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Abstract. Many everyday human skills can be framed in terms of performing
some task subject to constraints imposed by the task or the environment. Con-
straints are usually not observable and frequently change between contexts.
In this chapter, we explore the problem of learning control policies from data
containing variable, dynamic and non-linear constraints on motion. We discuss
how an effective approach for doing this is to learn the unconstrained policy in
a way that is consistent with the constraints. We then go on to discuss several
recent algorithms for extracting policies from movement data, where observa-
tions are recorded under variable, unknown constraints. We review a number
of experiments testing the performance of these algorithms and demonstrating
how the resultant policy models generalise over constraints allowing prediction
of behaviour under unseen settings where new constraints apply.

1 Introduction

A wide variety of everyday human skills can be framed in terms of performing
some task subject to a set of constraints. Constraints may be imposed either
by the environment [37], the task [6] or, more commonly, both. For example,
when opening a door, the door acts as an environmental constraint that
restricts the movement of ones hand along the opening arc of the door. When
stirring soup in a saucepan, the sides of the pan prevent the spoon moving
beyond their radius. Many tasks require self-imposed task constraints to be
fulfilled in order to achieve adequate performance. For example when pouring
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Fig. 1 ASIMO humanoid robot (left) and kinematic model used for whole body
motion control (right) [15]. In our experiments 22 upper body degrees of freedom
were used (2× 7 DOF arms, 2 DOF head, 6 DOF torso), with the heel frame fixed.

water from a bottle to a cup, the orientation of the bottle must be constrained
so that the stream of water falls within the mouth of the cup. When wiping
a window, ones hand should be constrained to maintain contact with the
wiping surface [38] and when climbing a ladder constraints may be applied
to the centre of mass or the tilt of the torso of the climber to prevent over-
balancing [27]. When manipulating or grasping solid objects the motion of
ones fingers is constrained by the presence of the object [43]. Consider the task
of running or walking on uneven terrain: the cyclic movement of the runner’s
legs is constrained by the impact of the feet on the ground in a dynamic,
discontinuous and unpredictable way. In short, constraints that may be non-
linear, spatially or temporally varying, or even discontinuous are ubiquitous
in our everyday behaviour [50, 49, 15, 44, 48].

A promising approach to providing robots with abilities such as the above
is to take examples of motion from existing skilled demonstrators (e.g. hu-
mans) and attempt to learn a control policy that somehow captures the de-
sired behaviour [3, 4, 47]. Such techniques offer (i) a simple, intuitive interface
for programming robots [4], (ii) effective methods for motion recognition and
classification [26], and; (iii) accelerated optimisation of movements by using
demonstration data to seed the solution [45]. However, while a wide variety of
approaches for learning and representing movements have been proposed in
recent years [3, 4, 47, 14], relatively few have explicitly considered the problem
of dealing with constraints on motion in learning. An important component of
this is the ability to deal with the apparent variability in movements induced
by varying constraints. For example, one wishes to learn a policy that allows
one not only to open a specific door of a particular size (e.g. constraining the
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hand to a curve of a particular radius), but rather to open many doors of
varying sizes (radii).

In this chapter we will review recent works that deal precisely with this
problem, that is learning from movement data that implicitly contains dy-
namic and uncertain constraints. We will primarily focus on two methods
recently proposed [22, 19], that allow the effect of constraints to be dealt
with in an appropriate way during learning. We will compare and contrast
the two methods, consider their relative strengths, and in particular assess
their suitability for improving existing policy learning methods that currently
rely on traditional supervised learning techniques.

The novel techniques we consider are aimed at learning from demonstrated
movements that are subject to variable, dynamic constraints with the goal
of finding policies that can generalise over constraints. The two approaches
both use a similar strategy to do this; namely they both attempt to consoli-
date movement observations under different constraints in order to model the
underlying unconstrained policy common to all. Learning the latter enables
generalisation since we can apply new constraints to predict behaviour in
novel scenarios. This is inspired by work in analytical dynamics (e.g. see [55])
where an effective and intuitive strategy for analytically solving constrained
motion problems is to consider the effect constraints have in modifying the
fundamental equations of motion of the unconstrained system. The difference
here is that we attempt to do this in an automated, data-driven way.

In general, we will see that learning (unconstrained) policies from con-
strained motion data is a formidable task. This is due to several problems,
such as (i) unobservability of constraints (ii) non-convexity of observations
under different constraints, and; (iii) degeneracy in the set of possible policies
that could have produced the observed movement under the constraint [19].
We will discuss at length how these problems arise when learning in the con-
strained setting, and then look at how the two methods overcome them, first
for the special case of potential-based policies, and later for learning generic,
arbitrary policies. Using these constraint-consistent approaches to learning it
has been shown [22, 19] that given observations (i) under a sufficiently rich
set of constraints it is possible to reconstruct the fully unconstrained policy;
(ii) under an impoverished set of constraints we can learn a policy that gen-
eralises well to constraints of a similar class, and; (iii) under ‘pathological’
constraints (e.g. those that constrain the same part of the policy in all obser-
vations, effectively rendering it unobservable) we can learn a policy that at
least reproduces behaviour subject to those same constraints. Furthermore,
achieving these is possible without the need for explicit knowledge of the
constraints in force at the time of observation.

An extensive set of experiments are have been reported [22, 19] in or-
der to validate the methods and to assess their performance. Here, we will
compare and review some of these for learning on data from several policies
on complex, high-dimensional movement systems, subject to various realistic
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constraints, with a view to illustrating the utility of the approaches for trans-
ferring behaviour to robots such as the ASIMO humanoid (Fig. 1).

2 Effect of Variable Dynamic Constraints on Learning

In this section, we characterise the general problem of learning control policies
from data, and discuss the problems encountered when variable constraints
are applied to motion.

2.1 Learning Control Policies from Data

Following Schaal et al. [47], we consider the direct learning of autonomous
policies

u(t) = π(x(t)) , π : IRn �→ IRd, (1)

from data, where x ∈ IRn and u ∈ IRd are appropriately1 chosen state- and
action-spaces, respectively. The goal of learning is to approximate the policy
(1) as closely as possible [47] using a supervised learning approach, that is, we
are given observations of u(t), x(t) (often in the form of trajectories) and from
these we wish to learn the mapping π. In previous work this has been done by
fitting parametrised models in the form of dynamical systems [25, 24], non-
parametric modelling [40, 6, 12], probabilistic Bayesian approaches [17, 16]
and hidden Markov models [53, 26].

An implicit assumption found in policy learning approaches to date is
that the data used for training comes from behavioural observations of some
unconstrained or consistently constrained policy. By this it is meant that
the policy is observed either under no constraint (e.g. movements in free
space such as gestures or figure drawing), or under constraints consistent over
observations (e.g. interacting with the same objects or obstacles in each case).
However, in many everyday behaviours, there is variability in the constraints,
such as when opening doors of varying sizes or walking on uneven terrain. This
variability in the constraints cannot be accounted for by standard learning
approaches.
1 It should be noted that, as with all policy-based learning approaches, the choice

of state- and action-space is problem specific [47] and, when used for imitation
learning, depends on the correspondence between demonstrator and imitator.
For example if we wish to learn the policy a human demonstrator uses to wash a
window, and transfer that behaviour to an imitator robot, an appropriate choice
of x would be the Cartesian coordinates of the hand, which would correspond
to the end-effector coordinates of the robot. Transfer of behaviour across non-
isomorphic state- and action-spaces, for example if the demonstrator and imitator
have different embodiments, is also possible by defining an appropriate state-
action metric [1].
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Example: Finger Extension with Contact Constraints

As an example, consider the learning of a simple policy to extend a jointed
finger. In Fig. 2(a) the finger is unconstrained and the policy simply moves
the joints towards the zero (outstretched) position. On the other hand, in
Fig. 2(b), an obstacle lies in the path of the finger, so that the finger movement
is constrained – it is not able to penetrate the obstacle, so moves along the
surface. The vector field representation of the two behaviours is shown in
Fig. 2(c).

Given the task of learning in this scenario, applying traditional learning
approaches would result in one of two possibilities. The first is that if the
observations are labelled with respect to the constraint (here, the orientation,
position and shape of the obstacle) one could learn a separate policy model
for the behaviour in each of the settings. However this is clearly unsatisfac-
tory, since each model would only be valid for the specific setting, and we
would need increasing numbers of models as we observed the policy under
new constraints (for example different shaped obstacles at different positions
and orientations). The second possibility is that the data is unlabelled with
respect to the constraint. In this case, one might try to perform regression
directly on the observations, that is observations from both vector fields (cf.
Fig. 2(c), black and red vectors). However, this presents the problem that
model averaging would occur across observations under different constraints,
resulting in a poor representation of the movement in terms of the magnitude
and direction of the predictions (see Sec. 2.3).

