
competition in an evolving
stochastic market

Lawrence Mitchell

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

A thesis submitted in ful�lment of the requirements for the degree of
Doctor of Philosophy to the University of Edinburgh

2009





abstract

“ In an e�cient market all identical goods must have only one
price

So states the aptly named law of one price. In the real world, however, one
may easily verify that identical products are o�en sold for di�erent prices.
This thesis develops an extension of the Bertrand model in economics to
include spatially localised competition to explain this price variation, which
is then studied through simulation methods and theoretical analysis.

Our model studies the e�ect that local heterogeneities in the environ-
ment experienced by sellers have on successful pricing strategies. Taking
inspiration from models of evolutionary dynamics, we de�ne the �tness of
a seller and evolve seller prices through selection and mutation.

We �nd three distinct steady states in our model related to the probabil-
ity that a seller experiences competition for a buyer, mediated by the number
of bankrupt sites in the system. When competition-free sales are unlikely,
the system collapses on to a single price. If temporary monopoly situations
do exist sellers can accumulate capital and variation in prices is stable. In
this scenario, sellers spontaneously separate into two classes: cheap sellers
– requiring sales to every potential buyer; and expensive sellers – requiring
only occasional sales. Finally, we �nd an intermediate regime in which there
is a single highly favoured price in the system which oscillates between high
and low extrema.

We study the properties of these steady states in detail, building a picture
of how globally uncompetitive sellers can nonetheless survive if competition
is strictly local. We show how the system builds up correlations, leading to
niches for expensive sellers. These niches change the nature of the competi-
tion and allow for long-term survival of uncompetitive sellers.

Not all expensive prices are equally likely in the steady state and we anal-
yse why (and where) peaks in the price distribution appear. We can do this
exactly for the early time dynamics of the model and extend the argument
more qualitatively to the steady state. This latter analysis allows us to predict,
for an observed steady distribution, the minimum price an expensive seller
should charge to guarantee pro�t.

The oscillatory ‘steady state’ is qualitatively reminiscent of boom and
bust cycles in the global market. We study methods to suppress the os-
cillations and suggest ways of avoiding catastrophic crashes in the global
economy – without negatively a�ecting the ability of outliers to make large
pro�ts.
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introduction

1How should I price my produce? A question mulled over by shopkeepers
for millennia. If the seller enjoys a monopoly, the answer is straightforward –
minimise production costs and (assuming constant demand) charge as much
as consumers are willing to pay. When competition and choice between
shopkeepers is introduced, the problem becomes signi�cantly harder.

When we observe a marketplace, we see many di�erent solutions to the
problem. Sellers adopt di�erent pricing strategies for the same product. Ex-
plaining the observed pricing strategies has troubled economic modellers
since at least the 19th century. The solutions of such models also specify
which pricing strategies are good ones (within the model framework) – an-
swering the question posed at the beginning of this section.

1.1 why should a physicist study a problem in
economics?

A cursory glance over the �eld of economic modelling reveals many pro-
posed models to address questions of price setting. Why, therefore, should
we want to add yet another model? To answer this question, we need to
understand a bit about the existing models. The 19th century contributions
of Cournot [17] and Bertrand [7] both conclude that competition between
sellers results in both charging the same price.

Subsequent study in this �eld has revolved around the evidence that the
predictions of Bertrand and Cournot are not realised in real-world scenarios.
When we look at sellers in the wild, even when they supply the same prod-
uct, prices can di�er widely. Economists have therefore constructed models
which demonstrate some of these features. As in physics, the holy grail of
any such modelling e�ort is an exact solution to the model. This allows
fullest study of its behaviour and provides the greatest insight. To arrive
at these exact solutions, economists must make a number of assumptions
about the behaviour of the entities involved – for example, that all partic-
ipants are completely rational and in possession of complete information
about the marketplace. Critically, these assumptions are used even when
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they are subsequently found to be a bad match for evidence [9].
In this thesis, we construct a model to study price setting that requires

far fewer assumptions about human behaviour. For instance, we require that
participants in our model are only boundedly rational and are also only in
possession of a small amount of information about the marketplace. Further-
more, we try to include as few preconceptions as possible about the market
– for example, we do not directly specify how participants might select for a
good price. That is, our model tries to strip out as much as necessary while
still exhibiting non-trivial behaviour.

Our inspiration for this study comes from the recent successes in the
�eld of econophysics (see [10, 43] for recent introductory texts). The �eld
is a relatively new one, the term itself being a scant ��een or so years old.
Initial forays into economics were inspired by the bright lights of the stock
market. If one is able to predict pricing �uctuations to somewhat better
than 50% accuracy, then pro�ts should be easy to obtain. Access to large
datasets and computing resources allowed quantitative descriptions of stock
market returns to be developed and tested. Physicists, principally those with
a background in statistical mechanics, applied their analysis techniques to
the data available on stock market �uctuations. Characterising the distribu-
tion of returns accurately is key to making good predictions about the likely
movement of markets. The development of the minority game [14], an evo-
lutionary model for a game in which the minority strategy choice wins, gave
further impetus: in competition among stock market traders, the minority
choice will win. This suggests it might be possible to model the herd be-
haviour of traders with some kind of minority game and use this knowledge
in our own trading [28, 33, 34]. At the very least, the arrival of econophysics
has resulted in a useful updating [11] of the venerable Black-Scholes option
pricing formula [8].

One area untouched by such studies is that of price-competition. Work
exists characterising the distribution of �rm sizes and proposing plausible
dynamics that would result in this distribution (see de Wit [19] for a recent
review), but focus on the details of competition has been le� in the hands of
economists. Computational models of such competition are then typically
very speci�c to a particular setting (for example, modelling price setting in
a French �sh market [36]). Interestingly, simple game theoretic models (of
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which economic models of price setting are an example) have been studied
using computational techniques – to incorporate elements such as spatial
heterogeneity – in other �elds to address open questions such as how altru-
istic and cooperative behaviour can develop in an evolutionary setting.

This thesis applies computational methods to the problem of price com-
petition. Our approach is not speci�c to a particular marketplace, instead
we take a simple, well understood, model and extend it using ideas from
computational game theory. Casual observation shows that shops are o�en
spatially disperse. Further, except when purchasing expensive items (and
o�en even then), consumers are never able or willing to acquire complete
information about the marketplace. Thus, our simple view of a marketplace
is of a spatially separate set of �rms and around them a cloud of consumers
that are also spatially localised and only able to see a small number of sellers.
Now we can again ask ‘what is my best pricing strategy?’ and further, is there
a speci�c best strategy, or do a variety of prices necessarily exist? It is these
question which this thesis makes an attempt at answering.

Our modelling method wins in some areas over existing economic mod-
els, and loses in others. As already mentioned, we try to make as few ax-
iomatic assumptions about human behaviour as possible. Additionally, we
attempt not to cloud the construction of the model with our intuition as to
how the market ‘should’ evolve. In doing so we lose speci�city and will likely
not be able to take away quantitative predictions, however, we will be able
to see if the assumptions of economists are needed to produce results that
qualitatively mimic the real world.

1.2 thesis outline

This short introduction should allow the reader to see why the question
of price setting is an interesting one. Chapter 2 provides a more detailed
overview of existing concepts and models. We introduce and review game
theoretic concepts and some simple economic models of price competition.
This extended scene-setting should allow the reader to see in more detail
where our model �ts and provide motivation for our subsequent choices.

Chapter 3 makes these motivations concrete and introduces our model
in detail, here we �ag up the di�erences from previous work and why they
are important. Following this introduction, we proceed swi�ly onto results
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of our model. These data are presented initially in two separate blocks. In
chapter 4 we detail the behaviour of our model under discrete time dynamics,
in chapter 6 we study the behaviour with continuous time dynamics.

Our model is set up with a �xed spatial structure and most of the results
we present are obtained when this structure is a one-dimensional ring. In
chapter 5 we motivate the reasons for restricting ourselves to such a case,
demonstrating that the qualitative picture our results paint is independent
of the spatial structure our model is based on.

In chapter 6 we �nd an interesting ‘steady state’ of the model dynamics
not observed in the discrete time formulation. We observe system-wide os-
cillatory behaviour. We propose that the cycles we see are perhaps analogous
to boom and bust cycles in the global economy and, topically, study ways of
suppressing this behaviour in chapter 7.

We might hope that our model is simple enough to be amenable to exact
analysis, rather than merely computational study. It turns out that the full
details are too complex, however, in chapter 4 we are able to analyse the
early time dynamics. Subsequently, in chapter 8, we sketch how one might
determine some steady state properties exactly by considering a simpli�ed
mean �eld version of our model.

Finally, in chapter 9, we summarise our results and explore some of the
general conclusions of our model. Having studied the simple model in great
detail, we propose some areas of future work that could build on our results.
The steady state of our model could be seen as a playing �eld in which one
could test the e�cacy of complicated price-setting strategies: we outline one
possible such scheme.
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background& motivation

2The model presented later in this thesis draws inspiration from a range of
di�erent �elds: game theory, evolutionary biology, ecology and economics.
In order that the reader is not lost when encountering the model, this chap-
ter outlines the problems we will address and the manner in which each of
these somewhat disjoint subject areas helps. This will take the form of a
whistle-stop tour through the development of game theory and its appli-
cation in economics and evolutionary biology. Along the way we will note
some common criticisms of the models so constructed and look to ecological
and physical systems to think how we might address these.

The problem we address comes from economics. How should an indi-
vidual seller choose their price in a competitive market? Consider a case
where sellers o�er an identical product to many buyers. If buyers choose
randomly between sellers, we can easily imagine how sellers can make sales
at high prices. If buyers are discerning in their choices, we might imagine
that sellers charging high prices would not make sales. Evidence from price
comparison studies [5, 6, 39] shows that even if buyers are discerning sellers
can survive o�ering di�erent prices.

The problem of price-setting has been the subject of economic models
for over 100 years (for example the models of Cournot (1838) and Bertrand
(1883)) and the subject of traders for presumably much longer. These early
attempts idealise the situation to that of two sellers competing for a single
consumer. We discuss Cournot’s and Bertrand’s models in detail in section
2.1 and onwards. The key outcome of their analyses is that sellers should
end up agreeing on a single price. When we observe prices in the real world,
however, competing sellers seldom agree on a single price. Instead, we see
some distribution of prices for a single product. This phenomenon is termed
price dispersion in the economic literature and many modelling e�orts have
been expended in attempting to understand it. We shall summarise three
models representative of the approach taken in section 2.4. This thesis also
constructs a model to address the phenomenon of price dispersion, although
the approach we take is very di�erent to that considered in the economic
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literature.
Before we delve in to our proposed model in detail in the next chapter,

some extended scene-setting is required. We begin with the 19th century
models of sales of Cournot and Bertrand. We then move on and summarise
the main theories from the early 20th century developments of game theory.
This mathematical formulation of games allows a systematic treatment of
the exactly solveable models of competition we subsequently describe. The
theory is not without its �aws which we also touch upon. The narrative
thread then moves on to three representative game theoretic models that
demonstrate price dispersion which we examine critically. Our exposition
ends with some more in-depth discussion of why game theoretic models
might be �awed in their approach to the analysis of real marketplaces.

2.1 models of competition

A short word on nomenclature used in the following section. We use equi-
librium in its economic, rather than physical sense. In this context an equi-
librium state of a game is a set of strategies for which no single participant
�nds it in their interest to change strategy. Note that the equilibrium state
may not be uniquely de�ned: multiple di�erent sets of strategies may have
this same equilibrium property.

2.1.1 Monopoly pricing and perfect competition

In order to best discuss models of sales in which competition takes place we
need some benchmarks which set the limiting behaviour: upper and lower
bounds on the price sellers charge. These are obtained by looking at the be-
haviour of a monopolist and the behaviour of sellers in perfect competition.
The case of the monopolist is straightforward. Consider a seller choosing a
price p > 0 for a product. There is a demand for this product at the given
price,D(p) with dD(p)

dp < 0. That is, as the price of the product increases, so
the demand decreases. This seller’s pro�t will be given by

π(p) = pD(p) − c(D(p)). (2.1)

Where c(x) is the cost to the seller of producing a quantity x of the product.
dc(x)
dx > 0, cost of production increases with the amount of product. An ex-

ample pro�t curve is shown in �gure 2.1, maximising the pro�t is equivalent
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to setting dπ
dp = 0. We shall denote the monopoly price by pm and the supply

level by qm ≡ D(pm).

0.80 2 3 4 5 6 7 8

0.17

0.10

0.05

0.00

-0.05

-0.1

Price

Pro�t

Figure 2.1 Pro�t curve for a price-setting monopolist withD(p) = 2
p2+1 and

c(x) =
√
x. The maximum pro�t is obtained for pm ≈ 2.14

At the other end of the scale from a monopolist is the pricing and supply
structure obtained under perfect competition. In this regime, the assumption
is one of many buyers and sellers. So many, that no single seller can a�ect
the market: all individual sellers are assigned a price for their goods and
their choices of supply level will not change that price. Buyers have perfect
information about all �rms: they will always choose the cheapest. In the
simple examples we shall consider, the perfectly competitive limit is one
in which the price matches the cost. This limit also corresponds to the
highest supply level. This is easily seen by recalling that buyer demand is a
decreasing function of the price. The competitive price is the lowest price
buyers will experience and so the demand will be higher at this price at than
all others. We shall denote the perfect competition supply level by qp and
the concomitant price by pp.

2.1.1.1 Monopoly pricing in the presence of interactions between consumers

Gordon et al. [24] demonstrate how the addition of interactions between
consumers in a spatial region can change the best strategy of a monopolist.
In their model, buyers have some internal preference for buying and are ad-
ditionally in�uenced by the buying choice of their neighbours. This model
can be analysed by considering it to be like an Ising spin model, with the
binary buyer choice mapping onto up and down spins. Gordon et al. show
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that if the buyers are fully connected (i.e., they all in�uence each other), the
monopolist’s price exhibits a �rst order phase transition if the interaction
strength is high enough. In this case, the monopolist’s price jumps from
a low solution to a high solution (the former attracting a large number of
buyers, the latter a small number) as the mean preference to pay decreases
or the production costs increase.

2.1.2 Cournot competition [17]

Cournot competition addresses the issue of which price will be chosen in
a marketplace in which sellers may alter the quantity they supply, but not
their price. The price is �xed by some external third party once all competing
sellers have chosen their supply levels.

This is a model of competition between N > 1 sellers. For simplicity,
we shall consider theN = 2 case, though the arguments easily generalise to
higherN. All sellers o�er an identical product. At the beginning of a sales
day sellers decide simultaneously how much they will produce. Once the
total supply level has been determined, the market price is set according to
some function known to all sellers. Each seller has a cost function that is
dependent on its production quantity. Let the quantity produced by seller
one (two) be q1 (q2). The pro�t of seller one is then given by

π1(q1,q2) = P(q1 + q2)q1 − c1(q1). (2.2)

Where P(·) is the externally determined market price and c1(·) is the cost to
seller one of producing its speci�ed output level. The model has P ′(x) < 0
and c ′(x) > 0: as supply increases prices drop and as production increases
so do costs. Seller two has an equivalent pro�t obtained by switching the
indices in equation 2.2.

Cournot’s analysis is carried out by �nding a pair of functions for sellers
one and two which provide the best response to their conjecture about their
opponent’s choice of supply level. For any �xedq2 there is a value ofq1 which
maximises seller one’s pro�t. Equally, for seller two, at �xed q1 there is a q2
which maximises pro�t. To �nd the equilibrium supply level, we maximise
the pro�ts of the two �rms by setting ∂qiπi = 0. With known cost functions
and pricing function, we obtain two equations for the two unknowns q1 and
q2. These may be solved for the equilibrium supply levels, q∗1 and q∗2. If the
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cost functions are identical for both �rms, q∗1 = q∗2.
The resulting equilibrium performs better (for the consumer) than a

monopoly. Speci�cally, q∗1 + q∗2 > q
m and hence P(q∗1 + q∗2) < p

m: there is
a larger supply than in the monopoly case and the price of goods is hence
lower. To see this, consider an example with P(q) = a − q and c(q) = bq2,
a,b > 0. The monopoly supply level is given by

q =
c ′(q) − P(q)

P ′(q)
=

2bq− a+ q

−1 . (2.3)

Solving for q we �nd
qm =

a

2(1 + b)
. (2.4)

The Cournot supply level is given by

q1 + q2 =
∂q1c(q1) − P(q1 + q2)

∂q1P(q1 + q2)
+
∂q2c(q2) − P(q1 + q2)

∂q2P(q1 + q2)

= 2a− 2(q1 + q2)(1 + 2b)
(2.5)

Solving for q1 + q2 we �nd

q1 + q2 =
a

(b+ 3
2)

(2.6)

and so
q1 + q2 − qm =

a(1 + 2b)
4b2 + 10b+ 6 > 0 (2.7)

as claimed. This form of competition does not bring supply levels all the
way to those of perfect competition: q∗1 + q∗2 < qp and p(q∗1 + q∗2) > pp.
It is possible to show that as the number of �rms participating in Cournot
competition becomes large, the supply level and hence price tend to those of
perfect competition. The perfect competition limit is reached in the limit
of an in�nite number of sellers.

2.1.3 Bertrand competition [7]

Almost ��y years a�er Cournot’s work on �rm competition, Bertrand devel-
oped an alternative theory in a lengthy critique of Cournot’s work. Instead
of allowing �rms to choose their supply and having their price set exoge-
nously, Bertrand’s scenario is one in which market demand is set externally
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and sellers may choose their price freely. Similar to our analysis of Cournot
competition the model is de�ned forN > 1 sellers, we consider theN = 2
case for simplicity.

Let the price chosen by seller one (two) be p1 (p2). These prices are
chosen simultaneously with pi ∈ [0, ∞). The pro�t of seller one is given by

π1(p1,p2) = p1D(p1,p2) − c1(D(p1,p2)). (2.8)

WhereD(x,y) is the market demand for goods o�ered at a price xwhen the
alternate price is y. c1(·) is the cost of producing the demanded product.
The pro�t of seller two is also given by equation 2.8 but with the indices
swapped.

In Bertrand’s original model all sellers have the same unit cost: ci(x) =

cx. Sellers compete for the total demand D ≡ D(pm) experienced by a
monopolist with price pm. Buyers choose the cheapest possible seller and
thus the lowest-priced seller obtains all the demand. If the two sellers choose
the same price, the demand is split equally between them. The demand
function is thus discontinuous and given by

D(p1,p2) =


D p1 < p2

D
2 p1 = p2

0 p1 > p2.

(2.9)

The Bertrand equilibrium has both sellers charging p∗1 = p∗2 = c. It is
easiest to see this if we approach the price setting problem a seller faces in
steps. Consider seller two with a price p2 = c+ δ. The �rst seller maximises
their pro�t considering p2 as �xed. To do so, they pick a price p1 = p2 − ε,
making pro�t π1 = (δ− ε)D. Seller two notices this and reduces their price
to p2 = p1 −εmaking pro�t π2 = (δ− 2ε)D. This back and forth continues
until further price reductions result in negative pro�ts. The end result is
both sellers adopting p1 = p2 = c. Now any further reduction in price,
despite gaining the entire market demand, results in negative pro�t. Now,
both sellers are assumed to be completely rational. They also know that their
opponent is completely rational. Given these statements, the only rational
price to choose is the �nal one p∗i = c. Both sellers therefore open their
doors on the �rst morning having chosen the marginal cost price.
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Thus, in the Bertrand equilibrium, all �rms earn zero pro�ts, despite a
monopolist being able to make positive pro�ts. The model results in perfect
competition for the case of two sellers (unlike Cournot competition where
this limit is only reached for an in�nite number of sellers).

2.1.4 A short critique of the two models

Although these simple models of sales capture some essential aspects of com-
petition, by their very nature they are unable to model all subtleties of real-
world competition1. In order to investigate the phenomenon of price dis-
persion, we must add some additional complexity somewhere. Obviously,
this is not the �rst time these criticisms have been raised, numerous models
of competition have been proposed since Cournot and Bertrand to explain
empirical phenomena better. We shall continue our exposition of models of
sales in section 2.4 but �rst we consider a diversion into the mathematical
theory of games that we may place the models we present on a �rm theoreti-
cal footing.

2.2 game theory

The development of game theory was prompted by the wish to answer a
simple question that crops up in many parts of everyday life. von Neumann
[74] states the problem succinctly in his �rst work on game theory:

“ n players, S1,S2, . . . ,Sn, play a speci�ed game G. How should
a particular participant, Sm, play to obtain the most pro�table
outcome for themselves?2

Originally, the games considered were ‘simple’ with well-de�ned strategies,
such as poker, bridge and chess. However, we shall see that the framework
developed lends itself equally well to simple economic models of sales. The
concepts, rather than the mathematical details of their development, are the
important message of this section. The latter are presented for fullness of
exposition.

1To take one simple example, it is assumed that sellers can produce goods on demand:
should they make no sales, they make no losses. Unless sellers can correctly predict their
demand in advance, this seems a bad assumption for product that is perishable (bread, for
instance)

2Translated from the original by the current author: ‘n Spieler, S1,S2, . . . ,Sn, spielen
ein gegebenes Gesellsha�sspiel G. Wie muß einer dieser Spieler, Sm, spielen, um dabei ein
möglichst günstiges Resultat zu erzielen?’
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2.2.1 The Minimax Theorem

The key concept developed in von Neumann’s paper [74] was the Minimax
Theorem. Consider a two-player game with S1 playing a strategy x and S2
a strategy y. The payo�s to S1 and S2 are g(x,y) and −g(x,y) respectively.
This is an example of a zero sum game: any gains to S1 are o�set by losses
to S2 and vice versa. If S1 chooses a speci�c x, then her payo� depends on
what choice S2 makes. However, the payo� (P1) will de�nitely obey the
inequality:

P1 > min
y
g(x,y). (2.10)

Where miny g denotes the minimum value of g with respect to changes in
y. S1 can now maximise the right hand side of equation 2.10 with respect to
changes in her strategy guaranteeing a payo�:

P1 > max
x

min
y
g(x,y). (2.11)

That is, S1 can choose an x such to maximise her minimum payo�. Equally
S2 can, independently of S1, choose a y that guarantees a payo�

P2 6 min
y

max
x
g(x,y) (2.12)

this minimises the maximum loss that S2 will experience. In general, the
following inequality holds

max
x

min
y
g(x,y) 6 min

y
max
x
g(x,y). (2.13)

It is easy to construct an example where the inequality holds strictly, for
example

g(x,y) =


y=1 y=2

x=1 1 −1
x=2 −1 1

 (2.14)

results in maxx miny g = −1 and minx maxy g = 1. The equality only holds
in equation 2.13 if there is a saddle point in g(x,y) [75].

Although it is not always possible to satisfy the equality in equation
2.13, we can construct a mixed strategy – a probability distribution over pure
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strategies – with expected payo� h(~ξ,~η) =
∑
x,y g(x,y)ξxηy such that

max
~ξ

min
~η
h(~ξ,~η) = min

~ξ
max

~η
h(~ξ,~η) (2.15)

where the components of ~η and ~ξ give the probability of playing an indi-
vidual or pure strategy. For example, for rock-paper-scissors a pure strategy
would be one of rock, paper or scissors; a mixed strategy would be ‘play rock
with probability 1

2 , paper with probability 1
3 and scissors with probability 1

6 ’.
The equality in equation 2.15 is the minimax theorem, proven in [74]

“ For every two person, zero sum game with a �nite number of
strategies, there is a mixed strategy for each player and an ex-
pected payo� P such that, given S2’s strategy S1’s best possible
payo� is P and given S1’s strategy S2’s best possible payo� is −P.

For our simple two-strategy game the components of~ξ and ~η are easy to �nd
[75]

ξ1 =
g(2, 2) − g(2, 1)

g(1, 1) + g(2, 2) − g(1, 2) − g(2, 1)
(2.16a)

ξ2 = 1 − ξ1 (2.16b)

and

η1 =
g(2, 2) − g(1, 2)

g(1, 1) + g(2, 2) − g(1, 2) − g(2, 1)
(2.17a)

η2 = 1 − η1 (2.17b)

If either g or h is antisymmetric (that is g(x,y) = −g(y, x) or h(~ξ,~η) =

−h(~η,~ξ)) the game is fair and the payo� to both players is zero. This is
not always the case: consider the game shown in equation 2.18. The best
strategies in this game are mixed and have ~ξ = ~η =

(2
5 , 35
)
. The expected

payo� to S1 is P = 1
5 6= 0.


1 2

1 2 −1
2 −1 1

. (2.18)

We can now see how this applies to the models of sales presented above.
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The Bertrand equilibrium when competition is on price is exactly that strat-
egy arrived at by applying the minimax concept. Seller one chooses a price
which maximises their minimum payo�, irrespective of the choice of the
opponent and vice versa. We have glossed over a slight complication in this
case: the minimax theorem as it stands applies only to zero sum games. The
model of sales is not zero sum (both the two sellers and the buyer are assumed
to gain some payo� when a transaction is carried out). For such games, a dif-
ferent solution concept, developed in the early 1950s [52–55], is necessary.
We shall describe this solution concept in the next section.

2.2.2 The Nash equilibrium

Consider a game played byN players each of whom has a �nite number of
strategies to choose from. The set of strategies adopted by the participants is
a Nash equilibrium if no single player can do better by changing their strategy
unilaterally. That is, in a Nash equilibrium, if I choose to change my strategy
and all other N − 1 players keep the same strategy as before, I will at best
perform as well as previously.

This concept is perhaps best illustrated by a simple example. Consider
a two-player game with two strategies, C andD. The payo�s of S1’s choice
against S2 are encoded in the following payo� matrix:

M =


C D

C 5 0
D 9 1

. (2.19)

The strategy choices of S1 and S2 are indicated by the row and column labels
respectively. The entries in the matrix give the payo� to S1 in each case. The
payo�s to player two are given by the transpose ofM. Thus, if S1 chooses C
and S2 D, S1 receives payo� zero and S2 payo� nine. The Nash equilibrium
for this game is that both players adopt the strategyD.

To see this, consider starting position where both participants play C,
if S1 keeps her strategy, a change from C to D by S2 increases his payo�
from �ve to nine. Now S2 cannot increase his payo� any further and is thus
disinclined to change strategy. In this situation, S1 increases her payo� by
switching fromC toD: her payo� changes from zero to one. Now no further
changes are possible without the cooperation of the two players, any change
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by a single player in their strategy is downhill in payo� space.
This raises an interesting ‘paradox’. The rational choice of participants

in this game seems to an outside party to be highly irrational. Naïvely we
expect the C state to be the correct choice of rational players, but are forced
to conclude that this is not the case. This is an o�-raised criticism [29, 64, 65]
of game theoretic results, namely that real participants do not behave in the
manner predicted by analysis. See for example the experiments performed
by Flood [22] and the meta-analysis of experiments by Sally [60] showing
that the assumptions of rational self-interest are not always good ones.

