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Abstract 

Ruthenium(ll) arene complexes of the type [(ij 	where arene 

= p-cymene (p-cym), biphenyl, indan, benzene and L = bidentate, monoanionic, 

0,0-chelating ligands including fl-diketonates, hydroxy-ketonates and acetate were 

synthesised. Chelate ring sizes vary from four- to six-membered. X-ray crystal 

structures, confirming coordination of each class of ligand and the characteristic 

"piano stool" conformation, were determined. Some structures show H-bond 

interactions between arene protons and oxygen atoms of the chelate. Cytotoxicity 

towards the A2780 human ovarian cancer cell line (in a range of 11 to> 100 pM) 

was found to dependent strongly on both the nature of the chelate and the arene. 

Steric bulk around the metal centre appears to be important for activity. Hydrolysis 

of [(TI  where acac = acetylacetonate, is rapid and the pK a  value 

of coordinated water (9.4) is ca. 1.2 units higher than that of the ethylenediamine (en) 

analogue. Thus the chelating ligand in Ru 11  arene complexes can control the rate and 

extent of hydrolysis. The acetato complex readily decomposes in water to form the 

hydroxo-bridged dimer [((ij  Binding to G-N7 or A-N7 and 

A-Ni with displacement of Cl- was observed for reactions of [(11  

with guanine (G) and adenine (A) derivatives. This is in contrast to cytotoxic [(1 6  

arene)Ru(en)C1] complexes, which have very little affinity for adenine. Formation 

of a strong H-bond (2.07 A) between A-N6H . .O(chelate) was observed in the X-ray 

crystal structure of [(i 6-p-cyrn)Ru(acac)9EtA], where 9EtA = 9-ethyladenine, and 

could contribute to the observed change in base selectivity. 
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Six novel tethered Ru11  arene complexes of the type [(q 6:'-C6H5(T-

N)RuC12], where T is a linker of varying nature between the i6-coordinated arene and 

a coordinating nitrogen atom, were synthesised and fully characterised, including 

four X-ray crystal structures. Tethered complexes can undergo partial or complete 

hydrolysis in water. Loss of one chloride appears to be strongly favoured, with 

anation complete only to ca. 40% at a total chloride concentration of Ca. 275 mM for 

[(16:1 1 -C6H5(CH2)3NH2)RuC12I. Tethered complexes, such as [(16:11 1 

C6H5(CH2)NH2)RuC12], where n = 2 or 3, containing an NH 2  group react with 

guanine derivatives. Mono-adducts form rapidly and almost completely, and 

formation of di-adducts proceeds to ca. 35 - 50 % completion after ca. 10 h, 

depending on pH and concentration of chloride and substrate. Such bifunctional 

binding indicates potential for cross-linking of DNA, similar to cisplatin. 

Bifunctional coordination of 9EtG in an unusual head-to-head orientation, with 

formation of H-bonds (1.98 A and 2.32 A) between the tether NH 2  group and 

C60(9EtG), was confirmed by X-ray crystallography for [(16:11 1 

C6H5(CH2)3NH2)Ru(9EtG)2](CF3SO3)2. Substitution of the chloride ligands by 

bidentate chelating ligands yields tethered complexes comparable to second 

generation platinum drugs (e.g. carboplatin, oxaliplatin). 

The cytotoxic Ru11  arene complex [(i 6-hmb)Ru(en)C1IPF6, where hmb = 

hexamethylbenzene, can catalyse the transfer hydrogenation of acetone by formate. 

The regio selective reduction of NAD in water to form 1 ,4-NADH was complete 

after 3 h at biologically relevant conditions of 310 K and pD 7.2. 
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His dream did not come true, but his support 
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Chapter 1 

Chapter 1 
Introduction 

This thesis describes studies of organometallic mono- and bifunctional 

ruthenium(ll) arene complexes which have potential anticancer applications, 

focussing on aspects of their design and reactivity. 

First a short introduction to classical coordination and organometallic 

anticancer complexes is given, highlighting work involving ruthenium and relevant 

aspects of its chemistry. A summary of the synthesis and structures of Ru 11  arene 

complexes is followed by a more detailed discussion of research on their biological 

activity. Particular attention is paid to the aqueous chemistry of some cytotoxic Ru 11  

arene complexes containing ethylenediamine as a chelating ligand and their 

reactivity with biomolecules, with an emphasis on DNA bases. 

1.1 Metallodrugs 

Most new drugs are organic (carbon) compounds but there is an increasing 

realisation that many metal ions are involved in natural biological processes and that 

there is much scope for the design of therapeutic agents based on both biologically-

essential and non-essential metal ions [1, 2]. Metal complexes with their wide 

spectrum of coordination numbers, coordination geometries, thermodynamic and 

kinetic preferences (which cover enormous scales of magnitude) for ligand atoms, 

and in some cases redox activity, offer novel mechanisms of action which are 

unavailable to organic compounds. In general, the nature of the metal ion, its 

oxidation state, and the types and number of bound ligands, can all exert a critical 

influence on the biological activity of a metal complex [3, 41. An understanding of 

how these factors affect biological activity should enable the design of metal 

complexes with specific medicinal properties. The wide spectrum of contrasting 

1 
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H3N\  /Cl 

Pt\  

H3N 	Cl 

H3N\/CI 

c' 4 NH3 

Cl\ 	2- H3N\  ,NH1 2+ 

,Pt\ 	 Pt\  

Cl 	Cl 	H3N 	NH3 

anticancer drug inactive against cancer 	allergen 	non-toxic 
(cisplatin) 	(transpiatin) 

Figure 1.1: The contrasting biological activities of platinum complexes. 

biological activity amongst platinum complexes (Figure 1.1) [1, 5, 6] and the clinical 

success of platinum(ll) dia(m)mine complexes, e.g. cisplatin, as anticancer drugs 

provide a good illustration of this point. For example, not all platinum complexes are 

active anticancer agents. Some platinum complexes are inert and relatively non-

toxic, some attack DNA, some do not. Although platinum complexes are now widely 

used for the treatment of cancer, the development of drug resistance, the toxic side-

effects of cisplatin, and the lack of activity of platinum compounds against several 

types of cancer are problems which need to be overcome [7]. This provides the 

impetus for the search for anticancer activity amongst complexes of other metals. 

Organometallic chemistry evolved rapidly during the second half of the 20 th  

century [8, 9] and bioorganometallic chemistry is now establishing itself as an 

important branch of the subject [10]. In particular, organometallic complexes, i.e. 

complexes with at least one direct metal-carbon bond, offer much potential for 

exploration as anticancer agents due to the large diversity of structure and bonding 

modes (e.g. it-coordination, M-C multiple bonds) that are unique to them [11]. 

Despite this, few systematic attempts have been made to design organometallic 

complexes as therapeutic agents [12, 13]. This is perhaps due to the assumption that 

organometallic chemistry and biology are mutually incompatible, many 

organometallic compounds being sensitive to water and oxygen. However, research 

in the past decade or so, notably by Köpf [12], Alberto [14], Fish [15] and Jaouen 

[16], has demonstrated that these problems can be overcome, and that organometallic 

pharmaceuticals can be formulated. 

2 
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1.2 Metal-based Anticancer Complexes 

Current interest in the use of metal complexes for the treatment of cancer was 

triggered by the discovery of the anticancer activity of Pt" amine complexes in 1969 

by Rosenberg [17]. The primary target is DNA [18].  Since then at least four platinum 

complexes have been approved for clinical use (Figure 1.2) and they are the most 

widely-used anticancer drugs. Stimulation for the discovery of anticancer complexes 

of metals other than platinum arises from the cellular resistance to platinum which is 

sometimes encountered in the clinic, the toxic side-effects of cisplatin, which can be 

severe, and the limited spectrum of activity against different types of cancer [7]. 

The organometallic complex titanocene dichioride, Cp 2TiC12, where Cp = 

cyclopentadienyl (Figure 1.3), was originally investigated because it was believed 

that the cis-TiC1 2  motif would react with DNA to form bifunctional cross-links in a 

similar manner to cisplatin. However, Cp 2TiC12  binds only wealdy to DNA bases, but 

more strongly to the phosphate backbone [19].  Cp2TiC12  is difficult to formulate for 

administration because of its ease of chloride and Cp hydrolysis and formation of 

hydroxo- and oxo-bridged species. Responses to titanocene dichloride in the clinic 

were not encouraging and the trials have now been abandoned [20, 21]. Other 

cisplatin 	 carboplatin 

H3N 
\ 
Pt Of 

	 N\ P I 

 t 
/ 

0 0 H3N 0 	 rN O:X 
nedaplatin 	 oxaliplatin 

Figure 1.2: Platinum(ll) complexes approved for clinical use as anticancer drugs. 
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. 11  
Ti 

cl 

Cp2TiCl2  

Figure 1.3: Titanium anticancer drugs which have been on clinical trials. 

metallocenes are active in vitro, e.g. Cp2VC12  and Cp2NbC12  [12], but have not 

reached clinical trials. 

Another TiW  complex, budotitane (Figure 1.3) was the first non-platinum 

complex to be approved for clinical trials, but poor solubility and hydrolysis made 

formulation difficult even in micelles, and the trials were abandoned [22]. 

More recently, Jaouen et al. prepared a series of ferrocenyl derivatives 

("ferrocifens") of the breast cancer drug tamoxifen (Figure 1.4) [23, 24]. Several of 

these compounds are highly active against both estrogen-dependent and estrogen-

independent breast cancer cells. Ferrocifens are thought to act against estrogen-

independent breast cancer cells by causing oxidative damage to DNA, after the 

ferrocenyl group is oxidized in the cells [24]. 

1.3 Ruthenium 

1.3.1 Chemistry and medicinal applications 

Ruthenium (Ru, atomic number 44, atomic weight 101.07(2), [Kr] 4d 7  5s 1 ) 

belongs to the so-called "platinum" metals group together with the elements Rh, Pd, 



n = 2,3,5,8; R = H, OH 
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Ferrocifens (E + 2 isomers) 

Figure 1.4: Ferrocifens: active against breast cancer cells. 

Os, Jr and Pt. It has a rich redox chemistry with possible oxidation states ranging 

from —H to +Vffl. Due to strong ligand-field stabilisation, ruthenium in its more 

common oxidation states Ru 11, Ru11' and Ru"' in aqueous solution is usually low spin 

octahedral and nearly always six-coordinate. 

Ruthenium compounds in general are well-suited for medicinal applications 

[25 ]. With seven naturally occurring isotopes, ruthenium can be used in 

radiopharmaceuticals (radioactive ruthenium y-ray emitters 97Ru, t1,2 2.9 d, 216 keV, 

and 103Ru, t112 39 d, 497 keY) [2]. Other complexes have been investigated as 

immunosuppressants [26, 271, nitric oxide scavengers [28], antimicrobial agents [29] 

and antimalarials [30].  Ruthenium Red, [(NH3)5Ru mORu"(NH3)4ORum(NH3)5], is 

known to inhibit calcium ion uptake by the mitochondria [31]. 

In the context of anticancer research (vide infra) Clarke has proposed that the 

activity of Ruln  complexes, which are usually relatively inert towards ligand 

substitution, is dependent on in vivo reduction to more labile Ru 11  complexes [32, 

33]. As reduction of Ru ln  to Ru11  fills the d 42g) orbitals, it-donor ligands that 

coordinate firmly to Ru are no longer able to do so with Ru 11  and bind less strongly 

5 
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[2]. In the case of Ru 11  am(m)ine complexes, acido ligands are lost fairly rapidly (k = 

1 —10 s') [34 35]. 

In reactions with biomolecules, many am(m)ine complexes of Ru 11  and Ru11' 

tend to selectively bind to imine sites, which have available nitrogen lone pairs of 

electrons, as opposed to amine sites, which tend to be protonated at neutral pH [2]. 

Consequently, nitrogens of imidazole rings on histidine (on proteins) and purines (on 

DNA) present the readiest binding targets to Ru 11. Thiolato complexes, which are 

very stable for platinum(ll) complexes [36], are often kinetically unstable with 

ruthenium [37], particularly in air [38]. 

1.3.2 Anticancer complexes 

Early interest in the anticancer activity of ruthenium complexes stemmed 

from the observations of Clarke [32] that Ru am(m)ines, e.g. [RuC13(NH3)3], are 

active anticancer agents (Figure 1.5). However, these were too insoluble for use. 

0 OL 
,NH 

CI i,,,. I %.hC I 
Ru 

CI_' I'Cl 
N 

HN 

NH3  
H3N,,,,, I 	%%.h'hCI 

H3N'I ' 'CI 
CI 

RuCI3(NH3)3  

N 

CII N 	N 

a- [Ru(azpy)2C12] 

MeCI Ci -  
/7~~N 

Me$RN 

á'c( Cl \J 

NAMI-A 

CI,,,,,. 

CI -.,  

[.J 

Ru(H2cdta)C12  

Figure 1.5: Ruthenium anticancer complexes. 
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Two other Ru" complexes, trans-[RuCI4(DMSO)(Im)]JrnH, where Tm = imidazole 

(NAMI-A) [39],  and trans-[RuCL,(Tnd) 2]TndH, where md = indazole (KPT019) [40], 

have now entered trials. KP1019 is cytotoxic to cancer cells, whereas NAMI-A is 

relatively non-toxic but has antimetastatic activity and prevents the spread of cancer. 

Several other Ru complexes have shown promise recently [41, 42] as anticancer 

complexes, e.g. the Ru11  complex a-[Ru(azpy) 2C12], where azpy = 2-

phenylazopyridine) and the Ru n' complex [Ru(H2cdta)C1 21-2H20, where H2cdta = 

1 ,2-cyclohexanediaminotetraacetate (Figure 1.5). 

The hypothesis of "activation by reduction" led to the exploration of the 

anticancer activity of Ru 11  complexes, namely Ru 11  aniinophosphines, which were 

cytotoxic to cancer cells [43], but had poor aqueous solubility and were difficult to 

isolate and purify in large quantities. Arene ligands are known to stabilise ruthenium 

in its +11 oxidation state and the suitability of ruthenium(ll) arene complexes for 

biological applications was recognised by Sheidrick and co-workers. They studied 

the interactions of such complexes with a-amino acids [44] as well as purine 

nucleobases and nucleotides [45 - 49]. Investigations of the potential of Ru 1' arene 

complexes as anticancer agents and their associated aqueous chemistry were carried 

out by Sadler et al. [50, 51]. It was found that "half-sandwich" Ru 11  mono-arene 

complexes often possess good aqueous solubility (an advantage for clinical use) and 

that the arene ligand is relatively inert towards displacement under physiological 

conditions. 

Initial interest in Ru 11  mono-arene complexes was mainly dominated by 

catalytic properties [52] ranging from alkene- and aromatic-hydrogenation, to Diels-

Alder reactions, alkene metathesis, and asymmetric hydrogen transfer reductions of 

ketones and imines [53]. Catalytic activity usually requires the presence of a labile 

coordination site on Ru 1' and/or arene displacement [54, 55].  The pH-dependent 

transfer hydrogenation of ketones with formate as a hydride donor by { (- 

7 



CI 

Chapter 1 

C6Me6)Ru(bpy)} 2 , where bpy = 2,2'-bipyridine, in water was reported recently by 

Ogo et al. [56]. 

1.4 Ruthenium(II) Arene Complexes 

1.4.1 Synthesis 

The synthesis of Ru 11  arene complexes cannot usually be achieved by simple 

reaction of Ru 11  with an arene, but requires a redox reaction. The first arene 

complexes of Ru 11  were synthesized as sandwich molecules in 1957 by Fischer and 

Böttcher (Figure 1.6) by stirring RuC13  with anhydrous A1C1 3 , powdered Al, and the 

respective arene under N 2  at 130°C for 8-10 h [57]. In 1967 Fischer et at. [58] 

reported the synthesis of [(16-naphthalene)2Ru](PF6)2,  and Winkhaus and Singer [59] 

synthesized the polymeric mono-arene complex [(TI 6 -benzene)RUC12]x by reaction of 

RuC13  with 1,3-cyclohexadiene in ethanol. Subsequently Bennett et at. [60] reported 

piano-stool geometries for [( 6-arene)RuC12(P(CH3)Ph2)] with arene = benzene or p- 

2+ 

[(q6-mesityIene) 2Ru]2  

 

Ru 
Cr" j %bP(CH)Ph 

Cl 

[(q6-benzene)Ru(P(CH 3)Ph2)C12] 

CI 

UO 
[(q6-benzene)RuCl2] 

Figure 1.6: Early examples of sandwich and half-sandwich Ru 11  arene complexes. 
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cymene (Figure 1.6), as determined by X-ray crystallography, and Zelonka and Baird 

[61] found that the dimer [(16-benzene)RuC12]2  (Figure 1.6) undergoes useful 

reactions with electrophilic as well as nucleophilic reagents such as phosphines with 

formation of monomeric complexes e.g. [(i6-benzene)Ru(PR3)C12],  where R = Ph, 

Bu, Et, OPh, OEt and OMe. In 'piano-stool' complexes, the arene forms the seat of 

the "piano stool" and the other three ligands the legs. Distortion of the bound arene 

ring was noted for [(i6-benzene)Ru(P(CH3)Ph2)C12]  (Figure 1.6) (four Ru-C bonds 

of Ca. 2.19 A, two Ru-C bonds of 2.27 A with the longer bonds trans to P). The 

slight bend (dihedral angle 5°) suggested some degree of localization of the ring it-

electrons. Later work on other compounds has also suggested that localization of it-

electron density can occur, and is accompanied by alternating long and short C-C 

bonds [62, 63]. The general structural, stereochemical and electronic features of 

metal-arene complexes have been discussed [64]. 

There are a number of very different routes towards the synthesis of Ru 11  

arene complexes and their starting dimers. Examples have been reviewed [51, 521. 

It is possible to introduce a bound arene as part of a chelate ring in the form 

of a tethered complex [65, 66]. Such syntheses often require high pressures, and 

tethered complexes, such as that shown in Figure 1.7, have been of particular interest 

in the catalysis field [67, 68]. Strapped sandwich complexes can also be synthesised 

_

'2+  0**.% 
 

.1L \ 	
QRI) 

cI" 	

7 

CI 	Ph2 

tethered Ru" arene 	 encapsulated Ru" arene 

Figure 1.7: Examples of tethered and encapsulated Ru 11  arene complexes. 
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[69]. Furthermore, it is possible to encapsulate Ru 11  by an fl 6-arene possessing a triple 

strap (Figure 1.7) [70, 71]. 

1.4.2 Structure 

A typical structure of a half-sandwich "piano-stool" [(r 6-arene)Ru(X)(Y)(Z)] 

complex is shown in Figure 1.8, where the arene forms the seat of the piano stool and 

the ligands resemble the legs. 

R 	
Figure 1.8: Typical structure of a Ru 11  half-sandwich 

'piano-stool' complex. Coordination positions X, Y and Z 
I 

Fu 
	

and arene substituent(s) R provide scope for investigation 

of anticancer structure-activity relationships. 

Y 
The X-ray crystal structure [72] of [( 6-bip)Ru(en)Cl)f, where bip = 

biphenyl, en = ethylenediamine, is shown in Figure 1.9. The complex exhibits the 

normal characteristic features of mono-arene Ru" complexes: an alternation of the 

lengths of the C-C bonds for the coordinated arene and irregular Ru-C bond lengths, 

with the longest of 2.24 A (compared to 2.14 A for the shortest) being for the carbon 

attached to the phenyl substitutent. 

The framework of ruthenium(ll) arene complexes provides considerable 

scope for optimising the design in terms of solubility, reactivity and biological 

activity [50].  Linking the ligands Y and Z to form a bidentate chelating ligand (L) 

seems to be advantageous for anticancer activity. The structure of Ru 11  half-sandwich 

complexes allows for variations of the three main building blocks, the monodentate 

ligand X, the bidentate ligand L and the arene, to fine-tune the pharmacological 

properties of these complexes. The nature of the arene can help to influence cell 

uptake and interactions with potential targets. The leaving group, which typically is 

'U 
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chloride and occupies the biomolecule binding site on the metal centre, can be of 

importance to control the timing of activation of these complexes. 

(A) 

(B) 
1.391 

f ' 2.185  "Ss 

I 2.159 	\ 
1.415 I 	•. 	I

*447 

I 	••. :2244 I ..Ru 
2.153 1 •••. 	 1.385 

2.191 
2.137 

1.372 	/ 

1.437 

Figure 1.9: X-ray crystal structure of the cation in the cytotoxic complex [(1 6  

bip)Ru(en)C1]PF6 [72] (A). The complex has the characteristic 'piano-stool' structure 

with alternation of C-C bond lengths for the coordinated phenyl ring and irregular 

Ru-C bond lengths as shown diagrammatically in (B). 
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1.4.3 Biological activity 

1.4.3.1 Antibacterial 

Some Ru'1  arene complexes have been reported to exhibit antimicrobial 

activity. Tocher et al. found that in the complex [(i 6-benzene)Ru(metro)C12], where 

metro = 1 -,8-hydroxyethyl-2-methyl-5-nitroimidazole (Figure 1. bA), the electron 

affinity of metro was not altered, but decreased the lifetime of the one-electron 

reduction product (the nitro radical anion) and increased the differential cytotoxicity 

towards E. coli grown under hypoxic conditions [73]. 

cetinkaya et al. [74] have reported antibacterial and antifungal activities of 

complexes of the type [(i 6-arene)Ru(X)C12], where arene = p-cymene or 

hexamethylbenzene, and X = nitrogen or carbon donors. The conclusion was that 

compounds with hydrophobic substituents (Figure 1. lOB) displayed significantly 

more activity because of an increased ability to cross the cellular membrane. 

Allardyce et al. [29] have noted that some phosphine complexes of the type 

[( 6-p-cymene)Ru(pta)X 2] (Figure 1.1OC), where X = Cl, NCS, and pta = 1,3,5-

triaza-7-phosphatricyclo[3 .3.1.1 ]decane) exhibit antibacterial activity, but no doses 

were specified. They suggested that proteins rather than DNA may be the target sites. 

P'A ~V* 

(A) 	 (B) 	 (C) 

Figure 1.10: Antimicrobial Ru'1  arene complexes. 
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1.4.3.2 Anticancer 

Sheidrick et al. reported the in vivo antitumour activity of the complex [(16  

C6H6)Ru(pro)Cl], where pro = proline, towards P388 leukaemia cells [45].  However, 

no data were given and no further reports appear to have been published. 

Reproducible cytotoxicities against A2780 human ovarian cancer cells are 

exhibited by the complexes [(i 6-arene)Ru(en)Cl] (Figure 1.11) [72]. Activity 

appears to increase with the size of the coordinated arene: benzene (bz) <p-cymene 

(p-cym) < biphenyl (bip) < dihydroanthracene (DHA) < tetrahydroanthracene 

(THA), such that, in this cell line, the bip complex has similar cytotoxicity to the 

anticancer drug carboplatin (IC50, the dose which inhibits growth of 50% of the cells, 

6 pM) and the THA complex is as active as cisplatin (IC5 0  0.6 tM) (Table 1.1) [75]. 

The complexes [(ij  (X or Y = halide, acetonitrile or 

RT 

Ru... CI 

a  I 
*"~ 	

- oo~ —CXI 
benzene 	p-cymene 

0-0 
biphenyl 

a:o COO 
dihydroanthracene 	tetrahyd roanth racene 

Figure 1.11: Five [(1 6-arene)Ru(en)Cl] complexes (arenes shown separately) for 

which activity against A2780 human ovarian cancer cells has been investigated [72]. 
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Table 1.1: IC50 values of Ru" arene complexes [(r1 6-arene)RuX(Y)Cl]A [A = PF6 

for positively-charged complexes] in A2780 human ovarian cancer cells after 24 h 

drug exposure and comparison with carboplatin and cisplatin [75]. 

ArenelPt complex X 	 Y IC50 (pM) 

p-Cymene CH3CN 	CH3CN >100 

p-Cymene Cl 	isonicotinamide >100 

C6H5CO2CH3 H2NCH2CH2NH2 56 

Benzene H2NCH2CH2NH2 17 

p-Cymene H2NCH2CH2NH2 10 

Carboplatin 6 

C6H5C6H5 H2NCH2CH2NH(Et) 6 

C6115C6115 H2NCH2CH2NH2 5 

Dihydroanthracene H2NCH2CH2NH2 2 

Cisplatin 0.6 

Tetrahydroanthracene H2NCH2CH2NH2 0.5 

isonicotinamide), with 3 monodentate ligands, are however inactive (10 50 > 100 pM) 

towards A2780 human ovarian cancer cells in vitro [72].  The findings agree with 

results obtained for other Ru 11  arene complexes containing three monodentate 

ligands, for which only poor cytotoxicity has been reported [76, 77, 78]. These 

complexes may be too reactive with components of the cell culture medium and/or 

the cells and are deactivated for example by biomolecules before they reach their 

target sites. 

From the above results, it appears that a more hydrophobic arene ligand and a 

single ligand exchange site (occupation of the other two coordination sites by a stable 

bidentate chelating ligand) are associated with high cytotoxicity. Recent cytotoxicity 

tests on a more extensive range of Ru 11  arene complexes have indicated, however, 

that the structure-activity relationship is more complex [79].  Replacing en by N, N, 

N', N'-tetramethylethylenediamine or 2,2'-bipyridine results in complexes with 

14 
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insignificant cytotoxicity, whilst complexes with 1 ,2-diaminobenzene as the 

chelating ligand show comparable or enhanced cytotoxicity compared to the en 

analogues. 

The leaving group X can also have an influence on the cytotoxicity in 

complexes of the type [(1 6-arene)Ru(en)X]' [80]. For example, complexes [(1i6  

hmb)Ru(en)X], where hmb = hexamethylbenzene, with X = I or pcp, where pcp = 

4-cyanopyridine, are very active against the human ovarian cancer cell line A2780. 

With X = pic, where pic = 3-methylpyridine, only moderate activity was found and 

with X = py, where py = pyridine, no activity was observed. 

Important was the finding that these [(16-arene)Ru(N,N)C1]  complexes are 

equally potent towards wild-type and cisplatin-resistant cancer cells in culture [75]. 

This suggested that the mechanism of action was different from cisplatin. 

Ruthenium arene complexes appear to have a wide spectrum of cytotoxicity 

towards cancer cells. For example, the complexes [(ij  and [(1
I 6-

DHA)Ru(en)Cl]PF6 are active against not only A2780 human ovarian cancer cells, 

but also HT29 colon, Panc-1 pancreatic and NX02 lung cancer cells with IC50 values 

in the range 1-13 .tM [79]. 

The patterns of activity established in vitro for [(il 	are 

mirrored to a large degree in vivo [75]. 

1.4.4 Interaction with biologically-relevant molecules 

In biological systems, [(r 6-arene)Ru(L)X]' complexes will encounter an 

array of biomolecules with which they could potentially react. Such interactions 

could be relevant in their roles as deactivating pathways, transport mechanisms or 

targets. Hence it is important to gain a detailed understanding of such interactions 

with ligands ranging from water and chloride to nucleobases, oligonucleotides, DNA, 

amino acids and proteins. Reactions in media with low dielectric constants may also 

15 



Chapter 1 

be relevant to the passage of the complexes across membranes. An interesting 

possibility is that Ru'1  could become involved in blocking Fe" pathways but this has 

yet to be studied. 

This section will mainly focus on complexes of the type [(1 6  

arene)Ru(en)X]" and reports by the Sadler group. Reactions and interactions 

involving other ruthenium arene complexes, predominantly with three monodentate 

ligands, have been reviewed recently [51]. 

1.4.4.1 Aquation 

Since it appears [81, 82] that aquation can be the rate-limiting step in the 

reactions of Ru' 1  arene complexes with both amino acids and nucleotides, detailed 

studies of the factors which influence the rate and extent of aquation and the PK a  

value of the resulting aqua adduct have been undertaken. 

Taube et al. [83] carried out early studies on the chemistry of aqua adducts of 

Ru'1  arene complexes and reported pK a  values of 6.3 for [(i.6  

benzene)Ru(NH3)2(H20)] 2  and 7.9 for the en analogue. They noted the increase in 

affinity of Ru" for chloride when three ammonia ligands are replaced by benzene, 

attributable to the electron-withdrawing power of the 11 6-bonded arene. Dadci et al. 

[84] reported that introduction of benzene into the Ru' 1  hexaaqua complex 

[Ru(H20)6]2  enhances the water exchange rate by a factor of 640, whereas the 

additional introduction of 2,2'-bipyridine (bpy) into [(16-benzene)Ru(H20)3]2  to 

give [( 6-benzene)Ru(bpy)H 20]2  reduces the rate by 174 and becomes only Ca. 4x 

faster than the hexaaqua ion. 

The X-ray crystal structures of the aqua complexes [(1 6  

arene)Ru(en)X](PF 6), where arene = biphenyl (bip), X = 0.5 H20 / 0.5 OH, n = 1.5, 

arene = tetrahydroanthracene (THA), X = 0.5 H2O / 0.5 OH, n = 1.5, arene = THA, X 

= H20, n = 2, and arene = dihydroanthracene (DHA), X = H 20, n = 2, have been 

16 
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reported [85].  In the bip complex, there is a large propeller twist of 45°  of the 

pendent phenyl ring with respect to the coordinated phenyl ring. The tricyclic THA 

ligand is relatively flat in these aqua complexes, but the DHA ring system is 

markedly bent (hinge bend ca. 35°) as it is in the chloro complex (41°) (Table 1.2). 

These finding highlight the structural flexibility of the coordinated arenes. 

Table 1.2: Change in hinge-bending and orientation of the arene in [1 6  

arene)Ru(en)X] complexes (arene = DHA and THA) induced by substitution of Cl 

by water or N7-bound 9-ethylguanine [81, 851. 

hinge 

CA

NH2 	 A 
1r'i 

•1 	 Ru Q_ 	H2N 
/ N H2 	cx 

Arene 	
Orientation angle a (°) 	Hinge bending angle (°) 

x= 	 x= 

Cl 	H20 9EtG 	Cl 	H2O 9EtG 

Dihydroanthracene 	64.1 	34•0a 	20.1 	40.6 	35.la 	31.9 

Tetrahydroanthracene 	45.1 	63.7 	25.6 	-7.5 	-1.8 	27.8 

a Average for two independent cations in unit cell 

1.4.4.2 Aqueous chemistry 

In aqueous media the chloride ligand of [(ii6-arene)Ru(L)Cl}  complexes can 

exchange with water to form aqua complexes [(r 6-arene)Ru(L)H 2O] 2 . For L = en, 

the chloride-containing complexes generally undergo substitution reactions very 

much more slowly than the corresponding aqua compounds [81], hence it is 

important to understand the thermodynamics and kinetics of formation of the aqua 

complexes (i.e. activated form of the ruthenium arene complexes). The rates of 

aquation of [(716-arene)Ru(en)Cl]PF6 (arene = bip, DHA and THA) at 310 K and 
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ionic strength (I, NaCI0 4) of 0.1 M (kHo  3.95 - 6.84 x 10 3  s) are an order of 

magnitude faster than that of cisplatin [85].  The reverse, anation reactions in the 

presence of 100 niM NaC1 (similar concentration to that in blood plasma) are also 

very rapid (kc1 0.435 - 0.722 M 1  s_i , 310 K, I = 0.1 M). The aquation and anation 

reactions are Ca. 2 times faster for the DHA and THA complexes compared to the bip 

complex, suggesting that variations in the steric and electronic effects of the arene 

ligands modulate the ligand exchange reactions. The exchange reactions appear to 

occur via an associative pathway, LS being negative [85].  Since the anation 

reactions are rapid, the equilibrium constants for aquation (kHo  I/cc!) are small, 9.0 - 

11.7 x 10 M. Hence at physiologically-relevant concentrations of the ruthenium(ll) 

arene complexes (0.5 - 5 pM), the complexes should be present in blood plasma 

([Cl] = 104 mM) largely as the less reactive chioro complexes (>89%), whereas in 

the cell nucleus ([Cl] = 4 mM) [86, 87] significant amounts (45 - 65%) of the more 

reactive aqua species would be formed readily (Figure 1.12), together with smaller 

amounts of hydroxo complexes (9-25%). 

The hydrolysis rates of [(i6-arene)Ru(en)X]'  complexes are dependent on 

the nature of the arene and the leaving group in particular. Half-lives vary from 

seconds (hmb/Cl) to minutes (e.g. hmbfN3 ) to hours (e.g. hmb/dcp, bipIN3), where 

dcp = 3,5-dichloropyridine, or half-lives which are too slow to be measured (e.g. 

hmblpy) [80]. 

The coordinated aqua ligand of [(i6-arene)Ru(en)H2O]2  undergoes acid 

dissociation to give the hydroxo complex [(i6-arene)Ru(en)OH],  which is less 

susceptible to substitution reactions than the aqua complex [81]. Hence knowledge of 

the pKa  values of aqua adducts could be useful in drug design. The pKa  values range 

from 7.71 to 7.89 and 8.01 for the bip, DITA and THA aqua complexes, respectively 

[85]. Since the pKa  values are high, only small amounts of the hydroxo species 

(<10% of the total Ru arene complex) would be present at biological pH (7.2 - 7.4) 
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100 

% 

50. 

104 	23 	4 

[Ci]/mM 

Blood Cytoplasm Nucleus 
plasma 

Figure 1.12: Speciation of [(1 6-bip)Ru(en)Cl] [5 pM] in blood plasma, cytoplasm 

and nucleus at equilibrium, calculated based on the chloride concentration and pH in 

these enviromnents and the equilibrium constant of aquation and pKa  of the complex 

[85]. 

(Figure 1.12), cf for cisplatin, the dominant species in the cell nucleus are the less 

reactive hydroxo forms [87]. 

1.4.4.3 Nucleobase and DNA binding 

Binding studies of ruthenium(ll) arene complexes with nucleobases are of 

special interest since DNA is the primary target of the archetypal metal-based drug, 

cisplatin [88]. 
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Sheidrick et al. have provided solid state evidence of the ability of a 

ruthenium arene fragment to coordinate to two guanine bases in the X-ray crystal 

structure of [(1 6-C6H6)Ru(H20)(9EtG) 2] (CF3SO3)2  [48]. 

Chelation of {(ii6-arene)Ru}2  to N7 and deprotonated N6 of adenine 

derivatives to give a 5-membered ring is facile, giving rise to tn- (or tetra-, when N9 

available) nuclear adducts (Figure 1.13) [48].  Reaction of [(116-benzene)Ru(D20)3]2  

with 5'-AMP (adenosine 5'-monophosphate) gives rise to diastereomeric cyclic 

trimers (ij  in which 5'-AMP is coordinated by Ni, N7 

and deprotonated N6 of 5'-AMP [47]. 

cyclic trimer Et 

H3C- 

H Il "' R ._ 

HiXN  
cyclic 	Ru 

tetramer 	i 

1 2+ 

N 

N 

a 
AUN 

' 

H3COO 
	 DNA intercalator 

Figure 1.13: Bridging modes of binding for 9-ethyladenine in a cyclic trimer and 

adenine in a cyclic tetramer. Complex containing a diamine as a DNA intercalator. 
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Frodi et al. [89] have incorporated the DNA intercalator dppz (dipyrido[3,2-

a:2',3'-c]phenazine) as a chelated diamine into [( 6-arene)Ru(Aa)(dppz)]' (Aa = L-

cysteine or L-methionine) complexes (Figure 1.13). Stable intercalative binding was 

observed with stability constants which increased from Ca. 105  to Ca. 107  as the 

charge on the complexes increased from +1 to +3. 

Reactions of complexes [(i 6-arene)Ru(en)X]', where arene = bip, THA, 

DHA, p-cym and bz, X = Cl -  or H20, with nucleic acid derivatives (Figure 1.14) as 

models of DNA were investigated [81]. For mononucleosides, {(rj 6-bip)Ru(en)} 2  

binds only to N7 of guanosine (Guo) and to N3 of thymidine (Thy). Binding to N3 of 

cytidine (Cyt) is weak, and almost no binding to adenosine (Ado) is observed. The 

reactivity of the various binding sites of nucleobases towards Ru 11  at neutral pH 

decreases in the order Guo(N7) > Thy(N3) > Cyt(N3) > Ado(N7), Ado(N1). 

Although this parallels the preference of cisplatin for binding with guanine (G) over 

adenine (A) [90],  the diamino Ru11  arene complexes are more highly discriminatory 

between G and A bases than Pt 11  complexes. This site-selectivity appears to be 

enhanced by the en NH2  groups, which H-bond with exocyclic oxygens (e.g. C60 of 

G, Figure 1.15) but are non-bonding and repulsive towards exocyclic amino groups 

of the nucleobases (e.g. C6NH2  of A, Figure 1.15). Strong stereospecific 

intramolecular H-bonding between an en NH proton oriented away from the arene 

and the C60 carbonyl of G is present in the crystal structures of these guanine 

adducts [91] (Figure 1.16; average N•••O distance 2.8 A, N-H••O angle 163°). 

For mononucleotides, the same pattern of site selectivity is observed with 

reactions proceeding via aquation of [(16-arene)Ru(en)Cl],  followed by rapid 

binding to the 5'-phosphate group, and then rearrangement to give N7, Ni or N3-

bound products [81]. In competitive reactions of [( 6-bip)Ru(en)Cl} with mono-

phosphates 5'-GMP, 5'-AMP, 5'-CMP and 5'-TMP, the only final adduct is [(16  

bip)Ru(en) GMP-N7} 2 . In solution, NMR studies provided evidence that en NH 
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Figure 1.14: Structures of mononucleosides (guanosine, adenosine, cytidine, 

thymidine), mononucleotides (5'-GMP, 5'-AMP, 5'-CMP, 5'-TMP), and cyclic 

nucleotides (cGMP, cAMP). 

protons of the 5'-GMP adduct are involved in strong H-bonding with the 5'-

phosphate and C60 of 5'-GMP. Significant amounts of the 5'-phosphate-bound 

species (40-60%) are also present at equilibrium for 5'-TMP, 5'-CMP and 5'-AMP. 
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Figure 1.15: H-bonding and steric interactions which give rise to strong binding of 

{ (i16-arene)Ru(en) 12, to guanine but very weak binding to adenine [81]. For clarity 

the arene and en ring are omitted in the right-hand (A) structure. 

Binding of {( 6-bip)Ru(en)} 2  to N7 of 5'-GMP lowers the pKa  of NiH by 

1.4 units. Such a lowering is also observed for Pt 11-G adducts [92, 93].  Metallation of 

N7 of G, which is accessible from the major groove of B-DNA, can therefore lead to 

significant electronic perturbations at NiH which is an H-bond donor in G-C base-

pairs in a Watson-Crick double helix. This may influence the stability of the duplex. 

No binding to the phosphodiester groups of 3',5'- cyclic guanosine 

monophosphate (cGMP) or cAMP (Figure 1.14) is detected, suggesting that Ru 1' 

arene complexes do not bind to the phosphodiester groups of the DNA backbone. 

There is evidence that N7-binding of guanine is also promoted by favourable 

arene-purine hydrophobic interactions in the associative transition state [81]. The 

rates of reaction of 3',5'- cyclic guanosine monophosphate with [(6  

arene)Ru(en)X]' (where X = Cl -  or 1120) (pH 7.0, 298 K, 100 mM NaC104) 

decrease in the order THA > bip > DHA >> p-cym > bz. Strong arene-nucleobase it-

stacking is present in the crystal structures of the 9-ethylguanine (9EtG) complexes 

[(
11

6-DHA)Ru(en)(9EtG-N7)](PF6)2 (Figure 1.16) and [( 716-THA)Ru(en)(9EtG-

N7)](PF6)2 [91]. The outer ring of the DHA ligand stacks over the purine base at a 

distance of 3.45 A, and for THA at 3.31 A, with dihedral angles of 3.3° and 3.1°, 

respectively. 
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(A 

RL 

ne 
A) 

I 
Figure 1.16: Arene-punne it - it stacking. A: [(16-DHA)Ru(en)(9EtG-N7)]2  [91]. 

Ru11  is coordinated to N7 and 06 of 9EtG and is strongly H-bonded to en-NH. B: 

Model of a strand of B-DNA showing how the coordinated arene could intercalate 

between a pair of G bases (model built by J.A. Parkinson, see [91]). 

In the crystal structure of the guanosine (Guo) adduct [( 6-bip)Ru(en)(Guo-

N7)](PF6)2 there is intramolecular stacking of the pendent phenyl ring with the purine 

five-membered ring (3.8 A, 23.8°). Despite no observed intramolecular stacking 

between the pendent phenyl ring and the purine six-membered ring, which have an 
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anti orientation in the structure of [(Tl 	in solution a syn 

orientation predominates for all the bip adducts as revealed by NMR NOE studies. 

The predominance of the syn orientation can be attributed to hydrophobic 

interactions between the arene and purine rings. The arene ligands are flexible 

through rotation around the arene-Ru it-bonds, through twisting about the Ph-Ph 

bond (for bip), and ring bending (for THA and DHA), so as to maximise intra- or 

intermolecular stacking with the purine ring (Table 1.2) [91]. 

While for most studied complexes aquation appears to be the first step in the 

reaction with guanine bases, the complex [(ri6-hmb)Ru(en)SPh]PF6,  where SPh = 

thiophenolate, does not hydrolyse yet it reacts with GMP [80].  The reaction has been 

proposed to proceed via oxidation of S (vide infra), which can then undergo direct 

substitution by GMP. 

The strong preference of { (T16-arene)Ru(en) 12+ complexes for guanine N7 

binding is attributable to a combination of the high electron density on G N7, the 

strong H-bonding between en NH and G C60 and possible arene-purine stacking. 

Thus direct coordination to the bases, intercalation, and stereospecific H-bonding are 

useful features to incorporate into the design of Ru 11  arene complexes to optimise the 

recognition of DNA. The strong preference for G bases may allow Ru" complexes to 

target selectively G-rich regions of DNA, such as telomeres which play key roles in 

cell division. Telomeres occur as guanine-rich overhangs at the 3' ends of eukaryotic 

chromosomes and typically contain repeat sequences such as (TTAGGG) [94]. 

The concept of induced-fit recognition of DNA by organometallic Ru 11  arene 

complexes containing dynamic stereogenic centers via dynamic epimerization, 

intercalation and cross-linking may be useful in the design of anticancer drugs [95]. 

For example, highly diastereoselective binding of 9EtG to the RRU*RN*  and SRURN 

diastereomers of [(ij  (Et-en = EtNHCH 2CH2NH2) (Figure 1.17) 

probably proceeds via epimerization of RRU*RN*  to SRu*RN*[(16bip)RuCl(Eten)]+  to 
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SRURN 

CI1U NH /\ 
N,) V H2 	
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Figure 1.17: Mono- and di-nuclear complexes containing chiral ruthenium and 

nitrogen centres. There are 10 possible configurations for the dinuclear complex: 

four racemic pairs, (R*R*R*R*)( ±) ,  (S*R*R*R*)( ±) ,  (R*S*R*R*)(±) and (S*R*R*S*)_ 

(±), and two meso forms, SSRR and SRSR. The synthesis of the mononuclear 

complex gives two diastereomers in the mol ratio RR U *RN* : SR U *RN* = 74:26. Each 

unit of the dinuclear complex has a similar population of diastereomers [95]. 

give selectively (95%) the SRU*RN*  adduct, although for the chloro complex the 

RRU*RN* diastereomer (73%) is more stable than the SRU*RN*  diastereomer (27%) [95]. 

The dinuclear complex [((16-bip)RuCl(en))2-(CH2)6]2  (Figure 1.17) has 

similar dynamic characteristics, induces a large unwinding (31 0) of plasmid DNA, 

and effectively inhibits DNA-directed RNA synthesis in vitro. This unwinding angle 

is more than twice that induced by the mononuclear complex [(11  

(Table 1.3) and is attributable to cross-linking of the DNA and perturbation of the 

DNA structure by the pendent phenyl rings. It is notable that Ru 1' complexes 

containing arenes which cannot intercalate into DNA (e.g. 

produce only small unwinding angles similar to the monofunctional Pt 11  complex 

[Pt(dien)Cl] (6 °  [961). 
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Table 1.3: Unwinding of supercoiled pSP731-CB DNA by Ru 11  arene complexes as 

determined from electrophoresis studies of the comigration of supercoiled and nicked 

forms [95, 96, 981. 

	

Complex 
	

Unwinding angle 

[(16-p-cymene)Ru(en)Cl] 	 70 

	

[Pt(dien)Cl] 
	

6°  

ftq6-bipheny1)Ru(en)Cl] 	 140  

ft1 6-tetrahydroanthracene)Ru(en)Cl] 	 140  

[(i6-dihydroanthracene)Ru(en)Cl] 	 140 

I(TI 	 140 
 

WTI 	 310 

1.4.4.4 Interactions with oligonucleotides and DNA 

The complex [(ij 	binds selectively to G bases on DNA 

oligonucleotides, forming Ru-G7  and Ru-G8  monoruthenated and G 7(Ru)-G8(Ru) 

diruthenated adducts on the 14-mer d(ATACATG 7G8TACATA) [72]. The reaction 

of the complementary strand d(TATG 4TACCATG 11TAT) with [(16W 

bip)Ru(en)Cl]PF6  in triethylammonium acetate buffer (pH 7.03) also gives mono-

and diruthenated oligonucleotides, as indicated by LC-ESI-MS [97].  At 310 K Ca. 

92% of the latter oligonucleotide is ruthenated, of which Ca. 52% forms the 

diruthenated product, further suggesting a high affinity of [(TI  for 

Gbases. 

Comparative studies have shown that [(i6-arene)Ru(en)Cl]  complexes (arene 

= bip, DHA, THA or p-cym) bind relatively rapidly to calf thymus (CT) DNA at 310 

K, with 50% binding in 3 h for the p-cym complex and 10-15 min for the others [98]. 

Circular dichroism (CD) data suggest that intercalation and/or minor groove binding 

are involved in the binding of the bip and anthracene derivatives, but not the p-cym 

complex, to CT DNA. Further evidence for partial intercalation of the bip, DHA and 
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THA complexes into DNA is provided by flow linear dichroism (LD), the induced 

loss of fluorescence of DNA-ethidium bromide adducts consistent with displacement 

of the intercalated ethidium cations by the Ru 11  arenes, as well as by characteristic 

differences in the melting temperature (t m, temperature at which transition from 

duplex to single-stranded DNA occurs) of CT DNA. Overall, the above results 

provide strong evidence for combined intercalative and coordinative binding modes 

for the bip and anthracene complexes. 

Distortions of DNA duplexes (15 - 20 base pairs) by complexes [(i 6-p-

cym)Ru(en)Cl] (Ru-p-cym, non-intercalating) and [(71  (Ru-THA, 

intercalating) were not recognized by the DNA-binding HMGB 1 protein [99],  which 

is in contrast to the proposed recognition of cisplatin and its direct analogues [100, 

1011. Removal of the above Ru 11  adducts from DNA (faster for Ru-p-cym than for 

Ru-THA) occurs preferentially by mechanisms other than nucleotide excision repair 

(a major mechanism contributing to cisplatin resistance) [102, 103, 104]. This 

provides additional support for a different mechanism for antitumour activity of Ru 

arene complexes compared to cisplatin. 

1.4.4.5 Reactions with amino acids and proteins 

Reactions between the sulfur-containing amino acids cysteine and methionine 

(Figure 1.18) and ruthenium(ll) arene anticancer complexes are of much interest in 

view of the strong influence of sulfur amino acids on the intracellular chemistry of 

platinum drugs, in particular, their involvement in detoxification and resistance 

mechanisms [36].  Protein targets may also play a role in the mechanism of action of 

Ru11  arene complexes, including the possibility that ruthenium can substitute for iron 

in proteins. 

It was found [82] that [(1 6-bip)Ru(en)Cl]PF6  reacts slowly, and only to about 

50% completion, with the thiol amino acid L-cysteine (L-Cys) in aqueous solution at 
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HS.øa rco2 	H3C S.. T CO2  
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?r Co2  Nj..... rC O2 <-* I 
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Figure 1.18: Structures of cysteine, methiomne and histidine. 

310 K, pH 2-5 at a 1:2 mM ratio. Reactions appeared to involve aquation as the first 

step followed by initial formation of 1:1 adducts via substitution of Cl by S-bound or 

0-bound cysteine. Two dinuclear complexes were also detected as products from the 

reaction. These arise from the loss of chelated ethylenediamine, and contain one or 

two bridging cysteines. The unusual cluster species {(bip)Ru} s  was also formed 

especially at higher cysteine concentrations. The reaction was suppressed in 50 mM 

triethylammonium acetate solution at pH> 5 or in 100 mM NaCl suggesting that 

thiols may not readily inactivate Ru' 1-en arene complexes in blood plasma or in cells. 

Similarly, reactions with the thioether sulfur of methionine appeared to be relatively 

weak. Only 27% of [( 6-bip)Ru(en)Cl]PF6 reacted with L-methionine (L-Met) at an 

initial pH of 5.7 after 48 h at 310 K, and gave rise to only one adduct [(11

bip)Ru(en)(L-Met-S)] 2 . 

In recent work the surprisingly facile oxidation of the sulfur of coordinated 

glutathione (y-L-Glu-L-Cys-Gly, GSH) to give sulfenato complexes was detected 

[105]. Ruthenium-bound sulfenato ligands appear to be readily displaced by guanine. 

Under physiologically-relevant conditions a competition reaction of [(1 6 W 

bip)Ru(en)Cl]PF6  with 250 mol equivalents of GSH and 25 mol equivalents of 
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cGMP gave rise to the cGMP adduct [(il 	as the major adduct 

(ca. 62%). Hence, there may be redox-mediated pathways for the ruthenation of 

DNA (and RNA) via glutathione intermediates. Glutathione is present in cells at 

millimolar concentrations [106]. 

Histidine residues are also possible binding sites for ruthenium arene 

complexes in proteins. Hence, the reaction of [ 6-bip)Ru(en)Cl]PF6 with L-histidine 

(L-His, Figure 1.18) was studied in aqueous solution at 310 K [97].  This reaction is 

also slow, and gives two isomeric imidazole-bound L-His adducts, [(16 

bip)Ru(en)Na-L-His] 2  and [(i16-bip)Ru(en)Ne-L-His] 21. Considering the two isomers 

together, an equilibrium constant of 0.14 niM' was determined for the reaction 

between L-His and the aquated species [(i 6-bip)Ru(en)H20] 2t Comparison of this 

value to those obtained for L-cysteine (0.60 mlvf 1 ) and L-methionine (0.34 mM') 

[82] suggests that the affinity of the 1(il 6-bip)Ru(en) 12,  fragment for these amino 

acids decrease in the order L-Cys > L-Met > L-His. 

Reactions between [(il 	and the haem protein cytochrome c 

have also been studied [97].  Cytochrome c has a buried (His26) and an exposed 

surface histidine residue (His33). Electrospray mass spectrometry indicated that in 

both water (pH 8.7) and triethylammonium acetate buffer (pH 7.6) only 

monoruthenated cytochrome c products are formed, even when [(11 

bip)Ru(en)Cl]PF6 is present in ten-fold molar excess. Analysis by ICP-AES revealed 

that 50% of cytochrome c was ruthenated. Interestingly, 2D [ 1 H, 15N] HSQC NMR 

data show that the ruthenium complexes are bound to carboxylate groups (ca. 30%) 

and the amino terminus (ca. 70%), instead of the histidine residues, of cytochrome c. 

This is probably due to the steric constraints imposed on the single coordination site 

of {0 6-bip)Ru(en)} 2  by the arene and en ligands. 

The presence of cytochrome c (1 mol equiv) or L-histidine (4 mol equiv), has 

little effect on the amounts of mono- and diruthenated oligonucleotide products 
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formed, and no ftri6-bip)Ru(en)] - histidine or [( 6-bip)Ru(en)] - cytochrome c 

adducts are detected [97]. 

In complexes of the type [(i6-arene)Ru(en)C11  the en chelate ring remains 

bound under most tested conditions. Other reactions of ruthenium(ll) arene 

complexes studied could be of relevance to systems where loss of the chelating 

ligand occurs, as has been observed for some osmium arene complexes [107]. Apart 

from potential formation of bis-guanine adducts [48] and chelation of adenine bases 

[47] (vide supra), binding of amino acids and peptides in modes different to those 

found for { (ri6-arene)Ru(en) 12, is possible. Examples include the X-ray crystal 

structures of the complexes [(1 6-benzene)Ru(Aa)Cl], where Aa = penicillamine, 

histidine methyl ester and triglycine [45].  Penicillamine is chelated via the amino 

group and thiolate S which bridges between two Ru atoms giving a 4-membered Ru-

S-Ru-S ring (Figure 1.19). Histidine is chelated via amino and imidazole nitrogens, 

and in the triglycine complex (prepared in water by reaction with the dimer [(1 6  

benzene)RuC1 21 2), the tripeptide is chelated via the amino terminus and a 

deprotonated peptide N. 

Another possibility of coordination for such complexes is illustrated by the 

arene ruthenium-enzyme complex KTI  X-ray 

crystallography (at 1.6 A resolution) showed that the ruthenium atom is selectively 

O H  r 

Ry 

NHN 

Figure 1.19: Dinuclear complex with bridging penicillamine thiolate sulfurs. 
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bound to NE of the imidazole ring of Hisl5, situated at the surface of the protein 

(Figure 1.20) [108]. Ruthenation has little effect on the rest of the enzyme structure 

and the Ru complex is provided with a rather hydrophobic binding pocket. The 

specificity of the binding of {( 6-p-cym)RuC12} to lysozyme and the ability of Ru" 

arene complexes to catalyse transfer hydrogenation reactions [109] suggest that 

ruthen i um -protein complexes might provide a basis for the design of enantioselective 

artificial metalloenzymes [110]. 

Arg14 

Hisl 

(A) 	 (B) 

Figure 1.20: Crystal structure of [(r 6-p-cym)Ru(1ysozyme)C1 2]. A: space-filling 

model (with surface colouring to indicate the electrostatic potential: red - negative, 

blue - positive) showing the position of the Ru complex (ball-and-stick model) in the 

protein. B: details of the binding pocket showing the side-chains of the His 15, Asp87 

and Argl4 residues [1081. 

It is possible that the histidine-bound Ru-lysozyme complex is the kinetic 

product of the reaction between the enzyme and [( 6-p-cym)Ru(H20)C12], and that 

slow conversion to a thermodynamically more stable complex, with Ru it-bonded to 

an aromatic side-chain, could occur. Under some conditions it is possible to form it-

complexes between {(arene)Ru"} I {CpRu") and aromatic amino acid side-chains 

(Phe, Trp) [111, 112],  although such reactions are often blocked when competitive 

binding to other side-chain donors (e.g. His, Asp, Glu) is possible. 

32 



Chapter 1 

Overall, the observed preference of [(i 6-arene)Ru(en)Cl] complexes to bind 

to DNA, also when under competition from amino acids, proteins and GSH, suggests 

that DNA (or RNA) could be the favoured binding site for this type of complex. The 

lower reactivity of the latter biornolecules towards ruthenium arene complexes may 

account for the low toxic side effects of such complexes [75].  On the other hand, the 

relatively weak binding of amino acids and proteins to these complexes may aid the 

transport and delivery of the latter to cancer cells, and allow some amino acids, 

peptides and proteins to serve as drug reservoirs for DNA ruthenation, as has been 

proposed for cisplatin [36]. 

1.5 Project Aims 

Previous work in the Sadler group on ruthenium(ll) arene complexes has 

focussed on monofunctional, ethylenediamine-containing complexes of the type [(1 6  

arene)Ru(en)Cl]t In order to broaden the scope of ruthenium(H) arene complexes as 

potential anticancer compounds in general it is important to a): investigate different 

structural features, which could lead to a different spectrum of activity and b): learn 

more about the associated solution chemistry, including reactions with potential 

target sites. Therefore this project was concerned with the following topics. 

