0.260       

Study-test intervals (B) 5 22.207 83.309 0.000 0.883 

Error(Study-test intervals) 55 0.267       

A × B  5 0.258 2.434 0.046 0.181 

Error(A × B) 55 0.106       
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Table 6.5 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the randomized locations condition in Experiment 5 (N=12) 
 

Source df MS F p partial η² 

Swaps (A) 1 0.000 0.000 0.993 0.000 

Error(Swaps) 11 0.082       

Study-test intervals (B) 5 1.131 4.742 0.001 0.301 

Error(Study-test intervals) 55 0.239       

A × B  5 0.216 1.385 0.244 0.112 

Error(A × B) 55 0.156       

 
Table 6.6 

ANOVA comparing Experiments 2 and 5  

Source df MS F p   partial η² 

Between Subjects            

Experiment (A) 1 0.034 0.036 0.852 0.002 

Error 22 0.949       

Within-Subjects           

Unchanged/Randomized (B) 1 55.403 91.916 0.000 0.807 

A × B 1 0.004 0.007 0.936 0.000 

Error(Unchanged/Randomized) 22 0.603       

Study-test interval (C) 5 7.551 54.320 0.000 0.712 

A × C 5 0.544 3.913 0.003 0.151 

Error(Study-test interval) 110 0.139       

B × C 5 15.820 87.543 0.000 0.799 

A × B × C 5 0.125 0.692 0.630 0.031 

Error(B × C) 110 0.181       
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Table 6.7 

d primes and beta for each study-test interval 
for unchanged and randomized shapes in Experiment 6 (N=12) 

 

Experiment 6 d' beta 

Study-test interval 
Unchanged 

shapes 
Randomized 

shapes 
Unchanged 

shapes 
Randomized 

shapes 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.258 0.718 1.096 0.454 7.891 2.740 1.306 0.301 

500 ms 2.273 0.623 1.544 0.722 6.100 3.799 2.473 2.352 

1000 ms 2.076 0.812 1.768 0.652 2.864 2.435 2.717 1.725 

1500 ms 1.789 0.619 1.614 0.891 2.644 2.520 2.618 2.546 

2000 ms 1.804 0.833 2.025 0.800 1.821 0.846 3.163 2.520 

2500 ms 1.553 0.956 1.953 0.889 2.610 2.741 3.463 2.746 

Average 2.125 0.760 1.667 0.735 3.989 2.514 2.623 2.032 

 

 
 
 

Table 6.8 
ANOVA for each study-test interval 

for unchanged and randomized shapes in Experiment 6 (N=12) 
 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 7.578 9.681 0.010 0.468 

Error(Unchanged/Randomized) 11 0.783       

Study-test intervals (B) 5 0.666 2.853 0.023 0.206 

Error(Study-test intervals) 55 0.233       

A × B 5 5.131 23.820 0.000 0.684 

Error(A × B) 55 0.215       
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Table 6.9 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized shapes in Experiment 6 (N=12) 
 

Experiment 6 Unchanged shapes Randomized shapes 

Study-test interval Colour swap 
Location 

swap 
Colour swap 

Location 
swap 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.099 0.688 3.375 0.744 1.234 0.648 0.993 0.435 

500 ms 2.152 0.794 2.429 0.566 1.602 0.808 1.493 0.662 

1000 ms 1.861 0.795 2.259 0.745 1.935 0.768 1.654 0.658 

1500 ms 1.577 0.688 2.061 0.616 1.679 1.014 1.609 0.888 

2000 ms 1.603 0.816 1.945 0.700 1.991 0.799 2.076 0.834 

2500 ms 1.319 0.943 1.766 0.895 1.971 0.826 1.954 0.975 

Average 1.935 0.787 2.306 0.711 1.735 0.811 1.630 0.742 

 

 
Table 6.10 

ANOVA for colour swaps and shape swaps for each study-test interval 
in the unchanged shapes condition in Experiment 6 (N=12) 

 

Source df MS F p  partial η² 

Swaps (A) 1 4.955 48.871 0.000 0.816 

Error(Swaps) 11 0.101       

Study-test intervals (B) 5 8.759 21.770 0.000 0.664 

Error(Study-test intervals) 55 0.402       

A × B  5 0.045 0.417 0.835 0.037 

Error(A × B) 55 0.109       
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Table 6.11 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the randomized shapes condition in Experiment 6 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.402 3.110 0.106 0.220 

Error(Swaps) 11 0.129       

Study-test intervals (B) 5 2.675 6.539 0.000 0.373 

Error(Study-test intervals) 55 0.409       

A × B  5 0.114 0.713 0.616 0.061 

Error(A × B) 55 0.160       
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Table 6.12 
ANOVA comparing Experiments 3 and 6 

 

 Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 1 4.995 1.689 0.207 0.071 

Error 22 2.957       

Within-Subjects           

Unchanged/Randomized (B) 1 18.150 29.582 0.000 0.573 

A × B 1 0.135 0.220 0.644 0.010 

Error(Unchanged/Randomized) 22 0.614       

Study-test interval (C) 3 5.572 14.085 0.000 0.390 

Error(Study-test interval) 66 0.396       

A × C 5 0.625 2.617 0.028 0.106 

Error(Study-test interval) 110 0.239       

B × C 5 9.189 46.140 0.000 0.677 

A × B × C 5 0.351 1.762 0.127 0.074 

Error(B × C) 110 0.199       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 6.13 
d primes and beta for each study-test interval 

for unchanged and randomized colours in Experiment 7 (N=12) 
 

Experiment 7 d' beta 

Study-test interval 
Unchanged 

colours 
Randomized 

colours 
Unchanged 

colours 
Randomized 

colours 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.868 0.339 2.492 0.718 8.560 1.922 2.919 2.381 

