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Abstract

Soil respiration is an important source of atmospheric CO2, with the potential for

large positive feedbacks with global warming. The size of these feedbacks will de-

pend on the relative sensitivity to temperature of very large global pools of highly

stable soil organic matter (SOM), with residence times of centuries or longer. Con-

flicting evidence exists as to the relationships between temperature sensitivity of

respiration and stability of SOM, as well as the temperature sensitivity of individual

stabilisation mechanisms.

This PhD considers the relationship between different stabilisation mechanisms

and the temperature sensitivity of SOM decomposition. I used physical fractionation

to isolate SOM pools with a variety of turnover rates, from decadal to centennially

cycling SOM, in a peaty gley topsoil from Harwood Forest. Mean residence times of

SOM as determined by 14C dating was most strongly affected by depth, providing

stability on a millienial scale, while OM-mineral associations and physical protection

of aggregates provided stability to around 500 years.

Chemical characteristics of organic material in these fractions and whole soils (13C

CP-MAS NMR spectroscopy, mass spectrometry, FTIR spectroscopy, thermogravi-

metric analysis, ICP-OES) indicated the relative contribution of different stabilisation

mechanisms to the longevity of each of these fractions. Two long-term incubations of

isolated physical fractions and soil horizons at different temperatures provided infor-

mation about the actual resistance to decomposition in each SOM pool, as well as the

temperature sensitivity of respiration from different pools. Naturally 13C-labelled la-

bile substrate additions to the mineral and organic horizons compared the resistance

to priming by labile and recalcitrant substrates. Manipulation of soil pore water

was investigated as a method for isolating the respiration of SOM from physically

occluded positions within the soil architecture.

Contadictory lines of evidence emerged on the relative stability of different SOM
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pools from 14C dating, incubation experiments and chemical characterisation of in-

dicators of stability. This led to the interpretation that physical aggregate protection

primarily controls SOM stability within topsoils, while mineral and Fe oxide stability

provides more lasting stability in the mineral horizon. Less humified and younger

SOM was found to have a higher sensitivity to temperature than respiration from

well-humified pools, in contrast to predictions from thermodynamics.
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Chapter 1

Introduction

Anthropogenic global warming is undoubtably one of the defining political, eco-

nomic and scientific issues of the early 21st century. Mean annual temperatures con-

tinue to increase, and the first decade of the 21st century was the hottest on record

(NASA, 2011), despite exceptionally low solar activity (Lockwood, 2010). IPCC pro-

jections estimated a 1.8 ◦C increase in mean surface temperature by the end of this

century (IPCC, 2007) based on the most conservative anthropogenic emissions sce-

narios. However, fossil fuel emissions from the past decade have already surpassed

the projections of the most severe scenarios (Le Quere et al., 2009), which predict a 3

- 4 ◦C increase by 2100. Even if anthropogenic GHG emissions were to cease com-

pletely, warming caused by GHGs already emitted is now irreversible within 1000

years (Solomon et al., 2009). Recent warm summers have seen unprecedented sur-

face melt of the Greenland ice sheet (NASA, 2012), as well as retreating arctic sea ice

(Wadhams, 2012), contributing to sea level rise as well as worsening the greenhouse

effect due to changes in albedo. Direct impacts of a warmer climate on human ac-

tivity will include drought (Overpeck and Udall, 2010), food shortages (Lobell et al.,

2008), sea level rise (Rahmstorf, 2010), moving boundaries of endemic disease regions

(Patz et al., 2005), higher incidence of extreme weather events such as heatwaves and

floods (Coumou and Rahmstorf, 2012), and possibly even civil conflict (Hsiang et al.,
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2011). The direct consequences of climate warming threaten to have very serious con-

sequences for human societies. However, of arguably even greater concern are the

impacts of a warmer climate on the natural carbon cycles (terrestrial, aquatic and ma-

rine), which hold positive feedback loops with the potential to accelerate warming,

and the human costs of warming, beyond control.

Large scale coordinated intergovernmental efforts are urgently needed to mitigate

the worst effects of climate change on food and water security and public health, but

recent attempts at internationally binding treaties to reduce anthropogenic emissions

have been hampered by regional economic interests. Commitment to securing costly,

coordinated international legislation on fossil fuel emissions has become a politically

polarising position in an era of financial crises. The origin of the observed warming

now universally accepted in the scientific establishment is the anthropogenic emis-

sion of fossil fuels (BEST, 2011), with a conservative estimated probability of 90 %

(IPCC, 2007). However, the estimated 8.7 Pg CO2-C y−1 global emissions from fossil

fuels (2008 value, Le Quere et al. (2009)) are small in comparison to the 50 - 70 Pg

CO2-C released to the atmosphere annually from soils (Houghton et al., 1996). The

moral imperative to reduce fossil fuel emissions remains strong; however, relatively

small changes in natural carbon cycling, triggered by anthropogenic changes to the

atmosphere and climate or by anthropogenic land use change, and exacerbated by

natural feedback loops, have the potential to dwarf the direct effects of anthropogenic

emissions.

1.1 Soil in the terrestrial carbon cycle

Globally, soils hold 1576 Pg C (Eswaran et al., 1993), 684–724 Pg to a depth of 30 cm

and 1462–1548 Pg to a depth of 1 m (Batjes, 1996). This global soil organic carbon

stock makes up around three quarters of the total terrestrial organic carbon stock,

and is equivalent to roughly double the amount of carbon in the atmosphere as CO2.
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Global soil organic carbon stocks are large, but also dynamic: organic carbon enters

and leaves the soil with turnover times ranging from days to millenia (Trumbore,

2009). The majority of SOC persisting in soils is very old, with a relatively slow

turnover. Small changes in the rate of decomposition of old SOC, or in the factors

determining the persistence of SOC, could therefore result in a very large source of

terrestrial carbon becoming vulnerable to decomposition and released to the atmo-

sphere as CO2.

Soils accumulate C from plant litter and root exudation, and this dead plant ma-

terial is gradually transformed by successive degradation and humification processes

into humic substances. Some soil organic carbon (SOC) is incorporated into microbial

biomass and macrobiota and recycled, and some may be semi-permanently stabilised

in physical associations with aggregates and mineral surfaces, before being recovered

to the active SOC pool by bioturbation or physical disturbance. SOC leaves the sys-

tem after it is converted to CO2 during heterotrophic respiration by microbes and

soil animals. Water-soluble SOC compounds may dissolve into the soil water, joining

the dissolved organic matter (DOC) pool, where they are more susceptible to micro-

bial respiration. During rainfall, DOC may then be transported downwards into the

mineral soil horizons (illuviated), where redox conditions may be less favourable for

microbial respiration, leading to stabilisation; or transported horizontally (alluviated)

in groundwater flow, entering the aquatic and eventually the marine carbon cycle.

Major carbon cycle models all predict that climate warming will be accompanied

by a loss of global SOC stocks, however the extent of the loss is very variable (between

20 and 177 Pg C K−1, (Friedlingstein et al., 2006)) and strongly dependent on the

model architecture, in particular the number of pools with different turnover rates

that are allowed (Jones et al., 2005). Soil carbon stocks in the UK have been observed

to decline consistently over the last 30 years, most likely due to rising temperatures

(Bellamy et al., 2005).
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1.1.1 Feedback loops

A number of different processes may cause global soil CO2 emissions to increase un-

der climate warming, resulting in a positive feedback. First of all, the basic rate of

heterotrophic respiration of SOM is inherently temperature-sensitive; at a very sim-

ple level, respiration is an enzyme reaction governed by standard enzyme kinetics,

and at higher ambient temperatures more energy is available to reach the activation

energy of the reaction (Arrhenius, 1915). Under equilibrium conditions the positive

soil CO2 flux is balanced by the assimilation of CO2 in photosynthesis (NPP, 60 Pg C

y−1, Cox et al. (2000a)), which is also sensitive to temperature and CO2. However, the

positive effect of increased CO2 on photosynthesis is expected to become saturated at

higher levels, while the positive effect of temperature on CO2 release in soil respira-

tion continues to increase with rising temperatures (Cox et al., 2000a). In addition the

light reactions of photosynthesis are expected to be relatively insensitive to tempera-

ture, being limited by the non-enzymatic oxidation of chlorophyll. A higher overall

temperature sensitivity of heterotrophic respiration reactions than of photosynthesis

could result in a positive feedback loop, as CO2 release increases more than uptake

as climate change progresses.

Total soil respiration has been repeatedly shown in field studies to increase with

temperature (for example, Bond-Lamberty and Thomson (2010)). However, this only

creates a positive feedback loop with climate change if the ’extra’ CO2 released at

higher temperatures originates from otherwise stable SOM; since GPP also increases

with temperature and CO2 concentration, it possible that fresh plant inputs to soil

also increase with warming, causing soil respiration to increase in a ’carbon neutral’

way (Smith and Fang, 2010). Alternately, the same increase in soil respiration with

warming could be explained by the recruitment of stable carbon into the available

SOC pool, which would represent a net loss of carbon from the system. For this

reason it is vitally important to distinguish the temperature responses fresh and older
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sources of soil respiration.

Further feedback loops with climate change have been predicted on the basis of

the effect of increasing CO2 concentrations on soil microbial communities, leading to

increased respiration (Carney et al., 2007). In addition, microbial respiration in soils

and peat also invokes its own positive feedback loop with temperature, as heat is

released during respiration, further increasing respiration rates- this is known as the

’compost-bomb’ effect (Luke and Cox, 2011).

1.1.2 Land use change

Changes in land use including further deforestation, agricultural conversion and ur-

banisation are inevitable as by mid-century the world population is expected to reach

9 billion (UN, 2004) and as climate change continues to impact food security (IPCC,

2007). Land use change has a strong control over soil properties (Guo et al., 2007;

Paul et al., 2008a; Adachi et al., 2006), and conversion of forests or grasslands to agri-

culture invariably results in large SOC losses (Brown and Lugo, 1984; Adachi et al.,

2006). Increasing SOC stocks using appropriate land management practices (such

as minimal tillage and biochar application) is often proposed as a mechanism for

mitigating rising atmospheric CO2 concentrations. However, the extent to which re-

cently incorporated C can be irreversibly sequestered is contested, and interventions

designed to increase SOC stocks can result in higher emissions of other GHGs, or

land use displacement leading to increased SOC losses elsewhere (for a review see

Powlson et al. (2011)).

1.2 Soil organic matter stability and temperature response

While the majority of soil respired CO2 is derived from the rapidly decomposed ’ac-

tive’ pool of soil organic matter (SOM), an esimated 90 % of total SOM in the top 1

m in mineral soils (not including peat) has a turnover rate from decades to millenia
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(Davidson and Janssens, 2006). Estimates of the temperature response of soil res-

piration, unless specifically isolating the response of older material, are necessarily

biased towards the response of the active pool. However, there is reason to suggest

that some stabilised material may have a different temperature sensitivity than more

labile OM. If more stable SOM has a higher temperature sensitivity than the active

pool, predictions of the magnitude of soil carbon feedbacks may have been underesti-

mated by biased estimates of soil respiration temperature sensitivity. However, many

interacting factors affect both the stability of SOM (Kögel-Knabner et al., 2008; Sollins

et al., 2007) and the temperature sensitivity of SOM respiration (von Lützow and

Kögel-Knabner, 2009; Ågren and Wetterstedt, 2007), and the relative contribution of

different stabilising factors is both site- and soil type-specific (Spielvogel et al., 2008)

making it difficult to predict responses. As such the relative temperature response of

stable and active SOM remains a controversial topic (Davidson and Janssens, 2006;

Kirschbaum, 2006; von Lützow and Kögel-Knabner, 2009).

1.2.1 Quantifying stability

There are essentially three complementary approaches to describing the stability of

organic matter, which are all widely used. Firstly, the stability of SOM to decompo-

sition at any one time can be described simply by the rate of decomposition; in this

thesis I refer to this type of stability as "current stability". Measurements of current

stability address the question how resistant is this SOM to decomposition? Alternatively,

we might ask how persistent is this SOM? It is possible to measure directly how long

a substance has persisted in soil by 14C dating (Trumbore, 2000, 2009). I refer to this

as "lifetime stability" during this thesis. A third approach to predict the future stabil-

ity of SOM is to understand the mechanisms contributing to SOM stabilisation, and

to estimate the potential for persistence using proxy measurements of physical and

chemical characteristics thought to contribute to stabilisation. In comparison, this ap-

proach asks the question, how easy to degrade is this SOM? I refer to this third approach
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as addressing the "theoretical stability" of SOM. Each of these approaches gives use-

ful information about stability which is necessary for predicting the behaviour of the

SOM, but which may be contradictory depending on the soil history and interactions

between stabilisation mechanisms.

Three main mechanisms are described for the stabilisation of organic matter in

soils: intrinsic chemical recalcitrance, physical protection of SOM within aggregates,

and mineral sorption (Mikutta et al., 2006; Davidson and Janssens, 2006; von Lützow

et al., 2007; Sollins et al., 2007; Marschner et al., 2008). Trumbore (2009) includes

a further two mechanisms- climatic stabilization (for example freezing and water

saturation, in permafrost and peat) and microbial inhibition.

Intrinsic chemical recalcitrance

OM can be said to be intrinsically recalcitrant if the molecular structure of the com-

pound itself slows decomposition. For example, this can be due to a complex molec-

ular structure with irregular tertiary structure and a lack of enzyme active sites,

leading to a high effective activation energy (Ea). Fatty leaf waxes (Feng et al., 2008)

and lignins (Benner et al., 1987) are traditional examples, although lignin may be

less persistent in soils than previously thought (Marschner et al., 2008; Sollins et al.,

2006). Some plant derived molecular structures are known to slow decomposition,

but not for longer than around a century. Intrinsically recalcitrant material older

than a century is attributed to microbial recycling of plant carbon skeletons (Gleixner

et al., 2002). For example, microbial surface-active proteins (hydrophobins, chaplins,

glomalins) may be particularly resistant microbial products (Rillig et al., 2007).

A traditionally important paradigm for SOM stabilisation was the production of

humic substances- large, polyaromatic macropolymers formed abiotically by con-

densation reactions between plant and microbial products. However, increasingly

evidence suggests the de novo formation of humic polymers is not important for

humus formation and stabilisation in soils (Sollins et al., 2007; Schmidt et al., 2011).
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Mineral associations

In some soils it has been suggested that the intrinsic quality of SOM has very little

impact on decomposition rates, because abundant mineral surfaces cause stronger

stabilisation (Marschner et al., 2008). Organic matter forms strong bonds with clay

surfaces and mineral oxides via ligand exchange, cation exchange or electrostatic

interactions. OM-mineral adsorption is predicted to operate on a near-permanent

basis, as the adsorption bonds are effectively irreversible (Marschner et al., 2008;

Kögel-Knabner et al., 2008). However, this stability is strongly dependent on crys-

tal structure (Torn et al., 1997), with weakly crystalline minerals providing weaker

OM-mineral bonds.

Aggregate protection

OM that is neither intrinsically indigestible nor bound to minerals can persist for a

long time in the soil by becoming trapped within aggregates, blocked from access

by decomposers. Mineral-OM complexes form loose associations with particulate

OM and cluster into self-assembling layered structures of alternating mineral and

organic material (Sollins et al., 2009; Lehmann et al., 2007) forming discrete zones of

OM with different behaviours (Kleber et al., 2007). OM within these clusters may

experience slow decomposition rates because of a combination of physical inacces-

sibility, reduced oxygen diffusion, and the force of OM-mineral interactions, as well

as intrinsic chemical recalcitrance, for example in hydrophobic zones (Kleber et al.,

2007).

Soil aggregate status is strongly affected by land-use, with conversion of forested

land to agriculture typically causing a reduction in microaggregate-protected C (Six

et al., 2002). This means that where aggregate protection provides the dominant

source of stability, SOC stocks are more vulnerable to land use than where SOC is

primarily stabilised by mineral interactions or intrinsic properties.
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1.2.2 Temperature response- Q theory

Defining intrinsic recalcitrance has been problematic, but Bosatta and Ågren (1999)

proposed that the ’quality’ of SOM should be defined by the number of different

enzyme reactions required to mineralise a single carbon atom. A large number of

different enzyme reactions implies a low energy return, and results in low decompo-

sition rates. Bosatta and Ågren (1999) used thermodynamics and Michaelis-Menten

enzyme kinetics to show that combining the activation energies (Ea) of multiple en-

zyme steps results in a higher overall activation energy for the whole process, pro-

ducing a higher temperature sensitivity. SOM of an initially lower quality is by

definition more likely to persist in soil, if higher quality (more degradable) material

is available as an alternative substrate. However SOM also becomes progressively

lower in quality, as the higher quality components are preferentially decomposed

and through progressive microbial transformations. Many studies support the rela-

tionship between low quality and high temperature sensitivity predicted by Bosatta

and Ågren (1999) in what they called "Q-theory" (Hartley and Ineson, 2008; Karhu

et al., 2010a; Craine et al., 2010; Biasi et al., 2005). However, the number of enzyme

steps are by no means the only control on decomposition.

1.2.3 Temperature response- Mineral adsorption

Thornley and Cannell (2001) proposed that mineral adsorption of OMmay contribute

to lowering the temperature sensitivity of soil respiration overall by increasing min-

eral stabilisation with temperature, since the formation of stable OM-mineral bonds

by absorption is itself positively temperature sensitive, while their breakdown is

thought to be thermally stable. By this reasoning, mineral stabilisation cancels out

the temperature sensitivity of soil respiration; in soils where mineral stability is high,

mineral-bound material is not sensitive temperature, and the overall temperature

response may be attenuated by the formation of new mineral associations.
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In addition, the OM material stabilised by minerals can be of a high quality with

respect to the Q-theory; labile polysaccharides and peptides are often found in associ-

ation with minerals (Kleber et al., 2011; Grandy et al., 2007; Kaiser and Guggenberger,

2000). This might suggest that when decomposition does occur, it will have a rela-

tively low temperature sensitivity.

1.3 Aims

This thesis set out to investigate mechanisms of SOM stability in a forest soil. I asked

the following questions about the stability of SOM and its effect on the temperature

response of respiration:

• What are the dominant mechanisms of stabilisation and destabilisation acting

on SOM in forest soils?

• Does aggregate-occluded material have intrinsically different properties from

mineral-bound material?

• How is the temperature sensitivity of respiration affected by mineral stability?

• How sensitive to temperature is chemically recalcitrant material?

• Is there a general relationship between temperature sensitivity and the age of

SOM?
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1.4 Thesis structure

This thesis is structured as a traditional thesis with five self-contained research chap-

ters.

Chapter 3- Chemical characteristics of Harwood forest soils and soil fractions

This chapter investigates the composition of SOM in fractions and horizons, with ref-

erence to mechanisms that may cause theoretical stability in these fractions. I investi-

gate trends in degradation with depth, particle size and particle density, and identify

several potential mechanisms of stabilisation in the SOM fractions, contributing to

the theoretical stability of SOM.

Chapter 4- Soil respiration and temperature response from Harwood forest soils

and density fractions

In this chapter, some of the physical fractions and whole soils described in Chapter

3 were incubated at different temperatures as a measure of the current stability of

SOM and to establish the temperature sensitivity of different isolated fractions. This

chapter addresses the third and fourth research aims, establishing the relative sensi-

tivity to temperature of chemically recalcitrant material and mineral-bound material.

Based on the chemical composition of fractions and the Q theory, I hypothesised that

respiration in the intra-aggregate organic matter and deeper soil horizons would be

more sensitive to temperature.

Chapter 5- Isotopic composition of SOM respired from Harwood forest soils and

density fractions

Chapter 5 relates the lifetime stability, measured by 14C age, of fractions and whole

soils with the current stability established in chapter 4 and the theoretical stability

suggested by chemical characterisation in chapter 3. After long term incubations at

11



Introduction

10 and 30 ◦C, respired CO2 was collected for 14C dating, to investigate a possible

general relationship between temperature and the age of SOM respired.

Chapter 6- Priming effects of labile substrate additions in Harwood forest soil

horizons

Lack of available labile substrates is thought to limit respiration of recalcitrant substrates-

the experiments described in chapter 6 use naturally 13C labelled sucrose to investi-

gate the priming of SOM respiration by labile substrate additions, assessing whether

priming may be a potentially dominant destabilisation mechanism for Harwood

SOM.

Chapter 7- Soil porespace and water characteristics in Harwood forest

The experiments described in chapter 7 were designed to address SOM stability due

to physical protection in the soil matrix. Intact soil cores were manipulated by se-

lectively draining the saturated soil porespace and incubated in series, in an attempt

to separate respiration from macropores and from micropores. This chapter aimed

to investigate whether physical protection is a dominant stabilisation mechanism for

Harwood SOM.
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Chapter 2

Harwood Forest Site Description

2.1 Site Description

2.1.1 Harwood Forest

Harwood forest is a Sitka spruce (Picea sitchensis (Bong.) Carr.) forest in Northum-

berland, UK (55◦ 12′ 59′′ N, 2◦ 1′ 28′′ W). The study site was located in a stand in

the centre of the forest that was planted in 1978, under continuous cover forestry

after some thinning. The forest itself was established in the 1930s; prior to planting

the dominant vegetation was a combination of upland rough pasture and ericaceous

moorland. Loblolly pine (Pinus taeda) and some deciduous growth is occasionally

found at the stand margins. The dominant soil type is a podzolic peaty gley. Har-

wood stands between 200 and 400 m above sea level, and sees average annual pre-

cipitation of 950 mm. The mean annual air temperature is 7.6 ◦C (Conen et al., 2005).

In 2002, soil temperature at 10 cm depth ranged from 3.6 ◦C to 12.2 ◦C over the year

(Fig. 2.3, Zerva and Mencuccini (2005)).

The soil profile in the stand studied consists of a thick (∼ 2 - 7 cm thick) litter

layer, consisting of partially decayed spruce needles, easily separated from a deep

and peaty humus horizon (Oi, ∼ 5 - 15 cm thick), which is almost black in colour,
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spongy and well decomposed with very few plant structures visible to the naked

eye. Underneath this is a thick Oe horizon (∼ 10 - 15 cm thick), which is dark brown

in colour, denser than the Oi horizon above and contains visible reflective mineral

particles. The illuviated mineral Ae horizon underneath this ranges from pale grey

or orange to brown in colour. In places the normal order of soil horizons (L, Oi, Oe,

A, B) has been inverted (L, Oi, A, Oe, B) due to the ploughing of furrows during

afforestation. For this thesis, samples were not taken from any sites with inverted

profiles. Descriptions of Harwood forest soil profiles in the literature are inconsistent

with respect to the naming of the upper horizons; the horizon descriptions given

here are consistent with Swain et al. (2010). To avoid confusion, the main horizons

studied here (Oi, Oe) will be described hereafter by the sampling depths (5 - 17 cm,

20 - 30 cm).

Figure 2.1: Hemispherical photograph of Harwood forest plots showing contrasting
thinned and unthinned forest floor vegetation.
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Figure 2.2: Map of Harwood Forest showing planned felling dates. Red dot indicates
sampling location.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2

4

6

8

10

12

14

T
em

pe
ra

tu
re

 (°
C

)

Figure 2.3: Soil temperature at 5 cm depth measured in a 30 year old plot during 2009
(blue line, this study) and at 5 cm depth from a 40 year old stand nearby in Harwood
Forest from 2001 (orange points) and 2002 (red points) by Zerva and Mencuccini
(2005)
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2.1.2 Harwood as a case study for land management impacts on carbon

cycling

Harwood forest represents a land management history typical for Northern Britain.

Over the twentieth century, around 315,000 ha of peaty gley and peaty ironpan soils,

as well as 190,000 ha of deep peatlands, were converted to coniferous forestry, pre-

dominantly in the form of Sitka spruce plantations (Cannell et al., 1993). This tran-

sition represents the most extensive land-use change experienced in Britain over the

last century. Preparation of peaty soils for afforestation involves drainage and phys-

ical disturbance, resulting in considerable loss of soil organic carbon protected by

anaerobic conditions, to watercourses in DOC and to the atmosphere as CO2. This

may be counterbalanced to an extent by an increased carbon sink in plant biomass

and soil organic carbon in the years following afforestation (Zerva and Mencuccini,

2005), depending on management practices during site preparation and harvesting.

Harwood forest is well established as a case study site for the effect of afforesta-

tion of peaty gley moorlands on carbon cycling. Mojeremane et al. (2012) studied the

impacts of site preparation on carbon cycling, comparing three treatments- drainage,

mounding and fertilisation. Fertilisation increased soil to atmosphere fluxes of CO2,

CH4 and N2O, while drainage caused increased CO2 emissions and reduced CH4

emissions, and mounding increased CH4 but reduced N2O emissions. The overall

impact in CO2 equivalent was a strong net increase in GHG emissions for fertilisa-

tion, a smaller increase for drainage, and a reduction for mounding during the first

year only.

While in the early twentieth century, economically unprofitable moorlands gave

way to forestry projects, an important economic pressure on upland land use in the

early 21st century is wind power. Peatlands tend to be found in upland areas with

relatively low population density, in prime position for cheap, efficient and uncon-

tested windfarm developments. However, wind turbine installation also involves
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considerable physical disturbance for site preparation and building of access roads.

Harwood forest has also been used as a model afforested upland area in a lifecycle

assessment of the potential CO2 ’payback time’ of windfarm development in upland

areas. The payback time of windfarm installation in Harwood forest would be 3

years, rather than 5 months at a site where soil and vegetation disturbance are not an

issue (Mitchell and Harrison, 2010).

2.1.3 Harwood forest soil carbon stocks and turnover

Harwood forest soil carbon stocks have been estimated at 21.3 kg C m−2, considerably

higher than all other temperate forest sites in the same meta-analysis (Conen et al.,

2005). Zerva and Mencuccini (2005) studied sites in and around Harwood forest, us-

ing a space-for-time substitution to look at changes in vertical distribution and stocks

of soil carbon during successive afforestation, clearfelling and reforestation. During

first rotation stand growth, carbon stocks declined in the OH layer (equivalent to the

Oe described here) and accumulated in the OL (Oi) and A horizons; after clearfelling,

carbon stocks declined in both OL and OH and continued to accumulate in the A

horizon; and during the second rotation of growth, carbon stocks accumulated again

in OL and OH. These results suggest that after two rotations of forest growth, carbon

stocks are restored to that of the unmanaged grassland prior to afforestation.