2.2.3 Mixed strategy equilibria

The game shown in equation 2.19 has a Nash equilibrium in pure strategies.
That is, the equilibrium state is to choose a single strategy. Such a state does
not always exist. Some games have a Nash equilibrium in which multiple
di�erent pure strategies feature. These mixed strategies, which we encoun-
tered in section 2.2.1, take the form of a probability distribution over pure
strategies. Nash proved that while not every game has a pure strategy equi-
librium, every game with a �nite number of strategies does at least have a
mixed strategy equilibrium [54]. A classic example of such a game is rock,
paper, scissors.


R P S

R 0 −1 1
P 1 0 −1
S −1 1 0

. (2.20)

There is no pure strategy equilibrium in this game, since no single strategy
dominates the other two. Instead, there is a mixed strategy equilibrium in
which each strategy is played with equal probability of 1

3 . This maximises
the payo� against a rational opponent.

A number of problems have been raised with the concept of mixed strate-
gies. Primarily that players of a game will rarely have a perfect random num-
ber generator available to them (which would allow correct mixing of pure
strategies). Thus, the interpretation of a mixed strategy is somewhat di�-
cult. One proposal is to think of a mixed strategy as an expectation of the
possible strategies an opponent will play. An alternative appealing interpre-
tation is that provided by evolutionary game theory which we expand upon
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in the following section. Developed in the 1960s and 70s primarily by evo-
lutionary biologists [30, 41, 46], it applies the concepts of game theory to
an evolutionary setting.

2.3 evolutionary game theory

There are a number of criticisms of the assumptions behind the solution
strategies of Nash and von Neumann when they are applied to experiments
with people. Amongst these is the need for participants in a game to be
aware of the form and outcomes of the game and be consciously maximising
their return. This perfectly rational and informed behaviour is then used to
explain why participants choose Nash equilibria as their strategies. Experi-
ments show that real participants o�en do not make the same choices that
game theory predicts: there is o�en a higher level of cooperation [22, 29,
60, 63]. This suggests that the solution concepts applied are not those that
participants actually use.

Furthermore, if we wish to use the models of game theory to explain
the development of stable strategies in, for example, biological systems, the
Nash solution concept is not a good one. For example, we might wish to
describe the behaviour of animals competing for the attention of a mate.
The simplest game theoretic model that captures this is the Hawk-Dove or
Chicken game [45, 46]. In this game participants either escalate a con�ict
(hawks) or back away (doves) The payo� matrix is given in equation 2.21
with C > V


H D

H
V−C
2 V

D 0 V
2

. (2.21)

If we wish to use such a game to model animal behaviour, we need to
come up with a solution concept that does not require the participants to act
rationally and with perfect information. Evolutionary game theory provides
this. The idea is to consider how di�erent strategies will fare under selection
in an in�nite well-mixed population of players. Rather than being concerned
with the equilibrium strategy, we consider the dynamics of strategies under
replicator equations.

As an example, consider the Hawk-Dove game. We can think of the pay-
o�s to players as corresponding to �tness gains in a population of individual
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animals. A hawk encountering a dove in competition for breeding grounds
will get a positive payo� and will produce a larger number of o�spring: it
will have a higher �tness gain. With a few simple assumptions we can write
down how the proportion of hawks in a population will change.

Let the initial fraction of hawk strategies be p and let the base �tness of
competitors who have not played be w0. If individuals pair o� at random
and engage in a single contest the �tness of hawks will be

wh = w0 + pE(H,H) + (1 − p)E(H,D) (2.22)

and that of doves

wd = w0 + pE(D,H) + (1 − p)E(D,D). (2.23)

WhereE(X, Y) is the �tness gain to a player ofXwhen they encounter a player
of Y. Individuals now reproduce asexually in proportion to their �tness and
so the new proportion of hawks in the population will be

p ′ = p
wh

pwh + (1 − p)wd
. (2.24)

The stable strategies are given by the �xed points of equation 2.24. The
criteria for stability de�ne an evolutionarily stable strategy or ess.

2.3.1 Evolutionarily stable strategies

The concept of evolutionary stability is not a new one: a population is stable
if it is resistant to invasion by a mutant purely through natural selection.
That is, the mutant has a lower Darwinian �tness than the population. The
ess is then simply a strategy choice which performs as well or better against
itself than any mutant while the mutant performs less well against itself.
More formally, denote the expected �tness gain of strategyA against strategy
B by E(A,B) then A is an ess if

E(A,A) > E(B,A) or (2.25)

E(A,A) = E(B,A) and E(A,B) > E(B,B) (2.26)
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2.3.2 Mixed strategies in evolutionary game theory

Evolutionary game theory allows us to de�ne mixed strategies in a much
more natural way than our previous de�nition (see section 2.2.3). Recall
the requirement that participants in the game have to draw from a speci�ed
probability distribution if they are to correctly follow a mixed strategy. This
is much simpli�ed in evolutionary game theory. For example, consider an
allele that only allows pure strategy phenotypic expression. If the ess is a
mixed strategy, what happens to the population? In the case of a game with
two pure strategies, the stable state of the population is one in which each
genetic type appears in proportion to the frequency its strategy is played
in the mixed ess. For example, if the ess is ‘play A 60% and B 40%’, the
population will have (in its stable state) 60% of typeA players and 40% type
B players.

2.4 a return to models of sales

Over the years many models of competition and sales have been developed.
Prior to Nash’s work, these were all analysed in a rather ad hoc manner. Nash’s
general framework, however, makes analysis easier and allows us to precisely
de�ne equilibria in the models. In the context of marketplace games, the
Nash equilibrium is the state in which all sellers make the same pro�t3 and
no �rm may improve on their situation by varying their strategy without
some other �rms also varying strategies. That is, if the sellers can adjust their
prices, the Nash equilibrium is a set of prices such that any seller changing
their price will make a negative pro�t.

The reason for the proliferation of models is the wish to explain how
price setting in marketplaces works. We shall give a brief survey of some
representative models and enumerate their successes and failings.

We have already described the price-setting models of Cournot and
Bertrand. With an introduction to game theory now behind us, we now
go on to consider further models of sales. These models typically concen-
trate on the empirical observation that in real markets there is no single price
for homogeneous products, but rather dispersion of prices. We shall sum-
marise a few of these models and contrast them. One critical thread running
through the section is that these models all assume completely rational be-

3This is conventionally set to be zero
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haviour on the part of participants. Additionally, sellers will always have
perfect information of the market. These are quite restrictive assumptions
that ideally we would like to relax such that we more closely mimic the real
world.

The models we present in the next few sections, and indeed, most ana-
lytically tractable models of price dispersion, do not take into account any
explicit spatial structure. Search costs imply that travel to sellers to deter-
mine prices is not free, however, there is no attempt to factor in di�erent
search costs for near and far sellers (for example). The systems considered
are all well-mixed. Should a buyer choose a seller at random, they sample
uniformly from the global set of sellers, rather than some (local) subset.

Studies of consumer behaviour show that such models are likely too
simple to capture real decision making processes. Buyer search costs are
not perfectly understood but there is evidence to suggest multiple di�erent
factors play a part, including, but not limited to, distance [47], loyalty to a
store [51] and buyer personality [23]. We do not claim to address all of these
problems in our model, however, the varying of search cost with distance is
easily added to mean-�eld descriptions through the addition of an explicit
spatial structure.

2.4.1 Bargains and Ripo�s (Salop and Stiglitz [61])

This model introduces an extra element of complexity into the price setting
problem in the form of a search cost for buyers. Salop & Stiglitz consider
the case of a large number of buyers L and a number of sellersN all o�ering
an identical product. Each seller has a price pi (i = 1, . . . ,N) and a location
li. Buyers have complete knowledge of the vector prices ~p and the vector
of locations~l, but do not know the mapping between prices and locations.
That is, buyers know the cheapest price, but not where to �nd it. There
is a maximum price buyers are willing to pay for the product, this is the
monopolist’s price pm.

To gain knowledge of the mapping between prices and locations, a buyer
can pay a search cost ci. Salop & Stiglitz group buyers into two sets, the �rst
set have search cost c1 (there are αL of these); the second have search cost
c2 > c1 (there are (1 − α)L of these). If buyers pay to search, they obtain the
mapping between prices and locations and will buy at the minimum o�ered
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price. If they do not search, buyers will pick a random seller. Buyers behave
rationally and thus will only pay to search if pmin + ci < 〈p〉, where 〈p〉 =

N−1 ∑N
i=1 pi is the expected price of a randomly chosen seller. Furthermore,

a buyer will only choose to go shopping at all if the total expected cost is
less than or equal to pm.

Sellers also know the vector of prices charged in the system and addi-
tionally know the distribution of buyer search costs. These two pieces of
information allow them to predict how many buyers will pay to search the
market. This information allows a seller i to know its expected demand
D(pi|~p). Every seller attempts to maximise pro�ts by modifying pi. In doing
so, it considers all other prices in the system as �xed (Nash-like price setting)
but considers the search rule of buyers �xed, rather than the search decision.
That is, a seller calculates, when modifying its price, the new number of in-
dividuals searching and how this a�ects its demand. The cost of supplying
buyers demanding an amount q is given by c(q) = d+v(q) where d is a �xed
cost and v(q) a variable cost with v ′(q) > 0.

As long as pro�ts are positive, new sellers enter the marketplace (increas-
ingN). This ensures that in an equilibrium state all sellers have equal, zero,
pro�t. Due to the �xed cost independent of demand, this state occurs at
�nite N. Salop & Stiglitz show that the only possible equilibrium states
for this market exhibit either a single price or two distinct prices. In the
former case, the equilibrium price is either the monopoly price pm or the
competitive price pp (the latter depends on the search costs of buyers).

The two price equilibrium has some fraction of �rms charging a low
price, and the others a high price. This must be done in such a way that
only consumers paying c1 �nd it worthwhile to become informed: the price
distribution obeys the inequality pmin + c1 < 〈p〉 6 pmin + c2. In this case,
the low price is the competitive price pl = pp; the high price is bounded
above by pm, pl < ph 6 pm.

A �nal ‘equilibrium’ state the model realises is a limit cycle between the
competitive price pp and some high price pL. pL ≈ pp + c if N is large
and c1 = c2 = c. In this regime, an individual seller can achieve positive
pro�ts through some change in price. However, when this happens it will
be bene�cial for a di�erent seller to lower their price to capture buyers by
inducing them to pay search costs. Dependent on the exact dynamics of
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price adjustment, seller prices will then oscillate between pp and pL. Salop
& Stiglitz are coy on what form this oscillation might take, merely noting
that it might appear. The driver for the cycle is a seller deciding to change
their price by a large amount to obtain short-term pro�ts. The rest of the
market reacts to this and a price war ensues that reduces 〈p〉 again. In section
6.5 we shall show that our model carries out mean price oscillations that
qualitatively capture this picture.

2.4.2 The theory of sales (Salop and Stiglitz [62])

This model of Salop & Stiglitz attempts to capture an idealised version of
pricing whereby sellers have a product they either sell at an advertised price
or at a temporary (unadvertised) discount. Their model consists of buyers
who live for two turns needing to use one unit of product per turn. The
buyers can obtain these two units in one of two ways. They visit a seller and
buy two units in their �rst turn, paying a storage cost δ to keep the surplus.
On the second turn they do not buy anything. Alternatively, the buyer can
only buy a single unit in each turn. The buyer must pay a transaction cost c
to visit sellers in the second round: we can think of this as a search cost of
some kind. Finally, the buyers have a maximum price they are willing to pay,
pm.

Buyers pick a seller at random and thus there is a price p̂ at which they
are indi�erent to buying either two units or one. If the seller has a price
p < p̂ the buyer will buy two units, if not, only one. This price is given by

p̂+ δ = 〈p〉+ c (2.27)

where 〈p〉 is the expected price of a randomly chosen seller. The paper estab-
lishes that in market equilibrium there are either two prices o�ered – one
low price (at which sellers sell two units to ‘young’ buyers) and one high
price – or a single price. The high price is ph = pm (the monopoly price),
the low price is pl =

pm−(δ+c)
2 . If c = 0 and δ > pm

3 the only equilibrium is
a single price one, with p = pm.

This model again tries to capture how buyers might behave in the ab-
sence of complete information. It demonstrates that should buyers be un-
able to map their knowledge of prices onto locations, price dispersion can
result. Note again that the model posits that buyers have a large amount of
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information at their disposal (the complete price distribution) and that all
participants act perfectly rationally. We have already seen (section 2.3) that
this assumption of rationality, the so-called homo economicus, is likely a bad
one in the context of real people.

2.4.3 A model of sales (Varian [73])

Varian considers the case of sellers pricing to some informed and some unin-
formed consumers in which sellers can vary their price in time by choosing
each turn a price from some probability distribution. This is an attempt
to characterise the phenomenon of sales whereby sellers occasionally o�er
goods at a cheap price to attract more customers.

Varian considers a system in which there are I informed and M unin-
formed buyers. There are a total ofN sellers. Buyers, if they are uninformed,
visit a seller at random. Each seller therefore attractsU = M/N uninformed
buyers. Sellers choose a price on a daily basis from a probability distribution
f(p). f(p) is the pricing strategy for these sellers: they follow Nash-like price
setting in that they maximise their pro�ts conditioned on the known pric-
ing strategies of all other sellers and knowing the number of informed and
uninformed buyers. There is no a priori reason to assume that each seller
should have the same pricing strategy, however, Varian’s model chooses all
f(p)’s equal. Buyers have some maximum price they are willing to pay, this
sets the monopolist’s price pm. Sellers have a cost function for supplying
goods to the buyers, c(q) which is non-decreasing in q. The minimum price
sellers will charge is thus given by the average cost of supplying I+U buyers
(the maximum a seller can expect to attract): pp =

c(I+U)
I+U

.
Varian goes on to show that if N → ∞ and c(q) = k ∀q, prices will be

distributed according to

f(p) =


1

p(1−p/pm)
p ∈ (pp,pm)

0 otherwise.
(2.28)

A plot of this is shown in �gure 2.2.
Again, we note the common criticism of these models: namely, sellers

must act perfectly rationally and be endowed with complete information of
the market. It would perhaps be preferable to construct a model that does
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Figure 2.2 Seller price distribution in Varian’s Model of Sales. This is equa-
tion 2.28 with pp = 1 and pm = 10. There is a logarithmic divergence at the
upper value, indicating that as the number of sellers becomes large, the probabil-
ity of charging anything other than the monopolist price goes to zero.

not put such strict requirements on sellers. Furthermore, the log-divergence
in the price distribution (equation 2.28), indicates that in large systems, the
model behaves as if there were only a single price.

2.4.4 A short summary

These three models are by no means the only proposed methods of reaching
an equilibrium state with price dispersion. Burdett and Judd [12] propose a
model in which buyer search samples a subset of all prices, but all buyers are
equivalent, and show that price dispersion can result. With the advent of
readily available computing resources, more complicated models have also
been studied that allow for evolution of optimal strategies [36, 44] using
genetic algorithms. Such models are typically studied under the banner of
agent-based computational economics (see [70] for a review). Typically
these models require detailed speci�cation of individual players and study
the behaviour of groups of individuals. A criticism of this approach is the
speci�city of the models: each new market must be modelled di�erently
and it is di�cult to draw generic conclusions from the model. In developing
our model we shall suggest that there is a happy middle ground to be found.
It is possible to construct a model that is simple and yet does not rely on
complete rationality of individuals to produce price dispersion.
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2.5 the problems in believing mean field models

All the models we have described so far are mean �eld-like in their construc-
tion. Sellers are aware of the entire distribution of competitor prices; buyers
are aware of the all the sellers. When buyers choose at random, they pick
from a well-mixed population, such that the mean price they observe is the
global mean. Equally, when they search, they can search exhaustively and
thus will pick the globally cheapest price.

One feature that these models throw away by design is the ability to dif-
ferentiate between participants purely on account of their spatial position in
the system. That is, there is no concept of di�erent sellers competing against
di�erent opponents due to spatial locality. We shall now consider some sim-
ple models where such an approach throws away vital information about
the system. In these models, microscopic simulation of the dynamics on a
spatial playing �eld produces behaviour very di�erent from that suggested
by mean �eld analyses. In light of these results, we argue that in the case of
price competition a mean �eld approach may well not be ideal.

2.5.1 The prisoner’s dilemma

One simple game theoretic model that has been studied in detail in a spa-
tial setting is the prisoner’s dilemma. The zero-dimensional version of this
model was �rst studied by the rand cooperation in the 1950s as a simple
model of the arms race between the usa and ussr, it �rst appears in a now
unfamiliar form in Flood [22]. The formulation in terms of two prisoners
is due to Tucker [42].

Two criminals are caught at the scene of a crime and are each, indepen-
dently4, o�ered a deal. They may choose either to implicate their partner
(defection), or remain silent (cooperation). The maximum possible sentence
for this crime is ten years. The payo� in the game corresponds to a reduc-
tion in the length of incarceration. A typical payo� matrix for the game is
shown in equation 2.29. So, for example, if one player defects and the other
cooperates, the �rst gets a prison sentence of 10 − T = 0 years, the second a

4That the o�ers are independent is crucial: the game setup assumes that the prisoners
cannot communicate and arrange to cooperate for mutual bene�t
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sentence of 10 − S = 10 years.


C D

C R = 9 S = 0
D T = 10 P = 6

. (2.29)

HereC andD are respectively cooperate and defect. R is the reward for coop-
erating, T the temptation to defect, P the punishment for mutual defection
and S the sucker’s payo� for cooperating in the face of defection. The general
form of the game has

T > R > P > S (2.30)

and
R >

T + S

2 . (2.31)

The latter requirement is to ensure that the mutual cooperation state is more
bene�cial than playing a mixed strategy ofC andD each with equal probabil-
ity. With these two requirements satis�ed, the Nash equilibrium is for both
players to defect. This is not an optimal solution, were they to cooperate,
both prisoners would receive a short (one year) prison sentence as opposed
to the longer (four year) sentence they receive for mutual defection.

In an analogy with the models of price competition we have presented,
if sellers were able to cooperate (by agreeing to charge some high price) they
would obtain a much higher payo� than mutual defection (price undercut-
ting until the competitive price is reached). Proposed extensions to the pris-
oner’s dilemma allowing cooperative strategies to �ourish suggest methods
whereby the same could occur in price setting games.

2.5.1.1 The prisoner’s dilemma and altruism

The prisoner’s dilemma can be seen as a conceptualisation of the problem
facing altruists (cooperators) in evolution. Darwinian selection only acts
at the individual level and so altruistic behaviour which reduces individual
�tness (but increases group �tness) cannot be selected for. In the context
of the prisoner’s dilemma the problem is easy to see. Consider a population
of individuals composed entirely of defectors, a single mutant cooperator
will perform less well and will be selected against. Similarly, in a population
of cooperators, a single defector performs better and will be preferentially
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selected for in an evolutionary setting. We note that recent work suggests
that the prisoner’s dilemma is not the most appropriate model in some cir-
cumstances (see for example [16, 77]). For the purposes of our exposition,
however, it is a simple and useful choice.

We might argue that this is a moot point: that altruism in humans re-
quires a high degree of reasoning not captured by the prisoner’s dilemma.
If, however, we assume that animals are not in possession of such reasoning
ability the problem of cooperation is still extant. A proposed answer to this
problem comes in the iterated prisoner’s dilemma [2]. If a game is played
multiple times against the same opponent then defection is no longer always
a dominant strategy: the repeated interactions can support cooperative out-
comes [1]. This model does not provide the whole story, see for example
[77] and [20] for short reviews of some models for the generation of coopera-
tive behaviour. Our interest in it here is as an inspiration for our marketplace
model: repeated competition events allowing for richer behaviour than a
one-o� interaction.

The iterated prisoner’s dilemma came to prominence in the early 1980s
with a computer tournament organised by Axelrod and Hamilton [2]. Ax-
elrod invited submission of ‘players’ – algorithms for choosing whether to
defect or cooperate – to a computer tournament in which said players would
compete pairwise in an iterated prisoner’s dilemma game.

Players competed in this pairwise manner with the number of rounds
determined by a parameterw setting the probability of meeting again. That
is, two players would play for one round with probability one, for two with
probabilityw, for three with probabilityw2 and so forth. Players were aware
of the history of moves and could use this information to choose a best re-
sponse in the next round. All strategies submitted to the tournament played
each other in a round-robin fashion and were subsequently ranked according
to their average score. In this non-evolved tournament, the best performing
strategy was one which demonstrated some elements of altruistic behaviour.
Named tit-for-tat, the idea was among the simplest submitted: the strat-
egy would cooperate on �rst meeting a new opponent and in subsequent
rounds simply play the opponent’s previous move. Axelrod showed [2] that
tit-for-tat was an evolutionary stable strategy (i.e., uninvadable by a mutant)
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if

w >
T − R

T − P
and

w >
T − R

R− S
.

(2.32)

Why does tit-for-tat demonstrate altruism? The claim is that tit-for-
tat never makes the �rst escalatory move in a con�ict, and furthermore is
easily willing to forgive, signs of reciprocal altruism. Clearly, however, such
a strategy does worse against a population entirely consisting of defectors
than another defector, due to losing in the �rst round. Tit-for-tat does not
explain how a single altruist can evolve to stability in a hostile population.
Further, real life situations rarely consist solely of pairwise interaction and
punishment at this level.

Nowak and May [57, 58] propose a solution to this problem. They carry
out a simulation of the prisoner’s dilemma on a square lattice. Individual
sites of the lattice adopt a single strategy which they play against all eight
neighbours (�gure 2.3). The game is played multiple times and sites change
their strategy at the beginning of each round. An evolutionary update rule is
used: sites compare the score of their neighbours and themselves and adopt
the strategy which obtained the highest score in the previous round.

The steady state obtained in this model is dependent on the relative
values of the payo�s. If the system consists purely of cooperators, a single
defector will have the best score and will locally replicate. However, once
multiple defectors sit in a cluster together, they do not necessarily perform
better than cooperators. For instance, consider the con�guration of sites
shown in �gure 2.3. As the �gure shows, the payo� of a player in the game is
dependent on its neighbourhood. It is not a given that an all-defecting state
will dominate. In fact, choosing S = P = 0, R = 1 and T = b > 1, Nowak
& May �nd three distinct regions. Clusters of defectors shrink for b <

1.8, clusters of cooperators shrink for b > 2 and cooperators and defectors
coexist for 1.8 < b < 2 [58]. Thus it seems, at least for this system, altruism
can be a viable strategy: although the level of altruists is not particularly high,
around 32% of the population. Further, altruists are still highly invadeable
by cheaters, it is just cheaters doing badly against one-another that stops
them invading entirely.
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1 2 3
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Figure 2.3 Diagram showing nine sites in a spatial prisoner’s dilemma game.
Circles are defectors, squares are cooperators. The remaining sites in the system
are all cooperators. The best performing defectors are at sites one and nine: they
get payo� 3P+ 6T . Sites two, three and six get payo� 4P+ 5T , site �ve gets payo�
6P + 3T . The cooperators at sites four and eight get 3S+ 6R while site seven gets
S + 8R. If S + 8R > 3P + 6T then site �ve will switch to a cooperating state,
similarly for sites one and nine.

2.5.2 Spatial patterning in ecological systems

In observations of natural systems, we o�en observe spatial clustering and
patterning of individuals within a reasonably homogeneous background, see
[15] for one particularly striking example. In the following short example
[81], we consider a system that undergoes no evolution of strategies, just
birth and death of individuals. This model also demonstrates how a mean-
�eld analysis can produce ‘incorrect’ results.

Consider a system of di�using particles with number density n(x, t),
di�usion constantD, dieing at rate µ and reproducing asexually at rate λ. If
n is large we might write down a continuum approximation, the advection-
di�usion-reaction equation:

∂tn = D∇2n+ (λ− µ)n. (2.33)

If the initial population of particles is uniform everywhere and with λ = µ

then n(x, t) = n(x, 0). That is, the population density remains constant
in space. Microscopic simulations of such a process show that this does
not occur. Instead, typical results show strong clustering of particles. This
occurs because death acts everywhere uniformly, but birth of particles is local,
introducing correlations. If the di�usion is slow, then the random-walking
of particles will not destroy all the correlations in their positions before
another reproductive event occurs, leading to patchiness. The noise term
ignored in the mean �eld model becomes important in specifying behaviour
in individual realisations of the system. We will carry this idea into our
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model of a marketplace: allowing some players to withdraw from the game
temporarily will lead to �uctuations in the prices buyers observe (even if
they can search the entire market).

2.6 motivation for considering spatial marketplace
models

As both the examples of a section 2.5.2 (spatial birth-death processes) and
section 2.5.1 (a spatial prisoner’s dilemma game) show, if there is an element
of spatial locality to a process along with reproduction and death, explicitly
modelling the system and solving the continuum mean-�eld equations can
lead to widely di�erent results. With this in mind, especially given the in�u-
ences on economic theory that evolutionary game theory has had, it seems
somewhat surprising that there is a lack of literature dealing with spatial
analogs of mean-�eld-like marketplace games.

This is perhaps a result of preferring to consider much more complicated
virtual-world models in simulation studies, the simple models having already
been solved. However, as the short examples above show, the details of mi-
croscopic simulation – which are typically more life-like than mean-�eld
assumptions – need not be irrelevant. The physicist’s mentality, that the
large-system limit is the interesting case strikes a happy medium here. We
can think of the simple game-theoretic models as corresponding to mean-
�eld analyses: in these cases, the system is essentially zero-dimensional and
the mean �eld limit is valid (since there is no space for spatial structure to
exist in). At the other end of the scale are complicated agent-based simula-
tions with a large number of parameters that must be obtained by calibration
against data (for example models of disease spread such as foot and mouth
[35] and sars [21]). The aim of these models is to provide realistic quanti-
tative predictions and guidance for policy makers.

Such approaches, by design, do not explore the full phase space of the
models. Rather, they suggest the likely best course of action in an outbreak.
Due to the modelling methods, it is not always possible to claim with any
certainty that the demonstrated predictions are the ‘best’ result: ‘what if ?’
questions are hard to answer.

Given these issues, it seems useful to be able to construct models which
interpolate between the two regimes: agent-based models which have only a
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small set of adjustable parameters. In this way, we are able to study how spa-
tially structured models deviate from mean �eld results in a manner which
allows understanding of why they do so. Clearly, there are drawbacks to this
approach. The results we get will not likely provide testable quantitative
predictions: there are too many factors that will have been thrown away.
However, we may �nd that we can make qualitative claims about more com-
plicated systems. Instead of guessing at parameters which may in�uence the
behaviour of a system, we can construct a model that studies if one particular
parameter changes the behaviour.