500 ms 2.544 0.515 1.667 0.636 5.276 2.938 1.865 0.714 

1000 ms 1.980 0.489 1.699 0.511 3.226 3.056 2.753 2.495 

1500 ms 1.754 0.654 1.858 0.761 2.994 2.583 2.954 3.141 

2000 ms 1.745 0.596 1.542 0.553 2.751 2.672 2.376 1.568 

2500 ms 1.513 0.701 1.516 0.632 2.892 2.652 2.476 2.326 

Average 2.234 0.549 1.796 0.635 4.283 2.637 2.557 2.104 

 
 

 
Table 6.14 

ANOVA for each study-test interval 
for unchanged and randomized colours in Experiment 7 (N=12) 

 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 6.916 15.504 0.002 0.585 

Error(Unchanged/Randomized) 11 0.446       

Study-test intervals (B) 5 8.775 36.515 0.000 0.768 

Error(Study-test intervals) 55 0.240       

A × B 5 1.965 15.728 0.000 0.588 

Error(A × B) 55 0.125       
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Table 6.15 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized colours in Experiment 7 (N=12) 
 

Experiment 7 Unchanged colours Randomized colours 

Study-test interval 
Location 

swap 
Shape swap 

Location 
swap 

Shape swap 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.75 0.29 3.662 0.262 2.415 0.749 2.550 0.796 

500 ms 2.743 0.586 2.418 0.568 1.806 0.777 1.575 0.593 

1000 ms 2.129 0.696 1.892 0.441 1.677 0.467 1.804 0.796 

1500 ms 1.794 0.757 1.732 0.572 1.807 0.751 1.935 0.823 

2000 ms 1.77 0.726 1.812 0.743 1.564 0.628 1.538 0.586 

2500 ms 1.614 0.631 1.462 0.825 1.696 0.615 1.390 0.773 

Average 2.300 0.614 2.163 0.569 1.827 0.665 1.799 0.728 

 

Table 6.16 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the unchanged colours condition in Experiment 7 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.676 6.669 0.025 0.377 

Error(Swaps) 11 0.101       

Study-test intervals (B) 5 15.549 40.528 0.000 0.787 

Error(Study-test intervals) 55 0.384       

A × B  5 0.103 0.684 0.637 0.059 

Error(A × B) 55 0.150       
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Table 6.17 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the randomized colours condition in Experiment 7 (N=12) 

 

Source df MS F p  partial η² 

Swaps (A) 1 0.030 0.159 0.698 0.014 

Error(Swaps) 11 0.187       

Study-test intervals (B) 5 2.944 8.371 0.000 0.432 

Error(Study-test intervals) 55 0.352       

A × B  5 0.232 1.481 0.211 0.119 

Error(A × B) 55 0.157       
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Table 6.18 
ANOVA comparing Experiments 4 and 7  

 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 1 7.625 3.245 0.085 0.129 

Error 22 2.350       

Within-Subjects           

Unchanged/Randomized (B) 1 20.954 39.061 0.000 0.640 

A × B 1 0.737 1.373 0.254 0.059 

Error(Unchanged/Randomized) 22 0.536       

Study-test interval (C) 3 28.448 71.515 0.000 0.765 

Error(Study-test interval) 68 0.398       

A × C 5 0.129 0.520 0.761 0.023 

Error(Study-test interval) 110 0.248       

B × C 5 4.425 24.432 0.000 0.526 

A × B × C 5 0.267 1.476 0.203 0.063 

Error(B × C) 110 0.181       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 6.19 
ANOVA comparing Experiments 5, 6, and 7  

 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 24.746 11.271 0.000 0.406 

Error 33 2.195       

Within-Subjects           

Unchanged/Randomized (B) 1 38.096 62.499 0.000 0.654 

A × B 2 2.286 3.750 0.034 0.185 

Error(Unchanged/Randomized) 33 0.610       

Study-test interval (C) 3.64 14.377 52.279 0.000 0.613 

Error(Study-test interval) 120.14 0.275       

A × C 10 1.428 7.132 0.000 0.302 

Error(Study-test interval) 165 0.200       

B × C 3.63 19.187 88.270 0.000 0.728 

Error(B × C) 119.88 0.217       

A × B × C 10 0.730 4.622 0.000 0.219 

Error(A × B × C) 165 0.158       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 6.20 
ANOVA comparing Experiments 5, 6, and 7 (Unchanged condition) 

 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 6.035 5.093 0.012 0.236 

Error 33 1.185       

Within-Subjects           

Study-test intervals (B) 4 30.610 125.184 0.000 0.791 

Error(Study-test intervals) 130 0.245       

A × B 10 0.511 2.645 0.005 0.138 

Error(Study-test intervals) 165 0.193       

Underlined df indicates value after applying Greenhouse Geisser correction  

 
 

Table 6.21 
ANOVA comparing Experiments 5, 6, and 7 (Randomized condition) 

 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 21 12.961 0.000 0.440 25.922 

Error 2         

Within-Subjects           

Study-test intervals (B) 5 0.217 1.314 0.261 0.038 

A × B 10 1.647 9.985 0.000 0.377 

Error(Study-test intervals) 165 0.165       
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APPENDIX D 

TABLES FOR CHAPTER 7 

 
Table 7.1 

d primes and beta for each study-test interval 
for unchanged and randomized locations in Experiment 8 (N=12) 

Experiment 8 d' beta 

Study-test interval 
Unchanged 

locations 
Randomized 

locations 
Unchanged 

locations 
Randomized 

locations 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.156 0.498 0.574 0.375 6.578 0.854 1.140 0.223 