We can avoid the need for multiple policy models if we relax our assump-
tions on the form (1) of the observed commands, and allow for an additional
transformation of π(x). We thus model both the red and black observations
as stemming from the same policy (‘extend the finger’), and attribute its dif-
ferent appearance to the transformations as induced by the constraints. With
a restriction on the class of possible transformations, as will be detailed in
the next section, we can model the unconstrained policy even if we only ob-
served constrained movements, and we can apply new constraints to adapt
the policy to novel scenarios.

2.2 Formal Constraint Model

In the remainder of this chapter we will focus on constraints which act as hard
restrictions on the actions available to the policy. Specifically, we consider
policies subject to a set of k-dimensional (k ≤ n) Pfaffian constraints [55]

A(x, t)u = 0. (2)

Under these constraints, the policy is projected into the nullspace of A(x, t):

u(x, t) = N(x, t)π(x(t)) (3)
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(a) (b)

(c)

Fig. 2 Illustration of two apparently different behaviours from the same policy: (a)
unconstrained movement (b) movement constrained by an obstacle (black box) (c)
vector field visualisation of the unconstrained (red) and constrained (black) policy
for two of the finger joints as a function of their angles.

where N(x, t) ≡ (I − A†A) ∈ IRd×d is a projection matrix that in general
will have a non-linear dependence on state and time2, A(x, t) ∈ IRk×d is
some matrix describing the constraint and I ∈ IRd×d is the identity matrix.
Constraints of the form (2) commonly appear in scenarios where manipula-
tors interact with solid objects, for example when grasping a tool or turning
a crank or a pedal, that is, contact constraint scenarios [38, 35, 34]. Such
constraints are also common in the control of redundant degrees of free-
dom in high-dimensional manipulators [33, 30, 39], where policies such as (3)
are used, for example, to aid joint stabilisation [39], or to avoid joint limits
[9], kinematic singularities [59] or obstacles [10, 29] under task constraints.
As an example: Setting A to the Jacobian that maps from joint-space to
end-effector position increments would allow any motion in the joint space
provided that the end-effector remained stationary. The same formalism ap-
plies equally to policies controlling dynamic quantities such as forces and
momentum, for example see [39] and [27] respectively for constrained control
schemes where the formalism applies directly. It has also found more exotic
2 Here, A† denotes the (unweighted) Moore-Penrose pseudoinverse of the matrix A.
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(a) (b)

(c)

Fig. 3 Illustration of the effect of constraints on the unconstrained policy, the av-
eraging effect of direct regression and the degeneracy problem. (a) Two constraints
applied to the policy π result in projected observations u1,u2. (b) Direct regres-
sion results in averaging of the two movements ū in a way that cannot explain the
observations. (c) Two policies π, π′ that both may be constrained in such a way as
to produce the observation u2.

applications; for example Antonelli et al. [2] apply it to team coordination in
mobile robots.

In general the effect of constraints (2)-(3) is to disallow commands in
some sub-space of the system, specifically the space orthogonal to the image
of N(x, t). In essence these components of motion are projected out of the
observed movement. For example, as illustrated in Fig. 3(a), a policy π is
constrained in two different ways corresponding to two different projections
of the unconstrained movement. In the first observation u1, the constraint
prevents movement in the direction normal to the vertical plane3. For the
second observation u2, the constraint only allows movement in the horizontal
plane.
3 Note that if the constraint has a non-linear dependence on time or state position

the orientation of the constraint plane onto which the policy is projected will
vary according to that dependence.
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2.3 Learning from Constrained Motion Data

From the viewpoint of learning, constraints as described in the previous sec-
tion present problems for traditional policy learning approaches. Specifically,
there are two issues in particular that must be dealt with; that of non-
convexity of observations and degeneracy between policies [20].

The non-convexity problem comes from the fact that between observations,
or even during the course of a single observation, constraints may change.
For example consider Fig. 3(b). There, the two policy observations under the
different constraints, u1 and u2, appear different depending on the constraint.
To the learner, this means that the data from the two scenarios will appear
non-convex, in the sense that for any given point in the input (x) space
multiple outputs (u) may exist. This causes problems for supervised learning
algorithms, for example directly training on these observations may result in
model-averaging. Here, averaging of u1,u2 results in the prediction ū that
clearly does not match the unconstrained policy π, either in direction or
magnitude (ref. Fig. 3(b)).

The degeneracy problem stems from the fact that for any given set of pro-
jected (constrained) policy observations, there exist multiple candidate poli-
cies that could have produced that movement. This is due to the projection
eliminating components of the unconstrained policy that are orthogonal to
the image of N(x, t) so that the component of π in this direction is undeter-
mined by the observation. For example consider the constrained observation
u2 in Fig. 3(c). There motion in the y direction is restricted, meaning that
that component of π is not seen in this observation. Given only u2 we cannot
determine if the policy π or an alternative, such as π′ (ref. Fig. 3(c)) pro-
duced the observation. In effect we are not given sufficient information about
the unconstrained policy to guarantee that it is fully reconstructed.

Despite these restrictions, we wish to do the best we can with the data
available. We adopt a strategy whereby we look for policies that are, as a min-
imum, consistent with the constrained observations u. For example, returning
to Fig. 3, if we only observe u2, (that is the policy under a single, specific
constraint) the simplest (and safest) strategy would be to use that same
vector as our prediction. In this way we can at least accurately predict the
policy under that constraint (albeit only under that particular constraint).
If we are given further observations under new constraints we can recover
more information about the unconstrained policy π. For instance, observing
u1 eliminates the possibility that π′ underlies the movements since it cannot
project onto both u1 and u2. Applying this strategy for increasing numbers
of observations, our model will not only generalise over the constraints seen,
but also come closer to the unconstrained policy π.

Finally, it should be noted that, if in all observations, certain components
of the policy are constrained, then we can never hope to uncover those com-
ponents. However, in such cases it is reasonable to assume that, if these
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components are always eliminated by the constraints, then they are not rel-
evant for the scenarios in which movements were recorded.

Despite the problems that such constraints cause, in recent studies two ap-
proaches have been proposed that make considerable progress in learning in a
constraint-consistent way [22, 19]. The first of these provided a solution to the
problem for the important special class of potential-based policies4 [19]. Using
this approach it was shown that learning consistent policies can be efficiently
learnt from variable-constraint data using an indirect learning approach that
models the policy’s underlying potential function as its representation.

Following this, a second approach was proposed, aimed at removing some
of the restrictive assumptions used by the earlier potential-based approach.
The key to the second method was to use a small but significant modification
to the empirical risk function used by standard regression techniques. It was
found that using this approach policies of arbitrary complexity, including
rotational policies (i.e. policies that cannot be described by a potential) can
also be efficiently learnt [22]. In the next two sections we describe the details
of the two approaches.

3 Constraint-Consistent Learning of Potential-Based
Policies

In this section we discuss constraint-consistent learning for the special case
that the policy is potential-based. We first give a precise definition of such
policies and describe the kinds of behaviour that they can be used to repre-
sent. We then go on to discuss how such policies are particularly amenable to
constraint-consistent learning and describe a method recently proposed for
doing this [19].

3.1 Potential-Based Policies

A potential-based policy is a policy defined through the gradient of a scalar
potential function φ(x)

π(x) = −∇xφ(x). (4)

Such policies can be thought of as greedily optimising the potential func-
tion at every time step [36] and thus encode attractor landscapes where the
minima of the potential correspond to stable attractor points. An example is
given in Fig. 4 where a potential function with three maxima (repellors) and
two minima (attractors) is shown and the corresponding policy is overlaid
(black vectors).

A wide variety of behaviours may be represented as potential-based. For
example, reaching behaviours may be represented by a potential defined in
hand space, with a single minimum at the target. Furthermore decision-based
4 We precisely define this class of policies in the next section.
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Fig. 4 Potential function with three maxima (repellors) and two minima (attrac-
tors). Overlaid are the corresponding unconstrained policy vectors (black) and a
set of constrained policy vectors (red).

behaviours may be encoded as potentials [32, 31, 7, 8]. For example when
reaching for an object, a potential may be defined with two minima, one
corresponding to reaching with the right hand, the other reaching with the
left. The decision of which hand to use for reaching would thus be determined
by the start state (e.g. reach with the closest hand) and the relative offset of
the two minima (e.g. right-handedness would imply a lower minimum for that
hand). Potential-based policies are also extensively used as nullspace policies
in control of redundant manipulators [15, 13, 9, 10, 36, 59], and for navigation
and obstacle avoidance problems in mobile robotics [41, 11, 42]. Furthermore,
in reinforcement learning and optimal control [52, 54], policies that are greedy
with respect to the value function can be thought of as potential-based, in
the sense that the policy does a gradient descent on the value function.