2.7 summary

To sum up, there are many theoretical models of seller competition, each
adapted to a particular interpretation of marketplace dynamics and study-
ing slightly di�erent situations. The ideas of informed and uninformed con-
sumers are a step towards full spatial separation in the models and demon-
strate that it is possible for multiple di�erent prices to exist in the equilib-
rium state. All these models share the Nash equilibrium feature of equal
pro�ts amongst all �rms (conventionally this is set to zero in analysis). This
is clearly a drawback if we wish to explain price-setting in the real world
where pro�ts can vary between sellers.

We have also seen that mean-�eld models can produce strikingly di�er-
ent results when spatial heterogeneity is added: local correlations become
important. Given results of this kind in other �elds, we suggest that the
addition of explicit spatial structure to zero-dimensional marketplace mod-
els presents an interesting line of enquiry. Such a model should attempt
to bridge the gap between the simple game theoretic analyses and compli-
cated multi-parameter ‘computer worlds’. In the next chapter we present our
model in detail, drawing on the ideas presented here.
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an evolving price-setting market

3A common criticism running through the models of price setting we de-
scribed in chapter 2 was the need for perfectly rational participants to obtain
the equilibrium state. A further issue, raised in section 2.5, was the mean
�eld like property of the models: in the presence of �ucutations, such an
analysis may not provide the whole picture. In this chapter we construct a
simple model of price setting to address these concerns.

3.1 overview

Our model is a simple spatial extension to Bertrand’s model of competition.
We consider N sellers all producing an identical product. There are many
buyers, each aware of just two sellers. As in Bertrand competition, sellers
compete on price: a buyer will choose the cheaper of two sellers. The set
of links created by the pairwise competition between sellers for individual
buyers is encoded in a competition network. Sellers are not able to vary their
production quantities: they always produce enough to satisfy all potential
buyers. Poorly performing sellers are removed from the system and replaced
with new sellers. These new sellers pick a new price to compete with.

3.2 specifics of the model

3.2.1 The competition network

Most of the results we consider will be for sellers arranged on a regular net-
work – we will show that consideration of di�erent networks produces the
same results given our choice of dynamics. The regular network we choose
is ann-dimensional square lattice. Sellers are placed on the sites of the lattice
and compete pairwise for buyers (represented by the bonds of the lattice).
Rather than making sites at the boundary special, we use periodic boundary
conditions. Figure 3.1 shows the network structure for the two-dimensional
case.
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Figure 3.1 Schematic of buyer/seller spatial structure in the two dimensional
case. Sellers are shown as squares, buyers as circles; links are shown as lines with
implied periodic boundary conditions

3.2.2 The characteristics of buyers and sellers

Sellers exhibit a single external feature which attracts buyers (or not): we
shall call this the price. This deserves some elaboration. In a real world situa-
tion, buyers do not only consider the price of goods when they go shopping
[23, 51]. Factors such as the levels of service, quality of product and many
more play a rôle. However, this study does not profess to be an in-depth
analysis of buyer behaviour. We therefore assume that buyers are all rea-
sonably alike and thus will settle on a similar metric when evaluating their
shopping options. Sellers may adjust a number of di�erent internal factors
in production, but this translates to a change in a single variable as far as their
attractiveness to buyers is concerned. In the model of Bertrand competition
this is the price and we retain the nomenclature here.

Buyers are constrained to visit a small subset of all N sellers. The mo-
tivation behind this choice is that, for many products, a buyer does not ex-
haustively visit every seller in town before making a choice. The cost of
searching the space of sellers is too high. We therefore choose a very simple
search cost. For a �nite number of sellers the search cost to a given consumer
is zero, for all others the search cost is in�nite. Within this �nite number
of sellers, a buyer will always visit the cheapest seller; should sellers exhibit
identical prices, a buyer will choose randomly between them. Buyers have a
�xed demand which we set to one unit.

Sellers are assumed to know the maximum the number of buyers they
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can attract. They produce enough to satisfy the demand of all potential
buyers, with a production cost of one per unit. Thus, a seller with three po-
tential buyers will have an overhead of three units. This sets the competitive
Bertrand price to p0 = 1 in the equivalent pairwise competition game. Note
that sellers have a �xed cost and so a seller with p = p0 must sell to all its
potential buyers to avoid making a loss.

3.2.3 Identifying poorly performing sellers

Our sellers do not perform Nash-like price-setting (choosing a price by as-
suming rationality of all participants). Instead, they choose a price and keep
it until they are identi�ed as performing badly. When this occurs they leave
the game temporarily. Upon reentry they pick a new price. The details of the
reentry and price-picking step are described in section 3.2.4, �rst we must
decide how to pick out poorly performing sellers.

The metric we choose to de�ne poorly performing sellers is the capital.
This is the sum of a seller’s pro�ts (or losses), the capital update is detailed
in section 3.3. If the capital of a seller is negative we consider the seller to
be performing poorly and remove it from the system. Note that this is the
only form of seller removal in the system. Unlike other evolutionary models,
we do not impose an exogenous death rate on sellers. The removal of sellers
emerges purely from the dynamical rules.

3.2.4 Reentry of sellers

Bankrupt sellers in the system do not pay any overheads and are not visible
to buyers. At these vacant sites, a new seller can enter the game with capital
set to zero and a new price. This reentry occurs with probability γ ∈ (0, 1],
set by the initial conditions. Note particularly, for γ < 1 a site may remain
vacant for multiple selling rounds. Those sellers in competition with this
vacant site will be in a monopoly situation: the buyers will have no choice
in their shopping destination.

When the new seller chooses a new price, they do not pick from the
distribution set by the initial conditions. Instead, we allow a newly entered
seller to observe the distribution of prices exhibited by all non-bankrupt
sellers. Again, we choose an evolutionary approach when picking a new
price. The new seller chooses uniformly at random from the set of non-

33



bankrupt sellers (i.e., they choose a price from the recently observed price
distribution). The seller’s new price is obtained by copying this random
price with some noise.

As an example, consider a vacant site i. A new seller arrives at this site
with probability γ and takes a price pi(t+ 1) = pj6=i(t)+ηwhere j is chosen
uniformly at random from all non-bankrupt sellers in the system and η is
a noise term. The details of this update scheme are given below in section
3.3.1.

We can see that this update scheme makes no strong assumptions on
which strategies might be good ones. It only assumes that surviving strategies
are better than ones that are not (this seems reasonable). Unlike Nash-like
behaviour in which sellers would update their price to maximise pro�ts,
choosing a price from the set of all live sellers is equivalent to minimising
the probability of bankruptcy. We can think of this a bit like a probabilistic
minimax procedure, minimising the maximum loss.

Although this goes against the ideas espoused in game theoretic settings
of homo economicus, a completely rationally acting participant in a game, this
is not necessarily a bad thing. Said metaphor has been shown in a number
of real world experiments to be a bad �t to actual human behaviour. Even in
cases where the game is small enough and simple enough that players do have
perfect information, they typically do not behave as game theorists would
predict (c.f. section 2.3 and Flood [22]). Indeed, some economists suggest a
need to move away from homo economicus to a more human participant in
models [40, 71].

3.2.5 Problems facing a rational price-setter

A further reason for not implementing Nash-like behaviour in our sellers is
the stochastic nature of competition. At any one time, some number of a
seller’s competitors will be bankrupt. The pro�t-maximising strategy for a
seller will vary according to how many bankrupt opponents it encounters.
This makes the strategy optimisation problem hard. Consider for example
the case depicted in �gure 3.2. If seller one and buyers A and C do not
exist, the problem reduces to the Bertrand case (assuming that both sellers
are always active). However, if seller one and buyer A start trading, the
optimisation problem seller two must solve is signi�cantly harder. Consider
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1 A 2 B 3 C

Figure 3.2 Part of a one-dimensional lattice, sellers shown as orange squares,
buyers as blue circles. This �gure illustrates the optimisation problem facing a
seller when choosing a price: see text for details

a situation with the prices of sellers being given by P1 = 4, P3 = 2, with a
cost of production D = 1 per buyer. The pro�t/loss made by seller two is
∆c = θ(P1 −P2)P2 +θ(P3 −P2)P2 − 2D. There are multiple strategies which
allow for the same pro�t, however, the maximum pro�t is not made (as one
might initially assume) by undercutting both sellers, but rather (in this case)
by only undercutting seller one. The former strategy, with P2 = P3 − ε gives
∆c = 2 − 2ε: the latter has P2 = P1 − ε and ∆c = 2 − ε. Figure 3.3 shows
the pro�t-loss curve for di�erent strategy choices by seller two.

2
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0

0 3 4 5

Pro�t

Price

Figure 3.3 Pro�t (∆c) as function of price for seller two with P1 = 4, P3 = 2,
D = 1 for the three �rm situation described in text and illustrated in �gure 3.2

The problem becomes even more di�cult when γ 6= 1, in this case, the
best (pro�t-maximising) strategy can only be determined post facto. A seller
cannot predict through rationality assumptions when its competitors are
bankrupt, since the state of bankruptcy is not a strategy choice, and thus
cannot choose the best response strategy to a dead competitor (namely to
charge as much as possible). We might think that, given that an opponent
will sometimes be dead, to maximise the expected pro�t a seller should set
p = ∞. This is not a viable strategy. An opponent’s demise is in part related
to whether they are able to outcompete us. With a price of p = ∞, the
opponent will likely never be bankrupt, since they may charge p < ∞ and
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make a large, �nite pro�t. Note that a seller cannot react to an opponent’s
bankruptcy by changing price: Nash price-setting takes the strategy of an
opponent as �xed and maximises pro�t subject to this constraint. Sellers are
not able to observe the bankruptcy state of their opponents until a�er they
have made their strategy choice, they cannot therefore adjust accordingly.

3.2.5.1 A simpli�ed Nash equilibrium analysis

If we make the standard economic assumptions of a well-mixed system, ra-
tionality and perfect information it is possible to �nd the Nash equilibrium
price distribution. We do so here to later compare the result with our spa-
tially separated model. In our model, individual sellers are constrained to a
single, �xed price (pure strategies in the parlance of game theory). However,
we know from section 2.3.1 that the mixed strategy Nash equilibrium, if it
exists, will be exhibited in the ensemble average of the population of pure
strategies. Thus we posit that the distribution of prices observed in the sys-
tem will resemble the Nash equilibrium of the non-spatial game. We now
wish to �nd the Nash equilibrium strategy.

We assume there is a distribution of prices f(p) and impose that f(p) is
de�ned on the interval (−∞, ∞). In a Nash equilibrium, all prices have the
same payo�. A seller with p = 0 has payo� −d and so we include all other
prices with payo� −d in our distribution. The payo� to a seller with price p
is given by

π(p) = p

∫∞
p

f(p ′)dp ′ − d. (3.1)

This must be equal to π(0) for all p and so∫∞
p

pf(p ′)dp ′ − d = 0
∫∞
0
f(p ′)dp ′ − d. (3.2)

f(p) is a probability distribution and so the integral on the right hand side
of equation 3.2 if �nite. We thus �nd that

p

∫∞
p

f(p ′)dp ′ = 0. (3.3)

If p < 0, the le� hand side of equation 3.3 is negative, ruling out any negative
prices in our equilibrium. If p > 0 the relation only holds if the integral is
zero: this is only possible if f(p) is a δ-function at the origin. Hence the Nash
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equilibrium price distribution is

f(p) = δ(p). (3.4)

Note how this is di�erent from the Bertrand equilibrium, for which we have
f(p) = δ(p − 1). This is due to the constant �xed cost in our model. In
Bertrand’s model, sellers can produce on demand and pay no costs if they
experience no demand. In our model, sellers experience costs even if they
have no demand. The di�erence leads to the discrepancy in the two Nash
equilibria.

3.2.6 The mutation term

One part of the model we need to be careful with is the choice of noise term.
The size of the noise controls how related new sellers are to their parent
seller. When the mutation is small, o�spring are very close in strategy choice
to their parent; when the mutation is large, the parental strategy is only
weakly correlated with the child strategy. In the former case, �tness-based
selection advantages are passed from parent to child, while in the latter they
are not. Clearly then, if we want our model to provide us with meaningful
evolutionary results, we must choose a sensible value for the noise parameter.
In terms of evolutionary behaviour, and interpreting the noise term as a
mutation, we think of the noise being a small e�ect. We shall adopt this
approach here. We take the noise, η, to be distributed uniformly at random
in a small interval centered on zero: η ∈ [−∆

2 , ∆2 ]. ∆ is a free parameter which
must be set in the initial conditions. We �nd that a small value of ∆ requires
∆� p0 = 1.

3.3 implementation of the model

We have described the individual components of our model and given an
overview of how they �t together, but have yet to specify any details of the
update scheme for the dynamics. We do so in this section.

First, we enumerate the properties of buyers and sellers. There areN sell-
ers labelled i = 1, . . . ,N. Each seller has an unvarying price, pi ∈ (0,pmax)1,
capital ci and a binary state variable ai indicating if the seller is alive. If ai

1We only restrict prices to a �nite interval in the initial conditions of the system. Once
the simulation starts, there is no upper limit on the price of a seller.
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is true the seller is alive, if false the seller is bankrupt. There areNb buyers,
this number varies with the speci�c competition network we consider, each
with unit demand. Sellers each produce enough to satisfy their entire local
demand at a cost of one per unit. Denote the demand a seller could experi-
ence by di. A�er a round of selling, if the seller attracts ki buyers, its capital
is ci(t+ 1) = ci(t) + piki − di.

3.3.1 Update schemes

We now consider how to update our model system. We have broadly two
choices: discrete time (synchronous) updates or continuous time (asyn-
chronous) updates. In a synchronous update scheme, everything in the sim-
ulation happens in lockstep and all participants have an equal number of
trading opportunities. In an asynchronous scheme, participants are updated
stochastically and will not always experience an equal number of trading
opportunities. We shall detail the update algorithms for both methods in
turn.

3.3.1.1 Synchronous updates

Under synchronous updates, each seller always experiences exactly the same
steps in the same order. The update scheme for the whole system is detailed
in algorithm 1. We can see how this corresponds to synchronous updates.
Every seller and buyer is updated before moving on to the next stage of the
dynamics.

Note that under these dynamics, sellers are never able to make a pro�t
with pi < p0. Sellers are aware of this, and so for synchronous updates we
restrict seller prices to pi > p0. We assume that sellers will never charge a
price that is guaranteed to make a loss. To set this up in our system, we set a
lower bound on the initial prices: pi(t = 0) ∈ [p0,pmax). In the price update
step we ensure that we never set pi < p0 by updating prices according to
algorithm 2.

3.3.1.2 Asynchronous updates

Asynchronous updates are equally simple to implement, however, we must
put more care into deciding in exactly which manner we make the algo-
rithm asynchronous. We choose to separate the timescales for selling and
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for i = 1 toN do
ci ← ci − di Seller i pays overhead

end for
for i = 1 toNb do

Buyer i visits cheapest live seller (j)
cj ← cj + pj Seller jmakes a sale

end for
for i = 1 toN do
if ci < 0 then
ai ← false

end if
end for
for i = 1 toN do
if ai is false and with probability γ then
ci ← 0
Synchronous-price-update(i) See algorithm 2
ai ← true

end if
end for

Algorithm 1 The dynamics of the system under synchronous updating

j← r j a random live seller
repeat
pi ← pj + η η ∈

[
− ∆

2 , ∆2
]

a noise term
until pi > p0

Algorithm 2 Synchronous-price-update(i): Price update algo-
rithm to ensure that pi > p0

bankruptcy. We would expect the former activity to take place much more
rapidly than the latter in a real �rm and our asynchronous update scheme
models this intuition. To do this we make the buying and selling part of algo-
rithm 1 asynchronous, but carry out reentry to the market in a synchronous
manner. The update algorithm for our choice of asynchronous dynamics is
shown in algorithm 3.

Unlike the synchronous update case, under asynchronous updates, sell-
ers are able to make a pro�t with pi < p0. Sellers are aware of this and so the
price update stage just ensures that pi > 0. The algorithm for performing
asynchronous price updates is shown in algorithm 4.
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for i = 1 toN do
j← r j is a seller chosen at random
cj ← cj − dj

end for
for i = 1 toNb do
j← r j is a buyer chosen at random
Buyer j visits cheapest live seller (k)
ck ← ck + pk Seller kmakes a sale

end for
for i = 1 toN do
if ci < 0 then
ai ← false

end if
end for
for i = 1 toN do
if ai is false and with probability γ then
ci ← 0
Asynchronous-price-update(i) See algorithm 4
ai ← true

end if
end for

Algorithm 3 The dynamics of the system under asynchronous updates

j← r j a random live seller
repeat
pi ← pj + η

until pi > 0

Algorithm 4 Asynchronous-price-update(i): Price update algo-
rithm to ensure that pi > 0

3.4 analogy to a model ecology

Our system, although couched in terms of a simple marketplace, has an
appealing interpretation as a model for a simple ecology. We can think of
the sellers as stationary organisms (plants) competing for a �nite resource
(the buyers) which they can store. Plants compete locally but reproduce
via seed dispersal (global reproduction). The phenotype exhibited by the
plants corresponds to the pricing strategy of sellers. The ‘price’ of a plant
tells us how good it is at both gathering and storing the resource. A low
price corresponds to a plant that is excellent at acquiring resources but poor
at storage and vice versa.
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Note that this is not a strong analogy, we make no claim to be modelling
anything close to a real plant. To take but one example, organisms spring
fully-�edged from seed: this seems an unlikely state of a�airs in a forest.
In the remainder of this thesis we shall predominantly use the economic
parlance for our system, occasionally (where it makes most sense) we shall
draw parallels with the ecological model.

3.5 differences from existing modelling techniques

It is worth pointing out a few key ways in which our model di�ers from exist-
ing models. The idea of an evolutionary approach to �nding steady states in
toy economic systems is not new (see section 2.3), however, we diverge from
standard evolutionary models in that death (bankruptcy in our system) is
not an a priori assumption of the system. A standard evolutionary model
would have bankruptcy occurring as a point process in the system with rates
possibly dependent on the strategy choice and seller capital. In our model
we only track the capital of a seller and remove the seller deterministically
when it drops below an externally speci�ed level. Thus, two externally iden-
tical sellers (they exhibit the same strategy) will not necessarily experience
the same death rate. The model also di�ers from spatial prisoner’s dilemma
games [32, 57, 59] in which both competition and strategy copying occurs
locally. In our system, competition is local but strategy copying is global.

In the next chapters we present results from model simulations demon-
strating that this simple economic system with only one real free parameter
(the reentry probability) exhibits non-trivial steady state behaviour. Includ-
ing, but not limited to, dispersion of prices in the marketplace.
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synchronous time simulation results

4Our �rst foray into the results of the model considers the synchronous time
implementation. We choose this implementation �rst since it is easiest to
perform some validation of the model: it is easy to specify the expected
steady state behaviour in the γ = 0 and γ = 1 limits and we can check these
against our simulation. Here, we consider the one-dimensional case – this
is to make analysis of the situation simpler. In chapter 5 we will show how
the results extend to higher dimensions.

The chapter has a somewhat exploratory motif. We �rst show that our
model does indeed admit price dispersion in the steady state, one of the main
aims in its construction. Our next step is to show explicitly how dispersed
prices emerge in the early time dynamics. This section also demonstrates
that exact analysis of the steady state will be very di�cult. Having derived
the early time properties, we build a more qualitative picture of the steady
state’s properties. Finally we show when the dispersed price steady state
breaks down and how the system behaviour changes over this transition.

4.1 does our implementation work?

We begin discussion of the simulation results with some validation of the
implementation. If we set γ = 1, we know sellers are always in competition
with all their neighbours. This means that a high priced strategy will always
be uncompetitive. Therefore we expect the γ = 1 steady state price distribu-
tion to be a δ-function at p = p0 = 1 (modulo small deviations due to noise
in the system). If we obtain a di�erent steady state distribution, we know
that the implementation of the model is somehow incorrect.

In the γ = 0 limit, we should �nd a steady state determined only by the
initial conditions. In this case, once a seller �nds itself in a pro�t-making
position, that will never change. The spatial distribution of sellers and their
prices will thus be �xed a�er the �rst round: seller capital will either remain
constant (at c = 0) or rise by a �xed amount every round.

Simple tests show that these two limiting cases are indeed achieved.
With N = 105, γ = 1 and ∆ = 0.08, the steady state price distribution
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is essentially a δ-function at p = 1 as shown in �gure 4.1. The step observed
in the distribution is due to an implementation detail. Recall that sellers
never adopt a strategy that is guaranteed to make a loss, i.e., they always have
a price p > p0 = 1. In our simulation, this is carried out by performing price
updates according to algorithm 2. This update scheme produces the step
we observe in the price distribution. Reducing the size of the noise term
(decreasing ∆) results in a corresponding decrease in the width of the step.
For ∆→ 0 the price distribution becomes a true δ-function at p = 1 (�gure
4.1).
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Figure 4.1 Probability density function of the steady state price distribution
for γ = 1, N = 105 with ∆ as speci�ed. The step observed above p = 1 is
explained in the text

4.2 evidence of a non-trivial steady state

We recall the primary aim in constructing this model, namely to construct
a system which exhibits price dispersion in its steady state by considering a
large number of homogeneous participants. The γ = 1 steady state does not
show price dispersion (other than due to mutation noise); the γ = 0 state
does show price dispersion, but we have argued that this is only due to the
initial conditions.

Simulation of the model with γ = 0.5 shows a steady state which does
admit price dispersion (�gure 4.2). Moreover, the distribution of prices we
obtain is highly non-trivial, it is evidently not a simple distribution such as an
exponential, Gaussian, or Boltzmann-like. The origins of this complicated
structure are not immediately obvious. This con�rms our suspicion that
spatial heterogeneities could lead to price dispersion. Having demonstrated
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Figure 4.2 Steady state price distribution for γ = 0.5, ∆ = 0.04, 0.08 and
0.16, N = 105. The basic structure remains unchanged as ∆ changes but the
peaks broaden with ∆. The peak at p = 1 extends signi�cantly above the axis to
around twelve, but is cut o� for clarity. Note how at very high prices the number
of sellers can go to zero. There are only a small number of sellers with these prices
and so �uctuations can kill all of them; once gone, these prices will not reappear
due to selection pressures

that high prices are sustainable, we wish to understand the nature of the
steady state we obtain.

We �rst show how high prices are able to �ourish at all and subsequently
make a more qualitative argument for the steady state persistence of high-
priced sellers.

4.3 an analysis of the early time behaviour

In addition to the appearance of a wide range of prices in the steady state
for γ = 0.5, we also observe that there are de�nite favoured prices in the
distribution. The distribution is generally decreasing with increasing price,
but there are occasional peaks to be seen. The position of these peaks is of
particular interest and merits further study.

As �gure 4.2 shows, favoured prices appear, broadly, at integer multiples
of the minimum price (p = 1), this is especially noticeable for p > 3. There
is a peak close to p = 2 but it is not nicely centered at p = 2. We explain
the cause of this spreading in section 4.4. Our �rst aim is to explain how
such high-priced peaks can arise at all. To do this we look at the early-time
dynamics of the price distribution (�gure 4.3). These distributions show
an almost immediate appearance of a peak in the distribution at p = 1 and
p = 2 and subsequently at p = 4 and p = 6. Why does this occur?
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Figure 4.3 Early time price distributions showing symmetry-breaking be-
haviour in price structure. The three �gures show price distributions a�er the
indicated number of timesteps in a simulation withN = 106,∆ = 0.08, γ = 0.5.
Note the almost immediate emergence of a favoured price at p = 1 and p = 2
and later appearance of peaks at p = 4 and p = 6

4.3.1 Symmetry breaking

Recall that in this one-dimensional model, sellers can only sell to zero, one
or two buyers in any given round. Consider the �rst round of the simulation.
All sellers initially have zero capital. The cost of production, di, is two units
and so, to avoid bankruptcy (∆c > 0), a seller must make sales totalling at
least two units.

Now consider two sellers with prices p1 = 2 − ε and p2 = 2. To avoid
bankruptcy in the �rst round the �rst seller must make two sales (making
pro�t ∆c = 2 − 2ε), the second only one sale (making pro�t ∆c = 0). The
probability of making a sale is decreasing with increasing price and so there
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will be a discontinuous change in the survival probability as the price of a
seller changes from p = 2 − ε to p = 2.

Since only surviving sellers have their prices copied during the reentry
phase, this asymmetry is reinforced in new sellers leading to an increase in
sellers with p = 2 relative to those with p = 2 −ε. This early-time behaviour
explains the distributions we see in the �rst few rounds, but not why the
peak at p = 2 spreads. This latter phenomenon is examined in section 4.4,
�rst we make the argument for early-time favoured prices more quantitative.

4.3.2 Analysis for the �rst round of the game

In the �rst round of the game the prices of sellers are spatially uncorrelated.
The probability that a randomly chosen seller with price p outcompetes a
neighbouring seller (and thus makes a sale) is therefore just

f1(p) =

∫pmax

p

P0(x)dx. (4.1)

Where P0(p) is the distribution of prices set by the initial conditions

P0(p) =


1

pmax−p0
p ∈ [p0,pmax]

0 otherwise.
(4.2)

The pro�t of a seller makingk sales is simply given by (recall the overhead
d = 2)

∆c = −2 + kp k = 0, 1, 2. (4.3)

All sellers initially have c = 0 and so to avoid bankruptcy a seller with p < 2
must sell twice, a seller with p > 2 only once. The survival probability of a
seller with price p is thus

ps,1(p) =

f1(p)
2 p < 2

f1(p)(2 − f1(p)) otherwise.
(4.4)

This function is plotted in �gure 4.4, we see immediately that sellers with
p = 2 − ε are signi�cantly less likely to survive than those with p = 2.

We now attempt to derive an exact expression for the price distribution
at the end of the �rst round of sales. Subsequent rounds quickly become
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Figure 4.4 The survival probability of sellers as a function of price in the �rst
round of the game with p0 = 1, pmax = 10. Note the discontinuous jump at
p = 2 accounting for the early time increase in the �action of sellers at that price

intractable, as explained in section 4.3.4.
Denote the probability distribution of live seller prices a�er t rounds by

Pt(p). The initial conditions set P0(p) (equation 4.2) and this allows us to
obtain the survival probability given in equation 4.4. Ignoring the mutation
term in the strategy copying stage (equivalent to setting ∆ = 0), we can now
write down P1(p), the price distribution at the end of the �rst round

P1(p) = P0(p) −
[
1 − ps,1(p)

]
P0(p)︸ ︷︷ ︸

Loss from bankruptcy

+γps,1(p)
[
1 − ps,1(p)

]
P0(p)

2︸ ︷︷ ︸
Gain due to reentry

. (4.5)

Simplifying, we �nd (the denominator just ensures correct normalisation)

P1(p) =
P0(p)ps,1(p)

[
1 + γ

[
1 − ps,1(p)

]
P0(p)

]∫pmax
p0

P1(x)dx
. (4.6)

This has an explicit solution

P1(p) =


5(p−10)2(729−γ(p−19)(p−1))

1741095+42246γ p0 6 p < 2
5(10−p)(p+8)(729+γ(p−1)2)

1741095+42246γ 2 6 p 6 pmax

0 otherwise.