500 ms 1.799 0.401 0.632 0.359 4.807 2.266 1.115 0.120 

1000 ms 1.630 0.469 0.592 0.358 3.025 1.650 1.119 0.133 

1500 ms 1.556 0.435 0.910 0.337 3.457 2.274 1.302 0.354 

2000 ms 1.425 0.335 0.882 0.359 2.750 2.042 1.280 0.386 

2500 ms 1.235 0.409 0.771 0.455 2.354 1.021 1.587 1.655 

Average 1.800 0.424 0.727 0.374 3.829 1.684 1.257 0.478 

 
 

 
Table 7.2 

ANOVA for each study-test interval 
for unchanged and randomized locations in Experiment 8 (N=12) 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 41.472 208.196 0.000 0.950 

Error(Unchanged/Randomized) 11 0.199       

Study-test intervals (B) 5 2.249 14.021 0.000 0.560 

Error(Study-test intervals) 55 0.160       

A × B 5 3.745 35.666 0.000 0.764 

Error(A × B) 55 0.105       
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Table 7.3 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized locations in Experiment 8 (N=12) 
 

Experiment 8 Unchanged locations Randomized locations 

Study-test interval Colour swap Shape swap Colour swap Shape swap 

  Mean SD Mean SD Mean SD Mean SD 

0 ms 3.049 0.602 3.137 0.43 0.585 0.361 0.562 0.504 

500 ms 1.775 0.489 1.816 0.563 0.604 0.576 0.672 0.414 

1000 ms 1.705 0.75 1.54 0.42 0.594 0.429 0.594 0.389 

1500 ms 1.727 0.702 1.41 0.353 0.934 0.521 0.924 0.467 

2000 ms 1.578 0.424 1.275 0.333 0.986 0.499 0.804 0.366 

2500 ms 1.219 0.64 1.277 0.33 0.878 0.257 0.708 0.840 

Average 1.842 0.601 1.742 0.405 0.764 0.440 0.711 0.496 

 

Table 7.4 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the unchanged locations condition in Experiment 8 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.357 2.456 0.145 0.183 

Error(Swaps) 11 0.146       

Study-test intervals (B) 5 10.567 35.582 0.000 0.764 

Error(Study-test intervals) 55 0.297       

A × B  5 0.207 1.008 0.422 0.084 

Error(A × B) 55 0.205       
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Table 7.5 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the randomized locations condition in Experiment 8 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.314 0.998 0.339 0.083 

Error(Swaps) 11 0.315       

Study-test intervals (B) 5 0.333 0.607 0.695 0.052 

Error(Study-test intervals) 55 0.549       

A × B  5 0.369 2.579 0.036 0.190 

Error(A × B) 55 0.143       

 
Table 7.6 

ANOVA comparing Experiments 2, 5, and 8  

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 0.020 0.026 0.975 0.002 

Error 33 0.772       

Within-Subjects           

Unchanged/Randomized (B) 1 95.952 204.922 0.000 0.861 

A × B 2 0.464 0.990 0.382 0.057 

Error(Unchanged/Randomized) 33 0.468       

Study-test interval (C) 5 9.501 65.009 0.000 0.663 

A × C 10 0.422 2.886 0.002 0.149 

Error(Study-test interval) 165 0.146       

B × C 5 19.024 122.357 0.000 0.788 

A × B × C 10 0.333 2.144 0.024 0.115 

Error(B × C) 165 0.155       
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Table 7.7 
ANOVA comparing Experiments 2, 5, and 8 (Unchanged locations) 

  

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 0.273 0.436 0.650 0.026 

Error 33 0.627       

Within-Subjects           

Study-test intervals (B) 5 27.621 157.639 0.000 0.827 

A × B 10 0.513 2.930 0.002 0.151 

Error(Study-test intervals) 165 0.175       

 
 

Table 7.8 
ANOVA comparing Experiments 2, 5, and 8 (Randomized locations) 

 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 0.210 0.343 0.712 0.020 

Error 33 0.614       

Within-Subjects           

Study-test intervals (B) 5 0.904 7.149 0.000 0.178 

A × B 10 0.242 1.913 0.047 0.104 

Error(Study-test intervals) 165 0.126       
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Table 7.9 
d primes and beta for each study-test interval 

for unchanged and randomized locations in Experiment 9 (N=12) 
 

Experiment 9 d' beta 

Study-test interval 
Unchanged 

locations 
Randomized 

locations 
Unchanged 

locations 
Randomized 

locations 

 Mean SD Mean SD Mean SD Mean SD 

100 ms 1.423 0.603 0.553 0.295 4.721 2.383 1.147 0.226 

500 ms 1.514 0.590 0.586 0.512 4.257 2.395 1.197 0.351 

1000 ms 1.445 0.551 0.870 0.522 3.329 2.294 1.430 0.794 

1500 ms 1.252 0.585 0.845 0.471 1.765 0.541 1.467 0.836 

2000 ms 1.394 0.702 0.652 0.694 2.765 2.144 1.256 0.373 

2500 ms 1.187 0.695 0.700 0.476 2.604 2.126 1.154 0.136 

Average 1.369 0.621 0.701 0.495 3.240 1.980 1.275 0.453 

 

 
Table 7.10 

ANOVA for each study-test interval 
for unchanged and randomized locations in Experiment 9 (N=12) 

 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 16.067 46.401 0.000 0.808 

Error(Unchanged/Randomized) 11 0.346       

Study-test intervals (B) 5 0.126 0.476 0.793 0.041 

Error(Study-test intervals) 55 0.265       

A × B 5 0.269 1.226 0.309 0.100 

Error(A × B) 55 0.219       
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Table 7.11 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized locations in Experiment 9 (N=12) 
 

