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Abstract

Through cooperation, agents can transcend their individual capabilities and achieve

goals that would be unattainable otherwise. Existing multiagent planning work con-

siders each agent’s action capabilities, but does not account for distributed knowledge

and the incompatible views agents may have of the planning domain. These divergent

views can be a result of faulty sensors, local and incomplete knowledge, and outdated

information, or simply because each agent has conducted different inferences and their

beliefs are not aligned.

This thesis is concerned with Multi-Perspective Cooperative Planning (MPCP), the

problem of synthesising a plan for multiple agents which share a goal but hold different

views about the state of the environment and the specification of the actions they can

perform to affect it. Reaching agreement on a mutually acceptable plan is important,

since cautious autonomous agents will not subscribe to plans that they individually

believe to be inappropriate or even potentially hazardous.

We specify the MPCP problem by adapting standard set-theoretic planning nota-

tion. Based on argumentation theory we define a new notion of plan acceptability, and

introduce a novel formalism that combines defeasible logic programming and situation

calculus that enables the succinct axiomatisation of contradictory planning theories and

allows deductive argumentation-based inference.

Our work bridges research in argumentation, reasoning about action and classi-

cal planning. We present practical methods for reasoning and planning with MPCP

problems that exploit the inherent structure of planning domains and efficient planning

heuristics. Finally, in order to allow distribution of tasks, we introduce a family of

argumentation-based dialogue protocols that enable the agents to reach agreement on

plans in a decentralised manner.

Based on the concrete foundation of deductive argumentation we analytically in-

vestigate important properties of our methods illustrating the correctness of the pro-

posed planning mechanisms. We also empirically evaluate the efficiency of our al-

gorithms in benchmark planning domains. Our results illustrate that our methods can

synthesise acceptable plans within reasonable time in large-scale domains, while main-

taining a level of expressiveness comparable to that of modern automated planning.
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Chapter 1

Introduction

Modern computer systems are becoming increasingly complex and interconnected,

providing an extensive infrastructure used by multiple human users and artificial enti-

ties. Interesting problems arise as a result of the activities and interactions among such

entities. Multiagent systems research (Wooldridge, 2002; Weiss, 1999) is concerned

with the individual reasoning tasks and the interactions among autonomous entities

called agents. Agents perform actions in order to bring about their goals, and since in

many cases individual actions are not sufficient, they form plans involving sequences

of actions.

In complex domains, achieving one’s own goals may not be always feasible. This

can be the result of negative interactions with other agents, lack of information, lim-

ited individual capabilities, or requirements for joint effort (e.g. lifting a heavy object).

To overcome these issues, agents can coordinate to minimise the negative interactions

among their activities or maximise synergies. In a similar fashion, cooperative agents

can collaborate by following joint plans in order to achieve common goals. Coopera-

tion and coordination enable individual agents to transcend their individual capabilities

and achieve goals that would be unattainable otherwise.

Multiagent planning algorithms (de Weerdt and Clement, 2009) address problems

such as synthesising a plan for multiple, independently and often concurrently acting

agents, or coordinating multiple, independently computed individual plans. Existing

multiagent planning work usually takes account of distributed action capabilities, but

not of distributed knowledge and the incompatible views agents may have of the plan-

ning domain. And yet, there are many situations where this problem can arise in com-

plex multiagent scenarios. For example, this can be the result of faulty sensors, local

and incomplete information, outdated beliefs, or simply because different agents have

1
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Figure 1.1: Motivational example of a MPCP problem. Two agents Ag1 and Ag2 must

come up with a plan that navigates the robot safely to the exit. The left figure depicts

the planning knowledge of Ag1, whereas the picture on the right illustrates the beliefs

of Ag2

Ag1 Ag2

conducted different inferences and their beliefs are not aligned. Cautious autonomous

agents will not subscribe to plans that they consider to be harmful, ineffective or ques-

tionable. In order to reach agreement, agents need to align their knowledge and plans

using mutually acceptable information.

Argumentation (Dung, 1995) has attracted much attention as a technique for re-

solving conflicts between agents, mainly due to its strong logical foundation and its

suitability for use in multiagent situations. In previous work, argumentation methods

have been proposed for problems related to multi-agent coordination, deliberation and

practical reasoning (Sycara, 1989; Kraus et al., 1998; Parsons et al., 1998; Atkinson

and Bench-Capon, 2007b; Amgoud et al., 2011).

This thesis proposes an argumentation-based approach that enables agents to re-

solve conflicts in their planning beliefs, and reach agreement on plans. We call this pro-

cess Multi-Perspective Cooperative Planning under ontological agreement (MPCP). It

deals with the problem of synthesising plans for multiple agents which have different,

potentially conflicting views of the planning domain.

1.1 Motivating Example

Consider the example depicted in Figure 1.1. Two agents Ag1 and Ag2 share the goal

of leading a robot safely to the exit location in a grid-world. They share informa-
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tion regarding the location of the robot and the exit. Also, they both believe that the

middle-left location is on fire. However, Ag2 holds a more accurate specification of

the behaviour of the fire, and believes that it is not safe to cross a location containing

flammable objects (depicted by the square), if the nearby location is on fire. Also,

Ag2 holds the belief that there is a locked door in middle-right grid location, which is

something Ag1 is unaware of.

Based on their individual beliefs, the agents come up with different plans. Ag1

synthesises the plan 〈down, down, left, exit〉, whereas Ag2 comes up with the plan

〈right, down, down, left, left, exit〉. Unless one agent can persuade the other about

their beliefs (e.g. Ag2 persuading Ag1 that the door in the middle-right location is

not locked), both agents will not accept the plan synthesised by the other party. If they

utilise their collective beliefs, they may reach the decision to follow the alternative plan

〈left, pickup, right, right, down, unlock, down, left, left, exit〉.

1.2 Multi-Perspective Cooperative Planning

Take the standard planning problem specification P = 〈F, I,O,G〉, with fluents F that

are used to describe an environment state as a conjunction of logical literals, an initial

state I, operators O that describe the agents’ actions in terms of how they transform

states, and a goal state G. This thesis investigates the problem of synthesising plans

that can be defended against all possible objections based on a collection of individual

specifications Pi of the same planning problem, assuming that the fluent sets Fi and Gi

are shared. In other words, we address the problem of multi-perspective cooperative

planning under ontological agreement.

Assume a coalition of planning agents, each with a private set of beliefs
describing the initial state of the domain and the specification of the plan-
ning operators, and assume that they are trying to achieve a shared goal.
Construct a plan (i.e. a sequence of actions), that is entailed from the
collective beliefs of the agents, and that can be defended against all ob-
jections.

The MPCP problem arises in multiagent systems due to inconsistent views agents have

about the planning domain. MPCP is also relevant from an individual agent perspective

when multiple, potentially contradicting, sources of information are available. Even

though MPCP is a multiagent planning problem, as it involves multiple agents seeking

agreement on plans, the plan discussed might be a single-agent plan. Depending on the
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context, solutions may be synthesised in a centralised or distributed setting, and these

solutions may involve actions that are executed by multiple agents. The employed

model involves a classical, sequential plan representation.

MPCP supports distributed action execution, provided that the resulting plan is

encoded as a sequence of ground planning operators. Distributed action execution can

be encoded by reserving a term, within every planning operator, to encode the agent

that will perform this action. Equivalently, joint actions (e.g. lifting a couch) can be

represented using a vector of agents. The language does not involve concurrent actions

and does not address synchronisation issues, but everything that can be represented as

a sequential plan is possible. A restricted form of concurrency can be supported within

the limits of existing, conventional planning domain transformations (e.g. simple-time

transformations). This model allows the representation of the action capabilities of

heterogenous agents in the form of action preconditions (e.g. agents belong to classes,

and an action is only possible to be executed by agents of a specific class). Similar to

other aspects of the MPCP problem, the agents may hold contradictory views about

such information.

The formal specification of the problem depends on the following:

Formalism: The formalism specifies the representation of the MPCP problem. It is

related to the language that is used to specify planning domains and the structure

of the axiomatised theories. An important characteristic of the formalism is its

expressiveness, which governs its ability to encode rich domains in a succinct

representation, and imposes additional requirements on the reasoning mecha-

nism.

Plan derivation: Given a collective planning theory, which summarises the agents’

beliefs about the state of the world and the specification of the planning, a deriva-

tion mechanism must specify the conditions under which plans are entailed from

the agents’ planning theories, even if objections to these plans exist.

Plan acceptability: Due to the potentially contradictory nature of the agents’ be-

liefs, plan derivation cannot in itself define which plans should be accepted. The

notion of plan acceptability specifies how derived plans are evaluated against

potential objections that arise from the agents’ theories.

Knowledge: Planning problems usually take into account structured information

about the initial state and the operator specifications. The resolution of con-



Chapter 1. Introduction 5

tradictions may require additional beliefs regarding the credibility and sources

of these pieces of information. Such meta-information does not appear in the

agents’ planning problem specifications.

1.2.1 Argumentation-Based Methods for MPCP

MPCP can be considered a compound problem consisting of a planning and a decision-

making sub-problem. The planning problem involves the synthesis of plans that are

entailed by the information held by the agents. This information is potentially con-

tradictory, i.e. may lead to contradicting conclusions, which leads to the second sub-

problem. The agents must evaluate whether plans can be defended against the ob-

jections that can be raised from the agents’ beliefs. This way, we view MPCP as a

planning problem with the additional constraint of plan acceptability.

In order to solve the first problem, we adapt the classical planning problem by

relaxing the implicit assumption that the planning beliefs are non-contradictory, i.e.

that they do not entail contradicting conclusions, and allow the agents to hold differ-

ent specifications of the same planning operators. The resulting set-theoretic planning

formalism enables planning with states which may contain contradicting information.

Solutions to this problem are candidate plans, i.e. potential solutions that can be de-

rived from the planning beliefs.

The decision-making sub-problem of MPCP is based on the specification of plan

acceptability, which defines when it is rational to accept a candidate plan. In order to

formalise this notion based on deductive argumentation, we propose defeasible situ-

ation calculus, a novel formalism based on the combination of situation calculus and

defeasible logic programming, which allows for reasoning about plans based on con-

tradictory planning beliefs.

We bridge the two formalisms and provide a translation mechanism and a scheme

for argumentation-based inference using the set-theoretic notation. The close rela-

tion to classical planning allows the exploitation of efficient state-of-the-art planning

techniques, which can achieve scalable plan synthesis in complex domains. The de-

ductive argumentation approach allows the formal specification of the problem based

on standard argumentation semantics, while relying on a purely logic-based argument

structure. In order to optimise the efficiency of our methods we exploit the inherent

structure of the planning domain with respect to both the planning and the argumenta-

tion sub-problems.
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The presented research has been conducted with practicality in mind. Given the

fundamental tradeoff between representation expressiveness and reasoning tractability,

we focus on a middle-ground that is expressive enough to allow succinct implementa-

tion of planning domains, but at the same time is practical, and enables reasoning with

reasonably complex domains.

1.2.2 Research Objectives

The core purpose of this work is the formulation of practical and theoretically sound

methods for dealing with MPCP problems. Our research hypothesis is outlined as

follows:

We can specify and solve the problem of multi-perspective cooperative
planning based on deductive argumentation, in a way that allows the syn-
thesis of solutions in an effective and efficient manner.

By the term deductive argumentation, we imply that every argument must have the

form of a deductive proof. Effectiveness refers to the quality of the specified solutions,

in terms of termination, soundness and completeness. Finally, efficiency refers to the

ability of the proposed mechanisms to solve MPCP problem instances of considerable

size in reasonable times.

The problem specification of MPCP and our research hypothesis raise the following

questions:

• Is the problem of multi-perspective cooperative planning common?

• Is argumentation theory suitable for the specification of the MPCP problem?

• What is the quality of the proposed solution to the problem of MPCP?

The first question is related to the significance of MPCP. It examines the commonality

of MPCP problem instances in multiagent domains. The second question is related to

the argumentation-theoretic specification of the problem. This question can be further

refined to two sub-questions. On the one hand, it inquires whether the argumentation

formalism can adequately specify the notion of plan acceptability, while on the other,

it refers to the expressiveness of this formalism and its ability to represent planning

domains in a succinct manner. The final question refers to the notions of effectiveness

and efficiency. The former describes whether the proposed methods provide sound

and complete results. The latter reflects the practicality of the reasoning process, that
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is, whether the proposed methods can synthesise solutions in a reasonable time in ex-

tensive domains. Based on the concrete foundation of deductive argumentation we

analytically investigate important properties of our methods, including soundness and

completeness, illustrating the effectiveness of the presented planning mechanisms. In

order to evaluate the efficiency of our algorithms, we conduct an empirical investiga-

tion using benchmark problems from the International Planning Competition (McDer-

mott, 2000).

1.2.3 Contributions

The main contributions of our work are outlined as follows:

Formalisation of the MPCP:
We define the problem of MPCP using two formalisms: a set-theoretic formal-

ism adapts the classical, STRIPS-style (Fikes and Nilsson, 1972), planning nota-

tion, and a formalism based on the combination of defeasible logic programming

(Garcı́a and Simari, 2004) and situation calculus (McCarthy and Hayes, 1969).

The first formalism deviates as little as possible from classical planning, and

allows, as a result, the use of efficient automated planning techniques. The lat-

ter provides an expressive language for reasoning about contradictory dynamic

domains using deductive arguments. We provide a translation mechanism, and

formally show the relations between conclusions derived from theories encoded

in these notations, while comparing their relative expressive power and inferen-

tial capabilities.

Practical algorithms for reasoning and planning with MPCP domains:
We focus on the algorithmic aspects of MPCP and discuss heuristics that ex-

ploit the inherent structure of the planning domain to prune the search space of

performing derivations, generating arguments, and synthesising potential plans.

Also, we formulate the problem in a format suitable for classical planners, en-

abling the use of highly efficient, off-the-shelf planners.

Distributed mechanisms for reaching agreement:
We propose a family of abstract dialogue-based collaborative protocols for dis-

tributed decision making. Different protocols are proposed designed for scenar-

ios with different characteristics. The abstract dialogues models are concretised

with respect to the problem of MPCP.
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Analytical and experimental evaluation of our methods:
We analytically investigate important properties of our methods, such as termi-

nation, soundness and completeness, that describe their effectiveness. In addi-

tion, we experimentally evaluate the efficiency and practical relevance of our

approach in benchmark planning domains form the International Planning Com-

petition.

These contributions advance the state-of-the-art of the following research areas:

Automated planning: Our work is the first attempt on relaxing the assumption of

classical planning that domain knowledge is consistent. The implemented plan-

ning system is the first planner capable of planning with contradictory planning

beliefs in a scalable way.

Multiagent Systems: The main contribution to multiagent systems is the specification

of an argumentation-based dialogue protocol for decentralised decision making

in MPCP planning domains.

Reasoning about dynamic domains: We propose defeasible situation calculus, a novel

formalism for reasoning about contradictory dynamic domains.

Argumentation: By utilising the implicit structure of the planning domain, we pro-

pose practical argumentation-based reasoning methods that allow for scalable

planning in domains in which a naive argumentation approach would be infeasi-

ble.

Artificial Intelligence: Our work bridges research in three important areas of artificial

intelligence; classical planning, reasoning about action and argumentation.

1.3 Thesis Structure

Our work lies at the intersection of planning, reasoning about action, argumentation

and argumentation-based dialogue. Chapter 2 presents an overview of influential work

from these research fields, and details methods that are closely related to the prob-

lem of multi-perspective cooperative planning. In Chapter 3, we formalise the MPCP

problem and specify solution concepts based on a set-theoretic and a defeasible logic

notation. The inferential results of the two formalisms are analytically related and com-

pared. In Chapter 4, we focus on the algorithmic problems of MPCP. We exploit on
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inherent characteristics of the planning domain to optimise the reasoning process, and

utilise heuristic planning techniques and state-of-the-art planners to further increase

the practicality of our approach. Based on argumentation-based dialogue, Chapter

5 presents a family of protocols that allow the distribution of the conflict resolution

and planning tasks. Chapter 6 provides a comprehensive evaluation of our approach.

We discuss our analytical results, provide an empirical investigation using benchmark

planning domains, and analyse MPCP problem instances in scenarios inspired by im-

portant real-world problems. The final chapter overviews the main contributions of our

approach and describes potential future research directions.



Chapter 2

Background

This project lies in the intersection of planning, reasoning about action, argumentation

and argumentation-based dialogue. While there is limited directly related work, there

is an extensive body of loosely related literature. This chapter outlines influential re-

search that is relevant to this thesis, and presents in more detail work that is closely

related to multi-perspective cooperative planning.

2.1 Planning

The notion of plans and the process of planning are important to MPCP. This section

presents an overview of important work in automated planning, deductive planning and

multiagent planning that is relevant to this thesis. In addition, we discuss in more detail

problems from the planning literature that are related to MPCP and compare them to

the problem of this thesis.

2.1.1 Automated Planning

Planning can be defined as the reasoning side of acting (Nau et al., 2004). Automated

planning is the process of constructing a sequence of actions that can be applied to the

current state of the world in order to achieve an objective. More specifically, a planning

problem is specified according to the following:

• the state of the world

• a goal

• the actions that can be executed to affect the environment

10
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A planner is a process that identifies a sequence of actions, which can be applied in

any environment that follows this representation, and will cause a transition to a state

that satisfies the specified goal. Multiple formalisms of varying expressive power have

been proposed. STRIPS (Fikes and Nilsson, 1972) is the most influential and is the

basis for the formulation of the classical planning problem.

2.1.1.1 The Classical Planning Problem

The classical planning problem Weld (1999) assumes a fully observable, static and de-

terministic world. Knowledge of the environment and the specification of the available

actions is complete. There are no exogenous events, and actions affect the world in a

certain, deterministic manner.

The classical planning problem is defined on top of a logical language L contain-

ing predicate names, variable symbols, and constant symbols. F is the set of literals

specified by L . This set contains the set of unground literals Fv containing variables,

and the set of ground literals Fc, grounded for every object in the language. States are

sets of ground atoms of L . An atom p holds in a state σ if p ∈ σ. A state satisfies a

set of literals if every positive literal is part of the state and no atom which appears in

a negative literal is part of the state.

Definition 1. The classical planning problem is a tuple:

P = 〈F, I,O,G〉,

where

• F is a set of literals,

• I ⊆ Fc represents the initial state of the environment,

• O is the set of planning operators, and

• G⊆ Fc is the goal.

Planning operators are tuples of the form:

〈pre,o,eff 〉,

where

• o is the name of the operator,
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• pre⊆ Fv is the set of preconditions and

• eff ⊆ Fv is a set of effects.

The sets of preconditions and effects of operator o are represented as pre(o) and eff (o)

respectively.

Actions are ground instances of operators. An action a is applicable in a state σ

if all positive preconditions of the action is part of σ and no negative precondition

of a appears in σ, formally pre+(a) ⊆ σ and pre−(a)∩σ = /0. The sets pre+(a) and

pre−(a) denote the positive and negative preconditions of a respectively. The state

transition function specifies how applicable actions alter the state of the world. It is

represented as a function which, given the state of the environment and an action,

returns the successor state after the execution of the action. The successor state is

formulated by removing the negative effects of the action and adding the positive ones:

γ(a,σ) = (σ− eff−(a))∪ eff+(a)) .

2.1.1.2 Extending the Classical Planning Problem

The classical representation has been extended in various ways to increase the ex-

pressive power of the formalism and enable more concise planning theories. Syntactic

extensions include typed variables, negative literals in conditions and goals, quantifiers

in the conditions and effects of operators and operators with conditional effects.

Nebel (2000) formalises the notion of expressive power in planning formalisms

and investigates how different features of propositional planning formalisms affect the

planning problem. Nebel considers formalisms extending propositional STRIPS al-

lowing combinations of the following features.

• Incomplete state specifications

• Conditional Effects

• Preconditions and effect conditions can be literals

• Formulae in preconditions and effect conditions can be boolean formulae.

The computational complexity of planning remains the same across the different for-

malisms. With respect to expressivity, conditional effects cannot be compiled away

without causing polynomial growth of the size of the resulting plans, and that propo-

sitional formulae cannot be compiled into conditional effects and linearly preserve the

plan size.
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2.1.1.3 Synthesising Plans

Synthesising plans is usually performed by searching the space of states or the space

of plans (Nau et al., 2004). State space planning involves searching a graph, in which

nodes represent states and edges are state transitions. In this setting, a plan is a path

from the initial state to a goal state. Forward state space search begins from the ini-

tial state and searches the state space until a goal state is reached, whereas backwards

search begins with the goal and generates the plan in inverse order. Backwards search

selects operators that achieve subgoals and replaces subgoals with the preconditions of

the operators achieving them. A plan is found if the subgoals are satisfied by the initial

state. In plan space search nodes are partial plans and edges are plan refinement oper-

ations (Sacerdoti, 1975; Tate, 1977; Currie and Tate, 1991; McAllester and Rosenblitt,

1991; Erol et al., 1994; Nau et al., 2003).

Planning graph techniques (Blum and Furst, 1995, 1997) follow an alternative ap-

proach. A planning graph is arranged in layers. Odd layers are action layers (nodes

correspond to action instances), whereas even layers are proposition layers (nodes cor-

respond to propositions). Layer 0 is a proposition layer including all propositions that

hold in the initial state. Edges from proposition layer nodes to action layer nodes en-

code preconditions, whereas edges from action layer nodes to proposition layer nodes

encode effects (including maintenance actions for unaffected propositions). Action

layers encode parallel actions. After the expansion of the planning graph, solution can

be extracted in a backwards-chaining manner.

The extensive size of the state-space makes exhaustive search impractical. The

most successful recent approaches employ heuristics guiding the search through the

search space. One of the most influential heuristics (McDermott, 1996; Bonet and

Geffner, 2001; Hoffmann and Nebel, 2001) is measuring the quality of a state based

on the size of a plan solving a relaxed planning problem, in which delete lists (i.e. the

negative effects of actions) are disregarded (making states increase monotonically after

the application of actions).

FastForward or FF (Hoffmann and Nebel, 2001) is a highly regarded, forward state

space planner, which quickly calculates the heuristic quality of states based on a plan-

ning graph approach. State space search is performed by the enforced hill climbing

strategy: greedily move to the nearest, strictly better state discovered using breadth-

first search. If enforced-hill climbing leads to a local maximum, in terms of heuristic

quality, which does not achieve the goal, it fails and best-first search is invoked. Simi-
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lar to enforced hill climbing, best-first search gives priority to the state with the higher

heuristic quality, but also enables backtracking and guarantees finding a solution if one

exists.

2.1.1.4 Relevant to the Project

MPCP relaxes the implicit assumption of automated planning that planning beliefs are

consistent. MPCP is strictly harder than classical planning as it imposes the additional

constraint of plan acceptability on solutions. We focus on practicality and maintain a

middle-ground between representation expressiveness and reasoning tractability. The

set-theoretic formalism we present in Chapter 3 allows important features of standard

planning representations, such as variables and conditional effects, which can be used

to encode planning domains in a succinct manner. Chapter 4 presents algorithms that

utilise standard heuristics and planning systems to allow efficient synthesis of plans in

MPCP domains.

2.1.2 Deductive Planning

A deductive argumentation-based solution to MPCP requires the use of a formalism

that is capable of reasoning about actions and plans in a purely deductive manner.

Reasoning about action has been an major focal point of artificial intelligence research.

The general idea behind this work is that all types of reasoning should be performed

by a general problem solver, utilising all kinds of knowledge represented in a uniform

manner.

A major obstacle in this research has been the frame problem (McCarthy and

Hayes, 1969; Russell and Norvig, 2003). The frame problem is the problem of repre-

senting the effects of actions without having to explicitly encode what is not affected

by the actions. Consider a system with A actions, each one of which has E effects at

most. The representation of action effects requires O(AE) axioms. If there are F flu-

ent predicates, then the explicit representation of what stays the same requires O(AF)

frame axioms, and typically the overall number of fluent predicates is significantly

higher than the number of action effects.

Multiple action formalisms have been proposed in the literature, each offering dif-

ferent solutions to the frame problem. The most common formalisms are the situation

calculus (McCarthy and Hayes, 1969; Reiter, 1991), event calculus (Kowalski and Ser-

got, 1986) and A (Gelfond and Lifschitz, 1993).
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Apart from the frame problem other important related problems arise in reasoning

about action and dynamic domains. The qualification problem is related to the impos-

sibility of listing all preconditions of a real-world action. The ramification problem is

the problem of representing all indirect, implicit effects of actions (McCarthy, 1977;

Russell and Norvig, 2003) .

2.1.2.1 Basic Theories of Action

Situation calculus (McCarthy and Hayes, 1969) is a language for the representation of

dynamic domains. It supports three disjoint sorts: action represents actions; situation

represents histories of action sequences; object all the rest. S0 is a constant symbol

representing the initial situation. The binary function symbol do denotes the successor

situation after performing an action. Poss is a binary predicate symbol representing

whether an action is applicable in a situation. The binary predicate symbol @ defines

an ordering relation over situations, where s@ s′ denotes that s is a proper subsequence

of s′. Symbols whose value change in different situations are called fluents, and they

have an term of sort situation as their final argument.

Reasoning about dynamic domains can be performed in structured situation calcu-

lus theories, called basic action theories, overcoming the frame problem (Reiter, 1991,

2001). A basic action theory D has the following form:

D = Σ∪Dss∪Dap∪Duna∪DS0.

Σ is a set of fundamental domain-independent axioms providing the basic properties

for situations. Dss contains a successor state axiom for each relational fluent in the

domain1 of the form F(~x,do(a,s))≡ΦF(~x,a,s), which specifies all the conditions that

govern its value. The conditions under which an action can be performed are specified

by the action precondition axioms which have the form Poss(A(~x),s) ≡ ΠA(~x,s), and

are included in Dap. Duna contains the unique names axioms for actions. DS0 is a set

of first-order sentences that represent the initial state of the world.

For example, consider a domain with a robot moving in a grid, picking and deliver-

ing parcels. The successor state axiom for the fluent predicate Holds has the following

form:

Holds(r, p,do(a,s))≡ a = pickup(r, p)∨Holds(r, p,s)∧a 6= deliver(r, p) .

1Similar axioms are also included to account for functional fluents.
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The axiom states that robot r holds parcel p, in the situation resulting from the applica-

tion of action a in situation s, if and only if either the action a = pickup(r,x) is applied

in s or the predicate Holds(r, p,s) is true in situation s and a 6= deliver(r, p). The first

part of the body of the axiom denotes positive effects producing p. The second part of

the axiom is the frame part and lists the conditions under which the value of the fluent

persists in the successor situation. For the same domain, the action precondition axiom

for the action deliver(r, p) has the following form:

Poss(deliver(r, p, l),s)≡ at(r, l)∧Holds(r, p,s) .

The action precondition axiom lists the preconditions of the action deliver(r, p, l). In

order to deliver the package p to location l in a situation s, r must hold the p and be at

the delivery location.

The solution of the frame problem is based on the causal completeness assumption

(Pednault, 1989; Reiter, 1991), which asserts that everything affecting the value of a

fluent in the successor situation is accounted for in the right hand side of the relevant

successor state axiom.

2.1.2.2 Inference

The higher-order nature of situation calculus theories complicates inference. Regres-

sion is a powerful tool that uses the structure of basic action theories to simplify the

reasoning process. The definitional form of the axioms in a basic action theory as-

serts that the value of a fluent in a situation is exclusively affected by the values of

non-fluents and fluents in its predecessor situation. Regression exploits the defini-

tional form of the axioms in order to simplify queries regarding future situations by

substituting fluents with equivalent formulas regarding their predecessor situation, as

specified in the relevant definitional axioms.

Regression can be applied to formulas with specific characteristics called regress-

able formulas (Reiter, 2001). Essentially, every situation term that is mentioned in

such formulas must be rooted at S0. In addition, such formulas must not quantify over

situations, nor contain the symbol v. Finally, they should not mention equalities be-

tween situation terms, and when the special predicate Poss is mentioned, it must refer

to an action function symbol of Lsitcal.

The regression operator (Reiter, 2001) eliminates Poss predicates by substituting

them with the logically equivalent formula provided by the relevant action precondition

axiom. In a similar manner, it replaces fluents regarding a situation do(a,s) with an
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equivalent expression uniform in s, as provided by the relevant successor state axiom.

The operator follows this strategy until it reaches a formula consisting exclusively of

initial situation fluents and non-fluent predicates and functions.

The application of the regression operator produces a query which can be answered

by a subset of the theory without the foundational axioms, the successor state axioms

and the action precondition axioms, thus significantly simplifying the theorem proving

task.

Theorem 1. (The Regression Theorem, taken from Reiter (2001)) Suppose W is a re-

gressable sentence of Lsitcal that mentions no functional fluents, and D is a basic theory

of actions. Then, D �W iff DS0 ∪Duna � R [W ], where R [W ] is the formula resulting

from the application of the regression operator to W.

Following the previous example, we use the regression operator to answer the query

Holds(R,P,do(move(R,L),S0)). R,P,L are ground terms representing a robot, a parcel

and a location respectively.

R [Holds(R,P,do(move(R,L),S0))] =

R [move(R,L) = pickup(R,P)∨Holds(R,P,S0)∧move(R,L) 6= deliver(R,P)] =

move(R,L) = pickup(R,P)∨Holds(R,P,S0)∧move(R,L) 6= deliver(R,P)

The only situation term appearing in the resulting formula is S0. The original query is

equivalent to the following:

DS0∪Duna �move(R,L)= pickup(R,P)∨Holds(R,P,S0)∧move(R,L) 6= deliver(R,P) .

The unique names axioms for actions are used to simplify the resulting query with

respect to the action equalities and inequalities.

2.1.2.3 Synthesising Plans

Planning in a dynamic domain specified as a basic action theory can be performed

through search for an executable situation achieving the desired goal. A situation is

executable if all actions can be applied in sequence. The following abbreviation defines

executability (taken from Reiter (2001)):

executable(s)
def
= ∀a,s∗.do(a,s∗)v s⊃ Poss(a,s∗).

Using this definition, plans are defined as follows:
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Definition 2. Let D be a set of situation calculus axioms characterising some appli-

cation domain, S a variable-free situation term, and G(S) a situation calculus formula

whose only free variable is the situation variable S. Then S is a plan for G (relative to

D) iff

D � executable(S)∧G(S).

Deductive planning can be performed through proving the sentence (∃s).executable(s)∧
G(s). Alternatively, planning can be performed by constructing ground situation terms

for different sequences of actions (e.g. in a breadth first or a depth first manner) and

evaluating if the plan statement holds in this situation.

2.1.2.4 Implementation of Basic Action Theories

Basic action theories can be implemented as equivalent Prolog logic programs. The

implementation process asserts that when a query in the logic program succeeds, then

the relevant sentence is logically entailed by the theory, and whenever it fails, then

the theory entails the negation of the sentence. The corresponding logic program can

be obtained after a series of transformations called the Revised Lloyd-Topor Transfor-

mations (Reiter, 2001). These transform the if-halves of the definitional axioms into

a syntactic form suitable for implementation as Prolog clauses. Reasoning with the

resulting logic programs using Prolog’s backwards chaining mechanism is equivalent

to performing a series of regression steps and finally proving of the regressed formula.

2.1.2.5 Relevance to the Project

Chapter 3 introduces a defeasible situation calculus variant that serves as the under-

lying formalism in our project. This formalism is also employed as the language in

which agents communicate their beliefs about the anticipated effects of the plans when

discussing about potential plans.

The defeasible situation calculus variant we will use does not offer the expressive

power of the complete situation calculus language. Since we are dealing with con-

tradictory theories, which is not the case in basic theories of action, a less expressive

formalism is employed to enable tractable reasoning.

Our theories follow the structure of Reiter-style axioms. This structure enables

the concise representation of both the effect and frame information associated with

actions and fluents, and allows the expression of the agents’ views regarding change

and persistence.
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The defeasible situation calculus variant is syntactically similar to logic program-

ming implementations of basic action theories. The main distinction between such

theories and our formalism is that our work enables reasoning and planning with con-

tradictory theories.

2.1.3 Multiagent Planning

In multiagent systems (Wooldridge, 2002; Weiss, 1999) agents may need to coordinate

in order to achieve goals that are otherwise unattainable or improve plan efficiency. Ac-

cordingly, planning agents may coordinate, formulating plans involving actions whose

execution involves multiple agents. Also, agents may distribute the planning process

in order to utilise all their resources and construct plans in a distributed fashion.

Multiagent planning is considered to be the problem of planning in the presence

of multiple agents (Durfee, 1999; DesJardins et al., 1999; de Weerdt and Clement,

2009). There have been several approaches dealing with different aspects of the general

problem. These can be categorised with resect to the following dimensions:

• Planning: centralised or distributed?

• Execution: single-agent or multiagent?

• Agents’ attitudes towards cooperation: coopearative or strategic?

• Communication mechanism: prior to planning, during planning or during exe-

cution?

• Knowledge: shared or distributed?

In most approaches in the literature, multiagent planning usually refers to distributed

planning, distributed execution, or both. The third case is the most interesting, where

multiple agents are searching for a plan in parallel that involves actions contributed by

multiple agents.

2.1.3.1 Cooperative Distributed Problem Solving

In a general setting, multiagent planning problems involve a combination of planning

and coordination problems. Some of the most influential planning approaches involve

the study of coordination in multiagent systems. Partial global planning (PGP) (Dur-

fee and Lesser, 1991) is one of the most influential frameworks for the coordination of
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agents’ activities. Agents exchange information in order to reach common conclusions

about the problem-solving process. Agents individually generate partial solutions, and

utilise information obtained from others to achieve non-local views of the problem. A

partial global plan contains the overall goal and information on the agents’ activities

and how they should interact and exchange information to achieve the larger goal. PGP

has been further refined and generalised in Generalized PGP to handle redundancy and

coordination relationships. Other approaches view multiagent planning as the gener-

alisation of local plans to global plans (Durfee and Lesser, 1991; Ephrati et al., 1995;

Georgeff, 1983).

A different body of work in agent collaboration is based on agent theories of men-

tal state. Cohen and Levesque (1991a,b); Levesque et al. (1990) introduce a practi-

cal model of cooperative distributed problem solving based on the concepts of joint

intentions, joint commitments and joint persistent goals. Teamwork has been ex-

tended by several other approaches (Jennings, 1995; Wooldridge and Jennings, 1999).

Wooldridge and Jennings (1999) break down the problem of cooperative distributed

problem solving to the following steps:

1. Recognition of need for cooperative action

2. Team formation

3. Plan formation

4. Team action

They argue that the collective needs to come to some agreement about their joint course

of action, and that such agreements can be achieved using negotiation or argumenta-

tion. Other important approaches in this field include the theory of SharedPlans (Grosz

and Kraus, 1999, 1996), and STEAM (Tambe, 1997), which builds on Teamwork and

SharedPlans.

2.1.3.2 Cooperative Multiagent Planning

In a cooperative setting multiagent planning may involve the execution of actions by

multiple agents. The extension of automated planning to account for distributed exe-

cution is one aspect of multiagent planning (Katz and Rosenschein, 1989). Complex

models of distributed execution allow concurrent, interacting actions. Boutilier and

Brafman (2001) modify the standard STRIPS planning problem to accommodate for
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concurrent interacting actions and present a partial-order planning algorithm for cen-

tralised cooperative multiagent planning.

Contrary to single-agent planning approaches, multiagent planning approaches take

advantage of the distributed nature of the problem (DesJardins et al., 1999). On the one

hand, distribution of the planning problem (Corkill, 1979; Ephrati and Rosenschein,

1994a) allows the exploitation of the reasoning capabilities of multiple agents. On

the other hand, by considering the multiagent nature of the problem, it is possible to

break down the extensive overall planning problem to individual problems, which are

potentially simpler (Lansky, 1991). The individual solutions are then merged to for-

mulate a global plan (Stuart, 1985; Yang et al., 1992; Foulser et al., 1992; Ephrati and

Rosenschein, 1993; Tsamardinos et al., 2000).

The benefits of a distributed approach are related to the degree of coupling (Braf-

man and Domshlak, 2008) in a multiagent system. Coupling reflects the amount of

coordination required among the agents in the system. In domains with limited agent

interaction, the distributed multiagent planning algorithms can outperform state-of-

the-art centralised planners (Nissim et al., 2010).

2.1.3.3 The “Classical” Multiagent Planning Problem

There is no single, universally accepted formal definition of the multiagent planning

problem. Multi-Agent STRIPS (MA-STRIPS) (Brafman and Domshlak, 2008; Moses

and Tennenholtz, 1995) extends the classical planning representation to account for

cooperative multiagent planning.

A MA-STRIPS planning problem is the tuple Π = 〈F, I,{Ai}1≤i≤k,G〉.2 Ai repre-

sents the actions that agent i is capable of performing. An action a has the standard

STRIPS syntax and semantics, a = 〈pre,a,eff (a)〉. When k = 1, MA-STRIPS reduces

to STRIPS. The goal G is shared among the agents, making the problem formulation

cooperative.

MA-STRIPS does not restrict the action execution scheme. Depending on the spe-

cific approach, the agents’ actions may be executed synchronously, asynchronously or

in an interleaved fashion.

2.1.3.4 Strategic Considerations in Planning

Cooperative agents share a goal and are willing to contribute towards this goal. How-

2The notation is slightly adapted to follow the presented single-agent planning problem formulation.
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ever, autonomous agents may have strategic considerations in the general case that

drives them towards forming coalitions and coordinating exclusively in situations in

which personal gain is attainable through joint action (Ephrati and Rosenschein, 1994b;

Larbi et al., 2007; Brafman et al., 2009; Jonsson and Rovatsos, 2011; Crosby and

Rovatsos, 2011).

Joint plans, apart from achieving the goal, must be acceptable to the agents in-

dividually. For instance, rational autonomous agents would not subscribe to plans

that achieve goals that they can reach through less costly individual plans. Strategic

multiagent planning imposes additional constraints on potential solutions to planning

problems. These constraints are related to the utility of the achieved goals and the cost

of the actions each agent contributes to the joint plan.

2.1.3.5 Communication in Multiagent Planning

Communication can be applied in different phases of multiagent coordination in or-

der to align the agents’ viewpoints or partial results obtained by the planning process

(Werner, 1988; Wolverton and DesJardins, 1998). These can be categorised as follows:

• Communication before planning

• Communication during planning

• Communication during execution.

In the first case, communication is employed as a mechanism for the exchange of

information related to the state of the world. Communication during the planning pro-

cess is necessary when different agents construct partial plans that need to be merged

(Georgeff, 1983), or when the agents need to ensure that there are no interferences

between different individual plans. Communication during execution is necessary in

situations in which agents need results obtained by different agents, or when prob-

lems arise during execution and re-planning is required. In this case, there is also the

problem of determining which results need to be communicated and to which agents.

2.1.3.6 Relevance to this project

Most multiagent planning approaches in the literature deal with the problems of co-

ordinating the actions of multiple agents, or distributing the planning process utilising

the reasoning capabilities of multiple agents. Reaching agreement on plans for action
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may be hindered if different agents expect a plan to affect the environment in different

ways. Such disagreements can be the result of the locality of sensing, outdated infor-

mation, contradicting domain beliefs encoded by different agent designers, or simply

because different agents have conducted different inferences and therefore their beliefs

are not aligned. Since cautious autonomous agents will not subscribe to plans that they

consider to be harmful, ineffective or questionable, methods for reaching agreement in

a collaborative planning environment are needed.

This thesis focuses on the least researched dimension of multiagent planning in-

volving the distribution of knowledge. In order to simplify the process and focus ex-

clusively on knowledge we follow a simplified model of execution, in which actions

are performed in sequence, regardless if actions are expected to be executed by single

or multiple agents. We describe both centralised and distributed methods for coop-

erative multi-perspective planning. However, the distribution is specifically focusing

on reasoning about the acceptability of the plans, while the planning process is per-

formed individually. Finally, we focus on a cooperative setting, with agents sharing

the goals. However, we consider agents to be cautious, autonomous entities that are

only willing to agree on plans that seem correct with respect to their knowledge about

the environment, and won’t follow blindly the proposals of their peers. This imposes

the additional constraint of acceptability to solutions of the planning problem, in a

similar sense as in strategic multiagent planning.

2.1.4 Related Work in Automated Planning

This section details work from the areas of planning and reasoning about action that

is related to this project. We discuss why this work is relevant and how the problems

solved relate to the problem of multi-perspective planning under ontological agree-

ment.

2.1.4.1 Planning under Uncertainty

In multiagent systems, the actions of the agents make the environment dynamic. Ac-

tions performed by other agents can interfere with the plans of a planning agent, and

even make them fail. Agents cannot be sure about the effects of their actions, if these

are affected by the behaviour of other agents in the system. Single-agent planning in a

multiagent environment can be viewed as planning under uncertainty.

The classical planning problem assumes a fully observable, deterministic environ-
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ment. When these assumptions are relaxed, uncertainty is introduced (Goldman and

Boddy, 1996; Boutilier et al., 1999). Uncertainty may be caused by partial observabil-

ity or non-deterministic planning operators.

The planner can overcome uncertainty using test actions, which can be applied to

identify the actual state of the environment, and by planning for all possible contin-

gencies (Hoffmann and Brafman, 2005). Alternatively, the planner can search for a

conformant plan (Smith and Weld, 1998; Brafman and Hoffmann, 2004; Palacios and

Geffner, 2009) that can achieve the goal if it is applied in any one of the possible

states the environment might be. Another alternative for dealing with uncertainty is

decision-theoretic planning (Boutilier et al., 1999), which based on probability distri-

butions over the outcomes of actions for every state and a preference function over

outcomes, decision-theoretic planning searches for plans that maximise the excepted

utility.

2.1.4.1.1 Relevance to the Project Our work is related to planning under uncer-

tainty and conformant planning although the problem in this case is different. Con-

formant plans achieve the goal in all worlds that result from the combination of the

uncertain pieces of information about the planning domain, i.e. 2n for n uncertain

propositions. The problem we are dealing appears similar, since plans that need to

satisfy n different world views (one view for each planning agent). However, our sys-

tem is fundamentally different from conformant and contingent planning. Our system

allows persuasion, enabling the acceptance of plans that initially seemed unacceptable,

on the basis of convincing for disputed propositions. As a result, if ambiguity regarding

all proposition in the planning domain can be resolved, there is no uncertainty in the

resulting planning problem. As a result, planning under uncertainty is complementary

to our work, since its techniques can be employed if contradiction cannot be resolved

and a plan that succeeds regardless of the uncertainty is required.

2.1.4.2 Reasoning about Knowledge

Uncertainty can be reduced during execution through the application of sensing ac-

tions. Planning with sensing actions usually needs to account for all potential out-

comes, and as a result (Levesque, 1996) leads to conditional plans accounting for all

the possible outcomes if these actions. Planning in such settings can be performed

at the knowledge level, with sensing actions treated as actions that update the agent’s

knowledge (Bonet and Geffner, 2000; Bertoli et al., 2001; Petrick and Bacchus, 2002).
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There has been a body of work on extending reasoning about situation calculus ac-

tion theories with knowledge producing actions (Scherl and Levesque, 2003; Shapiro

et al., 2011; Demolombe and Parra, 2006) by incorporating specific axioms about be-

liefs. Reasoning about knowledge and change deals with the problems of belief update

(belief change as a result of action), belief expansion (belief change as a result of new

information) and in some cases the more general belief revision.

Knowledge producing actions can be used as the means for achieving epistemic

goals. In a multiagent setting, epistemic goals aim to bring about common knowledge

(Van Der Hoek and Wooldridge, 2002).

2.1.4.2.1 Relevance to the Project These approaches focus on how the beliefs of

agents change after the application of actions (including knowledge producing ac-

tions). The use of these methods in a multiagent setting can provide information about

the knowledge of every agent related to the application of different plans. Therefore,

they can be used to identify plans for which the knowledge of the agents is aligned.

However, they do not offer ways to align the agents’ views of the world themselves.

2.1.4.3 Revising Action Theories

In dynamic environments agents may hold outdated or erroneous action theories. Re-

search in action theory change (Eiter et al., 2010; Varzinczak, 2010) involves methods

for revising action theories in the light of new information.

Eiter et al. (2010) defines the problem of Action Description Update in the context

of the action language C (Giunchiglia and Lifschitz, 1998). The input of the problem

is an action description D, with unmodifiable Du and modifiable parts Dm, the update

that must be incorporated I, a set of “hard” and “soft” constraints C = Co∪Cp, and a

preference relation over action descriptions vc. An action description D′ is a solution

to the action description problem if it accomplishes the update of D by I relative to C

under the following conditions:

• D′ is consistent.

• D′ contains the new information I and the unmodifiable knowledge Du, and the

causal laws from the modifiable knowledge Dm are either accepted or disposed.

• The constraints Co are imposed on D′.
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• There is no action description D′′, for which the previous hold, such that D′ vc

D′′.

Varzinczak (2010) focuses on action theory change in the context of the multimodal

logic Kn (Popkorn, 1994). This method also focuses on constrained-based updates,

that is the resulting theory must respect a set of laws. Action theories contain static

laws describing constraints, effect laws describing action effects and executability laws

describe action applicability. Contraction of static, effect and executability laws is

performed based on minimal change based on the notion of distance between Kripke-

models.

2.1.4.3.1 Relevance to the Project This work is complimentary to our approach.

In our approach, agents do not have to revise their theories to account for axioms com-

municated by the other parties. However, they are forced to accept arguments that they

cannot defeat. Accepting such arguments entails acceptance of their conclusions. Res-

olution of contradictory views is situation dependant. Resolution of contradictions is

based on operator specifications but also depends on the relevant conditions. In differ-

ent situations with different conditions, different resolution results may be obtained.

As a result, it is not always possible to prioritise which beliefs must be used to update

the theory.

Our methods do not exclude the option of the agents individually revising their ac-

tion theories in light of new information. However, these methods cannot be applied to

solve the multi-perspective cooperative planning problem, since it is not clear which

views should be prioritised, triggering updates. Additionally, it is not clear if the spec-

ification of the employed formalisms are adequate for the representation of classical

planning domains without additional constraints.

In order to provide an overall solution to our problem without the use of argumen-

tation, belief revision methods may be used to merge the beliefs of multiple agents and

generate a shared theory by removing the inconsistencies. Such a process would have

to be centralised. Also, revising beliefs prior to planning requires the resolution of all

conflicts, even those completely unrelated to concrete potential plans.

This is closely related to the main distinction between the use of argumentation

and belief revision, the social and cognitive side of epistemic reasoning (Paglieri and

Castelfranchi, 2005). An argumentation-based method is better suited for a decen-

tralised setting, since it focuses on persuasion regarding specific conflicts that are rel-

evant to a concrete plan. Also, argumentation mechanisms (even if conducted in a
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centralised fashion) generate justifications that can be used to explain and persuade

autonomous agents towards accepting a plan. Falappa et al. (2009) discuss the rele-

vance of argumentation and belief revision in more detail.

2.1.4.4 Defeasibility in Planning and Reasoning about Action

Pollock (1987, 1998) emphasises the need for defeasible epistemic reasoning for plan-

ning agents in complex environments, where information about the world is uncertain

and possibly incomplete. The author argues that the product of the planning process

is bound to the assumptions of the planning knowledge, and since in such complex,

rapidly changing environments epistemic knowledge is in principle defeasible, plans

should also be. The author presents a regression-based planning approach based on the

defeasible reasoner OSCAR.

There has been a body of work related to handling defeasibility in action domains

(Baral and Lobo, 1997; Zhang, 2003). Baral and Lobo (1997) extend the language

A and incorporate defeasible constraints and effect propositions, using an extended

logic programming approach. Zhang (2003) introduces action languages AT 0, AT 1

and AT 2 handling defeasible action constraints, defeasible observations and defeasible

and abnormal effects of actions. Their approach is based on prioritised logic programs.

2.1.4.4.1 Relevance to the Project Contrary to these approaches we do not focus

on reasoning with theories in which action is represented in a defeasible manner. Our

focus is on resolving contradictions across the theories of multiple agents. Therefore,

the defeasibility in our problem lies in the collective beliefs the agents hold. Our rep-

resentation is based on an implementation of situation calculus basic action theories

in defeasible logic programming. Accordingly, we use successor state axioms to rep-

resent the effects of actions. We discuss this choice further in Section 6.1.2.5 and

compare it against an alternative formulation based on defeasible reasoning, which is

inspired from Zhang (2003). A representation based on successor state axioms pro-

vides a more succinct representation, and allows the resolution of contradicting views

about frame axioms as well as action effects.

2.1.4.5 Summary

There is extensive work in automated planning and reasoning about action that is rele-

vant to multi-perspective cooperative planning. However, no work in these fields deals
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with the problem of this thesis. MPCP is concerned with ambiguity, which compared

to uncertainty, can potentially be resolved based on relevant information held by the

agents. This makes the nature of our approach defeasible. However, compared to plan-

ning with defeasible operators, we do not use defeasibility to reason about default per-

sistence, but employ argumentation-based methods to resolve contradictory inferences

made from the agents’ theories. The resolution of such conflicts allows the agents

to agree on conclusions, but cannot indicate which beliefs and operator specifications

should be preferred over others in the general case, making the use of prioritising belief

revision methods infeasible.

2.2 Argumentation

In order to formalise MPCP, we need to concretise the notion of plan acceptability. This

notion determines when it is rational to accept a plan if there exist different views about

the planning domain. The proposed formalisation is base on argumentation theory.

Argumentation (Prakken and Vreeswijk, 2002; Besnard and Hunter, 2008; Rahwan

and Simari, 2009) is a mechanism for conflict resolution. Argumentation theory pro-

vides methods for the evaluation of the acceptability of arguments. These methods can

be used by a single agent, or combined with a dialogue process, enable multiple agents

to present their beliefs in the form of arguments. Argumentation provides a rich form

of communication, since it enables agents not only to present claims, but also provide

justifications for their beliefs. In light of new information, or better justification, agents

can identify acceptable beliefs and alter their view of the world.

2.2.1 Abstract Argumentation

Dung views argumentation at an abstract level (Dung, 1995; Baroni and Giacomin,

2009). Individual arguments are treated as abstract entities, disregarding their inter-

nal structure and meaning. Conflict between arguments is represented by the binary

attacks relation. A set of abstract arguments and the attacks among them form an

argumentation system.

Definition 3. An argumentation framework is a structure AF = 〈Args,Attacks〉 where

Args is a set of arguments and Attacks ⊆ Args×Args is a binary attacks relation be-

tween arguments.
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Figure 2.1: Argumentation graph depicting the argumentation framework AF1 =

〈{α,β,γ,δ},{α→β,α→γ,β→α,β→γ,γ→δ}〉

An attack between two arguments α and β is denoted as α→β. Also, the attack relation

is generalised for sets of arguments. A set of arguments S is said to attack an argument

β if there exists an argument α ∈ S such that α→β.

Consider for example the following argumentation framework:

AF1 = 〈{α,β,γ,δ},{α→β,α→γ,β→α,β→γ,γ→δ}〉.

Figure 2.1 depicts AF1 in the form of a directed graph, called an argumentation graph.

Nodes correspond to arguments, whereas edges represent defeats.

If the arguments in an argumentation framework do not form a conflict-free set,

then it is not rational to accept all of them in the set at the same time. Argumentation

semantics formally define ways to evaluate the acceptability of the arguments in an

argumentation framework. Extension-based argumentation semantics specify sets of

arguments that are collectively acceptable. These sets are called extensions of the

argumentation framework.