(4.7)

Figure 4.5 shows this theoretical result with the equivalent distribution
obtained from simulation. We see an excellent, but not perfect, agreement
between the two. In particular, there is a noticeable discrepancy between
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Figure 4.5 Theoretical and simulated distributions for the price of live sellers
at the end of the �rst round of simulation. The theoretical distribution is given
by equation 4.7 with p0 = 1, pmax = 10 and γ = 0.5. The distribution �om
simulation is obtained with 100 realisations of a system with N = 106, ∆ =

0, γ = 0.5, p0 = 1 and pmax = 10. The distribution �om simulation is a
normalised histogram of observed prices with 200 equal width bins. Inset shows
region around p = 2 where the deviation between theory and simulation is most
noticeable.

theory and experiment close to p = 2. To check if this di�erence is an actual
discrepancy or just noise in the simulation result, we perform a goodness of
�t test.

Our null hypothesis for this test is that the discrepancy we observe is
purely due to noise in the simulation results. In other words, we claim that
the observed empirical distribution consists of data drawn from the theo-
retical distribution given by equation 4.7. The test statistic we use is the
Kolmogorov-Smirnov distance statistic [37]

Dn = sup
x

|Fn(x) − C(x)| (4.8)

where Fn(x) is the empirical cumulative distribution function of n data-
points and C(x) is the hypothesised cumulative distribution function

C(x) =

∫x
p0

P1(p)dp. (4.9)

Just as our dataset is a set of random variables drawn from some distri-
bution,Dn is also a random variable from some distribution. Remarkably, if
Fn(x) is drawn fromC(x) (i.e., if the null hypothesis is true), the distribution
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ofDn is independent of the choice of C(x)1 in the limit of large n [18]

lim
n→∞P(

√
nDn 6 t) = 1 − 2

∞∑
k=1

(−1)k−1e−2k2t2 = ϑ4(0, e−2t2). (4.10)

Where ϑ4(u,q) is an elliptic theta function [25, equation 8.180].
We can now use equation 4.10 to calculate the probability of observing

a particular value forDn given the null hypothesis. This is the p-value of the
test: the probability of observing a �t as bad as we did if the null hypothesis
is true. In this particular case, for which the dataset contains approximately
108 points, the p-value is less than 10−10. We should therefore reject the null
hypothesis that the observed discrepancy between theory and simulation is
purely due to noise.

We note, however, that the theoretical distribution does follow the em-
pirical distribution rather well. It is likely that we only notice a di�erence
with very large empirical datasets. We now consider how large the dataset
needs to be before we can reject our null hypothesis. To do this, we note
that the p-value is a random variable whose distribution is uniform on [0, 1]

if the null hypothesis is true, and strongly peaked at zero if it is false [18].
We have a single large dataset (S) which produces the empirical distribu-

tion we saw in �gure 4.5. From this, we construct many small datasets (si) by
sampling uniformly at random from S with replacement. For each of these
datasets si we can calculate the goodness of �t under our null hypothesis and
obtain a p-value for the �t. We repeat this process many times and construct
a distribution of the p-values so obtained. Figure 4.6 shows the distribution
of p-values obtained when constructing 105 arti�cial datasets with sizes of
103, 104 and 105. When the small dataset contains 103 points, there is no
evidence that we should reject the null hypothesis (the distribution of p-
values is �at). For 104, the distribution shows we should weakly reject the
null hypothesis. For 105, however, the distribution is strongly peaked at zero
indicating that our null hypothesis should indeed be rejected.

4.3.2.1 A further caveat

In writing equation 4.6 we have assumed that the joint survival probability of
two sellers, i and j, is uncorrelated, i.e., ps,1(pi,pj) = ps,1(pi)ps,1(pj). This is

1This result is only true if C(x) is continuous, which is the case here
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Figure 4.6 Distribution of p-values for the null hypothesis that the system price
distribution is drawn �om equation 4.7 for di�erent dataset sizes (N = 103, 104
and 105). The empirical datasets each have p0 = 10, pmax = 10, γ = 0.5 and
∆ = 0. The theoretical distribution has γ = 0.5, p0 = 1 and pmax = 10. Were
the data drawn �om the null hypothesis, the distribution would be uniform. We
therefore reject the null hypothesis except whenN = 103

generally true, unless the two sellers are neighbours. Consider, without loss
of generality, the case where pi < pj. If the two sellers are not neighbours
the survival probability is

ps,1(pi,pj) =


f(pi)

2f(pj)
2 pi < pj < 2

f(pi)
2f(pj) pi < 2 6 pj

f(pi)f(pj) 2 6 pi < pj.

(4.11)

This is easily seen to be equal to ps,1(pi)ps,1(pj), i.e., uncorrelated. If the two
sellers are, however, neighbours, then the joint survival probability is

ps,1(pi,pj) =


0 pi < pj < 2

f(pi)f(pj) pi < 2 6 pj

f(pj) 2 6 pi < pj.

(4.12)

This is not the same as equation 4.11. A similar argument leads to the con-
clusion that the three site joint survival probability is also correlated, for
three neighbouring sellers ps,1(p1,p2,p3) 6= ps,1(p1,p2)ps,1(p3). Our clo-
sure scheme of choosing uncorrelated survival probabilities is evidently quite
good, but not exact and we suggest that this correlation may be the cause of
discrepancy between theory and experiment noted in the previous section.
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4.3.3 Explanation of peaks at prices p > 2

The single round survival probability decreases monotonically above p = 2
and so the analysis of the previous section can only explain the development
of a peak at p = 2 in the price distribution. To explain the peaks at higher
prices we need to consider the survival probability over multiple rounds. Just
as a seller with p > 2 only needs a single sale in the �rst round to survive, a
seller with p > 4 only needs a single sale in the �rst round to survive until
the third round. Denoting the probability of outcompeting a neighbour in
the second round by f2(p), the probability that a seller of price p survives
both the �rst and second rounds is

f1(p)
2f2(p)

2 p < 2

f1(p)(2 − f1(p))f2(p)(2 − f2(p)) 2 6 p < 4

f1(p)(2 − f1(p)) otherwise.

(4.13)

We do not have an explicit expression for f2(p), but it will not be equal to
unity for all prices. There will thus be a discontinuous step in the two-round
survival probability at p = 4. A similar situation will arise for p = 3 in the
three-round survival probability and so forth. This translates to further
symmetry breaking in the price distribution at p = 4 and so on, leading to
favoured prices as observed in simulation (�gure 4.3).

4.3.4 Analysis for the second round of the game

If we wish to derive an exact expression for the price distribution a�er two
rounds, we need to write down the survival probability in the second round.
Unfortunately, this is not possible since the dynamics induce correlations
which we cannot ignore. Our analysis of section 4.3.2 assumes that the sys-
tem is uncorrelated in space, i.e., the probability of outcompeting a neigh-
bour is merely a function of the system price distribution. This is no longer
the case in round two. In addition, we have just shown that the survival prob-
ability in round two can depend on the number of sales made in round one.
We now show that these e�ects are not negligible, making analysis of the
system in rounds other than the �rst very di�cult. To do this, we construct
the second round price distribution assuming there are no correlations and
show that it deviates signi�cantly from the empirical result.
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Ignoring correlations in the system is equivalent to saying that the sur-
vival of a seller in round two depends only on the fraction of live sellers and
the distribution of live seller prices: not on the history. Although we have
seen that the expression (equation 4.6) we derived for the �rst round price
distribution is not quite exact, it is our best e�ort and a very reasonable �t
to the data. We use this result to calculate the distribution of prices in the
second round.

Using equation 4.6 we can calculate the fraction of sellers alive at the
beginning of round two:

ρ2 = γ+ (1 − γ)

∫pmax

p0

P0(p)ps,1(p)dp︸ ︷︷ ︸
mean survival probability

. (4.14)

The probability of making a single sale is then given by

f2(p) = (1 − ρ2)︸ ︷︷ ︸
neighbour bankrupt

+ ρ2

∫pmax

p

P1(x)dx︸ ︷︷ ︸
neighbour more expensive

(4.15)

and the survival probability of a seller with price p is (analogously with equa-
tion 4.4)

ps,2(p) =

f2(p)
2 p < 2

f2(p)(2 − f2(p)) otherwise.
(4.16)

To �nd the live seller price distribution, we need to consider both sellers that
started the round alive, and those that began the round bankrupt

P2(p) =

Alive from round one︷ ︸︸ ︷
ρ2
[
ps,2(p)P1(p)︸ ︷︷ ︸

Surviving

+γ
[
1 − ps,2(p)P1(p)

]
ps,2(p)P1(p)︸ ︷︷ ︸

Reentry

]
+ (1 − ρ2)γps,2(p)P1(p).︸ ︷︷ ︸

Reentry, bankrupt from round one

(4.17)

Simplifying and normalising appropriately we �nd the live seller price dis-
tribution at the end of round two, assuming no correlations, is given by

P2(p) =
ps,2(p)P1(p)

[
ρ2 + γ− ρ2γps,2(p)P1(p)

]∫pmax
p0

P2(x)dx
(4.18)
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To compare this result with simulation, we look at the cumulative distribu-
tion function (cdf)

C2(p) =

∫p
p0

P2(x)dx. (4.19)

We do not give the full expression here, it is about four pages long and o�ers
no real insight.
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Figure 4.7 Comparison of theoretical and empirical cdfs for live seller prices.
The theoretical curve (black) is equation 4.19 with γ = 0.5. The two empirical
curves haveN = 106, ∆ = 0, γ = 0.5. The red empirical curve has sellers accu-
mulating capital, the blue curve has no accumulation of capital in an attempt to
remove correlations. Both theory and simulation have p0 = 1, pmax = 10. The
theoretical cdf does follow the shape of the empirical cdfs, especially the case
of no capital accumulation. However, we can reject (again using a Kolmogorov-
Smirnov test) the hypothesis that the data were drawn �om the theoretical dis-
tribution in both cases.

Figure 4.7 compares the theoretical cdf given in equation 4.19 with
two obtained from simulation. One simulation result is for the completely
correlated case, the other for a case in which we arti�cially set capital to
zero at the end of round one, removing any round-to-round correlation
there. This latter simulation should match the theoretical result in equation
4.19 if there are no correlations in the system other than those induced by
accumulation of capital. Both simulations deviate signi�cantly from the
theoretical result, the no-capital one less so, indicating that both capital
accumulation and the bankruptcy and reentry process induce correlations
in the system which our analysis has not captured.

The problem of capital accumulation and its e�ects on survival proba-
bility are addressed in part in chapter 8. In short, we show how it is possible
to explicitly construct history-dependent survival paths if the price distri-

54



bution is known and the paths are not too long. However, this method
only treats the case of a spatially uncorrelated system. As �gure 4.7 shows
the spatial correlations are non-negligible and so, since the analysis is su�-
ciently complicated even for a δ-function price distribution, we do not �nd
it worthwhile to attempt the same analysis here.

4.4 steady state survival of expensive sellers

4.4.1 What is an expensive seller?

In the following sections, we shall refer to sellers as being either cheap, or ex-
pensive. Our de�nitions of these two sets are determined from the observed
steady state price distribution. For γ = 1 we have already seen (�gure 4.1)
that the price distribution has a single peak at p = 1, the highest observed
prices in this case are p ≈ 1 + ∆. We therefore de�ne any seller with a price
p 6 1 + ∆ as cheap. Conversely, any seller with a price p > 1 + ∆ is, by
de�nition, expensive. We note also that there is typically a gap in the price
distribution between cheap and expensive sellers (see �gure 4.2), making the
distinction more obvious.

4.4.2 Lifetimes of expensive sellers

The analysis of the section 4.3 allows us to see how expensive sellers can
survive in the early rounds of a simulation, but how do they do so in the
steady state? The key factor here is competition-free sales. If an expensive
seller �nds itself in a situation without competition it is able to make a pro�t
and subsequently survive those situations in which it cannot attract buyers.
We must now ask how this can occur in a predictable, long-termed manner. It
is of little use to the survival of an expensive seller if it gets lucky in one round
and makes a sale but then never does so again and subsequently quickly goes
bankrupt.

Of course, it may be that all expensive sellers are short-lived but that there
is enough rebirth of expensive sellers to continue the steady state. Figure
4.8 shows that the expected lifetime is approximately constant for prices
between p = 2.5 and p = 6, but signi�cantly higher for p ≈ 1. Very cheap
sellers are therefore copied a larger number of times in their lifetime than
expensive sellers and we would expect cheap sellers to dominate in the long
time limit. This argument suggests that the expected lifetime of sellers is not
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the only factor in determining steady state behaviour.
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Figure 4.8 Expected lifetime of sellers as a function of price in the steady state.
N = 105, γ = 0.5,∆ = 0.08. Note the peak at p = 1, giving an expected lifetime
of around fourteen. Most other prices have an expected lifetime close to three
rounds.

We now study the distribution of the age of sellers at bankruptcy, divid-
ing sellers into one of two groups: cheap (p < 1 + ∆) and expensive sellers
(p > 1 + ∆). The complementary cumulative distribution functions for
the age at bankruptcy of expensive and cheap sellers are shown in �gure 4.9.
Some expensive sellers survive for the entire lifetime of the system.
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Figure 4.9 Complementary cumulative probability distribution Pr(age > x)

for age at bankruptcy of expensive sellers (p > 1 + ∆, solid) and cheap sellers
(p < 1+∆, dashed) in steady state withγ = 0.5,N = 105,∆ = 0.08. Maximum
possible age in the system is 150000, we see that some sellers almost reach this age,
indicating that they survive essentially inde�nitely. Note the long tail of ages for
both cheap and expensive sellers indicating that sellers do not (all) die according
to a single point process with �xed rate

For a seller with p = 2, this would correspond to having one expected
sale per round. A quick calculation shows that this is highly unlikely if the
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steady state we observe is uncorrelated in space. Consider the empirical price
distribution obtained with γ = 0.5, N = 105, ∆ = 0.08. In this system we
observe that the fraction of live sellers with a price p < 2 is α ≈ 0.75 and
the density of live sellers is ρ ≈ 0.79. Assuming the system is well-mixed, we
can write down the expected change in capital for a seller with p = 2

∆c = −d︸︷︷︸
overhead

+ 2p
[
(1 − ρ)2 + 2ρ(1 − ρ)(1 − α) + ρ2(1 − α)2

]︸ ︷︷ ︸
two sales

+p
[
2ρ(1 − ρ)α+ 2ρ2α(1 − α)

]︸ ︷︷ ︸
one sale

= 2p− 2αρp− d

(4.20)

Putting in the numbers, we �nd ∆c ≈ −0.37. This expected change is not
enough to survive inde�nitely and there must therefore be some correlation
in the system which allows for survival of these ‘uncompetitive’ sellers.

4.4.3 Niche construction and competition-�ee sales

With the knowledge that an expensive seller cannot survive in the system
for a long time if it is well-mixed, we look at the neighbourhoods of long-
lived expensive seller to �nd out how they survive. Essentially, expensive
sellers must appear in positions in the system which increase the probabil-
ity of making a sale. To do this, they must sit in positions that allow for
competition-free sales.

We quickly notice a repeating pattern in the neighbourhood of long-
lived expensive sellers. Almost all such sellers have next nearest neighbours
with a price very close to p0. This scenario is sketched in �gure 4.10.

p1 p2 p3 p4 p5

Figure 4.10 Five site structure observed around long-lived expensive sellers.
Heights of boxes schematically indicate the relative sizes of seller prices. Arrows
show which seller a buyer visits. When the outermost sellers have prices very close
to p0, the inner sellers will make at most a single sale
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4.4.3.1 A simpli�ed example for a seller with p = 2

To see how the structure shown in �gure 4.10 changes the survival proba-
bility of expensive sellers we consider a simple example. Assume there is a
single expensive seller in the system with p = 2 and that all other sellers have
p < 2. Now consider how many sales this expensive seller gets if it is in the
central position in the structure shown in �gure 4.10. The two neighbouring
sellers only ever make a single sale, and (since they have a price p < 2) will
go bankrupt. The survival probability of the expensive seller then becomes
a function of the reentry probability γ rather than the live site density. It
will make either zero, one or two sales with probabilities determined by γ:

1. no sales (∆c = −2) occur with probability γ2;

2. one sale (∆c = 0) occurs with probability 2γ(1 − γ);

3. two sales (∆c = 2) occur with probability (1 − γ)2.

The capital of this expensive thus carries out a random walk with step
probabilities set by γ. If γ > 0.5, this walk is biased towards the origin and
the expected lifetime of the seller is �nite. Otherwise the expected lifetime
of the seller is in�nite (assuming that the sellers at p1 and p2 survive).

4.4.4 Steady state survival of sellers with p < 2

This simple explanation for p = 2 is not the whole story. It fails to explain
how sellers with a price below p = 2 can survive. To treat this case, we must
look at the actual system price distribution, rather than positing a system
that consists of a single expensive seller and many cheap sellers. There are
two ways a long-lived expensive seller can make a pro�t: the neighbouring
site is vacant, or the neighbouring seller is more expensive. Figure 4.11 shows
an example of such a case. In this example we have an expensive seller with
p ≈ 1.7 surviving for more than ten thousand rounds. The �gure shows
the distribution of prices in the neighbouring sites experienced by the seller:
note how some of the time, the neighbours appear with a price larger than
1.7.

For a known price distribution, we can write down the expected change
in capital of a seller with price p < 2 in the �ve site situation depicted in
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Figure 4.11 Price distributions over 10000 rounds of sellers near to a long-
lived expensive seller (this one has p = 1.725 black line). The next-nearest
neighbours both have pricep = 1 for the duration (not shown). The le� and right
neighbours have a distribution that samples the global steady state distribution
(red and blue lines). Note that a dead seller is indicated as having a price p = 0.
The probability that the expensive seller made a sale to the right during the 10000
rounds was 0.625, sales to the le� were made with probability 0.622. This means
the expected pro�t of the expensive seller was 0.15 per round leading to continued
survival. N = 105, γ = 0.5, ∆ = 0.08

�gure 4.10.

∆c(p) = −d︸︷︷︸
overhead

+ 2p
[
(1 − γ)2 + 2γ(1 − γ)φ(p) + γ2φ(p)2

]︸ ︷︷ ︸
two sales

+ p
[
2γ(1 − γ)(1 − φ(p)) + 2γ2φ(p)(1 − φ(p))

]︸ ︷︷ ︸
one sale

. (4.21)

Where
φ(p) =

∫pmax

p

P∞(x)dx (4.22)

is the probability a seller of price p outcompetes a newly entered seller whose
price is drawn from the steady state live price distribution P∞(p). Equation
4.21 can be simpli�ed signi�cantly giving

∆c(p) = 2p
[
1 + γ(φ(p) − 1)

]
− d. (4.23)

Any seller in this situation with a price p such that their expected capital
change is negative will go bankrupt. By setting ∆c(p) = 0 we can �nd the
minimum price which allows survival in such a situation (recalling that d =

2):
pmin =

1[
1 + γ(φ(pmin) − 1)

] . (4.24)
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We cannot derive an expression for φ(p) analytically (see section 4.3.4),
however, we know what the distribution is from simulation. With this in-
formation we can now perform a post hoc analysis of the empirical price
distribution and self-consistently solve for the gap between cheap sellers
with p ≈ 1 and expensive ones. Substituting the empirically observed price
distribution into equation 4.24 we �nd the expected winnings of long-lived
sellers – i.e., sellers in the situation depicted in �gure 4.10. This result is
shown in �gure 4.12. It is evident that the minimum surviving expensive
price approximately corresponds to the price at which expected winnings of
long-lived sellers become positive.
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Figure 4.12 Expected pro�t (le� axis, black) of long-lived sellers as a function
of price in the steady state with γ = 0.5. Data obtained by solving equation
4.25 using an empirically determined steady state distribution (shown (right
axis, red), with N = 105, ∆ = 0.08, γ = 0.5). The grey vertical line marks
the minimum pro�table price as predicted by our theory. We see that the lower
limit of expensive prices (p ≈ 1.5) matches the point at which the expected pro�t
becomes negative reasonably well. However, the expected pro�t does not predict
the structure at higher prices.

4.4.5 Sellers with p > 2

The analysis we have carried out for survival of sellers with p 6 2 needs some
modi�cation for higher priced sellers. The situation is more complicated
in this case. A situation like the one depicted in �gure 4.10 is still possible,
but if the central seller has p3 > 2, sellers can arrive at sites two or four with
2 6 p2,4 < p3 and survive for as long as seller three survives: they have one
guaranteed sale per round. Sellers with p > 2 are thus not as stable in the
structure as those with p 6 2, but they can still survive for a long time. They
are also able to survive in less favourable situations. For example, a seller
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with p > 2 can survive even if only one neighbour is occasionally bankrupt.
Such a seller makes fewer sales, but they can still survive as long as they have
a price

p∗ =
2

1 + γ(2φ(p∗) − 1)
. (4.25)

We can also construct larger structures which display this same stability.
Consider a long line of sellers with prices pi (i = 1, . . . ,n). If p1 = p0 = pn,
then we can construct a system with pn−2 > p∗, p3 = 2

2−γφ(p3)
and pi

increasing between p3 and pn−2 which is only invadeable by a seller at site
n − 1. Such structures allow for enough copying of expensive sellers that
they persist in the steady state. Figure 4.13 shows an example structure with
these properties observed in simulation data.

Figure 4.13 Diagram showing an example expensive structure observed in
simulation (recorded a�er 30000 rounds, N = 105, γ = 0.5, ∆ = 0.08). Each
box is a seller, prices are proportional to the height of a box. Arrows within each
box indicate the long-term sign of∆c. The le�most seller’s∆c is dependent on the
environment to its le� (not recorded), the rightmost seller has p = p0 and thus
keeps a constant (zero) capital. We can see how the structure is only invadeable
in four of the twelve sites (marked with stars) allowing for long-term stability of
expensive sellers

4.5 varying γ

So far we have studied three di�erent choices for γ, the only real free param-
eter in our model. Our analysis of the survival of expensive sellers at γ = 0.5
suggests that there will be some value of γ ≡ γc above which expensive sell-
ers do not appear in the steady state. In the next sections, we study how the
steady state changes as we vary γ. We �rst show that the transition between
a steady state with expensive sellers and one without (herea�er referred to
as the expensive state and Bertrand state respectively) occurs at γc < 1. We
then study the behaviour of the system for small γ and subsequently study
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the nature of the transition.
Note that the transition only happens at γ < 1 if prices are restricted

to some �nite maximum. To see this, consider a system composed entirely
of cheap sellers, except for a single expensive seller with p = p∗. We know
we can put this seller in a structure which allows for non-negative pro�ts,
as long as its price is high enough. Equation 4.24 tells us that the expected
change in capital of this seller is zero if

p∗ =
1

1 − γ
(4.26)

since φ(p∗) = 0 by construction. For any value of γ < 1 we can therefore
choose a p∗ to ensure expected survival of the expensive seller. Although, in
our simulations, we do not restrict the maximum price in the dynamics, we
do set a �nite maximum in the initial conditions. This will lead to γc < 1.

4.5.1 A transition in steady state behaviour

In order to see if a transition in the steady state occurs, we need to de�ne
something that looks like an order parameter. Since we are interested in the
di�erence between the Bertrand state and the expensive state, the obvious
choice is to measure the fraction of expensive sellers in the system, ρexp. In
the Bertrand state this is zero, rising to some non-zero value in the expensive
state. We use a slight modi�cation of our previous de�nition of cheap and
expensive sellers. In order that we do not pick up noise due to occasional
cheap sellers getting a price p = 1 + ∆, we choose to regard sellers with
p < 1.2 as cheap and all others as expensive. Note that this will not have any
real e�ect on our categorisation of sellers, since (as seen in �gure 4.12) there
is a gap in the price distribution between cheap and expensive sellers.

Figure 4.14 shows the variation in the fraction of expensive sellers as a
function of γ, demonstrating that expensive sellers die out well before γ = 1.
Were this an example of a phase transition as observed in typical, physical
non-equilibrium systems [31], we would most likely expect that the order
parameter decays to zero according to a power-law (when γ < γc)

ρexp ∼ (γc − γ)β. (4.27)

We would then estimate a value for the scaling exponent β and �nd the

62



0.44

0.3

0.1

0.00

0.2

0.2 0.4 0.6 0.8 1.0

ρexp(γ)

γ

Figure 4.14 Fraction of expensive sellers, ρexp(γ), before rebirth as a function
of γ. Note sharp rise around γc = 0.7. N = 2×104, ∆ = 0.08. Each data point
is the �action of live expensive sellers observed in a simulation a�er the steady
state has been reached (105 rounds of the game), each such point is then averaged
over forty realisations of the same initial conditions. Errorbars show standard
error in this mean value over the forty realisations

value of γc. This approach does not work here. We note a kink in the decay
of the order parameter near γ = 0.6. This corresponds to disappearance
of expensive sellers with p < 2 as we show in section 4.5.3.1. Our order
parameter therefore goes through a number of transitions rather than just
one, the particular point at which it becomes zero is due to our de�nition
of expensive sellers.

4.5.2 The expensive steady state as γ varies

In the region of parameter space with γ < γc, expensive sellers exist in the
steady state. In this region the large-scale structure of the distribution is
reasonably unchanged. There are peaks in the distribution (the one at p = 4
is especially noticeable) and unfavoured prices in between: for example,
between p = 1 and p = 2 (�gure 4.15).