Experiment 9 Unchanged locations Randomized locations 

Study-test interval Colour swap Shape swap Colour swap Shape swap 

  Mean SD Mean SD Mean SD Mean SD 

100 ms 1.278 0.514 1.567 0.751 0.507 0.324 0.623 0.490 

500 ms 1.603 0.789 1.449 0.569 0.603 0.558 0.572 0.625 

1000 ms 1.542 0.54 1.342 0.658 0.940 0.629 0.818 0.541 

1500 ms 1.162 0.787 1.383 0.504 0.750 0.501 0.968 0.571 

2000 ms 1.208 0.788 1.612 0.699 0.748 0.831 0.581 0.743 

2500 ms 1.207 0.892 1.208 0.692 0.628 0.504 0.751 0.555 

Average 1.333 0.718 1.427 0.645 0.696 0.558 0.719 0.587 

 

Table 7.12 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the unchanged locations condition in Experiment 9 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.314 0.998 0.339 0.083 

Error(Swaps) 11 0.315       

Study-test intervals (B) 5 0.333 0.607 0.695 0.052 

Error(Study-test intervals) 55 0.549       

A × B  5 0.369 2.579 0.036 0.190 

Error(A × B) 55 0.143       
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Table 7.13 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the randomized locations condition in Experiment 9 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.020 0.236 0.637 0.021 

Error(Swaps) 11 0.083       

Study-test intervals (B) 5 0.428 0.938 0.464 0.079 

Error(Study-test intervals) 55 0.456       

A × B  5 0.140 0.838 0.528 0.071 

Error(A × B) 55 0.167       

 
Table 7.14 

d primes and beta for each study-test interval 
for unchanged and randomized locations in Experiment 10 (N=12) 

 

Experiment 10 d' beta 

Study-test interval 
Unchanged 

locations 
Randomized 

locations 
Unchanged 

locations 
Randomized 

locations 

  Mean SD Mean SD Mean SD Mean SD 

400 ms 1.710 0.580 1.307 0.541 4.147 2.445 2.234 1.650 

500 ms 1.784 0.528 0.858 0.593 3.214 1.927 1.857 1.048 

1000 ms 1.557 0.612 0.948 0.706 3.296 2.317 2.805 2.218 

1500 ms 1.669 0.493 0.942 0.546 2.990 2.087 1.833 1.616 

2000 ms 1.363 0.564 0.951 0.587 3.052 2.404 1.513 0.814 

2500 ms 1.342 0.614 0.631 0.501 2.361 1.699 1.404 0.790 

Average 1.571 0.565 0.939 0.579 3.177 2.146 1.941 1.356 
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Table 7.15 
ANOVA for each study-test interval 

for unchanged and randomized locations in Experiment 10 (N=12) 
 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 14.356 36.724 0.000 0.770 

Error(Unchanged/Randomized) 11 0.391       

Study-test intervals (B) 5 0.733 3.585 0.007 0.246 

Error(Study-test intervals) 55 0.205       

A × B 5 0.243 1.584 0.180 0.126 

Error(A × B) 55 0.154       

 

 

Table 7.16 
d primes for colour swaps and shape swaps for each study-test interval 

for unchanged and randomized locations in Experiment 10 (N=12) 
 

Experiment 10 Unchanged locations Randomized locations 

Study-test interval Colour swap Shape swap Colour swap Shape swap 

  Mean SD Mean SD Mean SD Mean SD 

400 ms 1.830 0.733 1.614 0.543 1.320 0.747 1.333 0.520 

500 ms 1.736 0.708 1.854 0.462 0.966 0.503 0.761 0.747 

1000 ms 1.609 0.573 1.511 0.733 0.919 0.743 0.976 0.797 

1500 ms 1.819 0.564 1.54 0.524 1.149 0.685 0.794 0.708 

2000 ms 1.401 0.629 1.331 0.614 1.004 0.711 0.914 0.567 

2500 ms 1.375 0.667 1.335 0.65 0.430 0.566 0.860 0.671 

Average 1.628 0.646 1.531 0.588 0.965 0.659 0.940 0.668 
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Table 7.17 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the unchanged locations condition in Experiment 10 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.341 2.912 0.116 0.209 

Error(Swaps) 11 0.117       

Study-test intervals (B) 5 0.832 2.172 0.071 0.165 

Error(Study-test intervals) 55 0.383       

A × B  5 0.117 0.898 0.489 0.075 

Error(A × B) 55 0.131       

 
 
 

Table 7.18 
ANOVA for colour swaps and shape swaps for each study-test interval 

in the randomized locations condition in Experiment 10 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.023 0.088 0.772 0.008 

Error(Swaps) 11 0.257       

Study-test intervals (B) 1.849 3.157 3.389 0.057 0.236 

Error(Study-test intervals) 20.344 0.932       

A × B  5 0.433 2.327 0.055 0.175 

Error(A × B) 55 0.186       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 7.19 
ANOVA comparing Experiments 8, 9, and 10  

 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 2.420 2.188 0.128 0.117 

Error 33 1.106       

Within-Subjects           

Unchanged/Randomized (B) 1 67.566 216.470 0.000 0.868 

A × B 2 2.165 6.935 0.003 0.296 

Error(Unchanged/Randomized) 33 0.312       

Study-test interval (C) 3.788 2.301 8.298 0.000 0.201 

Error(Study-test intervals) 125.008 0.277       

A × C 10 0.683 3.250 0.001 0.165 

Error(Study-test interval) 165 0.210       

B × C 5 1.581 9.929 0.000 0.231 

A × B × C 10 1.338 8.403 0.000 0.337 

Error(B × C) 165 0.159       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 7.20 
ANOVA comparing Experiments 8, 9, and 10 (Unchanged locations) 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 3.351 4.399 0.020 0.210 

Error 33 0.762       

Within-Subjects           

Study-test intervals (B) 5 3.097 15.112 0.000 0.314 

A × B 10 1.613 7.873 0.000 0.323 

Error(Study-test intervals) 165 0.205       

 
 