Synthesis of ruthenium(ll) arene complexes containing monoanionic 0,0-

chelating ligands. 

Evaluation of their cytotoxic activity and investigations of structure-activity 

relationships. 

Studies of the role of the chelating ligand in monofuntional Ru 11  arene complexes 

on the rate and extent of hydrolysis. 

Investigation of possible changes in the binding to DNA bases resulting from 

changing the H-bond donating amine group in ethylenediarnine to an H-bond 

accepting oxygen in 0,0-chelating ligands. 
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Establishment of a synthetic route for novel, bifunctional, water-soluble, 

nitrogen-containing tethered ruthenium(ll) arene complexes. 

Studies of the aqueous chemistry relevant to potential applications as anticancer 

agents, including stability, hydrolysis and control of reactivity. The possible 

influence of the amine group in the tether backbone on the formation of 

bifunctional guanine adducts via H-bond donation was of particular interest. 

Investigation of hydride transfer reactions by cytotoxic, ethylenediamine-

containing ruthenium(ll) arene complexes and their possible relevance for 

cytotoxic activity, including the study of a potential target molecule. 

1.6 References 

P.J. Sadler, Adv. Inorg. Chem. 1991, 36, 1-48. 

M.J. Clarke, Coord. Chem. Rev. 2003,236, 209-233. 

Z. Guo, P.J. Sadler, Angew. Chem. mt. Ed. 1999, 38, 1512-1531. 

Z. Guo, P.J. Sadler, Adv. Inorg. Chem. 2000, 49, 183-306. 

M.J. Cleare, J.D. Hoeschele, Bioinorg. Chem. 1973, 2, 187-2 10. 

R.D. Murdoch, J. Pepys, mt. Arch. Allergy Appl. Immunol. 1985, 77, 456-458. 

H.M. Pinedo, J.H. Schornagel (Eds.), Platinum and Other Metal Coordination 

Compounds in Cancer Chemotherapy, Plenum, New York, 1996. 

J. Halpern, Pure Appi. Chem. 2001, 73, 209-220. 

G. Jaouen, W. Beck, M.J. McGlinchey, in Bioorganometallics: Biomolecules, 

Labeling, Medicine, Vol. 1, (Ed. G. Jaouen), Wiley VCH Verlag GmbH & Co. 

KGaA: Weinheim, 2006, pp.  1-37. 

R.H. Fish, G. Jaouen, Organometallics 2003,22, 2166-2177. 

C. Elschenbroich, A. Saizer, Organometallics: a concise introduction, VCH, 

Weinheim, 2nd edn., 1992. 

"A 
.3'.' 



Chapter 1 

P. Kopf-Maier, H. Kopf, in Metal Compounds in Cancer Therapy, S. P. Fricker 

(Ed.); Chapman & Hall, London, 1994, pp. 109-146. 

G. Jaouen, A. Vessières, I.S. Butler, Acc. Chem. Res. 1993, 26, 36 1-369. 

R. Alberto, R. Schibli, R. Waibel, U. Abram, A.P. Schubiger, Coord. Chem. 

Rev. 1999, 190-192, 901-919. 

R.H. Fish, Coord. Chem. Rev. 1999, 185-186, 569-584. 

F. Le Bideau, M. Salmain, S. Top, G. Jaouen, Chem. Eur. J. 2001, 7, 2289-

2294. 

B. Rosenberg, L. van Camp, J.E. Trosko, V.H. Mansour, Nature (London) 1969, 

222, 385-386. 

E.R. Jamieson, S.J. Lippard, Chem. Rev. 1999, 99,2467 - 2498. 

M. Guo, Z. Guo, P.J. Sadler, J. Biol. Inorg. Chem. 2001, 6, 698-707. 

K. Mross, P. Robben-Bathe, L. Edler, J. Baumgart, W.E. Berdel, H. Fiebig, C. 

Unger, Onkologie 2000, 23, 576-579. 

N. Kroger, U.R. Kleeberg, K. Mross, L. Edler, G. Safi, D.K. Hossfeld, 

Onkologie 2000, 23, 60-62. 

T. Pieper, K. Borsky, B.K. Keppler in Topics in Biological Inorganic Chemistry, 

Vol. 1, M.J. Clarke, P.J. Sadler (Eds.), Springer Verlag, Berlin, 1999, pp.  17 1-199. 

S. Top, A. Vessieres, C. Cabestaing, I. Laios, G. Leclercq, C. Provot, G. Jaouen, 

J. Organomet. Chem. 2001, 63 7-639, 500-506. 

S. Top, A. Vessieres, G. Leclercq, J. Quivy, J. Tang, J. Vaissermann, M. Huche, 

G. Jaouen, Chem. Eur. J. 2003, 9, 5223-5236. 

C.S. Allardyce, A. Dorcier, C. Scolaro, P.J. Dyson, App!. Organometal. Chem. 

2005, 19, 1-10. 

D.S. Dwyer, K. Gordon, B. Jones, mt. J. Immunopharm. 1995, 17, 93 1-940. 

M.J. Clarke, V. Bailey, P. Doan, C. Hiller, K.J. LaChance-Galang, H. Daghlian, 

S. Mandal, C.M. Bastos, D. Lang, Inorg. Chem. 1996, 35, 4896-4903. 

35 



Chapter 1 

T.W. Hayton, P. Legzdins, W.B. Sharp, Chem. Rev. 2002, 102, 935-991. 

C.S. Allardyce, P.J. Dyson, D.J. Ellis, P.A. Salter, R. Scopelliti, J. Organomet. 

Chem. 2003, 668, 35-42. 

R.A. Sanchez-Delgado, M. Navarro, H. Perez, J.A. Urbina, J. Med. Chem. 1996, 

39, 1095-1099. 

K.C. Reed, F.L. Bygrave, Biochem. J. 1974, 140, 143-155. 

M.J. Clarke, Met. Ions Biol. Syst. 1980, 11, 23 1-283. 

M.J. Clarke, S. Bitler, D. Rennert, M. Buchbinder, A.D. Kelman, J. Inorg. 

Biochem. 1980, 12, 79-87. 

G.M. Coleman, J.W. Gesler, E.A. Shirley, J.R. Kuempel, Inorg. Chem. 1973, 

12, 1036-1038. 

J.A. Marchant, T. Matsubara, P.C. Ford, Inorg. Chem. 1977, 16, 2160-2165. 

J. Reedijk, Proc. Nati. Acad. Sci. USA 2003, 100, 3611-3616. 

C.G. Kuehn, H. Taube, J. Am. Chem. Soc. 1976, 98, 689-702. 

D. Frasca, M.J. Clarke, J. Am. Chem. Soc. 1999, 121, 8523-8532. 

G. Sava, E. Alessio, A. Bergamo, G. Mestroni in Topics in Biological Inorganic 

Chemistry, Vol. 1, M.J. Clarke, P.J. Sadler (Eds.), Springer Verlag, Berlin, 1999, pp. 

143-169. 

M. Galanski, V.B. Anon, M.A. Jakupec, B.K. Keppler, Curr. Pharin. Des. 2003, 

9, 2078-2089. 

A.H. Velders, H. Kooijman, A.L. Spek, J.G. Haasnoot, D. de Vos, J. Reedijk, 

Inorg. Chem. 2000, 39, 2966-2967. 

R.A. Vilaplana, F. González-Vflchez, E. Gutierrez-Puebla, C. Ruiz-Valero, 

lnorg. Chim. Acta 1994, 224, 15-18. 

Z. Guo, A. Habtemaniam, P.J. Sadler, B.R. James, Inorg. Chim. Acta 1998, 273, 

1-7. 

W.S. Sheldrick, S. Heeb, J. Organomet. Chem. 1989, 377, 357-366. 

36 



Chapter 1 

W.S. Sheidrick, S. Heeb, Inorg. Chim. Acta 1990, 168, 93-100. 

W.S. Sheidrick, H.S. Hagen-Eckhard, S. Heeb, Inorg. Chim. Acta 1993, 206, 

15-21. 

S. Korn, W.S. Sheidrick, J. Chem. Soc., Dalton Trans. 1997, 2191-2199. 

S. Kom, W.S. Sheidrick, Inorg. Chim. Acta 1997,254, 85-91. 

P. Annen, S. Schildberg, W.S. Sheidrick, Inorg. Chim. Acta 2000, 307, 115-

214. 

Y.K. Yan, M. Meichart, A. Habtemariam, P.J. Sadler, Chem. Commun. 2005, 

4764-4776. 

M. Meichart, P.J. Sadler in Bioorganometallics: Biomolecules, Labeling, 

Medicine, Vol. 1, (Ed. G. Jaouen), Wiley VCH Verlag GmbH & Co. KGaA: 

Weinheim, 2006, pp. 39-64. 

H. Le Bozec, P. Touchard, P.H. Dixneuf, Adv. Organomet. Chem. 1989, 29, 

163-247. 

J. Soleimannejad, A. Sisson, C. White, Inorg. Chim. Acta 2003, 352, 121-128. 

M. Bassetti, F. Centola, D. Semen!, C. Bruneau, P.H. Dixneuf, Organometallics 

2003, 22, 4459-4466. 

D. Jan, L. Delaude, F. Simal, A. Demonceau, A.F. Noels, J. Organomet. Chem. 

2000, 606, 55-64. 

S. Ogo, T. Abura, Y. Watanabe, Organometallics 2002,21, 2964-2969. 

E.O. Fischer, R. Böttcher, Z. Anorg. Allgem. Chem. 1957,291, 305-309. 

E.O. Fischer, C. Elschenbroich, C.G. Kreiter, J. Organomet. Chem. 1967, 7, 

481-485. 

G. Winkhaus, H. Singer, J. Organomet. Chem. 1967, 7, 487-491. 

M.A. Bennett, G.B. Robertson, A.K. Smith, J. Organomet. Chem. 1972, 43, 

C41—C43. 

R.A. Zelonka, M.C. Baird, J. Organomet. Chem. 1972, 35, C43—C46. 

37 



Chapter 1 

S. Suravajjala, J.R. Polam, L.C. Porter, J. Organomet. Chem. 1993, 461, 201-

205. 

S. Bhambri, D.A. Tocher, Polyhedron 1996, 15, 2763-2770. 

E.L. Muetterties, J.R. Bleeke, E.J. Wucherer, T.A. Albright, Chem. Rev. 1982, 

82, 499-525. 

B. Therrien, T.R. Ward, M. Pilkington, C. Hoffmann, F. Gilardoni, J. Weber, 

Organometallics 1998, 17, 330-337. 

M.A. Bennett, A.J. Edwards, J.R. Harper, T. Khimyak, A.C. Willis, J. 

Organomet. Chem. 2001, 629, 7-18. 

F. Simal, D. Jan, A. Demonceau, A.F. Noels, Tetrahedron Lett. 1999, 40, 1653-

1656. 

Y. Miyaki, T. Onishi, S. Ogoshi, H. Kurosawa, J. Organomet. Chem. 2000, 616, 

135— 139. 

J.R. Miura, J.B. Davidson, G.C. Hincapié, D.J. Burkey, Organometallics 2002, 

21, 584-586. 

C.M. Hartshorn, P.J. Steel, Angew. Chem. mt. Ed. Engi. 1996, 35, 2655-2657. 

W.Y. Sun, J. Xie, T. Okamura, C.K. Huang, N. Ueyama, Chem. Commun. 2000, 

1429-1430. 

R.E. Morris, R.E. Aird, P. del S. Murdoch, H. Chen, J. Cummings, N.D. 

Hughes, S. Parsons, A. Parkin, G. Boyd, D.I. Jodrell, P.J. Sadler, J. Chem. Med. 

2001, 44, 3616-3621. 

L.D. Dale, J.H. Tocher, T.M. Dyson, D.I. Edwards, D.A. Tocher, Anti-Cancer 

Drug Design 1992, 7, 3-14. 

B. cetinkaya, I. Ozdemir, B. Binbaiog1u, R. Durmaz, S. Gunal, Arzneim.-

Forsch./D rug Res. 1999, 49, 538-540. 

R.E. Aird, J. Cummings, A.A. Ritchie, M. Muir, R.E. Morris, H. Chen, P.J. 

Sadler, D.I. Jodrell, Br. J. Cancer 2002, 86, 1652-1657. 

38 



Chapter 1 

Y.N.V. Gopal, D. Jayaraju, A.K. Kondapi, Biochemistry 1999, 38, 4382-4388. 

L.A. Huxham, E.L.S. Cheu, B.O. Patrick, B.R. James, Inorg. Chim. Acta 2003, 

352, 238-246. 

C. Scolaro, A. Bergamo, L. Brescacin, R. Delfino, M. Cocchietto, G. Laurenczy, 

T.J. Geldbach, G. Sava, P.J. Dyson, J. Med. Chem. 2005, 48, 4161-4171. 

A. Habtemariam, M. Meichart, R. Fernández, S. Parsons, I.D.H. Oswald, A. 

Parkin, F.P.A. Fabbiani, J.E. Davidson, A. Dawson, R.E. Aird, D.I. Jodrell, P.J. 

Sadler, J. Med. Chem., in press. 

F. Wang, A. Habtemariam, E.P.L. van der Geer, R. Fernández, M. Melchart, 

R.J. Deeth, R. Aird, S. Guichard, F.P.A. Fabbiani, P. Lozano-Casal, I.D.H. Oswald, 

D.I. Jodrell, S. Parsons, P.J. Sadler, Proc. Nail. Acad. Sci. USA 2005, 102, 18269-

18274. 

H. Chen, J.A. Parkinson, R.E. Morris, P.J. Sadler, J. Am. Chem. Soc. 2003, 125, 

173-186. 

F. Wang, H. Chen, J.A. Parkinson, P. del S. Murdoch, P.J. Sadler, Inorg. Chem. 

2002, 41, 4509-4523. 

Y. Hung, W.J. Kung, H. Taube, Inorg. Chem. 1981, 20, 457-463. 

L. Dadci, H. Elias, U. Frey, A. Hornig, U. Koelle, A.E. Merbach, H. Paulus, J.S. 

Schneider, Inorg. Chem. 1995, 34, 306-315. 

F. Wang, H. Chen, S. Parsons, I.D.H. Oswald, J.E. Davidson, P.J. Sadler, Chem. 

Eur. J. 2003, 9, 5810-5820. 

M. Jennerwein, P.A. Andrews, Drug Metab. Dispos. 1995, 23, 178-184. 

R.B. Martin, in Cisplatin: Chemistry and Biochemistry of a Leading Anticancer 

Drug, B. Lippert (Ed), Wiley-VCH, Zurich, 1999, pp.  183-205. 

S.E. Sherman, S.J. Lippard, Chem. Rev. 1987, 87, 1153-1181. 

A. Frodl, D. Herebian, W.S. Sheidrick, J. Chem. Soc., Dalton Trans. 2002, 

3664-3673. 

39 



Chapter 1 

M.H. Baik, R.A. Friesner, S.J. Lippard, J. Am. Chem. Soc. 2003, 125, 14082-

14092. 

H. Chen, J.A. Parkinson, S. Parsons, R.A. Coxall, R.O. Gould, P.J. Sadler, J. 

Am. Chem. Soc. 2003, 125, 3064-3082. 

K. Inagaki, Y. Kidani, J. Inorg. Biochem. 1979, 11, 39-47. 

G. Schröder, B. Lippert, M. Sabat, C.J.L. Lock, R. Faggiani, B. Song, H. Sigel, 

J. Chem. Soc., Dalton Trans. 1995, 3767-3776. 

S. Neidle, Nucleic Acid Structure and Recognition, Oxford University Press, 

Oxford, 2002, pp. 76-81. 

H. Chen, J.A. Parkinson, 0. Novakova, J. Bella, F. Wang, A. Dawson, R. 

Gould, S. Parsons, V. Brabec, P.J. Sadler, Proc. Nati. Acad. Sci. USA 2003, 100, 

14623-14628. 

M.V. Keck, S.J. Lippard, J. Am. Chem. Soc. 1992, 114, 3386-3390. 

F. Wang, J. Bella, J.A. Parkinson, P.J. Sadler, J. Biol. Inorg. Chem. 2005, 10, 

147-155. 

0. Novakova, H. Chen, 0. Vrana, A. Rodger, P.J. Sadler, V. Brabec, 

Biochemistry 2003,42, 11544-11554. 

0. Novakova, J. Kasparkova, V. Bursova, C. Hofr, M. Vojtiskova, H. Chen, P.J. 

Sadler, V. Brabec, Chem. Biol. 2005, 12, 121-129. 

S.M. Cohen, S.J. Lippard, in Progress in Nucleic Acid Research and 

Molecular Biology, vol. 67, K. Moldave (Ed), Academic Press, San Diego, 2001, pp. 

93-130. 

V. Brabec, in Progress in Nucleic Acid Research and Molecular Biology, vol. 

71, K. Moldave (Ed), Academic Press, San Diego, 2002, pp. 1-68. 

T. Furuta, T. Ueda, G. Aune, A. Sarasin, K.H. Kraemer, Y. Pommier, Cancer 

Res. 2002, 62, 4899-4902. 

40 



Chapter 1 

D. Wang, R. Hara, G. Singh, A. Sancar, S.J. Lippard, Biochemistry 2003, 42, 

6747-6753. 

M. Selvakumaran, D.A. Pisarcik, R. Bao, A.T. Yeung, T.C. Hamilton, Cancer 

Res. 2003,63, 1311-1316. 

F. Wang, J. Xu, A. Habtemariam, J. Bella, P.J. Sadler, J. Am. Chem. Soc. 2005, 

127, 17734-17743. 

N.S. Kosower, E.M. Kosower, mt. Rev. Cytol. 1978, 54, 109-160. 

A.F.A. Peacock, A. Habtemariam, R. Fernández, V. Walland, F.P.A. Fabbiani, 

S. Parsons, R.E. Aird, D.I. Jodrell, P.J. Sadler, J. Am. Chem. Soc. 2006, 128, 1739-

1748. 

I.W. McNae, K. Fishburne, A. Habtemariam, T.M. Hunter, M. Melchart, F. 

Wang, M.D. Walkinshaw, P.J. Sadler, Chem. Commun. 2004, 1786-1787. 

S. Ogo, T. Abura, Y. Watanabe, Organometallics 2002, 21, 2964-2969. 

C.M. Thomas, T.R. Ward, Chem. Soc. Rev. 2005, 34, 337-346. 

A. SchiUter, K. Bieber, W.S. Sheidrick, Inorg. Chim. Acta 2002, 340, 35-43. 

D.B. Grotjahn, Coord. Chem. Rev. 1999, 190-192, 1125-1141. 

41 



Chapter 2 

Chapter 2 
Materials and Methods 

2.1 Chemicals 

Most reagents were obtained from Aldrich, including D 20 (99.9%), CDC13  

(99.8%), MeOD-d4  (99.8%) and DMSO-d6  (99.9%). Nucleic acid derivatives were 

acquired from Sigma Aldrich. Sodium acetate, pyridine and potassium carbonate 

anhydrous was purchased from BDH. Most solvents, as well as silver nitrate, dried 

magnesium sulphate, sodium hydroxide and sodium chloride, were supplied by 

Fisher. Methyl sulfoxide, benzoic acid and 4-phenylphenol were obtained from 

Acros. Nitromethane, lithium aluminium hydride, anhydrous silver tetrafluoroborate 

and pentamethylbenzaldehyde were purchased from Fluka. Hexane and 1 ,4-dioxane 

were supplied by Rathbum. 3,5-Difluoropyridine was obtained from Lancaster and 

1,2-dichioroethane from both Prolabo and Aldrich. RuC1 3 .xH20 was acquired from 

Alfa Aesar. 

All chemicals were used as received. Where applicable, solvents were dried 

using standard methods (THFINa/benzophenone; diethyl ether/Na; acetoneIK 2CO3 ; 

methanolfMgll and ethanol/Mg/I). 

2.2 NMR Spectroscopy 

1 H NMR spectra were acquired in 5mm NMR tubes at 298 K (unless stated 

otherwise) on either Bruker DMX 500, Bruker DPX 360, Bruker AVA 600, Bruker 

BlO 600 or a Bruker AVA 800 NMR spectrometers, respectively, using TBI [ 1H, 

13C, X] or TXI ['H, 13C, X] probeheads and equipped for z-field gradients. All data 

processing was carried out using XWIN-NMR version 3.6 (Bruker U.K. Ltd.). 'H 

NMR chemical shifts were internally referenced to TSP or TMS via 1 ,4-dioxane 
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(3.75 ppm), CHC13  (7.27 ppm), MeOH (3.31 ppm) or residual DMSO (2.50 ppm). 

Juraj Bella, University of Edinburgh, assisted in some of the NMR work. 

1D spectra were recorded using standard pulse sequences. Typically, data 

were acquired with 64 transients into 16 k data points over a spectral width of 14 

ppm. 2D spectra were recorded using standard pulse pulse sequences, which were 

modified by Dr. Dusan Uhrin and Mr. Juraj Bella, University of Edinburgh. Water 

signals were suppressed using "Presaturation" and "Shaka" [1]. 

COSY (Correlation SpectroscopY) was used to identify pairs of nuclei which 

are J-coupled to one another [2, 3]. Typically, data were acquired with 2 transients 

into 1024 data points over a spectral width of 10 ppm using a relaxation delay of 1.5 

s and a mixing time of 0.06 s. 2D NOESY (Nuclear Overhauser Effect 

SpectroscopY) [4, 5] and 2D ROESY (Rotating frame nuclear Overhauser Effect 

SpectroscopY) [6, 7] were used to establish structural information resulting from 

through space interactions between protons that are in close spatial proximity. 

Typically, data were acquired with 16 - 32 transients into 2048 data points over a 

spectral width of 10 ppm using a relaxation delay of 1.5 s and a mixing time (for 

NOESY) of 0.4 - 0.6 s. 

2.3 X-ray Crystallography 

Diffraction data were collected with Mo-Ka radiation on a Bruker Smart 

APEX CCD diffractometer equipped with an Oxford Cryosystems low-temperature 

device typically operating at 150 K. Data collection and solution of the structures 

were carried out by Dr. Simon Parsons and co-workers in the School of Chemistry, 

University of Edinburgh. Absorption corrections were applied with the multi-scan 

procedure SADABS [8]. The structures of complexes 3.7, 3.21a, 3.22, 3.24, 3.26, 

4.4, 4.16 and 4.20 were solved by Patterson methods (DIRDIF) [9], those of 

complexes 3.5, 3.6, 3.8, 3.25a, 4.5, 4.6, 4.7, 4.10, 4.11b, 4.14, 4.18, 4.31 and 4.32 by 

43 



Chapter 2 

direct methods (S1R92) [10].  All structures were refined by full-matrix least squares 

against F2  using SHELXL-97 [11], except for complexes 3.22, 3.24, 3.25a, 3.26, 4.4, 

4.6, 4.7, 4.11b, 4.31 and 4.32 where CRYSTALS was used [12]. 

2.4 CHN Analysis 

CHN elemental analysis was performed by the CHN service at the University 

of St Andrews, except for complexes 3.5, 3.6, 3.7 and 3.8, which were analysed at 

the University of Edinburgh. 

2.5 pH Measurements 

The pH values of NMR solutions were measured at ambient temperature 

directly in the NMR tube, before and after recording NMR spectra, using a Corning 

145 pH meter equipped with an Aldrich micro combination electrode calibrated with 

Aldrich buffer solutions at pH 4, 7 and 10. The pH values were adjusted with dilute 

HC104  and NaOH. No correction has been applied for the effect of deuterium on the 

glass electrode. For measurements in D 20, pH* = pH meter reading of the solution. 

The pKa  values were determined by fitting the 'H NMR pH titration curves to 

the Henderson - Hasselbalch equation using the program KALEIDAGRAPH [13], 

with the assumption that the observed chemical shifts are weighted averages 

according to the population of the protonated and deprotonated species. 

2.6 IR Spectroscopy 

Infrared spectra were recorded by Mr. Alejandro Sanchez-Perucha, 

University of Edinburgh, as KBr pellets in the range 4000 - 400 cm 1  on a Perkin-

Elmer Paragon 1000 Fourier-transform spectrometer. 
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2.7 Electrospray lonisation-Mass Spectrometry (MS-ES) 

Positive-ion electrospray ionisation mass spectra were obtained on a Platform 

II mass spectrometer (Micromass, Manchester, UK) with the assistance of Drs. Fabio 

Zobi and Ana Pizarro, University of Edinburgh. Data were processed using Masslynx 

(version 3.5) Windows XP PC data systems. 

2.8 Pressure Vessel 

The pressure vessel was manufactured by Mr. Stuart Johnstone, University of 

Edinburgh. It is a modified Quickfit round bottom flask equipped with a lid 

containing a rubber ring, which can be sealed tightly with a metal clamp (Figure 2.1). 

The reactions were performed in an oil bath at 393 K (boiling point of 1,2-

dichloroethane is 357 K). During the reactions, the oil bath with the immersed 

pressure vessel was covered in Al-foil to prevent potential photochemical 

decomposition pathways (Figure 2.2). 

Caution!!! Despite not having encountered any problems during these 

syntheses of tethered complexes (Chapter 4), the vessel is under pressure. Blast 

screens should be placed around the experimental set-up (Figure 2.2) and appropriate 

precautions taken in case of an explosion. After heating, the pressure vessel was 

allowed to cool to ambient temperature to reduce the internal pressure inside the 

vessel. 

2.9 Molecular Models 

Molecular models were constructed using the program Spartan'02 

(Wavefunction Inc., Irvine CA, USA) using molecular mechanics (MMFF forcefield) 

followed by semi - empirical molecular orbital (PM3) calculations. 
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Figure 2.1: The pressure vessel, consisting of a modified Quicklit round bottom 

flask equipped with a lid containing a rubber ring and a metal clamp (right). The 

locked vessel is shown on the left. 

Figure 2.2: Full experimental set-

up for the synthesis of tethered 

Ru 1' arene complexes using the 

pressure vessel. The oil bath with 

the immersed pressure vessel is 

covered with Al-foil. For safety 

reasons, blast screens are placed 

around the set-up. 

-' 

!j 
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Chapter 3 
Ruthenium(II) Arene Complexes Containing 

Monoanionic 0,0-Chelating Ligands 

3.1 Introduction 

Metal complexes have potential for design as novel therapeutic agents [1, 2]. 

Some metal complexes are relatively inert, but others are likely to be pro-drugs 

which undergo ligand substitution and/or redox reactions before they reach their 

target site. An example is the successful anticancer drug cisplatin which is activated 

in cells by aquation. 

Half-sandwich ruthenium(ll) arene complexes of the type [(ij 

arene)Ru(en)Cl] (Figure 3.1), where en = ethylenediamine, exhibit anticancer 

activity both in vitro [3, 4, 51 and in vivo [6],  including activity against cisplatin-

resistant cancer cells. They bind to DNA oligonucleotides forming monofunctional 

adducts [4, 7].  For complexes such as [(TI  containing the H-

bond donor en, there is exclusive binding to N7 of guanine in competitive nucleobase 

reactions with a strong H-bond between the carbonyl C60 and en-NH [8]. In the 

absence of guanine, binding to cytosine or thymine but not to adenine is observed 

[9]. The reaction proceeds via initial aquation of the chioro complex. 

For metal complexes in general, the nature of the metal ion, its oxidation 

state, and the types and number of bound ligands, can all exert a critical influence on 

the biological activity of a metal complex [1, 2]. With this in mind, it was of interest 

to explore ways in which to influence and control the chemical reactivity and 

selectivity towards potential targets of ruthenium(ll) arene complexes. Optimization 

of the design of half-sandwich organometallic Ru 11  arene complexes as anticancer 

agents depends on control of ligand exchange reactions. Since aquation appears to be 

an important activation step for Ru 11  arene complexes [10, 11], it is desirable to 
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RI 

cI C) H2N 	NH2 
\-J 

ethylenediamine R')% 	R' 
/3-diketonate 

0. 	.00—.0 

Me 
acetate 

hydroxy-ketonate 
1 ,4-dihydroxyanthraquinone dianion 

Figure 3.1: The general structures of ruthenium(ll) arene complexes containing the 

neutral chelating ligand ethylenediamine, mono-anionic fl-diketonates, hydroxy-

ketonates and acetate, and the bridging 1 ,4-dihydroxyanthraquinone dianion. 

control the associated kinetics, both in terms of rate and extent, as well as the 

stability of aqua adducts. Furthermore, recent results suggest that DNA may be an 

important target site for complexes of the kind [(16-arene)Ru(en)Cl}  [11]. The 

rational design of new DNA binding agents that recognize specific sequences or 

structures, and can modify specific DNA functions such as replication and 

transcription, provides an effective approach for the development of novel 

chemotherapeutic anticancer drugs [12, 13]. 

In the present work features in the design of ruthenium(ll) arenes, which 

might allow control of the specificity of binding to nucleobases have been 

investigated. Ru 11  arene complexes containing 0,0-chelating ligands which form six-

membered chelate rings with the metal centre (fl-diketonates, 1,4- 
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dihydroxyanthraquinone dianion), five-membered rings (hydroxy-ketonates) and 

four-membered rings (acetate) were synthesised (Figure 3.1). Their aqueous 

chemistry, including competitive reactions with nucleobases, was studied. It is 

demonstrated that incorporation of anionic 0,0-chelating ligands of the fl-diketonate 

and hydroxy-ketonate families into {(7 6-arene)Ru} 2  complexes leads to significant 

changes in the recognition of DNA bases compared to the neutral N,N-chelating 

ligand ethylenediamine, and also has a major effect on the electronic properties of 

the (arene)Ru" centre, thus influencing the behaviour of the leaving group (C17H 20). 

In contrast, a comparable acetato complex readily undergoes decomposition in 

solution. The cytotoxicity of some of the complexes towards the human ovarian 

cancer cell line A2780 was investigated. 

3.2 Experimental Section 

3.2.1 Materials 

The ruthenium(ll) dimer precursors [(TI 	(3.1), ftrj6- 

bip)RuC12]2  (3.2), [(116-bz)RuC12]2 (3.3) and [(il 	(3.4), where p-cym = 

para-cymene, bip = biphenyl, bz = benzene, md = indan, were synthesised according 

to a previously published route [14] (Scheme 3.1). The latter three dimers were 

kindly made available by Dr. Abraha Habtemariam, University of Edinburgh. 4,4,4-

Trifluoro-1-phenyl-1,3-butanedione was kindly provided by Chris Baxter, University 

of Edinburgh. 

All reactions were performed at ambient temperature, unless indicated 

otherwise. 

3.2.2. Methods 

In general, pH titrations were performed in 90% H 20/10% D20, containing 

0.1 M NaC104  and 8 mM Ru, referenced to 1,4-dioxane, at 298 K. For [(T 6-p- 
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Scheme 3.1: The structures of ruthemum(ll) arene dimer precursors ft1 6-p- 

cym)RuC12] 2  (3.1), [(ij 	(3.2), [(116-bz)RuC12]2  (3.3) and [(i 6-ind)RuC12]2 

(3.4). 

cym)Ru(H3CCOCHCOCH3  — 0, 0)H20]NO3  (3.14a) and [(7 6-p-cym)Ru(C7H502  - 

0, 0)H20] NO3  (3.25a) the synthesised products were used, for [(1 6-p-

cym)Ru(C6H503  — 0,0)H20]NO3 (3.29) the aqua adduct was made in situ by 

reaction of the chloride-containing complex [(ij  - 0, 0)Cl] (3.24) 

with an equimolar amount of AgNO 3 , followed by filtration. Addition of NaC10 4  to 

nucleobase adducts of I(ij 6-p-cym)Ru(C7H5O2  — 0,0) } + complexes led to the 

precipitation of the sample and was not added during titrations. It was also omitted 

for adducts of (ij  — 0,0)}. 

3.2.3 Preparation of Ru11  arene fi-diketonato complexes 

3.2.3.1 Neutral, chloride-containing compounds 

[(1 6-p-cym)Ru(H3CCOCHCOCH3  - O,O)Cl] (3.5): 3.1 (665.4 mg, 1.09 mmol) and 

sodium acetylacetonate monohydrate (402.9 mg, 2.88 mmol) were stirred in acetone 

(80 ml) for 50 mm. The solvent was removed on a rotary evaporator and after 

/. 

-. 	
1 	f 
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extraction with dichioromethane, followed by filtration, the solvent was removed on 

a rotary evaporator. The residue was dissolved in acetone and the solution 

concentrated on a rotary evaporator, then diluted with diethyl ether. A first fraction 

of red crystals (435.4 mg), suitable for X-ray diffraction, was obtained by filtration 

after storage at 253 K overnight. The solvents were removed on a rotary evaporator 

and a second fraction of product (57.9 mg) was obtained from acetone/diethyl ether 

at 253 K after nine days. The combined product (493.3 mg, 1.33 mmol, 6 1.2% yield) 

was dried in vacuo. 'H NMR (CDC13): 8 5.46 (d, 2H, J = 6 Hz), 5.21 (d, 2H, J = 6 

Hz), 5.16 (s, 1H), 2.88 (sp, 1H, J = 7 Hz), 2.27 (s, 3H), 2.00 (s, 6H), 1.32 (d, 6H, J = 

7Hz). Elemental analysis: calculated for C 15H21 RuC102: C, 48.71; H, 5.72. Found: C, 

48.73; H, 5.59%. 

[(i16-p-cym)Ru(C6H5COCHCOC6H5  - 0, 0)C1] (3.6): 1 ,3-Diphenyl- 1,3-

propanedione (277 mg, 1.24 mmol) and sodium methoxide (62 mg, 1.15 mmol) were 

stirred in methanol (30 ml) for 100 mm. The solvent was removed on a rotary 

evaporator and the residue washed with diethyl ether. The obtained sodium salt (210 

mg, 0.85 mmol, 73.9% yield) and 3.1 (240 mg, 0.39 mmol) were stirred in acetone 

(25 ml) for 40 mm. After work-up as for 3.5, dark red crystals (238 mg, 0.48 mmol, 

6 1.8% yield), suitable for X-ray diffraction, were collected by filtration and dried in 

vacuo. 1H NMR (CDC13): ö 7.92 (d, 4H, J = 7 Hz), 7.46 (t, 2H, J = 7 Hz), 7.39 (m, 

4H, J = 7 Hz), 6.46 (s, 1H), 5.60 (d, 2H, J = 6 Hz), 5.33 (d, 2H, J = 6 Hz), 3.04 (sp, 

111, J = 7 Hz), 2.36 (s, 3H), 1.42 (d, 6H, J = 7 Hz). Elemental analysis: calculated for 

C25H25RuC102: C, 60.78; H, 5.10. Found: C, 60.92; H, 5.20%. 

[(i16-p-cym)Ru((CH3)3CCOCHCOC(CH3)3  - 0, 0)C1] (3.7): 2,2,6,6-Tetramethyl-

3,5-heptanedione (299 mg, 1.62 mmol) and sodium methoxide (68 mg, 1.26 mmol) 

were stirred in methanol (40 ml) for 5 h. The solvent and residual starting material 

were removed on a rotary evaporator. The obtained sodium salt (233 mg, 1.13 mmol, 

89.6% yield) and 3.1 (258 mg, 0.42 mmol) were stirred in acetone (25 ml) for 40 
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mm. After work-up as for 3.5, except for use of diethyl ether/hexane at 253 K, 

orange needles (215 mg, 0.47 mmol, 56.0% yield), suitable for X-ray diffraction, 

were collected by filtration and dried in vacuo. 1 H NMR (CDC13 ): ö 5.41 (d, 2H, J = 

6 Hz), 5.40 (s, 1H), 5.13 (d, 2H, J = 6 Hz), 2.91 (sp, 1H, J = 7 Hz), 2.24 (s, 3H), 1.36 

(d, 6H, J = 7 Hz), 1.13 (s, 18H). Elemental analysis: calculated for C 21 H33RuC102 : C, 

55.56; H, 7.33. Found: C, 55.54; H, 7.15%. 

[(i 6-p-cym)Ru(F3CCOCHCOCF3  - 0,O)C1] (3.8): 3.1 (250 mg, 0.41 mmol) and 

sodium hexafluoroacetylacetonate (260 mg, 1.13 mmol) were stirred in acetone (25 

ml) for 40 mm. After work-up as for 3.5, except for use of diethyl ether/hexane at 

253 K, violet-brown crystals (277 mg, 0.58 mmol, 70.7% yield), suitable for X-ray 

diffraction, were collected by filtration and dried in vacuo. 1 H NMR (CDC13 ): 8 5.89 

(s, 1H), 5.66 (d, 2H, J = 6 Hz), 5.39 (d, 2H, J = 6 Hz), 2.91 (sp, 1H, J = 7 Hz), 2.27 

(s, 3H), 1.36 (d, 6H, J = 7 Hz). Elemental analysis: calculated for C 15H15RuC102F6 : 

C, 37.71; H, 3.16. Found: C, 37.83; H, 3.17%. 

[(1 6-p-cym)Ru(C6H5COCHCOCH3  - 0, 0)C1] (3.9): 1 -Phenyl- 1 ,3-butanedione 

(60.8 mg, 0.38 mmol) and sodium methoxide (21.4 mg, 0.40 mmol) were stirred in 

methanol (7 ml) for 25 mm. To this 3.1 (88.2 mg, 0.14 mmol), which had been 

stirred in methanol (10 ml) for 10 mm, was added and the solution stirred for 60 mm. 

After work-up as for 3.5, except for storage at 253 K for 3 d, the dark orange crystals 

(93.5 mg, 0.22 mmol, 75.0%) were collected by filtration, washed with little diethyl 

ether and dried in alr. 1 H NMR (CDC13): ö 7.82 (d, 2H, J = 7 Hz), 7.42 (t, 1H, J = 7 

Hz), 7.36 (t, 2H, J = 7 Hz), 5.81 (s, 1H), 5.55 (d, 2H, J = 6 Hz), 5.52 (d, 2H, J = 6 

Hz), 5.26 (dd, 2H, J = 6), 2.96 (sp, 1H, J = 7 Hz), 2.31 (s, 3H), 2.14 (s, 3H), 1.37 (d, 

6H, J = 7 Hz). Elemental analysis: calculated for C 20H23RuC102: C, 55.62; H, 5.37. 

Found: C, 55.63; H, 5.24%. 

[(1 6-p-cym)Ru(C6H5COCHCOCF3  - 0,0)C1] (3.10): 4,4,4-Trifluoro- 1-phenyl-1 ,3- 

butanedione (71.0 mg, 0.33 mmol) and sodium methoxide (18.8 mg, 0.35 mmol) 
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were stirred in methanol (7 ml) for 40 mm. To this 3.1 (78.2 mg, 0.13 mmol), which 

had been stirred in methanol (10 ml) for 25 mm, was added and the solution stirred 

for 45 mm. After work-up as for 19, the dark red crystals (104.7 mg, 0.22 mmol, 

84.0%) were collected by filtration, washed with little diethyl ether and dried in air. 

'H NMR (CDC13): 6 7.87 (d, 2H, J = 8 Hz), 7.53 (t, 1H, J = 7 Hz ), 7.42 (t, 2H, J = 7 

Hz), 6.21 (s, 1H), 5.64 (d, 2H, J = 6 Hz), 5.61 (d, 2H, J = 6 Hz), 5.35 (dd, 2H, J = 

6.5), 2.98 (sp, 1H, J = 7 Hz), 2.31 (s, 3H), 1.40 (dd, 6H, J = 6 Hz). Elemental 

analysis: calculated for C 20H20RuC102F3: C, 49.44; H, 4.15. Found: C, 49.51; H, 

3.95%. 

[(i16-bip)Ru(H3CCOCHCOCH3 - 0,O)C1] (3.11): 3.2 (250 mg, 0.38 mmol) was 

refluxed in water (25 ml) for 2 h. The heat was reduced below boiling point and 

sodium acetylacetonate monohydrate (141 mg, 1.01 mmol) was added. The solution 

was stirred for 30 min and hot filtered. After work-up as for 3.5, except for storage at 

253 K for 6 d, a red microcrystalline product (65 mg, 0.16 mmol, 21.3% yield) was 

collected by filtration and dried in vacuo. 1 H NMR (CDC13): ö 7.72 - 7.70 (m, 2H), 

7.49 - 7.45 (m, 3H), 5.86 (t, 2H, J = 6 Hz), 5.80 (d, 2H, J = 6 Hz), 5.77 (t, 1H, J = 6 

Hz), 5.13 (s, 1H), 1.93 (s, 6H). Elemental analysis: calculated for C 17H17RuC102: C, 

52.38; H, 4.40. Found: C, 52.64; H, 4.22%. 

[(q6-bz)Ru(H3CCOCHCOCH3 - 0,O)C1] (3.12): 3.3 (150 mg, 0.30 mmol) and 

sodium acetylacetonate monohydrate (110.1 mg, 0.79 mmol) were stirred in acetone 

(10 ml) and methanol (30 ml) overnight. After work-up as for 3.5, except for use of 

methanol/dichloromethane/diethyl ether at 253 K, an orange product (67.5 mg, 0.22 

mmol, 36.7% yield) was collected by filtration and dried in vacuo. 1H NMR 

(CDC1 3): 6 5.64 (s, 6H), 5.19 (s, 1H), 2.01 (s, 6H). Elemental analysis: calculated for 

C 11H13RuC102: C, 42.11; H, 4.18. Found: C, 42.42; H, 3.93%. 

[(i16-ind)Ru(H3CCOCHCOCH3 - 0,O)C1] (3.13): 3.4 (100 mg, 0.17 mmol) and 

sodium acetylacetonate monohydrate (63.1 mg, 0.45 mmol) were stirred in methanol 
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(25 ml) for 2 h. After work-up as for 3.5, except for use of methanolldiethyl ether at 

253 K, an orange product (31.9 mg, 0.09 mmol, 26.5% yield) was collected by 

filtration and dried in vacuo. 'H NMR (CDC1 3): 8 5.52 (s, 411), 5.16 (s, 1H), 2.89 - 

2.84 (m, 2H), 2.58 - 2.50 (m, 2H), 2.18 - 2.06 (m, 2H), 2.00 (s, 6H). Elemental 

analysis: calculated for C 14H 17RuC102: C, 47.53; H, 4.84. Found: C, 47.96; H, 

4.20%. 

3.2.3.2 Positively-charged compounds 

[(1q 6-p-cym)Ru(H3CCOCHCOCH3  - 0,O)H20]NO3 (3.14a): Silver nitrate (70.5 

mg, 0.42 mrnol) and 3.5 (153.5 mg, 0.42 mmol) were stirred in water (25 ml) 

overnight. After filtration, the solvent was removed on a rotary evaporator. 

Trituration of the oily residue with diethyl ether gave the final product as an orange 

powder (170.6 mg, 0.41 mmol, 98% yield), which was collected by filtration and 

dried in air. 1 H NMR (CDC1 3): 8 5.59 (d, 2H, J = 5 Hz), 5.32 (d, 2H, J = 5 Hz), 5.10 

(s, 1H), 2.88 (sp, 1H, J = 7 Hz), 2.26 (s, 3H), 2.00 (s, 6H), 1.34 (d, 6H, J = 7Hz). 

[(1 6-p-cym)Ru(H3CCOCHCOCH 3  - 0,O)CH3CN]BF4  (3.15): 3.5 (144 mg, 0.39 

mmol) and silver tetrafluoroborate (72 mg, 0.37 mmol) were stirred in acetonitrile 

(20 ml) overnight. After filtration, the solvent was removed on a rotary evaporator. 

The residue was dissolved in a minimum amount of acetone, and diethyl ether was 

added until precipitation occurred. Storage of the solution at 253 K for 4 d yielded 

orange crystals (149 mg, 0.32 mmol, 87.1% yield), which were collected by filtration 

and dried in vacuo. 'H NMR (CDC13): ö 5.77 (d, 211, J = 6 Hz), 5.51 (d, 211, J = 6 

Hz), 5.19 (s, 111), 2.88 (sp, 1H, J = 7 Hz), 2.45 (s, 3H), 2.23 (s, 3H), 2.02 (s, 6H), 

1.35 (d, 6H, J =7 Hz). 

[(1 6-p-cym)Ru(H3CCOCHCOCH 3  - 0,O)C5H3NC12]PF6  (3.16): 3,5- 

Dichioropyridine (300 mg, 2.03 mmol) and 3.14a (26.7 mg, 0.06 mmol) were 

dissolved in water (3 ml) and ammonium hexafluorophosphate (300 mg, 1.84 mmol) 

55 



Chapter 3 

was added. The resulting precipitate was dissolved by addition of acetone. The 

solution was then filtered and allowed to partially evaporate overnight. The yellow-

green microcrystalline product (18.2 mg, 0.03 mmol, 45.0% yield) was collected by 

filtration, washed with cold water, then diethyl ether and dried in air. 1 H NMR 

(CDC13): ö 8.24 (s, 2H), 7.87 (t, 1H), 5.68 (d, 2H, J = 6 Hz), 5.57 (d, 2H, J = 6 Hz), 

5.08 (s, 1H), 2.82 (sp, 1H, J = 7 Hz), 2.16 (s, 3H), 2.00 (s, 6H), 1.34 (d, 6H, J = 7 

Hz). Elemental analysis: calculated for C 20H24RuO2NC12PF6: C, 38.29; H, 3.86; N 

2.23. Found: C, 37.67; H, 3.34; N 2.28%. 

[(i 6-p-cym)Ru(H3CCOCHCOCH3  - 0, O)C5H3NF2]PF6 (3.17): 	3,5- 

Difluoropyridine (47.2 mg, 0.41 mmol) and 3.14a (17.3 mg, 0.04 mmol) were 

dissolved in water (5 ml) and ammonium hexafluorophosphate (194.2 mg, 1.19 

mmol) was added. After work-up as for 3.16, a bright yellow product (18.4 mg, 0.03 

mmol, 74.1% yield) was obtained after 5 d, which was collected by filtration, washed 

with cold water, then diethyl ether and dried in air. 1 H NMR (CDC1 3): 8 8.14 (s, 2H), 

7.44 (tt, 1H), 5.67 (d, 2H, J = 6 Hz), 5.56 (d, 2H, J = 6 Hz), 5.08 (s, 1H), 2.84 (sp, 

1H, J = 7 Hz), 2.17 (s, 3H), 2.00 (s, 6H), 1.35 (d, 6H, J = 7 Hz). 

[(i 6-p-cym)Ru(H3CCOCHCOCH3  - 0,0)C5H5N]PF6  (3.18): Pyridine (287 mg, 

3.63 mmol) and 3.14a (26.7 mg, 0.06 mmol) were dissolved in water (7 ml) and 

ammonium hexafluorophosphate (315 mg, 1.93 mmol) was added. After work-up as 

for 3.16, an oil formed and the solvents were decanted. Exposure of the oil to air for 

4 d lead to formation of a yellow powder (17.6 mg, 0.03 mmol, 48.9% yield), which 

was washed with cold water, then diethyl ether and dried in air. 1 H NMR (CDC13): 

8.40 (d, 2H, J = 6 Hz), 7.87 (t, 1H, J = 8 Hz), 7.49 (t, 2H, J = 6 Hz), 5.61 (d, 2H, J = 

6 Hz), 5.44 (d, 2H, J = 6 Hz), 5.02 (s, 1H), 2.79 (sp, 1H, J = 7 Hz), 2.08 (s, 3H), 1.96 

(s, 6H), 1.32 (d, 6H, J = 6 Hz). 

[(1 6-p-cym)Ru(H3CCOCHCOCH3 - 0, 0)C5H4NCN]PF6  (3.19): 4-Cyanopyridine 

(63.7 mg, 0.61 mmol) and 3.14a (23.3 mg, 0.06 minol) were allowed to stand in 
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water (5 ml) for 1 h and ammonium hexafluorophosphate (256 mg, 1.57 mmol) was 

added. After work-up as for 3.16, an orange product (20.1 mg, 0.03 mmol, 61.3% 

yield) was obtained after 5 d, which was collected by filtration, washed with cold 

water, then diethyl ether and dried in air. 1 H NMR (CDC13): 8 8.65 (d, 2H, J = 6 Hz), 

7.71 (d, 2H, J = 6 Hz), 5.65 (d, 2H, J = 6 Hz), 5.52 (d, 2H, J = 6 Hz), 5.05 (s, 1H), 

2.80 (sp, 1H, J = 7 Hz), 2.12 (s, 3H), 1.98 (s, 6H), 1.33 (d, 6H, J = 7 Hz). 

[(1j6-p-cym)Ru(H3CCOCHCOCH3 - 0, O)C7H9N5]PF6 (3.20): 9-Ethyladenine 

(11.5 mg, 0.07 mmol) and 3.5 (52.1 mg, 0.14 mmol) were stirred in water (30 ml) 

overnight, and the volume was reduced to Ca. 20 ml on a rotary evaporator. Upon 

addition of animonium hexafluorophosphate (46.0 mg, 0.28 mmol) a precipitate 

formed and the reaction mixture was allowed to stand for 3 d. The solution was 

centrifuged and the supernatant decanted. The yellow powder (52.5 mg) was dried in 

vacuo and used as obtained. 

[(1 6-p-cym)Ru(C6H5COCHCOC6H5 - 01 0)H20]NO3 (3.21a): Silver nitrate (134.2 

mg, 0.79 mmol) and 3.6 (390.4 mg, 0.79 mmol) were stirred in acetone (25 ml) and 

water (15 ml) for 5.5 h. After filtration, the solvent was removed on a rotary 

evaporator. The resulting orange powder was dried in air and used as obtained. 1 H 

NMR (CDC13): 8 7.91 (d, 4H, J = 7 Hz), 7.48 (t, 2H, J = 7 Hz), 7.42 (t, 4H, J =7 Hz), 

6.43 (s, 1H), 5.69 (d, 2H, J = 6 Hz), 5.45 (d, 2H, J = 6 Hz), 3.05 (sp, 1H, J = 7 Hz), 

2.39 (s, 3H), 1.45 (d, 6H, J = 7 Hz). 

[(T 6-p-cym)Ru(C6H5COCHCOC6H5 - 0, O)C7H9N50]CF3SO3 (3.22): 3.21a (40.7 

mg, 0.08 mmol) and 9-ethylguanine (13.6 mg, 0.08 mmol) were stirred in methanol 

(16 ml) and water (4 ml) for 1 h. The solution was concentrated to ca. 5 ml on a 

rotary evaporator, sodium trifluoromethanesulfonate (78.8 mg, 0.46 mmol) was 

added and the solvent removed on a rotary evaporator. Water was added to the 

residue followed by ultra sonication. After filtration, the powder was dissolved in 

acetone, the solvent removed on a rotary evaporator and the oily residue triturated 
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with diethyl ether. The resulting yellow powder was dried in air and used as 

obtained. 1 H NMR (CDC1 3): ö 9.37 (s, 1H), 7.88 (d, 4H, J = 7 Hz), 7.52 (t, 2H, J = 7 

Hz), 7.46 (t, 4H, J = 7 Hz), 7.24 (s, 1H), 6.33 (s, 1H), 5.81 (d, 2H, J = 6 Hz), 5.66 (d, 

2H, J = 6 Hz), 5.54 (s, 2H), 3.90 (q, 2H, J = 7 Hz), 2.88 (sp, 1H, J = 7 Hz), 2.20 (s, 

3H), 1.31 (d, 6H J = 7 Hz), 1.15 (t, 3H, J = 7 Hz). 

3.2.4 Preparation of Ru11  p-cymene hydroxy-ketonato complexes 

[( 6-p-cym)Ru(C 7H502  - O,O)Cl] (3.23): Tropolone (108.5 mg, 0.89 mmol) and 

sodium methoxide (48.0 mg, 0.89 mmol) were stirred in methanol (10 ml) for 45 

mm. To this 3.1 (208.7 mg, 0.34 mmol), which had been stirred in methanol (10 ml) 

for 20 mm, was added and the solution stirred for 1 h. After work-up as for 3.5, the 

orange product (215 mg, 0.55 mmol, 80.5%) was collected by filtration, washed with 

minimal diethyl ether and dried in air. 1 H NMR (CDC13): ö 7.23 - 7.17 (m, 4H), 6.78 

(tt, 1H, J = 8.5 Hz), 5.55 (d, 2H, J = 6 Hz), 5.33 (d, 2H, J = 6 Hz), 2.92 (sp, 1H, J = 7 

Hz), 2.34 (s, 3H), 1.33 (d, 6H, J = 7 Hz). Elemental analysis: calculated for 

C 17H19RuC102 : C, 52.10; H, 4.89. Found: C, 52.66; H, 4.15%. 

[(i 6-p-cym)Ru(C6H503 - O,O)Cl] (3.24): 3.1 (203.7 mg, 0.33 mmol) was stirred in 

methanol (15 ml) for 1 h. To this a solution containing maltol (109.1 mg, 0.87 mmol) 

and sodium methoxide (49.0 mg, 0.91 mmol), which had been stirred in methanol 

(15 ml) for 45 mm, was added in portions of 1 ml and the solution stirred for 1 h. 

After work-up as for 3.5, except for use of warm acetone to extract the residue and 

concentration of the solution until onset of precipitation before addition of diethyl 

ether, the orange product (174.7 mg, 0.44 mmol, 66.3%) was collected by filtration 

and dried in air. 1 H NMR (CDC13): ö 7.55 (d, 1H, J = 5 Hz), 6.51 (d, 1H, J = 5 Hz), 

5.54 (d, 1H, J = 5.5 Hz), 5.51 (d, 1H, J = 5.5 Hz), 5.32 (d, 1H, J = 5.5 Hz), 5.28 (d, 

1H, J = 5.5 Hz), 2.92 (sp, 1H, J = 7 Hz), 2.42 (s, 3H), 2.33 (s, 3H), 1.34 (d, 3H, J = 7 
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Hz), 1.31 (d, 3H, J = 7 Hz). Elemental analysis: calculated for C 16H19RuC103 : C, 

48.55; H, 4.84. Found: C, 48.61; H, 4.62%. 

ft116-p-cym)Ru(C7H502 - 0,O)H20]NO3 (3.25a): 3.23 (103.7 mg, 0.26 mmol) and 

silver nitrate (45.0 mg, 0.26 mmol) were stirred in water (10 ml) for 1 h. After 

filtration, the solvent was removed on a rotary evaporator and the product was 

triturated with diethyl ether. The resulting orange powder was dried in air and used 

as obtained. 1 H NMR (CDC1 3): 8 7.29 - 7.24 (m, 4H), 6.87 (m, 1H), 5.68 (d, 2H, J = 

6 Hz), 5.43 (d, 2H, J = 6 Hz), 2.91 (sp, 1H, J = 7 Hz), 2.34 (s, 3H), 136 (d, 6H, J = 7 

Hz). 

3.2.5 Preparation of a Ru 11  p-cymene acetato complex 

[(ij6-p-cym)Ru(02CCH3  - 0,O)C1] (3.26): 3.1 (250 mg, 0.41 mmol) and sodium 

acetate (89 mg, 1.08 mmol) were stirred in methanol (25 ml) for 40 mm. After 

extraction (see 3.5), the residue was dissolved in a minimum of acetone, and hexane 

was added until the solution became opaque. After filtration, the solvents were 

removed on a rotary evaporator and the procedure was repeated. The product was 

then crystallised from acetone/hexane at 253 K overnight. The free-floating crystals 

(30 mg, 0.09 mmol, 11.0% yield), suitable for X-ray diffraction, were collected by 

filtration and dried in air. 1 H NMR (CDC13): 5.64 (d, 2H, J = 6 Hz), 5.42 (d, 2H, J = 

6 Hz), 2.94 (sp, 1H, J = 7 Hz), 2.33 (s, 3H), 1.83 (s, 3H), 1.40 (d, 6H, J = 7 Hz). 

Elemental analysis: calculated for C 12H 17RuC102: C, 43.70; H, 5.20. Found: C, 

43.99; H, 5.09%. 