3.2 Learning from Constrained Potential-Based
Policies

If the policy under observation is potential-based, an elegant solution to solv-
ing the non-convexity and degeneracy problems is to model the policy’s po-
tential function [20, 23] rather than modelling it directly. This is due to a
special property of constrained potential-based policies, namely that obser-
vations of the constrained movements give us information about the shape of
the underlying potential, up to a translation in φ corresponding to constants
of integration for the observations.

In Fig. 4 this is shown for a potential function defined over a two-
dimensional state-space (top and 3-D perspective views). The potential func-
tion (colours) and unconstrained policy (black vectors) is shown, along with
the policy subject to a constraint (red vectors). For the case of potential-based
policies the policy vectors are given by the gradient vector of the potential (as
expressed in (4)). This means that the (unconstrained) policy vectors point
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in the direction of steepest descent, with magnitude equal to the slope in that
direction (Fig. 4, black vectors).

Now, if a constraint is applied, the direction and magnitude of the vectors
change. In the example in Fig. 4 the constraint prevents movement in one
dimension (x dimension in Fig. 4, left) so that only motion corresponding the
the second dimension (y dimension in Fig. 4, left) is observed. The vectors
now point in the direction of steepest descent subject to the constraint, with
magnitude equal to the slope of the potential in that direction, as can be
seen from Fig. 4, right. In other words the projected vectors correspond to
the directional derivatives of the potential, in the direction parallel to the
observations.

This lends us the opportunity of modelling the unconstrained policy, by
piecing together information about the slope of the potential in different di-
rections. For each observation (e.g. u1 in Fig. 3) we get information about the
directional derivative in that direction (i.e. the direction parallel to u1). This
means we transform the problem of combining these n-dimensional vector
observations (ref. Fig. 3) to one of ‘piecing together’ local estimates of the
slope of the potential.

A convenient method for doing this in the case of constrained kinematic
policies is to use line integration to accurately estimate the form of the
potential along trajectories [20, 23] and then use these local estimates to
build a global model of the potential. We outline this approach in the next
section.

3.3 Learning the Potential through Local Model
Alignment

In the following we describe a method for modelling the potential from con-
strained motion data. Given observations of constrained trajectories, we first
model the potential on a trajectory-wise basis using numerical line integra-
tion. We then consolidate these trajectory-wise models using results from
recent work in dimensionality reduction [56, 57] to ensure consistency. Fi-
nally, we use these consistent models to learn a global model of the potential
function, and thus the policy, for use in control.

Estimating the Potential Along Single Trajectories

As has been described in [20, 23], it is possible to model the potential along
sampled trajectories from a constrained kinematic policy (u ≡ ẋ) using a
form of line integration. Specifically, combining (3) and (4), the (continuous
time) state evolution of the system under such policies is given by

ẋ = N(x, t)π(x) = −N(x, t)∇xφ(x) (5)
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Let x̄(t) be the solution of (5). If we line-integrate along x̄(t) we have

∫
x̄

(∇xφ)T dx =
∫ tf

t0

(∇xφ)T ẋ dt = −
∫ tf

t0

(∇xφ)T N(x, t)∇xφ(x) dt, (6)

where t0 and tf are the start and finishing instants of x̄(t). We assume that we
have recorded trajectories x(t), ẋ(t) of length T sampled at some sampling
rate 1/δt Hz so that for each trajectory we have a tuple of points Xk =
xk,1, . . . ,xk,Tδt. Now, assuming the sampling rate to be sufficiently high, we
can make a linear approximation to (5)

xi+1 ≈ xi + δtNiπi = xi − δtNi∇xφ(xi) (7)

and (6) can be approximated using an appropriate numerical integration
scheme. An example of such a scheme is Euler integration, which involves
the first order approximation

φ(xi+1) ≈ φ(xi) +
1
δt

(xi+1 − xi)T Ni∇xφ(xi). (8)

Since the effect of the time constant δt is simply to scale the discretised
policy vectors, we can neglect it by scaling time units such that δt=1. This
comes with the proviso that for implementation on the imitator robot, the
learnt policy may need to be scaled back to ensure that the correct time
correspondence is kept. For steps xi → xi+1 that follow the projected policy
(3) we can rearrange (7) with the scaled time coordinates, and substitute into
(8) to yield

φ(xi+1) ≈ φ(xi) − ‖xi+1 − xi‖2, (9)

where the negative sign reflects our assumption (as expressed in (4)) that
attractors are minima of the potential. We use this approximation to gener-
ate estimates φ̂(xi) of the potential along any given trajectory x1,x2 . . .xN

in the following way: We set φ̂1 = φ̂(x1) to an arbitrary value and then it-
eratively assign φ̂i+1 := φ̂i − ‖xi+1 − xi‖2 for the remaining points in the
trajectory.

Note that an arbitrary constant can be added to the potential function
without changing the policy. Therefore, ‘local’ potentials that we estimate
along different trajectories need to be aligned in a way that their function
value matches in intersecting regions. We’ll turn to this problem in the next
section.

Constructing the Global Potential Function

Let us assume we are given K trajectories Xk = (xk1,xk2 . . .xkNk
) and

corresponding point-wise estimates Φ̂k = (φ̂k1, φ̂k2 . . . φ̂kNk
) of the poten-

tial, as provided from the Euler integration just described. In a first step,
we fit a function model fk(x) of the potential to each tuple (Xk, Φ̂k), such
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that fk(xi) ≈ φ̂ki. Although in principle any regression method could be ap-
plied here, our options are somewhat limited by the fact that these possibly
non-linear models have to be acquired from the few data points available in
each trajectory. To avoid unnecessary complications, we choose a nearest-
neighbour (NN) regression model, i.e.,

fk(x) = Φki∗ , i∗ = argmin
i

‖x − xki‖2. (10)

Since we wish to combine the models to a global potential function, we need
to define some function for weighting the outputs of the different models. For
the NN algorithm, we choose to use a Gaussian kernel

wk(x) = exp
[
− 1

2σ2
min

i
‖x − xki‖2

]
. (11)

From these weights we can calculate responsibilities

qk(x) =
wk(x)∑K
i=1 wi(x)

(12)

and a (naive) global prediction f(x) =
∑K

k=1 qk(x)fk(x) of the potential at
x. However, as already stated, the potential is only defined up to an additive
constant, and most importantly this constant can vary from one local model
to another. This means that we first have to shift the models by adding some
offset to their estimates of the potential, such that all local models are in
good agreement about the global potential at any number of states x.

Fortunately, a similar problem has already been tackled in the literature: In
the field of non-linear dimensionality reduction, Verbeek et al. [57] have shown
how to align multiple local PCA models into a common low-dimensional
space. In particular, they endowed each local PCA model with an additional
affine mapping gk(z) = Akz + bk, which transformed the coordinates zk of
a data point within the k-th PCA model into the desired global coordinate
system. Verbeek et al. [57] retrieved the parameters of the optimal mappings
gk by minimising the objective function

E =
1
2

M∑
m=1

K∑
k=1

K∑
j=1

qkmqjm‖gkm − gjm‖2, (13)

where gkm denotes the coordinate of the m-th data vector, as mapped
through the k-th PCA model, and qkm is the corresponding responsibility
of that model. The objective can easily be interpreted as the ‘disagreement’
between any two models, summed up over all data points, and weighted by
the responsibilities of two models each. That is, the disagreement for any
combination of m, k and j only really counts, if the responsibility of both the
k-th and the j-th model is sufficiently high for the particular query point.
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Notably, E is convex and can be minimised by solving a generalised eigen-
value problem of moderate dimensions, that is, there are no local minima,
and the solution can be found efficiently.

