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Abstract 

We develop parallel algorithms for the simulation of lattice gauge theories. 
These algorithms are used to obtain numerical estimates of the low lying hadron 
mass spectrum in the quenched approximation to lattice quantum chromodynam-
ics. We use the standard Wilson pure gauge action and the staggered fermion 
action. Results are obtained for 3 values in the range 5.7 < 0 !~ 6.3 on lattices 
of size 16 4  and 16 3  x 24. Our analysis of baryon propagators suggests that there 
are significant finite size effects at low quark mass. 

An efficient monte carlo algorithm for the simulation of dynamical fermions 
theories is presented. A simulation of lattice quantum electrodynamics with 
dynamical electrons is used to compare this approach with the Langevin and 
hybrid algorithms. This simulation was performed on an array of Transputers. 

We discuss the parallelism inherent in lattice gauge theory simulations and 
its exploitation on the DAP and on arrays of Transputers. We investigate the 
implementation of dynamical fermion simulations on large arrays of Transputers 
and find it feasible. 
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Chapter 1 

Introduction 

Quantum Chromodynamics (QCD) is a theory of the strong nuclear force describ-
ing the interaction of quarks and gluons, the constituents of hadronic matter. It 
is a non-Abelian gauge theory. Unlike Quantum Electrodynamics (QED), the 
successful Abelian gauge theory of electrons and photons, it requires more than 
perturbative analysis. Features of QCD such as quark confinement are inher-
ently non-perturbative. QCD can be formulated on a lattice; this provides a 
mechanism for studying its non-perturbative features and in particular provides 
a framework for numerical simulation of the mass spectrum. 

In common with many other 'natural' problems the computational require-
ments of lattice QCD simulations are immense; they are beyond the capabilities 
of exisiting supercomputers. Highly parallel computers probably offer us the only 
possibility of performing such computations. 

1.1 Gauge Theories on a Lattice 

1.1.1 Gauge Theories 

Gauge theories are pre-eminent in modern theoretical particle physics. They 
achieved this position following the success of Quantum Electrodynamics, a U(1) 
Abelian gauge theory. The position was strengthened further by the discovery 
of the W and Z intermediate vector bosons [Arnison et. al. (UA1 collaboration) 
1983] at CERN, as predicted by the SU(2) 0 U(i) electroweak gauge theory of 
[Glashow Salam and Weinberg]. 

Gauge theories can be defined in a variety of ways, perhaps the simplest is 
to impose local symmetry conditions on a Lagrangian (see [Cheng and Li 1984]). 
The free field Lagrangian 

£ = j(z) (i-y'8 - m) t(x) 	 (1.1) 
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has a global U(1) invariance under change of phase, 

1(x) - 	= C ia 

(x) 	= e'(x). 	 (1.2) 

We 'gauge' this symmetry by replacing c by a space-time dependent phase a(x). 
The derivative term (x)8,&(z) becomes 

= 	,(z)e ia 3M  (e"i(x)) 	 (1.3) 

= 	(x) R. - i8,(x)) z) 	 (1.4) 

The second term spoils the invariance. We require a derivative of the form 

D,&(x) - [D M?(x)]' = (1.5) 

This is not possible for a free theory. We must introduce a new vector field A M  (x), 
the gauge field, and construct a covariant derivative 

D,i(z) = (ä,, + ieAM (z)) O(x) 	 (1.6) 

This satisfies eq. 1.5 provided that AM(x)  transforms as 

A O  (x) - A' 0  (x) = A O  (x) + aM a(x) 	 (1.7) 

We must also specify the dynamics of the gauge fields. The simplest gauge 
invariant term we can use is 

£1 _!F FIV 	 (1.8) 
4 

where F,,,,= 8,4A - äA,, 1  is the field strength tensor. FO,, is related to D,,1  by 

[DOD, - 	t' = 	 (1.9) 

- 	 The full Lagrangian is then 

£ = _.F,FM1' + (x) (i'y'ä + ieAM (z)) b(x) - m(x)b(x) 	(1.10) 

It describes a massless photon AM  whose coupling to a matter field t& is determined 
by the TJ(i) symmetry. The photon has no self coupling and so the theory is free 
without the matter fields. 

1.1.2 Quantum Chromodynamics 

A Little History The discovery of the proton and neutron was followed by 
that of a myriad of mesons and excited states of the nucleons. Cell-Mann and 
Zweig suggested that all hadronic matter (baryons and mesons) is made from 3 
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fundamental particles, the up, down and strange quarks [Gell-Mann 1964] [Zweig 
19641. They constructed families of particles according to representations of an 
SU(3) flavour symmetry. 

The SU(3) of flavour is broken - the strange quark has higher mass than 
the up and down quarks. Further quarks (charm and bottom) were proposed 
to explain the existance and decay of the J/W and B mesons and subsequently 
discovered. (We should qualify the use of "discovered"; quarks have never been 
seen in isolation but there is evidence for pointlike fermionic objects carrying 
fractional charge within a proton.) A sixth, the top quark, is proposed. We now 
think of quarks as coming in generations: a pair of quarks with a lepton and a 
neutrino [Gross and Wilczek 19731. The basic dynamics of quarks is thought to 
be largely independent of flavour, provided that the number of generations is not 
too high. 

Han and Nambu proposed a hidden exact SU(3) symmetry, colour, in 1965. 
Without it the would contravene the spin-statistics rules for fermions [Han 
and Nambu 1964]. Experimental support for this idea came from the measure-
ment of 

R- 
 (e+e_—+  hadrons) 

- c (e+e -+ 

Without the extra colour degrees of freedom the predicted cross-section for decay 
to hadrons is a factor of 3 smaller than that measured. 

Deep inelastic scattering experiments demonstrated that at high energies 
(short distances) quarks are free (or weakly bound), and carry about 50% of 
the proton's momentum. At lower energies (longer distance scales) the quarks 
are tightly bound, presumably confined. The parton model of the strong nuclear 
force proposes a world made from valence quarks and dynamical quark anti-quark 
pairs bound together with gluons. The quarks and gluons carry colour charge, 
but physical states are all colour singlet. 

A theoretical basis for these phenomena was provided by the construction 
of non-Abelian gauge theories [Yang Mills 19541 and the discovery of asymptotic 
freedom [Politzer 19731. 

Asymptotic Freedom The functional dependence of the cbupling constant g 
in a field theory on a=distance (energy) scales is given by the renormalisation 
group fi function 

48(g) = _ 9(lfl)   

A perturbative expansion of /3(g) at weak coupling gives 

—/30g 3  — /31g5  + 0(g7) 	 (1.12) 

where fib = j2 (ii - nj) for an SU(3) gauge theory with n1 flavours of fermi-3 
ons. For n1 16 flo(g)  <0 as g -+ 0 implying that the coupling constant goes 
to zero at short distances. 
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The strength of the forces grows with increasing distances scales, to the point 
where the perturbation expansion breaks down. This is consistent with confine-
ment, but does not imply it. 

QCD Non-Abelian gauge theories are the only renormalisable 4-dimensional 
theories that are asymptotically free. They were developed by Yang and Mills 
(see [Yang Mills 1954]). Consider the local symmetry transformation 

OW -+ t'(x) = et,&(x) 	 (1.13) 

where the ra  are generators of an SU(3) symmetry group (the Gell-Mann 
matrices) and 0 is a 3 component field. As in the Abelian case a consistent 
theory requires gauge fields A (x), one per generator, which transform according 
to 

A'(z) = A"(x) + 1obc abAc (z) - l ä aa(x) 	 (1.14) 

(where the Pb" are the structure constants of the gauge group) and the covariant 
derivative 

D,1e&(x) = ( M - igr . A(x)) O(x)  

The QCD Lagrangian is 

= 	 + iiDb - rnb 	 (1.16) 

The field strength tensor Fa,, is given by 

F•1GW 
= 3 A" - 8 Li A° + gfabcAbAc 	 (1.17) 

Much of the complex structure of QCD is due to self couplings amongst the gauge 
" fields in the Yang-Mills term F Li F". 

The predictions of QCD at high energies have been tested by deep inelastic 
scattering and the physics of quark-gluon jets. Our direct experience with the 
consequences of QCD is at much lower energies; this determines the strength of 
couplings, the hadron masses and the values of matrix elements. These quanti-
ties are essentially non-perturbative. Lattice regularisation schemes enable us to 
study QCD in this limit, making possible predictions that can be tested experi-
mentally. 

1.1.3 Lattices 

Wilson showed that it is possible to construct a gauge invariant theory on a lattice 
[Wilson 19741. The lattice provides a non-perturbative regulator, cutting off all 
wavelengths less than twice the Iatttice spacing. It also provides a framework for 
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establishing the connection between the Feynman path integral (FPI) formulation 
of quantum field theories and a statistical spin system. Consider a ç theory in 
4 dimensions. 	

1 1 	2 
£ = (8) 2  + m22 + 	 (1.18) 

(see [Ramond 1981]). In the FPI formalism the expectation value of an observable 
o is given by 

(0) = 
	

[d] Oexp 
(ijtS 

di] d3xC(zr))  

where 

Z = f [dq5]exp (ij t1 drfd3xe(zr)) 	 (1.20) 

Introducing a lattice allows us to define the functional integral f [d] prop-
erly. Consider a hypercubic lattice of spacing a where sites are labelled by 
Ti = (no  , ri1, n2, n3) and the 4 directions in the lattice are labelled by A. If we 
replace 4(x) by O(n), 85 by the forward difference ((n+))) - (n)) and the 
ordinary integral by a sum over sites weighted by a 4  eq. 1.19 can be written as a 
multiple integral 

(0) = f H dc6(ri) e_S 	 (1.21) 

This is analogous to a statistical spin system in the canonical ensemble, with the 
correspondence .  -* 

1.1.4 Wilson's Pure Gauge Theory 

In Wilson's pure gauge formulation of QCD the gauge fields are path-dependent 
'phases' (elements of the gauge group) living on the links of a hypercubic lattice. 
They transport colour charge from a site to its neighbours, and are defined by 
writing 

U(ri)

=  M 	 (1.22) 

where AM  is an element of the lie algebra of the gauge group. The gauge trans- 
formation law is 

U,, (n) -  U' , (n) = 1(n)UM (m)1F'(m+f) 	 (1.23) 

the fl E SU(3) are arbitrary group rotations at each lattice site. 

We require that the lattice action should be gauge invariant and that it should 
reduce to the Yang-Mills action in the continuum limit. This suggests that we 
should construct it from integrals of A M  around small closed contours. Motivated 
by this Wilson proposed the action 

SG = 	ReTr(Uo ) + hermitean conjugate 	(1.24) 
2N 0 

5 



where 
U0  = 	 ( 1.25) 

is the product of links around an elementary square, or plaquette, of the lattice 
(see figure 1.1). This trace of such plaquettes is manifestly gauge invariant. 

t 

 

t 	I 
IP 

 

Figure 1.1: The plaquette 

Applying our definition of lattice derivatives to eq. 1.22 

A(n+tt) = A(n) + aÔM A V (n) 	 (1.26) 

and making use of the Baker-Campbell-Hausdorf relation we have 

U0 = e1a iga(A,&+a 8 Av) e_iga(A, —aÔUAM)  _igaA 	 (1.27) 
= ei9a3 (a,A,, —&,A,)+ig[A,,A]+... 

= iga3F,w + 0(a4 ) 

for small a. Expanding the exponential and taking the trace, 

TrU0  = Tr (i + iga2F - 	+  

Now Tr(F) = 0 as the generators of an SU(N) group are traceless, and so 

Tr (FFM) = Tr (F;F'ç) = 	 ( 1.29) 

Finally we replace the sum over sites with an appropriately normalized integral 
and 

g2a4  
Tr(Uo ) + h.c = — 2 

(2.&4  1 d4z__F;M FaM&1) 	 ( 1.30)
2.  2N 0 	

= _-JF:V FaV 	 (1.31) 

setting ,6 = 	we recover the Yang-Mills action. 



Asymptotic Scaling 

By means of numerical simulation we can measure the value of a quantity on the 
lattice at finite a. But in order to extract a prediction for the physical value we 
must first take the a -+ 0 limit, removing the cutoff. Consider some observable 
0, of dimension d. In lattice units 

0 = ad 1(g) 	 (1.32) 

where f(g) is a dimensionless function containing the physical information. The 
physical value of 0 is independent of a. To make sense of measurements of 0 
at finite a we must first understand the way in which the coupling g depends 
upon a, and thus the functional dependence of f on a. The work described in 
section 1.1.2 provide us with this information at weak coupling. 

For example, masses measured on the lattice have the form m =f  (g), and so 
diverge as we take the continuum limit. But all masses have the same functional 
dependence upon g as g - 0 and so ratios of masses will be independent of g 
in the scaling regime. We must determine how close to g = 0 it is necessary to 
work before we see this scaling. 

To date lattice QCD simulations have been performed for fJ - 6, (g .-.. 1). 
Monte carlo renormalisation group (MCRG) analysis [Bowler et. al. 19861 sug-
gests that deviations from scaling are less than 10% for 3 > 6.1. Measurements 
of the deconfinement temperature (in the absense of fermions) [Kennedy et. al. 
1986] show scaling setting in at around 3 = 6.15. 

Quark Confinement 

Quark confinement is demonstrable on the lattice at strong coupling [Tomboulis 
19831. Consider an experiment in which a quark anti-quark pair are separated 
adiabatically to a distance R, held apart for a time T and then brought together 
again. The amplitude for this process is < f I CIT I i > in a euclidean for-
mulation where i and f are the initial and final states. Wilson represented this 
process by a generalisation of the plaquette, to an R by T loop, 

W(R,T) = Tr fl U, (n) 	 (1.33) 
loop 

In the limit T - oo the loop W(R,T) e_TV(?) where V(R) is the inter-quark 
potential. Measurements of ratios of Wilson loops support a potential of the form 

V(R) aR + j 	 (1.34) 

where a is the string tension. These measurements are from simulations at in-
termediate coupling. Confinement in the continuum limit is dependent on there 
not being a phase transition at weaker coupling. 
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1.1.5 Fermions on the Lattice 

A naive formulation of fermions on a lattice is to take the dirac action in euclidean 
space 

Sp = f xb(x)(D, + m)&(x) 	 (1.35) 

where DM  = 3 + igA, and replace the partial derivative with a central difference 

SN = 	 (U,4 (n)ti(n+i) - U,(ri_i&)i,b(n_ii)) +m(n)(n) 

(1.36) 
where the fermion fields &(n) are associated with sites of the lattice. The links are 
necessary to make the action gauge invariant. For free fermions the momentum 
space propagator corresponding to the naive action eq. 1.36 has the form 

GN(P) =  (1M51PM +m) ' 	 (1.37) 

which has poles for E. sin p, = 0 in the m - 0 limit. In addition to the expected 
pole at zero momentum there are a further 15; the fermions having "doubled" in 
each dimension. 

Wilson Fermions 

Wilson proposed a mechanism for giving the unwanted fermions a mass of order 
, decoupling them as a -+ 0. He did this by adding a second derivative term to 

the action. For free fermions 

Sy = SN - 	r(n) (i'(ri+iL) + i1'(n—A)) 	 (1.38) 
2a nis 

This gives the propagator the form 

—1 r 
ã(p) = (- (isin - - cospj +M 	 (1.39) 

a 	I 

for which the only pole as a -+ 0 is at p,, 1  = 0. There are several disadvantages 
with this approach; the r term explicitly breaks chiral symmetry and the value 
of the critical mass (to which we must tune m for zero mass quarks) must be 
determined numerically. 

Staggered Fermions 

Susskind proposed a mechanism for thinning out the unwanted fermion degrees 
of freedom by recognising that the Dirac multiplets decouple in the lattice for- 
mulation. This can be seen (in [Kogut and Susskind 1975] and [Susskind 1977]) 



via the transformation [Kawamoto and Smit 19811 

= 
;P(n) =5<(n)TI(n) 	 (1.40) 

where T(n) = 	 This spin-diagonalises the naive lattice action. In 
terms of the x  fields 

SN = 

+ 	 (1.41) 

contracting the gamma matrices and the T's we get 

SN = 	 (U,(n)x(n+i) - U(n — I)x(n — I)) 	(1.42) 
2a nis 

+ m(n)x(n) 

where (n) = (-1)'"2 "', the Kawamoto-Smit phases. Eq. 1.42 is diagonal 
in spinor space so 3 of the 4 copies may be thrown away, reducing the fermion 
degeneracy to 4. 

We define quark fields q and 4,a on a lattice of spacing 2a for which x,4  = 
2ymu + 77, and 77, = 0 or 1 [Kluberg-Stern et. al. 19831 

	

qaa(x) = ErU(x)x(2y+i) 	 (1.43) 

	

= .(2y+n)u(x)r; 	 (1.44) 

where r = 	 a labeling the Dirac index, and a the flavour index. 
17 

A U(i) 0 U(i) remnant of the U(4) 0 U(4) chiral symmetry of the Dirac action 
remains, but there are still 4 fermions rather than 1. Kluberg-Stern et. al. have 
provided a flavour interpretation of this degeneracy. 

From a computational point of view the staggered fermion formulation is 
simpler than that for Wilson fermions, and there is only a quarter of the data. 

Neither Wilson nor staggered fermions supply the desired one-fermion model 
with chiral symmetry. This is a consequence of the Nielsen-Ninomiya no-go 
theorem which states that chiral symmetry must be broken if we wish to construct 
an undoubled fermion theory with a local action [Niels n and Ninomiya 19811. 

1.1.6 Making Measurements in a Fermionic Theory 

To calculate a physical observable 0 in a lattice theory we must measure the 
expectation value of a corresponding operator; one with the correct continuum 
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limit. The general form for such an expectation value (using the Wilson gauge 
action and staggered fermions) is 

(0) = 
i  _S(1, 	 (1.45)J     

where 
Z = J [dU] [dr] [di] e_s,x, 	 (1.46) 

The fermion fields x and R are Grassmann variables. The quadratic form of the 
fermionic action allows us to integrate over them [Mathews and Salam 1954/51, 
bringing a factor of det(+M) down from the exponential, leaving only the pure 
gauge action. The determinant represents the contribution to the action of closed 
fermion loops. For example 

(xx) = f [dU] det('+M) (+M) -1 e-S0 	 (1.47) 

and 
Z = f 

[dU] e_SLT) 	 (1.48) 

where the effective action Seg is given by 

Seff (U) = SG (U) - tr ln(+M) 	 (1.49) 

the integral over the gauge fields remains, and must be performed numerically 
(see section 1.2). 

To measure quantities such as hadron masses in a lattice simulation we must 
construct an operator with the appropriate quantum numbers and measure it on 
a set of configurations. As an example of this process we consider the general 
meson operator in the next section. 

Identification of Meson Operators 

We combine the quark qa (x) with appropriate gamma matrices rA,  A = 1, 16, in 
pairs or triples to form operators corresponding to mesonic and baryonic bound 
states. See [Chalmers 19871 and [Gilchrist et. al. 19841 for a thorough review. 

Mesons The general meson operator is 

j16  (x) = E 1. (z) (r, 0 	q. (x) 
	

(1.50) 

The indices are a colour, A spinor, and 5 flavour. We use eq. 1.43 to write eq. 1.50 
in terms of the one component staggered feimion fields. 

JAS(x) = 	(2y+)U(x)T (r 0 rr) r 1 cr(x)x(2y+') 	(1.51) 
6?7I7 
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Solving the lattice Dirac equation for x is computationally very expensive. We 
cannot conceive of being able to evaluate all 16 propagators from each point of 
the hypercube at 2y. Instead we impose the restriction 77 = ii', and work with 
the 'local' meson operators; eq. 1.51 becomes 

J,.5 (x) = 	(2y+t7)Tr 	 rxrrl 	X(2y+) 	 (1.52) 

For the trace to be non-zero A = S so the general local meson operator is 

= 	xTr [rrAr 7  r] 	 (1.53) 
a17 

The rest-frame meson propagators from origin o to time t are [Gilchrist et. al. 
1984}. 

	

MN W =(Jx (z)JA(o)) 	 (1.54) 
x 

We calculate them for r,, = 1, 1'5, lol&, i,, jojjj , ,jsjfj  and 	0 	To match 
the M(t) with physical states we evaluate their JPC•  The parity operation is 
determined by 

Pq(x)P 	= Pq(zo ,x)  
P = 74 ØI 

(1.56) 

where the I acts on flavour space and the ' on spinor space. Operating with 
P on J,, (x) we obtain the continuum parity identifications shown in table 1.1.-
The meson propagators are expected to have the general form 

A jPC meson 
1 5(980) 

15 2-1415 ir(140) 

IM'141M p(770) 
1,®YM B(1235) 

yy 1 A l  (1270) 

Table 1.1: Identification of continuum JPC  quantum numbers for 
the low lying meson propagators 

.M(t) 	A1e_mt (t_t0) + (_l)t_to_mt_t0) 	 (1.57) 
I 

where the index i labels the ground state, first excited state, etc and + and - 
label states of positive and negative parity. 
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1.2 Simulating Field Theories 

In order to calculate the expectation value of some operator 11 (U),  we must 
evaluate 

(fl) = 	f[dU]fl(U)e 5 ') 	 ( 1.58) 

where the partition function Z is given by 

Z = f [dU]e-s 
	

(1.59) 

The Monte Carlo method computes (11) by generating U-field configurations at 
random with probability Ps (U) = je_S(U) , and then measuring 

iT 	

(1.60) 

on a sequence {U} of such configurations. As T -+ oo we find that 

= (12) +0 () 
	

(1.61) 

The most useful technique for generating a sequence of configurations with the 
desired distribution is to construct a Markov process. A Markov process is a 
stochastic procedure which generates a new configuration U' from its predecessor 
U with probability PM [U '- U'] which depends only upon U'. 

Define two ensembles E1  and E2  where ensemble E2  resulted from the appli-
cation of our Markov process to E1 . Let their separation be 

jE1  - E21 = E IP1 (U) - P2(U)I 	 (1.62) 
U 

where P1  (U) is the probability of finding configuration U in ensemble E•. Now 

P2 (U') =>PMEUi- U']P1(U) 
	

(1.63) 
U. I 

Let E3 be the equilibrium ensemble, that which the Markov process transforms 
to itself. Using the detailed balance condition 

PS(U)PM [U U'] = PS(U')PM [U' U] 	 (1.64) 

we find that 

1E2  —Es i = 	
I E

Prvf[U' '_* UJ(Pi (U') 

PM [U' '-+ U] P1(U') - Ps(U')I = IE1  - EsI 	(1.65) 
UU ,  
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since EU
, 
P [U '-* U'] = 1 and so a Markov process will converge to an equi-

librium fixed point Ps provided that it is strong ergodic (PM [U' i-+ U] > 0) and 
satisfies detailed balance. In fact all that is required is that U' be obtainable 
from U in some finite number of steps, weak ergodicity. 

The details of the Markov process are not specified. We discuss desirable 
features of such a process in chapter 4. Two schemes that have been used widely 
are the Heat-Bath [Creutz 1980] [Pietarinen 19811 [Cabibbo and Marinari 19821 
and Metropolis [Metropolis et. al. 1953] algorithms. 

Heat-Bath The Heat-Bath algorithm is analogous to bringing each degree of 
freedom in contact with a thermal source. This causes it to fluctuate over all 
its possible values. Removing the heat bath leaves the link in a given state with 
probability e_. Detailed balance is clearly satisfied. 

Metropolis In the basic Metropolis algorithm we propose an update to each 
link and evaluate the change in action AS that would result from acceptance of 
the new link. If AS < 0 we accept the change. If not we generate a random 
number r between 0 and 1 with uniform distribution and accept the change if 
r < e'5 . In a multi-hit Metropolis algorithm we make n attempts to update 
each link. Heat-Bath and Metropolis are equivalent in the limit r -+ 00. 