3.2.6 Preparation of a Ru 11  p-cymene hydroxo-bridged dimer 

[((q6-p-cyin)Ru)2(p-OH)3] (3.27): This complex was prepared in situ from a 

solution of 3.26 (3 mM Ru) in water at Ca. pH 9 (by addition of a 1 M solution of 

sodium hydroxide). Mass spectrometry (MS-ES): obs. 522.2 mlz, calc for 
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[C2oH31 Ru203 1 521.6 m/z. 1 H NMR (D20): 5.38 (d, 211, J = 6 Hz), 5.17 (d, 2H, J = 6 

Hz), 2.67 (sp, 1H, J = 7 Hz), 2.08 (s, 3H), 1.22 (d, 611, J = 7 Hz). 

3.2.7 Preparation of a RuH  p-cymene complex bridged by a dianionic 0,0-

chelating ligand 

[(i 6-p-cym)2Ru2(C6H4(CO)2C6H202 	- 	(0, 0)2)C12] 	(3.28): 	1,4- 

Dihydroxyanthraquinone (41.3 mg, 0.17 mmol) and sodium methoxide (20.4 mg, 

0.37 mrnol) were stirred in methanol (25 ml) for 30 mm. To this 3.1 (175 mg, 0.29 

mmol) was added and the solution stirred overnight. After extraction (see 3.5), the 

residue was washed thoroughly with acetone, and dissolved in methanol. Diethyl 

ether was added and the solution was stored at 253 K for 3 d. A powder was 

collected by filtration but still contained 3.1. It was washed with acetonitrile, then 

dissolved in acetonitrile. Diethyl ether was added and the solution stored at 253 K for 

3d. The dark green product (32.2 mg, 0.04 mmol, 24.0% yield) was collected by 

filtration and dried in vacuo. 'H NMR (CDC13): 6 8.37 (q, 2H, J = 3 Hz), 7.63 (q, 2H, 

J = 3 Hz), 7.04 (s, 2H), 6 5.59 (d, 2H, J = 5.5 Hz), 5.55 (d, 2H, J = 5.5 Hz), 5.28 (dd, 

411, J = 5.5 Hz), 2.96 (sp, 2H, J = 7 Hz), 2.28 (s, 6H), 1.38 (d, 12H, J = 7 Hz). 

Elemental analysis: calculated for C 34H34Ru20204: C, 52.38; H, 4.40. Found: C, 

5139; H, 3.54%. 

3.3 Synthesis and Charactensation 

33.1 Results 

3.3.1.1 Ru 11  arene /3-diketonato complexes 

The neutral, chloride-containing, ruthenium(ll) arene fl-diketonato complexes 

[( 6-p-cym)Ru(acac)Cl] 	(3.5), 	[(ij 	(3.6), 	[(i 6-p- 

cym)Ru(tBu2acac)C1] 	(3.7), 	[( 6-p-cym)Ru((CF3)2acac)Cl] 
	

(3.8), 	[016-p- 

cym)Ru(PhacacMe)Cl] 	(3.9), 	[(ij 
	

(3.10), 	[(6 
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Scheme 3.2: Reaction scheme for the synthesis of neutral, chloride-containing Ru 11  

arene fl-diketonato complexes, including numbering and ligand definitions. 

bip)Ru(acac)Cl] (3.11), ftr16-bz)Ru(acac)Cl]  (3.12) and [(ij 	(3.13) 

were synthesised in high purity and moderate to good yields as described in Scheme 

3.2, which also shows the respective structures, including the ligand definitions. The 

syntheses were aided by a previously reported route for the synthesis of 3.5 [15].  In 
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general, no major problems were encountered. However, synthesis of 3.5 led to 

varying yields (30-60%) and occasional decomposition of the product in solution. 

The chloride-bridged ruthenium arene dimers [(i6-arene)RuC12]2,  which were 

used as precursors, were produced in high yields by reacting the reduced form of the 

arene as its cyclic diene with RuC1 3 .xH20 in refluxing ethanol, which leads to the 

reduction of Rum  to Ru11  and the aromatization of the diene. The dimers were then 

reacted with appropriate ,8-diketonate ligands. Where no sodium salt of a ,8-diketone 

was commercially available, it was produced in situ by reaction with sodium 

methoxide. The presence of the two carbonyl groups in the 1- and 3-positions makes 

the hydrogen atoms on the central C2 carbon acidic, thus allowing easy abstraction 

of one hydrogen atom with bases such as sodium methoxide. This creates a negative 

charge on the C2 carbon atom, which is delocalised over the ligand [16]. 

All complexes were characterised by 'H NMR. The most interesting feature 

is the dependence of the chemical shift of the peak for the central fl-diketonate proton 

on the nature of the side groups. A range of 1.3 ppm has been observed, whereas the 

nature of the arene has a less pronounced influence (0.06 ppm). 

Crystals suitable for X-ray diffraction studies were obtained for [(re-p-

cym)Ru(acac)Cl} (3.5) and [(r 6-p-cym)Ru(Ph2acac)Cl] (3.6) from acetone/diethyl 

ether, for [(n6pcym)Ru(tBu2acac)Cl]  (3.7) and [( 6-p-cym)Ru((CF3)2acac)Cl] (3.8) 

from diethyl ether/hexane, all at 253 K. Their crystal data are shown in Tables A.3. 1 

and A.3.2 and the respective structures in Figure 3.2. All four complexes have the 

characteristic "piano stool" geometry, where the arene forms the seat of the stool and 

the other two ligands the legs, and appear structurally very similar. The fl-diketonate 

ligands form six-membered chelate rings with the ruthenium centre. Selected bond 

lengths and angles are shown in Table 3.1. The Ru - 0 bond lengths in complexes 

3.5, 3.6 and 3.7 are in a range of 2.063(2) - 2.0768(16) A, which is comparable to 

that range of other known structures of Ru 11  arene complexes containing acac-type 
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Figure 3.2: The X-ray crystal structures of [(ij 	(3.5), [(1 6-p- 

cym)Ru(Ph2acac)C1] (3.6), [( 6-p-cym)Ru( tBu2acac)Cl] (3.7) and [(1 6-p-

cyin)Ru((CF3)2acac)C1] (3.8) and atom numbering scheme. 

ligands [17, 18]. The Ru - 0 bond lengths for 3.8 are significantly longer with 

2.097(3) and 2.111(3) A, respectively. The Ru - Cl bond lengths of 2.4015(11) to 

2.4197(6) A are within the range known for other Ru 11  arene complexes, with that of 

3.8 ca. 0.08 A shorter compared to 3.7. The Ru - C(arene) bond lengths are between 

2.155(2) - 2.199(2) A, all within the known range for ruthenium arene complexes, 

but spanning a comparatively narrower range. The Ru - centroid distances are 

63 



Chapter 3 

Table 3.1: Selected bond lengths (A) and angles (°) for [( 6-p-cym)Ru(acac)Cl] 

(3.5), [( 6-p-cym)Ru(Ph 2acac)Cl] (3.6), [( 6-p-cym)Ru(tBu2acac)C1] (3.7) and 

[( 6-p-cym)Ru((CF3)2acac)C1] (3.8). 

3.5 3.6 3.7 3.8 

Ru-Cl 2.4197(6) 2.4156(5) 2.4102(9) 2.4015(11) 

Ru-01 2.0709(16) 2.0647(13) 2.063(2) 2.111(3) 

Ru-02 2.0768(16) 2.0639(14) 2.0670(19) 2.097(3) 

Ru-Cl 2.175(2) 2.1968(19) 2.168(4) 2.178(4) 

Ru-C2 2.156(2) 2.162(2) 2.169(4) 2.174(4) 

Ru-C3 2.175(2) 2.1646(19) 2.168(3) 2.164(4) 

Ru-C4 2.199(2) 2.1938(18) 2.183(3) 2.193(4) 

Ru-05 2.178(2) 2.1792(18) 2.182(3) 2.168(4) 

Ru-C6 2.155(2) 2.1694(18) 2.168(3) 2.170(4) 

Ru-centroid 1  1.647 1.649 1.647 1.647 

01-Ru-02 88.01(7) 87.67(5) 88.32(9) 87.12(11) 

01-Ru-Cl 84.94(5) 84.91(4) 84.08(7) 85.94(8) 

02-Ru-Cl 86.78(5) 85.36(4) 85.3(1) 86.5(1) 

[a] = measured using Mercury 1.4. 

around 1.65 A. In complex 3.6 the two phenyl side-groups are tilted at an angle of 

17.09° from each other. 

An interesting feature in the structure for 3.5 is the linking of molecules into 

dimers about an inversion centre by pairs of strong acac oxygen - p-cymene ring CH 

H-bonds (0 ... H3 2.29 A, cf. van der Waals sum 2.72 A), as shown in Figure 3.3 and 

Table 3.2. These dimers are linked into a three-dimensional array, principally by 

C11•••H6 interactions (2.65 A, cf. van der Waals sum 2.95 A). 

A number of positively-charged complexes, where chloride was replaced by 

neutral cr-donors, was synthesised. They are shown and described in Scheme 3.3. The 
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Figure 3.3: Dimer formation in the X-ray crystal structure of [(ij 

 (3.5) by strong H-bonding between acac oxygen 01 and arene ring 

H3. The coordinated chloride (Cli) is involved in H-bonding to H6 of the arene ring 

of another molecule thus linking the dimers into a 3D array. 

Table 3.2: H-bonding in the X-ray crystal structure of [( 6-p-cym)Ru(acac)Cl] 

(3.5). For atom labelling scheme see Figure 3.2. 

D H A 
D-H H ... D ... Angle D-H-A 
(A) (A) (A) (°) 

C(2) H(2) cl(1)[aI 0.98 2.79 3.689(2) 153 

C(3) H(3) 0(1)[a] 0.98 2.29 3.234(3) 161 

C(6) H(6) Cl(1) 0.98 2.65 3.567(2) 155 

C(161) H(161) C1(1) 0.98 2.76 3.679(3) 156 

C(41) H(413) Cl(,)Idl  0.98 2.72 3.380(3) 125 
Equivalent positions: [a] 2-x, -y, 2-z. [b] 312-x, 1/2+y, 312-z. [c] l-x, -y, 2-z. [d] intramolecular. 

aqua 	adducts 	[( 6-p-cym)Ru(acac)H 20]NO3 	(3.14a) 	and 	[(i 6-p- 

cym)Ru(Ph2acac)H20]NO3  (3.21a) were synthesised by abstraction of chloride with 

AgNO3  from the respective chioro-complexes, in water for 3.5 and in acetone/water 

for 3.6. Both aqua adducts also were useful precursors in ligand exchange reactions. 

65 



Complex Chelate X A 

3.14a acac H20 NO3  

3.15 acac CH3CN BF4  

3.16 acac dcp PF6  

3.17 acac dfp PF6 

3.18 acac py PF6 

3.19 acac pcp PF6 

3.20 acac 9EtA PF6  

3.21a Ph2acac H20 NO3  

3.22 Ph2acac 9EtG CF3S03  

I + 

x ?SR 

N 	ri 

? 

r_'(1)444bcl CN c  
pcp 	dcp 
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NH 

  

N\> 

1  11 H2N 
Et 

N 

Et 	df p 	PY 9EtG 9EtA 

Scheme 3.3: The structures of positively-charged Ru" p-cymene ,8-dliketonato 

complexes, including numbering and ligand definitions, where A = counter anion. 

[(16-p-cym)Ru(acac)CH 3CN]BF4 (3.15) was synthesised by chloride abstraction 

from 3.5 with AgBF4  directly in acetonitrile. 

The 	complexes 	[(16-p-cym)Ru(acac)dcp]PF6 	(3.16), 	ftq 6-p- 

cym)Ru(acac)dfp]PF6 (3.17), [(ij 	(3.18) and [(p6-p- 

cym)Ru(acac)pcp]PF6 (3.19), where dcp = 3,5-dichloropyridine, dfp = 3,5- 

difluoropyridine, py = pyridine, pcp = 4-cyanopyridine, were synthesised by reaction 



tropolone 

HO ) 

maltol 

+ 

Chapter 3 

of the appropriate pyridine-type ligand with 3.14a and counter anion metathesis. All 

complexes were characterised using 1 H NMR spectroscopy. 

Complexes of Ru 11  p-cymene ,8-diketonates with DNA base derivatives were 

produced under mild conditions. Reaction of 9-ethyladenine (9EtA) with the 

chloride-containing complex 3.5 in water, followed by counter anion metathesis, 

resulted in a mixture of complexes, including [(ij  

(3.20). The aqua adduct 3.21a was reacted with 9-ethylguanine (9EtG) followed by 

addition of NaCF3SO3  in MeOHlwater to yield [(TI 

 (3.22). 

3.3.1.2 Ru 11  p-cymene hydroxy-ketonato complexes 

The neutral, chloride-containing complexes ftr 6-p-cym)Ru(trop)Cl] (3.23) 

and [(ij 	(3.24), where trop = tropolonate, ma = maltolate, were 

cr'O 

0••• 

3.26 	Me 

Scheme 3.4: The structures of tropolone, maltol and [(116-p-cym)Ru(trop)Cl] (3.23), 

[( 6-p-cym)Ru(ma)Cl] (3.24), [( 6-p-cym)Ru(trop)H 20]NO3  (3.25a) and [(1 6-p-

cym)Ru(AcO)Cl] (3.26). 
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synthesised similarly to the fl-diketonato complexes in good yields and purity. The 

tropolonate and maltolate ligands were synthesised by reaction of the neutral ligands 

tropolone and maltol, respectively, with sodium methoxide (Scheme 3.4). The 

syntheses were aided by previously reported routes for the synthesis of [(1 6-p- 

cym)Ru(acac)Cl] 	(3.5) [15] 	and [(i6-mes)Ru(ma)Cl],  where mes = 	1,3,5- 

trimethylbenzene [19]. 

The tropolonate 1 H NMR peaks for complexes 3.23 and 3.25a as well as for 

the free ligand (tropll) are shown in Figure 3.4 and listed in Table 3.3. The splitting 

pauerns are complex, however, using the Hc signal as a marker it is clear that the 

tropolonate signals in both 3.23 and 3.25a are shifted upfield compared to free 

tropolone, by Ca. 0.3 and 0.2 ppm, respectively. This is in contrast to reports that in 

Ha,b,d,e 

S 	

H6Ha 

 tropH 

Hc 	Hd 

I  
I/H 	 Hb 

rM 

Hy 0H2 

H cL. J '  3.25a 

Hb 

,, Ha,b,d,e+S 

Hc 

f
cYM  

HdE50 
	 I Ha,b,d,e 

Hc 

7.4 	 7.1 	 6.8 
s/ppm 

Figure 3.4: Low-field region of 1 H NMR spectra at 298 K of free tropolone and 

tropolonate in complexes [(T 6-p-cym)Ru(trop)H 2O]NO3  (3.25a) and [(116-p-

cym)Ru(trop)C1] (3.23), respectively, in CDC1 3 . S corresponds to CHC13. 
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Table 3.3: The 1 H NMR chemical shifts (ppm) of free tropolone and bound 

tropolonate in [(TI  (3.23) and [(TI  

(3.25a) in CDC13 at 298 K. 

	

Compound 	 ö('H) Ha, b, d, e 	8( 1 H) Hc 

	

Tropolone 	 7.44-7.35 	7.06 

[0 6-p-cym)Ru(trop)H20]NO3 (3.25a) 
	

7.29 - 7.24 	6.87 

I(TI 	(3.23) 
	

7.23 - 7.17 	6.78 

CDCI3 the 1 H NMR peaks for coordinated tropolonate in some metal complexes tend 

to shift downfield compared to free tropolone [20, 21, 22]. 

X-ray diffraction quality crystals of 3.24 were grown in an NMR tube from 

water containing the complex and an excess of NaCl over a period of 2 d at ambient 

temperature. The crystal data are shown in Table A.3.2 and the structure in Figure 

3.5. Selected bond lengths and angles are shown in Table 3.4. 

The complex crystallised as [( 6-p-cym)Ru(ma)Cl].2H20 as a racemic 

mixture and shows the five-membered chelate ring formed between the central 

ruthenium and the maltolate ligand. The Ru - Cl bond length is 2.4329(5) A and the 

Ru - 0 bond lengths 2.0901(13) A and 2.0901(13) A, respectively. Those distances 

Table 3.4: Selected bond lengths (A) and angles (°)for [(TI  

(3.24).2H20. 

Bond 	Length 	 Bond 	Length/angle 

Ru-Cl 2.4329(5) Ru-051 2.1445(18) 

Ru-012 2.1035(13) Ru-C61 2.1717(19) 

Ru-022 2.0901(13) Ru-centroid 1  1.640 

Ru-C1 2.1887(19) 012-Ru-022 78.79(5) 

Ru-C21 2.1543(19) 012-Ru-Cl 83.42(4) 

Ru-C3 1 2.1593(19) 022-Ru-Cl 85.89(4) 

Ru-C41 2.1880(18) 

[a] = measured using Mercury 1.4. 
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A) 

C) 

-, 	 F1462A 

Figure 3.5: The X-ray crystal structure of [(1 6-p-cym)Ru(ma)Cl].2H20 (3.24).2H20. 

A: Numbering scheme for [(Tj  B: Formation of climers via 

interactions between the ma oxygen 012 with isopropyl proton H1OA. C: 

Interactions between chloride and maltolate. 

are close to the range of values reported for related complexes, though marginally 

longer [19, 23, 24]. The Ru - centroid distance is 1.64 A. 

The water molecules form a chain, which is flanked by the same enantiomers 

of the ruthenium complex on either side (Figure 3.6). The H 20(H4W) - Cl 

interaction distance is 2.52 A (02W ... Cl 3.240(2) A), that of H20(H1W) - 

Maltol(022) is 2.09 A (01W.022 2.805(2) A) and for the water molecules the 

01W02W separations are 2.771(3) A and 2.852(3) A respectively, which 

compares well with the values reported for similar interactions in the complex [(1 6  

mes)Ru(NC5114CO2 - N,O)Cl].3H20, where mes = 1,3,5-thmethylbenzene [25]. In 

addition, the maltolate oxygen 012 interacts with the p-cymene isopropyl proton 
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HIOA (2.67 A, 012•••ClO1 3.449(3) A), linking opposite enantiomers together 

(Figure 3.5 b). Furthermore a grid is formed by interactions between the same 

enantiomers of the maltolate chelating oxygen atom 012 and the H52 proton of the 

maltolate backbone (2.37 A, 012•••C52 3.288(2) A). The second proton of the 

backbone (H62) has a weak interaction with a neighbouring chloride at a distance of 

2.99 A (C62•..C1 3.66 1(2) A) (Figure 3.5 c). 

A) 	•' __ 	
S 	 . 

	

I 	:. 	4/ 	•:. 	. '. 
H2W 

•••.4 	 .ss.4 4. 	 H3W...'.4 46 

\ 02W ••• 	01W 

	

• 	 •H3W 
.':o1w. 

	

I 	 I 	 t 

	

\ 	..•'• 	 \ 	S..-. 	 \ 

• 
•-.t. o/Tw. •'.r WA  

B) 	41"Ar" __ 

CII ZRu 

H4W•W 022 

H3W 02W'-46H1W 

H2W 01W 

Figure 3.6: The X-ray crystal structure of [( 6-p-cym)Ru(ma)C1].2H 20 (3.24).2H 20. 

A: Formation of chains of water molecules, flanked by ruthenium complexes on 

either side. B: Ring of H-bonds formed between the water molecules and 3.24. 
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3.3.1.3 Ru 11  p-cymene acetato complex 

[( 6-p-cym)Ru(AcO)Cl] (3.26) (Scheme 3.4), where AcO = acetate, was 

synthesised by a procedure similar to that used for related fl-diketonato complexes in 

poor yield. Its X-ray crystal structure was determined using crystals grown from 

acetone/hexane at 253 K (Figure 3.7, Tables 3.5 and A.3.2). There are few reported 

X-ray structures of metal arene complexes containing bidentate carboxylate ligands. 

The first reported example appears to be that of [(ij  [26] and 

Figure 3.7: X-ray crystal structure of [(r 6-p-cym)Ru(AcO)C1] (3.26). A: Numbering 

scheme. B: Chain formation via interactions between the AcO oxygens 01 and 02 

with arene protons H5 and H3, respectively. C: Formation of it - it stacking between 

neighbouring p-cymene rings. The hydrogen atoms have been omitted for clarity. 

72 



Chapter 3 

Table 3.5: Selected bond lengths (A) and angles (°) for [( 6-p-cym)Ru(Ac0)Cl] 

(3.26). 

Bond Length Bond Length/angle 

Ru-Cl 2.3848(5) Ru-05 2.168(2) 

Ru-Ol 2.1469(14) Ru-C6 2.128(2) 

Ru-02 2.1659(15) Ru-centroid 1.638 

Ru-Cl 2.1741(19) 01 -Ru-02 60.22(5) 

Ru-C2 	2.137(2) 	 01-Ru-Cl 	85.73(4) 

Ru-C3 	2.167(2) 	 02-Ru-Cl 	84.81(4) 

Ru-C4 	2.203(2) 

[a] = measured using Mercury 1.4. 

during the course of this study a structure for [(ij 	(3.26) was 

published [27]. 

The bond lengths and angles for 3.26 are almost identical to the published 

values [27],  with the two structures related by symmetry. The H-atoms of the acetate 

methyl group (based on C71) show disorder over two components related by a 60° 

rotation about C71-C7. The Ru - Cl bond length is 2.3848(5) A and the Ru - 0 bond 

lengths are 2.1469(14) A and 2.1659(15) A, respectively. The Ru - centroid distance 

is 1.64A. 

As in the case of complexes [(ij 	(3.5) and [(1-p- 

cym)Ru(trop)H20]NO3  (3.25a) (vide infra), there are interactions between the arene 

protons and the oxygen atoms of the chelated ligand. The molecules in 3.26 are 

arranged in chains, held together by H-bond interactions (d = 2.29 A, 01.. •C5 

3.198(3) A and 2.42 A, 02•••C3 3.644(3) A) involving both the carboxylate oxygen 

atoms 01 and 02 and arene protons H5 and H3, respectively (Figure 3.7B). There is 

also evidence for intermolecular it - it interactions between p-cymene ligands. The 

arene rings are slightly tilted with respect to each other. The shortest distance is 

between carbons C3 and C4 in neighbouring arene ligands (d = 3.443(3) A), and the 
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longest for C6 which interacts with the neighbouring C6 and Cl carbons at distances 

of 3.933(3) A and 4.049(3) A, respectively (Figure 3.7C). 

3.3.1.4 Ru" p-cymene complex bridged by a 0,0-chelating ligand 

Using 1 ,4-dihydroxyanthraquinone dianion as a chelating ligand, the bridged 

bi-functional complex [(il  - (0, 0)2)C12] (3.28) was 

synthesised. The symmetry of the proton signals of the chelating ligand in the 'H 

NMR spectrum confirmed binding of two ruthenium atoms. 

3.3.2 Discussion 

3.3.2.1 X-ray crystal structures 

The structures of the solved Ru" p-cymene ,8-diketonato complexes do not 

differ greatly from each other, despite the different nature of the substituents on the 

chelate rings. Compared to the analogous ethylenediamine complex [(11 

 [4], the Ru - N bond lengths are Ca. 0.05 A longer than the Ru - 

O bond lengths of compounds [(TI 	(3.5), [(i 6-p- 

cym)Ru(Ph2acac)Cl} (3.6), [(il 	(3.7) and [(T 6-p- 

cym)Ru((CF3)2acac)Cl] (3.8). The respective Ru - Cl bond lengths are within the 

range displayed by other compounds of the type [(il  (2.41 - 2.44 

A) [4, 8].  The Ru - 0 bond lengths in the fl-diketonato complexes are comparable 

with the exception of 3.8, where that distance is significantly longer (>3a, with a 

defined as ((; 1 2  + 022)

1 , where a 1  and 02  are the standard deviations of the compared 

bond lengths). It results in a higher distortion of the ligand and also indicates that the 

electron-withdrawing ability of the six fluorine atoms leads to weaker binding of the 

ligand to the ruthenium centre compared to the other ligands, thus making it 

potentially more labile. Due to the electron withdrawing effect of the ligand the 
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contribution of the chloride to the electron density on the metal centre is increased, 

reflected by a significantly shorter Ru - Cl bond length (>3(). 

Compared to the Ru - Cl and Ru - 0 bond lengths for the ,8-diketonates, the 

corresponding values for the maltolato complex are longer on average, even though 

potentially bond elongating effects exerted by interactions with water, which cannot 

be quantified, could have an influence in that. 

For the acetato complex, the bond lengths are significantly different, with a 

shorter Ru - Cl distance and longer Ru - 0 bonds compared to the compounds 

containing five- and six-membered chelate rings. The comparatively long Ru - 0 

bonds in particular indicate relatively weak binding of the acetate chelate to the metal 

centre. 

An interesting feature of some of the above crystal structures is their ability to 

form intermolecular CH . •0 bonds. Such interactions have received increasing 

attention during recent years due to their potentially important role in biological 

systems [28].  The possibility of formation of H-bonds involving these ruthenium(ll) 

complexes could be relevant to interactions with biomolecules, e.g. proteins. 

In summary, it appears that the side groups of fl-diketonate ligands have little 

influence on the structural appearance of complexes of the type [(11 

 Differences in bond lengths and angles are generally subtle, with the 

exception of [(ij 	(3.8). 

Comparing the influence of the chelate ring size on the bond lengths, 

neglecting any contribution the nature of substituents on the respective ligands might 

have on them, the following observations can be made. A decrease in the chelate ring 

size is reflected by a decrease in the 0 - Ru - 0 bite angle. The Ru —0 bond lengths 

appear to increase with decreasing chelate ring size, whereas the Ru - centroid bond 

lengths decrease. No apparent trend for the Ru - Cl bond lengths is evident. 
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3.4 Cancer Cell Growth Inhibition 

3.4.1 Results 

The screening for cancer cell cytotoxicity of compounds 3.5 - 8, 3.11 - 13, 

3.15, 3.28 was carried out by Rhona Aird, Western General Hospital (Edinburgh, 

UK), using the procedure described by Morris et at. [4]. A2780 cells (human ovarian 

cancer cells) were plated on day zero, and Ru 11  arene complex was added on day 3. 

The complex was removed on day 4 (i.e. 24 h cell exposure), and after growth in 

fresh medium in the absence of the drug, the cells were counted on day 7 (i.e. 72 h 

incubation). Because it is known that metal coordination complexes can undergo 

ligand substitution reactions with components of the media in which they are 

dissolved, freshly-made stock solutions of each compound were used. The 

Table 3.6: Table of the IC50  values (concentration which causes 50% inhibition of 

cell growth) of complexes tested against A2780 (human ovarian) and A549 

(human lung) cancer cell lines. Cisplatin is used as a standard. RM121 is the 

ethylenediamine-containing complex [( 6-p-cym)Ru(en)Cl]PF 6  [4]. 

Complex 
A2780 

IC 	(.tM) 
Complex 

A2780 
IC50  (jiM) 

A549 
IC50  (jtM) 

cisplatin 0.6 cisplatin 3.3 5.8 

3.5 19 3.9 39.1 >100 

3.6 11 3.10 >100 86.4 

3.7 14 3.16 57.7 >100 

3.8 >100 3.17 48.4 >100 

3.11 21 3.18 63.0 >100 

3.12 >50 3.19 59.1 >100 

3.13 >50 

3.15 22 

3.28 53 

RM121[4] 9 
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complexes were stored in the dark at 277 K as a precaution against photochemical 

decomposition. The screening for cancer cell cytotoxicity of compounds 3.9 - 10, 

3.16 - 19 was carried out by Emily Jones, Oncosense Ltd., following the same 

procedure, with a different incubation period of 96 h. The IC 50  values (the 

concentration which causes 50% inhibition of cell growth) are listed in Table 3.6. 

Cytotoxicity towards the A2780 cell line is observed for some complexes containing 

acac-derivatives. The activity of [(ij  (3.6) is comparable to 

its ethylenediamine-containing analogue. The activity towards the A549 cell line is 

poor for all complexes. 

3.4.2 Discussion 

Platinum complexes are the most widely used anticancer drugs in clinics, and 

cisplatin is used as a standard in the cytotoxicity tests performed for complexes 

investigated in this study. A number of Ru 11  arene complexes containing en as the 

chelating ligand produced in the Sadler group  have shown promising activity against 

the human ovarian cancer cell line A2780, some as potent as carboplatin and 

cisplatin [6]. 

It was therefore of great interest to investigate how changing nitrogen-based 

chelating ligands to oxygen-based ligands would affect the cytotoxic potency of 

those complexes. A direct comparison of activity, however, is potentially complex, 

with differences resulting from change of ligand ranging from charge, chelate ring 

size, structural properties to charge distribution and chemical properties including 

stability. Possibly different recognition and/or transport mechanisms during testing in 

vitro could also be important. The resulting effects of such differences could be 

difficult to elucidate. 

The neutral complexes in particular showed limited to poor water solubility. 

Ideally, anticancer agents should have good water solubility in order for them to be 
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administered in vivo. [(11 6-arene)Ru(en)Cl]PF6 complexes are positively charged, 

making them generally fairly soluble in water. The increased hydrophobic character 

of the neutral Ru 11  arene complexes, however, could also be an advantage since 

uptake through the lipophilic cell membrane might be faster and more favourable 

than for the en complexes. 

Interestingly, the cytotoxic activity of some of the p-cymene fl-diketonato 

complexes approached that of the analogous ethylenediamine containing complex. 

Complexes which were inactive include those acac-type ligands with CF 3  

substituents and those containing five-membered chelate rings. The reason for the 

inactivity for the latter is not obvious, whereas in the case of the former complex a 

potential lack of stability might be the reason. As seen in the crystal structure of [(ij 

p-cym)Ru((CF3)2acac)Cl] (3.8), the chelate ligand appeared to be more weakly 

bound than the other ligands, possibly as a consequence of the electron withdrawing 

CF3  groups. Thus breakage of the relatively weak Ru - 0 bonds might lead to ring 

opening of the chelate in solution, which could be a deactivation pathway for these 

complexes (e.g. formation of a hydroxo-bridged dimer (vide infra)). Surprisingly, the 

only complex with an IC 50 value < 100 jiM against the human lung cancer cell line 

A549 was the CF 3-containing complex [(16-p-cym)Ru(PhacacCF3)Cl] (3.10). 

For [(Tj6-arene)Ru(en)Cl]PF6 complexes an increase in the hydrophobicity of 

the arene tends to increase it cytotoxicity in the order of dihydroanthracene (DHA)> 

biphenyl > indan > p-cymene > benzene [6].  Intriguingly, with acac as the ligand, a 

different order of p-cymene > biphenyl > DHA [5] >> benzene, indan was found. 

There does not appear to be a clear structure-activity relationship for the 0,0-

chelated complexes examined here. The apparent strong dependence of activity on 

the nature of the arene is remarkable. While electronic effects from change in arene 

could be expected to be marginal, steric effects could be more important. Both p-

cymene (pendant isopropyl group) and biphenyl (pendant benzene ring) contain 

16 



Chapter 3 

rotating components, which can exert steric hindrance below the plane of the arene 

towards the reactive site on the ruthenium centre (Figure 3.8). Benzene is 

unsubstituted and the arenes DHA and indan contain flexible substituents, not 

necessarily having a strong steric influence below the plane of the arene. Also, 

sterically demanding substituents on the fl-diketonate ligands increase the activity of 

the tested complexes. Both the five-membered chelate rings in the inactive 

compounds [(TI )Ru(trop)Cl] (3.23) and [(ij  (3.24) are 

planar. The role of bulky substituents, however, could be subtle, since 

crystallographic data suggest that potential steric hinderances would not occur in 

close proximity to the metal centre. Possibly, sterically-demanding substituents could 

slow down deactivation especially by bulky bioligands, e.g. proteins, by limiting 

their access to the metal centre. 

The activity of the positively-charged complexes with respect to their neutral, 

chloride containing analogue is noteworthy. The activities for complexes [( 11
6-p- 

B) 

7050  

Figure 3.8: Spacefilling models of the X-ray crystal structures of cations in [(r 6-p-

cym)Ru(Ph2acac)H 2O] (3.21b) (A) and [( 6-p-cym)Ru(trop)H 2O] (3.25b) (B), 

showing possible steric hindrance at the reactive metal binding site exerted by the 

pendent isopropyl group. 
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cym)Ru(acac)C1] (3.5) and [( 6-p-cym)Ru(acac)CH 3CN]BF4  (3.15) are almost 

identical and under different testing conditions the complexes containing pyridine 

derivatives (3.16 - 19) have comparable values. This points towards a common mode 

of activation for these compounds, one which could be independent of the leaving 

group (vide infra). 

3.5 Solution Chemistry 

3.5.1 Results 

3.5.1.1 Stability in water 

The chloride-containing complexes [(ij 	(3.5), [(ii6-p- 

cym)Ru(trop)Cl] (3.23), [( 6-p-cym)Ru(ma)Cl} (3.24) and ftr 6-p-cym)Ru(AcO)Cl] 

(3.26) were all dissolved in D 20 (8 mM Ru) and their 'H NMR spectra recorded at 

298 K and pH*  values of 6.95, 7.11, 6.93 and 4.14, respectively, where pH* = pH 

meter reading of the D 20 solution. The spectra of complexes with 5- and 6-

membered chelate rings gave rise to single sets of peaks, whereas that of 3.26 

appeared more complex. 

The 1 H NMR spectrum of 3.26 was recorded 10 min after dissolution in D 20 

and again after 19 h. During this time the pH*  value changed from 4.14 to 4.28 at 

298 K, and the intensity of the p-cymene arene ring proton signals changed. Analysis 

of the doublets for the p-cymene ring protons suggested that six species were present 

in solution, one, with peaks at 5.38 and 5.17 ppm, clearly dominating (Figure 3.9). 

After addition of NaOH, this latter species was the only one present in solution, and 

was shown by mass spectrometry (MS-ES) to be the hydroxo-bridged dimer [((q 6-p-

cym)Ru)2(-OH)3] (3.27). This dimer has been reported in the literature, but has not 

been characterised in water [29].  The chemical shifts of the peaks for the dimer did 

not change under basic conditions. A singlet, which increased in intensity upon 

addition of free acetate, shifted from around 8 2.50 (acidic pH) to 8 1.90 (basic pH). 
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Figure 3.9: The p-cymene ring proton region of the 'H NMR spectrum of [(1 6-p-

cym)Ru(AcO)Cl] (3.26) in D20 at 298 K after 10 min at pH* = 4.14 and after 19 h at 

pH* = 4.28, respectively. The labels correspond to p-cymene ligands in different 

species present in solution, which have not been further characterized, except for 

species f, which is [((ij  (3.27). 

3.5.1.2 Hydrolysis studies 

	

The hydrolysis of [(il 	(3.5) was investigated. UV-vis 

experiments and conductivity measurements indicated that the hydrolysis of 3.5 is 

too fast to follow, the latter suggesting the existence of ionic species in solution [30]. 

A chloride titration was followed by 'H NMR with up to 1.75 M of added 

chloride. It was found that a change in [Cl] resulted in a shift of the peaks for 3.5. In  

81 



Chapter 3 

a separate experiment, the chemical shifts of complexes 3.5 and ft71 6-p 

cym)Ru(acac)H 20]NO3 (3.14a) in water were found to be very similar. 

The analytically pure compound [( 6-p-cym)Ru(acac)dcp]PF 6  (3.16), where 

dcp = 3,5-dichioropyridine, was dissolved in D 20 (ca. 350 .tM, pH* = 7.66, 298 K) 

and its 'H NMR spectrum recorded 25 min after dissolution. Three p-cymene-

containing species were noted at relative intensities of 1 : 3 : 0.2. When the spectrum 

was re-recorded after 48 h (pH* = 7.08) the intensities had changed to 1: 3.4: 1.7. A 

separate solution recorded after 40 min in D 20 (ca. 175 1.tM, pH* = 8.31, 298 K) 

produced relative intensities of 1 : 5.5 : 0.9. The p-cymene ring proton and central 

acac peaks of one species were broad, whereas the other signals were sharp. 

Figure 3.10 shows the spectrum of 3.24 in CDC1 3  and D20 (pH* = 6.95 at 

c+c,  

D20 

a+a'b+b' I 	d 

C 

C ,  
CDCI3  

S 	 a+a'b+ 

b 	a 

 

c+c,  
wn 

7.5 	6.0 	4.5 	3.0 	1.5 
s/ppm 

Figure 3.10: The 'H NMR spectrum of [(Tl 	(3.24) in CDC13  and 

D20 (p11*  6.95) at 298 K, including partial peak assignment. Assignments: s = 

CHC13 ; w = residual water; d = 1,4-dioxane. 
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298 K). The spectrum in CDC1 3  gives rise to a pattern which suggests chirality at the 

metal centre, since the p-cymene ring protons (four separate peaks) and the isopropyl 

group (two separate peaks) appear magnetically inequivalent. In contrast, the 

spectrum in water shows resonances of magnetically equivalent p-cymene ring 

protons, assignable to a non-chiral species. 

3.53.3 PKa  values of coordinated water 

The pKa  values of coordinated water in the aqua adducts [(ii6-p-

cym)Ru(acac)H 20]NO3 (3.14a), [(ij  (3.25a) and [(q6-p-

cym)Ru(ma)H20]NO3  (3.29) were determined by 1 H NMR pH titrations (Figure 

A.3.1). Figure 3.11 shows a plot of the dependence of the 1 H NMR chemical shift of 

the acac CH resonance of 3.14a on pH. Those for the trop and ma systems are shown 

in Figures A.3.2 and A.3.3. The values were found to be 9.41 (3.14a), 9.12 (3.25a) 

and 9.23 (3.29) respectively (Table 3.7). 

4 	6 	8 	10 	12 
pH 

Figure 3.11: Dependence of the 1 H NMR chemical shift of the acac CH resonance of 

[( 6-p-cym)Ru(acac)H20]NO3  (3.14a, 10% D20/ 90% H20, 0.1 M NaC104, 298 K) 

on pH. The line is a computer fit giving pK a  (H20) = 9.41 ± 0.01. 
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Table 3.7: 	The pKa  values for 	coordinated 	water 	in 	complexes 	[(7 6-p- 

cym)Ru(acac)H20]NO3 (3.14a), [(TI  (3.25a) and [(i16-p- 

cyrn)Ru(ma)H20}NO3 (3.29). 

Complex Chelate pKa  (H20) 

3.14a acac 9.41 ± 0.1 

3.25a trop 9.12 ±0.1 

3.29 ma 9.23 ±0.1 

Table 	3.8: 	Selected 	bond lengths 	(A) and 	angles 	(°) 	for 	[(1 6-p- 

cym)Ru(Ph2acac)H20] CF3SO3 (3.21b) 	and [(fl6-p-cym)Ru(trop)H20]CF3503 

(3.25b). 

3.21b 3.21b 
3.25b 

X = 1 X=2 

RuX-011X 2.0575(17) 2.0627(16) Ru-Ol 	2.0488(18) 

RuX-015X 2.0547(16) 2.0454(15) Ru-02 	2.0641(19) 

RuX-OX 2.1334(17) 2.1345(17) Ru-03 	2.158(2) 

RuX-C1X 2.189(2) 2.186(2) Ru-CiA 	2.180(3) 

RuX-C2X 2.156(2) 2.162(2) Ru-C2A 	2.149(3) 

RuX-C3X 2.176(2) 2.183(2) Ru-C3A 	2.161(3) 

RuX-C4X 2.181(2) 2.178(2) Ru-C4A 	2.195(3) 

RuX-05X 2.152(2) 2.146(3) Ru-05A 	2.165(3) 

RuX-C6X 2.157(2) 2.141(3) Ru-C6A 	2.171(3) 

RuX-centroidX 1.640 1.645 Ru-centroid 	1.645 

01 1X-RuX-015X 88.21(6) 87.49(6) 01-Ru-02 	77.40(8) 

01 1X-RuX-OX 80.23(7) 8 1.56(7) 01-Ru-03 	79.72(8) 

015X-RuX-OX 83.07(7) 80.83(6) 02-Ru-03 	80.94(8) 

[a] = measured using Mercury 1.4. 
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3.5.1.4 X-ray crystal structures 

Counterion metathesis from NO 3  to CF3S03  of 3.21a (solubilised in minimal 

ethanol) and 3.25a in water to produce [(ij  (3.21b) 

and [( 6-p-cym)Ru(trop)H 20]CF3SO3  (3.25b), respectively, followed by extraction 

with diethyl ether and separation, enabled the growth of crystals suitable for X-ray 

diffraction by slow evaporation of diethyl ether at 253 K. Their X-ray crystal 

structures are shown in Figures 3.12 and 3.13, respectively, crystallographic data in 

Table A.3.3, bond lengths and angles are listed in Table 3.8. 

The asymmetric unit of the structure of 3.21b consists of two molecules 

(molecules 1 and 2) and each molecule forms a dimer with an equivalent molecule. 

These dimers show interactions between oxygens and hydrogens of bound water with 

solvent ether (d = 1.94 A, O1 ... O36 2.703(3) A and 1.98 A, O2 ... O35 2.739(3) A) 

and solvent water (d = 1.88 A, 0107 2.657(3) A and 1.94 A, O2 ... O8 2.622(3) A), 

the latter forming strong hydrogen bonds with the CF 3S03  counter anions (d = 2.02 

- 2.12 A) (Figure 3.1213). The Ru - O(H20) distances are 2.1334(17) A and 

2.1345(17) A for the two molecules, which is similar to values reported for other 

ruthenium arene aqua adducts containing bidentate chelating ligands such as 2,2-

bis(2-oxazolinyl)propane [31] and deprotonated (S)-(a-methylbenzyl)salicylaldimine 

321, as well as ethylenediamine-containing complexes (2.09 - 2.16 A) [33]. 

The Ru - O(Ph 2acac) distances vary between 2.0454(15) A and 2.0627(16) 

A, the Ru - C(arene) bond lengths are in the range of 2.141(3) A to 2.189(2) A and 

Ru - centroid distances are 1.64 A and 1.65 A. There is partial it - it stacking 

between neighbouring p-cymene rings, where C32C41 and C42••C31 are 3.420(3) 

A and 3.458(3) A, respectively. The shortest H(H 20) - O(Ph2acac) distances are 2.59 

A and 2.64 A, respectively. The phenyl rings on each molecule are tilted at angles of 

18.97° and 32.68°, respectively, from each other. The counter anion shows disorder, 

as does the isopropyl group of one molecule. 
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molecule I 

Figure 3.12: X-ray crystal structure of [(r 6-p-cym)Ru(Ph 2acac)H 2O]CF3 SO3  

(3.21b). The asymmetric unit contains two molecules. A: Numbering scheme (shown 

for molecule 1, anion omitted). B: Formation of dimers (shown for molecule 1) of 

3.21b, showing interactions of bound water with solvent diethyl ether and water, the 

latter forming H-bonds with the counter anion. 
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For [(TI 	(3.25b), the asymmetric unit contains 

one molecule of 3.25b which forms dimers, held together by strong hydrogen bond 

interactions between the protons of coordinated water and oxygen atoms of the 

CF3S03  counter anion (d = 1.89 - 1.99 A), which is distorted (Figure 3.13B). The 

Ru - 0(1120) bond distance is 2.158(2) A, the Ru - 0(trop) bond lengths are 

2.0488(18) A and 2.0641(19) A, and the Ru - C(arene) distances are in the range of 

2.149(3) A to 2.195(3) A, with Ru - centroid 1.65 A. 

C41AJ 

C5A C6A 
CIA B) C4OA 

C1OA 
C4A 

:42A Rul 

03  

: 

A) 01 

CI 

C 6  

CS 

HOO 

Figure 3.13: X-ray crystal structure of [( 6-p-cym)Ru(trop)H20] (3.25a). A: 

Numbering scheme. B: Formation of dimers of 3.25a via H-bond interactions 

between coordinated water and the counter anion. C: Chain formation via the trop 

oxygens 01 and 02 with p-cymene protons 113 and H6 and H10, respectively. D: 

Formation of it - it stacking between neighbouring tropolonate rings via the C3 and 

C4 carbons and the C3 and C5 carbons, respectively. 
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Both tropolonate oxygen atoms interact with respective neighbouring arene 

protons as seen for complexes [( 6-p-cym)Ru(acac)Cl] (3.5) and [(i 6-p-

cym)Ru(AcO)Cl] (3.26) (vide supra). The oxygen atom 02 has a short contact with 

the H1OA proton of the methyl group of p-cymene (d = 2.51 A, 02 ... C10A 3.417(4) 

A) and the adjacent 1-16A arene proton (d = 2.55 A, 02 ... C6A 3.191(4) A), whereas 

oxygen atom 01 interacts with the 1-13A arene proton at a distance of 2.30 A 

(01 ... C3A 3.118(4) A), thus linking the molecules into chains along the z axis 

(Figure 3.13C). The it - it stacking of two neighbouring tropolonate ligands via the 

C3 and C4 carbons (d = 3.535(6) A) and C3 and C5 carbons (d = 3.49 1(6) A), 

respectively, forms a grid parallel to the (210) plane and the H-bonded dimer 

formation links the layers together (Figure 3.13D). 

There are significant differences between the bond lengths of free tropolone 

[34] and those of coordinated tropolonate, which appears common for metal 

complexes. The tropolonate ring shows only a slight distortion from planarity, with C 

- C bond lengths decreasing from ring atoms Cl and C2 towards the CS position. 

This phenomenon also seems to be the case for at least two of the three rings in the 

complex Ga(trop)3 [20],  but not for several other reported structures [20, 21, 22, 35]. 

The shortest H(H 20) - 0(trop) distance is 2.65 A. 

3.5.1.5 Reactions in chloroform 

It was noticed that both complexes [(7 6-p-cym)Ru(Ac0)Cl] (3.26) and [(1 6  

p-cym)Ru(trop)H20]NO3  (3.25a) can undergo reactions in CDC1 3 . 

In the 'H NMR spectrum of [(71 6-p-cym)Ru(AcO)Cl] (3.26) in CDC1 3, the p-

cymene signals in the 6 5.65 - 5.30 region suggest the presence of two p-cymene 

species, one of which is 3.26 as assigned by Tocher et al. [36]. The relative 

concentrations of the two species varied between different 1 H NMR spectra. The 'H 

NMR spectrum of a sample of 3.26 in CDC1 3  was recorded 10 min after dissolution. 

Ai 
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It was then sealed to prevent evaporation of the solvent, stored away from direct 

sunlight to prevent photochemical reactions, and recorded again after 2 d 19 h. The 

ratio of 3.26 : new product changed from 9.6: ito 2.8: 1 (Figure A.3.4). 

A concentrated solution of 3.25a in CDC13  (ca. 10 mM Ru) was recorded 10 

min after dissolution and again after 3 d 22 h. Also, some of that solution recorded 

after 10 min was taken and diluted by more CDC1 3  (ca. 20-fold) and the spectrum 

was recorded both after 10 min and 20 h. For the concentrated sample, p-cymene 

arene signals for a new species were evident, the intensities increasing from initially 

36 : 1 to 7 : 1 over a period of 3 d 22 h. For the diluted sample, more species 

appeared to be present in solution according to p-cymene arene signals, including the 

two found in the concentrated sample, their relative intensities changing from 1 : 3.3 

to 1:2.1 overaperiodof2Oh. 

3.5.2 Discussion 

3.5.2.1 Stability in water 

The stable 111  NMR spectra obtained for complexes [(71  

(3.5), [( 6-p-cym)Ru(trop)Cl] (3.23) and [( 6-p-cym)Ru(ma)Cl] (3.24) in water 

makes them suitable candidates for further studies in aqueous media. This is in 

I 	 0 OH >P  Ru 	
2 Y +4H20 

2 CI' 	
HOH,OH 	+ 	Me 

Ru 	 2C1 
Me 	

H30' 

Scheme 3.5: Balanced equation for the formation of [((il  

(3.27) from [( 6-p-cym)Ru(AcO)C1] (3.26) in water. 
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contrast to [(il 	(3.26), which decomposes rapidly by hydrolysis 

of both chloride and acetate to form the hydroxo-bridged dimer [((71 

 (3.27) (Scheme 3.5). Figure 3.14 shows a spectrum of 3.26 in D20 at 

different pH*  values. The positions of the peaks for 3.27 do not change over a pH 

range of more than 6 units, which shows its high stability and inertness. 

Tocher et al. have pointed out previously that dissociation of acetate from 

such complexes can occur in polar solvents [36].  Acetate has been proposed to act as 

an intramolecular base in palladium complexes [37] and such a mechanism could 

facilitate the formation of the hydroxo-bridged dimer at acidic pH*  values (ca. 4). 

The proposed use of [(il  (3.26) as a precursor for the 

b 	 C 

701 

pH* = 11.85 

a 

N 
	

C 

pH* = 4.28 

a 

2.8 	2.4 	2.0 	1.6 	1.2 
/ ppm 

Figure 3.14: The high-field region of the 1 H NMR spectrum of [(T 6-p-

cym)Ru(AcO)C1] (3.26) in D 20 at 298 K and pH* = 4.28 and 11.85, respectively. 

The main species present is [((ij  (3.27). Assignments: a = p-

cymene isopropyl CH (3.27); b = p-cymene CH 3  (3.27); c = p-cymene isopropyl 

(CH3)2  (3.27); d = free acetate CH 3 . 
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cyclometallation of imines by Davies et al. [27] further suggests an inherent lability 

of the acetate ligand. 

These findings also provide evidence for the surprisingly facile formation of 

the ruthenium arene hydroxo-bridged dimer 3.27. Recent studies on related osmium 

complexes have shown the pronounced tendency of those complexes to undergo 

formation of hydroxo-bridged dimers, even at acidic pH [38]. 

3.5.2.2 Hydrolysis studies 

The 1 H NMR spectrum of [(Tl 	(3.5) in 90% H20/10% 

D20 contained a single set of peaks, and conductivity measurements indicated the 

existence of ionic species in aqueous solution, suggesting that hydrolysis occurs [30]. 

This is consistent with the NMR chemical shifts, which are very similar to those of 

the aqua complex [(rj  (3.14a). Hydrolysis of 3.5 appeared 

to be rapid, since equilibrium was reached by the time the first 1 H NMR spectrum 

was recorded (< 5 mm). 

Figure 3.15 shows a plot of the dependence of the acac Me protons on 

chloride concentration. Anation of hydrolysed 3.5 was almost complete on addition 

of Ca. 1 M NaCl. The curve, however, does not have a good fit to a chloride/aqua 

equilibrium. The reason for this presumably is that shifts are not only influenced by 

chloride anation alone, but also by an increase in pH resulting from both addition of 

increasing amounts of NaCl solution and dissociation of acac at high [Cl], as well as 

a strong influence of ionic strength, especially at high [Cl]. 

During the chloride titration, the 1 H NMR spectra showed only a single set of 

peaks for 3.5, indicative of relatively fast exchange between water and chloride on 

the NMR timescale. Davies et al. have pointed out the critical role of hydrogen bond 

interactions for Ru 11  arene complexes with 0,0-chelating ligands forming five-

membered chelate rings and proposed an equilibrium state between co-ordinated 
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Figure 3.15: Variation of the 'H NMR chemical shift of the acac Me protons of an 

hydrolyzed sample of [(rj  (3.5) on addition of increasing 

amounts of NaCl. 

water and co-ordinated chloride during hydrolysis [39].  The X-ray crystal structure 

of [( 6-p-cym)Ru(ma)Cl].2H20 (3.24).2H20 provides solid' state evidence for 

interactions of water with the chioro complex. The water molecules are apparently 

pre-organised for hydrolysis of the complex, but may also stabilize coordinated 

chloride, factors which could contribute to the observed rapid exchange of water and 

chloride. The arrangement of the water molecules is similar to that found in the 

calculated transition state for aquation of the related acac complex [(116-p-

cym)Os(acac)Cl] [40].  Hence the solid state structure provides a "snapshot" of the 

possible hydrolysis pathway. 

The 'H NMR spectrum of [(Tj 	(3.16) in water 

contains the three species 3.16, ftr 6-p-cym)Ru(acac)H 2O]PF6  (3.14b) and [((p 6-p- 

cym)Ru)2(t-OH)3] (3.27) (Figure 3.16). The extent of hydrolysis cannot be 
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determined accurately due to gradual formation of the hydroxo-bridged dimer 3.27 

and appears to be concentration dependent, indicated by the significantly higher 

presence of 3.14b at lower concentrations of 3.16. 

An exchange mechanism appears to be the reason for the different spectra of 

3.24 in CDC1 3  and D20. Maltolate is an unsymmetrical ligand making the Ru centre 

chiral, and thus the p-cymene ring protons are inequivalent, giving rise to four 

signals in the non-coordinating solvent chloroform. The signals for the aqueous 

solution do not indicate inequivalence, which means that the peaks are either 

pH* = 7.08 
= 48 h C 	 C 

	

350iiMRu 	
e 	 e 

	

a 	nii 	 nil a 

pH* = 7.66 
t=45 mm 
175 pM Ru 

	

pH* = 8 . 31 	 a+c 	d 

= 25 mm 
350 pM Ru 

	

a 	 b 

e 	I 	e 

5.8 	 5.6 	 5.4 	 5.2 
/ ppm 

Figure 3.16: The p-cymene ring proton and acac CH region of the 1 H NMR 

spectrum of [(T 6-p-cym)Ru(acac)dcp]PF 6  (3.16) in D20 at 298 K. The three species 

present are (3.16), [( 6-p-cym)Ru(acac)H 20]PF5  (3.14b) and [((r6-p-cym)Ru) 2(1-

OH)3] (3.27). Assignments: a = p-cymene CH (3.16); b = acac CH (3.16); c = 

cymene CH (3.14b); d = acac CH (3.14b); e = p-cymene CH (3.27). Peaks b and d 

have disappeared after 48 h due to proton exchange in D 20. 
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accidentally equivalent or that a fluxional process is occurring, which makes them 

equivalent on the NMR timescale. Davies et al. have put forward an explanation for 

[(i 5 Cp*)Rh(ema)Cl], where Cp* = pentamethylcyclopentadienyl, ema = 

ethylmaltolate, which shows the chiral and non-chiral behaviour in chloroform and 

water, respectively, as does 3.24 [39].  The proposed mechanism is shown in Scheme 

3.6. 3.24 can be assumed to hydrolyse rapidly and almost fully in water, similarly to 

the acac system. This aqua complex can then undergo the proposed water exchange 

reactions. Further evidence was obtained by Davies et al. by low temperature studies 

in CD30D, which showed the splitting of signals into two independent sets of 

signals. Similar studies on complex [(ij  which exhibits the same 

behaviour as its ruthenium analogue, have also shown this splitting at low 

temperature [40],  and a ring opening mechanism was proposed. The appearance of 

the broad peaks for 3.14b at low concentrations points towards an exchange or ring 

opening mechanism, which is reasonably slow on the NMR timescale. 

pcyml + 

H2O Ru"O 

Th 
p-cym I 

H20RLçOH2  

• 	. • 	. 

1 + 
p-cym I 

oI I ... Ru.. 

Scheme 3.6: Proposed mechanism of fluxionality for complex [(1 6-p-

cym)Ru(ma)C1] (3.24) after hydrolysis in water, adapted from a report by Davies et 

al. [39]. 

The hydrolysis studies of complexes 3.5 and 3.16 suggest that at least for the 

acac system the complexes would be largely present as [(i6-arene)Ru(acac)H2O]  at 

the micromolar concentrations used in the screening for cancer cell cytotoxicity. The 

implied independence on the leaving group could be the source of a common mode 

of activation for all these compounds. 
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Chloride titrations of [(ij 	complexes have shown 

essentially full chlorination at physiological chloride levels (104 mM), e.g. > 89% 

for [(ij  [10].  For 3.5, the titration suggested a chioro : aquo 

complex ratio of 55 : 45 at that level (104 mM). This could also apply to the 

positively-charged acac-containing compounds, since results for 3.16 suggest that 

already at concentrations Ca. 5 times higher than those employed during cell testing 

they show a large extent of hydrolysis. These findings imply that for the acac system 

there might not be as strong a dependence of activity on the nature of the leaving 

group as was recently found for en-containing complexes [11]. 