In analogy to the PCA-alignment method [57], we augment our local poten-
tial models fk(·) by a scalar offset bk and define the corresponding objective
function as

E(b1 . . . bK) =
1
2

M∑
m=1

K∑
k=1

K∑
j=1

qk(xm)qj(xm) ×

((fk(xm) + bk) − (fj(xm) + bj))
2
, (14)

or, in a slightly shorter form,

E(b) =
1
2

∑
m,k,j

qkmqjm (fkm + bk − fjm − bj)
2
. (15)

Here,
∑

m denotes a summation over the complete data set, that is, over
all points from all trajectories (M =

∑K
k=1 Nk). Using the symmetry in

j ↔ k and
∑

k qkn = 1, we split (15) into terms that are constant, linear, or
quadratic in bk, yielding

E(b) =
∑
m,k

qkmf2
km −

∑
m,j,k

qkmqjmfkmfjm

+2
∑
m,k

qkmfkmbk − 2
∑
m,k

qkmqjmfjmbk

+
∑
m,k

qkmb2
k −

∑
m,k,j

qkmqjmbkbj

= E0 + 2aT b + bTHb. (16)

Here, we introduced E0 as a shortcut for the terms independent of b, the
vector a ∈ IRK with elements ak =

∑
m qkmfkm −∑

m,j qkmqjmfjm, and the
Hessian matrix H ∈ IRK×K with elements hij = δij

∑
m qjm − ∑

m qimqjm.
The objective function is quadratic in b, so we retrieve the optimal solution
by setting the derivatives to zero, which yields the equation Hb = −a.

However, note that a common shift of all offsets bk does not change the ob-
jective (14), which corresponds to the shift-invariance of the global potential.
Therefore, the vector (1, 1, . . . , 1)T spans the nullspace of H, and we need to
use the pseudo-inverse of H to calculate the optimal offset vector

bopt = −H†a. (17)

Compared to aligning PCA models, the case we handle here is simpler in
the sense that we only need to optimise for scalar offsets bk instead of affine
mappings. On the other hand, our local potential models are non-linear, have
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to be estimated from relatively little data, and therefore do not extrapolate
well, as will be discussed in the following section.

Smoothing Parameter Selection

Since we restrict ourselves to using simple NN regression for the local poten-
tial models, the only open parameter of the algorithm is σ2, i.e., the kernel
parameter used for calculating the responsibilities (11). A too large choice
of this parameter will over-smooth the potential, because the NN regression
model basically predicts a locally constant potential, but at the same time
trajectories will have relatively high responsibilities even for far apart points
x in state space.

On the other hand, a too small value of σ2 might lead to weakly connected
trajectories : If a particular trajectory does not make any close approach to
other trajectories in the set, the quick drop-off of its responsibility implies
that it will not contribute to the alignment error (based on pairs of significant
responsibility), which in turn implies that its own alignment – the value of
its offset – does not matter much. The same reasoning applies to groups of
trajectories that are close to each other, but have little connection to the rest
of the set.

Such trajectories can cause problems when attempting to learn a global
model of the potential using the output of the optimisation (17), since if
their influence on the overall alignment is negligible, their own alignment
can be poor. Fortunately, this situation can be detected automatically by
looking for small eigenvalues of H: In the same way as adding the same offset
to all trajectories leads to a zero eigenvalue, further very small eigenvalues
and the corresponding eigenvectors indicate indifference towards a shift of
some subset of trajectories versus the rest of the set. In practice, we look for
eigenvalues λ < 10−8, and use a recursive bi-partitioning algorithm in a way
that is very similar to spectral clustering [28] (please refer to [19] for details
on this step). We can then either discard all trajectories apart from those in
the largest ‘connected’ group (treating the weakly connected trajectories as
outliers) or recursively repeat the alignment process on the larger groups of
aligned trajectories.

Finally, with these considerations in mind, we select the smoothing pa-
rameter σ2 to match the scale of typical distances in the data sets. In the
experiments presented in [19] this parameter was selected heuristically by
first calculating the distances between any two trajectories k, j ∈ {1 . . .K}
in the set as the distances between their closest points

dkj = min
{‖xkn − xjm‖2 | n, m ∈ {1 . . .N}} , (18)

and also the distances to the closest trajectory

dmin
k = min {dkj | j �= k} . (19)
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Fig. 5 The alignment algorithm at work for a set of K = 40 trajectories of
length N = 40 sampled from a parabolic potential (φ(x) = xT Wx, W = 0.05I)
with randomly switching constraints (A(x, t) = (α1, α2) ≡ α, αi = N(0, 1)). (a)
Raw data (constrained trajectories through the two-dimensional state space) and
contour of the potential. (b) Local potential models estimated by Euler integration
prior to alignment. (c) Local potential models after alignment, already revealing the
structure of the parabola. (d) Global model f(x) trained on the aligned trajectories
(here, trained with LWPR [58]). (e) True parabolic potential shown for comparison.
The weakly connected ‘outlier’ trajectories (here, discarded prior to learning the
global model) are shown in red.

Then three choices for σ2, were considered, referred to as ‘narrow’, ‘wide’ and
‘medium’:

σ2
nar = median

{
dmin

k | k ∈ {1 . . .K}} (20)

σ2
wid = median

{
djk | j, k ∈ {1 . . .K}, j �= k

}
(21)

σ2
med =

√
σ2

narσ
2
wid. (22)

As shown by experiment [19, 20], the choice σ2
med usually represents a rea-

sonable balance between smoothing and alignment performance.
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Algorithm 1. PolicyAlign
1: Estimate Xk, Φ̂k, {k = 1 . . . K} using Euler integration. Calculate σ2.

2: Alignment:

• Calculate prediction and responsibility of each local model fk on each data
point xm, m = 1 . . . M :

fkm = fk(xm); qkm = wk(xm)/
∑

i wi(xm)

• Construct H,a with elements
hij = δij

∑
m qjm − ∑

m qimqjm; ak =
∑

m qkmfkm − ∑
m,j qkmqjmfjm

• Find optimal offsets bopt = −H†a

3: Discard outliers (H eigenvalues, λ < 10−8).

4: Train global model on data tuples (xkn, φ̂kn + bopt
k )

Learning the Global Model

After calculating optimal offsets bopt and cleaning the data set from out-
liers, we can learn a global model f(x) of the potential using any regres-
sion algorithm. For example, in the experiments presented in Sec. 5, we will
use Gaussian Radial Basis Function (RBF) models, and in [19, 20] Locally
Weighted Projection Regression (LWPR) [58] was used. As the training data
for these models, we use all non-outlier trajectories and their estimated po-
tentials as given by the Euler integration plus their optimal offset, that is,
the input-output tuples

{
(xkn, φ̂kn + bopt

k ) | k ∈ K, n ∈ {1 . . .Nk}
}

, (23)

where K denotes the set of indices of non-outlier trajectories. Once we have
learnt the model f(x) of the potential, we can take derivatives to estimate
the unconstrained policy π̂(x) = −∇xf(x). For convenience, the complete
procedure is summarised in Algorithm 1 and illustrated pictorially in Fig. 5
for an example parabolic potential with randomly switching constraints.

4 Constraint-Consistent Learning of Generic Policies

In the previous section we outlined a method for learning in a constraint-
consistent manner based on indirect modelling of the policy through its
potential. As discussed in Sec. 3.2, potential-based policies are particularly
amenable to learning in the constrained setting since observations under dif-
ferent constraints correspond to the directional derivatives of the potential in
the different (unconstrained) directions. This allows us to model the shape
of the potential to find a policy that is consistent with the observations.
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While this approach has been shown to greatly outperform direct learn-
ing approaches in an number of experiments on constrained systems [19], it
still suffers from some restrictions due to the assumption of a potential-based
policy. While this is not a problem when learning from systems such as those
described in Sec. 3.1, it can cause difficulties when the policy under observa-
tion encodes periodic or rotational behaviour (precisely speaking, when the
curl of the observed policy is non-zero).

In order to avoid this restriction an alternative approach to learning must
be taken. In [22], a new method was proposed that enables learning of generic
policies from variable constraint data. This method was based on a small but
significant modification of the empirical risk function used for learning. In the
following we consider several candidate risk functions that could be used for
learning and assess their suitability with respect to the data we are assumed
given. We will then discuss the novel risk function proposed in [22] that both
satisfies our original assumptions, and has been shown to be effective for
learning from variable constraint data [22].

4.1 Optimisation of the Standard Risk, UPE and
CPE

As already outlined in Sec. 2.3, throughout this chapter we are targeting
problems where we are given data in the form of tuples (xn,un) of observed
states and constrained actions, where we assume that all commands u are
generated from some underlying policy π(x), which for a particular obser-
vation might have been constrained. For constrained systems (2)-(3), this
means that we observe un = Nnπ(xn) for some projection matrix Nn. We
assume that the projection matrix for any given observation is not explicitly
known, i.e. our data is unlabelled with respect to the constraints in force at
the time of observation.