The most noticeable di�erence is the lower limit of expensive prices,
which decreases with decreasing γ. This may easily be explained by consider-
ing the e�ect of reducing γ on the minimum price with which an expensive
seller can expect survival (equation 4.24). Figure 4.16 shows the minimum
pro�table price as calculated using equation 4.24 and the minimum observed
expensive price in simulation data. The former is calculated using an empir-
ical steady state distribution obtained withN = 105, ∆ = 0.08 and γ = 0.5,
the latter by carrying out simulations at di�erent γ values and measuring the
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Figure 4.15 Comparison of the expensive steady state price distribution as γ
varies. Shown are distributions with γ = 0.2, 0.3, 0.4, 0.5. N = 105, ∆ = 0.08.
The peak at p = 1 has been suppressed (no di�erence occurs here). Note how the
lower limit of expensive prices (p ≈ 1.3) decreases with decreasing γ in line with
the analysis of section 4.4.4, but the overall structure is generally unchanged
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Figure 4.16 Minimum pro�table price as a function of γ found by solving
equation 4.25 with a given ( �xed) price distribution observed at γ = 0.5,N =

2 × 104, ∆ = 0.08. Also shown is the minimum expensive price (p > 1 + ∆)
observed in simulation data in the steady state (errorbars show standard error
in the mean over 40 realisations of the same initial conditions). Up to around
γ = 0.6 the two curves show reasonable agreement. At higher values, the imposed
price distribution is no longer a good �t to the observed one and the agreement
breaks down

4.5.3 The Bertrand steady state

If γ > γc then the steady state we observe is the Bertrand one. This is ex-
pected since the high birth rate means expensive sellers are unable to make
enough competition-free sales to survive. We now study the transition be-
tween expensive and Bertrand steady states more closely. We �rst wish to as-
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certain exactly where the transition occurs. Figure 4.14 showed a transition
around γ = 0.7. We now carry out the same experiment for di�erent system
sizes which shows that this value is not universal. Figure 4.17 shows how the
fraction of expensive sellers approaches zero for di�erent system sizes. We
notice that with increasing system size, the value of γc we observe increases.
This is not completely unexpected, near the transition point the number of
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Figure 4.17 Fraction of expensive sellers as a function of γ for di�erent system
sizes illustrating the change in the point at which expensive sites become unviable.
Shown are systems of size 104, 2× 104 and 8× 104, ∆ = 0.08

expensive sellers drops to O(1) and so stochastic �uctuations in the system
will lead to disappearance of expensive sellers. These �uctuations play the
strongest role in smaller systems. Since expensive sellers will not reappear
spontaneously from a Bertrand state, the small system size simulations may
underestimate the value of γc. Further, as we show in the next section, the
last expensive sellers to disappear are those with the highest prices. These
are the smallest in number and may well not establish themselves at all in
small systems, leading to an underestimate of γc. Our results show that this
transition is not just a function of γ but of the form of the price distribution
at very high prices, and is thus a�ected signi�cantly by the system size.

4.5.3.1 The price distribution during disappearance of expensive sellers

We might think that as γ increases, the �rst expensive sellers to go would
be very high-priced ones. This is not the case. Recall our analysis for the
minimum pro�table expensive price. This price increases withγ. This allows
us to explain the kink that appears in �gure 4.14 at γ = 0.6. Notice that
the expensive price distribution is separated (broadly) into ‘bands’ of prices
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(e.g., �gure 4.2 and �gure 4.15). The high-priced part of the distribution
remains unchanged as γ increases, but expensive sellers with p < 2 become
less pro�table and eventually disappear (�gure 4.18).
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Figure 4.18 Steady state price distributions with γ = 0.58, 0.6, 0.61 and
0.65. Note disappearance of band of expensive sellers with p < 2 at γ = 0.6.
N = 2× 104, ∆ = 0.08. Each distribution is composed of seller prices �om forty
realisations of the speci�ed initial conditions. p < 1.5 prices suppressed for clarity
since no change is observed in this region

This disappearance maps onto the kink observed in �gure 4.14 between
γ = 0.55 and γ = 0.6. The minimum expensive price moves through the
band of expensive sellers with p < 2 and so the fraction of expensive sellers
drops quite quickly (the gaps are �lled by cheap sellers). Once the p < 2
band is completely uncompetitive, the next peak in the distribution is not
until p = 3. Until the minimum pro�table price reaches this level, the
fraction of expensive sellers drops only slowly with γ. There are a series of
such transitions in the system as particular bands of expensive prices become
unpro�table with increasing γ. Figure 4.18 shows a sequence of steady state
price distributions for values of γ near the disappearance of the p < 2 band.

The value of γ at which these transitions occur is dependent on the
fraction of sellers at higher prices (this follows from the arguments of section
4.4). Fluctuations in the steady state will have a large e�ect for small systems
and less of an e�ect for larger ones. This e�ect will be particularly noticeable
in the high price region of the price distribution, since the absolute number
of sellers with these prices is quite small. For a particular system size, however,
the mechanism is always the same. Figure 4.18 shows the behaviour of the
price distribution for a system withN = 2×104 near to the loss of the p = 2
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band (γ ≈ 0.6). Figure 4.19 shows the same event forN = 8×104, although
this time the p = 2 band disappears at γ ≈ 0.66. Note how the distributions
look the same and the p = 2 sellers disappear in the same way in both cases,
despite the di�erent values of γ.
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Figure 4.19 Steady state price distributions with γ = 0.6, 0.66, 0.68 and 0.7.
Note the disappearance of sellers with p < 2 around γ = 0.68. N = 8 × 104,
∆ = 0.08. Each distribution is composed of seller prices �om ��y realisations
of the speci�ed initial conditions. Compare with �gure 4.18. Distributions only
shown for p ∈ [1.5, 4.5] for clarity (the change is minimal outwith this region)

4.5.4 Invasion of the Bertrand state by a high-priced seller

We have argued that the expensive state disappears at high enough γ due in
part to selective pressures (high prices are uncompetitive) and our choice
of initial conditions (setting a maximum initial price leads to bankruptcy
of all high-priced sellers when γ < 1). We have already argued that for any
value of γ < 1, a seller with a high enough price can invade (section 4.5). We
now show that this invasion point is independent of system size (for a �xed
invading price). We also show that the steady state distribution obtained in
this manner has the same structure as that obtained previously.

We generate a known Bertrand state (with γ = 1) and use this as the
initial price distribution for further simulation. With a low probability (∼
N−1) at each rebirth event we introduce an expensive seller with either p =

2 or p = 4 (instead of copying from the system). So approximately one
expensive seller is introduced into the game per round. The dynamics are
otherwise unchanged.

For low γ, we expect that these expensive sellers will invade the system:
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if they appear in the stable structures described in section 4.4.3 they will sur-
vive and proliferate. At high enough γ this will no longer be possible. With
our particular choice of invading prices, we expect the invasion threshold to
be given by (see section 4.4, equation 4.24)

γc =
p∗ − 1

p∗(1 − φ(p∗))
(4.28)

where p∗ = 4 and φ(p∗) = 0 by construction, giving γc = 0.75.
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Figure 4.20 Fraction of expensive sellers in long-time limit as a function of γ.
The system is initially in a Bertrand state and expensive sellers are seeded with a
low (p ∼ N−1) probability per round. For low values of γ, we see that the steady
state contains expensive sellers, for high values it does not. The transition point
(γ ≈ 0.77) is independent of the system size forN = 104 toN = 3.2×105. Inset
shows detail close to transition point

When we carry out the simulations, we �nd the transition occurs at
γ ≈ 0.77 (�gure 4.20), reasonably in line with our prediction. Interestingly,
once high-priced sellers have invaded, the steady state reached in the system
is very similar to that obtained previously (�gure 4.21) indicating that the
state we obtain is reasonably independent of initial conditions. Some small
di�erences are noticeable: the price band at p < 2 has a slightly di�erent
structure, this may be due to the continued seeding at p = 2. Further, very
high prices do not appear in the invaded state. This latter fact is due to the
selection pressures against mutations upward in price: the highest price in
the initial conditions in this invasion mechanism is four, as opposed to ten
in the case of our previous results.
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Figure 4.21 Steady state price distributions obtained under normal simula-
tion dynamics (N = 5 × 105, ∆ = 0.08, γ = 0.5) and �om invasion of a
Bertrand state by seeding with sellers of price p = 2 and p = 4 (N = 3.2× 105,
∆ = 0.08, γ = 0.5). The overall structure is essentially unchanged, except at
very high prices and in the p = 2 price band. Note that the peak at p = 1 is cut
o� for clarity

4.5.4.1 Resistance of the Bertrand state to invasion

Note that despite demonstrating that at low γ values, the Bertrand state may
be invaded by a few expensive sellers, it still exhibits the properties of an
evolutionary stable state. Speci�cally, mutation and selection alone (as they
are de�ned in the dynamics of the game) are unable to reintroduce expensive
sellers once they have died out. This is due to the large gap in the price
distribution between the upper price of the Bertrand state and the lower
price of the p < 2 band of expensive sellers. Many successive mutations
increasing the price are required to bridge this gap and the intermediate
prices are all highly suppressed by the selection process. Thus, although the
Bertrand state is not always able to resist invasion from an outside source,
internally it is stable.

4.6 are expensive sellers beneficial?

We now consider the bene�ts to the system as a whole of incorporating
expensive sellers into the steady state. The two obvious metrics that come
to mind here are the fraction of buyers that are able to satisfy their demand
for goods (the e�ciency of resource exploitation) and linked to this, the
fraction of live sellers. If all buyers are satis�ed, then we expect there to be a
larger fraction of live sellers than if not. Since increasing γwill ceteris paribus
increase the fraction of live sellers, we compare results for di�erent values
of γ in two ways. Firstly, we consider the live site density before reentry
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has taken place. This allows us to compare like-for-like simulations with
di�erent γ values. Secondly, we carry out simulations in both the observed
steady state and an arti�cially enforced Bertrand steady state. This allows us
to compare the relative success of the two steady states for a �xed value of γ.

4.6.1 Comparison of natural and Bertrand steady states

Due to the �nite demand in the system, and its locality (buyers cannot wan-
der around if they �nd all their known sellers are bankrupt), not all buyer
demand will necessarily be exploited. We can consider the amount of un-
satis�ed demand as a metric of how e�ciently the system is exploiting the
environment.

Does the development of a non-Bertrand state at low γ lead to better
use of buyer demand? We might imagine that it would: if all sellers charge
p = 1, there is only enough demand in the system to support half of them.
This occurs if every other site in the lattice is occupied. We can thus easily
put an upper bound on the number of active sellers a�er the rebirth stage, it
is just 0.5(1 + γ). In contrast, if high prices are allowed, the system contains
enough demand to support almost all sellers. If the system were in the state
described in section 4.4.5, we could have a system in which all but three
sellers survive. This state is easily invadeable, but it demonstrates that the
system can support a larger number of sellers if prices are high.

Now, both of the above scenarios utilise all the available demand. How-
ever, the probability that the system is perfectly correlated (required in the
Bertrand case) is vanishingly small. Further, rebirth events and the stochastic
nature of choosing between two equally-priced sellers mean that were such
a correlated structure to appear, it would soon be destroyed. This will lead
to gaps appearing in the correlated structure with potentially two adjacent
vacant sites. The buyer in between these two sites will not �nd anywhere to
shop: some demand will be wasted. In contrast, a system containing higher
prices does not need to attain a perfectly correlated state in order to exploit
the available demand fully. We would therefore expect that for low values
of γ the non-Bertrand state will use more of the available demand and addi-
tionally have a higher steady state site density than the Bertrand state.

This expectation is borne out in simulation. Since the Bertrand state
is not the attractor for low γ we obtain the Bertrand results by arti�cially
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Figure 4.22 Comparison of resource usage for enforced Bertrand and natu-
rally obtained steady states as a function of rebirth probability. Shown are the
unused resource (le� axis) and �action of live sellers a�er reentry (right axis).
Errorbars show standard error in the mean over forty realisations of a system
withN = 5× 104, ∆ = 0.08.

restricting the allowed prices to p ∈ [1, 1 + ∆). Ignoring the γ = 0 case, for
which the result is determined by the initial conditions, we see markedly
di�erent behaviour in the Bertrand and non-Bertrand states (�gure 4.22).
The �gure also shows the cross-over of the natural state to the Bertrand
one (the two resource usage curves lie on top of one-another). We might
wonder if somehow above this cross-over, the Bertrand state becomes better
at exploiting resource than the non-Bertrand one. To answer this question
we �rst obtain a non-Bertrand steady state system (note that the state does
not vary appreciably for γ < γc) and take the observed price distribution.
Now we simulate with a higher value of γ but always sampling from our
non-Bertrand steady state distribution, rather than the system. In this way,
we impose a non-Bertrand state on the system up to γ = 1.

Figure 4.23 shows the resource usage and live site density of the system
in a enforced expensive steady state and the natural steady state. The non-
Bertrand state always utilises more resource than the natural one, but this
di�erence becomes negligible at high γwhen the dominant factor in the live
site density is the reentry probability, rather than the price distribution. Our
conclusion then, is that the natural state is more e�cient than the Bertrand
state at low γ, when the existence of expensive sellers has a large e�ect on the
live site density. This becomes less important at higher γ and the Bertrand
state becomes the attractor. Interestingly, this occurs where the straight line
extrapolation of the expensive live site density crosses the Bertrand live site
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Figure 4.23 Comparison of resource usage (le� axis) and live seller �action
(right axis) for the natural steady state and a �xed low-γ steady state. For the
latter, a steady state distribution was obtained for γ = 0.5 and subsequent sim-
ulations sampled �om that distribution when choosing new prices during seller
rebirth. Errorbars show standard error in the mean over forty realisations of a
system withN = 5× 104, ∆ = 0.08. We see that the natural state does almost,
but not quite as well as the �xed γ = 0.5 state. At low γ correlations build up in
the system allowing for better resource usage than the live seller �action would
suggest

density.

4.7 summary

We have presented results for a stochastic model market under evolution-
ary dynamics. Since the model is di�cult to study analytically due to the
high level of correlations in the system, we have predominantly studied the
behaviour through simulation.

Our model shows that adding spatial heterogeneity to a Bertrand game
can produce dispersion of prices. The model has two di�erent steady states
which are chosen depending on how full it is and can be controlled by vary-
ing the probability of bankrupt sellers reentering the market, γ.

The Bertrand steady state, which appears at high γ, is essentially the
same as for the original Bertrand model: there is a single price which is set
by the cost of production. At low γ, the steady state has a highly non-trivial
structure supporting a variety of prices above the Bertrand price. We have
shown that this state increases the overall level of buyer satisfaction (there is
an increased density of live sellers) over the Bertrand state. The transition
between the two states occurs in stages as bands of expensive prices become
unpro�table.
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general competition networks

5In this short chapter, we extend our study of the previous chapter to a variety
of di�erent competition networks. The results we have seen so far have all
been for a system on a one-dimensional ring. One-dimensional equilibrium
systems in physics are somewhat special – they do not allow for a �rst order
phase transition (although driven systems do allow for such transitions) –
we might therefore wonder if our results are speci�c to our particular choice
of competition network. The following results will show that this is not the
case. With our choice of dynamics, particularly the linear scaling between
number of buyers and overhead size, the qualitative picture is independent
of the competition network chosen.

There are an in�nite number of di�erent networks we could study the
behaviour of our model on. We restrict ourselves to just three types. Firstly,
square lattices in more than one dimension. Latterly, two forms of random
networks. Both the random networks we choose have the small world prop-
erty. That is, the average distance between any two nodes in the network
grows very much slower than the number of nodes in the network. A small
world network is appealing since evidence suggests that social networks dis-
play this property [56]. See, for example, the classic work of Travers and
Milgram [72]. If our competition network is a small world network, then
we can think of buyers as clustered together, with the occasional link be-
tween clusters.

A further empirical observation that we might wish to include is that
the size distribution of �rms is heavy-tailed. The exact form of the tail is
quibbled over, but typically authors settle on either a log-normal [13, 67] or
power-law distribution [3, 27] or some combination of the two, see de Wit
[19] for a review. In our model, we can think of the number of potential
buyers a seller has as a proxy for its size. The size of a seller is then given
by its degree – the number of of links it has – in the competition network.
To model a heavy-tailed seller size distribution, we just need a heavy-tailed
network degree distribution.

Since power-law networks are easy to construct, and we are not too con-
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cerned with the exact form of the tail, we choose to use a power-law compe-
tition network in our study.

Note that in this section we do not change the connectivity of the buyers.
Competition between sellers always occurs in a pairwise fashion. It is likely
that changing the connectivity of buyers will have a larger e�ect than the
seller connectivity. If all buyers are in�nitely connected, they will always visit
the globally cheapest seller and the system will collapse onto the Bertrand
result. If buyers only see a single seller, each seller is in a monopoly and the
initial conditions will set the price distribution. We would expect there to be
a transition between the behaviour we observe in pairwise competition and
fully connected competition as a function of the connectivity, but without
studying such a system in detail cannot say if it happens at �nite connectivity
or not.

5.1 high-dimensional square lattices

In this section, we study the behaviour of the system on square lattices of
dimension two, three and four. In these systems, each seller has 2d competi-
tors, where d is the dimensionality of the system. The overhead payment is
hence also 2d and the Bertrand price is, as before, p = p0 = 1.

Simulations with γ < 1 show that the system price distribution reaches a
steady state. The qualitative structure of this distribution is unchanged from
our results in one dimension (�gure 5.1). The majority of sellers have a price
p = 1, but there is price dispersion allowing for prices up to around p = 10
in the steady state. Additionally, there are favoured peaks in the distribution
as we saw previously. Note how the higher dimensionality (corresponding to
more potential buyers) stretches out the structure from the one-dimensional
lattice (and adds more). The peaks at p = 8 in the 4-d, p = 6 in the 3-d,
p = 4 in the 2-d and p = 2 in the 1-d distributions all correspond to
survival with a single sale per round. In the two, three and four-dimensional
distributions there is also a visible peak corresponding to two sales per round
(at p = 2, p = 3 and p = 4 respectively) – this peak appears at p = 1 in 1-d.
Notice the similarity in the price distributions either side of these peaks:
a large drop as the price increases slightly (these features are marked with
boxes in the �gure). At high values of γ, the distribution, as seen previously,
collapses to the Bertrand state in which all sellers charge p = 1 (modulo

74



100

100

100

100

10-1

10-1

10-1

10-1

10-2

10-2

10-2

10-2

10-3

10-3

10-3

10-3

10-4

10-4

10-4

10-4

1 2 3 4 5 6 7 8 9

1-d lattice

2-d lattice

3-d lattice

4-d lattice

Price

Probability density

Figure 5.1 Steady state price distributions for one (N = 105), two (N =

3162), three (N = 503) and four-dimensional (N = 204) square lattices with
γ = 0.5, ∆ = 0.08. Note the similar structure in all four distributions. Boxes
show common features in each distribution due to survival of sellers making one
(solid) and two (dashed) sales per round

noise).
These results demonstrate that our system does not behave in a special

manner in one dimension. On a �xed, high-dimensional, square lattice the
features of the price distribution and system steady state are essentially un-
changed.

5.2 small-world random networks

If the competition takes place on a �xed, but high-dimensional, square lat-
tice, the model results are reasonably unchanged. Is the same still true if
the system is simulated on a �xed, but no longer spatially localised, random
network? To answer this question, we start with a lattice-based competition
network and use the rewiring method of Watts and Strogatz [76] to con-
struct a partially random network. In this scheme, we consider each link
in the lattice in turn and with some �xed probability (q) pick up one end
of the link and move it to a randomly chosen seller. There are a few restric-
tions involved here. We disallow both single-link loops (i.e., both ends of
the link cannot point to the same seller) and also links which duplicate an
existing link in the competition network. Figure 5.2 shows a diagram of
two attempted relinking events in a 2-d lattice. One allowed event (marked
with a blue dot) and one disallowed event (red dot). The latter is disallowed
since the link would duplicate an existing link in the network.
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Figure 5.2 Two relinking events in construction of a Watts-Strogatz small-
world network. The marked end of the dashed link is picked up and placed
somewhere else in the system. The circle indicates an allowed move, the square a
disallowed one (see text for details)

By tuning the parameter q, we can change the fraction of links that are
rewired. If q = 0, we keep our original lattice, if q = 1 we end up with a
network similar to an Erdős-Rényi random network – the two networks
are not quite the same in this case due to the restriction of no self-loops and
double links [56].

Here we show results for a three-dimensional lattice relinked with prob-
ability q = 0.1 and q = 1. The former preserves most of the square-lattice
structure, the latter does not. Both values of q preserve the mean number
of buyers per seller (since the construction does not remove or add links) at
six.
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Figure 5.3 Comparison of steady state price distributions obtained on a Watts-
Strogatz competition network (le� �gures). The original network is a three-
dimensional square lattice, the networks are constructed with relinking probabil-
ity q = 0, q = 0.1 and q = 1 as indicated. Histograms on the right show the size
distribution (number of potential buyers) of sellers. N = 503, γ = 0.5,∆ = 0.08

Figure 5.3 compares the steady state price distribution for a 3-d square

76



lattice with q = 0, q = 0.1 and q = 1. Again, we �nd that the qualitative
form of the steady state price distribution is unchanged by the modi�cation
of the competition network. If anything, rather than suppressing high prices,
the high-priced peaks are more pronounced at high q. Note how the square
lattice has a peak in the price distribution at p = 6, one sale per round, the
q = 0.1 system has a peak at p = 6 but also peaks at p = 5 and 7 not present
for q = 0. Looking at the distribution of seller sizes, we see that these peaks
are also due to sellers making a single sale per round. The same feature is
seen in the system with q = 1, the peaks in the price distribution at p = 4,
5, 6, 7 and 8 all correspond to sellers making a single sale per round. These
sizes are the most probable in the size distribution, and so the peaks in the
price distribution are more prominent than others.

5.3 power-law networks

Finally, we look at the behaviour of the system when the competition net-
work has a heavy tail. As mentioned previously, the motivation for this
is that real �rms appear to have a heavy-tailed size distribution. We con-
struct the competition network using the method of preferential attachment
[4, 66, 82]. In particular, we follow the exactly linear attachment method
analysed by Krapivsky et al. [38]. In this scheme, sellers are added to the
system one at a time each with one link, the free end of this link is attached
to an existing seller with probability proportional to the number of links
it already has. Figure 5.4 shows a small example network constructed in
this manner. The probability of �nding a seller with k potential buyers is

1

23

4 6

5

7

Figure 5.4 Construction of a network via preferential attachment. Dots in-
dicate the �ee ends of links that have been attached to existing sellers. Numbers
indicate the order in which sellers appeared in the system. The most recently
attached link is dashed
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therefore given by
n(k) =

4
k(k+ 1)(k+ 2)

. (5.1)

The probability that we �nd a seller with k or more potential buyers is

N(k) =

∞∑
j=k

n(j) =
2

k(1 + k)
. (5.2)

Knowing the exact size distribution is convenient because it allows us to test
if our network construction algorithm is performing correctly.
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Figure 5.5 Comparison of predicted and observed complementary cumulative
seller size distributions of the power law competition network

Figure 5.5 shows the observed seller size distribution when we construct
a power law competition network and the predicted distribution. Notice
the only slight deviation is in tail of the distribution, checking the statistical
signi�cance of this deviation requires a bit of work. We cannot use typical
non-parametric tests for continuous distributions since neither the empirical
nor the theoretical distribution are continuous. We can, however, use a
Smirnov transformation to transform our discontinuous distribution to the
uniform distribution on [0, 1] [26].

Denote the discontinuous theoretical cumulative distribution function
by F(x) = 1 − N(x) (N given above by equation 5.2). Since our data are
discrete, there will be nxi data points with value xi. Order the data such
that x1 < x2 < . . . < xn. We now generate n new random variables Ui. nx1
of these new data points are distributed uniformly at random in [0, F(x1)],
nx2 uniformly at random in [F(x2), F(x1)] and so on. If the null hypothesis
is true (i.e., if the experimental data are drawn from F(x)) then Ui will be
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distributed uniformly at random between zero and one. This allows us to
perform a Kolmogorov-Smirnov goodness of �t test on our data obtaining
a p-value of 1, indicating that the deviations are statistically insigni�cant.
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Figure 5.6 Comparison of the steady state price distribution obtained on a
power law competition network for di�erent values of γ. N = 503, ∆ = 0.08, γ
as indicated. Notice the weak peaks in the distribution at p = 2 (and sometimes
p = 3) which we expect when considering the size distribution of sellers. Boxes
indicate plausible peaks in the price distribution due to sellers of size two and
three. The y-axis has been truncated at 0.4 for clarity of these features

Having satis�ed ourselves that the size distribution we obtain is correct,
we now look at the steady state behaviour of the system. The previous section
on Watts-Strogatz networks should give us an idea of what to expect. We
still expect a steady state admitting expensive sellers but the structure of the
price distribution should change somewhat. Speci�cally, the most common
seller size is one, hence we expect a large peak in the distribution at p = 1.
Sellers of size two and three are also reasonably common, so we expect peaks
in the price distribution at p = 2 and p = 3 corresponding to these sellers
making one sale per round. Larger sizes are not so widespread and so high-
priced peaks will be washed out. Figure 5.6 shows the observed steady state
price distributions for di�erent values of γ. As expected, expensive sellers
are able to persist in the steady state and some of the features we predicted
are observable (small peaks at p = 2 and maybe p = 3).

5.4 summary

In this chapter we have brie�y studied the behaviour of our synchronously
updated model on a variety of di�erent competition networks. The take-
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home message is that our choice of dynamics mean that the general form of
the steady state is una�ected by the competition network. Expensive sellers
continue to exist for some values of the reentry probability. The preferred
prices in the steady state are, in part, determined by the seller size distribu-
tion. If sellers of size x appear with a high probability, we are likely to see a
preferred price p = x appear in the steady state which allows those sellers to
survive making just a single sale in each round.
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asynchronous time simulation results

6Our analysis of the model in chapter 4 talked extensively in terms of the
discrete rounds of the game. Further, the explanations for stability are turn-
based. We might think that the favoured prices appearing in the low-γ steady
state are artifacts of the discrete nature of the update scheme.

In this chapter we show that the results persist even when the update
scheme is not discretised into rounds as before. Rather the discrete nature
of the sales that can be made is enough to ensure favoured peaks. In ad-
dition, we �nd a further ‘steady state’ in the system, not observed in the
synchronous time results, that exhibits oscillations between expensive and
cheap prices. This state bears at least a super�cial resemblance to the limit
pricing oscillations described by Salop and Stiglitz [61] (see section 2.4.1).

6.1 validation of the implementation

As before, we �rst test that the model behaves as expected in certain limiting
cases where we can predict the steady state behaviour. We then move on to
more interesting cases. This is, however, not as simple as the synchronous
time case (section 4.1). Consider �rst the γ = 1 state.

The number of buyers a shop attracts is drawn from a binomial distribu-
tion with mean 2, and so a seller could be very lucky and attractN buyers per
round, allowing a price of p = 2

N
. In an in�nite system, the minimum viable

price is thus p = 0, rather than p = 1. Equally, a seller may not always pay
the overhead, allowing survival even with no sales. On the �ip side of this
coin, a seller may pay multiple overheads: meaning that even if it attracts the
expected number of consumers, it still makes a loss.

Due to these complications, when γ = 1, survival is not just as simple as
outcompeting neighbours by charging p = 1. Nonetheless, we expect in the
steady state to �nd no expensive sellers: they may survive for a while due to
the noise, but eventually should be outcompeted and die o�.