To compute the average value we equilibrate the system, then measure 
fl (Ug ) on a sequence of statistically independent configurations. 

1.2.1 Fermion Simulations 

The Wilson action for a pure gauge theory is local, and so evaluating the change 
in the action is relatively easy. When we include fermions we must generate con-
figurations with probability distribution det (+M) e 5°. The presence of the 
determinant makes the action highly non-local, and thus unsuitable for numerical 
simulation - we would have to evaluate the change in the determinant every time 
we wished to update a link. 

A great deal of work has gone into ways of getting around this problem. 
A few of the suggested solutions are discussed below. Write M = ( + M). 

Seff = Seff (U+6U) - Seg(U) and from eq. 1.49 we obtain 

= e° det (i+.M- 'o.M) 	 (1.66) 

The Scalapino Sugar Algorithm Given initial knowledge of the Green's 
function .M' the [Scalapino and Sugar 19811 algorithm updates the inverse in 
response to every change in the link variables. By rank annihilation 

(M + ÔM) 1  = 	-> 
ki 1 + S.Mkl.Mj' 	

(1.67) 
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The matrix &M has non-zero entries only for sites neighbouring the link being 
updated. The indices k and I run over these elements, only. To correct for 
rounding errors in .M' it is necessary to reset M'M to unity by applying the 
procedure 

2.M' - .M')vt.M' 	 (1.68) 

This algorithm is very slow, and can only be used for small lattices It can be 
speeded up by breaking the lattice up into blocks and only updating sub-matrices 
of .M' [Scalapino and Sugar 19811. 

Pseudo-Fermions The pseudo-fermion algorithm [Fucito et. al. 19821 uses a 
Monte Carlo algorithm to evaluate .M' retaining only terms of order SU. It is 
very slow at low mass, and the systematic errors introduced necessitate that the 
changes SU are small. 

Block-Lanczos Algorithm The matrix )v( has 24 non-zero elements per row 
or column. Changing a link induces a change 6 M in .M which is non-zero only at 
the intersection of the 6 rows and columns of .M corresponding to the end-points 
of the link. The Lanczos algorithm is used to calculate the 6 columns of .M 
necessary to update the determinant. Given this data [Barbour et. al. 1985c] a 
multi-hit metropolis update can be performed without further inversions. This 
idea is intended to permit the updating of all the links within a hypercube. 
Hypercubes are selected at random and brought into local equilibrium before 
moving to the next. 

Equation of Motion Algorithms The equation of motion algorithms arose 
from the application of molecular dynamics to field theory simulation [Calaway 
and. Rahman 19821 [Polonyi and Wyld 19831. A hamiltonian is constructed from 
the action of the field theory and an artificial dynamics in an extra dimension r, 
the simulation time. Hamilton's equations then determine the evolution of the 
coordinates (degrees of freedom of the field theory) and their conjugate momenta 
in the extra time dimension. 

Dynamical fermions represented by the Grassmann fields 7P and are replaced 
by bosonic fields x and  x with non-local interactions: 

PS (U) = I f [d~ ] [dV5Je -S(U)-~ .M O 

= 	det(.M)e 

= I [dx *}[dx J e _ 5 ) tt _ X 	 (1.69) 

The hermitean matrix )4t  .M is used to ensure convergence of the bosonic Gaussian 
integrals. The form of the kernel .M for staggered fermions allows us to keep x 
fields on even lattice sites only, avoiding the apparent doubling in det(.Mt.M) 
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above. The equations are discretised in r. Evolving the fermion fields requires 
calculation of (MtM) - 'x once per timestep. These algorithms are discussed in 
detail in chapter 4. 

1.2.2 The Quenched Approximation 

For a reasonably large lattice (say 16) repeated calculation of .M' or det (.M) is 
out of the question, and the equation of motion schemes would require dedicated 
use of a supercomputer for several years. What information can we get from a 
lattice theory without having to commit such resources to a project ? 

We can describe the fermionic simulation schemes using Feynman diagrams. 
A propagator in an external field is represented by figure 1.2a. The integrand in 

a. The propagator. 

b. Adding gluon interactions. 

c. Adding dynamical fermion loops. 

Figure 1.2: Graphical features of fermion simulations. 
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the integration over gauge fields can be split into two parts. 

e s°'  and e 1" 

The first, the pure gauge term, permits self interaction of the gluons, figure 1.2b. 
The second allows closed fermion loops in the intermediate states, figure 1.2c. It 
is this second term that causes most of the problems in the simulation. Dropping 
it amounts to ignoring fermion loops. This is believed to be reasonable at high 
quark mass where pair creation is suppressed. Is it reasonable at low masses? 

In string models of mesons the gauge field interaction between the valence 
quarks is characterised by a string tension T. Including fermions breaks the 
string, lowering the tension to T'. If these models are appropriate then inclusion 
of the fermions may be approximately equivalent to adjusting /3 in the pure gauge 
theory until T = T'. 

The empirical Zweig rule [Zweig 1964] states that disconnected quark dia-
grams are suppressed, it accounts for low cross-sections in 0 -+ 37r decays; the 
(s) must go through an intermediary gluonic state to decay into irs (ad, dd and 
dii). Dropping the determinant amounts to enforcement of the Zweig rule for all 
flavours. 

Setting the determinant to 1 is called the quenched or valence approximation. 
It makes fermion simulations possible in reasonable amounts of time (hundreds 
of hours) on existing supercomputers. 

1.3 Parallel Computing 

Simulating a lattice gauge theory requires massive computational resources. Cur-
rent supercomputers (such as the CRAY X-MP, CYBER 205) are powerful: 
enough to perform large scale calculations in the quenched approximation, but 
they are very expensive to run and few groups can afford sufficient time on them. 
These machines, vector processors, rely on pipelined floating-point processors and 
very short cycle times to achieve their speed. They are built from state-of-the-art 
technology, and have now reached the point where delays in signal propagation 
across the computer restrict the peak speed. 

Parallel computers offer a way out of this 'technology trap'. Their perfor-
mance is derived from having large numbers of processors co operating on the 
same task. In general, they are much cheaper to build and run than a vector 
processor, but more difficult to program. This difficulty is mitigated by the rel-
ative simplicity of lattice simulation codes. Much is still to be learnt about how 
to use these machines effectively, but the rapid growth in their power will make 
it feasible to perform realistic dynamical fexmion simulations in the near future. 
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1.3.1 Parallel Processor Architectures 

There are two basic parallel processor architectures denoted SIMD and MIMD. 
SIMD (Single Instruction Multiple Data) computers execute the same instruction 
on every processor at the same time, each applying it to their own data. In an 
MIMD (Multiple Instruction Multiple Data) computer each processor runs its 
own program acting on its own data. 

In order to cooperate on solving a single problem the processors must be able 
to communicate with each other. SIMD machines usually have direct serial con-
nections between each processor and its neighbours. The DAP (see appendix A) 
for example is a 2-d grid of 4096 processors and each has North, South, East and 
West connections to its neighbours. (There are also row and column broadcast 
functions.) 

There are several different approaches to the connection of processors in 
MIMD machines (1) buses and (ii) point-to-point communications networks. 

Bus Based Machines In a bus based machine all the processors communicate 
with each other, or with all the memories via a bus - a high bandwidth data path. 
The bus must be fast enough to service all the processors and memories, and must 
contain arbitration logic to prevent more than one processor attempting to write 
to a given memory location at the same time. 

Processor Networks A simpler model of parallel processing is that each pro-
cessor should have its own memory, and should communicate with a small number 
of other processors via point to point links. The Intel Hypercube, NCube and 
Meiko Computing Surface are examples of this type of machine. Data in the 
memory of one processor that is required by another must be passed between 
them along communications links. 

(For a review of the use of supercomputers in QCD computations see [Toussaint 
1987].) 

1.3.2 Programming Parallel Computers 

There are several simple paradigms for exploiting parallelism in a problem and 
mapping it onto a parallel processor: (i) Job or Event parallelism, (ii) Pipelining 
and (iii) Geometric Parallelism. 

Job Level Parallelism When a program must be run large numbers of times 
with different parameters it is often most efficient to run these independent tasks 
concurrently on different processors. This form of parallelism is trivial, but useful. 
We will assume that it is exploited whenever feasible. It contributes nothing 
towards solving the problem of distributing a large program. 
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Pipelining A vector processor exploits parallelism in the floating point multi-
ply function by assigning the various steps to a pipe of processors; each performs a 
given task on some data and then passes the result on to the next. This approach 
can be generalised to algorithmic parallelism [Askew et. al. 19861  where some 
number of processors, connected in a network that reflects the structure of the 
problem, each perform their own task on data fed to them, and then pass the 
results on. For algorithmic parallelism to be successful the work load must be 
balanced uniformly across the processors, and there must be sufficient work to do 
to allow time for the data to be moved from one stage to the next. Processors like 
the Transputer (see appendix B) make it easy to construct machines dedicated 
in this way to a specific problem. 

Geometric Parallelism A geometric problem decomposition divides up the 
data amongst the processors so as to preserve processor data locality. For exam-
ple, in dividing up a lattice we allocate some number of sites to each processor 
in such a way as to ensure that neighbouring sites are always held on the same 
or neighbouring processors. The success of this approach is dependent upon the 
algorithm requiring only local operations. Geometric parallelism is the standard 
way of using an SIMD machine. 

1.3.3 Computational Model 

We explore the applicability of these models of parallel computation to QCD 
simulation in chapters 2 and 5. Our computational model is that of a large 
number of processors with local memory (only) communicating via point-to-point 
links. In this model, the onus is on the user (rather than a clever compiler) to 
break up the problem in a suitable fashion. 

Criteria for Success Success in this context is considered to be an algorithm 
and an architecture that can perform a realistic dynamical fermion simulation. 
To achieve this it will be necessary to use large numbers of processors (whatever 
their power). The key ingredients for success are that the total useful processing 
power of the machine should rise linearly (or nearly linearly) with the number of 
processors and that the slope of the linear rise should be as close to 1 as possible. 
We define the ratio r to be 

r = compute time 
communication time 

(1.70) 

The compute time is the time spent doing useful work that has not arisen from 
the partitioning of the problem. If 1' 4Z 1 then the partitioning is not a success 
as the computer becomes swamped with messages. If r >> 1 then the job is 
computation bound, and could be split across more processors thus reducing the 
time taken to complete it. 
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In a processor like the Transputer, computation and communication can go 
on in parallel. In this case we divide the I/O into two categories, that which can 
be overlapped with computation, and that which cannot. We seek to rnimimize 
the latter and keep r > 1. In our analysis, extra work that arises from the 
partitioning of a problem is included with I/O that cannot be overlapped. 

General Purpose Parallel Processors Vector machines force us to use vec-
tor structures (for high efficiency), but are otherwise general purpose. The pro-
cessor network architectures allow the construction of application specific con-
figurations, the inter-connection network being set up as appropriate for each 
problem before the job starts. This gives us the freedom to investigate a variety 
of schemes for partitioning a problem amongst the processors available, finally 
selecting the configuration which is most appropriate. 

Contents of Thesis 

In chapter 2 we develop the basic algorithms required in lattice gauge theory 
simulation, for calculating sums of oriented plaquettes and solving systems of 
linear equations. We concentrate on the latter as it dominates, severely restricting 
what can be achieved. We discuss the parallelism inherent in the problems and 
its exploitation on the DAP and on arrays of Transputers. 

In chapter 3 we present results of hadron mass calculations carried out on the 
DAP. Mass estimates are presented for a range of ,8 values on 16 4  and 16 3  x 24 
lattices. 

In chapter 4 we review the status of equation of motion simulations and the 
possibilities for large scale dynamical fermion simulations. We introduce a hybrid 
monte carlo algorithm suitable for such simulations. We describe an algorithm 
for simulating quantum electrodynamics on a hypercubic array of processors, im-
plement it on 16 Transputers and use it to compare the efficiency of the Langevin, 
hybrid and hybrid monte carlo algorithms. 

In chapter 5 we study array processor architectures suitable for QCD simula-
tion. We consider a variety of simple geometric arrays and arrays of algorithmic 
cells. 

There are 2 appendices, discussing details of the parallel machines used. 
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Chapter 2 

Basic Algorithms for Lattice Gauge Theory 

In this chapter we discuss the basic algorithms for solving the problems set up in 
section 1.2, calculating sums of plaquettes and solving the lattice Dirac equation. 
Both calculations are necessary whatever the fermion simulation scheme. We 
analyse the computational work required and the level of parallelism. 

We use the plaquette calculations to illustrate the different forms of paral-
lelism discussed in section 1.3. We then concentrate on the computationally 
demanding problem of solving the systems of linear equations. We analyse the 
structure of the matrix operators and their eigenvalue spectrum. We discuss 
iterative methods of solution and preconditioning in section 2.2.2. 

2.1 The Gauge Sector 

The Wilson action eq. 1.24 is defined in terms of a sum over plaquettes. Each 
link is a member of 6 such plaquettes. To calculate the contribution of a link to 
the action we must trace the sum of these plaquettes. We do this by calculating 
the 6 "staples" (see figure 2.1), summing them, multiplying in the link to be 
updated and taking the trace. The staple calculation requires two 3 x 3 complex 
matrix-matrix products. We begin by calculating these in the obvious way 

(a + ib)(c + Id) = (ac - bd) + i(ad + be) 	 (2.1) 

where a, b, c, d are 3 x 3 real matrices. This takes 198 floating point operations 
(108 multiplies and 90 adds). We can reduce the number of operations required 
by factorising the product 

(a + ib)(e + Id) = ((a + b)(c - d) + ad - be) + i(ad + be) 	(2.2) 

which requires 180 operations, and replacçs multiplications by additions. (see 
table 2.1 for details. We can reduce the work further by only using two rows of 
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Figure 2.1: Plaquettes including the link U (x) 

Computation * + 

real matrix multiplication 27 18 
complex matrix multiplication 108 90 
complex matrix multiplication 81 99 

(factorised)  
2 by 3 complex matrix product 54 69 

reconstruct third row 24 18 
staple 132 156 

Table 2.1: Operations required to calculate a staple 
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the SU(3) matrices, and reconstructing the third. 

( (a+ib)oo (a+ib)oi (a+ib)02 \ ( (c+id)oo (c+id)oi  (c+id)02 \ 

	

(a+ib)jo (a+ib)n (a+ib)12 J 	(c+id)10 (c+id)ii  (c+id)12 	(2.3) 

	

) 	' (c+id)20 (c+id)21  (c+id)22 ) 

Such a 2 by 3 product requires 123 operations (54 multiplies and 69 adds) using 
a slightly modified version of the factored complex product. 

A staple requires 2 such products and the reconstruction of the third row of 
the result, a total of 288 operations (132 multiplies and 156 additions). We have 
retained the operation count in terms of additions and multiplies as their relative 
rate of execution is processor dependent. For example floating-point Transputers 
perform adds at nearly three times the speed of multiplies (see appendix B). An 
L4  lattice has 12L 4  staples. 

The staples for U (x) involve data only from sites z, x + A and z + Li for 
A) = 0,1,2,3 and /h $ LI. If we divide the lattice sites into two classes of parity 

"even" and "odd": 

for site z = (x0,x 1 ,x 2 ,x3 ) 

X is 
1 even I  if  (_1)Zo 1+Z2+Z3 = { 

	} 	

(2.4) 
odd 

then the staple calculations on an even site require data from that site and 
neighbouring odd sites and vice versa. 

The Metropolis algorithm (see section 1.2) requires that we evaluate the 
change in action resulting from the proposed update of a link. We calculate 
this by multiplying the sum of staples by the change in the link. Equation of 
motion schemes simply require the sum of all plaquettes involving a given link 
(to update the momenta associated with that link). 

2.1.1 Parallelism in the Gauge Sector 

The Geometric Approach We can (in principle) calculate the 6 staples for 
a given link direction on all the even (or odd) sites at the same time, L4  fold 
parallelism. This "parallel update" procedure allows us to update all the links 
in that direction on all even or odd sites simultaneously, a good example of the 
geometric parallelism paradigm of section 1.3. This level of parallelism can be 
exploited on a large processor array such as the DAP (see appendix A), but only 
for relatively small lattices (up to 8 3  x 16). 

On a smaller array of more powerful processors, such as Transputers (see ap-
pendix B) we exploit geometric parallelism by subdividing the lattice, allocating 
regions to each processor. We should aim to do this in such a way as to achieve 
processor-data locality. All the data associated with a given lattice site should be 
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stored on a processor and, depending upon its position within the region, data for 
neighbouring sites should either be on that processor, or on one of its neighbours 
in the array. 

Having partitioned our problem in this way we should aim to transfer all 
the data required from neighbouring processors while working on the plaquettes 
that require only local data. For this to be efficient we depend upon surface-to-
volume effects. There must be sufficient work in the bulk (volume) calculation to 
overlap the (surface) communication between processors. This idea is illustrated 
in figure 2.2 for 4 x 4 regions of a u) plane on each processor. All the solid 

jTTiU1±11iIT  

-1" tTTY 
Figure 2.2: Plaquette calculations on an array processor. 

plaquettes can be calculated using local data, as can the solid partial plaquettes. 
The dashed links must be transferred. Only two lattice directions are shown. A 
practical geometric partitioning must allocate a four dimensional region of the 
lattice to each processor to preserve the processor-data locality property. The 
drawback with this approach is that for small hypercubic regi9ns there are many 
more sites in the surface than in the bulk. (In chapter 5 we show this scheme to 
be efficient and easy to implement.) 

Algorithmic Decomposition There are several easily identifiable processes 
involved in a plaquette calculation: calculating the staples, summing them, mul-
tiplying the result by a link, generating random links (in a metropolis or heat-
bath simulation), and calculating energies, for example. All of these tasks can 
be performed in parallel, operating on different data. If we assign each task to 
a processor and connect them suitably we could build a pipeline specifically for 
performing plaquette calculations. This approach is an example of algorithmic 
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program decompostion. Transputers allow us the flexibility to do this without 
going to the lengths and expense of purpose-built hardware. The feasibility of 
such a scheme, and the problems associated with it are discussed in chapter 5. 

2.2 The Fermion Sector 

In this section we consider the systems of linear equations that arise in dynam-
ical fermion simulations and quenched calculations of quantities such as hadron 
masses. We first analyse their structure and sparsity and then their elgenvalue 
spectra. We then discuss techniques for solving the equations. 

2.2.1 The P Operator 

Structure We begin with the staggered fermion action from section 1.1.5 

S = SG + 	(. + M) x 	 (2.5) 

where M = ml and P is given by 

	

AN = 	.?7o(x) (U0(z)6o+1,o - U(y)o0_1,0) 6z1,V15z2,V36z3,V8 

	

+ 	t1(x) (U1(x).s1+11 - U(y)51....1,1) 5z0,y06z2,y26z3,y3 

	

      y) 5 	 (2.6)+ 	z(u2 (z)5Z2+1,V2 - U2U Z 	) 	8 1  

	

+ 	13(x) (U3(x)63+1,3 - U(y) 5 3 _1, 3 ) 5Z0,y0 52 1,V1 6Z2,V2 

In eq. 2.6 and what follows we have set a = 1. As usual the U's are 3 x 3 complex 
unitary matrices, elements of the gauge group SU(3). To write this as a matrix 
we introduce the following (arbitrary) ordering, of sites in the lattice 

	

Xjd = x0N 3  + z1 N 2  + x2N + x3 	 (2.7) 

. is a complex matrix of size 12  where I = 3L4 , for a lattice of size L 4 , it has 8 
entries (U's) per row for L > 3. The action of P on a vector x (ordered similarly) 
is given by 

UDx ) (x) = ! t7 M (X) {U(z)(x+&) - U(x—IL)x(z—IL)} 	(2.8) 

We will use this as our working definition of the matrix operator P . From eq. 2.8 
we see that V = 

The operator 4D connects a site on the lattice to each of its neighbours, but 
not to itself. If we use the definition of odd and even sites given in section 2.1 
then the action of P on a vector with non-zero entries on the even sites only 
gives a vector with non-zero entries on the odd sites and zeros on the even sites, 
and vice versa. 
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The Equations In calculating hadron masses we must measure expectation 
values such as 

(x(o)(x)) = (+M) 10 	 (2.9) 

the quark propagator from an origin o to all sites x in the lattice (see section 
1.1.6 and chapter 3). This requires the solution of 

(+M) 	= 6Z,0
6 

AB 	 (2.10) 

for many configurations {U(x)}. The indices A, B, C refer to colour. We must 
solve 3 systems of linear equations of size 12,  one for each value of the initial colour 
A. The "odd-even" structure of the matrix P allows us to decompose eq. 2.10 as 

follows 

x' + Mx" = 5even 

	

lpze + MX odd = 5odd 	 (2.11) 

where the vector XeeI  is zero on all the odd sites, and likewise xodd  is zero on all 
the even sites. If we restrict our source to lie on, say, an even site. This gives 

X  even 	 x even (_ 2+M2) - 	= 5eoefl and todd = 	 (2.12) 
m 	 m 

This decoupling of the two systems halves the number of equations to be solved; 
it can be extended to allow a general source term. The matrix (_2 +M2 ) is 
hermitean, and still very sparse. 

In dynamical fermion simulations (see section 1.2.1 and chapter 4) we have 
to solve 

(_p2+M2) x = 	 (2.13) 
for x where the bosonised fermion field 0 lives on half the sites of the lattice. 
Given the structure of (- 2 +M2 ) it is natural to put the ?)b fields on even sites 
as defined in eq. 2.4. 

Elgenvalue Spectrum The matrix P is anti-hermitean. It thus has pure 
imaginary eigenvalues. Let them be iAk , k = 1,2,. . . , I for real Ak. Let A be 
the smallest X, and Am  the largest. Detailed information about the eigenvalues 
of P and their dependence upon the gauge coupling is very difficult to obtain. It 
amounts to a complete solution of the problem. However, we can extract gross 
features of the spectrum. 

We first use Gershgorin's circle theorem (see [Golub and Van Loan 1983]) to 
set an upper bound on the spectrum A,, > Amax 

Theorem 2.1 (Gershgorin) If X'AX = diag(di ,. . . , 4) + F and F has no 
diagonal entries then the eigenvalues of A are bounded by 

.X(A) C U  
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where 

Di={zEC:Iz_dil ~ EIfiiI} 

"all eigenvalues lie within the union of circles". 

Consider the free case of eq. 2.6 first. The U's are now 3 x 3 identity matrices, 
and so each row of 1F  has ' 8 entries each of magnitude 1 . Hence A u  = 4. For 
the interacting theory there are 24 non-zero elements per row (8 link matrices). 
The constraint that each matrix is a member of the group SU(3) allows us to 
infer that the contribution to >2 Ifial from each matrix is at mosthence 2 N/3 1  
4 < Au  < 4/3-. The actual value of Am will depend upon the lattice spacing 
which cuts off the high momentum modes. 

A useful lower bound Ab 	on the spectrum of 1J is more difficult to 
obtain as it will depend (amongst other things) upon the size of the lattice, which 
restricts the low momentum modes. We can obtain a bound on the eigenvalues 
of (- 4D 2 +M2 ), the matrix we will need to use. Consider the eigenvalues A' of 

)+M. A' = m ± iA and so the eigenvalues A" of (- 2 +M2 ) are A" = m 2  + A2 . 
A is real, therefore A ~ 

m 2 . For large m this lower bound will be correct, for 
small m, Abu will be controlled by the finite lattice size. 

