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Abstract 

Optimisation problems such as scheduling and resource allocation are hard, as large 

numbers of solutions exist for "real' problems. Neural networks have been reported to 

find optimal solutions quickly. These networks derive their power from a massively par-

allel architecture, drawing its inspiration from the biological nervous system. 

There is a need for dedicated hardware implementations to accelerate neural compu-

tations. There is also a desire to develop autonomous neural systems. 

Digital circuits are tolerant of process variations. Digital circuits are however large. 

Analogue circuits are more compact and consume less power, but are dependent on the 

fabrication process for correct functionality. The choice between the two techniques is 

determined ultimately by the application. Analogue techniques are necessary to obtain a 

completely parallel implementation. Both the HopfieldlTank and Kohonen networks used 

in optimisation rely upon matched circuit elements. Thus the development of process 

invariant analogue circuits for neural networks was the major aim of this thesis. 

Simulations are reported, of the Hopfield]Tank and the Kohonen networks, applied 

to the 10-city Travelling Salesman Problem (TSP). They confirm the reported optimisa-

tion abilities. The Kohonen network is.shown to be faster and more robust than the Hop-

field/rank network. 

The results obtained from two fabricated devices are reported: a small scale test-chip 

and a large scale, generic building block device (EPSILON). These results show that the 

circuits developed in this thesis offer a significant immunity to the effects of process vari-

ations. The Kohonen network for the TSP was implemented on EPSILON. The Koho-

nen network was a very tough test for EPSILON, in that it requires a high degree of accu-

racy to be able to discriminate between the responses of neurons. Process variations pre-

vented EPSILON from solving TSPs greater than 9 cities. 

The main conclusion of this thesis is that unless the neural algorithm actively com-

pensates for the effects of process variations, the performance of a network implemented 

in analogue VLSI is compromised. 
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Chapter 1 

Introduction 

The work in this thesis combines a personal interest by the author in VLSI design 

with a desire by Thorn-EMI's Central Research Laboratories for a fast, high performance 

optimisation system. In a company such as Thorn-EMI, the quest for efficiency is a 

never-ending one. The company is always searching for a new competitive edge. Conse-

quently there is a continuous drive towards developing better techniques for organising 

schedules or resources, to reduce both the time and the cost of projects. 

The work in the field of optimisation spans more than half a century and has it roots 

in mathematics and operational research. Early optimisation techniques were based on 

differential calculus or linear programming. The increase in computing power over the 

past few decades has enabled the development and implementation of sophisticated 

search techniques for solving a wide variety of optimisation problems. Neural networks 

are comparatively recent arrivals in the field of optimisation. Their inspiration is the mas-

sively parallel nature of the human nervous system, which despite the slow response of 

the individual components (neurons) is able to solve optimisation problems quickly due 

to the high level of in-built parallelism. Papers by Hopfield/Tank [1] and Angeniol [2] 

have reported results which suggest that neural networks possess the much-prized ability 

to find optimal or near-optimal solutions to the problem in hand quickly. 

Unfortunately, due to the Von Neumann architecture of conventional computers, 

simulations of a neural networks serialise the computation, losing the speed advantage of 

the completely parallel computation in a neural network. To speed up the simulations of 

neural networks, and with a view to the development of autonomous neural systems, a 

wide variety of dedicated hardware implementations have been developed. The 

approaches include the use of high performance specialist processors, or custom VLSI 

devices optimised specifically for neural networks. In both cases the implementation nor-

mally possesses a degree of parallelism. Custom VLSI implementations divide into 2 

generic sections: 

1 	Digital Techniques 

2 Analogue Techniques 

The extensive use of digital design techniques within conventional computers means 

that digital technology is more familiar. As a result, general purpose neural accelerator 

cards normally use digital circuits. This also makes interfacing to a digital host computer 



Chapter 1 	 2 

straightforward. The strengths of analogue circuits are, however, small size and low 

power consumption. Thus they are well suited for stand-alone implementations where a 

large network has to be integrated as a small number of devices. This demonstrates not 

that one technique is inherently better-suited to implementing VLSI neural networks, but 

that the choice is determined by the requirements of the proposed application of the 

neural VLSI implementation. 

The HopfieldlTank neural network is derived from a simplified analogue model of 

biological neurons. Digital implementations are thus inevitably only an approximation to 

a network's true response. As the digital implementation has to simulate the characteris-

tics of the analogue elements which make up the HopfieldlTank network, an analogue 

implementation should be more accurate, and also faster. This, coupled with the rela-

tively large size of the HopfieldlTank  neural network, means that here an analogue imple-

mentation is appropriate. As the Kohonen neural network has a similar basic architecture 

to the HopfieldlTank  network, the same VLSI implementation is suitable for both net-

works. 

The tolerances of the fabrication process for an integrated circuit mean that the char-

acteristics of the process will vary between chips and to a lesser extent within a single 

chip. The degree of the resultant mis-match between the performance of transistors 

depends on the quality of the fabrication process. The function of digital circuits is rela-

tive insensitive to these problems as transistors are either OFF or ON. Unfortunately, as 

the compactness of analogue circuits is gained through the exploitation of the transfer 

characteristics of a transistor, the overall response of the circuit is heavily dependent on 

the fabrication process. Thus two otherwise identical circuits may perform differently. 

Both the Hopfieldilank and the Kohonen neural network rely on the elements within the 

network having exactly the same performance. When this is not the case the optimisation 

abilities of the network are compromised. 

As a result, the development of process invariant analogue circuits for neural net-

works became a central pillar of this thesis. Tackling the problem at the circuit level 

rather than an algorithmic level yields a solution which extends the range of applications 

for analogue VLSI in general and for neural networks in particular. 

The organisation of the remainder of this thesis is as follows. Chapter 2 introduces 

conventional and neural optimisation techniques. The characteristics of each technique 

are discussed. The classic optimisation problem the Travelling Salesman Problem (TSP) 

is also described. Simulation results are presented for a three way comparison of the 

exhaustive search technique, and the Hopfieldul'ank and the Kohonen neural networks, all 

applied to the 10 city TSR The need for a dedicated VLSI implementation is identified. 
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Chapter 3 reviews the digital and analogue VLSI design techniques which have been 

used to implement neural networks. Chapter 4 describes the advantages of using a hybrid 

digital/analogue circuit based on encoding the neural state value as a stream of pulses. 

The chapter then outlines the development of a process invariant neural system based on 

pulse encoding. 

Chapter 5 reports the results from the small neural test array fabricated to charac-

terise the process invariance of the circuits developed in Chapter 4. The successes and 

limitations are identified and an improved set of circuits is proposed. 

The modifications to the circuits based on the experiences of the testing of the test-

chip are described at the start of Chapter 6, where the specifications for the resultant 

generic neural building block device and its support system are also discussed. Charac-

terisation results for the device are presented along with a simple hardware/software com-

parison. 

Chapter 7 brings together all the software and hardware results to thaw an overall 

conclusion about the performance of the Kohonen network implemented on analogue 

hardware. Areas for future work are outlined. 
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Chapter 2 

Optimisation Techniques 

The field of optimisation techniques and systems is both wide and diverse, ranging 

from highly analytical techniques like differential calculus through to intelligent search 

algorithms based on heuristics. This breadth results from 2 factors: 

1 	Optimisation is an everyday occurrence. What is the shortest and quickest route 

from shop A to shop B ? What is the best order to cook a meal, so that all 

dishes are ready at the same time? Clearly the range of optimisation applica-

tions is very wide. 

2 	In industry, the competitiveness between companies means that there is a con- 

stant drive to improve efficiency and throughput through more efficient 

scheduling and better assignment of resources. A change amounting to as little 

as a few percent can make the difference between profit and loss. 

Most of the problems contained in the literature relate to the industrial environment. 

The task assignment and job-shop scheduling problems are the most commonly quoted 

examples. Both of these problems require a limited set of resources to be organised so 

that either the total cost/time is minimised or the throughput is maximised. Mathemati-

cally this can be thought of as a cost function, the value of which has to be min-

imised/maximised subject to the constraints imposed by limited resources. This class of 

problem is thus termed constrained optimisation. 

Working out the optimal task assignment or schedule for a problem is a computa-

tionally intensive task owing to the large number of possible assignments and schedules 

that exist for a realistically sized problem. The limitations placed by the constraints com-

plicate matters further. To illustrate the computational complexity of such problems, let 

us take the example of scheduling N tasks on a single machine. Each task has a "setup 

cost" associated with it which depends on the task which precedes it. For this problem 

there are N! possible schedules. Thus the computational time required to carry out an 

exhaustive search of all the schedules will increase exponentially with the problem size. 

Such problems are termed non-deterministic polynomial-complete (NP-complete). Thus 

to solve optimisation problems a better approach is needed than the brute force technique 

of an exhaustive search. 

The more intelligent approaches fall into 2 main categories: 
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1 	Traditional methods - Graph theory, Linear/non-linear programming, Heuris- 

tics and Simulated Annealing. 

2 Neural Networks - HopfielWTank, Boltzmann Machines, Stochastic and Koho-

nen. 

The above division can become blurred as neural techniques borrow many ideas 

from the longer established conventional optimisation methods. For example Stochastic 

Neural Networks and Boltzmann Machines use noise sources in a similar way to the pro-

cess of simulated annealing to reduce the likelihood of finding a sub-optimal solution. 

The main difference between traditional and neural approaches is that, while in the 

traditional approach the algorithms are fundamentally serial, in a neural network the com-

putation is at least structurally parallel. In a loose sense the network tries out  all possi-

ble solutions in parallel, and the best solution wins as the system converges to a stable 

state. Due to the serial computation of a conventional Von Neuman computer the parallel 

nature of a neural network effectively becomes serialised. Thus developing a truly paral-

lel neural network implementation will greatly improve the speed of a neural optimisation 

system. 

1(x) 

Local 

Minimum 
Local 

linimum 

Global 

Minimum 

04 

Figure 2.1 	Local and Global Minima. 
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2.1. Local and Global Minima 

In most optimisation problems many solutions exist which satisfy the specified con-

straints. However the cost of each solution will not necessarily be the same. Normally 

only one solution gives the lowest cost ,(the global minimum) while the remainder are 

only locally optimal (local minima). Figure 2.1 shows local minima and the global mini-

mum for a simple cost function. 

As many optimisation techniques act to reduce the value of the cost function by fol-

lowing the gradient of the cost function until it reduces to zero, it is common for an algo-

rithm to find a local rather than the global minimum. While more complex algorithms 

will increase the probability of finding the global rather than a local minimum the compu-

tational load required is also greater. In general a trade is made between the computation 

time and the certainty bounds on the solution quality. Fortunately, all that is often wanted 

is a good solution to the problem in hand rather than the optimal solution. As a result the 

algorithms developed for optimisation problems tend to concentrate on producing an 

answer very quickly, on the basis that the algorithm can be run several times from differ-

ent start points to increase the probability that a good solution is found. 