Ball et al. (2011) compared the 14C signatures of SOC and surface CO2 fluxes in

Harwood forest and the surrounding grassland, showing a slightly younger signa-

ture for SOC in the forest than the grassland. SOC fixed within the previous year also

showed a lower contribution to surface CO2 fluxes in the forest than in the grassland,

consistent with either or both an accumulation of litter in the forest, or increased min-

eralisation of older SOC. CH4 and N2O emissions in Harwood are relatively small,

CO2 emissions make up 93-94 of the total GHG budget in terms of CO2 equivalent

(Ball et al., 2007b).
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2.1.4 SOM chemistry

Swain et al. (2010) investigated an inverted profile in Harwood forest for C stocks

and lignin phenol characteristics. The total lignin yield increased with depth in

the organic horizons (Oi -> Oe1 -> Oe2 (buried)), and were still present although in

lower quantity in the mineral horizon. High syringyl:guaiacyl and cinnamyl:guaiacyl

ratios indicate that the high phenol content of the buried Oe2 horizon is a remnant

of pre-afforestation vegetation, rather than fresh input from roots. This suggests

that intrinsic chemical recalcitrance of lignin phenols may be important in stabilising

OM in Harwood forest on a multi-decadal timescale. However Swain et al. (2010)

also showed that the acid/aldehyde ratio, a proxy for the oxidative state of guaiacyl

phenols, increased with depth, indicating that deeper phenols are also more strongly

degraded, suggesting that the enrichment of lignin phenols in the lower horizons has

more to do with burial than intrinsic chemical recalcitrance.

2.1.5 Ecosystem flux measurements in Harwood forest

Harwood forest has contributed to understanding of boundary-layer meteorology

and ecosystem CO2 flux estimates by eddy flux measurements, due to the positioning

of 3 micrometeorological flux towers in the forest and surrounding grassland (Irvine

et al., 1997; Dengel and Grace, 2010). Harwood forest was part of the FORCAST

(Forest carbon and nitrogen trajectories) network of European forest research sites

in the CARBOEUROFLUX project, contributing to an important interational study

on carbon cycling in mineral soils. One such forest site comparison found that the

modelled labile fraction in Harwood and other coniferous sites was considerably

smaller than that of broadleaf sites (Rey et al., 2008). Leaf area index in Harwood

(12 m2 m−1) was considerably higher than any other forest studied or typical values

for Sitka spruce, partly reflecting a variable but moderately high stand density (600

- 3000 trees ha−1) (Rey et al., 2008). These results are contradictory, since high LAI
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values are expected to result in a large fine root biomass and hence a large labile

SOM fraction.
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Chapter 3

Chemical characteristics of

Harwood forest soils and soil

fractions

3.1 Introduction

The chemical characteristics of SOM fractions with respect to stability has long been

an important research area, responding to the demand for measurable characteris-

tics to represent theoretical SOC pools within multi-pool models of soil carbon cy-

cling such as Roth-C or CENTURY (Zimmermann et al., 2007). This research goal

can be separated into two aims- firstly, attempts to associate chemical characteristics

with OM longevity via particular stabilisation mechanisms, and secondly, attempts to

physically separate soil fractions with measurably different indicator characteristics,

for the purpose of quantifying SOM under different levels of stability in the field. In

the following chapter I will discuss the chemical characteristics associated with dif-

ferent stabilisation mechanisms, the chemical characteristics we can expect of SOM

fractions using two common fractionation techniques, and the changing composition
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of SOM with depth.

3.1.1 Chemical characteristics of bioavailability

As described in Chapter 1 traditionally SOM stability has been separated into three

distinct mechanisms- intrinsic chemical recalcitrance, physical occlusion and associa-

tion with minerals. Material that is stable as a result of intrinsic chemical recalcitrance

by definition has measurable chemical properties that directly confer stability, allow-

ing the possibility of using chemical characteristics as proxy measures for stability.

Aggregate occlusion and OM-mineral associations cannot be said to have a direct re-

lation to chemical form, but chemical characterisation still gives indirect insight into

the likelihood of aggregate formation or mineral associations, as the strength of OM-

mineral or OM-OM association is affected by OM chemical form. The incorporation

of SOM into macro-aggregates often involves some degree of microbial processing

(Caesar-TonThat et al., 2007) or digestion by macroorganisms such as earthworms

(Uvarov and Scheu, 2004), which may result in detectable chemical properties of

intra-aggregate SOM and differences between particle size fractions.

Intrinsically recalcitrant SOM

Various chemical characterisation methods are available to determine the intrinsic

chemical recalcitrance of organic compounds, based on certain assumptions about

what makes a molecular structure recalcitrant to decomposition. Complex irregular

polymers such as lignin and polyphenols were traditionally described as intrinsically

recalcitrant due to irregular tertiary structure and a lack of consistent active sites for

enzymes, and requiring co-metabolism with other substrates with complementary

stoichiometry (Jeffries et al., 1981), manifesting in lower mass loss rates than other

litter components (Hedges et al., 1985; Haider and Martin, 1975). However, more

recent evidence suggests that lignins and other irregular polymers do not necessarily

persist in the long term, and that while lignin decomposition is low during the initial
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period of rapid mass loss from litter, later on lignin decomposition products are

mineralised at least as fast as litter as a whole, becoming an important source of labile

DOM (Kalbitz et al., 2006). However, other studies still indicate a low proportion of

lignin monomers entering the labile pool after depolymerisation (Feng and Simpson,

2008).

Aliphatic biopolymers such as fatty acids and leaf waxes (cutin from leaves and

suberin from roots) can be recalcitrant because of the high energy demand of break-

down (Filley et al., 2008; Prescott, 2008; Feng and Simpson, 2008). Cutin may also

be resistant to temperature; Feng et al. (2008) used 1H-13C solution-state NMR spec-

troscopy to show that the cutin content of soil in a heated plot increased after 14

months of +5 ◦C warming, while both cellulose and, to a lesser extent, lignin-derived

methoxy carbon decreased. Since this result was based on a single experimentally

heated plot, and the increase in cutin (a leaf wax) was accompanied by an increase

in total soil carbon content, more work is required to ascertain whether this result

reflects the relative resistence of cutin while other compounds degraded, or a local

increase in needle drop. However, older work including litter bag experiments in-

dicated that cutin was not recalcitrant, and degraded at the same rate as bulk soil

(Kögel-Knabner et al., 1992).

Organic compounds can be recalcitrant or labile because of nutrient stoichiometry,

if element ratios are not in proportion to the needs of decomposers. For example,

this is one explanation for the inert behaviour of charcoal, which is high in C but

low in H and N. The lignin : N ratio was traditionally considered an indicator of

the decomposability of plant litter (Taylor et al., 1989), and similarly the C : N ratio

strongly controls rates of carbon mineralisation, which decreases with increasing

C:N (Lamparter et al., 2009). Other limiting nutrient concentrations can be expected

to affect mineralisation in a similar way.

Well-humified organic material can be more resistant to decomposition, both in-

trinsically and indirectly via physical stabilisation, because of an increased chance
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of forming stable aggregates or mineral associations (Zhang, 1994). Humified OM

also takes on intrinsic recalcitrance over the course of successive microbial transfor-

mations, as the more intrinsically labile parts of macromolecules are more rapidly

mineralised, leaving more recalcitrant materials behind, and shifting the stoichiome-

try of the remaining material. Microbial processing can also involve polymerisation,

potentially increasing the Ea of decomposition reactions.

Aggregate-occluded SOM

While the protection of SOM from decomposition by the physical obstruction of de-

composers is essentially stochastic, due to the physical architecture of the soil, certain

measurable physical and chemical properties of SOM can increase the chance of in-

corporation in stable micro-aggregates (Zhang, 1994).

Soil macrofauna such as earthworms and enchaetrids play an important and well-

known role in the moderation of soil aggregates by the ingestion, digestion and eges-

tion of SOM. Earthworms in particular are known to selectively ingest mineral matter

for the purpose of physical churning of food, contributing to the formation of strong

micro-aggregates (Seeber et al., 2006) and putting already humified organic material

in contact with mineral surfaces. While earthworm activity is associated with increas-

ing aggregate strength, other macrofauna such as millipedes are known to reduce ag-

gregate stability (Seeber et al., 2006). Mineral chemistry also affects the probability of

aggregate formation; soil aggregate stability has been shown to increase with Al and

Fe oxide contents (Krull et al., 2003), in particular weakly crystalline ones (D’Angelo

et al., 2009).

Mineral-bound SOM

While intrinsic recalcitrance and physical occlusion retard decomposition on short to

medium timescales, mineral-OM and metal oxide-OM associations in soils can cause

near permanent immobilisation of SOM, and these interactions are considered to be
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primarly reponsible for OM stabilisation over timescales of hundreds of years and

longer (Marschner et al., 2008; Kögel-Knabner et al., 2008). Leifeld et al. (2009) found

that along an altitudinal transect where POM longevity was strongly controlled by

elevation, the mean residence time of mineral-bound OM was insensitive to elevation

but strongly correlated with mineral surface area- indicating that mineral associations

trump other environmental variables with respect to stability. OM found in mineral

assocations can be intrinsically labile (Kleber et al., 2011); the organic compounds

most likely to form successful mineral interactions are those with adhesive proper-

ties, such as polysaccharides and hemicelluloses, as well as peptides and humic acids

(Grandy et al., 2007; Kaiser and Guggenberger, 2000). Physicochemical properties of

the mineral surface also affect the strength of mineral-OM bonds- in particular the

surface area, charge density, and degree of hydration. Weakly crystalline minerals

typically have a higher surface area and charge density, and so provide more op-

portunity for SOM stabilisation. Torn et al. (1997) suggest that the amount of metal

oxides and their crystal form are a controlling factor of SOM stability; in addition,

the relative abundance of short range-order minerals significantly reduces C miner-

alisation (Rasmussen et al., 2008).

Kögel-Knabner et al. (2008) identify three functional types of mineral surface sites:

• Surfaces characterised by single coordinated hydroxyl groups (e.g. Fe and Al

oxides, allophane, imogolite)

• siloxane surfaces with permanent layer charge (e.g. vermiculite, illite, smectite)

• siloxane surfaces with no layer charge (e.g. talc, pyrophillite, kaolinites)

Kögel-Knabner et al. (2008) note that in acidic soils, hydroxylated mineral surfaces

are linked to strong protection of SOM, and that Fe oxide stabilisation can be particu-

larly important in soils with podzolic behaviour or gleying. The strength of Fe oxide

- SOM interactions is strongly dependent on crystal structure and hydration, as well

as redox conditions. Gley soils such as those in Harwood forest are characterised by
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patchy and alternating redox conditions; Fe oxides are mobilised as ferrous (Fe2+)

ions in reducing patches, and precipitated as ferric (Fe3+) ions in oxidising patches,

causing co-precipitation of OM (Kalbitz and Kaiser, 2008).

Harwood forest gley soils (0 – 30 cm depth) were analysed for Al and Fe oxides,

and it was found that 5 – 9 % of the total Al and 70 – 100 % of the total Fe present were

in the form of Al/Fe oxides (Cloy et al., 2011). The majority of Al oxides were weakly

crystalline and the majority of Fe oxides were strongly crystalline, and between 70

and 90 % of the total SOM was associated with either Fe or Al oxides (Cloy et al.,

2011).

3.1.2 Fractionation to separate different pools

Particle Size Fractionation

The simplest, most traditional method of separating different functional components

of soil is to seive into different particle size classes. Particle size fractionation tradi-

tionally separates soil on the basis of soil texture classes- coarse and fine sand, silt

and clay. Separation can be done by dry, moist (Stemmer et al., 1998) or wet (Paul

et al., 2008b) seiving and is often combined with either density (Six et al., 2002; John

et al., 2005) or chemical fractionation (Plante et al., 2010), to further separate some

of the fractions. Drying soils before moist or wet seiving strongly affects the yield

and distribution of SOC between fractions (Paul et al., 2008b), depending on the

mineralogy, as some clays show irreversible flocculation on drying, causing stable

microaggregates to form stable macroaggregates.

Some studies have used particle size fractionation to isolate fractions for incu-

bation, to measure rates of soil respiration from different fractions directly (Plante

et al., 2010; Leifeld and Fuhrer, 2005; Gartzia-Bengoetxea et al., 2009), while other

studies use the chemical properties, isotopic composition (Paul et al., 2008a) and the

mass balance (Six et al., 2002) of particle size fractions to make inference about SOM
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cycling.

Separated particle size fractions show some consistent trends in chemical prop-

erties indicating differences in SOC cycling regardless of soil type- C:N ratios are

typically lower in smaller size fractions, reflecting higher microbial transformation

in silt and clay fractions (Stemmer et al., 1998; John et al., 2005), although this trend

is not universal and is dependent on mineralogy (Paul et al., 2008a). Stemmer et al.

(1998) measured enzyme activity in particle size fractions of four soils, and found

that invertase activity (the enzyme involved in sucrose breakdown) was highest in

the silt and clay fractions, whereas xylanase, which is important for hemicellulose

degradation, was highest in the coarse and fine sand fractions.

Density Fractionation

While particle size fractionation separates macro-aggregates from micro-aggregates,

there may be some cross-over in mineral-stabilised SOM. Material falling into the

coarse sand fraction in a particle size separation may be either large particulate SOM

or macroaggregates with a high mineral content. Density fractionation typically aims

to separate light, un-aggregated and mineral-free material from heavy mineral-bound

material and light, occluded material within aggregates. Common high density so-

lutions used to separate density fractions include sodium iodide (NaI) (Sohi et al.,

2001), sodium polytungstate (SPT) (Magid et al., 1996; Crow et al., 2007), Ludox (a

colloidal silica suspension Magid et al. (1996)) or NaCl (Bol et al., 2003). Separa-

tion often involves a disaggregation step or a particle size separation. Magid et al.

(1996) compared different density fractionation procedures and found that large light

particles of fresh SOM were retained in the heavy fraction unless a particle size frac-

tionation was performed first. However, this can also be avoided by disrupting the

aggregates of the initial heavy fraction before re-fractionating (Sohi et al., 2001).

Depending on the density of the separation medium, light particulate material

is usually found to comprise of fresh, recently decomposed plant material, and
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recently-added litter is predominantly retained in this fraction Magid et al. (1996).

Light material released after disaggregation (intra-aggregate material) is often shown

to be more humified and older than light material, with a lower C:N ratio (John et al.,

2005) and a higher O-alkyl-C : Alkyl-C ratio. Heavy fractions comprise OM in associ-

ation with soil minerals, and usually but not always (Crow et al., 2007) older than bulk

or light fraction C (Bol et al., 2003), with lower C:N content than light or occluded

light material (John et al., 2005; Sollins et al., 2006) and lower SOC. Mineral-bound

material may be high in chemically labile components such as polysaccharides and

peptides (Grandy et al., 2007).

The proportion of SOC found in the intra-aggregate fraction of the scheme de-

scribed in Sohi et al. (2001) has been proposed as a possible indicator measure for

changing SOC stocks- soils that had recently undergone land management changes

had a higher proportion of SOC in the intra-aggregate fraction (Sohi et al., 2010).

However, this indicator does not predict the direction of change to SOC stocks, as the

intra-aggregate portion seems to increase regardless of whether total C stocks rise or

fall.

Chemical fractionation

Acid (HF, HCl, and NaOCl) resistant fractions are often used to indicate intrinsically

recalcitrant OM, on the basis that compounds with a complex molecular structure

and high Ea are the most resistant to chemical oxidation. However this is complicated

by the action of mineral associations in providing resistance to chemical oxidation

to thermally labile compounds. Sleutel et al. (2009) found that intrinsically ’labile’

materials such as carbohydrates, peptides and short-chain lipids are protected from

NaOCl treatment in mineral associations and aggregate structures, just as they would

be protected from biological attack.
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Aims

I characterised bulk soils from different depths, SOM density fractions (see Figure

3.2) and particle size fractions (see Figure 3.1) from Harwood Forest (see section

2.1.1) using a number of chemical and physical techniques, all with the aim of as-

sessing chemical and physical factors contributing to the overall longevity of SOM.

I intended to investigate how relevant the fractions separated by particle size and

density fractionation are to the fast, slow and passive SOC turnover pools used in

models of SOC cycling, and which mechanisms of stability apply to each fraction. I

hypothesise that intra-aggregate material will be well humified, and SOM in 20 - 30

cm whole soil will be strongly stabilised by mineral associations.
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3.2 Methods

Sampling strategy

Full soil profile samples Samples for soil profile C and N contents and FTIR (Sec-

tion 3.3.1) were collected from five semi-random locations in Harwood forest, using

a 2 cm diameter corer, in April 2008. Each sample was separated in situ into five

horizons: litter, Oi, Oe, A and B horizons.

Oi horizon particle size fractionation samples Soil samples for fractionation by

particle size according to Stemmer et al. (1998) (Section 3.2.1) were collected from

Harwood forest in June 2008, using a spade to collect a 10 cm x 10 cm x 10 cm block

from two sites. These soils were fractionated and analysed for key chemical char-

acteristics, as a preliminary test to assess the suitability of this fractionation scheme

for isolating stable and labile organic carbon forms. This method separates soil into

coarse (> 2000 µm) and fine (> 200 µm) sand fractions, silt (> 63 µm) and clay (< 63

µm) fractions, by wet seiving after low-energy sonication to disaggregate macroag-

gregates. I present data from particle size fractions disaggregated by sonication at

25, 100 and 300 J g −1.

Oi horizon density fractionation samples Samples for density fractionation and for

chemical analysis of fractions (used subsequently for incubation and isotopic analysis

of separate fractions and whole soils, Chapters 4 – 5) were taken from four equally

spaced points in a square around the base of the eddy flux tower. Each pit was 15

m from a corner of the tower. Samples were taken by digging a small pit, removing

the litter layer (0 - 5 cm) and coarse roots, and collecting material ∼ 1 kg from the

Oi horizon (∼5 - 17 cm) with a trowell. Each whole soil sample was seived at 5 mm,

and two pairs of samples were combined by gentle rotation in a cylindrical tub for 2

minutes, forming two composite samples as recommended by Robertson et al. (1999).
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Each of the two composites, hereafter named A and B, originated from two of the

four sampling points.

Whole soils from the Oe horizon (20 - 30 cm) were collected from near the same

four sites and composited by the same rationale in January and December 2009, and

these samples were used for comparison with the density fractions in subsequent

experiments (see also Chapters 4 and 5).
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3.2.1 Particle Size Fractionation

Section 3.3.2 describes results using a SOM particle size fractionation procedure

adapted from Stemmer et al. (1998). Field moist whole soil from 5 - 17 cm depth

was dispersed in distilled water and ultrasonicated at 50 J g−1 before wet seiving at

2000 µm, 125 µm, and 53 µm, yielding a coarse sand fraction (150 - 2000 µm) and a

fine sand fraction (53 - 150 µm). Throughflow smaller than 53 µm was centrifuged at

150 x g for 2 minutes. The supernatant was retained and the pellet was resuspended

in distilled water; this centrifugation step was repeated three times to separate a silt

fraction (pellet) free of clay particles (supernatant). The supernatants from this step

were then centrifuged at 3900 x g for 30 minutes to separate the clay fraction (pellet)

from soluble sugars (supernatant). After this step the pellet was resuspended and

the process repeated once.
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Figure 3.1: Diagram of particle size fractionation method taken from Stemmer et al.

(1998)
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3.2.2 Density fractionation

Field moist whole soil from 5 - 17 cm was floated in a 12M NaIaq solution, with a

density of 1.8 g cm−3 at room temperature. Samples were mixed by inversion for 30

seconds then centrifuged at 8000 x g for 30 minutes. SOM suspended in the super-

natant or floating on top was designated ’light’ material, and was filtered at 0.45 µm

on Whatman GF/A glass microfibre filter paper, using a micropore filtration system,

and rinsed thoroughly with deionised water. The pellet was then resuspended in

NaI solution by shaking, and the resulting solution was ultrasonicated using an ul-

trasonic probe (Misonix, NY USA) at 25 J ml−1 over ice. The centrifugation step was

then repeated again. Material in the supernatant was designated ’Intra-aggregate’

material, and the remaining pellet ’Mineral-bound’. Both the decanted supernatant

and the pellet (resuspended in deionised water) were then filtered at 0.45 µm and

rinsed thoroughly before all three fractions were dried at 40 ◦C. NaI solution was

recycled between runs by stirring with activated charcoal for one hour and filtering.

These fractions are operationally defined, and the pool sizes are strongly affected by

the choice of solution density and sonication energy, which were chosen to represent

the most functionally relevant separation of aggregates and of bond strength within

aggregates (Sohi et al., 2001).
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Figure 3.2: Diagram of density fractionation method taken from Sohi et al. (2001)

3.2.3 Moisture, ash and OM contents, and pH

The moisture content of field-moist whole soil samples was determined by drying

overnight in a 105 ◦C drying oven. Subsamples (∼ 1 g) were accurately weighed out

into pre-dried, pre-weighed Pyrex beakers at room temperature, dried for at least 12

hours, and allowed to cool to room temperature in a dessicator before reweighing.

Moisture content (weight %) was determined using the formula:

Moisture content (%) =
(mass of field-moist soil−mass of dry soil) x 100

mass of field-moist soil
(3.1)
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Ash and OM content of dry soil was determined by the loss on ignition method.

Subsamples of dry soil were accurately weighed out into pre-dried, pre-weighed

Pyrex beakers at room temperature, and heated to 450 ◦C for four hours in a muffle

furnace. Samples were allowed to cool to room temperature in a dessicator before

reweighing. OM content (% dry mass) is given by the formula:

Organic matter content (%) =
(mass of dry soil−mass of residual ash) x 100

mass of dry soil
(3.2)

Ash content (% dry mass) was defined as the mass remaining after ashing, equiv-

alent to 100 - organic matter content (%):

Ash content (%) =
mass of residual ash x 100

mass of dry soil
(3.3)

pH was measured by mixing 10 g soil into a slurry with 10 ml de-ionized water

and leaving to stand for one minute before testing with a pH meter.

3.2.4 Carbon and nitrogen contents

SOM samples were analysed for C and N contents using a Carlo-Erba NA 2500 ele-

mental analyser (Carlo-Erba, Milan, Italy). In addition, carbon and nitrogen isotopic

composition (δ13C and δ15N) was analysed for some SOM samples by mass spec-

troscopy (VG PRISM III mass spectrometer, Manchester UK). Samples were dried as

for determination of moisture content (see above), ground finely either by hand in a

ceramic mortar and pestle or an automated ball mill (Retsch mixer mill 400, Retsch,

Haan, Germany), weighed into ultraclean tin capsules in subsamples of 8 - 20 mg,

and analysed. Total soil C was assumed to be equal to total organic carbon as Har-

wood forest parent material is not calcareous (Zerva et al., 2005). In some cases only

one replicate from each sample was analysed. C and N analysis of SOM density frac-

tions and whole soils used in the incubations described in Chapter 4 were analysed
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on the Carlo-Erba elemental analyser in triplicate for quality control. The mean stan-

dard error of C content for these samples was 0.93 %, and the mean standard error

of N contents was 0.04 %. These values can be used as a proxy for the analytical

precision of other measurements taken by the same machine.

3.2.5 FTIR

Infra-red spectroscopy provides information about the chemical composition of or-

ganic compounds, using the absorption properties of CH2 groups with different vi-

brational structure (stretching, scissoring, rocking, wagging and twisting) to char-

acterise the contribution of different organic functional groups to the total OM. A

Michelson interferometer enables scanning of a wide range of wavelengths, and the

discrete raw data are converted to spectra by a Fourier transform algorithm. Quanti-

tative applications of spectra are limited, but is nevertheless a useful tool for qualita-

tive comparison of the relative abundance of OM functional groups.

Dry ground soil samples were mixed 1:100 by mass with KBr crystals, and ground

into a fine powder. 100 mg of the mixture was pressed into a pellet using a flat die

pellet mill. Three pellets were analysed from each sample. The pellets were analysed

on a Jasco FT/IT-460 Plus (Easton MD, USA) and the spectra were processed using

Spectra Manager II.

For density fraction and whole soil (20 - 30 cm) samples, samples were analysed

before and after ashing to remove OM content, to remove interference from the min-

eral matrix. After analysis of unashed samples the pellets were recovered, placed in

an ashing furnace at 450 ◦C overnight, ground, pressed and reanalysed, to obtain the

FTIR spectra for the inorganic component of the same samples. Several other studies

have used the FTIR spectra of ashed soil samples to separate the OM spectra (Kaiser

et al., 2011; Chefetz et al., 1998; Cox et al., 2000b). Kaiser et al. (2007) compare the

effects of 500, 700 and 900 ◦C heating on the mineral structure, and based on their

results a 450 ◦C treatment is not likely to have caused significant distortion of the
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mineral structure.

3.2.6 13C CP-MAS NMR

NMR spectroscopy provides information about molecular structure via the absorp-

tion of electromagnetic radiation. 13C NMR exploits the nuclear spin of 13C atoms,

which give a different chemical shift signal depending on the electron density sur-

rounding each 13C atom. Because 13C atoms comprise only around 1.1 % of the total

C, the chance of 13C atoms occuring so close together as to interfere with the chem-

ical shift causing signal splitting is very small. This property of 13C NMR means

that relatively clean spectra can be produced even from complex solid state samples,

providing information about molecular structure with minimal destruction. Cross-

polarisation transfers excitation energy from nearby protons to the measured 13C,

using Hartmann-Hahn matching. By exciting 13C atoms indirectly via the more abun-

dant protons rather than directly, a stronger signal can be produced. Spinning of the

sample at the ’magic angle’ of 54.74 ◦ to the field direction during analysis increases

the resolution of the resulting spectra, narrowing the otherwise broad peaks.

Solid-state NMR was performed on Harwood forest density fraction and whole

soil samples at the University of Durham, EPSRC NMR facility. The spectrometer

frequency was 100.562 MHz, contact time 1 ms, relaxation time 1 s, and spin-rate

6800 Hz. The total number of scans taken for each spectra was between 3248 and

25000. The number of scans per sample was optimised to give the best resolution

available for each sample, but was capped at 25000 (for 20 - 30 cm whole soil and

mineral-bound fractions) for time and cost reasons.

3.2.7 TGA

Thermo-gravimetric analysis was performed at the University of St Andrews, School

of Chemistry, on a Netzsch STA 449C (Selb, Germany). Samples were packed into

Al2O3 crucibles and heated from 35 to 650 ◦C, increasing at a rate of 10 ◦C min−1, in
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an argon atmosphere. The decreasing mass of the sample was measured every 0.025

min.