A Numerical Spectrum Calculation We have studied the spectrum of 4D as 
part of a calculation of (i) [Barbour et. al. 1985b] on an 8 lattice. We used 
a Lanczos algorithm' to tri-diagonalise 4D and the method of Sturm sequences 
(guided using Gershgorin's theorem) to extract the extremal eigenvalues. Figure 
23 shows the first 100 eigenvalues to converge for a configuration at 6 = 5.7. 
Convergence depends strongly upon eigenvalue density. At low 3 (strong cou-
pling) the density of low eigenvalues is higher, and the rate of convergence lower 
than at intermediate couplings. We see that A 4.2. The leading eigenvalues 

were found to vary over at least an order of magnitude from configuration 
to configuration. Figure 2.4 shows the distribution of A l  for 32 configurations at 
8=5.7. 

2.2.2. Solving Systems of Linear Equations 

There are two approaches to the solution of systems of linear equations (i) exact 
and (ii) iterative. Exact methods such as LDU decomposition and Gaussian elim-
ination (with/without pivoting) are less suited to banded sparse matrix problems 
as "fill in" occurs; zero entries in the original matrix acquire non-zero values in 
intermediary working matrices. Much effort has been devoted to the problem of 

'It is well known (at least in the numerical analy sis literature) that the Conjugate Gradient 
and Lanczos algorithms are A description of how to use Conjugate Gradient to tn-
diagonalise a matrix is given in [Golub and Van Loan 19831. 
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Figure 2.4: Distribution of A 1  for 32 configuration at 8 = 5.7. 

minimising fill in for particular matrices, but we cannot afford any. Iterative tech-
niques typically require repeated matrix vector products, which we can perform 
quickly for sparse matrices such as P. A further advantage of iterative methods 
is that they can be used to improve an estimate of the solution. In addition we 
can tune the solver to achieve a particular accuracy - this is not possible with 
exact methods. 

Of the standard iteration schemes, Jacobi, Gauss-Seidel, and Successive Over-
Relaxation (SOR) we only considered using SOR. The others are prohibitively 
slow unless the matrix is diagonally dominant (this is the case for large m only). 
To solve Ax = b: 

Algorithm 2.2 (SOR) For i = 1,.. . , n set 

( 	i-i 
= 	b - 	ajj z 1) - F; ax) + (1 - w)x 

	

aii 1=1 	 •j=i+1 

Repeat for k = 1,2.....In matrix form the SOR step is given by 

= Nx + c.s.,b 

where M = D+wL and N, = (1—w)D—wU, L, D, U being the lower triangular, 
diagonal, and upper triangular parts of A. 



The relaxation parameter w must be tuned for optimum convergence. We may be 
able to tune w by hand under certain circumstances. For this reason SOR is not 
suitable for problems such as dynamical fermion simulations where the matrix is 
varying with time. It has been used in quenched quark propagator calculations 
[Marinari et. al. 1981]. We describe an iterative block SOR algorithm in section 
2.2.3. Convergence is slow for low rn, when the matrix is not diagonally dominant. 

The Conjugate Gradient Algorithm. 

The Conjugate Gradient (CG) algorithm [Hestenes and Steifel 1952], was intro-
duced as an exact method for solving systems of linear equations, but is now 
established as an iterative technique for solving large sparse systems [Reid 1971]. 
It has the advantage that there are no parameters to tune. See [Golub and Van 
Loan 1983] and [Concus, Golub and O'Leary 1976] for a thorough treatment of 
the properties of CG. The algorithm is as follows: 

Algorithm 2.3 (Conjugate Gradient) To solve Ax = b for hermtean A 

initial guess z0  
P0 = r0  = b - Ax 0  
loop while rLrk > € fork = 0,1,2,... 

rk rk CJJ;  

= pApk 

Zjj = Zic + ctkpk 
Tk+1 =rk - akApk 

= 

Pk+i = rk+i + f3kP!c 
end loop 

The CG algorithm is known to converge best for matrices with clustered eigen-
values and low condition number K (A). For hermitean positive definite A 

K(A) = .Xmax 	
(2.14) 

Amin 

where A m. and A min  are the largest and smallest eigenvalues of A. An upper 
bound on the error ek = lAxk - bI at step k is given by 

f\/\  

ek = ( 	j k eo 	 (2.15) 

Using the bounds on the spectrum of P in section 2.2.1 we can estimate K (A). 
Provided m is not too small A 	m 2  and (4 + rn)2  <A 	< (6.9 + rn) 2  Let A 
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be an estimate for A M.. in this range. The change in the error over k iterations 
(for k large) is given by 

Ic 

(_1 

)k 
 ( 

= ( 

 

e0 	 1+ 	
l_r+...) k 	(2.16) mm 

A 11  

and so 
fek\ —mk 

	

In _- 	 (2.17) 
\e01 	A 

If m c A then the convergence rate will be higher, but will be controlled by 

nun which is configuration dependent, and will fluctuate accordingly. 

Eq. 2.16 gives an upper bound on the rate of convergence of CG. We should 
also minimise the initial error e0  by starting with as good a guess x0  as we 
have available. In hadron mass calculations it is usual to run at a range of 
masses, feeding the answer from one run in as the starting point for the next. In 
dynamical fermion simulations, where we solve the system of equations repeatedly 
(making O(dt) changes to the coefficients of the matrix and elements of the source 
each time) we can feed in the previous solution as a starting point. Higher 
order schemes have been suggested [Gottlieb et al 1987], and are discussed in 
section 4.6. 

Test Implementation of CG As a testbed for the CG algorithm and the 
preconditioning schemes we wrote a serial CG code to solve eq. 2.10 for a small 
lattice (usually 44).  Its rate of convergence as a function of mass is shown in 
figure 2.5. The leveling off of the rate of convergence as m —+ 0 is a sign of 
finite-size effects in the system. The size of the lattice imposes a lower bound on 
the lowest eigenvalue of 

Parallelism in the CG Algorithm The CG algorithm requires 2 matrix-
vector products (applications of ), 2 scalar products, and 3 vector operations of 
the form vector:=vector-i- (scalar *vector) per iteration. The matrix-vector prod-
ucts dominate. The relative importance of matrix-vector and scalar products on 
an array processor are discussed in chapter 5. There is a very high degree of 
parallelism in the application of D. To illustrate this we will set the problem up 
for an array of processors of the same size as the lattice, one processor per site. 
A more realistic partition will be discussed later. 

The operator is local, to apply it to a vector for a given site z and direction 
j. we require only the vector data from x+A and x—. 

(x) (x) = >iix) {u(x)x(x+)_U(z_iL)x(x_)} 	(2.18) 

In calculating 4Dx we move the (smaller) vector rather than the links. When this 
is complete we can calculate either term for all even (or odd) sites simultaneously. 
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This will use half of the processors. We can improve upon this, the work for 
term 1 naturally takes place on processors with x parity, and that for term 2 on 
1 - (z parity). We can calculate both terms in parallel by shifting the vector data 
for term 1, performing the matrix-vector products, shifting the results for term 
2 (onto sites with x parity) and adding. We achieve L 4  fold parallelism. This is 
illustrated in figure 2.6. The idea of using one processor per site is only feasible 

• ) ' ( 0  ) 0 ' 0 	
'Products (pairs of ar- 
rows) that can be per-
formed in parallel 

• )S( S )I( • 

-9. _5 	• )r • ( • )_•_4_ 

• )_S C . :. ' ( • 

Figure 2.6: Parallelism in application of the P operator. 

on a large array processor such as the DAP (and here only for lattices up to 8). 
But in the 163  x 24 implementation described next we pack a 16 3  timeslice into 
one plane of the DAP, and fully exploit the 4096-fold parallelism. 

For a smaller array of more powerful processors we would allocate some num-
ber of sites to each processor and work on "interior" products while transferring 
the data. for "boundary" products (as outlined earlier). There is a 4-fold algo-
rithmic parallelism in this calculation: performing the finite differences in each 
of the jA directions. This and the details of exploiting the geometric parallelism 
on a Transputer array are discussed in chapter 5. 

Implementation of CG on the DAP This code was used for calculating the 
quark propagators needed for our first hadron mass calculations on 16 4  lattices 
(see chapter 3). It converged smoothly, 1nrr k  being approximately proportional 
to m in the range 0.01 to 0.50 . The departure of rk,  the iterative residual vector, 
from b - Ax k  is a sign of the onset of roundoff errors in the CG algorithm; the 
importance of such errors can be judged by restarting the system using Xk as 
the new x0 . We see a marked increase in the residual on restarting after 700 
CG iterations (see table 2.34 in 32-bit arithmetic at m=0.01, indicating that 
roundoff effects have become significant. We restart the solver after 500 iterations 
at the lowest mass, and run for a further 200 iterations, by which time the desired 
accuracy is attained. We use the following cHteria to decide how long to run the 
CG solver:- 
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That baryon propagators (sums over space and colour of x 3) should be un-
changed in the third decimal place on all timeslices under further iteration. 

That on restarting, the baryon propagators should not change and the norm 
of the residual vector should not increase significantly. 

That the baryon propagators obtained should be the same (to the above 
tolerance) as those obtained from the same configuration after it has un-
dergone a random gauge transformation. (The baryon propagators are 
independent of choice of gauge, but the quark propagators are not). We 
performed this test on our first configuration to check the program. 

The values of rLrk  sufficient to satisfy these conditions for m in the range 0.01 to 
0.5 are given in table 2.2. We apply the above conditions on the last timeslice; 
closer to the origin the baryon propagators are stable in the 4th and 5th decimal 
places. 

mass 
0.01 0.04 0.00 0.16 0.50 

5.7 
6.0 

500+200 
500+200 

300 
250 

150 
120 

120 
100 

40 
40 

1og10 (rt r) —8 —9 —12 —15 —15 

Table 2.2: Number of iterations necessary to meet convergence 
and stopping conditions for CG algorithm on a 16 4  lattice, and 
approximate values of the residuals obtained. 

iterations Or rtr  on restart 
100 0.28E-2 
200 0.32E-3 
300 0.41E-4 
400 0.75E-5 
500 0.77E-6 0.78E-6 
600 0.90E-7 
700 0.86E-8 0.15E-7 

Table 2.3: Measurements of the residual for CG algorithm on a 
16 4  lattice, m = 0.01, /3 = 6.0. 

The CG algorithm performs well, but is expensive in terms of storage. We 
need to store 3 vectors per colour, each of size 3L 4  words, which together with 
the links must be paged through the machine on each iteration as the system 
is too big to be held in memory. This disk-to-DAP paging of timeslices is done 
asynchronously, the links for timeslice (t + 1) being paged on while those for 
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timeslice t are being used. This is done using the DAP data expansion software, 
DDX (see appendix A) which enables variables held in COMMON areas to be 
transferred efficiently between DAP and disk while a program is running. 

The CG vectors can only be updated when calculation of the scalars a and /3 
is complete. [Barkai et. al. 19851 have proposed a modified CC algorithm which 
avoids some of the synchronisation problems at the expense of an extra vector. 
However, because of the DAP's low I/O rate (approximately 250-300 Kbytes/sec 
compared to a floating-point performance of around 15 Mfiops) the matrix-vector 
multiply step is I/O bound by itself, and so we use the standard algorithm for a 
hermitean matrix. The total connect time for a propagator calculation running 

Step cpu I/O I/O overhead Total 
Calculate APL. 7.2 15 10 17.2 
Update vectors 0.6 30 30 30.6 
Dot products 0.2 0 0 0.2 
Totals 1 	8 45 40 48 

Table 2.4: Approximate timing data (in seconds) for 16 4  CG al-
gorithm on the DAP. 

on the DAP is a factor of 6 longer than the processor time used. Similar I/O 
stretch factors are reported in [Barkai et. al. 1985] for a Cyber 205. Details of the 
timings are given in table 24.. Almost all the DAP cpu time is used applying 
the P operators. Cpu time for updating the vectors is insignificant. The 10 
seconds of I/O overhead that occur while the links are being paged in and the 
operators applied is not available. But during the longer (30 second) overhead, 
while the vectors are paged on and off the machine, we could do useful work. 

If all the data required can be held in fast memory then CC is an efficient 
algorithm. If large quantities of data must be paged between slow and fast 
memory then there will be huge I/O overheads unless the transfer rate is very 
high. Under these circumstances it is necessary to use an algorithm with much 
more computation per word of data transfer. Such an algorithm, Iterative Block 
SOR is described in section 2.2.3. In dynamical fermion simulations the systems 
of equations are (regrettably) much smaller, and the data cail usually be stored 
in fast memory. 

Preconditioning 

The standard iterative inversion algorithm in many fields is the "preconditioned" 
conjugate gradient algorithm. All the information available about A' is used to 
construct N-', an approximation to A 1 . We then solve 

N'Ax = N'b 	 (2.19) 
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instead of Ax =b. TIN - ' is a good approximation to A' then K(N'A) <<K(A) 
and the scheme will converge more rapidly. Iterations of the preconditioned 
algorithm are more expensive, but significant savings in the number of iterations 
can be made. The choice of preconditioner N is vital to the success of the 
technique. 

We have considered the following preconditioning schemes: (i) diagonal and block 
diagonal scaling, (ii) free fermion preconditioning, using the free fermion version 
of ( + M) as an approximation to the full ( + M), (iii) incomplete LDTJ or 
Cholesky preconditioning. 

Diagonal Scaling Diagonal scaling, dividing through by the diagonal of the 
matrix A, is generally regarded as vital when the elements of A vary greatly in 
magnitude. The non-zero elements of (+M) and (- 2 +M2 ) are all of 0(1). 
Dividing through by the diagonal (a constant) does not improve our rates of 
convergence. 

Block diagonal scaling requires that we left-multiply Ax = b by W' where 
W is some block-diagonal approximation to A. The matrices ( + M) and 

(_2 +M2 ) have block structure, their entries are 3 by 3 complex unitary ma-
trices, but the block diagonal is a multiple of the identity (block diagonal scaling 
is the same as diagonal scaling for these blocks). 

If we single out a direction in the lattice, the time direction say, and work 
in temporal gauge (all time-like links rotated to the identity) then for Dirichiet 
boundary conditions in time we can write 

1+M T 

-T D2+M T 

-T D3+M T 

(D+M)= 	 ... 	... ... 	 (2.20) 

-T N_1+M T 

-T 	DN+M 

where 	is the three (spatial) dimensional equivalent of +M for timeslice 
t and T = 1 (_1)z0 +z2+z31. A similar partitioning of (- 2 +M2 ) is discussed 
in section 2.2.3. If we use this (or any similar blocking scheme) we reveal a 
block-diagonal structure, but the matrices ( +M)' are fully dense, just like 
(_2 +M2). This makes calculation and storage of the the diagonal inverses 
prohibitively expensive. Such block diagonal scaling schemes are not practical. 

Given the full density of all inverses of interest we are forced to consider a 
modified form of the preconditioned CG [Concus, Golub and O'Leary 19761. 

Algorithm 2.4 (Modified Preconditioned CG) 
initial guess x0  
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Po = r0  = b - Ax0 
solve N4 = ro  
loop while rLdk> € fork = 0,1,2,... 

rdk 
cek = pApk 

Zk+1 Z + a,cPk 

rk+1 = r - akApk 
solve Ndk +l  = rk+1 

fl -  

- rtdk 
Pk+1 = dk+1 + /3kPk 

end loop 

where the solution of Ndk = Tk is simple compared with solution of Ax = b. 
Block-diagonal scaling can be used in this form, but it is prohibitively expensive; 
it requires N solutions of the 3 dimensional problem per iteration. We now 
describe a variety of preconditioning schemes of this form, that do at least seem 
possibilities. 

Free Fermion Preconditioning We know that at short distances (within a 
proton for example) quarks behave as free particles since QCD is an asymptoti-
cally free theory. Consequently, free propagation becomes a better approximation 
as the lattice spacing decreases, which will be the case for simulations using larger 
lattices. Further, we know that the iterative solution of the system of equations 

(—+M) x = b 	 (2.21) 

eq. 2.12 for free fermions of mass mp, converges very rapidly (the residual squared 

rLrk is reduced from - 1 to - 10_ 16  by 15 iterations of a CG algorithm). So we 
would expect this preconditioner to work better the larger and computationally 
more demanding the task. There is a problem, however, in that within a gauge 
theory there is no clear distinction between high and low momentum modes unless 
we fix a gauge. The quark propagator is gauge dependent and will only resemble 
a free propagator in a gauge where the link variables are chosen to be as close to 
the unit matrix as possible.. We tried using axial gauge in which all the timelike 
links and as many of the spacelike links as possible are rotated to the identity 
(this is possible with Dirichiet boundary condirions on the fermions). We did not 
succeeded in reducing the total time necessary to solve the system of equations. 

The group at Cornell University [Batrouni et. al. 19851 report some success 
using Landau gauge, and storing an approximation to the diagonal of 4D + M 
in momentum space as a preconditioner, translating between momentum space 
and configuration space using fast fourier transforms (FFT's). They use Wilson 
fermions. A colleague [Sheard] tried this for staggered fermions, but without suc-
cess. The number of CG iterations required was generally higher, the iterations 
took longer, and the iterative gauge transformation procedure necessary to fix 
Landau gauge is expensive. 
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LDU Decomposition Systems such as ours can (in principle) be solved ex-
actly by LDU decomposition. A = LDU for lower triangular L, upper triangular 
U and diagonal D. Cholesky factorisation is a special case of this for hermitean 
A. This is totally impractical because L and U are fully dense. However, we 
can use an approximate (or incomplete) LDU decomposition as a preconditioner 
(This was first done by [Oyanagi 19861 for Wilson Fermions). Here we write 

A=LDU+E=N+E 	 (2.22) 

E is an error matrix whose effect we should seek to minimize. In an incomplete 
decomposition one only keeps the elements of L and U that are non-zero elements 
of A. Calculation of the factors L and U for (+M) is made easy by this sparsity 
condition and the following property of a hypercube lattice (of extent greater than 
3). If sites i and j are neighbours, and sites i and k are neighbours then j is not 
a neighbour of k. 

This method has been used successfully for Wilson fermions [Oyanagi 19861, 
but has not proved useful with staggered fermions. 

If a good preconditioner can be found for staggered fermions it will greatly 
reduce the time required to do dynamical fermion simulations. This work is being 
pursued by several groups, largely without success. 

2.2.3 Block Iterative Methods 

Consider the partitioning scheme eq. 2.20 for +M in temporal gauge. We can 
define a class of Block-Iterative algorithms by regarding each 3N3  x 3N com-
plex block as a component of an N x N linear system of equations, applying 
an established iterative algorithm (e.g Jacobi, Gauss Seidel or Successive Over-
Relaxation) to the N x N block equation and using an inner loop to solve the 
reduced rank systems of equations. Consider the standard SOR scheme (algo-
rithm 2.2) and use it to solve the N by N system of block equations eq. 2.23 

D1+M T 	
51 

-T 3+M T 	 52 
-T 	3+M T 	

3. 
. 	... 	 = 

-T Nz+M T 	 ZN1 	 5N-1 

-T 	N+M 	ZN 	 5N 

(2.23) 
where Pt  is anti-hermitean like P. We the perform the SOR iteration 

(.!'+M) k+1) = w (s + Txj' - TZj') + (1 - w) (.t'+M) Z 	(2.24) 

using an inner CG solver to obtain Zt on each iteration k of the outer SOR 
scheme. The parameter w is selected for optimum convergence. The scheme can 
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be extended to solve eq. 2.12 by squaring the partitioned P operator and adding 
in the diagonal mass term 

I-D+M3  (2-D1)T -I 
(2-1)T 	I-IJ+M 2  

p2 	(2.25) 

+1- 4) ,_ 1 +M3  (t'N-JPN_l)T 

-I (4) N- 4) N 	I-J.,+M2  

(this result uses the fact that T and anti-commute). We then have to solve 
eq. 2.26 repeatedly. 

(ci - 	+ M2) ,(k+l) 
=

Pt  

= 	(s + 	+ (Pt-..i - p)Tyi' (2.26) 

- 	+ 

+(i - w) (CI - p + M2) (k) 

where Yt zr.  The method can be used for any choice of temporal fermion 
boundary conditions eg: For periodic bcs c = and Yi  is identified with YN+1. 
For Dirichlet bcs c = 1  for Yl  and YN  and c = for yt  with t between 1 and N. 
Terms on the RHS of eq. 2.26 with t < 1 or t> N are dropped. 

is hermitean, c and m are real, and so a standard CG algorithm can be 
used to solve the inner systems of equations. The matrix operator ci— . +M2  is 
diagonally dominant (its diagonal elements being -I-c+m2); further, this diagonal 
dominance remains as m -+ 0, and so convergence of the inner CG algorithm is 
very rapid for all m as shown in figure 2.8. We call this scheme IBSOR (Iterative 
Block SOR). 

It would appear that IBSOR requires a huge amount of work, solving N 
systems of size 3N3  per sweep, but this is not the case. 8 (the RHS of eq. 2.26 
) is accumulated from terms on 5 timeslices and if we assume that the algorithm 
converges then the error on 3 of these timeslices Yt, Yt+i, Yt+2 is greater than that 
on the other two and Yt-2.  So we should aim to converge the (k + 1)'th 
iterate on timeslice t to a level where the residual on this timesilce is some factor 
lower than that on (t - 1). We should not run the inversion so long that we do 
work which will be wasted on the next sweep, when Ye+i  and. Yt+2  have also been 
upgraded. This fits in with our aim of producing a balanced or cpu-dominated 
program which will be achieved if we can do the necessary iterations in the time 
taken to page out Yt-2  and page in yg and the next set of links. This proves to 
be the case. 

Tuning the IBSOR algorithm The SOR algorithm does not converge for all 
values of its parameter C4.. The range of acceptable values is determined by the 
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Figure 2.8: Convergence of the inner CG loop as a. function of mass. 
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eigenvalue spectrum of the matrix. We must determine whether there exists a 
set of values for which IBSOR converges, and if so what the optimum values of w 
are. We must also determine whether the tuning of ci.' depends significantly upon 
the gauge configuration at fixed 8 - if it does then the algorithm will be useless 
as we must calculate propagators on large numbers of configurations. 

Calculation of optimum values for w would require a detailed knowledge of the 
eigenvalue spectra of the M;'N (see algorithm 2.2) which we don't have. Instead 
we began by setting w = 1 (the Gauss-Seidel limit of IBSOR) and m = 0.50 (a 
high value) and running the code to obtain a benchmark with which to compare 
IBSOR. To tune ci.' for a given m we ran the code for a fixed number of iterations 
(from a Yo = 0 start), measuring the residual on each sweep for 4 values of w and 
noting the rate of fall of the norm of the residual. We then repeated this process 
using a second configuration. The optimum values of w were found to differ from 
one configuration to the next (as one would expect given the known variation in 
the lowest eigenvalues) but not by an unacceptable degree (see figure 2.9). We 
continued refining our values for w until the difference between the upper and 
lower bounds on the optimum value was approximately equal to the variation 
between the two test configurations. We have tuned the parameter w for mass 
values between 0.01 and 0.50 (see table 25.) We find that quark mass is the 

mass 1  0.01 	0.04 0.09 0.16 0.5 
ci.' 	1.955 1.88 1.70 1.55 1.25 

Table 2.5: Optimal values of the parameter w for a 16 3  x 24 lattice 
at /3 = 6.0. 

only significant dependent variable. w is independent of N (for 8 < N < 32) 
and does not need re-tuning from one configuration to the next. When the 
coupling constant g2  is changed (in the small range we have explored) only slight 
adjustments of w are necessary. The range of acceptable w values narrows with 
decreasing mass. 