2.2. The Travelling Salesman Problem 

The Travelling Salesman Problem (TSP) is probably one of the best known optimi-

sation problems, simply because it is easy to describe but very hard to solve optimally. 

The problem faced by the salesman is that he must visit all N cities on his list once, 

returning to his starting point, while minimising the total distance travelled. Figure 2.2 

contains an example of a 10-city TSP. Superficially solving such a problem does not 

seem hard. The large number of possible tours however renders it a hard problem to 

solve algorithmically. 

For N cities there are N! possible tours. As the salesman must return to his starting 

point, a complete tour is circular. Thus the length of the tour is not affected by the city in 

which the tour starts. This reduces the number of different tour lengths by a factor of N 

to (N - 1)! The circular nature of the tours also means that the direction of the tour does 

not affect the length of the tour, reducing the number of tours by a factor of two. This 

gives the number of distinct tours for the N city TSP as:- 

(N—i)! 
2 

(2.1) 

Equation 2.1 clearly demonstrates that for an exhaustive search of all the possible 

tours the computation time increases exponentially with the problem size. Thus the TSP 

belongs to the NP-complete class of problems. 
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Figure 2.2 	The Travelling Salesman Problem. 

In practice the TSP has become the benchmark through which researchers demon-

strate the effectiveness of their algorithms. While this may allow easy comparison of the 

algorithms, good performance on the TSP does not guarantee that the algorithm will per-

form well on other problems. Many scheduling algorithms are based on heuristics which 

are only applicable to the problem in hand and thus are not well suited to other problems. 

Such "tweaking" is often necessary in order to boost the performance of an algorithm. 

The remainder of this chapter reviews both conventional and neural techniques used 

to solve optimisation problems and the results from a three way performance comparison 

of the exhaustive search method, the HopfieldlTank Neural Network and the Kohonen 

Self-Organising Neural Network applied to the TSP. 

It should be emphasised that this section is not a comprehensive review of optimisa-

tion techniques but rather is aimed at putting into context the neural optimisation demon-

strator running on the circuits described in Chapters 4, 5 and 6. 
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2.3. Conventional Optimisation Techniques 

For simple cost functions, calculus can be used to find the positions of the maxima 

and minima. However, for complex cost functions finding the zeroes of the first 

derivative of the cost function is often difficult. In many optimisation problems the set of 

valid solutions is a discrete data set resulting in discontinuities in the cost function. As a 

result of these problems, cost functions are normally minimised by iterative search meth-

ods like steepest gradient descent. In this case the algorithm moves down the line of 

steepest gradient from the chosen start point. When the gradient reduces to zero a mini-

mum has been found. Unfortunately there is no guarantee that this minimum is the global 

minimum of the function and not a local minimum. Normally, iterative techniques such 

as gradient descent are run from many different start points to increase the probability of 

finding a good, or perhaps the optimal, solution. 

1  r 4 

(xi,x 3) 

Figure 2.3 	An Example of a Graph/Network. 

2.3.1. Graph Theory and Network Flows 

The first step in solving an optimisation problem is to specify the problem so that 

either a matrix equation or a system of equations can be formulated. Graph theory and 

network flows are examples of such techniques. The remainder of this section outlines 

these optimisation techniques. 

A n-node graph G = (X, U) is defined by two data sets 

1 	Vertex (Node) Set, X={x1,x2,...,x} 
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2 	Edge (Arc) Set, U={(x 1 ,x2),...  

where U is a subset of all the possible links between the set of vertices, X. 

A vertex represents either a machine or a city (TSP). The links between the ver-

tices (edges) define the cost of moving from one vertex to another. In flow networks 

each edge has a maximum flow limit and the present flow value associated with it. 

Each edge can have a label associated with it and usually represents the cost of mov-

ing from node ito node j. As Figure 2.3 shows, this graph notation is a very natural way 

to describe scheduling problems. From these sets an n x n adjacency matrix and an inci-

dence matrix can be derived; these are used to create a system of equations from which 

the problem defined by the graph can be solved. 

The method of solving these equations is highly problem-specific and depends on 

the type of matrix produced by the problem. Some graphs give matrices which are either 

upper or lower triangular allowing the system to solved simply by forward or backward 

substitution. Other graphs may give systems of equations which can only be solved by 

iterative techniques. The TSP yields a matrix which is symmetric about its leading diago-

nal. It is also an example of a Hamiltonian cycle, as a solution traverses every node of the 

graph exactly once. 

Networks are similar to graphs except that the label represents the maximum flow 

capacity for that edge. There is a start node (source) and an end node (sink). The prob-

lem, given the various constraints, is normally to ask: what is the maximum flow which 

can flow between the source and the sink? 

The flow conservation rule for networks states that all flows at a particular node 

must sum to zero (equivalent to Kirchhoff 's Current Law in circuits). 

The Ford-Fulkerson method [3] is one of the classic algorithms for determining the 

maximum flow across a network. It is based on 3 ideas: 

1 	Residual networks. 

2 Augmenting paths. 

3 Max-flow-mm-cut theorem. 

Residual networks are simply graphs of the differences between the capacity of the 

edges in the network and their actual flow. An augmenting path of a residual network is a 

path running from the source to sink nodes in which the flow can be increased to augment 

the overall flow. The Ford-Fulkerson procedure looks for an augmenting path which is 

the shortest residual path in the residual network. Then the flows in all the edges in this 

path are incremented by the value of the smallest residual capacity on this path. This 

cycle is repeated until no more augmenting paths can be found. At this point the max-

flow-min-cut theorem states that the flow through the network is at a maximum. 
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The speed of this procedure rests on how quickly the paths containing the smallest 

residual can be identified. 

X 2 	 Cost Function: 

Figure 2.4 	A Simple Linear Programming Example. 

2.3.2. Linear and Non-Linear Programming 

In linear programming a cost function f is optimised subject to a list of constraints 

on the values of the variables in the cost function, i.e. maximise 

f=c 1 x 1 +c2x2 +cx 	 (2.2) 

subject to 

a1 1 x 1  i-.+a111X =b 1  

ami x i +..+aXn =bm 
	

(2.3)  

x1 ~t0 	(i=l,...,n) 

where m is the number of constraint equations and n is the number of variables. If m=n 

then a unique solution for the problem should exist. It is more common, however, for 

m.cn, which gives a solution region rather than a single point. The shaded area in Figure 

2.4 shows the solution region for a simple example. The maximum value of the cost 

function lies at one extreme point or vertex of this region. A vertex is defined as the point 

where any (n - m) of the variables are zero. 

One of the main techniques for solving linear programming problems is the Simplex 

search method developed by Dantzig [4]. The basic operation behind this method is to 

move from the current vertex to whichever neighbouring vertex will increase the value of 

the cost function by the greatest amount. The step is then repeated until the value of the 
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cost function can no longer be increased. 

Equations 2.4 and 2.5 show the N-city TSP expressed as a linear programming prob- 

lem 

subject to 

NN 

1=1 j=I 
(2.4) 

x11 =O 

x1  = 0, 1 	 (2.5) 
N 	N 

Ex1=Ex=l 
1=1 	j=1 

where 1 .ci,j <N. The main problem experienced by Dantzig et al[5] when they opti-

mally solved a 42-city TSP using linear programming was the large number of constraints 

required. To reduce this overhead the symmetric nature of the TSP distance matrix was 

exploited. 

In non-linear programming both the cost function and the constraints may be non-

linear i.e. they may contain powers of x 1 . As the shape of the solution region is now com-

plex, this class of problem is much harder to solve. Some techniques simplify the prob-

lem by approximating the non-linear constraints by several linear constraints. In general, 

solutions are obtained using iterative search techniques like the Newton-Lagrange 

method. A discussion about methods of solving non-linear programming is not appropri-

ate in this general overview of optimisation techniques. A good description of non-linear 

techniques and the mathematics behind them is given in [6]. 

X3  

Figure 2.5 	Sequential Exchange Search Method. 
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2.3.3. Heuristics 

Heuristics are guidelines which influence, rather than specify the direction of the 

search for the optimal solution. These guidelines can either exploit particular facets of a 

specific problem or may define a general search technique. The Un and Kernighan algo-

rithm [7-9] is probably the best known heuristic method for solving the TSP. 

The basic sequence of operations is the same as in most iterative search techniques. 

1 	First choose a (pseudo) random start point. 

2 	Apply a transformation to the present tour in an attempt to improve it. 

3 	If the new tour is better then keep tour and repeat from 2, otherwise reject. 

4 	if an improved tour cannot be found then tour is locally optimal. Repeat from 

1 until either computation time runs out or answer is satisfactory. 

Genetic Algorithms [10] are based on the process of evolution of biological species 

and as the basic mutation/selection cycle below shows, they are functionally similar to the 

heuristic search procedure outlined above: 

1 	Carry out a random alteration (mutation) to the trial solution. 

2 	Keep the mutation if it lowers the cost (improves the fitness) of the solution, 

otherwise keep old solution. 

3 	Repeat 1 and 2 until no further improvement is possible. 

In the Lin and Kernighan algorithm the method of tour to tour improvement is based 

on a link (edge) exchange strategy (Figure 2.5). A connected sequence of k links is 

replaced by k different links. If this exchange reduces the tour length then it is kept, oth-

erwise it is discarded. The exchange process carries on until swapping k links yields no 

further reduction in tour length. At this point the tour is locally optimal. The k links in 

the tour to be replaced are selected by identifying exchanges which will potentially give 

the greatest reduction in the length of that sequence. 

To enhance the performance of this exchange process, and to reduce the computa-

tional load, a range of other techniques is employed. The first is back tracking to allow 

the algorithm to escape from tour sets which may be locally optimal but are globally 

poor. The level of backtracking is limited to 2 otherwise the computation time increases 

greatly. 

Once a locally optimal tour has been found, time is required to confirm its optimal-

ity by checking other possible exchanges. To reduce this "checkout time" a note of the 

tours found so far is kept so that when a tour is found for a second time the algorithm 

stops and then restarts from a new start point. 

As the decision to make or break links is made on a "nearest neighbour first" basis, 

only local information is used. To get around this, limited lookahead is employed so that 
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more is known about the consequences of the proposed swap on the overall tour length. 

The locally optimal tours produced will tend to have links in common. The algo-

rithm recognises these "good" links in the tours produced so far and then fixes them for 

subsequent runs. This can be viewed as directing the search based on information gained 

from previous runs. 