3.2.8 ICP-OES

Density fractions, whole soils from 5 - 17 cm and 20 - 30 cm and DOM extracted on

a separate occasion (see section 4.3.1) were analysed for trace metal contents using a

Perkin Elmer Optima 5300 DV ICP-OES (Perkin Elmer, Beaconsfield UK), equipped

with a gem-cone cross-flow nebuliser, following a HF-HNO3 microwave digestion

adapted from a modified US EPA Method 3052 Protocol (Yafa and Farmer, 2006).

Samples were dried and ash content estimated (see section 3.2.3); subsamples ∼ 0.25

g) were microwave-digested in 48 % HF (Aristar grade). The digest solutions were

reduced to ∼1 ml on a hotplate and made up to 25 ml with 2 % v/v HNO3 (Aristar

grade, 69 %) before analysis. Analytical precision for metal concentrations on the

ICP-OES is typically ≤ 5 % (Cloy et al., 2008).

3.2.9 Statistical analyses

All statistical analyses were performed using MATLAB version R2009a, statistical

toolbox. One-way and two-way ANOVAs were used to test for differences in chemi-

cal properties between fractions and depths (Chapter 3).

39



Chemical characteristics of SOM

3.3 Results

3.3.1 Soil horizons

C and N content

OM content and C and N contents declined down the soil profile as expected (Fig.

3.3), and in a stepwise fashion reflecting the differences in horizons (L, Oi, Oe, A, and

B); OM content and C and N drop rapidly after the transition to the B horizon, which

is distinctly paler in colour. Below the top two horizons, the C:N ratio increased close

to linearly with depth.
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Figure 3.3: Elemental composition and ratios and OM content of whole soil from five hori-
zons. Squares represent the mean (n = 5) and grey shaded areas represent ± 1 SE
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FTIR

FTIR spectroscopy revealed small differences in chemical composition between hori-

zons. Because it is not possible to quantify these differences, the results from one

representative replicate of each profile are shown here, for simplicity.

The region below ∼ 1100 cm −1 reflects soil minerals; these are understandably

highest in the mineral horizons (A1, A2e and B, see also Fig. 3.3) although in the

leached A2e layer this peak region is not very pronounced. The double peak region

around 2900 cm −1 is an indication of aliphatic -CH, -CH2 and -CH3 groups. There

is only a very weak signal in this region in the litter layer, with stronger peaks in the

A1 and B horizons and moderate peaks in the O horizon and leached A2e horizon.

Peaks in the region around 1600 cm −1 and 1700 cm −1 are indicative of ketone groups

and carboxyl groups, respectively. The ratio of ketone : carboxyl moieties seems to

increase with depth from the organic horizon downwards, but is also high in the

litter.
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Figure 3.4: Fourier Transform Infra-
red spectroscopy of whole soil from
different horizons: a) Litter (2 cm) b)
Organic horizon (7 cm) c) A1 mineral
horizon (10 cm) d) A2e leached min-
eral horizon (20 cm) e) B mineral hori-
zon (25 cm).
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pH

Whole soil material taken from the O horizon (5 - 17 cm) in four locations for frac-

tionation and subsequent incubations had a mean pH of 4.4 ± 0.1 (n = 4, 95% C.I.

4.1 - 4.9). The four samples were combined and composited such that the mean pH

of composite A was 4.5 (4.3, 4.7) and composite B was 4.3 (4.2, 4.5). These values are

within the typical range of a peaty soil, although less acidic than previous measure-

ments in Harwood forest (Ball et al. (2007b) found a pH of 3.6 in a 30 year old stand.)

As Leifeld et al. (2008) discuss, the effect of pH in acid forest soils can counteract the

intrinsic lability of the ’light’ fraction, which should be taken into account. pH values

for isolated fractions were not measured in this case as the pH was expected to be

distorted by the fractionation process.

3.3.2 SOM particle size fractions

C, N and OM contents

For coarse, fine, and silt fractions, both C and N contents (and by extension OM

content) decreased with decreasing particle size, while the clay size fraction was

high in both C and N in relation to the other fractions. This finding matches Stemmer

et al. (1998)’s original observation that C and N were both highest in the clay fraction.

In common with Stemmer et al. (1998), I found that C:N ratios also decrease with

decreasing particle size, with the exception of the coarse sand fraction which had

a lower C:N ratio than the fine sand. This general relationship may be a reflection

of high C:N ratios in undecomposed structural carbohydrates in the sand fractions

combined with more microbial transformations in the silt and clay contributing to

their breakdown into smaller particles. Leifeld and Fuhrer (2005) meanwhile found

no consistent differences in C:N between < 63 µm and > 63 µm size fractions (clay

and other) in an arable field and a grassland.
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Figure 3.5: Carbon and nitrogen content
and C:N ratio of SOM particle size frac-
tions, disaggregated by ultrasonication at
25 J g −1
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FTIR

I compared particle size fractions disaggregated at low (25 J g −1) and high (300 J

g −1) sonication energies. The choice of sonication energy affects the fraction yield.

A higher sonication energy can be expected to cause a decrease in the coarse sand

fraction and an increase in silt and clay as more moderately stable microaggregates

are dispersed. However, whether material from these microaggregates should be

considered as whole microaggregates in the larger size fraction, or dispersed intra-

aggregate material in the smaller size fraction, is an arbitrary decision.

The clearest effect of the higher sonication energy is a softening of peaks in the

mineral matrix absorption region (< 1100 cm −1) in all fractions (Fig. 3.6, e-h). This

may indicate that mineral structures were disrupted by the high sonication energy, in

which case it is likely that organic structures were similarly distorted by this process,

for example losing mineral associations, and tertiary and quaternary structure of

macromolecules.

The clay fraction separated at 25 J g −1 (Fig. 3.6 c) showed a strong distinctive

peak at around 1350 cm −1 which was not present in any other fraction, indicating

COO- and -CH3 groups.

The polysaccharide C-O band occuring at 1150 cm −1 should be interpreted with

caution as the strength of absorption can be affected by the adjacent Si-O peak which

marks the beginning of a region dominated by the mineral matrix. However, com-

parison of these regions in the 25 J g −1 fractions (Fig. 3.6 a-d) indicates that polysac-

charides are higher in silt than clay, and higher in coarse sand than in fine sand.

The higher concentration of polysaccharides in the silt fraction may reflect the high

affinity of sugars for mineral surfaces (Guggenberger et al., 1994), since the silt frac-

tion has the lowest OM content (Fig. 3.5) and the high polysaccharides in the coarse

fraction may reflect a higher proportion of intact plant material in comparison with

the fine fraction.
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Our results seem to show slightly higher aliphatic peaks (∼ 2900 cm −1) in the

silt fraction, which also had the highest mineral content. COOH groups indicated

by the band at around 1750 cm −1 seem to be higher in the clay fraction than the

other fractions, although the adjacent ketone groups are of a comparable size in all

fractions.
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Figure 3.6: Fourier Transform Infra-red spectroscopy of SOM particle size fractions, disag-
gregated by ultrasonication at either 25 J g −1 (a-d) or 300 J g −1 (e-h)

3.3.3 SOM density fractions and whole soils

This section presents the chemical characteristics of density fractions (See section

3.2.2 and Sohi et al. (2001)), from 5 - 17 cm Harwood forest soil. These fractions were

subsequently incubated (see Chapter 4) and analysed for isotopic composition (see

Chapter 5) alongside their parent whole soils and whole soils from the same sites at

20 - 30 cm. For comparison, the chemical characteristics of these whole soils will also

be presented here alongside those of the SOM fractions.

C, N and OM contents

Carbon contents were higher in the light and intra-aggregate fraction SOM than in

mineral bound material. At 5 - 17 cm, C:N ratios were consistently higher in the

intra-aggregate and mineral-bound fractions than light fraction or whole soil (Table

3.7). In addition, C:N ratios were considerably higher in the 20 - 30 cm whole soil

than 5 - 17 cm whole soil (Fig. 3.7), consistent with earlier results from the full profile

(Fig. 3.3)
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Figure 3.7: Carbon and nitrogen content and C:N ratio of SOM density fractions. Error bars
(C, N and C:N) refer to 1 S.E. (n = 3)

Fraction mass balance

Using mass balance calculations I estimate that for both A and B composites, ap-

proximately 82 % of total soil carbon was found in the light fraction, 12 % in the

intra-aggregate fraction and 6 % in the mineral-bound fraction. Only small amounts

of DOC were lost during fractionation.
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FTIR

The FTIR spectra of the fractions and whole mineral soil (Fig. 3.8) showed four

important absorption band regions. Absorption bands for alcohol, phenol and water

O-H groups (3300 - 3400 cm−1) were particularly strong in the 5 - 17 cm fractions.

Absorption bands for aliphatic CH, CH2 and CH3 groups (2850 - 2960 cm−1) and for

amide C=O, aromatic C=C, and N-H groups (∼ 1590 cm−1) were smaller in the 20 -

30 cm whole soil, relative to the fractions.

Strong absorption bands for polysaccharide C-O groups (1030 - 1170 cm−1) and/or

Si-O bonds of soil minerals (1000 - 1100 cm−1) were apparent in all samples. Compar-

ing the spectra from unashed and ashed samples (Fig. 3.8) it appears that a portion of

the absorption in this region in the light and intra-aggregate fractions is attributable

to polysaccharides. In the 5 - 17 cm mineral-bound fraction and 20 - 30 cm samples,

polysaccharide groups are likely to be masked by the mineral matrix Si-O groups.

Bands in the region of 3695 cm−1 are likely to represent kaolinite surface hydroxyl

groups. This is the only region for which relative absorption was always higher in

the spectra of ashed samples, because after ashing the inorganic material is a higher

proportion of the overall mass. The ratio of aliphatic : aromatic peaks (2900 and

1630 cm −1 respectively) is lowest in the mineral-bound fraction, despite a high min-

eral content. This suggests that although kaolinite - aliphatic C interactions are an

important source of mineral-OM stability in many soils, they are not in this case.
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Figure 3.8: Fourier Transform Infra-red spectroscopy of whole soil and SOM density fractions
(left) and mineral residue from the same samples after ashing (right). Black lines show
composite A, grey lines composite B.

13C CP-MAS NMR Spectroscopy

Alkyl and O/N-alkyl groups were dominant in all fractions and whole soils (Figs.

3.9 and 3.10). Alkyl-C compounds formed a greater proportion of total C in 20 - 30

cm soils than all 5 - 17 cm samples (ANOVA, p <0.05). Within the 5 - 17 cm samples,

the alkyl-C component was lowest in the light fraction. The dominant alkyl peak

at 30 ppm includes two distinct sub-peaks, which to my knowledge have not been

described elsewhere. In both composites, the peak to the right is more prominent in

the 20 - 30 cm whole soil, while the peak on the left is larger in the 5 - 17 cm whole

soil, although lower in all 5 - 17 cm fractions. More work is clearly required to identify

the source of these peaks, but I tentatively suggest that they could simplistically be

explained as suberin- and cutin-derived components, since the 20 - 30 cm horizon

is likely to be higher in suberin from root sloughing and the 5 - 17 cm soil is likely

to be higher in undecomposed cutin. Alternatively, the left-hand peak may be a

water-soluble sugar that was lost from the fractions during flotation.

The alkyl-C:O-alkyl-C ratio was higher in the 20 - 30 cm soils than in any of the

5 - 17 cm samples (Fig. 3.11), and amongst the fractions of 5 - 17 cm soil the ratio

was around double in the intra-aggregate fraction, and lowest in the light fraction,

consistent with other findings from a different soil type (Sohi et al., 2001). A high

alkyl-C : O-alkyl C ratio is an indicator of humified or microbially transformed SOM;

this ratio is shown to increase over time in freshly added leaf litter (Webster et al.,

2000). Within each category the ratio was higher for composite A than for composite

B, but the relationship between categories was consistent for both composites. Later

results provide a convincing explanation for the difference between replicates (see

section 5.2.4).
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Figure 3.9: 13C CP-MAS NMR spectroscopy for composite A density fraction and whole soil
samples.
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Figure 3.10: 13C CP-MAS NMR spectroscopy for composite B density fraction and whole soil
samples.
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Thermogravimetric Analysis

Three main peaks are visible in the derivative thermogravimetry (Fig. 3.12), at ap-

proximately 100, 300 and 500 ◦C. Mass lost from below 150 ◦C can be assumed to

originate from bound water. Organic material oxidised at lower temperatures (such

as in the peak at 250 - 350 ◦C) is described as labile, while mass loss at higher temper-

atures represents recalcitrant material, resistant to oxidation at 300 ◦C. T50 was lower

in the mineral-bound fraction than light or intra-aggregate fractions (Table 3.1).

TGA showed no significant differences between the light and intra-aggregate frac-

tions (Fig. 3.12), despite the differences shown in the NMR and FTIR spectra. Com-

parison of peak areas showed higher mass loss in the second (300 ◦C) peak range

for mineral-bound OM, compared to light and intra-aggregate material (ANOVA, p

< 0.01). Mass loss of mineral-bound fraction material was lower in the recalcitrant

peak ranges (ANOVA, p < 0.01), with no significant differences in the third (500 ◦C)
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peak range.

The large labile peak and lower T50 of the mineral-bound material (Table 3.1)

indicate the presence of polysaccharides (Rovira et al., 2008), and are typical results

for a heavy fraction separated at high density (Tonon et al., 2010).

Figure 3.12: Derivative thermogravimetric analysis of SOM fractions: percentage of remain-
ing mass lost per 1 ◦C (derivative of the total mass loss). Solid line is composite A, dashed
line is composite B. Lines are smoothed by a moving window average of width 20 ◦C. Shaded
area represents 1σ of this window.

Table 3.1: Thermogravimetric characteristics of 5 - 17 cm SOM fractions. T50 is the tempera-
ture by which 50 % of the mass of organic matter in the sample was combusted. AR is the
area of the ’recalcitrant’ peak as a fraction of the total OM mass loss.

Fraction Composite T50 (◦C) AR (%)
Light A 408 45.9

B 424 44.3
Intra- A 459 45.5
aggregate B 421 45.8
Mineral- A 379 48.3
bound B 370 46.6
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ICP-OES

ICP-OES analysis of trace metals showed that all fractions and whole soils had high

concentrations of Fe, Al, P and Ti. However, only Ti content seemed to be correlated

to ash content, while trace metals that act as plant micronutrients (Mg, Ca, Cu, P, Fe

and S) were higher in the light fractions than the mineral-bound fractions. Likewise,

some plant-associated metals were much lower at 20 - 30 cm than 5 - 17 cm (Mg,

Ca, P). Fe concentrations showed a very strong positive correlation with C content of

fractions and whole soils (r = 0.95, p < 0.0001, Fig. 3.13). Within each composite, the

amount of Fe present per g C consistently followed the order mineral-bound » whole

soil 5 - 17 cm > intra-aggregate > light fraction, with composite A values consistently

higher than composite B.

Al concentrations were higher in the intra-aggregate fraction than the light or

mineral-bound, and Cu concentrations were higher in both whole soils than in any

fractions, although not retained in the DOM, perhaps indicating an interaction with

I− anions during the fractionation procedure. Of all the elements studied, only P was

significantly retained in the DOM fraction.
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Table 3.2: Trace elemental composition of whole soils, SOM fractions, and DOM as measured by ICP-OES. standard deviations were calculated as the
standard deviation from the mean value for three consecutive determinations of the concentration of a sample solution. Total elemental concentrations
for solid samples were corrected for 105 ◦C moisture contents

Al Ca Cr Cu Fe Mg Ni P S Ti V
mg kg −1 mg kg −1 mg kg −1 mg kg −1 mg kg −1 mg kg −1 mg kg −1 mg kg −1 mg kg −1 mg kg −1 mg kg −1

5 - 17 cm

Whole soil A 10573 ± 120 28 ± 0.2 16 ± 0.3 23 ± 0.2 4832 ± 62 197 ± 2 1.68 ± 0.07 784 ± 7 182 ± 1 1950 ± 445 22 ± 0
B 8473 ± 10 62 ± 1 10 ± 0 14 ± 0 2820 ± 8 146 ± 1 7.1 ± 0.0 382 ± 6 80 ± 1 1438 ± 243 15 ± 0

Light fraction A 5835 ± 63 143 ± 1 9.1 ± 0.1 7.1 ± 0.1 3478 ± 22 227 ± 0 4.0 ± 0.1 1460 ± 18 1524 ± 11 548 ± 298 10 ± 0
B 7040 ± 64 316 ± 2 7.7 ± 0.5 6.4 ± 0.3 2930 ± 36 218 ± 4 1.0 ± 0.1 1422 ± 3 1506 ± 1 388 ± 138 9.7 ± 01

Intra-aggregate A 7754 ± 33 96 ± 0 12 ± 0 4.0 ± 0.1 2978 ± 22 305 ± 3 2.3 ± 0.1 3307 ± 23 1080 ± 12 1480 ± 160 16 ± 0.1
B 10452 ± 64 222 ± 5 15 ± 0 5.3 ± 0.1 3303 ± 36 414 ± 5 3.5 ± 0.1 5662 ± 13 1489 ± 7 949 ± 317 17 ± 0.1

Mineral-bound A 6470 ± 142 26 ± 1 8.4 ± 0.3 0.84 ± 0.14 1305 ± 28 121 ± 0 0.42 ± 0.04 142 ± 0 171 ± 2 1892 ± 360 17 ± 0
B 5391 ± 58 < 3 (LOD) 5.9 ± 0.2 < 0.3 (LOD) 732 ± 9 98 ± 2 < 0.07 (LOD) 80 ± 3 131 ± 2 1790 ± 259 14 ± 0

DOM A 1.1 ± 0.0 4.5 ± 0.0 < 0.01 (LOD) 0.22 ± 0.03 < 0.04 (LOD) 1.8 ± 0.0 < 0.001 (LOD) 284 ± 11 2.9 ± 0.0 0.043 ± 0.009 < 0.001 (LOD)
B 1.0 ± 0.0 3.4 ± 0.1 0.011 ± 0.002 0.24 ± 0.00 < 0.04 (LOD) 0.54 ± 0.01 0.011 ± 0.000 100 ± 4 2.2 ± 0.0 < 0.002 (LOD) < 0.001 (LOD)

20 - 30 cm

Whole soil A 4020 ± 23 < 3 (LOD) 27 ± 0 9.0 ± 0.5 3666 ± 21 25 ± 1 3.5 ± 0.0 323 ± 4 283 ± 5 2095 ± 2 40 ± 0
B 3554 ± 40 < 3 (LOD) 15 ± 1 11 ± 0 1619 ± 20 < 1 (LOD) 7.1 ± 0.1 193 ± 3 93 ± 4 1714 ± 16 28 ± 0
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Figure 3.13: Fe association with SOC in Harwood forest fractions and whole soils. Pale blue -
whole soil 5 - 17 cm; dark blue - whole soil 20 - 30 cm; yellow - light fraction 5 - 17 cm ; orange
- intra-aggregate 5 - 17 cm; red - mineral-bound fraction 5 - 17 cm. Circles are composite A,
triangles are composite B.

3.4 Discussion

Chemical characterisation SOM from Harwood soil horizons, particle size fractions

and density fractions revealed strong differences in chemical composition down the

profile, some differences between density fractions and small differences between

particle size fractions, indicating that burial and to some extent mineral associations

and microaggregate formation play a role in the stabilisation of SOM in Harwood

forest.

Soil carbon and OM content are all generally high, for the soil type, in the upper

horizons of Harwood forest soil (See Fig. 3.3). Conen et al. (2005) found carbon stocks

of 21.3 kg m−2 at this site, to 45 cm depth, while the global mean for Humic Gleysols
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in the top 50 cm is 19.4 kg m−2 (Batjes, 1996). These samples were taken without

consideration of bulk density, so it is not possible to calculate an unbiased estimate

of carbon stocks integrating depth. I estimated soil carbon stocks from 0 – 20 cm to

be 30.7 kg m−2, using the bulk density of later samples (see Chapter 7).

3.4.1 Elemental ratios

Carbon to nitrogen ratios in organic matter reflect the availability of plant material to

microbial degradation, insofar as organic matter with a low nitrogen content and a

high carbon content is likely to experience nutrient-limited decomposition. However,

in the presence of an external N supply (for example, due to mycelial N transport

(Fellbaum et al., 2012)), microbial degradation can also result in a decrease in C:N

ratios (Conen et al., 2008), as energy-rich high carbon compounds are preferentially

mineralized. The C:N ratios of Harwood forest soil are high (Figs. 3.3 and 3.5),

reflecting the acidic (see section 3.3.1), peaty nature of Harwood soils; the usual

range of C:N for UK topsoils is 10 - 12 (Stevenson, 1994). The global mean C:N ratio

from 0 – 30 cm has been estimated at 12.7 for gleysols and 25.8 for histosols (peat)

(Batjes, 1996). Although Harwood forest soil has been described as a peaty gley soil,

some Fe precipitation is visible in the soil profile, suggesting podzolisation. The high

C:N ratios here are also more characteristic of a podsol, for which the global mean

C:N is 23.8 (Batjes, 1996).

Although C:N typically decreases with depth due to increased microbial process-

ing (Haberhauer et al., 1998), C:N ratios in Harwood increased with depth (Fig. 3.3).

C:N has previously been shown increasing with depth at the same site (20.6 from

5 - 15 cm, 29.9 from 20 - 30 cm, Cross and Grace (2010)) and in the surrounding

unplanted grassland (19.2 at 5 cm to 30.8 at 30 cm, Ball et al. (2007a)), although the

trend is not consistent between similar-aged stands within Harwood forest (Ball et al.,

2007a). Karhu et al. (2010b) showed C:N ratios that decreased with depth as expected

in Boreal spruce and pine plantations, while C:N of particulate OM (POM) (> 63 µm
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and < 1.85 g cm−3, equivalent to the light fraction described here) from the same

horizons increased with depth. The light fraction here accounted for 82 % of total

soil carbon in the 5 - 17 cm soil fractionated here (see section 3.3.3), which may ac-

count for the C:N ratio of bulk soils increasing with depth like the POM fraction in

Karhu et al. (2010b). The light fraction or POM is primarily composed of relatively

intact plant structures; a possible explanation for the increasing C:N with depth is

that cross-linking proteins are initially more rapidly decomposable than the relatively

recalcitrant structural carbohydrates, leading to a gradual depletion of N with time

manifesting as an increase in C:N down the soil profile. Mycorrhizae may also play

a role in the upwards redistribution of mineralized N (Fellbaum et al., 2012). The dip

in the C:N ratio in the 5 - 17 cm horizon can be attributed to a build up of humic

acids and a high degree of microbial transformation here.

C:N ratios were lower in the light fraction than in both intra-aggregate and

mineral-bound fractions, in contrast to expectations and clear established trends from

other studies using density fractionation (Conen et al., 2008; Dorodnikov et al., 2011).

Conen et al. (2008) predict lower C:N ratios in mineral-bound SOM due to progres-

sive C loss during microbial transformations: a possible explanation for the lower

C:N ratio in light material in Harwood is that uncomplexed OM has in fact under-

gone a higher degree of microbial transformations than aggregate-associatedmaterial

without forming aggregates.

3.4.2 Functional group chemistry

Results from 13C-CPMAS NMR show that the dominant carbon forms in Harwood

SOM are alkyl- and O-alkyl carbon, while FTIR results show also that carboxyl, ke-

tone and methyl groups are prevalent in all depths and fractions. While neither

analysis can be interpreted strictly quantitatively, the relative size of peaks gives

some information about the distribution the major groups of organic compounds in

fractions and horizons which can be related to the age, degradability and stability
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of SOM. While the very low incidence of lignin-derived signals (such as might be

found in the NMR spectra at 150, 130 or 112 ppm) is surprising, the very high alkyl-

C content in these forest soils can be partly explained by a high content of cutins

and suberins deriving from needle and root waxes respectively (Kögel-Knabner et al.,

1992).

Haberhauer et al. (1998) studied the composition of three forest soils including

one peaty podzol under an Irish Sitka spruce forest. Their results show an increase

in the ketone : carboxyl peak ratio with depth, consistent with our FTIR results, and

suggesting a general enrichment of aromatic groups in progressively older horizons.

They also show decreases in FTIR peaks in the range from 1510 to 1230 cm −1 with

depth, which were not apparent in our results. However, Baldock et al. (2004) suggest

that over the timescale of soil formation, it is alkyl rather than aromatic C which

accumulates with age. NMR results in this study also tentatively suggest that alkyl-

C may have accumulated with age in the lower horizon, while no firm conclusions

can be drawn from the NMR data regarding the small aromatic peaks.

A strong increase in Si-O peaks at 1100 cm −1 and < 1000 cm −1 reflect an in-

creasing overall mineral content with depth (see also Fig. 3.3), and is consistent with

(Haberhauer et al., 1998). Haberhauer et al. (1998) did not observe any differences

between the horizons in the 2900 cm −1 peak region, but the sharp increase in the

polysaccharide peak at 1050 cm −1 in these samples was also found in all three soils

in their study. The decrease in polysaccharides seen here in the leached mineral layer

is consistent with what might be expected of mobile, water-soluble sugars.

Lehmann et al. (2007) used synchrotron-based FTIR to show that aliphatic groups

were spatially correlated with well hydrated kaolinite surfaces, although polysaccha-

ride groups were not, and overall carbon distribution in aggregates was essentially

random. Our results seem to show slightly higher aliphatic peaks (∼ 2900 cm −1) in

the silt fraction, which also had the highest mineral content. However, this relation-

ship is not reflected in the density fractions, where the O-H peak is high even in the
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light and intra-aggregate fractions.

The alkyl-C:O-alkyl-C ratio was higher in the 20 - 30 cm soils than in any of the

5 - 17 cm samples (Fig. 3.11), and amongst the fractions of 5 - 17 cm soil the ratio

was around double in the intra-aggregate fraction, and lowest in the light fraction,

consistent with other findings from a different soil type (Sohi et al., 2001). A high

alkyl-C : O-alkyl C ratio is an indicator of humified or microbially transformed SOM;

this ratio is shown to increase over time in freshly added leaf litter (Webster et al.,

2000).