Multiple extension-based argumentation semantics have been proposed in the lit-

erature (Dung, 1995; Baroni and Giacomin, 2007). Before we introduce the preferred

and the grounded semantics, we introduce some useful definitions.

Definition 4. Given an argumentation framework AF = 〈Args,Attacks〉, a set of argu-

ments S ⊆ Args is conflict-free if and only if there do not exist any arguments α,β ∈ S

such that α→β.

Here, conflict-freeness simply means that no two arguments in a subset of Args attack

each other.

Definition 5. Consider the argumentation framework AF = 〈Args,Attacks〉. An argu-

ment α ∈ Args is acceptable with respect to a set S ⊆ Args of arguments if and only if

for all β ∈ Args such that β→α, there exists γ ∈ S such that γ→β.
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Acceptability of an argument with respect to a set S means that if there is any other

attackers of the argument, some element of S will attack this attacker.

Definition 6. Given an argumentation framework AF = 〈Args,Attacks〉, a set of argu-

ments S ⊆ Args is called admissible if it is conflict-free and if each argument in S is

acceptable with respect to S.

Admissibility, often taken as a criterion to determine whether a set of arguments can be

reasonably maintained, requires that every member of the set is acceptable with respect

to the set, and that this set is conflict-free.

2.2.1.1 Preferred Semantics

Preferred semantics are based on the notion of the preferred extension, which refers

to the maximal, conflict-free sets of arguments that defend themselves against every

attack (i.e. attack all their attackers).

Definition 7. A preferred extension of an argumentation framework is a maximal (with

respect to set inclusion) admissible set of the argumentation framework

Credulous preferred semantics, require for an argument to be part of at least one pre-

ferred extension to be acceptable overall. Sceptical preferred semantics require that

the argument is contained in all preferred extensions of the argumentation framework.

Following on the argumentation framework AF1 from Figure 2.1, there are two

preferred extensions: {α,δ} and {β,δ}. A credulous agent will accept arguments

α,β,δ, whereas a sceptical agent will only accept δ. The rationality behind sceptical

preferred semantics is that regardless of which preferred extension is selected, and in

this case regardless of either selecting α or β (given that both cannot hold at the same

time), γ is defeated. As a result δ can be accepted.

2.2.1.2 Grounded Semantics

Grounded (sceptical) semantics are defined using the characteristic function of an ar-

gumentation framework.

Definition 8. The characteristic function of an argumentation framework

AF = 〈Args,Attacks〉, is the function FAF : 2Args→ 2Args, which is defined as follows:

FAF(S) = {α | α is acceptable w.r.t. S}.
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Figure 2.2: Argumentation graph depicting the argumentation framework AF2 =

〈{α,β,γ,δ},{α→γ,β→α,β→γ,γ→δ}〉

Definition 9. The grounded extension of an argumentation framework AF, denoted by

GEAF is the least fixed point of FAF.

Consider the sequence:

F 0
AF = /0

. . .

F i+1
AF = {α ∈ Args | α is acceptable with respect to F i

AF}
. . .

According to Dung (1995), it holds that: all arguments in ∪∞
i=0(F i

AF) are in GEAF, and

if each argument is attacked by at most a finite number of arguments, then an argument

is in GEAF if and only if it is in ∪∞
i=0(F i

AF).

Figure 2.2 depicts the following argumentation framework:

AF2 = 〈{α,β,γ,δ},{α→γ,β→α,β→γ,γ→δ}〉.

F 1
AF2

contains β, the only argument that is not attacked. F 2
AF2

= {β,δ}, since {β}
attacks the attackers of δ. This is the least fixed point of the characteristic function

since F 3
AF2

= F 2
AF2

. Therefore, the arguments in AF2 that are justified with respect to

grounded semantics are {β,δ}. The argumentation framework AF1 does not have any

arguments that are acceptable with respect to the grounded argumentation semantics.

2.2.1.3 Preferences over Arguments

The previous examples illustrate that in certain cases mutual attacks appear in argu-

mentation frameworks. Such ties may be broken using additional information about

the preference of these arguments. This is usually represented in the form of an or-

dering among the arguments in an argumentation framework. Intuitively, preference
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orderings may be based on information regarding the credibility or source of argu-

ments, or their internal structure.

Preference-based argumentation (Amgoud and Cayrol, 1998) introduces a prefer-

ence ordering among arguments that can be useful to break mutual attacks. Accord-

ingly, a preference-based argumentation framework is a triple 〈Args,Attacks,Pref 〉,
where Pref is a partial preordering of the arguments in Args.

2.2.2 Proof Theories for Abstract Argumentation

The definition of argumentation semantics provides a formal specification of the no-

tion of acceptability. This section discusses the most commonly used algorithms for

the evaluation of argument acceptability. An overview of proof theoretic methods for

abstract argumentation can be found in Modgil and Caminada (2009).

2.2.2.1 Labelling

One way to compute the acceptability of arguments is to assign labels to the argu-

ments in the argumentation graph. Labelling is an assignment of a label from the set

{IN,OUT,UNDEC} (for undecided) to every argument in the argumentation frame-

work. Reinstatement labellings (Caminada, 2006) abide to the following principles:

• At least one attacker for an argument labelled OUT must be labelled IN.

• All attackers for an argument labelled IN must be labelled OUT .

Multiple such labellings may exist for an argumentation framework. Additional re-

strictions specify compliance to different argumentation semantics. For instance, la-

bellings with maximal sets of arguments labelled IN or OUT correspond to preferred

semantics, whereas labellings with minimal sets of of arguments labelled IN or OUT or

maximal sets of UNDEC arguments are connected to grounded abstract argumentation

semantics.

2.2.2.2 Argument Games

Argument games (Vreeswijk and Prakken, 2000; Dunne and Bench-Capon, 2003) eval-

uate the acceptability of arguments through a dialectical process between two parties

called a dispute. One party plays the role of the proponent, leaving the role of oppo-

nent to the other party. In the single agent case, the agent assumes both roles. The role
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of the proponent is to introduce arguments defending the argument that is evaluated,

while the opponent is attempting to attack this argument and the arguments defending

it.

The game is initiated with the proponent introducing the argument to be evaluated.

Then it is the opponent’s turn to move an argument attacking the argument presented

by the proponent (if such an argument exists). The game progresses with the players

exchanging turns and introducing arguments attacking the previous argument of the

other party.

Throughout this process, sequences of attacks are generated, which are called dis-

pute lines. A dispute line consists of arguments defending the evaluated argument (line

of defence) and arguments attacking these arguments (line of attack). Since there may

exist multiple attackers for an argument, there may exist multiple different moves for

a player. The collection of all possible dispute lines form a dispute tree.

The requirement that every argument in a dispute line must attack the previously in-

troduced argument is not sufficient to produce a correct reasoning scheme. It does not

safeguard against circular attacks, causing the construction of dispute lines of infinite

length, or fallacies in the line of reasoning, as for instance lines of defence containing

conflicting arguments. In order to safeguard against fallacies and to guarantee correct

results, specific rules must govern the legality of moves in the argument game. Such

rules have been shown to produce correct results with respect to different argumenta-

tion semantics (Vreeswijk and Prakken, 2000; Dunne and Bench-Capon, 2003).

2.2.3 Deductive Argumentation

In order to provide a concrete argumentation-based reasoning system, abstract argu-

mentation is not sufficient, unless it can be combined with a mechanism that generates

arguments and calculates the attacks relations among them. In logic-based argumenta-

tion, the internal structure of arguments is defined based on an inference procedure in

a knowledge base.

Prakken and Vreeswijk (2002) overview different logics that have been proposed

for deductive argumentation-based reasoning. According to their analysis the main

elements of deductive argumentation systems are:

• An underlying logical language.

• Definitions of an argument, conflicts between arguments and the attack relation.
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• Definition of the assessment of arguments, defining defeasible logical conse-

quence.

Examples of concrete argumentation systems are assumption-based argumentation

(Bondarenko et al., 1997; Dung et al., 2009), defeasible logic programming (Garcı́a

and Simari, 2004) and argumentation based on classical logic (Besnard and Hunter,

2001). Our system follows defeasible logic programming.

2.2.4 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) (Garcı́a and Simari, 2004) is based on a com-

bination of logic programming and defeasible argumentation. The following analysis

follows Garcı́a and Simari (2004).

The DeLP language is defined in terms of facts, strict rules and defeasible rules.

Facts are positive or negative literals. Literals are ground atoms A or negated ground

atoms ∼A. The symbol “∼” represents strong negation. Strict rules encode non-

defeasible knowledge. They have the following form:

L0← L1,L2, . . . ,Ln,

where L0,L1, . . . ,Ln are ground literals and n ≥ 0. Accordingly, defeasible rules are

represented as follows:

L0 –≺L1,L2, . . . ,Ln.

L0,L1, . . . ,Ln are ground literals and n ≥ 0. Defeasible rules describe that if there are

reasons to believe that the body of a rule holds, then there are reasons to believe that

the head holds as well. Defeasible rules with an empty body are called presumptions.

The defeasible implication symbol distinguishes defeasible rules, which are inter-

preted as “tentative information that may be used if nothing can be posed against it”.

For instance, the non-defeasible knowledge that all penguins are birds is represented

using a strict rule:

bird← penguin.

On the contrary, the knowledge that birds are usually able to fly is encoded using the

defeasible rule:

flies–≺bird.

Both symbols “←” and “–≺” denote a meta-relation between literals without contra-

position.
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A defeasible logic program P = (Π,∆) is a possible infinite set of facts, strict rules

Π and defeasible rules ∆. Defeasible logic programs are ground. ‘Schematic rules”

with variables (Lifschitz, 1996) are sometimes used to represent all ground instances

of these rules.

Ground defeasible rules can be used in sequence to create inference chains called

defeasible derivations. A defeasible derivation is a finite sequence L1,L2, . . . ,Ln = L of

ground literals. For each literal L′ in the sequence there exists a rule R with Head(R) =

L′, and all literals appearing in its body appear in sequence before L′. A defeasible

derivation represents reasons to believe the derived statements, without meaning that

these statements are necessarily true, since contradicting statements may be defeasible

derived. If the rules used for a derivation are exclusively strict rules, the derivation is

called a strict derivation.

The derivations provide the basis for the construction of arguments. Given a defea-

sible logic program P = (Π,∆), an argument structure is a tuple 〈A ,h〉, where h is a

literal and A ⊆ ∆ such that:

1. there exists a defeasible derivation for h from Π∪A

2. Π∪A is non-contradictory, and

3. A is minimal, i.e. there is no proper subset of A satisfying both (1) and (2).

The literal h is called the conclusion, or the claim, of the argument. A is called

the support. Arguments indicate reasons towards a claim. They are minimal, non-

contradictory sets of rules that defeasibly infer a claim. A set of rules is non-

contradictory if there exists no literal which can be defeasibly inferred from the set,

if its complement can be also inferred from the same set. An argument 〈A ′,h′〉 is a

sub-argument of 〈A ,h〉 if A ′ ⊆ A .

The attack relation between arguments is specified using the notion of disagree-

ment. Given a defeasible logic program P = (Π,∆), two literals h1 and h2 disagree if

the set Π∪{h1,h2} is contradictory. An argument 〈A1,h1〉 attacks another argument

〈A2,h2〉 if there exists a sub-argument 〈A ′2,h′2〉 of 〈A2,h2〉 such that h1 and h2 disagree.

Arguments can be prioritised so as to resolve disagreements. One way to deter-

mine argument priorities is based on the generalised specificity principle (Poole, 1985;

Simari and Loui, 1992): higher preference is assigned to arguments with greater in-

formation content or more restricted use of rules. Another alternative is prioritisation

based on rule priorities. In this case, the preference of arguments is calculated based

on the least preferred rule in their support.
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The notion of defeat is based on the attack relation and the arguments’ preference

ordering. An argument 〈A1,h1〉 is a proper defeater of another argument 〈A2,h2〉 if

it attacks 〈A2,h2〉 at a sub-argument 〈A ′2,h′2〉 and 〈A1,h1〉 has higher preference over

〈A ′2,h′2〉. If these arguments are equally preferred then 〈A1,h1〉 is called a blocking

defeater.

Belief acceptability in DeLP is defined using the notion of warrant based on dialec-

tical analysis. A query q is warranted if an argument supporting q is found undefeated

by the warrant procedure. The warrant procedure is based on the generation of a di-

alectical tree. The root of this tree is the argument supporting the query. The tree is

expanded by considering the defeaters of this argument, their defeaters and so on. Ev-

ery line from the root of the tree to a leaf is called an argumentation line. Constraints

assert that the generation of infinite argumentation lines is avoided.

DeLP has been extended to support the default negated literals. Accordingly, Ex-

tended defeasible rules allow default negation “not” in the body of a rule. For instance,

consider the following example attributed to John McCarthy (Gelfond and Lifschitz,

1990):

∼cross railway tracks–≺not∼train is coming.

This statement represents that there are reasons to believe that we should not cross the

railway tracks, if there is absence of sufficient evidence to believe that the train is not

coming. Default negated literals are treated as assumptions.

The definitions of defeasible derivations, argument and defeat are also adapted to

account for default negated literals. Defeasible derivations ignore literals preceded by

default negation, since these are treated as assumptions. Defeaters may attack these

assumptions regardless of their preference.

2.2.5 Dialogical Argumentation Systems

The inherent dialectical nature of argumentation has been investigated in the form of

dialogical argumentation systems. In a distributed, multiagent setting, argumentation

can serve as a mechanism for reconciling conflicts among the agents. McBurney and

Parsons (2002), Prakken (2006) and McBurney and Parsons (2009) overview dialogue

games for agent argumentation.

Dialogue systems can be categorised with respect to their purpose. This is called

the dialogue goal and describes the reason behind the dialogue. Walton and Krabbe

(1995) provide a taxonomy of dialogues with respect to their purpose:
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• persuasion

• negotiation

• information seeking

• deliberation

• inquiry

• quarrel

An important element in argumentation-based dialogue is the communication lan-

guage and the protocol. Some communication language is necessary to specify the

locutions the agents can exchange. The dialogue protocol specifies how from the his-

tory of the moves made in the dialogue, the possible legal moves for the next iteration

can be computed. The protocol accounts for commencement and termination rules and

the outcome of the dialogue. In addition, the dialogue protocol specifies the conditions

and effects governing the agents’ dialogue moves with respect to the state of the dia-

logue. The state of the dialogue is determined by the already exchanged messages and

the contents of the agents’ commitment stores.

Commitment stores capture commitments (Hamblin, 1970) the agents made during

the dialogue. Commitment stores allow for the verification of the consistency of the

agents’ statements, even though it is impossible to validate if these reflect their actual

beliefs.

The topic language is the language employed for discussion about the domain. It is

considered to be shared among agents. This assumption is necessary in order to ensure

that the information agents exchange is meaningful. Sharing the topic language is

similar to sharing the ontology for the domain in question. The context for the dialogue

is a subset of the topic language that the agents consider to be common knowledge

before the beginning of the dialogue.

2.2.6 Relevance to the Project

Argumentation theory provides the means for the specification of the notion of accept-

ability in the light of contradictory information. We utilise standard argumentation

theory definitions for specifying formal solution concepts for the problem of multi-

perspective cooperative planning.
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The use of argumentation-theoretic notions in combination with a defeasible lan-

guage for representing dynamic domains enables the representation of the agents’

views about plans and their anticipated effects in a structured, purely logical manner.

Argumentation-based dialogue enables distribution of the reasoning process to

multiple agents. Chapter 5 presents a dialogue protocol that exploits this, providing

a distributed solution to the problem of multi-perspective cooperative planning under

ontological agreement.

2.2.7 Related Work in Argumentation

This section overviews the most relevant work from the area of argumentation to the

problem of multi-perspective cooperative planning.

2.2.7.1 Argumentation-based Negotiation for Coordination

Argumentation mechanisms have been proposed for the coordination of the activities

of agents. These works utilise the conflict-resolution capabilities of argumentation,

providing mechanisms for the coordination of autonomous agents with individual goals

and interdependencies in their plans for action. This section presents approaches in

argumentation-based negotiation for coordination and discusses their relevance to this

thesis.

Sycara (1989) argue that persuasive argumentation can be employed in non fully

cooperative multiagent environments in order to increase cooperativeness and bring

about convergence to a global solution. The PERSUADER system is described in the

domain of Labour mediation. A persuader agent employs persuasive argumentation in

order to influence the beliefs of a persuadee and increase the potential of cooperation.

Kraus et al. (1998) follow up this line of work, developing a formal logical model

of the mental states of agents based on Beliefs, Desires and Intentions (BDI), and use

argumentation as a mechanism for persuasion. Cooperation is achieved by influencing

change in other agents’ intentions, using arguments expressing threats, promises of fu-

ture reward and appeals to past reward, precedents, prevailing practice or self-interest.

Parsons et al. (1998) present a formal model of argumentation-based reasoning and

negotiation for autonomous agents. The authors show how this model can be used to

coordinate negotiating BDI agents.

Tambe and Jung (1999) utilise argumentation to resolve conflicts in the beliefs and

plans for action of the individual agents participating on team action. They present
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CONSA (COllaborative Negotiation System based on Argumentation), a system rele-

vant for teamwork models (Tambe, 1997) capable of dealing with conflicts regarding

beliefs about jointly initiating or terminating team operators or conflicts about individ-

ual operators and roles. This system in based on Toulmin’s argument model Toulmin

(1958).

Clement et al. (2004) present SHAC (Shared Activity Coordination), an

argumentation-based system for the negotiation of the shared activities of agents.

SHAC provides an algorithm for interleaving planning and sharing of plan informa-

tion with respect to shared activities.

2.2.7.1.1 Relevance to the Project Argumentation-based approaches for the coor-

dination of shared activities are relevant to our work, especially with respect to the use

of augmentation for the resolution of conflicts among individual plans in a multiagent

environment. However, the focus is different. We do assume that agents are coopera-

tive (share goals) and do not have private, individual goals. In addition, we focus on

agents that have different models of the environment, both in terms of the state of the

world and the specification of actions. Finally, since our model allows the specifica-

tion of and reasoning about concrete sequential plans, which may involve execution by

multiple agents, we do not account for conflicts arising from individual plans.

2.2.7.2 Argumentation-Based Practical Reasoning

Practical reasoning can be viewed as a two-step process involving deliberation and

means-end reasoning. Deliberation is concerned with reasoning about the desires of

the agent and goal-settings, whereas means-end reasoning deals with reasoning about

actions and plans that can achieve these goals.

Argumentation-based practical reasoning employs the conflict resolution capabili-

ties of argumentation theory to reconcile conflicts between beliefs, intensions, desires.

Different approaches deal with these aspects with respect to a single agent’s internal

reasoning process, or as a multiagent process for coordinating the activities of multiple

agents.

This section reviews the works in argumentation-based practical reasoning. We

also discuss the relevance these projects have to the problem of multi-perspective mul-

tiagent planning.

Amgoud and Cayrol (2004) and Amgoud (2003) present a framework that com-

putes consistent sets of intentions from a potentially conflicting sets of desired and
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a set of beliefs. Reasoning is performed using rules specifying planing rules of the

form: φ1 ∧ φ2 ∧ . . .φn → h, specifying that if the agent achieves φ1 ∧ φ2 ∧ . . .φn, then

it is possible to achieve h. Consistent intentions contain desires that can be achieved

by consistent complete plans, which include all actions necessary to achieve a given

desire.

Hulstijn and van der Torre (2004) propose a framework for dealing with goals and

plans. Compared to precious work, the authors agree that conflicts between plans

are fundamentally different to conflicts about beliefs usually studied in argumentation

theory. However, they present an approach for reasoning with standard Dung-style

abstract argumentation frameworks.

Rahwan and Amgoud (2006) present an argumentation framework that facilitates

argumentation about beliefs, generation of consistent desires and construction of plans

that can achieve these desires. Utilities measuring the worth of the desires and the cost

of the required resources are employed in order to evaluate the strength of the related

arguments. Reasoning is performed on top of three interacting argumentation frame-

works: one for beliefs, one for desires and one for plans. Argumentation over beliefs

follows Dung’s framework (Dung, 1995) as it was extended by Amgoud and Cayrol

(2002) to incorporate the strength of arguments. Desires are supported by explanatory

arguments describing the beliefs and other desires that justify them. Such arguments

may be defeated either by belief arguments undercutting the beliefs that support the

desire, or by other desire arguments undermining the desirability of the desires. Plans

are represented by instrumental arguments, which use planning rules to explain the

achievability of desires. A planning rule about a desire expresses that if a set of desires

is achieved and a set of resources is used then this desired is achieved. The accept-

ability of arguments is calculated, and intention sets are formed for desires that can be

achieved together.

Rotstein and Garcıa (2006) propose an argumentation-based framework for rea-

soning about agent beliefs and desires within a single argumentation system. Agents’

beliefs and filtering rules are defined as a defeasible logic program using facts and

defeasible rules. Rotstein et al. (2007, 2008) extend this work introducing agent in-

tentions, and generalise the filtering process to account for different agent attitudes

(accepting warranted desires, or desires whose complement is not warranted). Inten-

tion rules specify the preconditions and constraints under which filtered desires can be

selected to pursue.

Amgoud et al. (2008, 2011) argues that the separation of practical reasoning into
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two distinct processes may result in the selection of infeasible desires, even if feasible

alternatives exist. This work extends previous work introducing one-step generation of

intentions. In this approach, plans are considered ways of achieving a desire. They are

specified by their preconditions, their effects and the desire that is reached by the plan.

Atkinson (2005) describes an argument scheme following Walton’s sufficient con-

dition scheme for practical reasoning (Walton, 1996).

In the current circumstances R, we should perform action A, that will re-
alise goal G, which will promote some value V .

Justifications about action are instantiations of this scheme. Challenges to these justifi-

cations are identified through a series of critical questions. Examples of such questions

are the following:

• Are the believed circumstances true?

• Assuming the circumstances, does the action have the stated consequences?

• Is the action possible?

• Assuming the circumstances and that the action has the stated consequences,

will the action bring about the desired goal?

• Does the goal realise the value stated?

These critical questions account for resolution of disagreements related to problem for-

mulation, epistemic reasoning and action selection. Values are employed as qualitative

reasons explaining the significance of certain affairs. Atkinson et al. (2005) present a

dialogue protocol for argumentation over proposals for actions. In addition, Atkinson

and Bench-Capon (2007a,b) formalise the argument generation process by grounding

the underlying model to an action-based alternating transition system.

Medellin-Gasque et al. (2011) extend the scheme for practical reasoning to account

for plans and the temporal aspects arising from the combination of actions. The result-

ing scheme accounts for a comprehensive collection of 66, informal for the most part,

critical questions.

Tang and Parsons (2005) present an argumentation-based approach to deliberation,

in terms of goal selection, reduction of this goal to sub-goals, and formation of a plan

to achieve the overall goal. The environment is described in terms of states, and actions

causing transitions among states. The authors refer to transitions caused by actions, or

plans, from initial states to goal states as nisi. The deliberation process is initiated with
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a nisus, from the initial state to the goal state, and is conducted in phases. In each phase,

the agent decomposes intermediate nisi using a set of possible partial plans. Plans that

achieve the intermediate nisi are merged to form a plan for the initial transition. The

deliberation process is combined with argumentation, enabling reasoning about the

acceptability of plans in single-agent deliberation. Also, the authors present a two-

party deliberation dialogue protocol enabling the distribution of the process.

Toniolo et al. (2011) present a series of argument schemes that can be used for

argumentation-based deliberative dialogues for collaborative planning. This work fo-

cuses on conflicts among the plans of agents, which may be caused by concurent ac-

tions, plan constraints or norms the agents must adhere to. The model is formalised

using Reiter-style situation calculus extended to account for norms and durative ac-

tions.

2.2.7.2.1 Relevance to this project Most of the aforementioned work focus pri-

marily on the deliberation problem, dealing with the relations among beliefs, plans

and desires. We are interested on the means-end planning aspects of the problem of

practical reasoning, when the agents’ perspectives contain contradictory information.

In our work the term plan is closely related to the standard notion of a classical

plan. On the contrary, most of the proposed works refer to monolithic plans (similar

to single step actions), or employ non-standard notions, different from classical AI

planning. In the case of monolithic actions, the problem is different, with the focus

being on finding sets that are consistent, in the sense that are applicable together, and

achieve agent desires. On the contrary, classical planning treats plans as sequences of

actions that can be applied to affect the environment.

In addition, although these frameworks are expressive with respect to being able to

represent the beliefs, desires and plans, they are restrictive with respect to the repre-

sentation of actions. Their propositional nature does not allow concise representations

of realistic planning domains.

The underlying formalisation is very important. Some relevant approaches repre-

sent the agent’s domain knowledge as a state transition system. Usually, states are

monolithic and actions are simply transitions in the system. It is not clear how such a

formalism can facilitate the aggregation of agents’ views. It is not clear how one can

partially agree with some aspects of the operator, while at the same time disagreeing

with others. Additionally, it is not clear how such mechanisms will treat situations in

which agents disagree about information regarding a state that is irrelevant to a plan
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under consideration.

The work of Toniolo et al. (2011) is closely related to our work, due to the focus

on multiagent planning and the use of situation calculus. However, there are some im-

portant distinctions. In their work, argumentation is employed as a mechanism for the

resolution of conflicts caused by the interdependencies between the plans of different

agents, or the norms that individual agents have to abide by. On the contrary, our work

focuses on contradictions in the agents specifications of the actions they can perform or

the state of the environment. Dealing with contradictions is exactly the reason behind

our choice to resort to a less expressive formalism than the language used in Toniolo

et al. (2011).

2.2.7.3 Defeasible Argumentation in Planning

Recent work in defeasible argumentation (Simari et al., 2004; Garcı́a et al., 2007, 2008;

Pardo et al., 2011) investigates the problem of planning when planning knowledge is

combined with a set of additional defeasible rules. Simari et al. (2004) considers plan-

ning agents which are equipped, apart from their planning knowledge, with a set of

defeasible rules that are applicable in every state of the world. States represent non-

contradictory sets of facts. State transitions are revisions to the set of facts, which

remove any literal that is complementary to an effect of the action, and then add the

action’s effects to this set. Action applicability is evaluated through a set of precon-

ditions and constraints for each action. In order to account for defeasibility, action

preconditions must be warranted from a knowledge base consisting of the set of facts

forming the current state and the defeasible rules, whereas every constraint of the ac-

tion must fail to be warranted.

The authors describe an algorithm for progression based planning, but mainly focus

on a regression planning mechanism. The planner begins with a partial state containing

the goal literals. A plan is built, with each action regressing to a previous state, until

the initial state is reached. Extensions to this work (Garcı́a et al., 2007, 2008) present

DeLP-POP, an algorithm for regression-based partial-order planning. Dealing with

partial states in a defeasible setting is particularly interesting. The addition of actions

to the plan may cause the appearance of new defeaters, interfering with the existence

of assumed warrants.

Pardo et al. (2011) extend DeLP-POP to accommodate cooperative multiagent sce-

narios. The problem setting involves multiple agents, sharing a common goal, but

having different views of the planning domain, caused by knowledge about different
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actions that may be performed, different views about the initial state and the defeasi-

ble rules governing the domain. The collection of all individual beliefs regarding the

initial state is assumed to form a consistent set. The evaluation of plans, as well as

search in the plan space is conducted as dialogue process. Plan evaluation corresponds

to the collaborative search for threats to concrete plans. Search in the plan space is

performed as A∗ search, guaranteeing completeness and optimality of the solution.

2.2.7.3.1 Relevance to the Project The multiagent extension to DeLP-POP is re-

lated to the problem of this thesis. However, there are some important distinctions.

Contrary to Pardo et al. (2011) we do not assume that the collective initial state beliefs

of the agents are consistent. In addition, we consider that agents may hold potentially

contradicting specifications of the actions in the domains. Our planning language is

more expressive, allowing variables and conditional effects.

2.2.7.4 Argumentation in Multiagent Planning

The problem of multiagent planning in environments with non-deterministic actions

and distributed, possibly inconsistent, information is the focus of recent work (Tang

et al., 2009; Tang, 2012). Tang (2012) investigates the problem of coordinating the

planing processes of multiple agents and coordinating joint plans. Planning in this

approach is performed using symbolic model checking techniques. A defeasible fac-

tored action theory is introduced for the representation of multiagent state transitions.

Two different types of specifications are employed to reason about the applicability of

actions and the effectiveness of state transitions. This approach follows the Markov

assumption that the computation of the successor state depends exclusively on the cur-

rent state and the action causing the transition. Specifications are classified into layers

representing frame information (FRM), operator effects (OP), agents local understand-

ing of exceptions regarding effects (SLP) and agent interaction (IR). Inconsistencies

among different specifications are resolved according to their respective layers and ad-

ditional preference levels. It is assumed that IRs override SLPs, which override OPs,

which in turn override FRMs. Centralised and decentralised planning algorithms are

proposed to plan and coordinate the agents’ joint behaviour. These algorithms are

extended to allow planning with potentially inconsistent goals. The reasoning and

planning procedures based on the defeasible factored action theory are re-formalised

in an argumentation-theoretic fashion.
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2.2.7.4.1 Relevance to the Project Research involving multiagent planning and ar-

gumentation is highly relevant to this thesis, and illustrates recent interest in the prob-

lem of planning with inconsistent theories. There are many similarities to our work,

since both approaches deal with planning with contradictory information. However,

there are also some important differences. Tang (2012) focuses on non-deterministic

planning based on symbolic model checking. We maintain a close relation to classical

planning, which allows the adaptation of efficient heuristic methods and the experi-

mental evaluation of our approach using contradictory instances of benchmark plan-

ning problems.

Another major difference is related to the employed representation methods. The

approach proposed by Tang (2012) is based on the logic of quantified boolean formulae

and binary decision diagrams. On the contrary, our argumentation-based semantics are

encoded on top of a defeasible situation calculus variant. We use defeasible successor

state axioms to allow the compact representation of dynamic domains by encoding one

axiom for every fluent literal. Moreover, our mechanisms can handle extended axioms

that are not necessarily bound by the defeasible successor state axiom structure (which

is useful to bind our formalism to the classical planning representation), as long as

these can be encoded in the form of defeasible rules. Contrary to Tang (2012), be-

cause we consider preference information to be domain dependent, domain axioms are

not explicitly prioritised depending on their type. Finally, in our work the evaluation

of acceptability of claims regarding future situations is based on the acceptability of

relevant information across the entire history leading to the final respective state.

2.2.7.5 Argumentation-based Reasoning about Dynamic Domains

Previously in this chapter we discussed works on non-monotonic reasoning about ac-

tion and dynamic domains. In a similar manner, argumentation-based reasoning has

been used for enabling correct reasoning with concise and intuitive theories of action,

while providing solutions to the frame (Kakas et al., 1999, 2001; Vo and Foo, 2005),

qualification (Allen and Ferguson, 1994; Vo and Foo, 2001, 2005) and ramification

problems (Kakas and Miller, 1997a; Vo and Foo, 2002, 2005). This section presents

approaches in argumentation-based reasoning about action and discusses their rele-

vance to this thesis.

Konolige (1988) argues in favour of the use of defeasible argumentation-based

systems for reasoning about action, and describes which arguments are important for

this type of reasoning and the information necessary to evaluate their status. This
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approach is described based on the Yale Shooting Problem.

Ferguson and Allen (1994) consider the problem of plan communication in mixed

initiative planning, and argue that a rich representation is necessary, allowing the com-

munication of important goals and subgoals, relevant plans, clarifications and sugges-

tions. Accordingly, they present an argumentation-based approach based on the logic

of time and action (Allen and Ferguson, 1994). They propose a representation scheme

based on defeasible rules and argue that it is better suited to deal with the qualifica-

tion problem, enabling the agent to reason about qualifications for as much time as

possible, while dealing with subsequently encountered qualifications given more time.

Kakas et al. (1999, 2001) focus on domains for reasoning about action written in

the language E (Kakas and Miller, 1997b). They present a translation for these the-

ories, enabling argumentation-based reasoning based on logic programming without

negation as failure (Dimopoulos and Kakas, 1995). Reasoning in the language formal-

ism E is based on default persistence to address the frame problem. The application

of argumentation methods enables treatment of default persistence by prioritising ef-

fects of later actions higher than effects of earlier actions. In this approach time is

considered to be totally ordered.

Vo and Foo (2001, 2002, 2005) present an argumentation-based framework de-

signed to address the frame, qualification and ramification problems in a uniform man-

ner. Argumentation-based reasoning follows assumption-based argumentation Bon-

darenko et al. (1997). Domain descriptions are based on a propositional action descrip-

tion language based on temporal logic (Sandewall, 1994; Drakengren and Bjäreland,

1999). Time is represented in terms of a sequence of discrete time points.

Augusto and Simari (2001) present an argumentation-based for temporal reasoning

using the notions of instant and interval as temporal references. This system is based

on temporal logic.

2.2.7.5.1 Relevance to the Project The focus of our work is different. We are

interested in defeasibility introduced by the different opinions of the agents. Our rep-

resentation is based on defeasible rules with the structure of successor state axioms.

As as a result, each agent encodes both the frame and effect rules regarding a fluent

predicate in a single axiom.

The implicit representation of the frame axioms allows reasoning about the differ-

ent opinions on what does not change in the world after the application of the agents’

actions. The different frame axioms held by different agents allow the implicit encod-
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ing of the different views of not only what changes, but also what remains the same.

Getting similar results from a defeasible representation would require the addition of

rules, increasing the size of the theory. We revisit this in Chapter 6 where we com-

pare our representation with an alternative defeasible representation based on default

persistence.

Another benefit from the use of a formalism based on situation calculus is branch-

ing time. Branching time is useful for constructing arguments regarding different po-

tential plans, especially when the agents engage in dialogue regarding different alterna-

tives. The tree-like nature of branching time enables reuse of arguments and argument

evaluation results for arguments extending a common initial plan.

2.3 Conclusions

Although there is an extensive body of work in the area of multiagent planning, there

has been limited attention to the distributed and potentially erroneous nature of knowl-

edge in multiagent systems. Most work dealing with the problems related to these

aspects comes from the argumentation community, but does not deal with the problem

of planning for multiple agents which have different perspectives about the environ-

ment. The related approaches mainly focus on the problem of deliberation rather than

the planning-related aspects of means-end reasoning. In addition, these works do not

deal with planning problems in the classical sense, and as a result either deal with

simpler problems, such as action selection, or due to the complexity of the planning

problem, lack the mechanisms for performing plan synthesis.
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Multi-Perspective Cooperative

Planning

3.1 Introduction

The problem of multi-perspective cooperative planning (MPCP) arises when a coali-

tion of autonomous agents, which hold incompatible views of the planning environ-

ment, need to come up with a plan that can be defended against possible objections.

MPCP deals with the problem of planning with distributed and potentially contradic-

tory knowledge, i.e. knowledge which contains directly contradicting facts or which

leads to contradicting conclusions.

Contrary to classical planning, we treat agents’ beliefs as evidence, rather than as

certain facts. For instance, an agent’s belief that a robot r1 is at location loc1 is treated

as evidence suggesting that the robot is at loc1, or that we have reasons to believe1

that r1 is at the suggested location. Accordingly, contradicting beliefs are viewed as

evidence towards opposing conclusions. The agents can compare such evidence and

identify which claims can be defended against possible objections.

The problem of multi-perspective cooperative planning consists of a planning and

a decision-making problem:

1. Synthesise plans whose success is suggested by evidence from the agents’ col-

lective beliefs.

2. Evaluate the acceptability of these plans by comparing the evidence supporting
1We use the expressions indications, reasons to believe and evidence interchangeably. If such indi-

cations lead to contradicting conclusions, the beliefs used to reach these conclusions are called contra-
dictory.

48
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them against possible objections.

The first sub-problem is essentially a planning problem. We formalise it based on a

standard set-theoretic planning representation, adapted to accommodate contradictions

in the agents’ beliefs and multiple operator specifications. This representation allows a

close relation to classical planning enabling the use of efficient, off-the-shelf planners

(McDermott, 2000; Hoffmann and Nebel, 2001) to solve the task at hand.

The planning sub-problem of MPCP focuses exclusively on the planning elements

of the overall problem, stripped from any additional information the agents may hold

regarding, for example, the source or credibility of planning beliefs. We specify a

solution concept to this sub-problem and discuss how it qualifies as a solution to the

overall problem.

The second problem involves deciding whether the agents should accept a syn-

thesised plan. The formulation of this sub-problem requires a concrete account of

the notion of acceptability. Based on argumentation theory (Dung, 1995; Garcı́a and

Simari, 2004) we formally specify these notions and concretise the problem of multi-

perspective cooperative planning.

The proposed argumentation-based approach is based on a defeasible logic pro-

gramming (Garcı́a and Simari, 2004) and situation calculus (McCarthy, 1963) variant

which enables the formulation of the problem and the methods in a purely logical, non

ad-hoc, manner. This language is strictly more expressive than the set-theoretic no-

tation used for the representation of the planning sub-problem. We provide a sound

mechanism for the translation of set-theoretic planning theories to equivalent defeasi-

ble logic theories.

3.2 The Planning Problem of MPCP

This section focuses on the first sub-problem of MPCP. We focus on the agents’ plan-

ning beliefs and disregard any additional information about the sources or credibility of

these beliefs that can be used to provide additional insight on the evaluation of different

alternatives.

We use the standard planning problem specification P = 〈F, I,A,G〉, with fluents

F initial state I action space A and goal state G, and consider the problem of working

out a plan that complies with several (potentially contradictory) versions Pi of P at the

same time, for each agent i. Agents maintain individual initial state beliefs Ii and action

specifications Ai. Fluents F and goals G are shared.
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The notation used in this section is based on the STRIPS planning model (Fikes

and Nilsson, 1972), extended with variables, negation immediately preceding fluent

predicates and conditional effects. We consider all actions to be deterministic. At this

point, we do not make any assumptions regarding the observability of the domain.

Variables are essential for the compact representation of a planning domain. The

use of negation allows the representation of states as sets of literals (rather than atoms),

and enables us to encode that a literal takes on a positive or a negative value, as well

as absence of information regarding the value of a literal. Conditional effects enable

a more concise specification of the operators. The resulting formal notation is suffi-

ciently expressive for the compact representation of complex, deterministic planning

theories.

We are not concerned with multiagent execution. Nevertheless, the employed plan-

ning model accommodates a simple execution model by including an additional term

in each action specifying the agent executing the action. In order to account for joint

actions, this scheme can be extended so that the agent term can be instantiated to a

coalition of agents. The resulting model accounts for multiagent execution of fully

ordered plans, and does not account for durative, concurrent actions.

3.2.1 Individual Planning Knowledge

Each individual agent’s planning knowledge is encoded as an individual planning

problem, defined on top of a logical language L = 〈Lp,Lv,Lc〉. Lp contains a fi-

nite number of predicate names. Lv is a finite set containing variable symbols, and Lc

contains a finite number of constant symbols representing the objects of the planning

domain. The fluents representing the domain are denoted by the tuple F = 〈Fc,Fv〉,
where sets Fc and Fv contain ground and unground fluent literals respectively. Fc is

obtained by grounding the elements of Fv using all possible objects from Lc.

Definition 10. The individual planning problem for agent i in a coalition of agents is

a tuple:

Pi = 〈F, Ii,Oi,G〉,

where

• Ii ⊆ Fc is agent i’s perception of the initial state of the environment.

• Oi is the set of planning operators i believes the coalition can apply.
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• G⊆ Fc is a goal shared by the agents in the coalition.

We assume that the goals shared by the agents are non-contradictory.

The set Oi summarises agent i’s beliefs regarding the specification of the operators

available to the agents in the coalition that can be used to reach the common goal.

Planning operators are tuples of the form:

〈prei,o,eff i〉,

where

• o is the name of the operator,

• prei ⊆ Fv is the set of preconditions and

• eff i is a set of conditional effects.

We refer to beliefs of agent i regarding the preconditions and effects of operator o as

prei(o) and eff i(o) respectively.

Conditional effects have the form 〈C,e〉, where C ⊆ Fv denotes the necessary con-

ditions and e∈ Fv represents the effects. An action a is a ground version of an operator,

where each variable has been instantiated to a constant object. We denote the set of all

ground actions for agent i as ground(Oi).

Contrary to classical planning, fluent literals can be considered to be indications, or

reasons to believe that the literal takes on the respective value. Consider the following

examples:

• At(x, loc1) ∈ Ii represents that agent i has indications that object x is at location

loc1 in the initial state.

• prei(pickup(x, loc1)) = {At(x, loc1),Movable(x)} denotes that agent i has rea-

sons to believe that object x can be picked up from location loc1 if we have

reasons to believe that x is at loc1 and that x is transportable.

• 〈{Power(l)},Light(l)〉 ∈ eff i(switch on(l)) represents agent i’s belief that, if

there are indications suggesting that a lamp l is connected to a power source,

there are reasons to believe that l is lit after the agent switches it on.

Planning domain beliefs can be used alongside the state transition function to calculate

the effects that the application of an action is expected to have on the environment.
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3.2.1.1 State Transition Function

The state transition function specifies how operators alter the state of the world. It is

usually represented as a function γ(a,σ) which, given an action a and the state of the

environment σ, returns the state obtained after the execution of a.

Positive and negative literals may appear in the same state, representing different

reasons suggesting that the respective atom takes a positive and a negative value in

this state. We adapt the usual state transition function specification to handle literals

instead of atoms in order to account for contradictory information.

The state transition function is defined for actions that the agent has reason to

believe that they are applicable. Agent i has reasons to believe that a ground action

a is applicable in a state σ if there are reasons to believe that this state satisfies the

preconditions of the action:

prei(a)⊆ σ.

The following definition describes the specification of the state transition function in

our setting. The proposed specification of the state transition function ensures that

ambiguity about conditions in a state is propagated to literals in successor states whose

value depends on these conditions.

Definition 11. Consider agent i, and the individual planning problem Pi = 〈F, Ii,Oi,G〉,
and a state σi. Let a ground action 〈prei,a,eff i〉 ∈ ground(Oi) such that prei(a) ⊆ σ.

e ∈ γi(a,σ) if and only if:

1. there exists an effect 〈C,e〉 ∈ eff i(a) and C ⊆ σ, or

2. e∈ σ and for every conditional effect 〈C,e〉 ∈ eff i(a), there exists c∈C such that

either

(a) c 6∈ σ, or

(b) c ∈ σ.

The notation e represents the complement of literal e. If e is a positive literal then

e = ¬e, whereas if e is a negative literal and e = ¬p, then e = p.

Condition (1) describes that if there are reasons to believe that the conditions of

a conditional effect hold, then there are reasons to believe that its effect holds in the

successor state. This is similar to the usual specification of the state transition function.

Condition (2) deals with persistence of literals. The successor state function must

account for the literals we have reasons to believe that they remain unaffected by the
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application of the most recent action. In non-contradictory theories, calculating which

literals remain the same simply involves deleting from the successor state the com-

plements of the added literals. As a result, a literal remains unaffected if there is no

conditional effect producing this literal whose conditions are all satisfied by the state.

Contradictions complicate this process. It is rational to conclude that, if the beliefs

suggest that the conditions of the effect are not applicable, then there are no reasons to

believe that the effect is valid. Accordingly, the successor state function must account

both for absence of information, similar to the standard case, and existence of infor-

mation to the contrary. Condition (2), accounts for the conclusion that the conditional

effect is inapplicable, due to:

• Absence of information suggesting that the condition holds in the previous state

(2a).

• Information that the condition does not hold in the previous state (2b).

Figure 3.1 illustrates the desirable behaviour of the state transition function. Con-

sider an agent that is considering the effects of the action of flipping the light switch,

while assuming that the light turns on if there is electricity in the building.

The transition from state σ1 illustrates that if there are reasons to believe that there

is power in the building, then there are reasons to believe that light will be on if the

lamp is switched on. At the same time, since there is no ambiguity regarding whether

there is power, there is no evidence to suggest that after the application of the action

there is no light, and as a result ¬light does not persist in γi(switchOn,σ1).

The transition from state σ2 to γi(switchOn,σ2) describes that if there are no rea-

sons to believe that the condition of the effect holds, then there is no indication towards

the belief that the effect is applicable. As a result, the complement of the effect persists

in the successor state. State σ3 is similar to σ2, but in this case there are reasons to

believe that the condition of the effect actually does not hold in the predecessor state.

State σ4 is ambiguous with respect to the predicate power as there are reasons

to believe that both power and ¬power are the case. The state transition propagates

the ambiguity to the successor state γi(switchOn,σ4). Since power is satisfied in σ4,

there are reasons to believe that the conditional effect is applicable. As a result, there

are reasons to believe that light holds in γi(switchOn,σ4). At the same time, there is

evidence suggesting that ¬power holds in σ4. This leads to the conclusion that the

conditional effect is not applicable, and accordingly, provides reasons to believe that
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γi(a,σ1) γi(a,σ2) γi(a,σ3) γi(a,σ4)

σ4σ3σ2σ1

a = switchOn

power
¬light

�{power}, light�

light

power
¬power

¬light

¬power

¬light

light
¬light

¬light

¬light

¬light

power
¬power power

¬power

Figure 3.1: Example illustrating the specification of the state transition function for in-

dividual planning problems for different states σ1, . . . ,σ4 and a single action switchOn

with the conditional effect 〈{power}, light〉. Fluent literals above and below states de-

note the beliefs that are part of the respective states

¬light holds in γi(switchOn,σ4). The literals power and ¬power are not affected by

the action switchOn. Their status persists to the successor state.

The state transition function propagates ambiguity to successor states, but does

not introduce contradictions in non-contradictory states when the applicable effects of

the action are not contradictory. The contradictions introduced are either a result of

contradictions that persist from the previous state, or due to contradictory information

regarding the conditions of conditional effects.

The state transition function for agent i, given an action a and the predecessor state

s is represented using our set-theoretic notation as follows:

γi(a,σ) = (σ−deli(a,σ))∪addi(a,σ) .

The set addi(a,σ) contains the effects of the action a that agent i has reason to believe

that are applicable:

addi(a,σ) = {e | 〈C,e〉 ∈ eff i(a) and C ⊆ σ} .

The set deli(a,σ) contains the literals that agent i has reason to believe no longer hold
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after the application of the action:

deli(a,σ) = addi(a,σ)− inapi(a,σ) .

The set inapi(a,σ) contains the effects that are not believed to be applicable:2

inapi(a,σ) = {e | for every 〈C,e〉 ∈ eff i(a),∃c ∈C such that c 6∈ σ or c ∈ σ}.

The bar notation over a set represents the complements of every literal in this set, i.e.

S = {e | e ∈ S}.
The successor state is calculated as the union of the conditional effects that are

believed to be applicable (i.e. addi(a,σ)), and the literals which are believed to persist

from the previous state (i.e. σ−deli(a,σ)). In order to calculate the latter, we remove

the conditional effects that are believed be applicable without any ambiguity from the

predecessor state. This is asserted by removing from the applicable effects addi(a,σ),

all effects which are believed to be inapplicable in σ (i.e. inapi(a,σ)).

The following proposition asserts that the set-theoretic specification of the state

transition function follows Definition 11.

Proposition 1. Consider agent i and the individual planning problem Pi = 〈F, Ii,Oi,G〉.
Let 〈prei,a,eff i〉 ∈ ground(Oi) be a ground action which is applicable in state σ. Ac-

cording to the specification of γ, e ∈ γi(a,σ) if and only if:

1. there exists an effect 〈C,e〉 ∈ eff i(a) and C ⊆ σ, or

2. e∈ σ and for every conditional effect 〈C,e〉 ∈ eff i(a), there exists c∈C such that

c 6∈ σ or c ∈ σ.

Proof.

(⇒)

1. If 〈C,e〉 ∈ eff i(a) and C ⊆ σ then e ∈ addi(a,σ), and as a result e ∈ γi(a,σ).

2. We assume (a) that e ∈ σ and (b) for every conditional effect 〈C,e〉 ∈ addi(a)

there exists c ∈C such that c 6∈ σ or c ∈ σ. Therefore, e ∈ inapi(a,σ), and as a

result e 6∈ deli(a,σ). Therefore, e ∈ γi(a,σ).

(⇐) Assume that

2More specifically, this set contains the effects that the agent has no reason to believe that they are
applicable, or has reasons to believe that they are inapplicable.
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1. there does not exist an effect 〈C,e〉 ∈ addi(a) with C ⊆ σ, and

2. (a) e 6∈ σ or (b) there exists a conditional effect 〈C,e〉 ∈ eff i(a), such that for all

c ∈C, c ∈ σ and c 6∈ σ.

From (1) it follows that e 6∈ addi(a,σ). Then, if e 6∈ σ, it holds that e 6∈ γi(a,σ). If

(2b) is the case, e ∈ addi(a,σ), and also e 6∈ inapi(a,σ). As a result e ∈ deli(a,σ).

Therefore, regardless of whether e ∈ σ holds, it is the case that e 6∈ γi(a,σ).

The state transition function does not introduce contradiction in a non-contradictory

state, when the action causing the transition does not have any contradicting effects.

Proposition 2. Consider agent i and the individual planning problem Pi = 〈F, Ii,Oi,G〉.
Let 〈prei,a,eff i〉 ∈ ground(Oi) be a ground action which is applicable in state σ. If

σ is not contradictory (i.e. @p ∈ σ such that p ∈ σ) and all applicable effects (i.e.

addi(a,σ)) are non-contradictory, then γi(a,σ) is non-contradictory, for any action a.

Proof. For every e ∈ addi(a,σ), there exists a conditional effect 〈C,e〉 ∈ eff i(a) such

that C⊆ σ. Since σ is non-contradictory, there does not exist any c∈C such that c∈ σ.

As a result, inapi(a,σ) is empty and as a result it holds that:

deli(a,σ) = addi(a,σ)− inapi(a,σ) = addi(a,σ) .

Therefore, the state transition is calculated is follows:

γi(a,σ) = (σ−deli(a,σ))∪addi(a,σ) = (σ−addi(a,σ))∪addi(a,σ) .

Accordingly, for every literal added to the predecessor state, its complement is re-

moved. As a result γi(a,σ) is non-contradictory.

3.2.1.2 Candidate Plans

Desirable states may not be reachable by performing single actions. Candidate plans

are sequences of actions, which are believed to be applicable in sequence, and reach a

desirable state.

Definition 12. A sequence of actions π = 〈a1, . . . ,ak〉 is a candidate plan for Pi if

• a1 is applicable in I,

• for every action a j, with 2 ≤ j ≤ k, a j is applicable in state γi(〈a1, . . . ,a j−1〉, I)
following the application of a1, . . . ,a j−1, and
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• G⊆ γi(π, I).

The first condition accounts for the executability of the plan, meaning that all actions

in the plan are applicable in sequence. The second condition asserts that i has reasons

to believe that the sequence achieves the goal. In order to accommodate the treatment

of plans, the state transition function γi is canonically extended to sequences of actions.

3.2.2 Collective Planning Knowledge

The multi-perspective planning problem is formulated with respect to the agents’ col-

lective planning beliefs.

Definition 13. A multi-perspective planning problem is a tuple P = 〈N,F, I,O,G〉,
where

• N is the set of the agents participating in a coalition,

• F are the fluents describing the domain,

• I = {Ii}n
i=1 is a set containing all agents’ views of the initial state,

• O= {Oi}n
i=1 contains every agent’s perception of the operators that the coalition

may apply, and

• G⊆ Fc is a non-contradictory set describing the common goal.