The final heuristic is to apply non-sequential exchanges to the links which are not 

common to other tours to try to convert what may be a non-optimal into an optimal tour. 

The results reported show that for the 100-city TSP a single run took 25s (Fortran A 

on a GE635). To find the optimal tour with a 95% certainty the algorithm had to be run 

repeatly from different start points for 3 minutes. As computing power has advanced 

considerably since these results were reported in 1973, it is not unreasonable to expect 

the Lin and Kernighan algorithm to run at least 3 or 4 orders of magnitude faster on pre-

sent day computers. 

2.3.4. Simulated Annealing 

As has already between mentioned, the main problem with iterative search tech-

niques based on gradient descent is that there is no guarantee that the minimum found is 

global. The Lin and Kernighan algorithm used heuristics to increase the probability of 

finding the global minimum. Kirkpatrick et al [11, 12] use a different method based on 

statistical mechanics to avoid local minima and find the optimal solution with a high 

probability. 

The idea stems from the growing of a single crystal from a molten melt, if the sub-

stance is cooled (annealed) properly then a single crystal will form. However if the cool-

ing schedule deviates from the desired path the resulting crystal will have many defects or 

a glass may be formed. A single crystal is the lowest energy state form of the substance; 

other forms are locally optimal states into which the substance is trapped if the cooling is 

too rapid. 

The work by Kirkpatrick et at is based on the Metropolis procedure for modeling 

the thermal motion of atoms, at a given temperature, T. The main steps of the Metropolis 

algorithm are shown below. 

1 	Give an atom a small random displacement. 

2 	Calculate change in energy, LE, for system. 

3 If AE !9 0 then keep new configuration. Otherwise compare a random number 

between 0 and 1 with the probability P(AE) = exp(—AE/kT). if the random 

number is less than P(AE) then keep, if not reject. 
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4 Repeat from 1. 

To convert the above procedure into an optimisation technique Kirkpatrick et al 

replaced the energy function for the atoms with a cost function and defined the possible 

configurations by a set of parameters { x i ). Optimisation is achieved by cooling the sys-

tem from a high initial temperature to its freezing point. The initial high temperature 

allows the system to make a large number of uphill moves. As the system cools, uphill 

moves become less likely. It is this hill climbing ability which gives simulated annealing 

the ability to escape from local minima. Thus by the time the temperature of the system 

reaches freezing point, the system should have found the global minimum. 

A simple way of viewing this is to think of the temperature controlling the magni-

tude of a noise source. At high temperatures the high level of noise allows the system to 

"jump around" exploring large areas of the cost function. As the level of the noise is 

reduced the system becomes trapped in the deepest region of the cost function out of 

which it is not able to jump, so progressively homing in on the global minimum. 

By formulating the appropriate cost functions, Kirkpatrick et al have used this tech-

nique to solve successfully a wide range of optimisation problems, for example: 

1 The TSP. 

2 VLSI cell placement. 

3 The routing of VLSI tracks. 

4 	The partitioning of function blocks between integrated circuits. 

While this method generally yields solutions of high quality, the very slow nature of 

cooling required to give high quality solutions results in long computation times. 

2.4. Neural Techniques 

Interest in artificial neural networks for optimisation was stimulated by the seminal 

paper by HopfieldlTank[1]. Although the basic unit of this structure, the neuron, is func-

tionally simple and has a slow time constant, the combination of many units working in 

massive parallelism yields a powerful processing system. Information in a neural net-

work is encoded in the strengths of the synapses which inter-link the neurons. The dis-

tribUted representation makes neural networks tolerant to effects of faults in either 

synapses or neurons. Thus neural networks are well suited to implementation in VLSI 

hardware where processing defects may cause synapses and neurons to fail. 

A more formal description of the operation of a neural network is as follows. The 

common factor in all neural network models is a column of N synapses feeding into a 

neuron. As Equation 2.6 shows the activity value for neuron i, x 1 , produced by the synap-

tic column, is the scalar (dot) product of the neural state input vector {V O ,..,V,..,VN } and 
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the vector represented by the synaptic weights { V- 110 ,.. ,V ,. .,VTIN }. 

N-i 
x = , VTIJVJ 	 (2.6) 

j=O 

This activity is "compressed" into a neural state, V, by the neuron applying a mono-

tonically increasing activation function f(x 1 ). 

V =f(;) 
	

(2.7) 

Figure 2.6 illustrates some of the forms this activation can take. The neuron's 

threshold value, 11T  sets the point around which this activation varies. For a complete 

neural network, Equations 2.6 and 2.7 translate into an array of multipliers which perform 

vector-matrix multiplication and a row of cells with variable input-output characteristics 

which convert the activation values into the required neural state. 

i 1  

Vt  

o 	 j xi  
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Vi 

0 / xi 
xl,  
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o •1 Xi 

XT  

Threshold Activation Function 

f(x)=O 	ifxj <xT 

f(xi)=l 	rfx>xl, 

Linear Activation Function 

f(x1 )=O 	ifx1 <x1  

f(x3=x1 - x1 	Ifxj >xl, 

Sigmoid (S-shaped) Activation Function 

1 
e.g. f(x i ) = 

1 + exp( -( xi + x'i')fl') 

Figure 2.6 	Activation Functions. 

At present four different neural network models have been applied to a wide variety 

of optimisation problems. 

1 HopfieldiTank Neural Network 

2 Stochastic Neural Network 

3 Boltzmann Machines 

4 Kohonen Self-Organising Neural Network 
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The remainder of this section discusses the pertinent features of these networks in 

more detail. 

Figure 2.7 	The Architecture of the HopfieldiTank Neural Network. 

2.4.1. The Hoplield/Tank Neural Network 

The HopfieldiTank  Neural Network [13, 14, 1] is a fully interconnected network (N 

neurons, N2  synapses). The synapses take the form of resistors feeding into an opera-

tional amplifier (the neuron) which applies a non-linearity to the sum of the input currents 

(Figure 2.7). These input currents are summed using a parallel RC network between the 

input to the amplifier and ground. The capacitor gives the neuron a memory of its previ-

ous states and thus prevents the neuron from changing its state instantly. The parallel 

resistor implements a "forgetting" term, such that if all the inputs to a particular neuron 

are zero then the activity will decay. 

The equation below describes the dynamic behaviour of such a neuron (Figure 2.7). 

dx 	. 	N 
(2.8) 

dt 	t 
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where 

x1  - the neural activity of neuron i 

Vi  - the neural state of neuron i 

li  - the bias current for neuron i 

VT1 = 	- the synapse weight from neuron j to neuron i 
Rij 

Ri m j=1 Rij  

= R1 C - system time constant 

The sigmoidal relationship between the activity voltage, x 1 , and the neuron output 

state, V1 , is defined as 

	

V1  = (1 + tanheL)) 	 (2.9) 

The weights and bias currents specify the energy function for the network. 

1NN 	 N 
E= -- EEVV1V3 — LV111 	 (2.10) 

2 i=1 j=I 	 1=1 

Dynamically, the feedback in the network acts to minimise the total energy of the 

network. Thus by encoding an optimisation problem in terms of this energy (cost) func-

tion the Hopfield/Tank will produce a "low" cost solution to the problem. Unfortunately, 

because the dynamic motion of the network is equivalent to gradient descent the system 

can converge to solutions which are local rather than global minima. 

The example HopfieldlTank chose to demonstrate the power of their network was 

the 10-city TSP. They represented the problem using a 10 x 10 grid of neurons with one 

axis representing the cities and the other representing the position of a city in the tour 

(Figure 2.8). In general, the N city problem maps on to N 2  neurons and N4  synapses. 

The energy equation constructed favoured short tours and contained terms which ensured 

that tours satisfying the constraints of visiting all cities once and once only corresponded 

to the low energy states of the network (see Section 2.5.2 for a more detailed description). 

Their results claim a 80% success rate (i.e. 80% of all runs they carried out con-

verged to a valid tour). Statistically, this may not be highly accurate as the experiment 

was only performed 20 times. 

Several attempts to reproduce these results have met with widely varying degrees of 

success. Wilson and Pawley [15] found only a 8% success rate, but found later that they 

had set the system time constant to 1 instead of 10 4 . Paielli [16] found a 78% success 

rate while Kamgar-Parsi et al [17] initially only found a 4% success rate. However this 
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City 	 Position in Tour 

Number 	0 1 2 3 4 5 6 7 8 9 

o - Inverness 
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2 - Stirling 
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4- Dumfries 
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1-11 
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Glasgow 	 EdinbUrgh 

fries 

Figure 2.8 
	

The Network Structure for the TSP. 

was improved to 33% and finally 50% after a series of modifications to the energy func-

tion. 

The conclusion must be that the Hopfield/Tank network is extremely sensitive to the 

implementation, the values of the coefficients of the terms in the energy function, and 

perhaps even to the coordinates of the cities. This sensitivity to the value of these param-

eters is further supported by Hopfield and Tank's difficulty in finding a good parameter 

set for the 30-city TSP. Scaling is also a problem, as the number of synapses increases by 

N4  as the number of cities N increases. As a result, large scale problems require very 

large networks. Also, as the network is scaled up, its sensitivity to its parameters is fur-

ther heightened. However, valid tours, when they are obtained, are generally of good 

quality. 

In subsequent papers [18, 191 Hopfield and Tank extended the basic structure of 

their network to the problems of analogue to digital conversion, a linear programming 

problem and a task assignment problem. 
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2.4.2. Stochastic Neural Networks 

Stochastic neural networks [20, 21] combine the basic structure of a HopfieldITank 

network with a cooling schedule similar to simulated annealing to create a network which 

avoids becoming trapped in local minima. The neuron is the same as a HopfieldlTank 

neuron except that it also contains a controllable noise source. The magnitude (tempera-

ture) of this noise source is initially large, and as time elapses the system is cooled slowly 

to allow the network to converge to a valid solution. This prevents the network from 

becoming trapped in local minima by allowing the network to jump over energy barriers, 

thus improving the quality of the solution obtained. The system must be cooled very 

slowly to guarantee that the optimal solution is found. As a result long compute times are 

required. If the system is cooled more rapidly to reduce the computer run time required, 

the network is more likely to became trapped in a local minimum. 

2.4.3. Boltzmann Machines 

The fully interconnected structure of a Boltzmann Machine [22, 23, 21] is similar to 

the topology of the HopfieldfFank neural network with symmetric weights (VTI = VTj3. 

The main differences are the use of neurons with binary outputs and a probabilistic 

update rule. To update a unit, the energy difference in the system with the unit turned on 

and off is calculated. Owing to the symmetric connections, this energy difference is 

given by the sum of the synaptic multiplications minus the threshold value, O, of that unit 

(see Equation 2.11). 