Convergence Rates and Roundofi Errors Figure 2.9 illustrates the varia-
tion of the rate of convergence with mass and the slight dependence on configu-
ration (at the lightest mass). The attainable values of rrk, the residual squared, 
are limited by the precision to which we compute the propagator. Limiting values 
of the residuals are given in table 2.6. But because the calculation of 'at  is limited 
to a range of 5 timeslices and there are no global scalars to be accumulated, the 
timesliced rLrk  falls off exponentially away from the source, with the propagator. 
This is demonstrated in table 2.6 and figure 2.10. The source term is seen by 
the algorithm on every sweep, so there is no roundoff-error-induced cumulative 
drift away from the correct solution. We found that eight iterations of the inner 
CG solver are more than sufficient at all our mass values (see figure 2.8). This is 
because of the diagonal dominance of the blocks. 
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Fermion 
type 

 Squared Residuals 
limiting timesliced 

to 	to+lO tO+15 

Free 
0.14E-13 
0.20E-30 

0.13E-13 
0.18E-30 

0.92E-18 
0.15E-35 

16 4 	 32 bit 
64 bit 

Interacting (32 bit) 
O.1E-8 

0.3E-10 
O.1E-12 

0.68E-10 
0.54E-12 
0.38E-15 

0.35E-10 
0.22E-13 
0.19E-18 

0.19E-10 
0.1OE-14 
0.86E-22 

163  x 24 	m = 0.01 
m = 0.09 
m = 0.50 

Table 2.6: Convergence data for IBSOR algorithm. 
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We find that 32-bit arithmetic is sufficient to converge all our propagators 
(for 0.01 <m <0.50) on a 16 3  x 24 lattice. The convergence rate is independent 
of N (for 8 < m < 32) and the behaviour of the timesliced residual shown in 
figure 2.10 is a feature of all mass values. 

Testing and Performance We tested our algorithm by measuring the number 
of sweeps necessary to obtain agreement between hadron propagators calculated 
using the CG algorithm and those obtained using IBSOR. In both cases we 
required convergence of the propagators on the last timeslice to 3 significant 
figures (this gives 4 or 5 significant figures near the source) and the results agreed 
to this accuracy. 

When we use 6 or 8 iterations of the inner CG solver per sweep we find that 
our stretch factor is 1.02 (compared with a stretch factor of 6 for our full CG 
algorithm). The time taken to produce a set of 16 4  propagators drops by a factor 
of around 3. For 16 3  x 24 or larger lattices IBSOR is between 5 and 7 times faster 
than CG. 

Implementation of the IBSOR algorithm on other Computer Systems 
Our work to date has been on the DAP. Its performance peaks at 15 Mflops and 
the asynchronous I/O rate is around 250-300 Kbytes/sec. Our conclusions, how-
ever, are valid for most computers on which the Conjugate Gradient algorithm 
has high I/O overheads for large systems of equations. The IBSOR algorithm in 
its present form has one third of the vector I/O per sweep, and requires signifi-
cantly fewer sweeps. Consequently, performance is determined by Cpu speed, not 
data transfer rate. 

Further, the removal of synchronising scalars means that IBSOR can run at 
very close to 100 per cent efficiency on multiprocessor systems. If processor 1 is 
inverting the (k +1) 'th block equation for yg  then processor 2 can work in parallel 
on the (k + 2) 'th equation for yg .....s without any danger of write conflicts arising. 
Extending this idea we can fully utilize an p processor system when our lattice 
has temporal extent 3p or larger. 

For a larger array of less powerful processors e.g. a few hundred Transputers, 
other partitioning schemes may be more appropriate. In this case we expect an 
Iterative Block SOR scheme based on 2 rather than 3 dimensional partitioning 
would perform well. Hypercube architectures might make use of a 4-dimensional 
partitioning scheme. 

2.2.4 Conclusions 

The numerical simulation of QCD is dominated by the solution of the lattice Dirac 
equation, a large sparse system of linear equations. This problem is inherently 
parallel, and the parallelism is relatively easy to exploit. If there is sufficient 
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memory then the CG algorithm is suitable for solving this problem and full 
parallelism of the P can be exploited. Calculation of the scalar products does 
not require a significant amount of cpu time because of the high complexity of 
the matrix-vector product, but imposes some restrictions on the types of parallel 
processor that can be used (see chapter 5). The dominance of this part of the 
simulation makes work on preconditioners important, as their effectiveness will 
have a direct bearing on the time required to perform a realistic simulation. 

The number of data accesses per floating point operation is very high in the 
CG algorithm. If the main store is slow then high I/O overheads will be incurred. 
Under these circumstances an algorithm with much more computation per word 
of data transfer, such as IBSOR, may be more suitable. 

We consider the optimal architecture for solving the lattice Dirac equation 
using the CG algorithm in chapter 5. 

45 



Chapter 3 

Hadron Mass Calculations 

3.1 Review of Early Work 

Early work in lattice gauge theory yielded surprisingly good results. The first 
quenched hadron mass calculations [Hamber and Parisi 19811  demonstrated that 
the pion was the lightest hadron and that chiral symmetry was spontaneously 
broken. Using the physical pion mass to set the scale they calculated a variety of 
meson and baryon masses (see table 3.1), and found the pion decay constant to 
be f,1. = 95 ± 10MeV. It was hoped that increased lattice sizes would reduce the 
errors, and that the lattice theory would quickly make predictions that could be 
tested by experiment. 

state mass (MeV) 

P 800±100 
6 100±100 

A 1  1200 ± 100 
nucleon 950 ± 100 

1300± 100 

Table 3.1: Early hadron mass results [Hamber and Parisi 1981]. 

Hamber and Parisi used 6 3  x 10 and 6 3  x 12 lattices at 8 = 6.0. Later 
work showed this to be an inappropriate value of 8; it is beyond the deconflning 
transition for this lattice size [Bowler and Pendleton 19841. 

Further work on 8 and 104  lattices (see [Bowler et. al. 1983] for example) 
used lower values of 8, typically 5.7. These studies began to reveal significant 
finite-size effects; the physical lattice size is about lfm, less than the electromag-
netic radius of the proton. The proton-to-rho mass ratios calculated were too 
high by about 60%, and the results obtained using Wilson and staggered fermions 
did not agree. In addition the temporal extent of the lattices was shown to be 
too small to extract the ground state data. 

The disagreement between Wilson and staggered fermions suggests that 3 = 
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5.7 is not in the scaling regime and so we must work at higher 0. Increasing /3 
cuts the physical lattice spacing making further increases in lattice size necessary. 

3.2 Aims of our work 

The aim of our work has been to distinguish between errors caused by finite-size 
effects and those caused by non-scaling values of the coupling constant in the 
quenched approximation, minimise both, and obtain estimates of hadron masses. 
We have used 16 and 16 3  x 24 lattices, and have calculated large numbers of 
propagators to minimise our statistical errors. 

/3 values We have results for 5.7 <,3 :! ~ 6.3. Studies of finite temperature QCD 
[Kennedy et. al. 1986] suggest the onset scaling in T (the deconfining tempera-
ture) at /3 = 6.15. Our first runs, at 8 = 5.7 and /3 = 6.0 used the CG algorithm 
to calculate quark propagators on 16 4  lattices. Latter data for 3 = 6.0, 6.15 and 
6.3 were obtained using 16 3  x 24 lattices and the IBSOR algorithm. 

Fermion Boundary Conditions For periodic temporal boundary conditions 
the quark propagators decay from the source to the centre of the lattice, and then 
rise again, halving the temporal extent of the lattice available for measurements. 
However, this does have the advantage that we can increase the statistics by 
including the reflection in time. For Dirichiet boundary conditions, G(t =0) = 
G(t = N +1) = 0, the propagators decay across the entire lattice so that in 
principle more timeslices are available for measurements, but it is necessary to 
discard. data near the boundaries. 

We use Dirichiet boundary conditions in time. The spatial boundary condi-
tions can be periodic or anti-periodic. We began by using anti-periodic, but have 
used periodic as well for the purposes of comparision. 

Measurements We concentrate on measurements of the pion, rho and nucleon 
masses (mf , mp and MN),  measuring each for a range of quark masses mq . In 
addition we construct the mass ratios m  and !.L 

Similar work has been published by [Barkai et. al. 19851 on 16 3  x 32 lattices 
at 8 = 6.0, [Itoh et. al. 19861 and more recently [Gupta et. al. 19871. Studies 
of hadron masses using dynamical fermions on small lattices have begun, see for 
example [Kogut 1981 and [Fukugita et. al. 19861. 
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3.3 Aspects of Hadron Mass Calculations 

In this section we discuss the details of meson and baryon operators used, ex-
pected forms for the timesliced propagators and data fitting. 

3.3.1 Meson Operators 

In section 1.1.6 we described how lattice operators are matched to continuum 
meson states on the basis of their JPC  quantum numbers, and that several oper-
ators can correspond to one physical state. (The M15  and M1415  operators both 
have JPC  of Q and are identified with pions.) Kluberg-Stern et. al. show that 
at finite lattice spacing only the M 5  state is a Goldstone boson (because of an 
explicit breaking of flavour symmetry on the lattice) [Kluberg-Stern et. al. 19831. 
Other 'pion' states will only be Goldstone-like in the continuum limit. 

PCAC tells us that m 	= 	for a Goldstone pion, and so we would 
expect the mass of the M15  state to go to zero as mq  - 0. The M7415  pion will 
only have vanishing mass at zero m q  in the continuum limit. We hope to be able 
to qualitatively judge how far we are from the continuum limit by comparing 
the two pion states. (There are also two signals for the rho meson which we can 
compare to the same end.) Having solved eq. 2.10 for XA(X,t)  let 

X(x,t) = IXA(,t)XB(0)l 	 (3.1) 

We measure the combinations 

MPS(t) = 	> X(x,t) 
X AB 

MSC  (t) = XAB 	 (3.2) 
X AB 

MVT(t) = 	E{(_1)z 1  + (_1)x2  + (_ 1) 1131 XAB (x ,t) 
X AB 

Mpy(t) = F, E {(_i)z+ X2 + 	+ (_1)z2+z3} XAB(x,t) 
)C AB 

on each configuration and then average over the configurations: It has been shown 
in [Chalmers 1987] and [Gilchrist et. al. 19841 that at asymptotically large times 
the expected form of the averaged meson propagators is 

(Mp 5 (t)) 

(M5c(t)) 	 + (1)Ase m6) 	 (33) 

(MVT(t)) 	 + (__1)0)Ase_m0) 

(.Mp(t)) 	Ap,e_mt0) + 

but at finite times excited states will also be present. We discuss our attempts 
to eliminate the excited states in the next section. 
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3.3.2 Baryons 

Our local baryon operators are defined by 

B(2y + 17) = CABCXA( 2Y + 77)XB( 2y + 17)XC(2y + 77) 	(3.4) 

following [Kluberg-S tern et. al. 19831. A timesliced baryon propagator 

B(t) = 1(B(t,2y)B(o)) 	 (3.5) 
y 

denoted "EVEN" is defined on the even spatial sub-lattices. It should have the 
asymptotic form 

+ (3.6) 
I 

[Morel and Rodrigue 1984]  where the +'s refer to nucleon states, and the —'s 
have opposite parity. It should satisfy the identities 

Im{(B(t2Y)(o))} =0 	 (3.7) 

ITT 
(B (t, 2y)1(o)) = E (B (t, 2y + 77)B(o)) 	 (3.8) 

The "EVEN = ALL" identity eq. 3.8 implies that there is only one ground state 
baryon accesible using local lattice operators. 

3.3.3 Fitting the Data 

We must be able to fit to functions of the form 

Aie_mlt + A2e_m2t 
	

(3.9) 

Aie_mtt + (_1)tA1e_1t 	 (3.10) 

Let f(t, m) = e 1It and g(t, m) = (_ 1)t e_mt. Having averaged over configurations 
we have an estimate for yt,  the timesliced propagator and a?,  the variance in its 
measurements. We fit to the expected form eq. 3.10 by minimising the x2  statistic 

X2—> (y
t _ (A l  J+Aig))) 2  

(3.11) 
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(and to eq. 3.9 by replacing A, by A 2  and g  by  f in eq. 3.11), t1 is the first 
timeslice included in the fit, and t 2  the last. Data points with high (relative) 
errors, (large a) are suppressed by this fit. 

If we define 
=2 F 

(F) = 	-4 	 (3.12) 

then eq. 3.11 becomes 

x 2  = 	- (A 1 f + A ig) 2 ) 	 (3.13) 

Minimising this with respect to A 1  gives 

ax 2 
= —2 (yf - A 1 f 2  - A1!g) = 0 	 (3.14) 

Therefore 

	

A1 (f2)  + A 1  (fg) = (yf) 	 (3.15) 

a2 Similarly - = 0 implies aA l  

(g2)  + A 1  (f g) = (yg) 	 (3.16) 

Solving these coupled equations for the amplitudes gives 

1 

(f 2 ) (g 2
) - (f)2 (9 

2) 
 (yf) - (fg) (yg)} 	 (3.17) 

1 
(f2) (g2) - (f )2 {(f2) () - (f 9) (f)} 

(3.18) 

Hence A 1  and A 1  are dependent variables and we need only vary the mass pa-
rameters. 

We fit our data in two stages. First we select appropriate ranges of m 1  and 
in' l.  and evaluate X 2 (mi, in- 1 ) for all points in a 20 by 20 grid. A contour map is 
drawn on the terminal (see figure 3.1), enabling the user to interactively select 
a new range of mass parameters. We use this stage to locate the approximate 
positions of minima in the mass space which are then used by stage 2, a steepest 
descent minimisation of x2 . Interactive control of stage 1 of the fit allows us to 
ensure that we find the best fit; automated fitting or steepest descent alone were 
found to be inappropriate 1•  (Fitting to a series of exponentials is known to be 
an ill-conditioned problem, and should be embarked upon with care.) 

'The fitting program cfit (written by A.Kenway, C.Cha1mers and myself) allows us to vary the 
number of timeslices used, and to divide the data set into blocks. 



1.000 	1.100 	1.200 

I 	I 	I 
XtJRPMJGDB97655579BDFI -- 1.200 
XURPMJGDB86544568ACEH 
XURPMJGDB864434579BEG 
XUSPMJGDA864333468SDG 
XVSPMJGDA854223468ACF 
YVSPMJGDA8532223579CE 
YVSPMJGDA8532113479BE 
YVSPMJGDA7531112468BD 
YVSPMJGDA7531002368AD 
YVSPMJGDA8531001357AD 

M2 	YVSPMJGDA853I001357AC -- 1.300 
YVSPMJGDB8 53 10 012 47 9C 
YVTQNKHEB853 10 002 47 9C 
ZWrQNKHEB853 10  *02  46 9B 
ZWTQNKHEB86310002469B 
ZWTQNKHEB86310002468B 
ZWTQNKHEB96420002468B 
ZWTQNKHFC9 64200024683 
ZWTR0L1FC96421012468B 
ZXUROEJIFC97 42 1012 4683 
ZXUROtIFCA7531112468B -- 1.400 

Ml 

Figure 3.1: Contour map of x 2  produced by the program cfit. 

Removing Excited States The expected forms of the timesliced propagators 
Mps etc. are sums of exponentials in the direct (f) and oscillating (g) channels. 
We wish to extract the ground states in each channel. 

For a large lattice we can do this by only considering timeslices distant from 
the source as the higher mass excited states decay more rapidly than the ground 
states. We can then remove contamination from excited states by dropping times-
lices close to the source until the fits stabilise. There are 2 problems with this 
approach (i) the signal to noise ratio in the data drops as we move further from 
the source making the fit more difficult and (ii) for low quark masses the lattice 
may not be long enough to remove the effects of an excited state with small 
amplitude. 

An alternative is to perform fits to 3 or 4 mass parameters by using multiple 
2 parameter fits (this is described in [Chalmers 1987]). 

Errors We estimate errors by repeating the fitting procedure with NB blocks 
each of Nc consecutive configurations. This allows us to calculate the standard 
error in our masses and amplitudes. All errors quoted in section 3.4 are ±a. The 
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accuracy of this procedure increases with sample size. Some of our quoted errors 
are of poor quality, this is indicated as appropriate. 

3.4 Results 

Our results are presented in order of increasing 3. We draw our conclusions in 
section 3.5 and then discuss the future. 

3.4.1 Hadron Masses at 3 = 5.7 

We computed quark propagators at 5 mass values in the range 0.01 < m S 0.50 
for 8 configurations at ,8 = 5.7. The configurations were generated using a 
2-SU(2) subgroup pseudo heatbath program [Bowler et. al. 19861 on a 16 lat-
tice. The configurations used were separated by 896 sweeps. The CG algorithm 
(alg. 2.3) was used to solve the lattice Dirac equation; calculating the 40 propa-
gators required approximately 400 hours of DAP time. 

Meson Data 

Pions There was no evidence of a signal in the oscillating channel; our fits are 
to a ground state and an excitation in the direct channel. Our mass estimates are 
given in table 3.2. Figure 3.2 shows our data and that of [Bowler et. al. 19831 
for an 8 3  x 16 lattice. Contributions from the excited states are small at high 
mass, and difficult to estimate at low mass. We quote data for 1-exponential fits. 
The low mass data extrapolate linearly to zero pion mass at m q  = 0. Finite size 

mq  PS SC VT PV 
0.50 1.66(1) 2.26(16) 1.93(1) 2.05(3) 
0.16 1.02(1) 1.59(17) 1.56(1) 1.46(25) 
0.09 0.79(1) 1.42(60) 1.47(3) 1.31(42) 
0.04 0.55(1) 1.10(50) 1.24(7) 1.34(-) 
0.01 0.27(1) - 1.06(-) 1 1.48(-) 

Table 3.2: Meson masses at 3 = 5.7. Fits are to 2 exponentials, 
except for PS pion where just 1 was used. 

effects in the pion are small at this /3 value. Our estimates of the pion mass from 
MSC are not in agreement with those for 1rp (see table 3.2). There are large 
errors in the data from the SC propagator, and there may well be contamination 
from excited states (see later). 
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Figure 3.2: Pion Masses at 3 = 5.7. 

53 



0.50 

0.25 	0.50 	0.75 

2.00 

1.50 

1.00 

'rr1 q  

Figure 3.3: Rho masses from the VT and PV propagators at 
3=5.7. 

Rho Mesons We fit the sum of two exponentials to the MVT  and Mpv  prop-
agators to extract the rho mass, one for the direct, and one for the oscillating 
channel. Our estimates of m are significantly bter than those obtained from 
the 83  x 16 lattice. There is some agreement in the estimates from VT and PV 
timesliced propagators at large quark mass. The rho data is given in table 3.2 
and figure 3.3. 

Baryons 

Our fits to the () nucleon data are shown in table 33 and figure 3.4. The 
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0.25 	0.50 	0.75 

3.00 

1.00 

mq  EVEN ALL 
0.50 3.04(1) 3.04(4) 
0.16 2.55(16) 2.70(7) 
0.09 2.54(-) 2.63(10) 
0.04 2.45(-) 2.37(27) 
0.01 2.35(9) - 

Table 3.3: ()+ nucleon mass estimates at 3 = 5.7 from 2-expo- 2 
nential fits to the EVEN and ALL nucleons for timeslices 6-13. 

IM  

Figure 3.4: Hadron mass estimates for 3 = 5.7 on 83  x 16 and 16 
lattices. 
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data quality is poor, and will not support fits to more than 2 parameters. The 
mass estimates from the EVEN and ALL agree within errors, but the errors are 
large and the quality of error estimation is low because of the small sample size. 

M q 
Mr 
MD  

MN 
Mp 

0.50 0.86(1) 1.58(1) 
0.16 0.65(1) 1.64(10) 
0.09 0.54(1) 1.73(22) 
0.04 0.44(2) 1.97(11) 
0.01 11 0.26(-) 1 2.24(-) 

Table 3.4: Pion to rho and nucleon to rho mass ratios at 8 = 5.7. 

We plot the mass ratios mm against 	in figure 3.5 (the data is in table 3.4). 
The starred points are the experimental ratio and the heavy-quark limit. If we are 
in the scaling regime then the points (for different mq ) should lie on a universal 
curve, independent of 3. Our data is similar to that of [Bowler et. al. 1984a] on 
the smaller lattice; spatial finite-size effects in the nucleon and rho seem to cancel 
out. We see no crossover to the light quark (experimental) limit. Further, the 
mass ratios are not consistent with those at 8 = 6.0 (see section 3.4.2) indicating 
that we are not in the scaling regime. No further work was done at 8 = 5.7. 

3.4.2 Hadron Masses at 3 = 6.0 

We used the CG program to calculate a further set of 16 4  propagators, 5 masses 
for 8 configurations separated by 896 sweeps at /3 = 6.0. We used the same 
masses, boundary conditions and convergence criteria as at j3 = 5.7. 

Pions We saw no evidence for an oscillating state in M 5 , and so we fitted 
to the ground state pion and an excitation. A linear fit to the data (see figure 
3.6) supports a small intercept suggesting that there are finite-size effects at low 
mq  see [Billoire et. al. 1985b] The pion data from MsC  is in rough agreement 
with that from Mps at all but the lightest quark mass. The masses from the SC 
propagator are generally higher and agree better with the 1-exponential fits to 
Mpg, suggesting the presence of a radial exciation in the direct channel. We were 
not able to drop sufficient timeslices from the fit to the sc timeslice propagator 
to remove the excitation. 

Barkai et. al. quote results for 5 configurations at 8 = 6.0 on a 163  x 32 
lattice with periodic boundary conditions. Our pion results on the 16 4  lattice are 
some 20% higher than theirs [Barkai et. al. 19851. 
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Figure 3.5: Mass ratios plot for 3 = 5.7, 8 3  x 16 (crosses) and 16 
(circles) lattices. 
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0.25 	0.50 	0.75 	1.00 

AV ~Tng 

2.00 

0.50 

1.50 

1.00 

m q  PS Sc 
0.50 1.66(1) 1.88(1) 
0.16 0.99(1) 1.07(5) 
0.09 0.75(1) 0.85(7) 
0.04 0.52(2) 0.58(7) 
0.01 0.30(2) 1 0.51(9) 

Table 3.5: Pion mass estimates from the PS and scalar SC meson 
propagators. Fits are to 2 exponentials on timeslices 6-13 and 
7-13 respectively. 

Figure 3.6: Pion mass estimates at 8 = 6.0 from a 16 4  lattice. 

58 



Rho Mesons and Nucleons. We fit MVT and the baryon propagators with an 
exponential in the direct channel and another in the oscillating channel. There 
is no evidence for stabilisation in the fits as we drop timeslices near the source. 
The masses fall as we remove timeslices, and then the fits break down due to 
lack of data. This suggests that there are significant radial excitations in the 
propagator data. There are similar signals for the rho in both channels, but the 
lack of asymptotic behaviour prevents us from attaching any importance to this. 

Development work on the IBSOR algorithm (section 2.2.3) was completed 
during this run. In view of our need for longer lattices and the higher efficiency 
of IBSOR we restarted our fi = 6.0 run on a 16 3  x 24 lattice. 

3.4.3 Hadron Masses at 3 = 6.0 on a 16 3  x 24 Lattice 

The 163  x 24 configurations were constructed by periodically extending 16 con-
figurations in time, prior to gauge fixing. Hadron propagation over more than 
16 timeslices is not observable in our calculations and so we do not expect this 
extension to introduce systematic errors. The results that follow are for 5 masses 
on 32 configurations with successi 2eparted by 224 pseudo-heatbath sweeps. 
The errors are estimated by dividing the data into 4 consecutive bins of 8 con-
figurations and repeating the fits for each of the 4 sets. 