In addition, upon introduction of acac-containing Ru 11  arene complexes into 

the cell media, a considerable percentage of these might essentially be immediately 

present in its more reactive aqua form and could be lost due to deactivation by 

biomolecules. On the other hand, possible immediate reactivity could also be the 

reason for activity, either by rapid reaction with a target or by enabling transport 

mechanisms, whereby the complexes react with a biomolecule and are shuttled to 

their target site. 

These results show that the chelating ligand acac has a pronounced effect on 

both the rate and, extent of hydrolysis in Ru 11  arenes compared to en. Chloride 

displacement occurs readily and anation is suppressed, even at elevated [Ci]. A 

reason for this might be electronic effects of the acac ligand. Acetylacetonate ligands 

are known to be strongly electron-donating towards Ru 11  centres [41], and the high 

electron density on Ru 11  in [( 6-arene)Ru(acac)H 20] compared to the analogous en 

complex makes the substitution of the aqua ligand by negatively-charged Cl less 

favourable [42].  Similar behaviour can also be inferred for trop and ma. 0,0-

Chelating ligands also appear to favour a rapid chloride/water exchange mechanism, 

possibly due to interactions between chloride, water and the chelate oxygen atoms as 

seen in the solid structure of 3.24.2H 20. 
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In addition, potentially favourable H-bond interactions between a coordinated 

water molecule and the oxygen atoms of the chelating ligands in solution could lead 

to added stability of the aqua adduct compared to its chlorinated form as has been 

suggested to occur in another complex [25]. 

3.5.2.3 pKa  values of coordinated water 

The PKa  values of coordinated water can have an important influence on the 

reactivity of Ru 11  arene complexes (Scheme 3.7). Aquo complexes of the type [(1 6  

arene)Ru(en)H 20]2  are very reactive towards potential target molecules, whereas 

their hydroxo analogues are less reactive [9]. 

The pKa  values of bound water in complexes [(TI  

(3.14a), [( 6-p-cym)Ru(trop)H 20] (3.25a) and [(1 6-p-cym)Ru(ma)H20] (3.29) 

were found to be in a similar range, all greater than 9. Those values are between 0.9 

- 1.2 pKa  units higher than that for the respective en analogue [(16-p-

cym)Ru(en)H2O] 2  (8.25) [10].  Therefore, at physiological pH (7.4), the 0,0-

chelated complexes 3.14a, 3.25a and 3.29 would be expected to be mainly present in 

their reactive aqua forms rather than as the less reactive hydroxo complexes. 

The pH titration showed that at pH values < 4, acac dissociated from 

'\ 	ruthenium, whereas the maltolato and tropolonato complexes appeared significantly 

RC> 12+ 	 1 

	

I 	
PKa 	

I. 
•  

2 	 HO 

	

-Ru—NH2 	 ..-Ru—NH2 1  -- 	H2N 	 H2N 

	

Very reactive 	 Less reactive 

Scheme 3.7: The influence of the pK a  value of water in complexes of the type [(1 6  

arene)Ru(en)H 20]2  on reactivity [9]. 
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more stable. In addition, at pH values greater than 9, the hydroxo-bridged dimer 

[(( 6-p-cym)Ru) 2(i-OH) 3] (3.27) formed, which was further confirmed by the 

appearance of signals due to the free chelating ligands. Upon acidification the 

chelated complexes formed again, indicating a large degree of reversibility of dimer 

formation in the case of ruthenium. This is in contrast to osmium analogues, where 

dimer formation appeared to be irreversible [38, 40]. 

The large increase of ca. one unit in the PKa  value of the aqua ligand in the 

0,0-chelated complex 3.14a, 3.25a and 3.29 compared to the en complex, can be 

rationalized on the basis of the increased electron density on Ru 11. Additional 

interactions between bound water and the chelating ligand could enhance the stability 

of the aqua complex further. 

These findings show how chelating ligands can be used to fine-tune the 

stability of coordinated water in ruthenium(ll) anticancer complexes over a 

considerable range. The comparatively low pK a  value of 7.3 in the complex [(ij 

hmb)Ru(bpy)H2O]2 , where hmb = hexamethylbenzene, bpy = 2,2'-bipyridine, 

further emphasises this point [43]. 

3.5.2.4 X-ray crystal structures 

The X-ray crystal structures of [( 6-p-cym)Ru(Ph 2acac)H20]CF3SO3  (3.21b) 

and [(q 6-p-cym)Ru(trop)H 20]CF3SO3  (3.25b) show that 0,0-chelated ruthenium 

arene complexes can form stable aqua adducts. They also reveal that the key bond-

lengths in both complexes are remarkably similar. In addition, there does not appear 

to be strong intramolecular hydrogen bonding between the chelating ligand and 

coordinated water in the solid state. It therefore seems likely that the high PK a  values 

of the 0,0-chelated complexes compared to the en analogue arise mainly from 

electronic effects exerted by the ligand on the metal centre. However, stabilising 

intramolecular interactions could occur in solution. 
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For 3.25b there were it - it stacking interactions between neighbouring 

tropolonato rings. In the solid state structure of free tropolone, slightly distorted 

intermolecular it - it stacking (d = 3.42 - 3.77 A) is observed for whole rings, also 

between formally single and double bonds [34].  Once coordinated to a metal, 

tropolonate tends to be involved in only partial it - it stacking, with intermolecular 

distances generally in the range of 3.32 and 3.60 A [20, 21, 22]. Interestingly, in the 

structure of [Fe(oep)( 2-trop)].C6H5Me, where oep is the octaethylporphyrinato 

dianion, reported by Richter-Addo et al. [35],  there are it-it interactions between the 

tropolonate ring and residual toluene. Therefore, f(ij  could take 

tart in potential it - it stacking interactions with aromatic side-chains, e.g. tryptophan 

of proteins. 

3.5.2.5 Reactions in chloroform 

For [(t 6-p-cym)Ru(AcO)Cl} (3.26) the observations indicate that the complex 

decomposes slowly over time in CDC1 3 . However, neither Tocher et al. nor Davies et 

al. reported any side-products for [(ij  in deuterated chloroform 

for their 'H NMR data. 

Figure 3.17 shows the 2.4 - 1.2 ppm region of 3.26 in CDCI 3  at 298 K. It 

shows that already after 10 min free acetic acid (confirmed by recording a spectrum 

of acetic acid in CDC1 3  and comparing the chemical shifts) can be detected in 

solution (peak d). The amount of acetic acid increases over a period of 2 d 19 h and 

an additional signal (peak b) appears, which could originate from displaced and 

potentially reacted apetate. An attempt to record a spectrum of acetate showed a peak 

with the same shift as peak b, however, since acetate has very poor solubility it is not 

conclusive whether the signal originates from marginally soluble acetate or an 

impurity. It is clear, however, that 3.26 is losing acetate, which is converted into 

acetic acid. It can be speculated that residual water protonates acetate and leads to 



Chapter 3 

f 
a 	 in 

t= 2d19h 
e 

C 

bkjd 	 A 1 	M 11 

= 10 mu 

2.3 	2.1 	1.9 	1.7 	1.5 	1.3 
6/ppm 

Figure 3.17: The high field region of the 'H NMR spectrum of [(7 6-p-

cym)Ru(AcO)Cl] (3.26) in CDC13  at 298 K, after 10 min and 2 d 19 h, respectively. 

The new product could be [(ij  (3.1). Assignments: a = p-cymene 

CH3  (3.26); b = free acetate (?); c = p-cymene CH 3  (3.1); d = free acetic acid; e = 

acetate CH3  (3.26); f = p-cymene isopropyl (CH 3)2  (3.26); g = p-cymene isopropyl 

(CH3)2  (3.1); k = residual acetone, w = residual water. 

formation of the hydroxo-bridged dimer [(( 6-p-cym)Ru) 2(i-OH)3] (3.27). This 

might explain peak b as free acetate in its role as a counter anion. The chemical shifts 

of the new ruthenium species, however, are identical to those of the p-cymene dimer 

I(TI  (3.1). This strongly suggests that 3.26 is able to obtain chloride 

from a CDC13  solution, possibly from residual DCI, which would explain the 

formation of acetic acid, or even by abstraction reactions from CDC1 3  itself, which 

could lead to an unknown product incorporating acetate, resulting in signal b. 
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Formation of Ru - Cl bonds is further supported by the findings of 

experiments with [(TI  (3.25a) in CDC13  (Figure 3.18). In 

case of the concentrated sample of the aqua complex 3.25a, the new signals which 

appear over time have the same chemical shifts as those of chloro complex 3.23. The 

same is indicated for the tropolonato resonances. No signals for either chloride-

bridged p-cymene dimer or free tropolone were detected, highlighting the strength of 

a five-membered chelate ring over a four-membered one. 

In summary, it was possible to show previously undetected decomposition 

tendencies of 3.26 in both poiar and non-polar solvents. The results also suggest that 

ruthenium arene complexes may abstract chloride from CDC1 3 . 

d 	d 

b 
3.23_______Jh  

3.25a dii 
t = 20 h 

3.25a dii 

A4, 

3.25a 
t=3d22h 

CC 
 

J 	d 	11 	d 

3.25a conc 	 C 
a 

t=l0min 	A 

.. . .. . . . . . . I 

	

6.9 	 6.5 	 6.1 	 5.7 	 5.3 
s/ppm 

Figure 3.18: The high field region of the 1 H NMR spectra of [(Tj  

(3.23) and [( 6-p-cym)Ru(trop)H 20]NO3  (3.25a) in CDCI3  at 298 K. Spectra of 

3.25a were taken of concentrated (conc, ca. 10 mM Ru) solutions after 10 min and 3 

d 22 h and of diluted (dii, ca. 500 iM Ru) solutions after 10 min and 20 h, 

respectively. Assignments: a = Hc trop (3.25a); b = Hc trop (3.23); c = p-cymene CH 

(3.25a); d =p-cymene CH (3.23). 
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3.6 Binding to DNA Bases 

3.6.1 Results 

Reactions of the 0,0-chelated complexes [(ij 	(3.5), [(1 6  

p-cym)Ru(trop)Cl] (3.23) and [( 6-p-cym)Ru(ma)C1] (3.24) with DNA model bases 

guanosine, adenosine, cytidine and thyrnidine (Figure 3.19) and of the hydroxo-

bridged dimer [((il  (3.27) with 9-ethylguanine were studied in 

water by 1 H NMR spectroscopy. 

N A6 
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(R = R 1 ) 
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(
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N ;'-I§b 
R Cytidine 

(R = R 1 ) 

0 

3NH 
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(R = R2) 

1 Base 
HO 

 

OH 

Figure 3.19: The structures of mononucleosides guanosine, adenosine, cytidine and 

thymidine. 

3.6.1.1 Reactions of 0,0-chelated complexes with guanosine 

The 1 H NMR spectrum of a 1:1 mol ratio mixture of guano sine and 3.5 (8 

mM Ru, pH 5.33) was recorded. Similarly, the 111  NMR spectra of the reactions of 

3.23 (8 mM Ru, pH 6.55) and 3.24 (7 mM Ru, pH 6.12) were recorded. About 80% 

of 3.5 and 3.23 and about 75% of 3.24 had reacted by the time the first spectra were 

recorded (ca. 10 mm). 
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For each reaction, a new 118 'H NMR peak was noted at 6 7.92 ppm (3.5), 

and at 8 7.91 ppm (3.23 and 3.24), respectively, each with an upfield shift of ö 0.08 

ppm compared to free guanosine at ö 8.00 ppm (3.5) and 7.99 ppm (3.23 and 3.24), 

respectively. Compared to unreacted starting material, the central acac proton signal 

of the product had moved upfield by 0.28 ppm (3.5) and the trop and ma proton 

signals of the products had moved upfield by an average of 0.18 ppm (3.23) and 0.20 

ppm (3.24), respectively. The 'H NMR spectrum of the reaction of 15 recorded after 

24 h was unchanged. 

3.6.1.2 Reactions of 0,0-chelated complexes with adenosine 

The 'H NMR spectrum of a 1:1 mol ratio mixture of adenosine and 3.5 (8 

mM Ru, pH 5.80) was recorded. Similarly, the 111  NMR spectra of the reactions of 

3.23 (8 mM Ru, pH 7.35) and 3.24 (9 mM Ru, pH 7.22) were recorded. In each 

reaction about 80%, of the starting material had reacted by the time the first spectrum 

was recorded (ca. 10 mm). 

The region of 6 8.65 - 8.20 showed six peaks for the reaction of 3.5 

(overlapped peaks in the cases of 3.23 and 3.24), indicating that a reaction had taken 

place. A 111  NMR spectrum of the reaction of 3.5 recorded after > 24 h was 

unchanged [30]. 

3.6.1.3 Competition between adenosine and guanosine in reactions with 0,0-

chelated complexes 

To an aqueous solution containing a 1:1 mol ratio mixture of guanosine and 

adenosine was added one mol equivalent of 3.5 (8 mM Ru, pH 5.78) and the 111 

NMR spectrum was recorded. Similarly, the 'H NMR spectra of the reactions of 3.23 

(9 mM Ru, pH 6.63) and 3.24 (8 mM Ru, pH 6.22) were recorded. 
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For the three reactions, the same peaks as were observed in the individual 

reactions of each Ru complex with either guanosine or adenosine alone were 

observed in the spectra, along with almost similar proportions of the free 

nucleosides. 

3.6.1.4 Displacement reactions involving adenosine, guanosine and /(,/-p-

cym)Ru(acac)ClJ (3.5) 

To a 1:1 mol ratio mixture of 3.5 (8 mM Ru) and adeno sine was added one 

mol equivalent of guanosine and the 'H NMR spectrum was recorded at pH 4.97. 

Similarly, to a 1:1 mol ratio mixture of 3.5 (8 mM Ru) and guanosine was added one 

mol equivalent of adenosine and the 1 H NMR spectrum was recorded at pH 6.22. 

The spectra obtained were very similar to what was observed in the reaction of 3.5 in 

Section 3.6.1.3. 

3.6.1.5 Reaction of 1(ij 6-p-cym)Ru(acac)H 201NO3  (3.14a) with cytidine and 

thymidine 

The 'H NMR spectrum of a 1:1 mol ratio mixture of 3.14a and cytidine was 

recorded over a pH range of 2.50 to 10.40. Similarly, the 'H NMR spectrum of a 1:1 

mol ratio mixture of 3.14a and thymidine was recorded over a pH range of 2.46 to 

12.38. In each case the spectra showed peaks for the free nucleosides only and the 

signals of 3.14a had similar chemical shifts to those observed in the pH titration of 

the complex. 

3.6.1.6 Reaction of [((q 6-p-cym)Ru) 2(1I-OD)3  (3.27) with 9-ethylguanine 

The reaction of the dimer [(( 6-p-cym)Ru) 2(j.t-OD) 3 ] (3.27) (prepared in situ 

using a solution of [(TI  (3.26) (8 mM Ru) at pH = 6.74) with 

one mol equivalent, with respect to 3.26, of 9-ethylguanine in D 20 at an initial pH* 
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of 7.27 gave rise to new peaks in the 6 7.5 - 8.8 ppm region after 21 h, suggesting 

that a number of adducts had been formed (Figure A.3.5). Integration of the new 

peaks indicated that < 20% of 9-ethylguanine had reacted. 

3.6.1.7 X-ray crystal structures 

The growth of X-ray diffraction quality crystals of [(ii6-p-

cym)Ru(acac)9EtA]PF6  (3.20), where 9EtA = 9-ethyladenine, and [(1 6-p-

cym)Ru(Ph 2acac)9EtG]CF3SO3  (3.22), where 9EtG = 9-ethylguanine, occurred by 

difficulties from formation of powders and oils as well as decomposition. 

An attempt to grow crystals of 3.20 from methanollwater at ambient 

temperature over a period of five months resulted in poor quality crystals of the 

trimeric complex [(i 6-p-cym)Ru(9EtAH 1 )j 3(PF6)3  (3.30), which had lost the acac 

chelate (Figure 3.20). The C6 amino group appeared to have been deprotonated to 

form a mono-anionic five-membered chelate ring with the N7 nitrogen with NI 

bridging to another ruthenium centre. The structure was not fully refined since the R-

factor was high (11 %) but the parameters are very similar to a previously reported 

structure (CF 3SO3  counter anion instead of PF 6) [44]. 

Good quality crystals of [( 6-p-cym)Ru(acac)9EtA]PF 6  (3.20) were 

eventually obtained from a solution containing water, methanol and diethyl ether 

stored at 253 K over a period of one and a half years (Figure 3.21). The 

Figure 3.20: The structure of the 

trinuclear 	cation 	in 	[( 6-p- 

cym)Ru(9EtAH. 1  )] 3(PF6 )3  (3.30). 

Nitrogen atoms N7 and N6 are part of a 

five-membered chelate ring, while NI is 

a bridging nitrogen. Hydrogen atoms 

have been omitted for clarity. 
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Table 3.9: Selected bond lengths (A) and angles (°) for [(1 6-p-

cym)Ru(acac)9EtA]PF6 (3.20). 

Bond Length Bond Length/angle 

Ru-Ol 2.049(7) Ru-05 2.157(10) 

Ru-02 2.081(7) Ru-C6 2.133(11) 

Ru-N7A 2.135(9) Ru-centroid 1  1.649 

Ru-Cl 2.179(11) 01-Ru-02 88.3(3) 

Ru-C2 2.180(11) 01-Ru-N7A 83.2(3) 

Ru-C3 2.155(1 1) 02-Ru-N7A 87.3(3) 

Ru-C4 2.189(11) 

[a] = measured using Mercury 1.4. 

crystallographic data are listed in Table A.3.3, bond lengths and angles are listed in 

Table 3.9. The structure confirms monodentate binding of 9EtA to ruthenium via the 

N7 nitrogen. The Ru - O(acac) bond lengths are 2.049(7) A and 2.08 1(7) A, 

respectively. The Ru - N7(9EtA) bond length is 2.135(9) A. The Ru - C(arene) 

distances are in the range of 2.133(11) A to 2.189(11) A, with Ru - centroid 1.65 A. 

There is an H-bond interaction between NH6 and O(acac) with a distance of 2.07 A 

(O1 ... N6A 2.813(11) A). The structure forms dimers held together by H-bond 

interactions between N116 and Nl (d = 2.16 A, NlA ... N6A 3.036(12) A) (Figure 

3.21B). A grid is formed via the PF6  counterions, which have multiple interactions 

with p-cymene ring protons, methyl and isopropyl groups as well as acac methyl and 

9EtA ethyl groups all in a range of 2.37 - 2.65 A. 

X-ray diffraction quality crystals of [( 6-p-cym)Ru(Ph2acac)9EtG]CF 3SO3  

(3.22) were obtained by allowing a solution of 1 ,2-dichloroethane to evaporate to 

dryness, taking up the residue in warm toluene under sonication and leaving the 

solution to stand at ambient temperature. Crystals started forming within thirty 

minutes. The structure is shown in Figure 3.22, the crystallographic data are listed in 

Table A.3.4 and bond lengths and angles in Table 3.10. 
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Figure 3.21: X-ray crystal structure of the cation [(11 	in 

complex 3.20. A: Numbering scheme. B: Formation of dimers via hydrogen bonds 

formed by neighbouring N6H and Ni atoms. 
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Figure 3.22: X-ray crystal structure of [( 6-p-cym)Ru(Ph 2acac)9EtG]CF 3 SO3  (3.22). 

A: Numbering scheme (anion omitted). B: Formation of dimers between two 

different molecules via hydrogen bonds formed by neighbouring N2H and N3 atoms. 

The CF3S03  counter anions show H-bonds with N2H and NiH. 
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Table 3.10: Selected bond lengths (A) and angles (°) for [(1 16-p-

cyrn)Ru(Ph2acac)9EtG]CF3SO3 (3.22). 

X = 1 X=2 

Rul_X-Ol_X 2.060(3) 2.055(3) 

Rul_X-02_X 2.065(3) 2.080(3) 

Rul_X-N7G_X 2.140(3) 2.126(3) 

Rul_X-C1_X 2.194(3) 2.224(4) 

Rul_X-C2_X 2.148(4) 2.172(4) 

Rul_X-C3_X 2.175(4) 2.172(4) 

Rul_X-C4_X 2.201(3) 2.190(4) 

Rul_X-05_X 2.182(3) 2.186(4) 

Rul_X-C6_X 2.173(3) 2.171(4) 

Ru-centroid 1  1.651 1.663 

o 1_X-Ru 1_X-02_X 	 87.70(11) 	86.70(12) 

01_X-Rul_X-N7G_X 	 84.10(11) 	82.64(12) 

02_X-Rul_X-N7G_X 	 82.30(11) 	82.59(11) 

[a] = measured using Mercury 1.4. 

The complex crystallized with two independent molecules in the asymmetric 

unit (disordered phenyl Ph2acac ring in molecule 1), which form dimers held together 

via interactions between the N2H and N3 atoms of 9EtG (Figure 3.22B). In addition 

the CF3S03 counter anions show H-bonds with N21-1 and NiH. For the Ph2acac 

ligand the Ru - 0 distances are 2.060(3) A and 2.065(3) A for molecule 1 and 

2.055(3) A and 2.080(3) A for molecule 2, respectively. The Ru - N7(9EtG) 

distances vary between 2.140(3) A and 2.126(3) A for the two structures. The Ru - 

C(arene) bond distances are in the range of 2.148(4) A to 2.201(3) A for molecule 1 

and 2.171(4) A to 2.224(4) A for molecule 2, with Ru - centroid of 1.65 A and 1.66 

A, respectively. The packing in the structure is disordered, however, it - It stacking 

interactions between neighbouring phenyl rings of Ph 2acac and the p-cymene ring are 
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indicated. Stacking of the arene in molecule 2 is tilted, but involves all atoms, with 

the shortest distance between C 145_i and C3_2 (3.43 A) and the longest between 

C141_1 and carbons C2_2, C1_2 and C6_2, respectively (4.31 - 4.39 A). The 

stacking involving the arene in molecule 1 is only partial, where the shortest 

distances are 3.66 A (C6_1 C161_2) and 3.83 A (Cl_i - C162_2) as well as 3.59 

A (C6_1 - Ci68_2) and 3.63 A (C5_1 - Ci69_2) for the disordered phenyl ring. 

3.6.2 Discussion 

3.6.2.1 Reactions with guanine bases 

With the possibility that the oxygen atoms of the chelating ligands acac, trop 

and ma might interact unfavourably with the C60 oxygen of guanine (G), it was of 

interest to study the reactions between complexes [(TI  (3.5), [(ij 

p-cym)Ru(trop)Cl] (3.23) and [( 6-p-cym)Ru(ma)Cl] (3.24) and guanosine (Guo) by 

1 H NMR spectroscopy. 

The rate and extent of these reactions was very similar. By the time the first 

spectra were recorded (ca. 10 min after mixing), Ca. 75 80% of Guo was bound 

(Figures 3.23, A.3.6, A.3.7). The spectrum for the reaction with 3.5 remained 

unchanged after 24 h, indicating that equilibrium was reached rapidly. 

It is well established that N7 of G is the preferred nucleotide binding site for 

many transition metals ions [45, 461, and metal-N7 binding has been documented by 

NMR and Raman spectroscopy and by X-ray structural studies on metal-

oligonucleotide complexes [47]. Strong and selective binding to G-N7 on DNA 

oligomers has been observed for {(rI6-arene)Ru(en)}2  [4,  8],  and guanine also binds 

via N7 to {(1 6-arene)Ru(alanine)} and {(16-arene)RuC12}  complexes  [48]. 

Binding of 0,0-chelated Ru 11  p-cymene complexes to Guo-N7 was confirmed 

by 1 H NMR pH titrations (Figure A.3.8). No shifts of H8 attributable to protonation 
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Figure 3.23: Low field region of the 1 H NMR spectrum of an equilibrium solution 

containing guanosine and [(T 6-p-cym)Ru(acac)C1] (3.5) in a 1:1 mol ratio in 10% 

D20/ 90% H20 at pH 5.33 and 298 K. The product is [( 6-p-cym)Ru(acac)Guo-N7] 

(3.31). Assignments: a = H8 (free Guo); b = H8 (3.31); c 1 , c2  = p-cymene CH (3.5); 

d1 , d2  = p-cymene CH (3.31); e = acac CH (3.5); f = acac CH (3.31); g = ribose-Hi' 

(free Guo); h = ribose-Hi' (3.31); i = NH 2  (free Guo); j = N11 2  (3.31). X corresponds 

to ribose. 

of N7 of Guo were observed above pH 3 (PK a  of N7 of Guo is 2.11 [49]),  confirming 

that the N7 nitrogen is bound to ruthenium and can therefore not be protonated. 

Plots of the H8 chemical shifts of adducts [(TI  

(3.31), [( 6-p-cym)Ru(trop)Guo-N7] (3.32) and [( 6-p-cym)Ru(ma)Guo-N7] (3.33) 

versus pH showed associated pK a  values of 9.25 (3.31), 9.07 (3.32) and 9.11(3.33), 

which can be assigned to deprotonation of Ni of coordinated Guo (Figures 3.24, 

A.3.9 and A.3. iO). These pKa  values are comparable and almost identical to the 
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literature value for free Guo (9.22) [49] and are therefore unexpectedly high for N7-

coordinated Guo. The values observed for the respective en complex [8] or for Pt 11  

am(m)ine adducts of guanine derivatives can be Ca. 1.1 - 1.3 PKa  units lower [50, 

51]. These findings are another illustration of the differing electronic effects of the 

monoanionic 0,0-chelating ligands studied here compared to am(m)ines. 

Another unusual feature of these systems is the observed upfield shift of 0.08 

ppm of the H8 signals of coordinated Guo. Metallation at N7 sites of purines by [(16  

arene)Ru(en)Cl] complexes [8, 9] and other metal ions usually produces a marked 

low-field H8 shift of Ca. 0.3 - 1 ppm [52]. The origin of these shifts is unclear. 
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Figure 3.24: Dependence of the 1 H NMR chemical shift of the guanosine H8 

resonance of [( 6-p-cym)Ru(acac)Guo-N7] (3.31, 10% D 20/ 90% H20, 298 K) on 

pH. The line is a computer fit giving PK a  (NiH) = 9.25 ± 0.01. 

The X-ray crystal structure of [(ij 	(3.22) 

confirms binding of ruthenium to N7 of 9EtG. The Ru - N7 distances of 2.140(3) A 

and 2.126(3) A are on the higher end of the known range of other Ru 11  complexes 
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containing one bound guanine derivative [8, 48, 53, 54, 551. The C60 - O(acac) 

distances are 3.267(4) A and 3.084(4) A, suggesting that repulsion interactions 

between these oxygen atoms could be responsible for the decreased affinity of 0,0-

chelated ligands, and acac in particular (vide infra), for guanine. In both molecules, 

the phenyl side-rings are tilted towards the exocyclic C60 oxygen, forming CH ...  

bonds of 2.93 A and 2.64 A, which could help to stabilise the coordination of 9EtG. 

The formation of it - it stacking in the structure demonstrates the potential of both 

the arene- and the phenyl side-rings to be involved in such stabilising interactions. 

The reactivity of the hydroxo-bridged dimer [((i 6-p-cym)Ru)2(t-OD)3] 

(3.27) with 9EtG was investigated. Reactions of this dimer with pyrazolate ligands 

[56] and diphenyiphosphine [57] have been reported. However, integration of the 

new peaks suggested that < 20% of the 9EtG had reacted, illustrating a high stability 

of the hydroxo-bridged dimer. 

Formation of the dimer 3.27 under conditions of biological testing (media at 

Ca. pH 7) would be expected to lower the potential activity of 3.26, decreasing its 

reactivity towards target sites such as DNA. Therefore incorporation of 0,0-

chelating ligands which form more stable 5- or 6-membered rings provides a strategy 

for avoiding this reaction pathway. 

3.6.2.2 Reactions with adenine bases 

The existence of an NH 2  group at the 6 position of adenosine might lead to 

hydrogen bonding with the oxygen atoms of the 0,0-chelating ligands, which in turn 

might lead to stronger binding and a selectivity for adenosine over guanosine. 

Reactions between [( 6-p-cym)Ru(acac)C1] (3.5), [(il  

(3.23) and [(i 6-p-cym)Ru(ma)Cl] (3.24) with adenosine (Ado) all led to the 

appearance of new signals in the 6 8.65 - 8.2 ppm region, where the H8 and H2 
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signals of Ado appear (Figures 3.25, A.3.1 1 and A.3.12). For all three reactions, Ca. 

80% binding of Ado was found at equilibrium after 10 mm (unchanged for acac after 

>24h[30]). 

a c+d 
	h1  h2  
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s/ppm 

Figure 3.25: Low-field frequency region of the 1 H NMR spectrum of a solution 

containing [(ij  (3.5) and adenosine in a 1:1 mol ratio in 90% 

H20/10% D 20 at pH 5.80 and 298 K. The products are [( 6-p-cym)Ru(acac)Ado-

N7] (3.34) and [( 6-p-cym)Ru(acac)Ado-N1i (3.35). Assignments: a = H8 (3.34); b 

= H8 (3.35); c = H8, (free Ado); d = H2 (3.34); e = H2 (free Ado); f = 112 (3.35); g = 

p-cymene CH (3.35); h = p-cymene CH (3.34); i = acac CII (3.35); j = acac CH 

(3.34); k = ribose-Hi' (3.34); 1 = ribose-Hi' (3.35); m = ribose-Hi' (free Ado); n = 

p-cymene CH (3.5); o = acac CH (3.5). X corresponds to ribose. 
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Adenine bases have different binding sites and binding modes. In recent years 

a number of papers have been published, which deal with binding of Ru 11  arene 

complexes to adenine bases [44, 58, 59, 60, 611. Binding sites identified are N9, N7, 

Ni and a bidentate chelate involving Ni and N6. The complexes studied were Ru 11  

arenes with 2 or 3 reactive sites and formation of tn- and tetranuclear species appear 

to be the prevalent binding modes. An example is the structure in Section 3.6.1.7. 

The assignment of the products was done using 1 H NMR titrations (Figures 

3.26 and 3.27). For adenosine, protonation of Ni occurs at a significantly higher pH 

(pKa  Ca. 3.61) than that for N7 (PK a  Ca. -1.50) [62].  Also, metallation at N7 is known 

pH 	 C 	e 

1.76 

2.51 	 -, '- '-  

3.50 	- 

4.23

5.08 

6.41 

6.97 . 

/ ppm 

Figure 3.26: Dependence on pH of the low field region of the 1 H NMR spectrum of 

a solution containing adenosine and [( 6-p-cym)Ru(acac)C1] (3.5) in a 1:1 mol ratio 

in 10% D20/ 90% H20 at 298 K. The products are [(i 6-p-cym)Ru(acac)Ado-N7 

(3.34) and [( 6-p-cym)Ru(acac)Ado-N1] (3.35). Assignments: a = H8 (3.34); b = 

H8 (3.35); c = H8 (free Ado); d = H2 (3.34); e = H2 (free Ado); f = H2 (3.35). 
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pH e+f  
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b+....
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Figure 3.27: Dependence on pH of the low field region of the 1 H NMR spectrum of 

a solution containing adenosine and [(Tj  (3.23) in a 1:1 mol ratio 

in 10% D20/ 90% H20 at 298 K. The products are [(1 6-p-cym)Ru(trop)Ado-N7] 

(3.36) and [( 6-p-cym)Ru(trop)Ado-N1] (3.37). Assignments: a = H8 (3.36); b = H8 

(free Ado); c = H8 (3.37); d = H2 (3.37); e = H2 (3.36); f = H2 (free Ado). 

to acidify the Ni proton, so that the pK a  value for Ni drops [52]. For the acac 

system, plots of the H8 and H2 1 H NMR chemical shifts for Ado peaks are shown in 

Figure 3.28. Peaks a and d were assigned to H8 and H2, respectively, of [(ii 6-p-

cym)Ru(acac)Ado-N7r (3.34), since the observed pH-dependent shifts at pH > 4 for 

peaks within the range 8.46 - 8.74 ppm for H8 and 8.31 - 8.50 ppm for H2 can be 

attributed to protonation of Ni, and peaks b and f were assigned to [(T 6-p-

cym)Ru(acac)Ado-N1} (3.35). The pK a  value for protonation of Ni in adduct 3.34 

was determined to be Ca. 2.3. That for free adenosine was 3.62, in agreement with 
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the literature value [62]. For the trop system J(ij 	plots of the H8 

and H2 1 H NMR chemical shifts for Ado peaks are shown in Figure 3.29. Similar to 

the acac system, peaks a and e were assigned to H8 and H2, respectively, of [(q 6-p-

cym)Ru(trop)Ado-N7] (336), and peaks c and d to [( 6-p-cym)Ru(trop)Ado-N1] 

(3.37). The spectrum for the ma system {(r 6-p-cym)Ru(ma)) was comparable to 

that of trop complexes, and pK a  values between 2.1 - 2 were determined for 

protonation of Ni for the respective adducts (Figure A.3.13). 

The H8 and 112 peaks for N7-coordinated Ado, which are sensitive to pH 

values < 5, were separated by about 0.21 ppm for acac complex (pH = 5.8). For the 

trop complex this difference increased to Ca. 0.36 ppm (pH = 7.35) and Ca. 0.34 ppm 

(pH = 7.22) for ma. In contrast, the separation of the H8 and H2 peaks of Ni- 

8.8 

8.7' 

8.6' 

E 

8.3 

H8 (3.34) 

H8 (free Ado) 

8.2:1 	 S $ S S S S. S 	S S H2(3.35) 

1 	 3 	 5 	 7 
pH 

Figure 3.28: Dependence of the H8 and H2 1 H NMR chemical shifts of adenosine, 

[( 6-p-cym)Ru(acac)Ado-N7]' (3.34) and [( 6-p-cym)Ru(trop)Ado-N1] (3.35) 

(10% D20/ 90% H20, 298 K) on pH. The line for H8 (free Ado) is a computer fit 

giving pKa  (NiH) = 3.62 ± 0.01. For clarity only one plot per species is shown. 
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8.7 
E a. 
CL  8.6 
co 

8.5 

8.4 

8.3 

H8 (3.36) 

H8 (free Ado) 

H2 (3.37) 

1 	 3 	 5 	 7 
pH 

Figure 3.29: Dependence of the H8 and H2 1 H NMR chemical shifts of adenosine, 

[( 6-p-cym)Ru(trop)Ado-N7] (3.36) and [( 6-p-cym)Ru(trop)Ado-N1] + (3.37) (10% 

D20/ 90% H20, 298 K) on pH. The line for H8 (free Ado) is a computer fit giving 

pKa  (NiH) = 3.50 ± 0.01. For clarity only one plot per species is shown. 

coordinated Ado for the acac complex is Ca. 0.18 ppm, which decreased to 0.02 ppm 

for trop and 0.03 ppm for ma. 

In the X-ray crystal structure of [( 6-p-cym)Ru(acac)9EtA]PF 6  (3.20), 9EtA 

is coordinated to the ruthenium via the N7 nitrogen, which was suggested to be the 

predominant binding site in the 'H NMR solution studies. The structure confirms the 

existence of a strong H-bond between N6H ... O(acac) of Ca. 2.07 A, which 

contributes to the stabilisation of this adduct and can account for the significant 

binding of adenine bases to I(ij  This structure, along with a 

recently published Ru structure of mer, trans-[Ru"C13(Hind)2(made)],  where Hind 

= indazole, made = 9-methyladenine [63],  appear to be the only two examples 

showing mono-dentate coordination of adenine bases to ruthenium. In that Ru 11' 

complex, the Ru - N7 bond length is Ca. 0.04 A shorter than in the acac structure. 

117 



Chapter 3 

The NH6 - Cl H-bond interactions of 2.386 A and 2.411 A, respectively, reported for 

the ruthenium(IH) complex are significantly longer than the H-bond formed between 

NH6• •O(acac). 

The nature of the chelate ring appears to have an influence on the N7 : Ni 

coordination ratios. These were determined from the 'H NMR spectra by integration 

of the respective Ado H8 and H2 signals as well as the p-cymene peaks. For the acac 

system the ratio N7 : Ni was Ca. 4.5: 1 (pH = 5.8), for trop Ca. 2: i (pH = 7.35) and 

for ma ca. 3 : 1 (pH = 7.22). Consideration of molecular models suggests that 

N6H ... O(acac) H-bonding is more favourable for N7- compared to Ni-coordination 

of 9EtA to {(r 6-p-cym)Ru(acac)}t When acac is replaced by trop (or ma) the N6H-

O(trop) distance for binding at Ni is substantially shorter than that for binding at N7, 

which might contribute to the increased extent of binding to Ni. It has been 

suggested [63] that the involvement of functional groups of adenine in intermolecular 

hydrogen bond interactions, which lead to self-pairing, can determine the metal-

binding site (c.f. Figure 3.21B). 

3.6.2.3 Competition between adenosine and guanosine 

Having shown that 0,0-chelated Ru" p-cymene complexes can react with 

both adenosine and guanosine, competition reactions between the two bases in 

reactions with [(ij  (3.5), [(ij  (3.23) and [(16  

p-cym)Ru(ma)Cl] (3.24) were studied (Figures 3.30, A.3.14 and A.3.15). 

For all reactions equilibrium was reached by the time the first spectra were 

recorded (ca. iO mm) and separate peaks were observed for free and bound 

nucleosides indicative of slow exchange on the NMR timescale and strong binding. 

Table 3.11 shows the relative proportions of the signals observed for Guo-N7, Ado-

N7 and Ado-Ni binding, respectively. The data show that binding to both guanosine 
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and adenosine has been retained under competition. For trop and ma, there is a slight 

preference for guanosine over the combined Ado-(N7+N1) adducts, whereas for acac 

binding to adenosine appears to be favoured. The relative binding ratios Ado-N7 

!I 	i, 	
-~ 	

i i 	10 

c+d 	
dkyLNH2)''I 

3.34 	 3.35 
I 	 n i 	n2  

- 

8.5 	 7.5 	 6.5 	 5.5 
s/ppm 

Figure 3.30: Low-field region of the 1 H NMR spectrum of a solution containing 

adenosine, guanosine and [( TI  (3.5) in a 1:1:1 mol ratio in 90% 

H20/10% D20 at pH 6.63 and 298 K. The products are [( 6-p-cym)Ru(acac)Guo-

N7} (3.31), [(r 6-p-cym)Ru(acac)Ado-N7} (3.34) and [(T 6-p-cym)Ru(acac)Ado-

N1] (3.35). Assigmnents: a = H8 (3.34); b = H8 (3.35); c = H8 (free Ado); d = H2 

(3.34); e = H2 (free Ado); f = H2 (3.35); g = H8 (free Guo); h = H8 (3.31); i = p-

cymene CH (3.35); j = p-cymene CH (3.34); k = acac CH (3.35); 1 = acac CH (3.34); 

m = acac CH (3.31); n =p-cymene CH (3.31); o = ribose-Hi' (3.34); p = ribose-Hi' 

(3.35); q = ribose-Hi' (free Ado); r = ribose-Hi' (free Guo); s = ribose-Hi' (3.31). X 

corresponds to ribose. 
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Table 3.11: The relative proportions of adducts formed in a competitive reaction 

of adenosine and guanosine with complexes [(ij 	(3.5), [(r 6-p- 

cym)Ru(trop)Cl] (3.23) and [(il 	(3.24) in 90% H20/10% D20 

at 298K. 

Complex Chelate Guo-N7: Ado-(N7+Ni) Ado-N7: Ado-Ni pH 

3.5 acac 1: 1.25 1 5.78 

3.23 trop 1.3: 1 1 6.63 

3.24 ma 1.1: 	1 1 6.22 

Ado-Ni were the same as observed for the reactions with adenosine alone. The 

reason for the preference of Ado by the acac system could be a consequence of the 

larger bite-angle of the ligand. The result is a wider 0 - Ru - 0 angle than for the 

trop and ma system, which could increase repulsion between the oxygen atom of the 

ligand and that of the C60 carbonyl of Guo. 

However, both Guo and Ado adducts are kinetically labile. Addition of either 

Ado to a solution of 3.31, or Guo to a solution of 3.34 and 3.35, rapidly (ca. 10 mm) 

resulted in the same equilibrium mixture of adducts as those obtained when complex 

3.5 was reacted directly with Guo or Ado in competition. 

3.6.2.4 Reactions with cytidine and thymidine 

1 H NMR studies of mixtures of 3.5 with the pyrimidine nucleosides cytidine 

and thymidine showed that no adducts were formed over a pH range of 2.4 - 10.4, in 

contrast to [(rI6-arene)Ru(en)Cl]  complexes, for which significant binding to N3 

was observed [9].  The lack of binding to the acac complex can be ascribed to 

unfavourable steric and electronic interactions of the nucleobase carbonyl groups 

with the acac ligand. 
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3.7 Conclusions 

In conclusion, it was demonstrated that the chelating ligand in cytotoxic 

complexes of the type [(1 6-arene)Ru(chelate)Cl]' has a major influence on the rate 

and extent of aquation, on the PK a  of the aqua adduct, and on the rate and selectivity 

of binding to nucleobases. Replacement of neutral en by anionic 0,0-chelating 

ligands increases the rate and extent of hydrolysis, the PK a  of the aqua complex 

(from 8.25 to over 9 for arene = p-cymene), and changes the nucleobase specificity. 

For complexes containing the H-bond donor en, there is exclusive binding to guanine 

nucleobases in competitive reactions, and in the absence of guanine there is binding 

to cytosine or thymidine, but little binding to adenine bases [9].  In contrast, when the 

chelated ligand is the H-bond acceptor acac, the overall affinity for adenosine can be 

greater than for guanosine, and there is little binding to cytidine or thymidine. 

Binding of Ru" arene complexes of acac-type ligands to guanine and adenine was 

further supported by. X-ray crystallographic results. 

Furthermore 0,0-chelating ligands can be used to control the reactivity of 

Ru" arene complexes. In aqueous solution, [(il  (3.26), which 

contains a four-membered 0, 0-chelate ring, undergoes hydrolysis with loss of 

acetate, leading largely to the less reactive hydroxo-bridged dimer [((1 6-p-

cym)Ru) 2(9-OH)3] (3.27). In contrast, the 5- and 6-membered 0,0-chelate rings 

formed by trop, ma and acac in { (il  } + complexes are relatively stable in 

solution. 

These findings can now be incorporated into design concepts for 

organometallic Ru" arene anticancer complexes. 

Appendix A.3 contains Tables A.3.1 —4 and Figures A.3.1 - 15. 
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Chapter 4 
Tethered Ruthenium(II) Arene Complexes 

4.1 Introduction 

Metal-containing complexes offer potential for applications as anticancer 

agents [1]. The widely-used platinum-containing anticancer complexes cisplatin and 

carboplatin are well-known examples. Several ruthenium-containing complexes have 

been identified as potential antitumour therapeutics [2], and a range of 

organometallic complexes, metallocenes [3] and more recently ferrocenyl derivatives 

[4] have shown interesting activity against cancer-cells. 

Sadler et al. have shown that some organometallic ruthenium(ll) arene 

complexes of the type [(rj  where en is the bidentate chelating 

ligand ethylenediamine, exhibit promising cytotoxicity, as potent as carboplatin, 

against various cancer cell lines [5, 6]. These complexes form mono-functional 

adducts with biomolecules, including DNA bases [7, 81. In contrast, cytotoxic 

platinum(ll) diam(m)ine complexes, e.g. cisplatin, have two reactive sites available 

and can bind to their target DNA in a bifunctional manner [9].  Recent results suggest 

that DNA may be an important target site for { (i6-arene)Ru(en) 12, complexes [10]. 

Although some tested bifunctional Ru11  arene complexes, containing pyridine and 

phosphine ligands show poor cytotoxicity against some cancer cell lines [11, 12], it is 

of interest to investigate ways of introducing bifunctional reactivity into 

ruthenium(ll) arene complexes to increase interactions with potential targets such as 

DNA, comparable to cisplatin. Other examples of bifunctional cytotoxic compounds 

include metallocenes, which can also undergo bidentate coordination towards DNA 

bases [13].  For Ru" arenes, structural differences could lead to a different spectrum 

of activity and the possibility of coordination to two guanines as has been shown for 

the fragment { (i 6-p-cymene)Ru 1 2+ [ 14]. 
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The activity of Pt am(m)ine anticancer compounds appears to depend on the 

presence of hydrogen bond donating NH groups [15]. Similarly, it has been 

demonstrated that ligands coordinated to Ru 11  arenes can have a critical role in 

controlling and promoting interactions with DNA nucleobases [8, 16, 17].  For 

example, in reactions with such bases, { (i6-arene)Ru(en) 2+ reacts exclusively with 

guanine derivatives [8, 11]. This site selectivity appears to be controlled by the NH 2  

groups of the en ligand, which can form strong hydrogen bonds with the C60 

carbonyl group of guanine bases [18]. It was therefore of interest to incorporate H-

bond donors, e.g. via an amine group, into bifunctional Ru 11  arene complexes, since 

the previously used pyridine and phosphine ligands offer few of these recognition 

features. However, monodentate NH 2R groups in [( 6-p-cymene)Ru(NH 2R)Cl2] and 

[( 6-arene)Ru(L-alaMe)C1 2] complexes, where NH2R = NH2CMe3, L-alaMe = L-

alanine methyl ester, can undergo substitution reactions [19, 201, and complexes such 

as [(Tj  where R = Et or Bu, are unstable in solution [21]. 

For potential anticancer applications, the chemistry of such complexes could be 

difficult to predict or control. A potential strategy for incorporation of an amine 

group into a bifunctional ruthenium(H) arene complex, which would be 

substitutionally inert and add stability to the molecule to prevent decomposition, is to 

use a tether (Figure 4.1A). 

Research on tethered Ru" arene complexes has received increasing attention 

over the past few years, mainly due to potential applications in catalysis [22 - 27]. 

Most of the documented examples are bifunctional complexes containing phosphine 

ligands, which coordinate to ruthenium in a mono-dentate binding mode, and two 

chloride ligands (Figure 4.1B) [28 - 33]. Tethered Ru 11  arene complexes containing 

sulfur [34] and oxygen [35 - 38] are also known. There are examples of tethered Ru" 

arene compounds in the literature, which chelate via two side arms [39, 40] and three 

[41, 42, 43], so-called coelenterands, which encapsulate the metal centre. 
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Figure 4.1: Bifunctional tethered ruthenium(ll) arene complexes. A: Incorporation 

of an H-bond donating amine group. B: Tethered complexes synthesised by Ward et 

al. [29] and Bennett et al. [30] containing phosphine ligands. 

At the start of these studies nitrogen ligands had received very little attention 

in tethered ruthenium(H) arenes. Reported examples include the above mentioned 

chelating side-arms [39 - 43], amine tethers, where either one or both remaining 

binding sites were blocked by phosphorus-containing ligands or 2,2'-bipyridine, 

respectively [35, 441, and complexes with nitrogen-containing tethered chelating 

ligands (e.g. [(i6-C6H5(CH2)3NH(1S,2S-CHC6H5)2NSO 2C6H4CH3 - N,JV)RuC1]) for 

use in catalysis [45, 46]. 
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Here the synthesis and solid state characterisation of novel nitrogen-

containing, bifunctional tethered Ru 11  arene complexes are reported. Aspects of the 

solution chemistry of these water-soluble molecules and their hydrolysis behaviour 

have been investigated. Interactions with the DNA base guanine have been studied. 

Evidence is presented that amine tethered complexes can form bifunctional adducts 

with guanine, as does cisplatin, both in solution and the solid state. 

4.2 Experimental Section 

4.2.1 Materials 

The ruthenium dimer precursor [(1 6-etb)RuC12]2 (4.2), where etb = ethyl 

benzoate, was prepared according to a previously published route [29].  1,3,5-Triaza-

7-phosphaadamantane was kindly made available by Anna F. A. Peacock, University 

of Edinburgh. 

All syntheses were performed at ambient temperature, unless indicated 

otherwise. 

4.2.2 Methods 

Measurement of pH values was performed as described in Chapter 2. 

A description of the pressure vessel and the general experimental set-up can 

be found in Chapter 2. 

In time-course 'H NMR experiments, the time of dissolution of reactants, or 

when solutions of all reactants are added together, is taken as t = 0 mm. Reactions 

were then monitored at times t = x mm. 

In chloride titrations, the concentration of total chloride ([CF])  is defined as 

[C1] = 2*[Ru] t  + [CFI a, where [Ru] = concentration of total Ru, [CY]a = 

concentration of added chloride. The amount of free chloride (CY) was calculated by 

integration of the arene proton signals of the di-chioro, the mono-aqua and the diaqua 
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species. The concentration of free chloride ([Cl"] f) is defined as [CF} f  = [CF] - 

[Ru(Cl)H20] - [RuC12]. 

Hydrolysis equilibrium constants were determined from the following 

equations. K 1  = ([Ru(Cl)H201 / [RuC121) / [Cl'] f  and 1(2 = ([Ru(H20)21 / 

([Ru(Cl)H20]) I [CF]'. 

4.2.3 Preparation of a Ru 11  ethyl benzoate dimer 

[Ethyl-1,4-cyclohexadiene-3-carboxylate] (4.1): Benzoic acid (38.65 g, 0.32 mol) 

was stirred in dry ethanol (150 ml) at 195 K and liquid ammonia was added (600 ml). 

Small pieces of sodium (21.7 g, 0.94 mol) were added to the solution over a period of 

30 mm. Upon decolourisation of the mixture the solution was stirred for a further 1 h, 

then allowed to reach ambient temperature overnight. The white solid in the vessel 

was dissolved in chilled water (500 ml), which was then acidified with conc. 

hydrochloric acid to pH 1-2 and the product extracted three times with diethyl ether. 

The extractant was dried over anhydrous magnesium sulphate, filtered, and diethyl 

ether removed on a rotary evaporator. Vacuum distillation of the crude oil gave two 

products, the first fraction (2.38 g) at 0.10 - 0.08 Ton and 311 - 312 K, the second 

fraction (33.52 g) at 0.08 Ton and 352 - 355 K. After 1 H NMR, analysis the two 

fractions were combined and refluxed in dry ethanol (250 ml) and 98% sulfuric acid 

(17 ml) under argon overnight. The pH was adjusted to Ca. 8 with sodium hydroxide. 

Sodium chloride was added for better layer separation and the product extracted' with 

dichioromethane. The organic layer was separated, dried over anhydrous magnesium 

sulphate, filtered, and the solvents were removed on a rotary evaporator to yield the 

product (40.73 g). The 'H NMR spectrum showed that the product still contained 

ethanol and trace impurities. 

[(i16-etb)RuC12]2 (4.2): RuC13 .xH20 (2.01 g, 9.69 mmol) and 4.1 (7.39 g, 48.56 

mmol) were stined under reflux in dry ethanol (150 ml) under argon for 16 h. The 
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mixture was allowed to cool, the precipitate filtered and the solid washed with 

minimal ethanol, then with hexane and diethyl ether. The orange-red solid (2.18 g, 

3.38 mmol, 69.8%) was collected by filtration and dried in air. 'H NMR (CDC13): 

6.48 (d, 2H, J = 6 Hz), 5.99 (t, 1H, J = 6 Hz), 5.79 (t, 2H, J = 6 Hz), 4.48 (q, 211, J = 

7 Hz), 1.43 (t, 3H, J = 7 Hz). 

4.2.4 Preparation of ligands 

1-Benzyl-1-H-pyrazole (4.3): NaH (60% dispersed in mineral oil) (3.08 g, 77.0 

mmol) was dissolved in dry THF (200 ml) and stirred at ambient temperature. 

Addition of pyrazole (2.56 g, 37.6 mmol) led to gas evolution. The solution was 

stirred at ambient temperature under argon for 70 h. Drops of EtOH and THF/11 20 

were added until gas evolution was quenched. The solvents were removed on a 

rotary evaporator. The product was dissolved in acetone (40 ml) and benzyl chloride 

(50 ml) and stirred at ambient temperature for 18 h. The solution was filtered and 

acetone removed on a rotary evaporator. Excess benzyl chloride was removed by 

vacuum distillation. Vacuum distillation of the crude product at 0.2 - 0.3 Ton and 

342 - 347 K gave the title compound as a colourless liquid (4.17 g, 26.4 mmol, 

70.2% yield). 1 H NMR (DMSO-d6): ö 7.81 (d, 1H, J = 2 Hz), 7.46 (d, 1H, J = 2 Hz), 

7.33 (t, 2H, J = 7 Hz), 7.27 (t, 111, J = 7 Hz), 7.20 (d, 2H, J = 7 Hz), 6.27 (t, 1H, J = 2 

Hz), 5.33 (s, 211). 

Dipyrido(3,2-a :2',3' -c)phenazine (4.13): 1, 10-Phenanthroline-5,6-dione (0.41 g, 

1.96 mmol) and 1,2-diaminobenzene (0.42 g, 3.84 mmol) were dissolved in ethanol 

(50 ml). The mixture was stirred and heated to reflux for 60 mm. The solvent was 

removed on a rotary evaporator, and the residue was washed with MeOH, then 

diethyl ether. The light orange solid was dissolved in hot MeOH and the solution 

stored at 253 K overnight. A fluffy off-white material (243.7 mg, 0.86 mrnol, 44.0% 

yield) was collected by filtration and dried in air. 'H NMR (DMSO-d6): ö 9.50 (d, 
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2H, J = 8 Hz), 9.20 (d, 2H, J = 3 Hz), 8.36 (dd, 2H, J = 3.5), 8.05 (dd, 2H, J = 3.5), 

7.93 (dd, 2H, J = 4.5 Hz). 

2-(2,4,6-Trimethylphenyl)ethylamine (4.24): Mesitylacetonitrile (745.9 mg, 4.68 

mmol) in dry diethyl ether (40 ml) was added dropwise over a period of 90 min to a 

stirred suspension of lithium aluminium hydride (390.8 mg, 10.3 mmol) in dry 

diethyl ether (30 ml) under argon. The mixture was then refluxed for 240 min and 

quenched with water. Near-saturation with NaC1 of the water layer was followed by 

acidification with conc hydrochloric acid. The pH was then adjusted to Ca. 11 with 

NaOH. The organic layer was separated, the water layer extracted with further 

diethyl ether, which was then removed on a rotary evaporator. The residue was 

dissolved in dichioromethane and shaken with water (pH ca. 12). The organic layer 

was separated, dried over anhydrous magnesium sulphate and filtered. The resulting 

oil was allowed to dry in air, but did not fully solidify. Water, diethyl ether and conc 

hydrochloric acid were added to form a precipitate, which was filtered and washed 

with water and diethyl ether. The white solid (384 mg, 1.92 mmol, 4 1.0%) was dried 

in vacuo. 1 H NMR (DMSO-d6): 6 7.94 (s, 3H), 6.82 (s, 2H), 2.86 - 2.83 (m, 2H), 

2.79 - 2.73 (m, 2H), 2.26 (s, 611), 2.18 (s, 311). The salt was shaken with diethyl 

ether and water (pH ca. 12) until it dissolved. NaCl was added and the organic layer 

was separated, then dried over anhydrous magnesium sulphate and filtered. The 

solvent was removed on a rotary evaporator and the resulting oil was dried in air to 

form a white solid (289.3 mg, 1.77 mmol, 37.8%), which was collected by filtration 

and dried in air. 1H NMR (CDC13): ö 6.85 (s, 2H), 8 2.85 - 2.77 (m, 411), 2.32 (s, 

6H), 2.25 (s, 3H), 1.55 (b, 2H). 