3.4.3 Metal ion chemistry

Turchenek and Oades (1979) compared the metal concentrations of density and par-

ticle size fractions and found that as in this study, Mg, Ca, Cu, P and Fe were concen-

trated in the lighter fractions while Ti, Fe, Si and P were concentrated in the heavy

fractions. Ducaroir and Lamy (1995) analysed light (< 1.0 g cm −3) and heavy frac-

tions of a fine sand fraction of a cultivated soil and showed much higher levels of

S, Cu, Ni Pb and Zn in the lighter fraction, which was also the case for both light

fractions in this study, despite the much higher density cut-off.

Fe oxide stabilisation is known to be a very important source of mineral-OM asso-

ciations in podzolic soils such as this (Kögel-Knabner et al., 2008; Sollins et al., 2009).

The very strong positive correlation between Fe and C contents here (Fig. 3.13) seems

to indicate an important role for Fe-humus complexes and Fe-oxide interactions in

the stabilisation of Harwood SOM. Alternatively, it may reflect an important role for

organic matter in the precipitation of Fe oxides from aqueous solution.

Light fraction samples had a slightly lower Fe content per g C than the other

fractions, confirming that the light fraction is less mineral-associated than the other

fractions and whole soils, although the Fe concentration was still high. (Sohi et al.,

2001) found that C:Fe ratios consistently at least doubled from the light fraction to

the intra-aggregate fraction, across three soil types. Here, C:Fe ratios were an order
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of magnitude higher than the C:Fe ratios reported by Sohi et al. (2001), increasing

by only ∼ 15 % from light to intra-aggregate fraction. The relatively small effect of

fractions on the relationship between C and Fe, combined with the high overall C:Fe

(∼1:400 molar ratio) implies that OM-Fe associations play a small but strong role in

OM protection, and moreover that OM is more important for Fe oxide stabilisation

in soils than vice versa.

3.5 Conclusions

I characterised Harwood forest soils from different horizons, and particle size and

density fractions of the 5 - 17 cm Oi horizon. Soil horizons show an expected de-

crease in C, N and OM with depth, and also an increasing C:N ratio with depth

which was not expected. FTIR spectroscopy indicates a general increase in aromatic-

ity with depth as well as mineral horizons (but not the leached mineral horizon) rich

in aliphatic groups. Within the particle size fractions, C and N contents were high

in the clay fraction but otherwise decreased with decreasing particle size, and C:N

ratio decreased with particle size; FTIR spectroscopy indicated that polysaccharide

content was higher in the silt and coarse sand fractions than clay and fine sand, and

also that the highest aliphatic content was found in the silt fraction. Amongst den-

sity fractions, C, N and OM contents were similar in the light and intra-aggregate

fractions and very low in the mineral-bound fraction, but C:N ratio increased from

<light < intra-aggregate < mineral-bound. 13C CP-MAS NMR of density fractions

and two horizons indicated that all samples are rich in alkyl-C, and that the alkyl-C :

O-alkyl-C ratio, an indicator of humification, is highest in the intra-aggregate fraction

and the 20 - 30 cm whole soil. TGA analysis indicated that the 20 - 30 horizon may be

rich in polysaccharides, and ICP-OES analysis of trace metals indicated that Fe oxide

stabilisation is very important in this soil.
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Chapter 4

Soil respiration and temperature

response from Harwood forest soils

and density fractions

4.1 Introduction

Determining the temperature sensitivity of respiration from different SOC pools has

been a research priority for many groups (see Davidson and Janssens (2006), von

Lützow and Kögel-Knabner (2009) and Conant et al. (2011) for reviews). Since phys-

ical fractionation has shown some promise for the separation of pools with differ-

ent turnover times (Zimmermann et al., 2007; Sohi et al., 2001), incubating isolated

physical fractions representing SOM pools was an obvious next step (Leifeld and

Fuhrer, 2005; Plante et al., 2010; Crow et al., 2006; Swanston et al., 2002). Incubation of

isolated fractions presents several methodological problems however. Many people

have questioned the extent to which isolated fractions can be said to behave in the

same way after isolation, whether because of physical changes during fractionation,

inhibitory effects of separation media (Crow et al., 2006; Magid et al., 1996) or the
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absence of other SOC pools with which co-metabolism might occur.

Some previous efforts to incubate isolated fractions have focused on particle size

fractionation methods (Leifeld and Fuhrer, 2005; Plante et al., 2010; Sey et al., 2008)

while others have used density (Crow et al., 2006; Swanston et al., 2002) or chemical

fractionation (Plante et al., 2010). Particle size fractionation of Harwood forest soils

in this study yielded fractions that were insufficiently different in intrinsic chemi-

cal properties to justify separate incubation (see section 3.3.2). Since the difference

in decomposability between particle size fractions is likely to depend mostly on the

physical structure of aggregates and the location of SOM with respect to surfaces,

cracks and pore spaces, incubation of isolated particle size fractions is likely to be

sensitive to packing artefacts. Limits to decomposition experienced in situ are there-

fore unlikely to be reflected by incubation of separates. Ideally, fractions incubated

in isolation should represent pools with turnover rates dependent on intrinsic prop-

erties. I used density fractions separated as described by Sohi et al. (2001) because

my results indicated that density fractionation showed more potential to separate

SOM semi-permanently sorbed to mineral surfaces and highy degraded SOM within

aggregates from ’fresh’ SOM.

Another common approach to using physical fractionation to investigate the res-

piration of different SOC pools while avoiding the potential problems involved in

incubating isolated fractions is to fractionate soils after incubation of whole soils at

different temperatures (Karhu et al., 2010a; Creamer et al., 2011). Mass balance and

isotope mass balance can be used to infer the proportion of SOC lost from each frac-

tion during the whole soil incubation. After the incubation of isolated fractions and

whole soils in this study, I re-fractionated the incubated whole soils and fractions af-

ter incubation at two temperatures, to measure the relative loss of different fractions

within the whole soils, and conversion from one fraction to another in the fraction

incubations.
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A further commonly used method of separating labile and stable respiration re-

sponses in incubation studies is to use the decline in respiration rates over time as

the initial stock of labile substrate becomes depleted (Karhu et al., 2010b; Hartley and

Ineson, 2008; Townsend et al., 1997). Slowly degrading SOM cut off from organic car-

bon inputs is not realistic, because decomposition of recalcitrant SOM is affected by

the presence of labile SOM. However the labile depletion approach is arguably one of

the least artificial and least invasive methods available to study the decomposition of

labile and recalcitrant materials. Comparing respiration in soils at different temper-

atures over the course of a long term incubation, Townsend et al. (1997) showed that

’intermediate’ SOC was just as sensitive to temperature as ’active’ SOC. Hartley and

Ineson (2008) later used the same approach to show that the SOC remaining after a

long pre-incubation was in fact more sensitive to temperature than the ’active’ SOC

respired at first– providing evidence to support the prediction based on the Q theory

that recalcitrant or humified SOM should be more temperature sensitive due to a

larger molecular weight.

4.2 Aims

In this chapter I present data from two long term incubations of whole soils (5 - 17

cm and 20 - 30 cm) and soil density fractions (5 - 17 cm), designed to estimate the

temperature sensitivity of respiration in different SOC turnover pools. I hypothesise

that the relative rates of respiration in density fractions will follow the order Light

fraction >> intra-aggregate fraction > mineral-bound fraction, based on the stabilising

effect of mineral surface and metal interations in the mineral-bound fraction, and

on the high proportion of well-humified material in the intra-aggregate fraction. (See

Fig. 3.11). I expect relative respiration rates amongst the whole soils to be lower in the

20 - 30 cm than 5 - 17 cm soil. According to Q theory, and based on the high degree
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of humification, I expect respiration to be most temperature sensitive in the intra-

aggregate fraction, and more temperature sensitive at 20 - 30 cm soil than at 5 - 17

cm. Based on the predicted insensitivity of mineral-OM interactions to temperature,

I expect temperature sensitivity to be lowest in the mineral-bound fraction.

4.3 Methods

Soil density fractions were separated by the Sohi et al. (2001) method described in

Chapter 2, from two composite 5 - 17 cm soil samples collected in October 2008 and

stored at 4 ◦C until fractionation. During the main experiment for establishing res-

piration rates at four different temperatures over five months, rates of CO2 evolution

were determined by gas chromatography (GC). This incubation will hereafter be re-

ferred to as the "GC incubation". Subsamples were also incubated at two different

temperatures in sealed vessels for up to nine months, for the purposes of collecting

the accumulated CO2 for isotopic analysis. This incubation will be referred to as the

"cumulative incubation".

4.3.1 Sample preparation

Samples were collected from Harwood forest in October 2008 in two composite repli-

cates as described in Chapter 2. Isolated fractions (light, intra-aggregate and mineral-

bound) and whole soils from 5 - 17 cm, in two composite replicates as described in

Chapter 2, were dried immediately after fractionation for at least 24 hours at 105 ◦C,

and stored in airtight containers. These samples were sterilised by γ-irradiation at

the Isotron facility, Sheffield, UK, to reduce differences in microbial biomass between

fractions due to the fractionation procedure. The samples were subjected to 26 kGy,

sufficient to kill all living soil organisms while minimising organic matter transfor-

mation. Irradiated samples were left for two weeks before reinoculation, to prevent

residual free radicals released during the irradiation from affecting the inoculum.
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Fresh whole soil samples for preparation of inoculum solution were collected

from the same sites and depths as the previous collections, during September 2009.

The soil samples were seived at 2 mm and combined into composites in the same

manner as the previous samples. Each 100 g soil subsample was mixed with 1 l

distilled water and four 10 mm ø glass beads, and shaken in an end-over-end shaker

(Laboshake Rotoshake RS12, Gerhardt, Germany) for two hours at 10 Hz (rotation

arc radius 50 cm) to separate macroaggregates. The supernatant was retained after

centrifugation at 100 x g and filtered through a seive to remove particles > 63 µm.

Sterilised samples were rewetted to 60 % WHC using this inoculum solution. All

samples (including whole soils) were mixed 2:1 (by mass) with ashed, carbonate-free

white quartz sand prior to rewetting, and 2 ml of a carbonate-free nutrient solution

diluted to 5 ml l−1 (Formulex, Growth Technology, Taunton, UK; see Appendix B)

was added to the inoculum solution. Subsamples of the inoculum solutions were

analysed by mass spectroscopy for total organic carbon and δ13C, and were found to

contain 1000 - 1200 mg/L TOC.

Alongside the sterilised and reinoculated samples, whole soil subsamples from 5

-17 cm and 20 - 30 cm were prepared without sterilisation for incubation in the GC in-

cubation (both 5 - 17 cm and 20 - 30 cm whole soils) and in the cumulative incubation

(20 - 30 cm whole soils only). The 5 - 17 cm whole soils in this case were the ’fresh’

samples collected for the preparation of inoculum in September 2009. One of the 20

- 30 cm whole soils was collected in January 2009 and the other in September 2009.

All the ’unsterilised’ samples were air-dried and then re-wet to 60 % WHC before

incubation. Water holding capacity (WHC) was determined by weighing soil into a

Buchner funnel lined with filter paper, saturating with deionised water, allowing to

drain overnight in a humid environment, and then drying at 105 ◦C. The WHC is the

gravimetric water content of the subsample after draining overnight.
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4.3.2 GC incubation

Incubation conditions

Samples incubated for GC measurement were contained in either 50 ml Erlenmeyer

flasks, 15 ml glass test tubes, or 1.8 l adapted Kilner jars, all sealed with pierced

parafilm, except during the measurement period when these were replaced with

Subaseal® rubber septum stoppers. One sample of each type (Light fraction, intra-

aggregate fraction, mineral-bound fraction, sterilised whole soil from 5 - 17 cm, un-

sterilised whole soil from 5 - 17 cm, and unsterilised whole soil 20 - 30 cm) from

each composite (A and B) was incubated at each temperature, 10, 15, 25 and 30 ◦C.

Measurements began two weeks after inoculation. One headspace sample was taken

at the time of sealing, using a cone-tipped SGE gas-tight syringe (SGE, Melbourne

Australia). During sampling, the containers were vented by a second needle in the

septum, to maintain laboratory air pressure inside the containers. The sample was

flushed 6 times before taking a sample of 3 ml, which was compressed to 2 ml and

released before injection into the GC to normalise injection pressure to laboratory

air pressure. The containers were left sealed for between one and six hours depend-

ing on the rate of accumulation, and then a second headspace sample was analysed.

During the second headspace sampling the venting needle was not used. The GC

incubation ran for five months in total: measurements began after two weeks, and

ran twice a week at the start of the incubation, decreasing to twice a month by the

end of the incubation.

CO2 determination by GC

Headspace gases were analysed for CO2 content by gas chromatography (GC) on a

Perkin Elmer Autosystem XL GC system (Perkin Elmer Life Sciences, Wellesley MA,

USA) fitted with a thermal conductivity detector on a 1.5 m column of Porapak Q.

The oven temperature was 50 ◦C, and the carrier gas was helium. GC peaks were
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analysed using PeakSimple software. 400, 1000, 1500, and 2000 ppm CO2 standards

(BOC) were analysed to calibrate at the start and end of each run; 400 and 2000

ppm standards were analysed every ten samples during the run. Headspace CO2

concentrations were measured at the beginning and end of each measurement period,

which lasted between two and six hours. Respiration rates (F) were calculated in µg

CO2-C g soil-C−1 d−1 from the change in headspace CO2 concentration (Cv, in ppmv),

the headspace volume of the flask (V, in L), the duration of the measurement period

(t), the dry mass of the soil (W, in g), the carbon content of the soil (S, in %), and the

temperature of the incubation (T, in K) using the following equation:

F =
Cv × M× P

R× T
×

V

W × S/100× t
(4.1)

where M is the molecular weight of C (12 µg µmol−1), P is the barometric pressure

(1 atm) and R is the universal gas constant (0.0821) (Robertson et al., 1999).

4.3.3 Cumulative incubation

Samples incubated for collection and radiocarbon dating of CO2 were left to accumu-

late in sealed Kilner jars. Two sampling ports were drilled into the jar lids attached

to Nalgene tubing and the joints were sealed with Plastidip®. Air inside the sealed

jars was scrubbed of atmospheric CO2 by drawing through soda lime. The jars were

left sealed until 5 - 10 ml CO2 had accumulated (between 35 and 278 days), provid-

ing sufficient respired CO2 for isotopic analysis without limiting microbial activity.

Headspace CO2 was measured before sampling using a continuous-loop infrared gas

analyser, scrubbed of CO2 using sodalime and connected to the nalgene sampling

tubes (EGM-4, PP Systems, Hertfordshire UK). Headspace CO2 was collected for iso-

topic analysis using a zeolite molecular sieve sampling system (Hardie et al., 2005).

Headspace gases were drawn through a molecular sieve cartridge, trapping CO2.
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CO2 was then recovered cryogenically while the cartridge was heated to 500 ◦C to re-

lease the CO2. For quality assurance, a known CO2 gas standard was released inside

a scrubbed incubation jar and the CO2 collected using the same method. A further

gas standard was released inside a scrubbed jar containing NaI residues, to test for

a physical fractionation of C isotopes due to sorption and resorption. This jar was

incubated for two weeks before collection and reanalysis of headspace CO2.

4.3.4 Temperature sensitivity of soil respiration

The temperature sensitivity of respiration during the GC incubation was calculated

from two standard models of temperature response. The first is a simple exponential

curve described by the equation

R(T) = R0e
a0T (4.2)

where R0 > 0 and is the rate of respiration at 0 ◦C, and a0 > 0 and is the temper-

ature sensitivity coefficient. The exponential relationship assumes that the temper-

ature sensitivity is constant with respect to temperature. For this reason it is only

appropriate for intercomparison within a small temperature range and at low tem-

peratures, where temperature does not yet restrict enzyme activity. The Arrhenius

equation was also applied to the same data for comparison:

R(T) = R0e
a1/RT (4.3)

where R0 > 0 and is the maximum rate of respiration and where a1 < 0, and is equal

to −Ea, the activation energy of the oxidation reaction (kJ K−1 mol−1), R is the ideal

gas constant, and temperature is in K. Q10 is calculated from this relationship as the

factor of increase over a 10 ◦C increase in temperature.

Q10 = (R2/R1)
(10/(T2−T1)) (4.4)
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In the exponential model, Q10 is constant across temperatures, while in the Arrhenius

model it is not. For the purposes of comparison Q10s given here for the Arrhenius

equation are calculated between 10 and 30 ◦C. Q10 values from the cumulative incu-

bation were calculated from the initial rate of CO2 accumulation measured at day 35,

and were calculated from measured respiration rates using equation 4.4

4.4 Results and discussion

4.4.1 Soil respiration from different SOM fractions

Respiration rates during the GC incubation showed a near-exponential relationship

with temperature for all SOM fractions and whole soils at both depths (Fig. 4.1).

Respiration rates per g C were considerably lower in all isolated fractions than in

the bulk soil from 5 - 17 cm (Friedman test and χ2, all p < 0.01). This could be the

result of small amounts of Na/I residues remaining from fractionation, which were

found in association with organic matter (see Appendix A). Composite A and B

mineral-bound fractions at 30 ◦C had very different rates of respiration- composite A

rates were consistently between 3 and 10 times higher than composite B. Since there

were only two samples it was not possible to identify either one as an outlier, and

so all subsequent temperature response calculations for the mineral-bound fraction

were made using only 10, 15 and 25 ◦C values. Excluding the composite A 30 ◦C

sample with very high respiration rates, there were no significant differences at any

temperature in respiration rates per g C between fractions at 5 - 17 cm (Friedman test

and χ2, p > 0.05). Including both 30 ◦C mineral-bound samples, respiration rates at

30 ◦C were higher in the mineral-bound fraction than in either the intra-aggregate

or light fractions (Friedman test and χ2, p < 0.05). This result is the opposite of

what was expected, since mineral protection is considered to be a long-term stabil-

isation mechanism. However, higher respiration rates are consistent with chemical

characterisation of the fractions, which showed a high proportion of chemically labile
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material in the mineral-bound fraction (Thermogravimetric Analysis and FTIR, Sec-

tions 3.3.3 and 3.3.3). Chemically labile material stabilised by mineral interactions in

soils was relatively bioavailable after fractionation. This suggests that any protection

of SOM in close mineral interactions is the result of microaggregates, which were

broken down during fractionation, rather than the OM-mineral bonds themselves.

However, it should be noted that the tenuous difference in respiration rates between

isolated fractions was small in comparison to the difference between soil horizons,

and between sterilised and unsterilised soil.
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Figure 4.1: Soil respiration from three soil fractions and from whole soil at two depths,
spanning five months (two months for 20 - 30 cm whole soil). Lines and r2 values respresent
the best fit of equation 4.2 to all values at all temperatures within a single composite (40
datapoints, but n = 4). Red lines show composite A, blue lines show composite B.
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Figure 4.2: Soil respiration from three soil fractions and from whole soil at two depths during
the first half and the second half of each incubation period. Note that the incubation period
was shorter for the 20 - 30 cm whole soil. Lines respresent the best fit of equation 4.2 to
all values at all temperatures within a single composite (40 datapoints, but n = 4). Red lines
show composite A, blue lines show composite B.

4.4.2 Soil respiration from whole soils at different depths

Respiration rates per g C from 20 - 30 cm whole soils were lower than respiration

rates from both 5 - 17 cm soils throughout the incubation (Fig. 4.1 Friedman test

and χ2, p <0.05). Previous research comparing respiration from the same horizons

in Harwood forest similarly found that respiration from 5 - 15 cm soil was more
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than twice as high as from 20 - 30 cm soil on a g-soil-C basis (Cross and Grace,

2010), although their respiration values were considerably higher than those reported

here. Neither of the unsterilised whole soils (5 - 17 cm and 20 - 30 cm) showed

a particular decline in respiration over time (Figs. 4.6, 4.2) although the sterilised

and reioniculated whole soil from 5 - 17 cm declined over time in all but the 15

◦C samples, indicating a depletion of available substrates. While the SOM substrate

for sterilised and unsterilised 5 - 17 cm whole soil should have been identical, the

sterilised and reinoculated whole soil contained an extra mg of labile DOC in the

form of the inoculum solution. There are two possible explanations for the depletion

of labile material in the sterilised soil and not the unsterilised. Either the early high

respiration values represent the decomposition of labile DOM, and microbial biomass

in the inoculum, and microbial necromass leftover from the sterilisation, and the later

respiration values represent the true value for SOM respiration; or the decline is the

result of a microbial succession during colonisation of the inoculum community, from

growth-oriented r-selected communities to k-selected communities. Since the isolated

fractions were also inoculated and did not show such a strong decline in respiration

over time (Figs. 4.6, 4.2), it seems likely that the labile material becoming depleted

in the sterilised whole soil is due to microbial necromass, since most of the microbial

biomass in the fractions would have been rinsed out during fractionation. Respiration

rates in some of the composite A mineral-bound fraction samples declined over time,

and these samples experienced the highest proportion of total SOC consumed over

the course of the incubation (see Fig. 4.7) A depletion of available substrates may

explain some of the decline in respiration over time amongst the sterilised samples,

but it doesn’t explain the lack of decline over time in the unsterilised bulk soil.

Despite composite sampling to reduce sample variation and provide samples

closer to the population mean, there were some differences in chemical character-

istics between composites A and B, suggesting more humified OM was present in

composite A (for example in the Alkyl-C : O-alkyl C ratio, see Fig. 3.11). Respiration
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rates also showed differences between composites A and B. Composite A showed

higher respiration rates in both 5 - 17 cm and 20 - 30 cm whole soils, while respira-

tion in isolated fractions was generally higher in composite B. These differences, in

the whole soils at least, are the opposite of what might be expected from the chemical

characteristics of the composites.

As demonstrated in section 3.3.3, SOM at 20 - 30 cm at Harwood showed distinct

chemical properties to whole soil from 5 - 17 cm SOM. In particular, the alkyl-C :

O-alkyl-C ratio of 20 - 30 cm soils was around double the ratio of 5 - 17 cm soils (Fig.

3.11). Subsequent 14C analysis showed that the mean residence time of 20 - 30 cm

SOM was around 1000 years longer than the MRT of 5 - 17 cm soils (see Table. 5.1).

The high mineral content of the 20 - 30 cm soils (Figs. 3.7 and 3.3) suggests mineral

stability may be high in this horizon, while the alkyl-C : O-alkyl-C ratios suggest that

this material may also be intrinsically recalcitrant, and the 14C dates demonstrate that

this material has been stable in situ.

4.4.3 Soil respiration inferred from long term accumulation of CO2

CO2 accumulation in the cumulative incubation showed broad agreement with the

patterns in rates of respiration measured in the open incubation, although the results

are not directly comparable. Respiration during the first month of the cumulative

incubation was higher than recorded for the GC incubation. Respiration rates in the

closed incubation were lower in isolated fractions than whole soils (2-way ANOVA,

p < 0.01) but not significantly different between isolated fractions (2-way ANOVA,

p > 0.05), which ranged from 32 to 100 µg CO2-C g C−1 day−1 at 10 ◦C and 288 to

673 µg CO2-C g C−1 day−1 at 30 ◦C. Comparing only whole soils in the cumulative

incubation, respiration was slightly but not significantly lower (2-way ANOVA, p =

0.06) for the 20 - 30 cm whole soils than the 5 -17 cm whole soil.
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4.5 Temperature sensitivity of soil respiration

Comparing the temperature sensitivity of respiration between isolated 5 - 17 cm frac-

tions both from the GC incubation, using both exponential and Arrhenius models,

and from the cumulative incubation using the Q10 equation directly, Q10 is highest

in the light fraction, lower in the intra-aggregate fraction and lowest in the mineral-

bound fraction (Table 4.1). These differences are significant in the cumulative incu-

bation (1-way ANOVA, p < 0.05) and not significant for either model in the GC incu-

bation. Higher temperature sensitivity in the light fraction than the intra-aggregate

fraction appears to go against the hypothesis, based on Q theory, that more labile

material should have lower temperature sensitivity. However, considering that the

highest rates of respiration were found in the mineral-bound fraction (Fig. 4.1), a

lower temperature sensitivity in this fraction is consistent with Q theory.

Only very slight differences are discernible between Q10 values for respiration

from the other fractions and whole soils. Respiration from whole soil at 20 - 30 cm

seems to have a slightly higher Q10 than respiration from whole soil at 5 - 17 cm,

while respiration from the intra-aggregate fraction at 5- 17 cm seems to be slightly

more temperature sensitive than either whole soil. In the intra-aggregate and 20 - 30

cm whole soils at least, there is a slight increase in temperature sensitivity towards

the end of the incubation. Although this increase falls within the variation shown at

the start of the incubation (for intra-aggregate material), the consistent trend in each

of these suggests that it may be more than chance.

Sterilisation and reinoculation had a small negative effect on overall respiration

rates (Fig. 4.1), but a strong negative effect on temperature sensitivity of respiration,

as is apparent from comparison of the whole soils. Sterilised and reinoculated whole

soil at 5 - 17 cm also showed higher variation in respiration within individual jars,

which is partly reflected in the r2 values calculated for each model fit (Table 4.1), and

partly in the decline in respiration with time (Fig. 4.2),
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Table 4.1: Q10 and Ea of respiration, calculated using an exponential model (equation 4.2) and
the Arrhenius model (equation 4.3) from the GC incubation at 10, 15, 25 and 30 ◦C, and using
the basic Q10 from the cumulative incubation at 10 and 30 ◦C. Q10s given for the Arrhenius
equation and Ea are for the interval 10 - 30 ◦C; n.d. indicates value not determined.

Fraction Composite Q10 r2 Q10 r2 Ea Q10
Exponential Arrhenius J K−1 mol−1 Closed inc.

Light fraction A 3.62 (0.88) 3.62 (0.88) 9.18 x 104 3.18
5 - 17 cm B 3.16 (0.86) 3.17 (0.86) 8.23 x 104 3.01

Intra-aggregate A 2.95 (0.91) 2.95 (0.90) 7.73 x 104 2.88
5 - 17 cm B 2.98 (0.86) 2.99 (0.87) 7.82 x 104 2.95

Mineral-bound A 3.19 (0.66) 3.15 (0.67) 8.18 x 104 2.60
5 - 17 cm B 2.65 (0.60) 2.67 (0.61) 7.00 x 104 2.54

Whole soil A 1.59 (0.37) 1.59 (0.37) 3.30 x 104 1.84
5 - 17 cm B 1.81 (0.60) 1.80 (0.59) 4.21 x 104 1.76

Whole soil 5 - 17 cm A 2.96 (0.84) 2.97 (0.85) 7.78 x 104 n.d.
unsterilised B 2.70 (0.83) 2.70 (0.84) 7.10 x 104 n.d.