Given this data, the first possibility that springs to mind is to perform di-
rect least-squares regression for learning. In this approach one would attempt
to estimate the policy π̃(·) by minimising the standard risk

Edirect[π̃] =
N∑

n=1

‖un − π̃(xn)‖2. (24)

As already mentioned in Sec. 2 this is an effective approach for learning
from unconstrained data or data where the same constraint appears in all
observations (i.e. the constraint matrix A(x, t) is the same static function of
state for all observations). In the former case, one would obtain the best fit
to the unconstrained policy, and in the latter one would find the best fit to
the constrained policy under that particular set of constraints. For example if
one had several observations of an system opening some particular door and
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in every observation the door was the same, then optimisation of (24) would
be effective for learning the policy for that particular door.

The problem with this approach, however, is that it cannot handle data
where commands are observed under variable constraints. As discussed in
Sec. 2.3, if we consider an example where multiple observations are given
under different constraints, optimisation of (24) would result in a naive aver-
aging of commands from different circumstances (cf. Fig. 3(b)). In terms of
our door-opening example, if we observed the agent opening a new door and
attempted to incorporate that into our policy model, we would either get the
average door opening action, or have to start a new policy model for the new
door. We can therefore rule out (24) for learning in this setting, since it does
not meet our requirements for accuracy and generalisation.

An alternative approach then, might be to target error measures that di-
rectly measure performance in terms of our objectives. For example, we could
attempt to optimise our model with respect either to the unconstrained policy
error (UPE)

Eupe[π̃] =
N∑

n=1

‖πn − π̃(xn)‖2 (25)

or the constrained policy error (CPE)

Ecpe[π̃] =
N∑

n=1

‖un − Nnπ̃(xn)‖2. (26)

Optimising the former would directly give us the best fit to the policy, while
optimising the latter would give the best fit that is consistent with the con-
strained observations. The optimal model with respect to either of these
would satisfy our accuracy and generalisation requirements. For example in
the former case we could apply any projection (constraint) to the model and
still achieve a good CPE under the new constraint.

However, the problem here is that by assumption we do not have access to
samples of either (i) the (unconstrained) policy πn = π(xn), or (ii) the pro-
jection matrices Nn needed for calculating these quantities. This is because
in most problems of interest, constraints are not directly observable and there
is ambiguity in what features of motion are due to constraints and what are
implicit in the policy itself.

For example consider a contact control scenario such as wiping a window.
There, we can identify the surface of the window as an environmental con-
straint5 preventing the wiping hand from penetrating the surface. We may
also identify a task constraint preventing the hand from lifting from the
surface, since contact must be maintained for successful wiping. However,
while this is one reasonable analysis of the system, there also exist other
5 Note that would in fact be an inequality constraint since only movement into the

surface is restricted, while movement away is unconstrained.
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possibilities. For example, it may be that the unconstrained policy itself ex-
actly encodes a wiping movement parallel to the surface, so that the presence
of the surface is incidental. Alternatively, there could be an additional task
constraint applied that prevents the hand from pressing hard against the
surface. Note that we cannot directly determine which is the correct analysis
simply by observing the given movement: If the window surface (environ-
mental constraint) was removed in both of these cases the wiping would still
appear to go on exactly as before. In this example then, there is ambiguity
in what features of movement are due to the policy, what are due to the
constraints, and exactly what constraints (if any) are in force. Since none of
these can be resolved by the given observations, we cannot in general use
either of these functionals for learning.

4.2 Learning Generic Policies by Minimising
Inconsistency

Having ruled out the use of (24)-(26) for learning in this setting we must look
for alternative approaches. Our aim is to try to estimate a policy π̃(·) that
is consistent with our observed un, only using quantities that we can derive
from the data. That is, we wish to reconstruct the policy, knowing that it may
be projected in some way by the constraints. At this point a key observation
can be made: in order to uncover the unconstrained policy we must find a
policy model that can be projected in such a way that the observed commands
are recovered. In other words, we require

u(x) := Pπ(x)

for an appropriate projection matrix P, that either projects onto the same
space as the (unknown) N(x) (i.e. the image of N), or an (even smaller)
subspace of that. One such projection, which we know to lie within this
subspace, is the 1-D projection onto the observed command itself, that is
P = ûûT , with û = u/‖u‖ (ref. Fig. 6). Furthermore, since u is given, we
have all the information we need to calculate this projection and use it for
learning, neatly side-stepping the need to explicitly model the full constraint
matrix N.

With this as motivation, we propose to replace Nn in (26) by a projection
onto un and minimise the inconsistency which we define as the functional

Ei[π̃] =
N∑

n=1

‖un − ûnûT
n π̃(xn)‖2 =

N∑
n=1

(
rn − ûT

n π̃(xn)
)2

(27)

with rn = ‖un‖, ûn = un

rn
. Since un = Nnπn we can write ‖un −

Nnπ̃(xn)‖2 = ‖Nn(πn − π̃(xn))‖2 and recognise that the CPE is always
less than or equal to the UPE, because the projections Nn can only decrease
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Fig. 6 Illustration of our learning scheme. The projection of the correct policy π
onto the observations matches those observations.

the norm of the difference between true and predicted policy. The same ar-
gument holds for the inconsistency error (27) where the projection onto the
1-D subspace spanned by ûn, possibly takes away even more of the error. So
we can establish the inequality

Ei[π̃] ≤ Ecpe[π̃] ≤ Eupe[π̃].

Naturally, for estimating the correct policy, we would rather like to minimise
an upper bound of Eupe, but it is unclear how such a bound could be de-
rived from the data we are assumed given. However, note that by framing
our learning problem as a risk minimisation task, we can apply standard
regularisation techniques such as adding suitable penalty terms to prevent
over-fitting due to noise.

The proposed risk functional (27) can be used in conjunction with many
standard regression techniques. In the following we derive training rules for
two classes of function approximator for learning the (unconstrained) policy
to demonstrate how the risk functional can be used. The example function
approximators we use are (i) simple parametric models with fixed basis func-
tions (Sec. 4.3), and (ii) locally linear models (Sec. 4.4). We turn to this in
the next section.

4.3 Parametric Policy Models

A particularly convenient model of the policy is given by π̃(x) = Wb(x),
where W∈IRd×M is a matrix of weights, and b(x)∈IRM is a vector of fixed
basis functions. This notably includes the case of (globally) linear models
where we set b(x) = x̄ = (xT , 1)T , or the case of normalised radial basis
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functions (RBFs) bi(x)= K(x−ci)∑ M
j=1 K(x−cj)

calculated from Gaussian kernels K(·)
around M pre-determined centres ci, i = 1 . . .M . With this model, the
inconsistency error from (27) becomes

Ei(W) =
N∑

n=1

(
rn − ûT

nWb(xn)
)2

=
N∑

n=1

(
rn − vT

n w
)2

= Ei(w),

where we defined w ≡ vec(W) and vn ≡ vec(ûnb(xn)T ) = b(xn) ⊗ ûn in
order to retrieve a simpler functional form. Since our objective function is
quadratic in w, we can solve for the optimal weight vector easily:

Ei(w) =
∑

n

r2
n − 2

∑
n

rnvT
n w + wT

∑
n

vnvT
n w

= E0 − 2gTw + wTHw

yielding
wopt = arg min Ei(w) = H−1g (28)

with H =
∑

n vnvT
n and g =

∑
n rnvn. For regularisation, we use a simple

weight-decay penalty term, that is, we select wopt
reg = argmin(Ei(w)+λ‖w‖2).

This only requires modifying the Hessian to Hreg =
∑

n vnvT
n + λI.

Please note that the projection onto u introduces a coupling between the
different components of π̃, which prevents us from learning those indepen-
dently as is common in normal regression tasks. For the same reason, the size
of the Hessian scales with O(d2M2).

4.4 Locally Linear Policy Models

The basis function approach quickly becomes non-viable in high-dimensional
input spaces. Alternatively, we can fit multiple locally weighted linear models
π̃m(x) = Bmx̄ = Bm(xT , 1)T to the data, learning each local model inde-
pendently [46]. For a linear model centred at cm with an isotropic Gaussian
receptive field with variance σ2, we would minimise

Ei(Bm) =
N∑

n=1

wnm

(
rn − ûT

nBmx̄n

)2

=
N∑

n=1

wnm

(
rn − vT

n bm

)2
= Ei(bm),

where we defined bm = vec(Bm) and vn ≡ vec(ûnx̄T
n ) similarly to the para-

metric case. The factors
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wnm = exp(− 1
2σ2

‖xn − cm‖2)

weight the importance of each observation (xn,un), giving more weight to
nearby samples. The optimal slopes Bm in vector form are retrieved by

bopt
m = arg minEi(bm) = H−1

m gm (29)

with Hm =
∑

n wnmvnvT
n and gm =

∑
n wnmrnvn.