(2-Nitroethenyl)-2,3,4,5,6-pentamethylbenzene (4.25): Pentamethylbenzaldehyde 

(2.00 g, 11.3 mmol), animonium acetate (2.20 g, 28.5 mmol) and nitromethane (1.53 

ml, 28.4 mmol) were added to glacial acetic acid (9.5 ml). The mixture was stirred 

and heated to 383 K for 300 min under argon. The solvents were removed on a rotary 
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evaporator. The product was extracted from water with dichloromethane twice, and 

the organic layer was washed with brine, dried over anhydrous magnesium sulphate 

and filtered. The solvent was removed on a rotary evaporator. The residue was 

dissolved in hot ethanol (ca. 20 ml) and upon cooling a yellow crystalline material 

(1.74 g, 7.93 mmol, 70.2% yield) formed in solution, which was collected by 

filtration and dried in air. 1 H NMR (CDC13): 8 8.28 (d, 1H, J = 14 Hz), 7.06 (d, 1H, J 

= 14 Hz), 2.29 (s, 3H), 2.27 (s, 611), 2.25 (s, 611). 

(2,3,4,5,6-Pentamethyl)phenethylamine (4.26): 4.25 (616.4 mg, 2.81 mmol) in dry 

diethyl ether (40 ml) was added dropwise over a period of 90 min to a stirred 

suspension of lithium aluminium hydride (392.7 mg, 10.4 mmol) in dry diethyl ether 

(40 ml) under argon. The mixture was then refluxed for 60 min and quenched with 

water. The water was acidified with conc hydrochloric acid and the pH then adjusted 

to Ca. 12 with NaOH. The organic layer was separated and the solvent removed on a 

rotary evaporator. The product was dissolved in dichioromethane and shaken with 

water (pH Ca. 12). The organic layer was separated, dried over anhydrous 

magnesium sulphate and filtered. The solvent was removed on a rotary evaporator. 

The white powder (493.8 mg, 2.58 mmol, 91.1% yield) was collected by filtration 

and dried in air. 1 H NMR (CDC1 3): ö 2.90 - 2.81 (m, 4H), 2.29 (s, 6H), 2.24 (s, 3H), 

2.23 (s, 611), 1.41 (b, 211). 

4-(2-Nitroethenyl)-1,1'-biphenyl (4.27): 4-Biphenylcarboxaldehyde (1.39 g, 7.63 

mmol), animonium acetate (1.49 g, 19.3 mmol) and nitromethane (1.03 ml, 19.1 

mmol) were added to glacial acetic acid (6.0 ml). The mixture was stirred and heated 

to 378 K for 180 mm. The solvents were removed on a rotary evaporator. The 

product was extracted from water with dichloromethane twice, and the organic layer 

washed with brine, dried over anhydrous magnesium sulphate and filtered. The 

solvent was removed on a rotary evaporator. The residue was dissolved in hot 

ethanol (ca. 70 ml) and water was added until the solution remained opaque. The 
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solution was heated to dissolve the precipitate and allowed to cool overnight. After 

removal of a brown residue by filtration, the solvent was removed on a rotary 

evaporator and the residue dissolved in hot ethanol (ca. 20 ml). Upon cooling a 

yellow-orange precipitate (768 mg, 3.41 mmol, 44.7% yield) precipitated from the 

solution, which was collected by filtration and dried in air. 'H NMR (CDC1 3): ö 8.06 

(d, 1H, J = 14 Hz), 7.70 (d, 2H, J = 7.5 Hz), 7.66 - 7.63 (m, 5H), 7.49 (t, 2H, J = 7 

Hz), 7.42 (t, 1H, J = 7 Hz). 

4-Phenyiphenethylamine (4.28): 4.27 (640.5 mg, 2.84 mmol) and lithium 

aluminium hydride (400.3 mg, 10.6 mmol) were reacted and worked-up as described 

for 4.26. After filtering off the magnesium sulphate, the solvent was removed on a 

rotary evaporator and diethyl ether added. The solution was filtered to remove 

undissolved material and the solvent removed on a rotary evaporator. The resulting 

oil was dried in air to form a white powder (270.7 mg, 1.37 mmol, 48.2%), which 

was collected by filtration and dried in air. 'H NMR (CDC1 3): 6 7.59 (d, 211, J = 7 

Hz), 7.55 (d, 2H, J = 8 Hz), 7.46 - 7.42 (m, 2H), 7.34 (t, 1H, J = 7 Hz), 7.29 (d, 2H, J 

= 8 Hz), 3.03 (t, 2H, J = 7 Hz), 2.81 (t, 2H, J = 7 Hz), 1.52 (b, 2H). 

[(1,1'-Biphenyl)-4-yloxy]acetonitrile (4.30): 4-Phenylphenol (3.79 g, 22.3 mmol) 

and potassium carbonate (2.92 g, 21.1 mmol) were added to dry acetone (40 ml). The 

mixture was stirred and heated to reflux for 60 mm. Bromoacetonitrile (1.71 ml, 24.5 

mmol) in dry acetone (30m1) was added over a period of 90 mm, and the solution 

refluxed for a further 60 min and allowed to cool. The solution was filtered, the 

precipitate rinsed with diethyl ether and the combined solvents were removed on a 

rotary evaporator. The resulting residue was dissolved in diethyl ether, the solution 

washed twice with a 5% solution of NaOH in water and once with pure water. The 

organic layer was dried over anhydrous magnesium sulphate and filtered. The 

solvent was removed on a rotary evaporator, and the white solid (3.65 g, 17.4 mmol, 

82.5% yield) collected by filtration and dried in air. 'H NMR (CDC1 3): 6 7.59 (d, 2H, 
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J = 9 Hz), 7.57 (d, 2H, J = 7.5 Hz), 7.45 (t, 2H, J = 7.5 Hz), 7.36 (t, 114, J = 7.5 Hz), 

7.08 (d, 2H, J = 9 Hz), 4.82 (s, 214). 

4.2.5 Preparation of neutral di-chioro tethered Ru 11  arene complexes 

[(t16:1 1 -C6115(CH2)3NH2)RuC12] (4.4). Method A: 4.2 (372.4 mg, 0.58 mmol) and 3-

phenyl-1-propylamine (148.5 mg, 1.10 mmol) were dissolved in 1,2-dichioroethane 

(50 ml). A few drops of THF were added and the solution stirred for 60 mm. The 

solution was then heated to reflux for 90 h under argon. The solvents were removed 

on a rotary evaporator and the product extracted with large amounts of methanol, 

which was concentrated on a rotary evaporator until precipitation of the product 

occurred. Diethyl ether was added and the solution was stored at 253 K overnight. 

The yellow-orange microcrystalline solid (129.2 mg, 0.42 mmol, 42.1% yield) was 

collected by filtration, washed with diethyl ether and dried in air. 'H NMR (CDC1 3 ): 

5.88 (t, 2H, J = 6 Hz), 5.73 (t, 1H, J = 6 Hz), 5.16 (d, 211, J = 6 Hz), 3.22 (b, 2H), 

2.95 (m, 2H, J = 5.5 Hz), 2.49 (t, 2H, J = 6 Hz), 2.20 (m, 2H). 

Method B: 4.2 (514.2 mg, 0.80 mmol) and 3-phenyl-1-propylaniine (0.23 ml, 1.60 

mmol) were dissolved in 1 ,2-dichloroethane (20 ml) in the pressure vessel and stirred 

for 50 mm. Additional 1 ,2-dichloroethane (60 ml) and THF (2 ml) were added and 

the solution was degassed with argon for 30 mm. The vessel was locked and the 

solution heated to 393 K for 22 h. The solvent was removed on a rotary evaporator, 

the residue was washed with acetone and the product extracted with hot MeOH. The 

solvent was concentrated to Ca. 15 ml on a rotary evaporator and a red 

microcrystalline solid (327.6 mg) was obtained by filtration. The filtrate and the 

acetone washing were combined, the solvents removed on a rotary evaporator and 

the residue washed with diethyl ether, then acetone. The product was extracted using 

hot MeOH. The solution was concentrated to yield more solid (54.9 mg). The two 

portions were combined (382.5 mg, 1.25 mmol, 78.1% yield), washed with diethyl 
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ether and dried in air. Elemental analysis: calculated for C9H 13NRuC12: C, 35.19; H, 

4.27; N, 4.56. Found: C, 35.45; H, 3.85; N, 4.5 1%. 

[(ti 6 : 11 1-C6H5(CH2)2NH2)RuC 12] (4.5). Method A: 4.2 (420.5 mg, 0.65 mmol) and 2-

phenethylamine (150.0 mg, 1.24 mmol) were dissolved in 1,2-dichioroethane (50 

ml). A few drops of THF were added and the solution stirred for 60 mm. The 

solution was then heated to reflux for 41 h under argon. The solvents were removed 

on a rotary evaporator and the product extracted with copious amounts of methanol, 

which was concentrated on a rotary evaporator until precipitation occurred. Diethyl 

ether was added and the solution stored at 253 K for 2 d. The orange microcrystalline 

solid (182.8 mg, 0.62 mmol, 50.4% yield) was collected by filtration, washed with 

diethyl ether and dried in air. 'H NMR (CDC1 3): ö 5.94 (t, 2H, J = 5.5 Hz), 5.53 (t, 

1H, J = 5.5 Hz), 5.22 (d, 2H, J = 5.5 Hz), 3.90 (m, 2H, J = 5.5 Hz), 3.60 (b, 2H), 2.84 

(m, 2H, J = 6.5 Hz). 

Method B: 4.2 (146.7 mg, 0.23 mmol) and 2-phenethylaniine (57 pi, 0.46 mmol) 

were dissolved in 1 ,2-dichloroethane (30 ml) in the pressure vessel and stirred for 40 

mm. THF (1 ml) was added and the solution was degassed with argon for 30 mm. 

The vessel was locked and the solution heated to 393 K for 15 h. The solvent was 

removed on a rotary evaporator, the residue was washed with diethyl ether and 

extracted with hot MeOH. The solvent was removed on a rotary evaporator, the 

residue washed with acetone to leave a red-brown microcrystalline solid (98.0 mg, 

0.33 mmol, 73.4% yield), which was collected by filtration, washed with diethyl 

ether and dried in air. Elemental analysis: calculated for C 8H 1 ,NRuC12: C, 32.78; H, 

3.78; N, 4.78. Found: C, 33.08; H, 3.83; N, 4.76%. 

ft16: '-C6H50(CH2)2NH2)RuC 12] (4.6): 4.2 (202.7 mg, 0.32 mmol) and 2-

phenoxyethylamine (82 .tl, 0.63 mmol) were dissolved in 1,2-dichloroethane (25 ml) 

in the pressure vessel and stirred for 50 mm. More 1,2-dichloroethane (15 ml) and 

THF (1 nil) were added and the solution was degassed with argon for 30 mm. The 
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vessel was locked and the solution heated to 393 K for 18 h. The solvent was 

removed on a rotary evaporator, the residue was washed with diethyl ether, then 

acetone and extracted with hot MeOH. After filtration, the solvent was concentrated 

to Ca. 12 ml on a rotary evaporator and a red microcrystalline solid (93.8 mg) was 

obtained by filtration. The filtrate and the acetone washing were combined, the 

solvents removed on a rotary evaporator, and the residue washed with diethyl ether, 

then acetone. The product was extracted using hot MeOH. The solution was 

concentrated, then heated to dissolve the product and allowed to cool to ambient 

temperature. After two days, X-ray quality crystals (13.6 mg) had formed, which 

were collected by filtration. The two portions were combined (107.4 mg, 0.35 mmol, 

55.2% yield), washed with diethyl ether and dried in air. 1 H NMR (CDC13): ö 5.93 (t, 

2H, J = 6 Hz), 5.62 (t, 1H, J = 5.5 Hz), 5.28 (d, 2H, J = 6 Hz), 4.51 (m, 2H, J = 4 

Hz), 3.48 (b, 2H), 3.08 (m, 2H). Elemental analysis: calculated for C 8H11 NORuC12: 

C, 31.08; H, 3.59; N, 4.53. Found: C, 31.37; H, 3.21; N, 4.5 1%. 

[(i16:q'-C6H5(CH2)C5H4N)RuC12] (4.7): 4.2 (252.3 mg, 0.39 mmol) and 2-

benzylpyridine (0.13 ml, 0.78 mmol) were dissolved in 1,2-dichioroethane (25 ml) in 

the pressure vessel and stirred for 60 mm. More 1,2-dichlloroethane (15 ml) and THF 

(1 ml) were added and the solution was degassed with argon for 30 mm. The vessel 

was locked and the solution heated to 393 K for 18 h. An orange-brown 

microcrystalline product was isolated by filtration, the solvent was removed on a 

rotary evaporator, the residue was washed with diethyl ether, then acetone. The two 

products were combined, washed with acetone, then diethyl ether to leave an orange-

brown solid (243.5 mg, 0.71 mmol, 9 1.2% yield), which was dried in air. 1 H NMR 

(CDC1 3): 6 8.18 (d, 1H, J = 6 Hz), 7.79 (t, 1H, J = 8 Hz), 7.31 - 7.25 (t + d, 1H + 

111), 6.11 (t, 2H, J = 6Hz), 5.54 (t, 1H, J = 5.5 Hz), 5.51 (d, 2H, J = 5.5 Hz), 4.28 (s, 

2H). Elemental analysis: calculated for C 12H11 NRuC12: C, 42.24; H, 3.25; N, 4.11. 

Found: C, 42.24; H, 3.03; N, 4.05%. 
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[(16 :i1 1-C6H5(C6H4)NH2)RuC12] (4.8). Method A: 4.2 (174.0 mg, 0.27 mmol) and 2-

aminobiphenyl (86.3 mg, 0.51 mmol) were dissolved in 1,2-dichioroethane (15 ml) 

and the solution stirred for 35 mm. More 1,2-dichloromethane (35 ml) and a few 

drops of THF were added and the solution then heated to reflux for 17.5 h under 

argon. The solution was concentrated on a rotatory evaporator to Ca. 20 ml and the 

solution stored at 253 K overnight. A yellow-brown powder (47.8 mg, 0.14 mrnol, 

27.5% yield) was collected by filtration, washed with acetone and diethyl ether and 

dried in air. 'H NMR (DMSO-d6): ö 7.39 (d, 1H, J = 7 Hz), 7.17 (t, 1H, J = 7 Hz), 

6.80 (d, 1H, J = 8 Hz), 6.68 (t, 1H, J = 7.5 Hz), 6.23 (d, 2H, J = 5.5 Hz), 6.14 (t, 1H, 

J = 5 Hz), 5.95 (t, 2H, J = 5.5 Hz), 5.41 (s, 2H). 

Method B: 4.2 (426.8 mg, 0.66 mmol) and 2-aminobiphenyl (231.0 mg, 1.37 mmol) 

were dissolved in 1 ,2-dichloroethane (60 ml) in the pressure vessel and stirred for 30 

mm. T1{F (2 ml) was added and the solution degassed with argon for 40 mm. The 

vessel was locked and the solution heated to 393 K for 17 h. A dark orange-brown 

microcrystalline product (385.7 mg, 1.13 mmol, 85.3% yield) was collected by 

filtration, washed with acetone, methanol and diethyl ether and dried in air. 

Elemental analysis: calculated for C 1211 11NRuC12: C, 42.24; H, 3.25; N, 4.11. Found: 

C, 41.77; H, 2.94; N, 3.96%. 

ft96:1 1-C6H5(CH2)C3H3N2)RuC12] (4.9): 4.2 (148.1 mg, 0.23 mmol) and 4.3 (73.1 

mg, 0.46 mmol) were dissolved in 1 ,2-dichloroethane (30 ml) in the pressure vessel 

and stirred for 45 mm. THF (1 ml) was added and the solution degassed with argon 

for 50 mm. The vessel was locked and the solution heated to 393 K for 18 h. The 

solvent was removed on a rotary evaporator, resulting in dark orange-brown 

microcrystalline and black residues, which were washed with diethyl ether and 

partially extracted with hot MeOH. Upon filtration, the black material was washed 

out of the flask, leaving some of the product (54.2 mg, 0.16 mmol, 35.7% yield) 

behind, which was collected by filtration, washed with acetone, then diethyl ether 
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and dried in air. Methanol from the extraction was removed on a rotary evaporator, 

resulting in a yellow-green powder (17.5 mg, 0.05 mmol, 11.5% yield), which was 

collected by filtration and dried in air. 1 H NMR (CDC13): 6 7.65 (d, 1H, J = 3 Hz), 

7.44 (d, 1H, J = 2 Hz), 6.50 (t, 1H), 6.17 (t, 2H, J = 6 Hz), 5.67 (t, 1H, J = 5.5 Hz), 

5.54 (d, 2H, J = 6 Hz), 5.06 (s, 2H). Elemental analysis: calculated for 

C 10H 10N2RuC12 : C, 36.38; H, 3.05; N, 8.48. Found: C, 35.99; H, 2.71; N, 8.25%. 

[(i1 6 :i1 1 -C6H2(CH3)3(CH2)2NH2)RuCl2] (4.29): 4.2 (181.6 mg, 0.28 mmol) and 4.24 

(92.0 mg, 0.56 mmol) were dissolved in 1,2-dichloroethane (35 ml) and THF (1 ml) 

in the pressure vessel and stirred for 45 mm. An orange-brown precipitate formed 

and the solution was degassed with argon for 45 mm. The vessel was locked and the 

solution heated to 393 K for 16 h. The orange solution was filtered and the solvent 

was removed on a rotary evaporator. The residue was washed with diethyl ether and 

extracted with hot MeOH, which was then removed on a rotary evaporator to 

produce an oily residue. Trituration with diethyl ether and removal of it on a rotary 

evaporator resulted in an orange powder (90.6 mg, 0.27 mmol, 48.0% yield), which 

was collected by filtration and dried in air. 1 H NMR in DMSO-d6  showed the 

presence of up to five species containing the {(1 6:i 1 -C6H2(CH3)3(CH2)2NH2)Ru} 2  

fragment (vide infra). Elemental analysis: calculated for C 11H17NRuC12: C, 39.41; H, 

5.11; N, 4.18. Found: C, 38.58; H, 5.18; N, 3.96%. 

4.2.6 Preparation of tethered Ru 11  arene complexes containing non-chloride 

monodentate ligands 

[(16:i1 1-C6H5(CH2)3NH2)Ru(NO3)2] (4.10): 4.4 (110.3 mg, 0.36 mmol) and silver 

nitrate (121.9 mg, 0.72 mmol) were dissolved in water (25 ml) and the solution 

stirred for 150 mm. After filtration, the solvent was removed on a rotary evaporator 

and the product extracted with water. Filtration and removal of the solvent on a 

rotary evaporator yielded an orange powder(121.5 mg, 0.34 mmol, 93.9% yield), 
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which was collected by filtration, washed with diethyl ether and dried in air. 'H NMR 

(90% H201 10% D20, pH 4.10): 8 6.07 - 6.02 (m, 3H), 5.43 (d, 2H, J = 6 Hz), 3.96 

(b, 2H), 2.97 (m, 2H), 2.57 (t, 2H, J = 6 Hz), 2.30 (m, 2H). 

[(i16 :t1 1-C6H5(CH2)3NH2)Ru(9EtG)2](PF6)2 (4.11a): 4.10 (43.8 mg, 122 j.tmol) and 

9EtG (47.2 mg, 264 .tmol) were dissolved in methanol (15 ml) and the mixture 

stirred for 20 h. The solution was concentrated to Ca. 5 ml on a rotary evaporator and 

heated to dissolve a greenish precipitate. Addition of NH4PF6  (177.5 mg, 1.09 mmol) 

was followed by addition of diethyl ether, which led to the formation of a greenish 

precipitate and the solution was stored at ambient temperature overnight. The light 

green powder (98.1 mg) was collected by filtration, washed with diethyl ether and 

dried in air. 1 H NMR (1320, pH*  6.56): ö 8.25 (s, 1H), 5.88 (t, 2H, J = 6 Hz), 5.81 (t, 

1H, J = 6 Hz), 5.79 (d, 2H, J = 6 Hz), 5.42 (m, 1H), 4.17 - 4.03 (m, 4H), 2.73 (m, 

2H), 2.65 (m, 2H), 2.32 (m, 2H), 1.33 (t, 3H, J = 7 Hz). Crystals suitable for X-ray 

crystallography, which diffracted poorly, were grown by slow evaporation of acetone 

at ambient temperature. However, they contained 2xNO 3  as the counter anions. 

Elemental analysis suggested PF 6  to be the predominant counter anion though. 

Elemental analysis: calculated for C 23H31 N 11 O2RuP2F12 : C, 31.23; H, 3.53; N, 17.42. 

Found: C, 31.94; H, 3.57; N, 19.55%. 

ft,16:1 1 -C6H5(CH2)3NH2)Ru(9EtG)2] (CF3SO3)2  (4.11b): This product was made for 

crystallisation purposes only. 4.4 (37.9 mg, 123 .tmol) and 9EtG (51.4 mg, 287 

pmol) were dissolved in methanol (25 ml) and the mixture stirred for 22 h. The 

solution was concentrated to Ca. 10 ml and NaCF3SO3  (176.3 mg, 1.02 mmol) was 

added. The solvent was removed on a rotary evaporator and the product extracted 

with acetone. The solution was filtered, the solvent removed on a rotary evaporator 

and a yellow-green powder (228.4 mg) was collected, washed with diethyl ether and 

dried in air. Before crystallisation, the powder was washed with a minimum of 

ethanol to dissolve the excess NaCF 3SO3. The solution was filtered and the then 
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yellow powder washed with diethyl ether. X-ray diffraction quality crystals were 

grown from diffusion of diethyl ether into an acetone solution containing 4.11b at 

ambient temperature. 

((1 6:i 1 -C6H5(CH2)3NH2)Ru(9EtG)NO3]PF6 (4.12): 4.10 (46.7 mg, 130 pmol) and 

9EtG (20.0 mg, 112 p.mol) were dissolved in methanol (12 ml) and the mixture 

stirred for 20 h. A yellow precipitate formed and the solution was concentrated to Ca. 

7 ml on a rotary evaporator and heated to dissolve the precipitate. Addition of 

NH4PF6 (187.2 mg, 1.15 mmol) followed by addition of diethyl ether, led to 

formation of a yellow-brown precipitate, and the solution was stored at ambient 

temperature for overnight. The precipitate (61.9 mg) was collected by filtration, 

washed with diethyl ether and dried in air. 'H NMR (13 20, pH 5.71): 8 8.17 (s, 1H), 

6.17 (t, 111, J = 6 Hz), 5.79 (m, 1H), 5.62 (d, 1H, J = 6 Hz), 5.48 - 5.46 (m, 211), 4.72 

(m, 1H), 4.16 (q, 211, J = 7.5 Hz), 3.70 (m, 1H), 3.25 - 3.21 (m, 1H), 2.96 - 2.90 (m, 

111), 2.74 - 2.68 (m, 111), 2.47 - 2.28 (m, 3H), 1.44 (t, 3H, J = 7 Hz). Elemental 

analysis: calculated for C 16H22N704RuPF6: C, 30.87; H, 3.56; N, 15.75. Found: C, 

30.81; H, 3.58; N, 15.24%. 

[( 6:'..C6H5(CH2)J4H2)Ru(P(C6H5)3)CI]PF6 (4.22): Triphenyiphosphine (41.4 

mg, 0.16 mmol) in MeOH (5 ml) was added dropwise over a period of 15 min to a 

stirred solution of 4.4 (50.8 mg, 0.17 mmol) in MeOH (20 ml). The solution was 

stirred for 24.5 h. NH4PF6 (108.9 mg, 0.67 mmol) was added and the solvent 

removed on a rotary evaporator. The residue was washed with diethyl ether, MeOH 

(8 ml) was added and the solution was heated to dissolve the material. Upon cooling 

to ambient temperature a dark orange microcrystalline product (73.6 mg, 0.11 mmol, 

68.7% yield) formed, which was collected by filtration, washed with methanol, then 

diethyl ether and dried in air. 1H NMR (DMSO-d6): ö 7.62 - 7.58 (m, 3H), 7.56 - 

7.52 (m, 411), 7.49 - 7.45 (m, 4H), 6.28 (t, 1H, J = 6 Hz), 6.21 (d, 1H, J = 6 Hz), 5.81 

(t, 1H, J = 5.5 Hz), 5.09 (d, 1H, J = 6 Hz), 4.41 (b, 1H), 4.27 (q, 1H, J = 5 Hz), 2.98 
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(b, 11-1), 2.75 - 2.66 (m, 2H), 2.53 2.47 (m, 11-1), 2.42 - 2.36 (m, 11-1), 2.13 - 2.07 

(m, 11-1), 2.04 - 1.96 (m, 1H). Elemental analysis: calculated for C 27H28NRuC1P2F6: 

C, 47.76; H, 4.16; N, 2.06. Found: C, 47.94; H, 4.04; N, 2.24%. 

[(i 6 : 1 -C6H5(CH2)3NH2)Ru(PN3C6Hi2)C1]PF6 	(4.23): 	1,3 ,5-Triaza-7- 

phosphaadamantane (29.6 mg, 0.20 mmol) in MeOH (5 ml) was added dropwise 

over a period of 15 min to a stirred solution of 4.4 (64.5 mg, 0.21 mmol) in MeOH 

(20 ml). The solution was stirred 25 h. NH4PF6 (144.4 mg, 0.89 mmol) was added 

and the solution removed on a rotary evaporator. The residue was washed with 

diethyl ether, MeOH (10 ml) was added and heated to dissolve the material. Upon 

cooling to ambient temperature a yellow powder (73.4 mg, 0.13 mmol, 64.0% yield) 

formed, which was collected by filtration, washed with methanol, then diethyl ether 

and dried in air. 1 H NMR (DMSO-d6): 8 6.17 (d, 111, J = 6 Hz), 6.06 (q, 1H, J = 5 

Hz), 5.85 (t, 1H, J = 6 Hz), 5.56 (t, 1H, J = 5.5 Hz), 5.16 (d, 1H, J = 5.5 Hz), 4.45 (s, 

6H), 4.31 (b, 11-1), 4.23 (s, 6H), 4.13 (b, 1H), 2.56 - 2.40 (m, 4H), 2.05 (m, 111), 1.74 

(m, 11-1). Elemental analysis: calculated for C 15H25N4RuC1P2F6: C, 31.40; H, 4.39; N, 

9.76. Found: C, 31.44; H, 4.07; N, 9.57%. 

4.2.7 Preparation of tethered Ru 11  arene complexes containing bidentate 

chelating ligands 

ft1 6:1 1-C6H5(CH2)3NH2)Ru(C204 - 0,0)] (4.14): 4.4 (42.4 mg, 0.14 mmol) and 

silver nitrate (46.4mg, 0.27 mmol) were dissolved in water (15 ml) and the solution 

stirred for 45 mm. After filtration, disodium oxalate (21.7 mg, 0.16 mmol) was added 

and the solution stirred for 45 mm. The solvent was removed on a rotary evaporator 

and the product extracted with methanol. After filtration, the solution was 

concentrated to ca. 7 ml on a rotary evaporator. Upon cooling to ambient 

temperature, a precipitate formed and diethyl ether was added. The yellow powder 

(38.4 mg, 0.12 mmol, 85.5% yield) was collected by filtration, washed with diethyl 
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ether and dried in air. 'H NMR (DMSO-d 6): ö 5.80 (t, 211, J = 6 Hz), 5.61 (t, 1H, J = 

5.5 Hz), 5.29 (d, 2H, J = 6 Hz), 3.84 (b, 211), 2.66 (m, 2H, J = 5.5 Hz), 2.44 (t, 2H, J 

= 6 Hz), 2.10-2.06 (m, 2H). 

[(116 :,1 1 -C6H5(CH2)2NH2)Ru(C204 - 0,0)] (4.15): 4.5 (42.5 mg, 0.15 mmol) and 

silver nitrate (48.6 mg, 0.29 mmol) were dissolved in water (20 ml) and the solution 

stirred for 90 mm. After filtration, disodium oxalate (25.3 mg, 0.19 mmol) was added 

and the solution stirred for 90 mm. The solvent was removed on a rotary evaporator 

and the product extracted with warm methanol. After filtration, the solution was 

concentrated on a rotary evaporator until a precipitate formed. The yellow powder 

(34.3 mg, 0.11 mmol, 76.6% yield) was collected by filtration, washed with diethyl 

ether and dried in air. 'H NMR (DMSO-d6): ö 5.91 (t, 2H, J = 6 Hz), 5.44 (t, 1H, J = 

5.5 Hz), 5.35 (d, 211, J = 6 Hz), 4.70 (b, 2H), 3.60 (m, 2H, J = 6 Hz), 2.73 (t, 2H, J = 

6.5 Hz). JR (KBr, cm'): 1670 s [u(C=O)], 1385 in [u(C-O)]. 

[(96 :1j 1-C6H5(C6H4)NH2)Ru(C204 - 0,0)] (4.16): 4.8 (31.5 mg, 0.92 mmol) and 

silver nitrate (31.2 mg, 0.18 mmol) were dissolved in water (20 ml) and the solution 

stirred for 180 mm. After filtration, disodium oxalate (16.4 mg, 0.12 mmol) was 

added and the solution stirred for 90 mm. The solvent was removed on a rotary 

evaporator and the product was extracted with warm methanol. After filtration, the 

solution was concentrated on a. rotary evaporator until a precipitate formed and 

diethyl ether was added. The yellow-brown powder (14.9 mg, 0.41 mmol, 34.1% 

yield) was collected by filtration, washed with diethyl ether and dried in air. 'H NMR 

(1320, pH*  5.67): 8 7.64 (d, 111, J = 7 Hz), 7.54-7.47 (m, 2H), 6.11 (t, 2H, J = 6 

Hz), 5.71 (t, 1H, J = 6 Hz), 5.50 (d, 2H, J = 6 Hz). 

[(16:q 1-(C6H5)CH2(C5H4N))Ru(C204 - 0,0)] (4.17): 4.7 (44.4 mg, 0.13 mmol) and 

silver nitrate (43.9 mg, 0.26 mmol) were dissolved in water (15 ml) and the solution 

stirred for 30 mm. After filtration, disodium oxalate (22.6 mg, 0.17 mmol) was added 

and the solution stirred for 45 mm. The solvent was removed on a rotary evaporator 
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and the product extracted with methanol. After filtration, the solution was 

concentrated on a rotary evaporator until a precipitate formed and diethyl ether was 

added. The solution was stored at 253 K overnight and the black powder (41.3 mg, 

0.12 mmol, 88.5% yield) was collected by filtration, washed with diethyl ether and 

dried in air. 'H NMR (DMSO-d6): 8 8.08 (t, 1H, J = 8 Hz), 7.68 (d, 1H, J = 8 Hz), 

7.47 (t, 1H, J = 6.5 Hz), 6.56 (d, 1H, J = 6 Hz), 6.15 (t, 2H, J = 6 Hz), 5.87 (d, 2H, J 

= 6 Hz), 5.62 (t, 1H, J = 5.5 Hz), 4.55 (s, 211). 

[(t1 6:q 1 -C6H5(CH2)3NH2)Ru(C5H702 - O,O)]PF6 (4.18): 4.4 (39.9 mg, 0.13 mmol) 

and sodium acetylacetonate monohydrate (25.0 mg, 178 jimol) were dissolved in 

water (5 ml) and the solution stirred for 90 mm. Addition of NH4PF6  (106.7 mg, 0.66 

mmol) led to the formation of a precipitate and the solution was stored at 277 K for 3 

d. The dark yellow powder (43.8 mg, 0.88 mmol, 67.6% yield) was collected by 

filtration, washed with isopropanol, then diethyl ether and dried in air. 1 H NMR 

(CDC13): ö 5.72 (t, 2H, J = 6 Hz), 5.48 (t, 1H, J = 6 Hz), 5.27 (s + d, 1H + 2H), 3.00 

(m, 2H), 2.65 (b, 2H), 2.57 (t, 2H, J = 6 Hz), 2.35 (m, 2H), 2.02 (s, 6H). Elemental 

analysis: calculated for C 14H20NO2RuPF6: C, 35.01; H, 4.20; N, 2.92. Found: C, 

35.09; H, 4.01; N, 2.94%. 

[(i1 6 :i1 1-C6H5(CH2)C5H4N)Ru(C5H702 - O,O)]PF6 (4.19): 4.7 (37.3 mg, 0.11 

mmol) and sodium acetylacetonate monohydrate (21.5 mg, 0.15 mmol) were 

dissolved in water (15 ml) and the solution stirred for 240 mm. After filtration, 

addition of NH4PF6 (99.4 mg, 0.61 mmol) led to the formation of a precipitate and 

the solution was allowed to settle at ambient temperature, protected by Al-foil. The 

green powder (27.0 mg, 0.05 mmol, 46.5% yield) was collected by filtration, washed 

with isopropanol, then diethyl ether and dried in air. 1 H NMR (CDC13): ö 7.93 (t, 1H, 

J = 8 Hz), 7.63 (t, 1H, J = 8 Hz), 7.25 (t, 1H, J = 6 Hz), 6.59 (d, 1H, J = 6 Hz), 5.92 

(t, 2H, J = 6 Hz), 5.67 (d, 2H, J = 6 Hz), 5.47 (s, 1H), 5.42 (t, 1H, J = 6 Hz), 4.66 (s, 
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2H), 2.09 (s, 6H). Elemental analysis: calculated for C 17H18NO2RuPF6: C, 39.70; H, 

3.53; N, 2.72. Found: C, 39.69; H, 3.22; N, 2.66%. 

[(i16:11 -C6H5(CH2)3NH2)Ru(C 9H10NO2  - N,O)]PF6 (4.20): 4.4 (39.1 mg, 0.13 

mmol) and silver nitrate (43.2 mg, 0.25 mmol) were dissolved in water (5 ml) and 

the solution stirred for 60 mm. After filtration, the solvent was removed on a rotary 

evaporator. L-Phenylalanine (27.1 mg, 0.16 mmol) and sodium methoxide (8.93 mg, 

0.17 mmol) were dissolved in methanol (5 ml) and the mixture stirred for 90 mm. 

The solution was added to the ruthenium compound in methanol (7 ml). After 

stirring at 318 K for 45 mm, the solvent was concentrated to Ca. 5 ml on a rotary 

evaporator. NH4PF6 (91.4 mg, 0.56 mmol) in methanol (1 ml) was added and the 

solution concentrated on a rotary evaporator until a precipitate formed. Diethyl ether 

was added and the solution was stored at ambient temperature overnight. The light 

yellow powder (33.5 mg, 0.61 mmol, 48.2% yield) was collected by filtration, 

washed with diethyl ether and dried in air. 1 H NMR (DMSO-d6): ö 7.38 - 7.26 (m, 

5H), 6.02 - 5.98 (m, 1H), 5.94 (t, 1H, J = 5.5 Hz), 5.85 (t, 1H, J = 5.5 Hz), 5.60 (d, 

1H, J = 5.5 Hz), 5.39 (t, 1H, J = 5.5 Hz), 5.02 (d, 1H, J = 5.5 Hz), 4.58 - 4.54 (m, 

1H), 4.09-4.05 (m, 1H), 3.97-3.93 (m, 1H), 3.11 -3.07 (m, 1H), 2.97-2.92 (m, 

1H), 2.81 - 2.76 (m, 1H), 2.68 - 2.63 (m, 2H), 2.48 - 2.43 (m, 1H), 2.38 - 2.33 (m, 

1H), 2.10- 2.03 (m, 1H), 1.92- 1.85 (m, 1H). 

ft116:1i1-C6H5(CH2)3NH2)Ru(C18H10N4 - N,N)](PF6)2 (4.21): 4.4 (32.6 mg, 0.11 

mmol) and silver nitrate (35.8 mg, 0.21 mmol) were dissolved in water (20 ml) and 

the solution stirred for 60 mm. After filtration, the solvent was removed on a rotary 

evaporator. The residue and 4.13 (30.8 mg, 0.11 mmol) were dissolved in methanol 

(25 ml) and the solution stirred for 60 mm. After filtration, the solution was 

concentrated to Ca. 20 ml on a rotary evaporator and heated to dissolve the 

precipitate. Addition of NH4PF6 (180.7 mg, 1.11 mmol) led to the formation of a 

precipitate and the solution was stored at 253 K overnight. The yellow powder (65.2 
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mg, 0.81 mmol, 76.0% yield) was collected by filtration, washed with diethyl ether 

and dried in air. 1H NMR (DMSO-d6): ö 9.87 (d, 2H, J = 6 Hz), 9.83 (d, 2H, J = 8 

Hz), 8.55 (dd, 2H, J = 3.5 Hz), 8.35 (dd, 2H, J = 5 Hz), 8.24 (dd, 2H, J = 3.5 Hz), 

6.58 (t, 2H, J = 6 Hz), 6.17 (d, 2H, J = 6 Hz), 5.81 (t, 1H, J = 6 Hz), 4.49 (s, 2H), 

2.81 (t, 2H, J = 5.5 Hz), 2.56 (m, 2H), 2.20 (m, 2H). 

4.2.8 Preparation of a tethered Ru'1  arene precursor complex 

[(q6-etb)Ru(C 12H12N2)C12] (4.31): 4.2 (187.2 mg, 0.29 mmol) and 2-

benzylaminopyridine (133.4 mg, 0.72 mrnol) were stirred in dichioromethane (30 ml) 

for 120 mm. The solution was concentrated to Ca. 7 ml on a rotary evaporator and 

slow addition of diethyl ether (ca. 10 ml) led to the precipitation of an orange powder 

(254.0 mg, 0.50 mmol, 86.3% yield), which was collected by filtration, washed with 

diethyl ether and dried in air. 1 H NMR (CDC13): ö 8.54 (d, 1H, J = 6 Hz), ö 7.96 (t, 

1H, J = 6 Hz), 7.45 - 7.28 (m, 6H), 6.59 (t, 111, J = 6.5 Hz), 6.44 - 6.41 (m, 3H), 

6.02 (t, 1H, J = 6 Hz), 5.81 (t, 2H, J = 6 Hz), 4.42 (d, 2H, J = 6 Hz), 4.31 (q, 2H, J = 

7 Hz), 1.36 (t, 3H, J = 7 Hz). 

4.2.9 Preparation of a tether-opened Ru'1  arene complex 

[(
,96:ti 1 -C6H5(C6H4)NH3)RuC13] (4.32): 4.8 (144.2 mg, 0.42 mmol) was dissolved in 

conc. hydrochloric acid (37%, 35 ml) and the solution stirred at 348 K for 180 mm. 

The solvent was removed on a rotary evaporator. Ethanol was added to wash the 

residue and removed on a rotary evaporator. The dark red microcrystalline solid 

(150.8 mg, 0.40 mmol, 94.4% yield) was collected by filtration, washed with diethyl 

ether and dried in air. 1 H NMR (DMSO-d6): ö 7.56 (d, 1H, J = 7 Hz), 7.28 (t, 1H, J = 

7 Hz), 7.01 (d, 1H, J = 7 Hz), 6.91 (t, 1H, J = 7 Hz), 6.26 (d, 2H, J = 6 Hz), 6.19 (t, 

1H, J = 5.5 Hz), 5.97 (t, 2H, J = 5.5 Hz). 
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4.3 Bifunctional Tethered Ru 11  Arene (Mono-substituted) Complexes 

4.3.1 Results 

4.3.1.1 Synthesis 

The precursor diene ethyl-i ,4-cyclohexadiene-3-carboxylate (4.1) for the 

synthesis of the ruthenium dimer [( 6-etb)RuC12]2 (4.2), where etb = ethyl benzoate, 

was synthesised via the Birch reduction of benzoic acid, since direct reduction of 

ethyl benzoate [47] only returned benzoic acid, followed by esterification (Scheme 

4.1). 1-Benzyl-1-H-pyrazole (4.3) was synthesised by proton abstraction of pyrazole, 

followed by reaction with benzyl chloride. 

The synthesis of complexes [(q 6 : 1 -C6H5(CH2)3NH2)RuC12] (4.4), [(16:1 1  

C6H5(CH2)2NH2)RuC12] (4.5), [(16:1 1 -C6H50(CH2)2NH2)RuC12] (4.6), [(16:1 1_ 

C6H5(CH2)C5H4N)RuC12] (4.7), [(1 6 :1 l...C6H5(C6 )NTd2)RuC12I (4.8) and [(16:1 1 

C6H5(CH2)C3H3N2)RuC12] (4.9) (Figure 4.2) was inspired by the route pioneered by 

Ward et al. [29],  which involves the thermal displacement of ethyl benzoate (etb) in 

[(116-etb)RuC12]2 from the appropriate N-donor derivatives (Scheme 4.2). The 

advantage is that synthetically challenging or poor yielding Birch reductions for each 

compound can be avoided. Furthermore, optimisation of this methodology towards 

synthesis of nitrogen-based tethered molecules provides easy and fast access to a 

potentially vast number of complexes. 

Thermal displacement reactions for phosphine-containing tethered ruthenium 

HO a  HO 	 EtO 

-8 0 b 0 b P, 

b 	 C 

sodium metal, liquid ammonia at 195 K 
dry ethanol (250 ml), 98% H2SO4  (17 ml), argon, overnight, reflux 
RuC13 .xH20, dry ethanol (150 ml), argon, overnight, reflux 

04)OEt 

,RuZ R 
CI 	CI 

r\.--- I 
EtO 

0 

Scheme 4.1: General synthetic route for the preparation of the ruthenium starting 

dimer [(116-etb)RuC12]2  (4.2). 
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4.7 	 4.8 	 4.9 

Figure 4.2: The structures of [(16:1  '-C6H5(CH2)3NH2)RuC12] (4.4), [(16:1 1 

C6H5(CH2)2NH2)RuC12] (4.5), [(16:1 1 -C6H50(CH 2)2NH2)RuC12] (4.6), [(16:1 1 

C6H5(CH2)C5H4N)RuC12] (4.7), [(16:1  '-C6H5(C6H4)NH2)RuC12} (4.8) and [(16:1 1 

C6H5(CH2)C3H3N2)RuC12] (4.9). 

arene complexes have also been described by Wright et al. [33], who used [(9 6-p-

cym)RuC12] 2, where p-cym = p-cymene, as the starting material. This method was 

adapted by others [28, 31, 48] but has also been reported to have failed [29, 30]. 

Only ruthenium dimers containing ethyl benzoate or methyl o-toluate appear to have 

been used as starting materials for the synthesis of phosphine-containing tethered 

complexes under forcing conditions (dichioromethane at 393 K) [29, 30]. Bennett et 

al. have found that addition of small amounts of TI-IF to the reaction mixture can 

improve yields and shorten reaction times in these syntheses [30].  Alternative 

methods have also been reported [35, 49, 50]. 

Initially, it was found that reactions of [(i6-etb)RuC12]2  (4.2) with either 3-

phenyl- 1 -propylamine or 2-phenethylamine in 1 ,2-dichloroethane under reflux and 

argon produced complexes [(11 6
:11

1 -C6H5(CH2)3NH2)RuCl2] (4.4) and [(1 6:1 1  

C6H5(CH2)2NH2)RuC12] (4.5), respectively, in satisfactory yield and purity. The 
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 1 ,2-dichloroethane (20 ml), 50 min at ambient temperature 
b: 1,2-dichioroethane (80 ml), TFIF (2 ml), argon, pressure vessel, 22 h at 393 K 

Scheme 4.2: General synthetic route for tethered complexes, illustrated for [(TI 

 (4.4). 

experimental set-up was not sufficiently stable, however, since on occasions the 

condenser was lifted from the vessel, leading to loss of almost all solvent. Reflux 

under reduced temperature resulted in poor yields for other ligands, such as 2-

aniinobiphenyl and 1-benzyl-1-H-pyrazole (Table 4.1). 

Using the synthesis of 4.4 as a model, different reaction conditions were 

investigated with a view to improving the yield (Table 4.1). Use of the high-boiling 

solvent 1 ,2,3-trichloropropane generally resulted in no isolatable complex, except in 

poor yield under reflux conditions using an oil bath. The presence of THF in 

millilitre quantities during the reactions appeared to increase the yields. Use of a 

pressure vessel increased the yields dramatically. This allows reactions to be carried 

out in an oil bath at 393 K (boiling point of 1,2-dichloroethane is 357 K) without loss 

of solvent. The complexes described in this section were synthesised in the pressure 

vessel with yields ranging from 55% (4.7) to 91% (4.6). Complexes 4.7, 4.8 and 4.9 

were obtained as microcrystalline, analytically pure precipitates at the bottom of the 

pressure vessel after the reaction. 
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Table 4.1: Synthetic conditions for the syntheses of tethered complexes. In set-up 

dce = 1,2-dichioroethane, tcp = 1,2,3-trichioropropane. Unless indicated by hm 

(heating mantle), all reactions were performed in an oil bath. 

Product 4.2 / mg Set-up V / ml THF / ml T I K t / h Yield I % 

condenser Reflux 
4.5 420.5 50 Few drops 41 50.4 

dce (hm) 

4.5 146.7 
pressure 

30 1 393 15 73.4 
dce 

condenser Reflux 
4.4 372.4 50 Few drops 90 42.1 

dce (hm) 
condenser 

4,4 109.9 50 none 393 17.5 0 
tcp 

4.4 119.4 
condenser 

25 15 drops 393 21.3 0 
tcp 

4.4 348.8 
condenser 

50 1 Reflux 14 11.9 
tcp 

condenser Reflux 
4.4 349.1 50 30 drops 18 0 

tcp (hm) 

4.4 232.4 
pressure 

50 15 drops 393 18.6 50.9 
dce 

4.4 514.2 
pressure 

80 2 393 22 78.1 
dce 

4.4 526.2 
pressure 

70 3 393 18 75.5 
dce 

4.6 202.7 
pressure 

40 1 393 18 55.2 
dce 

4.7 198.8 
pressure 

60 20 drops 393 16.6 78.5 
dce 

4.7 252.3 
pressure 

40 1 393 18 91.2 
dce 

4.8 174.0 
condenser 

50  Few drops 363 17.5 27.5 
dce 

4.8 184.4 
pressure 

40 1 393 203 70.8 
dce 

4.8 426.8 
pressure 

60 2 393 17 85.3 
dce 

condenser 
4.9 226.7 50  Ten drops 363 19 0 

dce 

4.9 148.1 
pressure 

30 1 393 18 47.2 
dce 

4.29 181.6 
pressure 

1 393 16 48.0 
dce 
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4.3.1.2 Characterisation 

Crystals, suitable for X-ray diffraction, were grown from water, after addition 

of NaCl, at ambient temperature for [(1 6 :11 1 -C6H5(CH2)2NH2)RuC12] (4.5) and 

[(16:1 1 -C6H5(CH2)C5H4N)RuC12] (4.7). For [(1 6 :1 1 C6}I0(CH)NH)RuC11 (4.6) 

they were obtained from methanol at ambient temperature, and for [(1 6:1 1  

C6H5(CH2)3NH2)RuC12] (4.4) from MeOH at 253 K. Their X-ray crystal structures 

are the first examples of di-chioro, tethered Ru' 1  arene complexes containing a 

nitrogen linker. Thus far comparable neutral and bifunctional structures have mainly 

contained phosphorus as the metal-coordinating atom of a tether [28 - 33]. 

Complex [(116:111-C6H5(CH2)3NH2)RuCl2]  (4.4) crystallized with the tether 

disordered over two positions (Figure 4.3). The crystal data are shown in Table A.4. 1 

and bond angles and lengths in Table 4.2. The Ru - Cl, Ru - N and the Ru - 

C(arene) bond lengths are independent of the orientation of the tether. The C - C and 

the N —C bond lengths within the tether, however, show slight variations. The Ru - 

Table 4.2: Selected bond lengths (A) and angles (°) for [(16 :1 1  

C6H5(CH2)3NH2)RuC12] (4.4). 

Bond 	Length 	 Bond 	Length/angle 

Ru-N 10 2.129(5) Ru-centroid Eal 1.653 

Ru-Cl 1 2.425(3) N 10-Ru-Cl 1 83.7(2) 

Ru-C12 2.437(3) Ni 0-Ru-Cl2 81.8(2) 

Ru-Cl 2.169(9) C1i-Ru-C12 89.39(8) 

Ru-C2 2.161(9) Ru-N l0-C9 118.0(5) 

Ru-C3 2.196(7) Ru-Ni0-C91 118.7(7) 

Ru-C4 2.172(10) Ru-C6-C7 127.1(3) 

Ru-CS 2.175(9) N 10-Ru-C6 90.55(19) 

Ru-C6 2.179(6) 

[a] = measured using Mercury 1.4. 
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Figure 4.3: Ortep diagram (50% probability ellipsoids) and atom numbering scheme 

for the X-ray crystal structure of [(1 6 :1 1 -C6H5(CH2)3NH2)RuC12] (4.4), showing the 

two conformations of the tether. 

Cl bond lengths are 2.425(3) A and 2.437(3) A respectively, with Ru - N of 2.129(5) 
o 

A. The Ru - centroid distance is 1.65 A, which is between 0.04 - 0.05 A shorter than 

other three carbon tethered phosphorus-containing complexes [22, 30, 33, 49, 511. 

The Ru - C(arene) bond lengths of those phosphorus tethered complexes are in the 

range of 2.16 - 2.27 A, whereas those in 4.4 are within the comparatively narrow 

range of 2.161(9) - 2.196(7) A. The Ru - C6 - C7 angle, where C6 is the arene 

153 



Chapter 4 

carbon where the tether is connected and C7 the first carbon atom of the tether, is 

127.17(3)°. The C6 - Ru - N angle is 90.55(19)°. The angle between the plane 

defined by all arene carbons and that of C6, Ru and N is 88.77°. 

Similar to 4.4, complex [(11 6 :i'-C6H5(CH2)2NH2)RuC12] (4.5) crystallized 

with the tether disordered over two positions (Figure 4.4) and contains a mirror plane 

through C4, Cl, C5, Ru and Ni. The crystal data are shown in Table A.4.1 and bond 

rl 	C2 	C3 

ci 	C2 	C3 

Figure 4.4: Ortep diagram (50% probability ellipsoids) and atom numbering scheme 

for the X-ray crystal structure of [(116
:11 1 -C6H5(CH2)2NH2)RuCl2] (4.5), showing the 

two conformations of the tether. 
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angles and lengths in Table 4.3. The Ru - C(arene) bond lengths are in the range of 

2.095(3) - 2.199(4) A, shorter than in phosphorus containing two-carbon tethers and 

a phosphorus ligand-containing analogue of 4.5, for which ranges of 2.15 - 2.28 A 

[28, 29, 39] and 2.16 - 2.26 A [44], respectively, have been reported. The Ru - 

centroid distances in those complexes are 0.06 - 0.08 A [28, 29, 39, 44] shorter than 

for 4.5, which is 1.63 A, comparable to the three carbon tether 4.4. The arene carbon 

C4 (where the tether is connected) is pulled towards the ruthenium centre, whereas 

the opposite carbon Cl is furthest away from the metal resulting in buckling of the 

arene. The Ru - Cl bond lengths are 2.4133(7) A, and Ru - N 2.117(3) A. The angle 

defined by N - Ru - C4 is 80.04(13)°, which is very similar to the analogous angle in 

phosphorus-containing complexes. The Ru - N - C6 angle, where C6 is the tether-

carbon connected to the nitrogen, is 1 l0.00(2)° and therefore Ca. 10° wider than two 

carbon phosphorus-tethered complexes. The angle between the plane defined by all 

arene carbons and that of C6, Ru and N is 90.00(3)°. 

Table 4.3: Selected bond lengths (A) and angles (°) for [(ij 

C6H5(CH2)2NH2)RuC12
] 

(4.5) (mirror plane through C4, Ci, C5, Ru and Ni). 

Bond Length Bond Length/angle 

Ru-Ni 2.117(3) Ru-centroid 1.631 

Ru-Cl 1 2.4133(7) N 1-Ru-Cl 1 86.28(6) 

Ru-Cli#i 2.4133(7) Ni-Ru-Cl 1#i 86.28(6) 

Ru-Cl 2.199(4) Cl1-Ru-Cli#i 90.00(3) 

Ru-C2 2.164(2) Ru-Ni-C6 110.0(2) 

Ru-C2#1 2.164(2) Ru-N1-C6#1 110.0(2) 

Ru-C3 2.158(2) Ru-C4-05 114.7(2) 

Ru-C3#1 2.158(2) Ni -Ru-C4 80.04(13) 

Ru-C4 	2.095(3) 

[a] = measured using Mercury 1.4. 
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The complex [(1 6:i'-C6H50(CH2)2NH2)RuCl2] (4.6) contains a three atom 

tether, which incorporates a heteroatom (Figure 4.5). The crystal data are shown in 

Table A.4. 1 and bond angles and lengths in Table 4.4. The Ru - Cl bond lengths are 

2.4217(6) A and 2.4247(6) A, respectively, with Ru - Ni of 2.1419(19) A. The range 

of Ru - C(arene) bond lengths, 2.158(2) - 2.202(2) A, is comparable to 4.4 and the 

ri 	C6 

Figure 4.5: Ortep diagram (50% probability ellipsoids) and atom numbering scheme 

for the X-ray crystal structure of [(16:1 1 .C6H50(CH2)2N}12)RuCl21 (4.6). 

Table 4.4: Selected bond lengths (A) and angles (°) for [(16:11 

C6H50(CH2)2NH2)RuCl2] (4.6). 

Bond Length Bond Length/angle 

Ru-Ni 2.1419(19) Ru-C6 2.183(2) 

Ru-Cil 2.4217(6) Ru-centroid 1  1.658 

Ru-02 2.4247(6) Ni-Ru-Cl 1 85.64(6) 

Ru-Cl 2.166(2) N1-Ru-02 81.14(5) 

Ru-C2 2.202(2) Cli -Ru-C12 87.81(2) 

Ru-C3 2.187(2) Ru-Nl-C7 121.17(15) 

Ru-C4 2.196(2) Ru-05-0 1 126.52(16) 

Ru-CS 2.158(2) Ni-Ru-05 88.38(8) 

[a] = measured using Mercury 1.4. 
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Ru - centroid distance is 1.66 A. The Ru - C5 - 01 angle, where C5 is the arene 

carbon where the tether is connected and 01 the first carbon atom of the tether, is 

126.52(16)°. The C5 - Ru - Ni angle is 88.38(8)°. The angle between the plane 

defined by all arene carbons and that of C5, Ru and Ni is 85.58°. In contrast to the 

above structures, the amine protons are involved in short contact interactions with 

chloride atoms of 2.50 A (02•••N1 3.337(2) A) and 2.52 A (01•••N1 3.446(2) A), 

respectively. Interactions involving 01•••H2 (2.67 A, 01•••C2 3.580(3) A) and 

C12-• •H82 (2.70 A, 02•• •C8 3.507(3) A) link the molecules into chains, and those 

molecules show 7t - it interactions with neighbouring arenes with C5•••C6 3.227(3) 

A. Proton• . •chloride interactions, including those with amine protons, link one 

molecule with two others, where C12•••H6 2.74 A (C12 ... C6 3.729(2) A) and 

C12••H81 2.76 A (02•••C8 3.687(3) A). 

The complex [(1i6:i1-C6H5(CH2)C5114N)RuCl2]  (4.7) contains a pyridine 

derivative as the tether (Figure 4.6). The crystal data are shown in Table A.4.2 and 

bond angles and lengths in Table 4.5. The Ru - Cl bond lengths are 2.4039(7) A and 

2.4218(7) A, respectively, with Ru - N of 2.119(2) A. The Ru - centroid distance is 

tii C12 	e1 

Figure 4.6: Ortep diagram (50% probability ellipsoids) and atom numbering scheme 

for the X-ray crystal structure of [(16:1  1 -C6H5(CH2)C5H4N)RuC12] (4.7). 
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Table 4.5: Selected bond lengths (A) and angles (°) for  [(16 :r1 1-  

C6H5(CH2)C5H4N)RuC12] (4.7). 