The Mesons 

Pions Our pion mass estimates are obtained by fitting the sum of 2 exponentials 
to Mp5. The data is presented in table 3.6 and figure 3.7. A linear fit to the 
data yields, 

rn,,. = (0.006 ± 0.01) + (2.40 ± 0.04)/ 

Spatial finite-size effects appear to be small over this range of quark masses 
(0.01 < m < 0.50). Comparison of these results with those from the 16 4  lattice 
reveals a finite-time effect, reflecting our failure to extract excited states properly 
on the smaller lattice. This is judged to be the cause of the discrepancy between 
our earlier results and those of Barkai et. al. On the larger lattice we are in 
complete agreement with them, although our errors are larger. We performed 
a 3-exponential fit to the SC propagator; ground and excited states in the direct 
channel and a ground state (for the O state associated with the delta) in 
the oscillating channel. Inclusion of the excitation in the direct channel did not 
change the estimates of m, at high mq , but gave lower masses and better fits at 
low m q . The two pion mass estimates agree to within io% for mq  < 0.16. They 
both extrapolate linearly in to mr  = 0 within errors. 

The Rho There was no evidence for stabilisation of the rho in fits to MVT  on 
the smaller lattice. On the 16 x 24 lattice the fits stabilize and a clear ground 
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MWO 

0.25 	0.50 	0.75 	1.00 

2.00 

1.00 

1.50 

mq  
PS  SC  
 m2  m2  ñz 1  

0.50 1.648(11) 2.09(39) 1.85(6) 3.31(63) 1.94(6) 
0.16 0.966(5) 1.47(80) 1.05(10) 2.80(48) 1.23(2) 
0.09 0.725(6) 1.29(4) 0.78(2) 2.61(27) 1.00(1) 
0.04 0.488(8) 1.25(17) 0.53(2) 4.23(65) 0.77(1) 
0.01 0.245(13) 1.35(24) 0.28(5) 4.74(68) 

11  

0.55(4) 

Table 3.6: Pion mass estimates at $ = 6.0 for 16 3  x 24 lattice. 
Timeslices 9-19 were used for PS, and 7-18 for SC. 

Figure 3.7: Pion mass estimates from PS and SC propagators at 
/3 = 6.0 for 16 3  x 24 lattice. 
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state is exposed in the 2-exponential fits to timeslices 11-19. Inclusion of a third 
exponential, an excitation in the rho channel, causes only a small drop in the 
estimates at all but the lowest mass (although the data at m = 0.01 is not 
of sufficient quality for this 3-parameter fit to be taken seriously). Rho mass 

m q  VT PV 
0.50 1.82(1) 1.90(2) 
0.16 1.13(2) 1.15(2) 
0.09 0.89(1) 0.90(3) 
0.04 0.71(2) 0.69(3) 
0.01 

1 
 0.62(7) 0.66(18) 

Table 3.7: Rho mass estimates from 2-parameter fits to the VT 
and PV propagators at 3 = 6.0. 

estimates from the PV propagator are given in table 3.7, they were obtained 
using a 2-parameter fit to timeslices 10-19. The 2 estimates of m, with different 
flavour content, agree to within 7% at all masses studied, from which we conclude 
that there is evidence for flavour-symmetry restoration in the meson sector at 
8=6.0. 

3.4.4 Baryons 

Our results for 2-exponential fits to the baryon propagators are given in tables 
3.8, 3.9 and 3.10 and are plotted in figures 3.9 and 3.10. It is difficult to extract 
reliable mass estimates from them. 

The 2-exponential fits (table 3.8) stablize as we drop timeslices near the 
source, but in doing this errors grow because the signal-to-noise ratios are low 
for timeslices 16-20. The resulting mass estimates are in serious disagreement 
with those of Barkai et. al. The only significant difference between their study 
and ours is the choice of spatial boundary conditions. 

We measure 2 baryon operators, EVEN and ALL, as described in section 3.3.2. 
They should give the same results on an infinite lattice [Morel and Rodrigue 1984]. 
We see clear discrepancies between them, increasing in magnitude as m - 0 (see 
figure 3.9). 

To study our baryon data further we peformed a series of 4-parameter fits to 
the timeslice propagators (see tables 3.9 and 3.10 for the masses), including an 
excitation in both channels. We see a large contribution to the baryon propagator 
coming from both excited states. The effect is most dramatic in the EVEN 
propagator where the masses of the excitation are low. Significant excitations 
have also been found using periodic boundary conditions [Itoh et. al. 1986].  The 
ground state masses above are plotted in figure 3.10 and are used for the mass 
ratio plot figure 3.11. Our mass ratios for 3 = 6.0 are given in table 3.11. The 
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Figure 3.8: Rho mass as a function of mq  at 8 = 6.0. 

Tfl q  

EVEN ALL 
 m 1  

0.50 2.92(1) 3.22(10) 2.91(1) 3.31(63) 
0.16 2.17(4) 2.52(30) 2.17(14) 2.80(48) 
0.09 1.73(9) 1.89(16) 1.80(21) 2.61(27) 
0.04 1.31(15) 1.40(11) 1.06(15) - 

0.01 1.42(34) 1.40(37) 1.33(26) - 

Table 3.8: Baryon masses from the EVEN and ALL propagators 
at /3 = 6.0 using 2-parameter fits. 
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Figure 3.9: EVEN and ALL baryon propagators for /3 = 6.0. 

63 



rnq  m 2  ñ21 rn2  
0.50 2.88(15) 3.02(4) 3.18(23) 3.55(22) 
0.16 1.75(16) 2.37(5) 1.19(28) 2.40(7) 
0.09 1.93(11) 2.22(8) 0.89(14) 2.24(8) 
0.04 1.02(9) 2.14(10) 1.05(21) 2.14(11) 
0.01 

1 
 0.94(14) 1 1.80(11) 1 0.59(49) 1 1.80(16) 

Table 3.9: Baryon masses from the EVEN propagators at /3 = 6.0 
using 4-parameter fits. 

rrLq  m 1  in2  th1  
0.50 2.72(13) 3.01(5) 3.15(6) 4.84(29) 
0.16 1.80(22) 2.52(7) 2.26(6) 2.99(12) 
0.09 1.52(26) 2.41(6) 1.90(11) 2.72(11) 
0.04 1.07(19) 2.32(3) 1.94(22) 2.67(12) 
0.01 0.90(24) 1 2.16(8) 1 1.75(-) 1 1.75(31) 

Table 3.10: Baryon masses from the ALL propagators at 8 = 6.0 
using 4-parameter fits. 

m q 
0.50 0.91(4) 1.60(11) 
0.16 0.88(3) 1.59(16) 
0.09 0.84(5) 1.38(13) 
0.04 0.75(11) 1.57(11) 
0.01 0.43(9) 1 1.62(63) 

Table 3.11: Mass ratios at fi = 6.0 
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Figure 3.11: Mass ratios plot for /3 = 6.0. 



mass ratios for low mq  are significantly lower than those at 8 = 5.7, and show 
signs of crossing over to the light-quark limit. The errors are too large to permit 
firm conclusions being drawn from this. 

The discrepancies between our data and that of Barkai et. al. coupled with 
the apparent failure of the EVEN= ALL identity suggests that significant finite 
size effects are present in our baryon propagators. To study this problem further 
we considered both periodic and anti-periodic spatial boundary conditions in our 
next run. 

3.4.5 Hadron Masses at 3 = 6.15 

Our data at ,3 = 6.15 are drawn from full 16 x 24 configurations generated using 
a 3-SU(2) subgroup pseudo-heatbath program, and separated by 176 sweeps. 
We calculated propagators on a set of 32 configurations using periodic boundary 
conditions, and then re-ran the first 24 using anti-periodic spatial bcs. The aims 
of this run were (i) to test systematic errors in the baryon propagators, and (ii) 
to compare the meson data with that obtained at 8 = 6.0. 

The Meson Sector 

Pions Our mass estimates from 2-parameter fits to the PS propagator are given 
in table 3.12 for periodic spatial boundary conditions. The choice of boundary 
conditions was found to have no significant effect upon either the propagators 
or the masses extracted at all but the lowest quark mass, where the errors were 
(relatively) large. Preliminary work at low masses (0.001 < m < 0.003) suggests 
that finite-size effects are large. This would explain the discrepancies at m = 
0.01. 1- and 2-exponential fits were made to the PS propagator; excitations 
are present in the first 7 timeslices from the source so a 2-exponential fit was 
necessary to expose the ground state. We plot the masses obtained from SC and 

rnq  PS SC 
0.50 1.633(5) 1.78(5) 
0.16 0.916(6) 0.96(1) 
0.09 0.662(2) 0.69(1) 
0.04 0.43(2) 
0.01 

10.422(4) 
0.208(3) 1 0.24(3) 

Table 3.12: Pion masses at 8=6.15 for a 16 3  x 24 lattice. 

PS propagators in figure 3.12. Note that we have kept the masses in lattice units 
constant, so that since the lattice spacing issmaller at 0 = 6.15 than at 6.0, the 
physical masses are higher. Both curves extrapolate to zero within errors but 
that for the masses from the SC propagator has higher curvature and may be 
contaminated by excitations. The masses agree to within 5% for m < 0.16. 
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Figure 3.12: Pion masses from PS and SC propagators at ,8 = 6.15 
from propagators calculated on a 16 3  x 24 lattice. 



The Rho Meson The fl = 6.15 rho data is very clean and there is no significant 
dependance upon the spatial boundary conditions used. The 2-exponential fits in 
table 3.13 stabilise as timeslices are removed; results quoted use timeslices 11-19 
and 12-19. The agreement between the 2 sets of rho mass estimates is very good, 

mq  VT PV 
0.50. 1.77(1) 1.80(1) 
0.16 1.02(2) 1.00(2) 
0.09 0.76(1) 0.74(1) 
0.04 0.54(2) 0.53(1) 
0.01 0.38(5) 0.34(12) 

Table 3.13: Rho masses at /3=6.15 for a 16 3  x 24 lattice. 

except at the high mass. This is a feature of many of our estimates of meson 
masses. We attribute it to the much reduced correlation length at high masses; 
and hence the greater sensitivity to flavour symmetry breaking lattice artifacts. 

Baryon Data 

We performed 2-exponential fits to the baryon timeslice propagators. This ex-
posed the ground states successfully and gave similar answers to the 4-parameter 
fits. The statistical errors are much smaller for periodic boundary conditions 
than for anti-periodic. 

Comparison of Boundary Conditions Table 3.14 gives our estimates of 
the () masses taken from fits to the baryon propagators with periodic and 
anti-periodic boundary conditions. We see clear evidence for the EVEN=ALL 

mq  
periodic anti-periodic 

I EVEN I 	ALL EVEN ALL 
0.50 2.81(1) 2.80(1) 2.90(1) 2.91(1) 
0.16 1.64(2) 1.65(2) 2.18(8) 1.05(16) 
0.09 1.23(2) 1.25(1) 1.44(13) 1.60(12). 
0.04 0.86(2) 0.86(2) 0.92(8) 1.27(15) 
0.01 0.58(3) 0.51(7) 0.45(22) 1.62(29). 

Table 3.14: Baryon masses at 0=6.15 for a 16 3  x 24 lattice. The 
fits are for timeslices 11-19. 

identity in the baryon propagators using periodic spatial boundary conditions. 
This is not the case when use anti-periodic spatial boundary conditions. 

Carpenter and Baillie have shown that the free Wilson fermion propagator 
on an infinite lattice is bounded above by the periodic propagator and bounded 



below by the anti-periodic propagator on a finite spatial lattice (see figure 3.13). 
A similar result is shown in figure 3.14 for EVEN baryon propagators at /3 = 

0 
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Figure 3.13: Free Wilson fermion propagator as a function of spa-
tial lattice size and boundary conditions. 

6.15. Particularly at small times the discrepancies between the two propagators 
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increase with decreasing mass: The magnitude of the periodic propagator is 
always higher, and the masses obtained lower than those using anti-periodic 
boundary conditions. We are forced to conclude that there are significant finite- 
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Figure 3.14: Staggered fermion nucleon propagator as a function 
of spatial boundary conditions and mass at 8 = 6.15 (periodic is 
solid line). 

size effects in our 6 = 6.15 baryon data. 

Mass Ratios We have computed the proton-to-rho and pion-to-rho mass ratios 
using the baryon data from the periodic propagators. The mass ratios are given 
in table 3.15 and are plotted in figure 3.15 In spite of the finite-size effects there 
is clear evidence for a turn-over to the light-quark regime. If we extrapolate the 
mass ratios to the physical value of 	using a linear fit to the last 3 points we 

obtain mN = 1.50 E 0.09. The lowest value obtained for 	, of 0.53 is rather too 
MP 	 tJtp 

high to allow us to attach great weight to this prediction. 
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mq 
mr 
m, 

mM 
mp 

0.50 0.93(1) 1.59(1) 
0.16 0.90(1) 1.61(4) 
0.09 0.87(1) 1.61(3) 
0.04 0.78(1) 1.59(2) 
0.01 0.55(5) 1 1.51(10) 

Table 3.15: Mass ratios at /3 = 6.15 for 16 3  x 24 lattice. Fermion 
boundary conditions are periodic in the spatial directions. 

Figure 3.15: Mass ratios at /3 = 6.15 for 16 3  x 24 lattice. The 
fermion boundary conditions are periodic in the spatial directions. 
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3.4.6 Hadron Masses at 0 - 6.3 

Our 8 = 6.3 results are based on analysis of 32 16 4  configurations extended 
periodically in time to 16 3  x 24 with masses in the range 0.01 < m < 0.50 and 
4 configurations with m = 0.0025 and in = 0.0. The mass fits are given in table 
3.16. A 16 4  lattice at 3 = 6.0 is approximately the same physical size as an ii 
lattice at 0 = 6.3. Given this we did not expect sensible baryon data given the 
degree of finite size effects in the /3 = 6.15 results, but aim to study the mesons. 

The Mesons 

2-exponential fits are necessary to expose the ground state of the pseudoscalar 
propagator. A linear fit to the data for 0.01 < m < 0.16 extrapolates to m. = 0 
within relatively large errors but the curvature of m.(/ç) is significantly greater 
than at 8 = 6.15. A 3-parameter fit to the masses gives 

M, = (0.11 ± 0.04) + (1.15 ± 0.13)J+ (1.98 ± 0.13)m q  

(see figure 3.16). The low statistics results at m = 0.0025 and m = 0.0 are con- 
sistent with this curve. Convergence of these low mass runs was rapid, implying 
that finite size effects give 2  a large leading eigenvalue (Al >> m for small m q ). 

mq  PS Sc VT PV 
0.50 1.63(1) 1.77(2) 1.76(2) 1.79(2) 
0.16 0.89(1) 0.94(3) 0.98(1) 0.97(1) 
0.09 0.64(1) 0.66(2) 0.72(1) 0.72(1) 
0.04 0.42(2) 0.40(1) 0.50(3) 0.49(3) 
0.01 0.25(3) 0.15(2) 	1 1  0.33(6) 0.45(5) 

Table 3.16: Meson mass estimates at ,3 = 6.3. 

The results of 2-exponential fits to the rho from VT and PV propagators 
are given in table 3.16; they are in excellent agreement. We observe that the 
pion and rho masses are nearly degenerate; this has been seen before on smaller 
lattices at lower /3 [Bowler et. al. 1984a]. In the absence of finite-size effects the 
Goldstone pion is the lightest particle. At mq  =0.01 the lightest particle is the 
pion from the SC propagator. This operator seems to be less affected by the 
finite size effects that push up the mass of the PS pion. At intermediate masses 
flavour symmetry is better than at lower 8. 

The Baryons 

The mass fits to the EVEN and ALL propagators are similar within errors, but 
the errors are very large. The errors in our mass ratios are too high to draw 
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Figure 3.16: Meson mass estimates at 8 = 6.3. 
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conclusions. The finite m, as rnq  -i 0 keeps 	high, pushing all the data away 
from the physical light quark regime. 

3.5 Conclusions 

Data Fitting Fitting to sums of exponentials is not a well conditioned problem. 
It is preferable to fit to ground states (only) removing excitations by dropping 
timeslices close to the source. We found it necessary to use lattice of temporal 
extent greater than 16 for this procedure to stabilise; 24 timeslices seems appro-
priate for Dirichiet boundary conditions in time. Propagator decay over more 
than 16 timeslices is difficult to see; it would require greatly improved statistics. 
The signals are clearer for periodic boundary conditions making fiting easier. 

Restoration of Flavour Symmetry Our estimates of m, and m 9  are each 
taken from two propagators with different flavour components. At 0 = 5.7 the 
masses obtained from the two channels differ by several standard deviations. At 
/3 = 6.0 there are signs of flavour symmetry restoration, especially in the rho. At 
/3 = 6.15 and /3 = 6.3 we see good agreement, in both mesons at intermediate 
mass. The pion is a better test as only in the continuum limit will the non-
Goldstone pious be driven to zero mass at zero quark mass. 

Finite Lattice Size Effects A consistent picture of finite size effects emerges 
from our data. At low /3 the lattice spacing is large and so the lattice is of 
sufficient size to contain the hadrons. The EVEN=ALL identity holds for the 
baryons, and the pion masses extrapolate linearly to zero. As we increase /3 the 
lattice spacing decreases, and with it the size of the lattice. The pion masses no 
longer extrapolate to zero and 2  acquires a large leading eigenvalue (relative 
to the mass). Failure of the EVEN=ALL identity and dependence on spatial 
boundary conditions are identified as effects of calculating baryon propagators in 
too small a box. As expected both effects get worse as we lower the quark mass. 

Mass Ratios At low 0 our mass ratios are in line with earlier work. There is 
no crossover to the physical regime; 	increases as mq  -i 0. As we increase /3 

mp 

the mass ratios for low mq  fall towards the physical value. In figure 3.17 we show 
our mass ratios for 8 = 6.0 and /3 = 6.15 and those of [Barkai et. al. 1985] for 
/3 = 6.0. If the hadron masses are scaling then the data should lie on a single 
universal curve. Our results are consistent with there being one curve, but the 
errors are too large to make definitive statements. 

Future Prospects Our data suggests thai there is a window between /3 = 6.0 
and 8 = 6.15 in which we can work, free from the effects of strong coupling and 
free from finite-size effects in the mesons (at least). We observe flavour symmetry 
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Figure 3.17: Summary of mass ratio data from large lattice sim-
ulations. 
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restoration and reasonable mass ratios in this range of 3. In order to improve 
on our results it will be necessary to use lower masses (to bring 	closer to 
the physical value) and larger lattices (to cut baryon finite size-effects). Higher 
statistics are also desirable to improve the quality of error estimation, and to cut 
the errors. If we are to extract definitive results we must also show independence 
of choice of boundary conditions; we have only demonstrated this for the mesons. 

We find that the rate of convergence of the CG algorithm is a good guide to 
the magnitude of finite-size effects in the pion data. If convergence rates remain 
linear in m g  as mq  falls then the leading eigenvalue of 2  is small, and the pion 
is free from finite size effects. This can easily be tested while propagators are 
being generated; it is not necessary to wait until there is a large sample of data 
to average over. 

To obtain the maximum useful information we should work at the lowest 
mass for which this condition is met. For this to be practical it is essential 
to find efficient preconditioners that cut the computational cost of solving the 
systems of equations. 

Since we started our study (some 2 years ago) other groups (notably [Konig 
et. al. 1984], [Itoh et. al. 19861 and [Gupta et. al. 1987]) have begun similar 
work on larger lattices. Advances in computer performance over this period of 
time make our suggestions feasible. 

iii 



Chapter 4 

Equation of Motion Algorithms 

In this chapter we discuss the application of "Equation of Motion" schemes for 
the evolution of statistical mechanical systems to lattice gauge theory. These 
algorithms enable us to update all the degrees of freedom (ferinionic as well as 
gauge) at the same time. This makes the study of fermionic systems possible; 
QCD simulations on small lattices are underway, and are reviewed in section 4.3. 

In section 4.1 we consider the molecular dynamics (MD), Langevin, and hy-
brid algorithms, setting them up for the pure theory. Fermions are added in 
section 4.2. In section 4.4 we discuss a hybrid monte carlo algorithm. In order 
to measure their usefulness as a function of computer time required we compare 
equilibration times and stepsize errors. 

Our numerical results are for compact QED with staggered fermions. This 
theory allows us to set up and test the systematics of the algorithms on lat-
tices of moderate size without the high computational requirements of the full 
fermionic SU(3) theory (we do of course still have to solve a large system of 
linear equations once per timestep). This model has been looked at analyt-
ically in the strong coupling limit by [Jolicoeur et. al. 1984] and numerically 
using pseudo-fermion techniques and a Z(12) approximation to the gauge group 
by [Azcoiti et. al. 19861. The implementation of our simulation on an array of 
Transputers is discussed in section 4.5.2 and our results are presented in sec-
tion 4.6. 

4.1 A Review of Current Techniques 

We begin by describing the use of a molecular dynamics algorithm for lattice 
gauge theory simulations [Callaway and Rahman 1982] and [Polonyi and Wyld 
1983]. One constructs a hamiltonian for the evolution of a gauge theory in an 
extra time dimension, simulation time. The algorithm is similar to that used 
widely in chemical physics with the added constraint that the link variables 
must remain members of the gauge group. The MD algorithm is set up for a 
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where the lattice site x is at the bottom left corner of the box. The arrow emerges 
from the site at which the momentum term is inserted and points in the direction 
of the momentum. Making use of the cyclic properties of the trace 

Tr (i +D - I - t[] + h.c.) 	 (4.7) 
ZV4 

Putting in the hermitean conjugate terms gives 

V= -113 >Tr [ ( I-J)+(E1r-EJt) 	(4.8) 

+ (-)+(-J. 

Removing the restriction Li > ji leaves us with just two pairs of diagrams (the 
others are obtained by reflecting in the L' = p. axis). 

E Tr 	- I) + ( - 	 (4.9) 
sm og 

Now rearrange the summation of the second term by shifting from x + L' to x 

+ h.c.}) 	 (4.10) 
z JA 

the lowered box represents a plaquette at x - Cl. 

and so eq. 4.3 implies 

= E Tr (p,.  (x)  j  (x)) 	 (4.11) 
z,.1 

k,h (x) = I1 E (E - + h.c.) 	 (4.12) 
Y96 ;4  

The dynamics associated with eq. 4.1 are now fully specified. 

In order to integrate the equations numerically we discrefise them by intro-
ducing a finite timestep dt. We evolve the fields using the "leapfrog" algorithm 
(see figure 4.1). The discretisation errors are estimated below 

p(t + 4L) - p(t - &) = f 	j(t')dt' 
	

(4.13) 

= fdt+O(dt3 ) 

	

(4.14) 

U(t + dt) = exp (if t+dt 
 P(t')dt') U(t) 
	

(4.15) 

= exp (ip(t + 4L)dt) U(t) + 0(dt 3 ) 

	

(4.16) 
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pure SU(N) theory. (We use a simple model, a single scalar q, to illustrate the 
Langevin and hybrid algorithms.) 

4.1.1 A Molecular Dynamics Algorithm for a Pure SU(N) 
Lattice Gauge Theory 

Consider the hamiltonian 

H= S9  + . Tr(p(x)) = V +T 	 (4.1) 

S is the usual pure gauge action 

S = —/3 	Tr (u (x) U, (x + jt) U (x + 1') U (x) + h.c.) 	(4.2) 
11'O 

where the U. (z) are elements of the gauge group SU(N). 8 =and all 
plaquettes are oriented as shown in figure 1.1. 

Our harniltonian eq. 4.1 is not the same as the pure gauge hamiltonian ob-
tained from the lagrangian associated with eq. 4.2, rather it governs the evolution 
of our system in an extra time dimension r, the computer time for which we run 
the simulation. As usual the hamiltonian H is a constant of the motion 

(4.3) 

We use this to deduce an equation of motion for the gauge fields. In addition 
we require that the U's remain elements of the gauge group. This is ensured by 
requiring that their equation of motion has the form 

UM  (z) = ip (x) U (z) 	 (4.4) 

[Duane et al 1986] with p  (x) hermitean and traceless. The p's play the role of 
conjugate momenta in this scheme. From eq. 4.3 

1'=—i/3 E Tr 
&• >0 

+ U(x)p,(z+fL)UV(x+fi)U(x+i/)U(x) 

- U (x) U. (x + )&) U, (x + 1)) p, (x + 1') U (x) 	(4.5) 

- U1.  