For predicting the global policy, we combine the local linear models using
the convex combination

π̃(x) =
∑M

m=1 wmBmx̄∑M
m=1 wm

where wm = exp
(− 1

2σ2 ‖x− cm‖2
)
. For extensive experiments assessing the

performance of learning with parametric and local linear models using the
novel risk function, we refer the reader to the original experiments reported
in [22, 21].

5 Constraint-Consistent Learning Performance

To explore the performance of the two approaches, a number of experiments
have been performed, learning on data from autonomous kinematic control
policies from different plants, including learning from human demonstration
data to enable the ASIMO humanoid robot to learn a realistic car washing
task [22, 19]. In this section, we briefly review some of these results to provide
the reader with a view of the comparative performance the two approaches.
For this, we first discuss learning on data from a simple, two-dimensional
system controlled according to the framework outlined in Sec. 2. We then
discuss an example scenario in which the algorithm is used to enable ASIMO
to learn a realistic bi-manual grasping task from observations from a con-
strained demonstrator. We then give a brief discussion on how constraint-
consistent learning has been applied for learning from human demonstration
data for transferring skills to the ASIMO humanoid.

5.1 Two-Dimensional Constrained System

In this section we compare the performance of the constraint-consistent learn-
ing approaches described in Sec. 3 and Sec. 4 on a simple two-dimensional
system (x,u ≡ ẋ ∈ IR2 with policies subject to discontinuously switching
constraints. Specifically, the constraints are given by

A(x, t) = (α1, α2) ≡ α (30)
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where the α1,2 are drawn from a normal distribution, αi = N(0, 1). Here,
the constraints mean that motion is constrained in the direction orthogonal
to the vector α in state space. To increase the complexity of the problem,
the constraints are randomly switched during trajectories by re-sampling α
twice at regular intervals during the trajectory. This switches the direction
in which motion is constrained, causing sharp turns in the trajectories (for
example, see Fig. 5(a)).

To compare the methods, we investigate learning on data from three poli-
cies of differing complexity. These were (i) a policy defined by a quadratic
potential function

π(x) = −∇xφ(x); φq(x) = (x − xc)T W(x − xc) (31)

where we chose xc = 0 and W = αI; (ii) a sinusoidal potential

π(x) = −∇xφ(x); φs(x) = α sin(x1) cos(x2), (32)

where we set α = 0.1 and (iii) a limit cycle policy

ṙ = r(ρ − r2), θ̇ = ω. (33)

where r, θ are the polar representation of the Cartesian state space coordi-
nates (i.e. x1 = r sin θ, x2 = r cos θ), ρ is the radius of the attractor and θ̇ is
the angular velocity. For the experiments, the latter two parameters were set
to ρ=0.5 m and ω=1 rad s−1. Here, the two potential-based policies act as
attractor landscapes with, for example, a single point attractor at xc for the
quadratic potential and multiple point attractors for the sinusoidal potential.
Note that the limit cycle policy is a rotational policy and therefore cannot
be defined by a potential.

Data was collected by sampling K = 40 trajectories at a rate of 50 Hz
from the policies, starting from random states. This resulted in N = 40 data
points per trajectory. We then attempted to learn on this data using (i)
the alignment approach (ref. Sec. 3), (ii) optimisation of the inconsistency
(ref. Sec. 4), and (iii) direct regression (i.e. training directly on the tuples
(xi,ui), i = 1, . . .K × N and optimising the risk function (24)). For each
of the methods we learnt models consisting of a set of normalised Gaussian
RBFs with centres arranged on a 6×6 grid, and with the kernel widths fixed to
yield suitable overlap. For the latter two approaches the model represented
the mapping π̃ : x → u ∈ IR2 �→ IR2 and for the alignment approach it
represented the mapping π̃ : x → φ ∈ IR2 �→ IR. For a thorough comparison,
we learnt models of each of the three policies using the three different learning
approaches. We repeated this experiment on 100 data sets and evaluated the
normalised UPE and CPE, that is, the functionals from (25) and (26) divided
by the number of data points and the variance of the policy πn on a subset
held out for testing.
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Table 1 Normalised UPE and CPE for learning the three policies from the toy
example using (i) direct regression, (ii) the alignment approach and (iii) the incon-
sistency approach. All errors are (mean±s.d.)×10−2 over 100 data sets.

Policy Alg. nUPE nCPE

Quad. Pot. direct 54.727± 6.218 10.732± 2.010

align. 1.158± 1.561 0.443± 0.588

incon. 0.001± 0.001 0.001± 0.001

Sin. Pot direct 40.478± 4.789 12.354± 1.097

align. 5.020± 5.395 2.162± 2.536

incon. 0.003± 0.003 0.001± 0.004

Lim. Cyc. direct 43.225± 6.599 10.034± 1.678

align. 291.233± 156.180 126.902± 80.364

incon. 0.024± 0.040 0.003± 0.002

Table 1 summarises the results. Firstly, looking at the results for using
direct regression to learning the three policies, we see uniformly poor perfor-
mance both in terms of the normalised UPE and CPE. Because the direct
approach to learning is naive to the effect of the constraints, model averaging
results. This causes the predictions for each of the three polices to be poor,
even under the training constraints.

In contrast to this, looking at the results for the potential-based policies,
the alignment approach performs approximately an order of magnitude better
both in terms of the UPE and the CPE. Comparing errors for the quadratic
and sinusoidal potential-based policies we also see that the latter, more com-
plex potential (with multiple sinks) is more difficult to learn with a data set of
this size. However, as expected, the alignment approach performs very badly
when training on the limit cycle data: The potential-based representation is
not appropriate in this case since the policy is rotational.

Looking at the errors for the inconsistency approach, however, we see im-
proved performance on all three policies, including the rotational limit cycle
data. Comparing results for the three policies we see that the sinusoidal
potential-based policy and the limit-cycle policy are more difficult to learn
due to their increased complexity. However, despite this, the increase in error
for this approach is still relatively small.

Finally, in all of the results, the nCPE is always much lower than the
nUPE, which follows naturally from the fact that the projection induced by
the constraints projects out some of the error in the models, as discussed
in Sec. 4. Still, the results show that with a reasonable amount of data, the
unconstrained policy can be modelled with remarkable accuracy using the
two constraint-consistent approaches.
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Fig. 7 Learning performance on the quadratic potential (31) with varying data
set sizes for the alignment approach (left) and the inconsistency approach (right).
Normalised CPE and UPE versus data set size as a percentage of the full K = 40
trajectories of length N =40 are shown. For the alignment approach the normalised
error in the potential is also plotted.
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Fig. 8 Learning performance on the quadratic potential (31) with varying noise
levels for the alignment approach (left) and the inconsistency approach (right).
Normalised CPE and UPE versus noise in the observed (xn,un) as a percentage
of the variance of the data are shown. For the alignment approach the normalised
error in the potential is also plotted.

As a further test, we can also look at the performance in terms of the
amount of data required to find a good approximation. In Fig. 7 we show
the error curves for the two constraint-consistent learning approaches when
learning on different-sized subsets of the data from the quadratic potential
(31). As can be seen (ref. Fig. 7), the performance of the two approaches im-
proves with increasing quantities of data in terms of UPE and CPE, with the
inconsistency approach generally achieving a lower error than the alignment
approach for this data set.

Finally, in Fig. 8 we characterise the noise robustness of the two constraint-
consistent approaches when learning, again using the same data, but this time
with the the observed states xn and actions un contaminated with Gaussian
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Fig. 9 Example constrained trajectory used as training data in the ball-reaching
experiment. Starting with hands at the sides, the demonstrator robot reaches be-
tween the barriers to get the ball. Note that the width of the gap in the barriers
was randomly altered for each trajectory recorded.

noise, the scale of which was varied to match up to 20% of the scale of the
data. We see that the performance of the two approaches approximately fol-
lows the noise levels in the data (ref. Fig. 8), although there is slightly more
variance in the performance of the alignment approach. This latter effect can
be explained by the fact that the alignment uses the nearest neighbour tra-
jectories for the alignment, the measurement of which becomes increasingly
unreliable as the noise in xn increases. However, despite this, the performance
of the two approaches can be seen to decline smoothly as the amount of noise
increases.