Bond 	Length 	 Bond 	Length/angle 

Ru-N 2.119(2) Ru-C13 2.165(3) 

Ru-Cl 1 2.4039(7) Ru-centroid 1.629 

Ru-02 2.4218(7) Ni -Ru-Cl 1 85.75(6) 

Ru-C8 2.099(2) N1-Ru-02 91.02(6) 

Ru-C9 2.145(3) Cli -Ru-C12 88.19(3) 

Ru-C 10 2.167(3) Ru-N-C6 116.79(16) 

Ru-C 11 2.197(3) Ru-C8-C7 114.73(17) 

Ru-C12 2.181(3) N1-Ru-C8 78.93(9) 

[a] = measured using Mercury 1.4. 

1.63 A and the Ru - C(arene) bond lengths are in the range of 2.099(2) - 2.197(3) A. 

Similarly to 4.5, the arene is buckled and arene carbon C8 (where the tether is 

connected) is pulled towards the ruthenium centre, whereas the opposite carbon Cii 

is furthest away from the metal. The pyridine rings in the structure are involved in it 

- it stacking. One face of a pyridine ring interacts strongly with another ring with 

distances of N1•••C4 3.485(3) A, C2 ... C5 3.492(4) A and C3 ... C6 3.511(4) A, 

respectively. The other face shows weaker interactions with distances of Ni• . •C4 

4.130(3) A, C2•••C5 4.117(4) A and C3 ... C6 4.138(4) A, respectively (Figure A.4.1). 

The angle defined by N - Ru - C8 is 78.93(9)°. The Ru - N - C6 angle, where C6 is 

the pyridine-carbon which the tether is connected to, is 1 16.79(i6)°. The angle 

between the plane defined by all arene carbons and that of C8, Ru and N is 83.07°. 

Most of the complexes were characterized by 1 H NMR in CDC13, solubilised 

at concentrations between Ca. i - mM by ca. 30 min of ultrasonication. For 

complex 4.7, two of the pyridine signals were masked by the chloroform peak, 

whereas 4.8 was highly insoluble in most solvents and decomposed in DMSO (vide 

infra). 

1 O 'Jo 



Chapter 4 

The arene proton signals for the tethered amine complexes [(1i6:Tl1 

C6H5(CH2)3NH2)RuC12] (4.4), [(r16 :1 1 -C6H5(CH2)2NH2)RuC12] (4.5) and [(q6:1 

C6H50(CH2)2NH2)RuC12] (4.6) are shifted upfield by ca. 1.4 - 2 ppm compared to 

those of the respective free ligands. Furthermore, three peaks (triplet, triplet, doublet) 

in a 2 1 : 2 ratio are associated with these protons. The signals for the bound NH 2  

groups are shifted downfield by 2.2 - 1.9 ppm compared to the free ligand. 

The assignment of the tether protons was confirmed by recording a 2D 

NOESY spectrum. Complex 4.4 is given as an example in Figure 4.7. The arene 

a 	 c f 
in 	 (1 

2.0 

3.0 

4.0 
-D 
3 

5.0 

6.0 	5.6 	5.2 	3.2 	2.8 	2.4 
ö ( 1 H) / ppm 

a 	c 

a I C 

WOO 
X 

N"Je 
CI H 

Figure 4.7: The 2D NOESY 'H NMR spectrum of [(1 6 :1 1 -C6H5(CH2)3NH2)RuCl2I 

(4.4) in CDC13  at 298 K and the peak assignment. 
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protons at 5.16 ppm show weak and strong cross-peaks to the protons at 2.20 and 

2.49 ppm, respectively. The signal at 2.20 ppm shows cross-peaks of comparable 

intensity to both signals at 2.20 and 2.95 ppm and the N112 group shows a cross-peak 

with the protons at 2.95 ppm. 

The protons of the heterocyclic tether backbones in complexes [(1 6 :1I 1  

C6H5(CH2)C5H4N)RuC12] (4.7) and [(16 :1 1 -C6H5 (CH2)C3H3N2)RuC12] (4.9) 

generally showed an upfield shift with respect to the free ligands. In the case of the 

pyridine derivative, this shift was in the range of 0.2 - 0.3 ppm, except for the proton 

next to the nitrogen, which shifted downfield by Ca. 0.35 ppm. For the pyrazole 

derivative, the upfield shifts are less pronounced with 0.2 - 0.04 ppm. The benzylic 

cH2  protons in 4.7 shift downfield by Ca. 0.15 ppm and upfield by ca. 0.3 ppm in 4.9 

upon complexation. The coordinated arene protons are shifted upfield by ca. 1.1 - 

1.7 ppm compared to the free ligands. 

4.3.1.3 Aqueous chemistry 

All the synthesised di-chioro tethered complexes have reasonable water 

solubility. Solutions of [(16:l'-C6H5(CH2)3NH2)RuCl2]  (4.4) (7.2 mM, pH* = 5.66), 

[(71 6 m 1 -C6H5(CH2)2NH2)RuC12I (4.5) (7.0 niM Ru, pH* = 5.60), [(1 6:1 1 W 

C6H50(CH2)2NH2)RuC12] (4.6) (8.5 mM Ru, pH* = 5.49), [(1 6 :1 1  

C6H5(CH2)C5H4N)RuCl2] (4.7) (4.0 mM, pH* = 6.24) and [(1 6 :1 1  

C6H5(C6H4)NH2)RuC12] (4.8) (2.0 mM Ru, pH* = 5.46), where pH* = pH meter 

reading of the solution, at 298 K showed no evidence of decomposition over a period 

of 24 h by 1 H NMR spectroscopy. In the case of [(i 6:1 1 -C6H5(CH2)C3H3N2)RuC12] 

(4.9) (6.0 mM Ru, pH* = 5.38, 298 K) a multiplet of negligible intensity at 7.40 - 

7.25 ppm appeared after 24 h. Each spectrum indicated the presence of more than 

one species in solution. 
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Upon dissolution of 4.5 in. D20, eleven peaks were observed in the arene-

proton region of the 1 H NMR spectrum. Integration suggested that they belong to 

three species, two with three signals in a 2: 1: 2 ratio and one with five signals in a 

1 : 1 : 1 : 1 : 1 ratio. A similar scenario was also observed for 4.4, with some signals 

overlapping. 

Chloride titrations for complexes 4.5 (6.8 mM Ru at start, 6.2 mM Ru at 

finish) and 4.4 (6.5 mM Ru at start, 5.9 mM Ru at finish) were followed by 'H NMR 

in D20 at 298 K. The relative intensities of the three species changed depending on 

the concentration of added chloride ([Clia)  (Figures 4.8, A.4.2 and A.4.3). The pH* 

values increased as the concentration of total chloride ([Ci])  was increased from ca. 

13 mM to Ca. 273 mM. Control experiments of solutions of 4.5 with [Ci] = 13.6 

mM ([Ru] = 6.8 mM) and 273.6 mM ([Ru] = 6.2 mM), respectively, were re- 

[CI]/mM 	 c 	 c 	 pH* 

b b 	C 	 b 

273.6 	 M 	6.55 

194.8 	 - 	• _/• •___J V/ 	

s'-  6.46 

 INI  
111.3 	

111
6.22

Iij  
76.5 ___ 	 6.12 

31.8 

22 7 	VLJ 	 'J 	 • '—'------------------' 
'S-  5 42 

bb 

13.6 .:.... 

	 5.8 	

.

5.2

5.27  

s/ppm 

Figure 4.8: The arene proton region of the 1H NMR spectrum for a chloride titration 

of ft11 6m 1 -C6H5(CH2)2NH2)RuC12] (4.5) (6.8 mM) in D20 at 298 K. Assignments: a = 

[(16 :1 1 CH(CH)NH )Ru(HO) ]2  b = [(16:1 1 CH(CH)NH )Ru(H O)C1} c = 

[(16:1 1 -C6H5(CH2)2NH2)RuCl 2]. 
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recorded after 22 h and showed little change from the original spectra. The same was 

true for spectra of 4.4 with [CF] = 12.9mM ([Ru] = 6.5 mM) and 273.1 mM ([Ru]'= 

5.9mM). 

The 	synthesis 	of 	the 	di-aqua 	complex 

C6H5(CH2)3NH2)Ru(H20)2](NO3)2 was attempted by abstraction of chloride with 

silver nitrate from [(16:1  '-C6H5(CH2)3NH2)RuC12] (4.4) in water. Nitrate generally is 

a weak ligand for Ru". The complex, however, crystallised as 

C6H5(CH2)3NH2)Ru(NO3)2] (4.10) from slow diffusion of diethyl ether into an 

acetone solution at ambient temperature. The structure is shown in Figure 4.9, the 

crystal data in Table A.4.2 and bond angles and lengths in Table 4.6. The Ru - 0 

bond lengths are 2.11172(10) A and 2.1250(10) A respectively, with Ru - N10 of 

2.1241(13) A. The Ru - C(arene) bond lengths of 2.1707(15) - 2.1986(17) A are 

slightly longer on average than for 4.4. The Ru - centroid distance is 1.66 A. Strong 

H-bonds between the amine protons and oxygen atoms of the nitrate ligands result in 

the formation of dimers between molecules in the structure, where 022• ••H1OA 2.25 

C5 C6 	ci 

C4 	
C8 

032 

N 12 	 N 10 
c9 

031 

Figure 4.9: Ortep diagram (50% probability ellipsoids) and atom numbering scheme 

for the X-ray crystal structure of [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(NO3)2] (4.10). 
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Table 4.6: Selected bond lengths (A) and angles (°) for [(1 6 1 : 1  

C6H5(CH2)3NH2)Ru(NO3)2] (4.10). 

Bond 	Length 	 Bond 	Length/angle 

Ru-N10 2.1241(13) Ru-C6 2.1762(14) 

Ru-Oil 2.1172(10) Ru-centroid 1  1.656 

Ru-012 2.1250(10) N10-Ru-01 1 82.20(5) 

Ru-Cl 2.1766(14) N10-Ru-0 12 79.34(4) 

Ru-C2 2.1707(15) 01 1-Ru-012 76.86(4) 

Ru-C3 2.1697(15) Ru-N10-C9 121.52(11) 

Ru-C4 2.1986(17) Ru-C1-C7 125.85(11) 

Ru-05 2.1799(15) N10-Ru-C1 90.49(5) 

[a] = measured using Mercury 1.4. 

A (022...N10 3.0671(18) A) and O1l•••H1OB 2.23 A (Oil ... N10 3.0935(16) A), 

respectively (Figure A.4.4). The Ru - Cl - C7 angle, where Cl is the arene carbon 

where the tether is connected and C7 the first carbon atom of the tether, is 

125.85(11)°. The Cl - Ru - N10 angle is 90.49(5)°. The angle between the plane 

defined by all arene carbons and that of Cl, Ru and N is 83.96°. There appears to be 

no previous report of a Ru'1  arene complex containing two mono-dentate nitrate 

molecules. One Ru" (a-[Ru(azpy)2(NO3)21,  where azpy = 2-(phenylazo)pyridine) and 

one Ru (cis-[RuCI(NO3)2(pdma)N0], where pdma = 1,2-

phenylenebis(dimethylarsine)) di-nitrate adduct are documented [52, 53],  which both 

have shorter Ru - 0 bond lengths than 4.10, as well as two ruthenium complexes 

(10 5-Cp)Ru(C0)(AsPh 3)NO3 1, where Cp = cyclopentadienyl, and ftr 6-p-

cym)2Ru2(6,6' -Me2dppz)(NO3)2], where 6,6' -Me2dppzH = 2,2' -(1 H-pyrazole-3,5-

diyl)-bis(6-methylpyridine)) containing one monodentate nitrate [54, 55],  also with 

shorter Ru —0 bond lengths. 
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A solution of 4.10 in water gave rise to one species only in the 1 H NMR 

spectrum at pH = 4.1. Raising the pH by stepwise addition of NaOH led to 

precipitation of an unknown product at pH values as low as 4.8. At pH 7.7 a 

significant portion of the sample appeared to have precipitated and the colour of the 

solution was pale yellow. The 1 H NMR spectrum showed that the peaks due to the 

initially present species 'a' started shifting to high-field above pH 5.4. However, they 

had almost disappeared at pH 6.6, thus preventing determination of the associated 

PKa  value (Figure 4.10). During each experiment, the pH values measured before 

pH 

1.04 

10.96 

8.92 

7.17 

5 .43 ___-' ___J._A _____.'-' \-_-J '___-..________J \____I .J '-J 

	

5.01 	 - 	 ____ ___ 

I N  
4.76 ------ '- . 	 _____ 	\ 	___ 

a 	 a 
a  

	

4.10 	 A.  

4.0 	 3.0 	 2.0 
s/ppm 

Figure 4.10: The 1 H NMR spectra for a pH titration of [(rl 6 :Tl 1  

C6H5(CH2)3NH2)Ru(NO3)2
] 

(4.10) in 90% H201 10 % D20 at 298 K. With increasing 

pH a precipitate formed, the initial fully aquated species [(11  

C6H5(CH2)3NH2)Ru(H20)2] 2 
 (a) disappears and up to four unknown species (b - e) 

are present in solution. Upon acidification to pH 1, formation of species (b - e) is 

reversed, and only species (a) is present in solution. Assignments: x = 1,4-dioxane; u 

= unknown impurity. 
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recording the spectrum were always higher by on average 0.2 pH units than those 

measured after. Three new species were present in solution and the position of their 

signals did not shift between pH 5.0 to 11.0. When the pH was raised from 8.9 to 

11.0, a fourth species appeared. Formation of these species was reversible, since on 

lowering the pH to 1.0 only 'a' was present in solution. In addition, the precipitate 

had dissolved. 

When the pH of an acidic solution of 4.10 was raised directly to pH 10.1, the 

presence of the same four main species was detected, however, in different 

proportions. 

d 

rU DMSO  
eOD 

CDCI3  

6.0 	 5.0 	 4.0 	 3.0 	 2.0 
s/ppm 

Figure 4.11: The 'H NMR spectra of ft1I 6
:11 '-C6H5(CH2)3NH2)RuC12] (4.4) in 

CDC13, MeOD-d4  and DMSO-d6 at 298 K. One species is present in CDC1 3, whereas 

in MeOD-d4  and DMSO-d6  there are two species. Solvent peaks: w = water, m = 

methanol, d = dimethylsulfoxide. 
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4.3.1.4 Stability in organic solvents 

Figure 4.11 shows a comparison of the 1H NMR spectra of [(1 6 :1 1  

C6H5(CH2)3NH2)RuC12] (4.4) in CDC13, MeOD-d4 and DMSO-d6 at 298 K. In 

contrast to CDC13 , which indicated the presence of only one complex in solution, 

solutions in MeOD-d4 and DMSO-d6 showed the presence of more than one species. 

A 2D NOESY spectrum of 4.4 in DMSO-d6 at 298 K (Figure 4.12) confirmed 

the presence of two species in solution, one species with three arene and three tether 

backbone proton signals and one N11 2  proton signal. The other species had five 

arene, six tether backbone and two N11 2  proton signals. 

A spectrum of [(1 6:1 1 -C6H5(CH2)2NH2)RuC12I (4.5) in DMSO-d6 was 

recorded at intervals over a period of 450 min at 298 K. During this time the 

Figure 4.12: The 2D NOESY 1 H NMR spectrum of [(1 6:r'-C6H5(CH2)3NH2)RuCl2] 

(4.4) in DMSO-d6 at 298 K. Peaks a correspond to [(1 6 :1'-C6H5(CH2)3NH2)RuCl2] 

and peaks b most likely to [(1 6 :11 1 -C6H5(CH2)3NH2)Ru(DMSO)C1i. 
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spectrum changed (Figure 4.13). The eight arene proton- and associated NH 2  peaks 

disappeared, whereas a complex multiplet at around 7.3 ppm increased in intensity. 

Figure 4.13 also shows the arene proton region of free 2-phenethylamine. Similar 

experiments with complexes ftr6:1  '...C6H5(CH2)C5 N)RuCl2I (4.7) and [(q 6:r 1  

C6H5(C6H4)NH2)RuC12] (4.8) also showed the appearance of signals with similar 

chemical shifts to free 2-benzylpyridine and 2-aminobiphenyl, albeit not as rapidly. 

In contrast, a spectrum of 4.4 monitored over the same period showed no changes in 

its spectrum in DMSO-d6. 

C) 

0-1 

A) 	 b
b 	

ab 	a 

Ii 	It 	 b 

7.5 	 6.0 	 4.5 
/ ppm 

Figure 4.13: The 'H NMR spectrum of ft716:i'-C6H5(CH2)2NH2)RuC12]  (4.5) in 

DMSO-d6  at 298 K. A: After 80 minutes. The solution contains [(1 6 :11
1
-

C6H5(CH2)2NH2)RuCl2] (a) and most likely [(16,1 1 -C6H5(CH2)2NH2)Ru(DMSO)Cl] 

(b). B: After 450 minutes. C: Free 2-phenethylamine. 
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4.3.1.5 Reactions with nucleobases in solution 

Time-course for reaction of [( 6 :1 1 -C6H5(CH2)3NH2)Ru(NO3)2] (4.10) 

with 9EtG: 600 i1 of a 2.2 mM solution of 9EtG in 90% H 20/ 10% D20 and 5 .tl of 

a 1% solution of 1,4-dioxane in 90% H 20/ 10% D20 were added to a 5 mm NMR 

tube. To this, 58.4 gl of a 12.9 mM solution of 4.10 in 90% H20/ 10% D20 was 

added and the pH of the solution was measured (5.19). The spectrum was recorded at 

t = 24 mm, t = 46 min and every 20 min for a period of 16.5 h. The starting material 

appeared to have been consumed by the time the first spectrum was recorded. Two 

new 9EtG peaks were observed in addition to free 9EtG. With increasing time a 

different set of arene proton signals was noted, which did not appear to be assignable 

to 9EtG. The pH of the solution after 16.5 h was 6.22. 

Time-course for reaction of [(11 6:i 1-C6H5(CH2)3NH2)RuCl2] (4.4) with 

9EtG in the presence of chloride ([Cflt = 21.7 mM): 600 xl of a 2.2 mM solution 

of 9EtG in 90% H20/ 10% D20, 5 pJ of a 1% solution of 1,4-dioxane in 90% H 20/ 

10% D20 and 4.4 pi of a 3 M solution of NaCl in 90% H 20/ 10% D20 were added to 

a 5 mm NMR tube. To this, 58.4 .tl of a 11.3 mM solution of 4.4 in 90% H20/ 10% 

D20 was added and the pH of the solution was measured (6.08). The spectrum was 

recorded at t = 45 mm, and another 5 times between t = 45 - 134 mm, and then every 

30 min from t = 134 min for a period of 18 h. Three new 9EtG peaks, of which two 

were overlapping each other, were observed in addition to free 9EtG. The pH of the 

solution after 18 h was 6.53. 

Time-course for reaction of [(i 6 :T1 1 -C6H5(CH2)2NH2)RuCl2] (4.5) with 

9EtG in the presence of chloride ([Cl] = 21.7 mM): 600 p1 of a 2.2 mM solution 

of 9EtG in 90% H20/ 10% D20, 5 j.tl of a 1% solution of 1,4-dioxane in 90% H201 

10% D20 and 4.4 tl of a 3 M solution of NaCl in 90% H20/ 10% D20 were added to 

a 5 mm NMR tube. To this, 58.4 p1 of a 11.3 mM solution of 4.5 in 90% H201 10% 

D20 was added and the pH of the solution was measured (6.08). The spectrum was 
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recorded at t = 32 mm, t = 53 mm, and then every 30 min from t = 123 min for a 

period of 41 h. The starting material, [(9 6:1 1 -C6H5(CH2)2NH2)RuC12], appeared to 

have all reacted within 53 mm, and [( 6 :1 1 -C6H5(CH2)2NH2)Ru(H20)Cl] within 183 

mm. No [(116 :1i 1 -C6H5(CH2)2NH2)Ru(H20)2] 2  was detected by the time the first 

spectrum was recorded. Three new 9EtG peaks were observed in addition to free 

9EtG. The pH of the solution after 41 h was 6.23. 

Hydrolysis of 9EtG adducts of {(11 6 :1l'-C6H5(CH2)3NH2)Ru}2 ': The 'H 

NMR spectra of three solutions of [(16:1  '-C6H5(CH2)3NH2)Ru(9EtG)2] (PF6)2  

(4.11a), (a) 4.3 mM Ru, pH* = 6.47, (b) 1.95 mM Ru, pH* = 3.95 and (c) 0.96 mM 

Ru, pH* = 7.66, were recorded in D 20 at 298 K. The spectra showed the presence of 

one species in solution, which was assigned to the title compound (Figure 4.14). The 

product 9EtG H8 peaks appeared at Ca. 8.25 ppm, an upfield shift of 0.43 ppm 

compared to free 9EtG. The tether NH 2  signal had shifted from 3.92 ppm (pH = 6.22) 

for the fully aquated complex, to 5.41 ppm (pH* = 6.47) and 5.57 ppm (pH* = 7.66). 

Each solution also contained traces (<3%) of [(1 6 :1 1  

C6H5(CH2)3NI12)Ru(9EtG)(H20)] 2  and free 9EtG. The spectra were re-recorded 

after 22.5 h (17 h for solution (b)), with pH* = 6.31 for solution (a), pH* = 4.40 for 

solution (b) and pH* = 6.74 for solution (c), and additional signals were noted. 

The 11-1 NMR spectrum of a solution of 4.11a (3.0 mM Ru) in D 20 at pH* = 

6.67 and 298 K was recorded at t = 10 mm, t = 19 min and then every 20 min starting 

at t = 42 for a period of 20 h. A singlet at 8.25 ppm decreased in intensity and two 

new signals at 8.14 and 7.82 ppm increased in intensity. The pH*  of the solution 

after 20 h was 6.02. 

The 'H NMR spectrum of a solution containing [(1 6:1 1  

C6H5(CH2)3NH2)Ru(9EtG)NO 3]PF6  (4.12) (ca. 4.0 mM) was recorded at pH* = 5.71 

and 298 K. The spectrum showed the presence of mainly ftq 6 :q'-

C6H5(CH2)3NH2)Ru(9EtG)] as well as the di-9EtG adduct. The ratio of the di- to the 
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Figure 4.14: The 9EtG H8 proton and arene proton region of the 'H NMR spectrum 

of [(116:r'-C6H5(CH2)3NH2)Ru(9EtG)2] 2  (4.11a) in D20 at 298 K. A: 4.3 mM Ru 

after dissolution at pH* = 6.47. B: 4.3 mM Ru after 22.5 h at pH* = 6.31. C: 0.96 

mM Ru after dissolution at pH* = 7.66. D: 0.96 mM Ru after 22.5 h at pH* = 6.74. 

Assignments: a = [( 116 :11 1 -C6H5(CH2)3NH2)Ru(9EtG)2] 2 ; b = [(96 :1 1 _ 

C6H5(CH2)3NH2)Ru(9EtG)(H20/OH)] n = 2/1; d = free 9EtG; e = hydroxo-bridged 

species? 

mono-9EtG adduct changed from an initial Ca. 0.09: 1 to ca. 0.16: 1 after 22 h (pH* 

= 5.57). In addition an increase in the presence of the diaqua complex :11 

C6H5(CH2)3NH2)Ru(H20)2] 2  was detected. 

Reaction of [(i1 6 : 1-C6Hs(CH2)3NH2)Ru(NO3)2] (4.10) with guanosine: 

The addition of guanosine to a solution of KTI  (4.10) 

(7.4 mM Ru) in 90% H20/ 10% D20 was monitored by 1H NMR at t = 20 mm 

(Figure 4.15). Two singlets, at 8.40 and 8.39 ppm, appeared in the Guo H8 region 

after addition of 0.75 equiv of Guo at 298 K and pH 4.86. Addition of a total of 1.5 
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a 	a 

8.6 	 8.3 	 8.0 
s/ppm 

Figure 4.15: The Guo H8 proton region of the 'H NMR spectrum of a solution 

containing Guo and [(i 1 :i6-C6H5(CH2)3NH2)Ru(NO3)2] (4.10) in 90% H20 / 10% 

D20. A: 0.75 mol equiv Guo at pH = 4.86 and 298 K after 30 mm. B: 1.5 mol equiv 

of Guo after incubation at 310 K for 10 h at pH = 5.39. Assignments: a = [(
71

6 :r1 1-
C6H5(CH2)3NH2)Ru*(Guo*)2} 2 ; b = [(1 6 :11 'C6H5(CH2)3NH 2)Ru*(Guo*)H 20]; c = 

free Guo. 

mol equiv of Guo and incubation of the solution at 310 K for 10 h (pH = 5.39) 

resulted in two other new peaks at 8.55 and 8.43 ppm. 

4.3.1.6 X-ray crystal structure of [(q6: r/-C6115(CH2)3NH2)Ru(9EtG)2](CF3SO 3)2  

(4.11b) 

Slow evaporation of an acetone solution containing [(11 6 :11 1  

C6H5(CH2)3NH2)Ru(9EtG) 2](PF6)2  (4.11a) was the technique used in an attempt to 

grow crystals of 4.11a. However, the structure obtained was that of [(fl 6 :11 1 . 

C6H5(CH2)3NH2)Ru(9EtG) 2] (NO3)2  (Figure A.4.5). Thus X-ray crystallography 

showed that counterion metathesis from NO 3  to PF6  had not gone to completion, 

C 

A) 
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possibly due to apparent ability of nitrate to participate in H-bond interactions with 

NiH and N2H. The structure was not fully refined though since the crystals were of 

poor quality. 

Crystals of X-ray diffraction quality were obtained for [(i6i1-

C6H5(CH2)3NH2)Ru(9EtG)2](CF3SO3)2 (4.11b) by slow diffusion of diethyl ether 

into an acetone solution containing 4.11b at ambient temperature. The structure is 

shown in Figure 4.16, the crystal data in Table A.4.2 and bond angles and lengths in 

Table 4.7. The Ru - N(tether) bond length is 2.121(2) A, the Ru - N(9EtG) distances 

are 2.101(2) A and 2.1588(18) A, respectively. The Ru - C(arene) bond lengths of 

2.165(2) - 2.22(3) A are longer on average than for 4.4. The Ru - centroid distance 

is 1.67 A. The Ru - C5 - C4 angle, where C5 is the arene carbon where the tether is 

vow  

- 	
I 

N22 f C23 	' C27 
N18 j C15,- 

C17_ 	
015 C221 	N28 	N27 

C223 

N17  

Figure 4.16: Ortep diagram (50% probability ellipsoids) and atom numbering 

scheme for the cation in the X-ray crystal structure of [(1 6.1 1  

C6H5(CH2)3NH2)Ru(9EtG)2](CF3SO3)2 (4.11b). The hydrogen atoms, with the 

exception of the tether NH 2  protons, which are H-bonded to 015 and 025, have been 

omitted for clarity. 
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Table 4.7: Selected bond lengths (A) and angles (°) for [(1 6:1 1 W 

C6H5(CH2)3NH2)Ru(9EtG)2] (CF 3SO3)2  (4.11b). 

Bond Length Bond Length/angle 

Ru-Ni 2.121(2) Ru-ClO 2.191(2) 

Ru-N 10 2.1588(18) Ru-centroid 1  1.672 

Ru-N20 2.101(2) Ni-Ru-N 10 86.94(8) 

Ru-CS 2.178(2) Ni -Ru-N20 82.96(8) 

Ru-C6 2.172(2) N10-Ru-N20 87.49(8) 

Ru-C7 2.165(2) Ru-Ni -C2 117.26(17) 

Ru-C8 2.210(3) Ru-05-C4 123.85(19) 

Ru-C9 2.232(3) Ni-Ru-CS 89.94(10) 

[a] = measured using Mercury 1.4. 

connected and C4 the first carbon atom of the tether, is 123.85(19)°. The C5 - Ru - 

N(tether) angle is 89.94(10)°. The angle between the plane defined by all arene 

carbons and that of CS, Ru and N(tether) is 72.77°. The coordinated 9EtG molecules 

show a number of H-bond interactions with the tether amine, residual water, the 

CF3SO3  counter anion as well as neighbouring 9EtG ligands. The tether amine 

protons both show hydrogen bonds with the carbonyl groups of 9EtG, where 

H11•••OiS 1.98 A (N1 ... O1S 2.869(3) A) and H12••025 2.32 A (N1...025 3.085(3) 

A), with the latter carbonyl also interacting with residual water (H2 ... 025 2.14 A, 

01•••025 2.881(3). A). Interactions between neighbouring N21-1 and N3 atoms, with 

H171••N18 2.11 A (N17 ... Ni8 3.004(4) A) and H271 ... N28 2.14 A (N27 ... N28 

3.017(3) A), are complemented by H-bonds between some oxygen atoms of CF 3SO3  

and the NiH and N2H protons, with H272•••012 2.11 A (N27 ... 0i2 2.972(4) A) and 

H261•••011 2.13 A (N26•••011 3.028(4) A) as well as H172•••022 2.01 A (N17"•022 

2.871(4) A) and H161"•023 1.96 A (N16 ... O23 2.856(3) A). 
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4.3.2 Discussion 

4.3.2.1 Synthesis 

The synthesis of tethered Ru 11  arene complexes involved the thermal 

displacement of ethyl benzoate by a pendent arene. Arene exchange reactions are 

believed to proceed via progressive removal of the arene ligand from 716  to 114  and 112 

[56]. An increased presence of THF in the reaction mixture appeared to lead to 

higher yields, in agreement with Bennett et al. [30],  possibly because this weakly 

coordinating solvent could stabilise the transition state. 

Increasing the reaction temperature from 363 K (near the boiling point of 1,2-

dichloroethane) to 393 K increased the yields in some reactions (see Table 4.1). 

However, this increase in yield was most likely not simply a consequence of the 

higher temperature. Keeping the temperature at 393 K, but changing the solvent to 

1 ,2,3-trichloropropane (boiling point of 429 K) generally did not yield a product. The 

product formed only under reflux conditions, however, in poor yield. Since a product 

was obtained from comparatively mild heating from an oil bath, but not from 

stronger heating with a heating mantel, it seems reasonable that too high temperature 

led to the decomposition of the product. The finding that product formation in 1,2-

dichloroethane appears to be strongly favoured under reflux conditions but not in 

1 ,2,3-trichloropropane at similar temperature led to the development of the pressure 

vessel. Standard reflux reaction set-ups were not stabile enough to cope with 

temperatures of 393 K without loss of solvent. With the pressure vessel, no solvent 

was lost and in addition an internal pressure was generated in the vessel. This 

pressure appeared to be of significant importance with respect to increasing the 

yields of these reactions, which in turn reduced the amount of impurities from 

decomposition. 

The mechanism by which pressure influences the yield is not clear. However, 

it could assist in overcoming reaction barriers between the tether arene and the 
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ruthenium centre. In the case of aliphatic tethers, most impurities could be separated 

by filtration, whereas for aromatic tethers the precipitate was analytically pure, only 

requiring filtration. 

The pressure vessel provides a very convenient route for preparation of 

nitrogen-based tethered ruthenium(ll) arene complexes for the following reasons. 

• Dry solvents not necessarily needed, all were used as received 

• Comparatively short, overnight reactions 

• Good-to-high yields 

• Separation of impurities by filtration, chromatography not required 

There could be further scope for improvement of the experimental procedure, by 

detailed studies of the effect of time and temperature on the reactions. Furthermore, 

dry solvents might increase the yield. 

4.3.2.2 Charactensation 

X-ray crystallography confirmed the presence of the tether in all four 

molecules investigated. Overall, the tether in complex [(r1 6 : 11 1-

C6H5(CH2)2NH2)RuC12] (4.5) appears more strained than comparable phosphorus 

analogues, since Ru - C(arene) and Ru - N distances tend to be shorter. This strain 

imposed by the difference in bond lengths is accommodated by a change in angles, 

most notably the Ru - C4 - C5 angle (114.74° for 4.5), where C4 is the arene carbon 

where the tether is connected and C5 the first carbon atom of the tether, which is 5 - 

7° more narrow than in phosphorus analogues together with differences of Ca. 10° in 

the Ru - NIP - C(tether) angle. Similarly for [(i6:ri'-C6H5(CH2)3NH2)RuCl2]  (4.4), 

the angles within the tether tend to be slightly wider for phosphorus analogues 

compared to the three carbon nitrogen tether. 

The two-carbon tethered complexes 4.5 and [(16:9  1 ..C6H5(CH2)C5IN)RuC12I 

(4.7) show pronounced buckling of the coordinated arene. This seemingly is a 
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consequence of the arene accommodating the strain exerted by the chelating tether. 

The added flexibility offered by the three atom tethered molecules 4.4 and [(1 6 :1 1  

C6H50(CH2)2NH2)RuC12] (4.6) results in the arene adopting a more planar 

conformation. 

For all complexes, the dramatic change in the shifts of the arene upon 

coordination to ruthenium and the associated 2 : 1: 2 proton signal intensity pattern 

(multiplet for uncoordinated arene), due to equivalence of the ortho and meta 

protons, are the most significant signs of coordination [57].  For the aliphatic systems, 

the pronounced shift of the NH2  signals confirms coordination. The chemical shifts 

of the CH2  of the tether are also affected by coordination to ruthenium. The most 

dramatic example is [(r 6:i 1 -C6H5(CH2)2NH2)RuCl2] (4.5), where the signal of the 

CH2  group next to the amine is shifted downfield by 0.9 ppm. The resonance for the 

CH2  group next to the arene moved upfield by 0.1 ppm with respect to the free 

ligand. For complex [(i 6:i'-C6H5(CH2)3NH2)RuC12] (4.4), the CH2  shifts of the 

tether are in the range of 0.15 - 0.4 ppm, those for [(i 6 :i'-C6H50(CH2)2NH2)RuCl2] 

(4.6) are 0.1 - 0.5 ppm, all upfield. Assignment of the signals to the CH 2  protons was 

aided by the coupling of the CH 2  protons to the amine protons. This is not observed 

in the free ligands, where e.g. for 2-phenethylamine two triplets are observed. Upon 

coordination in 4.5, they appear as a triplet for the CH 2  group next to the amine and 

one multiplet, which stems from the CH 2  group next to the amine, which shows 

coupling to the neighbouring NH 2  and CH2  groups. The 2D NOESY 'H NMR 

spectrum of 4.4 in CDC13  confirmed the assignment of the signals. 

Those tethered complexes containing a heterocyclic backbone showed less 

pronounced changes of proton shifts between the free and the coordinated ligands. 
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4.3.2.3 Aqueous chemistry 

An important feature of the tethered molecules studied in this work is their 

water solubility at millimolar concentrations, allowing their aqueous chemistry to be 

studied by 'H NMR spectroscopy. In the case of [(i 6 :1
1 -C6H5(C6H4)NH2)RuC12] 

(4.8), poor water solubility of the di-chioro species was observed. 

In the context of hydrolysis, the following signal pattern for arene 'H NMR 

peaks can be expected. For the fully chlorinated complex, the molecule possesses an 

axis of symmetry along the plane including the Ru centre and the tether (Scheme 

4.3). The protons in the ortho and meta positions with respect to the tether are 

equivalent resulting in three arene proton signals, a doublet and two triplets, with 

no symmetry 

H20 

t"'-Rul  

HNH 

7 + 

CI 

Five arene 
proton signals 

axis of symmetry 

I 	_____ 

IZ,I PIIIØ OH2 I 2+ 

Ru 

HNH 

Scheme 4.3: For [(1 6:rl' -C6H5(CH2)3NH2)Ru(H2O)Cl] all arene protons are 

inequivalent resulting in five arene proton signals in the 'H NMR spectrum. [(fl 6:1 1  

C6H5(CH2)3NH2)RuC12] and [(116 :i'-C6H5(CH2)3NH2)Ru(H20)2] 2  possess an axis of 

symmetry, giving rise to magnetically equivalent arene protons (o and o), which 

results in three arene proton signals in the 'H NMR spectra. 
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relative intensities 2 1: 2. Mono-aquation leads to chirality at the ruthenium centre. 

The five arene protons are magnetically inequivalent and produce five signals, two 

doublets and three triplets, all with relative intensities of 1H. Full aquation of the 

complex restores symmetry and leads to three signals as for the di-chioro adduct. 

The chloride titration of [(TI 1 CH(CH)NH)RuCl] (4.5) illustrates this 

behaviour (see Figure 4.8). Integration of the area of the arene proton peaks indicates 

the relative proportions of the three species present in solution. Figure 4.17 shows a 

plot of the concentration of Ru species versus concentration of free chloride ([Cflf) 

for 4.5. The concentration of the diaqua complex [(Tl6:11 

C6H5(CH2)2NH2)Ru(H20)2] 2  (symmetrical, three arene proton signals in the 1 H 

NMR spectrum) approaches zero with increasing chloride concentration. The 

0 	50 	100 	150 	200 	250 	300 
[free C1] / mM 

Figure 4.17: Plot of the concentration of Ru species versus concentration of free 

chloride for ftri6:i1-C6H5(CH2)2NH2)RuC12]  (4.5) (6.8 mM Ru at start of titration). 

Symbols: (.) = [(i6:i'-C6H5(CH2)2NH2)Ru(H2O)2]2; (o) = 

C6H5(CH2)2NH2)Ru(H20)Cl] (Y) = [(1 6:1 1 -C6H5(CH2)2NH2)RuC12]. 
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concentration of the mono-aqua species [(1 6 :r1 1 -C6H5(CH2)2NH2)Ru(H2O)Cl] 

(asymmetric, five arene proton signals in the 'H NMR spectrum), appears to reach a 

maximum around 40 mM of free chloride and decreases in the presence of further 

added chloride. The initially increasing presence of the mono-aqua adduct in solution 

arises from conversion of the diaqua- to the mono-aqua species, the latter being 

depleted by conversion into the fully chlorinated species upon further addition of 

chloride. The concentration of [(716:1,  '-C6H5(CH2)2NH2)RuC12] (symmetrical, three 

arene proton signals in the 'H NMR spectrum) increases in intensity as the 

concentration of chloride increases. 

Figure 4.18 shows a plot of the variation in concentration of Ru species 

present in aqueous solution of [(116 :ri'-C6H5(CH2)3NH2)RuCl2] (4.4) in the presence 

5 

4 

ZWI 
E 

1 

IC 

)CI 

0 	50 	100 	150 	200 	250 	300 
[free C1] / mM 

Figure 4.18: Plot of the concentration of Ru species versus concentration of free 

chloride for [(i 6 :i'-C6H5(CH2)3NH2)RuCl2] (4.4) (6.5 mM Ru at start of titration). 

Symbols: (.) = [(i6:i'-C6H5(CH2)3NH2)Ru(H2O)2]2; (a) = [(1 6 :11 1 _ 
C6H5(CH2)3NH2)Ru(H20)Cl]; (V) = [(Ti6:i1 1-C6H5(CH2)3NH2)RuC12]. 
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of increasing concentration of free chloride. The variations in concentration of the di-

chloro, mono- and di-aqua complexes are very similar to those for 4.5. 

During the titrations, each spectrum was recorded 20 min after dissolution or 

after addition of chloride. The observed equilibria were reached within 20 mm. For 

solutions containing 4.5 with [CI-] t  13.6 mM and 273.6 mM as well as for 4.4 with 

[CI-] t  12.9 mM and 273.1 mM, the spectra were re-recorded after 22 h and showed no 

significant changes in the proportions of the signals. 

This allowed the equilibrium constants to be determined, based on the 

dependence shown in Scheme 4.4. 

For 4.4, the calculated equilibrium constants (best fit) are K 1  = 139 mM (R2  = 

0.9998) and K2  = 5.0 mM (R2  = 0.9968) (Figure 4.19). The values for 4.5 are K1  = 
153 mM (R2  = 0.9979) and 1(2 = 6.5 mM (R2  = 0.9652) (Figure A.4.6). 

The results show that both coordinated chloride ligands can undergo 

hydrolysis. At [Cl] levels comparable to those inside cells (4 - 25 mM), less than 

10% of the complexes 4.4 and 4.5 would be present in the fully chlorinated form, 

with Ca. 20% in the diaqua- and Ca. 70% in the mono-aqua form. At physiological 

[Cl] (ca. 104 mM), around 60% of the complexes could be present as the mono-aqua 

adduct, with Ca. 35% as the di-chloro adduct and negligible amounts of the diaqua 

complex. It thus appears that in the present tethered systems loss of one chloride 

ligand is strongly favoured, illustrated by the presence of Ca. 40% of the mono-

hydrolysed species at [Cl] as high as 275 mM. 

CIRNN_J 	K., 

CIH2 

CI 

H2O'lN 
CIH2  

(r1 
+H20 

K2 H2ON 
OH2  H2  

Scheme 4.4: The hydrolysis of [(716:ri'-C6H5(CH2)3NH2)RuC12]  (4.4) and the 

associated equilibrium constants K 1  and K2. 
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Figure 4.19: Plot of the ratio of the concentrations of the fully aquated over the 

mono-aquated ruthenium species (A) and the ratio of the concentrations of the mono-

aquated over the fully chlorinated (B) ruthenium species versus the concentration of 

free chloride for a chloride titration of [(T6:111-C6H5(CH2)3NH2)RuC12]  (4.4) (ca. 6.5 

mM at start of titration) in D20 at 298 K. The slopes give the equilibrium constants 

K 1  = 139 mM (A) and K2 = 5.0 mM (B), respectively. With the resulting graph lines 

set to go through the origin K 1  = 145 mM, K2 = 5.4 mM (4.4) are obtained. 
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The equilibrium constants K 1  and K2  determined for complexes 4.4 and 4.5 

are considerably higher than those of cisplatin for example, for which values for K 1  = 

3.3 - 3.9 mM and 1(2 = 0.2 - 0.4 mM (0.3 M ionic strength, 298 - 308 K) [58],  K1  = 

6.4 mM and 1(2 = 0.3 mM (0.1 M ionic strength, 298 K) [59],  K1  = 2.52 mM and K2 

= 0.03 mM (10 mlvi ionic strength, 310 K) [60] have been reported. The value for K 2 , 

however, is comparable to that found for the aquation of some mono-functional 

ruthenium(ll) arene complexes of the type {(i 6-arene)Ru(en)} 2  [61]. Loss of a 

negatively-charged chloride ligand from a positively charged complex (i.e. complete 

hydrolysis in the present case) would be expected to be less favourable than from a 

neutral complex (i.e. mono-aquation). Curiously, the hydrolysis equilibrium 

constants reported by Scolaro et al. for [(ij  where pta = 

1,3,5-triaza-7-phosphaadamantane, of K 1  = 0.03 mM and K2  = 107 mM at 298 K (i.e. 

K1  > K2) [12] follow the reverse order of those for platinum diam(m)ine complexes 

and those for the tethered Ru 11  arene complexes. The values were determined from a 

chloride titration with a maximum documented concentration of free chloride of 4 

mM. However, no details of the data analysis were given. 

The above results for the tethered complexes suggest that under cell-testing 

conditions, the tethered complexes would be expected to be present mainly as the 

mono-hydrolysed complex in the extra-cellular medium ([Cl] Ca. 104 mM). Thus the 

complexes would be able to react with components of the cell medium, potentially 

giving rise to deactivating pathways. 

Dissolution of [(i1 6:r-C6H5(CH2)3NH2)Ru(NO 3)2] (4.10) in water produces 

signals for one species only. These are presumably due to the fully hydrolysed 

complex. Similar complete hydrolysis of the nitrato complex a-[Ru(azpy) 2(NO3 )2] 

has been reported [52]. In addition, the observed 1 H NMR peaks have the same 

chemical shifts as those of the proposed diaqua adduct in aqueous solution of the 
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chloride complex [(i 6:i'-C6H5(CH2)3NH2)RuC12] (4.4). A 1 H NMR pH titration of 

4.10 in water over the range pH 4.1 to 11.0 gave complicated spectra. The presence 

of up to four species, the signals of which showed no shifts over a pH range from 4.8 

to 11.0 was detected. Their reversible degradation to form the initially present 4.10 

upon acidification, suggested the involvement of hydroxides as bridging ligands, 

comparable to complexes [((71  and [(16-C6H6)Ru(.i-OH)3], for 

which solid state structures have been reported [62, 631. The observed fast hydrolysis 

of tethered complexes and possible formation of such bridged species already well 

below physiological pH is expected to deactivate these complexes significantly. 

Interestingly, facile formation of a precipitate at comparatively low pH 

values, has been observed in metallocene chemistry. Kuo et al. have shown the 

existence of monomer - dimer equilibria for molybdocenes in water at pD = 3.5 [64]. 

In addition, Marks et al. showed that titanocene can form an insoluble poly-oxo- and 

hydroxo-bridged species in water [65].  Similarly, the formation of poly-oxo bridged 

species has been shown for the ruthenium containing complex NAMI-A to occur in 

water at low pH values [66].  The exact nature of the precipitate and the species in 

solution at elevated pH of 4.10 still needs to be determined. 

4.3.2.4 Stability in organic solvents 

The 111  NMR spectrum of [(r16:91-C6HS(CH2)3NH2)RuC12]  (4.4) in 

chloroform shows a set of peaks for one symmetrical complex assignable to 4.4 

itself. In DMSO-d6 and MeOD-d4  a second, chiral species is present in solution. No 

evidence for tether opening was found; therefore chirality must arise from the 

substitution of chloride. In the case of DMSO-d6  more residual water appears to 

increase the formation of that latter product. This suggests that also in the polar 

solvents MeOD-d4  and DMSO-d6 loss of one chloride occurs readily, further 

supporting the findings of the chloride titration in water, which indicated the 
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increased lability of the first chloride. Loss of chloride appears to be favoured by an 

increased presence of water in solution and due to an excess of solvent, either 

MeODIMeO or DMSO are the likely coordinating molecules. 

The 2D NOESY 'H NMR spectrum of 4.4 in DMSO-d4  illustrates the effect 

of metal-based chirality has not only on the arene protons, but also on the tether 

backbone. Each proton of the tether chain is in a different magnetic environment, 

giving rise to separate signals. 

Complex [(11 6 :1 1 -C6H5(CH2)2NH2)RuC12] (4.5) decomposed in DMSO via 

loss of the arene (see Figure 4.13). The complexity of the free arene signal upon 

decomposition compared to the simpler one of the free ligand suggests a number of 

complexes that the amine group could be involved in. However, apart from the signal 

at 4.47 ppm (which moves to 4.61 ppm), which could be a signal of coordinated 

amine, no other amine signal could be detected in solution. Loss of the arene has also 

been documented for a related two carbon amine tether, which contains a phosphine 

ligand [44]. The apparent rapid decomposition of 4.5 in DMSO is in contrast to the 

observed stability of this complex in water. However, since cell-testing routinely 

involves dissolution of complexes in DMSO, this presents another stability problem 

for this complex. Strongly coordinating solvents such as acetonitrile or DMSO are 

known to be able to displace arenes from Ru 11  arene complexes [67]. In the case of 

the two atom tethered complexes studied here, this decomposition is possibly further 

accelerated by the strain imposed on the arene by the tether. 

Similar, although less rapid, decomposition via loss of arene coordination 

was also noticed for the two atom tethered complexes [(1 6 :1 1  

C6H5(CH2)C5H4N)RuC12] (4.7), [(i 6 :i'-C6H5(C6H4)NH2)RuC12] (4.8) and [(1 6 :T 1  

C6H5(CH2)C3H3N2)RuC12] (4.9), which contain a more rigid tether backbone than 

[(1 6 :11 '-C6H5(CH2)2NH2)RuCl2] (4.5). 
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Noteworthy is the appearance of two species in the case of 4.5, before they 

both decompose. As for [(i 6 :11 1 -C6H5(CH2)3NH2)RuC12] (4.4) these two species 

presumably are the intact di-chloro complex and the mono-DMSO adduct. 

4.3.2.5 Adducts with nucleobases 

The products formed from a reaction of [(1 6 :ii 1-C&H5(CH2)3NH2)Ru(NO3)21 

(4.10) with 9EtG were assigned to [(1 6 :11 1 -C6H5(CH2)3NH2)Ru(9EtG)H20I 2  and 

ftr1 6:1'-C6H5(CH2)3NH2)Ru(9EtG)2] 2 , for which the chemical shifts in 1 H NMR 

spectra recorded in water were similar compared to the synthesised mono- and di-

9EtG adducts [(1 6:r-C6H5(CH2)3NH2)Ru(9EtG)NO 3]PF6 (4.12) and [(16:11 

C6H5(CH2)3NH2)Ru(9EtG)2](PF6) 2  (4.11a), respectively. Figure 4.20 shows a plot of 

the concentration of 9EtG in the adducts formed in the reaction of 4.10 with 1.75 mol 
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Figure 4.20: Plot of the concentration of 9EtG species versus time for a reaction of 

4.10 (1.1 mM Ru) with 1.75 mol equiv of 9EtG at 298 K and pH = 5.19 (start) —6.22 

(finish). Symbols: (o) = [(1 6:1 1 -C6H5(CH2)3NH2)Ru(9EtG)H20] 2 ; 

C6H5(CH2)3NH2)Ru(9EtG)2] 2 ; (
Y) = free 9EtG. 
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equiv of 9EtG versus time. Formation of the di-9EtG adduct appeared to have 

reached equilibrium after Ca. 700 min at 298 K, in contrast to the rapid (<20 mm) 

formation of the mono-9EtG adduct. These results suggest that the rate of formation 

of the mono-9EtG adduct is rapid and formation of the di-9EtG adduct firstly does 

not go to completion but reaches an equilibrium and secondly is a comparatively 

slow step, in which 9EtG reacts with [(116:1l1C6H5(CH2)3NH2)Ru(9EtG)H2012+. 

Formation of increasing amounts of [(1 6 :11 1 C6H5(CH2)3NH2)Ru(9EtG)2]2+ is not 

correlated to equal consumption of the mono-9EtG adduct and free 9EtG. This 

appears to be a consequence of an unknown species appearing in the arene proton 

region which does not contain 9EtG. This side-product could be an unreactive 

hydroxo-/oxo-bridged species, which leads to the preferential build-up of free 9EtG 

over the mono-9EtG adduct in solution (c.f. species (e) in Figure 4.14). 

It was of interest to study the reactivity of both [(16:flh 

C6H5(CH2)3NH2)RuC12] (4.4) and [(r1 6 :r1 1 -C6H5(CH2)2NH2)RuC12] (4.5) with 9EtG in 

the presence of ca. 22 mM chloride, comparable to cytoplasmic [Cl] [68].  Figure 

4.21 shows a plot of the concentration of 9EtG in the species formed during the 

reaction versus time. As found for the reaction of [(r 6 :i1 1 -C6H5(CH2)3NH2)Ru(NO3)2] 

(4.10), formation of the di-9EtG adduct is time-dependent and the solution appeared 

to reach equilibrium after ca. 22 h. In addition, there were two more species present 

in solution. Their chemical shifts were compared to those observed in a separate 

experiment, where abstraction of chloride from 4.5 by silver nitrate in water was 

followed by reaction with Ca. 0.8 mol equiv 9EtG. This suggested assignment of one 

of the two species as [(l6:l 1 C6H5(CH2)2NH2)Ru(9EtG)H2O]2+. Addition of NaCl 

and comparison of the chemical shifts of the new signals suggested assignment of the 

other species as [(16:1 1 -C6H5(CH2)2NH2)Ru(9EtG)Cl]t As seen in the chloride 

titration of 4.5 at [Cl] ca. 20 mM, the majority of the complex would be expected to 
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Figure 4.21: Plot of the concentration of 9EtG species versus time for a reaction of 

[(n6 :1 1 -C6H5(CH2)2NH2)RuC12] (4.5) (0.99 mM Ru) with 2.0 mol equiv of 9EtG at 

298 K and pH = 6.08 (start) - 6.23 (finish) in the presence of 21.7 mM chloride. 

Symbols: (0) = [(ii6 :ii 1 -C6H5(CH2)3NH2)Ru(9EtG)H2O} 2 ; (.) = [('i'i 

C6H5(CH2)3NH2)Ru(9EtG)Cl]; (•) = [(1 6:1 1 CH(CH)NH)Ru(9EtG)] 2  (o) = 

free 9EtG. 

be present as the mono-aqua adduct. For a reaction with 9EtG this would suggest 

initial formation of [(16.1 1 ...C6H5(CH2)2NH2)Ru(9EtG)Cl] via displacement of water. 

Hydrolysis of chloride would be expected to result in an increase in the presence of 

[(71 6 :11'-C6H5(CH2)2NH2)Ru(9EtG)H201 2 , which can then further react with another 

molecule of 9EtG. As shown in Figure 4.22, the presence of [(1 6:1 1  

C6H5(CH2)2NH2)Ru(9EtG)Clj initially increases, presumably due to the unreacted 

ruthenium complex, which was still detected at t = 153 mm, reacting. At equilibrium, 

the presence of both the Cl -  and H20 mono-9EtG adducts decreases to a similar 

extent, with the chioro-adduct showing a somewhat stronger decrease. This suggests 

that formation of the di-9EtG adduct predominantly occurs via displacement of H20 
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rather 	than 	chloride 	and 	that 	consumption 	of 	ftrl6:Tl'- 

C6H5(CH2)2NH2)Ru(9EtG)H20] 2  is followed by hydrolysis of chloride from [(1 6 :1 1  

C6H5(CH2)2NH2)Ru(9EtG)C11 to reform the aqua adduct. 

In a similar binding experiment with 4.4, the peaks for [(1 6 :1 1  

C6H5(CH2)3NH2)Ru(9EtG)C11 and [(1 6:1 '-C6H5(CH2)3NH2)Ru(9EtG)H20] 2  

appeared to overlap. This prevented determination of the relative proportions of 

those two adducts. However, the concentrations of free 9EtG, the mono-9EtG 

adducts (both with H20 and Cl-) and the di-9EtG adduct at equilibrium (based on 

integration of the respective H8 signals after 1034 mm, pH between 6.08 - 6.53) 

were 0.67 mM, 0.83 mM and 0.48 mM, respectively. The concentrations in the 
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Figure 4.22: Selected region of the plot of the concentration of 9EtG versus time for 

a reaction of 4.5 (0.99 mM Ru) with 2.0 mol equiv of 9EtG at 298 K and pH = 6.08 

(start) - 6.23 (finish) in the presence of 21.7 mM chloride. Symbols: (o) = [(1 6:1 1  

C6H5(CH2)3NH2)Ru(9EtG)H20] 2 ; (.) = [(i:T 1 CH(CH)NH)Ru(9EtG)Cl]• 

(.) = 1016 :1 1 -C6H5(CH2)3NH2)Ru(9EtG) 21 2 ; (0) = free 9EtG. 
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reaction of [(1 6 :r1 1 -C6H5(CH2)3NH2)Ru(NO3)2] (4.10) with 1.75 mol equiv of 9EtG 

were 0.43 mM, 0.68 mM and 0.88 mM, respectively. Despite a possible influence of 

pH on the extent of the reaction and the use of only 1.75 equiv of 9EtG for 4.10 (use 

of two equiv would be expected to result in a further increase in the di-9EtG adduct), 

these values indicate that chloride can inhibit the formation of di-9EtG adducts of 

{ (1 6 :1 1 -C6H5(CH2)3NH2)Ru} 2  (Figure 4.23). 