This definition is based on the assumption that the agents are cooperative, since they

share the same goal G. In addition, we assume that the agents operate under ontological

agreement, since they share the same fluents and operator names. On the contrary, we

do not make any assumptions that initial states are individually and mutually non-

contradictory, or that they maintain the same operator specifications.

The state transition function for the multiagent planning problem is defined as

γ(a,σ) = {l | l ∈ γi(a,σ) for every i ∈ N such that prei(a)⊆ σ}∪
{l | l ∈ σ for every i ∈ N such that prei(a) 6⊆ σ} .

The collective state transition function aggregates the results of individual state transi-

tion functions. If an action is not applicable with respect to an agent’s operator speci-

fication, then the state transition function for this agent is undefined. In this case, the

action is considered to have no effect on the state with respect to the specification of
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this agent. Clearly, the resulting states may be contradictory either due to contradictory

operator specifications, or contradictory initial state beliefs.

Equivalently to the individual agent’s case, a sequence of actions is a candidate

solution to the collective MPCP problem, if there are collective reasons to believe that

the plan is executable and the goal is achieved in the resulting state.

Definition 14. A sequence of actions π = 〈a1, . . . ,am〉 is a candidate plan for a MPCP

problem P if:

• there exists a tuple 〈prei,a1,posti〉 ∈ ground(O) such that prei(a1)⊆ I,

• for every action a j, with 2 ≤ j ≤ m, there exists 〈prek,a j,postk〉 ∈ ground(O)

such that prek(a j)⊆ γ(〈a1, . . . ,a j−1〉, I), and

• G⊆ γ(π, I).

The definition asserts that there is at least one specification of a1 that is applicable in I,

and for every action a j in the plan there is at least one specification that is applicable in

the resulting state reached after executing the actions in the plan before a j. The second

condition ensures that the agents have reasons to believe that the goal is satisfied in the

state resulting from the application of the plan.

Candidate plans that solve a collective planning problem include the candidate so-

lutions to the individual agents’ planning problems.

Proposition 3. Let multi-perspective planning problem P = 〈N,F, I,O,G〉, and an in-

dividual planning problem Pi = 〈F, Ii,Oi,G〉. If π = 〈a1,a2, . . .〉 is a candidate plan for

Pi, then π is a candidate plan for P.

Proof. Every action a that is applicable in σ with respect to Pi is also applicable in σ

with respect to P, since 〈prei,a,eff i〉 ∈ Oi ⇒ 〈prei,a,eff i〉 ∈ O, and prei ⊆ σ as a is

applicable in σ with respect to Pi. Therefore, since Ii ⊆ I and prei ⊆ Ii, prei ⊆ I.

From the specification of γ we infer that, for every action a that is applicable in

a state σ, γi ⊆ γ. As a result for every action a j in the plan with j > 1, it holds

that prei ⊆ γ(〈a1, . . . ,a j−1〉, I), since prei ⊆ γi(〈a1, . . . ,a j−1〉, I). In addition, G ⊆
γ(〈a1, . . . ,a j−1〉, I), since G⊆ γi(〈a1, . . . ,a j−1〉, I).

Therefore, every action in π is applicable in sequence with respect to P and the

final state satisfies the goal conditions G.

The specification of candidate plans asserts that reasons for executability and goal

achievement derive from the agents’ collective beliefs. However, they do not take into
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account possible objections. These bring about doubts regarding the a plan based on

indications that certain actions are not executable or that the plan fails to achieve the

goal.

Consider, for instance, a candidate plan, the first action of which is believed to be

executable because there are reasons to believe that its precondition p is satisfied in

the initial state. However, if at least one agent in the coalition has reasons to believe

that ¬p is the case, the agents have collective reasons to believe that the first action in

the plan is not applicable. In such cases, it is not straightforward to decide whether the

plan should be followed. Candidate plans can be viewed as weak solution concepts as

they indicate possible solutions, which derive from the agents’ collective beliefs, but

are not objection-proof.

The next section focuses on the notion of acceptability from argumentation theory,

and provides the formal semantics for the resolution of contradictions and the evalua-

tion of the evidence supporting candidate plans. Planning knowledge models the bare

minimum knowledge that is required to synthesise plans, and cannot represent addi-

tional meta-knowledge about these beliefs, such as useful information regarding levels

of confidence, origin or structure. In the next section we describe how such beliefs can

be utilised in a unified framework, enabling the agents to resolve domain knowledge

contradictions and make sound decisions.

3.3 Defeasible Reasoning about MPCP Problems

In the previous section we outlined the basic components of the planning sub-problem

of MPCP. Solving this problem, in the traditional planning sense, results in synthe-

sising candidate plans. These plans, however, are greedy as the planner may use any

beliefs even if contradicting views about these beliefs exist.

This section introduces the notion of acceptability, which provides the basis of

stronger solution concepts. Plan acceptability is based on the idea that plans must not

only derive from the agents’ collective beliefs, but these beliefs must be “stronger”

than any objections.

We follow an argumentation-based approach, where derivations from the agents’

collective beliefs correspond to arguments. Arguments are compared in order to iden-

tify which conclusions the agents should accept. According to Prakken and Vreeswijk

(2002), the specification of an argumentation system requires the definition of the fol-

lowing elements:
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• An underlying logical language.

• Definitions of arguments, conflicts between arguments and of a defeat relation

among arguments.

• Definition of how arguments are assessed, specifying a notion of defeasible log-

ical consequence.

This section provides a concrete specification of these notions for the problem of rea-

soning about the acceptability of plans.

The set-theoretic formalism introduced in the previous section provides a formal

specification of the planning problem. This reasoning scheme allows agents to use

their (collective) planning beliefs to evaluate whether they have reasons to believe that

a literal holds after the application of a sequence of actions. However, even though

this formalism allows the logical specification of individual states, it is inadequate for

the representation of logical statements explaining how derived conclusions regarding

different states are related.

In order to resolve contradictions regarding in future states, agents need to inspect

all relevant beliefs that lead to these contradictions. This requires regressing to previ-

ous states and identifying relevant beliefs and related meta-knowledge the agents may

possess. In order to resolve conflicts, the agents must be able to find all the explana-

tions relevant to a contradiction, and decide which one is the ‘strongest’.

We map derivations to arguments, and employ abstract argumentation techniques

to formally specify “acceptable plans”. The set-theoretic, state-based planning rep-

resentation does not allow us to formulate logical arguments based on some form of

deductive reasoning. In order to avoid imposing ad-hoc internal structure and seman-

tics, we introduce a defeasible variant of the situation calculus language that provides

the basis for a structured logical representation of arguments which in turn will be used

as the foundation of our plan acceptability semantics.

3.3.1 Desirable Properties of the Logical Formalism

Before getting into the details of our logical formalism, we outline a series of essential

properties. In Chapter 6 we revisit these properties in order to evaluate the suitability

of the employed formalism.
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3.3.1.1 Representation of MPCP Domains

The formalism must be sufficiently expressive to provide an accurate representation

of multi-perspective planning problems. Also, the inferential results provided by the

formalism should be correct with respect to the aforementioned solution concepts.

3.3.1.2 Reasoning about Dynamic domains

The employed logical formalism must be able to represent domains and change caused

by the actions of the agents. It must allow axioms describing the effects and precondi-

tions of actions. Additionally, it is necessary to be able to formulate sentences describ-

ing the state of the environment, and how the values of literals change throughout the

execution of the plan.

3.3.1.3 Expressive Power

The expressive power of the formalism is also relevant to the types of axioms that can

be represented. We have the basic requirement that the formalism allows the expression

of axioms describing planning operators. More expressive formalisms may enable

the more elegant representation of theories including more rules explicitly describing

concepts such as domain constraints and ramifications.

3.3.1.4 Handing Contradictions

The formalism must enable reasoning with contradictory theories. The inferential

mechanism must be able to handle contradictions and provide concrete, intuitive se-

mantics to specify what is acceptable. Since there is no universally accepted measure

of what constitutes adequate justification to accept new information, a single accept-

ability criterion may not be adequate. Multiple semantics may be necessary to account

for different agent attitudes towards accepting new facts. The combination of the re-

quirements of reasoning about dynamic domains and handling inconsistencies are the

focal points of our approach.

3.3.1.5 Practicality

Both the aspects of tractability of the inferential mechanism and the size of theory

determine the practicality of the approach. Expressive formalisms produce succinct

representations. However, complicated rules generally increase the complexity of the
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reasoning process. The practicality of the approach is related to this tradeoff, and can

be measured by its ability to handle domains of increasing size, complexity and number

of contradictions.

3.3.2 Defeasible Situation Calculus

Situation calculus (McCarthy, 1963) is a highly expressive logical language for reason-

ing about dynamic domains. Highly structured theories of situation calculus, called ba-

sic action theories, enable tractable reasoning, while providing a solution to the frame

problem (Reiter, 1991, 2001). Basic action theories, however, do not normally cater

for contradictory planning knowledge, which complicates the reasoning process.

The collective beliefs of multiple agents are may be contradictory and may include

multiple specifications for the same operator. Also, the task of combining distinct

specifications held by multiple agents to formulate well-formed successor state axioms,

pre-compiling the collective beliefs into a non-contradictory well formed basic action

theory, is not a straightforward task.

In order to be able to handle the additional complexity introduced by contradictions

and multiple operator specifications, we focus on a restricted variant of situation calcu-

lus based on defeasible logic programming, which we call defeasible situation calcu-

lus. Defeasible logic programming enables defeasible, argumentation-based reasoning

with propositional theories that may contain contradictory beliefs. The representa-

tion resembles the representation of extended logic programming (Garcı́a and Simari,

2004), and is syntactically similar to basic action theories that have transformed to be

interpreted by the situation calculus Prolog interpreter (Reiter, 2001).

3.3.2.1 The language Ldefsitcal

The language of defeasible situation calculus Ldefsitcal supports three basic sorts:

• action for actions

• situation for situations

• object for everything else

Ldefsitcal has the following alphabet:

• Usual DeLP negation ‘∼’, default negation ‘not’, conjunction ‘,’ and defeasible

implication ‘–≺’ connectives.
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• Equality ‘=’, inequality ‘6=’ and disjunction ‘;’ symbols.

• Countably infinitely many individual variable symbols of each sort.

• Two function symbols of sort situation:

1. A constant symbol S0, denoting the initial situation.

2. The binary function symbol do : action× situation→ situation.

• A binary predicate symbol Poss : action× situation.

• A finite or countably infinite set of predicate symbols with arity n, for each n≥ 0,

and sorts (action∪object)n.

• A finite or countably infinite number of predicate symbols of sort (action ∪
object)n× situation, for each n≥ 0.

Situations are interpreted as finite sequences of actions. The special function symbol

do(a,s) represents the sequence formed by adding an action a to the sequence s. For

readability we write do([a1, . . . ,an],s) to denote do(an,do(. . .do(a1,s))],s). Situations

that are subsequences of other situations are referred to as predecessors to these situ-

ations. For instance, s2 = do([a1,a2],s) is a predecessor of s3 = do([a1,a2,a3,a4],s).

We call s3 a successor situation of s2.

The special symbol Poss(a,s) denotes that action a can be applied in situation

s. Predicates are distinguished from fluents and non-fluents. Fluent predicates have

an object of term situation as their final argument. Non-fluents describe situation-

independent relations that do not change over time. Note that situation terms are al-

lowed to appear exclusively as the last argument of fluent predicates, or special sym-

bols do and Poss.

Default negation is interpreted, similar to Garcı́a and Simari (2004), as an assump-

tion about the absence of contradicting information. On the contrary, the usual negation

denotes reasons to believe that a literal takes a negative value.

Equality, inequality and disjunction symbols do not exist in DeLP. We introduce

these symbols to relate terms, as for instance a1 = a2 and x1 6= x2, for actions a1, a2

and objects x1, x2. Equality and inequality are treated, with respect to reasoning, as

grounding constraints, rather than logical symbols. We also allow the use of disjunc-

tion to enable the compact representation of multiple rules with the same body using a

single rule. The effect of these symbols in the reasoning process is further explained

after the introduction of our reasoning mechanism.
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We use Ldefsitcal to encode defeasible situation axioms, which have the following

form:

head –≺body .

The head of the rule may be any literal constructed for any predicate symbol in Ldefsitcal

or the special predicate symbol Poss(a,s), where a is an action and s a situation term.

The body of the rule may be empty. Alternatively, it may contain any literal for any

predicate symbol in Ldefsitcal, or equalities and inequalities for any terms in Ldefsitcal.

Literals in the body of axioms may be preceded by default negation. Conjunction

may appear between literals, default negated literals, term equalities and inequalities.

Disjunction is only allowed to separate multiple conjunctions. The body of axioms is

written in a form of disjunctive normal form adapted to account for default negation.

This work has been designed with practicality in mind. The restrictions in the

structure of axioms serve this purpose. By following these rules we allow the axioma-

tisation of planning domains in an ungrounded manner, while enabling a specification

of an efficient grounding scheme that generates propositional theories that can enable

efficient reasoning. More specifically, while we allow the use of disjunction to enable

the specification of complex axioms, we restrict its use so that it enables us to quickly

generate propositional theories that can be used for DeLP-style inference. Regardless

of these restrictions, the proposed axiomatisation scheme allows the specification of

complex domains. We revisit this issue in Section 3.4.1.3.

The formal grammar is outlined in Backus-Naur Form as follows:

1. 〈axiom〉 ::= 〈head〉–≺〈body〉 | 〈action〉= 〈action〉 | 〈action〉 6= 〈action〉

2. 〈head〉 ::= 〈literal〉 | [∼]〈poss〉

3. 〈body〉 ::= [〈disjunct〉]

4. 〈disjunct〉 ::= 〈conjunct〉[;〈disjunct〉]

5. 〈conjunct〉 ::= 〈element〉[,〈conjunct〉]

6. 〈element〉 ::= [not]〈literal〉 | 〈grounding-constraint〉

7. 〈literal〉 := [∼]〈predicate〉

8. 〈grounding-constraint〉 ::= 〈term〉= 〈term〉 | 〈term〉 6= 〈term〉
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The expression 〈poss〉 refers to the special predicate Poss(a,s).

Following standard DeLP, axioms with an empty body are called presumptions

(Garcı́a and Simari, 2004). Sometimes instead of head –≺we write head for simplicity.

According to the aforementioned restrictions the following axiom is not well-

formed:

∼Lit(l,do(a,s))–≺∼Lit(l,s),not((a = switch on,Plugged(l,s));

(a = switch on,∼Broken(l,b,s)) .

On the contrary, the next rule illustrates an example of a well-formed axiom:

∼Lit(l,do(a,s))–≺∼Lit(l,s),a 6= switch on,a 6= switch on;

∼Lit(l,s),a 6= switch on,not∼Broken(l,b,s);

∼Lit(l,s),not Plugged(l,s),a 6= switch on;

∼Lit(l,s),not Plugged(l,s),not∼Broken(l,b,s) .

3.3.2.2 Notational Conventions

Universal quantifications are not explicitly stated following the usual situation calcu-

lus convention. Lower-cased symbols denote unground variables quantified with max-

imum scope, unless stated otherwise. Constants are represented using capital letters.

The representation ~x denotes x1,x2, . . . ,xn. The notation L(~x) describes that the free

variables in L are among~x.

We follow the usual situation calculus naming conventions:

• Predicate names start with an upper case first letter.

• Function names are represented with a lower case first letter.

• Unground variables are denoted as lower case letters.

• Grounded variables are represented as capitalised letters.

In addition to the (defeasible) situation calculus representation, we need to also repre-

sent arguments and dialogue moves. To avoid confusion we represent arguments using

lower case Greek characters.
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3.3.3 Defeasible Basic Action Theories

The form of defeasible situation calculus axioms we described earlier is very liberal.

Here we impose a more restrictive structure that is sufficient to represent planning do-

mains. We call these theories defeasible basic action theory (DBAT). DBATs are influ-

enced by Reiter’s situation calculus basic action theories, and use defeasible successor-

state axioms, which provide a solution to the frame problem by encoding both the

frame and effect rules regarding a fluent predicate within an axiom. The result of this

structure is a succinct representation of the planning domain.

Definition 15. A defeasible basic action theory is a tuple D = 〈Dss,Dap,DS0,Duna,Dc〉
that contains defeasible rules describing successor state axioms Dss, action precondi-

tions axioms Dap, axioms regarding the initial situation and non-fluent beliefs DS0 , the

unique names axioms for actions Duna and constant symbols of sort object Dc.

Defeasible successor-state axioms detail conditions, providing reasons to believe that

a fluent literal holds in the successor situation. The head of a defeasible successor

state axiom is a fluent literal in a successor situation do(a,s) (e.g. F(do(~x,a,s)) or

∼F(do(~x,a,s))), and the body of the rule involves only fluent predicates referring ex-

clusively to situation term s. Examples of successor state axioms are the following:

Lit(do(a,s))–≺a = switch on;Lit(s),a 6= switch off

Charged(x,do(a,s))–≺Plugged(x,s),a 6= unplug(x)

∼Charged(x,do(unplug(x),s))–≺

Each agent holds one successor state axiom per fluent literal. This axiom must account

for any possible case that leads to the indication that the literal holds in the successor

state.

Defeasible Action precondition axioms denote reasons that govern the applicability

of an action. The head of these rules is the predicate Poss(A,s) or ∼Poss(A,s), where

A is a ground action. Fluents in the bodies of these rules are not allowed to contain

any situation terms apart from s. The following are examples of defeasible action

precondition axioms:

Poss(switch on(l),s)–≺Reachable(l,s),∼Broken(l,s)

∼Poss(unplug(l),s)–≺∼Reachable(l,s)
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Axioms regarding the initial situation are rules which only contain predicates that

have the initial situation as their situation term. For example, consider the following:

At(R,L1,S0)–≺
∼At(R,L1,S0)–≺At(R,L2,S0),L2 6= L1

Non-fluent beliefs never change from one situation to another (i.e. as a result of ac-

tion execution). Objects of sort situation are not allowed to appear in such beliefs.

Examples of non-fluent beliefs are the following:

Robot(R)–≺
Mobile(R)–≺Robot(R)

Regardless of their constant nature, and similar to every other belief in the theory,

non-fluent beliefs are defeasible and may contradict each other.

Equality and inequality are just used to disregard ground instances of defeasible

rules that do not respect these. For instance, given a successor state axiom that has

the equality a = A1, instantiating a with A2 is not possible since A1 and A2 are differ-

ent objects. We use the set of unique names axioms for our domain to encode these

constraints.

3.3.4 Grounding Defeasible Basic Action Theories

In order to utilise the reasoning mechanism of Garcı́a and Simari (2004) we introduce

a grounding mechanism for defeasible basic action theories. This mechanism produces

well-formed extended defeasible logic programs.

A ground defeasible basic action theory is obtained after grounding the defeasible

rules in the domain with respect to a ground situation term and all its predecessor

situations. All ground situation terms are rooted in the initial situation S0, and denote

the history of the application of sequence of ground actions in the initial situation S0.

Note that grounding the domain theory for an extensive number of situation terms is an

expensive process. We revisit this issue in the following chapter and present algorithms

for reasoning and planning with DBATs.

Definition 16. Let a defeasible basic action theory D = 〈Dss,Dap,DS0,Duna,Dc〉.
ground(D,S) represent the DBAT D grounded with respect to a ground situation sym-

bol S and be specified as follows:
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1. Collect all ground rules from D for every possible grounding using all terms

of sort object, every grounded action and every ground situation term in the set

{S}∪{S′ | S′ is a predecessor to S}:

ground axioms(D,S) =

{r′ | r ∈Dss∪Dap∪DS0 and r′ is obtained by the substitution

of every unground object, action and situation term

appearing in the rule with a ground term of the same sort

and the removal of trivial equalities of the form X = X and

inequalities X 6= Y for different ground terms X and Y} .

2. Simplify the grounded rules by separating disjunctions in their body into sepa-

rate rules:

simplified ground axioms(D,S) =

{r | r ∈ ground axioms(D,S) and the disjunction symbol

does not appear in r}∪
{L–≺Φ | L–≺Ψ ∈ ground axioms(D,S) and Φ is a disjunct in Ψ} .

3. Remove rules which contain equalities referring to different objects and inequal-

ities referring to the same object in their bodies:

ground(D,S) = {r | r ∈ simplified ground axioms(D,S)

and for any different terms X ,Y , the statement

X = Y or X 6= X does not appear in the body of r} .

ground(Dss,S) and ground(Dap,S) represent the ground defeasible successor state ax-

ioms and action preconditions respectively. The initial situation axioms do not contain

variables and therefore remain unchanged. The ground defeasible basic action theory

can be represented as the tuple:

ground(D,S) = 〈ground(Dss,S),ground(Dap,S),DS0〉.

In order to obtain the ground versions of the rules we instantiate their variables

in all possible combinations and remove trivial equalities (X = X) and inequalities
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(X 6= Y ). Then, we simplify the axioms by breaking down disjunctions in their bod-

ies. Due to the specific structure we impose on the axioms their body is written in

disjunctive normal form (slightly adapted to account for default negation), making the

simplifications of the axioms a trivial process.

After the grounding process, ground action and situation terms are treated as ob-

jects with respect to the reasoning process. These objects are equal if and only if they

have the same symbol name, arity and arguments. For simplicity, occurrences of the

special function symbol do and actions A(~X) may be substituted with an equivalent

unique ground situation and action terms respectively, in a uniform manner across the

theory. For instance, the action move(L1,L2) may be substituted with the new term

A1. Equivalently, do(A1,S0) may be substituted with S1 and do([A1,A2],S0) may be

replaced by S2.

Every axiom in ground(Dss,S) is a well-formed extended defeasible rule, since

heads of the rules are ground literals, and bodies of the rules are conjunctions of ground

literals (possibly preceded by default negation). Therefore, every ground DBAT corre-

sponds to an extended defeasible logic program. These programs do not contain strict

rules. Based on this relation, we follow the reasoning mechanism of DeLP (Garcı́a and

Simari, 2004).

3.3.5 Defeasible Derivations

Defeasible rules are used in sequence to create inference chains called defeasible

derivations. A defeasible derivation provides evidence for the derived conclusions.

The following definition is slightly adapted from Garcı́a and Simari (2004) to account

for lack of strict rules in ground DBATs.

Definition 17. Let ground(D,S) be a set of grounded defeasible rules and L a ground

literal. ground(D,S) |∼L represents a defeasible derivation of L from ground(D,S),

which consists of a finite sequence L1, . . . ,Ln = L of grounded literals. For each literal

L′ in the sequence, there exists a rule r ∈ ground(D,S) with head(r) = L′, and all

literals appearing in its body, except the ones preceded by default negation, appear in

the sequence, before L′.

Note that in the special case that L is a non-fluent symbol, grounding is performed only

with respect to the initial situation S0.

Defeasible derivations are monotonic. Introducing additional rules in a theory (pos-

sibly) expands the set of defeasible derivations that can be made using this theory.
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Proposition 4. Assume a defeasible basic action theory D , and two ground situation

terms Sk and Sl such that Sk is predecessor of Sl . For every ground situation term Si

and every ground fluent literal L, if ground(D,Sk) |∼L(Si) then ground(D,Sl) |∼L(Si).

Proof. Definition 16 states that ground defeasible basic action theories include all ax-

ioms grounded for all combinations of ground terms that respect the expressed equali-

ties and inequalities. The ground theories ground(D,Sl) and ground(D,Sk) have been

grounded with exactly the same constants, apart from the additional situation terms

that are successor to Sk and predecessor or equal to Sl . Therefore, ground(D,Sl) ⊂
ground(D,Sk), and as a result if ground(D,Sl) |∼L(Si) then ground(D,Sk) |∼L(Si).

This proposition asserts that any derivations relevant to a plan π are also relevant to

every plan that begins with the sequence π. As a result, derivation results regarding π

may be reused when focusing on any plan extending π.

For readability purposes, we write D |∼L(S) to represent that there is a defeasible

derivation ground(D,S) |∼L(S). As shown by the previous proposition, the overload-

ing of the defeasible derivation notation does not lead to erroneous conclusions due to

the monotonicity of the defeasible derivation relation.

3.3.6 Acceptability

Defeasible derivations identify conclusions that can be derived from the agents beliefs.

However, they do not investigate the tenability of these claims. This section introduces

the notion of arguments and provides a concrete specification of the criteria that qual-

ify acceptable reasoning about plans. The following analysis is based on Garcı́a and

Simari (2004).

3.3.6.1 Arguments

Arguments capture reasons supporting a claim. They are minimal, non-contradictory

sets of rules that defeasibly entail a conclusion. A set of rules is non-contradictory if

there exists no literal which can be defeasibly inferred from the set, and its complement

can also be inferred from the same set.

Definition 18. Let ground(D,S) be a set of ground defeasible rules and h a ground

literal. α = 〈B,h〉 is an argument for h if B ⊆ ground(D,S) and:
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1. B |∼h,

2. B is non-contradictory, and

3. B is minimal, meaning that there does not exist a proper subset of B that satisfies

conditions (1), and (2).

The functions Claim(α) = h and Support(α) = A denote the claim and support of the

argument α = 〈A ,h〉 respectively.

Arguments are constructed from ground theories in which axioms containing dis-

junctions have been simplified. As a result, the support sets contain rules whose bodies

are conjunctions of literals. Therefore, we only include the relevant disjuncts of the

original compound rule. So if we construct an argument using F –≺L2, from the orig-

inal rule F –≺L1;L2;L3, we include only F –≺L2 in the support set of this argument.

The rational behind this practice is related to the minimality constraint that is imposed

on the support of arguments. By excluding unnecessary information, we reduce the

support size and simplify the evaluation of the acceptability of arguments as we min-

imise the supporting beliefs that need to be investigated, excluding all irrelevant and

unnecessary information.

Arguments can be represented as pyramids. The lower level holds non-fluent state-

ments, and the level above holds statements about the initial situation. Higher levels

hold statements derived from statements appearing on the lower levels. Beliefs in

higher levels are intermediate results in the derivation of the overall claim. The deriva-

tions of these beliefs correspond to arguments, the collection of which form the main

argument.

Definition 19. An argument 〈B ′,h′〉 is a subargument of 〈B,h〉 if B ′ ⊆ B .

Example 1. The following argument claims that a parcel P is in a location L2 after

being pushed to this location, because the location is free and the parcel is reachable.

The argument has been constructed using the axiom

At(p, l,do(a,s))–≺a = push(p, l),Free(l,s),Reachable(p,s);At(p, l,s),a 6= push(p, l′)

and the ground initial situation presumption Free(L2,S0)–≺ and Reachable(P,S0)–≺.

〈{At(P,L2,do(push(R,P,L2),S0))–≺Free(L2,S0),Reachable(P,S0),

Free(L2,S0)–≺, Reachable(P,S0)–≺},
At(P,L2,do(push(R,P,L2),S0))〉
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Free(L2, S0) Reachable(P, S0)

At(P, L2, do(push(R, P, L2), S0))

At(P, L2, do(push(R, P, L2), S0))−≺
Free(L2, S0),

Reachable(P, S0)

Level 0

Level 1

Level 2

This argument can be represented as the following tree:

The tree is organised in levels. The top level is level 0, which contains the argument’s

claim. Odd-numbered levels contain defeasible rules. Even-numbered levels represent

the literals that are used to derive the argument’s claim. The literals on the same level

refer to the same situation. The leafs of the tree are beliefs derived using presumptions

or default negated literals.

3.3.6.2 Attacks

Arguments generated from a contradictory theory may present contradicting claims.

Such arguments are linked through the attack relation. The definition of the attack

relation is based on the notion of a sub-argument.

Definition 20. The argument 〈B1,h1〉 attacks 〈B2,h2〉 at literal h3 iff there exists a

subargument 〈B3,h3〉 of 〈B2,h2〉 such that h1 is the negation of h3.

The attack relation between the attacker and the attacked sub-argument is symmet-

ric. It provides no grounds for the resolution of ties between arguments attacking each

other. Consider, for instance, two arguments claiming contradicting beliefs about the

initial state. These arguments mutually attack each other. If there exist no other attack-

ers to resolve this tie, the conflict cannot be resolved. As a result, depending on the

employed argumentation semantics we need to either accept both or none of the claims.

Therefore, the result is either having to deal with uncertainty in the planning domain,

or synthesise weak plans whose success is suggested by contradictory evidence.

In order to overcome this issue, we inspect the internal structure of arguments,

while trying to identify whether there are grounds for preferring one over the other.
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Relying on a preference ordering over arguments is a common approach in the liter-

ature (Prakken and Sartor, 1997; Amgoud and Cayrol, 1998). Alternative approaches

have also been proposed for aggregating information about preferences (Amgoud et al.,

2000b; Brewka, 2001).

The defeat relation builds on the attack relation by taking the preference of the

conflicting arguments into account. Informally, an argument defeats another argument

if the first argument attacks the second argument, and has a higher preference than the

sub-argument that is directly attacked.

Definition 21. Argument b defeats argument b′ iff:

• b attacks b′ at its sub-argument b′′, and

• pref (b)≥ pref (b′′).

In order to take preference orderings into account, we compare the preference value

of the attacker with the one of the sub-argument that is directly attacked. The reason

for this is that the preference of the complete argument is determined by its other sub-

arguments as well, which are irrelevant to the attack. Consider an argument that makes

a claim about a literal after applying to actions in the initial situation. Also, assume

that the claim is supported by an initial situation belief and that there is an attack

exactly against this belief. It is obvious that in order to determine whether the attacker

defeats the argument we only need to take information regarding the initial situation

into account, since anything related to future situations should not bias the strength of

the initial situation belief that is attacked.

The notion of argument preference is used in the literature as a tie-breaking mecha-

nism, when there is no reason to prefer one argument over another. Multiple ways have

been proposed to provide the means for measuring argument preference (e.g. gener-

alised specificity (Simari and Loui, 1992), the weakest link (Pollock, 2001), and the

last link (Prakken and Sartor, 1997) principles). These are usually based on structural

characteristics of the arguments, as for example the number of derivation steps nec-

essary to reach the argument’s claim, or on preference orderings over the beliefs that

support these arguments. The specification of the preference ordering mechanism is

usually a domain specific way to fine-tune the system.

Our methods are generic with respect to a specification of the preference order-

ing among arguments. In the following analysis, we outline a simple definition of

preference relation based on a preference ordering over beliefs and the weakest link
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principle. If such information is not available, the defeat relation is equivalent to the

attack relation.

Definition 22. Let pref be a function which given a belief returns an integer, and

assume that it is instantiated for every belief in the knowledge base. The preference

value of an argument a is the lowest preference value of a belief in its support set,

pref (a) = minφ∈Support(a) pref (φ).

More elaborate preference calculation mechanisms can be developed by focusing

on domain specific characteristics of individual theories. For instance, if an agent is

aware that the frame parts of the successor state axioms in the theory do not correctly

reflect the actions responsible for changing the value of the literal, it is useful to fine-

tune the defeat relations so that conclusions reached through the effect part of axioms

are preferred to conclusions reached using the frame part of the axioms.

Usually, preference values are used to represent the credibility of the beliefs. De-

pending on the modelled domain, these values may denote (or aggregate) notions like:

• Authority: In situations in which different agents have different roles.

• Capabilities: For instance, the preference values of axioms regarding the effects

of an action are higher for the agent executing this action.

• Number of conditions: More refined axioms are more credible. For example,

the more conditions on a conditional effect, the more credible the axiom, un-

der the rationale that agents without specialised knowledge may hold a generic

specification of the action.

• Timestamps on beliefs coming from observations: The newer the better.

• Learning from experience: Past execution failures reduce credibility.

• Preference over types of axioms: For example, derivations made using the effect

part are stronger than those made using the frame part.

We assume that the agents agree on the way preference orderings are calculated (e.g.

weakest link or generalised specificity). However, we do not consider that belief

preference values are shared. Nevertheless, agents must accept the preference val-

ues presented by their peers. This assumption follows from the cooperative nature of

MPCP. For example, consider a scenario in which agent i has reasons to beliefs that

Light(L1,S0) holds with a preference value of x, and agent j has reasons to believe that
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the same predicate holds, and has a preference value of y for this belief. Assume that

in this case preferences are based on the time an observation was made. Both agents

accept the information of their peers, and form two arguments claiming Light(L1,S0),

with different preference values x and y. Obviously, removing the argument with the

lowest preference will not affect the warrant results that are reached from the theory.

Therefore, maintaining both arguments is not necessary in practice, since agents can

always only use the highest preference value that is available for a believe.

3.3.6.3 Warrants

Argumentation theory provides theoretical tools for defining the notion of acceptability

in terms of arguments. Abstract argumentation methods define concrete acceptability

semantics by looking at arguments at an abstract level, disregarding their internal struc-

ture, and focusing exclusively on the defeat relations between them.

Different argumentation semantics (Baroni and Giacomin, 2009) can be used in

conjunction with our framework to define the notion of acceptability. Here, for sim-

plicity, we employ grounded (sceptical) acceptability semantics. Grounded semantics

impose a strict notion of acceptability to statements and plans that are warranted from

a domain theory, since it requires every acceptable argument to be defended by a set

of arguments, which does not include itself.

With this, we define the notion of warrant for ground literals. The notion of warrant

is twofold, it requires the existence of a defeasible derivation that forms an argument,

and that this argument is defended against every potential defeat.

Definition 23. Suppose a DBAT D and the corresponding argumentation framework

AF = 〈Args,Defs〉, for every argument that can be constructed from ground(D,S), for

any ground situation term S. Let GEAF, the grounded extension of AF. Any ground

literal L(S) is warranted from ground(D,S), denoted ground(D,S) |≈L(S), if and only

if there exists an argument A ∈ Args, with Claim(A) = L(S), such that A ∈ GEAF.

Note that in the special case that L is a non-fluent symbol, the grounding is preformed

only for situation S0.

The number of ground situation terms is infinite as each situation represents a dif-

ferent history (i.e. sequence of actions). Therefore, even if there is a finite number of

actions in the domain, grounding the theory for all situations will result in an infinite

set. If we focus on a grounded situation term the ground theory remains finite if the

axioms and the objects in the domain are finite.
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Similar to defeasible derivations, the warrant results in DBATs are not affected by

grounding the theory with respect to successor situation terms. This proposition asserts

that warrant results for a plan π are also relevant to every plan extending π.

Proposition 5. Assume a defeasible basic action theory D , and two ground situation

terms Sk and Sl such that Sk is predecessor of Sl . For every ground situation term Si

and every ground fluent literal L, if ground(D,Sk) |≈L(Si) then ground(D,Sl) |≈L(Si).

Proof. Definition 16 states that all ground defeasible basic action theories include all

axioms grounded for all combinations of ground terms that respect the expressed equal-

ities and inequalities. The ground theories ground(D,Sl) and ground(D,Sk) have been

grounded with exactly the same constants, apart from the additional situation terms

that are successor to Sk and predecessor or equal to Sl . Therefore, ground(D,Sk) ⊂
ground(D,Sl). ground(D,Sk) |≈L(Si) entails that there exists an argument α claim-

ing L(Si) and that this argument can be defended against every defeater. Every ar-

gument that can be constructed from ground(D,Sk) can also be constructed from

ground(D,Sl). Also, every argument that can be constructed from ground(D,Sl), but

not from ground(D,Sk), does not defeat α, since its conclusion refers to a situation that

is successor to Sk. As as result, if ground(D,Sk) |≈L(Si) then ground(D,Sl) |≈L(Si).

For readability purposes, we write D |≈L(S) to represent ground(D,S) |≈L(S). Over-

loading of the warrant does not lead to inconsistencies, since every other potential

grounding extending ground(D,S) leads to the same results.

Proposition 6. Assume a defeasible basic action theory D , and a ground situation

term S. If ground(D,S) |≈L(S), there does not exist S′ such that ground(D,S) ∪
ground(D,S′) |6≈L(S).

Proof. Proof by contradiction. Assume that there exists S′ such that ground(D,S)∪
ground(D,S′) |6≈L(S). Let the set ArgsL(S) be the subset of the arguments that can be

constructed from ground(D,S), such that it contains every argument claiming L(S),

their defeaters, the defeaters of their defeaters, etc. There exists no argument that

can be constructed from the beliefs in ground(D,S′), which does not already exist in

ArgsL(S), and defeats an argument in ArgsL(S). This is the case, since every belief from

ground(D,S′) that does not exist in ground(D,S) refers to a situation term that does

not appear in the arguments in ArgsL(S). As a result, ground(D,S′) is irrelevant to the

warrant status of L(S).
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Grounded semantics assert that the warrant relation is contradiction-free.

Proposition 7. Suppose a defeasible action theory D and a ground predicate L(S). If

D |≈L(S) then D |6≈L(S).

Proof. If D |≈L(S) and D |≈L(S), there exist two arguments aL(S) and aL(S) with

Claim(aL(S)) = L(S) and Claim(aL) = L(S), which are both part of the grounded exten-

sion of the argumentation framework containing all arguments that can be constructed

from ground(D,S). This is impossible, since the grounded extension of an argumen-

tation framework is conflict-free (Dung, 1995).

The notion of warrant is extended to conjunctive statements. For any ground literal

predicates L1,L2, . . . ,Ln we write:

D |≈L1,L2, . . . ,Ln if and only if D |≈L1,D |≈L2, . . . , and D |≈Ln .

This is essential for formalising the notion of plan acceptability, which entails that

every action of the plan is executable and that the goal is achieved. An alternative

solution without extending the warrant relation would require the addition of rules

specifying the requirements for the acceptability of a plan. Due to the limitations of

the expressive power of the formalism, this would need to be done for every situation

and goal.

3.3.6.4 Warranted Plans

A warranted plan is a sequence of actions if the beliefs that every action can be exe-

cuted in sequence and that the goal is achieved in the resulting situation are warranted.

Definition 24. Suppose a defeasible action theory D , and let AF = 〈Args,Defs〉 be

the argumentation framework for all arguments that can be constructed from D , and

GEAF its grounded extension. Let the expression G1, . . . ,Gm be the shared goal of the

agents. The sequence of actions π = A1,A2, . . . ,An is a warranted plan if and only if:

D |≈Poss(A1,S0),Poss(A2,S1), . . . ,Poss(An,Sn−1),G1(Sn), . . . ,Gm(Sn) ,

where Si = do(A1,Si−1) denotes the situation resulting from the application of action

Ai to the predecessor situation Si−1.

We use terms warranted and acceptable plan interchangeably.
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3.4 Axiomatising Planning Domains

This section discusses important issues related to the process of encoding planning do-

mains in the form of DBATs. We focus on the internal structure of defeasible successor

state axioms that is required to represent planning operators, and explain how MPCP

problems can be expressed as DBATs.

3.4.1 Encoding Defeasible Successor State Axioms

Basic action theories restrict the form of axioms, especially with respect to the sit-

uation terms that appear within the axioms. However, they do not impose a specific

internal structure on the bodies of the rules. In order to axiomatise planning domains as

DBATs, we need to impose additional structure. This structure must account for both

the effect, and the frame information that describes under which conditions literals re-

main unaffected by the application of actions. Successor state axioms are compound

rules that incorporate defeasible effect and frame axioms.

3.4.1.1 Defeasible Effect Axioms

We describe how effect axioms are encoded using the following example. Consider the

operator switch on(l), with the conditional effect 〈{Plugged(l)},Lit(l)〉. This effect

states that we have reasons to believe that a lamp is lit, after performing the switch on

operator, if we have reasons to believe that it is plugged to a power source. This effect

is encoded by the following defeasible rule:

Lit(l,do(a,s))–≺a = switch on,Plugged(l,s).

Multiple conditional effects from different specifications that produce the same effect

literal are written within the same axiom using disjunction. The following axiom adds

an effect from a different specification stating that we have reason to believe that a

lamp is lit if, after performing the switch on operator, if we have reasons to believe

that it is not broken:

Lit(l,do(a,s))–≺a = switch on,Plugged(l,s);a = switch on,∼Broken(l,b,s).

Obviously, without additional domain-specific knowledge, the agents cannot reach the

conclusion that the specification of both effects is incomplete, and a complete specifi-

cation can be achieved by combining the two.
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Every conditional effect for an operator A of the form 〈{C1,C2, . . . ,Cn},L〉 in an

agent’s specification corresponds to a defeasible effect axiom of the form:

L(do(a,s))–≺a = A,C1(s),C2(s), . . . ,Cn(s) .

Defeasible effect axioms that produce the same literal can be combined in a single

axiom: L(do(a,s))–≺γL(s), where γL(s) abbreviates the disjunction of the bodies of all

relevant effect axioms. For the previous example, we write Lit(l,do(a,s))–≺γLit(l,s),

where γLit(l,s) abbreviates the expression a = switch on,Plugged(l,s);a = switch on,

∼Broken(l,b,s).

3.4.1.2 Defeasible Frame Axioms

Constructing a defeasible frame axiom is a more complicated process. The frame

axiom encodes that we have reasons to believe that a literal holds after the application

of an action a in a situation s, if it holds in the previous situation, and every conditional

effect producing its complements is inapplicable. Consider for instance the following

frame axiom produced for the first specification of the previous example:

∼Lit(l,do(a,s))–≺∼Lit(l,s),not(a = switch on,Plugged(l,s)).

This axiom states that we have reasons to believe that the lamp is not lit after the

application of a in s, if we have indications that it is not lit in s and it is not the case

that a is the action of switching on the lamp or l is not plugged in the power source.

Accordingly, the frame axiom for the second operator specification is the following:

∼Lit(l,do(a,s))–≺∼Lit(l,s),not(a = switch on,∼ Broken(l,b,s)).

We encode one frame axiom for each operator specification, since every specification

implicitly states not only what changes due to the application of the action, but also

what remains the same. All effect and frame axioms referring to the same fluent literal

are combined within one successor state axiom. This axiom needs to be transformed

to disjunctive normal form following the specification of defeasible rules.

The frame axiom for a literal L has the following form:

L(do(a,s))–≺L(s),not(γL(s)) ,

where γL(s) abbreviates the body of the compound effect axiom that is encoded from

the agent’s theory for the complement of literal L.
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3.4.1.3 Well Formed Defeasible Frame Axioms

The structure of defeasible axioms only allows default negation immediately preceding

fluent literals. This is not the case in the aforementioned form as γL(s) may consist of

multiple effects and conditions. To produce a well-formed axiom we transform the

axioms in a fashion similar to the Lloyd-Topor rules (Reiter, 2001). We present the

axiom L–≺body, in the form L–≺ψ,φ,ψ′, where any one of ψ and ψ′ may be missing.

1. Replace L–≺ψ,not(φ2;φ3),ψ
′ by

L–≺ψ,not φ2,not φ3,ψ
′.

2. Replace L–≺ψ,not(φ2,φ3),ψ
′ by

L–≺ψ,(not φ2;not φ3),ψ
′.

3. Replace L–≺ψ,not(a = A),ψ′ by

L–≺ψ,a 6= A,ψ′

4. Replace L–≺ψ,(φ2;φ3),ψ
′ by

L–≺ψ,φ2,ψ
′ and L–≺ψ,φ2,ψ

′.

5. Replace every rule of the form L–≺φi, where φi is a conjunction of (possibly

default negated) literals, equalities and inequalities with the rule L–≺∧
∀i φi.

The first two transformations assert that the default negation symbol appears only be-

fore fluent literals. The third rule simplifies the resulting axiom from disjunctions.

Its application generates a set of axioms for each head L, whose body consists of a

conjunction of literals. The final rule integrates these into a single defeasible axiom.

The axiom resulting after the application of these rules to an axiom of the form

L(do(a,s))–≺L(s),not(γL(s)) is a well formed defeasible axiom. This is the case,

since default negation appears in the resulting axiom only before fluent literals, and

the body of the rules is either a conjunction of literals, equalities and inequalities, or a

disjunction of multiple conjunctions, equalities and inequalities.

For effects with at most one condition, the application of the transformation is

straightforward. Consider the frame axiom from the previous example:

∼Lit(l,do(a,s))–≺∼Lit(l,s),not((a = switch on,Plugged(l,s));

(a = switch on,∼Broken(l,b,s)) .
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After the application of the first transformation rule we have:

∼Lit(l,do(a,s))–≺∼Lit(l,s),(not(a = switch on,Plugged(l,s)),

not(a = switch on,∼Broken(l,b,s)) .

We apply the second transformation and rewrite the expression as follows:

∼Lit(l,do(a,s))–≺∼Lit(l,s),(not(a = switch on);not Plugged(l,s)),

(not(a = switch on);not∼Broken(l,b,s)) .

The third rule transforms default negated equalities to inequalities:

∼Lit(l,do(a,s))–≺∼Lit(l,s),(a 6= switch on;not Plugged(l,s)),

(a 6= switch on,not∼Broken(l,b,s)) .

The application of the fourth rule simplifies the axiom:

∼Lit(l,do(a,s))–≺∼Lit(l,s),a 6= switch on,a 6= switch on

∼Lit(l,do(a,s))–≺∼Lit(l,s),a 6= switch on,not∼Broken(l,b,s)

∼Lit(l,do(a,s))–≺∼Lit(l,s),not Plugged(l,s),a 6= switch on

∼Lit(l,do(a,s))–≺∼Lit(l,s),not Plugged(l,s),not∼Broken(l,b,s) .

Finally, the fifth rule combines the above into one frame axiom:

∼Lit(l,do(a,s))–≺∼Lit(l,s),a 6= switch on,a 6= switch on;

∼Lit(l,s),a 6= switch on,not∼Broken(l,b,s);

∼Lit(l,s),not Plugged(l,s),a 6= switch on;

∼Lit(l,s),not Plugged(l,s),not∼Broken(l,b,s) .

The resulting frame axiom for ∼Lit requires that either none of the actions producing

Lit applied, or that if one is applied, at least one of its conditions are not warranted.

Observation 1. Let an action A that produces L under conditions C . Either a 6= A or

∼C, with C ∈ C , appears in every disjunct in the body of the frame axiom for L.

3.4.1.4 Default Negation in Defeasible Frame Axioms

The frame axiom specification is based on default negation preceding the conditions

of the contradicting effects. If we use normal negation instead, we need to be able to
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derive all conditions in the body of the rule in order to make a derivation using this

frame axiom. For instance, consider the first frame axiom from the previous example,

grounded for lamp l = L1 and situation S1 = do(switch on,S0):

∼Lit(L1,S1)–≺∼Lit(L1,S0),∼Plugged(L1,S0).

If there is no defeasible derivation for ∼Plugged(L1,S0), then we cannot construct

a defeasible derivation for ∼Lit(L1,S1) using this frame axiom. This situation causes

problems when there is uncertainty about the domain. If for example DS0 =

{∼Lit(L1,S0)–≺}, and Dss contains the first specification from the above example,

then D |6∼∼Lit(L1,S1) and D |6∼Lit(L1,S1), since both rules are inapplicable as

{Plugged(L1,S0)–≺,∼Plugged(L1,S0)–≺}∩S0 = /0.

On the contrary, consider the same frame axiom with default negation preceding

contradictory effects, grounded for lamp l = L1 and situation S1 = do(switch on,S0):

∼Lit(L1,S1)–≺∼Lit(L1,S0),not Plugged(L1,S0).

If D |6∼∼Lit(L1,S0) then D |6∼∼Lit(L1,S1), since following the semantics of default

negation in DeLP, default negated literals are treated as assumptions. The burden

of evaluating these assumptions is shifted to the argumentation phase. Essentially,

if there exists an undefeated argument claiming Plugged(L1,S0) the assumption is re-

futed. Otherwise, and if D |≈∼Lit(L1,S0), then D |≈∼Lit(L1,S1).

3.4.1.5 Defeasible Successor State Axioms

For every operator specification and fluent literal, we construct one defeasible succes-

sor state axiom, by combining the effect and frame axioms described above. For literal

L this takes the following form:

L(do(a,s))–≺γL(s);φL(s) ,

where φL(s) denotes the body of the well formed defeasible frame axiom after the

application of the necessary transformations.

3.4.2 Encoding MPCP Problems as DBATs

In this section, we consider how derivations made from MPCP problems relate to in-

ferences from DBATs. In the general case, the two formalisms do not necessarily lead
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to equivalent conclusions. The major difference between these reasoning mechanisms

is outlined by a special case illustrated in the following example.

Consider a MPCP problem with two operators plug and switch on, such that the

first has the effect 〈{¬Cut},Plugged〉 and the second has the effect 〈{Plugged},Lit〉.
Let the initial state I = {Cut,¬Cut,¬Lit}. Projecting the plan 〈plug,switch on〉 leads

to calculating the following states:

σ1 = γ(plug, I) = {Cut,¬Cut,¬Lit,Plugged}, and

σ2 = γ(switch on,σ1) = {Cut,¬Cut,Plugged,Lit}.

The uncertainty regarding the predicate Plugged in the initial state leads to having

reasons to believe that Plugged holds in σ1. However, since ¬Plugged /∈ I, we do

not have reasons to believe that ¬Plugged holds in σ1, even though we have reasons to

believe that the effect of the operator plug may not be applicable. As a result ¬Lit /∈ σ2.

The specification of successor state axioms described in the previous section treats

uncertainty differently. Consider the same domain written as the DBAT D . The set

of initial situation axioms contains the rules: Cut –≺, ∼Cut –≺, and ∼Lit –≺. The

following successor state axioms are encoded:

Plugged(do(a,s))–≺a = plug,∼Cut(s),

Lit(do(a,s))–≺a = switch on,Plugged(s), and

∼Lit(do(a,s))–≺∼Lit,not(a = switch on,Plugged(s)).

For the derivation of∼Lit(S2), where S2 = do(switch on,S1) and S1 = do(plug,S1) we

construct the following arguments:

α = 〈{∼Lit(S0)–≺,∼Lit(S1)–≺∼Lit(S0),

∼Lit(S2)–≺∼Lit(S1), not Plugged(S1)},∼Lit(S2)〉 ,

β = 〈{∼Cut(S0)–≺,Plugged(S1)–≺∼Cut(S0)},Plugged(S1)〉, and

α′ = 〈{Cut(S0)–≺},Cut(S0)〉.

The argument β attacks the assumption not Plugged(S1) of argument α, and argument

α′ attacks the premises ∼Cut(S0) of argument β. If α′ has higher preference than β,

then α is acceptable and D |≈∼Lit(S2).

The above example shows a case in which the defeasible mechanism leads to in-

ferences that cannot be made by the set-theoretic notation. This situation arises due
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to the initial uncertainty with respect to the predicate Plugged. The defeasible rea-

soning mechanism using the default negation makes the assumption not Plugged(S1),

although D |∼Plugged(S1) and D |6∼∼Plugged(S1). Then, since the argument attack-

ing the assumption is itself defeated, the assumption is defended and argument α is

acceptable.

3.4.2.1 MPCP with Incomplete Initial States

The problematic situation illustrated by the previous example is caused by the inter-

action of incompleteness and ambiguity. In order to be able to overcome this issue

we transform incompleteness to ambiguity. This can be accomplished in two ways:

changing the planning theory, or altering the state transition function.

The MPCP problem with incomplete initial states can be transformed to problems

with complete initial states by simply adding to the initial state I both literals L and L

for every ground literal L, if neither L or L is part of I. If preference-based measures

are used, we assign a minimum preference value to the introduced literals.