N 
AEI=EVT]VJ-8I 	 (2.11) 

j= 1  

Equation 2.12 then uses this change in energy to determine the probability that the 

unit is turned on. 

1 
Pi = 	 (2.12) 

1+e T 

where T = Temperature of the network. 

If this probability is greater than a random number from a uniform [0.0,1.0] distribu-

tion then the unit is set to a 1, otherwise it is set to 0. By repeating this step, the energy 

of the system is minimised. The calculation of the energy difference in the system 

between a unit turned on and off is only valid if one unit is updated at a time. 

To prevent the network from becoming trapped in local minima a Simulated Anneal-

ing cooling schedule is used. At the outset the temperature, T, is high allowing the net-

work to jump out of local minima. T is subsequently reduced slowly such that the net-

work converges, it is hoped, to the optimal solution. 
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Despite the titles containing the phrase "Stochastic Neural Network for Solving Job-

Shop Scheduling", the papers by Foo and Takefuji [24, 251 describe a Boltzmann 

Machine scheduling system. The Boltzmann Machine implementation is slightly differ-

ent to that described earlier as there is an additional level of feedback which monitors the 

variation of the cost function. If the function increases or remains constant then the feed-

back increases the probability that the units will change state to try to move into a more 

favourable solution space. For the given example the system produced 10 different 

schedules including the optimal one. 

Gutzmann [261 and Cervantes [21] have also used a Boltzmann Machine to solve 

successfully combinatorial optimisation problems. 

Neighbouring Neurons 

Best Match 

1 	 i 	N 

ts 

1D/2D Array of Laterally 
Interconnected Neurons 

Ii 	I 

Figure 2.9 	The Kohonen Self-Organising Neural Network. 

2.4.4. The Kohonen Self-organising Neural Network 

Until recently the Kohonen self-organising network has been applied largely to clus-

tering problems, to infer the internal relationships between the vectors making up a block 

of data. In the last few years several papers [27, 28, 2, 29] have reported the use of the 

Kohonen neural network to solve the optimisation problems of cell placement in VLSI 

circuits, scheduling and the Travelling Salesman Problem (TSP). 

A Kohonen network [30, 31] consists of a layer of laterally interacting adaptive out-

put neurons and a layer of input cells (Figure 2.9). Each of the input cells is linked to 
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every output neuron via synaptic interconnections. The structure of the output layer is 

determined by the problem, but generally most problems are clustered using either a line 

or an array structure. 

The values of the synaptic connections from the input units to one output neuron 

form a weight vector, Wr. Each output neuron compares the input vector with its weight 

vector by calculating either the Euclidean or Manhattan distance between the two vectors. 

The neuron with S smallest output resulting from this parallel correlation is the best 

match for that particular input vector. Thus a particular input vector is associated with a 

single output neuron. 

Interaction 

"Mexican Hat" Function 

Distance from 

Best Match Neuron 

Interaction 

"Top Hat" Function 

Distance from 

Best Match Neuron 

Figure 2.10 	The "Mexican Hat" and "Top Hat" Weight Vector Update Func- 

tions. 

During the self-organising phase, each time a training vector is presented the best 

match neuron is identified. Its weight vector is then modified to enhance the match 

between the 2 vectors. The weight vectors of the neighbouring neurons are also pulled 

towards the input vector. This action forces physically adjacent neurons in the output 

layer to respond to similar vectors. The degree to which neighbouring weight vectors are 

updated is determined by either a "Mexican hat" or a "top hat" function centred on the 

best match neuron (Figure 2.10). By varying the width of this function the size of 
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neighbourhood updated around the best match neuron can be changed. 

As training progresses, the neurons excited by the training vectors become dis-

tributed over the array such that similar vectors excite neurons close together and dis-

similar vectors excite neurons at the opposite ends of the array. Kohonen demonstrated 

this effect by training a square array on 2 random number inputs [32]. At the end of this 

training phase the array had organised itself to respond like a set of x-y coordinates. The 

neuron at the left-hand lower corner of the array was excited by a (0,0) input while (1,1) 

excited the neuron at the top right-hand corner. 

Angeniol et al [2] and Yoshihara et a! [29] use a Kohonen network with its output 

neurons arranged in a ring structure to solve the TSP. The starting point of the tour is 

therefore related to the last city in the tour by the structure of the network. The number 

of neurons in this rins is typically 2 to 4 times the number of cities for which a solution is 

sought, depending on the particular city data set. If the Euclidean update rule is used, 2 

input units are required while the alternative scalar (dot) product implementation needs 3 

input units. The training vectors for the network are simply the coordinates for the N 

cities. Graphically the ring of points defined by the weight vectors is expanding out 

under the self-organisation process to fit the positions of the cities. Minimisation of the 

tour length is achieved by the clustering action of the organising algorithm, which tries to 

place cities which are close together on adjacent neurons in the output. This algorithm is 

very similar, in concept, to the elastic net method devised by Durbin and Willshaw [33] 

for the TSP. In the elastic net method a set of points describing a closed path (initially a 

small circle) expands out to fit the positions of the cities. This expansion is controlled by 

two forces. The first force pulls a point on the path towards its nearest city. The second 

force pulls a point towards its neighbours on the path, minimising the overall length of 

the tour. 

This particular neural encoding of the TSP is very compact. The 100 city problem 

on a Kohonen network using the Euclidean squared update rule only requires 200 neurons 

and 400 synapses. However, for the same size of problem the HopfieldlTank network 

requires 10,000 neurons and 100,000,000 synapses. 

Hemani and Postüla [28, 271 mapped scheduling and VLSI cell placement problems 

onto the Kohonen network via a connectivity matrix, which specifies connections 

between either the cells or the jobs to be scheduled. The columns of the matrix then form 

the training vectors of the network. Cells sharing common connections have similar col-

umn vectors. The clustering action of the Kohonen network groups such cells close 

together, thus minimising the distance between connected cells. 

0 
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2.4.5 Conclusions 

The Kohonen network appears to solve optimisation problems quickly, and to pro-

duce optimal or near-optimal solutions. It also displays none of the parameter sensitivity 

and scaling problems which afflict HopfieldlFank style networks. 

The use of simulated annealing techniques in the Stochastic and Boltzmann net-

works should, in theory, guarantee an optimum solution if the system is cooled over an 

infinite period of time. However the HopfieldiTank network requires many runs from dif-

ferent start points before a good solution can be guaranteed. 

Conversely the Stochastic and Boltzmann networks converge more slowly than the 

pure HopfieldiTank network due to the effects of a very slow annealing schedule. Thus 

there is a trade off between the number of runs required to produce a good solution and 

the time taken for the network to converge. Boltzmann machines are slower than 

Stochastic networks as neurons are updated one at a time. 

2.5. Simulation Results Neural Networks Applied to the TSP 

The traditional optimisation techniques outlined in Section 2.3 have already been 

researched extensively and as a result their characteristics are well established. In con-

trast neural networks are relatively new in the optimisation arena and the algorithms are 

still being developed. Nevertheless, some very promising results for optimisation neural 

networks have been reported. They appear to have the potential to find optimal or near 

optimal solutions to a range of optimisation problems relatively quickly. Thus it was 

decided to investigate the performance of neural networks with a view to a dedicated 

VLSI implementation. Without a completely parallel neural implementation, the compu-

tation of a network becomes serialised, and the maximum potential speed of a network is 

not fully exploited. 

The decision about which of the four optimisation neural networks outlined in Sec-

tion 2.4 to implement in silicon was influenced by two factors. 

1 	For efficient VLSI implementation, neural algorithms should be as simple as is 

possible. 

2 	Within this research group, funding limitations allowed three researchers only 

one large scale VLSI implementation. The other researchers required a VLSI 

implementation to accelerate the performance of Multilayer Perceptron (MLP) 

networks. 

The first point effectively rules out Boltzmann Machines and Stochastic Neural Net-

works as it is difficult to implement uncorrelated, controllable noise sources within an 

integrated circuit. To satisfy the second constraint the architecture of the integrated cir-

cuit had to conform closely to the basic neural model outlined at the start of Section 2.4. 
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Given these two constraints the HopfieldiTank  and the Kohonen neural networks were the 

most appropriate optimisation neural networks for this particular neural VLSI hardware 

implementation. 

To obtain statistically significant information about the performance of these two 

networks, a series of software simulations was performed. The simulations also provided 

a base line for comparing the results obtained from the VLSI networks discussed in 

Chapter 6. The ubiquitous TSP was chosen as the test problem simply because there was 

so much information available about how other optimisation techniques performed on 

this problem. 

Processing file: 

Number of Cities: 

Time to find max, mean, and mm: 

Time to calculate PDF and Standard Deviation: 

Number of Tours: 

Minimum tour length: 

Average tour length: 

Maximum tour length: 

Variance: 

Standard deviation: 

Optimum Tour is in file: 

Optimum Tour Path: 

citylO_0.dat 

10 

75 s 

192s 

362880 

2.690670 

4.765494 

6.288088 

0.241941 

0.491875 

cityl0_0.all.optimum 

0345678912 

Probability Distribution Function file: 	 city 10_0. all.pdf 

Area under PDF: 	 362880 

Figure 2.11 	An Example Output from the Tree Search Program. 

2.5.1. An Exhaustive Search of the Solutions to the TSP 

To assess the success of the HopfieldlTank and Kohonen Self-Organising neural net-

works, the full distribution of possible valid tours for the city set being used must be 

known. A tree search programme was written in 'C' to find the optimal solution and the 

distribution of the (N - 1)!/2 possible solutions for the N city problem. 

HopfielcUTank's choice of the 10 city problem is an interesting one. For larger prob-

lems, the computational time required for an exhaustive search becomes prohibitive. For 

example, as Figure 2.11 shows, the exhaustive search technique takes 75s to find the opti-

mal solution on a Sun IPC Sparc workstation. Using this as a basis gives the times 
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required for an exhaustive search for the 15 and 50 city problems as 208 days and 1051 

years respectively. To put the last of these figures into perspective the age of the universe 

is estimated at about 1010  years. This illustrates graphically why exhaustive search is 

impractical for medium to large problems. 

The exhaustive search program uses a recursive subroutine to carry out a tree search 

of all the possible tours. The program reduces the size of the search tree by making use 

of the fact that the tour length is independent of the start point. However it does not use 

the additional information, that the tour length is also independent of direction of travel. 

This would result in the recursive subroutine becoming overly complex and slow. 