5.2 Reaching for a Ball

In this section we characterise (i) how well the two approaches scale to more
complex, realistic constraints and policies and (ii) how well the policies learnt
with these approaches generalise over different constraints. For this, we use
data from an example scenario, in which a set of observations of a demon-
strator performing the task of reaching for a ball on a table are given, and
the student is expected to learn a policy to enable it to reproduce this task
[22, 19]. The learning problem is complicated however, by the presence of dif-
ferent obstacles on the table for each of the example trajectories, constraining
the possible motions of the hands. The goal is to uncover a policy that accu-
rately predicts the demonstrator’s (unconstrained) behaviour and generalises
to predict the behaviour under novel constraints.

The example scenario was implemented [22, 19] using the whole body
motion (WBM) controller of the 27-DOF humanoid robot ASIMO (for details
on the controller see [15]). For this, data was recorded from a ‘demonstrator’
robot that followed a policy defined by an inverted Gaussian potential

π(x) = −∇xφ(x); φ(x) = α
(
1 − e‖x−xc‖2/2σ2

)
, (34)



280 M. Howard et al.

where x ∈ IR6 corresponds to the Cartesian position of the two hands (here-
after, the ‘task space’) and the actions u = ẋ = π(x) correspond to the hand
velocities. We chose σ2 = 2, α = 0.25 and the target point xc ∈ IR6 to cor-
respond to a reaching position, with the two hands positioned on either side
of the ball. Following the policy (34) with this set of parameters, the demon-
strator was able to reach the ball under each of the constraints considered
in this experiment (see below). Inverse kinematics via the WBM controller
was used to map the desired task space policy motion into the appropriate
joint-space velocity commands for sending to the robot.

The demonstrator’s movements were constrained by the presence of a bar-
rier on the table with a gap in it, placed so that the demonstrator robot
had to reach through the gap to get the ball (ref. Fig. 9). The barriers acted
as inequality constraints on each of the hands so that motion in the direc-
tion normal to the barrier surface was prevented if a hand came too close.
Specifically, the constraints took the form

A(x, t) =

⎛
⎜⎜⎝

A[1,1] 0
A[1,2] 0

0 A[2,1]

0 A[2,2]

⎞
⎟⎟⎠ (35)

where

A[i,j](x, t) = n̂T
j ; di,j ≤ dmin and ûT

[i]n̂j > 0
A[i,j](x, t) = 0 ; otherwise.

Here, di,j is the distance of the ith hand (where i ∈ {1, 2}, i.e. left and right
hands respectively) to the closest point on the jth barrier (where j ∈ {1, 2},
i.e. left and right barriers respectively), n̂j ∈ IR3 is the normal to the barrier
surface6 at that point and û[i] ∈ IR3 is the normalised command for the ith
hand (i.e. the ith 3-vector block of the command vector u corresponding to
that hand; for example for the right hand (i = 2) this was u[2] ≡ (u4, u5, u6)T

with û[2] = u[2]/‖u[2]‖). Here, the full constraint matrix A(x, t) ∈ IR4×6 was
constructed by assigning 3-vectors to the appropriate matrix blocks A[i,j],
according to the system state. For example, if the left hand (i = 1) ap-
proached the left barrier (j = 1) to a distance of d1,1 < dmin, and if the
next commanded movement would bring the hand toward that barrier (i.e.
ûT

[1]n̂1 > 0), then the elements of the constraint matrix corresponding to that
hand/barrier pair were updated (in this example the first row of the matrix
would be updated, A1,: = (n̂T

1 , 0, 0, 0), constraining the left hand). Note that
under this setup the constraints are highly nonlinear (due to the complex
dependence on state) and have discontinuously switching dimensionality (i.e.

6 Note that in order to ensure smooth, natural-looking trajectories the barriers
were modelled as planes with smooth ‘swept-sphere’ edges, similar to those de-
scribed in [51].
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the rank of A(x, t) switches) when either of the hands approaches or recedes
from the barrier.

Data was collected by recording K = 100 trajectories of length 2s at 50
Hz, (i.e. N = 100 points per trajectory) from the demonstrator following
the policy (34) under the constraints (35). Start states were sampled from
a Gaussian distribution over joint configurations q∼N(q0, 0.1I) (where q0

corresponds to the default standing position) and using forward kinematics
to calculate the corresponding hand positions. The joint vector q was clipped
where necessary to avoid joint limits and self collisions, and to ensure the start
postures looked natural. For each trajectory the constraints were varied by
randomly changing the width of the gap in the barriers. The gap widths were
sampled from a Gaussian distribution dgap ∼ N(μgap, σgap) where μgap =
0.25m, σgap = 0.1m and the diameter of the ball was 0.15m. The hand-barrier
distance at which the constraints came into force was fixed at dmin = 0.05m.
Fig. 9 shows an example trajectory under this set-up.

We used the three algorithms (the direct, alignment and inconsistency ap-
proaches) to perform learning on 50 such data sets using 150 Gaussian RBF
models, with centres placed using k-means. For comparison, we repeated the
experiment on the same data with the same model (i.e. same number and
placement of centres) with the three approaches. Please note that (similar
to the experiments in the preceding section) the model for the direct and
inconsistency approaches corresponded to the π̃ : x → u ∈ IR6 �→ IR6

mapping, whereas for the alignment approach it represented the mapping
π̃ : x → φ ∈ IR6 �→ IR.

To assess the performance for the methods we evaluated the errors in
predicting the policy subject to (i) the training data constraints (nCPE), (ii)
no constraints (nUPE), and (iii) a novel constraint, unseen in the training
data, on a set of test data. For the latter, a barrier was placed centrally
between the robot and the ball, so that the robot had to reach around the
barrier to reach the ball (see Fig. 11). Specifically, the constraint took a form
similar to (35) but this time with only one barrier present (i.e. j ≡ 1), so
that the constraint matrix A(x, t) ∈ IR2×6 had attained a maximum rank of
k = 2 when both hands approached the barrier. The width of the new barrier
was fixed at 0.5m.

Comparing the numerical errors (ref. Table 2) for the two constraint-
consistent learning methods (i.e. the alignment and inconsistency approaches)
with those of the direct approach we see that the former perform several or-
ders of magnitude better under each of the constraint settings considered,
with the inconsistency approach performing marginally better. However, the
real difference between the constraint-consistent learning methods and the
direct approach is best highlighted if we compare trajectories generated by
the policies under different constraint settings.

Firstly, Fig. 10 shows example trajectories for the unconstrained reach-
ing movements produced by the demonstrator (‘expert’), and the policies
learnt by (i) the direct approach, (ii) the alignment approach, and (iii) the
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Fig. 10 Unconstrained reaching movement for the policies learnt with (a) direct
regression (green) (b) the alignment approach (red), and (c) the inconsistency ap-
proach (blue). In each figure the demonstrator’s movement is overlaid in black.

Table 2 Normalised errors for policies learnt by the three methods, evaluated on
(i) training constraints, (ii) no constraints, and (iii) an unseen test constraint on
the ball-reaching task. Values are mean±s.d. over 50 data sets.

Constraint Direct Align. Incon.

Training 0.0531 ± 0.0068 0.0092 ± 0.0021 0.0052 ± 0.0022

Unseen Barrier 0.4630 ± 0.0350 0.0101 ± 0.0023 0.0052 ± 0.0022

Unconstrained 0.9216 ± 0.0625 0.0106 ± 0.0024 0.0052 ± 0.0022

inconsistency approach. In the former the hands always take a curved path to
the ball (Fig. 10(a)), reproducing the average behaviour of the (constrained)
demonstrated trajectories. The direct approach, being naive to the effect of
the constraints is unable to extract the underlying task (policy) from the
observed paths around the obstacles. In contrast, the policies learnt with the
constraint-consistent approaches better predict the unconstrained policy, en-
abling them to take a direct route to the ball that closely matches that of
the demonstrator (Fig. 10(b),(c)).



Learning Control Policies from Variable-Constraint Demonstrations 283

Secondly, Fig. 11 shows example trajectories when the policies are again
constrained. Figure 11 (top) shows the movement from the policy learnt by
the inconsistency approach under a similar constraint as in the training data.
Under this constraint the policies learnt by the three methods all take a
similar path to that of the demonstrator: The hands move in first, then
forward to the ball. Note that under this constraint the movement of the
directly learnt policy is noticeably slower due to averaging of the constrained
observations.