Having 	shown 	the 	time-dependent 	formation 	of 	[(T 6 :1 1  

C6H5(CH2)3NH2)Ru(9EtG)2] 2  and the associated equilibrium, the displacement of 

9EtG by water in this adduct was studied. Figure 4.24 shows the plot of the 

concentration of 9EtG versus time for the hydrolysis of 9EtG from [(fl 6:1 1  

C6H5(CH2) 3NH2)Ru(9EtG)2](PF6) 2  (4.11a) (3.0 mM Ru) at 298 K and pH = 6.67 

(start) - 6.02 (finish). Equilibrium appeared to be reached after Ca. 700 mm. The 

extent of hydrolysis, however, also appears to be dependent on concentration and pH. 
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Figure 4.23: Species distribution in reactions of {(11 6
:11

1 -C6H5(CH2)3NH2)Ru} 2  with 

9EtG in 90% H20/ 10% D20 at 298 K in the presence of no chloride (1.1 mM Ru, 

1.75 mol equiv 9EtG, pH = 5.19 (start) —6.22 (finish)) and 21.7 mM of total chloride 

(0.99 mM Ru, 2 mol equiv 9EtG, pH = 6.08 (start) - 6.53 (finish)), respectively. 
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Table 4.8 shows the relative distribution of 9EtG in the hydrolysis products of 4.11a 

in D20 at 298 K after 22.5 h (17 h for [Ru] 1.95 mM) at varying concentrations and 

pH. The values suggest that loss of coordination of 9EtG increases at lower 

concentrations of the di-9EtG adduct in solution. In addition, for the solution 

containing 0.96 mM Ru (i.e. 1.92 mM 9EtG), the 'H NMR spectrum shows that there 

is more free 9EtG than mono-9EtG adduct present in solution, suggesting that a 

further hydrolysis step has taken place. Indeed, peaks in the arene proton region, 

which do not appear to be connected to any H8 signal of 9EtG, are detected. These 

signals have very similar shifts to some signals noted previously at high pH in the pH 

titration of 4.10. This, in connection with the significant drop in the pH*  value of the 

solution after 22.5 h, suggests the formation of a hydroxo-bridged species. 
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Figure 4.24: Plot of the concentration of 9EtG versus time for the hydrolysis of 

9EtG from 4.11a (3.0 mM Ru) at 298 K and pH = 6.67 (start) - 6.02 (finish). 

Symbols: (.) = [(116:T1_C6H5(CH2)3NH2)Ru(9EtG)2]2+; () = 

C6H5(CH2)3NH2)Ru(9EtG)H20] ;  (Y) = free 9EtG. 
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Integration 	of the 	H8 	signals 	in 	a 	solution 	of 	[(rI6:111 

C6H5(CH2)3NH2)Ru(9EtG)NO3]PF6 (4.12) (ca. 4.0 mM) in D20 indicated an 

increase in the amount of di-9EtG adduct over the mono-9EtG adduct accompanied 

by an increase of the signals for the diaqua species over a period of 22 h. This result 

suggests that further complications of studying the dynamics of reactions between 

nucleobases and these bifunctional tethered complexes could arise from the 

possibility of conversion of mono-adducts into di-adducts with formation of the di-

aqua species. 

Based on the results of the above binding experiments, a scheme for the 

reaction of tethered Ru 11  arene complexes with 9EtG in the presence of chloride is 

shown in Scheme 4.5. 

Table 4.8: The relative distribution of 9EtG in the hydrolysis products of [(1 6 :71 1 
 

C6H5(CH2)3NH2)Ru(9EtG)2](PF6)2 (4.11a) in D20 at 298 K after 22.5 h (17.5 h 

for [Ru] 1.95 mlvi) at varying concentrations and pH*. 

[Ru] {Ru(9EtG)2} 2 : {Ru(9EtG)H20 } 2 : Free 9EtG pH* pH* 

(mM) 9EtG (%) 9EtG (%) (%) (start) (finish) 

4.3 69 15 16 6.47 6.31 

	

1.95 	53 	 23 	 24 	3.95 	4.40 

	

0.96 	36 	 27 	 37 	7.66 	6.74 

+H20 	 +H20 

	

{Ru}C12 	 {Ru}(HO)CI 	 {Ru}(HO) 

	

j+9EtG 	 1 +9EtG 

	

+H20 	 +9EtG 

	

{Ru}(9EtG)CI 	 {Ru}(H20)9EtG I {Ru}(9EtG)2  

Scheme 4.5: Scheme for the reaction of tethered Ru 11  arene complexes with 9EtG in 

the presence of chloride, where {Ru} represents the fragment e.g. {(1 6:1 1  

C6H5(CH2)2NH2)Ru 2+ 
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The X-ray crystal structure of [(16:1  '-C6H5(CH2)3NH2)Ru(9EtG)2] (CF3SO3)2 

(4.11b) shows the involvement of the tether amine group in H-bond interactions with 

the carbonyl group of 9EtG. The carbonyl groups of both 9EtG ligands point towards 

the NH2  group. This is a different orientation from that seen in the structure of [(ij 

C6H6)Ru(H20)(9EtG)2}(CF3SO3)2, where the carbonyl groups are orientated away 

from each other [69].  Particularly noteworthy is the significant difference between 

the two Ru - N7(9EtG) bond lengths of Ca. 0.06 A. The three reported Ru 11  di-

guanine structures, [(1 6-C6H6)Ru(H20)(9EtG)2] (CF 3SO3)2, [Ru2(02CMe)2 . 

0 , 18(02CCF3)0. 18(9EtG)2] 2  and cis-[Ru(bpy)2(9-MeG)2]2,  where bpy = 2,2'-

bipyridine and 9MeG = 9-methylguanine, have more similar bond lengths (max 

difference of 0.015 A) for the two coordinated molecules [69, 70, 71].  Comparing the 

bond lengths to those Ru - N7(9EtG) distances of other reported examples, 

ruthenium(ll) as well as (Ill) and both in mono- and di-9EtG adducts, 2.10 A in the 

present case appears to be one of the shortest bond lengths. Equal or shorter bond 

lengths have been found in the Ru 11  mono-9EtG adduct [(716-C6H6)Ru(9EtG)C121 

(2.10 A [191) and in the bridged dinuclear Ru 11  complex [Ru2(02CMe)2 . 

018(02CCF3)0. 18(9EtG)21 2 , where 9EtG coordinates in a bidentate fashion (2.06 A 

and 2.08 A [70]).  In contrast, the other Ru - N7(9EtG) bond length of 2.16 A appears 

to be the longest documented example. At present no explanation for this difference 

can be given. The Ru - N7(9EtG/Guo) bond lengths in the Ru 11  arene complexes 

ft
11

6-bip)Ru(en)9EtG1 2 , [(16-bip)Ru(en)Guo] 2 , [(16-DHA)Ru(en)9EtG} 2  and [(16  

THA)Ru(en)9EtG] 2  are in the range of 2.12-2.13 A. 

The formation of di-guanine adducts at metal centres have been particularly 

well studied for Pt" complexes, mainly for cisplatin. For these systems the relative 

orientation of the bases has received much attention [72]. They have been classified 

as head-to-head (HH) and head-to-tail (HT) orientations, with HH being 

energetically more favourable. In square-planar platinum systems, HH describes an 
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orientation, where the guanine bases are orientated in the same direction (i.e. the 

carbonyl groups are pointing in the same direction) and for HT the bases are 

orientated in the opposite direction (i.e. the carbonyl groups point away from each 

other) (Scheme 4.6). 

In the three reported ruthenium di-guanine adducts, the orientation of the 

9EtG ligands is head-to-tail [69, 70, 71].  Interestingly, in the structure of [(1 6 .1 1  

C6H5(CH2)3NH2)Ru(9EtG)2](CF3SO3)2 (4.11b) the two 9EtG ligands are orientated 

towards each other, they adopt a head-to-head orientation (see Figure 4.16). The 

influence of the amine group on this conformation could be crucial as is indicated by 

the angle between the plane defined by all arene carbons and that of C5 (where the 

tether is connected), Ru and N(tether). This angle is a measure for the 'outward-

swing' of the tether. For the structures of the three atom tethered complexes [(,96:11 

C6H5(CH2)3NH2)RuC12] (4.4), [(r1 6 :1 1 -C6H50(CH2)2NH2)RuC12] (4.6) and [(16 :1 1  

C6H5(CH2)3NH2)Ru(NO3)2] (4.10) this angle is around 90°, whereas for 4.11b it is 

72.77°. This presumably is a consequence of the flexibility of the three carbon tether. 

The amine group can position itself so as to increase the H-bond interactions with 

both the carbonyl groups. The carbonyl group with the strongest H-bond to the tether 

amine protons belongs to the 9EtG ligand, which has the longest Ru - N7(9EtG) 

bond length. 

N 	NO 
\/S—NI 

/N' 

t\( 

RN\,LrO LN1  
NNH 

H2N 	
HI 

H2  

 

Scheme 4.6: Schematic representation of head-to-head (HH) and head-to-tail (HT) 

orientations for a di-guanine adduct of a platinum cliam(m)ine. In the HH form the 

guamne bases are orientated in the same direction whereas in the HT form the bases 

are orientated in the opposite direction. 
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Evidence that steric hindrance might not be the cause of the significantly 

different Ru - N7(9EtG) distances is provided by the 'H NMR studies of [(1 6 :11 1 
 

C6H5(CH2)3NH2)Ru(9EtG)2](PF6)2 (4.11a) in water. Steric hindrance, resulting in 

hindered rotation of guanine in the complex cis-[Ru(bpy)2(9-MeG)2]2,  gives rise to 

two distinctly different peaks of the H8 protons for each coordinated 9MeG [71]. The 

CH2 protons from the ethyl group of 9EtG in complex 4.11a give rise to two separate 

peaks, which could be a consequence of rotational hindrance or slow exchange 

between HH and HT conformations (Figure A.4.7). However, the H8 signal for the 

two coordinated 9EtG ligands in 4.11a is a singlet integrating for 2H, and the 

broadening of some of the tether CH 2  signals suggest that a dynamic exchange 

process is occurring. 

The two peaks observed for the mono-Guo adduct [(ri 6:fl '-

C6H5(CH2)3NH2)Ru(Guo)H2O] 2  result from the formation of diastereomers, since 

guanosine is chiral as is the mono-Guo adduct. 

The appearance of two peaks for [(1 6:r'-C6Hs(CH2)3NH2)Ru(Guo)21 2  seems 

to point towards different conformational orientations of bound guanosine (Guo), as 

has been observed in di-guanosine adducts of Pt' [73, 74].  HH and HT orientations 

for guanosine in reactions with cisplatin can be studied in solution due to the well-

resolved base and Hi' regions of the spectra [72]. The comparatively large 

separation of the H8 peaks of the di-Guo adduct (Áö = 0.13 ppm) suggest different 

spatial arrangements in the respective enantiomers. 

4.4 Tethered Ru 11  Arene Complexes Containing Bidentate Chelating 

Ligands 

Some platinum-containing anticancer-active agents, in which both chloride 

ligands of cisplatin are replaced by a bidentate chelating ligand, show increased 

solubility and stability of the compounds (Scheme 4.7). More importantly, it has 
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Scheme 4.7: Cisplatin and other anticancer-active platinum complexes, where the 

two chloride ligands have been replaced by a bidentate chelating ligand. 

been shown that such complexes not only retain activity, but also have reduced side-

effects [75, 76]. 

Having demonstrated above that the fast hydrolysis and reactivity of tethered 

Ru11  arene complexes produced in this work could be limiting factors for cytotoxic 

activity, it was of interest to explore ways in which to employ similar strategies for 

these compounds. This approach could provide means of slowing down and 

controlling the rate and extent of hydrolysis. In addition, use of a chelating ligand 

could significantly slow down the formation of insoluble hydroxo-bridged species, or 

even fully prevent it in case of stepwise chelate ring opening. 

Furthermore, there is potential for incorporating a DNA intercalator [77, 781. 

The resulting complexes would be unreactive towards most biomolecules and could 

possibly be made target-specific. 

An alternative route of influencing the chemistry of tethered Ru 11  arene 

complexes in solution is to replace one chloride ligand by a strongly coordinating 

mono-dentate ligand. Such complexes would be expected to be less susceptible to 
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formation of hydroxo-bridged species. However, they would not offer bifunctional 

reactivity and also possess metal-based chirality, which for drug design might not be 

ideal. 

4.4.1 Results 

4.4.1.1 Synthesis and charactensation 

Replacement of the chloride ligands in the neutral tethered Ru 11  arenes by 

bidentate chelating ligands, usually via abstraction of chloride with silver nitrate, 

produced complexes [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(ox)] (4.14), [(16 :1 1  

C6H5(CH2)2NH2)Ru(ox)] (4.15), [(16 :T 1 C6H5(C6 )NH2)RU(Ox)] (4.16), [(16:1 - 

C6H5(CH2)C5H4N)Ru(ox)] (4.17), [(1 6 :1 '-C6H5(CH2)3NH2)Ru(acac)]PF6 (4.18), 

[(1 6:1 1 -C6H5(CH2)C5H4N)Ru(acac)]PF6 (4.19), [(16 :1 1 ...C6H5(CH2)3NH2)RU(L 

pal)]PF6 (4.20) and [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(dppz)](PF6)2 (4.21), where ox = 

oxalate, acac = acetylacetonate, L-pal = L-phenylalanine and dppz = dipyrido[3, 2-

a:2',3 '-c]phenazine  (Figure 4.25). In addition, reactions with phosphorus-containing 

ligands resulted in the mono-functional complexes [(16:11 

C6H5(CH2)3NH2)Ru(tpp)Cl]PF6 (4.22) and [(1 6.1 1 -.C6H5(CH2)3NH2)Ru(pta)C1 }PF 6  

(4.23), where tpp = triphenylphosphine and pta = 1,3,5-triaza-7-phosphaadamantane 

(Figure 4.26). 

The syntheses usually were straight-forward, except that adducts of {(1 6 :1 1  

C6H5(CH2)C5H4N)Ru} 2  with mono-anionic or neutral chelating ligands, e.g. acac or 

dppz, appeared to undergo marked decomposition in solution. 

X-ray diffraction quality crystals of [( 16 :1 1 C6H5(CH2)3NH2)RU(OX)] (4.14), 

[(16:1 1  -C6H5(C6H4NH2)Ru(ox)] (4.16), [(16 :1 1  -C6H5(CH2)3NH2)Ru(acac)]PF6 

(4.18) and [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(L-pal)] (4.20) were all grown from diffusion 

of diethyl ether into a methanol solution of the respective complexes at ambient 

temperature. 
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Figure 4.25: The structures of [(16:1  '-C6H5(CH2)3NH2)Ru(ox)] (4.14), [(1 6 :1 

C6H5(CH2)2NH2)Ru(ox)} (4.15), [(16:1  1 -C6H5(C6H4)NH2)Ru(ox)] (4.16), [(16ii _ 

C6H5(CH2)C5H4N)Ru(ox)] (4.17), [(16:1 1 .C6H5(CH2)3NH2)Ru(acac)I (4.18), 

[0i6 ii '-C6H5(CH2)C5H4N)Ru(acac)] (4.19), [(16rn  1 -C6H5(CH2)3NH2)Ru(L-pa1)] 

(4.20) and [(116:Tl  (4.21), where 4.18 - 21 were 

synthesised as their hexafluorophosphate salts. 

1 

I 	
9P.00YN 

PhAN
CI  

CI H2   
4.22 	 NN 4.23 

Figure 4.26: The structures of [( ij 	(4.22) and 

[(16 : 1 -C6H5(CH2)3NH2)Ru(pta)C1] (4.23), which were synthesised as their 

hexafluorophosphate salts. 
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The structure of complex [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(ox)1 (4.14) is shown in 

Figure 4.27, the crystal data in Table A.4.3 and bond angles and lengths in Table 4.9. 

The structure shows dimer formation via H-bond interactions between the carbonyl 

oxygen atoms of oxalate and an amine proton with O1A ... H1B 2.31 A (O1A . .. N1 

3.03 1(4) A) and 02A••H1B 2.51 A (02A•"N1 3.309(4) A) (Figure A.4.8A). H-bond 

•1 • I'M 	-  164  kIVE h W~. 

C3 	
C6 

Rul 
C2 

i.II .  
OIA 

02A 

Figure 4.27: Ortep diagram (50% probability ellipsoids) and atom numbering 

scheme for the X-ray crystal structure of [(16:1  1 -C6H5(CH2)3NH2)Ru(ox)I (4.14). 

Table 4.9: Selected bond lengths (A) and angles (°) [(16:11 

C6H5(CH2)3NH2)Ru(ox)J (4.14). 

Bond 	Length 	 Bond 	Length/angle 

Ru-Ni 2.118(3) Ru-ClO 2.180(3) 

Ru-Ol 2.099(2) Ru-centroid 1.65 1 

Ru-02 2.077(2) Ni-Ru-Ol 85.33(12) 

Ru-05 2.157(3) Ni-Ru-02 82.77(10) 

Ru-C6 2.142(3) 01 -Ru-02 78.86(9) 

Ru-C7 2.198(4) Ru-N-C2 113.6(2) 

Ru-C8 2.193(3) Ru-05-C4 122.5(2) 

Ru-C9 2.186(4) Ni-Ru-05 91.54(13) 

[a] = measured using Mercury 1.4. 
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formation between the chelating oxygen 01 and amine proton hA (2.21 A, 01••N1 

3.096(4) A) links molecules into zig-zag chains (Figure A.4.8B). Another dimer is 

formed by interactions between arene protons and an oxalate chelating oxygen, 

where 02•••H6 2.58 A (O2 ... C6 3.185(4) A) and 02 ... H7 2.68 A (02 ... C7 3.227(5) 

A) (Figure A.4.8C). Other oxygen-proton short contacts include 02A•• •H8 2.39 A 

(O2A ... C8 3.215(3) A), O2A ... H10 2.60 A (O2A ... C10 3.440(4) A) and 02A•••H3B 

2.50 A (02A•••C3 3.308(5) A). The intramolecular (amine)NH ... O(ox) distances are 

H1B•••Ol 2.65 A (N1 ... O1 2.858(4) A) and H1B•02 2.70 A (N1...02 2.774(4) A). 

The Ru - 0 distances are 2.077(2) A and 2.099(2) A, with Ru - N 2.118(3) A, and 

Ru - centroid 1.65 A. The angle between the plane defined by all arene carbons and 

that of Ni, Ru and CS (arene carbon to which the tether is connected) is 72.05°. 

C6A 
C5A 	CiA COA 	

C9A 

C4A 7 C2A I 	 C1OA 

CI 2A 
Rul

J ,/'0  
CI IA 

oil 	
041 

c' 	

Molecule A 
051 	

061 

CSB C6O Cl H 	C8BJi.I,./
C9B 
	 - c...._ 	dC C8C)

Clic 

C7B 	 I JC4B
{  

	 CIOB 	

Cl2C
L

Cl2U 
 

 13B

042
043 

	

CuB 	
13C 

C23 

	

C33
Molecule B 	

063 

Molecule C 
052 	

62 

Figure 4.28: Ortep diagram (50% probability ellipsoids) and atom numbering 

scheme for the X-ray crystal structure of [(i1 6:1 1 -C6H5(C6H4)NH2)Ru(ox)] (4.16), 

showing the three independent molecules in the asymmetric unit. 
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Table 4.10: Selected bond lengths (A) and angles (°) ftq 6 :i 1 -

C6H5 (C6H4)NH2)Ru(ox)1 (4.16). 

Bond X=1,Y=A X=2,Y=B X=3,Y=C 

RuX-N13Y 2.1314(18) 2.1446(18) 2.1251(19) 

RuX-01X 2.0807(15) 2.0789(15) 2.0784(15) 

RuX-04X 2.0762(16) 2.0737(16) 2.0788(16) 

RuX-C1Y 2.104(2) 2.094(2) 2.101(2) 

RuX-C2Y 2.159(2) 2.150(2) 2.154(2) 

RuX-C3Y 2.192(2) 2.195(2) 2.189(2) 

RuX-C4Y 2.214(2) 2.217(2) 2.212(2) 

RuX-05Y 2.174(2) 2.181(2) 2.179(2) 

RuX-C6Y 2.160(2) 2.159(2) 2.160(2) 

Ru-centroid 1  1.638 1.635 1.635 

o 1X-RuX-04X 78.42(6) 78.46(6) 78.48(6) 

O1X-RuX-N13Y 86.19(6) 86.79(6) 85.47(6) 

04X-RuX-N 1 3Y 86.62(7) 86.93(7) 86.27(7) 

RuX-N13Y-C12Y 111.84(14) 110.96(14) 111.89(13) 

RuX-C1Y-C7Y 112.49(15) 112.36(15) 112.19(15) 

Ni 3Y-RuX-C 1 Y 80.50(8) 80.52(8) 80.77(8) 

[a] = measured using Mercury 1.4. 

The structure of [(i1 6 :r'-C6H 5(C6H4)NH2)Ru(ox)] (4.16) contains three 

independent molecules (molecules A, B and C) in the asynmietric unit (Figure 4.28). 

The crystal data are shown in Table A.4.3 and bond angles and lengths in Table 4.10. 

Molecule A forms chains with itself via H-bond interactions between the carbonyl 

oxygen atoms of oxalate and the amine protons with 051•••H13A 2.00 A 

(O51 ... N13A 2.863(3) A) and O61 ... H13B 1.97 A (O61 ... N13A 2.883(3) A) (Figure 

A.4.9A). Similarly, such interactions link the chains together, which are formed 

between molecules B and C, with O53 ... H13C 2.06 A (053 ... N13B 2.884(3) A), 

063•••H13D 2.01 A (063 ... N13B 2.916(3) A), 052•••H13E 2.09 A (052 ... N13C 
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2.919(3) A) and 062 ... H13F 1.98 A (062 ... N13C 2.901(3) A) (Figure A.4.9B). 

Molecules A and B form chains via arene proton and oxalate oxygen atom 

interactions, where 061113B 2.39 A (061 ... C3B 3.119(3) A), 062•••H3A 2.37 A 

(062 ... C3A 3.295(3) A), 041 ... H4B 2.63 A (041 ... C4B 3.497(3) A) and 011•••H3B 

2.72 A (01 1•••C3B 3.404(3) A) (Figure A.4.9C). Similarly, molecule C forms chains 

with itself, with 063•••H3C 2.29 A (063•••C3C 3.195(3) A) and 043•••H5C 2.41 A 

(043•••C5C 3.340(3) A) (Figure A.4.913). The Ru - 0 bond lengths in the range of 

2.0737(16) A to 2.0807(15) A are slightly shorter than those in 4.14. The Ru - 

centroid bond distances of 1.64 A are slightly longer than those of the chloride-

containing two-atom tethered complexes [(1 6 :1 1 ...C6H5(CH2)2NF12)RuCl2] (4.5) and 

[(16 :1 1 -C6H5(CH2)C5H4N)RuCl2] (4.7). As was observed for those complexes, there 

is significant buckling of the arene with Ru - C(arene) bond lengths in the range of 

2.094(2) A to 2.217(2) A. The angles between the planes defined by all arene 

carbons and that of N13Y, Ru and C1Y (arene carbon to which the tether is 

connected), are 83.30°, 79.41° and 83.14° for molecules A, B and C, respectively. 

The X-ray crystal structure of [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(acac)]PF6 (4.18) is 

shown in Figure 4.29, the crystal data in Table A.4.3 and bond angles and lengths in 

Table 4.11. The molecules form chains held together by interactions of acac oxygen 

atoms with arene and CH 3(acac) protons with 05••Hl0 2.53 A (05 ... C10 3.248(3) 

A) and 01•••H1A1 2.53 A (05 ... C1A 3.332(3) A) (Figure A.4.10). The amine 

protons are involved in H-bond interactions with the PF6 anion with H1A ... F2 2.31 A 

(N1 ... F2 3.199(2) A) and H1B ... F5 2.35 A (Nl.F5 3.124(2) A " " 	 ). 3 PF6  ... CH3(acac) 

interactions (2.53 - 2.57 A), 3 PF6•••arene H interactions (2.37 - 2.53 A) and one 

PF6• •tether H interaction (2.63 A) are involved in the formation of a grid. The Ru - 

0 bond lengths are 2.0567(16) A and 2.0619(13) A, the Ru - N distance is 

2.1334(16) A and Ru - centroid 1.66 A. The intramolecular (amine)NH ... 0(acac) 

distances are H1A01 2.44 A and H1B ... 05 2.49 A. The angle between the plane 
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defined by all arene carbons and that of Ni, Ru and C5 (arene carbon to which the 

tether is connected) is 87.5 1°. 

Qc5C6C7C6 

-  
C3 

cio/f C8 

0 	Rul 

CIA 
[€ 	____ 

C5A 

Figure 4.29: Ortep diagram (50% probability ellipsoids) and atom numbering 

scheme for the cation in the X-ray crystal structure of [(16:11W 

C6H5(CH2)3NH2)Ru(acac)]PF6 (4.18). 

Table 4.11: Selected bond lengths (A) and angles (°) for [(1 6 :1 1  

C6H5(CH2)3NH2)Ru(acac)]PF6 (4.18). 

Bond Length Bond Length/angle 

Ru-Ni 2.1334(16) Ru-ClO 2.1871(18) 

Ru-Ol 2.0567(13) Ru-centroid 1.659 

Ru-05 20619(13) Ni -Ru-Oi 82.80(6) 

Ru-05 2.1855(18) N 1-Ru-05 82.60(6) 

Ru-C6 2.1870(18) 01-Ru-05 88.86(5) 

Ru-C7 2.1661(19) Ru-N-C2 120.58(13) 

Ru-C8 2.1904(19) Ru-05-C4 126.49(12) 

Ru-C9 2.17 1(i9) Ni -Ru-CS 90.83(7) 

[a] = measured using Mercury 1.4. 
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Crystals of [(TI 	(4.20) contain two 

independent molecules (molecules A and B) in the asymmetric unit, both with the 

tether in two conformations due to disorder (Figure 4.30). The crystal data are shown 

in Table A.4.4 and bond angles and lengths in Table 4.12. Molecules A and B form 

chains with each other, which show a number of strong hydrogen-bond interactions. 

Both the oxygen atoms of the chelating L-pal H-bond to NH 2  groups of the chelate 

and the tether with 022•••H1OC 2.05 A (022...N103 2.949(5) A), H1OA•••024 2.08 A 

(N10l ... 024 2.969(5) A), 022•••H44A 2.15 A (022•••N44 3.038(5) A), H42A•••014 

2.17 A (N42 ... 014 3.061(5) A) and H44A•••012 2.54 A (N44•••012 3.325(5) A) 

(Figure A.4.1 1). The L-pal NH 2  group H-bonds to a PF6  counter anion and a 

neighbouring L-pal oxygen atom with H42B•"F122 2.34 A (N42 ... F122 2.989(19) A) 

and H42B014 2.17 A (N42•••014 3.061(5) A). In addition, two molecules of 

solvent methanol show strong H-bonds with the carbonyl oxygen of L-pal with 
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Figure 4.30: Ortep diagram (50% probability ellipsoids) and atom numbering 

scheme for the cation in the X-ray crystal structure of [(1 6:1 1 .C6H5(CH2)3NH2)Ru(L 

pal)]PF6 (4.20), showing the two independent molecules in the asymmetric unit, each 

with their respective tether conformations. 
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Table 4.12: Selected bond lengths (A) and angles (°) for [(i6i1-

C6H5(CH2)3NH2)Ru(L-pal)]PF6 (4.20). 

Bond 	 X=1,Y=1,Z=2 	X=2,Y=3,Z=4 

RuX-N1OY 2.132(3) 2.133(3) 

RuX-01Z 2.078(3) 2.075(3) 

RuX-N4Z 2.130(3) 2.118(3) 

RuX-C1Y 2.177(5) 2.184(4) 

RuX-C2Y 2.174(5) 2.158(5) 

RuX-C3Y 2.188(5) 2.175(5) 

RuX-C4Y 2.168(5) 2.160(5) 

RuX-05Y 2.171(4) 2.186(5) 

RuX-C6Y 2.192(4) 2.198(5) 

RuX-centroidX 1  1.659 1.666 

N1OY-RuX-01Z 83.48(12) 83.74(12) 

N1OY-RuX-N4Z 83.84(13) 83.61(13) 

O1Z-RuX-N4Z 78.93(11) 78.93(12) 

Ru-N 1OY-C9Y 119.4(3) 120.9(3) 

Ru-C6Y-C7Y 123.7(4) 125.9(4) 

N1OY-Ru-C6Y 91.47(17) 90.45(17) 

[a] = measured using Mercury 1.4. 

022•••H15 1.98 A (022 ... 015 2.814(4) A) and O24 ... H25 2.00 A (024...025 

2.824(5) A) (Figure A.4.11). The Ru - 0 bond lengths are 2.075(3) A and 2.078(3) 

A, those of Ru - N(L-pal) are 2.118(3) A and 2.130(3) A and those of Ru - N(tether) 

are 2.133(3) A and 2.132(3) A. The Ru - centroid bond distances (1.66 - 1.67 A) are 

slightly longer than those of most of the other three-atom tethered complexes studied 

in this chapter. The angles between the planes defined by all arene carbons and that 

of N1OY, Ru and C6Y (arene carbon to which the tether is connected) are 78.63° and 

85.56° for molecules A and B, respectively. 
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4.4.1.2 Stability in solution 

The 1 H NMR spectra of complexes [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(ox)1 (4.14) 

and [(116 :1'-C6H5(CH2)2NH2)Ru(ox)] (4.15) were recorded in DMSO-d6 at 298 K and 

again after storage at ambient temperature for 24 h. In the case of 4.14, a single 

species was detected, and no decomposition was observed after 24 h. For 4.15, the 

spectrum initially contained one set of signals but additional signals appeared after 

24 h. 

Solutions of 4.14 (6.7 mM Ru, pH* = 7.12) and 4.15 (6.6 mM Ru, pH* = 

7.12) were stable in D20 at 298 K over the monitored period of 22.5 h and 24.5 h, 

respectively. Their 1 H NMR spectra showed only one set of signals. 

4.4.2 Discussion 

4.4.2.1 Synthesis and charactensation 

The tethered Ru" arene complexes containing bidentate chelating ligands 

were synthesised generally in good yields and high purity. Crystallographic evidence 

suggests that for neutral tethered complexes (i.e. containing two negatively charged 

ligands or a di-anionic chelating ligand), the Ru - centroid distances are shorter than 

for those with an overall +1 or +2 charge. Due to the buckling of the arene observed 

for [(16 :q 1 -C6H5(CH2)C51L,N)RuCl2] (4.7), it appears that replacement of the 

chloride ligands by oxalate can stabilise the coordination of the arene, whereas 

mono-anionic or neutral chelating ligands could lead to an increase in the Ru - 

centroid distance and a resulting destabilisation of the Ru - C(arene) bonds. 

Similar to the structure of [(T 6 :r1 1 -C6H5(CH2)3NH2)Ru(9EtG)2](CF3SO3)2 

(4.11b), the involvement of the tether amine group of three carbon tethered 

molecules in marked H-bond interactions is accompanied by a narrowing in the angle 

between the plane defined by all arene carbons and that N, Ru and the arene carbon 

to which the tether is connected. For [(1 6 :11 1 -C6H5(CH2)3NH2)Ru(acac)]PF6 (4.18), 
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where no significant H-bonds are observed, this angle is 87.510,  whereas for [(1 6 :1 1 ... 

C6H5(CH2)3NH2)Ru(ox)] (4.14) and [(16:1 1 -C6H5(CH2)32)Ru(Lpal)]PF6 (4.20), 

both with strong H-bonds in the structure, these angles are 72.05°, 78.63° and 85.56°, 

respectively. This again highlights the orientational freedom of the amine group to 

form H-bond interactions resulting from the flexibility within the three carbon tether. 

The structure of [(1 6 :1 1 -C6H5(C6H4)NH2)Ru(ox)] (4.16) confirms the ability 

of 2-aminobiphenyl to act as a tethering ligand in Ru 11  arene complexes and shows 

pronounced buckling of the coordinated arene ring. The differences between the two 

most extreme Ru - C(arene) bond lengths in the molecules of 4.16 in the X-ray 

crystal structure are in the range of 0.11 - 0.12 A, comparable to the other two 

carbon systems [(i6:Ti'-C6H5(CH2)2N112)RuC12]  (4.5) and [(Ti6:i' -

C6H5(CH2)C5H4N)RuC121 (4.7) with values of Ca. 0.10 A. This points towards 

substantial strain of the arene imposed by the rigidity of the tether backbone in 4.16. 

Complex [(1 6 :1'-C6H5(CH2)3NH2)Ru(dppz)](PF6)2 (4.21) is an example of a 

tethered Ru 11  arene complex acting as a carrier ligand for a DNA intercalator, in this 

case dppz [79].  Such a molecule would not be expected to be reactive in a biological 

medium, since it does not possess any readily available binding sites. This could 

minimise deactivating side-reactions, and cytotoxic activity might arise from 

intercalation of the ligand into DNA. 

4.4.2.2 Stability in solution 

A solution of [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(ox)] (4.14) in DMSO showed no 

decomposition after 24 h of storage at ambient temperature, thus further confirming 

the stability of the three-carbon tethered complexes. In contrast, a solution of [(1 6 :1 1  

C6H5(CH2)2NH2)Ru(ox)] (4.15) showed decomposition under the same conditions. In 

addition to a set of signals belonging to 4.15, new sets of multiplets appeared in the 

7.33 - 7.15 ppm region, assignable to 2-phenethylamine with an uncoordinated arene 
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ring. Integration of the arene proton resonances suggested that decomposition of ca. 

16% of 4.15 had occurred. This is a significant stabilisation of arene coordination 

with respect to [(i 6:ri'-C6H5(CH2)2NH2)RuC12] (4.5), which instead of oxalate 

contained two chloride ligands and had fully decomposed within 7.5 h. 

Since the 1H NMR spectra of 4.14 and 4.15 in D20 gave rise to one set of 

signals only, in contrast to three for the chloride containing analogues, it appears that 

oxalate can enhance the aqueous stability of these complexes. 

A possible strategy of preventing the formation of hydroxo-bridged species of 

tethered Ru 11  arene complexes, is to create a system containing a chelate ring, which 

can open stepwise. One hydroxide ligand would not be expected to be as good a 

bridging ligand as two hydroxides coordinated to ruthenium. In addition the pK a  

value of a coordinated water molecule might be higher than 7.4 (physiological pH), 

as has been shown for some Ru 11  arene mono-aqua complexes [8, 16, 17]. Ideally, 

upon ring opening the Ru centre could react with its target, e.g. DNA, and the open 

chelate ring would undergo hydrolysis to create a second binding site. This provided 

the stimulus for the synthesis of complex [(16:1 1 -C6H5(CH2)3NH2)Ru(L-pal)]PF6 

(4.20), which contains L-phenylalanine as the chelating ligand. Carmona et al. have 

shown that ruthenium arene complexes containing amino acidates can epimerize in 

chloroform [80].  It was proposed that epimerization could involve opening of the 

chelate ring. Investigation of chelate ring opening reactions and their control could 

be crucial, since such a mechanism could also lead to deactivating pathways. Further 

solution studies on 4.20 would be needed to investigate this possibility. 

Spectra of [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(9EtG)2](PF6)2 (4.11a) in D20 still 

contain residual NH2  signals after 22.5 h (see Figure 4.14), whereas these signals for 

the di-chioro and oxalato analogues rapidly disappear, Ca. 30 min for the oxalato 

complexes [(i6 :i1 1 -C6H5(CH2)3NH2)Ru(ox)] (4.14) and 
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Figure 4.31: The influence of amine HID exchange of [(1 6:1 1  

C6H5(CH2)3NH2)Ru(ox)I (4.14) on the signals for the adjacent CH 2  group. 

C6H5(CH2)2NH2)Ru(ox)] (4.15). Upon H/D proton exchange of the NH 2  group, the 

splitting pattern of the signal for the CH 2  group adjacent to the amine group changes. 

This is illustrated clearly for the oxalato complexes 4.14 and 4.15, since their 

respective aqueous solutions contain one species only and there are no overlapping 

signals. Figure 4.31 shows the influence of amine N112  H/D exchange for 4.14 on the 

signal of the adjacent CH2  group (Figure A.4.12 for 4.15). 

4.5 Neutral, Di-chioride Tethered Ru 11  Arene Complexes: Towards 

Multi-substituted Arenes 

4.5.1 Results 

• Substituents on the arene ring, particularly by alkyl groups, can increase the 

stability of coordination of the arene in Ru 11  arene complexes. It was therefore of 
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interest to explore ways of incorporating multi substituted arenes into tethered Ru 1' 

arene complexes. Similar complexes have been synthesised with phosphorus-

containing tethering ligands [23, 30, 40, 49, 50],  but in low yields [30]. 

In addition, substituents on the arene can also play a role in stabilising 

secondary interactions (e.g. H-bonds, it - it stacking and intercalation) with possible 

target sites. 

4.5.1.1 Synthesis and characterisation 

For the synthesis of nitrogen-containing tethered Ru 11  arene complexes with 

multi-substituted arene rings, only a limited amount of ligands are commercially 

R_ Q"Br + HN 

NJ 

R<O + CH3NO2  

N:> 
' R— 	I 

N.. 

I  RQ/_l*12 

R—QN 
	

, RQJNH2 

R 

O/\
OH  + BrCH2CN 0000.  OM R a 

(>NH2    

+ 

RQ( 

	

N- 
No 	 HNQ 

Scheme 4.8: General transformations for the syntheses of precursor ligands for 

potential use in tethered Ru 11  arene complexes. 
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available. However, there a number of synthetic routes towards such ligands, which 

can be proposed, particularly for two carbon tethers (Scheme 4.8). One of these 

involves the condensation of pyrazole with benzylchloride. The resulting ligand 1-

benzyl-1-H-pyrazole (4.3) (Figure 4.32) was used to synthesise complex [(ri 6:i 1-

C6H5(CH2)C3H3N2)RuC12] (4.9) successfully (vide supra). 

Amine-containing ligands were synthesised via reduction of 

mesitylacetonitrile and (2-nitroethenyl)-aryls. The latter were obtained via 

condensation of arylaldehydes with nitromethane [81], using lithium aluminium 

hydride under conditions described for related systems [82, 83, 84] to yield the 

ligands 2-(2,4,6-trimethylphenyl)ethylamine (4.24), (2,3,4,5,6-

pentamethyl)phenethylamine (4.26) and 4-phenyiphenethylamine (4.28). Of these 

H2 NH2 

NH2 

O-O 4.28 

0>-<C;:> 
Ru 

I 	H 
4.31 

'-I 

4.29 

 

Figure 4.32: The structures of benzyl-1-H-pyrazole (4.3), 2-(2,4,6-

trimethylphenyl)ethylamine (4.24), (2,3,4,5 ,6-pentamethyl)phenethylaniine (4.26), 

and 4-phenyiphenethylamine (4.28), [(16:1 1 ...C6H2(CH3)3(CH2)2JH2)RuCl2I (4.29), 

[(1, 1'-biphenyl)-4-yloxy]acetonitrile (4.30) and [( 6-etb)Ru(bap)C12] (4.31). 
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ligands, 4.24 was used to make the tethered complex [(16:flh 

C6H2(CH3)3(CH2)2NH2)RuC12] (4.29) (Figure 4.32). 

Three-carbon tether precursors are less readily accessible than their two-

carbon analogues, since their synthesis involves a number of steps. However, one 

convenient route is via the condensation of bromoacetonitrile with phenols [85]. The 

ligand [(l,1'-biphenyl)-4-yloxy]acetonitrile (4.30) (Figure 4.32) was synthesised in 

this way, but the reduction with LiA1H4  failed to yield the desired end product 4-

phenylphenoxyethylamine and the reaction mixture turned orange. 

In a project with Melanie Brown (undergraduate, 2005, University of 

Edinburgh) the synthesis of 2-arylaminopyridine compounds was explored via 

condensation of arylaldehydes with 2-aminopyridine [86].  It was shown that such 

substituted compounds can be synthesised via immine formation followed by 

reduction with NaBH4  to include e.g. a pentamethylbenzyl ring [87]. 

Attempts to synthesise a complex with a tethered pyridine ligand, [(1 6:1 1  

C6H5(CH2NH)C5H4N)RuCl2], failed. The X-ray crystal structure of the intermediate 

C32 C33  C34 

C31 4 

C23 
C28 

C27 

Figure 4.33: Ortep diagram (50% probability ellipsoids) and atom numbering 

scheme for the X-ray crystal structure of [(1 6-etb)Ru(bap)C1 2} (4.31). 
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Table 4.13: Selected bond lengths (A) and angles (°) for [(ij  

(4.31). 

Bond Length Bond Length/angle 

Ru-N 2.1708(13) Ru-C35 2.1893(17) 

Ru-02 2.4074(4) Ru-C36 2.1646(17) 

Ru-03 2.3914(4) Ru-centroid 1  1.657 

Ru-C3 1 2.1545(17) N-Ru-02 90.63(4) 

Ru-C32 2.1914(17) N-Ru-03 86.60(4) 

Ru-C33 2.2027(16) C12-Ru-C13 85.796(15) 

Ru-C34 2.1839(17) 

[a] = measured using Mercury 1.4. 

product [(TI 	(4.31), where bap = 2-benzylaminopyridine, was 

determined from crystals grown by slow diffusion of diethyl ether into a methanol 

solution at ambient temperature (Figure 4.33). The crystal data are shown in Table 

A.4.4 and bond angles and lengths in Table 4.13. The structure shows the 

coordination of bap through the pyridine nitrogen as well as the pendant arene, which 

could coordinate to ruthenium upon displacement of ethyl benzoate. A chloride 

ligand and the NH proton of 2-benzylaminopyridine show weak a hydrogen bond 

(H211 ... C12 2.65 A, N21•••C12 3.1466(15) A). The carbonyl oxygen of ethyl benzoate 

is involved in a number of short interactions with arene protons, 0312•••H361 2.47 A 

(0312...C36 3.092(2) A) and 0312•••H351 2.59 A (O312 ... C35 3.156(2) A), as well 

as a proton of the pendant benzyl ring (0312 ... H281 2.59 A, 0312•••C28 3.490(2) A). 

The Ru - Cl bond lengths are 2.39 14(4) A and 2.4074(4) A. The Ru - N distance is 

2.1708(13) A, with Ru - centroid 1.66 A. 

4.53.2 Stability in solution 

[( 6-etb)Ru(bap)Cl 2] (4.31) (Figure 4.32) appeared to undergo decomposition 

reactions in chloroform. Solutions turned from orange to a green-grey in colour over 
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Figure 4.34: Selected region of the 1 H NMR spectrum of [(116:T11-

C6H2(CH3)3(CH2)2NH2)RuC12] (4.29) in DMSO-d6 at 298 K. A: 10 min after 

dissolution using ultrasonication. B: 30 min after dissolution using ultrasonication. 

Previously present peaks have disappeared. 

varying time intervals (30 mm - 10 h) and the appearance of new signals in the 'H 

NMR spectrum was noted. 

The 	1 H 	NMR 	spectrum 	of 	a 	solution 	of 	[(116:111- 

C6H2(CH3)3(CH2)2NH2)RuC12] (4.29) in DMSO-d6 at 298 K showed several sets of 

peaks. Ultrasonication of a different solution gave rise to more peaks in the spectrum 

(Figure 4.34), which decayed within Ca. 30 min to produce a spectrum similar to that 

observed in the spectrum of the former solution. Two new peaks at 6.81 ppm and 

6.79 ppm gradually increased in intensity over a monitored period of 17 h, together 

with two minor peaks at 6.82 ppm and 6.77 ppm. 2D COSY (Figure A.4.13) and 

ROESY spectra were recorded to assign the peaks (Figure 4.35). 
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a a 	 a 

2.3 	 2.2 	 2.1 
s/ppm 

a+d 	 a+e 

3.6 	 ... 2.6 
s/ppm 

a 

6.0 	 5.0 	 4.0 
I ppm 

Figure 4.35: The H NMR spectrum of [(1 6 :1 1 -C6H2(CH3)3(CH2)2NH2)RuC12] (4.29) 

in DMSO-d6 at 298 K. Only peaks, which can be unambiguously assigned to the 

respective set of signals of species present in solution, are labelled. 
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4.5.2 Discussion 

4.5.2.1 Synthesis and characterisation 

Condensation of pyrazole with chioro- (or bromo-) benzyl derivatives can 

provide a general route towards pyrazole-containing ligands for the synthesis of 

tethered ruthenium arene complexes. While [(1 6 :1 1 -C6H5(CH2)C3H3N2)RuC12] (4.9) 

was synthesised successfully, the yield was the lowest of all the di-chloro tethered 

complexes. This possibly is due to a more pronounced strain exerted on the arene by 

the backbone. 

Aryl aldehydes are particularly attractive starting materials for the synthesis 

of tether precursor ligands containing multi-substituted arene rings, since a large 

number are commercially available which contain a variety of benzene ring 

substitutions. Of the synthesised two carbon tether ligands, only 2-(2,4,6-

trimethylphenyl)ethylamine (4.24) was used to attempt the synthesis of the respective 

tethered Ru" arene complex [(1 6:1 1 -C6H2(CH3)3 (CH2)2NH2)RuCl2I (4.29). Due to the 

complex behaviour of this compound in solution, no attempts were made to form 

complexes with ligands (2,3,4,5,6-pentamethyl)phenethylamine (4.26) and 4-

phenyiphenethylamine (4.28). 

Failure to reduce [(1,1'-biphenyl)-4-yloxy]acetonitrile (4.30) appears to be 

due to cleavage of the ether linkage. The intense orange colour of the solution 

suggested that the biphenylhydroxy anion was formed. 

2-Arylaminopyridine compounds can be produced conveniently in high 

yields and purity [87].  The coordination of such ligands to {(ri 6-etb)RuC12} was 

confirmed in solution and in the solid state for [(Tj  (4.31). 

4.5.2.2 Stability in solution 

The apparent decomposition of [(TI 	(4.31) into unknown 

species in chloroform might be the reason as to why formation of the tether failed. 

I L 
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The solution of the analytically pure adduct of 2-pentamethylbenzylaminopyridine 

with { (ri 6-etb)RuCl2 } showed a similar change of colour in chloroform to the benzyl 

analogue. In addition, crystals grown from a reaction mixture thought to contain this 

adduct turned out to be those of the ethyl benzoate ruthenium dimer [( 6-etb)RuC12]2  

(4.2) [87],  thus suggesting that ligand dissociation can occur, which might be 

responsible for the failure of tether formation. 

The behaviour of [(1 6 :ri'-C6H2(CH3)3(CH2)2NH2)RuC12] (4.29) in DMSO-d6 

is complex. According to 2D 1 H NMR spectra, there are at least five species present 

in solution, even more after ultrasonication of the sample. All appear to confer to 

(2,4,6-trimethylphenyl)ethylamine (4.24) with the arene ring coordinated to 

ruthenium. The new peaks appearing at around 6.8 ppm have a similar chemical shift 

to free 4.24, suggesting that loss of arene coordination occurs. This is similar to 

[(fl 6 :71 '-C6H5(CH2)2N112)RuC12] (4.5). In contrast to 4.5, the introduction of arene 

substituents has significantly slowed down decomposition. Whereas 4.5 in DMSO-d6 

was fully decomposed after 7.5 h, Ca. 40% of 4.29 was still intact after 17 h. 

As was observed for the two carbon tether 4.5, the coordination of the arene 

ring has a pronounced effect on the chemical shifts of the protons of the tether 

backbone. A similar separation of these signals was also observed for 4.29. However, 

the tether backbone signals for species (b) are significantly closer together than for 

the other species, and are in similar positions to those of free 4.24 (ca. 2.8 - 2.7 

ppm). This seems to indicate the presence of at least one species, which has a 

coordinated arene, but an open tether, possibly with the amine group coordinating to 

another Ru centre. Tether opening could also help to explain the amount of species 

present. For the tethered complex, a maximum of three species could be expected, 

namely the di-chloride-, the mono-DMSO- and the di-DMSO adducts. However, in 

spectra of other di-chioride tethered complexes a maximum of two species only was 

noted (vide supra). Tether-opening reactions could facilitate the formation of more 
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species, most likely polymers. Thermal energy derived from ultrasonication, in the 

form of localised hotspots, could promote the formation of more of such species as 

observed in the 1 H NMR spectrum. A return to equilibrium at 298 K might explain 

the disappearance of some of the signals. However, the involvement of different 

coordination modes of DMSO, i.e. S vs. 0 coordination, cannot be ruled out [88]. 

4.6 Tether-opening Reactions 

The rate and extent of hydrolysis of bifunctional tethered Ru 11  arene 

complexes might not make them suitable for tolerating physiological reaction 

conditions in terms of anti-cancer applications. Even for complexes of the type [(16 

arene)Ru(en)Cl] in the presence of 104 niM chloride, the complex is not present 

entirely as its chloride adduct. About 10% of the complex could exist as the more 

reactive aqua-adduct [61],  which might present a pathway of deactivation of the 

complex before it enters the cell. It would therefore be desirable to synthesise a 

complex, which can be activated under controlled conditions, ideally such, which are 

specific to cancer cells. Such activation techniques could be based on pH, since 

cancer cells are believed to have a slightly more acidic environment than healthy 

cells or also activation by light, as has been shown to be possible for some Pt' 

complexes [89, 901. Tethered Ru 11  arene complexes containing a bidentate chelating 

ligand, e.g. ethylenediamine, would be expected to be unreactive since all binding 

sites are blocked. Reactions, in which the tether would be irreversibly opened, could 

lead to complexes similar to those previously found to have good activity against the 

human ovarian cancer cell line A2780 [5, 6].  In addition, the ethylenediamine-

containing, tether-opened complex [(1 6-C6H5(C6H11NH2))Ru(en)C11 could have the 

potential to stabilise binding of guanine for example by formation of two hydrogen 

bonds with the C60 carbonyl group as shown in the molecular model in Figure 4.36. 

This could lead to stronger binding and potentially an increase in cytotoxic activity, 
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01 IE 

Figure 	4.36: 	Molecular 	model 	of 	the 	9EtG 	adduct 	[(16 

C6H5 (C6H4NH2))Ru(en)9EtG] 2t A: Lines showing possible formation of two 

hydrogen bonds with the C60 carbonyl group. B: Spacefilling model. 

especially if activation could be controlled and deactivating side-reactions 

minimised. 

4.6.1 Results 

Crystals of X-ray diffraction quality of the tether-opened complex [(i 6:' -  

C6H5(C61-L1 )NH3)RuCI3I (4.32) were grown by dissolving the tether-closed precursor 

[(i1 6 :i1 1 -C6H5(C6H4)NH2)RuC12] (4.8) in warm conc. hydrochloric acid (12 M), 

followed by slow evaporation at ambient temperature over a period of five days. The 

structure clearly shows that the tether has been opened (Figure 4.37). The crystal data 

are shown in Table A.4.4 and bond angles and lengths in Table 4.14. Coordination of 

three chloride ligands to a Ru arene fragment has mainly been documented for 

chloride-bridged complexes [91, 92, 93, 94], although recently details of a non-

bridged molecule were published [95].  In this respect, the present structure is unusual 

and can be classed as a zwitterionic molecule. The Ru - Cl bond lengths are 2.41 A, 

2.42 A and 2.44 A. The Ru - centroid distance is 1.65 A and the angle between the 

coordinated arene and the free aminobenzene ring is 53.5°. The intramolecular Ru••N 
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Figure 4.37: Ortep diagram (50% probability ellipsoids) and atom numbering 

scheme for the X-ray crystal structure of [(1 6 :r1 1 -C6H5(C6H4)NH3)RuC13] (4.32), 

showing that the tether has been opened. 

Table 4.14: Selected bond lengths (A) and angles (°) for [(1 6 :11 1  

C6H5(C6H4)NH3)RuC13] (4.32). 

Bond Length Bond Lengthlangle 

Ru-Cli 2.4175(5) Ru-Cl 1 2.1707(18) 

Ru-02 2.4367(4) Ru-centroid Eal 1.647 

Ru-03 2.4053(5) Ru-C 12 2.1721(19) 

Ru-C7 2.1970(18) Cli -Ru-C12 86.288(17) 

Ru-C8 2.1798(18) Cl 1-Ru-03 87.532(17) 

Ru-C9 2.1799(18) 02-Ru-03 87.049(16) 

Ru-ClO 2.1591(18) Ru-C7-C6 132.05(12) 

[a] = measured using Mercury 1.4. 

distance is 3.5723(15) A. There are intramolecular hydrogen bonds between two 

chloride ligands and an amine proton with H13••C11 2.53 A (N1"•Cl1 3.2804(16) A) 

and H13•••C12 2.66 A (N1 ... C12 3.3195(15) A). Intermolecular H-bonds are formed 

between neighbouring molecules, linking them into chains, with H11"•C13 2.25 A 

(N1 ... Cl3 3.1075(16) A) and H12 ... C12 2.31 A (N1 ... C12 3.6174(15) A) (Figure 
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A.4.14A). The aminobenzene rings show ir - it stacking for the whole ring with 

C1•••C4 3.657(3) A, C2••C5 3.629(3) A and C3 ... C6 3.652(3) A (Figure A.4.14B). In 

addition, there are a number of interactions between chloride and arene protons, with 

H121•••C13 2.70 A (C12 ... Cl3 3.645(2) A), 14111••Cl1 2.78 A (C11 ... Cl1 3.342(2) 

A), H101•••C13 2.82 A (C10•••C13 3.476(2) A) and H111 ... Cl3 2.88 A (C11 ... C13 

3.499(2) A), as well as protons of aminobenzene, where H51 ... Cll 2.82 A (C5 ... Cl1 

3.692(2) A) and H31••C12 2.89 A (C3 ... C12 3.630(2) A). 

4.6.2 Discussion 

The X-ray structure of [(i1 6:i-C6H5(C6H4)NH3)RuCl3] (4.32) confirmed 

tether opening for this complex in strongly acidic solution. While [(,16:1I 

C6H5(CH2)3NF12)RuC12] (4.4) was stable in water at pH 1, the more strained two-

carbon systems might be useful candidates for more detailed studies into tether 

opening mechanisms. Potential might arise from these complexes as orally 

administered drugs, which could be activated by stomach acid. 

4.7 Conclusions 

The novel di-chloro, nitrogen-tethered Ru 11  arene complexes [(16:11 

C6H5(CH2)3NH2)RuC12] (4.4), [(16:1 1 -C6H5(CH2)2NH2)RuC12] (4.5), [(16:1 1_ 

C6H50(CH2)2NH2)RuC12] (4.6), [(16:1 l ...C6H5(CH2)C5H4S)RuC12} (4.7), [(ii 6:1 1-

C6H5(C6114)NH2)RuC12] (4.8) and [(16 :1 1 CH(CH)CHN)RUC1] (4.9) were 

synthesised. Use of the pressure vessel improved the yields compared to reflux 

conditions and complexes were obtained in good-to-high yields and high purity. 

These complexes are water soluble and undergo rapid hydrolysis of bound chloride, 

to form mono- and di-aqua adducts. The associated equilibrium constants were 

calculated for two representative complexes. Loss of one chloride appears strongly 

favourable and anation is only Ca. 40% complete in the presence of excess chloride 
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(ca. 275 mM). Formation of an insoluble precipitate, probably involving hydroxo-

and oxo-bridges, was observed for the diaqua adduct over a range of pH 5.4 - 11.0. 

Thus in aqueous biological media these complexes may be deactivated by reactions 

with biomolecules or by precipitation. 

The reactivity of these bifunctional tethered Ru 11  arene complexes towards 

guanine (9EtG, Guo) was investigated. Rapid binding of one G (< 20 mm) was 

observed followed by slow formation of the di-adduct over a period of Ca. 10 h. 

Formation of di-adducts also appears to be suppressed by the presence of chloride 

and possibly by the formation of hydroxo-bridged species. The X-ray crystal 

structure of the di-9EtG adduct [(16:1  '-C6H5(CH2)3NH2)Ru(9EtG)2] (CF 3SO3)2  

(4.11b) reveals an unusual head-to-head orientation of the two bases, with formation 

of H-bonds (1.98 A and 2.32 A) between the tether NH 2  group and C60(9EtG). It 

also suggests strong binding of one 9EtG ligand and weak binding of the other. In 

addition, displacement of 9-EtG from the di-9EtG adduct [(16:11 

C6H5 (CH2)3NH2)Ru(9EtG) 2](PF6)2 (4.11a) was observed in water. 