We might also expect that the price is driven below p = 1. The expected
pro�t of p = 1 sellers is still zero, and so they are unlikely to survive being
outcompeted by cheaper sellers. If the price drops signi�cantly below p = 1,
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such that sellers must make more than �ve or so sales in order to survive
when paying a single overhead, we should be able to predict the mean steady
state density (prior to reentry).

We assume that no seller makes enough sales to survive paying a single
overhead, and thus the probability of survival is just the probability that a
seller pays zero overheads. This probability is given by a binomial distribu-
tion, so the probability of survival is ps =

(
N−1
N

)N which in the largeN limit
gives ps = e−1. This will not be quite correct, since it is possible for sellers
with p < 1 to make enough sales to survive, however, it gives us an idea of
what to expect.
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Figure 6.1 Distribution of prices in the steady state and maximum likelihood
Gaussian �t (upper �gure) and time series of the live seller �action prior to rebirth
(ρlive, lower �gure) with γ = 1, N = 105 and ∆ = 0.08. The predicted live
seller �action if no seller makes a pro�t is e−1 ≈ 0.368, somewhat lower than
the steady state �action we obtain. The price distribution appears Gaussian,
however we can reject this hypothesis with high con�dence, su�ce it to note that
the distribution is single-peaked

Figure 6.1 shows the live seller fraction for the γ = 1 state. We see
that the steady state fraction is close to (but somewhat above) the value
e−1 ≈ 0.368 predicted if live sellers are only those that pay zero overheads.
This allows us to be reasonably con�dent that our simulation is doing what
it should be.

6.2 low γ steady state

As before, we begin with a study of the system steady state for low γ. Recall
(section 4.2) that under synchronous updates this region of parameter space
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contains expensive sellers. Our reasoning for the stability of the state relied
somewhat on the idea of discrete selling rounds, we might therefore wonder
if the steady state structure we observe is only stable due to the discretised
nature of updates.

Simulations of a system undergoing asynchronous updates show that
this is not the case. For a similar range of parameters, the system exhibits a
steady state containing expensive sellers. The structure of the steady state
price distribution is visually similar to that observed in the synchronous case
(�gure 6.2) especially at high prices, although this does not stand up to a
statistical test. Di�erences are especially noticeable in low γ regime.
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Figure 6.2 Comparison of steady states obtained under asynchronous (black)
and synchronous (red) dynamics. Both simulations have N = 5 × 105, γ =

0.5, ∆ = 0.08. The asynchronous price distribution is smoother (unfavoured
prices are not as sharply suppressed) but the main features of peaks and troughs
remain in approximately the same positions. Error bars show standard error in
the mean over ten realisations of the same system: note that the structure observed
in between large peaks does not appear to be due to noise

As before, favoured prices appear at approximately integer multiples of
the expected break-even price (p = 1). We saw how this feature appears
in the early time synchronous dynamics in section 4.3.2. We now perform
a similar analysis for the asynchronous dynamics to show that the e�ect
persists, albeit in modi�ed form.

6.2.1 The �rst round price distribution under asynchronous updates

Similar to our results for the synchronous time simulation, we can carry out
an exact analysis for the �rst round of the game since there are not yet any
spatial correlations in the system. The methodology is essentially unchanged
from our exposition in section 4.3.2 although the details are somewhat more
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involved. We wish to write down the survival probability of a seller as a func-
tion of price. With this information, and knowing the initial conditions, we
can then write down the probability distribution of live seller prices at the
end of the �rst round. The tricky step comes in writing down the survival
probability. We can no longer state with certainty how many potential buy-
ers a seller has, nor how many sales it must make to survive. We can only
write down probability distributions for these events.

Denote the system size byN, each round,N sellers are chosen at random
to pay the overhead. The probability that a seller pays k overheads is given
by

dN(k) =

(
N

k

)
N−k

(
N− 1
N

)N−k

. (6.1)

In the one-dimensional system there are also N buyers in total, and so N
random buyers are selected to go shopping. Each seller has two potential
buyers and so the probability that a seller attracts k buyers is

bN(k) =

(
N

k

)
(2N)−k

(
N− 2
N

)N−k

. (6.2)

This is not the probability that a seller makes k sales, merely the probability
that k buyers ‘walk in the door’ and look at a seller’s price.

Finally, we need to write down the probability that a seller makes at least
k sales (we can then easily obtain the survival probability). This poses more
problems than in the synchronous time case, since a seller may attract the
same buyer multiple times. The probability that a seller sells twice to the
same buyer is the same as the probability of selling once: we cannot treat the
buyers as independent in this case. With some thought, we can write down
the probability of making at least k sales given we attracted a certain number
m of buyers, sN(k|m). The probability of making at least k sales is then just
the average of sN(k|m) over the distribution bN(m).

Every seller has two distinct potential buyers which we shall denote by L
and R. Since a seller’s opponents do not change their prices in the course of
a single round, the probability of making a certain number of sales will only
be a function of f1(p) and f1(p)2, where f1(p) is given by equation 4.1. To
make the exposition clearer we �rst derive sN(k|m) for the particular case of
m = 5 and then generalise.
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There are 25 = 32 possible ways of getting �ve buyers, corresponding to
di�erent numbers of L and R visits. The di�erent combinations are shown,
with their corresponding frequency (given by a binomial coe�cient) in table
6.1. From this table, we can easily see that sN(k = 1|5) is just the probability

5L (1) 4L+ R (5) 3L+ 2R (10)
5R (1) L+ 4R (5) 2L+ 3R (10)

Table6.1 Possible combinations ofL andR buyers, and the number of di�erent
ways they can occur, form = 5

of outcompeting a random seller f1(p) (given by equation 4.1). Similarly for
k = 2 and k = 3. For k = 4 the probability changes somewhat. We �nd the
probability of making four or more sales is

sN(4|5) = 2−5f(p)
[
12 + 20f(p)

]
. (6.3)

The combinations with three L buyers and two R buyers (and vice versa)
require we sell to both L and R (probability f(p)2), the other combinations
only require selling to L or R (probability f(p)). A similar analysis allows us
to write down sN(5|5). All sales probabilities are shown in table 6.2.

k sN(k|5)

0 1
1 f(p)

2 f(p)

3 f(p)

4 2−5f(p)
[
12 + 20f(p)

]
5 2−5f(p)

[
2 + 30f(p)

]
6 or more 0

Table 6.2 The probability that a seller with pricepmakes at least k sales, given
they have attracted �ve buyers

A bit of thought allows us to write down sN(k|m) for general k and m.
If k 6 dm2 e, the the combination of L and R visits will always be such that
the seller only needs sales to one or the other buyer and hence

sN(k|m) = f(p) k 6
⌈m

2
⌉

. (6.4)

If k > dm2 e then the seller might have to sell to R and L. If the L (or by
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symmetry R) buyer arrives at least k times, then we need only sell to it, if not,
we must sell to both. We can count the number of times each of these events
occurs by summing binomial coe�cients and so

sN(k|m) =
f(p)2

∑m
i=k

(
m
i

)
2m

+
f(p)2

[
2m − 2

∑m
i=k

(
m
i

)]
2m k >

⌈m
2
⌉

. (6.5)

We can now write down the form of sN(k|m) ∀k,m:

sN(k|m) =



1 k = 0

0 k > m

f(p) k 6 dm2 e

f(p)
2m

[
2
m∑
i=k

(
m

i

)
︸ ︷︷ ︸
sales to L or R

+ f(p)
(
2m − 2

m∑
i=k

(
m

i

))
︸ ︷︷ ︸

sales to L and R

]
otherwise.

(6.6)
The probability of making k or more sales is then simply

sN(k) =

N∑
i=k

bn(i)sN(k|i) (6.7)

and the probability of survival is

ps,1(p) =

N∑
k=0

dN(k)sN

(⌈
2k
p

⌉)
. (6.8)

Finally, we can �nd the live seller price distribution at the end of the �rst
round (again assuming no correlations in the joint survival probability)

P1(p) =
P0(p)ps,1(p)(1 + γ(1 − ps,1(p))P0(p))∫pmax

p0
P1(x)dx

. (6.9)

This is exactly the same as equation 4.6, but with a di�erent expression
for the survival probability. Unlike in the synchronous case, our result for
ps,1(p) means that the solution does not have a simple analytic form. We
can, however, evaluate it numerically for smallN1 and compare the resulting

1The resulting distribution does not change noticeably withN ∈ [50, 103]
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distribution with that obtained from simulation (�gure 6.3).

0.128
0.12

0.11

0.10

0.09

0.08

0.07
0.063

0 2 4 6 8 10

Price

Probability density

Theory
Simulation

Figure 6.3 Comparison of theoretical (black) and empirical (red) live seller
price distributions at the end of the �rst round. Both are histograms normalised
such that the area underneath is unity. The theoretical distribution has the
same overall shape as the empirical one, but gives lower survival probabilities for
mid-ranged prices. Empirical distribution obtained �om simulation with one
hundred realisations of a system with N = 106, ∆ = 0, γ = 0.5, p0 = 0 and
pmax = 10. The theoretical distribution has survival probability obtained �om
by substituting equation 6.8 into equation 6.5 with γ = 0.5, p0 = 0, pmax = 10
andN = 200

The result is not the same quality of �t to the data that we saw previously
for the synchronous case in section 4.3.2, although the two distributions do
have a qualitatively similar shape, indicating that our analysis is in the right
direction. This may be because we have ignored the correlations in the two
site joint survival probability mentioned in section 4.3.2.1. Since selling
events can occur multiple times at the same site in a single round, ignoring
the correlation in the joint survival probability is likely a worse assumption
than for the synchronous time analysis.

Notice how, in comparison to the synchronous result (�gure 4.5), the
distribution has many more peaks in it, this occurs due to the distribution
of overhead payments a seller might make.

6.2.2 Di�erences in the steady state relative to synchronous dynamics

The most noticeable di�erence between asynchronous and synchronous
steady states is the lack of a sharp peak at p = 1 in the asynchronous price
distribution. In the synchronous time system, the minimum allowed price
is p = 1 and such a seller (with expected capital of zero) is unlikely to be out-
competed giving a long lifetime. In the asynchronous system, the minimum
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allowed price is p > 0 and so a seller with p = 1 (still with expected capital of
zero) is much more likely to be outcompeted. Hence, less probability mass
appears at p = 1 and the peak in the distribution spreads out (similarly to
how higher-priced peaks also spread).

Note that for prices p ' 3 the synchronous and asynchronous steady
states look reasonably similar. For low prices there is a large di�erence. We
therefore wonder if the low price di�erence is due only to the di�erent
boundary conditions imposed at the low edge. Recall for synchronous dy-
namics we have a hard boundary at p = 1 while for asynchronous dynamics
it is at p = 0.

This hypothesis is easily tested: we simply simulate synchronous dynam-
ics with a p > 0 rather than p > 1 requirement. This gives us the price
distribution shown in �gure 6.4. As this �gure shows, the removal of the
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Figure 6.4 Price distribution for synchronous dynamics with a requirement
only that p > 0 rather than p > 1 (red). Although the distribution is slightly
di�erent �om that seen previously ( e.g., �gure 4.2), the distribution still does
not match up with that observed under asynchronous dynamics (black). Prices
above p = 5 suppressed for clarity, the agreement between distributions in this
region is good. N = 5× 105, γ = 0.5, ∆ = 0.08. Errorbars show standard error
in the mean over ten realisations of the initial conditions

sharp boundary does make a di�erence to the price distribution, but the
synchronous and asynchronous cases are still noticeably di�erent.

6.3 expensive sellers in the steady state

Clearly, expensive sellers can exist in the steady state under asynchronous
dynamics: the distribution we get is not simply an artifact of the choice of
update algorithm. In a similar manner to the synchronous case, there must
be some mechanism by which expensive sellers can persist. We look at the
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distribution of ages at bankruptcy for a clue (�gure 6.5) and �nd that some
expensive sellers can survive for the entire lifetime of the system as was the
case in the synchronous simulation.

Comparing the lifetime distribution for the asynchronous system with
that of the synchronous system (see �gure 4.9) we note that cheap sellers
do not typically survive as long in the asynchronous case. This e�ect is due
to the di�erent minimum price boundary. In the synchronous system, a
seller with a price p = 1 + ε has an expected pro�t of around ε which is all
but guaranteed since the probability that a neighbour sets up with a price
p ′ < 1 + ε is very small. In the asynchronous system, prices less than p = 1
are allowed and so a seller with p = 1 + ε accrues only a very small amount
of capital and is much more likely to be undercut. This reduces the expected
lifetime of cheap sellers relative to that observed in synchronous dynamics.
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Age at death
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Figure 6.5 Complementary cumulative probability distribution Pr(age > x)

of the age at bankruptcy of expensive (p > 1 + ∆, black) sellers and cheap sellers
(p < 1 + ∆, red) in the steady state with N = 5 × 105, γ = 0.5, ∆ = 0.08.
The maximum possible lifetime in the system is 105. Both expensive and cheap
sellers have a heavy-tailed age distribution, the cheap sellers less so, in line with
our expectation that p = 1 sellers should not be very long-lived

Following the results of section 4.4.3 we look for a common pattern
in the neighbourhood of long-lived expensive sellers to see if there is some
theme linking them. It happens that the survival of expensive sellers occurs
in essentially the same manner as that described in section 4.4.3. Long-lived
expensive sellers survive in niches created by correlated structures of cheap
sellers. An examination of the neighbourhoods of long-lived expensive sell-
ers con�rms the appearance of structures essentially identical to those shown
in �gures 4.10 & 4.13. Note that these structures are not quite as stable as the
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equivalent setup under synchronous dynamics. Even if a seller sets up next
to a more expensive opponent, it cannot guarantee a sale, only an expected
sale. Equally though, a seller might set up next to a cheaper opponent but
avoid bankruptcy by avoiding overhead payments.

6.4 are the expensive sellers beneficial?

Now we move on and study how the addition of expensive sellers alters
the e�ciency of resource exploitation. As �gure 6.6 shows, the unsatis�ed
demand follows a curve broadly similar to that of the discrete time model.
The main di�erence is in the value at which the Bertrand curve diverges
from the natural steady state and the larger overall variance in the results.
This latter feature is due to the additional type of steady state dynamics in
the asynchronous model: namely system-wide oscillations (see section 6.5).
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Figure 6.6 Fraction of unsatis�ed customers in natural (black) and enforced
Bertrand steady state (blue) for an asynchronously updated system. Also shown is
the �action of unsatis�ed customers in the natural steady state under synchronous
dynamics (red). Errorbars show standard error in the mean over forty realisa-
tions. ∆ = 0.08,N = 2× 104 for the natural steady states andN = 5× 104 for
the cheap steady state. The large errorbars in the asynchronous case occur in the
region of the parameter space in which oscillations are observed (see section 6.5)

6.4.1 Comparison of synchronous and asynchronous steady states

We now compare the relative successes of sellers in the steady states obtained
under synchronous and asynchronous updating. We have already observed
the similarities in the fraction of unsatis�ed buyers in �gure 6.6. For low γ

(and γ → 1) there is no real di�erence in the e�ciency of resource usage.
For intermediate values of γ, the system performs worse with asynchronous
dynamics (although still better than the enforced Bertrand state).
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We now consider two further surrogates for success in the system, the
global mean capital and the global mean price. These should typically follow
one another quite closely, but may give us slightly di�erent information
about the system. The previous results tell us how much of the available
resource is being used by sellers. These measures will tell us how much pro�t
the buyers are being squeezed for.

Figure 6.7 compares the mean system capital as a function of γ for the
two cases of synchronous and asynchronous updating. For low γ the system
does signi�cantly better under synchronous updates. However, as the high-
priced steady state disappears under synchronous updates (between γ = 0.5
and γ = 0.7), the mean system capital decreases almost to zero. For the
same parameter values, the system now performs better under asynchronous
updates. So, although the system always satis�es more buyers under syn-
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Figure 6.7 Comparison of the mean price (top) and mean capital (bottom)
in systems undergoing synchronous (red) and asynchronous (black) updates as a
function of γ. Errorbars show standard error in the mean over forty realisations.
The measurement is taken a�er ��y thousand timesteps. N = 2×104,∆ = 0.08.
Notice how the mean capital in the synchronous simulation is typically higher
than the asynchronous case until expensive sellers disappear

chronous updates, the large oscillations seen in the system state under asyn-
chronous updates allow for more e�cient exploitation of the buyers that
are attracted. Essentially, asynchronous updates allow expensive sellers to
persist at higher γ values than the synchronous updating scheme. We now
ask why this should be. In the preceding sections we have already made
passing reference to the idea that the asynchronously updated system enters
an oscillatory state at high γ: something not observed in the synchronous
simulations. We now study these oscillations in more detail and show how
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they allow for survival of expensive sellers at high γ values.

6.5 oscillations: survival through extinction events

We now look more closely at the region of parameter space in which the asyn-
chronously and synchronously updated systems diverge most noticeably. We
�nd that here, where the synchronous system collapses onto a δ-function
price distribution, the asynchronous updates allow for oscillatory behaviour
in the price distribution. The system mean price repeatably oscillates be-
tween p ≈ 2.5 and p ≈ 0.8. A typical timeseries of the system mean price in
such a state is shown in �gure 6.8.
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Figure 6.8 Typical oscillations in mean price. Shown are the initial small
oscillations while the system reaches the oscillatory steady state and the late ‘steady
state’ oscillations. Note that the x-axis is not contiguous. N = 105, γ = 0.75,
∆ = 0.08

We note a few key features of this oscillation. Firstly, the minimum in
the mean price is less than the break even price of p = 1. This implies that
the majority of sellers will fail to survive: we can see this somewhat like an
extinction event. Secondly, the period and amplitude are irregular: although
in isolation each oscillatory period looks very similar to another, the height
of the peaks and troughs changes. Finally, the oscillation is not symmetric:
the price increase occurs much faster than the price decrease.

What is the cause of these system-wide swings in the optimal price? The
price distribution cannot have turned into a δ-function whose peak moves
through the period: the price increase happens too quickly to be accounted
for by mutation alone. For example, the above timeseries has some price
increases of ∆p = 1.5 occurring in around thirty simulation rounds. The
minimum number of mutation events needed to e�ect this change in the
mean price is around forty (with ∆ = 0.08). Rather than looking at the
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mean price for clues, we consider the change in the system price distribu-
tion over the course of a cycle. The modal price changes in sync with the
mean price �uctuations, however the support of the distribution remains
largely constant. Even in the lowest points of the cycle, some high priced
sellers remain, and vice versa. Upswings are nucleated by high priced sellers
and happen very suddenly while downturns are more gradual and appear
to happen due to competition and selection favouring lower prices. This is
illustrated in the sequence of price distributions in �gure 6.9
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Figure 6.9 A sequence showing the change in the price distribution of a system
undergoing oscillatory behaviour. Labels in each sub�gure indicate time elapsed
since �rst �gure. Price distribution truncated at P = 2.5 for clarity (some sellers
have prices as high as P = 8). Note the nucleation of the high priced peak which
then migrates slowly to lower prices. N = 105, γ = 0.75, ∆ = 0.08

We now look at these nucleation events more closely. We label each
seller uniquely at the beginning of a simulation and copy this label along
with the price onto a reentered seller. This allows us to de�ne �anchises: sets
of sellers with a common ancestor. We now look at the statistics of these
franchises through oscillation events. High-priced franchises typically only
contain a handful of sellers during the low-price phase of the oscillation
(this is to be expected). During the high-price phase, the majority of the
sellers in the system belong to a handful of expensive franchises. Figure
6.10 shows an example of this. We track the size and mean price of a single
expensive franchise through six oscillatory periods. In one of these periods,
this franchise accounts for almost half the sellers in the system.

The picture here is of a few high-priced sellers appearing in a favourable
local environment and building up a large capital. These sellers are then able
to persist through the period of price decrease (they have enough capital to
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Figure 6.10 Time evolution of an expensive �anchise. Shown top to bottom
are the size of the �anchise as a �action of system size, the mean price of the �an-
chise and the mean price of the system. Dots mark the position of the maximum
�anchise size through each cycle. N = 105, ∆ = 0.08, γ = 0.75. Note how
the increases in the mean price are strongly positively correlated with increases in
�anchise size

survive for many tens of rounds without a single sale). When the system
reaches the bottom of the cycle these sellers are preferentially chosen for
reproduction over the many cheap sellers (which are now bankrupt). They
proliferate rapidly, causing the mean price to rise and the fraction of live
sellers to increase. Eventually the fraction of live sellers becomes large again
and now expensive sellers no longer compete with empty spaces, but rather
other sellers. Now the dominant strategy is to undercut competitors, rather
than sell to captive consumers. In this situation, we �nd a combination
of Bertrand competition and favouring of certain prices pushes the mean
price down. Again, at the bottom of the cycle, the system overshoots which
switches the �ttest strategy from a low-priced to a high-priced one. The
cycle begins again.

The gradual downward trend in the mean price once a peak is reached
has a di�erent cause to the price increase. The change is due both to sellers
switching franchises and also adaptation within a franchise. This is evident
in two ways. When looking at the rate of change in the mean price there
are two de�nite regimes. When the mean price is roughly above p = 2 the
rate of change is fast, it then becomes smaller and constant until the bottom
of the cycle is reached (�gure 6.11). The former phase is characterised by
sellers jumping ship from very high-priced franchises which are no longer
pro�table to lower-priced ones. The latter phase has Bertrand competition
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Figure 6.11 Change in mean price and its derivative through three oscillatory
periods. Note the approximately constant value of the derivative once the mean
price drops belowp ≈ 2. Maxima of the mean price and its derivative are marked
on each timeseries by red and blue dots respectively

within franchises driving the price down slowly. We see this in the timeseries
of price distributions (�gure 6.9). In the high price phase a peak at around
p = 2 appears. Once this is established, a peak forms at p ≈ 1.5 and the
higher-priced sellers disappear. Now no more lower-priced peaks form in
the distribution, but rather the single peak decreases in price.

We may wonder why very low prices do not re-establish themselves di-
rectly once the system saturates with high-priced sellers. This is simply due
to the choice of copying dynamic: there are only a few low-priced sellers and
so they are only occasionally copied. Additionally, the low-priced sellers that
are in existence have a price p < 1 which is not long-term viable, hence any
new low-priced sellers that do appear die almost immediately. This can be
seen nicely in the price distribution, although the mean price decreases, the
probability mass in the low end of the price distribution also falls.

The long-term stability of the oscillatory behaviour is dependent on
the survival of a very small number of expensive sellers. These sellers are
able to survive through the extinction events since they have a large store of
capital. This capital is not always fully replenished when the expensive sellers
thrive and it is therefore possible that the few expensive sellers eventually
become bankrupt. Should no expensive sellers survive through an extinction
event, the oscillations reduce in amplitude. Once expensive prices disappear,
mutation will not bring them back. We still see some oscillatory behaviour –
although at much lower prices and over a smaller range – since the system
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still does prefer more expensive sellers over less expensive ones when it is
empty.

6.5.1 Evolutionary interpretation

We can view the oscillations in an evolutionary light and the description
becomes very simple. In the low γ case, the �tness landscape is static and the
system approaches it and eventually reaches a steady state. For high γ, this
does not occur. Rather, the �tness landscape presents a moving target. In
the high-priced state, a �t strategy is a low-priced one, and the system moves
towards this high �tness state. Upon reaching the low-price state, however,
the landscape changes: due to the di�erent death rate a high-priced strategy
is �tter. The system is continuously chasing its own tail. This behaviour
of extinction and subsequent recovery would appear to have a very similar
driver to the cyclical events observed in a two-dimensional Daisyworld [79,
80].

We note that this changing of the �tness landscape happens as the e�ec-
tive death rate changes (measured as the number of individuals dieing per
individual per round). However, imposing a global death rate equal to the
one observed in an oscillating system does not produce anything even close
to similar results. The death rate for individual sellers cannot be described by
a global mean. In fact, even discretising the death rate into a price-dependent
one will not work. This is perhaps a key point in our model. Unlike in other
evolutionary models, the death of entities does not happen with some exter-
nally determined rate (as in a point process), but rather emerges from the
dynamics. It therefore does not make sense to talk about a death rate per se.
The probability of death of a particular seller is not only a function of its
price, but also the seller’s age and local environment.

6.5.2 Aperiodicity

One feature of the oscillatory behaviour that immediately stands out is the
lack of a �xed period. There is a modal period but some signi�cant deviation
around it (�gure 6.12).

This aperiodicity is interesting since it suggests that the period of the
oscillation is not some simple function of the system parameters. When we
look at the details of the oscillatory cycle we see the cause of this stochasticity
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Figure 6.12 Distribution of oscillatory periods for di�erent values of ∆ as in-
dicated in the legend. Note the appearance of a modal period but also a large
deviation around it. γ = 0.75,N = 5× 104

in the period. The downward trajectory of the mean price happens at an
approximately constant rate: competition between sellers forces the price
down. The length of this phase is mediated by the size of the mutation term.
The minimum of the cycle occurs at an approximately constant price, the
maximum does not.

At the bottom of a cycle, most cheap sellers do not survive and the few
expensive franchises can proliferate. We can see this when correlating the
price oscillations with the fraction of expensive sellers alive at the end of a
round (before reentry). Obviously this is at a peak at the top of the price
oscillation, however, once the mean price drops below p = 1 (an unsustain-
able mean level), the relative fraction of expensive sellers starts to increase.
While the overall level of live sellers is low, this produces a positive feedback
and the increase accelerates.

As shown in �gure 6.10, the size of an expensive franchise at the peak of
an oscillatory cycle is not constant. If the franchise is lucky, it will increase
in size before other expensive franchises near the cycle minimum. Since the
probability of selecting a franchise for price copying is proportional to its
size, the franchise will continue to grow (preferentially over other expensive
franchises). The mean price at the top of the cycle is therefore dependent on
both which franchises get lucky and also their prices. Rather than being a
function of the system parameters, it is a random variable. The price decrease
occurs at an approximately constant rate and so the period of the oscillation
is a function of the height of the cycle maximum. Hence, the period is also
a random variable.
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6.6 summary

We have studied our model under asynchronous updates �nding that the
complex structure of the low γ steady state remains, despite an initial anal-
ysis of the synchronous updating scheme suggesting the result might be an
artifact of the discrete simulation rounds. We have further shown that the
asynchronous dynamics allow for an intermediate oscillatory state to exist
between the low γ expensive steady state and high γ Bertrand state. This
region of the phase space is not seen under under synchronous dynamics.