The tree search program was used to calculate the optimal tours and the probability 

density function for the 10 city example HopfieldlTank used and 100 randomly generated 

10 city data sets. Figure 2.11 shows an example output from the tree search program for 

the HopfieldiTank city set and Figure 2.12 shows the distribution of all the valid tours for 

that city set. 

Figure 2.11 shows that the optimal tour for the 10 city data set has length 2.691; the 

optimal tour is depicted in Figure 2.13. This is the same optimal tour that was reported 

by HopfieldlTank. 
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The PDF for the HopfieldjTank 10 City Example. 
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The Optimum Tour for the HopfieldlTank 10 City Example. 

2.5.2. The Hopfield/Tank Neural Network Applied to the TSP 

As is shown in Figure 2.8 the HopfieldiTank neural network uses a N by N array of 

neurons to solve the N city TSP. One axis represents the cities and the second the posi-

tions of those cities in the tour. Thus the state value of a neuron, V xj , represents whether 

city X is occupying position i in the tour. The energy function for the TSP (Equation 

2.13) uses the structure of the square array to encode the constraints such that only one 

city can be visited at a time and that each city should be visited once and once only. This 

translates into .the restriction that only one neuron in any row/column combination should 

be on, to ensure that the tour produced is valid. The first two terms in Equation 2.13 

implement these two constraints. 

A N N N 	 BNNN 	 C NM 

-LEE VxiVxj + - EEL VV 1  + 

-. 	
E— 2Xij 	-- 	2IXY*X 	2 Xi 

- D N N N 

+ E E E d yV j (Vyj+i  + 
2 x 

where 

d - the distance between cities X and Y. 

A, B, C, D and n are parameters defining the relative importance attracted to each 

term. 

The third term ensures that only N cities are visited. The last term biases the net-

work to favour short tours by making them the low energy states of the system. This also 

means that the weight set is dependent on the positions of the cities in the tour. 
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As the HopfieldjTank network essentially performs gradient descent on the weight 

set derived from the energy function, the start point of the network will have a significant 

influence on which minimum the network reaches. Hopfield and Tank initialised the neu-

rons to random values subject to the condition that 

NN 

X=1 i=I 
(2.14) 

to give the network a unbiased start point. These values for, V, 1 , are then used to deter-

mine the neural activity values, uxi. A small random component is added to the neural 

activity value to break any possible symmetry in the initialisation, allowing the network 

to converge to a solution rather than staying in a quasi-stable state. 

The values of the parameters used by Hopfield)Tank are listed below: 

A = 	500 	n 	 = 15 

B = 	500 	'Xi 	 = 3000 

C = 	200 	RC Constant 	= 0.0001 

D = 	500 	u0 	 = 0.02 

Time Step = 0.00001 

One implementation issue is the order in which the neural state values are updated 

during each time step. Three different update orders were tried. 

1 	Update each neuron one at a time in a random pattern (Random Update Rule). 

2 	Update each neuron one at a time in a raster (TV Scan) pattern (Raster Update 

Rule). 

3 	Calculate all the activity increments in parallel and then update all of the neu- 

rons at the same time (Parallel Update Rule). 

The random update rule is the most accurate model of the behaviour for the asyn-

chronous, analogue circuit upon which the HopfieldiTank network is based. However the 

parallel update, rule is a better model of hardware implementations which comprise a 

synaptic multiplication cycle followed by neural update cycle. 

The simulations explored the effects of these three different update rules on the 

HopfieldiTank networks performance. Tables 2.1a, 2.1b and 2.1c show the results of 

these simulations for the Hopfield/Tank 10 city data set for various values of the simula-

tion time step. 

The results indicate that, as the value of the time step .is reduced, the performances 

of the 3 different update rules converge. It is interesting to note that a time step of 

0.00001 for the parallel update version is large enough for the network to start oscillating 

before converging to a solution. This oscillation could be beneficial in allowing the net-

work to jump out of local minima and hopefully into the global minimum. However, the 
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No of Valid Optimal 
Update Rule Mm Mean Max 

Runs Tours Tours 

Random 2500 1163 137 2.691 2.944 3.842. 

Raster 2500 1075 214 2.691 2.895 3.728 

Parallel 2500 1218 245 2.691 2.900 3.686 

Table 2.1a 	Results for the HopfieldjTank Network: Time Step = 0.00001. 

No of Vaiid- Optimal 
Update Rule Mm Mean Max 

Runs Tours Tours 

Random 2500 1181 165 2.671 2.925 3.738 

Raster 2500 1125 188 2.691 2.923 3.742 

Parallel 2500 1168 157 2.691 2.936 3.822 

Table 2.1b 	Results for the HopfieldjTank Network: Time Step =0.000005. 

No of Valid Optimal 
Update Rule Min Mean Max 

Runs Tours Tours 

Random 2500 1144 163 2.691 2.923 4.055 

Raster 2500 1160 146 2.691 2.932 3.949 

Parallel 2500 1170 163 2.691 2.935 3.822 

Table 2.1c . Results for the HopfieldlTank Network: Time Step = 0.000001. 

network is now behaving in a chaotic manner rather than performing gradient descent. 

The main problem with a small time step is that it increases the number of iterations and 

thus the time required for the network to converge to a solution. A time step of 0.000005 - - - 

- was chosen as the best compromise between -  time -for thë tiëiwóik to converge and the sta-

bility of that convergence. 

For the parallel update version with the smallest time step, 46.8% of the 2500 runs 

converged to valid tours and 6.5% of those runs produced the optimal tour. Thus on aver-

age the network should produce the optimal tour every 16 runs. The exponential distribu-

tion of the probability density function for the valid tours produced by the parallel update 

(Figure 2.14) confirms that the majority of the tours produced are indeed good tours. 

It is not possible to quote exact times for computation as the run time to produce a 

solution is dependent on many variables, viz: 
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The PDF of the Tours produced by the HopfieldlTank network. 

1 	The size of the time step. 

2 	The number of iterations required to converge to a solution varies with the ran- 

dom initialisation. 

3 The number of runs required to produce a good solution, which can vary 

between 20 and 50, depends on the data set. 

Table 2.2 contains the average simulation times for one run of the network. The 

timings for the random, raster and parallel update orders are similar. 

Time Step Average Time for aRun 

0.00001 12s 

0.000005 24s 

0.000001 120s 

Table 2.2 	Order of Magnitude Timings for the Hopfield/Tank Network 

To test the network thoroughly it was applied to the 100 randomly generated 10 city 

data sets. For each city, its x and y coordinates were randomly generated within a square 

of unit side. A time step of 0.000005 and the parallel update rule were used as this was 
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the most realistic comparison with the hardware implementation. The simulation was run 

100 timed from different random initialisations for each city set to increase the probability 

of the network finding the optimal tour. The full results are contained in Appendix 1. A 

summary of the results is as follows: 

1 	The optimal tour was found in 65 of the data sets. 

2 	The network failed to find any tour for 3 data sets. 

3 	The best tour produced for the remaining 32 data sets was always better than 

the mean tour length of all possible tours. 

This confirms that the Hopfield]Tank network does indeed produce good solutions to the 

10 city TSP. The failure in 3 cases to find any tour illustrates the HopfieldlTank's neural 

network sensitivity to the shape of the energy function. Increasing the size of network 

increases this sensitivity. Hence, for large scale problems it is very difficult to set the net-

work up correctly. 

2.5.3. The Kohonen Self-Organising Network Applied to the TSP 

The Kohonen network used to solve the TSP has its output neurons arranged in a 

ring structure. The starting point of the tour is therefore related to the last city in the tour 

by the structure of the network. There are two different ways of finding the best match 

neuron for a particular input vector. 

1 	The Euclidean Update Rule: 

di.  ,r  = I(xj(,) - wF(l)) + 	+ (X (n)  - w () )2 	 (2.15) 

The above rule measures the distance between the points defined by the input 

vector and a weight vector; the smaller the distance the closer the match. 

2 The Dot Product Update Rule: 

Xi. 
w = IxiIIwr I cosO

ir
= xiwwr(l) + . . + x )w )  = L xiww) 	(2.16) 

T1iè dfprôdu& update rule determines the proximity of two points by calcu-

lating the cosine of the angle between the vectors which define the two points, 

cos O. 

If both vectors have unit magnitude then the value of the dot product is directly 

proportional to the value of cos 0j,r;  the larger the value of the cosine the better 

the match. 

To translate the 2 dimensional city coordinates into vectors of unit magnitude, 

the 2 dimensional square containing the city coordinates is mapped onto the 

surface of a sphere with unit radius. The mapping is achieved by first 
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compressing the unit square containing the city coordinates by 0.707 on each 

side and then projecting each point vertically up onto the surface of the unit 

sphere (Figure 2.15). There are now 3 inputs to the network, two of which rep-

resent the city position and the third which maps the city onto the surface of 

the sphere. Since the proposed neural hardware consists of an array of multi-

pliers, then the dot product rule is clearly the preferred choice. 

z 

senta tion 

I.707y, (1 - (0.707x) 2- (0•707) 
2)V2] 

Y 

2D City Description [x.y] 
by 0.707) 

Figure 2.15 	The input mapping required for the Dot Product update rule. 

The training vectors for the network are simply the coordinates for the N cities. 

After each presentation of a training vector, the Gaussian neighbourhood function, h, 

(Equation 2.17) centred on the best match neuron determines to what degree the weights 

of the surrounding neurons are affected. 

Ir—sl2  
h=exP(_ 

0' 2 
 ) 	

(2.17) 

where Ir - si is the distance between the best match neuron, s, and neighbouring neuron, r, 

along the circumference of the ring of output neurons. The variance a 2  controls how far 

the arc of the neighbourhood extends along the ring of output neurons. 

The weight vectors are then updated according to Equation 2.18. 

Wr(rv) = Wr(old) + e. hrs  (x - Wf(Old)) 	 (2.18) 
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where e is the learning rate of the network. 

After every complete presentation of the set of training vectors (epoch) the size of 

the neighbourhood is reduced, until eventually the weights of only one neuron, the closest 

match neuron, are modified. At this point the self-organisation process is complete. 

Equation 2.19 is used to calculate the correct value for cx based on the desired initial 

and final neighbourhood sizes and the number of epochs elapsed. 

or (t) =Uj- 

where 

c(t) 	= 	neighbourhood size at epoch t. 	t= 

a1 	= 	initial neighbourhood size. 	tmax 	= 

a1 	= 	final neighbourhood size. 

(2.19) 

number of elapsed epochs. 

maximum number of epochs. 

After training is complete, the neuron which is the best match when a city is pre-

sented to the network represents its position in the tour. The network orders the cities in 

such away that the distance between them is minimised. Apart from the structure of the 

output nodes, the rest of the operation of the network is identical to a Kohonen network 

used for clustering [30]. 