Whole soil 20 - 30 cm A 2.58 (0.85) 2.59 (0.86) 6.80x 104 2.62
unsterilised B 2.43 (0.86) 2.45 (0.87) 6.39x 104 1.85

Considering only the sterilised and reinoculated soils, all isolated fractions showed

higher Q10 values than whole soils, with the highest temperature sensitivity in the

light fraction, in contrast to other studies showing a lower temperature sensitivity

of ’labile’ isolated particulate organic matter (Plante et al., 2010; Leifeld and Fuhrer,

2005).

The trend in temperature sensitivity with depth is ambiguous (Table 4.1); consid-

ering only the unsterilised whole soils in the GC incubation, 20 - 30 cm whole soil

seems to be slightly less temperature sensitive than 5 - 17 cm whole soil, whereas

results from the cumulative incubation suggest a higher temperature sensitivity at

20 - 30 cm. Previous studies at the same site have shown an increase in Q10 with

depth (Rey et al., 2008), while other studies also report lower temperature sensitivity

in mineral horizons of forest soils (Karhu et al., 2010b; Gillabel et al., 2010).
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Figure 4.3: Temperature sensitivity of respiration from soil fractions and whole soil from two
depths. Each black or grey point represents Q10 calculated from the best fit of equation 4.2
to respiration rates of four subsamples incubated at 10, 15, 25, and 30 ◦C. The corresponding
red and pink points indicate the r2 value showing the goodness of fit of the four points to
equation 4.2. Black and red points show results from composite A subsamples, and grey and
pink points show results from composite B.

4.5.1 Temperature sensitivity of depleting pools

One pitfall of the approaches described above to calculate Q10 is the change in sub-

strate quality over time. In these incubations, samples with different intrinsic quality

were incubated at a constant temperature over the course of the incubation; within

each vessel, the most bioavailable SOM subfraction is expected to be respired first,

leading to a decline in respiration rates over time (see Fig. 4.6). Since respiration are

were higher at 30 ◦C than at 10 ◦C, calculating Q10 at one timepoint, or averaged over

the same period, involves a comparison of SOM of different quality, since at any one

timepoint a higher proportion of the sample at 30 ◦ has already been used (see Fig.

4.4). If bioavailable material is less temperature sensitive than recalcitrant material,

as posited by Q theory, this would lead to an underestimation of Q10.
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Other researchers have avoided this problem in long-term incubations by incu-

bating all samples at the same ’background’ temperature, altering the temperature

only during measurement periods, and randomising the temperature treatments

during successive measurements to avoid differences in cumulative CO2 release be-

tween treatments or effects of microbial adaptation to particular temperature regimes

(Leifeld and Fuhrer, 2005). However, since microbial community adaptation to tem-

perature regimes may be a mechanism mediating temperature effects on respiration

rates, these experiments were designed with parallel temperature treatments.

An elegant solution to both problems, calculating an unbiased Q10 for an incu-

bation with parallel temperature treatments, is to use the time taken to respire a

set proportion of the total SOC (Q10
q, Conant et al. (2008)), or to use respiration rates

when a set amount of CO2 has been released (Q10const, Wetterstedt et al. (2010)), rather

than the absolute rate of respiration at a fixed time. For this study, it was unfortu-

nately not possible to use the Q10
q or Q10const as a measure of respiration, because

of the long equilibration period before measurements began and the high variation

in respiration rates over time. To estimate cumulative CO2 release it was necessary

to extrapolate respiration rates (linearly) from the start of the incubation to the first

measurement, incorporating an unavoidable bias, underestimating cumulative res-

piration where the initial decline in respiration may have been highest. Using the

Q10
q approach, comparisons were not possible between either all six treatments, or

between only isolated fractions, because in all cases the samples with highest respi-

ration had respired a higher proportion of total SOC by the first sampling point than

was respired by the last sampling point in the samples with lowest respiration (Fig.

4.5). Using the Q10const approach, it was possible to set intermediate target values

for total SOC respired, but calculation of Q10 required was from a single respiration

rate measurement for each sample, which was problematic since respiration was very

variable over time for most samples (see Fig. 4.6). A hybrid approach, calculating

a Q10const from the time taken to respire a set amount of CO2 at 10 and 15 ◦C, gave
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Table 4.2: Estimated Q10const of respiration from the GC incubation, calculated from the
estimated time taken to respire a target cumulative amount of CO2 at 10 and 15 ◦C. Q10const
were calculated using one target value for fractions and one target value for 5 - 17 cm whole
soils, and so the values for fractions and whole soils are not intercomparable. There was no
compatible target value for comparison of 20 - 30 cm soils with 5 - 17 cm whole soils.

Composite A Composite B
5 - 17 cm Light fraction 1.8 2.1

Intra-aggregate fraction 1.2 5.1
Mineral-bound fraction 1.9 5.1

5 - 17 cm Sterilised whole soil 1.5 2.4
Unsterilised whole soils 0.7 3.1

results that showed no congruence between duplicates, and no consistent differences

between fractions or depths (Table 4.2), including one sample with a negative temper-

ature sensitivity (Q10 < 1). Q10const values for composite B samples were consistently

higher than for composite A, which consisted of more degraded material overall (See

Fig. 3.11). This could be interpreted as evidence against the hypothesis of the Q

theory. However, given the inherent bias of cumulative respiration based on extrap-

olated early respiration rates, and the high sensitivity to measurement error due to

the small subset of observations used, I consider this measure to be less useful than

the fitted Q10 values shown in Table 4.1

Other studies have made a feature of the depletion of labile substrates over time,

inferring a higher temperature sensitivity for less bioavailable SOM from Q10 values

that increase over time as labile substrates are depleted (Hartley and Ineson, 2008;

Conant et al., 2008; Feng and Simpson, 2008; Karhu et al., 2010a). In this experiment,

Q10 values estimated at each timepoint (including bias due to substrate depletion)

were highly variable, but did seem to increase slightly towards the end of the incu-

bation in at least the intra-aggregate fraction (5 - 17 cm) and the 20 - 30 cm whole

soil (Fig. 4.3). Since these were the two treatments that showed chemical traits sug-

gesting intrinsic recalcitrance in Chapter 3, this tentative result suggests support for

Q theory.

To test whether there was an effect of substrate depletion on the measured Q10
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values, I compared the proportion of SOC already respired by each sample date at 30

◦C to temperature sensitivity at that timestep, calculated using only the respiration

rates at 25 ◦C and 30 ◦C to minimise bias due to substrate depletion. There was

no clear relationship, either from the combined measure of all time points during

the GC incubation (See Fig. 4.7), or the limited information given by the cumulative

incubation, where it was only possible to give a single value for each pair of samples

(Fig. 4.8).
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Figure 4.4: Cumulative soil respiration from three soil fractions and from whole soil at two
depths over time. Respiration rates were linearly interpolated between sampling points,
which are indicated in black/grey, and extrapolated before the first sampling point. Red
- 30 ◦C, orange - 25 ◦C, yellow - 15 ◦C and blue - 10 ◦C. Solid lines and black points show
composite A, dashed lines and grey points show composite B. Note that the incubation period
was shorter for the 20 - 30 cm whole soil.
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Figure 4.5: Cumulative SOC consumption from three soil fractions and from whole soil at
two depths over time. Respiration rates were linearly interpolated between sampling points,
which are indicated in black/grey, and extrapolated before the first sampling point. Red
- 30 ◦C, orange - 25 ◦C, yellow - 15 ◦C and blue - 10 ◦C. Solid lines and black points show
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Figure 4.7: Temperature sensitivity (Q10) of respiration in relation to the proportion of C
respired at 30 ◦C during the GC incubation. Q10 is calculated from respiration at 25 ◦C and
30 ◦C only. Pale blue - whole soil 5 - 17 cm; dark blue - whole soil 20 - 30 cm; yellow - light
fraction 5 - 17 cm ; orange - intra-aggregate 5 - 17 cm; red - mineral-bound fraction 5 - 17 cm.
Circles are composite A, triangles are composite B. Each point represents one composite at a
single event, incorporating two observations (25 ◦C and 30 ◦C incubations)
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Figure 4.8: Temperature sensitivity (Q10) of respiration in relation to the proportion of C
respired at 30 ◦C during the cumulative incubation. Pale blue - whole soil 5 - 17 cm; dark
blue - whole soil 20 - 30 cm; yellow - light fraction 5 - 17 cm ; orange - intra-aggregate 5
- 17 cm; red - mineral-bound fraction 5 - 17 cm. Circles are composite A, triangles are for
composite B.

4.5.2 Relationship between Ea and R20

A common proxy measure for comparing SOM stability in different soils is the rate

of respiration at a reference temperature (Craine et al., 2010; Fierer et al., 2006). The

respiration rate is obviously a direct measure of SOM decomposability in the circum-

stances given, however, it is a measure of the overall stability rather than the action of

any one stabilisation mechanism. Several studies have used respiration rates or fac-

tors derived from a fitted temperature / respiration rate function (Fierer et al., 2006)

as surrogate measures of stability to test the predictions of the Q-theory, that chem-

ically recalcitrant material should have a higher temperature sensitivity. Fierer et al.

(2006) found that 45 % of the variation in temperature sensitivity could be explained
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by the rate of respiration, which seems to support Q-theory. Later, an incubation of

soils from across North America and a meta-analysis suggested that this could be a

universal scaling relationship; (Craine et al., 2010) showed that 43 % of the variation

in Ea could be explained by respiration rates at 20 ◦C (R20). Craine et al. (2010) antic-

ipated the obvious criticism that an argument from comparison of respiration rates

to a factor calculated from a function of the respiration rates is a circular argument-

by using different subsamples of the same soils to calculate R20 and Ea. However,

respiration rates in cores from the same original samples cannot be said to be in-

dependent from one another, and it remains to be conclusively demonstrated that

this universal scaling relationship is not an artefact of the poorly fitting, simplifying

model of temperature response that is still universally used (Davidson et al., 2006).

I compared the respiration rates and Ea during the GC incubation to the universal

scaling relationship shown by Craine et al. (2010); although in this comparison R20

and Ea were calculated from the same fitted curve, there was no correlation between

R20 and Ea (Fig. 4.9).
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Figure 4.9: Proposed universal scaling relationship between respiration rate at a reference
temperature of 20 ◦C (R20) and Ea (a measure of temperature sensivity). Background/black
and white datapoints and regression are taken from Craine et al. (2010). Coloured points
are calculated from the results of the GC incubation, this study. Each coloured point is the
product of an Arrhenius equation (equation 4.3) fitted to four incubated subsamples at 10,
15, 25 or 30 ◦C (one composite) on one of ten measurement dates. Each black or white point
(Craine et al., 2010) is the product of either: a curve fitted to respiration from five subsamples
incubated at 10, 15, 20, 25 or 30 ◦C, on one of 15 measurement dates, or data harvested from
other studies. Filled black circles show respiration of plant biomass, open black circles show
respiration of SOM. From this study: pale blue - whole soil 5 - 17 cm; dark blue - whole
soil 20 - 30 cm; yellow - light fraction 5 - 17 cm ; orange - intra-aggregate 5 - 17 cm; red -
mineral-bound fraction 5 - 17 cm. Each coloured point is faded in proportion to the r2 value
of the fit: full colour means an r2 of 1, no colour means an r2 of 0.)
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4.6 Conclusions

Incubation of isolated fractions showed that rates of respiration on a g soil-C−1 basis

were equally high in the light and intra-aggregate fractions, and even higher in the

mineral-bound fraction, despite the presumed stability of OM-mineral associations

and the high degree of humification in the intra-aggregate fraction. Respiration rates

were lower in the 20 - 30 cm soil than in 5 - 17 cm soil, indicating that 20 - 30 cm

SOM is more stable, due to a combination of humification and mineral interactions.

Temperature sensitivity of respiration was higher in the light fraction than in the

intra-aggregate or mineral-bound fraction, and was higher in unsterilised 5 - 17 cm

soil than unsterilised 20 - 30 cm soil. These results suggest that stability in the 20

- 30 cm soil is primarily due to mineral associations rather than substrate quality.

Higher respiration and lower temperature sensitivity in the mineral-bound fraction,

compared to the light fraction, works against the initial hypothesis that the light frac-

tion would be the most labile and least temperature sensitive; however, interpreting

the mineral-bound fraction as labile supports to the predictions of Q theory, that

temperature sensitivity is higher in less bioavailable SOM.
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Chapter 5

Isotopic composition of SOM

respired from Harwood forest soils

and density fractions

5.1 Introduction- Isotopic approaches to study SOM stability

Measurements of SOM isotopic composition (δ13C, 14C and 15N) offer many differ-

ent opportunities to study SOM dynamics in situ with minimal intervention. This

is as a result of many different processes causing isotope discrimination during the

formation, transformation and decomposition of SOM. Initially, plant litter and root

material entering the detritosphere reflects the isotopic composition of the parent

plant material. The 14C content of plant material reflects the 14C concentration of at-

mospheric CO2 at the time of CO2 assimilation. 14C currently persists in atmospheric

CO2 at a concentration of about 105.4 pMC, degrading at a rate of about 0.4 pMC

y−1 since a high point of 185 pMC during the thermonuclear weapons testing of the

1950s and 1960s. Prior to 1955, 14C accumulated in atmospheric CO2 due to the ac-

tion of cosmic rays in the upper troposphere, producing neutrons which react with
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atmospheric nitrogen.

The 13C isotope occurs naturally at a composition of about -8 h in atmospheric

CO2, and is discriminated against by virtue of its molecular weight during photosyn-

thesis (primarily during diffusion through the stomata and into interstitial air spaces),

during synthesis of organic compounds, and during decomposition and subsequent

microbial transformations. δ13C signatures vary between plants with different pho-

tosynthetic pathways for CO2 fixation; within a plant, between different compounds;

and within a compound or group of compounds over time, as a result of successive

microbial discrimination during decomposition. All these properties and processes

causing isotopic discrimination can be useful tools for discovering the history and

likely fate of organic compounds in SOM.

C isotopic fractionation occurs during synthesis of certain plant compounds, lead-

ing to distinct δ13C signatures of different plant tissues. For example, lignin is typ-

ically 13C depleted by 2 - 6 h with respect to whole woody biomass δ13C (Benner

et al., 1987).

The 13C isotope is also subject to discrimination by physical processes in the soil

which can affect measurements of the δ13C of soil respiration, for example advective

gas transport (leading to a 13C depletion) or atmospheric incursion (leading to a

13C enrichment) (Kayler et al., 2010). Measurements of δ13C of soil respiration are

strongly dependent on precipitation, vapour pressure deficit and temperature on a

diurnal scale (Bowling et al., 2002). In addition, isotopic fractionation during plant

CO2 uptake is also controlled by humidity and temperature, leading to variation

in δ13C signatures of woody biomass and cellulose (Sidorova et al., 2008). Diurnal

patterns in δ13C of soil respired CO2 have been observed in an Alpine grassland,

reflecting diurnal trends in photosynthesis and root exudates (Bahn et al., 2009).

13C fractionation during microbial respiration is responsible for a 13C depletion

in increasingly humified material (Ågren et al., 1996). This also leads to the pre-

diction that δ13C of respired CO2 should decline over time, as was shown by Cross
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and Grace (2010) using Harwood forest soil. In the shorter term however, incubation

studies often show a 13C enrichment in respired CO2 over time, attributed to the

community dynamics of the establishing microbial community (Crow et al., 2006).

Microbial fractionation in favour of 13C can also cause an accumulation of more en-

riched material. Etcheverria et al. (2009) suggest that successive 13C enrichment in

forest soils is partly due to the accumulation of recalcitrant products of arbuscular

mycorrhizae, as Glomalin-related soil proteins are 13C enriched in relation to total

microbial C as well as bulk SOC. SOM δ13C has also been shown to increase with

depth down soil profiles (Jenkinson et al., 2008). Several studies show a 13C enrich-

ment associated with mineral-bound material, increasing with density (Sollins et al.,

2009; Mikutta et al., 2006; Quideau et al., 2003), and that acid-resistant fractions are

13C depleted (Quideau et al., 2003; Biasi et al., 2005).

In this chapter, I present data showing the 14C ages and MRT of soil density frac-

tions and whole soils from 5 - 17 cm and 20 - 30 cm, as a direct measure of the

"lifetime stability" of SOM. The same fractions and whole soils were incubated at 10

or 30 ◦C, and the accumulated CO2 was collected for 14C dating (see section 4.3.3).

Based on the chemical and physical properties of the soils and fractions, I predict

that the age of fractions will follow the sequence light «intra-aggregate <mineral-bound,

and that the 20 - 30 cm soil will be considerably older than the 5 - 17 cm soil. The

Q theory of substrates with a lower intrinsic quality having a higher temperature

sensitivity, if intrinsic recalcitrance is dominant over other mechanisms of stability,

would suggest that there might be a general relationship between temperature and

the relative age of OM respired from each fraction. This chapter also contains infor-

mation on the stable isotopic (δ13C,δ15N) composition of fractions and whole soils

before and after the incubation at 10 and 30 ◦C. The behaviour of natural abundance

stable isotopes in response to temperature is more difficult to predict, however I hy-

pothesise that material remaining after incubation of the less humified samples (light

fraction, whole soil 5 - 17 cm) will be depleted in δ13C after the incubation, and more
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so at the higher temperature.

5.2 Approach 1: 14C dating of SOM, SOM fractions and respired

CO2

The 14C content of organic material is used routinely by archaeologists and palaeon-

tologists to estimate the ’age’ or time since fixation of organic carbon, for example

for dating the remains of animal or plant material. 14C dating of soils operates on the

same principles used for archaeological 14C dating, with the key difference that SOM

typically consists of a heterogeneousmixture of OM from different sources, while the

14C content of plant and animal remains is relatively consistent. For this reason SOM

14C dating should be considered a tool for estimating mean residence times rather

than assigning precise ages to materials.

5.2.1 Methods- isotopic analyses of soils and respired CO2

Samples of all whole soils and soil fractions were combusted in an elemental analyser

(Costech ECS 4010, Cernusco, Italy). The total sample carbon was converted to CO2

by heating with CuO in a sealed quartz tube and cryogenically recovered. CO2 from

whole soils and fractions, as well as respired CO2 collected at 10 ◦C and 30 ◦C were

converted to graphite targets by Fe/Zn reduction (Slota et al., 1987) at the NERC Ra-

diocarbon Facility (Environment), East Kilbride, UK. 14C analysis was performed at

the Scottish Universities Environmental Research Centre (SUERC) Accelerator Mass

Spectrometry (AMS) facility (East Kilbride, UK). 14C results were normalised for

isotopic fractionation as directed by Stuiver and Polach (1977), using δ13C values

measured on a dual inlet stable isotope ratio mass spectrometer (VG OPTIMA Mi-

cromass, Manchester, UK) at the NERC Radiocarbon Facility. The sample 14C activity
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(AS) is then normalised (ANS) to a δ13C of -25 h using the equation

ANS = AS

(

1− 2(25+ δ13C)

1000

)

(5.1)

.

For SOM originally fixed before the first major thermonuclear weapons tests (∼

AD 1955), the 14C content reflects its age, as 14C content decreases with time due to

the radioactive decay of 14C; during the 1950/60s the 14C content of the atmosphere

almost doubled (to 190 pMC) and has subsequently declined (to current levels ∼ 104

pMC). SOM with 14C greater than 100 pMC unequivocally shows the presence of

at least some post-1950s 14C. In reality, SOM in modern samples is quite likely to

be a mixture of both pre- and post-bomb, and while 14C values > 104 pMC imply

a substantial component of carbon fixed since the 1950/60s, it does not preclude a

sizeable proportion of the carbon being fixed in pre-bomb times. Similarly, SOM with

14C contents of < 100 pMC could contain some carbon fixed in the post-bomb era.

5.2.2 Technical considerations for interpreting 14C age

The age of organic carbon can be estimated by comparing the 14C content to the

paleological record of atmospheric 14CO2, shown in Figure 5.1. Material with 14C

less than 100 pMC is likely to comprise predominantly pre-bomb C sources, and

is relatively straightforward to date, as atmospheric 14CO2 increased steadily until

the 20th century. Material with 14C above 100 pMC contains at least some post-

bomb material, but may also contain material from prior to the bomb. If it can

be assumed that a sample is entirely post-bomb or entirely pre-bomb, a conventional

radiocarbon age can be assigned with relatively low uncertainty; however, since most

of the samples analysed for this study had 14C values close to 100 pMC, and since the

stand was planted 30 years ago, it is likely that all samples contain a mixture of both

pre-bomb and post-bomb C, making the interpretation of dates more complicated.
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5.2.3 Estimation of mean residence times from 14C content

Mean residence times of isolated fractions and whole soils and from respired CO2

were estimated from the 14C activity (percent modern, pMC) of SOM, based on two

commonly applied single pool models, which I will call 1) the Hsieh model and 2)

the Meathrop model.

The Hsieh model was proposed by Hsieh (1993):

Aa =
∑

p
i=b(e

[−(p−1)/MRT] ×14 Ci × e[−(p−i)/8268])

∑
p
i=b(e

[−(p−i)/MRT])
(5.2)

where Aa is the 14C activity of the active pool in pMC, p is the year of soil sam-

pling, 14Ci is the atmospheric 14C activity in the year i, b is the base year (here, set as

26000 y BP, limited by available atmospheric 14C data), MRT is the mean residence

time of the active pool in years, and 8268 y is the mean residence time of 14C in

the atmosphere. This model assumes a constant SOC input to the active pool, and

a steady state system, such that inputs (of SOC) and outputs (as CO2) are equal.

In using this model to account for the 14C ages of separated fractions of the same

whole soil, I make two assumptions: that C enters the soil in one fraction and re-

mains in that fraction until mineralized; and that C inputs have been constant over

time during the period considered during the model run (b – present). Where there

were two possible solutions for MRT (14C >104 pMC), the older MRT was taken to

be the most parsimonious solution as choosing the younger MRT (<11 y) reduced

agreement between composites.

"The Meathrop model" is described by Harkness et al. (1986), and also consists

of a single SOC pool with constant SOC input and equal inputs and outputs. The

model is described by the equation:

At = At−1 × e−1/MRT + (1− e−1/MRT)Ai − At−1 × λ (5.3)
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where At is the 14C activity of the pool in year t, At−1 is the activity established

for the year before, Ai is the input 14, or the atmospheric 14CO2 of the previous

growing season (year t − 1), and λ is the 14C decay constant (1.245 ×10−4 year−1).

The Meathrop model was also initiated at t = 26000 y BP for each sample, with At

equal to Ai for the initial year.

Both the Hsieh and Meathrop models were tested for sensitivity to date of initial-

isation (b in the Hsieh model, t = 1 in the Meathrop model) by comparing the results

(R) with b = 26000 y BP (b1) and 13000 y BP (b2), and using the equation

S.I. =

√

[(Rb2 − Rb1)/Rb1]2

b2/b1
(5.4)

Using a more recent base year leads to overestimation of MRTs in the Hsieh model,

and underesimation in the Meathrop model. Both models were insensitive to base

year for MRTs < 2600 y (Figure 5.2), above which the Hsieh model became more

sensitive. For MRTs in the range found in this study (all < 2600) the Hsieh model

is less affected by the arbitrarily set base year, so I chose to use these values in the

analysis. However, using 26000 y BP as the base year for both models gives very

similar results (Figure 5.2, orange line), with < 0.6 % difference between the models

in the range of MRTs found here.
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Figure 5.1: Atmospheric 14C concentrations of the last 26 kyr BP, as used in MRT calculations.
Red datapoints are from Reimer et al. (2004), blue datapoints are from Hua and Barbetti
(2004), yellow datapoints are from Levin and Kromer (2004), and orange datapoints (since
2004) are extrapolated assuming a decay of 0.4 pMC year −1.
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calculated by comparing model runs starting at 13 000 BP and 26 000 BP, using the equation
5.4. A sensitivity index of 1 would indicate that doubling the length of the run would double
or halve the result. The orange line indicates the % difference between results of the two
models

5.2.4 Results: 14C age of SOM and respired CO2

Solids

14C dating of soils and fractions showed that all samples were relatively old in com-

parison to similar forest soils (Karhu et al., 2010a). However, there were still signif-

icant differences in the ages of fractions and whole soils, which largely confirm the

hypotheses that the stability of fractions will be in the order light < intra-aggregate <

mineral-bound, and that whole soil SOM is considerably older at depth.

Whole soil 14C contents at 5 - 17 cm were 97.8 (A) and 102.7 pMC (B), giving

MRTs of 181 and 305 years, respectively (Table 5.2).
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The A composite whole soil (97.8 pMC) is likely to comprise predominantly ’pre-

bomb’ carbon, while the B composite (102.7 pMC) whole soil also contains some

’post-bomb’ carbon, however it is unlikely to be predominantly ’post-bomb’ since

the value is under 104 pMC. These two samples may still be quite similar in age,

with slightly more younger SOC in the B composite.

Whole soil SOC at 20 - 30 cm was less 14C enriched, at 76.24 (A) and 80.94 pMC (B)

(MRT 1381 and 1072 y), resulting in a difference in mean residence times of around

1000 years between the 5 - 17 cm and 20 - 30 cm horizons.

Within the 5 - 17 cm samples, the light fraction was in both cases more 14C en-

riched (younger) than the whole soil (99.52 (A) and 104.54 pMC (B), compared to

97.76 (A) and 102.71 pMC (B)) while the intra-aggregate and mineral-bound frac-

tions were both less enriched, and hence older, than whole soil (92.57 - 94.56 pMC,

compared to 97.76 (A) and 102.71 pMC (B)). The intra-aggregate and mineral-bound

fractions were both significantly older than both the light fractions and the bulk ma-

terial (2-way ANOVA, p <0.05), but not significantly different in age themselves.