Table 7.21 
One way ANOVA comparing performance at the initial study test 

interval in Experiments 8, 9, and 10 (Unchanged locations) 

Source df MS F p 

Experiment  2 10.360 32.821 0.000 

Error (Within) 33 0.316     

 
Table 7.22 

3×5 ANOVA comparing performance at study-test intervals ranging 
from 500 to 2500 ms in Experiments 8, 9, and 10 (Unchanged locations) 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 0.635 0.851 0.436 0.049 

Error 33 0.746       

Within-Subjects   
        

Study-test intervals (B) 4 0.994 5.486 0.000 0.143 

A × B 8 0.106 0.584 0.790 0.034 

Error(Study-test intervals) 132 0.181       
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Table 7.23 
ANOVA comparing Experiments 8, 9, and 10 (Randomized locations) 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 1.233 1.878 0.169 0.102 

Error 33 0.656       

Within-Subjects           

Study-test intervals (B) 5 0.228 1.385 0.232 0.040 

A × B 10 0.407 2.478 0.009 0.131 

Error(Study-test intervals) 165 0.164       

 
Table 7.24 

One way ANOVA comparing performance at the initial study test 
interval in Experiments 8, 9, and 10 (Randomized locations) 

Source df MS F p 

Experiment  2 2.212 12.752 0.000 

Error (Within) 33 0.173     

 
Table 7.25 

3×5 ANOVA comparing performance at study-test intervals ranging 
from 500 to 2500 ms in Experiments 8, 9, and 10 (Randomized 

locations) 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 0.308 0.483 0.621 0.028 

Error 33 0.638       

Within-Subjects           

Study-test intervals (B) 4 0.279 1.675 0.160 0.048 

A × B 8 0.187 1.124 0.351 0.064 

Error(Study-test intervals) 132 0.167       
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APPENDIX E 

TABLES FOR CHAPTER 8 

 

Table 8.1 
d primes and beta for each study-test interval and study-display 

duration for unchanged and randomized locations in Experiment 11 
(N=12) 

 

Experiment 11 d' beta 

Study-
test 

interval 

Study-
display 
duration 

Unchanged 
locations 

Randomized 
locations 

Unchanged 
locations 

Randomized 
locations 

(in ms) (in ms) Mean SD Mean SD Mean SD Mean SD 

0 200 3.465 0.411 0.513 0.386 7.346 3.002 1.413 0.787 

0 900 3.612 0.362 0.976 0.557 7.116 2.736 1.860 1.214 

0 1500 3.664 0.394 0.896 0.394 6.011 2.981 1.434 0.580 

2000 200 1.090 0.308 0.936 0.470 1.530 0.618 1.613 0.663 

2000 900 1.154 0.628 0.945 0.428 1.621 0.792 1.577 0.587 

2000 1500 1.429 0.495 1.314 0.655 1.611 0.772 2.614 2.533 

Average 2.402 0.433 0.930 0.482 4.206 1.817 1.752 1.060 
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Table 8.2 
ANOVA for Experiment 11 (N=12) 

 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 78.056 726.058 0.000 0.985 

Error(Unchanged/Randomized) 11 0.108       

Study-test intervals (B) 1 39.187 115.429 0.000 0.913 

Error(Study-test intervals) 11 0.339       

Study-display durations (C) 2 1.266 8.444 0.002 0.434 

Error(Study-display durations) 22 0.150       

A × B  1 62.071 214.424 0.000 0.951 

Error(A × B) 11 0.289       

A × C 2 0.059 0.367 0.697 0.032 

Error(A × C) 22 0.161       

B × C 2 0.379 2.245 0.130 0.170 

Error(B × C) 22 0.169       

A × B × C 2 0.105 0.661 0.526 0.057 

Error(A × B × C) 22 0.159       
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Table 8.3 
d primes for colour swaps and shape swaps for each study-test interval 

and each study display duration for unchanged and randomized 
locations in Experiment 11 (N=12) 

 

Experiment 11 Unchanged locations Randomized locations 

Study-
test 

interval 

Study-
display 
duration 

Colour swap Shape swap Colour swap Shape swap 

(in ms) (in ms) Mean SD Mean SD Mean SD Mean SD 

0 200 3.297 0.465 3.508 0.481 0.456 0.394 0.564 0.464 

0 900 3.385 0.382 3.616 0.261 1.028 0.612 0.931 0.604 

0 1500 3.361 0.351 3.582 0.47 0.900 0.369 0.902 0.505 

2000 200 0.942 0.39 1.278 0.414 0.979 0.427 0.901 0.659 

2000 900 1.334 0.901 1.028 0.53 1.030 0.661 0.889 0.322 

2000 1500 1.524 0.572 1.352 0.578 1.374 0.753 1.292 0.742 

Average 2.307 0.510 2.394 0.456 0.961 0.536 0.913 0.549 
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Table 8.4 
ANOVA comparing colour swaps and shape swaps for each study-test 

interval and each study display duration for unchanged locations in 
Experiment 11 (N=12) 

 

Source df MS F p  partial η² 

Swaps (A) 1 0.272 1.617 0.230 0.128 

Error(Swaps) 11 0.168       

Study-test intervals (B) 1 176.646 243.773 0.000 0.957 

Error(Study-test intervals) 11 0.725       

Study-display durations (C) 2 0.478 1.612 0.222 0.128 

Error(Study-display durations) 22 0.297       

A × B  1 0.647 3.812 0.077 0.257 

Error(A × B) 11 0.170       

A × C 2 0.325 2.426 0.112 0.181 

Error(A × C) 22 0.134       

B × C 2 0.300 1.694 0.207 0.133 

Error(B × C) 22 0.177       

A × B × C 2 0.362 3.025 0.069 0.216 

Error(A × B × C) 22 0.120       
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Table 8.5 
ANOVA comparing colour swaps and shape swaps for each study-test 
interval and each study display duration for randomized locations in 