Alternatively, we can utilise an alternative state transition function specification

which transforms incompleteness to ambiguity. The problematic situations arise when

we calculate the successor state, for literals which we have no information about. For

example, consider the effect 〈C,L〉 of an action A. If both L and L are not part of state

σ, then, if there exists at least one uncertain condition in C ∈C such that both C and

C is part of σ, we must introduce both L and L to γ(A,σ). L is introduced due to the

conditional effect, whereas L is introduced because the applicability of the effect is

ambiguous and there is uncertainty regarding L and L in σ.

Altering the state transition function leads to a specification that is significantly

different from the “classical” definition. As a result, and in order to be able to utilise

already existing systems with minor modifications, we focus on translating incom-

pleteness in the initial states of the planning domain theory to ambiguity.

3.4.2.2 Initial State Completeness Assumption

We introduce the assumption that there is no incompleteness in the initial state of the

planning domain. This does not imply that the initial state is unambiguous.

Assumption 1. Let a MPCP problem P= 〈N,F, I,O,G〉. The initial state I is complete

if for every ground literal L in Fc, it holds that {L,L}∩ I 6= /0.
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If there is no incompleteness in the initial state of the planning problem, then there is

no incompleteness in any state of domain.

Proposition 8. Consider a MPCP problem P = 〈N,F, I,O,G〉, and let there be no

incompleteness in the initial state I. It is always the case that L ∈ σk or L ∈ σk, where

σk is the state reached by a plan 〈a1, . . . ,ak〉.

Proof. Proof by induction on the length of the plan k.

(Base case) k = 0. Holds from proposition hypothesis.

(Induction step) We assume that it holds for k = n and we need to show that it holds

for k = n+1.

Proof by contradiction. We assume that for some literal L:

L /∈ σn+1 (A) and L /∈ σn+1 (B).

From (A)⇒ L /∈ σn (A1) and there is no applicable effect producing L (A2) or

there is no applicable effect producing L (A3).

From (B)⇒ L /∈ σn (B1) and there is no applicable effect producing L (B2) or

there is no applicable effect producing L (B3).

So (A) and (B)⇒ ((A1) and (A2) or A3) and ((B1) and (B2) or B3)⇒

(A1 and A2 and B1 and B2) (i) or (A3 and B1 and B2) (ii) or (A1 and A2 and

B3) (iii) or (A3 and B2) (iv).

If (i) then A1⇒ L /∈ σn and B2⇒ L /∈ σn, which refutes the derivation step.

(ii) is impossible since A3 and B2 contradict each other.

(iii) is impossible since A2 and B3 contradict each other.

If (iv) then from the induction step’s assumption L ∈ σn or L ∈ σn. On the one

hand, if L ∈ σn, from B3 we have that L ∈ σn+1. On the other, if L ∈ σn, from

A3 we have that L ∈ σn+1. In any case, L ∈ σn+1 or L ∈ σn+1, contradicting the

assumption L /∈ σn+1 (A) and L /∈ σn+1.

We can exploit the initial state completeness assumption to simplify the definition of

the individual agent’s state transition function γi. The second condition of γi details

that a fluent literal is unaffected by the application of an action, if for every conditional
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effect producing the complement of this literal, there exists a condition C of this effect

that is either not part of the state, or that its complement C is part of the state.

Due to the completeness of the initial state, every successor state is also complete.

As a result, for every condition C, if C is not part of the state σ, we can infer that

C ∈ σ. Accordingly, we simplify the individual state transition function specification

when used in conjunction with domains without initial state incompleteness as follows:

Definition 25. Consider agent i and the individual planning problem Pi = 〈F, Ii,Oi,G〉.
Let a ground action 〈prei(a),a,eff i(a)〉 ∈ ground(Oi) for which there is evidence sug-

gesting that it is applicable in state σ. The state transition function γ must assert that

e ∈ γ(a,σ) if and only if:

1. there exists an effect 〈C,e〉 ∈ eff i(a) and C ⊆ σ, or

2. e∈ σ and for every conditional effect 〈C,e〉 ∈ eff i(a), there exists c∈C such that

c ∈ σ.

3.4.2.3 Translation Mechanism

This section describes a translation mechanism for encoding multi-perspective coop-

erative planning problems in the form of defeasible basic action theories. Consider a

MPCP problem P = 〈N,F, I,O,G〉.
The objects and the variables of the planning domain correspond to the ground and

unground terms of sort object of the defeasible basic action theory.

Dc = Lc

Planning operator names correspond to action functions in basic action theories.

Duna = {o = o | 〈pre,o,eff 〉 ∈ O}∪{o1 6= o2 | 〈pre,o1,eff 〉,〈pre,o2,eff 〉 ∈ O and

o1 has a different name or arity from o2}

Planning domain predicates correspond to fluents in the basic action with an additional

final argument of sort situation. For instance, the planning domain predicate Light(loc)

corresponds to the fluent predicate Light(loc,s). For simplicity we do not differentiate

between fluent and non-fluent predicates, since this distinction is not explicit in MPCP

problems. If the complexity of the domain demands this distinction, we can identify

non-fluent predicates by inspecting the operators and searching for predicates that do

not appear in the effects of any action.
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The initial state axioms correspond to the initial state of the planning domain. Ev-

ery fluent that holds in the initial state corresponds to a predicate that holds in the initial

situation.

DS0 = {L[S0]–≺ | L ∈ I}

We use notation φ[s] to denote the formula obtained from substituting all fluent pred-

icates L(~x) appearing in φ with predicate L(~x,s), which has s as an additional final

argument. Also, in order to account for the different notation, the negation symbol ¬
is replaced by the symbol ∼.

Defeasible action precondition axioms are constructed from the preconditions de-

fined in the action specifications. For every operator o we create one action precondi-

tion axiom. The left-hand side of the axiom is the predicate Poss(o,s). The right hand

side of the axiom comprises of a sequence of disjuncts, with each disjunct being the

conjunction of the preconditions that are specified in a single agent’s specification of

the operator:

Poss(o,s)–≺
∨
∀i∈N

∧
∀C∈prei(o)

C[s] .

For example, given two specifications of the action switch on(l) for agents 1 and 2

such that pre1(switch on(l)) = {reachable(l),¬broken(l)} and pre2(switch on(l)) =

{powered(l)}, we construct the following defeasible action precondition axiom:

Poss(switch on(l),s)–≺reachable(l,s),∼broken(l);powered(l) .

The set of defeasible action precondition axioms is generated as follows:

Dap = {Poss(o,s)–≺
∨
∀i∈N

∧
∀C∈prei(o)

C[s] | for every operator o} .

Defeasible successor state axioms have the structure discussed in Section 3.4.1:

L(do(a,s))–≺γL(s);φL(s) ,

Contrary to planning operator schemata, DBATs do not maintain a link between defea-

sible action precondition axioms and defeasible successor state axioms. As a result, if

we have different specifications for the same action and one of them leads to the con-

clusion that the action is applicable, we infer that the resulting situation is executable.

In order to be able to preserve the link between preconditions and effects in an oper-

ator specification we must be able to utilise only the successor state axioms that were

created from the specifications which suggest that the action is applicable. To this end,
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we incorporate the preconditions defined in every specification into the corresponding

successor state axiom in the form of additional conditions in the operators’ conditional

effects. As a result, the effects are applicable, only in situations in which the action

preconditions hold.

Let a MPCP problem P. The DBAT constructed using the above mechanism is

called the corresponding DBAT for P. Next, we specify an important assumption that

is necessary to illustrate the correctness of the translation mechanism.

3.4.2.4 DBATs with Complete Initial States

The initial state completeness assumption carries over defeasible basic action theories.

Consider a DBAT D . D has a consistent initial state if for every ground fluent literal

L, it holds that either D |∼L(S0) or D |∼L(S0). The logical disjunction in the previous

statement is not exclusive. It may be the case that both D |∼L(S0) and D |∼L(S0) hold.

The following lemma outlines the effect of the initial state completeness assump-

tion on defeasible derivations and warrants made with a DBAT whose initial situation

rules contain only presumptions (i.e. rules of the form: L(S0)–≺).

Proposition 9. Consider a DBAT D with complete initial state whose initial situation

rules contain only presumptions. Let Sk a ground situation term, and L a fluent literal.

If D |6≈L(Sk) then D |∼L(Sk).

Proof. Proof by induction on situation term Sk.

(Base case) k = 0. From the hypothesis that the initial state is complete it holds

that D |∼L(S0) or D |∼L(S0). Since, D |6≈L(S0), it is either the case that D |6∼L(S0)

or D |∼L(S0) and there is an argument defeating the argument corresponding to the

derivation of L(S0). This is only possible if D |∼L(S0). In any case, D |∼L(S0).

(Induction step) We assume that it holds for k = n and we need to show that it holds

for k = n+1. Proof by contradiction.

Assume that for every literal L it holds that D |6≈L(Sn+1) and D |6∼L(Sn+1) (1).

From (1), it holds that D |6∼L(Sn) (2) and for every effect rule

L(Sn+1)–≺C1(Sn), . . . ,Cm(Sn) there exists l ∈ {1, . . . ,m} such that D |6∼C(Sn)

(3).

From (2) and the induction step, it holds that D |≈L(Sn) (4).



Chapter 3. Multi-Perspective Cooperative Planning 89

From (4) and because warrant requires the existence of a corresponding deriva-

tion, it holds that D |∼L(Sn). Also, the DBAT contains a successor state axiom

for every literal, and the corresponding ground frame rule for literal L has the

form L(Sn+1)–≺L(Sn),notC′1(Sn), . . . ,notC′1(Sm′). Since a defeasible deriva-

tion does not require the derivation of literals preceded by default negation, from

D |∼L(Sn) we derive that D |∼L(Sn+1) (5).

From (3) we derive that there exists a ground frame axiom with head LSn+1 for

which there is no attack on every condition in its body preceded by default nega-

tion. This is the case since every such axiom describes in its body a sequence of

conditions, whose absence causes every effect producing the complement of the

literal in the body of the frame axiom not to be applicable (6).

As a result, there exists an argument claiming L(Sn+1) (from (5)), whose premises

cannot be defeated (from (4) and (6)) and whose conclusion cannot be defeated

(1).

Therefore, this contradicts the assumption that D |6≈L(Sn+1), proving the lemma.

A corollary of the previous proposition is that for every such DBAT D , literal L and

ground situation term S, it is either the case that D |∼L(S) or D |∼L(S).

3.4.2.5 Relating Candidate and Warranted Plans

This section connects the conclusions made using the defeasible and the set-theoretic

planning formalisms. We show that every warranted plan is a candidate plan. This ob-

servation is useful in restricting the application of the complex argumentation process

to candidate plans.

First of all, we show that defeasible derivations in defeasible basic action theo-

ries are strictly more relaxed than the corresponding derivations made using the state

transition function. The reason behind this is the use of default negation in successor

state axioms. Default negation is interpreted as an assumption, and shifts the burden of

evaluating these assumptions to the argumentation mechanism. As a result, derivations

with arbitrary assumptions, which are later disqualified in the argumentation phase, are

made. Consider the following example.

Example 2. The successor state axiom Lit(do(a,s))–≺Lit(s),(a 6= switch off ;a =

switch off ,not Working Switch(s)) describes an operator specification in which the
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predicate Lit is negatively affected by flipping the light’s switch, if the switch is func-

tioning correctly. Assume that, for DBAT D and a ground situation S, we derive that

D |∼Working Switch(S) and D |6∼∼Working Switch(S). D |∼Lit(do(switch off ,S)) is

a valid derivation if D |∼Lit(S). Obviously, the argument corresponding to the later

derivation is defeated by a counterargument based on the derivation of

Working Switch(S).

The state transition function γ has an ambiguity propagating nature both with respect

to inertia and effect conditions. Consider the previous example, and the case in which

there is ambiguity regarding the predicate Working Switch in a state σ (meaning that

{Working Switch,¬Working Switch} ⊆ σ). There is also ambiguity in the successor

state σ′ regarding the predicate Lit (meaning that {Lit,¬Lit} ⊆ σ′). As a result, as-

sumptions that will be defended in the argumentation phase with counterarguments

attacking the defeating arguments’ support, are also derived using the state transition

function, exactly due to ambiguity in the support.

Proposition 10. Consider a MPCP problem P= 〈N,F, I,O,G〉, and the corresponding

DBAT D = 〈Dss,Dap,DS0,Duna,Dc〉. Also, let a possibly empty sequence of actions

〈A1, . . . ,Ak〉. σk = γ(〈A1, . . . ,Ak〉, I) is the state reached after performing these actions,

and Sk = do([A1, . . . ,Ak],S0) is the corresponding situation for the application of this

action sequence. For every ground predicate literal L, if L ∈ σk, then it holds that

D |∼L(Sk).

Proof. The proof is based on induction on the length of the plan k.

(Base case) k = 0. From the proposition hypothesis we have that L(~X) ⊆ σk. As a

result, according to the MPCP problem to DBAT translation mechanism, it holds that

L(S0)–≺ ∈DS0 . Therefore, D |∼L(S0).

(Induction step) We assume that the proposition holds for a plan of length n, and we

show that it holds for a plan of length n+ 1. To do so, we need to show that if L ⊆
σn+1, where σn+1 = γ(〈A1, . . . ,An+1〉, I), then it holds that D |∼L(Sn+1), where Sn+1 =

do([A1, . . . ,An+1],S0). L⊆ σn+1 may be the case either due to an effect of action An+1

or inertia.

1. If L is added in σn+1 as an effect of an action, then there exists an agent i ∈ N

with prei(An+1) ⊆ σn, and there exists an effect 〈C ,L〉 ∈ eff i(An+1) such that

C ⊆ σn, where state σn = γ(〈A1, . . . ,An〉, I).
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From the assumption of the induction step, it holds that for every C∈ prei(An+1)∪
C it is the case that D |∼C(Sn), where Sn = do([A1, . . . ,An],S0).

From the translation mechanism and the grounding process we know that

ground(D,Sn+1) contains the following axiom:

L(Sn+1)–≺
∧

C∈prei(An+1)∪C
C[Sn] .

Therefore, as there exists a defeasible derivation for every condition in the body

of the rule, D |∼L(Sn+1).

2. If L is part of σn+1 due to inertia, then it must be the case that L is also part of

σn.

From the assumption of the induction step, we derive that:

L ∈ σn⇒D |∼L(Sn) .

From the translation mechanism of MPCP problems into DBATs and the ground-

ing process, we know that ground(D,Sn+1) contains a frame axiom of the fol-

lowing form (Observation 1):

L(Sn+1)–≺L(Sn),notC1(Sn), . . . ,notCm(Sn) .

In the special case in which there is no specification of An+1 which contains an

effect producing L, the ground defeasible frame axiom takes the form:

L(Sn+1)–≺L(Sn) .

In any case, since D |∼L(S) and if any other literals appear in the body of the

rule are assumptions, we conclude that D |∼L(Sn+1).

In order to ensure the correctness of the translation mechanism, defeasible derivations

made from DBATs with complete initial states, but which cannot be derived from the

corresponding MPCP problem, must not be warranted. To show that this is the case,

we need the following proposition.
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Proposition 11. Let a MPCP problem P= 〈N,F, I,O,G〉, and the corresponding DBAT

D = 〈Dss,Dap,DS0 ,Duna,Dc〉, both with complete initial states. Also, let σk =

γ(〈A1, . . . ,Ak〉, I) the state reached after performing the sequence of actions 〈A1, . . . ,

Ak〉, and the corresponding situation Sk = do([A1, . . . ,Ak],S0). For every ground pred-

icate literal L, if L ∈ σk and L /∈ σk, then it holds that D |≈L(Sk).

Proof. Proof by induction on the length of the plan k.

(Base Case) k = 0. From the hypothesis, we have L ∈ σ0 and L /∈ σ0. From the

translation mechanism of MPCP problems to DBATs, we derive that L(S0)–≺ ∈ D ,

L(S0)–≺ /∈ D , and that there is no other defeasible rule in D with head L(S0) or

L(S0). As a result, the argument 〈{L(S0)–≺∈D},L(S0)〉 can be constructed from any

ground instance of the theory, and there exists no defeater for this argument. Therefore,

D |≈L(S0).

(Induction Step) We assume that the proposition holds for k = n. So, for every ground

literal L, if L ∈ σn and L /∈ σn, then it holds that D |≈L(Sn). Next, we show that the

proposition holds for k = n+1. To do so we first explain that L∈σn+1 and L /∈σn+1⇒
D |6≈L(Sn+1) by proving that every argument α claiming L(Sn+1) is defeated. Finally,

we show that L ∈ σn+1 and L /∈ σn+1 ⇒ D |≈L(Sn+1) by differentiating between the

two cases: L ∈ σn and L /∈ σn.

Proof of induction step:

1 Show that D |6≈L(Sn+1) by proving that every argument claiming L(Sn+1) is de-

feated by an acceptable argument which attacks its supporting conditions (and

not its claim). To do so we distinguish between the cases in which the final

derivation step is made using an effect axiom and a frame axiom.

1a Consider the case in which there exists an argument claiming L(Sn+1), in

which the final derivation step is made using an effect axiom.

L /∈ σn+1 entails that in every agent specification there is no effect produc-

ing L that is applicable in σn. Formally:

∀i ∈ N,∀〈CL,L〉 ∈ eff i it holds that ∃CL ∈ CL∪prei such that CL /∈ σn .

From the state completeness assumption and Proposition 8, we have that:

CL /∈ σn⇒CL ∈ σn .
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From the assumption of the induction step, we derive that:

CL /∈ σn and CL ∈ σn⇒D |≈CL .

Using Proposition 7 we infer that

D |≈CL⇒D |6≈CL.

From the MPCP problem to BAT translation mechanism and the grounding

process, we know that ground effect axioms have the form:

L(Sn+1)–≺
∧

CL∈CL∪prei(An+1)

CL[Sn] ,

where i∈N is an agent and CL is the set of conditions for an effect 〈CL,L〉 ∈
eff i(An+1).

For every effect axiom with head L(Sn+1), there exists at least one literal

CL in its body that is attacked and not warranted, since its complement is

warranted.

As a result, every argument claiming L(Sn+1), that uses an effect axiom for

the final derivation step, is defeated by an acceptable argument attacking

the conditions of the final derivation step.

1b Consider the case in which there exists an argument claiming L(Sn+1), in

which the final derivation step is made using a frame axiom. There are two

cases: L /∈ σn and L ∈ σn.

• If L /∈ σn, from the state completeness assumption and Proposition 8

we infer that:

L /∈ σn⇒ L ∈ σn .

From the assumption of the induction step we infer that:

L /∈ σn and L ∈ σn⇒D |≈L(Sn) .

Therefore, if L /∈ σn, then every argument which claims L(Sn+1) and

uses a frame axiom for the final derivation step is defeated by an attack

in its condition L(Sn) by an acceptable argument claiming L(Sn).

• If L ∈ σn, and since L /∈ σn+1, we reach the conclusion that every

agent’s specification has an effect producing L which is applicable in
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σn without any ambiguity. Formally:

∀i ∈ N, there exists 〈C ,L〉 ∈ eff i such that ∀C ∈ C ∪prei

it holds that C ∈ σn and C /∈ σn .

From the assumption of the induction step we have that:

C ∈ σn and C /∈ σn⇒D |≈C(Sn) .

Every ground frame axiom for L(Sn+1) has the form:

L(Sn+1)–≺L(Sn),notC1(Sn), . . . ,notCm(Sn) .

A ground frame axiom with head L is constructed for every possible

combination of one condition (including preconditions) per effect pro-

ducing L (Observation 1). Therefore, every frame axiom with head

L(Sn+1) in ground(D,Sn+1) contains one condition C in its body, such

that C ∈ C ∪prei(An+1) . Since, for every such condition C it holds that

D |≈C(Sn), every argument that uses the frame axiom for the deriva-

tion of its conclusions is defeated by an acceptable argument attacking

one of its assumptions.

From (1a) and (1b), we infer that if there exists an argument claiming L(Sn+1),

then this argument is defeated by an acceptable argument attacking its supporting

conditions (and not its claim).

2 Show that D |≈L(Sn+1), by distinguishing between the following cases: L ∈ σn

and L /∈ σn.

2a If L ∈ σn, and since we know from the hypothesis that L /∈ σn+1, we de-

rive that every agent’s specification contains an effect producing L that is

applicable in σn without any ambiguity. Formally:

∀i ∈ N there exists 〈C ,L〉 ∈ eff i(An+1) such that ∀C ∈ C ∪prei(An+1)

it holds that C ∈ σn and C /∈ σn .

From the assumption of the induction step, we have that ∀C∈C ∪prei(An+1):

C ∈ σn and C /∈ σn⇒D |≈C(Sn) .
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From the translation mechanism from MPCP problems to DBATs, and the

grounding process, we know that for any i ∈ N that there exists an axiom

in ground(D,Sn+1) such that:

L(Sn+1)–≺
∧

C∈C∪prei(An+1)

C[Sn] ,

where 〈C ,L〉 ∈ eff i(An+1), and every literal C(Sn) in the body of the rule is

warranted.

Since L ∈ σn+1, there exists a defeasible derivation for L(Sn+1) (Proposi-

tion 10).

As a result, there exists an argument α claiming L(Sn+1), whose final

derivation step is done using an effect axiom, the conditions of which are

all warranted. Also, according to (1), every argument β claiming L(Sn+1) if

defeated by an acceptable argument α′ different from α, since the defeater

does not attack the claim of β. Therefore, α is defended against every de-

feat by acceptable arguments different from itself. As a result, if L ∈ σn,

D |≈L(Sn+1).

2b If L /∈ σn, from the completeness assumption we derive that:

L ∈ σn .

From the induction step’s assumption we have that:

L /∈ σn and L ∈ σn⇒D |≈L(Sn) .

From (1a) we know that for every effect axiom with head L(Sn+1) there

exists at least one literal CL in its body that is attacked and not warranted.

As a result, every argument claiming L(Sn+1), that uses an effect axiom for

the final derivation step, is defeated.

From the MPCP problem to DBAT translation mechanism, and the ground-

ing mechanism, we know that there exists a frame axiom with the form:

L(Sn+1)–≺L(Sn),notC1
L, . . . ,notCm

L ,

whose body contains the default negated literals that are attacked and not

warranted. This is the case, since every frame axiom contains one literal

for each specification and conditional effect that produces the complement
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of the literal in the head of the axiom (Observation 1). Also, since a frame

axiom is produced for every possible combination of conditions, there ex-

ists a ground frame axiom in ground(D,Sn+1) whose every assumption can

be defended against every possible attack.

Therefore, α is defended against every defeat by an acceptable argument

different than itself. As a result, there exists an acceptable argument claim-

ing L(Sn+1), and D |≈L(Sn+1).

From (2a) and (2b) we conclude that: D |≈L(Sn+1) .

Using these results we conclude that if a ground literal with a ground situation term S

is warranted from a DBAT with a corresponding MPCP problem P, then we can derive

from P that this literal is part of the state that corresponds to S.

Proposition 12. Let a MPCP problem P= 〈N,F, I,O,G〉, and the corresponding DBAT

D = 〈Dss,Dap,DS0,Duna,Dc〉, both with complete initial states. Also, let the state

σk = γ(〈A1, . . . ,Ak〉, I) reached after performing the sequence of actions 〈A1, . . . ,Ak〉,
and the corresponding situation Sk = do([A1, . . . ,Ak],S0). For every ground predicate

literal L, if D |≈L(Sk) then L ∈ σk.

Proof. Proof by contradiction.

We assume that (1) D |≈L(Sk) and (2) L /∈ σk hold.

The initial state is complete. So from Proposition 8 we infer that L ∈ σk (3).

From (2), (3), and Proposition 11, it follows that D |≈L(Sk) (4).

From (4) and Proposition 7, we infer that D |6≈L(Sk) (5).

(5) directly contradicts hypothesis (1). As a result, the proposition holds.

Using the above propositions we show that, for every DBAT D that corresponds to a

MPCP problem P, every plan that is warranted from D is a candidate plan for P. This

result illustrates the correctness of the translation mechanism.

Proposition 13. Let a MPCP problem P= 〈N,F, I,O,G〉, and the corresponding DBAT

D = 〈Dss,Dap,DS0 ,Duna,Dc〉, both with complete initial states. Also, let the state σk =

γ(〈A1, . . . ,Ak〉, I) reached after performing the sequence of actions π = 〈A1, . . . ,Ak〉,
and the corresponding situation S j = do([A1, . . . ,A j],S0), for j = 0, . . . ,k . If D |≈
Poss(A1,S0),Poss(A2,S1), . . . ,Poss(Ak,Sk−1),G1(Sk),G2(Sk), . . . ,Gm(Sk), then π is a

candidate plan for P.
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Proof. Proof by induction on the length of the plan k.

(Base Case) If k = 0 then D |≈G1(S0),G2(S0), . . . ,Gm(S0). Therefore,

D |≈G1(S0) and D |≈G2(S0) and . . . and D |≈Gm(S0) .

From Proposition 12 we have, G1,G2, . . . ,Gm ⊆ I . As a result, the empty plan is a

candidate plan for P.

(Induction Step) We assume that the proposition holds for every plan of length k = n.

We show that it also holds for plans of length k = n+1.

From the hypothesis, we have that D |≈Poss(A1,S0),Poss(A2,S1), . . . ,Poss(An,Sn−1),

Poss(An+1,Sn),G1(Sn+1),G2(Sn+1), . . . ,Gm(Sn+1). Or equivalently:

D |≈Poss(A1,S0),Poss(A2,S1), . . . ,Poss(An,Sn−1) .

So, since 〈A1, . . . ,An〉 is a warranted plan from D with respect to the empty goal,

according to the induction step, it is also a candidate plan.

Also, D |≈Poss(An+1,Sn). Therefore, according to the translation mechanism of MPCP

problems to DBATs, there exists an agent i such that D |≈∧
C∈prei(An+1). As a result,

∀C ∈ prei(An+1),D |≈C, and according to Proposition 12:

∀C ∈ prei(An+1),C ∈ σn .

As a result, there exists at least one specification in which the action An+1 is applicable.

Therefore, the plan 〈A1, . . . ,An+1〉 is applicable in I (1).

D |≈G1(Sn+1) and D |≈G2(Sn+1) and . . . and D |≈Gm(Sn+1) .

As a result, from Proposition 12 we have:

G1,G2, . . . ,Gm ⊆ σn+1 (2).

From (1) and (2), we derive that the plan 〈A1, . . . ,An+1〉 is a candidate plan.
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3.5 Extensions

DBATs subsume MPCP problems with respect to the expressive power of the for-

malisms. This section investigates the expressiveness of the defeasible situation cal-

culus formalism, and look into extensions to defeasible basic action theories which

provide additional expressive power that our argumentation-based formalism handles

without modifications.

3.5.1 Ramifications

This section describes extended defeasible action theories including rules that rep-

resent axiomatic beliefs about the domain that go beyond what is considered to be

classical planning knowledge. We describe how axioms like ramifications and domain

constraints can be represented with the language and describe how the argumentation-

based reasoning mechanism handles the reasoning overhead.

The argumentation mechanism can deal with rules that do not coincide with the

structure of the defeasible basic action theory axioms. For instance, such rules are

ramifications or state constraints as for example a rule stating that if an object is in

one position it cannot be in a different position in the same situation. In general, by

extended defeasible action theories we consider defeasible basic action theories with

domain constraints.

Our framework treats ramifications just like every other axiom. Contradictions

among the different axioms are resolved by the argumentation mechanism. The system

does not need to differentiate between the different axioms. This enables a uniform

treatment of reasoning steps made with different types of axioms.

Even though the reasoning mechanism is able to deal with such rules, reasoning be-

comes more demanding. Contrary to derivations with defeasible basic action theories,

every derivation step does not lead from a situation to its predecessor, as there may be

multiple steps regarding fluents of the same situation. Cycle detection is necessary in

the search for derivation, since such arguments may lead to circles in inferences.

Definition 26. An extended defeasible action theory is a tuple

D = 〈Dss,Dap,Ddc,Duna,DS0〉

containing defeasible rules describing defeasible successor state axioms, action pre-

conditions of actions, domain constraints, presumptions regarding the initial situation

and non-fluent beliefs and unique names axioms for actions.
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Defeasible domain constraints detail rules describing relations between predicates

in the same situation. The head of a defeasible domain constraint is a literal predicate

regarding a situation s (e.g. F(~x,s) or ∼F(~x,s)), and the body of the rule may be any

disjunction of conjunctions of literal predicates. Only one situation term is allowed to

appear in such rules.

Example 3. An example of a defeasible domain constraint is the belief that if there is

evidence that an object is in a position, there are reasons to believe that it is not in a

different position:

∼At(x, l,s)–≺At(x, l′,s), l 6= l′.

This domain constraint implicitly represents the belief that it is not possible for an

object to be in two different positions in the same situation.

Domain constraints can be used to identify errors in the reasoning process. Con-

sider for instance the domain constraint ∼At(x, l,s)–≺At(x, l′,s), l 6= l′. Using this

constraint we can attack arguments which are supported by beliefs that do not coincide

with the knowledge incorporated within the domain constraints.

Additionally, domain constraints can represent ramifications or indirect effects, i.e.

side-effects of actions. Consider for example the belief that switching on the lamp

produces light, and light always produces heat. This enables a more straightforward

representation of the domain differentiating between the direct effects of actions and

their side-effects, which may be potentially insignificant.

Reasoning is performed in exactly the same way as in defeasible basic action the-

ories. The agent first needs to come up with a derivation, providing the reasons to be-

lieve the desired claim, and then the argumentation process needs to identify whether

the corresponding argument is acceptable. Derivations in extended defeasible action

theories may involve multiple inference steps regarding fluents about the same situa-

tion. This is the main difference with derivations made from defeasible basic action

theories.

3.5.2 Observations

Consider a situation in which the agents agree on a plan and start executing it un-

til an action cannot be performed. In order to cope with the plan execution failure

they must re-plan while taking into account all the monitoring information they have
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distributively acquired. In complex, partially observable domains agents may moni-

tor different aspects of the system, and their collective observations may still offer a

limited view of the current state of the environment.

The collective beliefs of the agents include:

• Initial situation view of the environment

• Operator specifications

• Sequence of actions executed

• Observations from the traversed states

These beliefs can be used within a slightly different setup in order to synthesise an

alternative plan without progressing their entire theory to the current state. Reasoning

is performed based on their initial theory D = 〈Dss,Dap,DS0,Duna,Dc〉, the set Do and

the sequence of executed actions πc and the relevant current situation Sc = do([π],S0).

Do contains observations of the form L(Sk)–≺, where L is a ground fluent predicate,

with its situation term Sk being a predecessor situation of Sc and a successor situation

to S0.

Definition 27. Suppose theory D ′ = D ∪Do comprising of a defeasible basic action

theory and a set of observations after the execution of the sequence of actions πc , and

let AF = 〈Args,Defs〉 be the argumentation framework for all arguments that can be

constructed from D ′, and GEAF its grounded extension. Consider the shared goals of

the agents G1, . . . ,Gm. The sequence of actions π = 〈A1,A2, . . . ,An〉 is a warranted

plan if and only if:

D |≈Poss(A1,Sc),Poss(A2,Sc+1), . . . ,Poss(An,Sc+n−1),G1(Sc+n), . . . ,Gm(Sc+n) ,

where Sc = do([πc],S0) is the current situation, Si = do(Ai,Si−1) for i > c denotes the

situation resulting from the application of action Ai to the predecessor situation Si−1.

The defeat relation reflect that recent observations are more accurate. This can be

done by simply assigning to recent observations higher preference values than out-

dated planning beliefs. As a result, arguments made using recent observations will

be preferred over arguments that combine outdated information with beliefs from the

operator specifications to predict the outcome of the agents’ actions.
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3.5.3 Default Negated Conditions

Default negation allows the representation of two types of conditions (both precondi-

tions and conditional effects): conditions which must be known to hold, and conditions

for which it is sufficient to have no evidence that their complement is the case. The

first is the usual case. Conditions must be defeasibly derived and defended against

all counterarguments. The latter can be used to specify special cases, in environments

with high degrees of uncertainty, allowing the agent to reach conclusions quickly with-

out considering less significant conditions, or special cases which rarely hold and in

most cases agents are unaware about their status. These can be investigated during the

argumentation stage in the face of sufficient evidence.

Consider the following rule, stating that there is light in the room after we switch

on the light provided that there is electricity in the building:

Light(do(switch on,s))–≺Electricity(s) .

If we have no evidence related to whether the predicate Electricity(S) (for a ground

situation term S) has a positive or a negative value, we do not have reasons to believe

that Light(do(switch on,S)) holds. Consider a domain in which lack of electricity is

an unusual special case. We can represent this knowledge by modifying the rule using

default negation:

Light(do(switch on,s))–≺Light(s),not∼Electricity(s) .

This modification asserts that the rule is applicable regardless of whether there are

reasons to believe Electricity(S) or ∼Electricity(S). However, the conclusions that

are derived using this rule are not warranted if there exists strong evidence towards

∼Electricity(S). Therefore, the difference between the two rules lies in the case that

Electricity(S) cannot be defeasibly derived from the agents’ theory, and∼Electricity(S)

is not warranted. The first rule results in Light(do(switch on,S)) not being defea-

sibly derivable, whereas it is derivable in the second, and warranted provided that

∼Light(do(switch on,S)) is not warranted.

Assuming that this is the only action affecting the value of the predicate Light, we

also have the following axiom for the negative literal:

∼Light(do(a,s))–≺∼Light(s),a 6= switch on;∼Light(s),∼Electricity(s) .

In this case, the condition ∼Electricity(s) is preceded by strong negation, since the

case in which there is no electricity in the building is believed to be unusual, and the

agents should assume it does not hold, unless there is strong evidence to the contrary.
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3.5.4 Partially Warranted Plans

According to our definition of plans, all actions should be executable in sequence and

their application should result in states that achieve the shared goal. In domains of

great uncertainty, the agents may not be able to find a plan, if there is not enough

information to account for all the necessary conditions. Our aforementioned definition

of an acceptable plan is not useful in this case.

We provide a relaxed solution concept based on default negation. The idea is that

if the agents cannot synthesise a plan whose every action is believed to be executable,

they can fall back on a search for plans which contain actions that are not believed to

be inapplicable.

Partially warranted plans are defined as follows:

Definition 28. Suppose a defeasible action theory D , and let the argumentation frame-

work AF = 〈Args,Defs〉 including all arguments that can be constructed from D , and

its grounded extension GEAF. Consider the shared goals of the agents G1, . . . ,Gm. The

sequence of actions π = 〈A1,A2, . . . ,An〉 is a partially warranted plan iff

D |≈not∼Poss(A1,S0), . . . ,not∼Poss(An,Sn−1),G1(Sn), . . . ,Gm(Sn) ,

where Si = do(Ai,Si−1) denotes the situation resulting from the application of action

Ai to the predecessor situation Si−1.

The concept of partially warranted plans is strictly more general than the concept of

warranted plans.

Proposition 14. Suppose a defeasible action theory D , and let AF = 〈Args,Defs〉 the

argumentation framework for all arguments that can be constructed from D , and GEAF

its grounded extension. Consider G1, . . . ,Gm to be the shared goals of the agents.

If π = 〈A1,A2, . . . ,An〉 is a warranted plan, then π = 〈A1,A2, . . . ,An〉 is a partially

warranted plan.

Proof. In order for the plan to be partially warranted every (default negated) literal in

the sequence must be warranted. For every goal literal Gi, since the plan is warranted

it holds that D |≈Gi(Sn), where Sn = do([A1, . . . ,An],S0). We need to show that for ev-

ery action of the plan Ak and every situation Sk−1 = do([A1, . . . ,Ak−2],S0) it holds that

D |≈not∼Poss(Ak,Sk−1). Since the plan is warranted, D |≈Poss(Ak,Sk−1). There-

fore, every argument claiming not Poss(Ak,Sk−1) is defeated. From the specification

of default negation, D |∼not∼Poss(Ak,Sk−1). Also, every argument attacking the as-

sumption not∼Poss(Ak,Sk−1) is defeated. As a result, D |≈not∼Poss(Ak,Sk−1).
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The contrary does not hold. Consider a plan with a single action and a single precon-

dition, for which we do not have neither evidence for or evidence against. If we can

infer that this action achieves the goal, we can infer that the plan is partially warranted.

However, since we do not have any indication that the action’s precondition holds in

the initial situation, we cannot construct an argument for the plan, and the plan is not

warranted.

Potential weakly acceptable plans may be ordered by the “degree of uncertainty”

in the applicability of their actions (or conditions which are not supported by any evi-

dence). This is a measure of the assumptions that cannot be defeated, but at the same

time are not warranted.

3.6 Summary

Multi-perspective cooperative planning deals with the problem of synthesising plans

in domains where agents have contradictory views regarding the initial state of the en-

vironment and operator specifications. Based on the agents’ planning domain beliefs,

and using standard, set-theoretic planning notation we define the multi-perspective

cooperative planning problem, and specify the solution concept of candidate plans.

Candidate plans are rather weak, since they do not account for potential objections to

these plans. Defeasible situation calculus enables the encoding of MPCP in the form of

defeasible basic action theories, and formalises the notion of plan acceptability. This

allows the specification of the warranted plan solution concept, which asserts that the

plan can be defended against every possible objection. Defeasible situation calculus

subsumes MPCP problems in terms of expressive power. In addition, we provide a

translation mechanism which bridges the two formalisms and enables the use of mod-

ern planning techniques to solve MPCP problems.

The main contributions of this chapter are:

• Formalisation of the MPCP problem.

• Specification of an expressive language for reasoning about contradictory dy-

namic domains.

• Concretisation of the notion of acceptability in planning domains.

• Bridging automated planning, reasoning about action and argumentation.



Chapter 4

Reasoning and Planning Algorithms

4.1 Introduction

Chapter 3 defines an argumentation-based framework, which formalises the notion of

plan acceptability in multi-perspective co-operative planning domains. This chapter

focuses on the algorithmic problem of synthesising warranted plans, and is separated

into two main parts. Initially, we focus on the defeasible situation calculus formalism

and describe how planning can be performed using DBATs. We focus on inherent

characteristics of the planning domain that can be exploited, in order to simplify the

necessary tasks and improve the efficiency of the process. The second part of this

chapter is based on the set-theoretic planning representation. We look at the problem

from a “classical” planning perspective and explain how search for candidate plans can

be delegated to efficient state-of-the-art planners. In this way, we exploit the planners’

highly optimised, heuristic search, further improving the practicality of our approach.

4.2 Planning with DBATs

Following the definition of a warranted plan (Definition 24), planning with a DBAT D
can be performed by searching for a ground situation S, such that:

D |≈executable(S),goals(S) .

S represents the history of the execution of the plan’s actions in sequence. The spe-

cial predicate goals abbreviates the expression G1(S),G2(S), . . . ,Gm(S), where literals

G1,G2, . . . ,Gm represent the agents’ goal predicates. The special predicate executable(S)

104
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is also an abbreviation and is defined for all ground situation terms S:

executable(S)≡

 true if S = S0

executable(S′),Poss(A,S′) otherwise with S = do(A,S′)

For example, the predicate executable(do(A2,do(A1,S0))) abbreviates the expression

Poss(A2,do(A1,S0)),Poss(A1,S0). The abbreviation executable(S0) holds by defini-

tion, and is omitted from the expression.

4.2.1 A Simple Exhaustive Planner

Algorithm 1 implements a simple exhaustive planner, which searches the plan space for

a warranted plan. We restrict the search to plans of a reasonable size ε, by considering

only situation terms in the set Sε = {S | S is a predecessor of a ground situation term

of length ε}. The exhaustive nature of the search for a warranted plan asserts that the

planning process is sound and complete for problems with a solution of at most length

ε.

Algorithm 1: An exhaustive planer based on propositional argumentation

ground(D) :=
⋃
∀Sε∈Sε

ground(D,Sε);

Args := {α | α is an argument that can be constructed from ground(D)};
Defs := {(α,β) | α,β ∈ Args and α defeats β};
AF := 〈Args,Defs〉;
Warranted := {Claim(α) | α is acceptable w.r.t. AF};
repeat

Select a new sequence π := 〈A1,A2, . . . ,An〉, with n := [0,ε);

if Warranted ⊇ {L(Sπ) | L(Sπ) appears in executable(Sπ) or goals(Sπ)}
then

return π;

until there does not exist a new plan;

return null;

Algorithm 1 is built on top of a reasoning component which is capable of evaluating

the warrant state of ground queries of the form D |≈L(S), where L(S) is a ground literal

with a ground situation term S. This process involves the following tasks:

• Theory grounding.
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• Argument Generation.

• Calculation of defeats among arguments.

• Establishing argument acceptability (with respect to the employed argumenta-

tion semantics).

• Search for acceptable arguments claiming the literals appearing in the query.

Algorithm 1 conducts these tasks in a simple, straightforward manner. It evaluates

whether a fluent is warranted by a defeasible basic action theory, and outlines the

necessary steps that need to be undertaken to assert soundness and completeness. It

is essentially a propositional argumentation mechanism reasoning over a “reasonably”

maximal ground theory.

The grounding mechanism grounds D with respect to every situation referring to a

history of less than ε actions. The number ε is used as a “reasonable” threshold. Ar-

gument generation and evaluation of argument acceptability are conducted in a simple

propositional argumentation-based reasoning manner.

The generation of the argumentation framework involves generating all arguments

and identifying the defeat relations among them. Argument generation can be per-

formed by searching for defeasible derivations and discounting those that are based

on a contradictory support. The defeat relations are identified by inspecting the argu-

ments. Attacks are identified in the light of contradictory beliefs among arguments.

Defeats are composed from attacks based on the employed defeat relation. This is an

aspect of the framework that can be fine-tuned to incorporate meta-information about

the domain. For instance, it may be the case that the more specific the conditions are

in a conditional effect, the more credible the operator is.

The evaluation of argument acceptability is performed with respect to the employed

argumentation semantics. For example, if grounded (sceptical) argumentation seman-

tics are used, we must identify which arguments are part of the grounded extension

of the argumentation framework. This task can be performed by a labelling process

(Modgil and Caminada, 2009), which follows the employed argumentation semantics.

Algorithm 1 is useful as an outline of the basic tasks that are necessary for the

synthesis of warranted plans. However, the use of general propositional argumentation

methods to synthesise warranted plans is not efficient. The main problem here arises

due to the overall size of the generated ground defeasible theory, which makes the

argumentation process, which is by its nature exhaustive, very inefficient.
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4.2.2 Strategies and Heuristics

In order to maximise the efficiency of our methods, we focus on pruning strategies and

heuristics that allow the reduction of the overall space we need to search for, in terms

of beliefs, arguments and potential plans. The rationale behind these strategies is based

on the analytical results presented in Chapter 3.

4.2.2.1 Situation-Dependent Grounding

Grounding the domain beliefs of the agents requires the substitution of the variables in

the rules in the DBAT with constant terms, for every possible combination, while re-

specting the sorts of terms and the equalities and inequalities appearing in the bodies of

the rules. This step is responsible to a great extent for the impracticality of Algorithm

1.

Even if we assume that the number of objects of the planning domain is manage-

able, we have to account for every situation term corresponding to a potential plan.

Since situation terms represent sequences of actions, we use ε to restrict the length of

potential plans to a “reasonable” threshold. However, this solution is still impractical

since the set of literals, grounded for every situation up to length k, is exponential in k.

Following Proposition 4 on page 70, we observe that the derivability of a ground

literal L(S) is independent of any rules which refer to situations that are successors to

S. Similarly, defeasible rules referring to situations that are neither predecessors nor

successors to S are also irrelevant, since all these rules refer to different sets of ground

predicates.

Observation 2. Consider a DBAT D and a ground literal L(S), where S is a ground

situation term. Assume a threshold ε and the set Sε = {S | S is a ground situation term

of length ε}, such that S is equal or a predecessor of a situation S′ ∈ Sε.( ⋃
Sε∈Sε

ground(D,Sε)

)
|∼L(S) if and only if ground(D,S) |∼L(S) .

According to the specification of the grounding mechanism, the set ground(D,S) con-

tains all defeasible rules that have been grounded with respect to situation terms that

are equal to or predecessor of S. As a result, all rules that are relevant to the derivation

of L(S) appear in ground(D,S) |≈L(S).

Equivalently, we generalise Proposition 5 on page 76, and conclude that the warrant

status of every ground literal L(S) is independent of any rules referring to situations

that are not equivalent to or that are predecessors of S.
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Observation 3. Let the DBAT D and a ground literal L(S), where S is a ground situ-

ation term. Assume a threshold ε and the set Sε = {S | S is a ground situation term of

length ε}, such that S is equal or a predecessor of a situation S′ ∈ Sε.( ⋃
Sε∈Sε

ground(D,Sε)

)
|≈L(S) if and only if ground(D,S) |≈L(S) .

The above observations reflect that any conclusions regarding D |∼L(S) and D |≈L(S)

can be drawn from the ground theory ground(D,S), and are independent of the beliefs(⋃
Sε∈Sε

ground(D,Sε)
)
\ground(D,S).

Accordingly, in order to answer any query of the form D |∼L(S) or D |≈L(S), we

ground the DBAT only with respect to S and its predecessor situations. Such queries

represent the main task for reasoning and planning with defeasible basic action theo-

ries.

The exhaustive planner described above is not suitable to utilise the grounding

strategy, since planning is performed as a simple search within the results of the ar-

gumentation process. In the following sections, we describe how the planning process

can be adapted, so that answering queries of the form D |∼L(S) and D |≈L(S) is placed

at the heart of the planning algorithm.

4.2.2.2 Argument and Defeater Generation

The exhaustive planner described in Algorithm 1 requires carrying out the argumen-

tation process prior to the search for a warranted plan. Even with a ground theory of

a restricted size this is impractical, since the argumentation process is expensive, pri-

marily due to its exhaustive nature. To this end, the following observation focuses on

restricting the argumentation generation process to arguments that are relevant to the

query that is under evaluation.

Observation 4. The warrant state of a ground literal L(S) depends exclusively on the

arguments with claim L(S), their defeaters, the defeaters of their defeaters, etc.

Formally, the set ArgsL(S) ⊆ Args containing all the arguments that are relevant to the

warrant state of L(S) is specified as follows:

ArgsL(S) = {α | Claim(α) = L(S) or ∃β ∈ ArgsL(S) such that (α,β) ∈ Defs} .

ArgsL(S) contains arguments with claim L(S), their defeaters, the defeaters of their

defeaters, and so forth. Any argument in the set Args \ArgsL(S) is irrelevant to the
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Algorithm 2: Construct the set ArgsL(S), with respect to the query D |≈L(S)

i := 0;

ArgsL(S) := /0;

Args0
L(S) := Generate all arguments with claim L(S);

while Argsi
L(S) 6= /0 do

Argsi+i
L(S) := Generate all defeaters for arguments in Argsi

L(S) ;

Argsi+i
L(S) := Argsi+1

L(S) \ArgsL(S) ;

ArgsL(S) := ArgsL(S)∪Argsi+i
L(S) ;

Return ArgsL(S);

decision of whether the ground fluent L(S) is warranted. As a result, constructing

these arguments is unnecessary.

Additionally, every ground rule that does not appear within an argument in ArgsL(S)

is also irrelevant to the query. Let ground(D)ArgsL(S) ⊆ ground(D,Sε) be the subset of

the ground theory containing only beliefs relevant to arguments in ArgsL(S):

ground(D)ArgsL(S) = {φ | ∃α ∈ ArgsL(S) such that φ ∈ {Claim(α)}∪Support(α)} .

Ground beliefs in the set ground(D,Sε)\ground(D)ArgsL(S) are not used in arguments

that are relevant to the acceptability of L(S).

In the worst case, if the warrant state of every literal in the theory depends on the

values of all other literals in the theory, the sets described above would be equivalent to

the general sets. This is rarely the case, especially in complex problems for large plan-

ning domains which usually include multiple beliefs that are irrelevant to the overall

goal.

The complete argumentation framework can be viewed as a directed graph called

an argumentation graph. Nodes correspond to the arguments of the argumentation

framework, whereas the edges represents the defeats between them. Algorithm 2 con-

structs subgraphs of the argumentation graph. Every subgraph contains an argument

α with Claim(α) = L(S), as well as every argument β, such that there is a path from

the node corresponding to β to the node representing α. Every argument β′, such that

there is no path from its corresponding node to any node representing an argument in

Args \ArgsL(S), are irrelevant to L(S). Therefore, these are not included in the sub-

graph. In the worst case, there is a path from every node in the graph to an argument

claiming L(S), and as a result ArgsL(S) = Args.
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Algorithm 2 asserts that arguments that are irrelevant to a query are not generated

and evaluated. This process is further optimised in the following chapter, in which we

present a dialogue based approach which evaluates the acceptability of a plan through

a dispute. The benefit of this process is that it does not always require the generation

of all arguments. Algorithm 2 generates the relevant argument trees in an exhaustive

breadth-first order, and labelling is performed after the tree has been constructed. This

process is further optimised by performing labelling after every iteration.

Example 4. Consider the processes of argument and defeater generation for the query

At(P,L2,do(push(R,P,L2),S0)) which denotes the belief that a parcel P is in a location

L2 after being pushed to this location. Initially, we generate arguments whose claim

is the literal At(P,L2,do(push(R,P,L2),S0)). For example, assume that the following

argument is available.

α = 〈{At(P,L2,do(push(R,P,L2),S0))–≺Free(L2,S0),Reachable(P,S0),

Free(L2,S0)–≺, Reachable(P,S0)–≺},
At(P,L2,do(push(R,P,L2),S0))〉

This argument states that the claim holds as a direct result of the action push(R,P,L2),

because there are reasons to believe that the relevant conditions Free(L2,S0) and

Reachable(P,S0) are the case. This argument is depicted as follows:

Free(L2, S0) Reachable(P, S0)

At(P, L2, do(push(R, P, L2), S0))

At(P, L2, do(push(R, P, L2), S0))−≺
Free(L2, S0),

Reachable(P, S0)

Level 0

Level 1

Level 2

If there is no other argument for our claim, we add α to the set of relevant arguments

and continue. Then we move to the next iteration and search for defeaters of α. To

do this, we search for every argument with claim ∼At(P,L2,do(push(R,P,L2),S0)),

∼Free(L2,S0) or ∼Reachable(P,S0). Let the following argument being generated in

this iteration:
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• β1 = 〈{∼Reachable(P,S0)},∼Reachable(P,S0)〉,

• β2 = 〈{∼At(P,L2,do(push(R,P,L2),S0))–≺∼At(P,L2,S0),not Free(L2,S0),

∼At(P,L2,S0)},∼At(P,L2,do(push(R,P,L2),S0))〉, and

• β3 = 〈{∼At(P,L2,do(push(R,P,L2),S0))–≺∼At(P,L2,S0),not Reachable(P,S0),

∼{At(P,L2,S0)}∼At(P,L2,do(push(R,P,L2),S0))〉

Next, we add the arguments β1, β2 and β3 to the set of relevant arguments and continue

by searching for their defeaters. We can generate the following arguments attacking

the assumptions of β2 and β3 and the premise of β1:

• α1 = 〈{Reachable(P,S0)},Reachable(P,S0)〉

• α2 = 〈{Free(L2,S0)},Free(L2,S0)〉

We add these arguments to the set and finish the process as there is no additional rele-

vant arguments, since argument β2 is already in the set. The argumentation framework

containing the arguments that are relevant to the query is depicted by the following ar-

gumentation graph:

α2α1

α

β1 β2β3

Note that the above example assumes that all arguments are equally preferred, unifying

the defeat and the attack relations. A different ordering would reduce the defeats in the

above figure, since one of β1 and α1 would be preferred.