In the next chapter we look at a few di�erent ways of reducing the am-
plitude of these oscillations. Drawing an analogy to the global economic
system, subsystems of which undergo oscillatory boom and bust cycles, we
consider how to reduce the likelihood of a global crash (analogous to reduc-
ing the likelihood of mass extinction in our model).
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counteracting boom and bust

7The oscillations we see in the asynchronous time model are broadly rem-
iniscent of the large-scale cycles observed in parts of the global economy.
Equally, in an ecological interpretation, we might see them as repeated ex-
tinction events and subsequent recovery. Certainly in the �eld of economics,
many policy makers would be keen to avoid the crashes (if not the upturns)
associated with these cycles. In this chapter we consider two methods of sup-
pressing (with varying degrees of e�cacy) the oscillatory cycles exhibited in
our model and suggest that similar methods may be applicable to real-world
systems.

7.1 a model of loosely-coupled islands

The �rst method of stabilisation we propose is motivated by the observation
that the period of the oscillations is not constant. If we take the average price
of two separate systems, both oscillating independently, it is unlikely that
they will remain in phase with one another for any length of time. Although
the individual systems will go through boom and bust cycles, the e�ect on
the global system will likely be a reduction in the amplitude of oscillations. If
we divide the system into many such islands, we might hope that the global
oscillatory mode is almost completely suppressed. As it stands, this setup is
no more desirable than previously, individual islands oscillate and boom and
bust still continues. However, consider what might happen if we couple the
islands in some way. In a non-stochastic system, any small amount of cou-
pling will eventually bring oscillations into phase. In a noisy system, this may
not be the case. Initially any oscillations are likely to develop out of phase,
some weak coupling may stabilise the globally observed system �uctuations.
Furthermore, recall that occasionally the high-priced oscillations in the sys-
tem could collapse (when the number of high-priced seed sellers dropped
to zero). If we couple many islands together, we can import strategies from
outside any particular island which may mitigate this latter e�ect, leading
to an increased global mean price.
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7.1.1 Choice of coupling

Country economies are coupled across the world primarily through global
trade. Separate ecosystems are coupled through migration events. In our
system, there is no easy way to carry out the former coupling choice: sellers
do not interact by trading goods at all and shoe-horning such an e�ect into
the dynamics would feel rather false. Instead, we can think of migration
between islands as similar to how global stock markets respond to news from
other markets. The interpretation here is that sellers observe the strategy
choices that sellers in other markets use and occasionally follow suit.

In this model, sellers predominantly copy strategies from within their
own island, sometimes they copy from somewhere in the whole system. To
increase the coupling between islands, we increase the probability that sellers
copy from outwith their own island.

In addition, rather than copying from anywhere in the system at the same
time, we can think of how islands might a�ect dispersion of strategies. Inside
a single ecosystem, dispersion is fast, over long distances between ecosystems,
dispersion is slower. We can model this by choosing to copy within an island
from the currently observed strategy distribution, but observe a delayed
picture of the rest of the system. We shall consider the two cases in turn.

7.2 equal time migration coupling

The update scheme we employ for migration-based island coupling is as
follows. In the initialisation stage, randomly-sized contiguous chunks of the
system are marked as particular islands (�gure 7.1 shows a cartoon of this).

1 2 3 4 5

c 1 − c

Figure 7.1 Cartoon showing division of one-dimensional system into islands.
This particular system has �ve islands (labelled). Also shown are two copying
events: an inter-island copy (occurring with probability c) and an intra-island
copy (probability 1 − c)

Since we only consider a one-dimensional system, the algorithm for this
division is simple, it is shown in algorithm 5. In essence, we specify minimum
and maximum island sizes and generate sizes uniformly at random within
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these bounds.

t← 0 How many sellers have we marked?
i← 1 Which island are we in?
cmin ← 104 Minimum island size
cmax ← 5× 104 Maximum island size
while t < N do
c← r r an integer uniformly distributed in [cmin, cmax]

for k = t to c+ t do
sk ← i Assign the kth seller to island i

end for
t← t+ c

i← i+ 1
end while

Algorithm 5 Generate-islands(): Algorithm to divide a one-
dimensional system into randomly sized islands

The updates then proceed as described in section 3.3. The di�erence
comes when we reach the rebirth stage. With probability 1 − c, the rebirth
event chooses a random seller from within the seller’s island. With proba-
bility c, the random seller is chosen from the whole system (including the
island the seller is in). c = 0 corresponds to completely uncoupled islands,
c = 1 to a system without islands. By tuning the value of c we modify the
strength of migration e�ects in the copying phase.

7.2.1 Non-oscillating regime

The steady state regime should be una�ected by the addition of islands,
coupled or not. Each island should independently reach the steady state dis-
tribution we have previously encountered. In the steady state, any coupling
should make no di�erence as sampling either from an individual island or
the entire system should pick the same distribution. As long as the islands are
not so small that stochastic �uctuations kill the high-priced sellers, we there-
fore expect that the global price distribution will be the same irrespective of
coupling strength or number of islands.

Results from such a simulation con�rm our expectations. Both in the
synchronously (�gure 7.2) and asynchronously updated systems (�gure 7.3),
the value of the coupling constant makes no di�erence to the form of the
steady state distribution.
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Figure 7.2 Steady state price distributions for systems with coupling constants
of c = 0.02, c = 0.1 and c = 1, N = 105, γ = 0.35 and ∆ = 0.08 under
synchronous dynamics. Shown in each case are the global steady state distribu-
tion and a typical distribution of prices in a single island. As we can see, the
distributions are essentially identical (modulo �nite size �uctuations). Peak at
p = 1 cut o� for clarity
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Figure 7.3 Steady state price distributions for systems with coupling constants
of c = 0.02, c = 0.1 and c = 1, N = 105, γ = 0.35 under asynchronous
dynamics. Shown in each case are the global steady state distribution and a
typical distribution of prices in a single island. As we can see, the distributions
are essentially identical (modulo �nite size �uctuations)

7.2.2 Coupled islands in the oscillating regime

In the continuous time simulations, we have already seen that we observe
oscillations in the mean price of the system for large values of the birth rate
γ. We now study how these global oscillations change in a system composed
of coupled islands. If there is no coupling, we expect each island to enter
an oscillatory mode: the dynamics are unchanged from the previous results.
The e�ect on the system mean price is, however, likely to be much less no-
ticeable. Recall that the oscillations do not have a constant period but rather
some distribution of periods around a typical value. Due to this, even if two
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islands were to begin oscillating in-phase, they should soon dri� out of phase
producing a partial cancellation in the e�ect of the oscillations on the global
mean price. Further, recall that the reason for the varied period is the varying
amplitude of oscillations which should further reduce the �uctuations in
the global price.

Now, in a noiseless system, if the distribution of natural frequencies is
not too large, any coupling between elements will eventually lead to in-phase
behaviour (see for example [69] and [78]). With the noisy dynamics we have,
it is not clear that this will occur. If the coupling is only weak it may not be
enough to overcome the noise and the islands would continue to oscillate
independently. As the coupling strength increases we expect that eventually
the system will oscillate in phase and behave as if there were no separate
islands at all.

Another way of looking at this is to ask if we can change the path of the
system through phase space by altering the sampled price distribution. We
know that a single oscillating system follows a set path through the phase
space. Expensive sellers cannot invade the system during the downturn be-
cause the system is too full and cheap sellers cannot invade quickly because
there are not enough of them. If we change these proportions (by sometimes
copying from outwith a single island) will the path through the oscillatory
cycle change? We expect weak coupling to make little di�erence because it
will not noticeably change the price distribution used to pick a new strat-
egy. Conversely, strong coupling will likely change the observed distribution
which may well have an e�ect.

7.2.3 A note on nomenclature

In the following sections we shall refer both to averages of quantities in the
system at a speci�c point in the simulation and the time-averaged values of
these quantities. To avoid confusion, in this brief interlude, we shall intro-
duce some notation to di�erentiate clearly between the two.

Consider an observable quantity in the system that varies from seller
to seller, denote this by Ai (i = 1, 2, . . . ,N). This quantity may be time-
dependent (for example, it might be the capital of a seller). We use the
notation Ai(t) to indicate the value of the quantity A at site i and time
t. Typically we are interested in the average value of these quantities, for
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example, the mean price in the system. This is an average over all sellers
at a single point in time. We shall denote the nth single-time moment of a
quantity A by

〈A(t)n〉s ≡
∑N
i=1Ai(t)

n

N
. (7.1)

So, for example, the mean system price (which varies in time) is written as
〈p(t)〉s. The standard deviation about this mean, measuring the spread in
the mean price at a single point in time is given by

σs(p(t)) =

√
〈p(t)2〉s − 〈p(t)〉2s. (7.2)

As mentioned, these system averages may be time-dependent. We can
therefore also de�ne a time-average of such global quantities as follows. Con-
sider a system-averaged quantity 〈A(t)〉s between two points t0 and t0 + T .
The nth moment of this timeseries is given by

〈An〉T ,t0 ≡
∑t0+T
t=t0
〈A(t)〉ns
T

. (7.3)

We can hence also de�ne the standard deviation of the timeseries

σT ,t0(A) =
√
〈A2〉T ,t0 − 〈A〉2T ,t0 . (7.4)

Figure 7.4 shows these two di�erent averaging schemes pictorially.
The �nal piece of notation we need is for the correlation of two time-

series. Consider two observable quantitiesAi(t) and Bi(t) that we observe
in simulation from t = t0 to t = t0+T . Their timeseries are given by 〈A(t)〉s
and 〈B(t)〉s respectively. The correlation of the two timeseries, at a lag τ is
given by

CA,B(τ) =

〈[
〈A(t)〉s − 〈A〉T ,t0

][
〈B(t+ τ)〉s − 〈B〉T ,t0

]〉
T ,t0

σT ,t0(A)σT ,t0(B)
. (7.5)

7.2.4 Quantifying oscillation size

In order to characterise the size of oscillations in an island system, we �rst
look at the completely coupled case (c = 1). We measure the variance in
the timeseries of the mean system price, σ2c=1 ≡ σT ,0(p)

2, for this system.
This variance is due to oscillations around the long-time mean value and is
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Figure 7.4 Schematic showing the two methods of producing averages in the
system. The upper �gure shows the distribution of system prices at a particular
point in time, with indicated mean value (we denote this 〈p(t)〉s, see equation
7.1). This mean value varies through time as shown in the lower �gure. The
time average of the mean price is shown as a dashed line on the lower �gure (we
denote this 〈p〉T ,t0 , see equation 7.3)

thus a surrogate for the amplitude of oscillations. We now vary the coupling
strength and measure σ(c) ≡ σT ,0(p)2

σ2c=1
for each of these simulations in turn.

For small coupling, as previously argued, we do not expect in-phase oscil-
lations and thus this fractional variance should be less than one. For large
coupling, we expect islands to migrate into phase, which should lead to a
fractional variance around one. As �gure 7.5 shows, this does indeed occur.
Small coupling gives rise to low variance; when c ' 0.15 the system behaves
as if the islands were completely coupled.

We see then, that a system composed of a number of weakly coupled
islands exhibits smaller system-wide �uctuations than a strongly coupled
system. We should now check that this is a result of our hypothesis that the
weakly coupled islands oscillate but do not migrate into phase. To con�rm
this hypothesis, we look at the autocorrelation of individual island time-
series and the cross-correlation between island timeseries and the system
timeseries. If the individual islands are oscillating strongly, there should be
a peak in the autocorrelation at the period of the oscillations. The cross-
correlation between two islands should have a peak of almost one at zero lag
if the two islands are in phase. Similarly for the cross-correlation between
an island and the entire system.

Figure 7.6 shows these di�erent timeseries correlations for a weakly cou-
pled system with c = 0.01. The results are as expected. The cross-correlation
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is exhibiting �uctuations of the same size as the fully coupled one. All systems have
N = 105, ∆ = 0.08, γ = 0.75. For each value of c the simulation is repeated one
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Figure 7.6 Correlation in the timeseries of the mean system price with weakly
coupled islands. Shown are the autocorrelation of the global mean price and an
individual island price and the cross-correlation between an island price and
the global price and two separate islands. Note that the autocorrelation peaks
in the global mean price are smaller than for the individual island (indicating
weaker correlation) and the cross-correlation shows no strong peak at a lag of
zero. Compare this with �gure 7.7. N = 105, ∆ = 0.08, γ = 0.75, c = 0.01

between di�erent timeseries never rises above one half, indicating that di�er-
ent islands are indeed out of phase. The island autocorrelation shows strong
peaks at the oscillatory period.

Conversely, if the coupling constant is large, we have seen that the �uc-
tuations are as large as in the completely coupled case. This indicates that
all islands are oscillating in phase and with the same amplitude. We there-
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fore expect that the timeseries correlations should all be identical: the cross-
correlation between an island the the global system should be the same as
the autocorrelation of the system price. As shown in �gure 7.7, this does
indeed occur. The various di�erent measured correlations are essentially
identical.
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Figure 7.7 Correlation in the timeseries of the mean system price in a strongly
coupled system. Shown are the autocorrelation of the global mean price and an
individual island price and the cross-correlation between an island price and the
global price and two separate islands. Note that all four curves are essentially
identical, indicating that individual islands oscillate in phase with one another.
N = 105, ∆ = 0.08, γ = 0.75, c = 0.3

7.2.5 Summary

We have demonstrated one possible method of reducing the severity of oscil-
latory cycles on the global system. If the system is composed of a large num-
ber of loosely coupled regions, the globally observed mean price does not
�uctuate as much as that observed in each region. As the coupling strength
increases, the oscillatory cycles of each region migrate into phase with one-
another. In the latter regime, extinction events in which all expensive sellers
become bankrupt are more likely to happen, resulting in a global crash in
prices. We may draw a weak analogy here to the global economic system:
in previous eras, coupling between di�erent economies was relatively weak
and disastrous occurrences in one economy would not necessarily migrate
to others. In modern times, coupling is much stronger and crashes in one
economy are much more likely to bring down others. This might lead us
to suggest, though not particularly seriously, that comparative economic
isolation might be a plausible method of avoiding global recession.
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7.3 time-delayed migration coupling

In this section we consider the islands to be spatially distinct entities. As a
result, information about prices takes time to propagate between islands. In
our ecological analog, we can think of strategy-copying as similar to seed
dispersal. Intra-island dispersal is fast, but inter-island dispersal is slow (seeds
must be carried across vast arid plains, or such-like).

In our model, we implement this delayed copying as follows. In addition
to their current price, sellers also remember their price from some (speci�ed)
number of rounds in the past. When a new seller enters the market they
either copy a price from within their island, or from the entire system. In
the former case, they pick up the current strategy; in the latter, they get the
historical strategy.

These dynamics have no e�ect on the system for parameter choices that
exhibit a steady state price distribution. Copying from some time in the past
makes does not alter the distribution of copied prices. The steady state re-
mains unchanged. In the oscillating regime, delayed copying may have an ef-
fect. In a weakly coupled system, adding a time delay is unlikely to change the
dynamics. In this case, islands oscillate in an uncorrelated manner: adding
a time lag to the copied price will not change the lack of correlation. For
large values of the coupling constant, we expect that there may well be some
change in behaviour. Without a delay, the islands oscillate in phase. If there
is a delay, the sampling distribution of prices will be composed of the island
price distribution and the system price distribution from some time in the
past. So, for example, if an island is at the bottom of a cycle but a new seller
copies from outwith the island, it may pick a price from the top of the cy-
cle. If this occurs frequently enough, the path through phase space may be
altered.

7.3.1 Fixing the oscillatory period

Our �rst step is to look at the behaviour of the system in the fully coupled
case. In this case, we �nd the system exhibits oscillatory behaviour but the
period of the oscillations is �xed. Instead of the oscillations having some
natural (system-determined) frequency, we �nd that the period is simply
equal to the copying delay. So, for example, if the copying delay is one hun-
dred rounds, the system oscillates with a period of one hundred rounds.
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Figure 7.8 shows the autocorrelation of the system mean price for various
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Figure 7.8 Autocorrelation of the mean system price in oscillating systems with
�xed time-delayed copying. N = 105, ∆ = 0.08, γ = 0.75, c = 1. Copy delay
indicated in �gure. There is a very noticeable correlation on the length of the
copying delay. Additionally, the system exhibits further slow oscillations with a
period of about ten times the copying delay

copying delays. Each of these shows a very de�nite peak at the delay length,
indicating that the period of the oscillating has been �xed. This is further
con�rmation of our belief that in the oscillating state, there is only one pos-
sible path through the phase space. The oscillations develop with a period
such that the copied (time delayed) price distribution matches the environ-
mental (current) price distribution. This way, the copied price distribution
is always optimal.

We can see this most clearly by looking at the price distribution over the
period of such an oscillatory cycle. In �gure 7.9 we show the price distri-
bution over the course of one period for a system with a copying delay of
one hundred rounds. The overall dynamics of the oscillation are unchanged
from the picture we described previously in section 6.5 (see �gure 6.9), but
the price distribution now repeats almost exactly every one hundred rounds.

7.3.2 Does the system have a memory?

This behaviour raises an interesting question. Does the system know the
period of the oscillatory cycle? In other words, if we look at a single time
snapshot of the system price distribution, can we tell the period of oscilla-
tion? The pictures in �gure 7.9 suggest that it might be possible. However,
the price distribution does not tell the whole story. The price distribution
is not the only factor in deciding the period of the oscillations. The distri-
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Figure 7.9 Sequence of price distributions through a cycle with price copying
at a delay of one hundred rounds. Each sub�gure shows the price distribution at
a particular point in time (black) and the distribution one hundred rounds later
(red). Sub�gure numbers indicate the number of rounds elapsed since the �rst
�gure. At every point in time, distributions separated by one hundred rounds
are essentially identical. The dynamics of the oscillation are still the same as the
system with no delay. N = 105, γ = 0.75, ∆ = 0.08, c = 1

bution of capital is also important, as is the position of sellers. So, although
the price distribution repeats every period, the capital distribution does not.
This di�erence is enough to ensure that the oscillation with �xed period
(due to delayed copying) does not continue in the same manner once the de-
lay in copying is removed. The system does not know what period it should
oscillate with if given only the information from a single point in time.

This is easily demonstrated by setting up a system with a delay in the
copying stage and letting it reach an oscillatory state. We then switch o�
the copying delay and see what happens. If there is a system memory, the
system should continue to oscillate with the previous (�xed) period and
dri� slowly away to the natural frequency. Conversely, if the system imme-
diately switches from the �xed period to a natural oscillatory state, we can
conclude that there is no system memory and the price distribution does
not tell us about the period of the oscillation. Figure 7.10 shows the time-
series of the mean system price in such a simulation. As soon as the delay
in copying prices is switched o� the system changes from a �xed oscillatory
period to the previously observed ‘natural’ oscillation. This demonstrates
that the price distribution alone does not contain enough information to
�x the period of oscillations. Despite this, it is nonetheless interesting that
with a delay in copying, the system is able to �nd the ‘correct’ oscillatory pe-
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Figure 7.10 Change in the oscillatory period of a system with time-delayed
copying when the time delay (of one hundred rounds) is switched o�. Shown
are the mean price for 5000 timesteps with time-delayed copying (solid) and the
subsequent 5000 timesteps when the time-delay was switched o� (dashed). Im-
mediately following the switch away �om delayed copying, the period changes
noticeably. γ = 0.8,N = 3× 104, ∆ = 0.08.

riod. No individual seller has any knowledge of the delay length, and so this
spontaneous arrangement to �x up the system price distribution to match
the sampled distribution is somewhat surprising.

7.3.3 Time delayed migration only between islands

We now turn to the question we posed at the beginning of the previous
section before studying the fully-coupled case. What happens if strategies
come from di�erent islands with a delay but without a delay from within
any one island?

We have just seen that if the islands are fully coupled, the system adopts
an oscillatory cycle whose period matches the time delay. Does this still occur
if the coupling decreases? The results presented in section 7.3.2 show that
the oscillatory period is not built in to the price distribution. We expect the
e�ect of only taking time-delayed prices from di�erent islands to be similar.
There will be a competition between the natural frequency of oscillations of
each individual island and the frequency imposed by time-delayed copying
between islands. It may be that these two e�ects can serve to stabilise the
system away from its oscillatory behaviour.

In performing this simulation, we must ensure that individually, all the
islands are large enough that their steady state in the uncoupled case is an
oscillatory one. If the islands are too small, the system quickly collapses to a
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state similar to that observed for γ = 1: all sellers are cheap with p < 1. This
behaviour is easy to avoid, we just specify a minimum size for an individual
island that is su�ciently high.

With this caveat out of the way we now look at the behaviour of the sys-
tem when inter-island copying picks strategies from the past and intra-island
copying picks from the present. When we do this we �nd little change from
the behaviour we observed previously without any time delay. The price of
individual islands oscillates with a period set by the delay time. For high
values of the coupling constant, the islands still end up in phase with one
another so that there is no con�ict between the historical distribution, seen
when inter-island price copying takes place, and the current price distribu-
tion. For low values of the coupling the story is again similar to the system
without a delay. Each island �uctuates individually with a period given by
the delay, but the coupling is weak enough that islands do not migrate into
phase.

As suspected, the addition of a delay makes no di�erence to the uncor-
related islands of the weakly coupled system, other than �xing the period
of each individual island. For the strongly coupled case, we postulated that
competition between the current and historical price distributions might
serve to stabilise the system slightly against oscillations. This appears not
to be the case. Instead, the coupling is strong enough that the islands all
migrate into phase, at which point there is no di�erence between historical
and current price distributions.

7.4 copying with a random delay

We now study a change to the dynamics that allows for a steady state with
expensive sellers in regions of the parameter space that otherwise give oscil-
lations. Recall that the oscillations occur when prices are drawn from the
current time distribution because the evolutionary dynamics favour the os-
cillatory state. The system chases its own tail through phase space as the
�tness landscape change. In an oscillating state, if we change the sampled
price distribution su�ciently, we will be able to negate this tail-chasing e�ect
and counteract the oscillatory behaviour.

The question is now just how to change the sampled distribution. Ob-
viously if we pick new prices from an externally set distribution the system
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will tend towards a state given by the distribution. Instead we change the
distribution by modifying the delayed-copying idea. Instead of remember-
ing a single price from some �xed time in the past, sellers remember a set
of historical prices. For example, each seller might keep track of its price in
the last ten rounds. When a bankrupt seller reenters the system, it chooses a
random seller to copy from as before and then chooses uniformly at random
from that seller’s historical prices.

This price copying scheme produces a steady state price distribution
that is very similar to the state for low γ. Figure 7.11 compares steady state
distributions for a system with γ = 0.5 without delayed copying and the
distribution obtained from a system withγ = 0.75 with randomised copying
and a history of two hundred rounds. Also shown in this �gure is the time
averaged price distribution of an oscillating system with γ = 0.75. We see
that the stabilised distribution and the steady state distribution are broadly
similar. The time-averaged oscillating distribution does not match up closely
with either. As an analogy to a real marketplace, we can think of the strategy
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Figure 7.11 Comparison of the steady state price distribution obtained with
γ = 0.5 and the distribution obtained with randomised strategy copying with
γ = 0.75. Small errorbars show standard error in the mean in a time average
over �ve hundred rounds. Inset shows the average price distribution observed
over an oscillatory cycle with γ = 0.75, the errorbars are the standard error in
the mean of each point over the cycle. All three distributions have N = 105,
∆ = 0.08 and c = 1

copying step as being equivalent to reacting to news events. If individuals
react to news from some random point in the recent past (rather than the
current time) the panic undercutting that occurs in the oscillatory cycle is
avoided.

Having shown that it is possible to avoid entry into an oscillatory state,
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we now ask two further questions. How much history must each seller hold
on to to suppress the oscillations, and does the suppression of oscillations de-
crease the pro�ts that can be made by single sellers? We know that the oscilla-
tions are driven by a few high-priced sellers with large capital stocks. Clearly,
the repeated crashes and recovery phases are bene�cial to them. Does the
suppression of these phases remove the possibility of making enormous cap-
ital gains?
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Figure 7.12 Standard deviation in the timeseries of the mean system price,
σT ,t0(p) (given by equation 7.4) as a function of history size with T = 25000.
Errorbars show standard error in the mean over forty realisations. Also shown is
the time-averaged mean system price, 〈p〉T ,t0 . The simulations all haveγ = 0.75,
N = 5×104,∆ = 0.08. Note how once the history length reaches approximately
one hundred rounds, the mean price stabilises and the standard deviation drops
almost to zero, indicating that the system is no longer in an oscillatory state

Figure 7.12 shows that for a system withN = 5× 105 once the history
length reaches around one hundred rounds, the oscillatory state has been
suppressed. Further increases in history length neither a�ect the mean sys-
tem price nor the size of the �uctuations. The steady state we reach in this
system remains unchanged as the history length increases past one hundred.
This stabilisation may be bene�cial for the global system, but is it also better
for anomalous individuals? To study this, we look at what happens to the
mean capital in the system (and also its variance) as a function of the delay
period. A large mean capital is obviously a good thing: it means the system
is wealthier as a whole. A large variance means that the system contains a few
sellers with large capital reserves. Since capital is bounded below by zero, if
the variance is large compared to the mean this is a sign of a few sellers with
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a large capital. These are the sellers that would have driven the oscillations
in the un-stabilised system.

We would like to be able to strike a happy medium in which the risk of
large crashes is removed while still allowing individuals to prosper. Our data
show (�gure 7.13) that in this system, the best option is to hold on to a long
history. The mean capital in the system shows a weak positive correlation

307082.19
250000
175000
100000

29960.40

23.67
18
13

7.40

1.00 100 200 300 391.00

History length

σT ,t0(C)

〈C〉
T ,t0

Figure 7.13 Mean system capital, 〈C〉T ,t0 , (lower �gure) and the standard
deviation in the mean system capital, σT ,t0(C), (upper �gure). Error bars show
standard error in the mean over forty realisations of the initial conditions,N =

5× 104, γ = 0.75, c = 1, ∆ = 0.08. Note the slight upward trend in the mean
capital. but no signi�cant change in the standard deviation (indicating that
changing the history length does not a�ect the pro�tability of anomalous sellers)

with increasing history length. Indicating that if we are optimising for overall
prosperity, longer histories are better. Additionally, there is no signi�cant
peak in the standard deviation of system capital as a function of the history
length. Increasing the history does not negatively a�ect the very prosperous
sellers.

7.5 summary

In this chapter we have studied two extensions to our simple model that can
lead to partial suppression of the oscillatory state when viewed on a global
scale. By separating the system into independent islands and coupling the
islands through exchange of strategies, we can reduce the size of global os-
cillations. If the coupling between islands is weak, they do not synchronise

115



their movements through price space. These out of phase oscillations par-
tially cancel in the system price and reduce the size of global �uctuations. If
the islands are strongly coupled, they migrate into phase with one another
and the system behaves as previously. We suggested, with tongue �rmly in
cheek, that decreasing coupling between the economies of the world might
have a bene�cial e�ect on global economic stability.

We also postulated that if price copying looked at a �xed point in the
past (introducing a delay in the propagation of information from di�erent is-
lands), the system might suppress oscillations. This is not the case, although
we did see that it was possible to �x the period of oscillations by �xing the
copying delay.

