Targonskii A.L. (Zhitomir, Ukraine)

Extremal problem with variable quantity of points on rays.

Let $n, m, d \in \mathbb{N}, m=n d$. Let's consider a set of natural numbers $\left\{m_{k}\right\}_{k=1}^{n}$ such that

$$
\begin{equation*}
\sum_{k=1}^{n} m_{k}=m \tag{1}
\end{equation*}
$$

System points

$$
A_{n, d}:=\left\{a_{k, p} \in \mathbb{C}: k=\overline{1, n}, p=\overline{1, m_{k}}\right\}
$$

the satisfied condition (1), the define generalized (n, d)-equiangular with variable quantity of points on rays, if at all $k=\overline{1, n}$ and $p=\overline{1, m_{k}}$ realize relation:

$$
\begin{align*}
& 0<\left|a_{k, 1}\right|<\ldots<\left|a_{k, m_{k}}\right|<\infty \\
& \arg a_{k, 1}=\arg a_{k, 2}=\ldots=\arg a_{k, m_{k}}=\frac{2 \pi}{n}(k-1) \tag{2}
\end{align*}
$$

Let $r(B, a)$ - inner radius domain $B \subset \overline{\mathbb{C}}$ with respect to a point $a \in B$.
Subject of studying of our work are the following problems.
Problem 1. Let $n, m, d \in \mathbb{N}, m=n d, n \geq 2$. To find a maximum

$$
\begin{gathered}
\left(r\left(B_{0}, 0\right) \cdot r\left(B_{\infty}, \infty\right)\right)^{\frac{n^{2}}{4}} \cdot \prod_{k=1}^{n} \prod_{p=1}^{m_{k}} r\left(B_{k, p}, a_{k, p}\right), \\
r^{\frac{n^{2}}{4}}\left(B_{0}, 0\right) \cdot \prod_{k=1}^{n} \prod_{p=1}^{m_{k}} r\left(B_{k, p}, a_{k, p}\right) \\
r^{\frac{n^{2}}{4}}\left(B_{\infty}, \infty\right) \cdot \prod_{k=1}^{n} \prod_{p=1}^{m_{k}} r\left(B_{k, p}, a_{k, p}\right), \quad \prod_{k=1}^{n} \prod_{p=1}^{m_{k}} r\left(B_{k, p}, a_{k, p}\right),
\end{gathered}
$$

where $A_{n, d}=\left\{a_{k, p}\right\}$ - arbitrary generalized (n, d)-equiangular with variable quantity of points (2), and $\left\{B_{k, p}\right\}$ - arbitrary set partially non-overlapping domains, or, somewhat, partially non-overlapping domains, $a_{k, p} \in B_{k, p} \subset \overline{\mathbb{C}}$, and to describe all extremals $\left(k=\overline{1, n}, p=\overline{1, m_{k}}\right)$.

Problem 2. Let $n, m, d \in \mathbb{N}, m=n d, n \geq 2$. To find a maximum

$$
\begin{aligned}
(r(D, 0) \cdot r(D, \infty))^{\frac{n^{2}}{4}} \cdot \prod_{k=1}^{n} \prod_{p=1}^{m_{k}} r\left(D, a_{k, p}\right), & r^{\frac{n^{2}}{4}}(D, 0) \cdot \prod_{k=1}^{n} \prod_{p=1}^{m_{k}} r\left(D, a_{k, p}\right), \\
r^{\frac{n^{2}}{4}}(D, \infty) \cdot \prod_{k=1}^{n} \prod_{p=1}^{m_{k}} r\left(D, a_{k, p}\right), & \prod_{k=1}^{n} \prod_{p=1}^{m_{k}} r\left(B_{k, p}, a_{k, p}\right)
\end{aligned}
$$

where $A_{n, d}=\left\{a_{k, p}\right\}$ - arbitrary generalized (n, d)-equiangular with variable quantity of points (2), and $D-$ arbitrary open set, $a_{k, p} \in D \subset \overline{\mathbb{C}}$, and to describe all extremals $\left(k=\overline{1, n}, p=\overline{1, m_{k}}\right)$.