Argument generation is based on the search for a suitable defeasible derivation.

This process can be conducted using a backward-chaining mechanism to construct a

proof tree. A completed tree corresponds to an argument, provided that it does not

contain contradicting literals. The backward-chaining process must unify an open sub-

goal (i.e. a belief that needs to be derived) to the head of a defeasible rule from the

agents’ theory, add new subgoals from the body of the rule, and continue until no
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Algorithm 3: Algorithm for the query D |≈L(S), where D is a defeasible action

theory, L a ground fluent literal and S a ground situation term

Build AFArgsL(S) = 〈ArgsL(S),DefsArgsL(S)
〉;

Generate GEArgsL(S) of AFArgsL(S);

if there exists α ∈ GEArgsL(S) of AFArgsL(S) with Claim(α) = L(S) then
return true;

else
return false;

open subgoals remain. The queries are ground, and so would be the beliefs that need

to be matched to the heads of defeasible rules. Rules which have the same literal as

their head can be either grounded and then matched, or we can unify them on de-

mand; we unify the relevant terms, but not any other variables appearing in the body

of the rule. The backward-chaining mechanism asserts that we exclusively ground

rules that can potentially form the support of arguments. Unfortunately, the set of the

generated ground rules is a superset of ground(D)ArgsL(S) . This is the case, because the

backward-chaining mechanism may explore paths that do not result in the construction

of arguments. Grounded beliefs that are generated while exploring such paths may not

be part of ground(D)ArgsL(S) as they are not used by arguments in ArgsL(S).

Defeaters for an argument are constructed through argument generation for claims

that contradict beliefs that appear in the claim or the support of the argument. Essen-

tially, in order to generate all defeaters for an argument α we generate every argument

β such that Claim(β) ∈ {Claim(α)}∪Support(α).

We consider domains including finite objects and ground situation terms repre-

senting plans of finite sequences of actions. These assumptions imply that the ground

theory contains a finite number of rules, and as a result, a finite number of arguments

can be generated. Accordingly, the argument generation (and the defeater generation)

tasks always terminate, given that a cycle detection mechanism is implemented within

the defeasible derivation search mechanism, since the process of labelling finite graphs

always terminates.

The soundness of Algorithm 3 follows from our definition of warrant, since Al-

gorithm 3 will return ‘true’ if and only if there exists an argument that has the literal

of the query as its claim can be constructed from the theory, and that this argument is

included in the grounded extension. Completeness, on the other hand, can be ensured
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if exhaustive search is conducted.

Algorithm 3 generates every subgraph relevant for the queried literal, and then uses

a labelling mechanism to evaluate argument acceptability. Such subgraphs are not nec-

essarily trees as they may contain arguments defeating multiple other arguments in the

subgraph. However, they can be transformed to trees organised in layers. Layer 0 con-

tains the root argument, which claims the queried literal. Layer 1 contains the children

of the root node, which correspond to the arguments defeating the root argument. The

children of every layer 1 node represent the arguments defeating the argument that

corresponds to this node. Every node on an even-numbered layer supports the root

argument, whereas every node on an odd-numbered layer defeats the root argument or

one of its supporters. The resulting tree contains all arguments that appear in the sub-

graph. However, arguments that create multiple defeats correspond to multiple nodes,

one for every defeat.

Generating such trees in a depth-first manner is advantageous, since in certain cases

it is possible to evaluate the acceptability of the root argument before the construction

of the entire argumentation tree. This process is performed systematically for abstract

argumentation in two-party disputes as described in Vreeswijk and Prakken (2000) and

Dunne and Bench-Capon (2003). Depending on the argumentation semantics, rules

apply which ensure the correctness of the conclusions. For instance, for grounded

acceptability semantics, in order to assert that an argument cannot be supported by

itself, it is prohibited from appearing on to two nodes on even-numbered layers in the

same path. We discuss protocols for the evaluation of arguments based on argument

games in detail in the following chapter.

4.2.2.3 Situation Stratification Strategy

In the previous section, we discussed arguments that are relevant for the evaluation of a

warrant of a ground query. This section focuses on the task of defeater generation, and

provides a strategy for guiding the evaluation process, when multiple defeaters exist.

The support of an argument regarding a query of the form L(S), where S involves

the application of multiple actions, may contain beliefs related to every situation from

the initial situation S0 to the situation S. Finding all potential defeaters requires the

generation of every argument that claims the complement of a statement that appears

in the support of the claim or is the claim of the original argument itself. For an

argument α, this set is denoted by: Support(α)∪{Claim(a)}.
The set Support(α)∪{Claim(α)} is conceptually stratified with respect to the sit-
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uation terms appearing in the beliefs in this set. Let Claim(α) be equal to L(Sn), L a

ground predicate literal and Sn the ground situation term for the ground sequence of ac-

tions π= 〈A1,A2, . . . ,An〉. The beliefs in the set Support(α)∪{Claim(α)} can be strati-

fied into n+1 sets Si, with i= [0,n] containing the beliefs in Support(α)∪{Claim(α)},
with a situation term Si. Non-fluent beliefs are placed in S0 together with initial situa-

tion beliefs.

According to Proposition 5 on page 76, and Proposition 6 on page 76, the deriva-

tion and warrant state of a ground literal referring to a ground situation term S depends

entirely on ground beliefs with situation terms that are predecessor or equal to S. The

specification of successor state axioms (and state constraints/ramifications) asserts that

the defeasible derivation of a belief regarding a ground situation S never involves be-

liefs with successor situation terms. Therefore, while evaluating the acceptability of

an argument whose claim refers to the situation term S, we do not need to consider

arguments whose claims refer to successor situations.

The notion of a sub-argument is very important in this process. Arguments may

have multiple defeaters, some of which may be sub-arguments of others. We can utilise

this relation while evaluating the acceptability of an argument. There is a clear benefit

in initially considering defeats on earlier situations, starting from non-fluent literals

and initial situation beliefs. The reason for this is that the acceptability of literals

regarding future situations depend on literals referring to their predecessor situations.

As a result, knowledge regarding their status can help prune the search.

For example, consider an argument α which has a sub-argument α′, and let β be

an argument defeating α′. If α′ cannot be defended against β’s attack, then we know α

cannot be defended either.

Proposition 15. Consider an argumentation framework AF and two arguments α and

α′ from this framework, such that α′ is a sub-argument of α. Let GEAF be the grounded

extension of AF. If α′ 6∈ GEAF then α 6∈ GEAF.

Proof. Since a′ 6∈ GEAF, there exists at least one argument b such that b defeats a and

there does not exist c ∈ GEAF such that c defeats b. If the contrary was the case then

it holds that b ∈ GEAF. Also, from the definition of the defeat relation since a is a

sub-argument of a′ and b defeats a′, it holds that b defeats a as well. Therefore, a is

not part of GEAF.

We utilise these observations in the next algorithm for argument acceptability check-

ing. Algorithm 4 utilises the situation stratification strategy to potentially reach con-
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Algorithm 4: The situation stratification strategy for answering queries of the

form D |≈L(S). D is a defeasible action theory, L a ground fluent literal and S a

ground situation term

repeat
AF := 〈 /0, /0〉;
Generate new argument α such that Claim(α) = L(S);

Add α to AF;

S := Support(α)∪{Claim(α)};
Stratify S in n+1 layers;

foreach layer Si with i = [0,n+1] do
Extend AF with ArgsL(S) from theory ground(D,Si) ;

Extend GE for current AF;

if α 6∈ GE then
break;

if α ∈ GE then
return true;

until there exists no new argument α;

return false;

clusions about warrants without evaluating every defeater. The basic idea behind the

algorithm is that the points at which a literal can be attacked are literals which can be

stratified according to their situation terms.

We build the argumentation graph in phases, each of which introduces arguments

which claim literals with a specific situation term. The initial phase considers argu-

ments about non-fluent and fluent literals about the initial situation. Every following

phase extends the graph with arguments regarding the successor situation. The final

phase introduces arguments about the same situation as the literal of the query. In every

phase, after the expansion of the graph we extend the labelling to the newly added ar-

guments. The labelling information of the already existing arguments, apart from α, is

not affected by the added arguments. All new defeats are the product of sub-arguments

of the new arguments, which have already been considered in the previous labelling

process.

Until we reach the final phase, the labelling process cannot determine if α is de-

feated against every potential defeater. However, if at the end of any phase α is cannot
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Algorithm 5: An exhaustive breadth-first planer

l := 0;

while l < ε do
repeat

Select a new plan π of length l;

if D |≈goal(Sπ),executable(Sπ) then
return π;

until there does not exist a new plan of length l;

l ++;

return null;

be defended against a defeater, then we can derive that α is not part of the grounded

extension. the arguments that would be added by the following phases, would not af-

fect the labelling of the defeater. Therefore, if such a defeater exists, we can determine

that α is not acceptable without proceeding to the next phase.

The argument generation step can reuse derivations that have been made in the

previous phases. The exhaustive nature of argument and defeater generation implies

that Algorithm 4 is sound and complete.

4.2.2.4 Executability-Based Plan Space Pruning

Algorithm 1 does not provide any insight on the order in which plans are evaluated.

Based on plan length, we distinguish the following basic strategies: breadth-first and

depth-first planning.

An exhaustive breadth-first search strategy evaluates all plans of an increasing size,

starting from zero and gradually reaching a threshold ε. More specifically, it evaluates

whether the expression goal(Sπ),executable(Sπ) is warranted for situation term S0.

Afterwards, it progresses with the evaluation of the statement for every situation S1 =

do(A,S0) such that A is a ground action. If no warranted plan is found, it continues with

their successor situations. The search continues in the same manner, until situations

Sε = do([πε],S0), where πε is a plan of ε actions. The main advantage of breadth-first

search is the guarantee that the shortest warranted plan within the selected threshold is

always identified. Algorithm 5 describes a breadth-first planner.

An exhaustive depth-first strategy begins with the evaluation of the empty plan. If

this is not warranted, it proceeds by selecting an action and evaluating the respective
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Algorithm 6: An exhaustive depth-first planer

repeat
π := /0;

repeat
Construct plan expression goal(Sπ),executable(Sπ);

if D |≈goal(Sπ),executable(Sπ) then
return π;

Select a ground action A such that the sequence π,A has not been

evaluated;

π := π,A;

until length(π)> ε or no new plans exist;

until no new plans exist;

return null;

plan. If this also fails to be warranted, another action is appended, and the new plan

is then evaluated. This process is repeated until a warranted plan is discovered or the

length of the plan exceeds a certain threshold. In this case, we backtrack and search

again making different action choices. A depth-first planning algorithm is outlined by

Algorithm 6.

The depth-first search does not necessarily return the shortest plan. However, this

strategy is preferable for large domains because it enables the reuse of conclusions and

provides a simple pruning mechanism based on situation executability. This mecha-

nism follows the observation that the derivation and warrant results regarding an action

sequence π are also relevant for every sequence π′ extending π. Therefore, negative

results regarding the executability of a situation carry over to every successor situation.

Observation 5. Let D be a defeasible basic action theory and S be a ground situation

term. For every situation S′ = do([A1, . . . ,An],S) extending S, if D |6≈executable(S)

then D |6≈executable(S′).

This observation follows from the executability abbreviation and the definition of the

warrant relation. The abbreviation executable(S′) is expanded to:

executable(S),Poss(A1,S), . . . ,Poss(An,do([A1, . . . ,An],S)) .

From the definition of warrant, it follows that a conjunction is warranted if every literal

in the conjunction is warranted. Therefore, since D |6≈executable(S) it holds that D |6≈
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executable(S′).

Argumentation in our framework is performed as two-step process: searching for

defeasible derivations, and evaluating the acceptability of the corresponding argu-

ments. As a result, the warrant relation is based on the notion of defeasible derivation.

Observation 6. Let D be a defeasible basic action theory and S be a ground situation

term. For every situation S′= do(π,S), where π is a possibly empty sequence of ground

actions, if D |6∼Poss(S) then D |6≈executable(S′).

The observation follows from the executability abbreviation and the definition of

the warrant relation. The abbreviation executable(S′) expands to:

executable(S),Poss(A1,S), . . . ,Poss(An,do([A1, . . . ,An],S)) .

Regardless of the number of actions in π, in order for this statement to be warranted,

executable(S) must be warranted from the theory. This is not the case, since Poss(S) is

not warranted from D , since there exists no argument claiming Poss(S).

Algorithm 7 utilises the above propositions to prune the search for a warranted

plan. Whenever a situation S that is not executable is identified, the search restarts for

a different situation sequence, since no successor of S is executable either. This al-

gorithm reduces the overall ‘amount’ of argumentation required, while increasing the

need to search for defeasible derivations. Therefore, computationally expensive pro-

cesses such as generating arguments and finding defeaters are performed exclusively

for potential plans.

For readability purposes, we extend the defeasible derivation relation to conjunctive

statements. More specifically, D |∼L1,L2, . . . ,Lm if and only if D |∼L1, D |∼L2, . . .,

and D |∼Lm.

4.2.2.5 Action Selection Heuristic

The depth-first planner presented in the previous section does not provide any insight

on the problem of action selection. More specifically, if after a plan 〈A1,A2, . . . ,Am〉
is applicable but does not achieve the goal, the planner picks an action Am+1, and

proceeds with the evaluation of the plan 〈A1,A2, . . . ,Am+1〉. When multiple options for

action Am+1 are available, this process is performed non-deterministically.

In large planning domains, the number of ground actions is considerable. Non-

deterministic action selection is impractical, since it may lead to the selection of un-

helpful or potentially even destructive actions. Exhaustive search eventually leads to a

solution, but is infeasible in many cases.
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Algorithm 7: Depth-first planner with executability-based pruning

while new plans exist do
while length(π)< ε do

π := a new plan 〈π,A〉;
Sπ := situation term for plan π;

if D|6∼Poss(Sπ) then break;

if D |∼goal(Sπ) then
if D |≈executable(Sπ) then

if D |≈goal(Sπ) then return π;

else break;

Πn−ex := Πn−ex∪{non-executable subsequence of π};
π := subsequence of π such that π /∈Πn−ex;

In order to improve the efficiency of the planning method, we propose a heuristic

action selection strategy inspired by the “no delete lists” heuristic from the planning

literature (McDermott, 1996; Bonet and Geffner, 2001; Hoffmann and Nebel, 2001).

The “no delete lists” heuristic is one of the most successful planning heuristics. The

heuristic quality of a state is measured based on the size of a plan that solves a relaxed

planning problem, in which delete lists (i.e. the negative effects of actions) are ignored.

Solutions to the relaxed planning problem are simpler to calculate, and these solutions

have been empirically shown to provide good estimates in benchmark planning do-

mains Hoffmann (2005).

Our axiomatisation of successor state axioms is based on the use of default negation

preceding disruptive effects. These axioms have the following form:

L(do(a,s))–≺γL(s);L(s),not(γL(s)) ,

where γL(s) abbreviates the body of the compound effect axiom for literal L.

Following the structure of these axioms, and the specification of the notion of de-

feasible derivation, there exists a defeasible derivation D |∼L(S′), where L(S′) is a

ground literal, S′ = do(A,S) is a ground situation term, and A is a ground action, if and

only if one of the following conditions holds:

• There exists an effect rule for action A producing L and every literal in the body

of the rule can be derived from D .

• D |∼L(S).
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Following the treatment of default negated literals as assumptions, the use of default

negation prior to the disruptive effects for L, results in defeasibly deriving L(S′) when

D |∼L(S), regardless of the derivation status of the literals of the disruptive effects.

As a result, defeasible derivations can be made for the literals produced by the final

action, or any one of the previous actions leading to the current situation. Disruptive

effects of actions are disregarded. Accordingly, the set of literals that can be derived in

a successor situation subsumes the literals derivable from its predecessors.

We introduce the term goal derivable situation to represent any situation term Sgd

such that D |∼goal(Sgd),executable(Sgd). The heuristic value is a function h(S) that

measures the quality of a situation based on the number of actions needed to reach

a goal derivable situation from the current situation. If this is not possible, then the

function takes an arbitrary high integer value.

h(S) =

 minS∗∈Sgd(|S∗|)−|S| if Sgd 6= /0

maxint otherwise

Sgd is set of all goal derivable situations that are successor (or equal) to S. |S| denotes

the distance, in terms of number of actions, between S and the initial situation S0. More

specifically, |S0|= 0, |do(A,S0)|= 1 and |do([A1,A2, . . . ,Am],S0)|= m. An outline for

the calculation of the heuristic value is provided by Algorithm 8.

Algorithm 8: Heuristic Value Calculation

l := 0;

S := {S0};
while l < ε do

foreach S ∈ S do
if D |∼goal(S) then

return l;

l ++;

S := {do(A,S) | S ∈ S , A is a ground action such that D |∼Poss(A,S)};
return ε;

Our use of the heuristic value follows the strategy behind the popular FastForward

planner (Hoffmann and Nebel, 2001). Initially, we search the plan space in a depth-

first manner using the enforced hill climbing strategy, which greedily moves to the

nearest, strictly better situation discovered using breadth-first search. Algorithms 9
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Algorithm 9: Enforced Hill Climbing Planner

S∗ := S0;

S := null;

while a threshold ε is not reached and S 6= S∗ do
S := S∗;

if D |≈G(S) then
return the plan that corresponds to S;

foreach S′ successor to S such that D |≈Executable(S′) and h(S′)< h(S∗)

do
S∗ := S′;

break;

return null;

and 10 outline the enforced hill climbing and best-first search strategies respectively.

Enforced hill climbing search is not complete, since it greedily moves towards situ-

ations of higher heuristic quality. When it reaches a local maximum, that is a situation

with a better heuristic quality than any successor situations, that does not satisfy the

goal, it fails. In situations in which enforced hill climbing fails, the heuristic value

is still helpful, as it can guide the search by prioritising actions leading to situations

of higher heuristic quality (although in this case we calculate it using minS∗∈Sgd(|S∗|)
rather than minS∗∈Sgd(|S∗|)− |S| to avoid unsuccessful local maxima). In this case

search is performed in a best-first manner. Best-first search explores the plan space by

expanding the most promising, in terms of the specified heuristic value, reached situ-

ation term. Its exhaustive nature guarantees that, if a solution exists within a certain

length, it will be eventually discovered.

4.2.3 Summary

The extensive size of ground DBATs makes simple, propositional argumentation-based

approaches highly impractical. In order to tackle this problem, we do not treat sit-

uation variables in the same manner as object variables with respect to grounding.

We transform the planning algorithm so that it revolves around queries of the form

D |≈L(S). Such queries can be answered by grounding the theory for situation terms

S = {S′ | S′ is ground situation term that is predecessor or equal to S}.
Depth-first search planning is suitable for searching the plan space, since it is based
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Algorithm 10: Best-First Search Planner

if D |≈goal(S0) then
return empty plan;

Σ := {S0};
i := 0;

while i < ε do
S := argminS′∈Σ(h(S′));

Σ := Σ\{S};
foreach ground action A such that D |≈Poss(A,S) do

S′ := do(A,S);

if D |≈goal(S′) then
return plan corresponding to S′;

Σ := Σ∪{S′};
i++;

return null;

on the expansion of a plan π with an additional action A in every step. Accordingly,

conclusions made regarding derivations and the warrant state of literals after the appli-

cation of π are relevant for π′ = 〈π,A〉. If we identify sequences that are inapplicable,

we prune the search space as any plan extending them is also inapplicable. In order to

perform an equivalent mechanism during breadth-first search, we would have to store

all argumentation results that are relevant to every situation that can be expanded in

the following iteration. This task is significantly complex in terms of memory require-

ments.

However, the depth-first search mechanism does not provide insight on action se-

lection, and in any realistic domain there are multiple options for every action selection

step. To this end we followed a heuristic approach. The heuristic value acts as a guide

in the search for potential plans, reducing the possibility of selecting unnecessary or

even potentially harmful, actions. The heuristic value needs to be calculated quickly,

since it is measured for every potential transition. Based on the defeasible implication

relation and the use of default negation, we calculate the heuristic value based on a

relaxed version of the planning problem. The solution to the relaxed problem is based

on defeasible derivations, rather than the expensive argumentation task, which is only

performed for actions with high heuristic quality. Hill climbing search may not lead to
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any solutions, since it only takes a single path into account. The heuristic value is still

helpful as a guide while searching the space using exhaustive best-first search.

In contrast to classical planning approaches that search the state-space of the plan-

ning domain, our methods search the situation space. The benefit of searching the state

space is that, since the same state may be reachable by different plans, it is possible to

prune the search whenever it proceeds in circles. Unfortunately, our problem is bound

to the notion of situations and has different semantics. Even if exactly the same literals

can be derived in two different situations, their warrant status may be different. The

next section focuses on the differences between MPCP with our set-theoretic formal-

ism and classical planning, and proposes methods for synthesising warranted plans that

delegate the search for potential plans to efficient, state-of-the-art planners, in order to

optimise the efficiency of the overall process.

4.3 Planning with MPCP Problems

Multi-perspective cooperative planning consists of the planning problem of synthesis-

ing potential plans, and the decision-making problem of evaluating these plans against

possible objections. This section focuses on algorithms for the solution of the problem

based on the proposed set-theoretic notation.

The planning problem is essentially the problem of synthesising candidate plans.

In order to provide an overall solution to the problem based on the set-theoretic nota-

tion, we need to provide a suitable specification of the decision sub-problem based on

the MPCP formalism. To this end, we introduce the notion of acceptability based on

MPCP problems and a preference ordering over planning beliefs, emulating the notion

of warrant on plans.

In addition, we focus on the planning sub-problem of MPCP. More particularly,

we identify its main differences from classical planning. We provide methods for the

transformation of the problem into a classical planning theory, suitable for delegating

the synthesis of candidate plans to standard planning algorithms. Finally, we provide

algorithms which utilise efficient, state-of-the-art planners, for the construction of can-

didate plans, exploiting their heuristic and highly optimised mechanisms for searching

the state space of a planning domain.
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4.3.1 MPCP-Based Argumentation

In order to represent and provide a solution to the decision-making part of the problem

using the MPCP formalism, our approach must account for the following:

• Specification of the structure of arguments.

• Specification of the defeat relation among arguments.

• Performing the task of argument acceptability evaluation.

• Performing the task of plan warrant evaluation.

Contrary to the aforementioned defeasible situation calculus argumentation-based meth-

ods, the set-theoretic notation does not offer a logic-based inference mechanism. As

a result, argument structures are specified in an ad-hoc manner which is based on the

state transition function, which is the main reasoning mechanism provided in MPCP.

Contrary to our previous work with DBATs, argumentation methods based on

MPCP are based on the notion of a state. When we traverse through a plan, we identify

the state transitions caused by its actions, and gather reasons explaining the values of

literals in the resulting states. This task is called plan projection, and is the basis of

argument generation in MPCP-based argumentation.

4.3.1.1 Plan Projection

Plan projection projects the effects of an action sequence on the state of the environ-

ment. It iterates over the actions in the plan, starting from the initial state. First, it

calculates whether this state satisfies the preconditions of the action. This is performed

by searching whether there exists an operator specification, according to which every

precondition is satisfied by this state. Then it calculates the successor state based on

the state transition function. This process continues for every action in the sequence.

When every action has been applied, the process checks whether the agents’ goals are

satisfied in the resulting state. Plan projection fails if there exists an inapplicable action

in the plan or if the goal literals are not satisfied by the final state.

The results of plan projection can be represented as a directed graph, whose nodes

are organised in layers of two different types. Odd-numbered layers correspond to

states. The nodes in these layers represent literals, and are denoted by circles. Layer 0

and every even-numbered layer is a justification layer. Every justification corresponds

to a single-step derivation describing the reasons to believe that a literal holds in a state,
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Figure 4.1: Directed graph representation of plan projection data

based on the relevant conditions in its predecessor state. Justifications are denoted in

the graphs using squares. An example of a plan projection graph is depicted in Figure

4.1.

We differentiate between the following classes of justification:

• Initial state justification

• Persistence justification

• Effect justification

Initial state justifications are equivalent to defeasible initial state axioms. For every

literal that is part of the initial state we generate an initial state justification. Initial

state justifications occupy layer 0, and do not have any incoming edges.
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Persistence justifications correspond to derivations made using the frame part of

defeasible successor state axioms. They describe that the agents have reasons to believe

that the latest action did not affect the current state of a literal. Formally, there exists a

persistence justification for every literal L in state γ(A,σ) if and only if there exists an

agent i such that for every conditional effect 〈CL,L〉 ∈ eff i(A), it holds that there exists

CL ∈ prei(A)∪CL such that CL /∈ σ or CL ∈ σ.

Effect justifications denote that a literal is added to a state because there exists an

applicable effect producing this literal. These correspond to derivations made from

the effect part of the ground defeasible effect axioms. Formally, there exists an effect

justification for literal L in state γ(A,σ) if and only if there exists an agent i with a

conditional effect 〈CL,L〉 ∈ eff i(A), such that prei(A)∪CL ⊆ σ. An edge starting from

an effect justification connects it with the literal it justifies on the following layer.

Incoming edges to the justification connect to it every condition in prei(A)∪CL in the

predecessor state. If the effect is not conditional and the action producing this effect

has no preconditions, then the effect justification node has no incoming edges.

4.3.1.2 Arguments

Plan projection graphs contain sufficient information to identify derivations and con-

struct arguments. Every literal node in the graph corresponds to a literal, related to

the corresponding action sequence. This is similar to literals grounded with respect to

a situation term corresponding to a plan in defeasible reasoning with DBATs. There

may exist multiple derivations for a literal. The compound defeasible derivation graph

conveys this information.

Definition 29. Given a plan projection graph G and a node literal L, a compound

derivation graph GL is the subgraph of G which contains every node L′ for which there

is a path from L′ to L and every arc from G among these nodes.

Figure 4.2 depicts a compound derivation graph for a literal L. This graph represents

every possible way that the literal can be derived. A derivation corresponds to a sub-

graph of this graph which contains a single justification node connected to a literal

node on the exactly higher layer. Compound derivation graphs may have multiple

justifications for the same literal.

Definition 30. Given a compound derivation graph GL for a literal L, a derivation

graph for L is a subgraph of GL which contains a justification node connected to every
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Figure 4.2: Compound derivation graph for literal L on the state represented by layer 5

constructed using plan projection data

literal node. Nodes and edges that are not part of a path leading to L are not part of

the graph.

Arguments correspond to derivations, but also require the literal layers to be non-

contradictory. This poses an additional task that needs to be executed over the task

projection data to disqualify derivations made using contradicting literals in the same

state. Similar to the formal argument definitions for arguments in defeasible logic,

these graphs are minimal, in the sense that if we omit any edges or nodes it is impos-

sible to reach the conclusion, and their premises are based on beliefs from the agents’

theory, in terms of initial state beliefs and the operator specification that formulated the

justifications.



Chapter 4. Reasoning and Planning Algorithms 128

The compound derivation graph corresponds to compound argument graphs, which

include every possible argument that can be put forward for the respective claim. From

these graphs we must exclude every derivation which is based on contradictory literals

within the same layer. Compound arguments may contain multiple justifications of the

same literal in the same layer.
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Figure 4.3: An argument claiming that L holds on the state represented by layer 5

Arguments are subgraphs of the compound derivation graphs. To construct these,

we start from the derived literal in the top literal layer k and add it to the argument

subgraph. Then, we move to the justification layer k and add one justification node j

linked to the literal added in k to the argument graph. Afterwards, we proceed to layer

k−2 and add every literal connected with justification j in layer k−1 to the argument

graph. This process continues, by selecting one justification for every literal in the
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higher layer from the layer below, and every literal for each justification in the higher

layer, until there are no other nodes to be added (i.e. justifications with no conditions

have been reached).

Attacks, similar to defeasible logic programming, are based on the notion of sub-

argument. An attack is defined as a disagreement between a literal regarding a layer

and its negation in the same layer. This can be the claim of the argument or the claim

of a sub-argument of the main argument in the graph. A sub-argument is the sub-graph

of the graph representing an argument, containing the claim of the sub-argument, and

every node for which there is a path connecting it to this literal.

Defeats are calculated based on the attack relation and specific domain dependent

principles, similar to the defeasible basic action theories case. Given an equivalent

preference ordering over arguments that is coupled with two corresponding DBAT and

MPCP problems, both theories provide equivalent acceptability results.

For example, a preference ordering over initial state beliefs and operator specifi-

cations may be used to calculate a preference ordering over arguments based on the

belief with minimal preference used for the derivation of the argument’s conclusion.

Initial state justifications receive the preference value of initial state beliefs. Persis-

tence justifications receive the preference of the literal in the previous state. Finally,

effect justifications receive preference of their least preferred condition or the relevant

action specification if it has a lower preference than the least preferred condition.

Arguments can be represented as tuples of the form 〈B,h〉. B is the support of the

argument and h represents the argument’s claim. Each element of the set B ∪{h} is a

triple of the form 〈L,k, p〉, where L is literal, k is the layer in which the literal appears

and p is the preference value for the derivation of the literal in this layer. Arguments

are non-contradictory, and as a result the support sets cannot contain contradicting

elements such as 〈L,k, p〉,〈L,k, p′〉.
In this setting, we define a relation between the arguments constructed from a

MPCP problem (which follows the initial state completeness assumption) and the ar-

guments generated from the corresponding DBAT.

Definition 31. Consider two arguments α and β, α constructed from a DBAT and β

generated from the corresponding MPCP problem. We say that α corresponds to β

(and β to α equivalently) if and only if:

• Claim(α) = Claim(β)[S], where S is the ground situation term corresponding to

the actions leading to the layer of Claim(β).
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• Every sub-argument of α corresponds to a sub-argument of β.

• Every sub-argument of β corresponds to a sub-argument of α.

The arguments constructed from a DBAT subsume the arguments constructed from the

corresponding MPCP problem.

Proposition 16. Let a MPCP problem P= 〈N,F, I,O,G〉, and the corresponding DBAT

D = 〈Dss,Dap,DS0,Duna,Dc〉, both with complete initial states. Also, let α be an ar-

gument that can be constructed from P. There exists a corresponding argument β

that can be constructed from D with claim h[S], and every sub-argument of the later

corresponds to a sub-argument of 〈B,h〉.

Proof. Proof by induction on the layer k of the claim Claim(α) = L.

(Base Case) k = 1, then the argument claims an initial state belief. From the translation

mechanism of MPCP problems to DBATs, we know that if L ∈ I then L(S0)–≺ ∈ D .

Therefore, there exists an argument claiming L(S0). None of the arguments have any

sub-arguments.

(Induction Step) We assume that the proposition holds for k = n. We show that it holds

for the following literal layer n+2.

Let k = n+ 2. Since there exists an argument for L in layer n+ 1, then L ∈
γ(〈A1, . . . ,Am〉,σ), where the sequence of action A1, . . .Am leads to the state rep-

resented by layer n+2.

From Proposition 10, we know that the defeasible derivations made using a BAT

subsume derivations made using the state transition function in MPCP problems.

As a result, since L ∈ γ(〈A1, . . . ,Am〉,σ, it holds that D ∈ L(Sm), where Sm is the

situation term corresponding to A1, . . .Am.

The final derivation step is made either using a ground defeasible effect or a

defeasible frame axiom. In both cases, every literal in the body of the rule

refers to situation Sm−1, where Sm = do(Am,Sm−1). These literals are part of

γ(〈A1, . . . ,Am−1〉,σ). For every such literal L′ it holds that D |∼L′(Sm−1).

According to the assumption of the induction step, there exists a correspond-

ing argument that can be constructed from D , with the same claim and sub-

arguments, for every argument of layer n (which is the layer where the beliefs

regarding situation terms).
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As a result, for every such literal L′, there exists a sub-argument that can be con-

structed from D . Accordingly, there exists an argument that can be constructed

from D with claim L(Sm), and every sub-argument of the later corresponds to a

sub-argument of β with claim L in layer n+2.

The use of default negation in DBATs leads to the construction of additional arguments

that cannot be constructed from the corresponding MPCP problem. These arguments

are not acceptable.

Proposition 17. Let a MPCP problem P, and the corresponding DBAT D , both with

complete initial states. For every argument α that is constructed from D and that is

acceptable with respect to grounded argumentation semantics, it holds that there exists

a corresponding argument β that can be constructed from P.

Proof. Proof by induction on k length of the situation term S for Claim(α) = L(S).

(Base Case) k = 0. Since D |≈L(S0), we infer that D |∼L(S0). From the theory trans-

lation mechanism from MPCP problems to DBATs, we derive that L ∈ I. As a result,

there exists a corresponding argument form P. Neither of the arguments has any sub-

arguments.

(Induction Step) We assume that the proposition holds for k = n, with Sn. We show

that it holds for k = n+1, in situation Sn+1.

From D |≈L(Sn+1) and Proposition 12, we derive that L ∈ γ(πn+1, I), where πn+1

is the plan corresponding to situation term Sn+1. The derivation that is used for the

acceptable argument claiming L(Sn+1) may be based either on a ground defeasible

frame or an effect axiom for the final derivation step. In both cases, every literal, apart

from the ones preceded by default negation, is warranted. As a result, following the

assumption of the induction step, there exists an argument from P for each one of

these. The MPCP argument generation method ensures that there exists an argument

for every literal that is part of a state, if the relevant conditions (in the case of an effect

rule) or the same literal (in the case of inertia) are part of the previous state. Therefore,

there exists an argument for L in the layer corresponding to situation n+1.

Equivalence of the warrant results from DBATS and MPCP problems depends on

the mechanism that links conditions with persistence justification nodes. We have de-

signed two methods for identifying the incoming connections towards a persistence
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justification node. The first is focused on practicality, whereas the other emulates in-

ference made using frame axioms in a more accurate manner, but is harder to calculate.

The first approach adds an edge from the literal being justified, in the previous

layer, to the persistence justification node. This is similar to an argument generated

from a DBAT that is based on a single step derivation that follows a ground frame

axiom, but disables attacks on default negated literals. Note that we only introduce

persistence justifications if and only if there is an action specification that entails them,

so this method does not introduce arbitrary arguments. However, this inference scheme

is biased towards persistence, compared to the warrant specification in DBATs. As a

result, there may be cases in which according to a MCPC a literal L is warranted

in a state σ (because of persistance), but on the other hand neither L(S) or L(S) are

warranted by the corresponding DBAT (where S is the situation that corresponds to the

plan to reach the state σ). Apart from this, the completeness properties of the approach

is preserved. Consider the following example.

Let 〈{¬Broken(L)},Lit(L)〉 be a conditional effect of the action switch on(L) and a

lamp L. Assume that the initial state includes both Broken(L) and ¬Broken(L), and that

they are equally preferred. As a result, the justification for the effect condition is not

acceptable, since it cannot be defended against an attack on the premises used to derive

the conclusion. Therefore, if ¬Lit(L) is acceptable in the state prior to the application

of the action, then lit(L) is also acceptable after the application of switch on(L). This

does not hold for the corresponding DBAT, since there is not adequate defence against

the attack on the assumption not¬Broken(L) which appears on the successor state

axiom for ∼Lit(L).

We designed an alternative method that overcomes this issue at the expense of

increasing the required amount of reasoning effort. This method adds a persistence

justification, which justifies literal L, for every operator specification and every set of

conditions that sufficiently provide reasons to believe that every conditional effect pro-

ducing L within this specification is not applicable. If there exists only one operator

specification with a single conditional effect this method is simple. For instance, in the

previous example, we only have to add an edge from Broken(L) to the persistence jus-

tification which justifies ¬Lit(L). In the general case this process is complex, since we

need to consider all combinations of conditions that are specified by a single specifica-

tion, and may result in the literal remaining unchanged. This process does not increase

the number of arguments that are constructed, but increases the premises in the support

of arguments that include persistence justifications. The additional premises result in
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further attacks between such arguments, since they allow attacks against these con-

ditions. As a result in order for a literal justified by a persistence justification to be

accepted, all attacks on conditions of the persistence justification must be defended.

This scheme produces the same acceptability results as DBATs in domains following

the initial state completeness assumption.

In practice, we can simplify this process slightly by only performing it literals

which are added as effects to the successor state, but are not deleted since there is

a specification according to which they are unaffected by the final action. Note that

preference orderings with respect to persistence justifications must depend exclusively

on the preference value of the justified literal in the previous state, not on any added

conditions.

4.3.1.3 Labelling Plan Projection Graphs

Argument acceptability is calculated in the same way for argument graphs as for de-

feasible basic action theory arguments. An argument must be defended against every

defeat, according to the relevant argumentation semantics. Algorithm 11 presents a la-

belling method for labelling the nodes of the plan projection graph in order to identify

which literals are warranted. The input of the process is the plan projection graph, and

the output is a labelled plan projection graph. Nodes in the labelled graph are labelled

W or N, according to their warrant information. W denotes that the literal is warranted

in the relevant state according to the agents’ theory, whereas NW represents the con-

trary. The labelling process follows the grounded (sceptical) argumentation semantics.

If a derivation for a literal is based on contradicting literals in the same state σ, then the

final justification that corresponds to this derivation is not warranted, since grounded

(sceptical) argumentation semantics ensure that at least one of these literals will not be

warranted in σ.

4.3.2 Warranted Plans

If plan projection for a plan π succeeds, then π is candidate plan. Following, the

acceptability semantics we introduced for defeasible situation calculus, a warranted

plan for a MPCP problem is a plan π such that:

• There exists an acceptable argument for every goal literal in the top layer.

• For every action Ak in π applied in layer k there exists an agent i, such that for
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Algorithm 11: Labelling algorithm for plan projection graph

Plan projection graph G ;

Labelled plan projection graph GL;

GL := G ;

foreach layer i starting from layer 1 do
if l is even then // l is a literal layer

foreach node n in current layer do
if there exists a justification j leading to n labelled as W then

if layer l does not contain the complement of n then
mark n in layer l as W ;

else if every justification j′ leading to the complement of n is

labelled as NW then
mark n in layer l as W ;

else
pref n := highest preferred justification connected to n and

labelled as W ;

pref n := highest preferred justification connected to n and

labelled as W ;

if pref n > pref n then
mark n in layer i as W ;

else
mark n in layer l as NW ;

else
mark n in layer l as NW ;

else if l is odd then // i is a justification layer

foreach node n in current layer do
if every literal leading to n is labelled W then

mark n in layer l as W ;

else
mark n in layer l as NW ;

return GL;

every literal L ∈ prei(Ak), there exists an acceptable argument with claim L in

layer k.
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Similar to the DBAT plan acceptability semantics, a plan is warranted if its applica-

bility and effectiveness is derived from the agents’ collective beliefs, and the beliefs

supporting it are “stronger” than any possible objections.

A special case of warranted plans are plans which raise no objections. We call these

plans undisputed plans. A plan π is an undisputed plan if it is a candidate plan and for

every literal that is part of the support set of an argument claiming that the goal or a

precondition of an action in the plan holds, its complement is not part of the relevant

layer in the plan projection graph.

Planning is performed as a search for a sequence of actions that forms a warranted

plan. Similar to the algorithms presented in the previous section, pruning the search is

possible based on derivation and warrant information regarding action applicability.

The main difference between planning with DBATs and planning with MPCP prob-

lems with preference orderings over beliefs is a result of the use of default negation

within successor state axioms in DBATs. As a result, defeasible derivations subsume

derivations made using the state-transition function. Defeasible derivations can be

made for arbitrary assumptions, even if there is strong indication that these do not

hold. These assumptions are then disqualified in the argumentation phase. The MPCP

reasoning mechanism does not rely on assumptions and results in deriving a reduced

number of candidate plans. Accordingly, it reduces the necessary argument evaluation

steps, since it essentially focuses on a smaller argumentation framework.

This benefit goes hand in hand with the requirement that the initial state is com-

plete, since in order to be able to handle states with uncertainty in a similar fashion

as in DBATs, a complicated specification of the state transition function is necessary.

The state transition function is used numerous times within the search for candidate

plans, and there is a significant advantage if it is quickly calculated. In addition, in

order to effectively utilise standard planners for the construction of candidate plans,

the specification of our planning domains should deviate as little as possible from the

classical planning domain specification.

4.3.3 Planning using Classical Planners

The custom planners discussed in this chapter do not offer the level of code optimi-

sation and fine-tuning of planning heuristics responsible for the efficiency of state-

of-the-art planners. In this section, we take a different view toward the problem of

identifying candidate plans, and focus on transforming the planning theory into a for-
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mat which is suitable for standard planners.

The main differences between our set-theoretic planning formalism and the classi-

cal planning formalism are:

• absence of contradictory theories,

• multiple operator specifications,

• state transition function,

• preference values over beliefs, and

• derivation and Warrant relations.

Treatment of contradictions is performed through the use of literals instead of atoms.

This is responsible for an increase in theory size, since every literal corresponds to two

atoms. The state transition function is adapted from the standard specification in order

to account for the relations among positive and negative literals referring to the same

atom, when calculating what remains unaffected after the application of an action.

The task of finding warranted plans is strictly worse than planning. The reasons

behind this are the extended size of the theory that is due to the use of literals and

preference values, the additional calculations necessary for the computation of the state

transition function, and the argumentation steps necessary to evaluate the warrant. The

problem of finding candidate plans on the other hand can be viewed as a classical

planning problem. This requires the construction of a planning theory that accounts

for literal-based states, multiple specifications and the non-standard representation of

the state transition function. The following section presents algorithms for planning

with external classical planners, exploiting their highly optimised, heuristic search of

the state space.

4.3.3.1 Synthesising Candidate Plans

Contrary to classical planning, MPCP states can be contradictory, i.e. they may con-

tain both positive and negative literals for the same atom. Standard planners usually

represent states as sets of atoms. Atoms that are not part of a state correspond to neg-

ative literals. This representation enables a compact Boolean notation for every fluent.

Every atom is either true or false in each state.
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States have slightly different semantics in our system. In MPCP problems respect-

ing the initial state completeness assumption, they describe what the agents have reason

to believe in, rather than what the agents know. There are the following cases:

1. We have reasons to believe that the fluent takes a positive value in the state.

2. We have reasons to believe that the fluent takes a negative value in the state.

3. Both (1) and (2) are the case.

We introduce the set of symbols Lp = {q | q ∈ Lp} to L , and replace every negative

ground and unground literal predicate ¬q in the theory with an atom q from Lp, which

has the same arity, constant and variable symbols.

The sets Atoms and GroundAtoms contain all unground and ground instances of the

predicate symbols in Lp. After the application of the transformations every state σ is

a subset of GroundAtoms. Also, sets containing preconditions of operators pre(o) or

conditions Γ for a conditional effect are subsets of Atoms, and effects φ are members

of Atoms.

The initial state is formulated according to the available literal information. If a

positive literal p is part of the initial state we add the atom p to the new initial state.

Accordingly, if we have reasons to believe that a negative literal ¬p holds in the initial

state, we add the atom p.

Further transformations to the operator specification are necessary. First of all, we

need to implicitly account for the removal of the complement of the effects of applied

actions. This operation is usually performed by the planner’s state transition function.

The use of the auxiliary predicates conceals the semantic relation between atoms p

and p from the planner. As a result, the introduction of one of these as an effect of an

action does not affect its complement.

In addition, the transformation needs to aggregate the operator specifications of

multiple agents into a single specification. The operator schema may contain multiple

triples of the form 〈prei,o,eff i〉 regarding the same operator o, representing the speci-

fication of operator o held by agent i. The transformation mechanism asserts that the

constructed specification adheres to the following principles:

• Only the effects for applicable specifications must be triggered (preserving the

link between preconditions and postconditions).

• Every specification implicitly describes which literals are not affected by the

action (i.e. frame axiom).
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Every specification of an operator defines a set of preconditions and a set of conditional

effects. It is rational to assume that the effects are triggered if both the preconditions

and the conditions of the conditional effect are satisfied by the state. In the aggregated

operator specification, the preconditions of each specification also play the role of ad-

ditional conditions to its conditional effects. For instance, if we have the specifications

〈p,o,{〈c,e〉}〉 and 〈p′,o,{〈c′,e〉}〉, the aggregated specification needs to contain the

effects 〈p∧c,e〉 and 〈p′∧c′,e〉. The precondition of the action is the disjunction of the

preconditions of the individual specifications. For operator o, this would be p∨ p′.

Apart from describing the effects of actions, every operator specification implicitly

describes which literals are not affected by it. Multiple specifications provide multiple

implicit rules describing when literals are not affected by an action. Following the

previous example, we focus on the specifications 〈p,o,{〈c,e〉}〉 and 〈p′,o,{〈c′,e〉}〉.
According to the first specification, if we have reasons to believe that p and c hold

in a state, then we have reasons to believe that e holds in the resulting state after the

application of the action. Therefore, according to this specification, we should not

believe that e is the case in the next state. However, if we have reasons to believe

that either p′ or c′ does not hold, then according to the second specification, e is not

affected by the action. Consequently, if we have reasons to believe that it holds in the

previous state, then e is also part of the resulting state.

Due to the use of auxiliary predicates, the planner is unaware of the conceptual

relation between the fluents p and p. If this relation was transparent the planner would

assert that the complements of the effects of the latest action do not hold. We achieve

this manually by introducing additional effects. These effects act as frame rules and

remove the complements (i.e. with respect to the symbol notation) of fluents that

are added to the resulting state. In order to take the existence of multiple operator

specifications and their implicit frame rules into account, we assert that these effects

are only applicable when all specifications are in agreement regarding the relevant

effect. If there exists at least one specification that describes reasons to believe that the

literal is not affected, then we do not remove its complement.

Algorithm 12 describes the necessary process for pre-processing the planning prob-

lem. We slightly abuse the ¯ notation; ψ denotes the replacement of negated literals

¬p with the corresponding new literals p in the negation normal form of the formula

¬ψ. The conditions of conditional effects here are considered to be expressions instead

of sets of literals. A set of literals corresponds to the conjunction of all the literals in

the set. Effects formulate the “add list” of operators, that is the literals that must be
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Algorithm 12: Algorithm for the translation of the collective planning theory to

a theory that can provide suitable input for a standard off the self planner

Replace every negated literal ¬p with a new literal p;

Create S′,O′,σ′0 and g′;

foreach operator o do
effect := /0;

foreach fluent literal e such that ∃〈φ,e〉 ∈ eff (o) do
foreach 〈pre,o,eff 〉 ∈ O′ do

ψe := ψe∨pre(o)∧ (∧〈φ,e〉∈eff (o)φ);

if e /∈ eff (o) then ψe := ψe∨pre(o);

else ψe := ψe∨ (pre(o)∨ (∨〈φ,e〉∈eff (o)φ);

effect := effect∪〈ψe,e〉;
effect := effect∪〈e∧ψe∧¬ψe,¬e〉;

precondition :=
∨
〈pre,o,eff 〉∈O′ pre(o);

O′′ := O′′∪{〈precondition,o,effect〉};
Σ′ := (S′,O′′,γclassical);

P′ := 〈Σ′,σ′0,g′〉;
return P′;

added to a state resulting from the application of the operator. Equivalently, the com-

plements of effects correspond to the “delete list”, that is the list of literals that are

deleted after the application of the operator. The symbol γclassical denotes the standard

state transition function used in classical planning.

The planning problem resulting from the application of the transformation is called

a candidate planning problem, and is the triple P′ = 〈Σ′,σ′0,γclassical〉. Every solution

to the candidate defeasible planning problem is a candidate plan to the corresponding

multiagent defeasible planning problem. This holds because the two formalisms pro-

duce equivalent state-based results, with the auxiliary literals in P′ corresponding to

negative literals in P. The initial state σ′0 is constructed so that the states are equivalent

with respect to this principle. In any successor state, if a literal is added by γ due to

an applicable conditional effect, then the atom corresponding to this literal is added by

γclassical, since an equivalent effect is added to O′. Additional effect rules introduced in

O′ assert that literals introduced by γ due to inertia are also introduced by γclassical.

The translation algorithm we described in the previous section provides a suitable
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theory to be input to a standard off-the-shelf planner. After parsing the theory, the

external planner searches the state-space for a candidate plan. If one is returned, its

warrant state can be evaluated accordingly.

Most planners are designed to return a single plan. However, if this plan is not

warranted, additional search is necessary. By performing suitable modifications to the

planner’s input, we must guide the planer to provide a different candidate plan. Ideally,

the planner should utilise the information obtained during the argumentation phase

regarding the reasons responsible for rejecting the previously synthesised candidate

plans. In this way, there would be a guarantee that future plans do not fail for the same

reasons.

4.3.3.2 Iterative Revision-Based Planner

Algorithm 13 describes the Iterative Revision-Based (IRB) planner which iteratively

calls an external, off-the-shelf planner, evaluates whether the returned candidate plan

is warranted, and revises the theory so that future plans returned from the external

planner do not suffer from the same contradictions. Similar to Algorithm 7, the search

is pruned for plans known to be unwarranted and the argumentation process is limited

to candidate plans. The IRB planning procedure resolves contradictions that are related

to candidate plans. This is particularly helpful in large domains containing information

irrelevant to the goal.

Revising initial state beliefs and simple effects of specifications with the same pre-

conditions is straightforward. We select the one with the highest preference. However,

this is not the case for contradictions in operator specifications. For example, consider

two specifications of an operator, one with the conditional effect 〈{Power(l)},Light(l)〉,
and the other with 〈{Was Sunny(l)},Light(l)〉. Also assume that no other effect in the

specifications is related to the predicate Light(l).

Assume that there are no other effects causing Light(l) or ¬Light(l), and that there

are no reasons to believe that l is lit before applying the operator. According to the first

specification, we have reason to believe that l is lit only if l is connected to a power

source, whereas according to the second this is the case only if the sun is shining.

The two specifications lead to contradictory derivations only in situations in which

we have reasons to believe exactly one of the statements Power(l) and Was Sunny(l).

The resolution of such contradictions depends both on our preferences over the spec-

ifications, and on our preferences over conditions Power(l) and Was Sunny(l) in the

previous state. In the general case, resolution of contradictions is situation-dependent
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Algorithm 13: Iterative Revision-Based Planner

NW = /0;

P′ := P;

repeat
π := call external planner(P′);

if project(π) then return π;
else

NW := NW ∪not warrated(P′,π);
P′ := revise(NW,P);

until no new plans exist;

(or plan-dependent), and encoding this information in the planning operators requires

the encoding of action histories in the state space of the planning problem. This is

obviously not practical and would lead to combinatorial explosion.

To overcome this issue, we follow a heuristic approach: We modify the operator

responsible for literals that are not warranted in future situations, and caused previous

plans to fail, so that these ground literals are not produced by the operator. This affects

only the specific ground literal and not the other instances that could arise due to the

same effect clause. This method is not complete, since by deleting the problematic

ground effect we make the generalisation that this effect always leads to contradictory

beliefs, which will not always be the case. However, soundness is preserved as the

warrant status of returned plans are evaluated externally of the employed planner.

4.3.3.3 GHC Planner

Algorithm 14 presents our GHC planner. This planner operates under a similar princi-

ple with the EHC algorithm presented in Section 4.2.2.5. GHC selects from the literals

that are warranted in the initial state and calls an external planner for a candidate plan.