Finally, we showed it was possible to suppress oscillations in the system
completely by randomising the point in history a seller would copy from.
This had a positive e�ect on the mean system wealth, without negatively
a�ecting the few particularly wealthy sellers that prosper and drive the oscil-
latory behaviour. This suggests a further, semi-serious, method of avoiding
economic meltdown. Crashes in our system occur when sellers keep reacting
to one-another’s price changes by undercutting each other. If we randomise
the history, this price undercutting no longer takes place. Clearly then, to
avoid stock market crashes, all we need do is isolate traders from the news of
market �uctuations by feeding them data from a random point in the past.
In our system at least, this has only a positive e�ect on every participant.
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a simple mean field model

8In section 4.3 we constructed an analysis to derive the price distribution af-
ter a single round of updates. We showed that this result was almost exact
(except for ignoring pairwise spatial correlations) but argued that extending
the analysis to further rounds of the game would prove too di�cult. The
reason for this statement was the creation of both spatial correlations (when
one seller outcompetes another it changes the probability of survival in the
following round) and capital induced correlations. Sellers are able to accu-
mulate capital and so we cannot know their survival probability in any given
round unless we know their history. In this chapter we sketch how one might
approach the capital induced correlations in an analysis of the model.

Our scope here is somewhat restricted. We are not attempting to de-
rive the steady state price distribution, and so, for simplicity of exposition,
we consider a system with a speci�ed δ-function price distribution. Fur-
thermore, we destroy any spatial correlations in our simulations and do not
attempt to treat them at all in our analysis. Our aim, under these restrictions,
is to derive the steady state live seller density, ρ∞(γ), observed in simulation.

The simulation results are obtained as follows. We set the initial price
distribution to P0(p) = δ(p − 1) and consider a system without mutation
(∆ = 0). The steady state price distribution is thus P∞(p) = δ(p − 1). We
remove spatial correlations in the system by delocalising buyers. Every time
a buyer is chosen to go shopping it chooses, uniformly at random, two sellers
in the system and visits one of them (as described in section 3.3.1). Recall
that if two sellers have the same price, the buyer chooses randomly between
them. Figure 8.1 shows how ρ∞(γ) behaves under these dynamics in the
simulation.

To �nd ρ∞ analytically we need to �nd the survival probability of a seller,
this latter will depend on ρ. Denote the survival probability of a seller by
ps(ρ). If we can �nd ps then we can �nd ρ∞ by solving the equation

ρ = ρps(ρ)︸ ︷︷ ︸
surviving

+γ(1 − ρps(ρ))︸ ︷︷ ︸
reentry

. (8.1)
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Figure 8.1 Steady state live site densities (ρ∞(γ)) for systems in which spatial
correlations are destroyed (method described in main text). The initial price
distribution is a δ-function at p = 1,N = 104 and ∆ = 0

The le� hand side of this equation is the current live site density, the right
hand side is the live site density at the end of the round. The steady state live
site density is just given by the �xed point of this equation. Once we have
obtained an expression for ps �nding ρ should be straightforward.

Before we consider how to treat capital accumulation we consider a re-
lated, but simpler, problem. By setting the capital of sellers to zero at the
beginning of every round we can e�ectively ignore any capital induced cor-
relations in our analysis. We carry out this analysis �rst as a sanity check of
our method.

8.1 erasing history, sellers with no capital
accumulation

We treat the simplest case �rst. If we do not allow any accumulation of
capital, survival probability depends only on performance in the current
round. As we shall see, this simpli�es the analysis tremendously.

8.1.1 The synchronously updated system

We build up the survival probability in stages. The �rst question to answer is
how many buyers a seller must sell to in order to survive. We know that every
seller pays an overhead of two. This requires that a seller to sell to two or
more buyers per round in order to survive. Each of the buyers in the system
randomly chooses two sellers to visit, the probability that a buyer chooses
a particular seller is therefore 2

N
. The probability of attracting k buyers is
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therefore given by

fN(k) =

(
N

k

)(
N− 2
N

)N−k ( 2
N

)−k

. (8.2)

Note that in subsequent steps we will ignore the probability that a single
buyer chooses the same seller twice (which would look like two buyers but
only result in a single sale). If the system is su�ciently large this is a reason-
able assumption (it occurs with frequency O(N−2)).

Now we need to calculate the probability of selling to j of the k buyers we
have attracted. A sale either occurs if our competitor is dead (this happens
with probability 1 − ρ), or if the opponent is alive but we outcompete them
(this happens with probability ρ2 since all sellers have the same price). Hence
we sell to a buyer with probability 1 − ρ

2 . The probability of selling to j of k
total buyers is therefore given by another binomial distribution:

g(j|k) =

(
k

j

)(
1 −

ρ

2
)j (ρ

2
)k−j

. (8.3)

We can now write down the probability of selling exactly n times. It is
the expectation value of g(n|k) over the distribution fN(k).

eN(n) =

N∑
k=n

fN(k)g(n|k). (8.4)

We are interested in the large N limit of this expression, taking N → ∞ in
equation 8.2 gives (see section A.1)

lim
N→∞ fN(k) =

2k
e2Γ(1 + k)

(8.5)

and so the probability of selling to exactly n buyers in the in�nite system is

e(n) =

∞∑
k=n

2k
e2Γ(1 + k)

g(n|k) =
(2 − ρ)neρ−2

Γ(1 + n)
. (8.6)

We must sell some number of buyers and so

∞∑
n=0

e(n) = eρ−2
∞∑
n=0

(2 − ρ)n

Γ(1 + n)
= 1. (8.7)

119



Finally, using equations 8.6 and 8.7, we can write down the probability of
selling to n or more buyers

s(n, ρ) = 1 −

n−1∑
k=0

e(k). (8.8)

So, the survival probability for the discrete time system with no accumu-
lation of capital is given by

ps(ρ) = s(2, ρ). (8.9)

The sum may be carried out exactly (see section A.2) giving

ps(ρ) = 1 + eρ−2(ρ− 3). (8.10)

We can now plug this result back into equation 8.1 and solve the resulting
transcendental equation numerically to �nd the steady state live site density.
As shown in �gure 8.2, the agreement between simulation and theory is
excellent.
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Figure 8.2 Comparison of the live site density predicted by mean �eld anal-
ysis and simulation results for a synchronously updated system without capital
accumulation. The upper �gure shows the residuals of the �t, along with their
marginal distribution. The lower �gure shows the predicted steady state density
along with empirical results. Theoretical and empirical results appear as a single
line since they lie almost on top of one another: the �t has R2 = 0.9999. The
simulation hasN = 104, ∆ = 0
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8.1.2 The asynchronously updated system

This case is marginally more complicated than the previous one. The com-
plication arises because the number of overhead payments a seller makes is
not �xed. Sellers are randomly chosen to pay an overhead and so may need
to make any number of sales between zero and N in order to survive. The
probability that a seller pays k overheads is given by a binomial distribution

cN(k) =

(
N

k

)(
N− 1
N

)N−k

N−k. (8.11)

with largeN limit
c(k) =

1
eΓ(1 + k)

. (8.12)

The survival probability of a seller paying k overheads is the probability that
they sell to at least 2k buyers. The total survival probability is thus

ps(ρ) =

∞∑
k=0

c(k)s(2k, ρ). (8.13)

We can write s(k, ρ) explicitly as (see section A.2)

s(k, ρ) = 1 −
Γ(k, 2 − ρ)

Γ(k)
, (8.14)

however, the expression for ps has no explicit form. We just have

ps(ρ) =

∞∑
k=0

1 −
Γ(2k,2−ρ)
Γ(2k)

eΓ(1 + k)
. (8.15)

For a given value of ρwe can evaluate this sum numerically and use the result
to �nd the steady state live site density by iterating equation 8.1. Again, the
agreement between theory and simulation is excellent, as shown in �gure
8.3.

8.2 adding capital accumulation back in

Now that we have derived the live site density for a system in which no capi-
tal accumulation is allowed, we extend the method to treat the case where
capital can be stored. This allows sellers to survive in situations which would
previously have resulted in bankruptcy. To incorporate capital accumulation
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Figure 8.3 Comparison of the live site density predicted by mean �eld analysis
and simulation results for an asynchronously updated system without capital
accumulation. The upper �gure shows the residuals of the �t, along with their
marginal distribution. The lower �gure shows the predicted steady state density
along with empirical results. Theoretical and empirical results appear as a single
line since they lie almost on top of one another: the �t has R2 = 0.9999. The
simulation hasN = 104, ∆ = 0

into the survival probabilities, we must explicitly enumerate all possible seller
histories that allow for survival. We treat the synchronously updated system
�rst and then the asynchronous system.

8.2.1 Capital accumulation under synchronous updates

Under synchronous updates, every seller pays one overhead per round. If
we know the age of a seller surviving at the end of the current round, we
can enumerate the di�erent histories it could have experienced to reach its
present state. For example, consider a seller of age two. If it made zero sales
in the current round, it must have made four or more sales in the previous
round. If it made a single sale in the current round, it must have made three
or more sales in the previous round. Making two or more sales in the current
round is taken care of when we treat sellers of age one. There are therefore
two possible survival paths for a seller of age two. We use the notation k→ l

to denote such a path. This should be read as

“ k or more sales in the previous round and exactly l sales in the
current round.

For our example above, a seller of age two has two survival paths: 4→ 0 and
3→ 1. A seller of age one has a single survival path: 2.
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These survival paths can be thought of as similar to Brownian bridges.
Each path of lengthn is a bridge from (0, 0) to (n, 0) constrained to lie above
the x-axis and on or below the triangle given by the endpoints and the point
(1, 2(n − 1)). Figure 8.4 shows these diagrams for all paths of length three.

Figure 8.4 Diagrams showing all survival paths of length three. The gradient
of the line indicates the pro�t (loss) made during each step. All other paths either
result in bankruptcy of a seller or are subsumed by shorter survival paths: if a
seller reaches zero capital at an intermediate point, their survival can be described
by a shorter survival path.

The number of paths of length n is given by Sloane [68], A006013

a(n+ 1) =

(
3n+ 1
n

)
1

n+ 1. (8.16)

It is tedious, but relatively trivial, to now enumerate the paths which
allow survival. We now need to work out the probability of each path. Since
we are in the steady state, and are ignoring correlations, the probability of a
particular path is just the product of the probabilities of the individual steps.
Furthermore, the individual step probabilities are time-independent: they
only depend on ρ which is constant in the steady state. So, for example, the
survival probability associated with the path 5→ 1→ 0 is

P(5→ 1→ 0) = s(5, ρ)e(1)e(0) (8.17)

with s(n, ρ) given by equation 8.8 and e(n) by equation 8.6. The total sur-
vival probability considering all paths up to length n is just the sum over the
individual path survival probabilities and so

ps(ρ,n) =
∑

{paths}

P(path). (8.18)
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We are unable to �nd ps(ρ, ∞) but can get a reasonable approximation
to survival probability by truncating the expression at some �nite maximum
path length. The survival probability of a path decreases with increasing
path length so the main contributions to ps come from short paths. We set
the maximum path length to be thirteen and use the expression we obtain
for ps (given explicitly in section A.3) to �nd the steady state density by
solving equation 8.1. The result of this analysis is shown in �gure 8.5.
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Figure 8.5 Comparison of the live site density predicted by mean �eld analysis
and simulation results for a synchronously updated system with capital accumu-
lation. The theoretical analysis considers contributions to the survival probability
of paths up to thirteen steps in length. Upper �gure shows the residuals of the �t,
lower �gure shows the theoretical and empirical results. The R2 goodness of �t
measure is 0.81, however, the residuals are not normally distributed, indicating
that we cannot trust this number overly. Note how the �t is worst at low γ for
which longer survival paths have more weight in the survival probability. The
simulation hasN = 104, ∆ = 0

As expected, truncating the history at a �nite length gives an underes-
timate for the survival probability, and hence the live site density. This is
most noticeable at small values of ρ (lowγ): the probability of making a large
number of sales in a single round increases with a decrease in ρ and hence the
truncation at �nite path length becomes more noticeable. We can see this
particularly clearly if we plot the di�erence between theory and experiment
for an increasing history size. As �gure 8.6 shows, at high γ there is little to
be gained from adding to the path length, whereas for low γ increasing the
history length produces a noticeable improvement.
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Figure 8.6 Comparison of absolute errors between theory and simulation for
di�erent values of the maximum history length. The errors are largest at small
γ (corresponding to small ρ) and decrease with increasing history length. The
simulation is carried out with synchronous updates and hasN = 104, ∆ = 0

8.2.2 Treating the asynchronous system

Finally, we carry out a similar analysis for the asynchronously updated system.
In this case, the number of overhead payments a seller makes is a random vari-
able, it is consequently not quite as simple to enumerate the survival paths.
We start as before by building up the survival probability slowly. For a his-
tory of length one (i.e., no accumulation of capital) the survival probability
is just given by equation 8.15.

Now consider a seller surviving for two rounds. This seller will have
made i overhead payments in the previous round and j in the current round.
The distribution of these overhead payments is binomial and given by c(i)
(equation 8.12). To ensure survival, this seller must have sold to k buyers in
the current round (k = 0, 1, . . . , 2j−1) and 2(i+ j)−k buyers in the previous
round. Hence, the survival probability for paths of length two is

ps,2(ρ) =

∞∑
i=0

c(i)

∞∑
j=0

c(j)

2j−1∑
k=0

s(2(i+ j) − k, ρ)e(k) (8.19)

and the total survival probability becomes

ps(ρ) = ps,1(ρ) + ps,2(ρ). (8.20)

The method easily extends to longer survival paths. When we come to
solving for the steady state value of ρ, however, we encounter a problem.
There is no closed-form expression for ps(ρ) and numerical solutions of the
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problem with in�nite sums fail. To avoid this, we notice that the probability
of making more than around ten sales is almost zero. We therefore choose to
truncate our survival probability by assuming that the probability of making
more than ten sales is exactly zero. With this approximation scheme, the
two round survival probability can be written as

ps,2(ρ) ≈
5∑
i=0

c(i)

5∑
j=0

c(j)

2j−1∑
k=0

s(2(i+ j) − k, ρ)e(k). (8.21)

Consideration of all survival paths up to length four gives a result which is
computationally tractable and allows us to �nd the steady state density. We
compare the analytic and empirical results for this case in �gure 8.7. The
analytic result does poorly at low ρ, this is because our approximation that
the probability of making many sales is small becomes worse as ρ decreases.
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Figure 8.7 Comparison of the live site density predicted by mean �eld anal-
ysis and simulation results for an asynchronously updated system with capital
accumulation. The theoretical analysis considers contributions to the survival
probability of paths up to four steps in length. Upper �gure shows the residuals
of the �t, lower �gure the theoretical and empirical results. The R2 goodness of
�t measure is 0.089. Note how the �t is worst at low γ for which longer survival
paths have more weight in the survival probability. The simulation hasN = 104,
∆ = 0

8.3 analysing the correlated system

Finally, we attempt to �nd the live site density in the spatially correlated
system. Under synchronous updates we will always attract zero, one, or two
buyers and hence will either end the round bankrupt or with zero capital.
We do not therefore need to consider capital accumulation. Survival of a
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seller can happen in one of three ways:

1. Both neighbours are dead.

2. One neighbour is alive, but we beat it anyway.

3. Neither neighbour is dead, but we beat them both.

Let d denote the probability that a neighbour is alive. We survive with
probability (assuming that le� and right neighbours have equal probabilities
of being dead)

ps(d) =
d2

4 + 2d(1 − d)

2 + (1 − d)2 =
(d− 2)2

4 . (8.22)

Now we need to �nd an expression for d. To do this, let us assume that
the mean �eld model is correct, in which case, d is given by the solution to
equation 8.1 with ps replaced by the discrete time zero capital mean �eld
result (equation 8.10). We thus close our system of equations and can arrive
at a steady state value for the live site density by solving for ρ in the following
equation:

ρ = ρ
(ρMF(γ) − 2)2

4 + γ

(
1 − ρ

ρMF(γ) − 2)2

4

)
. (8.23)

Where ρMF(γ) is given by the mean �eld solution previously derived in sec-
tion 8.1.1. We solve this equation numerically as before, and compare with
empirical results. The result is shown in �gure 8.8. As previously, we have
good agreement at large γ and worsening agreement as γ decreases. This is
because the mean �eld solution slightly overestimates the probability that a
neighbouring site will be occupied, and this error is largest at low γ. This oc-
curs because in the correlated system, if we survive, we must have beaten our
neighbours. They are then surely bankrupt. The probability that a neigh-
bour is dead is then 1 − γ, not 1 − ρMF. The latter is always larger than the
former, underestimating our seller’s survival probability.

8.4 summary

We have sketched how it is possible to analyse the steady state live site density
in a system without any spatial correlations. If we do not allow for accumu-
lation of capital, these results are exact. If capital accumulation is allowed,
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Figure 8.8 Comparison of the live site density predicted by mean �eld-like
analysis and simulation results for a synchronously updated system with spatial
correlations. The theoretical result uses the spatially uncorrelated live site density
to solve for the correlated live site density. Upper �gure shows the residuals of
the �t, lower �gure the theoretical and empirical results. The R2 goodness of �t
measure is −15. Note how the �t is worst at low γ for which the uncorrelated
result overestimates the probability that a neighbouring site will be occupied. The
simulation hasN = 104, ∆ = 0

we must explicitly consider a sum over seller histories to �nd the steady state
result. Using this latter method, it should be possible, though likely very
long-winded, to extend our analysis of the general model presented in sec-
tions 4.3 and 6.2.1 past the �rst round of simulation. Our analysis here
has been restricted to a single-peaked δ-function price distribution, though
this has primarily been for ease of exposition. The extension to a general
(time-independent) price distribution should be reasonably trivial but long-
winded. In essence we just need to make the probability of outcompeting a
neighbour a function of price and update the survival probability appropri-
ately.
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conclusions& outlook

99.1 summary

In this thesis we introduced a simple spatial extension to a well-understood
competition game. As well as recovering the original results in an appropri-
ate limit, the resulting model demonstrates suprisingly rich behaviour not
observed in the original.

One aim in its construction was to produce a model simple enough to
be amenable to exact analysis. This aim met with only partial success: in
chapter 8 we presented one method for addressing the time-like correlations
in the dynamics due to capital accumulation. In section 4.3 we showed
that it was possible to derive the system price distribution in the absence
of spatial correlations. These latter correlations are the larger part of the
mismatch between mean �eld and empirical results and we have not been
able to address them in our analysis.

Subsequently, we explored the behaviour of the model through simula-
tion. The explanations for the minutiae of the results eluded us, however,
we were able to construct, and con�rm, hypotheses for the behaviour of the
steady state. Niche construction and competition-free sales were a common
theme in the observed steady state behaviour of the model. The steady state
behaviour itself broadly mimics observed pricing strategies in real market-
places. Sellers could be classi�ed into two groups, cheap and expensive. The
former have a strategy that requires they sell to every buyer walking in the
door, the latter only require that they sell to some of the potential buyers.
This appears qualitatively similar to the di�erent pricing strategies adopted
by, say, Harrods and Tesco.

In chapter 6 we found the qualitative behaviour of the steady state was
independent of two distinct choices of the update scheme. Furthermore, we
showed that the choice of asynchronous dynamics allowed for a system-wide
oscillatory cycle not seen in the previous results. We subsequently studied
methods of stabilising the system against these oscillations, demonstrating
that randomisation in the strategy copying step served to suppress them
entirely. We also noted that a system composed of independently oscillating
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parts, each only weakly coupled to the others, showed signi�cantly smaller
oscillations on a global scale. In analogy with global economy, we suggested
that reducing the coupling between nations might serve to increase global
stability.

9.2 open questions

Looking forward, we note that our model does not attempt to capture either
the nuances of price-setting in the real world or the vagaries of consumer
choices and loyalty. This was by design, we wanted to construct a model
simple enough to understand in detail. The model does, however, provide a
framework in which one could study the e�cacy of strategic price-setting.
We know how well sellers perform if they pick new strategies using our evolu-
tionary dynamics. Is it possible for an individual with a complex price-setting
strategy to outperform the evolved sellers? We might imagine that an intel-
ligent price-setter would be able to exploit local variation in the system for
higher pro�ts than the existing sellers.

The game-theoretic solution concepts presented in chapter 2 might pro-
vide the necessary inspiration to construct such intelligent strategies. Stick-
ing with the evolutionary theme, the strategy switching of the minority game
[14] might, with suitable modi�cation, also lend itself to our model. In this
scheme, sellers might have a portfolio of prices, rather than a single price.
One such price is o�ered in the marketplace, and all other prices are in-
ternally scored as if they had been played against the observed competition.
The sellers may then choose to swap strategies into and out of their portfolio
and exhibit a di�erent price to buyers. We might imagine that these dynam-
ics could allow for ‘predatory’ sellers: switching between a loss-making price
to kill o� competition and a high-pro�t price when the competition has
disappeared. The addition of possible loss-leading strategies would certainly
be appealing: such techniques are employed regularly in the real world.

A further line of enquiry would be to study a variation of the model
that allowed for economies of scale. In our study of the model on general
networks in chapter 5, we found that results were una�ected by the choice
of network. This was due to our choice of a linear relationship between the
number of potential buyers and the expected overhead. Under these circum-
stances, a seller with the potential to attract many buyers is not advantaged
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over a seller capable of attracting only a few. Economic theory suggests that
a u-shaped cost curve is a more realistic choice: there is some optimal size
which minimises the cost per unit sold. Our model essentially has no econ-
omy of scale. To add such a process to the model one would have to choose a
suitable cost curve. In addition, rather than having the dynamics play out on
a static competition network, one should construct some rewiring dynamics
that allow for sellers to change the number of potential buyers. It would be
interesting to see if the system then arranges itself in a way that places sellers
at the optimum size for their cost curves.

Finally, recall our common criticism of many of the simple models of
price competition presented in chapter 2: that the assumptions of rational-
ity and perfect competition are bad. Our model produces many qualitatively
similar results to those derived with these assumptions, and yet did not make
them. It might therefore be possible to use the results of our model to up-
date, with suitable recourse to empirical data, the assumptions necessary for
economic modelling.

To conclude, this model is unable to fully answer the question an indi-
vidual shopkeeper would �nd most pertinent: ‘what price should I sell my
goods for?’. Under certain restrictions we can, however, give a probability
distribution from which the shopkeeper should choose. With further study
we hope that models such as presented in this thesis will be able to give more
speci�c answers to the question. Even in its current form, our model results
might allow us to make some qualitative recommendations – not to shop-
keepers, but keepers of the global economy – on possible policy choices.

•
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exact results for the mean field model

AA.1 evaluating the large n limit of equation 8.2

We wish to �nd theN→∞ expression for equation 8.2

fN(k) =

(
2N
k

)(
N− 1
N

)2N−k

N−k. (A.1)

First, we consider the term in brackets, rewriting it as 1 − 1/N and Taylor-
expanding for largeN we �nd

(
1 −

1
N

)2N−k

= 1 −
2N
N

+
(2N)2

2!N2 −
(2N)3

3!N3 + . . . + O(N−1)

= 1 − 2 +
22

2! −
23

3! + . . . + O(N−1) = e−2 + O(N−1). (A.2)

The other two terms may be rewritten, expanding the binomial coe�cient
to give

(
2N
k

)
N−k =

(2N)(2N− 1)(2N− 2) . . . (2N− k+ 1)

k!Nk

=
(2N)k

k!Nk + O(N−1) =
2k
k! + O(N−1). (A.3)

Hence
lim
N→∞ fN(k) =

2k
e2Γ(1 + k)

(A.4)

as stated in the main text.

A.2 evaluating equation 8.9

To �nd the survival probability quoted in equation 8.10, we need to evaluate
e(0) and e(1) explicitly. This is straightforward to do in the general case:
from equation 8.6 and substituting in we have

e(n) =

∞∑
k=n

2k
Γ(1 + k)e2

(
k

n

)(
1 −

ρ

2
)n (ρ

2
)k−n

. (A.5)
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Factoring out the constant terms and expanding the binomial coe�cient we
have

e(n) =
2n

Γ(1 + n)e2

(
1 −

ρ

2
)n ∞∑

k=n

ρk−n

Γ(1 + k− n)
. (A.6)

Relabelling in the sum k→ k− n we see that the sum is just eρ giving

e(n) =
2neρ

Γ(1 + n)e2

(
1 −

ρ

2
)n

. (A.7)

Hence
e(0) = eρ−2 (A.8)

and
e(1) = (2 − ρ)eρ−2. (A.9)

We can also write down an explicit form for s(k, ρ):

n−1∑
k=0

e(k) = eρ−2
n−1∑
k=0

(2 − ρ)k

Γ(1 + k)
=
Γ(n, 2 − ρ)

Γ(n)
(A.10)

since [25, equation 8.352]

Γ(n, 2 − ρ) = Γ(n)eρ−2
n−1∑
k=0

(2 − ρ)k

Γ(1 + k)
(A.11)

and so
s(k, ρ) = 1 −

Γ(k, 2 − ρ)

Γ(k)
. (A.12)

Combining equations A.7 and A.8 and simplifying we arrive at the result
quoted in equation 8.10

ps(ρ) = 1 − eρ−2 − (2 − ρ)eρ−2 = 1 + eρ−2(ρ− 3) (A.13)

A.3 survival probability with capital accumulation

In section 8.2.1 we make use of the survival probability as calculated with a
maximum history length of thirteen but do not quote it explicitly. The full
expression is shown in equation A.14.
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ps(ρ) = 1 + e13(ρ−2)

(−369188601446674894069533775444836352+

3714505591481088988172976362566451200ρ−

18169491042952526576860837282578432000ρ2+

57466188276586809028081995359243468800ρ3−

131857172996682553216141682602973593600ρ4+

233465210819941612466824769538403860480ρ5−

331283356862108743651668567599703654400ρ6+

386267981117348120723310249173057536000ρ7−

376497500037947834613301157805025689600ρ8+

310496713117701937746261377053565747200ρ9−

218484812870331266308141896690210734080ρ10+

131915409632790344871946561519037644800ρ11−

68571252818950492098567481983433216000ρ12+

30730859507929825527709506747849011200ρ13−

11869091202001935103889682925887590400ρ14+

3941883046210043099275279576000675840ρ15−

1121025648644893922781269673737929600ρ16+

271238823883021984915431206123280000ρ17−

55322049416838422633997368843478400ρ18+

9389522961414066974583788538476800ρ19−

1302365045063219251155162794294160ρ20+

143854161248628991706304228857200ρ21−

12172551841656985119298486126000ρ22+

741137794006061028377582980800ρ23−

28911415492716247626737068975ρ24+

542800770374370512771595361ρ25) (A.14)
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