Experiment 11 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.083 1.837 0.202 0.143 

Error(Swaps) 11 0.045       

Study-test intervals (B) 1 2.831 5.089 0.045 0.316 

Error(Study-test intervals) 11 0.556       

Study-display durations (C) 2 1.878 6.283 0.007 0.364 

Error(Study-display durations) 22 0.299       

A × B  1 0.098 0.816 0.386 0.069 

Error(A × B) 11 0.120       

A × C 1.386 0.079 0.434 0.584 0.038 

Error(A × C) 15.251 0.181       

B × C 2 0.813 1.713 0.204 0.135 

Error(B × C) 22 0.475       

A × B × C 2 0.016 0.086 0.918 0.008 

Error(A × B × C) 22 0.188       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 8.6 
d primes and beta for each study-test interval and each study display 
duration for unchanged and randomized locations in Experiment 12 

(N=12) 
 

Experiment 12 d' beta 

Study-
test 

interval 

Study-
display 
duration 

Unchanged 
locations 

Randomized 
locations 

Unchanged 
locations 

Randomized 
locations 

(in ms) (in ms) Mean SD Mean SD Mean SD Mean SD 

0 200 2.802 0.688 0.534 0.530 3.406 3.120 1.482 0.621 

0 900 3.501 0.586 1.038 0.652 6.469 2.996 2.383 2.391 

0 1500 3.490 0.572 0.998 0.536 6.720 3.255 1.913 0.830 

2000 200 0.991 0.291 0.897 0.481 1.403 0.439 2.010 2.407 

2000 900 1.231 0.525 1.130 0.574 2.241 2.401 2.370 1.519 

2000 1500 1.160 0.472 0.997 0.597 1.794 1.180 2.020 1.289 

Average 2.196 0.522 0.932 0.562 3.672 2.232 2.030 1.510 
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Table 8.7 
ANOVA for Experiment 12 (N=12) 

 

Source df MS F p  partial η² 

Unchanged/Randomized (A) 1 57.477 101.460 0.000 0.902 

Error(Unchanged/Randomized) 11 0.566       

Study-test intervals (B) 1 35.523 114.295 0.000 0.912 

Error(Study-test intervals) 11 0.311       

Study-display durations (C) 2 2.447 15.958 0.000 0.592 

Error(Study-display durations) 22 0.153       

A × B  1 47.131 133.661 0.000 0.924 

Error(A × B) 11 0.353       

A × C 2 0.067 0.410 0.668 0.036 

Error(A × C) 22 0.164       

B × C 2 0.667 3.978 0.034 0.266 

Error(B × C) 22 0.168       

A × B × C 2 0.031 0.288 0.753 0.025 

Error(A × B × C) 22 0.106       
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Table 8.8 
d primes for colour swaps and shape swaps for each study-test interval 

and each study display duration for unchanged and randomized 
locations in Experiment 12 (N=12) 

 

Experiment 12  Unchanged locations Randomized locations 

Study-
test 

interval 

Study-
display 
duration 

Colour swap Shape swap Colour swap Shape swap 

(in ms) (in ms) Mean SD Mean SD Mean SD Mean SD 

0 200 2.504 0.732 2.979 0.573 0.494 0.495 0.591 0.702 

0 900 3.261 0.554 3.536 0.43 0.974 0.683 1.102 0.656 

0 1500 3.27 0.52 3.491 0.54 1.059 0.536 0.940 0.644 

2000 200 0.931 0.477 1.124 0.503 0.871 0.519 0.937 0.591 

2000 900 1.347 0.578 1.165 0.643 1.222 0.633 1.047 0.601 

2000 1500 1.121 0.573 1.198 0.569 0.956 0.705 1.045 0.547 

Average 2.072 0.572 2.249 0.543 0.929 0.595 0.944 0.624 
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Table 8.9 
ANOVA comparing colour swaps and shape swaps for each study-test 

interval and each study display duration for unchanged locations in 
Experiment 12 (N=12) 

 

Source df MS F p  partial η² 

Swaps (A) 1 1.123 4.224 0.064 0.277 

Error(Swaps) 11 0.266       

Study-test intervals (B) 1 147.744 149.667 0.000 0.932 

Error(Study-test intervals) 11 0.987       

Study-display durations (C) 2 2.781 6.930 0.005 0.386 

Error(Study-display durations) 22 0.401       

A × B  1 0.778 3.332 0.095 0.232 

Error(A × B) 11 0.234       

A × C 2 0.255 2.482 0.107 0.184 

Error(A × C) 22 0.103       

B × C 2 0.895 3.451 0.050 0.239 

Error(B × C) 22 0.259       

A × B × C 2 0.074 0.688 0.513 0.059 

Error(A × B × C) 22 0.108       
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Table 8.10 
ANOVA comparing colour swaps and shape swaps for each study-test 
interval and each study display duration for randomized locations in 

Experiment 12 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.007 0.065 0.803 0.006 

Error(Swaps) 11 0.113       

Study-test intervals (B) 1 0.842 5.073 0.046 0.316 

Error(Study-test intervals) 11 0.166       

Study-display durations (C) 1.292 2.673 8.321 0.008 0.431 

Error(Study-display durations) 14.217 0.321       

A × B  1 0.016 0.141 0.715 0.013 

Error(A × B) 11 0.115       

A × C 2 0.041 0.321 0.729 0.028 

Error(A × C) 22 0.127       

B × C 2 0.420 1.598 0.225 0.127 

Error(B × C) 22 0.263       

A × B × C 2 0.194 2.363 0.118 0.177 

Error(A × B × C) 22 0.082       

Underlined df indicates value after applying Greenhouse Geisser correction  
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Table 8.11 
d primes for four categories of swaps for each independent variable in 