A number of complexes containing bidentate chelating ligands, such as 

[(116 :1 1 -C6H5(CH2)3NH2)Ru(ox)] (4.14), [(16 :1 1 ...C6H5(CH2)2NH2)Ru(ox)] (4.15), 

[(16 :1 1  -C6H5(C6H4)NH2)Ru(ox)] 	(4.16), [(16:1  '-C6H5(CH2)C5H4N)Ru(ox)] (4.17), 

[(16 :1 1 -C6H5(CH2)3NH2)Ru(acac)]PF6 (4.18), [(1 6 :1 1  - 

C6H5(CH2)C5H4N)Ru(acac)]PF6 (4.19), 	[(16 1 1 ...C6H5(CH2)3NH2)RU(Lpa1)]PF6 

(4.20) and [(16:11  -C6H5(CH2)3NH2)Ru(dppz)] (PF6) 2  (4.21), were synthesised. They 

possess the expected higher aqueous stability and could also act as carrier ligands for 

e.g. intercalators. 

The possibility of coordination of multi-substituted arene rings in tethered 

Ru11  arene complexes was investigated. A number of suitable synthetic routes 

towards the synthesis of potentially useful precursors were identified. However, the 

2-benzylaminopyridine-containing complex [( 6-etb)Ru(bap)Cl2] (4.31) failed to 

221 



Chapter 4 

yield the corresponding tethered complex. For [(1 6:1 1 ...C6H2(CH3)3(CH2)2NH2)RuC12] 

(4.29) the behaviour in DMSO resulted in formation of at least five species, one 

which appeared to be tethere-opened. 

Finally, 	tether-opening 	has 	been 	confirmed 	for 	[(16:11 

C6H5(C6H4)NH3)RuC13] (4.32) in the solid state. Such breakage of the Ru - N bond 

could warrant potential for tethered complexes as prodrugs, ideally with controllable 

activation. 

Appendix A.4 contains Tables A.4. 1 —4 and Figures A.4. 1 - 14. 
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Chapter 5 

Chapter 5 
Hydride-transfer Catalysed by Cytotoxic 

Ruthenium(II) Arene Complexes 

5.1 Introduction 

Interest in the catalytic properties of Ru 11  mono-arene complexes ranges from 

alkene- and aromatic-hydrogenation, to Diels-Alder reactions, alkene metathesis, and 

asymmetric hydrogen transfer reductions of ketones and imines [1]. Catalytic activity 

usually requires the presence of a labile coordination site on Ru 11  and/or arene 

displacement [2, 31. The nature of the coordinated ligands can have a pronounced 

effect on the catalytic properties of Ru 11  arene complexes and interest in their design 

as catalyst precursors has led to the exploration of a wide range of synthetic routes to 

complexes containing various substituted arenas, together with other ligands such as 

hydride, phosphines, alkyl and aryl groups [4]. 

Such catalysts are likely to be easily poisoned in biological media by the 

strongly coordinating ligands available, but it is intriguing to speculate that catalytic 

activity could exist in certain biological compartments to which access of 

deactivating molecules might be restricted, e.g. membranes [5]. 

With this in mind, a recent report by Ogo et al. was of particular interest [6]. 

The ability of Ru 11  arene complexes to form stable hydride adducts in aqueous 

solution with formate as the hydride donor was demonstrated. Furthermore, the 

system (ij  where bpy = 2,2'-bipyridine, was shown to catalyse 

the transfer hydrogenation of some ketones in water (Scheme 5.1). The studies 

revealed a marked dependence of the catalytic activity on pH and temperature. 

Overall, the conditions for optimum turnover were found to be at pH 4 and 343 K, 

which is not biologically compatible. In addition, the studies were conducted in the 

presence of Ca. 6000 mol equivalents of formate with respect to ruthenium. 
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1 
343K 

p 

pH4 
	 +c02  

Scheme 5.1: Catalytic cycle for the transfer hydrogenation of ketones with formate 

by { (6-C6Me6)Ru(bpy) 12,  in water. Optimum turnover conditions are 343 K and pH 

4.0 [6]. 

It was thus of interest to explore the potential of Ru 11  arene complexes from the 

following view points. 

• Some complexes of the type [(TI 	are non-cytotoxic 

towards the A2780 human ovarian cancer cell line [7]. Therefore, could 

transfer hydrogenation also be demonstrated for cytotoxic complexes of the 

type [(1 6-arene)Ru(en)Cl], where en = ethylenediamine? 

• Would these complexes catalyse the transfer hydrogenation of ketones with 

biologically-tolerable formate concentrations, i.e. significantly less than 6000 

mol equivalents of formate? 

• Could catalysis be achieved at biologically compatible reaction conditions, 

i.e. pH 7.4 and 310 K? 

These questions will be addressed in this Chapter. Furthermore, studies of the 

regioselective reduction of NAD by ruthenium(ll) arene complexes under 

biologically relevant conditions will be presented. 
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In the field of biocatalysis, the coenzyme 1 ,4-NADH is required for many 

enzymatic reduction reactions which are useful for the stereoselective synthesis of 

organic compounds [8, 91. The coenzyme is too expensive to be used in 

stoichiometric amounts and hence there has been continued interest in finding 

efficient ways for the in situ regeneration of NADH under biologically-compatible 

conditions [10, 111. In recent years, significant attention has been focused on 

transition metal complexes as catalysts for the regioselective reduction of NAD and 

models for NAD to their corresponding 1 ,4-NADH derivatives [11, 12]. 

Steckhan et al. [13] and Fish et at. [14] have shown that Rhm 

pentamethylcyclopentadienyl (Cp*)  complexes can catalyse the reduction of NAD 

in the presence of formate (Scheme 5.2). This reduction is regioselective, giving the 

H 0 

NAD 

o 0 
II 	II 
p—o—p—o 
I 	I 
0 	0-  

NH2  

</N 

	
N 

54f4 
OH OH 

OH OH 

OHOH 

ir 	 NH2 

NXLN  <I  
O 0 

1  
II 	II 
p-°-p-O 1  
I 	I 
0 	0- 

OH OH 
1,4-NADH 

Scheme 5.2: The conversion of NAD into 1 ,4-NADH via hydride transfer. 
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biologically relevant 1 ,4-NADH isomer, and can drive enzymatic reactions relying 

on NADH as cofactor (e.g. stereoselective reduction of PhCH 2CH2COMe catalyzed 

by alcohol dehydrogenase [15]). Further interest in these studies is generated by the 

observation by Torabi et al. that in cancer cells the NAD content is equal or higher 

than in normal cells [16]. An interference with this distribution could lead to cell 

death or also undesirable, stimulated cell growth. 

5.2 Experimental Section 

5.2.1 Materials 

Figure 5.1 shows the molecules studied in this Chapter. The complexes [(1 6 W 

ind)Ru(en)Cl]PF6 (5.1) and [(16-hmb)Ru(en)Cl]PF6  (5.2), where md = indan, hmb = 

hexamethylbenzene, en = ethylenediamine, were kindly made available by Dr. 

Abraha Habtemariam, University of Edinburgh. Their syntheses were based on 

literature 	methods 	[17]. 	The 	bifunctional 	complex 

C6H5(CH2)3NH2)Ru(NO3)2] (5.3) was synthesised as outlined in Chapter 4. 

All reactions were performed in air and under ambient temperatures, unless 

indicated otherwise. 

Ru 
H2N" 	CI 

Z112 
5.1 

--I+  
H2N '  't 
jH2 

5.2 

02N0Ru 
I 

02N0 

5.3 

Figure 5.1: Structures of [(116-ind)Ru(en)Cl]  (5.1), [(Ij 	(5.2) and 

[(1 6:1 1 -C6H5(CH2)3NH2)Ru(NO 3)2] (5.3). Complexes 5.1 and 5.2 were prepared as 

their hexafluorophosphate salts. 
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5.2.2. Methods 

The chemical shifts of the signals in the 'H NMR spectra recorded in D 20 are 

quoted in ppm downfield of the methyl signal of sodium 3-

(trimethylsilyl)propanesulfonate (TMP); using the residual HDO peak as a secondary 

internal reference, (5 4.64 ppm) at 310 K [18]. The pD values were obtained using 

the relationship pD = 0.4 + (pH meter reading) [19]. 

5.3 Transfer Hydrogenation of Ketones by Cytotoxic Ru ]' Arene 

Complexes 

5.3.1 Results 

5.3.1.1 Mono-functional complexes 

The 'H NMR spectrum of [(16-ind)Ru(en)Cl]PF6  (5.1) in the presence of 

sodium formate (ca. 20 mol equiv) in 90% H20/ 10% D20 was recorded 1 h after 

mixing at pH = 9.61 (Figure A.5.1) and then after incubation (18 h at 338 K) at 298 

K. The spectrum showed some alterations in the splitting patterns of the main peaks 

plus some shifts, but most significantly a new singlet at -6.92 ppm appeared (Figure 

5.2). 

The 'H NMR spectrum of [(i6-hmb)Ru(en)Cl]PF6  (5.2) (3.5 mM Ru), 

acetone (ca. 200 mol equiv) and sodium formate (ca. 3000 mol equiv) in 90% H 20/ 

10% D20 was recorded within ten min of mixing and then after incubation (4 h at 

343 K) at 298 K. The spectrum showed the presence of acetone (5 2.36 ppm) as well 

as two new peaks at 4.12 ppm (multiplet) and 1.29 ppm (doublet) corresponding to 

2-propanol (Figure 5.3). Integration of the peak at 1.29 ppm and that for free acetone 

indicated a ratio of 1: 1.25. 

The 'H NMR spectrum of 5.2 (2.8 mM Ru), pyruvic acid (ca. 200 mol equiv) 

and sodium formate (ca. 3500 mol equiv) in 90% H201 10% D20 was recorded 

within ten min of mixing and then after incubation (4 h at 343 K) at 298 K. The peak 
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en 

3.0 	 2.5 	 2.0 
8/ ppm 

3 	2 	1 	0 	-1 	-2 	-3 	-4 	-5 	-6 	-7 
s/ppm 

Figure 5.2: The high-field region of the 1H NMR spectrum of [(1 6-ind)Ru(en)Cl]PF6 

(5.1) in the presence of sodium formate (ca. 20 mol equiv) in 90% H 20/ 10% D 20 at 

298 K. The solution had an initial pH of 9.61 and was incubated for 18 h at 338 K. 

The major product is [(16-ind)Ru(en)H].  Assignments: md = CH2  groups (md); en = 

Cl2  groups (en); a = Ru-H. 

for free pyruvate (pK a  Ca. 2.65) at 2.41 ppm had disappeared and two new peaks at 

4.27 ppm (multiplet) and 1.47 ppm (doublet) corresponding to 2-hydroxypropanoate 

(PKa  Ca. 3.90) appeared. 

5.3.1.2 Bifunctional complexes 

Addition of NaBH4 (ca. 2.5 mol equiv) to a solution of [(1 6 :1I 1  

C6H5(CH2)3NH2)Ru(NO 3)2] (5.3) in 90% H20/ 10% D20 caused a colour change 

from orange to reddish-brown. The 1 H NMR spectrum recorded after 20 min at 298 

K indicated two products, giving rise to two singlets in the high-field region at -9.04 
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0 

b,J( 
CH3 	CH3  

b 	b 

CC+ 

CI 	C 

H2N U H  
(,NH2 

d 

CH('FCH3 
d Hd 

a 

4.18 	 4.12 	 4;06 
S / ppm 

F:il 
	

N. 

4.2 	 3.2 	 2.2 	 1.2 
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Figure 5.3: The 2-propanol region of the 'H NMR spectrum of a solution containing 

1016-hmb)Ru(en)Cl]PF6 (5.2) (3.5 mM Ru), acetone (ca. 200 mol equiv) and sodium 

formate (ca. 3000 mol equiv) in 90% H20/ 10% D20 at 298 K, including the peak 

assignments. The solution had been incubated for 4 h at 343 K. 

ppm and -15.34 ppm, respectively. The spectrum recorded after 1 h suggested the 

presence of a number of species as indicated by more than ten peaks in the high-field 

region of the spectrum (Figure 5.4). In addition, signals with similar shifts to those 

for free 3-phenyl-1-propylamine were detected in the arene proton region. 

A solution of 5.3 (7.1 mM Ru) and sodium formate (100 mol equiv) in 90% 

H20/ 10% D20 was incubated for 150 min at 310 K and the 1 H NMR spectrum 

recorded at 310 K. The spectrum showed several new singlets in the high-field 

region (Figure A.5.2). In addition, signals with similar shifts to those for free 3- 

phenyl- 1 -propylamine were detected in the arene proton region. 
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I 	I 	I 	 I 

-2 	 -6 	-10 	-14 	-18 

s/ppm 

Figure 5.4: The high-field region of the 'H NMR spectrum of a solution containing 

NaBH4  (ca. 2.5 mol equiv) and [(9 6:q'-C6H5(CH2)3NH2)Ru(NO3)21 (5.3) in 90% 

H20/ 10% D20 at 298 K after 1 h, suggesting the presence of a number of hydride-

containing species in solution. 

A solution of 5.3 (9.3 mM Ru), acetone (ca. 100 mol equiv) and sodium 

formate (ca. 100 mol equiv) in 90% H201 10% D20 was incubated for 23 h at 310 K 

and the 'H NMR spectrum recorded 310 K. The spectrum showed two new peaks at 

4.14 ppm (multiplet) and 1.31 ppm (doublet) corresponding to 2-propanol. 

Integration of the peak at 1.31 ppm and that for free acetone indicated a ratio of 

1 : 21. In addition, signals with similar shifts to those for free 3-phenyl-1-

propylamine were detected in the arene proton region. 

5.3.2 Discussion 

5.3.2.1 Mono-functional complexes 

In the catalytic reactions of the Ru 11  arene complex [(T 6-hmb)Ru(bpy)H2O] 2 , 

where hmb = hexamethylbenzene, bpy = 2,2'-bipyridine, studied by Ogo et al. [6], as 
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well as reactions of the Rhm  complex [(fl 5 Cp*)Rh(bpy)H20] 2+, where Cp* 

pentamethylcyclopentadienyl, studied by Steckhan et al. [13] and Fish et al. [14],  the 

metal compounds contained the ligand 2,2'-bipyridine. Systems of the type [(i i-

Cp*)M(bpy)H2O]2  (M = Rh, Ir) have been studied electrochemically and 

spectroscopically and resonance hybrids for coordinatively unsaturated [(i s-

Cp*)M(bpy)] with a formally oxidation state +1 metal centre were proposed (Scheme 

5.3) [20]. 

( q5Cp*)Mn(bpy) 	 ( q5Cp*)Mhl (bpy4 ) 

A 	 B 

Scheme 5.3: Resonance hybrids for coordinatively unsaturated [(5Cp*)M(bpy)] 

with a formally oxidation state +1 metal centre [20]. 

Subsequently it was proposed that these resonance structures are also found 

for ruthenium arene complexes [20].  While all available data point to a sizeable 

contribution from resonance structure B [20], its role in hydride transfer reactions 

does not appear to be firmly established. 

Despite a likely less favourable electron transfer mechanism between en and 

Ru11, the spectrum in Figure 5.2 shows that a mixture of [(11 6-ind)Ru(en)Cl]PF6 (5.1) 

and formate in water, incubated at 338 K for 18 h, can be converted, to a large extent 

and cleanly, into the hydrido complex [(T 6-ind)Ru(en)H]. The hydride signal at 

-6.92 ppm has a comparable chemical shift to that of [(T 6-hmb)Ru(bpy)H at -7.45 

ppm [6]. This shows that Ru 11  arene complexes containing an ethylenediamine 

chelating ligand can form hydrido adducts via fl-hydrogen elimination reactions with 

formate. 

Transfer hydrogenation of the ketones acetone and pyruvic acid (pyruvate in 

solution) by [(16-hmb)Ru(en)Cl]PF6  (5.2) converted the substrates into 2-propanol 

and 2-hydroxypropanoate, respectively. After incubation for 4 h at 343 K Ca. 44 % of 

acetone, i.e. Ca. 90 mol equiv with respect to Ru, had been converted into 2- 
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propanol, thus indicating a catalytic process. In the case of pyruvate, all of the 

substrate had been converted into 2-hydroxypropanoic acid during the 4 h incubation 

period. A scheme for hydride transfer by {(16-arene)Ru(en)}2 complexes is shown 

in Section 5.4.2 in the context of the reduction of NAD (vide infra). 

5.3.2.2 Bifunctional complexes 

The 1 H NMR signals of the arene protons as well as those of the tether 

backbone (Figure 5.5) show that two species, one with a non-chiral- (three arene 

proton plus three tether backbone proton signals) and one with a chiral- (five arene 

proton plus six tether backbone proton signals) ruthenium centre, formed in the 

reaction between NaBH4 and the tethered complex [(16:11 

C6H5(CH2)3NH2)Ru(NO3)2] (5.3) in water. The chiral species could be [(1 6:rI '-  

C6H5(CH2)3NH2)Ru(OH)H] and the other [((1 6 :1 '-C6H5(CH2)3NH2)Ru)2(t-H)21 2 , 

since hydride ligands in ruthenium(ll) arene complexes are known to be able to act 

as bridging ligands [21, 22]. However, these species are not very stable and decay to 

give a number of new hydride-containing species (see Figure 5.4), which could 

include ruthenium clusters [23, 24, 25].  Similarly, in reactions with formate, the 

complexes tended to decompose and new hydride signals were noted in the 1H NMR 

spectrum, possibly also indicating the formation of clusters. 

Due to the multiple decomposition pathways of 5.3, which also include loss 

of arene coordination, in the presence of formate, it is not clear which species is 

responsible for the conversion of acetone into 2-propanol. If it involves the {(16:11 

C6H5(CH2)3NH2)Ru} 2  fragment, then with only Ca. 5% conversion of acetone this 

system does not posses significant catalytic activity. In contrast, catalytic activity has 

recently been demonstrated for some amine-tethered complexes, which contain a 

chelate ring thus resulting in mono-functional compounds (e.g. [(16 

C6H5(CH2)3NH( iS ,2S-CHC6H5)2NSO2C6H4CH3 - N,N)RuC1]) [26, 271. 
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(I. I 

8 	 4 	 0 	-9 	-12 	-15 
/ ppm 

Figure 5.5: The 'H NMR spectrum of a solution containing NaBH4 (ca. 2.5 mol 

equiv) and [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(NO3)2] (5.3) in 90% H20/ 10% D20 at 298 K 

after 20 mm. Peaks of species (a) and (b) are only partially labeled. Assignments: p = 

unbound arene of 3-phenyl-l-propylamine; w = suppressed water; bh = B114; a = 

chiral species containing the {(1 6:1'-C6H5(CH2)3NH2)RuH} moiety producing five 

arene proton and six tether backbone proton signals; b = species containing {( 6 :q 1 -

C6H5 (CH2)3NH2)RuH2 } producing three arene proton and three tether backbone 

proton signals. 

5.4 Catalysis of Regioselective Reduction of NAD by Ru 11  Arene 

Complexes 

5.4.1 Results 

Figure 5.6 shows the 'H NMR spectra of the NAD and 1,4-NADH in D 20 at 

310 K and pD 7.0 together with a partial assignment, based on a report by Sarma et 

al. [28]. 
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Figure 5.6: The 'H NMR spectra of NAD and 1,4-NADH in D 20 at pD 7.0 and 310 

K. Assignment: w = residual water. 

A reaction of [(1 6-hmb)Ru(en)Cl]PF6 (5.2) (1.7 mM Ru) with NAD (2 mol 

equiv) in the presence of sodium formate (25 mol equiv) was monitored by 'H NMR 

in D20 at 310 K and pD 7.2. Over a period of about 3 h the peaks for free NAD 

disappeared and new peaks assignable to NADH appeared (Figure 5.7). 

5.4.2 Discussion 

The observed conversion of NAD into 1 ,4-NADH shows that hydride 

transfer reactions can be catalysed by cytotoxic Ru 11  arene complexes under 

biologically relevant conditions (310 K and pD 7.2). A scheme for the hydride 

transfer is shown in Scheme 5.4. Hydrolysis of the chloride ligand is followed by 
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t/ 

1 9( 

1 3( 

7( 

9.0 	8.0 	7.0 	6.0 	5.0 	4.0 	3.0 
ö/ppm 

Figure 5.7: The NAD/NADH region of the 'H NMR spectrum for a reaction of 

[(1
16-hmb)Ru(en)Cl]PF6 (5.2), NAD and HCO2  in mol ratios 1: 2: 25, respectively, 

in D20 at 37C° after 10, 70, 130 and 190 mm. Assignments: a = H2 (NAD); a' = H2 

(1,4-NADH); b = H4 (NAIY); b' = H4 (1,4-NADH). A minor product is also evident 

at long reaction times giving peaks at e.g. 4.95, 5.84 and 8.17 ppm. This may arise 

from 1,6-NADH, but was not seen at higher equivalents of formate (e.g. 1000) [29]. 

binding of formate. The next step is fl-hydrogen elimination, which is thought to 

proceed via ring slippage of the arene, i.e. a change of i6  to 714-coordination (Figure 

5.8) [6].  Hydride transfer to NAD presumably also proceeds via ring slippage [14]. 

These findings led to more detailed studies in collaboration with Dr. Yaw Kai 

Yan, Nanyang Technological University, regarding the mechanism and the kinetics 

of hydride transfer [29].  It was demonstrated that the reactions are zero-order with 

respect to NAD, paralleling the observations of Steckhan et al. [13] and Fish et al. 

[14] that the [Cp*Rh(bpy)H20]2catalysed  reduction of NAD by formate is zero- 
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[016-arene)Ru(en)Clii 	
H20 

[(i6-arene)Ru(en)HCOO] + H 20 

[(ri6-arene)Ru(en)H2O]2 + NADH 

[(16-arene)Ru(en)H20]2 + Cl-+ HCO2 

slow
[(T 6 	

+ NAD 
-arene)Ru(en)H] + CO 2  

Scheme 5.4: Scheme for hydride transfer between formate and NAD catalysed by 

Ru11  asene complexes containing an ethylenediamine chelating ligand. 

Figure 5.8: Possible ring slippage of the arene ring during the formation of [(T6 

hmb)Ru(en)H] via fl-hydrogen elimination from [(1 6-hmb)Ru(en)HCO2]. 

order with respect to NAD. Hydride transfer to NAD was also ruled out as the rate-

determining step in the reduction of NAD by formate catalysed by complex 5.2. 

When NaHCO2 was replaced by NaDCO2, a pronounced kinetic isotope effect was 

observed suggesting that hydride transfer from formate to Ru is the rate-determining 

step. The nature of the arene has been shown to influence the turnover frequency of 

[(116-arene)Ru(en)Cl] complexes, decreasing in the order hmb > indan, p-cymene. 

Removal of chloride resulted in a 20% increase in catalytic activity, suggesting that 

chloride does compete to a significant extent with formate for the catalytic binding 

site. A similar further increase in TOF was achieved by performing the reaction 

under argon, suggesting that one of the reaction intermediates (probably a ruthenium 

hydride complex) is somewhat oxygen-sensitive. 
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5.5 Conclusions 

The formation of hydrido-complexes by cytotoxic Ru" arene complexes via 

fl-hydrogen elimination from the formate-adduct has been demonstrated. The { (7e-

hmb)Ru(en)1 2  moiety has been shown to catalyse the transfer hydrogenation of the 

ketones acetone and pyruvic acid. This system can also catalyse the regioselective 

reduction of NAD under biologically relevant conditions (pD 7.2, 37°C, in water 

and air). The bifunctional, tethered ruthenium arene complex [(1 61  

C6H5(CH2)3NH2)Ru(NO3)2] (5.3) appeared to undergo initially clean formation of 

hydride species, but these transformed readily into a number of other hydride-

containing species, possibly clusters, in solution. 

Appendix A.5 contains Figures A.4.1 -2. 
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Chapter 6 
Future Directions 

6.1 Introduction 

The ultimate goal in research into metal-based anticancer agents is to find a 

drug, which is tumour-specific, has predictable and controllable chemistry with no 

unwanted side-reactions, and can be activated "on demand" by a process from 

outside the body for additional flexibility in the treatment. 

For half-sandwich Ru 11  arene complexes, optimisation of the design as 

anticancer agents depends on control of ligand exchange reactions [1]. The 

framework of these complexes allows a number of variations of the building blocks 

to fine-tune their pharmacological properties [2]. Aspects of design and reactivity of 

Ru11  arene complexes were investigated in this thesis. 

6.2 Ru11  Arene Complexes Containing 0,0-Chelating Ligands 

In Chapter 3 the effect of the chelating ligand in Ru
11  arene complexes on the 

rate and extent of hydrolysis as well as the nucleobase selectivity was described. The 

aqueous chemistry of complexes containing acetylacetonate, maltolate and 

tropolonate were comparable, with similar pK a  values obtained for coordinated water 

and similar reactivity towards nucleobases, both in terms of extent of reaction and 

selectivity. Intriguingly, despite the apparent chemical similarities, only complexes 

containing acetylacetonate and some derivatives were found to be cytotoxic towards 

the A 2780 human ovarian cancer cell line. The observed dependence of cytotoxicity 

on steric bulk around the metal centre is also worth noting. An understanding of the 

factors responsible for activity is of particular interest. 
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• Studies into the reactivity of complexes, varying steric bulk, hydrophobicity and 

concentration, with biomolecules including histidines and sulfur-containing 

molecules might provide clues. 

• Investigations into partition coefficients of complexes might help to gain insights 

into possible ease or difficulty of cell uptake. 

Experiments, which address some of these aspects, are currently underway in the 

Sadler laboratories. 

6.3 Tethered Ru 11  Arene Complexes 

Chapter 4 described the synthesis and characterisation of nitrogen-containing 

tethered Ru" arene complexes. The observed hydrolysis and reactivity with 

nucleobases, in principle, makes this class of complex suitable for potential 

anticancer applications. However, the apparent high reactivity and the strong 

possibility of deactivation, not only by biomolecules, but also from insoluble 

precipitates need to be overcome. One strategy might involve controlled and 

especially stepwise activation of tethered ruthenium arene complexes. Recent results 

showed the pronounced effect of the leaving group (X) on the rate of hydrolysis of 

complexes of the type [(i 6-arene)Ru(en)X]" [3]. Similar studies on tethered Ru 11  

arene seem worthwhile and would involve the following aspects. 

• Synthesis of tethered complexes containing more strongly coordinating ligands 

than chloride, such as pyridines, phosphines or mixed-atom chelating ligands 

(which might be susceptible to stepwise ring opening). 

• Studies of their aqueous chemistry. Particular emphasis should be placed on the 

rate and extent of hydrolysis and the stability at physiological pH. 

• Thus a suitable choice of ligands could enable activation from pH, light or 

hydrolysis. 
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Tethered Ru11  arene complexes could also be used as carrier ligands for DNA 

intercalators or other molecules, which have been used as ligands in other cytotoxic 

complexes, e.g. azopyridines [4]. 

Synthesis and investigation into potential cytotoxicity of tethered Ru 11  arene 

complexes containing DNA intercalators or azopyridines. 

Tethered complexes might be activated by blocking the reactive sites by a 

bidentate chelate ring and opening of the tether. Ideally such reactions would not 

have a high degree of reversibility, since tether closure would produce an unreactive 

species. Such complexes could be useful prodrugs, especially if activation by means 

of pH control or light could be achieved. Strained, two-atom tethered complexes 

would appear to be the most suitable complexes, since breakage of the Ru - N(tether) 

bond was demonstrated in Chapter 4 for such compounds. 

• Solution studies of tethered complexes containing bidentate chelating ligands 

with a view towards tether-opening reactions, initiated by pH, light or strongly 

coordinating biomolecules, e.g. histidine or glutathione. 

Tethered Ru 11  arenes could function as charge carriers, similar to platinum-

containing complexes synthesised by Farrell et al. [5]. Such complexes could be 

synthesised by incorporation of a ligand, which could bindlchelate to both the tether-

fragment and another metal. This could increase solubility of complexes and be 

utilised as a bridge between other metal-containing complexes. In addition, such 

positively-charged complexes could seek out DNA as a target by initial interaction 

with the negatively-charged phosphate backbone. 

• Synthesis of di- or tn-nuclear metal complexes, including tethered Ru11  arene 

fragments as bridging molecules or to increase solubility. 
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6.4 Hydride Transfer Catalysed by Cytotoxic Ru 11  Arene Complexes 

With the finding that A549 lung cancer cells were tolerant to formate up to 

2.5 mM, the possibility of using organometallic complexes as catalytic agents in 

biological systems arises [6].  This could lead to in vivo biocatalysis by 

organometallic complexes, although it would probably require more active catalysts 

than those investigated in Chapter 5. 

• Bifunctional complexes, such as the tethered Ru 1' arenes, could be useful as 

catalysts when bound mono-functionally to proteins or DNA. However, it was 

shown in Chapter 4 that mono-guanine adducts can undergo hydrolysis, which 

could lead to deactivation of such catalysts. Therefore optimisation in the binding 

properties of tethered Ru 11  arene complexes to DNA bases is required. 

• Studies of the stability constants of adducts of tethered complexes with ligands 

such as 9-ethylguanine or histidine need to be carried out. 

. Investigations into transfer hydrogenation of ketones with forrnate as hydride 

donor by such adducts as potential biocatalysts. 
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Table A.3.1: X-ray crystallographic data and refinement parameters for ft71 6-p-

cym)Ru(acac)Cl] (3.5), [(ij  (3.6) and [(i 6-p-

cym)Ru(tBu2acac)Cl} (3.7). 

3.5 	 3.6 	 3.7 

Structure code 

Formula 

Molar mass 

Crystal system 

Crystal size /mm 

Space group 

Crystal 

a/A 

b/A 

ciA 

at deg 

I deg 

yl deg 

TIK 

z 

R [F> 4cr (F)]'1  

[b] 
w 

GOF 

max and mm, / eA 

RummS6 

C 15H21 C102Ru 

369.85 

monoclinic 

0.40 x 0.31 x 0.25 

P 1 21/n 1 

red / block 

9.6398(13) 

13.9993(19) 

11.5499(16) 

90 

96.619(2) 

90 

150 

4 

0.0298 

0.0346 

1.0436 

1.09, -0.48 

Rum513 

C25H25C102Ru 

493.99 

monoclinic 

0.78 x 0.24 x 0.12 

P 1 21/c 1 

red/lath 

16.254(2) 

7.6483(9) 

17.060(2) 

90 

102.909(2) 

90 

150 

4 

0.0307 

0.0353 

1.0654 

1.06, -0.48 

RumS 14 

C21 H33C102Ru 

454.01 

orthorhombic 

1.12 xO.lOxO.10 

Pna2l 

red / needle 

11.85 1(3) 

16.854(5) 

10.668(3) 

90 

90 

90 

150 

4 

0.0280 

0.0280 

1.0896 

0.94, -0.94 

[a] R = JlF0I - IFI1/IF0I. [b] R = [w(F02 - F 2)2/wF02)} 112 . 

[c] GOF = [w(F02  - F 2)2/(flP)] 1a, where n = number of reflections and p = number of parameters. 
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Table A.3.2: X-ray crystallographic data and refinement parameters for [(7 6-p-

cym)Ru((CF3)2acac)Cl] (3.8), [(ij  (3.24).2H20 and ft116-p-

cym)Ru(AcO)Cl] (3.26). 

3.8 3.24.2H20 3.26 

Structure code Mm0512 Rumm45 Rmmsl8 

Formula C 1511 15C1F602Ru C 16H23C105Ru C 12H 17C102Ru 

Molar mass 477.79 431.86 329.78 

Crystal system monoclinic monoclimc monoclimc 

Crystal size 1mm 0.19 x 0.14 x 0.07 0.96 x 0.30 x 0.17 0.51 x 0.20 x 0.20 

Space group P 1 21/n 1 P21/c C21c 

Crystal brown / block red / lath red / needle 

a/A 10.6824(15) 13.6816(4) 15.1119(16) 

b/A 13.0258(18) 8.9244(2) 12.5412(13) 

c / A 12.2250(18) 14.4691(4) 14.5525(16) 

a/deg 90 90 90 

/31 deg 91.012(3) 96.783(2) 109.182(2) 

y/deg 90 90 90 

T/K 150 150(2) 150(2) 

Z 4 4 8 

R [F> 4a (F)][aI 0.0459 0.0252 0.0241 

RW "  0.0475 0.0620 0.0609 

GOFtc3  1.0417 1.079 1.032 

Ap max and mm, i eA 3  1.49, -1.23 0.586, -0.387 0.720, -0.394 

[a] R = jIF0I - IFII/IF0l. [b] R = [w(F02  - 

[c] GOF = [w(F02  - F2)2/(n-p)] , where n = number of reflections and p = number of parameters. 
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Table A.3.3: X-ray crystallographic data and refinement parameters for [(p6-p- 

cym)Ru(Ph2acac)H20}CF3SO3 (3.21b), 	[( 6-p-cym)Ru(trop)H20]CF3SO3 (3.25b) 

and [(71 	(3.20). 

3.21b 3.25b 3.20 

Structure code Rumm44 Rutrcy Mm56ad 

Formula C30H39F308RuS C 18HF306RuS C22H3()F6N502PRu 

Molar mass 717.76 522.47 642.55 

Crystal system triclinic triclinic triclinic 

Crystal size 1mm 0.71 x 0.39 x 0.38 0.25 x 0.17 x 0.14 0.19 x 0.15 x 0.15 

Space group P-i P-i P-i 

Crystal orange / block red I block orange I aggregate 

a/A 12.6051(3) 9.4405(2) 8.4979(15) 

b/A 16.3880(3) 11.0375(2) 10.6334(17) 

c/A 16.6201(4) 11.6642(3) 14.694(2) 

a/deg 80.3290(10) 109.8670(10) 89.838(9) 

fl/deg 76.2160(10) 109.5840(10) 78.998(9) 

y/deg 79.1430(10) 102.5830(10) 85.403(9) 

TIK 150 150(2) 150(2) 

Z 4 2 2 

R [F> 4a (F)] 1  0.0368 0.0335 0.0601 

RW "  0.0963 0.0840 0.1609 

GOF"' 0.9965 1.110 1.044 

Ap max and mm, /ek3  1.48, -1.70 0.749, -0.561 0.736, -0.519 

[a] R = jIF0I - FIIIjF0 I. [b] LA = [w(F02 - F 2)2/wF02)]"2. 

[c] GOF = [w(F02  - F2)2/(n-p)] 1a, where n = number of reflections and p = number of parameters. 
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Table A.3.4: X-ray crystallographic data and refinement parameters for [(ij 

 (3.22). 

3.22 

Structure code 

Formula 

Molar mass 

Crystal system 

Crystal size /mm 

Space group 

Crystal 

a/A 

b/A 

iA 

al deg 

/3/ deg 

yl deg 

TIK 

z 

R [F> 4a (F)IFa] 

RW ' ' 1  

GOF 

\p max and mm, / ek3  

Rumm6a 

C47H50F3N506RuS 

971.05 

monocinic 

0.61 x 0.24 x 0.20 

C 2/c 

orange / block 

33.3763(6) 

21.7362(5) 

27.4616(5) 

90 

104.9664(11) 

90 

150(2) 

16 

0.0703 

0.2131 

1.092 

1.95, -0.95 

[a] R = jIF0I - IFlVjF0I. [b] R = [w(F02  - F2)2/wF02)]"2. 

[c] GOF = [w(F02  - F 2)2/(n-p)], where n = number of reflections and p = number of parameters. 
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Figure A.3.1: Dependence on pH of the low field region of the 1H NMR spectrum of 

Ru11  p-cymene 0,0-chelated complexes as shown for a solution of [(1 6-p-

cym)Ru(trop)H20]NO3 (3.25a, 10% D20/ 90% HO, 0.1 M NaC104, 298 K). 

Assignments: a = Hb, Hd; b = Ha, He; c = Hc; d+e = p-cymene ring H. Signals due 

to formation of [((ij  (3.27): f+g = p-cymene ring H. 
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Figure A.3.2: Dependence of the 1 H NMR chemical shift of the tropolonate Hc 

resonance of [(il  (3.25a, 10% D20/ 90% H20, 0.1 M 

NaC104, 298 K) on pH. The line is a computer fit giving pK a  (H20) = 9.12 ± 0.01. 
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Figure A.3.3: Dependence of the 'H NMR chemical shift of the maltolate H 

(adjacent to the heterocyclic oxygen) resonance of [(il  

(3.29, 10% D 20/ 90% H20, 0.1 M NaC104, 298 K) on pH. The line is a computer fit 

giving PKa  (H20) = 9.23 ± 0.01. 
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t=2d 19h 	 b 	Nil 	b 

t= 10 mm 

.... ......................... I 

5.65 	 5.55 	 5.45 	 5.35 
8/ ppm 

Figure A.3.4: The p-cymene ring proton region of the 1 H NMR spectrum of [(ij 

 (3.26) in CDC1 3  at 298 K, after 10 min and 2 d 19h, respectively. 

The new product could be [(ij  (3.1). Assignments: a = p-cymene CH 

(3.26); b = p-cymene CH (3.1). 
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91 

8.9 	 8.2 	 7.5 
S/ppm 

Figure A.3.5: The 9EtG H8 proton region of the 'H NMR spectrum of a reaction 

between the dimer [((ij  (3.27) with 9-ethylguanine in D 20 at 

an initial pH*  of 7.27 after 21 h. The mol ratio Ru : 9EtG is 1: 1. Assignment: a = 

free 9EtG. 
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.

I  

8.0 	 7•7 	 7.4 	 7.1 
6/ppm 

Figure A 3.6: Low field region of the 1H NMR spectrum of an equilibrium solution 

containing guanosine and [(ij  (3.23) in a 1:1 mol ratio in 10% 

D20/ 90% H20 at pH 6.55 and 298 K. The product is [(ij  

(3.32). Assignments: a = H8 (free Guo); b = H8 (3.32); c = Hb, Hd (3.23); d = Ha, 

He (3.23); e = Hb, Hd (3.32); f = Ha, He (3.32); g = He (3.23); h = Hc (3.32). X 

corresponds to ribose. 
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C 

8.05 	 7.95 	 7.85 	 7.75 
s/ppm 

Figure A 3.7: Low field region of the 1H NMR spectrum of an equilibrium solution 

containing guanosine and [( 6-p-cym)Ru(ma)Cl] (3.24) in a 1:1 mol ratio in 10% 

D201 90% H20 at pH 6.12 and 298 K. The product is [(ij  

(3.33). Assignments: a = H8 (free Guo); b = H ma (3.24); c = H8 (3.33); d = H ma 

(3.33). X corresponds to ribose. 
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Figure A.3.8: Dependence on pH of the low field region of the 1 H NMR spectrum of 

a solution containing guanosine and [(ij  (3.23) in 10% D 20/ 

90% H20 at 298 K. The product is [( 6-p-cym)Ru(trop)Guo-N7] (3.32). 

Assignments: a = H8 (free Guo); b = H8 (3.32). 
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Figure A.3.9: Dependence of the 'H NMR chemical shift of the guanosine H8 

resonance of [( 6-p-cym)Ru(trop)Guo-N7r (3.32, 10% D20/ 90% H20, 298 K) on 

pH. The line is a computer fit giving pK a  (NiH) = 9.07 ± 0.01 
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Figure A.3.10: Dependence of the 1H NMR chemical shift of the guanosine H8 

resonance of [( 6-p-cym)Ru(ma)Guo-N7] (3.33, 10% D201 90% H20, 298 K) on 

pH. The line is a computer fit giving pK a  (NiH) = 9.11 ± 0.01. 
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Figure A.3.11: Low field region of the 1H NMR spectrum of a solution containing 

adenosine and [( 6-p-cym)Ru(trop)C1] (3.23) in a 1:1 mol ratio in 10% D 20/ 90% 

H20 at pH 7.35 and 298 K. The products are [( 6-p-cym)Ru(trop)Ado-N7 (3.36) 

and [( 6-p-cym)Ru(trop)Ado-N1] (3.37). Assignments: a = H8 (3.36); b = H8 (free 

Ado); c = H8 (3.37); d = H2 (3.37); e = H2 (3.36); f = H2 (free Ado); g = Hb, Hd 

(3.23); h = Ha, He (3.23); i = Hb, Hd (3.36); j = Hb, Hd (3.37); k = Ha, He (3.36); 1 = 

Ha, He (3.37); m = Hc (3.23); n = Hc (3.36); o = He (3.37). X corresponds to ribose. 
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8.7 	 8.4 	 8.1 	 7.8 
s/ppm 

Figure A.3.12: Low field region of the 1 H NMR spectrum of a solution containing 

adenosine and [(ij  (3.24) in a 1:1 mol ratio in 10% D201 90% 

H20 at pH 7.22 and 298 K. The products are [( 6-p-cym)Ru(ma)Ado-N7] (3.38) 

and [( 6-p-cym)Ru(ma)Ado-N1] (3.39). Assignments: a = H8 (3.38); b = H8 (free 

Ado); c = H8 (3.39); d = H2 (3.39); e = H2 (3.38); f = H2 (free Ado); g = H ma 

(3.24); h = H ma (3.38); i = H ma (3.39). X corresponds to ribose. 
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Figure A.3.13: Dependence of the H8 and H2 1 H NMR chemical shifts of adenosine, 

[( 6-p-cym)Ru(ma)Ado-N7] (3.38) and [(ij  ] (3.39) (10% 

D20/ 90% H20, 298 K) on pH. The line for H8 (free Ado) is a computer fit giving 

PKa  (NiH) = 3.54 ± 0.01. For clarity only one plot per species is shown. 
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Figure A.3.14: The 1 H NMR spectrum of an equilibrium solution containing 

guanosine, adenosine and [(Tj 	(3.23) in a Ca. 1:1:1 mol ratio in 

90% H20/ 10% D20 at pH 6.63 and 298 K. The products are 

cym)Ru(trop)Guo-N7} (3.32), [(ij 	(3.36) and [(r 6-p- 

cym)Ru(trop)Ado-N1] (3.37). Assignments: a = H8 (3.36); b = H8 (free Ado); c = 

H8 (3.37); d = H2 (3.37); e = H2 (3.36); f = H2 (free Ado); g = H8 (free Guo); h = 

H8 (3.32). X corresponds to ribose. 
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Figure A.3.15: The 'H NMR spectrum of an equilibrium solution containing 

guanosine, adenosine and [(ij  (3.24) in a Ca. 1:1:1 mol ratio in 

90% H20/ 10% D 20 at pH 6.22 and 298 K. The products are I(1-p-

cym)Ru(ma)Guo-N71 (3.33), [(TI  (3.38) and [(if-p-

cym)Ru(ma)Ado-N1] (3.39). Assignments: a = H8 (3.38); b = H8 (free Ado); c = 

H8 (3.39); d = H2 (3.39); e = H2 (3.38); f = H2 (free Ado); g = H8 (free Guo); h = 

H8 (3.33); i = H ma (3.38); j = H ma (3.39); k = H ma (3.33). X corresponds to 

ribose. 
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Table A.4.1: X-ray crystallographic data and refinement parameters for [(16:1i1 

C6H5(CH2)3NH2)RuC12] (4.4), [(i1 6:1 1 -C6H5(CH2)2N1H2)RuC12I (4.5) and [(16:1 1  

C6H50(CH2)2NH2)RuC12] (4.6). 

4.4 4.5 4.6 

Structure code Mm29ru Mm24ru Mm3Oal 

Formula C9H13C12NRu C811 1  1 C12NTRu C8H 1  1 C12NORu 

Molar mass 307.18 293.15 309.16 

Crystal system 
Monoclinic twined via Orthorhombic Monoclinic 

2[100] 

Crystal size /mm 0.26 x 0.20 x 0.18 0.13 x 0.12 x 0.093 0.39 x 0.38 x 0.34 

Space group P 1 21/c I Pnma. P 1 21/n 1 

Crystal red / block orange / block orange / block 

a/A 10.857(3) 8.8880(11) 7.6443(2) 

b/A 10.604(3) 10.8145(13) 8.0013(2) 

c/A 8.992(3) 9.9414(12) 16.0889(4) 

a/deg 90 90 90 

/31 deg 90.43 8(6) 90 99 .4630(10) 

y/deg 90 90 90 

T/K 150 150 150 

Z 4 4 4 

R [F> 4cr (F)I[a] 0.0612 0.0251 0.0232 

RW 1  0.1707 0.0536 0.0613 

GOF' 0.9901 1.030 1.0816 

Ap max and mm, / eA 3  2.63, -1.16 0.580, -0.407 0.65, -0.50 

[a] R = jIF0I - IFII/IF0I; [b] R = [w(F02 - F2)2/wF02)]112; 

[c] GOF = [w(F02  - F 2)2/(n-p)] where n = number of reflections and p = number of parameters. 
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Table A.4.2: X-ray crystallographic data and refinement parameters for [( 6 :q 1 -

C6H5(CH2)C5H4N)RuC12] (4.7), [(16:1  '-C6H5(CH2)3NH2)Ru(NO3)2] (4.10) and 

[(16 :1 1 -C6H5(CH2)3NH2)Ru(9EtG)2](CF3SO3)2 (4.11b). 

4.7 4.10 4.11b 

Structure code Mm3 iru Ps0502 Ps05 14 

Formula C 12H1 1 C12NRu C9H13N306Ru CH32F6N 1 1 O9RuS2  

Molar mass 341.20 360:29 909.79 

Crystal system monoclinic monoclinic monoclinic 

Crystal size /mm 0.45 x 0.23 x 0.15 0.38 x 0.14 x 0.12 0.55 x 0.53 x 0.39 

Spacegroup P121/ni P21/n P121/cl 

Crystal orange / plate orange / block yellow / block 

a /A 6.7289(8) 8.02280(10) 21.4440(10) 

b/A 13.4867(17) 11.8160(2) 12.2790(6) 

c / A 12.3368(15) 12.6372(2) 15.9360(8) 

a'/deg 90 90 90 

/3/ deg 93.050(2) 100.7630(10) 111.240(3) 

y/deg 90 90 90 

T/K 150 150(2) 293 

Z 4 4 4 

R [F > 4a (F)I[aJ 0.0260 0.0213 0.0446 

R W 1"1  0.0627 0.0576 0.0539 

GOFEC] 0.9292 1.051 1.0058 

Ap max and mm, / ek3  0.61, -0.52 0.584, -0.564 2.08, -0.80 

[a] R = IIF0I - IFII/jF0I; [b] R = [ w(F02 - Fc2)2IwFo2)]la; 

[c] GOF = [w(F02 - F 2)2/(n-p)], where n = number of reflections and p = number of parameters. 
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Table A.4.3: X-ray crystallographic data and refinement parameters for [(16:11 

C6H5(CH2)3NH2)Ru(ox)1 (4.14), [(1 6 :1 1 -C6H5(C6H4)NH2)Ru(ox)] (4.16) and [(ii6:1 
1 

C6H5(CH2) 3NH2)Ru(acac)]PF6 (4.18). 

4.14 	 4.16 	 4.18 

Structure code Rumm49 Ps0508 RummS7 

Formula C 1 1 H 13NO4Ru C 14H 1 1 NO4Ru C 14HNO2RuPF6  

Molar mass 324.29 358.31 480.35 

Crystal system monoclinic monoclinic triclinic 

Crystal size 1mm 0.26 x 0.19 x 0.16 0.54 x 0.16 x 0.10 0.53 x 0.38 x 0.37 

Space group P 21/c P 21/c P-i 

Crystal yellow I block yellow / needle yellow / block 

a / A 10.1000(5) 18.1891(4) 8.3030(2) 

b / A 7.9721(4) 6.5799(2) 9.4955(2) 

c/A 13.9070(6) 31.3440(7) 11.8786(2) 

a/deg 90 90 93.8300(10) 

/3/ deg 106.716(2) 93.598(2) 107.3820(10) 

y/deg 90 90 104.1680(10) 

TI K 293(2) 150(2) 150(2) 

Z 4 12 2 

R [F > 4a (F)j 0.0379 0.0337 0.0263 

R W 11  0.0982 0.0768 0.0671 

GOF' 1.041 1.037 1.051 

Ap max and mm, I ek3  2.286, -1.13 1 1.050, -0.550 0.634, -0.929 

[a] R = jIF0I - IFII/IF0I; [b] R = [w(F02 - F2)2/wF02)]112; 

[c] GOF = [w(F02  - F2)2/(n-p)] 112, where n = number of reflections and p = number of parameters. 
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Table A.4.4: X-ray crystallographic data and refinement parameters for [(1 6:1 1  

C6H5(CH2) 3NH2)Ru(L-pal)]PF6  (4.20), [( 6-etb)Ru(bap)Cl 2] (4.31) and [(16:1 1  

C6H5(C6H4)NH3)RuC13 ] (4.32). 

4.20 	 4.31 	 4.32 

Structure code Ps0526 Ps0501 Rumm34 

Formula C19H27F6N203PRu C21 H22C12N202Ru C 12H 12C13NRu 

Molar mass 577.47 506.39 377.66 

Crystal system monoclinic Orthorhombic monoclinic 

Crystal size 1mm 1.70 x 0.19 x 0.19 0.41 x 0.28 x 0.21 0.61 x 0.49 x 0.24 

Spacegroup - 	P21 Pbca P121/ni 

Crystal orange I needle dark red I block red / block 

a / A 10.0626(4) 14.5555(3) 13.1377(4) 

b/A 21.0481(9) 11.1869(3) 6.8928(2) 

c/A 11.3014(5) 25.3222(5) 15.0526(5) 

a/deg 90 90 90 

fl/deg 113.391(2) 90 110.648(2) 

y/deg 90 90 90 

TIK 150(2) 150 150 

Z 4 8 4 

R [F > 4cr (F)1[al 0.0405 0.0254 0.0235 

RW "1  0.0970 0.0605 0.0603 

GOF[c l 1.010 0.9082 1.0634 

max and mm, / ek3  0.747, -0.477 0.70, -0.59 0.61, -0.65 

[a] R = jIF0I - IFILIIF0I; [b] R = [ w(F02 - F 2)2/wF02)]; 

[c] GOF = [w(F02  - F 2)2/(n-p)} 1'2 , where n = number of reflections and p = number of parameters. 
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Figure A.4.1: it - it Stacking interactions between neighbouring pyridine rings in the 

X-ray crystal structure of [(r1 6 :T'-C6H5(CH2)C5H4N)RuCl2] (4.7). 
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Figure A.4.2: The tether backbone proton region of the 'H NMR spectrum for a 

chloride titration of [(Ti6:1'-C6H5(CH2)2NH2)RuCl21  (4.5) (6.8 mM Ru) in D 20 at 298 

K. Assignments: a = [(i6 :ri '-C6H5(CH2)2NH2)Ru(H20)2] 2 ; b = 

C6H5(CH2)2NH2)Ru(H20)Cl]; c = [(1 6 :1 '-C6H5(CH2)2NH2)RuC12]. 
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Figure A.4.3: The arene proton region of the 'H NMR spectrum for a chloride 

titration of [(i 6 :ri 1 -C6H 5(CH2) 3NH2)RuCl2] (4.4) (6.5 mM Ru) in D20 at 298 K. 

Assignments: a = [(1 6 :1 1 -C6H5(CH2)3NH2)Ru(H20)2 ] 2 ; b = 

C6H5(CH2 )3NH2)Ru(H20)Cl]; c = [(1 6 11 '-C6H5(CH2) 3NH2)RuC12]. 

Figure A.4.4: Dimer formation via H-bonds between the NH 2  and nitrate oxygen 

atoms 011 and 022 in the crystal structure of [(1 1 :16-C6H5(CH2)3NH2)Ru(NO3)2] 

(4.10). 
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Figure A.4.5: The unrefined X-ray crystal structure of [( 6 :11 1 -

C6H5(CH2)3NH2)Ru(9EtG) 2] (NO3)2 and atom numbering scheme. 
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Figure A.4.6: Plot of the ratio of the concentrations of the fully aquated over the 

mono-aquated ruthenium species (A) and the ratio of the concentrations of the mono-

aquated over the fully chlorinated (B) ruthenium species versus the concentration of 

free chloride for a chloride titration of [(16:1  '-C6H5(CH2)2NH2)RuC1 2] 4.5 (ca. 6.5 

mM at start of titration) in D20 at 298 K. The slopes give the equilibrium constants 

K 1  = 153 mM (A) and K2  = 6.5 mM (B), respectively. With the resulting graph lines 

set to go through the origin K 1  = 154 mM, K2  = 6.5 mM are obtained. 
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Figure A.4.7: The high-field region of the 1 H NMR spectrum of [(1 61  

C6H5(CH2)3NH2)Ru(9EtG) 2
] 2 

 (4.11a) in D20, 4.3 mM Ru, at pH* = 6.47 and 298 K. 

Assignments: a+a' = CH2  (9EtG); b, c, d = (CH 2)3  (tether); e= CH 3  (9EtG). 
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Figure A.4.8: Interactions in the X-ray crystal structure of [(i 6 :r ' -

C6H5(CH2) 3NH2)Ru(ox)] (4.14). A: Formation of dimers via H-bonds between an 

amine proton and oxalate oxygens O1A and 02A. B: H-bonds between an amine 

proton and oxygen 01 resulting in the formation of zig-zag chains. C: Dimer 

formation via short contacts between oxalate oxygen 02 and arene protons. 
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Figure A.4.9: Interactions in the X-ray crystal structure of [(1 6 :1 I  

C6H 5(C6H4)NH2 )Ru(ox)] (4.16). A: Chain formation via H-bonds between amine 

protons and oxalate oxygens 051 and 061. B: H-bonds between an amine protons 

and oxygens 052, 053, 062 and 063 resulting in the formation of chains. C: Chain 

formation between molecules A and B via short contacts between oxalate oxygens 

and arene protons. D: Chain formation of molecule C via short contacts between 

oxalate oxygens and arene protons. 
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Figure A.4.10: Chain formation via H-bonds between acac oxygens with an arene 

proton and an (CH 3 )acac proton, respectively, in the X-ray crystal structure of 

[(i6:71'-C6H5(CH2)3NH2)Ru(acac)IPF6 (4.18). 

Figure A.4.11: Network of H-bonds in the X-ray crystal structure of [(1 6 :

11
1-

C6H5(CH2)3NH2)Ru(L-pal)]PF 6  (4.20). 
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Figure A.4.12: The influence of amine HID exchange of [(1 6:1 1  

C6H5(CH2)2NH2)Ru(ox)] (4.15) on the signals for the adjacent CH 2  group. 
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Figure A.4.13: The 2D NOESY 1 H NMR spectrum of [(1 6:1 1  

C6H2(CH3)3(CH2)2NH2)RuC12] (4.29) in DMSO-d6 at 298 K. The NH2 proton signals 

appear in the region of 5.4 - 4.0 ppm and the protons of the tether backbone in the 

regions of 3.7 - 3.4 ppm and 3.1 —2.5 ppm, respectively. 
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Figure A.4.14: Interactions in the X-ray crystal structure of ft716:T1-

C6H5(C6H4)NH3)RuC13] (4.32). A: Chain formation via intermolecular H-bonds 

between amine protons and chloride ligands. The intramolecular Cll•• •NH H-bond is 

also shown. B: it - it Stacking interactions between neighbouring aminobenzene 

rings. 
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Figure A.5.1: Part of the 'H NIVIR spectrum of [(q 6-ind)Ru(en)C1]PF6 (5.1) in the 

presence of sodium formate (ca. 20 mol equiv) in 90% H201 10% D20 at 298 K and 

pH = 9.61. Assignments: am = NH2 (en); are = arene protons; w = suppressed water; 

md = CH2  groups (md); en = CH 2  groups (en). 
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Figure A.5.2: The 'H NMR spectrum of [(1 6 :71 1 -C6H5(CH2)3NH2)Ru(NO3)2] (5.3) 

(7.1 mM Ru) and sodium formate (100 mol equiv) in 90% H201 10% D20 at 310 K, 

after incubation for 150 min at 310 K, suggesting the presence of a number of 

hydride-containing species in solution. 
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