Finally, under the unseen barrier constraint, there is a marked difference in
behaviour. Under this constraint, the demonstrator (still following the policy
(34)) reaches around the barrier to get the ball. This behaviour is reproduced
by the policy learnt with the two constraint-consistent approaches (Fig. 11,
middle row, shows the movement for the policy learnt by the inconsistency
approach). In contrast however, the directly learnt policy does not gener-
alise to the new constraint and gets trapped behind the barrier, eventually
dislodging it7 (Fig. 11, bottom).

5.3 Washing a Car

In this section we discuss an application of constraint-consistent learning to
the the problem of learning to wash a car from human demonstration data
[22]. This is an example of a task which can be intuitively described in terms of
a simple movement policy (‘wiping’) subject to contact constraints that vary
depending on the different surfaces of the car to be wiped. Due to the different
shapes and orientations of these surfaces, complex, non-linear constraints are
imposed on the motion. While the resultant trajectories remain periodic,
they are perturbed in different ways by the constraints. The goal of this
experiment then, was to learn a policy that captured the periodic nature of
the movements, while eliminating artifacts induced by the constraints.

In [22] an experiment was performed to evaluate the performance of
constraint-consistent learning on data from human demonstrations of wiping.
In this experiment a set of demonstrations of wiping on different surfaces (i.e.
on surfaces with different tilts and orientations, see Fig. 12) were presented
to the ASIMO humanoid robot by a human demonstrator. The robot used
on-board stereo cameras to track the three-dimensional coordinates of the
sponge (for details on the ASIMO vision system please see [5]) and the resul-
tant data was used for constraint-consistent learning. The resultant data was
used to train a policy model representing the IR3 �→ IR3 mapping from hand
7 Note that the collision of the hands with the barrier in fact violates the constraint.

The reason for this is that on the real robot, under this constraint, the directly
learnt policy forces the robot into a self-collision (of the robot’s arms with the
torso). To prevent damage to the robot, an on-board safety mechanism then kicks
in and pushes the hands away from the body, causing collision with the barrier.
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Fig. 11 Reaching movements produced by the learnt policies under different con-
straints. Shown are trajectories from (i) the policy learnt by the inconsistency ap-
proach under a similar constraint as in the training data (top row); (ii) the same
policy under a new, unseen barrier constraint (middle row), and; (iii) the policy
learnt with direct regression under the new constraint.

Fig. 12 Human wiping demonstrations on surfaces of varying tilt and rotations.
The ASIMO stereo vision system was used to track the 3-D coordinates of the
sponge (coloured rectangles show the estimated position). Tilts of ±16o and +27o

about the x-axis are shown.

(sponge) positions to velocities, consisting of a set of 300 Gaussian RBFs
with centres placed by k-means.

Since the ground truth (i.e. the true unconstrained policy and the ex-
act constraints in force) is not known for the human data, performance was
evaluated on a behavioural level. For this, the policies were implemented
on the ASIMO humanoid robot and an approximation of the human’s con-
straints based on an analysis of the hand-sponge system (for full details on the
constraints used to approximate the human constraints, please refer to [22])
were applied to the robot during movement reproduction. Under this set-up,
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Fig. 13 Learning from human wiping demonstrations. Left: Trajectories of the
sponge when wiping on the surface when flat (black), tilted +16◦ and +27◦ about
the x-axis (red), −16◦ and −27◦ about the x-axis (blue), and ±16◦ about the y-axis
(grey). Centre and right: Reproduced trajectories using the policies (black arrows)
learnt with the inconsistency and direct approaches, respectively. In each case the
same example trajectory is highlighted (thick black). The top and front views are
shown (top and bottom rows).

constraint-consistent learning with the inconsistency approach was compared
to that of direct regression (since in this case the task is clearly periodic,
the inconsistency approach is the appropriate choice of constraint-consistent
method.)

The results are shown in Fig. 13, where we show the demonstrated trajec-
tories (left), those produced by the constraint-consistent policy (centre) and
those learnt by direct regression (right) under the different constraints (tilts
of the surface). Looking at the learnt policies, we see that the constraint-
consistent approach learns a smooth policy and the trajectories under each
of the constraints are smooth periodic movements, similar to those of the
human. On the ASIMO robot these produced smooth, natural wiping move-
ments (see Fig. 14).

Fig. 14 Reproduced movements on the ASIMO robot for the surface tilted 0◦,
+16◦, −27◦ about the x-axis, and +16◦ about the y-axis.
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The policy learnt with direct regression also captured the periodicity to
some extent. However, it appears highly irregular in several regions and the
trajectories are unstable, with some spiralling in to the centre, and others
diverging to other parts of the state space. By attempting to learn all of
the artifacts induced by the constraints, the direct approach, naive to the
constraints, learns an unstable policy that cannot be safely used for movement
reproduction on the robot.

6 Discussion

In this chapter, we reviewed recent work in the area of policy-based learning of
demonstrated movements, where those movements are subject to variable, dy-
namic, non-linear constraints. We discussed the problems encountered when
learning in this setting and showed, through analysis and experimentation,
how approaches based on standard supervised learning techniques come into
difficulties when presented with data containing variable constraints. We then
went on to describe two new learning methods for learning in a constraint-
consistent manner. The first, earlier approach solved the learning problem
for constrained potential-based policies. The second approach, based on a
modification in the calculation of an empirical risk, was shown to be effective
for arbitrary policies, including those with a rotational component. It was
seen that both methods were capable of recovering the unconstrained pol-
icy from arbitrarily constrained observations, without the need for explicit
knowledge of the constraints. This allows us to learn policies that generalise
over constraints, including novel constraints, unseen in the training data.
Furthermore, the comparative performance of the methods was reviewed for
learning policies on systems of varying size and complexity.

How far do the policies generalise?

The results presented here and in [22, 19] clearly show the efficacy of learning
from constrained demonstrations using the two approaches, and then apply-
ing the resultant policies to new constraint scenarios. However, in terms of
lessons learnt from these studies there are also some bigger issues raised. One
such issue is the question of when, faced with a new constraint, the learnt
policy will fail at the desired task. For example, in the ball grasping experi-
ment, under certain configurations of the constraints (e.g. if the barriers were
placed exactly on either side of the ball, or a much larger barrier was placed
between the robot and the ball) the learnt policy would fail at the task of
grasping. This may be due to several factors, for instance if the control vector
happens to be orthogonal to the nullspace of the constraint, deadlock would
occur (this is similar to the problem of local minima in many gradient-based
controllers, e.g. see [11]). While problems such as these are in general unavoid-
able when dealing with constrained systems, one of the nice properties of the
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constraint-consistent approaches is that they learn policies that are successful
under the same constraints that the demonstrator is successful. So, although
the learnt policy for the grasping task is not guaranteed to successfully get
the ball in the presence of any arbitrary barrier (constraint), it successfully
reaches the ball whenever (i.e. with whatever barriers) the demonstrator does.
In some sense we can say the robustness of the demonstrator’s policy against
different constraints was transferred to the learner.

Adaptation to constraints: Re-planning vs. re-using policies?

A second, related issue concerns the role of adaptation of policies in response
to constraints. Clearly there are circumstances in which it is desirable to
re-plan the policy to cope with certain sets of constraints, especially if the
learner’s existing policy (here, learnt from demonstration) fails under those
constraints (and in some cases the learner may even take advantage of certain
types of constraint to improve performance). However, here a balance must
be struck. On the one hand re-planning the policy will likely improve perfor-
mance under any given set of constraints; but on the other hand the adapted
policy will also become more specialised to that particular set of constraints
(and may even lead to degraded performance for other constraints). In other
words we lose the generalisation to other constraints that here we attempt
to extract from the demonstrator. Furthermore, due to the inherent uncer-
tainty in the constraints in most real world problems, it may not be feasible
to explicitly incorporate all of the constraints when re-planning. For example
consider planning a policy for walking on uneven terrain; to explicitly incor-
porate the constraints involved here would require a detailed model of the
terrain, which is rarely available. The constraint-consistent approaches, how-
ever, allow us to sidestep this, providing a shortcut to uncovering the policy
used by the demonstrator8 (who, if observed to use the same policy under a
number of constraint settings, presumably finds it sufficiently successful for
those and similar settings). Therefore in this sense, with these approaches,
we may now envisage a move away from the traditional approach of plan-
ning explicitly with respect to all possible constraints that is typically only
possible in highly controlled, structured environments.
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