Experiment 12 (N=12) 
 

Swap stimuli 

1 and 6 1 and 2,3,4,5 
among 
2,3,4,5 

6 and 2,3,4,5 Experiment 12 - d' 

Mean SD Mean SD Mean SD Mean SD 

Unchanged 2.120 0.562 1.897 0.253 1.764 0.186 1.897 0.317 

Locations 

Randomized 1.367 0.834 1.062 0.595 0.779 0.469 0.859 0.499 

0 ms 2.132 0.676 1.849 0.417 1.614 0.323 1.627 0.366 Study-
test 

interval 2000 ms 1.302 0.592 1.070 0.390 0.904 0.272 1.086 0.319 

200 ms 1.442 0.924 1.372 0.381 0.943 0.238 1.100 0.253 

900 ms 1.962 0.608 1.487 0.546 1.458 0.404 1.522 0.427 
Study-
display 
duration 

1500 ms 1.668 0.470 1.409 0.353 1.345 0.353 1.438 0.405 
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Table 8.12 
d primes and beta for each study-test interval and each study display 
duration for unchanged and randomized locations in Experiment 13 

(N=12) 
 

Experiment 13 d' beta 

Study-
test 

interval 

Study-
display 
duration 

Unchanged 
locations 

Randomized 
locations 

Unchanged 
locations 

Randomized 
locations 

(in ms) (in ms) Mean SD Mean SD Mean SD Mean SD 

0 200 0.847 0.465 0.202 0.373 1.419 0.638 1.192 0.187 

0 900 0.959 0.358 0.706 0.501 1.807 0.535 1.630 0.389 

0 1500 1.026 0.542 0.874 0.410 1.964 1.217 1.629 0.612 

2000 200 1.044 0.430 1.004 0.523 1.717 0.525 2.292 2.352 

2000 900 0.954 0.553 0.843 0.437 2.106 2.433 1.359 0.336 

2000 1500 0.902 0.361 0.735 0.451 1.551 0.597 1.402 0.578 

Average 0.955 0.451 0.727 0.449 1.761 0.991 1.584 0.742 
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Table 8.13 
ANOVA for Experiment 13 (N=12) 

 

Source df MS F p partial η² 

Unchanged/Randomized (A) 1 1.873 5.133 0.045 0.318 

Error(Unchanged/Randomized) 11 0.365       

Study-test intervals (B) 1 0.755 3.485 0.089 0.241 

Error(Study-test intervals) 11 0.217       

Study-display durations (C) 2 0.165 1.012 0.380 0.084 

Error(Study-display durations) 22 0.163       

A × B  1 0.535 7.424 0.020 0.403 

Error(A × B) 11 0.072       

A × C 1 0.178 0.689 0.461 0.059 

Error(A × C) 15 0.258       

B × C 1 2.075 16.721 0.001 0.603 

Error(B × C) 13 0.124       

A × B × C 2 0.312 2.022 0.156 0.155 

Error(A × B × C) 22 0.154       

Underlined df indicates that Greenhouse Geisser correction was applied  
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Table 8.14 
d primes for colour swaps and shape swaps for each study-test interval 

and each study display duration for unchanged and randomized 
locations in Experiment 13 (N=12) 

 

Experiment 13 Unchanged locations Randomized locations 

Study-
test 

interval 

Study-
display 
duration 

Colour swap Shape swap Colour swap Shape swap 

(in ms) (in ms) Mean SD Mean SD Mean SD Mean SD 

0 200 0.787 0.541 0.93 0.602 0.192 0.571 0.194 0.317 

0 900 0.981 0.432 0.933 0.38 0.660 0.622 0.740 0.546 

0 1500 1.076 0.588 0.975 0.563 0.862 0.477 0.891 0.411 

2000 200 1.117 0.4 0.984 0.625 1.012 0.579 0.998 0.582 

2000 900 0.874 0.579 1.054 0.61 0.834 0.483 0.860 0.505 

2000 1500 1.034 0.454 0.779 0.383 0.800 0.512 0.679 0.509 

Average 0.978 0.499 0.943 0.527 0.727 0.541 0.727 0.478 
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Table 8.15 
ANOVA comparing colour swaps and shape swaps for each study-test 

interval and each study display duration for unchanged locations in 
Experiment 13 (N=12) 

 

Source df MS F p  partial η² 

Swaps (A) 1 0.045 0.490 0.498 0.043 

Error(Swaps) 11 0.092       

Study-test intervals (B) 1 0.026 0.191 0.670 0.017 

Error(Study-test intervals) 11 0.134       

Study-display durations (C) 2 0.002 0.005 0.995 0.000 

Error(Study-display durations) 22 0.318       

A × B  1 0.041 0.390 0.545 0.034 

Error(A × B) 11 0.104       

A × C 2 0.194 1.719 0.202 0.135 

Error(A × C) 22 0.113       

B × C 2 0.294 0.997 0.385 0.083 

Error(B × C) 22 0.295       

A × B × C 2 0.207 1.599 0.225 0.127 

Error(A × B × C) 22 0.129       
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Table 8.16 
ANOVA comparing colour swaps and shape swaps for each study-test 
interval and each study display duration for randomized locations in 

Experiment 13 (N=12) 
 

Source df MS F p  partial η² 

Swaps (A) 1 0.000 0.000 0.997 0.000 

Error(Swaps) 11 0.100       

Study-test intervals (B) 1 2.706 6.234 0.030 0.362 

Error(Study-test intervals) 11 0.434       

Study-display durations (C) 2 0.602 1.602 0.224 0.127 

Error(Study-display durations) 22 0.376       

A × B  1 0.048 0.298 0.596 0.026 

Error(A × B) 11 0.163       

A × C 2 0.030 0.256 0.776 0.023 

Error(A × C) 22 0.117       

B × C 2 2.845 16.728 0.000 0.603 

Error(B × C) 22 0.170       

A × B × C 2 0.014 0.144 0.866 0.013 

Error(A × B × C) 22 0.099       
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 Table 8.17 
d primes for four categories of swaps for each independent variable in 