Initial simulations of the Kohonen Self-Organising Neural Network suggested that 

the number of neurons required was 2 to 3 times the number of cities, to allow the net-

work to assign one individual neuron to every city. If the number of neurons used is too 

small then the clustering action of the Kohonen network will tend to group cities which 

are close together under one neuron. The rest of parameters for the network are given 

below. 

Ui 
	= 	N 	e 	= 	0.3 

Cf 
	= 	0.5 	tax 	= 	100 

where N is the number of cities. 

To find if there was any difference in the quality of tours produced by the two differ -

ent update rules, a comparison was run on 10 randomly generated 50 city data sets. The 

results from this trial (Table 2.3) show that while the tours they find are indeed different, 

there is not a systematic difference in terms of tour quality. The mapping from a 2 

dimensional unit-  square onto a the surface of a unit radius sphere maps the (0,0),(l,1) 

main diagonal of the unit square on to an arc of length 44 and the (0,1),(1,0) diagonal on 

to arc of length 46. Thus the mapping is distorting the original x-y relationship between 

the cities by stretching the surface defined by the unit square along the (0,0),(1,1) diago- 

nal. 
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Figure 2.16 	The Solution of the 10 City TSP Using a Kohonen Network. 

As the results shown in Table 2.4 demonstrate, this network produced the optimal 

solution to the Hopfieldfl'ank 10 city example city set in 2s. Figure 2.16 shows the tour 

path for this example as it develops with the number of epochs. This clearly demon-

strates the similarity between the Kohonen network and the Durbin and Wilishaw elastic 

net method. Further simulations confirmed that this particular implementation of the 

Kohonen network with the initial neighbourhood size covering all of the ring of neurons, 

was immune to the initial values of the weights. The large initial neighbourhood size has 

a global averaging effect which always moves the ring of neurons to approximately the 

same initial position after the first few epochs. 
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City Set No of Cities No of Neurons 
Tour Length 

Euclidean Dot Product 

rand0_50 50 100 6.347 6.657 

randl_50 50 100 6.134 6.181 

rand2_50 50 100 6.022 5.992 

rand3_50 50 100 6.036 6.347 

rand4_50 50 100 5.724 5.893 

rand5_50 50 100 6.153 6.116 

rand6_50 50 100 6.133 5.969 

rand7_50 50 100 5.529 5.516 

rand8_50 50 100 5.992 6.101 

rand9_50 50 100 6.043 6.038 

Table 2.3 	Comparison of Euclidean and Dot Product update rules. 

To find out how often the network found the optimal tour, it was applied to the 100 

randomly generated 10 city data sets. The results are shown in Appendix 1 alongside the 

results for the exhaustive search and HopfieldlTank optimisation techniques. Out of the 

100 city sets, the network found the optimal tour for 73 of the city sets and in the other 27 

the tour produced was close to the optimal one. Thus it can be seen that the network typi-

cally produces very good tours with the bonus that the optimal tour is often found. It 

should also be noted that this network cannot produce invalid tours due to the structure of 

the network. 

City Set No of Cities No of Neurons Tour Length Time (s) 

cityl0_0 10 20 2.691 2 

rand10_00 10 30- - 	 2.450 3 

rand50_0 50 100 6.657 47 

rand100_0 100 300 8.714 274 

rand1000_0 1000 3000 25.573 31485 

Table 2.4 	Timings for the Kohonen Solving the TSP. 

The next stage was to explore how the performance of the Kohonen network scaled 

with the number of cities. To this end the network was applied to 50 city, 100 city and 
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1000 city randomly generated city sets. Table 2.4 shows the time the network took to 

solve each problem size. The computation time is proportional to the number of cities, N, 

multiplied by the number of neurons, 2N to 3N. 

2.5.4. Conclusions 

From the above simulations it became clear that there are 3 main criteria for access-

ing the performance of a network. 

1 	Quality of the solutions produced. 

2 	Speed of computation. 

3 	Scalability. 

Both networks score well according to the first criterion. 

1 	The Hopfieldfl'ank  network in general produces good tours. if the network is 

run many times, then there is a good probability that the best tour produced 

will indeed be the optimal one. 

2 The Kohonen network always converges to a good tour and for 73% of the 100 

randomly generated city sets it produced the optimal tour. 

It is when applying the second and third criteria that the differences begin to appear. 

1 	The Kohonen takes only 3 seconds on a Sun IPC Sparc workstation to solve the 

10 city TSP. 

2 The HopfieldlTank network takes between 10 and 340 seconds for just one run, 

depending on the time step used and on how quickly the run converges to a 

solution. The HopfieldjTank network typically requires to be run 20 to 50 

times to guarantee finding a good tour, giving a total run time of typically 1 

hour and 40 minutes. 

Thus the Kohonen network is 3 orders of magnitude faster. Even if a larger time step was 

used Kohonen would still be 2 orders of magnitude faster. 

The final criterion is how well the network scales with the size of the problem. The 

main problem with the exhaustive search technique is the computation time required. 

Table 2.5 shows how the 3 techniques outlined compare in speed and problem size. 

Thus the Kohonen network with its small computational load and the smallest rate 

of increase is the clear winner in speed and scale terms. While estimates have been made 

for the 50 city, 100 city and 1000 city TSP for the HopfieldjTank network it is debatable 

whether networks of this size would be stable due to the sensitivity of the HopfieldlTank 

network to the values of the parameters of the energy equation. 

• However, when these networks are applied to other types of optimisation problems 

such as task-assignment and scheduling, the advantages of the Kohonen network become 
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Network 
Computational 

Load 

Number of Cities ______ 

10 50 100 1000 

Exhaustive Search (N - 1)! 75s l051years 10145  years 1020°°years 

HopfieldlTank N4  120s 20.8 hours 13.9 days 380 years 

Kohonen N2  3s 47s 268s 27321s 

Table 2.5 	A Comparison of Computational Loads. 

N.B. The timings for the 50 city, 100 city and 1000 city TSP for the Ex-

haustive Search and HopfieldlTank network are estimates based on the 

timings for the 10 city problem. Stirling's Approximation to the Gamma 

Function was used to estimate the factorial of 1000 (Appendix 2). 

less clear. The difficulty lies in how to map other optimisation problems on to the net-

work. With HopfieldlTank the rows and columns can be used to represent the available 

machines/resources versus either the jobs to be carried out or time slots. In the Kohonen 

network the whole action of the network is to group similar vectors together in the output 

layer. So, for example, scheduling information has to be somehow transformed into a set 

of training vectors in which the vectors which need to be close together are separated by 

small Euclidean distances. For the VLSI cell placement problem, Hemani and Postula 

[27] used a connection matrix to represent the links between cells, the columns from 

which were used as the training vectors. While this approach worked for this particular 

problem it is still difficult to see how to encode the information such that if event i occurs 

before event j then there is an associated cost c 1 , into the training vectors. 

In the case of the TSP, the Kohonen Self-Organising neural network has the best 

performance, with its combination of a small computation load, good characteristics 

when scaled and the ability to produce very high quality tours. It should be noted, how-

ever, that the Kohonen network and the TSP are extremely well suited to each other. The 

inferior performance of the HopfieldlTank network is due to the higher computational 

load of its N2  neurons and N4  synapses, and sensitivity of the network to both the value of 

the input data and the coefficients of the energy function. 
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Chapter 3 

VLSI Implementations of Neural Networks 

Due to the serial nature of Von Neumann style computers (for example a Sun IPC 

Sparc workstation or an IBM Personal Computer (PC)) the parallel computations of a 

neural network inevitably become serialised. Thus the speed of the massively parallel 

computation which characterises a neural network is not exploited. This applies equally 

to all neural networks and not just to the HopfieldlTank  and Kohonen neural networks 

discussed in the last chapter. 

Mother factor which slows down the speed of software simulations is that the pro-

cessor inside either a Sun Sparc workstation or an IBM PC, is designed as a flexible com-

puting engine rather than a high performance multiplier. This means that a multiply-

accumulate can take up to 10's of clock cycles. As a result, the use of a specialist proces-

sor such a Digital Signal Processor (DSP) which is optimised for performing the multi-

ply-accumulate operation, will yield a considerable gain in performance. The limitations 

of conventional computers mean that software simulations of neural networks are often 

unacceptably slow. 

All of this points toward the need for a custom VLSI neural network implementation 

based on a parallel architecture built around dedicated multipliers. Without such a system 

the true computational power of a neural network cannot be realised. 

A custom implementation also allows the architecture and the operations it performs 

to be optimised for particular neural algorithms which only require, for example, 1-bit 

neural states (Boltzmann Machines) instead, of 16- or 32-bit floating point numbers. 

Custom silicon also offers the opportunity to build complete representations of simple 

biological networks and networks which process data without the supervision of a host 

computer. The ultimate aspiration is that of a fully parallel, autonomous neural system. 

This chapter reviews the main techniques which have been used to implement neural 

networks in silicon. The digital and analogue VLSI hardware described illustrates the 

wide diversity of neural VLSI implementations. 

3.1. The Great Debate: Digital Versus Analogue 

A brief look at some of the reviews [29, 34-37] of VLSI implementations of neural 

networks highlights two generic implementation styles: digital and analogue. The debate 

about which technique is better suited to neural network implementation is far from 
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resolved and the answer varies from research group to research group. However, the 

decision is largely determined by which technique is the most appropriate for the end 

application. 

Digital multipliers give very fast multiplication times, and the result of the multipli-

cation is totally process-independent. This reliability together with arbitrary multipli-

cation accuracy and flexibility make digital circuits attractive to a VLSI designer. How-

ever, digital multipliers, either parallel or bit-serial, require a large silicon area. Thus it is 

only possible at present to have tens of digital multipliers on a single integrated circuit. 

The compact nature of an analogue multiplier allows thousands of multipliers to be 

implemented on a single chip. As a result, analogue multipliers have a superior multipli-

cation speed per square millimetre of silicon (speed/area product). However, analogue 

circuits are much more sensitive to the problems of process variations and noise than their 

digital counterparts. The massively parallel nature of the structures that form neural net-

works serves to compound the process variation problem as several chips may be required 

to implement a particular network. 

The debate is further complicated by the existence of hybrid implementations which 

attempt to combine the best features of digital and analogue circuits. Examples of these 

include Multiplying Digital to Analogue Converters (MDAC's), switched-capacitor cir-

cuits and pulse-based implementations. In general the attempts to combine the best fea-

tures of each technique are not completely successful; for example in pulse-based imple-

mentations, the robustness of digital signal levels is combined with the compactness of an 

analogue multiplier but the speed of computation is slower than either conventional ana-

logue or digital multipliers. 