The difference in age between the two composites held for all fractions and whole

soils at different depths: despite the composite sampling, composite B samples were

all younger than their composite A counterparts.
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Table 5.1: C, 13C and 14C contents and mean residence times of SOM density fractions and
whole soils. Errors for C, N and C:N are 1 standard deviation of three replicates from the
same subsample. All other errors presented refer to analytical confidence, and represent 1
standard deviation. CRA refers to Conventional Radiocarbon Age, in years before 1950 (y
BP). A CRA values of ’mod’ are given where the 14C content is > 100 % modern. pMC
stands for % modern carbon. Mean residence times (MRT) were calculated from the model
described in equation 5.2, (Hsieh, 1993). Pub code refers to the unique publication code
assigned to each sample by the NERC RCF

C % ± δ13C (h) 14C ± CRA ± MRT Pub code
± 0.1 (pMC) Hsieh Meathrop

5 - 17 cm

Whole soil A 22.1 (6.2) -28.6 97.76 (0.45) 182 (37) 305 302 SUERC-22680

B 35.6 (2.3) -28.0 102.71 (0.47) mod 181 179 SUERC-22681

Light fraction A 30.6 (2.0) -28.1 99.52 (0.43) 39 (35) 255 252 SUERC-23858

B 30.6 (1.1) -27.8 104.54 (0.48) mod 147 146 SUERC-23861

Intra-aggregate A 24.9 (1.4) -28.1 92.57 (0.43) 620 (37) 487 481 SUERC-23859

B 30.7 (0.5) -28.1 94.56 (0.44) 450 (37) 411 407 SUERC-23864

Mineral-bound A 4.5 (0.7) -28.0 92.82 (0.43) 599 (37) 477 472 SUERC-23860

B 4.1 (0.6) -27.6 92.69 (0.41) 609 (35) 483 477 SUERC-23865

20 - 30 cm

Whole soil A 28.8 (0.9) -28.7 76.24 (0.35) 2179 (37) 1381 1361 SUERC-22679

B 10.0 (0.4) -28.7 80.94 (0.35) 1699 (35) 1072 1057 SUERC-28457

Respired CO2

The 14C contents of respired CO2 (Fig. 5.3, Table 5.2) taken as a whole indicate that

material respired at both 10 ◦C and 30 ◦C was more 14C enriched (i.e. younger) than

the incubated (’parent’) soil material as a whole. This trend was consistent for the

light, intra-aggregate and 5 - 17 cm whole soils, with high variation in the mineral-

bound fraction and 20 - 30 cm soils. 14C contents for CO2 respired from mineral-

bound fractions incubated at 10 ◦C were unavailable due to air contamination in one

incubation jar, and insufficient CO2 accumulation in the other.

The fact that respired CO2 was consistently younger than parent SOM, in keeping

with results from similar studies (Karhu et al., 2010a), reflects the heterogeneous

composition of separated fractions, whereby the younger material within a fraction

is more readily respired than the older more stable subfraction. One mineral-bound

fraction sample respired material much older than the incubated material, and one
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light fraction sample respired material with the same MRT as incubated material.

The smallest difference between 14C of incubated material and 14CO2 respired at

each temperature occurred in the light fraction, confirming that this fraction is the

least heterogeneous with respect to stability, reflecting a low stable SOM content.

There was no consistent relationship between temperature and the age of material

respired, with composites A and B showing opposite effects in almost every pair (Fig.

5.3, Table 5.2). One exception to this was the light fraction material, where material

respired at 30 ◦C was in both cases younger than material respired at 10 ◦C, demon-

strated by 14C contents closer to contemporary atmospheric 14C. Previous studies

have reported that older material is preferentially respired at higher temperatures

(Bol et al., 2003; Karhu et al., 2010b).
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Table 5.2: Elemental and isotopic composition of whole soils, SOM fractions, and respired CO2. Errors for C, N and C:N are 1 standard deviation of
three replicates from the same subsample. All other errors presented refer to analytical confidence, and represent 1 standard deviation. CRA refers to
Conventional Radiocarbon Age, in years before 1950 (y BP). A CRA values of ’mod’ are given where the 14C content is > 100 % modern. pMC stands
for % modern carbon. Mean residence times (MRT) were calculated from the model described in equation 5.2, (Hsieh, 1993). Pub code refers to the
unique publication code assigned to each sample by the NERC RCF.

SOM Respired CO2 (10 ◦C) Respired CO2 (30 ◦C)

14C (pMC) ± CRA (y) ± MRT (y) Pub code 14C (pMC) ± CRA (y) ± MRT (y) Pub code 14C (pMC) ± CRA (y) ± MRT (y) Pub code
Hsieh Meathrop Hsieh Meathrop Hsieh Meathrop

5 - 17 cm

Whole soil A 97.76 (0.45) 182 (37) 305 302 SUERC-22680 99.58 (0.46) 33 (37) 253 251 SUERC-27734 103.02 (0.48) mod 174 173 SUERC-27735

B 102.71 (0.47) mod 181 179 SUERC-22681 109.11 (0.51) mod 87 87 SUERC-28866 106.89 (0.50) mod 111 111 SUERC-27728

Light fraction A 99.52 (0.43) 39 (35) 255 252 SUERC-23858 99.53 (0.46) 38 (37) 255 252 SUERC-28855 101.82 (0.47) mod 199 197 SUERC-27727

B 104.54 (0.48) mod 147 146 SUERC-23861 105.50 (0.49) mod 132 132 SUERC-28859 107.07 (0.50) mod 110 110 SUERC-27726

Intra-aggregate A 92.57 (0.43) 620 (37) 487 481 SUERC-23859 97.38 (0.42) 213 (35) 316 313 SUERC-28856 96.86 (0.45) 257 (37) 333 329 SUERC-27731

B 94.56 (0.44) 450 (37) 411 407 SUERC-23864 97.16 (0.45) 232 (37) 323 320 SUERC-28860 98.02 (0.45) 161 (37) 297 294 SUERC-27729

Mineral-bound A 92.82 (0.43) 599 (37) 477 472 SUERC-23860 n.d. n.d. n.d. n.d. 101.30 (0.47) mod 211 209 SUERC-28861

B 92.69 (0.41) 609 (35) 483 477 SUERC-23865 n.d. n.d. n.d. n.d. 79.69 (0.42) 1824 (42) 1150 1134 SUERC28862

20 - 30 cm

Whole soil A 76.24 (0.35) 2179 (37) 1381 1361 SUERC-22679 71.80 (0.43) 2662 (49) 1717 1692 SUERC-28857 80.49 (0.43) 1744 (43) 1100 1085 SUERC-27730

B 80.94 (0.35) 1699 (35) 1072 1057 SUERC-28457 93.56 (0.44) 535 (38) 449 443 SUERC-28858 84.14 (0.42) 1388 (40) 887 875 SUERC-28865
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Since there was a general trend for material respired at either temperature to

be younger than the incubated source material, due to the preferential respiration

of a labile subfraction of each sample, it can be expected that the difference in age

between respired and incubated material would be greater at earlier stages in the

incubation, and decline as a larger proportion of the intial SOC is consumed and

the labile substrate is depleted. During these incubations, samples were collected in

batches after a threshold concentration of headspace CO2 had been exceeded; since

each sample had a different C content, there was high variation in the proportion of

total sample C respired by the time the sample was taken for 14C analysis. To test

whether the proportion of total SOC used had an effect on the relative 14C content

of the respired CO2, I estimated the proportion of total SOC used from the accu-

mulated headspace CO2 before sampling, and compared it to the difference between

incubated and respired 14C content (Fig. 5.4). Excluding the one outlying mineral-

bound fraction at 30 ◦C which produced respired CO2 that was considerably older

than the incubated material, there would be a marginally significant weak negative

correlation (r2 = -0.48, p = 0.048) between the log of the proportion of total SOC

respired and the age difference between incubated and respired material. That is to

say, samples where a larger proportion of the total SOC was used would have a larger

respiratory bias towards younger material. However, since only two datapoints are

available for this fraction, it would be inappropriate to exclude only one; excluding

both mineral-bound fraction samples, the weak negative correlation is not significant

(r2 = -0.33, p = 0.2).

While there is no significant negative correlation, the data do not show the ex-

pected positive correlation, whereby younger material would be respired first, and

older material left for later. Alongside results showing similar respiration rates for

isolated fractions that are 500 years apart in age (Chapter 4, Figure 4.1), this suggests

that the stabilisation mechanisms responsible for the long MRT of these fractions and

soils in the field may no be longer operating, under incubation conditions.
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Figure 5.3: Carbon isotopic composition (δ13C and 14C) of initial SOM and CO2 respired
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5.3 Approach 2: Using natural abundance δ13C signatures to

study SOM dynamics

Natural 13C discrimination offers several different opportunities to study SOM dy-

namics with minimal disruption. During the cumulative incubation described in sec-

tion 4.3.3, information was also gathered about the 13C signature of material respired.

All samples processed for 14C dating (SOM fractions, whole soils and respired CO2
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from fractions and whole soils at 10 and 30 ◦C) were analysed for δ13C in the process

of 14C dating, to correct for biological isotopic discrimination. In addition, at the end

of each incubation the remaining material was retained for δ13C and δ15N analysis.

In this section I present these data and discuss the implications for SOM cycling.

5.3.1 Results: Stable isotopic composition of SOM and respired CO2

Initial solids

Isolated fractions from the 5 - 17 cm whole soil were found to be slightly enriched in

13C in relation to the whole soils (Table 5.3), with the mineral-bound fraction the most

enriched in both cases. DOC extracted for inoculation was 13C more enriched than

isolated fractions (-26.5 h). DOC has been shown to be 13C enriched due to lower

hydrophobic lignin components (Golchin et al., 1994). Other studies have found that

light and occluded fractions are 13C-depleted in respect to whole soil (Dorodnikov

et al., 2011), while mineral bound material is often enriched (Crow et al., 2006; Dorod-

nikov et al., 2011; Sollins et al., 2009; Mikutta et al., 2006).

Whole soils at 20 - 30 cm were depleted in 13C in relation to 5 - 17 cm whole soils,

in contrast to the usual trends of increasing 13C enrichment with depth (Amundson

et al., 1998; Jenkinson et al., 2008). Considering that the C:N ratio in these soils also

increased with depth instead of decreasing (see Fig 3.3), I suggest that this is the

result of a high lignin content in the 20 - 30 cm soil (Benner et al., 1987; Golchin et al.,

1994).

Respired CO2

Material respired from all isolated fractions was 13C-depleted by an average of 5.5

h with respect to incubated material (Table 5.2, Fig. 5.3), while no such depletion

was visible in any whole soil incubations. This was not explained by the addition

of inoculum material, which was more 13C enriched than all fractions and whole
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soils. One possible cause of this isotopic fractionation is the microbial community

shift associated with initial incubation conditions. Laboratory incubations of SOM

(Crow et al., 2006; Andrews et al., 2000) and leaf residues (Schweizer et al., 1999) have

shown respired CO2 with strong 13C depletion in the first few days of an incubation,

returning to a slightly enriched value over time. Iodine is known to contribute to

changes in microbial community structure (Cotton, 1930; Amachi et al., 2003). Qual-

itative SEM-EDX analysis (see Appendix A) revealed low levels of residual I (but no

residual Na) preferentially bound to OM in the rinsed fractions, which may have

contributed to the isotopic fractionation. Note that by convention 14C contents were

normalised to a δ13C of -25 h, and were therefore insensitive to these fractionation

effects.

There was a clear trend in the whole soil incubations for a greater 13C enrichment

of CO2 respired at lower temperatures. A similar trend was also reported on whole

soils from the same site by Cross and Grace (2010). Respired CO2 from the incubation

of all isolated fractions at both temperatures was depleted in 13C with respect to the

parent fraction or whole soil (Fig. 5.3).

Isotopic composition of remaining solids

Given the different stable isotopic composition in SOM components with different

properties, in particular the 13C depletion of lignin (Benner et al., 1987) and observed

progressive 13C depletion during humification (Ågren et al., 1996), it would be rea-

sonable to expect 13C discrimination to occur during respiration, and for there to be

an effect of temperature on the 13C discrimination experienced. However, several

studies have failed to demonstrate a unifying stable isotopic fractionation effect dur-

ing heterotrophic respiration, largely because of the variation in δ13C of SOM and

the cancelling out of any identifiable fractionation effects- such as the enrichment

of mineral-bound material (Sollins et al., 2009; Mikutta et al., 2006; Quideau et al.,

2003), depletion of humified material (Ågren et al., 1996) the depletion acid-insoluble
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Table 5.3: δ13C of density fractions and whole soils and respired CO2 at 10 and 30 ◦C from
the same samples

δ13C (h, ± 0.1)
SOM 10 ◦C 30 ◦C

5 - 17 cm

Whole soil
A -28.6 -26.7 -28.4
B -28.0 -25.8 -27.7

Light fraction
A -28.1 -32.8 -34.4
B -27.8 -35.2 -34.3

Intra-aggregate
A -28.1 -34.9 -34.7
B -28.1 -34.2 -34.1

Mineral-bound
A -28.0 -31.2 -32.9
B -27.6 n.d. -30.1

20 - 30 cm

Whole soil
A -28.7 -26.9 -28.9
B -28.7 -26.7 -28.5

recalcitrant material (Biasi et al., 2005; Quideau et al., 2003). Despite separating a

well-humified fraction and a mineral-bound fraction, I did not find differences in

δ13C between fractions. Therefore it should not be surprising that I also found no

overall effect of respiration or incubation temperature on the δ13C of soils remaining

after incubation.

Conen et al. (2008) proposed that δ15N and C:N can be used as a proxy for the

degradedness of SOM, as C:N decreases and δ15N increases with progressive mi-

crobial transformations. Under this model, the remaining δ15N of material left after

incubation should be higher than the starting δ15N, the C:N should be lower, and

smaller differences in δ15N and C:N indicate more stable initial material. Since some

inorganic N was added prior to the incubation, δ15N and C : N of initial substrates

and remaining substrates are not comparable. This may explain the absence of a

decline in the C : N ratio in the incubated material. However, the δ15N and C : N
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of the temperature treatments can still be interpreted: neither showed an effect of

temperature.

The 13C depletion observed in respired CO2 from isolated fractions (Fig. 5.3) is

not immediately mirrored by a strong enrichment δ13C of remaining fractions (Fig.

5.5). However, approximation of the remaining δ13C that should result from the

maximum proportion of carbon lost (10 %), with the average depletion experienced

by the isolated fractions (∼ -5.5 h) and the average δ13C of the initial fractions (∼ -28

h) shows that the maximum enrichment expected of the remaining fractions is 0.37

h, which is within the range demonstrated (Fig. 5.5). The δ13C of respired CO2 is

likely to have a lower sample error than the δ13C of remaining solids, since the CO2-

C is homogenised by diffusion and the whole population was collected for analysis,

whereas the solids were homogenised by grinding and a subsample was analysed.
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Figure 5.5: δ13C of remaining SOM after incubation at 10 or 30 ◦C versus initial δ13C. Red
–mineral bound fraction; orange –intra-aggregate fraction; yellow –light fraction; pale blue –5
- 17 cmwhole soil; dark blue –20 - 30 cmwhole soil. Open triangles–10 ◦C, closed triangles–30
◦C. Grey line–1:1.
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Figure 5.6: δ15N of remaining SOM after incubation at 10 or 30 ◦C versus initial δ15N. Red
–mineral bound fraction; orange –intra-aggregate fraction; yellow –light fraction; pale blue –5
- 17 cmwhole soil; dark blue –20 - 30 cmwhole soil. Open triangles–10 ◦C, closed triangles–30
◦C. Grey line–1:1.
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Figure 5.7: C : N ratio of remaining SOM after incubation at 10 or 30 ◦C versus intial C : N
ratio. Red –mineral bound fraction; orange –intra-aggregate fraction; yellow –light fraction;
pale blue –5 - 17 cm whole soil; dark blue –20 - 30 cm whole soil. Open triangles–10 ◦C,
closed triangles–30 ◦C. Grey line–1:1.

5.4 Conclusions

In this experiment, I used the isotopic composition of respired material for insight

into the temperature sensitivity of respiration. No effect of temperature was found

on the 14C or δ13C of respired CO2, nor on the δ15N, δ13C or C:N ratio of remain-

ing solids. 14C dating of whole soils and fractions confirmed that SOM at 20 - 30

cm and in the mineral-bound and intra-aggregate fraction of the 5 - 17 cm soil are

considerably older and more stable, at least in situ, than whole soil or light material.

However, these age differences were not reflected by differences in the sensitivity
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of respiration to temperature. Most fractions and whole soils at both 10 and 30 ◦C

released CO2 with a 14C content indicating a younger-than-average source of respira-

tion, but there no was effect of temperature. A positive relationship between the 14C

discrimination of respiration and proportion of SOM respired would indicate that

progressively older SOM was respired over the course of the incubation; results here

showed no such clear relationship. This may suggest that the most labile subfrac-

tion of each fraction incubated here has not yet been depleted, meaning that these

incubation results don’t reflect the respiration of truly ’stable’ material.

There was no firm evidence of the expected positive correlation between the 14C

discrimination of respiration and the proportion of SOC consumed during the in-

cubation, indicating that decomposition did not observably progress from younger

to older material over the course of the incubation. This supports findings in chap-

ter 4 that indicate the stabilisation mechanisms primarily responsible for the age of

fractions were not operating at full capacity during the incubation.

116



Chapter 6

Priming effects of labile substrate

additions in Harwood forest soil

horizons

As discussed in Chapter 1, predictions of soil C storage and loss are hampered by a

lack of understanding of the stability of different forms of SOM. The effective stability

of SOM is manifested in the rate at which it can be mineralised by decomposers.

Stability therefore depends not only on the intrinsic quality of the SOM, but also

on the microbial community, which in turn is also dependent on other aspects of

the soil environment such as temperature, water content and pH. What we consider

to be a ’stable’ pool of SOM can rapidly become labile given the right decomposer

community, and labile material is effectively stable in the absence of decomposers.

Since SOM in the soil matrix is a heterogeneous mixture of SOM pools, and since

both the amount of microbial biomass and to an extent the microbial community, is

dependent on substrate, it follows that decomposition of a given pool of SOM should

be affected by the presence of adjacent substrates.
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Lateral effects on respiration rate from one pool to another are often termed ’prim-

ing effects’. Numerous studies report a priming effect (PE) on soil respiration after

the experimental addition of labile or nutrient-rich substrates to soil. Both positive

(Ohm et al., 2007) and negative priming (Guenet et al., 2010) have been reported (see

Table 6.1), and both are generally attributed to shifts in microbial community struc-

ture caused by the addition of the new substrate.

In laboratory studies, a range of different organic compounds have been added

to soil to investigate priming effects, including sources of labile and more complex

sugars, amino acids and other organic acids. Several studies have used natural abun-

dance or radio-isotope labelling to successfully partition soil respiration after primer

addition into primer-derived CO2 and SOM-derived CO2, distinguishing priming ef-

fects from an increase in total respiration (see Table 6.1). Labile sugars and amino

acids may be ’added’ to soil during rhizodeposition, microbial cell death, and may

come into contact with SOM due to physical disturbance and bioturbation of soils.

In practice, priming of respiration from one SOM pool to another is likely to be the

result of several element interactions, as limiting nutrients may be supplied as well as

limiting energy in the form of labile C; several studies have shown that mixed addi-

tions (C + N, fructose + alanine) result in higher priming effects than single additions

(Hopkins et al., 2008; Hamer and Marschner, 2005). In nutrient limited, C-rich soils,

labile C additions alone may have no effect on SOM mineralisation, while N or other

nutrient additions will (see e.g. Rinnan et al., 2007). There is a wide literature on the

effects of nutrient and litter additions to SOM mineralisation. As nutrient dynamics

are not a major focus of the thesist, this Chapter will focus mainly on C priming

effects from labile C additions.

Proposed mechanisms for positive priming effects of stable SOC due to labile

OC additions include: co-metabolism of recalcitrant materials due to complementary

substrate stoichiometry; incidental decomposition due to increased production of

extracellular enzymes to break down the labile material, which may also be partially
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effective at breaking down SOM (Fontaine et al., 2004b), or due to increased overall

microbial population (including some generalists).

Proposed mechanisms for negative priming effects of stable OM due to labile OM

additions include preferential use of labile substrates by generalist microbes, compe-

tition (eg for water, oxygen) between labile substrate specialists and generalists/SOM

specialists.

We can expect priming to be very dependent on the amount of both SOM-C and

primer-C present, as well as the nutrient status of each. Blagodatskaya and Kuzyakov

(2008) report a meta-analysis of priming studies, showing that priming tends to be

positive and increases with labile additions up to 50% of the microbial biomass C,

above which priming decreases rapidly and sometimes becomes negative.

A variety of approaches are used to distinguish between primer and primed C

in respired CO2 after primer addition, mostly using a C isotope label in order to

partition respiration into at least two ’sources’. In addition, most studies invoking

priming effects to explain substrate interactions make a distinction between ’appar-

ent’ priming effects (APE) and ’real’ priming effects (RPE). When a labelled primer is

added, an early burst of un-labelled respiration is often observed, due to the respira-

tion of unlabelled microbial biomass-C as the primer C is consumed; since this does

not reflect the incorporation of unlabelled SOM but is isotopically similar to SOM

respiration, it is termed ’apparent priming’. Therefore, it is important to account for

microbial biomass turnover in interpretations of priming effects.

This Chapter presents data from three successive experiments investigating the

priming effects of C4-derived sucrose additions on soil respiration from two hori-

zons of (C3-derived) Harwood forest soil, with or without added nutrients and soil

disturbance. Where similar isotope labelling studies partiton respiration over time

periods of several hours to several days, I measured respired δ13C continuously at a

rate of 60 Hz using TDL spectroscopy, allowing for a high temporal resolution view

of substrate use during the respiratory burst following sugar addition. I compare
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sucrose additions with added nutrient solution to sucrose additions without added

nutrients, and two methods of applying the sucrose / nutrient mixture: with or with-

out the physical disturbance of mixing. I am testing the hypothesis that labile sugar

additions induce a higher respiration of native SOM. I predict that the more recalci-

trant SOM found in 20 - 30 cm soil will show a more positive priming effect than the

already labile material in the 5 - 17 cm soil, and that the addition of nutrient solution

will result in a smaller priming effect.
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Table 6.1: Labile substrate addition studies in the literature

Study Soil type Primer Label Application rate Priming effect Pattern
µg C mg−1 SOC %

Blagodatskaya et al. (2011) loamy Gleyic Cambisol Glucose 14C glucose,
13C C3/C4
label of ’older’
SOM

100, 1000 short term- 110, 125;
long term- 25, 41

PE not linear with primer conc

Blagodatskaya et al. (2007) loamy Luvic Chernozem Glucose, KNO3 (factorial) 14C 48.7, 4870 PE positive with low glucose, negative with high glu-
cose. Lower and more negative PEs with N added.

Hamer and Marschner (2005) Dystric Cambisol, Haplic Podzol Fructose, alanine, catechol,
oxalic acid

14C 13.3, 2.2 +596 (fru + ala), -23 -
129 (fru, ala, cat, oxa)

Repeated additions led to increased mineralisation

Ohm et al. (2007) Haplic Podzol size fractions Fructose, alanine 14C 3.3, 13.3 0 - +340 PE highest in clay, lowest in sand

Cheng (2009) Mollisol Rhizodeposits C3 /C4 na 0 - +380 PE diminishes over time since planting

Fangueiro et al. (2007) Dystric/Eutric Cambisol Dairy slurry size fractions C3 /C4 333 200 - 800 Size of PE negatively related to slurry particle size,
duration of PE positively related

Fontaine et al. (2004b), Fontaine et al.
(2004a)

Ultisol Cellulose, + cellulase 13C 47.1 +55 Cellulase responsible for 14 % of total PE.

Guenet et al. (2010) Luvic Cambisol, 80 year fallow Cellulose 13C 100 -70 More negative priming with inoculation of FOM-
specific decomposers

Hamer and Marschner (2002) Sand mixed with peat or lignin Glucose, fuctose, alanine,
glycine, oxalic acid, acetic acid
and catechol

14C 13.3, 2.7 -13 (oxa + lig) to +157
(oxa + peat)

PE mostly positive, negative PE where catechol and
oxalic acid were added to lignin. Alanine gave high
PE in lignin, oxalic acid gave high PE in peat.

Kuzyakov and Bol (2006) Eutric Cambisol, Dystric Gleysol Slurry followed by sucrose C3 , v C4 30 na Negative PE on SOM-C, and positive PE on slurry-C,
in both soils.

Rinnan et al. (2007) Arctic highly organic, moist soil Litter (Betula pubescens ssp.
tortuosa)rhizodeposits (Carex
capillaris)

none 90 g m−2 none Bacterial growth rate and soil respiration increased
in response to multiple nutrient additions, not single
nutrient additions. No evidence of C limitation.

Salomé et al. (2010) Eutric Cambisol / Luvisol, 5-10 cm,
80-100 cm

Fructose 13C 13.3 na Fructose additions resulted in higher soil respiration
in topsoils, but not in subsoils. However, CO2 was
not partitioned to show fructose-derived and SOM-
derived fractions.

Bell et al. (2003) Calcidic Halpoxeroll Wheat straw (Triticum aestivum) 14C 0.25 µg C g soil−1 consistently positive PE strongly and positively correlated with
fungi:bacteria ratio of all treatments.

Hamer et al. (2004) Black C mixed with sand Glucose 14C 20 36 - 189 Strong correlation between glucose mineralisation
and BC mineralisation, suggesting co-metabolism is
responsible for PE.
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6.1 Methods

Soil samples were taken from the site at Harwood Forest, as described in Chapter 2.

Three soil pits were dug to 30 cm, and samples were taken from 5 - 17 cm and 20 -

30 cm in each pit. Samples were transported in a coolbox and stored in a fridge at

4◦C. Once back in the laboratory, the three samples from each horizon were seived

to 2 mm at field moisture to remove large roots and combined to form a single

composite sample from each horizon, as described in Robertson et al. (1999, p.7). Soil

subsamples and cane sugar samples (Sainsbury’s FairTrade light brown soft sugar)

were analysed for OM content, C, H and N content, water holding capacity, δ13C

and δ15N (see Chapter 3). The priming experiment was repeated three times over the

course of two years using soils collected at various dates not more than four months

before the start of each incubation. Soil samples used in incubations 1 and 2 were

collected in June 2009 and the incubations performed during July and August 2009.

Soil samples used in incubation 3 were collected in August 2010 and the incubations

performed in September 2010.

Soil samples adjusted to 65% WHC were packed into 1.8 L Kilner jars, adapted to

fit TDL inlet and outlet tubes through the lid of the jar. All jars were incubated at 30

◦C for at least five days until CO2 efflux appeared to stabilise. Sugar and nutrients

were added at rates described in table 6.2. During the first incubation sugar was

added on a g soil −1 basis; for the second and third incubations sugar was added

on a g soil-C −1 basis. Values used in the first experiment for sugar additions to

mineral soil (in mg sugar g soil −1) are equivalent to values used in subsequent

incubations (in mg sugar g soil-C −1), whereas additions to the 5 - 17 cm soil during

incubation 1 are not strictly comparable with the other additions due to the different

soil C contents of the two horizons. During incubation 2 a control jar with ashed,

carbonate-free white quartz sand, soil inoculum solution (prepared as described in

Chapter 4), nutrient solution and sugar was incubated alongside the soil samples.
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In all three incubations, four jars from each horizon were incubated, two with sugar

added and two controls. One of the primed 5 - 17 cm samples in the first incubation

was abandoned due to leaks or blockages in the manifold sampling tubes.