If a plan is returned, it greedily traverses through the actions of the plan to the suc-

cessor states, until all actions have been applied or an action whose application is not

warranted in the corresponding state is met. The greedy approach allows minimising

calls to the external planner, enabling the quick traversal to states which can potentially

achieve the goal.

When the application of the actions finishes, if the goal is warranted, the planner

returns this plan. Alternatively, the planner searches for a state with a better quality
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Algorithm 14: GHC Planner

σ := I;

history := 〈〉;
σw := {L | L ∈ σ and L is warranted};
candidate := call external planner(σw);

candidatew := the maximal sequence of actions in candidate which are

warranted in sequence w.r.t. σ;

σ := γ(candidatew,σ);

history := history+ candidatew;

while a threshold ε is not reached do
progressed := false;

if all goal conditions are warranted in σ then
return history;

foreach action A whose application is warranted in σ do
σ′ := γ(A,σ);

σ′w := {L | L ∈ σ′ and L is warranted};
if all goal conditions are warranted in σ′ then

return history+ 〈A〉;
candidate′ := call external planner(σ′w);

candidate′w := the maximal sequence of actions in candidate′

which are warranted in sequence w.r.t. σ′;

if |candidate′w|> 0 then
σ := γ(candidate′w,σ′);

history := history+ 〈A〉+ candidate′w;

progressed := true;

break;

if progressed = false then
return null;

return null;

in the neighbourhood of the current state, i.e. the states that can be reached with one

transition by an action whose application is warranted. The quality of the state is

calculated as the number of actions in the candidate plan the external process returns

for this state, whose application is warranted in sequence. The quality of the current
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state is 0. Higher numbers correspond to better heuristic values. If a state with a higher

heuristic value is found, then the planner greedily selects it and repeats the process with

this state as the current state. The greedy approach allows the planner to quickly move

to better states without searching through the entire neighbourhood, which in extensive

domains may include thousands of states. This is very important as in every step the

planner is required to performed argumentation steps in combination with calls to the

external planner.

In order to minimise the possibility of circles in neighbouring states, the order

actions are considered is non-deterministically selected in every iteration. The standard

way to avoid such cases is to maintain lists of the traversed states. However, this

is not effective in this case, since because states containing the same literals are not

necessarily equivalent, since they may entail different warrant results. Hence, in order

to comprehensively evaluate whether two states are equivalent we must compare their

sets of literals, their warrant status and their relevant preference orders. The alternative

is to evaluate state equivalence based on the history of actions that led the planner to

these states, i.e. in a similar fashion to a situation term in DBATs.

GHC evaluates the warrant status of literals based on a forward and a backward

step. The literals that are contained in a state is computed in a forward manner. Sub-

sequently, we evaluate their warrant status based on a labelling process in a backwards

chaining manner. If the warrant results of the predecessor states have been already

evaluated before we traversed to the current state, these results are reused. We store

the warrant information and (for warranted literals and justifications) the preference

value. Accordingly, if the warrant evaluation results regarding the predecessor state

have been calculated, the labelling process is limited to one backward step.

In order to increase the potential of the returned candidate plans, GHC evaluates

the warrant status of the literals in the current state, and feeds the external planner with

a state that does not include literals that are not warranted. As a result, the external

planner solves a candidate planning problem that does not necessarily respect the ini-

tial state completeness assumption. This does not affect the correctness of the GHC

algorithm, since the returned candidate plans are used to calculate the heuristic value

of a state, which only indicates the direction of the search. The actual state transitions

are performed based on complete states.

Heuristic search may lead to a local maximum, or continue without reaching a goal

state. In order to ensure termination we limit the path the planner can traverse. Ad-

ditionally, in order to safeguard termination in domains with extensive size of actions,
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we bound the number of states that can be considered.

4.4 Summary

This chapter investigates the problem of synthesising warranted plans that solve plan-

ning problems in which agents share goals, but hold different views on the initial

state and the operator specifications. A naive implementation of this process based

on propositional argumentation is impractical due to the size of the generated ground

theories. To tackle this problem, we propose a series of planning algorithms that are

based on specific queries for the derivation and evaluation of their warrant status of

literals in the situation resulting after the application of relevant actions. With this, we

manage to prune the search space. In order to further increase efficiency, we present

strategies for selecting the most prominent point of attack during argumentation. In

addition, taking inspiration from the planning literature, we present a planning heuris-

tic based on the defeasible derivation relation that can be used to guide the search and

prioritise actions.

Apart from the presented algorithms that are based on DBAT, this chapter focuses

on the set-theoretic MPCP representation and specifies arguments, acceptability and

warranted plans. With this formalism, we focus on the differences between MPCP and

classical planing. Based on these observations, we propose algorithms that delegate

the search for candidate plans to efficient external planners.

Contrary to standard state space planning, the search for candidate plans, is bound

to the notion of situation (or history), since the warrant status of literals is relevant

to the history of actions that led to this state. States in which the same literals can

be derived do not always share the same warrant results. Warrant information can be

introduced within the state. However, this results in an significant increase in the state

space.

The main contributions of this chapter are the following:

• Focus on the algorithmic aspects of MPCP.

• Formulation of the planning sub-problem of MPCP in a format suitable for clas-

sical planners.

• Presentation of pruning strategies, heuristics, and algorithms for planning with

DBATs and MPCP problems.
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Dialogue Protocols

5.1 Introduction

The methods described in the previous chapter provide centralised solutions to the

problem of multi-perspective cooperative planning. Such techniques require commu-

nication of all beliefs prior to planning. In the general case, this is not optimal since

it involves the communication of beliefs which neither support nor object to potential

plans. Moreover, in special cases, this process may be potentially problematic. For ex-

ample, agents with privacy constraints may not want to subscribe to mechanisms that

require them to share their entire knowledge base, including beliefs that do not provide

insight to the problem at hand.

This chapter presents a family of dialogue-based protocols for the distribution of

the solution finding mechanism. The dialogue-based approach allows cooperative

agents to search the space of potential plan proposals, resolve contradictory beliefs

and reach agreement while aligning their knowledge. This is achieved by exchanging

meaningful arguments regarding concrete potential proposals.

The approach presented in this chapter is based on the combination of argumenta-

tion theory and (defeasible) situation calculus in a distributed setting. The dialogue-

based nature of the mechanism enables the distribution of the argumentation process.

Agents initiate discussions about concrete plans they have generated individually. They

then collaboratively resolve contradictions in their beliefs that are relevant to the eval-

uation of the discussed plans. As a result, this process avoids the communication of

beliefs that are irrelevant to the specific problem and the resolution of irrelevant incon-

sistencies.

We present an abstract argument-based protocol that enables discussion of can-

145
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didate proposals and extend it for the specific problem of arguing about plans. The

dialogue is broken down into sub-dialogues, which discuss alternative proposals. If

a sub-dialogue fails, the protocol ensures that the source of the disagreement is dis-

covered and resolved, and that the knowledge of the agents is gradually aligned as

participants’ local misconceptions are uncovered. The main dialogue-based protocol

is extended to enable multi-party dialogue and collaborative argument generation.

The work presented in this chapter has been previously published by Belesiotis

et al. (2009) and Belesiotis et al. (2010).

5.2 Iterated Disputes

We start by describing iterated disputes, our two-agent dialogue framework at the level

of abstract argumentation (Dung, 1995), together with a protocol for iterated argumen-

tation that is suitable for arguing over plan proposals as we will later show. We assume

two-player situations; in the case of more than two agents, our results carry over as-

suming pairwise dialogues are conducted between all agents to reach agreement among

the full set of agents.

Argumentation theory provides strong theoretical foundations for formally defining

the notion of acceptability, and mechanisms for the identification and resolution of

conflicts. An abstract argumentation approach provides modular representation and

abstraction between different aspects of the problem. Argumentation-based dialogue

enables the agents to share their beliefs together with justifications explaining how the

knowledge has been obtained. Justifying claims enables the resolution of conflicts,

because it provides additional information regarding the reasons why beliefs should be

accepted.

5.2.1 Dialogue Protocol

Figure 5.1 outlines the iterated disputes dialogue protocol, which extends two-party

immediate response disputes for grounded argumentation semantics (Dunne and Bench-

Capon, 2003), in order to allow the evaluation of multiple proposals. Every iteration

is followed by an argument revision step which aligns the argument sets of the agents.

We consider the agents to have distinct argument sets, instead of sharing the same pool

of arguments, which is usually the case in disputes.

The agents evaluate the acceptability of a proposal through a dispute (Dunne and
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Figure 5.1: Outline of an iterated dispute

Bench-Capon, 2003). The agent that made the proposal plays the role of the proponent

PRO, leaving the role of opponent OPP to the other party. The proponent is respon-

sible for constructing arguments in favour of the proposal, while the opponent’s role

is to show that the proposal should not be accepted. The dialogue game progresses

with each agent presenting arguments defeating the arguments of their rival. Iterated

disputes facilitate the discussion of different proposals in sequence.

The following analysis follows Dunne and Bench-Capon (2003). Let an abstract ar-

gumentation framework AF = 〈Args,Defs〉, with Args = ArgsPRO∪ArgsOPP the union

of the arguments that are available to the proponent and the opponent respectively. A

dispute tree for some argument ρ in Args, denoted by T , is a tree with root ρ whose

vertices and edges are subsets of Args and Defs, respectively. The edges in a dispute
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tree are directed from vertices to their parent node. Depth(T ,α) for an argument α in

a dispute tree T denotes the number of edges in the dispute line from α to the root of

the tree. Children(T ,ν,e) represents all arguments in T that have ν, which is located

in depth e, as their parent node.

A dispute line is a path in the dispute tree:

νk→ . . .→ ν1→ ν0 = ρ .

For every two consecutive arguments ν j and ν j−1 in a dispute line it holds that ν j

defeats ν j−1 (i.e. ν j→ν j−1).

A dispute line is called open/closed if the agent who has to make the following

move is able/unable to defeat the other party’s most recent move. A closed dispute line

for some argument ρ is a failing defence/attack of P if the leaf node argument move

has been made by the opponent/proponent.

A dispute for some argument ρ is a sequence of moves:

d = 〈m1,m2, . . . ,mk, . . .〉

affecting a dispute tree that has ρ as its root. Every dispute evaluates the acceptability

of a candidate proposal. Dispute d after k moves will be denoted as dk. The state of

the dispute dk is a tuple:

State(dk) = 〈Tk,νk,CSPRO
k ,Pk,Qk,Argsk〉 .

Tk is the dispute tree after the most recent argument move νk. CSPRO
k contains argu-

ments that have been presented by the proponent in the current dispute line providing

defence on ρ. Pk is the set of arguments the proponent has presented in the current

dispute tree. Qk contains sets of arguments presented by the proponent that failed

to defend ρ. Argsk represents the arguments that have been exchanged in the dis-

pute by both agents, excluding the proposal argument. We will refer to a dispute as

being closed if the agent who has to make the following move is unable to make a

move affecting the tree of the dispute. A closed dispute line for some argument ρ is

a failing defence/attack if the final move affecting the dispute tree was made by the

opponent/proponent.

An iterated dispute is a sequence of disputes d = 〈d1,d2, . . . ,dl, . . .〉. An iterated

dispute can be rewritten as a sequence of legal moves d = 〈m1,0,m1,1, . . . ,ml,k, . . .〉,
where ml,k denotes the kth move of the lth dispute. The boolean function Legal(m,d)

succeeds if all the conditions specified by the move hold before the move is applied.
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CurrentDispute(d) returns the most recent dispute, PreviousMoveType(d) denotes the

type of the most recent move, and Proposal(d) is d’s root argument.

The applicability of dialogue moves is specified by sets of conditions and effects.

The following moves dictate the rules that achieve grounded semantics. We extend

the moves proposed by (Dunne and Bench-Capon, 2003) by introducing additional

ones to allow dialogue over multiple disputes and additional structures to maintain

unsuccessful proposals. The propose move initiates a new dispute. The agents are

restricted to propose new arguments from P , which is the set of all possible proposals.

ml,0 = 〈propose, i,ρ〉

Conditions: Effects:

PreviousMoveType(d) ∈ {close, Roles are switched

no-proposal}, or d= 〈〉 Tl,0 := 〈ρ〉
∀d in d, Proposal(d) 6= ρ νl,0 := ρ

ρ ∈ GE〈Argsi
l−1∪{P},Defs〉 CSPRO

l,0 := {ρ}

ρ ∈ P Pl,0 := {ρ}
Ql,0 := /0

Argsl,0 := /0

The no-proposal move is made when an agent is unable to present a new proposal.

ml,0 = 〈no-proposal, i〉

Conditions:

PreviousMoveType(d) = close or d= 〈〉
@ρ s.t. Legal(m,d), for m = 〈propose, i,ρ〉

The terminate move can be used after a no-proposal move in order to terminate the dis-

cussion when no alternative proposals can be presented by either one of the agents. In

this case, the iterated dispute finishes without reaching a mutually acceptable solution.

ml,0 = 〈terminate, i〉

Conditions:

PreviousMoveType(d) = no-proposal

@ρ s.t. Legal(m,d), for m = 〈propose, i,ρ〉
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Counter moves respond to the other party’s most recent argument in a dispute. Se-

quences of counter moves expand the current dispute tree in a depth-first manner. In

order to conform to grounded argumentation semantics, the proponent is not allowed

to present conflicting arguments, or repeat the same arguments in the same dispute

line. In addition, the proponent is prohibited from repeating lines of defence that have

already failed in the current line of defence. This is achieved by disabling PRO to

formulate a line of defence extending a line that has been added in Ql,k.

ml,k = 〈counter,OPP,υ〉

Conditions: Effects:

PreviousMoveType(d) ∈ Tl,k := Tk−1 + 〈υ,νk−1〉
{propose,counter,retract} νl,k := υ

υ ∈ ArgsOPP
l−1 ∪CSPRO

l,k−1 CSPRO
l,k := CSPRO

l,k−1

υ→ νl,k−1 Pl,k := Pl,k−1

Ql,k := Ql,k−1

Argsl,k := Argsl,k−1∪{υ}

ml,k = 〈counter,PRO,υ〉

Conditions: Effects:

PreviousMoveType(d) ∈ Tl,k := Tk−1 + 〈υ,νk−1〉
{counter,backup} νl,k := υ

υ ∈ ArgsPRO
l−1 CSPRO

l,k := CSPRO
l,k−1∪{υ}

υ→ νl,k−1 Pl,k := Pl,k−1∪{υ}
υ 6∈ CSPRO

l,k−1 Ql,k := Ql,k−1

CSPRO
l,k−1∪{υ} is conflict-free Argsl,k := Argsl,k−1∪{υ}

∀R ∈ Ql,k, R 6⊆ Pl,k−1∪{υ}

The notation Tk−1+〈υ,νk−1〉 represents the dispute tree resulting from adding the node

υ and the edge 〈υ,νk−1〉 to the dispute tree Tk−1.

If PRO’s most recent argument cannot be countered, OPP makes an alternative

defeat using the backup move. In this way, the opponent is allowed to backtrack and

focus on the most recent argument in the current dispute tree that was presented by

PRO and is defeated by an alternative argument that is held by OPP.
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ml,k = 〈backup,OPP,υ,χ,e〉

Conditions:

PreviousMoveType(d) ∈ {counter}
υ ∈ ArgsOPP

l−1 ∪CSPRO
l,k−1

χ = νb is the most recent argument in the dispute line

νn→ . . .→νb→ . . .→ρ for which:

− δ = Depth(χ)+1 is odd

− υ→ χ

− υ 6∈ Children(Tl,k,χ,Depth(χ)).

Effects:

Tl,k+1 := Tk + 〈υ,χ〉
νl,k+1 := υ

CSPRO
l,k+1 := CSPRO

l,k−1 \{νn,νn−2, . . . ,νb+1}
Pl,k := Pl,k−1

Ql,k := Ql,k−1

Argsl,0 := /0

The retract move can be used by the proponent in order to attempt to provide an alter-

native line of defence if it is not possible to counter an argument presented by OPP. In

order to ensure that the proponent does not repeat the same line of defence, as it has

been already shown to fail, the proponent’s arguments are stored in Ql,k.

ml,k = 〈retract,PRO〉

Conditions: Effects:

PreviousMoveType(d) Tl,k+1 := 〈ρ〉
∈ {counter,backup} νl,k+1 := ρ

@χ s.t. Legal(m,d) for CSPRO
l,k+1 := CSPRO

l,0

m = 〈counter,PRO,χ〉 Pl,k := Pl,0

Ql,k := Ql,k−1∪{Pl,k−1}
Argsl,k := Argsl,k−1

The accept proposal move is preformed by the opponent, closing the most recent dis-

pute as a failing attack and terminating the dialogue in favour of the most recent pro-

posal.
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ml,k+1 = 〈accept,OPP〉

Conditions:

PreviousMoveType(d) ∈ {propose,counter}
@υ s.t. Legal(m,d), for m = 〈counter,OPP,υ〉
@υ,χ,e s.t. Legal(m,d) for m = 〈backup,OPP,υ,χ,e〉

Effects:

ArgsPRO
l := ArgsPRO

l−1 ∪Argsl,k

ArgsOPP
l := ArgsOPP

l−1 ∪Argsl,k

Proposal(dl) is accepted

The close dispute move is available to the proponent and closes the most recent dispute

as a failing defence.

ml,k+1 = 〈close,PRO〉

Conditions:

PreviousMoveType(d) ∈ {counter,backup}
@υ s.t. Legal(m,d), for m = 〈counter,PRO,υ〉
@υ,χ,e s.t. Legal(m,d), for m = 〈retract,PRO,υ,χ,e〉

Effects:

ArgsPRO
l := ArgsPRO

l−1 ∪Argsl,k

ArgsOPP
l := ArgsOPP

l−1 ∪Argsl,k

The restrictions specified by the protocol are quite liberal, since they do not always

impose a singe move. For instance, an agent that holds different defeaters to the most

recent argument presented by the other party can make multiple legal counter moves.

In order to automate the move selection process, and ensure that the dialogue leads to

correct results, we pair the dialogue protocol with the confident strategy. A strategy

is a set of rules which select exactly one move from the set of all legal moves. The

confident strategy constructs a move based on a complete ordering over all possible

legal options. Preference over moves is calculated according to:

1. The following ordering over move types:

〈counter,backup,retract,close,accept,propose,no-proposal, terminate〉.

2. The preference level of the argument presented by the move, for moves of the

same type.
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If the preference ordering over arguments is partial, a complete ordering is obtained by

prioritising moves that are equally preferred in a non-deterministic manner.

The confident strategy ensures that every relevant argument is exchanged eventu-

ally. In addition to this, the strategy expands the argumentation tree in a depth-first

manner, which allows us to prune paths that do not alter the acceptability status of the

proposal argument that is being evaluated.

5.2.2 Properties

This section presents important properties of the abstract argumentation protocol of

iterated disputes. The following proofs assume that the dialogue is conducted between

two agents following confident strategies.

Proposition 18. An iterated dispute for agents with finite argument sets always termi-

nates.

Proof. The agents’ arguments are finite. The proponent cannot repeat the same argu-

ments in the same dispute line, and cannot repeat infinite backup moves as each one

represents an alternative line of defence. Therefore, disputes always terminate. If there

exists a dispute that is a failing attack of the proposal, the iterated dispute will termi-

nate. We show that there can be no infinite sequence of disputes that are all failing

defences. For proposal ρ and dispute l+1, if dl+1 is a failing defence of ρ, there exists

a set of arguments OPP against which ρ cannot be defended. PRO can only present

proposals that are part of GE〈ArgsPRO
l ∪{ρ},Defs〉, which are defended against all defeats

from ArgsPRO
l . Since ρ is not defended against all defeats in the dispute, there exists

at least one argument β that was presented by OPP and is not part of ArgsPRO
l . The

agents have finite argument sets and after every dispute they learn the arguments pre-

sented by the other party. So there cannot be an infinite sequence of disputes that are

failing attacks. Therefore, an iterated dispute always terminates.

In order to prove soundness, we introduce two key lemmas. The following lemma

shows that, if a dispute dl is a failing attack of a proposal ρ, then ρ will be in the

grounded extension of the argumentation framework 〈ArgsOPP
l ∪ {ρ},Defs〉, where

ArgsOPP
l are the arguments that the opponent will know after the dispute terminates.

Lemma 1. Let dl be a closed dispute about ρ between agents PRO and OPP, with

finite argument sets ArgsPRO
0 = A and ArgsOPP

0 = B that follow a confident strat-

egy. If dl is a failing attack of ρ then ρ ∈ GEAFOPP
l

for the argumentation framework
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AFOPP
l = 〈ArgsOPP

l ∪{ρ},Defs〉, where ArgsOPP
l denotes the arguments known to OPP

after dispute dl .

Proof. All nodes presented by OPP in the dispute tree T = Tl,k have one child node

presented by PRO, since the proponent can only add a new argument to the dispute tree

using the counter move. A dispute closes as a failing attack if the proponent counters

every counter and backup move made by the opponent. Therefore, all leaf nodes are

presented by PRO. We will show that all arguments of even depth in T are part of

the grounded extension of AFOPP
l by induction over the distance between them and the

leaf nodes in the tree.

(Base Case) For distance = 0, let V0 be the leaf node arguments of depth n.

These arguments were presented by PRO. Also, ∀αn ∈ V0,@βn−1 ∈ ArgsOPP∪
CSPRO such that βn−1→αn, because if such an argument existed OPP would

have presented it, due to the specification of the confident strategy and the counter

and backup moves. Let F i
OPP be the characteristic function of AFOPP

l . All leaf

node arguments in V0 are part of F 1
OPP, since there are no arguments in ArgsOPP

l

defeating them. So V0 ⊆ GEAFOPP
l

.

(Induction Step) We assume that the property holds for arguments of distance k

from the leaf nodes, Vk ⊆ GEAFOPP
l

. We will show that the property holds for

arguments of distance k+2. All arguments of distance k+2 from the leaf node

Vk+2 are defeated by an argument in Vk+1, which are in turn defeated by argu-

ments in Vk. Also, there is no other β′k+1 ∈ ArgsOPP
l that defeats any argument

in Vk+2 that has not been presented, because of OPP’s strategy. According to

the induction step Vk ⊆ GEAFOPP , so Vk+2 ⊆ GEAFOPP
l

.

Therefore, all arguments of even distance from the leaf nodes will be part of

GEAFOPP
l

, including ρ.

The following lemma shows that for agents with finite and conflict-free initial argument

sets, which have exchanged subsets of their arguments, if a proposal is acceptable with

respect to the arguments both agents know, then it will be also acceptable with respect

to the union of both agents’ arguments.

Lemma 2. Let AF1 = 〈{ρ} ∪A ∪B ′,Defs〉, AF2 = 〈{ρ} ∪A ′ ∪B,Defs〉 and AF =

〈{ρ}∪A ∪B,Defs〉, with A , B finite, conflict-free argument sets, A ′ ⊆ A and B ′ ⊆ B .

If ρ ∈ GEAF1 ∩GEAF2 then ρ ∈ GEAF.
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Proof. We will first show by induction on the characteristic function FAF1 that ∀β ∈
B ′ s.t. β ∈ GEAF1 it holds that β ∈ GEAF. It holds that B is conflict-free, and β,ρ ∈
GEAF1 , therefore all arguments defeating β will be in A .

(Base case) ∀β ∈ F 1
AF1

, there exists no argument defeating β in {ρ}∪A ∪B ′. There

will be no argument defeating β in {ρ}∪A ∪B , so β ∈ GEAF.

(Induction step) We assume that ∀β ∈ FAFk , β ∈ GEAF, and we show that is holds for

∀β ∈ FAFk+1 . All arguments defeating β in {ρ}∪A ∪B ′ are also part of {ρ}∪A ∪B .

Since ρ ∈ FAFk+1 it is defended against these attacks by arguments in FAFk . These

arguments are part of GEAF according to the induction step. Therefore, β will also be

in GEAF.

ρ ∈GEAF1 , therefore for all α in A defeating ρ, there is some β ∈GEAF1 such that

β defeats α. β will also be in GEAF. Therefore, for any argument α ∈ A defeating ρ,

there exists β ∈ GEAF defeating α.

Accordingly, we can show that for any β ∈ B defeating ρ, there exists an argument

α ∈ GEAF defeating β. Therefore, β is defended against all defeats from {ρ}∪A ∪B
by arguments in GEAF. So ρ ∈ GEAF.

The following proposition asserts that for agents following confident strategies, with

initially conflict-free argument sets, if a proposal is accepted by the dialogue, then it is

acceptable with respect to the union of the agents’ arguments.

Proposition 19. If an iterated dispute between two agents i, j following confident

strategies, terminates accepting a proposal argument ρ, then ρ is in the grounded

extension of the argumentation framework AF = 〈A ∪B ∪{ρ},Defs〉, where A and B
are the initial, finite and conflict-free argument sets for agent i and j respectively.

Proof. Let i be the agent that made the accepted proposal. Consider the following

argumentation frameworks: AFPRO = 〈A ∪B ′ ∪ {ρ},Defs〉 and AFOPP = 〈B ∪A ′ ∪
{ρ},Defs〉. A ∪B ′ denotes the arguments PRO knew before initiating the final dispute

and B ∪A ′ is the set of all the arguments OPP knows after the dispute has terminated.

A ′ ⊆ A and B ′ ⊆ B . The agents follow confident strategies, so the proponent will

propose arguments that are in the grounded extension of AFPRO. According to Lemma

1 the proposal argument will be in the grounded extension of the opponent GEAFOPP if a

dispute terminates as a failing attack. According to Lemma 2 if the proposed argument

is in GEAFPRO ∩GEAFOPP then it is part of GEAF.

In the general case the proposal acceptance of iterated disputes is sound with re-

spect to the agents’ individual arguments. In the special case in which both agents
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initial argument sets are individually consistent, accepted proposals are sound with re-

spect to the union of the agents’ arguments. This follows from the persuasion dialogue

nature of the protocol, and shows that the focus of this protocol is to reach a mutually

acceptable agreement. This result is also based on the exhaustive nature of the con-

fident strategy, which ensures that agents investigate all relevant lines of defence and

attack.

5.3 Arguing with Defeasible Basic Action Theories

Given that we now have a working protocol for iterated dispute dialogues, we focus

on the internal structure of arguments. The planning knowledge of each agent is repre-

sented in defeasible situation calculus in the form of a defeasible basic action theory.

5.3.1 Plan Proposal Arguments

Plan proposal arguments are potential solutions to the multi-perspective cooperative

planning problem. The claim of such arguments must convey that the situation term

S = do([A1,A2, . . . ,An],S0) which corresponds to the proposed plan 〈A1,A2, . . . ,

An〉, is an executable situation which satisfies the goal literals. This is denoted by

the expression:

executable(S),goal(S).

As explained in Section 4.2, the expressions executable(S) and goal(S) are abbrevia-

tions. They are equivalent to:

• Poss(A1,S0), . . . ,Poss(An,do([A1,A2, . . . ,An−1],S0)) and

• G1(S), . . . ,Gm(S) respectively.

The literal predicates G1, . . . ,Gm represent the shared goal.

Following the specification of arguments in defeasible logic programming, the

claim of an argument is a ground literal predicate. Accordingly, in order to encode

plan proposal arguments, we introduce the following additional axiom to every agent’s

DBAT:

Plan(S)–≺executable(S),goal(S) ,

The special literal Plan(S) is added to the defeasible situation calculus language to

represent that a situation term S corresponds to a plan which achieves the goals of the

agents and whose actions are applicable in sequence.
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5.3.2 Dialogue Setting

The dialogue setting consists of two agents, each one holding a separate DBAT rep-

resenting their planning knowledge. Given a DBAT D , the set of corresponding ar-

guments is bound by the relevant situation terms used for grounding D . In order to

restrict the setting to finite argument sets, we consider a reasonably large set of ground

situation terms. Initially the set of available arguments for agent i ∈ {1,2} is denoted

by the set Argsi
0. Argsi

0 denotes the set of all arguments that can be constructed from

theory D grounded for every situation term of reasonable length ε.

In practice, agents do not have to construct their initial argument sets as argument

generation can be performed on demand. Also, for the purpose of a single dispute,

agents need to consider only the arguments that are relevant to the ground situation

term S, which appears in the claim of the plan proposal that initiated the dispute. Every

argument which does not refer to a situation that is equal to or a predecessor to S is

irrelevant.

After the kth dispute, i holds its initial argument set and the arguments introduced

by the other agent during these disputes. This set is denoted by Argsi
k. The pro-

posal move asserts that the proponent proposes arguments that are acceptable with re-

spect to their argumentation framework. Also, if a proposal is found acceptable in the

k + 1th dispute of the dialogue, then this proposal is defended against every defeat

presented by the opponent. As a result, the proposal argument is part of the grounded

extension of the argumentation framework AFk
PRO = 〈Argsk

PRO,Defs〉 and the frame-

work AFk
OPP = 〈Argsk

OPP ∪A ,Defs〉, where A are the arguments that the proponent

presented during dispute k+1.

5.3.3 Dialogue with Conflict-Free Argument Sets

In the general case, since individual DBATs may be contradictory, the argument sets

held by the agents are not conflict-free. However, if we restrict their initial argument

sets we can extend the results of Proposition 19 to dialogues about plans.

5.3.3.1 Arguing with Individually Acceptable Arguments

One way to ensure that the initial argument sets are conflict-free is to restrict them to

the arguments that are acceptable with respect to individual theories. In this setting,
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the argument set for agent i is specified as follows:

Ârgs
i
0 = GE〈Argsi

0,Defs〉 .

Following Proposition 19, every proposal ρ accepted by the dialogue is part of the

grounded extension of the argumentation framework ÂF = 〈Ârgs,Defs〉, where Ârgs =

GE〈Args1
0,Defs〉∪GE〈Args2

0,Defs〉.

5.3.3.2 Encoding Domains without Default Negation

The use of default negation in the frame part of successor state axioms is responsible

for multiple contradictory derivations, even in theories which encode non-contradictory

planning knowledge. Defeasible derivations treat default negated literals as assump-

tions and shift the burden of the evaluation of these assumptions to the argumentation

process.

We can axiomatise the planning domain without the use of default negation, simply

by replacing it with normal negation. Consider the following ground frame axiom for

the literal L(do(a,s)), where F1 and F2 are fluent predicates:

L(do(A,S))–≺L(S),not F1(S),not∼F2(S) .

The equivalent ground axiom with normal negation in the place of the default negation

has the following form:

L(do(A,S))–≺L(S),∼F1(S),F2(S) .

During the grounding process, and after the transformation of axioms into a well-

formed structure, we simplify consecutive occurrences of normal negation symbols

by removing them in pairs for as long as two negation symbols exist in sequence.

Let a DBAT D , we represent the corresponding theory obtained by replacing default

negation as D̃ .

In the general case, there are derivations made from D based on assumptions

which cannot be derived from D̃ . These derivations may correspond to undefeated

arguments. For instance, let a ground literal L(S) such that D |6∼L(S) and D |6∼L(S).

The use of normal negation in place of default negation strictly restricts the defeasi-

ble derivations that can be made from the theory. As a result, in this case it holds

that D̃ |6∼L(S) and D̃ |6∼L(S). In addition, assume that there exists an undefeated argu-

ment claiming L′(do(A,S)), which is constructed from D based on the assumption that
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not L(S). No corresponding argument can constructed from D̃ since there exists no

derivation for L(S). Assuming that there are no other arguments claiming L′(do(A,S))

that can be constructed from D or D̃ , we reach the conclusion that D |≈L′(do(A,S))

and D̃ |6≈L′(do(A,S)).

It is clear from the previous example that, in the general case, the warrant results

obtained from theories D and D̃ do not coincide. However, the translation is still useful

in the special case in which theories are complete with respect to initial situation beliefs

and contain one successor state axiom for every literal, with non-contradictory initial

states and action effects. In other words, theories in which for every literal L and every

ground situation S it holds that D |≈L(S) or D |≈L(S). As a result, every argument

produced from the default negation-free theory based on an assumption not L(S) which

cannot be derived (i.e. D |6≈L(S)), is defeated by an acceptable argument claiming its

complement L(S).

Standard planning theories fall into the above category. Given the corresponding

DBAT without default negation D̃ , for every ground literal L(S) it holds that there

exists a defeasible derivation of exclusively one of L(S) and L(S). As a result, the

sets of arguments constructed from D̃ is conflict-free. Therefore, if both agents hold

standard planning theories, and a proposal argument is accepted by a dispute, then

this argument ρ is acceptable with respect to the argumentation framework consisting

of the union of the agents’ arguments. Formally in this case, for the plan proposal

argument ρ, it holds that ρ ∈ GEAF, where AF = 〈Args,Defs〉.

5.3.4 Belief Alignment

The iterated disputes dialogue protocol aligns the beliefs of the agents by allowing

them to incorporate the arguments that were presented by the other agent to their own

sets. This is particularly useful with respect to arguments that remained undefeated,

or are used in the dialogue to successfully defeat the agent’s proposal. By considering

these arguments, the agents assert that future proposals will not be rejected for the

same reasons that caused previous proposals to fail.

The belief alignment mechanism of the protocol works on the argument level. In

order to take this process to the belief level, the agents must consider the supporting

beliefs of the arguments. This leads to the generation of additional arguments based

on each agent’s individual knowledge combined with the new information that arises

during the dialogue. Agents may incorporate new information to their belief sets after
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the end of unsuccessful disputes. Alternatively, agents may re-calculate argument sets

after every move made by the other party. The latter speeds-up the belief alignment

process, but increases the required argument generation steps.

Arguments are supported by ground axioms which are only relevant to the specific

proposal under discussion, and other proposals based on the same action subsequences.

These ground rules have been constructed based on unground defeasible situation cal-

culus axioms. In order to further facilitate the belief alignment process, agents can

communicate, in conjunction to such ground beliefs, the unground axioms used to

obtain these rules, as well as the associated preference values.

5.3.5 Minimal Plan Proposals

The support of a plan proposal argument is the minimal set of domain beliefs from

which the claim of the proposal argument can be deduced. Depending on the length of

the plan and the form of the axioms, the size of the support set can be extensive. In the

worst case it can be comparable in size to the entire domain knowledge. In this section

we present an alternative form of plan proposal arguments and discuss the advantages

and drawbacks of such an approach.

The argument ρ is a minimal plan proposal argument if Claim(ρ) = Plan(S) and

Support(ρ) = {Plan(S)}. If DPRO
l are the beliefs for agent i after iteration l, then

in order for agent i to present this argument, the following statement must hold: for

all literals X appearing in the abbreviations executable(S) and goal(S) it holds that

DPRO
l |≈X . Minimal plan proposal arguments present the belief that the plan holds

without providing the support for this claim.

We extend our protocol, enabling the opponent to challenge the support of mini-

mal proposal arguments, and the proponent to expand them accordingly. This is useful

when the opponent has no reason to neither accept or object to the proposal and re-

quires more information to evaluate it properly.

The challenge move challenges a future situation statement in the support of a plan

proposal argument.
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ml,k = 〈challenge,OPP,X〉

Conditions: Effects:

PreviousMoveType(d) ∈ Tl,k := Tl,k−1

{proposal,expand,counter} νl,k := null

Tk = 〈ρ〉 CSPRO
l,k := CSPRO

l,k−1

∃L(S) ∈ Support(ρ) such that Pl,k := Pl,k−1

DOPP
l |6≈L(S) Ql,k := Ql,k−1

Argsl,k := Argsl,k−1

The expand move can be used after a challenge move, extending the proposal argument

and justifying the challenged support. This move works as one-step derivation.

ml,k = 〈expand,PRO,Φ〉
Conditions: Effects:

µk = 〈challenge,OPP,L(S)〉 Tl,k := Tl,k−1 with ρ

Φ∪Support(ρ) is non-contradictory replaced by ρ′

Φ∪Support(ρ) |∼L(S) Vl,k := ρ′

Φ∪Support(ρ) is minimal CSPRO
l,k := (CSPRO

l,k−1 \{ρ})∪{ρ′}
Pl,k := (Pl,k−1 \{ρ})∪{ρ′}
Ql,k := /0

Argsl,k := /0

Where:

Claim(ρ′) := Claim(ρ)

Support(ρ′) :=

(Support(ρ)\{L(S)})∪Φ

The confident strategy is extended accordingly:

〈counter,backup,retract,challenge,expand,

close,accept,propose,no-proposal, terminate〉 .

A line of consecutive challenges and expansions can be continued until the support

of the proposal includes statements about the initial state. Each expansion replaces a

sentence with a set of axioms and sentences of the previous situation that are sufficient

to derive it. The overall number of consecutive challenges and expansions is bound by

the number of actions in the plan. The opponent can terminate a line of challenges and
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expansions using a counter move. If the proponent does not defend the plan against all

defeats, then the dispute terminates, and there is no need for the proponent to commu-

nicate the remaining support of ρ.

This extension is useful for proposals with extensive support. The benefit is that

the proponent will need to expand the support of ρ only for the statements for which

the agents disagree. An extreme case in which this extension minimises the required

communication is when the opponent immediately agrees with the claim of the plan

proposal argument, without making any challenges or counter moves.

The modified protocol does not always produce sound results with respect to the

union of both agents’ arguments. The opponent may accept a minimal argument if

the same conclusions are made from DOPP. However, the proponent’s argument may

be based on a literal L(S) which is not warranted from the opponent’s theory, and

against which OPP holds a defeater, that cannot be in turn defeated. Equivalently,

the proponent may hold arguments that can defeat the opponent’s view on why the

plan is acceptable. Therefore, the minimal proposal protocol may lead to incorrect

conclusions if the agents have different reasons for accepting a proposal, and all these

reasons are flawed. The following simple propositional example illustrates this issue:

Example 5. Let agent i and agent j’s theories B i = {b,a–≺b,∼c} and B j = {∼b,

a–≺c,c} respectively. Also let the preference levels pref (〈{∼c},∼c〉) >

pref (〈{c},c〉) and pref (〈{∼b},∼b〉) > pref (〈{b},b〉). We consider the preference

value of the argument to be the lowest preference value of any one of the beliefs

in its support. Both agents cannot counter and will not challenge the minimal pro-

posal argument 〈{a},a〉, since a is warranted from both agents’ beliefs. However,

in both cases the non-minimal corresponding proposal arguments 〈{b,a–≺b},a〉 and

〈{c,a–≺c},c〉, are not acceptable with respect to the union of the agents’ argument

sets.

The modified version can substantially reduce the size of the proposal arguments,

when agents disagree about a small subset of their knowledge. This protocol produces

sound results with respect to both argumentation frameworks 〈ArgsPRO
l−1 ∪{ρ},Defs〉,

and 〈ArgsOPP
l ∪{ρ},Defs〉, for a minimal proposal argument ρ.
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5.4 Multi-Party Iterated Disputes

When faced against problems that require the cooperation of multiple agents, the it-

erated disputes protocol requires the agents to argue in pairs. Such an approach is

not always practical, since it requires multiple dialogues in order to reach agreement.

In addition, the outcome of the overall process depends on the order these dialogues

are conducted. During every dialogue, agents learn new information, which results

in the construction of additional arguments. As a result, certain chains of arguments

may never come up, since there may exist individual arguments which never become

common knowledge.

5.4.1 The Multi-Party Iterated Disputes Protocol

In order to tackle the issues related to the two-party nature of the protocol, we present

modifications that enable multiple agents to participate in one dialogue. The resulting

mechanism allows every agent to present all relevant arguments, regardless if these

arguments support or object to the evaluated proposal. The main idea behind this

extension is that the roles of the proponent and the opponent are not assigned to a

single agent for an entire dispute. On the contrary, a role is assumed temporarily, for

just one move, by the agent who is better capable to progress the state of the dialogue.

More specifically, at the beginning of every turn, all agents advertise the legal move

that they would play if they assumed the role which is active in the current turn. The

player advertising the most prominent move assumes the role and progresses the state

of the dispute by preforming this move. The selection of the move with the higher

preference is based on the confident strategy according to the following principles:

1. Ordering over move types:

〈counter,backup,retract,close,accept,propose,no-proposal, terminate〉 .

2. For backup moves, the move with the highest depth e.

3. The preference level of the argument presented by the move, for moves of the

same type.

4. If the above rules do not apply, pick an agent randomly.

The first two rules assert that the argumentation tree that corresponds to the dia-

logue is expanded in a depth-first manner for every potential plan proposal. This is
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performed by the assignment of the highest preference to moves countering the last

argument in the current path. If no agent can construct a legal counter move, then

depending on whether the current turn is played by the proponent or the opponent, the

backup and retract moves are prioritised. Backup moves enable the opponent to pro-

vide an alternative attack to an argument supporting the plan proposal. We prioritise

the potential moves based on the depth of the node in which the attack is made. Defeats

closer to the leaf of current line are preferred.

Multiple moves of the same type may be advertised (with equal e in the case of

backup moves). If these moves introduce an argument (i.e. they are counter, backup,

retract, or propose moves), the mechanism selects the move presenting the argument

with the highest preference order. Finally, if all moves are equivalent, one move is

selected non-deterministically.

When multiple proposal moves are advertised, the move that proposes the plan

with the highest preference is played. As a result, the algorithm is not sequential with

respect to turn-taking. Agents that cannot contribute to the dispute are not assigned the

role of the proponent and the proponent, and as a result their moves are not performed.

However, due to the exhaustive nature of the dialogue, every opinion that is relevant to

discovering and evaluating proposal arguments is always presented.

5.4.2 Properties

Similar to the two-party protocol, this process performs exhaustive search to the poten-

tial plan proposal arguments and the arguments supporting and defeating them. How-

ever, in the multi-party version, the virtual proponent and the opponent agents are

equipped with an argument pool containing the union of the agents’ argument sets.

Given finite initial argument sets, multi-party dialogues always terminate.

Proposition 20. Multi-party iterated disputes between between a group of agents

N = {1,2, . . . ,n} with finite initial sets of arguments and potential proposals always

terminate.

Proof. This follows from the termination of iterated disputes and the hypothesis that

initial argument sets are finite. The rules prohibiting the proponent agent to repeat

the same arguments in the same dispute line are imposed on the virtual proponent

agent. The arguments that are available to the virtual proponent agent are bound by

the union of the agents’ arguments. Since this set is finite, disputes always terminate.

Finally, since according to the hypothesis potential proposals are finite, and in every
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new dispute a new proposal must be made, the number of iterated disputes is bound

by the number of potential proposals. As a result, multi-party iterated disputes always

terminate.

The results of the dialogue are sound with respect to the set of arguments that

can be generated from all agents. More specifically, an argument is accepted by a

multi-party iterated dispute if and only if it is part of the grounded extension of the

argumentation framework 〈Args,Defs〉, where Args is the union of the arguments that

can be generated from the union of the agents’ individual theories.

Proposition 21. Let a terminated multi-party iterated dispute between a group of

agents N = {1,2, . . . ,n} with finite initial sets of arguments Argsi
0 for agent i. The

final dispute is a failing attack against a proposal argument ρ if and only if ρ ∈
GE〈Args∪{ρ},Defs〉, where Args =

⋃
i∈N Argsi

0.

Proof. We focus on the final dispute accepting ρ. Due to the specification of the confi-

dent strategy in multi-party iterated disputes, this dispute is equivalent with a two-party

dispute between agents A and B, such that ArgsA = ArgsB = Args, which both follow

the standard confident strategy. In both cases, a counter move is prioritised if there

exists an argument in Args that defeats the last argument introduced by the other party.

Also, in both cases, the move presenting the argument with the highest preference is

selected. If a counter move is not available, and it is the opponent’s turn to make a

move, then OPP searches to backtrack to the most recent argument in the current path

of the dialogue that can be attacked. The same process is performed by the virtual

opponent in the multi-party dialogue. If it is the turn of the proponent the retract move

is played in both cases accordingly.

According to Lemma 1, if the dispute terminates as a failing attack on an argument

ρ, then ρ ∈ GE〈ArgsOPP
l ∪{ρ},Defs〉, where ArgsOPP

l are the arguments that the opponent

agent knows after the termination of the dispute. Since the agents initially hold equiv-

alent argument sets, ArgsOPP
l = Args. As a result, ρ ∈ GE〈Args∪{ρ},Defs〉.

Without further modifications to the dialogue moves, this process is sound but in-

complete. The specification of proposal moves requires every proposal to be acceptable

with respect to the arguments of the agent presenting it. Consider the case in which

a proposal argument is held only by one agent, and let this argument be unacceptable

with respect to this agent’s argument set. This proposal cannot be presented. If the

agents collectively hold arguments that are acceptable and can support the proposal
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argument against every attack, then this proposal argument is part of the grounded

extension of the collective argumentation framework.

To ensure completeness, we introduce another proposal move (preferably with

lower preference) enabling agents to present proposals that are not in the grounded

extension of their individual argumentation sets. The result of the devised protocol is

sound, since the agent making the proposal can in turn attack it. At the same time, the

resulting protocol is complete, since agents may make proposals that are not accept-

able with respect to their individual argument sets, but are acceptable with respect to

the union of the agents’ arguments.

Multi-party iterated disputes do not follow the turn-taking mechanism of iterated

disputes, since they do not ensure that turn taking is alternated among the agents.

Agents who hold the most relevant arguments to the state of the dispute are given pri-

ority. The selection of the most suitable party for the current role does not require

additional centralised control. Information about the advertised moves may be broad-

cast from every agent to all other agents participating in the dialogue. The evaluation

of move preference does not require information that is internal to the agents, and can

be conducted based on the advertised moves alone.

The advantage of this protocol is twofold. On the one hand, it provides a mecha-

nism for multi-party distributed argument evaluation. On the other, by allowing agents

to present arguments both in favour and against a proposal, this method is complete.

As a result, if an acceptable argument exists, then it is always identified. However,

this process requires the agents to exchange all relevant arguments, including argu-

ments that they believe to be unacceptable. As a result, it is more expensive than a

standard iterated dispute, since it requires the exploration of every argumentation path,

regardless of the agents’ individual views.

In the two party setting with inconsistent individual argument sets, the multi-party

version of the protocol is preferable to the standard version of iterated disputes. Due to

the lack of explicit-turn taking with fixed roles, it allows agents to introduce arguments

that both defeat and defend a proposal. This is important if argument paths exist that

can be constructed from the union of the agents’ argument sets which may never appear

using the standard iterated disputes protocol.
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5.5 Inquiry-Based Iterated Disputes

The results discussed so far are based on a notion of soundness that focuses on the

argument level. More specifically, in order to evaluate the correctness of our protocols

we investigated the outcomes of iterated disputes with respect to the arguments that

can be constructed from individual agent theories.

A centralised argumentation mechanism operating over the union of the agents’

beliefs D evaluates the correctness of the proposals with respect to the arguments that

can be constructed from D . This set is greater than the union of the argument set

that can be generated from individual theories, since the generation of certain argu-

ments from D may be based on beliefs that are distributed among the agents’ theories.

Such arguments are not available to any individual agent. In order to tackle this issue,

we combine our protocol with the argument inquiry protocol presented by Black and

Hunter (2007, 2009), and enable distributed argument generation.

5.5.1 Argument Inquiry Dialogues

The argument inquiry protocol is based on multiple nested dialogues that search the

space of defeasible derivations while trying to construct arguments. The following

moves are specified:

Move Format

open 〈open,x,r〉
assert 〈assert,x,〈H,h〉〉
close 〈close,x,r〉

The move open initiates a new inquiry dialogue which searches for a derivation

of a defeasible rule (or a defeasible fact) r. The symbol x denotes the agent making

the move. For instance, the open move can initiate a new dialogue for the expression

a–≺b,c.

A question store is associated with each dialogue maintaining the literals that re-

quire support. Following the previous example, the move 〈open,x,a–≺b,c〉 initiates

a dialogue with the literals b and c in its question store, whereas the move 〈open,x,c〉
begins a dialogue with c in its question store.

The agents use the assert move to present the arguments they can construct and
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which claim a literal that is contained in the question store of the current dialogue.

These arguments can be later used as sub-arguments for the arguments constructed for

the main claim in question. A commitment store is associated with each agent, main-

taining the beliefs (in terms of defeasible rules and facts) supporting the arguments

asserted by this agent. These commitment stores are used for argument generation,

since each agent can utilise both its private knowledge and the beliefs in the other

party’s commitment store.

The close move denotes that the agent does not hold any other meaningful piece

of information related to the literals in the question store of the current dialogue. The

current dialogue terminates if both agents make consecutive close moves. This is called

a matched-close.

The argument inquiry strategy selects the next move for agents participating in the

inquiry protocol. Assert moves are prioritised over open moves, which are in turn

preferred over close moves.

As a result, agents initially present the arguments they can construct for every open

question in the question store of the current dialogue. After every relevant argument

has been presented, they open new dialogues following any rules they hold whose head

is a literal contained in the question store. Every such rule initiates a new dialogue,

which may lead to the construction of additional arguments that cannot be synthesised

individually. This process results in nesting inquiry dialogues. When there is no further

assert or open move that can be performed, the agents close the current dialogue and

return to the previous one.

The outcome of an inquiry dialogue is the set of arguments that can be constructed

from the union of the agents’ commitment stores. Black and Hunter (2007, 2009)

show that argument inquiry dialogues terminate and their outcome is equivalent to the

arguments that can be constructed from the union of the participating agent’s theories.

The inquiry argument protocol is designed for two-party argument generation.

However, it can be easily extended to accommodate multiple-party dialogue, since

the issues associated with multi-party dialogue are not present in this case due to the

collaborative and exhaustive nature of the process (Black and Hunter, 2009).

5.5.2 Argument Inquiry in Iterated Disputes

Similar to our methods, argument inquiry protocols are defined on top of defeasible

logic programming. The main differences in the structure of the agents’ beliefs in
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Black and Hunter (2007, 2009) and grounded defeasible basic action theories is that

DBATs consider all beliefs to be defeasible rules, and default negation is allowed in

the bodies of these rules. In DBATs, defeasible facts are represented as presumptions

(i.e. defeasible rules with an empty body).

In order to allow the use of default negation, a minor modification must be made

to the argument inquiry protocol. Default negated literals must not be added to ques-

tion stores, since they are treated as assumptions. This is a minor modification which

simplifies the argument generating process, since no new dialogues have to be intro-

duced for default negated literals. The definition of arguments should also be adapted

to account for default negation. The termination, soundness and completeness results

of the protocol are not affected by this minor modification, since they still correspond

to the equivalent argument generation process from a single collective theory.

Another difference between the two frameworks is the preference ordering over

beliefs and arguments in DBATs. To this end, the assert move must be associated with

the preference value of the presented argument. If another agent holds a different pref-

erence ordering that leads to a different preference value for this argument, a different

assert move must be made. As a result, the protocol is modified so that argument

uniqueness is defined in terms of support, claim and preference, instead of just support

and claim.

The commitment stores for the inquiry dialogue are not equivalent to the com-

mitment stores used in iterated disputes. First of all, they store different pieces of

information, since the latter store arguments, rather than beliefs. Most importantly,

they serve a different role. The commitment stores in iterated disputes are used to

create lines of attack (and defence) against the evaluated proposal argument, whereas

commitment stores in inquiry dialogue are used to extend the agents’ theories with the

beliefs presented by the other party.