Ultimately the decision on which is the best implementation style depends on the 

end application, the type of network used and the interface to the host system. if a gen-

eral-purpose neural accelerator card for a conventional computer is envisaged then a digi-

tal implementation may be the better choice. However, an analogue VLSI implementa-

tion would be more suitable for a remote system monitoring the outputs of analogue sen- 

- sors such as strain gauges. 	- 	 - 

Sections 2.3 through to 2.6 discuss digital, analogue, on-chip learning and pulse-

based VLSI implementations respectively. 

3.2. Digital VLSI Implementations 

To multiply 2 N-bit numbers, a fully parallel digital multiplier requires N 2  full 1-bit 

adders (Figure 3.1) while a bit-serial digital multiplier needs only one adder cell (Figure 

3.2). For these two N-bit numbers the bit-serial multiplication will take 2N clock cycles. 

However, the speed of a parallel multiplier is only limited by the time the signals take to 
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Figure 3.1 	Structure of a Fully Parallel Digital Multiplier. 

propagate through the logic. Thus there is a direct trade-off between silicon area and 

speed of operation. 

As digital implementations, in general, only contain enough processors to compute a 

part of the synaptic array during each cycle, the supporting hardware is very important to 

ensure that the weight and state data are piped as quickly as possible through the multipli-

ers. Section 3.2.4 discusses two general strategies for supplying data to the multipliers: 

broadcast and systolic. 

x 
Y 

t 

Figure 3.2 	Schematic of a Bit-Serial Multiplier. 
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3.2.1. Digital Signal Processors 

Although Digital Signal Processors (DSP's) were originally designed to speed-up 

the implementation of correlators and discrete Fourier transforms, the optimisation of the 

multiply accumulate operation in these processors also makes them very suitable for 

speeding up neural network simulations. Parallel digital multipliers and extensive 

pipelining of data allow the average DSP (Texas Instruments TMS 32020 or Motorola 

DSP 56000) to perform a 16-bit by 16-bit integer multiplication plus the accumulate 

operation in lOOns. Higher specification DSP's like the Motorola 96000 series [38],  are 

able to carry out a 32-bit floating-point multiplication and accumulate operation in only 

50ns. While these processors can perform a multiplication much faster than most con-

ventional microprocessors, a custom VLSI array of digital multipliers will be even faster 

due to 10's of multiplications being carried out in parallel. 

To achieve some of this desired parallelism Means and Lisenbee at HNC Inc have 

developed the SIMD Neurocomputer Array Processor (SNAP) which contains four 32-bit 

floating point processors [39].  Each of these cells carries out the 32-bit multiplication 

and accumulate operation in SOns. The compute power can be increased up to 1,280 

MCPS S by cascading 16 SNAP chips (64 processing elements) in parallel. The resultant 

system is controlled by an Intel i860 RISC processor and linked to the host computer sys-

tem via a VIvIE communications bus. 

Other approaches include simply cascading a number of "off-the-shelf' DSP chips 

in parallel. For example the Morgan et al Ring Array Processor (RAP) board is made up 

of 4 Texas Instruments TMS320C30 floating point DSP's connected in a ring structure 

[40, 41]. Ten of these boards working together (40 processors) yield a speed of 574 

MCPS. 

3.2.2. Bit-Serial Multipliers 

An interesting example of the implementation of bit-serial multipliers was that of 

Butler at the University of Edinburgh [42-45]. To reduce further the area required for a 

digital multiplier the values of the neural states were restricted to 5 discrete levels 

{-1.0,-0.5,0,i-0.5,+l.0} (Figure 3.3) with the weight value represented by an 8-bit two's 

complement number. The synapse now only has to pass the weight value untouched, 

divide it by 2 or output zero. This technique reduced the synapse to a single 8-bit shift 

register plus an adder/subtractor cell for the distributed bit-serial activity summation. 

Four fabricated devices, each containing a 9 by 3 synaptic array, formed the 12 by 9 array 

of synapses at the heart of a neural accelerator board controlled from a Sun 3/110 via a 

MCPS . Million Connections Per Second where a connection is one multiply and one accumulate operation. One 
MCPS is equal to 2 MFlops (Million Floating-point operations per second). 
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Figure 3.3 	Hard Limiter, 5-State and Sigmoid Activation Functions. 

VME communication bus. For the pattern classification examples used to demonstrate 

the system the combination of the Sun 3/110 and the board carried out the multiply-

accumulate operation 87 times faster than the Sun 3/110 by itself. While the system was 

able successfully to perform pattern classification, networks such as MLP's and Hop: 

field/Tank which require a smooth neural state transition from either -1 to +1 or 0 to +1 

are not well suited to this architecture. 

A more recent example of a bit-serial implementation is the L-Neuro (Learning 

Neurochip) chip by Aglan et al [46, 471.  To keep the bit-serial multiplier area as small as 

possible integer arithmetic is used. The configuration of the 1024 eight bit synapses is 

very flexible. At one extreme it can be set up as a 32 by 16 synaptic array with 16 neu-

rons and 16-bit synaptic coefficients or at the other as a 256 by 4 array with binary inputs. 

Various intermediate configurations allow neurons to be coded over 1 to 8 bits and synap-

tic weights as either 8 or 16 bits. Four of the chips, together with a transputer to. handle 

communications, make up a card which slots into the back of an IBM Personal Computer. 

To increase further the number of processing elements available these boards can also be 

cascaded. The timings given for recognising handwritten characters using Kohonen Fea-

ture Maps show that a single L-neuro device is roughly 8 times faster than a single trans-

puter running at 20MHz. 
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Figure 3.4 	WISARD Discriminator. 

  

3.2.3. Specialised Architectures 

WISARD by Aleksander et al was one of the first neural computing machines to be 

developed specifically for pattern recognition problems [48, 49].  It differs from other 

implementations in that it is built of RAM cells rather than arrays of multipliers and sum-

mers. For each pattern class there is a discriminator (Figure 3.4). Each of K RAM cells 

which make up the discriminator looks for a particular feature of that pattern classifica-

tion. If a RAM cell finds its assigned feature then it outputs a 1. The sum of these out-

puts gives the response, r of that discriminator; the closer the value of r is to K the more 

certain the match. To perform character recognition, 26 discriminators are required, each 

of which is trained to identify a particular letter from a binary bit map. The responses of 

the discriminators for a given input pattern are compared with the highest responding dis-

criminator identifying the character which is best match to the input pattern. Due to the 

use of RAM this style of system is- very fast but the implementation is very specific to 

pattern recognition and cannot be viewed as a general purpose neural computing engine. 

3.2.4. Data Flow Architectures 

The architectures of digital VLSI implementations fall into two categories 

Broadcast Data Flow (Figure 3.5) 

Systolic Data Flow (Figure 3.6) 

In a system based on a broadcast architecture one common/global databus links all 

of the processing nodes (PN) together. This flexible structure in which any 2 PN's can 
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Figure 3.5 	Broadcast Data Flow. 
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Figure 3.6 	Systolic Data Flow. 

communicate with each other, is well suited to fully interconnected networks such as 

Hopfield/Tank. However, it takes a long time to transfer data between elements as each 

PN has to access the bus in turn to output its results. A transmission overhead also exists. 

With every piece of data broadcast, an address header is required to determine which PN 

is sending data. 

A broadcast databus forms the backbone of Hitachi's Wafer Scale Integrated neural 

network [50].  It not only transfers data between the 12 neurons within each integrated 

circuit but also links the 49 chips contained in the wafer. In this case a 10-bit address is 

sent with each 9-bit neural state. The resulting cycle time to fully interconnect the 576 

neurons within the wafer is 267ys which allows the system to solve the computationally 

hard, 16-city Travelling Salesman Problem using the Hopfield]Tank neural network in an 

impressive O.ls. 

The Connected Network of Adaptive ProcessorS (CNAPS) by Adaptive Solutions 

Inc combines this broadcast architecture with a cascadable linear array of 64 "DSP-like" 

16-bit fixed point processors [51]. Even with the use of 0.8pm technology the integrated 
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circuit which contains these 64 PN's is still 26.2mm by 27.5mm in size. To deal with the 

problems caused by the fabrication defects that are almost inevitable in such a large die, 

redundancy has been built in. 

At the other end of the scale from the Hitachi and CNAPS VLSI implementations is 

the TInMANN integrated circuit by Melton et al [52, 53]. As the designers were limited 

to less than 4mm2  they were only able to include one neuron on the chip. The chip was 

thus designed as a building block with the broadcast architecture used to allow the chip to 

be easily cascaded. A feature of this particular implementation is that the neuron struc-

ture has been tailored for the integer Markovian learning algorithm which only requires 

adders and subtractors. 

Common to these three implementations is a neuron plus its associated synaptic col-

umn implemented as a single processing node which processes each of the synaptic 

weights contained in a local block of RAM in turn. This scales very well, as only the 

RAM size has to be increased to allow more weights to be down-loaded to the accelerator 

board. The CNAPS device has 4Kbytes of cache RAM at each PN to store that neuron's 

synaptic weight values. For image processing applications, where the weights are con-

stant once training is complete, this cache RAM gives a significant speed advantage as 

the weights do not have to be reloaded for each calculation. 

The systolic implementations proposed by Jones et al [54, 55] and Mackie [56, 57] 
are similar to the TInMANN design in that the PNs also have local weight RAM. In a 

systolic architecture the PNs are "daisy-chained' together like D-Type flips-flops in a 

shift-register. After every multiplication-accumulate cycle the data is passed on to the 

next PN in the chain. Thus the data moves on one PN per multiplication cycle; if there 

are N PN's in the array it will therefore take N cycles for the data to be received by all the 

PN's. For linear arrays the data flow is along the array and for 2 dimensional array there 

are typically 2 dataflows one across the array and a second down the array. The local and 

regular nature of interconnect makes this architecture particularly suitable for VLSI 

implementations. 

The toroidal neural network developed by Jones et al [54, 551 is a good example of a 

systolic architecture (Figure 3.7). The toroidal structure derives from the presence of a 

systolic ring, around which the neural states circulate, and the similarity of the transfer of 

weight information within the PN, to data moving around a loop. The movement of the 

weight data is synchronised with the movement of the neural state systolic ring so that the 

correct neural state and synaptic weight coincide at the required PN. Each PN comprises 

a 16 by 16-bit fixed point multiplier and a 16-bit adder/subtractor. Also included are 

eighteen 16-bit registers for storing data, a linear feedback shift register for random num-

ber generation and a comparator. 
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Figure 3.7 	A Toroidal Neural Network. 