Experiment 13 (N=12) 
 

Swap stimuli 

1 and 6 1 and 2,3,4,5 
among 
2,3,4,5 

6 and 2,3,4,5 Experiment 13 - d' 

Mean SD Mean SD Mean SD Mean SD 

Unchanged 1.648 0.441 1.033 0.535 0.667 0.279 1.044 0.342 

Locations 

Randomized 1.155 0.462 0.820 0.430 0.558 0.332 0.714 0.256 

0 ms 1.302 0.590 1.042 0.527 0.550 0.326 0.571 0.331 Study-
test 

intervals 2000 ms 1.466 0.295 0.813 0.391 0.642 0.278 1.227 0.262 

200 ms 1.033 0.558 0.718 0.427 0.673 0.241 0.828 0.331 

900 ms 1.662 0.648 1.094 0.467 0.604 0.337 0.757 0.300 
Study-
display 

durations 

1500 ms 1.501 0.313 1.059 0.597 0.584 0.391 1.056 0.381 
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Table 8.18 
d primes for four categories of swaps for each independent variable in 

Experiment 14 (N=12) 
 

Experiment 14  - d' Swap stimuli 

Study-
test 

interval 

Study-
display 
duration 

1 and 6 1 and 2,3,4,5 
among 
2,3,4,5 

6 and 2,3,4,5 

(in ms) (in ms) Mean SD Mean SD Mean SD Mean SD 

0 200 0.755 1.149 0.582 0.452 0.355 0.340 0.114 0.374 

0 900 1.001 1.793 0.760 0.828 0.749 0.419 0.795 0.553 

0 1500 1.048 0.433 0.744 0.829 0.577 0.733 0.940 0.758 

2000 200 1.201 0.805 0.795 0.314 0.968 0.456 1.382 0.344 

2000 900 2.504 1.054 0.945 0.562 0.779 0.539 1.244 0.669 

2000 1500 1.867 0.982 0.973 0.650 0.901 0.613 1.274 0.786 

Average 1.396 1.036 0.800 0.606 0.721 0.517 0.958 0.581 
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Table 8.19 
ANOVA for Experiment 14 with all categories of swaps (N=12) 

 

Source df MS F p  partial η² 

Study-display duration (A) 2 2.953 3.715 0.041 0.252 

Error 22 0.795       

Study-test intervals (B) 1 20.564 13.367 0.004 0.549 

Error 11 1.538       

Swaps( C) 3 6.542 9.347 0.000 0.459 

Error 33 0.700       

A × B  
2 0.261 0.284 0.755 0.025 

Error(A × B) 
22 0.918       

A × C 
3.000 1.230 0.912 0.446 0.077 

Error(A × C) 
32.995 1.348       

B × C 
3 1.942 4.782 0.007 0.303 

Error(B × C) 
33 0.406       

A × B × C 
2.570 2.747 1.851 0.167 0.144 

Error(A × B × C) 
28.268 1.484       

Underlined df indicates Greenhouse Geisser correction was applied  
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Table 8.20 
ANOVA for Experiment 14 with swaps of 1 and 6 deleted (N=12) 

 

Source df MS F p  partial η² 

Study-display duration (A) 2 0.884 2.136 0.142 0.163 

Error 22 0.414       

Study-test intervals (B) 1 8.862 10.874 0.007 0.497 

Error 11 0.815       

Swaps( C) 1.364 1.533 1.506 0.248 0.120 

Error 15.004 1.018       

A × B  1.201 1.969 1.811 0.203 0.141 

Error(A × B) 13.211 1.087       

A × C 4 0.125 0.467 0.760 0.041 

Error(A × C) 44 0.267       

B × C 2 1.106 3.696 0.041 0.251 

Error(B × C) 22 0.299       

A × B × C 4 0.443 2.718 0.042 0.198 

Error(A × B × C) 44 0.163       

Underlined df indicates Greenhouse Geisser correction was applied  
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Table 8.15 

ANOVA comparing Experiments 11, 12, and 13 

Source df MS F p  partial η² 

Between Subjects            

Experiment (A) 2 29.118 34.262 0.000 0.675 

Error 33 0.850       

Within-Subjects           

Unchanged/Randomized (B) 1 105.433 304.469 0.000 0.902 

A × B 2 15.986 46.166 0.000 0.737 

Error(Unchanged/Randomized) 33 0.346       

Study-test intervals  (C) 1 42.950 148.637 0.000 0.818 

A × C 2 16.257 56.261 0.000 0.773 

Error(Study-test intervals) 33 0.289       

Study-display duration (D) 2 2.931 18.846 0.000 0.364 

A × D 4 0.474 3.044 0.023 0.156 

Error(Study-display duration) 66 0.156       

B  × C 1 79.827 335.328 0.000 0.910 

A × B  × C 2 14.955 62.820 0.000 0.792 

Error(B × C) 33 0.238       

B  × D 1.613 0.049 0.237 0.742 0.007 

Error (B  × D) 53.235 0.205       

A × B  × D 4 0.103 0.621 0.649 0.036 

Error(B  × D) 66 0.166       

C  × D 2 1.433 10.454 0.000 0.241 

A × C  × D 4 0.431 3.146 0.020 0.160 

Error(C  × D) 66 0.137       

B × C  × D 2 0.131 0.939 0.396 0.028 

A × B × C  × D 4 0.158 1.130 0.350 0.064 

Error(B × C  × D) 66 0.140       

Underlined df indicates value after applying Greenhouse Geisser correction  

 