+ h.c. I 
We can express this diagramatically by defi±iing 

PM (x) U (x) U.  (z  + ) U (z + 1)) U (x) 	 (4.6) 
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Figure 4.1: Evolution using "leapfrog" algorithm. 

The coordinate fields are defined at times 0, dt, 2dt,... and the momenta at times 
The errors in the links and momenta are of O(dt3) using "leapfrog", 

better than those for "Verlet" or low order Runge Kutta algorithms. Leapfrog 
has the further advantage that the link and momenta updates both involve the 
addition of quantities of order dt; there are no additions of quantites of order dt 2  
- that would cause additional .round-off errors. The system is evolved in three 
stages: 

calculate (t) from U(t). 

A) p(t + ) = p(t - Ti + dtj(t), 

U(t + dt) = exp (ip(t + f.)) U(t). 

The timestep errors can be tested by calculating the total energy. To obtain 
the kinetic energy we must either "half step" the momenta backwards to obtain 
p,4 (x,t) or average p,4(x,t - ) and p,4 (x,t + ). The potential energy can be 
calculated using the plaquette data required for updating the momenta. 

4.1.2 The Langevin Algorithm 

In this section and the next we use a model with one scalar degree of freedom q; 
the generalisation to a gauge theory is straightforward. Let the probability that 
q takes a certain value be given by the Boltzmann weight (g)• We want to 
measure expectation values of functions of q in the canonical ensemble, 

(F(q)) = I J dqF(q)e_8 	 (4.17) 
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We can evaluate such integrals by constructing a stochastic dynamics for q 
[Parisi and Wu 1981] and measuring ensemble averages.The simplest such dy-
namics is the Langevin equation 

aq 	as 
(4.18) 

where 77(r) is white noise, i.e. 

(77(r)) = 0 and (77(r)77(r')),1  = 25(r - r') 	 (4.19) 

We first set up a Fokker-Planck equation to show that the probability distribution 
for q(r) becomes the Boltzmann distribution as r —+ oo. Write eq. 4.18 as a 
difference equation for q 

qi = 	
as 

- dr - + V drr aq 
= q - Aq 	 (4.20) 

where q = q(r) and q,. = q(r +dr). In numerical studies this differencing 
would be replaced by a more accurate procedure (second order Runge-Kutta, 
say). Consider the time evolution of the probability distribution P(q, i-a), 

P(q +1 ,r +1 ) = (fdqnP(qn ,rn)o(qn+i  _qn +zq)) 	(4.21) 

Now zq-0 asdr-0so expand in Iq 

= ('I dqP(q,r) (ö(q i  —qn) 

— q-S(q+i - qn) + !(q)2_5(q1  - qn) +) 
) 

/ 82  
= P(q +1 ,r) - (-PL&) + 

( 	
P(q)) k... (4.22) 

I,?  

We can also Taylor expand P(q +1 , r+,) as 

P(q +i,r 	
8p 

I ~ i ) = P(q, ~ i ,r) + - dr + 	 (4.23)
fn  

Equating powers of dr 

/8 
p

as) ,,  1(82  
P q aq 	

772) + o(dr2) 	(4.24) P1 +  

using the properties of the noise t (see eq. 4.19) we have 

2  - a
(p

as
) 

+ 
8 	

(4.25) 
8q 
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to O(dr). The Boltzmann distribution P = 	is a stationary point of this 
Fokker-Planck equation. 

To obtain the rate of approach to this stationary point we construct an 
"imaginary-time Schrödinger equation" ­119  = HW. To do this define a "wave-
function" 

P(q,r) = e ( 'Ji(q,r) 	 (4.26) 

and substitute it into eq. 4.25 

	

1 a 	1 (as )2 132S\

-aq
- 	(q, r) = 	+ 	- 	

W(q,r) 	(4.27) 

ía 	18g\t(3 ias 

	

= 	
+ j -) 	- + 	

'(q,r) 	(4.28) 

If we write the general solution to eq. 4.27 as an expansion in the eigenstates c 
of the energy operator H, 

1 a2 	1 (8s 2  182S\ 
+ 	

-) - ..) q5 = At 
	 (4.29) 

then the general solution to our Fokker-Planck equation can be written 

00  P(q, r) = const co(q) (co() + 	cie_ij(q)) 	 (4.30) 

where q5o 
= II( The operator H is positive semi-definite from eq. 4.28 and 

so the Ai  are real and positive. The rate of convergence is exponential, and is 
controlled by the first non-zero eigenvalue of the energy operator. AO  = 0 is a 
unique ground state of eq. 4.29 and so the stationary point P = S() is the 
equilibrium distribution. Time averages calculated using Langevin dynamics will 
agree with the ensemble averages we require. 

4.1.3 The Hybrid Algorithm 

The MD algorithm of section 4.1.1 is similar to that used extensively in chemical 
physics. It is well known that such algorithms sometimes fail to represent the 
canonical ensemble correctly; the exchange of energy between modes is over too 
short a timescale for thermalisation to occur. 

If the evolution is not ergodic then the measured time averages will be wrong 
(different from the ensemble averages). We can detect this "ergodicity breaking" 
in simple systems, but detection becomes much more difficult as the number of 
degrees of freedom grows. Very long time tails, and incorrect distribution of 
energies will signal the problem. 
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The Langevin algorithm avoids these problems by the addition of noise, which 
guarantees ergodicity. However, phase space is sampled at a rate proportional to 
the square root of the number of timesteps. 

Figure 4.2 characterises the dynamics of the MD and Langevin algorithms. 
For MD the system rapidly traverses smooth paths through phase space whereas 
for Langevin dynamics it walks randomly. 

Figure 4.2: Motion through phase space for MD and Langevin 
algorithms. 

The hybrid algorithm [Duane 1985] combines the best properties of both MD 
and Langevin: the rapid evolution through phase space and the guarantee of 
ergodicity. To see the relationship between the two, we write them as discrete 
difference equations. 

Langevin: 
l a2 aS qi = q + Le - 	 (4.31) 
2 	.äq 

where the noise (,$) = ös and the time-step is r+i - r, 

Microcanonical: 

n+i = 2q - 	- 
f9q 

= q + 1 (q+i - qn_i) - i&
2  3

8s 	 (4.32) 

where 1ii+1 - 1•yi = A. 

The following analogies can be drawn. 

84 



Langevin 	Microcanonical 

noise 	 velocity 
 Irn - = 'A' 	'r+1 - = 

	 (4.33) 

Figure 4.3: Motion through phase space for hybrid algorithm. 

In the hybrid scheme we make either a Langevin step (probability pL) or an 
MD step (probability 1 - pi) 

qni = q, + AVn - ' 2 aS 	 (4.34) 
2 äq 

with 

Vn 	
(qn+i—qn) probability { 	I 	(4.35) 

The parameter p, "hits per unit time" should be optimised. Duane has shown 
that for simple systems the best choice for p is twice the frequency of the slowest 
mode of the system (a plot of kinetic energy as a function of time will give 
this information in an MD simulation). We schematically represent the hybrid 
dynamics in figure 4.3. 

4.2 Including Dynamical Fermions. 

The inclusion of dynamical fermions in traditional monte carlo schemes is dif-
ficult, and very expensive in terms of computer time. At best it is necessary 
to calculate columns of the inverse of the fermion matrix every time we wish to 
update some small number of links. Equation of motion schemes enable us to 
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update all the fermion fields by solving one system of linear equations. Consider 
the hamiltonian (in computer time) 

H = V+T 	 (4.36) 

V = /3 	Tr (F=] + h.c.) + Et/,t(x) (_2+M2)' /) 	(437) 
zy,& 
v>Ii 

T= 	.p(x)+w_ 2 E1rt (x)7r(x) 	 (4.38) 

where t is a 'bosonised' fermion field living on the even sites of the lattice (see 
section 1.2.1) and ir its conjugate momenta. Now 

	

= VG + 	t(x) (_2+M2)' (y) 	 (4.39) 

+ >1,t(x) (_2+M2)'(y) 
xy 

	

- 	(z) (_1p2+M2)' [d (_p2 +M2)] (_ 2 +M2) ' . 1(y ) 

T—TG + ci.,_ 2 E(*t ir+irt*) (4.40) 

where VG and ±G are the contributions to V and T from the pure gauge term. 
The first two ferinionic terms in V govern the dynamics of the fermion fields, the 
third, V3 , contributes to P. The equations of motion for the fermi sector are 

	

aH 	—2 UJ 7r 

dt 	
+W 	 (4.41) 

ÔH 

	

Jt 	(_2+M2)' 

solve (_2+M2). 

- dt 	 (4.42) 

The fermionic contribution to the gauge update is 

= _E /,t(x ) (_ p2+M2)' [ (_ 2 +M2)]'  (_p2+M2)' t/(y) 

=. 	4(X) [*'t  + 	4(y) 	 (4.43) 
x y  

since 0 = (_ 2 +M2 ) 1  t1 (note 0 = 0 on odd sites), and so 

(4.44) 



Now 

(D4) (x) = 	() {u (x) cb(z+ii) - U(x_Ii)c1(x—IA)} 	(4.45) 

Therefore 

(qs) (X) 77 s. (x)i{PM(x) U. (X) 	+p(x—)U(z—fi)g(x—ui)} 

(4.46) 
and so eq. 4.44 becomes 

V3  = Rer (z) ip, (x) {(.)t  (x)U (x) (z+i)} 	(4.47) 

+ Re>7 (x) ip(x—j2) {()t (z)U(x—It)(z—iL)} 

Now shift from z - to z in the second term 

V3  = Re 	i (x) ip (z) {(p4))t (x)UM  (x) 4)(z+)} 	(4.48) 

+ 

Define 
f 4) 	on even sites 

on odd sites 

V3  = £e?7 1 (x)ip(x) {t( x)U(x)(z +i)} 
rp 

+ Re>t7,(z)ipM(x) {3t(x+f)U(x)Q(x)} 
Z JA 

= - Re (_1) z0+ 	 (z) ip (x) {3t(x)U  (z) 3(x+I)} 

= - >.p,.' (x) I  {c  (x) t(x)U(x) 3(x+)} 	 (4.50) 
Z JA 

where cM  (x) = (_1) 20+2tfz2+z8 nM (z) and so 

	

= gauge term + I > {c.(z)3 t (x)uM.(x) (x+IL)} 	(4.51) 

To calculate the fermion contribution to ji we must solve the system of equa-
tions (- 2 +M2 ) 4) = 1P, form 4) by applying P to 4), and calculate the second 
term in eq. 4.51 -which is the forwards part of a full 4D applied to 4) (up to a. 
phase). 

The fermion momenta term is only necessary in an MD simulation. We fol-
low the ideas of [Gottlieb et al 19871 in the stochastic schemes, refreshing the 
fermions with an exact heat bath on each hit, and not evolving them between 
hits. 

= .1. (,odd + M 1) 	 (4.52) 

where the 's are gaussian distributed random fields. 
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4.3 Summary of Results of Other Groups 

Several groups have begun dynamical fermion simulations on moderate size lat-
tices. [Kovacs, Sinclair and Kogut 1986] use the hybrid algorithm on lattices up 
to 103  x 6 with staggered fermions, [Fukugita et. al. 19861 use the Langevin al-
gorithm with Wilson fermions on a 93  x 18 lattice. 

The Illinois/Argonne group have been studying QCD at finite temperature, 
initially in the presence of 4 light dynamical quarks and subsequently with 2 light 
and 1 heavy quark. They find evidence for a finite-temperature phase transition 
at low quark mass. The transition is sharp, implying an abrupt change in energy 
densities. This is potentially of relevance to heavy-ion collider experiments in 
which it may be possible to observe the transition between hadronic matter and 
a quark-gluon plasma. 

The Japanese group have been calculating hadron masses. They find signifi-
cant changes to the masses relative to the quenched approximation - the greater 
part of which can be absorbed as changes in the coupling. They obtain values 
for the delta-to-nucleon mass ratio consistent with experiment, but large finite 
size effects and statistical errors prevent them from drawing firm conclusions. 
Discretisation errors in the Langevin algorithm make it necessary for them to 
run at a range of timesteps, and extrapolate to dr = 0. 

4.4 The Hybrid Monte Carlo Algorithm 

We now describe the hybrid monte carlo algorithm which builds the ideas of 
equation of motion schemes into a monte carlo simulation. 

We start with the definition of a Markov process in section 1.2. It is convenient 
to construct this process in two parts. First we choose a new configuration 4' with 
probability Pc [ -+ q5'] by some as yet unspecified procedure, and then we accept 
q' with some probability PA [ '-+ q5'] or reject it and keep the old configuration 
instead. One choice of PA which enables detailed balance to be satisfied for any 
Pc is a simple generalization of the Metropolis algorithm 

Ps(cU)Pc [0  1 
PA E 	'] =min (1. 

P5()Pc (0 I; ,]) 	
(4.53) 

where P5 (qS) is the probability of finding configuration 0 in the equilibrium distri-
bution. We require a method for choosing candidate configurations which can be 
computed efficiently and whose reverse probability P [' '-p ] is easy to obtain. 
Since we are proposing to update all fields 0 simultaneously we insist that the 
acceptance rate PA is large and that it doesn't depend too strongly on the size 
of our system. Finally, we want to minimise the correlation between successive 
configurations. 



An elegant method for doing this follows the idea of the hybrid molecular 
dynamics / Langevin algorithm [Duane et al 19871. Our procedure for generating 
a new configuration 0' is to select the momenta ir at random from a gaussian 
distribution of mean 0 and variance 1 

PG[7r] cc e_2d7r 	 (4.54) 

and then to let the system evolve deterministically through (q5, 7r)-phase space 
according to Hamilton's equations for a fixed time r0. This evolution defines a 
mapping on phase space by 

(0, 7r) 	(0', 7r) = ( ( 0, 7r) ,ll (qS,ir)). 	 (4.55) 

The value of r0 does not enter the proof that our algorithm works, so we have 
not bothered to make explicit the fact that the two functions 4P and II depend 
on this extra parameter. So the probability PH for choosing this candidate phase 
space "configuration" is 

PH [(, ir) i-  (', ir')] = 5 (' - 	(, ir)) dçb'S (ir' - 11 (, ir)) dir'. 	(4.56) 

We accept this candidate with probability PA [(, ir) 	(4/, ir')] = min(1, e_6H), 

where SH H (4/, ir') - H (, ir). So the transition probability for the coordinate 
is 

PM [ 	4/] = PG[7rIPH [(, ir) -4  (4/, ir')] PA [(, ir) i-  (4/, ir')] 	(4.57) 

and is evidently a function also of the initial and final momenta ir and ir'. In the 
case where our integration of the equations of motion conserves energy, that is 
SH = 0, we have PA = 1, so we accept every step: this limit is just the usual 
hybrid algorithm with r0  being the interval between momentum refreshments, 
and leads to the desired equilibrium distribution Ps cc e_"dq5dir. In the algo-
rithm proposed here we integrate the equations of motion approximately, so that 
H (4, ir) is not exactly conserved (5ff 34 0), but in such a way that the Markov 
process we have defined satisfies detailed balance with the same equilibrium prob-
ability distribution. 

PS(0)PM [ '- 4/1 = Ps (ci/)P ç  [4/ '-i  41 	 (4.58) 

To see what is required, we write out explicitly what this means. In order for 
the reverse transition to be generated by the Molecular Dynathics, it is clear that 
the signs of all the momenta must be reversed, and further that the approximate 
integration have the appropriate symmetry. So the condition to be satisfied reads 

(4.59) 

= e'"'d0ldir'5 (4) - (4) 1
, 

— ir')) dçbS (ir + 11(4/, —ir')) dir min(1, e6H) 

The acceptance probability provides just the right factor to convert e_H(,T)  into 
e_H(#' , ), since H (4), ir) is invariant under ir -+ —ir. The remaining terms 
amount to the statement 

5(y - Y(z)) = 5(z - X(y)), 	 (4.60) 



where we used the temporary shorthand x for (, ir) and Y for the function 
defined by the MD mapping. X is the inverse function to Y, and the identity only 
holds if the transformation from z to y has Jacobian 1. The leapfrog integration 
scheme has both the properties crucial to the success of the idea: it has r-
reversal symmetry and it generates an area preserving map. The only extra 
feature needed is the half-step at the beginning and end of the interval r0  which 
is already included in the standard hybrid algorithm. In section 4.5 we determine 

ii 
to 
	

C& 

Figure 4.4: A leapfrog, update scheme for the hybrid monte carlo 
algorithm. 

the acceptance rates for a full simulation of QED with fermions. Before doing 
this, however, we indicate reasons why the method has a chance of working, and 
suggest a small but vital refinement. 

The acceptance rate is determined by step-size errors in the total energy H, 
an extensive quantity. We would thus expect to have to have to adjust dt with V 
(the coefficients must be determined numerically). The accumulated error over 
an MD run of length r, AH = H(r) - H(0) is known to oscillate; we should tune 
r to minimise AH. 

The harniltonian serves two purposes. First it defines the equilibrium dis-
tribution and thus determines the acceptance test and the heat-bath used to 
refresh the fermion fields. Second, it provides a means of evolving the fermion 
fields from one timestep to the next. The only reason why we should use it to 
evolve the fields is that in exact arithmetic for dt = 0 it will yield iH = 0, 100% 
acceptance. In principle we could use any hamiltonian to evolve the fields. In fi-
nite precision arithmetic at a large value of dt, the integration scheme introduces 
errors. Perhaps we could compensate for these by using a different hamiltonian 
to evolve the fields. It has been suggested [Zinn-Justin 1986] that the dt errors 
can be accounted for by a change in P. If this is the case we should be able 



greatly reduce our discretisation errors by evolving the fields at a new value of 
the coupling 3', returning to the original value /3 only to do the accept/reject 
step. We present results on the effectiveness of this technique in section 4.6. 

4.5 A Simulation of QED 

We want to be able to compare the efficiency of the equation of motion algorithms 
described above. We did not have computer resources to do this for the SU(3) 

theory. Instead we have chosen to use the computationally simpler QED theory. 
We use compact U(1), and staggered fermions. The equations of motion, a 
special case of those discussed earlier, are outlined in section 4.5.1. We coded the 
simulation in occam for an array of Transputers. Details of the implementation 
are given in section 4.5.2 

4.5.1 Equations of Motion for QED 

The Wilson action for pure compact U(1) lattice gauge theory in 4 dimensions is 

	

Sg  = /3 	(i - (u (x) U. (x + ) U (z + C') U (x) + h.c.)) 	(4.61) 
xv,' 
U>,' 

where the links UM  (x) = ei8 (z) and 0 < 0 < 27r. In terms of the thetas 

S9  = fl E 1 — I (exp (tla + exp (—zR)) 
xv,' ( 	2 
U>,' 

	

= f3 E (i_ Cos GI)  ) 	 (4.62) 
XV,' 
v>g 

whereis now 0, (x) +0(x+j) —OM (x+&) —0(x). 

The simulation-time hamiltonian has three parts, the pure gauge action, a 
gauge kinetic term and a fermion term. 

H =# E (i— cos (n)) + 	(x) + 	(z) (_2+M2)'(y)  (4.63) 

	

XV,' 	 XI, 	 XV 
U>,' 

On langevin steps (hits) the fermions fields are refreshed with an exact heat bath, 

ii, =1 
(Pedd + 	 (4.64) 

where the rj's are gaussian distributed random fields. They are not updated 
between hits [Gottlieb et al 19871, for the Langevin, hybrid and hybrid monte 
carlo algorithms. A fermion momenta term is added for MD simulations (see 
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section 4.2. We update the links using a leapfrog algorithm. By analogy with 
the SU(N) case above the equations of motion are 

= P;, (X) 

j (x) = f.1 (x) + 	(ex (iJ) - exp ( 1) - h.c.) 	(4.65) 

= fM(x)_fl(sin_sin) 
vots 

f, (x), the fermion contribution to j (z), is given by 

A. (X) = Im>{ç(x)i3t(z)U(z)3(x+L)} 	(4.66) 
14 

where 
even t 	} ° 
	

odd } sites 

and = (_ 2 +M2)' 7P as described in section 4.2. 

Each timestep requires the solution of a large sparse set of linear equations 
(—J/'2+M2) 0 = t/', computation of the f (x), and calculation of the plaquettes. 
The identity P = -P1  for the U(1) theory allows us to calculate the plaquettes 
in the planes for which i'> j (only). 

4.5.2 A QED Simulation Program for 16 Transputers 

The code fuliqed implements the hybrid monte carlo algorithm in occam 2 on 
a binary hybercube of 16 Transputers. It was developed to run on a Meiko 
Computing Surface. With modifications to the file I/O handler it will run on 
a FPS-T20 if an occam 2 compiler is provided. The code for each processor is 
fully vectorised. Fuliqed can also perform hybrid and langevin simulations. (A 
number of other programs exist: uone 1  is a (non-vectorised) pure MD code as is 
uoneint which uses integer arithmetic; qed...md is an MD code with dynamical 
fermions.) A binary hypercube (see figure 4.5) was the natural configuration to 
use first. It allows partitioning of a 4-d lattice onto a 4-d processor array giving 
each processor a 4-d sub-lattice to work on. The code for each processor is similar 
to that for a single processor working on the sub-lattice alone. The restriction to 
a binary hypercube is forced upon us; a general 4-d hypercube requires 8 inter-
processor links but the Transputer only has 4. This configuration is by no means 
ideal, but its simplicity greatly eased the task of writing such a code in occam. 
See chapter 5 for analysis of the suitability of various architectures for lattice 
gauge theory simulations. 

'This program was written by R.D. Kenway, K.C. Bowler and myself 
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Figure 4.5: A binary hypercube configuration with a message 
passer inserted on one of the links. 
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Structure of the Program 

The code fuliqed is really three programs (1) the simulation code itself, which 
runs on each node of the hypercube, (ii) a message passer process, and (iii) the 
file I/O handler. We discuss (ii) and (iii) briefly first. 

PROC node(....) 
declarations 
procedure definitions 

SEQ 
initialisation of look-up tables 
load parameter file and configuration 

SEQ splash=O FOR max.splashes 
SEQ 

randomize momenta 
SEQ md=O FOR max.md+1 

SEQ 
decisions 
predictor 
fermion contribution to pdot 
gauge contribution to pdot 
leapfrog update 
energy measurements for md sweep 

energy measurements for splash 
accept/reject 
output data 

write configuration 

Figure 4.6: The structure of the fuliqed program for a node. 

In building a hypercube configuration all 4 links from all 16 processors are 
used. In order to get messages in and out it is necessary to provide memory 
mapped communication between one of the processors and the world beyond or 
insert an additional processor into one of the sides of the hypercube. We don't 
have a processor suitable for the former, and so a 17'th processor is added. We 
run a message passing process on this device. (This slows down some of the 
communication as data must be forwarded by the message passer.) 

The file I/O handler controls (a) the reading and writing of unformatted 
configuration files, (b) reading in the parameter file and (c) the writing of results 
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files compatible with our standard statisical error analysis program nnstats 2 . 

This process runs on a Transputer connected to the message passer. 

At the toplevel the simulation code appears to be a serial program, but it 
runs on all 16 processors. The inter-processor I/O is at a very low level. This 
I/O synchronises the program, so that broadly speaking each processor is doing 
the same thing at the same time. 

Figure 4.(,, illustrates the top level structure of the program as it appears 
in the program development enviroment OPS. Lines beginning with ... are 
"folds"; when "opened" they reveal their contents. 