Priming solution was prepared by added by dissolving pure cane sugar in dis-

tilled water, either on its own or containing an OM-free nutrient solution at 5 ml

l−1 (Formulex, Growth Technology, Taunton, UK; see Appendix B). The incubation

jars were reweighed on the day of sugar additions, and each jar was re-wetted to

65% WHC by adding the required dose of priming/nutrient solution topped up with

distilled water. Control (unprimed) soil samples were re-wetted using distilled wa-

ter including the same dosage of nutrient solution at the same time. Liquids were

added with or without mixing, in the first incubation instance by pouring the liquid

slowly into the soil and stirring with a large spoon to allow even contact between

SOM and primer, and in the second and third incubations by spraying evenly over

the top surface of the soil using a pipette.

Tunable Diode Laser determination of CO2 and isotopic composition of CO2

The tunable diode laser (TDL) is a high precision infrared spectrometer with a super-

cooled crystal source and a 1.5 m laser path. The TDL was configured for automated

switching between 8 sample lines, with a sample period of 30 minutes (and a return

time of 4 hours) for each line. During the 30 minute sample period, measurements

alternate between input and output lines every 30 seconds, with two calibration gases

(nominal values of 330 and 600 ppm CO2) sampled for 30 seconds every 5 minutes.

Within each 30 second period the sample gas, flowing at 200 ml min−1, is contin-

uously analysed for 12C16O2 and 13C16O2 every second. Air samples were drawn

through a 50 L buffer volume before entering the sample headspace, to reduce vari-

ation due to atmospheric pressure fluctuations. The mass flow, pressure and sample

temperature are simultaneously measured to allow accurate and high resolution de-

termination of total CO2 and δ13CO2. Measurements of each isotope from the two
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calibration gases sampled every 5 minutes were linearly interpolated to give a value

for each 30 second period, and gain (G) and offset (O) factors were calculated for

each isotope from the following equations:

G =
XC − XB

XCm − XBm
(6.1)

O = XC − GXCm (6.2)

where XC and XB were the true mole fractions (12CO2 or 13CO2) in tanks B and C,

and XCm and XBm were the measured mole fractions of each tank. The sample mole

fractions (Xi) were then calculated from the measured mole fractions using:

Xi = XmG+O (6.3)

Total air sample CO2 concentrations were calculated from the following formula:

CO2 =
12CO2 +13 CO2

1− fother
(6.4)

where fother is the fraction of all CO2 isotopomers that are not 12C16O2 or 13C16O2

(0.00474). δ13C was determined in h, relative to the international carbon isotopic

standard, VPDB (0.0112372), using

δ13C =

( 13C/12C

RVPDB
− 1

)

× 1000 (6.5)

The proportions of respired CO2 derived from soil and from added sugar were

calculated from the using the following equation, for each 30 second interval:

Fa = (∆m − ∆s)/(∆a − ∆s) (6.6)

where Fa is the fraction of respired CO2derived from the added sugar, ∆m is the
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measured δ13C of respired CO2, ∆s is the measured δ13C of solid SOM and ∆a is the

measured δ13C of respired CO2 from the soil-free sugar control used in incubation 2.

Soil microbial biomass C was measured for subsamples of the original compos-

ite samples, and for subsamples of the incubated soil from incubations 1 and 2, by

the chloroform fumigation extraction method. Samples were analysed at the Scottish

Agricultural College, Edinburgh campus. Total KMnO4-extractable C was measured

with a TOC analyser for soil samples that had been fumigated with chloroform for 24

hours, and control samples that had not. The difference in extractable C between the

fumigated and control soils is attributed to dead biomass killed by fumigation. Total

microbial biomass C is estimated assuming that the biomass killed during fumiga-

tion represents 45% of the total microbial biomass (Jenkinson et al., 2004), although

this proportion (0.45, KEC) is known vary between soils, and reported values range

from 0.10 to 0.73 (Martens, 1995). Unpaired Student’s t-tests were used to compare

microbial biomass C of treated soils in the two horizons.

Total microbial biomass C = (Extractable C of fumigated soil−Extractable C of control soil)/KEC

(6.7)
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Table 6.2: Rates and effects of sugar addition

Depth Sample Sugar Addition basis Addition method Nutrient solution Priming
µg sugar-C mg soil-C−1

First incubation 5 - 17 cm 1 1.63 g soil−1 Stirred N -
(July 2009) 20 - 30 cm 1 4.39 g soil−1 Stirred N /

20 - 30 cm 2 4.39 g soil−1 Stirred N +
Second incubation 5 - 17 cm 1 4.39 g soil-C−1 Stirred Y –

(August 2009) 5 - 17 cm 2 4.39 g soil-C−1 Stirred Y -
20 - 30 cm 1 4.39 g soil-C−1 Stirred Y -

Third incubation 5 - 17 cm 1 4.39 g soil-C−1 Poured Y ++
(September 2010) 5 - 17 cm 2 4.39 g soil-C−1 Poured Y ++

20 - 30 cm 1 4.39 g soil-C−1 Poured Y ++
20 - 30 cm 2 4.39 g soil-C−1 Poured Y ++
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6.2 Results

6.2.1 Respiration rates

All three incubations showed 20 - 30 cm soil and 5 - 17 cm soil respiring similar

amounts of CO2 per g soil-C (Figs 6.1,6.2,6.3), despite having very different soil

C concentrations and microbial biomass (Table 6.3). The three incubations showed

respiration rates within similar ranges, although there were differences between in-

cubations, which can be explained by differences in the incubation conditions.

During the first incubation, respiration rates ranged from 100 to 600 µg CO2-C g

soil-C−1 day−1 for primed and unprimed soil, 5 - 17 cm and 20 - 30 cm soil alike,

with no apparent patterns with depth (Fig. 6.1). Peaks from the addition of sugar

were clearly visible in the δ13CO2 values (Fig. 6.1), but the effect on total respiration

was small, and within the range of unprimed respiration, with the exception of one

jar of 5 - 17 cm soil. The small priming effect in the first incubation 5 - 17 cm jar

can be attributed to the lower rate of priming per g soil-C experienced by this jar

than the other incubations (see Fig. 6.1 and Table 6.2). Partitioning respiration using

equation 6.6 shows that during the respiration peak after sugar addition, respiration

deriving from SOM decreased slightly in the 5 - 17 cm sample and in the 20 - 30 cm

sample with lower respiration, and increased slightly in the 20 - 30 cm sample with a

higher respiration. Small amounts of ’sugar’ respiration visible before sugar addition

in the first and second incubations (Figs. 6.1 and 6.2) are due to variation in the δ13C

of respiration, and an average value of sugar δ13C used in the partitioning equation

(equation 6.6).

While there was a wide range of respiration rates in the first incubation, the

second incubation showed closely matched respiration rates within treatments and a

higher basal respiration rate in the 5 - 17 cm soil ( 300 µg CO2-C g soil-C−1 day−1)

than in the 20 - 30 cm soil (200 - 250 µg CO2-C g soil-C−1 day−1) (Fig 6.2). This is

attributable to the addition of nutrient solution in this incubation. Sugar additions
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raised the total respiration well above the basal respiration, in contrast to the first

incubation. The peaks in total respiration due to sugar addition were very similar in

magnitude in the second incubation. Partitioning of sources shows a small reduction

in SOM-derived respiration in all cases, with a similar magnitude for 20 - 30 cm soil

as for 5 - 17 cm.

The third incubation again showed no difference in respiration rate between the

5 - 17 cm and 20 - 30 cm soil. Total respiration rates for this incubation were lower

than for the first two incubations, all sitting around 100 µg CO2-C g soil-C−1 day−1

for unprimed respiration and rising only to 500 µg CO2-C g soil-C−1 day−1 during

the sugar peak. Partitioning showed that in this incubation, in all cases SOM-derived

respiration increased slightly immediately following sugar addition.

The inclusion of a nutrient solution treatment to samples in incubations 2 and

3 caused an increase in the background soil respiration rate, and arguably a higher

peak in the microbial respiration of sugar, excluding the one sample in the first incu-

bation with a very high sugar peak. Both positive and negative priming was observed

with and without nutrient solution. In other studies, nutrient additions or nutrient

status have proved to be an important control on priming effects; Fontaine et al.

(2004a) found that positive priming effects after cellulose addition were higher in a

low nutrient treatment than a high nutrient treatment. On the other hand Guenet

et al. (2010) showed a consistent negative priming effect from cellulose in a soil with

very low nutrient concentrations after laying bare for 80 years.

Comparing the second two incubations, where nutrient solution was applied with

the same rates of sugar addition per g soil-C, the method of applying the sugar ap-

pears to control the direction of priming; stirring resulted in negative priming effects,

while pouring resulted in positive effects. The disturbance effect of stirring the sugar

solution into the soil has not affected the size of the measured priming effect, since

the control soils used to calculate the partitioning of soil and sugar respiration were

also stirred at the time of application. In any case, respiration in the control soils was
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not noticeably affected by the disturbance (Figs 6.1 and 6.2). Since Blagodatskaya

and Kuzyakov (2008) showed in a meta-analysis that priming effects were positive

at low application rates and negative at higher application rates, I suggest that the

effect of stirring or pouring the sugar solution onto the soil was a difference in local

concentration. In the stirred soils, sugar was more evenly mixed through the soil. In

the poured soils, sugar solution was allowed to infiltrate the soil; the distribution of

sugar was more patchy, and may have been more concentrated near the surface and

in macropores, but less concentrated throughout the rest of the soil. It is possible that

the local sugar concentrations experienced by the majority of primable SOM in the

poured treatments were considerably lower than those of the stirred treatments, with

small amount of SOM experiencing very high sugar concentrations. A lower me-

dian local sugar concentration in the poured treatments would explain the positive

priming in these soils and negative priming in the stirred soils.
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Figure 6.1: Priming effects during incubation 1. Upper panels show respiration rates after
sugar addition, middle panels show δ13CO2 of respiration, and the bottom panels show parti-
tioning of respiration in the treated samples, where the upper lines represent total respiration
and the filled area represents respiration originating from SOM. Black indicates soil respira-
tion from 5 - 17 cm soil, grey indicates 20 - 30 cm soil. Dashed lines represent respiration
from control samples, to which no sugar primer was added.
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Priming effects of labile substrate additions in Harwood forest soil horizons

Figure 6.2: Priming effects during incubation 2. Upper panels show respiration rates af-
ter sugar addition, middle panels show δ13CO2 of respiration, and the bottom panels show
partitioning of respiration in the treated samples, where the upper lines represent total res-
piration and the filled area represents respiration originating from SOM. Black indicates soil
respiration from 5 - 17 cm soil, dark grey indicates 20 - 30 cm soil, and pale grey indicates a
SOM-free quartz sand control. Respiration rates for the SOM-free control are calculated on
a per g sugar-C basis, including the sand sample to which sugar was not added, to allow
comparison. Dashed lines represent respiration from control samples, to which no sugar
primer was added. The white dashed line in the lower panel indicates the upper bound of
the hidden filled area representing the second primed 5 - 17 cm soil sample.
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Priming effects of labile substrate additions in Harwood forest soil horizons

Figure 6.3: Priming effects during incubation 3. Upper panels show respiration rates after
sugar addition, middle panels show δ13CO2 of respiration, and the bottom panels show parti-
tioning of respiration in the treated samples, where the upper lines represent total respiration
and the filled area represents respiration originating from SOM. Black indicates soil respira-
tion from 5 - 17 cm soil, grey indicates 20 - 30 cm soil. Dashed lines represent respiration
from control samples, to which no sugar primer was added.

6.2.2 Soil microbial biomass

In several cases, the fumigated extractable C was lower than the extractable C of the

control samples, leading to an apparently negative soil microbial biomass content.

These negative values were found only in the 20 - 30 cm soil, which had a much

lower total C content. A paired t-test showed that this difference was significant

(p=0.043, n=12) and not only due to sample variation. The explanation for a loss

of extractable C during choroform fumigation is not obvious, but it is possible that

microbial biomass not killed by fumigation (1 - KEC, assumed 55% total microbial

biomass) were able to mineralise more C than was contained in the killed biomass

during the 24 h fumigation period. This explanation is feasible only if KEC was

overestimated at 0.45, and if the actual microbial biomass C is low compared to the

total extractable C.

Unpaired t-tests showed that the values given for microbial biomass C were sig-

nificantly higher in 5 - 17 cm soil than 20 - 30 cm soil, including all primed, unprimed,

fresh and preincubated soils (p < 0.001); within each horizon, mean values for mi-

crobial biomass C were higher in primed soils than in unprimed, and higher in fresh

soils than in preincubated soils, but none of these comparisons were significant (all

p > 0.05).
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Table 6.3: Microbial biomass C and moisture contents of soil from organic and mineral hori-
zons, after incubation with and without sugar additions (primed v unprimed), and for un-
primed soils after fridge storage at 4 ◦C or preincubated at 30 ◦C for 1 week (fresh v incu-
bated). n ≥ 3 in all cases.

Moisture ± Microbial biomass C ± Total fumigated C ±

(%) 1 σ (µg C g soil−1) 1 σ (µg C g soil−1) 1 σ

5 – 17 cm
primed 67.8 2.3 582.5 292.5 2293.0 296.1

unprimed 67.0 1.7 379.3 42.1 1962.5 101.5

fresh 61.2 1.1 522.5 159.6 1507.6 44.1
incubated 68.1 0.8 208.1 83.7 2196.8 48.2

20 – 30 cm
primed 23.8 3.3 -21.3 11.0 338.7 31.9

unprimed 27.2 1.4 -4.7 23.7 335.6 27.8

fresh 20.3 0.3 14.2 27.4 279.9 20.8
incubated 27.6 0.0 -34.4 19.1 320.8 17.1

6.3 Conclusion

Addition of labile substrates to soil did induce priming effects in the respiration

of native SOM, but the priming effects measured were both negative and positive.

There was no difference in priming effect between horizons. The addition of nutrient

solution did not have a discernible effect on the magnitude or direction of the priming

effect, although this was difficult to test due to the small sample size. Sugar additions

had an insignificant positive effect on the microbial biomass C, in both horizons, and

preincubating soils at 30 ◦C had an insignificant negative effect. The main finding of

this Chapter was that the method of applying the labile substrate controlled whether

the priming effect observed was positive or negative. Mixing sugar evenly into the

soil resulted in negative priming of native SOM, while pouring sugar solution onto

the surface and allowing it to infiltrate caused positive priming. I suggest that this

difference is due to the patchy distribution of added sugar in the poured additions

resulting in higher local concentrations of labile C.

136



Chapter 7

Soil porespace and water

characteristics

7.1 Introduction

Physical location of SOM within the porespace architecture is a major control on

SOM decomposition, and SOM quality is expected to vary with physical location,

both with respect to position in stable aggregates, and with pore connectivity. Ma-

terial protected in the inner layers of a macroaggregate by the physical occlusion of

decomposers can equally be said to be protected by its lack of (or limited) connection

to porespace networks. Larger pores support rapid flow of water and solutes, trans-

porting microbial cells, and readily drain and saturate under normal field conditions.

Smaller pores are less often drained, and water movement is slower. In addition to

the physical inaccessibility of SOM in smaller pore spaces, soil pore water in smaller

pore spaces may have limited dissolved oxygen, further repressing decomposition of

SOM in the pore walls.

Because aggregate protection is an important control on SOM decomposition that

is strongly affected by management practice, many studies have looked at the decom-

position, quality and temperature sensitivity of SOM within aggregates, including
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incubation studies of separated aggregate fractions and characterisation of aggregate

fractions. (Adu and Oades, 1978; Leifeld and Fuhrer, 2005; Sey et al., 2008)

SOM aggregate structure and SOM pore structure are reciprocal factors. SOM

may be physically protected by aggregates, but microbes navigate the soil architec-

ture in pore-water. Attempts to study decomposition of SOM with an aggregate

approach should be balanced by in situ pore-oriented approaches. As results from

the separation, 14C dating and incubation of intra-aggregate and free light material in

Chapters 3 – 5 confirm, incubation of isolated aggregate fractions results in respira-

tion rates which reflect the intrinsic chemical properties of fractions in which in situ

physical location is likely to be the main factor determining decomposition rates. To

investigate the effect of physical location on respiration rates, it is necessary to keep

the soil architecture intact.

The experiments described in this Chapter were aimed at comparing the respi-

ration and temperature sensitivity of respiration between meso- and micro- pores in

situ. The water-filled porespace of intact soil cores was altered by applying hydraulic

tension to the water column in saturated cores, with the largest pores draining un-

der the lowest tension and the smallest pores requiring a high tension or pressure to

drain. The principles of this approach work under the simplifying assumptions that

all macropores are connected to the bottom edge of the core; for this reason I used

short (50 mm height) cores. The minimum diameter of pores drained at a certain

matric potential is approximated by the formula ø ≈ 0.3/h, where h is the matric

head (Ψm) in cm.

Filling porespace with water in order to isolate pore classes relies on the assump-

tion that no aerobic respiration occurs within water-filled pores, which is a blunt

simplification. In addition, the treatment effect in this study can be viewed as both a

difference in aerobic pore space and a difference in volumetric water content, which

is itself an important control on decomposition. While total waterlogging results in

anaerobic conditions where aerobic respiration is completely suppressed, in reality
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the pore surfaces of matrically altered soil cores will be experiencing a broad range

of water conditions.

General relationships between soil moisture and soil respiration rates are not

straightforward (Adachi et al., 2006; Cleveland et al., 2007; Rey et al., 2005; Waldrop

and Firestone, 2004; Xiao et al., 2007), however it is expected that soil respiration

should be highest at intermediate moisture contents and temperatures (Wickland

and Neff, 2008). Whether soil moisture itself significantly influences the temperature

sensitivity of soil respiration or not is unclear (Niu et al., 2008; Rey et al., 2005), but it

has been suggested that drier soil leads to more temperature sensitive decomposition

as moisture attenuates changes in temperature (Niu et al., 2008).

7.2 Methods, Results and Discussion

7.2.1 Sample collection

Intact 50 mm x 30 mm ø soil cores were used to investigate soil pore space. Cores

were collected on the 31st July 2009 from Harwood forest. Three parallel 25 m tran-

sects (A, B and C) were drawn 10 m apart, and each was sampled every 5 m. At

each point a small pit was dug to excavate an intact flat surface at the top of the Oi

horizon, and 25 individual PVC corers were pressed gently into the surface at least 10

mm apart until the soil core slightly protruded (∼3 mm) from the top of the ring. The

cores were carefully removed from underneath, with ∼10 mm intact soil protruding

from the undersurface, and transported back to the laboratory in a coolbox.

7.2.2 Manipulation of soil pore space

Each core was prepared by slicing off the protruding ends with a razorblade, leaving

an intact flat surface for good contact with the tension table surface. The intact cores,

still surrounded by plastic tubing, were capped at both ends with a patch of nylon

secured with a rubber band. The 25 cores from each pit were divided into six sets
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Table 7.1: Diameter of pores drained by matric tension treatments

Matric head Tension Pores drained Equilibration time Method
-20 cm -2 kPa > 150 nm 24 hrs Tension plate (Fig 7.3)
-1 m -10 kPa > 30 nm 96 hrs Tension table
-5 m -50 kPa > 6 nm 96 hrs Pressure table

of four and one remainder, and each set of four was combined with the five sets

from each transect, resulting in six composite sets of 20 cores from each transect. The

sets were assigned to six treatments: saturation in either deionised or deoxygenated

water, and drained to a matric head of -20 cm, -1 m, or -5 m. The cores were saturated

by placing in a shallow tray and filling the tray to half the depth of the cores (25 mm

depth), leaving to equilibrate for 24 hours, filling to just below the top of the cores

and equilibrating for a further 24 hours until the top surface appeared wettened,

following the recommendation of Carter and Gregorich (2007).

The pressure table and the tension table apparatus were used in the soil science

laboratory of the Scottish Agricultural College, Edinburgh campus. For the pressure

table and tension table, silica flour and water were mixed to make a cement which

acted as the contact medium. The cement was poured onto the plate surface and the

cores were positioned while the cement was still wet. The tension plate was borrowed

from the SIMBIOS center at the University of Abertay. The contact medium in the

tension plate was a dry ceramic surface. The surface was covered with a cellulose

filter paper (45 µm grade) and wettened with deionised water before contact was

made.

7.3 Incubation

After adjusting the matric potential, 20 cores from each treatment from each transect

were placed inside a 2 L Kilner jar fitted with gas ports in the lid, and incubated in a

ramping temperature program, starting with four days at 10 ◦C and increasing 5 ◦C
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per day from 10 ◦C to 30 ◦C and down again. CO2 fluxes and δ13C of respired CO2

were measured during the incubation of transect C cores using the tunable diode

laser described in section 6.1. CO2 fluxes only were measured during the incubation

of transect A cores, using the GC (section 4.3.2). Transect B cores were prepared for

incubation, but measurements were abandoned due to TDL malfunction.

Both transect A and transect C incubations showed predictable increases in respi-

ration with increasing temperature, however there was no discernible effect of either

matric potential or water type on the rate or temperature response of respiration.

The transect A incubation showed hysteresis in the temperature response- respiration

rates were lower during the ramp up than on the ramp down; however, the transect

B incubation showed the reverse. Cores with intermediate water content (drained to

-1 kPa) might have been expected to show the highest overall respiration rates: this

was not the case, and in fact the order of treatments with respect to respiration rate

was different in each water type and from each transect.
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Figure 7.1: Soil respiration from intact cores at adjusted matric tension of -5, -1 and -0.2 kPa.
Transect A, measured using gas chromatography. Error bars represent 1 standard deviation
of three analytical replicates at each timepoint.

141



Soil porespace and water characteristics

5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

Temperature (° C)

C
O

2 e
ffl

ux
 (

µm
ol

 C
O

2−
C

 g
 s

oi
l−

C
−

1  d
ay

−
1 )

 

 −5 kPa

−1 kPa

−0.2 kPa

Deoxygenated water

Deionised water

Figure 7.2: Soil respiration from intact cores at adjusted matric tension of -5, -1 and -0.2 kPa.
Transect C, measured using tunable diode laser spectroscopy. Error bars represent 1 standard
deviation of respiration rates within a 4-hour window.

δ13C of respiration was also measured during the TDL incubation of adjusted

C transect cores but are not presented here. The values remained relativey con-

stant throughout the incubation, and did not vary with temperature, matric tension

treatment or water type (multi-way ANOVA, all p >0.1). The mean δ13Cof respired

CO2from all flasks for the whole duration was -32.1 h (± 0.1, 1 s.d.).
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Figure 7.3: Tension plate apparatus
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Figure 7.4: Pore size distribution determined by remaining water filled porespace at three
matric tensions (-2 kPa, -10 kPa and -50 kPa)

7.4 Dry bulk density

The bulk density of cores collected in five pits along three transects indicate the scale

of spatial variability of soil properties in Harwood forest. Variation within each pit

(1 m2) was very low, while variation within transects (25 m) was high, and variation

between transects (30 m) was similarly high. A slight trend in bulk density was

noticeable both along each transect, and also between transects (A-C).
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Figure 7.5: Dry bulk density of cores at 10 –15 cm depth along three 25 m transects in
Harwood forest. Bars indicate standard error (n=25)

7.5 Estimation of carbon stocks using core bulk density

Dry bulk density values determined in conjunction with soil carbon concentrations in

different horizons are an essential tool for measuring soil carbon stocks and monitor-

ing small changes in soil carbon storage over time. Because carbon content and bulk
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density are strongly negatively correlated, ad hoc comparisons of soil carbon storage

based on carbon contents alone overestimate high values and underestimate low ones

(Davidson and Ackerman, 1993). For the same reason, for accurate measurement of

carbon stocks within a site, even where bulk density is not very variable, it is impor-

tant to use values of bulk density, moisture content and carbon content for the same

subsamples. As Conen et al. (2005) demonstrate, estimating area-weighted carbon

stocks using mean values of carbon concentration, soil mass and bulk density result

in an overestimation of carbon stocks (in their case by 13%) when compared to direct

measurement of stocks on each subsample using the same data. Over the course of

this PhD, carbon contents were measured without measuring the bulk density of the

samples, bulk density was measured without measuring the carbon content of the

samples, and bulk density was only measured at one depth. However, these val-

ues can still usefully be combined to generate a ball-park estimate of the soil carbon

stocks in the top 15 cm of Harwood forest soil. Using the mean dry bulk density of

all the cores in this Chapter and the mean carbon concentrations of 5 - 17 cm whole

soil described in Chapter 3, and the formula

Soil C stock (kg m−2) =
C content(%)

100
×dry bulk density (kg m−3)× sampling depth (m),

(7.1)

I determined that the Harwood soil carbon stocks to 15 cm are in the order of 30.7

kg m−2, ± 10.2 (1 s.d.). The error term was propogated using the formula

(

σf

f

2)

=

(

σA

A

2
)

+

(

σB

B

2
)

(7.2)

.
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7.6 Conclusion

Matric alteration of intact soil cores did not succeed in separating a distinct respira-

tion response from different pore size classes. The magnitude of respiration rates in

different matric potential treatments were highly variable and inconsistent, despite

large differences in the water content of each treatment. Bulk density of intact cores

showed a high variability in 5 m intervals, and low variability within 1 m2 pits.
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Chapter 8

Discussion

This thesis set out to investigate relationships between the stability of different forms

of SOM and the temperature response of decomposition. Decomposition of SOM can

be limited by a large number of different factors, including but not limited to tem-

perature, nutrient availability, intrinsic chemical properties of SOM, physical access

to SOM by decomposers, OM-mineral associations, soil pH, waterlogging, energy

availability, and microbial community dynamics.