5.5.2.1 The Inquiry-Based Iterated Disputes Protocol

We enable nested argument inquiry dialogues within iterated disputes using the follow-

ing additional moves: inquire proposal and inquire attack. The first initiates an argu-

ment inquiry dialogue of the form 〈open,x,Plan(S)–≺executable(S),goal(S)〉, where

S is the ground situation corresponding to plan π, and x is the agent initiating the dia-

logue. It has the following structure:
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ml,k = 〈inquire proposal, i,S〉

Conditions:

PreviousMoveType(d) = close or d= 〈〉
@m ∈D such that m = 〈inquire proposal,x,S〉, for any agent x

Effects:

Argsx
l := Argsx

l−1∪Outcome(dinq
S ), for every agent x

Outcome(dinq
S ) denotes the outcome of the inquiry dialogue initiated by agent x, for

the defeasible rule Plan(S)–≺executable(S),goal(S). Proposal inquiry moves may be

performed at the end of a dispute in order to allow agents to collaboratively generate

proposal arguments.

In a similar fashion, the agents can use inquire attack moves to search for potential

attackers against the most recent argument move.

ml,k = 〈inquire attack, i,r〉

Conditions:

PreviousMoveType(d) ∈ {propose,counter,backup}
r ∈ attacker claims(νl

k−1)

@m ∈D such that m = 〈inquire attack,x,r〉, for any agent x

Effects:

Argsx
l := Argsx

l−1∪Outcome(dinq
φ

), for every agent x

The inquiry attack move conducts an inquiry dialogue for a possible point of attack

against νl
k−1. The elements of the set attacker claims(νl

k−1) denote the claims of every

potential argument attacking νl
k−1. These are the complements of the claims of sub-

arguments of νl
k−1, the claim of νl

k−1, or default negated literals appearing in the bodies

of defeasible rules in Support(νl
k−1). More specifically, this set is specified as follows:

attacker claims(α) =

{ψ | α
′ is α or α

′ is a sub-argument of α, and Claim(α′) = ψ}∪
{ψ | r ∈ Support(α) and not ψ appears in the body of r} .

The conditions of the inquire attack move assert that the agents do not conduct the

same inquire dialogue twice, since the necessary arguments are already part of their

argument sets.
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The inquire attack move allows the agents to identify potential defeaters of the

most recent argument presented by the other party. In order to enable the agent to

present these arguments, turn-taking must allow the same player to make the next

move. To achieve this we introduce a the noop move that a player is obliged to perform

exactly after an inquire attack move.

ml,k = 〈noop, i〉

Conditions:

PreviousMoveType(d) = inquire attack

Argument inquiry dialogues are treated by the iterated disputes moves as black

boxes. They achieve the alignment of the agents’ argument sets regarding all argu-

ments claiming a literal r (which opened the inquiry dialogue) that can be collabora-

tively generated. Inquiry dialogues can be optimised by prohibiting the agents from

opening argument inquiry sub-dialogues that have been opened again by a previous

inquiry dialogue.

In order to assert that all relevant arguments are shared knowledge, the agents must

initiate an inquiry dialogue for every potential proposal and point of attack of any

argument presented during an iterated dispute. This leads to an exhaustive approach

which ensures that the results of the dialogue are sound and complete with respect to

the arguments that can be generated from the agents’ collective beliefs. To achieve

this, we adapt the specification of the confident strategy priority ordering as follows:

〈noop, inquire attack,counter,backup,retract,close,accept,

propose, inquire proposal,no-proposal, terminate〉 .

The inquire attack move is preferred over every argument move in the protocol. This

asserts that before presenting a defeater, agents have every defeater that can be gener-

ated from the union the agents’ theories at their disposal.

5.5.2.2 Properties

The exhaustive use of the inquire attack move ensures that accepted proposals are

sound with respect to the arguments that can be generated from the union of the agents’

beliefs.

Proposition 22. Let a terminated inquiry-based iterated dispute D between two agents

i and j following confident strategies. Also, assume that ρ is the proposal of the final
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dispute l of the iterated dispute. Dispute l terminates as a failing attack on ρ if and only

if ρ ∈ GEAF, where AF = 〈Args,Defs〉, Args are the arguments that can be generated

from the union of the agents beliefs and Defs denotes all defeat relationships between

them.

Proof. Assume that the final dispute l is a failing attack. Prior to any counter moves

made by the opponent, due to the specification of the confident strategy for inquiry-

based iterated disputes, the opponent used multiple inquire attack moves to find all

potential defeaters against the most recent argument presented by the proponent. As

a result, for every argument A presented by the proponent in the current path, all de-

featers of A are known to the opponent in l. Let ArgsOPP
l be the arguments available

to the opponent after l. ArgsOPP
l = ArgsOPP

l−1 ∪CSPRO
l ∪ inquiry outcomes(l), where

inquiry outcomes(l) are the outcomes of the inquiry dialogues conducted in l. There is

no argument in Args\ArgsOPP
l defeating an argument in the path form ρ to νl

k presented

by the proponent. As a result, the opponent using the exhaustive confident strategy has

presented every argument in ArgsOPP
l that defeats the proponents’ arguments. There-

fore, the inquiry-based dispute emulates a standard dispute in which the arguments

that are initially available to the opponent are ArgsOPP
l−1 ∪ inquiry outcomes(l). Accord-

ing to Lemma 1, ρ ∈ GE〈ArgsOPP
l−1 ∪inquiry outcomes(l),Defs〉. Since ρ ∈ CSPRO

l and CSPRO
l is

conflict-free, ρ∈GE〈ArgsOPP
l ,Defs〉. Finally, since no argument in Args\ArgsOPP

l defeats

ρ or the arguments that defend ρ, it holds that ρ ∈ GE〈Args,Defs〉.

If l is a failing defence of ρ, there exists a tree in which the defeaters presented by

the opponent cannot be countered by arguments presented by the proponent. For every

argument presented by opponent, the proponent knows every counter-argument from

Args. Since the exhaustive strategy enables the proponent to present any relevant ar-

gument, there exists no set of arguments defending the proposal against the arguments

presenting by the opponent. As a result ρ 6∈ GEAF.

Termination of the process requires bounding exchanged proposals to a finite set.

Proposition 23. Inquiry-based iterated disputes between two agents i and j who follow

the confident strategy and are bound to proposing plans of maximum length ε always

terminate.

Proof. The proof follows from Proposition 18 and from bounding the potential pro-

posal and proposal inquiry moves to finite situation terms. Termination of inquiry

dialogues is based on the results of Black and Hunter (2007, 2009), the finite size of
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the agents’ theories and the fact that the protocol of inquiry-based iterated disputes

prohibits the agents to make repeated inquiry moves for the same claim.

Completeness with respect to a finite set of plans is guaranteed by exhaustive use

of the proposal inquiry move. However, to achieve this, the proposal move has to be

modified, similar to the previous section, to enable agents present proposals that are

not acceptable with respect to their individual arguments.

Corollary 1. Let D an inquiry-based iterated dispute between two agents i and j

following confident strategies bound to plans of maximum predefined length. If the

iterated dispute fails then there exists no proposal argument P that can be constructed

from the union of the agents’ beliefs such that ρ ∈ GEAF, where AF = 〈Args,Defs〉 is

the argumentation framework containing all arguments that can be constructed from

the union of the agents’ beliefs.

Proof follows from the use of the exhaustive inquire proposal move which asserts that

the agents share knowledge regarding every argument regarding a proposal that can

be constructed from their collective beliefs, and the completeness results of argument

inquiry dialogues (Black and Hunter, 2007, 2009).

The distributed argument generation of every potential plan (bound to a threshold

on the length of the plan) is a very expensive process. As a rule of thumb, the agents

can prioritise proposal inquires regarding plans whose success can be derived from

their individual beliefs, then plans whose failure does not derive from their individual

beliefs, and then everything else. The first category are plans that have been proposed

earlier in the dialogue process unsuccessfully. Using proposal inquiry the agents can

collaboratively search for an alternative support which potentially formulates an ac-

ceptable argument. The second category searches for plans against which the agents

have no objections, even though their success does not derive from any individual the-

ory. More specifically, given an agent theory Di, such plans correspond to a situation

S such that:

• D |6≈Plan(S)–≺executable(S),goal(S),

• ∀S′ that are predecessor to S, D |6≈∼Poss(A′,S′), where A′ is the action applied

in S′ according to the plan, and

• ∀G j(S) appearing in the abbreviation goal(S), D |6≈∼G j(S).

Finally, if no plan is accepted, the agents may search the space of potential proposals

exhaustively.
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5.6 Arguing with Basic Action Theories

The abstract nature of iterated disputes allows its use in conjunction with different

underlying logical formalisms. In order to illustrate this, we present an alternative

instantiation of the protocol of iterated disputes based on standard Reiter-style situation

calculus (Reiter, 2001).

Compared to the defeasible situation calculus variant of the iterated disputes dia-

logue protocol, this version offers a more expressive logical formalism for the spec-

ification of the planning domain. However, it assumes that individual theories are

non-contradictory and agents hold one successor state axiom for every fluent predi-

cate in their theories. Similar to DBATs, a preference ordering is associated with the

contents of the agents’ initial situation beliefs and domain axioms. The resolution of

contradictions is based on the selection of the initial state belief or axiom with the

highest preference ordering. As a result, the aggregation of agents’ axioms, which is

implicitly performed while reasoning with DBATs, is not supported.

5.6.1 Arguments

The arguments held by the agents contain statements in the language of situation cal-

culus. We employ an intuitive argument definition from the literature (Amgoud and

Cayrol, 1998; Amgoud et al., 2000a). Arguments are defined based on an inference

procedure ` in a knowledge base, and reinterpret the defeat relation using logical con-

tradiction:

Definition 32. Arguments for agent i∈ {1,2} are pairs α = 〈H,h〉, where H ⊆ 2LSitCal ,

where LSitCal is the set of all well-formed situation calculus sentences.

1. H is consistent (i.e. H 0⊥),

2. H ` h,

3. H is minimal (no subset of H satisfies both (1) and (2)).

H is called the support of the argument and h its conclusion. We will also use the

following notation: Support(α) = H, and Claim(α) = h. The preference level of an

argument α is denoted by pref (A), and is the minimum preference level of a statement

in Support(α).
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Definition 33. An argument α1 = 〈H1,h1〉 defeats an argument α2 = 〈H2,h2〉, denoted

α1 → α2, if pref (A1) ≥ pref (A2) and, either there exists h′ in H2 ∪ {h2} such that

h1 ≡ ¬h′ or h1 = (F ≡Ψ), φ = (F ≡Φ) and Φ 6= Ψ, where F is a predicate symbol.

The defeat relation considers contradictory beliefs and formulas providing different

definitions of the same symbol. Reasoning about actions is based on the axioms rep-

resenting the domain. It is essential that the domain theory does not include different

axioms regarding the same predicate.

5.6.2 Planning Knowledge

The domain knowledge for agent i after dispute k, is a set of beliefs B i
k, generated using

the arguments in the grounded extension of AFi
k, GEAFi

k
, as illustrated below:

Algorithm 15: Algorithm for the construction of the domain knowledge bases

Compute GEAFi
k
, for AFi

k := 〈Argsi
k,Defs〉;

B i
k := {h | ν ∈ GEAFi

k
∧Claim(ν) = h};

forall the h ∈ B i
k do

pref (h) := maximum preference of an argument ν with Claim(ν) = h;

return B i
k;

We consider the initial argument sets of the agents to be conflict-free. If all of their

claims are basic action theory statements, all future domain beliefs constructed by this

algorithm will be basic action theories.

5.6.3 Plan Proposals

A plan for a goal G is represented in situation calculus by the statement:

executable(Sπ)∧G(Sπ). Sπ is a variable-free situation term representing the history

for the execution of the actions of the plan in sequence, and executable(sπ)
def
=

(∀a,s∗).do(a,s∗)v sπ ⊃ Poss(a,s∗). A consequence of the definition of a plan and the

foundational axioms for situations is that ∀a,s . executable(do(a,s))≡ executable(s)∧
Poss(a,s).

Definition 34. Plan proposal arguments for agent i after dispute k for a shared goal

G, are all arguments ρ s.t. i) Claim(ρ) = G(Sπ)∧ executable(Sπ), with S0 @ Sπ, ii)

Support(ρ) is the minimal subset of B i
k such that Support(ρ) ` Claim(ρ).
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If ρ is a plan proposal argument then ρ∈ P . The preference level of a plan proposal

argument is equal to the lowest preference level of the claims in its support.

The agents can obtain the support set of a plan proposal argument using Reiter’s

regression operator R . The regression operator eliminates statements with complex

situation terms by replacing them with logically equivalent statements that refer to situ-

ations closer to the initial state. The process is repeated until all fluents in the statement

refer to the initial situation. The logical equivalence follows from the relevant action

preconditions and the successor state axioms. A detailed analysis of the regression

operator can be found in Reiter (2001).

The support of a proposal argument contains the minimal subset of domain beliefs

and unique names assumptions sufficient to infer R [claim(α)], as well as the equiva-

lencies that were employed by the regression operator.

Example 6. Using the axiom ∀a,s . F(do(a,s)) ≡ (a = A1)∨ (a = A2)∨ ( f (s)∧ a 6=
A3), R [F(do(A4,S0))] returns A4 = A1 ∨A4 = A2 ∨F(S0)∧A4 6= A3, which can be

simplified to F(S0).

The following proposition asserts that for all plans that can be constructed from

an agent’s planning knowledge, the plan proposal arguments for these plans will be

part of the grounded extension of 〈Argsi
l ∪{ρ},Defs〉, where Argsi

l are the arguments

known to agent i after dispute dl .

Proposition 24. If ρ is a plan proposal argument with Claim(ρ) = G(Sπ) ∧
executable(Sπ), constructed in iteration k by agent i, then ρ ∈ GE〈Argsi

l∪{ρ},Defs〉.

Proof. The proposal argument ρ does not defeat any argument in GE〈Args,Defs〉, since

Claim(ρ) refers to a future situation Sπ with S0 @ Sπ, whereas all statements in the

claim or support of arguments in GE〈Args,Defs〉 are initial situation statements, non-

fluent statements and domain axioms. Therefore, ∀α∈GE〈Argsi
l ,Defs〉, it will be the case

that α ∈ GE〈Argsi
l∪{ρ},Defs〉. All statements in the support of ρ are claims of arguments

in GE〈Argsi
l∪{ρ},Defs〉, therefore any defeats against P will be defended by arguments in

the grounded extension. So ρ ∈ GE〈Argsi
l∪{ρ},Defs〉.

Proposition 25 extends the result of Proposition 19 to dialogues about plans.

Proposition 25. If an iterated dispute terminates with both agents accepting a plan

proposal ρ, then ρ ∈ GE〈Args∪P,Defs〉, for agents with initially conflict-free argument

sets following confident strategies.
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Proof follows from propositions 19 and 24. This proposition asserts that under the

aforementioned assumptions, if a plan is proposed by the proponent and accepted by

the opponent though the dialogue, then this plan is acceptable with respect to the union

of the arguments of all agents.

Plan generation is conducted as planning. Planning can be performed in situation

calculus (Reiter, 2001), or by an equivalent PDDL representation (Röger et al., 2008)

using a standard planner.

5.7 Summary

This chapter presents an in-depth analysis of a dialogue-based, distributed solution to

the problem of multi-perspective collaborative planning. This analysis is based on the

protocol of iterated disputes, which allows two agents to discuss potential proposals

and reach conclusions about their acceptability. The protocol is based on abstract

argumentation. Given a finite set of arguments it guarantees termination. In the general

case, accepted arguments are sound from each agent’s individual perspective.

The standard version of the protocol is based on persuasion. It assigns specific roles

for every specific proposal to agents, and restricts the arguments that they can present

according to their role. In the special case that the agents initially hold conflict-free

argument sets, the protocol guarantees that successful proposals are acceptable with

respect to the union of the agents’ arguments.

In order to relax the assumptions about the two-party nature of the approach, we

modified the protocol enabling multi-party discourse. The resulting version of the pro-

tocol enables the exchange of roles, allowing the agent who holds the most prominent

move to make it at any point in the dispute. The results showed that accepted propos-

als of the multi-party version of the protocol are sound with respect to the union of the

agents arguments.

In order to guarantee sound and complete results in the belief level, we presented

a two-person inquiry-based version of the protocol. In this case, agents are allowed

to enter inquiry dialogues, and collaboratively generate arguments for specific claims.

This process is very expensive, but allows sound and complete (bound to plans of

specific length) results with respect to the arguments that can be constructed form the

union of the agents’ beliefs.

Iterated disputes focus on agreement and allow agents to directly evaluate potential

proposals which they individually consider to be viable. As a result, they do not col-
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laborative explore the argument and belief space. Multi-party iterated disputes allow

the agents to collaboratively explore the argument space, offering a stronger notion

of soundness. Compared to the other versions of our protocol, multi-party iterated

disputes do not guarantee equal opportunities to agents to present their arguments.

Inquiry-based iterated disputes are the most expensive version of our protocol, since

agents are required to exhaustively search the defeasible derivation space for potential

arguments. However, inquiry-based iterated disputes offer an even stronger notion of

soundness since these results are equivalent to the ones obtained from a centralised

argumentation process operating on the union of the agents’ beliefs.

In order to show the generic nature of iterated disputes, we presented concrete

versions of the protocol for both defeasible basic action theories and standard basic

action theories. Situation calculus offers higher expressive power then defeasible situ-

ation calculus. However, this version of the protocol requires individual theories to be

non-contradictory, and does not allow agents to aggregate the conclusions made using

different axioms.

The main contributions of this chapter are summarised as follows:

• A family of abstract protocols for dialogue-based collaborative agreement on a

proposal.

• Formal analysis of termination, soundness and completeness of the presented

protocols.

• Concretisation of the protocol for the problem of multi-perspective cooperative

planning based on standard and defeasible basic action theories.



Chapter 6

Evaluation

Following our hypothesis, this chapter conducts a comprehensive evaluation of our

methods, which investigates the following questions:

1. Is the problem of multi-perspective cooperative planning common?

2. Is argumentation theory suitable for the specification of the MPCP problem?

3. What is the quality of the proposed solution to the MPCP problem?

In order to answer these questions, we review our analytical results, empirical exper-

imentation with benchmark planning domains, and discussion about MPCP problem

instances in important real-world domains. The latter is not a formal evaluation of our

methods, but a discussion regarding the applicability potential of our approach.

6.1 Review of Analytical Results

This section reviews the results of our analytical evaluation. First of all, we look into

the proposed formalism, and investigate its ability to represent MPCP problems in a

succinct manner. In order to evaluate the suitability of the formalism, we motivate

our design choices, and compare the formalism with standard languages for reasoning

about dynamic domains. The second part of this section focuses on the proposed rea-

soning mechanisms, and summarises their formal properties that were presented in the

previous chapters.

179
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6.1.1 Formalism

This section evaluates the expressiveness of defeasible situation calculus and defeasi-

ble basic action theories. We focus on the following questions:

• Can this formalism represent MPCP problems?

• Does it produce succinct representations?

In order to adequately answer these questions we look into the main features of the

language to investigate whether the formalism fulfils its primary purpose. We overview

important aspects of our formalism and, in order to highlight our design choices and

illustrate its expressive power, compare it to formalisms from the relevant literature.

6.1.1.1 Formalism Adequacy

The question whether the proposed formalism is sufficient to represent MPCP prob-

lems has two sides. First of all, it is related to whether the Ldefsitcal language and

DBATs are adequate to encode set-theoretic MPCP problems. In addition, since the

main purpose behind the introduction of the formalism is to provide the means to de-

cide which conclusions are rational to accept, we look into the limitations of the use of

grounded argumentation semantics.

The formal results described in Chapter 3, and particularly Proposition 13, explain

that reasoning about plans with basic action theories emulates state-based derivation,

and specifies an argumentation-based reasoning mechanism on top of that. DBATs

are strictly more expressive than MPCP problems. As a result, the expressiveness of

DBATs is sufficient to represent MPCP problems.

Ldefsitcal is based on a combination of situation calculus and defeasible logic pro-

gramming. It has been designed to allow reasoning about dynamic domains with con-

tradictory theories.

The resolution of contradictions depends on the employed argumentation seman-

tics. The presented analysis of the specification of the problem, and our proposed so-

lution mechanism, are based on grounded (sceptical) argumentation semantics. These

semantics have been selected for their practicality (i.e. they are relatively inexpen-

sive to calculate), and for their sceptical nature, which is essential in safety-critical

domains.

We designed our methods in a modular way to enable the use of different argu-

mentation semantics. The only method presented that is more tightly coupled to the
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specific semantics is the iterated disputes protocol. However, even in this case modify-

ing the protocol to follow different argumentation semantics is straightforward, since

it is based on two-party immediate response disputes, and alterations to the protocol

for different argumentation semantics have been proposed in the literature (Vreeswijk

and Prakken, 2000).

Grounded semantics have limitations in situations in which reasoning by cases is

required. In order to investigate the importance of reasoning by cases and expose any

limitations of grounded argumentation semantics in relation to reasoning with DBATs,

we investigate special cases.

Example 7. Assume a specification of the action flip(switch), containing the condi-

tional effects 〈{Up(switch)},Lit(lamp)〉 and 〈{¬Up(switch)},Lit(lamp)〉. This spec-

ification corresponds to the following successor state axiom grounded for the objects

switch = Switch and lamp = Lamp in situation S1 = do(flip(Switch),S0):

Lit(Lamp,S1)–≺Up(Switch,S0);∼Up(Switch,S0);Lit(Lamp,S0)

∼Lit(Lamp,S1)–≺∼Lit(Lamp,S0),not Up(Switch,S0),not∼Up(Switch,S0)

Let the initial state be {Up(Switch),¬Up(Switch),¬Lit(Lamp)}, and assume that all

beliefs are equally preferred. In this case the following arguments are generated:

α1 : 〈{Up(Switch,S0)},Up(Switch,S0)〉,

α2 : 〈{∼Up(Switch,S0)},∼Up(Switch,S0)〉,

α3 : 〈{∼Lit(Lamp,S0)},∼Lit(Lamp,S0)〉,

β1 : 〈{∼Lit(Lamp,S1)–≺∼Lit(Lamp,S0),not Up(Switch,S0),not∼Up(Switch,S0),

∼Lit(Lamp,S0)},∼Lit(Lamp,S1)〉,

ψ1 : 〈{Lit(Lamp,S1)–≺Up(Switch,S0), Up(Switch,S0)},Lit(Lamp,S1)〉,

ψ2 : 〈{Lit(Lamp,S1)–≺∼Up(Switch,S0), ∼Up(Switch,S0)},∼Lit(Lamp,S1)〉.

The defeats among the arguments are depicted as follows:
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ψ2 ψ1

α1 α2

α3

β1

The only argument that is not attacked is α3, and this argument does not attack any

other argument. Therefore, following grounded acceptability semantics, the grounded

extension contains only α3.

The argumentation framework contains two preferred extensions: {α1,ψ1,α3} and

{α2,ψ2,α3}. As a result, the only argument that is sceptically acceptable with respect

to preferred argumentation semantics is still α3, even though there exist arguments in

both extensions with the claim Lit(Lamp,S1) (i.e. arguments ψ1 and ψ2).

In order to reach different conclusions in this case sceptical preferred argumenta-

tion semantics can be used combined with a modified version of warrant that accepts

a literal if there exists an argument in every preferred extension that has this literal

as its claim. This is a special case of a problematic situation in which a specification

contains conditional effects that produce the same literal, which specify contradicting

conditions. The following example illustrates a more elaborate case with contradictory

operator specifications.

Example 8. Consider a domain with a lamp and a switch. The initial situation be-

liefs held by the agents involve ambiguity regarding whether the switch is initially in

the “on” position. In addition, there are conflicting beliefs regarding the specification

of the effects of flipping the switch. More specifically, according to one specifica-

tion flicking the switch turns the lamp on, whereas according to the other the lamp

is switched on when the switch is pushed down. Assume the following initial situa-

tion beliefs: ∼Lit(Lamp,S0), Up(Switch,S0) and ∼Up(Switch,S0). Also, assume the
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following ground effect axioms:

Lit(Lamp,push(Switch,S0))–≺Up(Switch,S0)

Lit(Lamp,push(Switch,S0))–≺∼Up(Switch,S0)

∼Lit(Lamp,push(Switch,S0))–≺∼Lit(Lamp,S0),not∼Up(Switch,S0)

∼Lit(Lamp,push(Switch,S0))–≺∼Lit(Lamp,S0),not Up(Switch,S0)

Accordingly, the following arguments are constructed:

α1 : 〈{Up(Switch,S0)},Up(Switch,S0)〉,

α2 : 〈{∼Up(Switch,S0)},∼Up(Switch,S0)〉,

α3 : 〈{∼Lit(Lamp,S0)},∼Lit(Lamp,S0)〉,

β1 : 〈{Lit(Lamp,push(Switch,S0))–≺Up(Switch,S0),Up(Switch,S0)},
Lit(Lamp,push(Switch,S0))〉,

β2 : 〈{Lit(Lamp,push(Switch,S0))–≺∼Up(Switch,S0),∼Up(Switch,S0)},
Lit(Lamp,push(Switch,S0))〉,

ψ1 : 〈{∼Lit(Lamp,push(Switch,S0))–≺∼Lit(Lamp,S0),not∼Up(Switch,S0)},
∼Lit(Lamp,push(Switch,S0))〉,

ψ2 : 〈{∼Lit(Lamp,push(Switch,S0))–≺∼Lit(Lamp,S0),not Up(Switch,S0)},
∼Lit(Lamp,push(Switch,S0))〉.

The attacks among the arguments are depicted as follows:

ψ2 ψ1

α1 α2

α3

β1β2
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Following grounded argumentation semantics, the only argument that is not attacked

is α3, which does not attack any other argument. Therefore, no other argument is part

of the grounded extension.

Even in such an elaborate example, reasoning by cases does not lead to better re-

sults for sceptical agents. The preferred extension of the above argumentation frame-

work are {α1,β1,α3}, {α1,ψ2,α3}, {α2,β2,α3} and {α2,ψ1,α3}. Therefore, the only

argument that is sceptically acceptable with respect to preferred argumentation seman-

tics is α3.

Grounded semantics impose a strict notion of acceptability, especially when agents

hold views that contradict each other directly, and lack any meaningful deductive

knowledge that can help in the resolution of these contradictions. In order to overcome

such situations we allow the association of beliefs and arguments with preference or-

derings. This preference ordering is not essential to our methods, but is useful in cases

in which no decision can be made based purely on the agents’ beliefs.

The origin of the preference ordering and its semantics are domain specific. No

restrictions are imposed by our framework on rules governing this ordering. It may

be based on the credibility of the origin of the information, the quality of sensors

responsible for observations, how outdated the information is, or may even be based

on the aggregation of multiple factors.

An alternative way to calculate argument preference, if such meta-information is

not present, is based on information about the axioms used to derive the conclusion of

the argument. For instance, based on domain specific knowledge, agents may prefer

arguments made using effect axioms to conclusions reached using frame rules. In this

case, the decisions regarding arguments with contradicting conclusions that are not

undercut are made based on the number of frame rules used in the derivation of the

claim. Another option is to count the number of conditions stated in the axioms that

are used to make a derivation. Depending on domain specific knowledge, agents may

prefer more specific rules, which may entail a more accurate view of the planning

domain.

6.1.1.2 Expressiveness and Tractability Trade-off

The practicality of the approach is related to the expressiveness of the formalism and

its ability to offer scalable synthesis of warranted plans. These notions are closely

related. There is a fundamental trade-off between the expressiveness of the represen-
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tation and computational tractability of the reasoning scheme. Expressive formalisms

offer succinct representations, but often lead to intractable reasoning. On the other

hand, propositional representations simplify the reasoning process but lead to imprac-

tical theory sizes.

This tension is apparent in MPCP. Our design choices focus on a tractable middle

ground which is practical with respect to both representation and reasoning. We use

variables and conditional effects, which allow succinct planning domain representa-

tions, but do not offer the complete expressive power of standard situation calculus.

Reiter-style situation calculus is based on higher-order logic. The higher-order ele-

ments of the language are introduced by the fundamental axioms for situations. In

practice, reasoning for ground queries can be performed in first-order theories using

the regression operator to translate queries about successor situations into logically

equivalent queries referring exclusively to the initial situation.

Reasoning with first-order theories is not tractable in the general case. Reason-

ing with contradictory first-order theories is an open area of research (Besnard and

Hunter, 2005). In situation calculus theories, this would requires the use of the regres-

sion operator based on the assumption that successor state axioms are complete. We

have shown how these can be used for dealing with multiple perspectives in Section

5.6. The limitation of this mechanism is that when possible alternative axioms exist, it

reasons by selecting one axiom. This process cannot aggregate the results of multiple

axioms. On the contrary, our defeasible situation calculus formalism allows the reason-

ing mechanism to consider the conclusions made using multiple axioms for the same

fluent, thus implicitly aggregating the results that can be concluded by investigating all

alternatives.

With respect to reasoning tractability, a naive, propositional argumentation-based

approach to planning with DBATs is not feasible, since it leads to an impractical theory

size. However, by utilising the inherent characteristics of the planning domain, we

have shown that planning can be performed as a series of ground queries, and that these

queries can be accurately evaluated from restricted ground theories. We investigate this

further in Section 6.2, where we evaluate our methods experimentally in benchmark

planning domains.
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6.1.2 Comparison to Related Work

This section compares the proposed formalism with relevant approaches from the lit-

erature. We present this comparison to highlight the expressiveness of our formalism

and explain the design choices behind our approach.

6.1.2.1 Classical Planning

DBATs enable the succinct representation of planning domains by allowing two very

important features of set-theoretic planning representations: variables and conditional

effects. DBATs are strictly more expressive than MPCP problems, which adapt a rep-

resentation based on STRIPS, extended to allow contradicting information, variables,

negative conditions, and conditional effects. Extended DBATs can also encode ram-

ifications and state constraints that can be represented as extended defeasible rules.

Domains in PDDL that require additional expressive power need to be translated into

a simplified theory (Nebel, 2000) before applying our methods. In their current form

DBATs cannot represent functions which could be interesting in metric planning do-

mains, or preferences which are relevant in a strategic setting.

6.1.2.2 Situation Calculus

DBATs are syntactically equivalent to the standard Prolog implementation of Reiter-

style situation calculus theories. However, there is one important distinction: DBATs

are written in terms of literals, instead of atoms, to allow the specification of rules

describing contradictory information.

Reiter (2001) offers a translation mechanism, based on a revised form of the Lloyd-

Topor transformations, which allows the translation of basic action theories to equiva-

lent theories that can be directly implemented in Prolog. Following these transforma-

tions, we presented a translation mechanism that deals with disjunctive expressions,

and negation symbols preceding expressions (and not just literals), that cannot appear

in well-formed extended defeasible rules. The presented mechanism may be extended

to incorporate additional rules from Reiter (2001) that are capable of handling exis-

tential and universal qualifications in the bodies of axioms. In a similar fashion we

can rely on standard planning translation mechanisms that can encode rich planning

theories into standard STRIPS.

Another limitation of our approach is that it focuses on answering ground queries.

As we have shown, these queries are sufficient for planning, but are not adequate for
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dealing with situation independent properties of MPCP domains.

Another major distinction from BATs is the lack of contraposition in defeasible

basic action theories. There is on going debate regarding the use of contraposition

in defeasible theories (Caminada, 2008). The lack of contraposition in our formal-

ism restricts derivations that can be made from a DBAT to proceed forwards in time.

Derivations backwards in time are not supported without additional axioms. This safe-

guards against problematic derivations that introduce additional, unwanted contradic-

tions. Consider the following example:

Example 9. Consider the following successor state axioms concerning the fluent Light(s),

grounded for S1 = do(switchOn,S0).

Light(S1)–≺Plugged(S);Light(S)

Light(S1)–≺Electricity(S);Light(S)

∼Light(S1)–≺∼Light(S),not Plugged(S)

∼Light(S1)–≺∼Light(S),not Electricity(S)

Assume that:

{Electricity(S),∼Plugged(S),∼Light(S)} ⊆DS′ , and that

{∼Electricity(S),Plugged(S),Light(S)}∪DS′ = /0 .

Without contraposition, there is no ambiguity with respect to Plugged(S) in the initial

state beliefs. If the contraposition of these rules is considered, this no longer holds.

Using the third axiom, and the belief ∼Light(S), we can derive ∼Light(S1). Then,

using the contraposition of the second axiom we can derive ∼Electricity(S) as a side-

effect.

By considering a relation without contraposition and not including the contraposition

of the axioms, we simplify the problem and avoid these problematic cases at the ex-

pense of disabling reasoning backwards in time.

6.1.2.3 Argumentation-Based Practical Reasoning

The main distinction between our approach and work on argumentation-based practical

reasoning is the focus on planning rather than deliberation. Therefore, our formalism

is more expressive with respect to the representation of notions related to automated

planning as it can represent plans as sequences of actions, rather than just monolithic
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entities. In addition, it allows standard features from automated planning such as vari-

ables and conditional effects. The explicit representation of actions allow the aggre-

gation of conclusions made from different specifications. On the contrary, approaches

that represent the agents’ domain knowledge as state transition systems do not clarify

how agents can aggregate opinions and argue about specific effects of actions, without

merely objecting to a specific state transition altogether.

Formalisms for argumentation-based practical reasoning allow the representation

of notions related to deliberation, such as desires and intentions which are beyond the

scope of our work. However, since we based our framework on defeasible logic pro-

gramming, we could combine our theories with other DeLP frameworks for reasoning

about intentions and desires (Rotstein et al., 2007, 2008), in order to enable agent de-

liberation about desirable, rather than just executable, situations. This can be done

without modifications to our inference mechanism.

6.1.2.4 Defeasible Argumentation in Planning

The main distinction of our formalism compared to Garcı́a et al. (2008), Garcı́a et al.

(2007) and Simari et al. (2004) is that we do not assume that initial state beliefs and

action specifications are non-contradictory. Similar to their work, our formalism can

represent defeasible ramifications, but our planning language is more expressive, al-

lowing variables and conditional effects.

Another important difference is that our approach allows the specification of de-

ductive arguments which contain beliefs that refer to different situations. Therefore,

it allows deductive argumentation about the applicability and effects of sequences of

actions. On the contrary, in DeLP-POP argumentation is limited to individual states.

In order to reason about conditional effects, the ambiguity propagating nature of

defeasible derivation is essential. This leads to correct conclusions regarding condi-

tions that can be derived but are not warranted. If argumentation is performed in a

state-by-state manner, conditions that are not warranted are disregarded. In this case,

unless the state transition function is adapted, the erroneous assumption that the condi-

tion does not hold is made. The distinction between the ambiguity-propagating nature

of defeasible derivations with the ambiguity-blocking nature of the classical state tran-

sition function was discussed in Section 3.4.2 in detail.
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6.1.2.5 Argumentation-Based Reasoning about Dynamic Domains

The differences between our formalism and approaches that utilise argumentation-

based reasoning to overcome frame and ramification problems (Kakas et al., 1999,

2001; Vo and Foo, 2005), are primarily due to the different focus, but also to employ-

ing different logical formalisms and argumentation frameworks.

Our work focuses on ambiguity introduced by the different viewpoints of the agents

with respect to a collectively acceptable outcome. Our formalism is based on defeasi-

ble rules given in as successor state axioms, which encode the different views of not

only what changes, but also what remains the same.

Our design choice to employ successor state axioms instead of a purely defeasible

representation based on default persistence aims to reduce the size of the theory (in

terms of predicates and axioms). Successor state axioms allow the representation of

every condition that is relevant to a fluent within the body of the axiom that is written

for this fluent. This results in succinct representations, since for every fluent literal we

write one successor state axiom.

MPCP planning problems contain the planning knowledge of multiple agents. For

every agent, we need to encode both effect and frame information. This results in a

single axiom per fluent literal (since the resulting axioms for multiple agents can be

combined). The frame conditions are important since they allow the agents to argue

about what they believe that stays the same, in addition to what they believe is affected

by there action. In order to obtain equivalent results from a purely defeasible theory

based on default persistence, additional axioms are required. Consider encoding action

effects in the following form:

ΓL(do(a,s))–≺γL(s)

ΓL(do(a,s)) is an auxiliary predicate symbol representing that we have reason to be-

lieve that L is an effect of action a in situation do(a,s). The abbreviation γL(s) denotes

the conditions leading to the belief that action a produces L in the successor state. For

every literal at least one effect axiom is necessary for the axiomatisation of the domain.

Therefore, one auxiliary predicate is necessary for every literal.

Successor state axioms can be encoded in this case using the default negation sym-

bol, without enumerating all relevant conditions, as follows:

L(do(a,s))–≺ΓL(do(a,s));L(s),not ΓL(do(a,s))
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Here, ΓL(do(a,s)) is an auxiliary predicate denoting that we have reasons to believe that

the logical complement of L is the effect of the latest action.

The above axioms are sufficient to encode single-agent reasoning, when each agent

has non-contradictory knowledge about the effects of their actions. Moreover, they

offer the advantage that frame axioms do not need to be stated explicitly. However, they

are not adequate to reason about MPCP problems. In order to reason with the collective

beliefs of multiple agents, we need to encode rules that capture their disagreement with

respect to frame axioms as well as effect axioms. In order to voice such disagreements,

it is necessary to encode axioms stating that the conditions necessary for triggering the

effects of an action are not applicable. One way of accomplishing this is to use a

different auxiliary predicate for every agent and every fluent. Consider the following

rules:

Γ
i
L(do(a,s))–≺ γL(s) ,

ΓL(do(a,s))–≺ Γ
i
L(do(a,s)) and

∼ΓL(do(a,s))–≺ not Γ
i
L(do(a,s)) .

The auxiliary predicate Γi
L denotes the belief of agent i that an L is produced in situation

do(a,s) as an effect of action a.

An alternative way that does not require the additional auxiliary predicates involves

explicit rules describing the frame conditions.

∼ΓL(do(a,s))–≺not(γL(s)) .

Encoding the domain in this manner increases the overall number of axioms, and in-

troduces additional auxiliary predicates.

Successor state axioms are the combination of the above axioms, and allow the

axiomatisation of the planning domain with one axiom for every fluent literal. Fur-

thermore, their structure asserts that one step derivations made using a successor state

axiom supported by beliefs regarding a situation lead to conclusions referring to its

successor situation s. On the contrary, axioms of the above form require an intermedi-

ate step for the derivation of beliefs regarding the effect applicability (i.e. ΓL(do(a,s))).

Additionally, the successor state axioms’ structure asserts that the conditions leading

to conclusion about the value of the literal in the axioms head refer to the predecessor

situation term from the situation that appears in the head of the axiom. As a result, a

one-step derivation made using a successor state axiom always leads from beliefs re-
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ferring to a situation s to beliefs in the successor situation. On the contrary, if auxiliary

predicates are employed two derivations are necessary for the same conclusions.

6.1.2.6 Planning under Uncertainty

This work focuses on ambiguity caused by contradictory information, rather than un-

certainty which denotes absence of information. However, contrary to the presented

set-theoretic MPCP representation, defeasible situation calculus can handle both am-

biguity and uncertainty. Uncertainty is encoded simply as the absence of information,

whereas ambiguity is encoded as support for both negative and positive values of a

proposition. Default negation allows this form of representation as conditions are as-

sumed to hold and are evaluated later in the argumentation phase. As a result, the

derivation phase leads to believing that all potential outcomes which are based on un-

certain conditions hold, without favouring positive or negative conditions by assuming

by default that conditions take on a positive or a negative value. This was discussed

in more detail in Section 3.4.2. Even though our formalism can represent uncertainty,

the development of algorithms for effectively planning with uncertain domains in con-

formant or contingent ways are beyond the scope of this work. Conformant planning

would require different argumentation semantics (as discussed previously in this chap-

ter) to allow reasoning by cases, whereas contingent planning would require the for-

malism to account for knowledge producing actions.

6.1.3 Reasoning Mechanisms

An important benefit of argumentation theory is that it provides concrete semantics to

solutions of MPCP problems. In the previous chapters, we have presented methods

for planning with MPCP problems and DBATs, shown that these two formalisms pro-

vide equivalent inferential results under the initial state completeness assumption, and

discussed the correctness of the proposed algorithms that are based on our formalisms.

The centralised methods we presented operate on the union of all agents’ beliefs.

Accordingly, the produced results take every relevant argument that can be generated

from the joint theories of the agents into account. With respect to soundness these

mechanisms produce the most accurate results (i.e. the results are sound with respect

to the argumentation framework that contains all arguments that can be generated from

the union of the agents’ beliefs, and all defeats among these arguments).

We presented a series of algorithms for planning using DBATs. These planners
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produce sound results, since potential plans are evaluated using the centralised argu-

ment evaluation methods. Search for a plan is performed by searching the situation

space. This can be done in a directed manner (i.e. depth-first or breadth-first). If

this process is conducted exhaustively, for every plan whose length is within a certain

bound, the planning process is complete with respect to the predefined bound.

A directed search of the situation space can be performed using the heuristic value

of a state as a guide. We described an algorithm that calculates this value based on the

defeasible derivation relation and explained that this process emulates the well-known

“no delete lists” heuristics in automated planning. If the planner searches the situation

space in a greedy, enforced hill climbing manner, completeness is traded for quickly

identifying potential solutions. Alternatively, the heuristic value is used to guide an

exhaustive best-first search of the situation space. The latter is complete within the

bounds of the search, but not as efficient as successful enforced hill climbing.

Based on the presented translation mechanism, set-theoretic representations with

complete initial states produce equivalent results to the defeasible logic-based imple-

mentation. We described algorithms that use these methods alongside state-of-the-art

planners in order to exploit the highly optimised implementations of these planners.

Based on exhaustive search of the state space, planning can be performed in a com-

plete fashion, bounded with respect to the length of the plan. However, the exhaustive

nature of such search, and the extensive size of the state-space of moderately sized

planning domains, makes this process highly impractical. We propose two hybrid ap-

proaches, one based on theory revision and one based on greedy hill climbing search.

In both cases we cannot guarantee completeness. A revision mechanism that guaran-

tees completeness is impractical since it leads to extensively increasing theory size to

encode the results of the argumentation phase. The greedy hill climbing approach is

incomplete by nature, but very efficient in producing solutions.

In order to allow for the distribution of planning and argumentation tasks, and to

enable the agents to reach conclusions without communicating their entire belief base,

we follow an approach based on argumentation-based dialogue. The iterated disputes

dialogue protocol enables the agents to argue in a persuasion dialogue fashion. Agents

have clear roles, with the agent proposing a plan being the proponent, leaving the

role of the opponent to the other party. This protocol aims at reaching agreement. In

combination with the confident strategy, it guarantees sound and complete results with

respect to the arguments that can be individually generated. In the special case in which

agents argue with conflict-free argument sets, iterated disputes produce sound results
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with respect to the union of the agents’ arguments. This assumption also applies to

agents arguing with standard situation calculus basic action theories.

Iterated disputes are restricted to two-agent dialogues and prohibit the exchange of

roles during a dispute. Multi-party iterated disputes allow multiple agents to present

proposals and challenge their acceptability by introducing arguments both attacking

and defending these proposals. This process may lead to longer dialogues than iterated

disputes, but if agents follow the confident strategy (as it is specified for multi-party

iterated disputes) the protocol enables a stronger notion of soundness. It guarantees

sound results with respect to the union of the agents’ arguments, regardless of whether

the agents’ initial argument sets are conflict-free or not.

Iterated disputes operate at the argument level. As a result, their guarantees are sets

of arguments, not individual beliefs. In order to reach more accurate conclusions, we

introduce inquiry-based iterated disputes which allow agents to generate arguments in

a distributed fashion. This protocol, combined with the confident strategy for inquiry-

based iterated disputes, guarantees equivalent conclusions to the centralised mecha-

nism.

The centralised methods do not guarantee privacy since they require the commu-

nication of every belief in the agents’ theories. Iterated disputes require the agents

to communicate arguments only if by doing so they affect the final decision. Multi-

party iterated disputes are similar, but they also require the agents to advertise potential

moves, which leads to the communication of arguments which are relevant to the ac-

ceptance of the current proposal, but which may alter the final outcome of the dialogue

(i.e. for advertised moves that are not selected).

Inquiry-based iterated disputes require agents to communicate rules that could po-

tentially form relevant derivations, and share all arguments that are related to partial

derivations. Search of the derivation (and the argument) space may not be successful.

As a result, this protocol may result in the communication of beliefs that are not rele-

vant to concrete plan proposals (or to their acceptance). Still, since argument inquiry

is performed only for claims that are relevant to proposals (and their defeating and

supporting arguments). Therefore, the protocol safeguards against the communication

of beliefs that are completely irrelevant to the formulation and acceptance of proposals

(i.e. there is no partial defeasible derivation which includes these beliefs and leads

to conclusions relevant to the arguments being evaluated). As a result, inquiry-based

iterated disputes offer limited privacy.
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6.2 Experimental Results

This section investigates the practicality of our framework by analysing its perfor-

mance in challenging planning domains of considerable size. Since no standard MPCP

domains exist, we selected benchmark domains from the International Planning Com-

petition (McDermott, 2000) in order to be able to test the efficiency of our methods in

domains of relevance to the automated planning community.

6.2.1 Implementation

We have developed several planners that implement the planning algorithms presented

in Chapter 4. This section overviews these and outlines their features. The extensive

size of the experimentation domains does not allow the use of implementations that are

not based on highly optimised planning code. Therefore, the empirical investigation is

limited to our hybrid implementations that delegate the search of potential candidate

plans to highly optimised, external planners.

6.2.1.1 DBAT Planner

This planner is based on a prototype Prolog implementation of our theory about plan-

ning using DBATs. It allows planning with a rich formalism based on DBATs and the

use of extended axioms. More specifically, it supports the following types of axioms:

• Defeasible situation-independent axioms

• Defeasible axioms about the initial situation

• Defeasible action precondition axioms

• Defeasible successor state axioms

• Defeasible state constraints and ramifications

• Presumptions representing observations

Search of the state space may be performed in multiple ways following the methods

presented in Section 4.2:

• Depth-first search

• Breadth-first search
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• Heuristic search

This planner was implemented as a proof-of-concept system for planning with (ex-

tended) DBATs. In practice, it can be used for planning and reasoning about simple

domains, but is impractical for use with realistic MPCP problems.

6.2.1.2 Heuristic MPCP Planner

The Heuristic MPCP planner is based on hill-climbing and best-first search. It calcu-

lates the heuristic quality of a state based on a solution to the relaxed version of the

candidate planning problem which disregards the delete lists of operators, in a similar

fashion to Hoffmann and Nebel (2001).

The Heuristic MPCP planner is capable of planning with an expressive planning

language. It allows the following features:

• Contradicting initial state beliefs and operator specifications

• Conditional effects, ramifications and state constraints

• Preference orderings over beliefs and operator specifications

The Heuristic MPCP planner allows the intersection of argumentation and planning in

the following ways:

• Conclusion-based argumentation

• Condition-based argumentation

The conclusion-based argumentation option performs argumentation to establish whether

candidate plans are warranted. This process minimises the argumentation overhead,

restricting it to candidate plans. On the other hand, condition-based argumentation

evaluates the warrant status of both goals and action conditions. The warrant results

are used to prune the search space by dealing with inapplicable actions. This option

implements executability-based pruning in the spirit of Algorithm 7.

Compared to the DBAT planner, the Heuristic MPCP planner cannot handle uncer-

tainty in the initial state. Uncertainty can be transformed to ambiguity by adding to the

initial state a positive and a negative literal for every uncertain atom. These have mini-

mum preference values. This process is necessary in order to obtain correct inferential

results, since MPCP problems must follow the initial state completeness assumption.
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6.2.1.3 Hybrid Planners

We have implemented the following hybrid planners based on the algorithms of Sec-

tion 4.3.3. Hybrid planners delegate search of the space of candidate plans to an ex-

ternal planning process. In order to execute this process, they transform the planning

knowledge in a format suitable for a standard planner by following Algorithm 12. Can-

didate plans that are returned by the external planning process are evaluated using the

labelling mechanism described by Algorithm 11.

Classical planner: This is the simplest implemented hybrid planner. It uses the ex-

ternal process to search for a candidate plan (without considering acceptability-

related information at planning time), which it then evaluates. If this plan is

warranted, it is returned. Otherwise, the planner fails. This planner is used as a

baseline for our algorithms.

Conformant planner: This planner constructs a conformant planning problem by in-

terpreting all ambiguity in the initial state as uncertainty, and calls a conformant

external planner to solve this problem. The conformant problem is strictly harder

than the MPCP problem, since plans must achieve the goal regardless of which

version of the contradictory beliefs might turn out to be true. This planner is

used as a baseline for our methods.

IRB Planner: The iterative revision-based planner implements Algorithm 13. It calls

the external planning process and evaluates the returned solution. If the solu-

tion is not warranted it revises the input using information obtained from the

argumentation process and repeats the process. The planner fails if the external

planner does not return a solution.

GHC Planner: The hybrid heuristic planner performs directed greedy hill-climbing

search of the state space. It calculates the heuristic quality of states using the

candidate plan returned by the external planner. This is done by measuring the

the number of actions whose applicability is warranted in sequence. This planner

implements Algorithm 14.

6.2.2 Experimental Design

We present results with three benchmark domains from the International Planning

Competition McDermott (2000):
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Table 6.1: Size of experimentation problem instances in terms of the number of ground

actions in the non-contradictory domain instances

Domain Rovers DriverLog Zeno-Travel

Actions 900 to 6624 637 to 792 13000 to 30345

Rovers is a simplification of the NASA Mars Exploration Rover problem. The goal of

the planner is to use multiple planetary rovers in order to explore the environment

by taking pictures and gathering samples.

DriverLog is concerned with the problem of delivering packages. To achieve this,

drivers walk between locations and drive trucks along roads.

Zeno-Travel is concerned with embarking and disembarking passengers onto air-

crafts, which are flying between multiple locations.

For each domain, we experiment with 5 planning problems taken from the International

Planning Competition. Table 6.1 summarises their minimum and maximum sizes. For

each planning problem, we construct multiple contradictory problem instances with a

varying degree of contradiction c∈ [0.0 : 0.5] in steps of 0.1. For every level of contra-

diction c we generate 50 contradictory problem instances for each planning problem

to address the main source of non-determinism in our investigation. Altogether, the

performance of every competing planner was evaluated in 4500 problem instances.

We introduce ambiguity in the form of contradictory initial state beliefs and con-

tradictory operators. Rate c represents the probability of introducing a contradictory

initial state belief or operator specification, tossing a coin for every effect of every op-

erator. The contradictory operators have a randomly selected precondition. Initial state

beliefs and operator specifications are assigned random numerical preference values.

The selection of random values follows a uniform distribution.

The following planners compete in the experiments:

• Classical planner

• Conformant planner

• IRB planner

• Greedy Planner
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We use Fast Forward (FF) Hoffmann and Nebel (2001), a well-understood, efficient

planner, as our classical external planner. The Conformant planner uses Conformant-

FF (Brafman and Hoffmann, 2004), which is also based on FF.

The DBAT planner and the Heuristic MPCP planner are excluded from the evalu-

ation. The first cannot deal with domains of the size of those taken from the planning

competition. The second is capable of solving a limited number of the smallest IPC

problems, but cannot compete directly with the other planners. We have provided these

implementations only to verify the implementability of our full formalisms. These

planners can solve all presented toy domain examples without difficulty.