In the hybrid monte carlo algorithm the inner loop (over MD steps) must be 
performed 11 times to evolve the system through 10 timesteps. The momenta 
are "half-stepped" on the first and last MD steps. The links are not updated on 
the last step (see figure 4.4). This extra work is avoided when the program is set 
up to run the hybrid algorithm. 

The Partitioning Scheme used is as follows 

• L 4  lattice z=0,1,...,L—1 p =0,1,2,3 

• 2' processor array p = 0, 1 p = 0, 1, 2,3 processor id p = EA  p 1 2" 

Processor p is responsible for a n.4  sub-lattice 

={0:::::, 	
:= 	

p=0,1,2,3 

where n = L. The 0M'  p 4  variables associated with site x, jib , 
x, 

 and 0 are all 
held on the processor responsible for site x. A key feature of this partitioning 
scheme is that it maintains the locality properties of the action. All data for sites 
in the neighbourhood of z is either on the processor responsible for z or on one 
of its immediate neighbours. 

The Fermions 

The fermionic contribution to the update comprises two parts; solution of the 
system of equations, and calculation of f. 

Solving the Equations We calculate 0 = (_p2+M2)' tb using a Conjugate 
Gradient algorithm (see section 2.3). We first predict 0 1  in terms of 
by fitting a polynomial to the existing data and extrapolating to q5 1 . The 
predictor uses a guess of 0 on the first sweep (after the hit), the old 4 on the 

2written by S. Duane and B.J. Pendleton 
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next, and so on up to some maximum (currently 3rd) order. The calculation 
is easy (2n4  operations per processor for the first order, 3m 4  for the second and 
5m4  for the third). No I/O is required, but we must keep 0 for some number of 
earlier timesteps. The effectiveness of the predictor is discussed in section 4.6. 
The prediction is used as the starting point for the CG solver which then iterates 
until the desired precision in rtr  is obtained. 

PROC dslash( .... ) 

declarations 
SEQ 

zero Da 
SEQ mu=O FOR 4 

abbreviations for this direction 
SEQ 

gather boundary data for output 
PAR 

etM(z)a(x+jL) for interior sites 
send a(x, = 0) in /j. direction 
get a(X M  = n) from A direction 

e ° ' ) a(x+) for boundary sites •  
gather boundary data for output 

PAR 
e ° ()a(x—) for interior sites 
send a(z = n - 1) in A direction 
get a(z = 0) from A direction 

e °'()a(z—ji) for boundary sites 

Figure 4.7: Calculating 4a 

Two phases of the CG solver require inter-processor communication; the ma-
trix vector products (applications of ), and the scalar products. The rest of the 
code simply calculates the new CG vectors p, r and z (see section 2.3), on each 
processor. The structure of the procedure is illustrated in figure 4.7. All sines 
and cosines of links are precomputed with added phases and boundary condition 
signs . The 'gather' processes involve collecting all the data (of a given parity) 
that lies in a boundary. We do this using lookup tables that list these sites. The 
data to be transferred is collected into an array in on-chip memory, from where 
it is transferred en'mass to the neighbouring processor. This I/O is prioritized 
above the concurrent communication process (see appendix B) - the code to do 
this has been omitted from figure 4.7 for clarity. 

M. 



Scalar products are calculated locally, and then this data is accumulated. 
Each processor first adds its partial sum to that of its neighbour in the 0 direction. 
This is then repeated for the other 3 directions, the most recent partial sum being 
transferred at each stage. 

The equation solver procedure is also responsible for the fermion heat bath 
as this requires .) acting on gaussian noise, which in turn requires the sine and 
cosine of all the links. 

Fermionic Term in P. This cross-term is calculated when the inversion is 
complete. It requires the application of to 0 to form on odd sites and the 
computation of 

f,(z) = 

We do this using the forward part of a P applied to q5, with an extra loop over 
even and odd sites. 

The Gauge Fields 

Calculation of the gauge field contribution to P,, follows the scheme outlined in 
section 2.1. We select a plane to work with, and start on the plaquettes. While 
doing this we transfer the boundary links (see figures 4.8 and 2.2). We then com-
plete the plaquettes and take the sine; this step dominates the calculation. If we 
are measuring the gauge potential energy we also evaluate E cos( 0). Each pla-
quette is used to update 4 momenta, j, (x), j, (x + IL), P. (x + &) and i (x). The 
first two P. (x) and fri,  (x) are calculated while the boundary data for P, (s + IL) 
and j (x + A)) is transferred, the momenta are then completed. 

It is possible to overlap more work with the inter-processor communication 
by separating off all the calculations that require only local data and performing 
them in parallel with the above for the sites in the boundaries (only). We made 
these changes to the first version of the program, but the improvement in total 
cpu time required was negligible (This is because the calculation is dominated 
by taking the sine of the plaquettes). We did not make these changes to fullqed 
as they complicate the coding. 

Odds and Ends and Random Numbers In addition to the calculation of 
the p, we must (1) perform the leapfrog update, (ii) calculate the energies and (iii) 
generate random numbers. The gauge field update is straightforward, it requires 
no I/O. We calculate the plaquette energy (if it is required) while updating the P. 
The gauge kinetic energy, fermion energy and each require a scalar product 
(performed as described above). 

Two kinds of random numbers are required, uniform and gaussian distributed. 
We used a linear congruential pseudo-random number generator to obtain the 
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PROC gauge( .... ) 
declarations 

SEQ mu=O FOR 4 
SEQ nu=mu+1 FOR 3-mu 

SEQ 
gather links to be transferred 

PAR 
start the plaquettes 0 = 0 - 
send O,(x = 0) in the v direction 
send o(x, = 0) in the fz direction 
get 9,(x 1, = n) from the ii direction 
get o(x = n) from the j directions 

complete the plaquettes and take sine 
gather data to be transferred 

PAR 
calculate ji and fri, 
send 0,4 (x = n) in the ii direction 
send 0 = n) in the i'  direction 
get 0 , (XLI = 0) from the z, direction 
get 01I (x = 0) from the ji direction 

calculate j,, (x + ) and j,  (x + 1') 

Figure 4.8: Calculating the Gauge Field Contribution to fr., 

uniform distribution. In order to avoid generating the same sequence of numbers 
on each processor (although this was useful for debugging) we modified the mul-
tiplier and the initial seed so that each processor generates its own sequence. The 
16 numbers produced, one per processor, are the same 16 as would be generated 
by a single processor calling the unmodified random number generator 16 times. 
The accept/reject decisions are made by one processor and then distributed. 

A gaussian distribution is required for refreshing the ferinions and the gauge 
momenta on langevin steps. It is calculated using a polar Box-Muller algorithm 
running on every processor. It calls the modified linear generator. 

Testing 

In an MD simulation total energy is conserved for sufficiently small dt. This 
proved to be useful in testing fuliqed. At all stages of its development we were 
able to set up a long MD run at low dt and check total energy. 
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We tested the gauge sector of fuliqed by comparing values of the plaque-
tte with existing data; our U(1) results agree with those of [Lang 19861. The 
gauge momenta and fermion fields are generated from gaussian distributions. 
We checked that the gauge kinetic and fermion energies are 1  per degree of free- 2 
dom. A correct value of the fermion energy points towards correctness of the 
procedure. We check this (and the CG solver) by comparing (n) and the prop-
agator for free ferrnions with data obtained using other programs. The hardest 
part of the calculation to test is the fermion contribution to ji, where we rely on 
conservation of energy. 

Performance 

We measured the performance of fuliqed running on a hypercubic array, with 
no I/O to the outside world. The relative importance of the two sectors and the 
measured rate of compute to I/O are shown in table 4.5.2. For a fermion mass of 
0.25 a hybrid monte carlo sweep comprising 10 md steps takes about180 seconds. 
Performance deteriorates very slightly when a single message passer is inserted 

Relative Compute to 
importance I/O ratio 

Fermions 95 % 28 
Gauge Fields 5 % 7 

Table 4.1: Performance data for fuliqed at m = 0.25. The 
fermion data is for the P routine. 

on one of the edges as the transfers in this direction have to be forwarded by 
the message passer. This delay only effects data accumulation procedures, as the 
overlapped computation-to-communication ratio r >> 1 for the updates. Ideally 
fuliqed should run on a mass store board and 15 other processors. Replacement 
of the T414B-15s by T800-20 floating point Transputers should cut total run 
time by about 6 or 7. 

Uone..int runs 8 times faster than the 32-bit real code uone. It uses lookup 
tables for the sine and cosine functions. In practise this code simulates the gauge 
group Z(32768), the link variables being represented by integers. Further (large) 
increases in speed could be made if a small subgroup of U(i) was used from the 
outset. We did not try to code the fermion update in fixed-point arithmetic. 

4.6 Results 

In this section we present results on the behaviour of the hybrid monte carlo al- 
gorithm; and a comparison of the effectiveness of the equation of motion schemes. 
All results have been obtained using the code fuliqed running on 16 Transputers. 
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4.6.1 Performance of the Hybrid Monte Carlo Algorithm 

We have studied three aspects of the performance of the hybrid monte carlo 
algorithm, the acceptance rates, /3/3' tuning and the effectiveness of the predictor. 
We ran the simulation on the disordered side of the phase transition where the 
density of low eigenvalues (of 2)  is higher - and hence the inversion problem 
harder. We used 8 = 0.8 for our fermionic simulations (at both high and low 
mass), away from the transition. Results obtained near the transition are similar 
but with large errors. 

Acceptance Rates Figure 4.9 illustrates the dependence of the acceptance 
rate upon stepsize and lattice size. Data is for the pure gauge theory on 44,  8, 
and 12 lattices, and for the dynamical theory on 44  and 8. For an equilibrated 
configuration fluctuations in the acceptance rates are very small. Figure 4.10 is 
constructed by reading values of dt corresponding to 50%, 60%, 70% and 80% 
acceptance from figure 4.9. The data on acceptance rates (air) is consistent with 

'It 

Figure 4.9: Acceptance rates as a function of dt and lattice size. 

aft= e 22 . We were not able to obtain accurate data for the dynamical theory 
on 12 4  lattices due to lack of computer time. 

It is tempting to extrapolate the data in figure 4.10. Doing this gives 50% 
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Figure 4.10: Values of dt corresponding to acceptance rates of 50, 
60 2  70 and 80 per cent. For the pure theory. 
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acceptance rates at a timestep of 0.05 for 10 lattices and 0.03 for 16 4  (both 
with dynamical fermions). These timesteps are significantly larger than those 
reported as suitable for hybrid simulations [Kogut 19831. 

0/3' Tuning We began by working with an 8 4  lattice at dt = 0.15, for which the 
acceptance rate 23% without tuning. Figure 4.11 shows the acceptance rate 
as a function of 3' - 8. The distribution is approximately gaussian with peak 

Figure 4.11: Acceptance rate as a function of 13' - 

shifted towards /3' > P. For 3' =,3 + 0.02 we obtain an accepance rate of 57 %. 
Figure 4.12 shows the acceptance rate as a function of dt with optimal tuning 
and that without for an 8 4  lattice. 

Predictors Fuliqed spends the great bulk of its time solving the matrix prob-
lem, 93% for 30 CG iterations (this is the minimum number used, for high masses, 
many more are needed for low masses). The effectiveness of the predictor is thus 
of vital importance. We have tested predictors of order 1 to 4. Figure 4.13 shows 
the number of CG iterations required to evolve the system through 1 time unit. 
The solver is run until rtr < 0.0005 at masses of 0.25 (left) and 0.05 (right). 
It is clear that for high m and small dt the predictor is very effective, but at 
large dt and small m there is no improvement. The m behaviour is not suprising; 
all the predictor does (when it works) is provide a better initial guess for x, it 
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Figure 4.12: Tuning the hybrid monte carlo algorithm. Accep-
tance rates as a function of dt for fi = 3' and optimal 3' - 

does not alter the rate of convergence - which is proportional to m. Further, 
as in increases the matrix becomes increasingly diagonal dominant and order dt 
changes to the links are of less significance. We see little or no improvement at 
large values of dt whatever the mass. If we combine figures 4.12 and 4.13 we 
obtain the computer time required to evolve the system through one time unit 
as a function of dt. The data is for an 8 system. We find the optimum timestep 
to be 0.075 for an 8 system at low mass. 

4.6.2 Comparison of Equation of Motion Algorithms 

We compare equilibration times and stepsize errors for the four equation of mo-
tion schemes discussed; MD, langevin, hybrid and hybrid monte carlo. 

Equilibration 

Figure 4.15 shows the equilibration of the average plaquette over 50 time units 
at 8 = 0.97 for the pure theory. Our results for the dynamical theory are similar, 
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Figure 4.13: Number of CG iterations required to evolve the sys-
tem through 1 time unit, as a function of dt and predictor order. 
Fermion masses are 0.25 (left) and 0.05 (right). 8 lattice. 
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Figure 4.14: Computer time required to evolve the system as a 
function of dt, masses are 0.025 (left) and 0.05 (right). 
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but of poorer quality because of the computer time required to perform such 
calculations. 
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Figure 4.15: Equilibration times for equation of motion schemes. 

The average plaquette equilibrates rapidly in the MD simulation, but to the 
wrong value. The gauge momenta equilibrate to an appropriate energy ( per 
degree of freedom). The system must conserve energy and so the potential energy 
is constrained to be the initial energy minus the kinetic energy. This fixes the 
average plaquette at a value determined by the initial conditions. We must 
determine /3 once the simulation is complete. 

Adding noise to the system ensures that we equilibrate at the correct value 
of the plaquette. The optimum hit frequency for hybrid is between once and 
twice per unit time. Equilibration rates drop rapidly as more noise is added. 
The Langevin limit, noise every timestep is the worst case. The hybrid monte 
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carlo simulation converges at the same rate as the hybrid scheme. The timesteps 
are 10 times the size, acceptance rates are about 60% for this system, and so the 
evolution is 6 times as rapid. 

4.6.3 Timestep Errors 

We measured values of the average plaquette (for a pure 8 4  system) and (&) 
for a fermionic system (at m = 0.25 and 3 = 0.8) as a function of dt for hybrid 
and monte carlo algorithms. The results are shown in figures 4.16 and 4.17. We 

MO 

Figure 4.16: Timestep errors in the average plaquettefor a pure 
gauge system at /3 = 0.97 on an 8 4  lattice. 

see evidence for order dt2  errors using hybrid. There are no dt errors using the 
monte carlo algorithm, as we would expect. Results for the plaquette in the 
fermionic system are similar to those shown in figure 4.16, but are of poorer 
quality. Timestep errors force us to use small values of dt in hybrid simulations. 
The hybrid monte carlo algorthim allows us to select the value of dt at which the 
system evolves most rapidly. 
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Figure 4.17: Timestep errors in the (&) for a high mass fermionic 
system at i = 0.8 on an 8 4  lattice. 
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4.6.4 Results for QED 

We would like to be able to investigate phase structure of the theory, but a 10 hour 
run of the dynamical system for an 8 4  lattice at a high mass completes only 200 
time units, falling to about 30 time units at low masses (using the hybrid monte 
carlo algorithm). We are forced to conclude that performing realistic simulations 
on the current configuration of Computing Surface is not practical. We would 
require at least a factor 50 improvement in speed. Achieving this efficiently on a 
large array of floating point Transputers is discussed in chapter 5. 

4.7 Conclusions 

The Molecular Dynamics Algorithm explores phase space rapidly but in 
an unsatisfactory manner. The conservation of total energy makes it difficult 
to select a value of 3. To run a simulation at that fi, an extra tuning stage is 
necessary. 

In addition there is the question of ergodicity. We have seen very long time 
tails at low masses in fullqed and in a QCD code running on a 43  x 8 lattice. Other 
authors [Polonyi and Wyld 19831 report similar problems. We know ergodicity 
is going to be a problem; it seems best to avoid the problem by adding noise. 

The Hybrid Algorithm retains the best feature of MD, rapid exploration of 
phase space, but the addition of noise removes any problems with ergodicity. It 
is interesting to note that the optimum value for the frequency of adding noise 
is 1 hit per unit time - close to the MD limit of the hybrid algorithm. As we 
increase the frequency of application the equilibration rate drops. 

The Langevin Algorithm is very slow (this is not suprising as it is a random 
walk process). In common with the hybrid algorithm it is necessary to run at a 
range of timesteps dr and then extrapolate to dr = 0. This further increases the 
already high computational requirements. 

The Hybrid Monte Carlo Algorithm explores phase space rapidly, and on 
moderate size lattices the large timestep used makes the simulation faster than 
hybrid by a factor of about 6. Increasing the lattice size necessitates reductions in 
the timestep, but not to an unacceptable degree. The total energy of the system 
is extensive; so fluctuations in H L 2  but we can compensate for this by tuning 
the value of $' used to evolve the fields. 

Timestep errors are of order dt 2  for hybrid algorithms (see figure 4.16 and 
[Duane 1985]). There are no timestep errors in the hybrid monte carlo algo-
rithm. The Cornell group, using the Langevin algorithm at large dt, say that 
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the errors introduced can be explained in terms of shifts in the coupling and cite 
[Zinn-Justin 1086]. We can make use of this relation to tune P. 

The Computational Requirements of equation of motion algorithms are 
high; we must still solve a large sparse system of equations every timestep. We 
can make some use of predictors, but they are at their least effective for the range 
of parameters we are most interested in. What is really required is (i) an effective 
preconditioner and (ii) a computer capable of solving the system of equations for 
low mass fermions on a 161  lattice in less than a minute. 

The basic algorithms involved in dynamical fermion simulation are local, and 
inherently parallel (see chapter 2). In chapter 5 we discuss the use of large arrays 
of processors for such simulations. 
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Chapter 5 

Designing a Parallel Processor for Lattice QCD 

The aim of this chapter is to determine whether we can build a parallel processor 
of sufficient power to tackle simulation problems in lattice QCD. The designs are 
intended for the equation of motion algorithms of chapter 4. We concentrate on 
the question of whether it is possible to partition the problems of chapters 2 and 
4 in such a way that we achieve linear (or near linear) speedup as processors are 
added. If this is possible then we will be able to use large numbers of medium-high 
power processors to perform our simulations. We consider a variety of geometric 
array architectures (rings, grids and hypercubes) as well as algorithmic cells 
(clusters of processors arranged to reflect the structure of a problem) and simple 
arrays of such cells. 

We partition our problems for each machine, and analyse the following aspects 
of the implementation 

Synchronising steps, communication that cannot be overlapped with work 
and any extra work that results from using more than one processor. 

Computation that cannot be overlapped with communication. 

Work that can be overlapped with communication if necessary. 

Communication that can be overlapped with work. 

In splitting a task amongst several processors we will incur costs due to com-
munication between them. Processors such as the Transputer allow us to reduce 
these costs by overlapping computation and communication. The parameter I' 
of chapter 1 reflects this overlap; it is the ratio of term 3 to term 4 (above). Pro-
vided synchronous communication and extra work (term 1) are negligible then r 
large signals a successful implementation if the processors have sufficient power 
to solve the problem. 

We describe a calculation as being local when it requires data from a proces-
sor and/or its immediate neighbours, internal when the calculation requires no 
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communication and global when data is (potentially) required from.many (or all) 
processors. 

We discuss partitioning of the gauge sector in section 5.1, and of the lattice 
Dirac equation in section 5.2. Other aspects of the calculation are either internal 
or can be performed sufficiently infrequently as to be negligible. 

In chapter 2 we showed that the gauge update and the dominant parts of an 
iterative solution of the lattice Dirac equation (the matrix-vector multiply steps) 
were local; only the scalar products require global information. This suggests 
that there will be natural mappings of the lattice onto a geometric array that 
preserve processor-data locality. 

For both problems we begin by discussing a simple partitioning of the lat-
tice onto a torus. We use this scheme as a benchmark with which to compare 
mappings onto other architectures. 

We have argued that communication-to-computation ratios are surface-to-
volume ratios. For a given number of processors arranged in a d-dimensional array 
the surface becomes more important as d increases. However, we are restricted 
to an array of L' processors for an L' lattice' so to increase the number of 
processors used we should increase d. Success is dependent on us being able to 
find a configuration with sufficient processing power for which the computation-
to-overlapped-communications ratios are acceptable and synchronising work is 
negligible. 

In discussing the compute-to-I/O ratios we initially use algorithm rather than 
processor-dependent performance estimates. We then convert these ratios to 
numbers using data on the performance of floating-point Transputers. 

5.1 The Gauge Sector 

The gauge sector calculations play a small part in a dynamical fermion simulation, 
less than 7% in fuliqed. However, to achieve a large speed-up on the full program 
we must work on both sectors. If we concentrate solely on the fermions then the 
relative importance of the gauge sector will increase and the total speed-up will 
fall. (We would also like to be able to switch the fermions off, and run pure 
gauge calculations on a large lattice. For this to be possible we require a large 
speed-up in the gauge sector.) Our analysis is for equation of motion schemes in 
which all gauge links are updated simultaneously. Different problems are faced 
in a pure-gauge heat-bath program where only half the links in any one direction 
can be updated at the same time. We will point out where analysis of the latter 
problem departs from that of ours. 

'If we used an array of linear size greater than L we would have to through-route some of the 
communications - this would not be efficient on current Transputers. 
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In chapter 2 we showed that the gauge sector of the simulation requires (i) 
that we calculate and sum the staples, (ii) that we multiply in the link to be 
updated and take the trace and (iii) that we perform the exponential update. (i) 
is local, (ii) and (iii) are internal, so we concentrate on the staples. We express 
compute time in terms of numbers of staples calculated and I/O in terms of 
complex 3 by 3 matrices transferred. Detailed compute to I/O ratios, r, are 
given in section 5.1.4. 

5.1.1 Staples on a Torus 

Divide an L4  lattice into hyper-rectangular regions of size n0n1 L 2  and allocate 
them to an array of T0  by T1  processors (where T, =.) in the form of a torus (see ni 

figure 5.1). The directions 0 and 1 are referred to as external, 2 and 3 internal. 

1 

2( 

L_ 

Figure 5.1: Partitioning an L4  lattice onto a grid of T T proces-
sors. 

A Simple Scheme 

For simplicity we first consider the case of a 1 x 1 x V sub-lattice allocated to 
each processor. This is the worst case as far as communication-to-work ratios are 
concerned. Single out a direction A , and consider updating links in this direction. 
We must calculate 6 staples, two for each free z) direction. Two cases must be 
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considered, (i) the selected link lies in the plane held internally (ji = 2, ji = 3 see 
figure 5.2) and (ii) it does not (j = 0, i = 1 see figure 5.3). 

/ 
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/ \ 

- - 

2[/'3 

Figure 5.2: Staples required to update an internal direction. 

Internal Directions Of the 6 staples, data for 2 is held internally (a and b 
in figure 5.2), and 2 require a A directed link to be passed from a neighbouring 
processor (in the positive t' directions c and d). Data for the last 2 staples (e and 
f) are held on a processor in the negative & direction and can be transferred as 
complete staples. We should first calculate staples a,e,f (e,f to be passed forward), 
while transferring the data required for c and d (links UM (x+.0) and U,(x+I)), 
then calculate b,c,d while transferring, the completed staples e and f. We then 
add. in e and f. This is repeated for the second internal direction. There are 
L 2  links in each internal direction. The compute-to-communications ratio is 3 
staples calculated to 4 matrices transferred (2 in, 2 out) during each phase. Up 
to 4 communications links can be used in parallel throughout. 

The External Directions seem to be more difficult as none of the staples use 
solely internal data. However, if staples asdociated with the internal directions 
are completed first the links required to complete staples g,h,ij in figure 5.3 
(U2(x+[A), U2(x+12 — &), U3 (z+ji) and U3(x+j2—&)) have already been transferred. 
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Figure 5.3: Staples required to update an external direction. 