Understanding the temperature sensitivity of stable SOM is an important research

goal, because of the risk of large stores of stable C in soils around the world being

released to CO2, DOC or labile SOC pools due to warming. However, long term sta-

bility of SOC can be caused by a large number of interacting factors, making it diffi-

cult to predict overall responses to temperature. Each of the limits to decomposition

listed above besides temperature is likely to have an independent relationship with

temperature, or with the wider effects of global climate change (von Lützow and

Kögel-Knabner, 2009). The overall temperature sensitivity of respiration from sta-

bilised SOM is a function of the underlying enzyme kinetics of the reaction, and the

temperature sensitivity of each of the stabilisation mechanisms acting on that SOM.

The relative importance of different stabilisation mechanisms varies enormously be-

tween biomes, between soil types, between land management types, with depth and
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within soils. As a result, the temperature sensitivity of stabilised SOM as a whole is

complex, and there is no consensus on the relationship between SOC age and tem-

perature sensitivity (Kirschbaum, 2006). Two opposing approaches to characterising

this complexity emerge- separating stabilisation mechanisms and characterising the

individual temperature responses, or ignoring the variation in stabilisation mecha-

nisms and aiming for a simplified relationship that can inform carbon cycle models

on a global scale without the need for in depth knowledge of soil chemical and phys-

ical properties on a local scale. Both approaches are required for understanding the

mechanisms of temperature response and predicting the effect of climate change on

global soil carbon cycling. This thesis adopted the former approach.

8.1 Summary of results

Chapter 3

Chemical characterisation of Harwood forest soil horizons, particle size fractions and

density fractions demonstrated that a range of stabilisation mechanisms may be op-

erating in these soils. Fe concentrations were strongly correlated with C content,

indicating that Fe oxides may provide some SOM stability in all fractions and depths

without explaining differences between fractions. Degree of humification as mea-

sured by the Alkyl-C : O-alkyl-C ratio increased in the order light < mineral-bound

< intra-aggregate amongst the fractions, and was considerably higher at depth in the

whole soils. C:N ratios increased with depth, counter to expectations. Polysaccha-

rides were high in the mineral-bound fraction, and were associated with the coarse

sand and silt fractions. Based on these results I suggest that 20 - 30 cm soil and

intra-aggregate material are likely to be intrinsically recalcitrant, while OM-mineral

associations are likely to be high in the mineral bound fraction and the 20 - 30 cm

soil, although Fe oxide stabilisation is likely to occur throughout the fractions and

horizons.
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Chapter 4

Incubation of isolated fractions showed that rates of respiration on a g soil-C−1 basis

were equally high in the light and intra-aggregate fractions, and even higher in the

mineral-bound fraction, despite the presumed stability of OM-mineral associations

and the high degree of humification in the intra-aggregate fraction. Whole soil res-

piration rates were lower at 20 - 30 cm than at 5 - 17 cm, indicating that 20 - 30 cm

SOM is more stable, due to a combination of humification and mineral interactions.

Temperature sensitivity of respiration was higher in the light fraction than in the

intra-aggregate or mineral-bound fraction, and was higher in unsterilised 5 - 17 cm

soil than unsterilised 20 - 30 cm soil, counter to the predictions of the Q theory that

more humified material should be more temperature sensitive. On the other hand,

higher respiration rates and lower temperature sensitivity in the chemically labile

mineral-bound fraction than the light fraction suggest some support for Q theory.

These results suggest that stability at 20 - 30 cm is primarily due to mineral asso-

ciations and physical protection rather than substrate quality, and that the stability

of the chemically labile mineral-bound fraction owes more to the formation of mi-

croaggregates to OM-mineral bonds themselves. Respiration was suppressed in all

fractions due to NaI toxicity.

Chapter 5

In Chapter 5, I used the isotopic composition of respired material for insight into

the temperature sensitivity of respiration. No effect of temperature was found on

the 14C or δ13C of respired CO2, nor on the δ15N, δ13C or C:N ratio of remaining

solids. 14C dating of whole soils and fractions confirmed that SOM in the 20 - 30 cm

soil and in the mineral-bound and intra-aggregate fraction of the 5 - 17 cm soil are

considerably older and more stable, at least in situ, than 5 - 17 cm soil whole soil or

light material. However, these age differences were not reflected by differences in the
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sensitivity of respiration to temperature. Most fractions and whole soils at both 10

and 30 ◦C released CO2 with a 14C content indicating a younger-than-average source

of respiration, but there no was effect of temperature. A weak negative correlation

between the 14C discrimination of respiration and the proportion of SOC consumed

during the incubation indicates that the expected progression from younger to older

material over the course of the incubation did not occur, supporting findings in Chap-

ter 4 that indicate the stabilisation mechanisms primarily responsible for the age of

fractions were not operating during the incubation.

Chapter 6

During Chapter 6 I investigated the priming of recalcitrant SOM by labile substrate

additions, to test the hypothesis that 20 - 30 cm SOM would be more susceptible

to priming than 5 - 17 cm soil SOM. Naturally labelled sucrose additions provoked

both positive and negative priming in the respiration of native SOM, irrespective of

whether nutrient solution was added alongside. There was no difference in priming

effect, background soil respiration or sugar respiration between soil depths, despite

considerably lower microbial biomass C and SOC contents in the 20 - 30 cm soil.

When nutrient solution was added, the difference between a positive or a negative

priming effect was caused by sugar application mode. Mixing in the sugar solution

caused a negative priming effect, while pouring the sugar solution on top caused

a positive priming effect. Local concentrations of sugar on a small scale may have

a strong effect on priming effects, and such minor differences in experimental tech-

niques may be partly responsible for contrasting conclusions in the priming litera-

ture.

Chapter 7

I used matric tension to alter the water-filled porespace of intact Harwood forest

soil cores, in an attempt to separate the temperature response of soil respiration in
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micropores and macropores. There was no consistent effect of matric alteration on

soil respiration or temperature response of soil respiration, despite big differences

in the water-filled porespace in each treatment. Sampling a large number of intact

soil cores for this experiment also provided information about the scales of spatial

variation in bulk density in Harwood forest.

8.2 Dominant mechanisms of stability in Harwood Forest soil

14C dating of density fractions and whole soils demonstrated that Harwood forest

soil is composed of distinct SOC pools with very different turnover rates, and MRTs

ranging from centuries to millenia (Chapter 5). The 14C age of fractions provided

information about the lifetime stability of SOM. Chemical characterisation of these

fractions and whole soils in Chapter 3 provided some possible explanations for the

causes of stability in the older SOM pools, fromwhich the theoretical stability of SOM

can be predicted. In Chapter 4, the isolated fractions and horizons with demonstra-

bly different lifetime and theoretical stability were incubated, providing information

about the current stability. In addition, Chapters 6 and 7 were designed to investi-

gate further aspects of the theoretical stability of Harwood SOM; in Chapter 6, the

susceptibility of SOM to priming by labile substrate co-metabolism, and in Chapter

7, physical protection of SOM within micropores. Neither Chapter 6 nor Chapter 7

conclusively demonstrated action of the mechanism of stability investigated.

8.2.1 Depth

Based on the radiocarbon ages, the strongest SOM stabilisation in Harwood occurred

was related to depth. Mean residence times of 20 - 30 cm SOM were almost a mil-

lenium longer than in the horizon above (Chapter 5, table 5.2), indicating that SOM

in this horizon was formed in the ericaceous moorland and survived afforestation.

Decomposition of SOM at 20 - 30 cm can be expected to be hindered by seasonal
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waterlogging, as drainage is an important control on CO2 emissions at this site (Mo-

jeremane et al., 2012); it will also be limited in situ by the much lower microbial

biomass (see Chapter 6, table 6.3), which is in itself a reflection of physico-chemical

limits to decomposition (water, O2 diffusion) as well as the size and quality of the

available SOM pool. The 20 - 30 cm whole soil showed signs of humification (eg.

high alkyl-C : O-alkyl-C ratio, Chapter 3, Fig. 3.11) and an accumulation of aromatic

compounds (increasing ketone moiety with depth, Chapter 3, Fig. 3.4), indicating

that intrinsic recalcitrance may play a role in SOM stabilisation. Swain et al. (2010)

also showed increasing lignin oxidation with depth in Harwood forest, and an accu-

mulation of phenols in the 20 - 30 cm layer attributed to profile inversion and burial

of the upper organic layer during afforestation. Burial during afforestation is likely

to have contributed to the stabilisation of Harwood SOM; however, the age of 20 - 30

cm material established here suggests that most of the SOM now in the 20 - 30 cm

layer was already stabilised well before afforestation. Although waterlogging could

be expected to be the primary source of near-permanent SOM stability in Harwood

20 - 30 cm soil, when samples were incubated under fully aerobic conditions, respi-

ration rates were still significantly lower on a per g soil-C basis than from the 5 - 17

cm soil. This indicates that waterlogging is at least not the only control on respira-

tion at 20 - 30 cm; I conclude that the near-permanent stabilisation of SOM in the

20 - 30 cm layer in Harwood forest is largely due to mineral-OM interactions, with

some contribution from intrinsic recalcitrance. Higher Q10 values for respiration in

the deeper soil (Table 4.1), supported by Rey et al. (2005) and Cross and Grace (2010),

support the theory that mineral associations reduce the temperature sensitivity of

soil respiration.
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8.2.2 Micro-aggregates and mineral associations

The high Alkyl C : O-alkyl-C ratios of the intra-aggregate fraction indicate that hu-

mification may be responsible for the long MRT of these samples. However, when in-

cubated, intra-aggregate and light fraction material showed similar respiration rates,

indicating that the relatively long MRT of the intra-aggregate fraction is not the result

of intrinic chemical properties. Furthermore, temperature sensitivity of respiration

was higher in the light fraction than the intra-aggregate fraction, counter to the pre-

diction that more humified material is more temperature sensitive. I conclude that

the long MRT of intra-aggregate material is due to the physical protection of SOM

within aggregates.

The very strong correlation between Fe concentration and C content suggests that

OM stabilised by Fe oxides and in Fe-humus complexes are high in all fractions,

which should be an important source of SOM stability in this soil type (Sollins et al.,

2009). However, the fact that this relationship holds even for the samples with a rela-

tively young 14C age indicates that Fe stabilisation is not responsible for the stability

of the older SOM fractions.

The long MRT of the mineral-bound fraction suggests that this material is resis-

tant to decomposition in situ. Relatively high levels of polysaccharides, low Alkyl-C

: O-alkyl C ratio and high thermal lability of this fraction indicate that this fraction

is stabilised by mineral associations and physical stabilisation rather than chemical

properties. However, when incubated this fraction showed a higher rate of respira-

tion per g soil-C than the light or intra-aggregate fractions, indicating that physical

stability of aggregates, rather than mineral associations, is responsible for the long

MRT of the mineral-bound fraction. Mineral associations are supposed to provide

SOM stability on a near-permanent basis (Marschner et al., 2008; Kögel-Knabner et al.,

2008); other studies of the age of density fractions have shown that mineral-bound

material is considerably older than intra-aggregate material (Dorodnikov et al., 2011).
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In this study intra-aggregate SOM was just as old as mineral-bound SOM, which

supports the idea that physical protection is the primary cause of stability in both,

rather than recalcitrance and mineral interactions respectively.

8.2.3 Differences between composited duplicates

Despite compositing samples to reduce sample variation, consistent differences ap-

peared between composite A and composite B. Composite A samples were consis-

tently older than composite B within each category (Table 5.2); Alkyl-C : O-alkyl-C

ratios, indicating humification, were higher in composite A than composite B (Fig

3.11). Fe : C ratios were also consistently higher in composite A than composite

B (Fig 3.13). Despite these differences, respiration rates were not detectably higher

in composite B samples within each category. This suggests that although Fe oxide

stabilisation and the intrinsic recalcitrance of humified material contributed to the

lifetime stability of SOM, the current stability during incubations was determined by

another factor. This supports the idea that both Fe oxide interactions and humifica-

tion provide stability via physical protection in microaggregates, and not directly.

8.3 Temperature sensitivity of soil respiration

The Q10s of respiration from isolated fractions and whole soils as determined in

Chapter 4 showed that the light fraction was more sensitive to temperature than

the intra-aggregate and mineral-bound fractions, despite the fact that intra-aggregate

and mineral-bound material was more humified, and previous studies have shown

more humified material to be more temperature sensitive (Leifeld and Fuhrer, 2005;

Plante et al., 2010). Karhu et al. (2010a) used the 14C ages of physical fractions to

partition respiration from forest soils into ’younger’ and ’older’ sources, and found

that respiration from older SOC (based on a heavy fraction) was more temperature-

sensitive than young (light) in the 5 - 17 cm soil, but in the upper mineral horizon
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light fraction material was more temperature sensitive. It is tempting to conclude

from my results comparing the three isolated fractions that ’younger’, light material

is more sensitive to temperature; however, the youngest fraction that I identified

had a MRT of 146 years, qualifying for the stable pool in most soil carbon models.

The highest modelled temperature sensitivities found by Karhu et al. (2010a) were in

pools with MRTs of 7 - 16 years, and showed Q10 around six while all other pools

showed a Q10 ∼ 3. It is highly probable that the light fractions I isolated contain a

subfraction of younger SOM that in the decadal turnover pool, which might drive the

temperature sensitivity of the whole fraction. However, the 14C of respired CO2 from

the light fraction showed that the MRT of respired material was >110, suggesting that

the decadal pool does not dominate respiration in this soil.

The temperature sensitivity of mineral-bound fractions in this study are to be in-

terpreted with caution, since there was high variation in respiration over time and

between composites. Mineral-bound fraction respiration was particularly variable

because of the very low total respiration rates. Mineral-bound OM can be expected

to have a lower temperature sensitivity, since mineral-OM bonds are known to be

thermally stable and formation of mineral-OM associations is itself temperature sen-

sitive (Thornley and Cannell, 2001). In addition, the mineral-bound material in this

study was high in labile SOC components, high in polysaccharides and with a high C

: N ratio, which would be consistent with a low temperature sensitivity according to

Q-theory, despite contrasting results from similar studies (Leifeld and Fuhrer, 2005).

The low temperature sensitivity, high relative respiration rate and long MRT are con-

sistent with this fraction as an entrapped labile pool under physical protection from

microaggregates.

The net temperature sensitivity of soil respiration is not only affected by the kinet-

ics of an individual reaction: temperature-dependent processes affecting the supply

and transport of substrates, oxygen, water and decomposers also affect the measured

result. Davidson et al. (2006) suggest that Q10 values above 2.5 are an indication of
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interacting substrate supply issues. Here, only the sterilised 5 - 17 cm whole soils

showed Q10 values under 2.5. This might suggest that high Q10 values amongst the

fractions are partly down to the separation of co-limiting substrates; however this

argument is weakened by the fact that all but one of the unsterilised whole soils also

had Q10 values over 2.5.

8.4 Limitations

8.4.1 Sampling strategy and experimental design of incubations

The incubation experiments described in this thesis were hampered by an initial sam-

pling strategy with inadequate replication. Composite sampling is a useful shortcut

for incorporating a representation of population variation into a small number of

samples to reduce analysis costs and processing time; Robertson et al. (1999) recom-

mend that composited soil samples should at least be duplicated. However, most

useful statistical tests require a minimum of n = 3. Incubation experiments in par-

ticular require replication to represent not only the soil population variation, but the

variation in incubation conditions and microbial community dynamics. The decision

to use only two composite replicates for this study was made on the basis of the time-

consuming density fractionation procedure; an improved design taking the same

amount of processing time would have been to use smaller subsamples, three temper-

ature treatments, and three composited replicates for the GC incubation. In addition,

replicated CO2 measurements of each sample at each sampling event would have re-

duced the variation in respiration rates between sampling events, allowing improved

estimates of temperature sensitivity. The GC incubations were performed in small

vials to allow rapid buildup of measurable CO2 concentrations, and CO2 was sam-

pled only once, at the end of the sealed period, the length of which was determined

by estimating the time taken to build up a similar headspace CO2 concentration in
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each vial. If the experiment were to be repeated, an improved method of determin-

ing CO2 concentrations taking into account the non-linear buildup of headspace CO2

due to diffusion and CO2 saturation would be to use larger headspace vessels and

longer sealed periods, measuring headspace CO2 from each vessel repeatedly and

calculating the rate of CO2 production from the CO2 accumulation curve.

Techniques have been developed for measuring CO2 evolution from soils on a

very small scale, in modified 96-well MicroResp™ plates. While short-term, a mi-

croresp incubation could have provided a low-cost, well-replicated supplement to

the long-term incubation experiments described, using only small amounts of soil.

Radiocarbon dating of Harwood forest density fractions validated our approach

to separating SOM pools, confirming that density separation isolated two fractions

that were stable in terms of lifetime stability. However, the remaining light fraction

also showed relatively long mean residence times (147 and 255 y), was not demon-

strably labile with respect to measured respiration rates (current stability) and held

82 % of the total 5 - 17 cm SOC. Crow et al. (2007) demonstrated that during density

fractionation with SPT a significant SOM fraction is solubilized into the separation

medium, and that this fraction is both functionally separate from the light and heavy

fractions and highly soil-specific, although widely discarded in density fractionation

experiments. Undoubtedly some fraction of SOM was also lost to the NaI solution

during this experiment.

Further separation of the light fraction, perhaps using a lower-density medium,

or including isolation of acid-resistant fractions and retention of the DOM lost dur-

ing fractionation, might have allowed separation of a younger and more truly labile

fraction for comparison. Other studies have already demonstrated the importance of

lignin chemistry for the Harwood SOC stocks (Swain et al., 2010); further investiga-

tion of the chemistry of the light fraction could have allowed a fuller understanding

of the importance of intrinsic chemical recalcitrance for Harwood SOM stabilisation.

By far the most stable OM analysed by radiocarbon dating was the 20 - 30 cm
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whole soil (1381 and 1072 y), which was not fractionated, as it was only included

in the experimental plan at the last minute. Given that this horizon is within the

rooting zone, it is very likely that this horizon contains young SOM as well as highly

stabilised SOM. A fuller investigation of the relative importance of different stabilisa-

tion mechanisms in Harwood would have included characterisation and incubation

of density fractions from 20 - 30 cm soil also.

8.4.2 Microbial heterotrophic respiration in isolation from plant inputs

Soil incubation studies are an important tool for understanding SOM processes in

depth; the ability to manipulate soils and exclude external variables allows a detailed

analysis of individual processes that is near impossible in field studies. However, the

extent to which incubation of soils in laboratory conditions give a realistic picture

of in situ soil C cycling is highly questionable. Taken out of the field, soils are cut

off from litter and rhizodeposit inputs, mycelial transport networks are cut, mac-

robiota are excluded and groundwater flow is removed. Each of these features of

soil contribute considerably to soil carbon cycling and are also temperature sensitive

(Briones et al., 2008; Hawkes et al., 2008). Removal of roots results in the loss of a

large proportion of the soil microbial biomass (De Neergaard and Magid, 2001), as

well as labile carbon inputs that can have a strong influence on the decomposition of

bulk SOM (Bais et al., 2006; Blagodatskaya and Kuzyakov, 2008). Harwood forest has

an abundant ectomycorrhizal community, with close to 100 % of root tips colonised

(Palfner et al., 2005), which will act as a C and N distribution network. Since this

thesis concerned stabilisation factors affecting the SOM decomposition in bulk soil,

it was reasonable to exclude rhizosphere and mycorrhizal processes, but the lack of

labile substrate additions should be taken into consideration. Similarly, incubating

isolated fractions involves separating substrate pools that are likely to interact in field

conditions, either through co-metabolism or microbial community shifts.
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8.4.3 NaI toxicity

In addition to standard sample preparation, the isolated density fractions incubated

in Chapter 4 were also exposed to a strong NaI solution during fractionation. Iodine

is well known to have a toxic effect (Cotton, 1930) so efforts were taken to thoroughly

rinse the samples with water, and fractions were sterilised and then reinoculated

before incubation. However, some I residues remained, and seemed to be selectively

sorbed to OM (see Appendix A). These I residues seem likely to be the reason why

respiration rates were strongly suppressed in all isolated fractions, compared to the

whole soil (Fig. 4.1). NaI was chosen in preference to the alternative widely used

density agent, SPT, which is known to be toxic to soil microorganisms and to affect

clay mineral structure (Magid et al., 1996; Swanston et al., 2002; von Lützow et al.,

2007). Crow et al. (2007) found a suppression of respiration in forest soil fractions

separated with NaI, but conclude that the toxicity was not high enough to account

for the suppression. Sollins et al. (1984) explicitly tested the effect of residual NaI on

anaerobic microbial N mineralisation, and found no effect.

8.4.4 Substrate quality changes over time

Soils or soil fractions isolated from carbon inputs progressively change in compo-

sition over time, as the stock of undecomposed material declines and humified mi-

crobial products accumulate. As a result, incubation experiments frequently show

that initially high incubation responses tail off rapidly (Townsend et al., 1997). This

pattern was explained by some as the acclimation of the microbial community to a

new temperature regime (Luo et al., 2001; Giardina and Ryan, 2000), used to argue

that observed increases in soil respiration are artefacts of temperature manipulation

experiments. Subsequently several modelling studies showed that the temporal re-

sponse is explained just as well by the depletion of labile substrates (Kirschbaum,

2004; Knorr et al., 2005) and later experiments confirm a lack of microbial acclimation
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to temperature changes (Vicca et al., 2009).

This progression offers opportunities to compare the decomposition of humified

and fresh SOM (Hartley and Ineson, 2008), but it also presents a problem for the

determination of temperature responses from soil incubations. Identical soil samples

incubating for the same length of time at different temperatures will degrade to a

different degree over the course of the incubation depending on the decomposition

rate, leading to a comparison of respiration rates from unequal SOM sources (Co-

nant et al., 2008). Conant et al. (2011) warn that this discrepancy leads to a consistent

bias towards results that indicate a higher temperature sensitivity of older material.

Although attempts were made to estimate the temperature sensitivity corrected for

substrate depletion during these incubations (section 4.5.1), experimental design pre-

cluded useful interpretation of these results. Incubation studies comparing samples

with different expected respiration rates should not be preceded by an unmeasured

equilibration period. Allowing respiration rates to equilibrate before measurements

begin is only appropriate where the samples can be expected to have similar respira-

tion rate, and the temperature of equilibration is constant for all samples.

8.5 Further work

Results from Chapters 3 and 4 suggested that the spatial location of SOM in the soil

matrix is important for the stabilisation of SOM. Physical occlusion of SOM is sensi-

tive to management and indirectly to global change, but is likely to be more impacted

by changes to the water cycle than direct effects of temperature on decomposition.

More research is needed to focus on the spatial distribution of different forms of

SOM and in particular differences in microbial communities within the porespace.

During Chapter 7 I attempted to address this question, but the method of manipu-

lating pore space by matric alterations was not effective. Rather than attempting to
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separate respired CO2 from different spatial locations in the soil, or balancing ma-

nipulation of soil pore space with minimal disruption of structure, a more effective

approach to this question might be to incubate intact cores at different temperatures,

and characterise the remaining SOM in pore walls for evidence of decomposition

and microbial transformation using structure-preserving micro-spatial approaches

such as microtomography or nanoSIMS.

I did not conclusively demonstrate whether the Harwood 20 - 30 cm whole soil is

predominantly mineral-stabilised or aggregate-stabilised. This is an important ques-

tion with impacts for the management of UK forests. Organic-rich, acidic mineral

soils are common under forests in the UK, partly due to the practice of afforest-

ing moorlands for timber production. This mineral soil had a relatively high, and

very old, OM content. If the SOM in this horizon is impermanently stabilised in

intra-aggregate form, it is likely to be vulnerable to SOC losses due to physical dis-

turbance during felling and ground preparation. If permanent mineral associations

are more dominant, it may be more stable. A fuller investigation of the clay mineral-

ogy and metal oxide status of these soils is necessary to determine their vulnerability

to disturbance. Characterisation of the density fractions of 20 - 30 cm

As mentioned previously, the youngest fractions isolated in these soils had a

MRT that put it in the decadally cycling SOC pool. This fraction almost certainly

contains a more active subfraction, with an MRT of years less. A full picture of the

carbon cycling of Harwood forest soil would need to involve separating this active

subfraction from the light material. Relatively high metal concentrations in the light

material suggested that a more stabilised subfraction could have been separated by

fractionation at a lower density. Alternatively, isolating and characterising an acid-

resistant subfraction from the light fraction would give information about the active

fraction by subtraction.
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8.6 Conclusions

This thesis investigated the various mechanisms of SOM stability. I separated soil

fractions and soil horizons which had very different turnover rates; 20 - 30 cm whole

soil was in the millenial SOC turnover pool, while mineral-bound and intra-aggregate

material formed a multi-centennial turnover pool. Light material showed the shortest

residence times, but was still around 100 years old. Stability implied by respiration

rates during a laboratory incubation was not consistent with the turnover rates shown

by 14C dating. In particular, old, mineral-bound material respired more per g C than

younger light material, while old and humified intra-aggregate material respired just

as much. A very old 20 - 30 cm soil horizon showed some signs of stability during

incubation experiments, chemical characteristics indicating humification, as well as

a lower temperature sensitivity. I suggest that a combination of mineral associations

and aggregate protection provides stability to the 20 - 30 cm SOM. Contrary to expec-

tations, the 20 - 30 cm soil was no more susceptible to priming by labile substrates;

slight differences in methodology controlled whether a positive or a negative prim-

ing effect was observed. The most temperature sensitive SOC pool investigated in

this study was the youngest and least humified, in contrast to predictions based on

enzyme kinetics and thermodynamics. However, this youngest pool contained OM

that was around 100 years old; high temperature sensitivity of this fraction relative

to fresh material would be consistent with established theory. Temperature sensitiv-

ity of respiration in the 20 - 30 cm soil and the mineral bound fraction were lower,

supporting the hypothesis that the formation of mineral associations is also sensitive

to temperature, attenuating the temperature sensitivity of soil respiration. Above all,

there is no clear relationship between age or degradedness of SOM and the tempera-

ture sensitivity of respiration. Representation of the complexity of SOM stabilisation

mechanisms in SOC models is critical for coupling climate models to the terrestrial

carbon cycle, but considerably more work is necessary before a consensus is reached.
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SEM-EDX of density fractions and
whole soils
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SEM-EDX of density fractions and whole soils

Figure A.1: Organic horizon whole soil
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SEM-EDX of density fractions and whole soils

Figure A.2: Organic horizon light fraction
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SEM-EDX of density fractions and whole soils

Figure A.3: Organic horizon intra-aggregate fraction
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SEM-EDX of density fractions and whole soils

Figure A.4: Organic horizon mineral-bound fraction
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SEM-EDX of density fractions and whole soils

Figure A.5: Mineral horizon whole soil
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