The Conformant planner is only used in the first part of our experimentation, which

involves initial state contradictions, since it cannot handle uncertainty in operator spec-

ifications. The comparison to our methods is not a fair one as the external conformant

planner must solve a significantly harder problem, since it cannot resolve contradic-

tions. However, since there are no other approaches that can be directly compared to

our system, we resorted to the one that solves the most similar problem, given that it is

also capable of solving a transformed version of our problem, in which all ambiguity

is treated as uncertainty.

In order to ensure termination, we have imposed bounds on planning times, calls to

the external planner, and for the GHC planner, on the number of states it can traverse

during its state-space search. The time limit for the conformant planner was set to five

times the bound of the external planner.

Unfortunately, in the general case, we cannot verify solution existence, and as a

result we can only compare the relative effectiveness of the competing planners. To

compute whether a solution exists requires, in the worst case, a complete state enumer-

ation, which is infeasible due to extensive size of the state space in MPCP problems.

6.2.3 Results

This section presents the results of our empirical evaluation. First we experiment with

problem instances which include contradictions in their initial states. The purpose of

these experiments is to illustrate the behaviour of our methods in the simplest scenario.

Then we report on the results of experimentation with problem instances that contain

both contradictory operator specifications and initial state beliefs. For each experiment

we report the following metrics:

Success rates reflect the amount of problem instances in which each planner synthe-
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sised a warranted plan, for all values of c. The mean and standard deviation are

calculated across the different IPC problem scenarios.

Times describe the planning times for the successful instances. We report the mean

planning times and standard deviations for every planner and every degree of

contradiction c. All times shown are in milliseconds.

Calls illustrate the number of times our planners made a call to the external planner

requesting a candidate plan. Mean and standard deviation values are reported for

the calls made by every planner and every degree of contradiction c on successful

instances.

We focus on successful instances, since the results regarding times for external planner

calls for the failed instances are significantly skewed due to the imposed termination

conditions.

6.2.3.1 Rovers – Contradictory Initial States

The first experiment reports on problem instances of the Rovers domain generated for

different degrees of initial state contradiction. Table 6.2 shows the success rates of the

competing planners.

All non-contradictory problem instances were solved successfully by all planners.

The Classical and the Conformant planner managed to solve a very small subset of the

contradictory problem instances. On the contrary, IRB and GHC performed signifi-

cantly better, especially for c = 0.1 and c = 0.2. Both algorithms are equally capable

of resolving initial state contradictions, and as a result they solved exactly the same

contradictory problem instances.

Table 6.3 illustrates the planning times for the successful runs. Initial planning

times are low for the Classical, the Conformant and the IRB planner. As the contra-

diction rate increases, the planning times in the Conformant, IRB and GHC increase,

whereas the time for the Classical planner remains low (for c = 0.1 and c = 0.2).

The GHC planner obtains warrant results for the current state, and delegates the

task of searching for a candidate plan to the external planner. Literals that are not

warranted are removed from the initial state of the problem that is sent to the external

planner, in order to increase the possibility of returning a warranted plan. As a result,

the higher the degree of contradiction, the more complex the problem the external

planner has to solve, since more information may be missing from the initial state. The
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Table 6.2: Ratios of successful instances when attempting to synthesise a warranted

plan in all problem instances of the Rovers planning domain for variable degrees of

initial state contradiction

Rovers Success Rates – Initial State Contradiction

Classical Conformant IRB GHC

C Success Std. Success Std. Success Std. Success Std.

Rate Mean Dev. Mean Dev. Mean Dev. Mean Dev.

0.0 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00

0.1 10.40 10.14 8.80 7.69 33.60 14.79 33.60 14.79

0.2 1.20 1.10 0.00 0.00 9.60 5.18 9.60 5.18

0.3 0.00 0.00 0.00 0.00 0.80 1.10 0.80 1.10

0.4 0.00 0.00 0.00 0.00 0.40 0.89 0.40 0.89

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.3: Synthesis times (in milliseconds) for warranted plans in all problem instances

of the Rovers planning domain for variable degrees of initial state contradiction

Rovers Planning Times – Initial State Contradiction

Classical Conformant IRB GHC

C Time Std. Time Std. Time Std. Time Std.

Rate Mean Dev. Mean Dev. Mean Dev. Mean Dev.

0.0 32.76 13.17 39.69 15.42 34.55 18.65 86.55 22.11

0.1 27.62 7.39 52.14 22.19 62.81 38.22 88.15 52.05

0.2 34.33 6.03 82.04 32.50 81.13 17.49

0.3 100.00 21.21 75.50 17.68

0.4 107.00 0.00 112.00 0.00

0.5
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standard deviation values remain low. Close inspection of the results showed that there

was only a very limited number of instances in which a significant amount of time was

used (i.e. two outliers with values over 200 and 500ms respectively).

IRB solves the easiest problems faster than GHC. However, it requires additional

time for the problems with a higher degree of contradiction. IRB resolves contradic-

tions that are relevant to the plans returned by the external planner. As a result, the

external planner may be called several times until a warranted plan is found, or no plan

is returned. In the experiments conducted, we also measured number of calls to the

external planner. The calls IRB made to the external planner range from 1 to 4, with

the highest standard deviation value being 1.41 for c = 0.3.

6.2.3.2 DriverLog – Contradictory Initial States

Similar to Rovers, IRB and GHC outperformed the other planners in our evaluation

in the DriverLog domain, especially for c = 0.1 and c = 0.2. The Classical planner

solved more cases than the Conformant planner.

Table 6.4: Ratios of successfully synthesised warranted plans in all problem instances

of the DriverLog planning domain for variable degrees of initial state contradiction

DriverLog Success Rates – Initial State Contradiction

Classical Conformant IRB GHC

C Success Std. Success Std. Success Std. Success Std.

Rate Mean Dev. Mean Dev. Mean Dev. Mean Dev.

0.0 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00

0.1 40.80 6.26 22.80 6.57 55.20 5.22 55.20 5.22

0.2 13.20 9.55 5.20 5.59 28.00 14.07 28.00 14.07

0.3 4.80 5.59 0.80 1.10 14.40 7.27 14.40 7.27

0.4 1.60 2.19 0.00 0.00 5.60 3.29 5.60 3.29

0.5 0.00 0.00 0.00 0.00 1.20 1.10 1.20 1.10

In the worst case, IRB conducted an average of 3.00 calls to the external planner

with a standard deviation of 1.00. As a result, the mean planning time is twice the time

of the non-contradictory problem instances (i.e. c = 0.0) in the worst case.



Chapter 6. Evaluation 202

Table 6.5: Synthesis times (in milliseconds) for warranted plans in all DriverLog planning

problems for variable degrees of initial state contradiction

DriverLog Planning Times – Initial State Contradiction

Classical Conformant IRB GHC

C Time Std. Time Std. Time Std. Time Std.

Rate Mean Dev. Mean Dev. Mean Dev. Mean Dev.

0.0 27.89 11.33 44.28 22.46 31.39 27.95 80.54 101.96

0.1 22.34 6.41 37.37 26.86 32.33 19.02 62.58 14.50

0.2 21.52 3.30 34.23 13.40 43.83 25.39 63.33 13.20

0.3 20.50 2.11 32.50 14.85 49.53 28.28 64.86 14.23

0.4 25.75 7.27 48.43 18.75 69.73 20.17

0.5 67.67 26.73 64.67 18.50

GHC required higher planning times, which were the same across all levels of

c, apart from the easiest case, the non-contradictory problems. This high value was

skewed by one outlier in which GHC took 1643ms to solve a problem, and which

caused the high standard deviation. The average time to solve the same non-contradictory

problem in the other 49 experiments was 66.76 with a standard deviation value of

22.33. The same plan was returned in all cases.

6.2.3.3 Zeno-Travel – Contradictory Initial States

Table 6.6 shows that, compared to the other domains we experimented with, Zeno-

Travel was the domain in which the highest success rates were obtained. IRB and

GHC outperformed the Classical and the Conformant planners. The planning times in

the Zeno-Travel domain are shown in Table 6.7. IRB and GHC managed to synthesise

warranted plans in a relatively fast manner. In particular, planning times for GHC

remained low for the different values of c.

With respect to calls to the external planner, IRB required a smaller number of

re-planning steps to synthesis a warranted plan in this domain. In the case with the

highest contradiction rate, it required 2.07 calls on average, with a standard deviation

of 0.80.
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Table 6.6: Ratios of successful instances of synthesising a warranted plan in all Zeno-

Travel planning problems for variable degrees of initial state contradiction

Zeno-Travel Success Rates – Initial State Contradiction

Classical Conformant IRB GHC

C Success Std. Success Std. Success Std. Success Std.

Rate Mean Dev. Mean Dev. Mean Dev. Mean Dev.

0.0 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00

0.1 54.00 12.00 56.80 7.82 73.20 8.32 73.20 8.32

0.2 30.00 13.78 23.20 11.88 47.20 10.26 47.20 10.26

0.3 13.20 8.32 6.80 3.63 36.80 7.95 36.80 7.95

0.4 7.60 6.23 2.00 3.46 23.60 12.68 23.60 12.68

0.5 4.00 4.69 1.20 1.79 16.00 5.48 16.00 5.48

Table 6.7: Synthesis times (in milliseconds) for warranted plans in all Zeno-Travel plan-

ning problems for variable degrees of initial state contradiction

Zeno-Travel Planning Times – Initial State Contradiction

Classical Conformant IRB GHC

C Time Std. Time Std. Time Std. Time Std.

Rate Mean Dev. Mean Dev. Mean Dev. Mean Dev.

0.0 25.54 38.43 27.49 34.79 25.80 23.33 72.40 88.54

0.1 22.78 5.31 27.70 5.84 29.11 13.76 64.72 9.29

0.2 21.79 4.33 28.05 9.78 31.50 15.47 62.74 12.74

0.3 21.76 2.66 30.06 5.03 42.78 20.98 62.82 9.89

0.4 21.84 2.79 29.80 5.26 39.56 16.45 61.03 5.50

0.5 20.50 1.51 27.67 0.58 48.23 20.74 63.93 6.94
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6.2.3.4 Rovers – Contradictory Initial States and Operator Specifications

The second set of our experiments describes the behaviour of the competing planners

in domains with contradictory initial states and planning operator specifications. Table

6.8 reports on the success rates of the planners in the Rovers domain.

Table 6.8: Ratios of successfully synthesising warranted plans in all problem instances

of the Rovers planning domain for variable degrees of contradiction

Rovers Success Rates – Contradiction

Classical IRB GHC

C Success Std. Success Std. Success Std.

Rate Mean Dev. Mean Dev. Mean Dev.

0.0 100.00 0.00 100.00 0.00 100.00 0.00

0.1 8.40 6.69 33.60 11.61 35.60 11.08

0.2 1.20 1.10 7.60 4.77 8.80 4.60

0.3 0.00 0.00 3.20 5.02 5.20 5.22

0.4 0.00 0.00 0.00 0.00 0.80 1.10

0.5 0.00 0.00 0.00 0.00 0.40 0.89

The performance of the Classical planner decreased compared to the previous sets

of experiments. For c= 0.1, it solved 8.4% of the instances on average, and for c= 0.2,

it solved 1.2% of the instances. IRB and GHC achieved high success rates for prob-

lems with c = 0.1. However, as the level of contradiction increased, the success rates

dropped significantly. GHC slightly outperformed IRB, and was capable of synthe-

sising a limited number of warrant plans in cases with high contradiction rates (i.e.

c = 0.4 and c = 0.5).

Table 6.9 shows the planning times for synthesising warranted plans. GHC re-

quired significantly higher planning times. With respect to the degree of contradiction

imposed on the problem instances, the planning times of GHC followed an exponen-

tial increase. The results for GHC showed high standard deviation values. This was

caused by outliers: For c = 0.1, without five outlier values 17555, 1150, 4432, 2010

and 3749ms, average times were 90.80ms with a standard deviation of 20.80. Equiva-

lently for c = 0.2, after removing the outlier values of 3502 and 1405ms, the average



Chapter 6. Evaluation 205

Table 6.9: Synthesis times (in milliseconds) for warranted plans in the Rovers planning

domain for variable degrees of contradiction

Rovers Planning Times – Contradiction

Classical IRB GHC

C Time Std. Time Std. Time Std.

Rate Mean Dev. Mean Dev. Mean Dev.

0.0 31.64 7.20 34.88 30.54 82.72 26.97

0.1 29.48 4.77 88.45 69.83 411.40 1946.08

0.2 31.33 4.51 99.95 76.18 304.95 767.57

0.3 158.50 136.72 3916.77 7252.70

0.4 12178.00 1107.33

0.5 14382.00 0.00

Table 6.10: Calls of the external planner in the Rovers planning domain for variable

degrees of contradiction

Rovers Planner Calls – Contradiction

IRB GHC

C Calls Std. Calls Std.

Rate Mean Dev. Mean Dev.

0.0 1.00 0.00 1.00 0.00

0.1 2.52 1.38 5.70 24.73

0.2 2.95 1.68 4.86 13.75

0.3 4.63 3.25 47.38 88.14

0.4 202.00 0.00

0.5 202.00 0.00
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times were 90.00ms with a standard deviation of 14.89. The same holds for c = 0.3. In

this case, without the outlier values 15895, 17440 and 16554ms, the average planning

time is 103.80ms with a standard deviation value of 25.60.

Table 6.10 summarises information regarding the number of external planner calls

that were made by each planner. The greedy search performed by GHC resulted in

a high number of calls. This way GHC managed to solve some very difficult cases

by extensive search of the space of candidate plans returned by the external planner.

This also explains the high standard deviation over the times required to synthesise a

warranted plan.

6.2.3.5 DriverLog – Contradictory Initial States and Operator Specifications

Tables 6.11, 6.12 and 6.13 outline the results for the DriverLog domain with con-

tradiction in the initial state and operator specifications. IRB and GHC preformed

significantly better than the competing planners.

Table 6.11: Ratios of successful instances of synthesising a warranted plan in the

DriverLog planning domain for variable degrees of contradiction

DriverLog Success Rates – Contradiction

Classical IRB GHC

C Success Std. Success Std. Success Std.

Rate Mean Dev. Mean Dev. Mean Dev.

0.0 100.00 0.00 100.00 0.00 100.00 0.00

0.1 30.40 10.81 47.20 9.44 54.00 7.35

0.2 6.40 3.29 20.00 6.32 37.20 8.90

0.3 1.60 2.19 7.20 4.60 24.00 7.07

0.4 3.20 1.10 5.20 2.68 19.20 6.57

0.5 0.00 0.00 0.80 1.10 10.40 4.77

GHC was more effective than IRB as it was capable of synthesising plans in more

complicated cases for c = 0.3, c = 0.4 and c = 0.5. To achieve this performance,

it required higher planning times for difficult problem instances. The high standard

deviation values are caused by such cases. This is depicted in Table 6.14. The final



Chapter 6. Evaluation 207

Table 6.12: Synthesis times (in milliseconds) for warranted plans in the DriverLog plan-

ning domain for variable degrees of contradiction

DriverLog Planning Times – Contradiction

Classical IRB GHC

C Time Std. Time Std. Time Std.

Rate Mean Dev. Mean Dev. Mean Dev.

0.0 25.39 10.23 28.61 17.40 69.36 23.16

0.1 109.66 528.91 530.45 3421.16 721.11 2450.04

0.2 24.81 4.74 256.30 751.29 2934.44 8527.61

0.3 23.50 1.00 65.17 30.57 2476.47 4637.36

0.4 26.25 2.49 42.85 24.22 8004.96 33168.12

0.5 44.00 19.80 5130.23 7238.99

Table 6.13: Calls to the external planner in the DriverLog planning domain for variable

degrees of contradiction

DriverLog Planner Calls – Contradiction

IRB GHC

C Calls Std. Calls Std.

Rate Mean Dev. Mean Dev.

0.0 1.00 0.00 1.00 0.00

0.1 1.53 0.79 8.94 35.34

0.2 2.22 1.15 26.22 64.45

0.3 2.17 0.92 40.18 74.88

0.4 1.54 0.97 55.04 89.65

0.5 1.50 0.71 68.19 94.90
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Table 6.14: Rates of successful problems that were solved quickly by the GHC in the

DriverLog domain

C Cases Time Range (ms)

0.1 91% 52 to 177

0.2 77% 59 to 184

0.3 75% 61 to 179

0.4 71% 63 to 189

0.5 64% 73 to 94

case (i.e. c = 0.5) is the most interesting. Planning times come in two partitions, with

64% between 73 and 94ms and 36% between 10273 and 17194ms.

The planning times for IRB are lower. However, similar to the Classical plan-

ner, these values deviate considerably for c = 0.1 and c = 0.2. This can be attributed

to problematic instances that required high planning times from the external planner,

since the number of calls to the external planner remained low (i.e. the maximum num-

ber of calls was 5). For c = 0.1, apart form 115 instances that required between 19 and

397ms, there were three outliers which needed 4644, 21484 and 30313 milliseconds

respectively. In a similar fashion, for c = 0.2, IRB solved 47 easy instances in be-

tween 47 and 261ms, but it was also successful in three hard problems which required

a planning time of 2099 to 3781ms.

IRB is more efficient than GHC in the hard problem instances it can solve because

it does not manually search the state space. On the contrary, GHC searches the neigh-

bourhood of the current state when the application of an action in the candidate plan is

not warranted. Until a good alternative is discovered, GHC non-deterministically se-

lects a state in the neighbourhood, calculates the warrant status of the literals contained

in this state, and calls the external planner to generate the corresponding candidate

plan.

6.2.3.6 Zeno-Travel – Contradictory Initial States and Operator Specifications

Tables 6.15, 6.16 and 6.17 illustrate the results of the experiments with contradictory

instances of the Zeno-Travel domain. The success results shown in Table 6.15 show

that GHC performed fairly well, and outperformed IRB. This is evident in the final

scenario with c = 0.5.
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Table 6.15: Ratios of successful instances of synthesising a warranted plan in the Zeno-

Travel planning domain for variable degrees of contradiction

Zeno-Travel Success Rates – Contradiction

Classical IRB GHC

C Success Std. Success Std. Success Std.

Rate Mean Dev. Mean Dev. Mean Dev.

0.0 100.00 0.00 100.00 0.00 100.00 0.00

0.1 40.00 6.78 63.20 9.65 72.80 6.72

0.2 20.40 7.40 34.40 8.17 48.40 6.23

0.3 14.40 8.65 20.80 7.69 40.40 8.88

0.4 8.80 6.42 12.80 9.96 36.00 10.58

0.5 5.60 2.61 9.20 4.82 28.80 13.31

Table 6.16: Synthesis times (in milliseconds) for warranted plans in the Zeno-Travel

planning domain for variable degrees of contradiction

Zeno-Travel Planning Times – Contradiction

Classical IRB GHC

C Time Std. Time Std. Time Std.

Rate Mean Dev. Mean Dev. Mean Dev.

0.0 22.52 7.88 25.79 45.66 63.95 16.85

0.1 33.81 17.70 87.32 147.46 1349.73 5471.76

0.2 40.61 28.07 137.88 202.20 4487.21 14908.46

0.3 55.03 58.77 157.44 158.49 6976.81 19692.22

0.4 58.00 30.16 160.62 145.29 6663.92 13312.57

0.5 64.07 46.20 239.39 239.51 8528.06 19643.03
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Table 6.17: Calls of the external planner in the Zeno-Travel planning domain for variable

degrees of contradiction

Zeno-Travel Planner Calls

IRB GHC

C Calls Std. Calls Std.

Rate Mean Dev. Mean Dev.

0.0 1.00 0.00 1.00 0.00

0.1 1.58 0.89 13.15 48.03

0.2 1.76 1.24 25.92 66.51

0.3 1.85 1.45 37.62 77.35

0.4 1.81 1.64 52.37 88.16

0.5 2.17 1.97 40.08 80.11

Table 6.18: Rates of successful instances that were solved quickly by the GHC in the

Zeno-Travel domain

C Cases Time Range (ms)

0.1 89% 50 to 265

0.2 80% 56 to 247

0.3 74% 60 to 353

0.4 62% 71 to 386

0.5 70% 78 to 375
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Increased performance comes at the price of higher planning times. This is shown

in Table 6.16. GHC requires significantly higher planning times than IRB. The high

standard deviation values for these results show that GHC successfully solved some

easy problems, but at the same time, solved a lot of complicated scenarios which re-

quired additional effort. This is described in more detail by Table 6.18, which focuses

on the planning times required for GHC in easy problem instances. The difficult prob-

lems faced by GHC in this domain caused high planning times. Closer inspection of

the results showed that, for contradiction levels 0.1 to 0.5, GHC solved numerous (i.e.

6.5%, 12%, 16%, 29% and 19% respectively for different levels of c) hard problem

instances (which required over 10000ms to solve).

6.2.4 Discussion

The GHC planner has the highest success rate in most of the experiments we per-

formed. IRB fails to find a plan in certain cases due to the incomplete nature of the

revision process. The increased success rate of GHC comes at the cost of increased

planning times, especially for problem instances with higher degrees of contradiction.

The difference in success rates between GHC, IRB, and the Classical planner illus-

trates the value of resolving the contradictions identified through the planning process.

The Classical planner solves more instances than the Conformant planner, due to the

highly constrained nature of the conformant planning problem. The classical planner

succeeds by accidentally selecting warranted beliefs in the face of ambiguity.

An advantage of IRB is that it only resolves contradictions that are directly related

to candidate plans. This is preferable in situations in which argumentation is costly.

GHC follows a different strategy, and tries to pass the most accurate state it can evaluate

on to the external planner. This way it increases the possibility of receiving candidate

plans of higher quality. The warrant evaluation process has been optimised to reuse

results from previous states, and was conducted very quickly in practice.

Experimentation with the GHC planner highlights the main difference between

MPCP and classical planning: Because of the preference ordering over beliefs in every

state, states containing the same literals are not conceptually equivalent – this increases

the state space dramatically.

The success of our methods varied across domains. Increased success rates can be

attributed to domain-specific elements such as the existence of multiple plans achieving

the same goals in the respective domains and plans relying on a smaller number of con-
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Table 6.19: Maximum size of returned plans for all competing planners in every domain

Planners Classical Conformant IRB GHC

Rovers Initial Contradiction 38 38 39 40

DriverLog Initial Contradiction 23 61 34 34

Zeno-Travel Initial Contradiction 24 27 27 27

Rovers Contradiction 38 40 40

DriverLog Contradiction 23 25 27

Zeno-Travel Contradiction 24 27 27

ditions. The smaller the number of potential plans that exist in the non-contradictory

version of the problem, the higher the probability of introducing ambiguity that ren-

ders these plans unwarranted. Accordingly, the more conditions are relevant to the

execution of the plan, the higher the probability of introducing ambiguity on important

conditions.

Contradictions alter the structure of planning problems, especially when c takes

on high values. This affects the number of actions that must be executed to solve

these problems. Our approach does not focus on returning plans of minimum size, nor

does the external planner guarantee that the smallest candidate plan is always returned.

Regardless, the sizes of the returned plans were in most cases comparable. Table 6.19

shows the maximum size of plans returned by the competing planners for every set of

experiments.

Our results illustrate that the problem of planning with contradictory theories is

very hard. The introduction of contradictory planning operators significantly increases

the size of the planning domain. Additional actions are instantiated, introducing more

options that the planner may consider in every step. There were cases in which the

number of actions was tripled. This, in combination with the non-standard form of

transformed planning theory (which is necessary to hide the contradictions from the

planner), may result in problems that the external planner cannot handle as efficiently

as hand-coded instances.

Our planners were capable of synthesising plans in extensive contradictory the-

ories outperforming simple approaches that do not utilise information related to the

acceptability of arguments. In most cases, our planners synthesised warranted plans

in an efficient manner. GHC required significant time to solve the most complicated
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cases. IRB performed slightly worse, but maintained planning times comparable to the

simple baseline approaches.

6.3 Applicability in Real World Domains

In order to discuss the value of MPCP in a broader context, we describe instances of

MPCP problems that appear in important real-world domains. The purpose of this sec-

tion is to present examples to illustrate the commonality of the problem, and discuss

the solution that can be provided by our methods. In addition, our analysis high-

lights interesting domain characteristics and how these relate to the suitability of our

methods. Examples of such characteristics are privacy concerns, authority, individual

perspective, safety critical applications, and time constraints.

6.3.1 Emergency Response Domain

The first example is inspired by RoboCup Rescue (Kitano and Tadokoro, 2001).

RoboCup Rescue focuses on disaster rescue and emergency decision support. It in-

volves the integration of disaster information, prediction, planning, and human inter-

faces in a virtual world struck with disasters, such as earthquakes and fire. Mobile and

static agents must cooperate in order to provide rescue. The following agent types are

supported:

• Mobile agents: civilian, fire-fighter, rescuer, police

• Static agents: fire station, police station, hospital, refuge

Emergency response agents are cooperative. Even though they may have individual

goals they are pursuing, they must not exhibit individualistic, strategic behaviour, since

they collectively need to work towards the overall welfare of the system, that is rescu-

ing civilians from disaster-struck parts of the environment.

The RoboCup Rescue domains are large and complex, and as a result agents have

partial views of the world. Due to the unexpected disasters and the actions performed

by other agents, agents may hold outdated, erroneous beliefs. In such settings, agent

action must be prompt and directed. Sharing all agents’ views is not practical since

it involves the communication of extensive amounts of detailed information which

may be irrelevant to the operations specific agents engage in. In addition, due to the

extensive size of the domain, a centralised planning approach based on a joint planning
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theory may be impractical. Even though such a theory would lead to correct decisions,

it may be impossible to make these decisions in reasonable time.

Since agents operate in an unstable environment, and cannot observe every action

taken by other parties, their observations are defeasible. The confidence level of an

observation is relative to how outdated this information is. Additionally, since obser-

vations are made by different sensors, credibility values may be discounted based on

confidence information on the quality of sensors, or the proximity of agents to the to

the location of the observed events.

The following example illustrates specific MPCP problem instances inspired by the

RoboCup Rescue domain.

Example 10. An ambulance agent synthesises a plan for reaching and treating civil-

ians that have been evacuated from a collapsed building. This plan involves moving

to the location of the building, offering aid to the injured civilians and transporting

them to the closest hospital. Assume that this agent has not been operating in this spe-

cific area after the earthquake. As a result, the agent’s beliefs regarding which routes

remain unblocked are outdated. Also, assume the police centre is responsible for the

collection of information regarding blocked roads in this area from mobile agents.

The agent can communicate its transportation plans to the police centre. The centre,

after revising the plan, can identify actions that cannot be executed and communicate

the reasons to the ambulance agent. The ambulance agent re-plans based on this in-

formation and communicates the new plan. This plan is then accepted by the centre

agent.

This is an example of a two-person iterated dispute among the agents in the emer-

gency response domain. The different views of the agents in this case are the result of

divergent spatial information. The beliefs of the central agent have higher credibility

since this agent is responsible for collecting the most up-to-date information regarding

the specific area of the environment. The proposal arguments in this example are min-

imal, with the ambulance agent communicating only the transportation route, without

getting into detail regarding the reasons behind the belief that this route is valid.

In a more elaborate example, the central agent may re-plan, introducing additional

actions executed from a fire-fighter agent to clear the route from debris, allowing the

ambulance agent to proceed. In this case, the plan must be communicated to the fire

centre agent as well, in order to organise the collaborations among the different fire-

fighter agents under its command.
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Example 11. Assume the specifications of the actions the agents apply to the envi-

ronment differ across agents of different roles and authority. For example, the role of

fire station agents is to coordinate the firefighter agents under their command. Their

position is static. On the other hand, the firefighter agents operate in the environment,

and affect it by actions such as extinguishing fires and clearing debris. Firefighters

need to hold very detailed specifications of the actions they execute. For instance,

extinguishing a fire may involve conditions related to specific details of the site and

characteristics of the fire. Such low-level details cannot be observed by the fire sta-

tion, and are irrelevant to their role. Accordingly, assume that they hold high-level

specifications of the actions that are executed by mobile units. Following this example,

the action of a firefighter extinguishing a fire may only require that the location of the

firefighter is approximate to the location of the fire.

In this scenario, fire station agents can use their generic specifications to construct

plans coordinating the agents, and communicate these to the relevant agent by initiat-

ing appropriate dialogues. These agents then evaluate the plans, with respect to their

detailed operator specifications and local views, and raise possible objections. Every

objection is related to incompleteness in the high-level operator specifications held by

the station agents and lack of low-level observations. In this case, the detailed spec-

ifications and observations of the mobile agents must be assigned higher preference

values than the high-level ones held by the disembodied agent. The dialogue process

serves as the medium to align the agents’ beliefs that are relevant to the specific task,

while ensuring that mobile agents do not follow plans that are ineffective according to

their beliefs.

Incorrect or incomplete views of the environment may cause plans to fail. The

situation is harder if we consider exogenous events, such as fire spreading and build-

ings collapsing, occurring unexpectedly and interfering with the agents’ actions. In

this case, the re-planning process has to rely both on observations made during plan

execution and the anticipated outcomes of the executed actions when no relevant ob-

servations have been made.

Example 12. Assume the agents agree on a joint plan which fails during execution.

Agents have individually collected observations during plan execution. In order to

achieve their goal they must re-plan, while taking into account their observations,

which are distributed, incomplete and potentially contradictory.
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Following the multi-party protocol, an agent may initiate the re-planning process

by presenting a potential plan, leading from the current situation to a situation in which

the goal is achieved. In order to identify what holds in the current situation the agent

relies on the observations made during the execution of the plan and the expected

outcome of actions, as described by the agent’s operator specification. Beliefs that

correspond to recent observations have higher preference over conclusions regarding

the same literals derived using the specification of the operators and other potentially

outdated beliefs.

If the plan is safety-critical the agents may attempt to collaboratively generate sup-

port for potential plans using the inquiry dialogue protocol. This process is expensive,

but enables the agents to utilise their collective observations related to the situations in

which the plan was executed and exploit their full combined knowledge.

6.3.2 Medical Domain

While medical knowledge increases in size and complexity, there is an increasing need

for computational mechanisms that can be used by medical practitioners (Fox and Das,

2000). Recent research proposes argumentation theory as a good paradigm for decision

support in medical applications (Fox et al., 2007).

Consider the problem of construction and execution of treatment plans. Decisions

must be made by practitioners with different specialisations and levels of training. This

problem is well-suited to our approach: Patient treatment usually requires multiple ac-

tions that are interdependent. There is extensive knowledge encoding the anticipated

results of such actions. Due to its extensive size and complexity, as well as its con-

stant development, medical theories may be incomplete and potentially contradictory.

Usually, real-world decision making and execution involves the cooperation of sev-

eral practitioners trained in different specialisations. The decision-making process is

safety-critical. Ideally, the selected treatment plans must be defendable against all

possible objections. In addition to this, privacy is important when decision making

involves confidential personal information.

Example 13. Consider the decision making process between practitioners seeking

agreement on a patient’s treatment plan. Assume practitioner D is the patient’s per-

sonal physician, holding the patient’s complete history records. An additional special-

ist S is participating to propose potential treatments which exceed D’s specialisation.

The patient is also involved in the decision-making process when potential side-effects
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are identified which might affect their willingness to seek a therapy which is associated

with such risks.

Our framework can be employed as a mechanism for implementing this process.

Iterated disputes allow participating agents to propose potential solutions, and other

agents to evaluate them. In this case, the specialist agent could propose potential solu-

tions, based on initial information about the patient and specialised knowledge about

potential treatment actions.

By communicating the initial proposal, the specialist enables D to inspect the as-

sumptions under which S presents the treatment and check whether these assumptions

hold for the specific patient. D holds specific knowledge about the patient’s details,

and any objections raised based on the patient’s history would be assigned a higher

ordering than generic assumptions made by the specialist. The specific details regard-

ing the treatment actions presented by S are assigned higher preference values than the

generic views D holds about potential treatments.

Patient involvement in the decision-making process can be realised using our min-

imal plan proposal approach. After agreement on a potential treatment plan, D com-

municates the plan to the patient and describes further details after questions are made

by P regarding potential negative side-effects. The patient, finally, decides if certain

conditions are acceptable and accepts or rejects the presented treatment. Patients’ be-

liefs about their willingness to accept potential side-effects are assigned higher pref-

erence than the generic beliefs held by the practitioners representing general patient

tendencies towards such side-effects. These beliefs of the patient can be utilised by the

practitioners during the construction of further proposals.

Following the previous example, we consider the problem of monitoring the exe-

cution of a treatment plan:

Example 14. During the execution of a treatment plan, observations are made evalu-

ating the patient’s response to the treatment plan. If these indicate that the plan did not

have the anticipated effects, and necessary conditions for the success of future actions

were not produced, then execution should stop, since search for an alternative plan is

necessary.

Based on the observations, it is possible to identify whether the plan is expected to

have the intended outcomes, or if additional actions are required. Observations can be

encoded in our system as beliefs regarding intermediate situations which are assigned

high preference orderings. As a result, conclusions reached using observations would
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have higher preference than conclusions reached using using the axioms specifying the

anticipated effects of actions. For beliefs that are not coupled to observations, it is only

possible to reach conclusions regarding their states after the intermediate application

of the plan, by only considering the anticipated effects of actions.

6.3.3 Distributed Vehicle Monitoring

The following example is inspired by the Distributed Vehicle Monitoring Testbed

(Conway et al., 1983), which is concerned with the problem of monitoring and in-

terpreting data from spatially distributed sensors. Consider the following example:

Example 15. A set of agents are spatially distributed in a domain. Their aim is to

identify the path of a car that passed from this domain based on observations from

their sensors. We assume that different agents are mainly responsible for different

areas of the domain. However, there are intersections in their viewpoints. Sensors may

be faulty, but their functioning is checked on a regular basis.

The above problem can be formulated as an MPCP problem. Based on their obser-

vations and other assumptions about the initial location of the car, the agents present

possible plans the car could potentially have followed to their peers, which correspond

to potential paths the car has traversed. Based on these distributed observations the

agents evaluate the acceptability of the plans in a distributed fashion.

Knowledge is distributed among the agents since agents hold observations for dif-

ferent locations of the map before the dialogue process. Observations are assigned

higher preference values than inferences made based on assumptions regarding what

may have happened. Conflicts caused by contradicting observations is resolved by as-

signing relative preference values to observations based on the quality of their sensors.

More specifically, sensors that haven’t been checked recently are considered to be less

credible and are assigned to lower preference values.

Dissuasion about the potential plans can follow any of the proposed dialogue-based

protocols. The selection of which protocol would be more appropriate is based on

how the agents are connected, whether the application is safety-critical and whether

decisions have to be made in a timely fashion.

The agents can synthesise potential plans by introducing assumptions, which can

later be invalidated. These assumptions must have the lowest possible preference.

After every dialogue process the agents take a step towards aligning their beliefs by

introducing observations made by their peers into their knowledge.
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Figure 6.1: Argudem: a human-agent interface for dialogue about MPCP problems

6.3.4 Human Computer Interaction

Argumentation is an interesting tool for human-computer interaction. Instead of sim-

ply communicating a claim, argument structure enables the implicit description of the

process which leads to this conclusion. Morali (2011) empirically investigates the

efficiency of argumentation-based interaction with human users in the context of an

automated planning-based system called Argudem, a human-agent interface built on

top of our MPCP set-theoretic implementation. Figure 6.1 shows Argudem’s interface.

The Argudem scenario involves a planning agent situated in a grid world which

contains obstacles and a goal destination. Through an interface, the human user can

perceive the state of the world, which may be different from the view the situated

robotic agent has on the environment. The agent synthesises plans to reach the goal

destination and communicates these to the user. Due to the different views of the

environment, plans may not comply with the user’s view of the world. In this case,

the human user can initiate a dialogue process in order to persuade the agent about the

possible pitfalls of the plan.

Argudem offers a modular interface consisting of a visual as well a descriptive

view of the domain, the anticipated effects of the plans to the state of the world, and

the arguments exchanged during the dialogue. The modularity of the interface allows

Argudem to function in two modes: “world visualisation” and “expert oriented”. The

first depicts the state of the environment after the application of actions, and the agents
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proposed path, using a grid-like representation. The later, in the place of the domain

visualisation, offers a tree-like representation of the plan proposal argument presented

by the agent.

The following example describes Argudem in use:

Example 16. The robot initially comes up with a plan to reach the goal location. The

observer inspects the plan and identifies a problem, that the robot is about to attempt

to move through an obstacle. Accordingly, the user raises an objection against the

applicability the relevant action in the plan. The agent replies that according to their

operator specification of the action all preconditions hold. The user then inspects this

specification and challenges the problematic condition, that for instance the condition

stating that location(2,2) does not contain any obstacles. The robot explains that the

belief that the condition holds is justified by an initial state belief. The user corrects

the robot by explaining that this belief is not correct. Next, the agent accepts the users

view and updates its theory. The dialogue continues with the robot searching for an

alternative plan, utilising the human user’s input.

Morali (2011) empirically investigated the educational value of Argudem and the

quality of the system in terms of its effectiveness and efficiency through a series of ex-

periments with human users of different backgrounds. The experimentation produced

positive results with respect to the quality of the interface and the demonstrator’s ability

to convey key automated planning and argumentation concepts to novice users.

6.4 Summary

In this chapter, we have presented a comprehensive evaluation of our framework.

This evaluation focused on three important questions which arise from our hypothesis.

Here, we summarise the evaluation results with respect to these questions.

Is the problem of multi-perspective cooperative planning common?

We presented a series of significant problems illustrating that the problem of MPCP is

evident in different important domains. Different instances of the problem have dif-

ferent important characteristics. For example, some applications are safety-critical,

whereas in others agents must reach agreement promptly. In some applications agents

have privacy concerns, whereas in others there is a predefined structure of authority.
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We have described how these characteristics dictate which of our methods are appro-

priate in such settings, and how agents can use them to capture the problem domain in

terms of a MPCP problem.

Several approaches in the literature are concerned with related problems. More

specifically, other approaches in the literature focus on the problem of multiagent

agreement on deliberation and planning. This illustrates the commonality of the prob-

lem of coordinating agent behaviour in the light of contradictory knowledge.

Is argumentation theory suitable for the specification of the MPCP
problem?

Argumentation theory, combined with a suitable language which enables reasoning

about contradictory dynamic domains, is suitable for the specification of MPCP plan-

ning problems. Our proposed formalism is based on defeasible basic action theories in

defeasible situation calculus and is strictly more expressive than the initial set-theoretic

representation of MPCP. In addition, argumentation theory offers concrete semantics

for the specification of plan acceptability, which is essential for providing a rational

solution to the problem. An important benefit accrued from this is that it enables the

analytical evaluation of the effectiveness our methods.

What is the quality of the proposed solution to the problem of MPCP?

Our framework proposes a family of algorithms and protocols for solving the MPCP

problem. These mechanisms make different guarantees, which directly correspond to

the amount of beliefs and arguments that the agents are required to consider in each

case. All methods are sound with respect to their guarantees.

We have evaluated the practicality of our methods with respect to the ability of

the formalism to encode domains in succinct representations and the ability of the

planning methods to synthesise plans in reasonable time in extensive domains. The

proposed formalism allows features such as variables, conditional effects, and in the

extended version of our theories state constraints and ramifications. As a result, it

offers a highly expressive language for the representation of planning domains. How-

ever, this language does not allow other interesting features found in PDDL and situ-

ation calculus, such as functions and quantifiers. In addition, our methods are limited

to answering bounded-length queries, which are sufficient for planning, but do not

handle unground queries regarding properties of the domain or reasoning backwards

in time. Finally, compared to argumentation-based approaches on practical reasoning
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and deliberation, although our framework is more expressive with respect to encoding

planning domains, it does not by default enable reasoning with deliberative notions

such as intentions and desires.

We have evaluated the practicality of our approach in planning domains from the

International Planning Competition. The extensive size of these domains makes it

impossible to rely on a simple argumentation approach. However, by using the inherent

characteristics of the planning domain and utilising efficient, state-of-the-art planners

our methods managed to synthesise warranted plans in reasonable times.

The main contributions of this chapter are:

• Evaluation of the formalism with respect to expressiveness compared to related

approaches.

• Empirical evaluation of the practicality of our methods in extensive domains

from the International Planning Competition.

• Discussion of applicability of MPCP in a broader context of relevant applica-

tions.



Chapter 7

Conclusions

This chapter summarises the research presented in this thesis, and presents the most

significant contributions of our work. We propose interesting directions for further

research, and provide some concluding remarks.

7.1 Thesis Summary

We have presented an argumentation-theoretic approach to the problem of multi-

perspective cooperative planning under ontological agreement. This is the problem

of synthesising a plan for multiple agents which share a goal but hold different views

about the state of the environment and the specification of the actions they can perform

to affect it.

The background chapter provided a thorough overview of work in the areas of

automated planning, reasoning about action and argumentation. Research related to

the MPCP problem was described in further detail, illustrating the novelty of our work

and outlining its context.

In Chapter 3 we formally specified the problem of MPCP using a set-theoretic

and a defeasible logic formalism. We adapted classical set-theoretic planning nota-

tion in order to define the first sub-problem of MPCP, the problem of synthesising

candidate plans. A direct result of this formalism is the ability to use standard plan-

ning techniques with only minor modifications to their input. This is very important,

since modern planning systems are highly optimised to achieve scalable plan synthesis

in complex domains. Based on argumentation theory and the novel defeasible situa-

tion calculus formalism, we formalised the notion of acceptability and concretised the

decision-making sub-problem of MPCP. In order to ensure that the solutions to the

223
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two sub-problems can be combined correctly, we bridged the inferential results of the

proposed formalisms.

Based on the suggested representations, Chapter 4 introduced techniques that en-

able sound reasoning and planning in MPCP domains. In order to increase the ef-

ficiency of our methods, we have proposed a series of optimisations that prune the

search space based on the inherent structure of the planning domains. In addition,

we presented heuristic planning algorithms that exploit the capabilities of off-the-shelf

planners to increase the scalability of our approach.

In Chapter 5, we presented a family of dialogue-based protocols that allow agents

to search the space of potential solutions to a problem in a distributed fashion, resolve

contradictions, and align their beliefs. Each protocol we proposed has different prop-

erties, and is suitable for domains with diverse characteristics, as for instance strict

time constraints, or safety-critical applications. Our methods terminate and provide

guarantees in terms of the correctness of the returned solutions.

Chapter 6 conducted a comprehensive evaluation of our methods. It summarised

our analytical results and reported empirical experiments with contradictory instances

of benchmark planning problems. The experimentation illustrated that the proposed

planning techniques can synthesise plans in reasonable time in extensive contradictory

planning domains. Finally, we described the commonality of MPCP, and explained

how our methods can be used to tackle such problems, based on examples of MPCP

problem instances from scenarios inspired by important real-world problems.

7.2 Summary of Contribution

The contributions of this thesis are outlined as follows:

Formalisation of the MPCP:
MPCP has been specified using two formalisms: we adapted the classical set-

theoretic planning notation, and presented defeasible situation calculus, a novel

formalism based on the combination of defeasible logic programming and situa-

tion calculus. The first maintains a close relation to classical planning and allows

the use of standard planning techniques with only minor modifications, whereas

the latter enables the specification of MPCP problems in an elegant way based

on deductive argumentation. In order to ensure correctness, we have bridged the

inferential results of the two formalisms.
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Practical algorithms for reasoning and planning with MPCP domains:
We focused on practicality: We proposed heuristics that exploit the inherent

structure of the planning domain to prune the search space, adopted powerful

planning heuristics and provided algorithms that allow the use of off-the-shelf

planning systems.

Distributed mechanisms for reaching agreement:
In order to allow the distribution of tasks, we proposed a family of abstract

dialogue-based collaborative protocols. Based on different instances of MPCP

that appear in important problems, we illustrated different characteristics of

MPCP and explained which mechanisms are better suited to provide solutions.

Analytical and experimental evaluation of our methods:
We conducted a comprehensive evaluation of the proposed methods. Analytical

investigation showed the effectiveness of our approach. Empirical experimenta-

tion illustrated that our algorithms can synthesise plans in reasonable times with

contradictory instances of benchmark planning problems.

The work conducted for this thesis lies at the intersection of multiagent systems, auto-

mated planning, reasoning about dynamic domains and argumentation. Our research

contributes to these fields in the following ways:

Automated Planning: This work is the first attempt on relaxing the assumption of

classical planning that planning knowledge is consistent. In addition, it presents

the first implemented system that can synthesise plans in a scalable way when

there exist multiple, contradictory views about the planning domain.

Reasoning about dynamic domains: Defeasible situation calculus is a novel, expres-

sive formalism for argumentation-based reasoning about contradictory dynamic

domains.

Argumentation: The proposed algorithms and heuristics allow scalable argumenta-

tion in extensive environments in which a naive argumentation approach is in-

feasible.

Multiagent Systems: We present a family of novel argumentation-based dialogue

protocols for distributed problem solving.
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Artificial Intelligence: Apart from addressing an important multiagent planning prob-

lem, our work bridges research on planning, reasoning about action and argu-

mentation.

7.3 Practical Applicability Context

This section outlines potential uses of the proposed methods within a multiagent sys-

tem and overviews its strengths and limitations. MPCP has been formalised based on

a series of assumptions, which set the scope of our approach. First of all, agents oper-

ate under ontological alignment. Agents share the names of propositions and actions,

and there is agreement about the concrete entities these names refer to. In addition,

agents are assumed to be cooperative, and there exists a set of shared goals that has

been identified a priori. We assume agreement does not involve strategic considera-

tions regarding how the workload is spread among the agents. Finally, MPCP focuses

on classical-style planning involving sequential plans.

Multiagent execution can be represented by reserving a term for every planning

operator to encode the agent (or agents for joint actions) that will execute the action.

Action capabilities can be also encoded within the specification of planning operators,

and agents may hold contradicting specifications about such capabilities as well. Con-

currency and durative actions are not inherently supported. Of course, they can be

supported within the limits of existing, conventional planning domain transformations.

Our approach is domain independent. Our methods can be applied to any MPCP

domain that is represented using the proposed formalisms. The expressive power of

these formalisms is comparable to modern planning languages, and exceeds the capa-

bilities of some state-of-the-art planners (e.g. by allowing state constraints and rami-

fications). Its main limitations compared to more expressive languages are its lack of

support for functions, metrics and explicit quantifications.

Our methods can be applied to provide acceptable solutions in planning domains

(as for instance the domains from the deterministic track of the IPC), when knowl-

edge about these domains is contradictory, or when different agents have different

views about the planning environment. Agents may also hold information regarding

the credibility of their individual beliefs. Note that existence of such information is not

necessary, and that this information need not be shared. However, credibility values

presented by an agent must be accepted by the other parties.

The proposed methods enable the identification of potential objections to concrete
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plans (i.e. reasons why these plans will not achieve the goal). Also, if the agents hold

rich information regarding the credibility and source of their beliefs, or the mechanics

of the planning domain, they can utilise this information to argue about the validity

of these objections. By utilising all relevant knowledge and investigating potential

objections, plans that are based on incorrect information (with respect to the agents’

knowledge) can be disregarded, increasing the quality of accepted solutions.

Depending on the specific characteristics of an MPCP problem different methods

can be used among the ones we have presented. The centralised method should be used

when communication of all beliefs prior to planning is possible. When communication

of all beliefs must be avoided (due to time or privacy constraints) and agents can in-

dividually construct potential plans, the iterative dispute protocol can be used. In this

version of the protocol, agents do not switch between roles, which leads to reaching

a decision faster, but the protocol lacks the ability to safeguard the plan against argu-

mentation paths that can be formed from the union of the arguments that are available

to the agents. When multi-party agreement is required (i.e. more than two agents), the

agents must argue in pairs. Alternatively, the multi-party version of the protocol may

be selected. The main difference in this case is that agents raise arguments both sup-

porting and defeating plans, switching roles when appropriate. This protocol ensures

that all arguments that are relevant to a plan proposal, and can be constructed from

the beliefs of each agent, will be weighted. When operating in safety-critical domains

in which important beliefs are distributed among the agents, the inquiry-based version

of the protocol is preferable. This version allows distributed argument generation (in-

cluding generation of proposal arguments), and achieves results that are equivalent to

the centralised method.

7.4 Future Work

There are many opportunities for further work within the context of MPCP. We outline

the most significant:

Strategic aspects: A central assumption of this thesis is that agents are purely co-

operative. They all share a common goal, and as a result, they are willing to

accept every plan that can be defended against possible objections, regardless of

how this plan distributes the effort required for its execution. The general case

of multi-perspective planning is not purely cooperative. In a strategic setting,
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agents are only willing to collaborate if by joining efforts they can achieve goals

that are otherwise unattainable, or would require them to make additional effort.

Interesting issues arise in a more competitive setting, not only related to which

plans the agents are willing to execute, but also regarding which pieces of infor-

mation agents are willing to communicate.Sharing information involves strategic

decisions, since different common knowledge may lead to reaching agreement

on different plans, with a different distribution of labour.

Domain-specific problems: The methods presented in this thesis are domain inde-

pendent. Our formalisms rely on a general representation of the planning en-

vironment and our algorithms are optimised based on the general structure of

planning domains. Further work can be performed on identifying common do-

main specific attributes that can be utilised to increase the performance of the

proposed methods. These characteristics may reflect particular domains, as for

example the emergency response domain, or be related to specific features of

the language, as for example specifying conditions using exclusively positive

literals.

Implementation: Our results illustrated that planning in MPCP domains can be con-

ducted in an efficient manner using state-of-the-art planners. We allowed this

by modifying the input of the planner in order to delegate search for candidate

plans. We believe that this approach can be further optimised by modifying such

planners, producing native, highly-optimised MPCP implementations. The re-

sulting planner would enable a more extensive search of the state space, while

better utilising the results of the argumentation process.

Concrete theories for reasoning about planning beliefs: In order to resolve contra-

dictions on the belief level we resorted to preference orderings. For the exper-

imentation process, we instantiated these preferences using arbitrary numerical

values. An interesting extension is to investigate the ramifications of combin-

ing our systems with concrete defeasible logic theories for reasoning about the

sources and credibility of beliefs. This way, further work can be conducted on

identifying heuristics and strategies for deciding when to argue, in situations in

which the resolution of conflicts requires extensive argumentation.

Expressiveness: The presented work isolates the problem of MPCP from other in-

teresting aspects of multiagent planning, such as distributed execution and par-
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tially ordered plans. Interesting directions of research include the investigation

of MPCP with more expressive formalisms allowing representation and reason-

ing about distributed plans for actions, and partial solutions.

7.5 Concluding Remarks

This thesis presented an argumentation-theoretic solution to the problem of multi-

perspective cooperative planning under ontological agreement. MPCP relaxes the im-

plicit assumption of classical planning that planning beliefs are consistent, which is

not realistic for complex, multiagent domains. The resulting problem is strictly harder

than classical planning, since the additional constraint of plan acceptability is imposed

on solutions. We separated the two problems and followed a structured approach that

exploits the advantages of both modern planning and argumentation techniques. De-

ductive argumentation allowed the formal specification of the notion of plan warrant

based on an expressive logical formalism. Based on this notion, the correctness of our

methods was shown. In addition, in order to develop efficient methods, we deviated as

little as possible from classical planning. This allowed the delegation of the search of

the state space to highly optimised, external planners. The results of our empirical ex-

perimentation show that although the MPCP problem is very complex, it is possible to

synthesise warranted plans in contradictory instances of benchmark planning problems

within reasonable times.
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