All that remains is to calculate the staples with two external directions. We do 
this as shown in figure 5.4. 2 links must be transferred, Uo(x+1) and Ui(x+O), 4 
staples calculated, and then 2 staples moved. The I/O for this can be performed 
in parallel with calculating staples g,h,i,j. In total we must calculate 12 staples 

U. 

( 	V'?) 

[I] 

'1 

Figure 5.4: Calculating staples in the processor plane. 

and perform 8 transfers. We overlap the transfer of links with staples of types g 
and h, then do the staples in the processor plane, then overlap moving these with 
calculating staples c and d. The compute-to-I/O ratio is 1 staple to 1 matrix 
transfer. We can make use of up to 4 communications links per processor. 

In a pure gauge heat-bath algorithm we will only have the data for staples a 
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and b. Further, we will have imposed an "internal directions first" ordering on 
the update. 

General Case 

Our simple scheme for a 1 x 1 x L 2  region on each processor had minimal compu-
tation to overlap with communication. The generalisation to a n0n1 L 2  sub-lattice 
is straightforward. 

Consider an internal direction ; the surfaces to be exchanged have either 
n0L 2  or n1 L2  4t-directed links. If we follow the algorithm above then we can 
(for example) overlap 2(n.o  + ni) transfers with 3n0n1  staple calculations (there 
are now rn1  staples of each type) during both phases for each direction. The 
compute-to-I/O ratio is 

We again consider the external directions together. In total we must calculate 
12n0n1  staples and transfer 2(rio+ni ) links then 2(no+ni) completed staples. The 
compute-to-I/O ratio is 2n0n1  staples to (n0  + ni) matrix transfers. Projected 
values of r for a variety of sub-lattices sizes are given in section 5.1.5. 

5.1.2 Other Geometric Structures 

The ratio, r, of computation to overlapped communication is a volume-to-surface 
effect; as we raise the dimension of the array the surfaces become more important. 
If we restrict ourselves to hyper-rectangular partitioning schemes then for fixed 
lattice size the total number of processors that can be used increases, and the 
number of sites allocated to each decreases, as we increase the array dimension. 
On a ring of processors there will be more internal work to do while transferring 
the surfaces but the total number of processors is small. On a cubic or hypercubic 
array the number of processors can be very high, but there is little internal work 
to do while transferring the data. 

The high cost of a staple calculation and the local structure of the plaquette 
action ensure that most simple geometric array structures will be- suitable for a 
plaquette calculation. To illustrate this point consider the extTeme case of a hy-
percubic array in which each processor is responsible for 1 site. It must calculate 
24 staples. To do this 12 link matrices must be transferred from neighbours in 
the forward directions, and 12 must be sent to neighbours in the backwards di-
rections. On completion 12 staples must be sent and received. In total 2. matrices 
must be transferred for each staple calculated. 

If we give each processor a hyper-rectangular sub-lattice then using current 
Transputers restricts us to ring or grid array architectures. Processors such as 
that used in the Ncube machine and FPS-T20 have more communication channels 
and so avoid this restriction, but the bandwidth of their links is lower. In order 
to build higher dimensional structures from transputers we must combine several 
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processors to build a "cell". We can, for example build a 4-d array from cells of 
4 Transputers (see figure 5.8). The work done previously by a single processor 
must be divided equally amoungst those in the cell, and the extra I/O within the 
cell must be allowed for; both changes tend to reduce r. 

5.1.3 An Algorithmic Approach 

We have concentrated on the geometric parallelism in the staple calculation. We 
now look at the problem from the view-point of updating individual link matrices. 
In chapter 2 we identified the steps that can in principle be performed in par-
allel, calculating the six staples, summing them and completing the plaquettes, 
etc. The Southampton group [Askew et. al. 19861 refer to this as an algorithmic 
approach to parallelism. To exploit it we must design an appropriate machine 
configuration. 

A Simple Working Model Figure 5.5 is a first step. We use it to begin an 
analysis of the computation and communication involved in this approach. Each 

Figure 5.5: Exploiting algorithmic parallelism 

of the 3 (S) processors calculates 2 staples. They are summed by (T) which 
then multiplies in the link to be updated. Processor (U) performs the update 
and processor (M) manages the memory. For high efficiency all of the processors 
must be busy (computing) all of the time. To facilitate this input and output 
data must be buffered and a supply of tasks maintained on all processors. 

This simple model has I/O bottlenecks. The characteristic times r9  and Tm 

for calculating staples and transferring matrices are the same as those above, but 
the (5) processor has to move 4 matrices for each staple, and the (M) processor 
must output 9 matrices in this time. 
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Refining the Model We can solve such problems by modifying the design. 
Adding a second (M) processor doubles the {M} - {S} bandwidth, and increases 
the number of hard links used for input on the (S) processors, but at the cost of 
2 processors that don't contribute to the calculation, rather than 1. 

Changing the update algorithm, to heat bath or multi-hit metropolis will 
necessitate changing the usage of (T) and (U) and may require the addition of 
further processors for generating trial link variables. These modifications are 
fairly easy to incorporate as the inter-processor I/O required is low compared 
with the computation required. 

The algorithmic machines outlined are very flexible. There are no restrictions 
on lattice shape or size, but their compute power is low. In order to perform gauge 
sector calculations on large lattices we must build arrays of such cells. Doing this 
further reduces the efficiency as more processors must be added to control and 
perform the inter-cell communication. Cells such as that in figure 5.6 could be 
connected in a ring, but the overall efficiency is limited to around 50%. 

Figure 5.6: Algorithmic cell for gauge sector calculations. 

5.1.4 Performance on T800s 

Our compute to I/O ratios have been given in staples calculated per link matrix 
transferred. We now evaluate these ratios for IMS T800-20 processors (float-
ing point Transputers). The timing data is based upon measured performance 
[Askew 19861. A timing of 1.35 secs is quoted for 10000 full 3 by 3 complex 
matrix-matrix muliplies (108 multiplies, 90 additions). A staple calculation re-
quires 286 floating-point operations, and so *e estimate that it can be performed 
in 235 micro-secs on a T800. Transferring a 3 x 3 complex matrix requires 72 
bytes of I/O; this should take 43 micro-secs from internal ram, rather more to 
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external ram. (see later). Hence the ratio of the time taken to calculate a staple 
to that required to transfer a 3 by 3 matrix is - 5.4 

A Transputer can communicate data on all four of its links while performing 
computation. To exploit this capability it is vital to (a) minimise interference 
between the two and (b) ensure that communication is prioritised so that data 
transfer occurs at the first possible moment. 

There is not sufficient on-chip memory to perform the entire calculation with-
out recourse to external memory, but there is enough for 50 SU(3) matrices. We 
should manage the memory as follows (i) the sub-lattice is held off-chip, (ii) links 
to be transferred out go directly from off-chip memory, (iii) links transferred in 
stay on-chip, (iv) data for the staples is brought on-chip, and the result left there 
for accumulation or transfer, (v) the link to be updated is brought to internal 
memory, (vi) the update is completed, and (vii) the result is moved off again. 
There should be sufficient space left on-chip for oft-used pieces of code. 

The total link bandwidth for a T-800 is about 16 Mbytes/sec, (in and out on 
all 4 links), as compared with a memory bandwidth of - 80 Mbytes/sec from 
on-chip Rain. We only make use of I the link bandwidth for the torus as the 
transfers are uni-directional. Data transfers require processor cycles to set them 
up, and use up memory cycles, delaying the processor. Both effects will be small 
for large r. 

To obtain the overlapped compute-to-I/O ratios 1' we should multiply the 
ratios of staples calculated to matrices transferred by and by the number of 
links used. In table 5.1 we give estimates of r for a variety of array and lattice 

Array Size 
lattice _size 

16 244 J _32 
82  32.4 48.6 64.8 
122 

- 32.4 - 

162  16.2 - 32.4 
322  - 

- 16.2 

Table 5.1:. Projected compute-to-overlapped I/O ratios for staple 
calculations on a torus. 

sizes based on a staple-to-transfers ratio of 2(+j)  (this is the worst case, the 
internal directions), 20 Mbit/sec links and all 4 links being used together. 

5.1.5. Summary of Gauge Sector 

A torus is the best configuration of Transputers for staple calculations. There is 
no synchronous I/O, and. the compute-to-concurrent I/O ratios are good. The 
draw-backs of the scheme are (i) it is inflexible and (ii) coding to maximise work 
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overlapped with I/O may be complex. However, efficiency is high, and large 
arrays can be used for large calculations. The compute to I/O ratios given above 
are high implying that we could be using more processors. 

Exploiting algorithmic parallelism is possible in the gauge sector calculations, 
but for high efficiency the machine configuration must be tuned to the algorithm 
being used. To make this possible a high degree of fiexibilty is needed within a 
cell of say 10 processors, some of which must have large amounts of memory. It 
should be possible to eliminate I/O bottlenecks within such a cell by appropriate 
load balancing, but overall efficiency is restricted to around 50% by the number 
of processors that must be used for storing and forwarding data. 

5.2 The Fermion Sector 

As we have seen numerical solution of the lattice Dirac equation dominates dy-
namical fermion simulations. We aim to distribute the solution amongst large 
numbers of cooperating processors. We intend to use the Conjugate Gradi-
ent (CG) algorithm and we concentrate on the partitioning of its components: 
matrix-vector (sections 5.2.1 to 5.2.4) and scalar products (section 5.2.5). The 
basic matrix-vector product is to apply P to a vector V. If V is on even sites 
then 

(PV) (x) = 	17p (x) (u (x) V (z+IL) - U(x—i)V (z—IL))  

1,LV is on odd sites. For the purposes of this discussion we assume that the link 
matrices are distributed according to a hyper-rectangular partitioning scheme 
that preserves processor-data locality. it is not necessary to move link data at 
any time during a solution of the lattice Dirac equation. Our basic unit of 
computation will be the matrix-vector product, and that of I/O the vector move; 
both for complex 3 triples. The time taken to perform these tasks is discussed 
in section 5.2.6. 

5.2.1 Starting with a Torus 

As before we consider an no  by n by V sub-lattice on each processor. For = 2 
or 3, the internal directions, evaluating 

U. (z) V (x+IL) - U(x—)V (x—,) 

on sites of a specified parity requires n0n1 L 2  basic products and no I/O as the 
V(z+2) and V(z+3) data is internal. I/O is only necessary for the external 
directions. Consider the £4 = 0 terms 

Uo (z)V(x+Ô)— U(x—O)V(z - Ô) 

1 	 2 
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In order to complete term 1 we must transfer the V (x + ô) data for x0  = n0 -1 
(ZO =0 on the next processor) in the negative 0 direction. This requires m 1 L 2  
basic transfers. Data for term 2 is in the correct place to perform the 1n,n1 L 2  
products, but the result vectors must be shifted forwards when x 0  = 0, again 

n1 L 2  basic transfers. The transfers are illustrated in figure 5.7. We can overlap 

Xp=c 	 )c.ø 

Figure 5.7: Transfers necessary for a partial D in an external 
direction. 

the work on the second term with the I/O for the first and vice versa. Further 
we can overlap the I/O for external directions with work for the internal ones. 
Calculating term 2 for one internal and one external direction requires n0n1 L2  
basic products. We can use this to overlap the n1 L 2  vector transfers. The 
compute-to-I/O ratio is thus no  to 1. It is ni  to 1 for the other direction. We 
use 2 links for each direction and the transfers are uni-directional. If we work 
on term 2 for all 4 directions while transferring the data for term 1 then we can 
make use of 4 links, giving us a peak compute to I/O ratio of 2n0  or 2n 1  products 
(whichever is the smaller) to 1 vector transfer 

In the limit of no  or n 1  equal to 1 the ratio is 2 products to 1 transfer. This 
is because there is no 'volume', all sites lie in the 'surface'. 

5.2.2 Ring 

Performance analysis for a ring is similar to that for the torus, except that there 
is now only one external direction n0 . Computation of the term 2 products 
for all 4 directions can be overlapped with I/O for the term 1 products in the 
external direction and the term 1 products can overlap shifting the boundary 
term 2 results in the external direction. We can only make use of 2 links, and so 
Compute to I/O ratios are the same those for the torus. 

This scheme resticts us to at most L processors for an L 4  lattice and in this 
limit overlapped work to communications ratios r are at their worst. State-of-the-
art dynamical fermion simulations will be being done on 16 4  lattices in the near 

121 



future. 16 floating-point Transputers would not be nearly powerful enough for 
such calculations. In order to use a ring based machine for dynamical fermion 
simulations we would require processors of much higher computational power. 
Increasing the cpu speed reduces r so correspondingly higher link bandwidths 
would be required too. 

5.2.3 Hypercube 

The code fuliqed uses 16 processors in a hypercube configuration. Is a general 
T4  hypercube a good machine for solving the lattice Dirac equation in QCD ? 
We allocate an n t  sub-lattice to each processor, where n. = and arrange the 
calculation as above. Consider one direction j2, perform all the term 2 products in 
parallel with the I/O for term 1. The overlapped compute-to-I/O ratio is simply 
the ratio of sites in the bulk to sites in the a directed surfaces: in 4  products to 
ri3  transfers. If we use 2 links in parallel then there are n products per transfer. 

Building a general n4  hypercube requires 8 links per processor, 2 for each 
direction. 2 links are used at a time in the scheme above. We can use all 8 
links at a time if we overlap the term 2 products for all 4 directions A with all 
of the term 1 I/O; a compute to I/O ratio of 4n to 1. If we can drive large 
numbers of links efficiently in parallel this makes general hypercubes an excellent 
configuration. The Transputer only has 4 links per processor prohibiting the 
construction of such a hypercube. 

5.2.4 Building Bigger Machines from Transputers 

To build a general hypercubic array from Transputers we must combine several 
processors to build, a "cell" with 8 inter-cell links (see figure 5.8. This cell can 
exploit the algorithmic parallelism present in applying P to a vector. If we 
make each processor responsible for one direction A then they can calculate the 
partial P for that direction. The compute-to-I/O ratios are n products to 1 
transfer as 2 of the processor's links are inter-cell links, and can be used together. 
Having completed this work we must then add up the 4 terms. This requires 2 
transfer steps each of complex triples and vector adds. The I/O falls into 
category I, as it cannot be overlapped with any significant quantities of work. 
The efficiency of this scheme is 

2ra t 	- 	max (nr, r) 

2Tproduct + Tc,ujate - max (nr, r) + nr + Inr. 

where Ta is the time taken to add 2 complex 3 triples, r, is the time taken to 
perform a basic product and r, is the time taken to transfer a complex triple. If 
we assume that nra, > r, then the efficiency is 

I-p 

r + r + Ta 	
(5.2) 
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Timings for r,,,r and ra are given in section 5.2.6 

5.2.5 Scalar Products 

The Conjugate Gradient algorithm requires 2 scalar products per iteration; they 
collect global information. It is essential that our processor array, designed for 
the distributed computation of sparse matrix-vector products, be capable of ac-
cumulating scalar products rapidly. When the vectors are distributed calculation 
of their scalar product requires a local scalar product and the global accumulation 
of the local products followed by distribution of their sum. 

Calculation of the local scalar products requires the accumulation of one prod-
uct for each vector element on each processor. The sum of these products can be 
calculated in two ways: (1) communicate all the local products to a central point, 
add them and distribute the result. (2) accumulate the result on all processors 
concurrently. 

On a ring of processors there is no real difference between the two methods. 
(1) requires single word transfers, T adds and then a further transfers. (2) 
requires T adds and transfers on each processor. On a higher (d) dimensional 
processor array it takes much longer to collect all the data at one point, at least 

3 

_ 

________ 

r- 
I 	- 

3 

2 

F.] 

2. 

Figure 5.8: Cell of 4 processors. 
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Td 
transfers, where 1 is the number of possible concurrent transfers. 

Using method (2) we can obtain the result in dT steps. Each processor is 
a member of d unique rings, one in each direction. There are such rings in 
each direction. We select a direction and accumulate all partial products on the 
rings in this direction; this takes T steps as before. We then change to the next 
direction, and sum the previously obtained partial products in this direction - 
on all processors. For d dimensions d such ring accumulations are necessary. 
On completion of dT single word transfers and adds the global scalar product is 
complete on all Td  processors. 

The time taken to accumulate local scalar products is insignificant on all 
processor arrays considered here. 

5.2.6 Timings on T800s 

The product of a complex 3 x 3 matrix and a complex 3 vector requires 36 
multiplications and 30 adds. 6 further adds are required while accumulating the 
results vectors. We should bring the data for the product into on-chip memory 
as all elements are used several times. r, should be - 60 micro-secs plus the time 
taken to load the data. The vector add time r .- 9 micro-secs. 

We must reserve 120 bytes of memory for the product (plus some more for its 
code), the remainder can be used for I/O buffers. A vector transfer into on-chip 
memory should take - 15 micro-secs. Using this data. we estimate the basic ratio 

Tproduct 

Ttransfer 

for 20 Mbit/sec links. Provided the partial P calculations are compute bound 
then the limiting efficiency (eq. 5.2) of the hypercube of cells configuration is 

'07 
+ r + jTa. 

5.2..7 Summary of Fermion Sector 

We use the data on ratios of basic products to vector moves and the performance 
data of section 5.2.6 to derive values of r for the designs studied. The data in 
table 5.2 is for a 16 lattice, a variety of array sizes are given where possible. 
The values of r given are for T800's with 20Mbit/sec links. An estimate of the 
efficiency is given, based upon the values of r and the amount of synchronous 
I/O and extra work required. 

The small ring and binary hypercube configurations are efficient, but don't 
have the necessary processing power. The higher efficiency of the hypercube 
reflects a better partitioning of the data, into 8 rather than 1 by 16 blocks. 
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Of the medium power machines the 64 processor torus is best, the 2 x 2 x 162  
blocks imply a compute to I/O ratio of around 16 for the fast links. Partitioning 
the data for a binary hypercube of 4 processor cells gives higher values of r, 
but the scheme is less efficient as we must take account of the synchronous I/O 
required within the cell. A 64 processor machine does not have sufficient power 
for the 16 simulation. 

The large machines are inflexible, but deliver the high processing power, and 
could be used efficiently. Compute overheads on the 256 processor torus are good 
for T800's. If a huge machine is required then processor-data locality necessitates 
a general hypercubic configuration, and if we want to use Transputers then we 
are forced to build 4 processor cells. There is some performance degradation due 
to accumulation of vectors within a cell, but efficiency is otherwise high. 

5.3 Conclusions 

Simulations of QCD with dynamical fermions require cpu intensive local calcu-
lations. We have shown that the criteria for success set out at the beginning of 
this chapter can be met using floating-point processors. 

The geometric processor arrays used are rather inflexible as a result of the 
fine grain of parallelism used. Smaller arrays would be more flexible but less 
powerful. Exploiting algorithmic parallelism is more troublesome; efficiency is 
restricted by high levels of communication within a cell and processors needed 
for storing data. It is necessary to build arrays of algorithmic cells to obtain the 
required power and this can reduce efficiency further if processors are required 
for joining cells. 

We advocate the use of a 162  grid of processors, with edges connected to 
form a torus, for dynamical fermion simulations on a 16 4  lattice. Further proces-
sors should be used to build replica machines, exploiting the immense job level 

number of 
processors 

products 
vectors 

I 	I' 
- 

efficiency power 

ring 16 2 8 acceptable low 
torus 8 2  

162  
4 
2 

16 
8 

high 
acceptable 

medium 
high 

hypercube 2 4 8 32 very high low 
hypercube of 
cells 

2 4  by 4 
44 by 4 

8 
4 

32 
16 

70% efficient 
70% efficient 

medium 
high 

Table 5.2: Performance estimates for DV on ring, torus, hyper-
cube, and hypercube of cells for floating point Transputers, for a 
lattice of size 164 . 
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parallelism. 
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Appendix A 

The Distributed Array Processor 

The ICL Distributed Array Processor (DAP) has 4096 bit-serial processing el-
ements (PEs) each with 4096 bits of local memory. All PEs obey the same 
instruction simultaneously, applying it to local data, thus the machine operates 
in Single Instruction Multiple Data (SIMD) fashion. The PEs are arranged in a 
64 x 64 grid. The local store can be regarded as a third dimension, giving the 
DAP the cubic structure shown in figure A.1. Each PE is connected to its 4 

I 
4096 

I AV 

64 

Figure A.1: The DAP. 

nearest neighbours. Data can be shifted in any one of the 4 directions (boundary 
conditions are planar or cyclic). All PEs shift data in the same direction at the 
same time.The PEs have an activity control bit, if this is set FALSE then an 
instruction is not applied to the PEs data. 
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The DAP is programmed in DAP FORTRAN an extension of FORTRAN W 
that includes vector and array constructs. The expression 

X(,) = Y(,) + Z(,) 

for real arrays X,Y,Z (of default size 64 by 64) causes all PEs to add their values 
of Y and Z and store the result in X. Instructions are also provided to sum 
the contents of vectors and arrays and shift data between PEs. Integer and 
floating point arithmetic is done in software, being built up from basic bit level 
instructions. An assembler (DAPL) is also available. 

Functionally the DAP is a store module of its host 2976 mainframe, it is 
"active memory". The DAP is called from within a FORTRAN program running 
on this machine. Data is transferred between host and DAP by COMMON 
blocks common to both programs. Normally, this data transfer only takes place 
at the start and end of a job. Staff at the Edinburgh Regional Computer Centre 
(ERCC) have extended this facility to allow asynchronous paging while a program 
is running. 

The DAPs operate at a rate of approximately 15 20 Mflops, the data trans-
fer software (DDX) has a peak speed of - 250Kbytes/sec when the mainframe is 
(otherwise) lightly loaded. 

The Edinburgh DAPs were decommisioned in July 1987 (when the host main-
frame was taken out of service). Neither the DAP nor the broadly similar 
Goodyear Massively Parallel Processor (MPP) were a commercial success, but a 
new breed of SIMD machines, the ICL/AMT mini-DAP, the GEC Grid, and TM 
Connection Machine all use basically the same design. 

A.1 Data Packing Schemes 

In the 16 by N quenched hadron mass calculation programs data is partitioned 
in the time direction. The 16 3  spatial arrays are then packed into the 642  plane 
of the DAP by dividing it into 4 by 4 squares. Data is moved in the 1 and 2 
directions by a shift of length 4. 

Z(,) = SHNC(Y(,),4) 

sets Z(x) = Y(x+ 1) (with cyclic boundary conditions). 4 masked shifts of length 
1 are required to move data in the 3 direction. 
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Figure A.2: Packing 16 3  into 64 2 . 
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Appendix B 

The Transputer 

The Inmos Transputer is a micro-processor with its own local memory and links 
for communicatioon with other Transputers. It is intended as a component for 
building concurrent systems. The Transputer gives direct hardware support for 
concurrent communication and computation. Processor cycles are required to set 
up a transfer, but after that the interference is minimal. 

The first Transputers (T414's) have a 32-bit integer processor (floating point 
arithmetic is done in software), 2K bytes of on-chip memory, and 4 links rated at 
10 Mbit/sec - this was later upgraded to 20 Mbit/sec. The T800 floating point 
Transputer has an on-chip 64-bit floating point unit capable of around 1.2 Million 
multiplies per second, 4K bytes of on-chip memory, and faster links. It was 
developed as part of ESPRIT project P1085. Details of the T800's performance 
are given in [Askew 1986]. 

The Meiko Computing Surface is a reconfigurable Transputer array. It com-
prises compute, I/O and graphics boards - all based on Transputers. The Trans-
puters links are connected together via electronic routing chips permiting the 
construction of application specific processor networks. A 42 processor Comput-
ing Surface was installed at Edinburgh University in April 1986. The Edinburgh 
Concurrent Supercomputer Project aims to build a machine with 1000 floating 
point Transputers and over 4 Gbytes of memory and use it for scientific simula-
tions. 
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Figure B.1: Schematic diagram of the floating point Transputer. 
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