The work by Mackie [56, 57] is based on a linear systolic array of bit-serial pro-

cessing elements optimised for pattern recognition problems. The optimisations are 

based on the premise that in these applications the weight data remains static once 

trained; thus the resulting pipelined architecture concentrates on a fast throughput of 

input vectors (neural states). 

The systolic Neural Signal Processor (NSF), the MA16, developed by Ramacher et 

al [58, 59] differs from the work of Jones and Mackie in that it performs matrix-matrix 

multiplication rather than vector-matrix multiplication. The NSP chip contains 4 PN's, 

each of which consists of four 16x16 bit multipliers and three adders linked in a systolic 

manner. Each PN computes the result for a 4x4 submatrix of the overall matrix-matrix 

multiplication. As Figure 3.8 shows, the 2 dimensional flow of data needs to be carefully 

ordered if the correct data is to reach the appropriate processor at the correct time espe-

cially when the matrix is divided over several processors. The core area of MA 16 covers 

154mm2  of silicon and contains over 500K transistors. Clocking the device at 50MHz 

achieves a throughput of 800 MCPS 

Wij 



Chapter 3 
	

ER 

b N,N 

b N,2 

bN,1 

bz2 b1,1.q 

b 2 , 1 	b 1 ,2  

a1,2 ,a11 

a 2, ,azi 

aNN ................a.fl 

Figure 3.8 	A Systolic Matrix Multiplication Scheme. 

3.2.5. Conclusions 

Table 3.1 summarises the main advantages and disadvantages of digital techniques. 

The use of digitaliechniques eases the interfacing of a neural system to a host computer 

as there is no need to convert the data into voltages, as in an analogue implementation, 

before it can be processed. Thus for a neural network hardware accelerator, a digital 

implementation is probably the most sensible route to follow. 

3.3. Analogue VLSI Implementations 

The Hopifeld/Tank neural network model is derived from an analogue implementa-

tion based on resistors, capacitors and operational amplifiers. The resistors represent 

synapses, while the currents they carry are equal to the multiplication of the voltage 

across them (the neural state) by the reciprocal of their resistance (the synaptic weight). 

However as resistors are not well suited to CMOS VLSI implementations a more 
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Advantages Disadvantages 

Fast Large Area 

Reliable High Power Consumption 

Good Noise Immunity Small speed/area product 

Arbitrary Accuracy 

Familiar Design Technology  

Table 3.1 	Summary of the Advantages and Disadvantages of Digital Multipliers. 

intelligent approach is needed. 

As the multiply accumulate operations are common to both neural networks and 

analogue filters and correlators, many of the circuits used in analogue VLSI neural imple-

mentations have their roots in analogue integrated filter design work. Indeed many 

implementations can be viewed as general-purpose analogue vector-matrix multipliers 

rather than dedicated neural processors. 

The basic multiplier cell used in analogue VLSI neural implementations can gener-

ally be classified into one of five different categories. The fixed value nature of VLSI 

resistors excludes them from this classification as any system based around them would 

be non-programmable. 

1 	Gilbert Multiplier. 

2 	Sub-Threshold Multipliers. 

3 	Linear Transconductance Multipliers. 

4 	Multiplying Digital-to-Analogue Converters (MDAC's). 

5 	Switched Current Sources. 

The common factor is that the synapse output always takes the form of a current. 

Kirchhoff's Current Law states that all currents at a circuit node must sum to zero. Thus 

addition of the synapse currents is elegantly and simply achieved by connecting the out-

puts to a common bus. The remainder of this section discusses implementations based on 

these multiplier' )techniques and methods for storing analogue weights. 

3.3.1. Gilbert Multiplier 

The Gilbert Multiplier was developed by Barrie Gilbert in 1968 for bipolar circuits. 

The CMOS variants of this 2-input, 4-quadrant analogue multiplier use almost identical 

circuits. As Figure 3.9 shows, the CMOS version of a Gilbert multiplier is built up of 3 

differential stages which steer current between the 2 transistors in each stage according to 
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Circuit Diagram for a Gilbert Multiplier 

the difference between the gate-source voltages of the transistors. The inputs to the cir-

cuit are the voltage differences (V 1  - V2) and (V3  - V4 ) 3  with the output current, I, pro-

portional to the multiplication of these 2 voltage differences. The summation of the 

synaptic multiplies is achieved simply by connecting the current outputs to a common bus 

which feeds into a neuron. As the multiplier characteristic in Figure 3.9 shows, the 

response is linear for small voltage differences with the output saturating for larger differ-

ences due • to one leg of a differential stage winning all of the available tail current. Thus 

for linear multiplication the input range needs to be restrained. The overall tanh shape of 

the response however can be useful for implementing the sigmoidal squashing function 

required by networks. 

If V01  falls below the maximum value of V3  or V4  then the transistors in the top 2 

differential stages will no longer be in their saturation regions, making dependent on 

the value of V0 . Thus a limitation of the circuit as it stands is that the output current, I O  

is only valid for a limited range of V 01  values. Not only is the range of input voltage dif-

ferences restricted, but the lowest values for V 3  or V4  must be at least a threshold voltage 

above the highest values of V 1  or V2 , otherwise the transistors in the top 2 differential 

stages will switch off. As the successful VLSI implementations by Intel [60, 61] and Kub 

et a! [62] show these problems are of only minor significance. - 

The Electrically Trainable Artificial Neural Network (ETANN) chip from Intel con-

tains 10240 synapses based on this version of the Gilbert multiplier. The synapses are 

organised into two 80 by 64 arrays which feed into 64 variable gain neurons. The voltage 

difference representing the synaptic weight is held by a pair of EEPROM cells in the 
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Figure 3.10 	Circuit Diagram for the Wide-Range Gilbert Multiplier 

synapse. The advantage of BEPROM technology is that weights are non-volatile, but to 

change a single weight takes 100's of microseconds, implying slow weight update times 

during the learning phase of a MLP. Once learning is complete and the weights are con-

stant, the device is capable of 2,000 MCPS. Intel market a board that allows 8 ETANN's 

to be connected together but the problems of process variation between chips gives such a 

system a rather non-uniform synaptic multiplier characteristic. This results in a signifi-

cant degradation of the network's performance. 

The work by Kub et a! [62] at the Naval Research Laboratory in Washington DC is 

an example of the Gilbert multiplier being applied to a general purpose analogue vector-

matrix multiplier. Each weight in the 32 by 32 synaptic array fabricated, is stored as a 

voltage difference between 2 capacitors. The assumption is that, as the capacitors decay 

at the same rate, the voltage difference between then will remain roughly constant, 

extending the weight hold times by a factor of 50. 

The wide-range version of the Gilbert multiplier (Figure 3.10) uses current mirrors 

to direct currents between the differential stages and on to the output node. This avoids 

the problems of V,, t  affecting L and V 1 , V2  and V3 . V4  needing to vary about different 

voltages for correct operation. The only drawback is increased silicon area due to a 
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doubling in the transistor count. As a major objective of VLSI implementations is to 

integrate as many synapses as is possible on to a single die, the more compact version of 

the Gilbert multiplier has obvious attractions. Nevertheless, the wide-band variant has 

been used by Schneider and Card [63] in their VLSI implementation of Hebbian and 

Mean Field Learning (See Section 3.4.3) 

Although the multiplier used by Satyanarayana et a! [64, 65] in their reconfigurable 

neural network chip is not explicitly described as a wide-range Gilbert multiplier, the cir-

cuit layout given is very similar. One of the features of this chip is the use of a distributed 

neuron. Each synapse has two simple current-to-voltage converters to translate the differ-

ential current output from the Gilbert multiplier into a differential voltage and apply a 

sigmoidal squashing function. When an array of these cells is cascaded together to form 

a synaptic column, the I to V stages operate in parallel to create a much bigger output 

stage; thus this system is cascadable. The reconfigurabiity is due to the distributed 

synapse/neurons being arranged in 4 by 4 blocks, with the links between adjacent blocks 

programmable to allow defective synapse/neurons to be isolated and the chip to be con-

figured to suit the topology of the proposed application. The Satyanarayana chip contains 

1024 of these synapse/neuron cells arranged into 4 by 4 blocks. Of the chip's 6.7mm by 

3.4mm area, 15% is occupied by the switches for re-configuring the interconnections 

between blocks. 

3.3.2. Sub-Threshold Multipliers 

In sub-threshold circuits the gate-source voltage (V GS ) of a transistor is less than its 

threshold voltage (VT). For this region of operation the transistor current has an exponen-

tial relationship to the value of V5. The output current saturates for VDS  values as low 

as lOOmV, allowing the transistor to operate as a current source from near ground to Vdd. 

As the transistor is not fully switched on the currents are very small (10-12  to 10A). 

Thus the power consumption of circuits biased in the sub-threshold regions is very small 

allowing large numbers of circuits to be integrated on to a single die without incurring 

power dissipation problems. The small value of VC's also enables the circuits to work 

from low power supply voltages eg 1.5V. A disadvantage is that input voltage ranges are 

limited to 100's of mV creating the potential for noise problems. 

The Gilbert multiplier in (Figure 3.9) works well with the transistors in their sub-

threshold region of operation. The differential stages in the multiplier act to cancel out 

the exponential nature of the transistors' response, yielding an overall tanh transfer char-

acteristic. This is almost identical to the response given by the Gilbert multiplier when 

the transistors are in their more common saturation region. To achieve sub-threshold 

operation the input voltages must obey the restriction that Vb > V 1  and 112 > (V3  and V4 ) 1  

otherwise the transistors will operate in their saturation regions. 
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Figure 3.11 	Silicon Retina with Schematic of Mahowald Pixel. 

Caner Mead's research group at Caltech have used sub-threshold circuits to imple-

ment silicon retina and electronic cochlea chips inspired by the biological exemplars 

[66-69]. The silicon retina chip is described below to illustrate the sub-threshold work of 

Mead et al. 

The 2 dimensional structure of a human retina translates well into silicon. As Figure 

3.11 shows, the retina chip uses a hexagonal resistive grid structure with each node con-

sisting of a photoreceptor and two amplifiers. The voltages at nodes in such a structure 

represent a spatially weighted average of the photoreceptor outputs. The more distant an 

input is from a point, the smaller is its weight (effect). Thus each input has a significant 

effect only on the nodes around it. 

The photoreceptor uses sub-threshold load transistors to compress logarithmically 

the order of magnitude variations in current produced by the photo-transistor into a man-

ageable voltage range. One of the amplifiers then tries to drive the associated resistive 

node towards the photoreceptor voltage. The voltage difference between the locally-

averaged grid node voltage and the photoreceptor voltage is a measure of the contrast 

ratio or intensity gradient at that point, as the voltages represent the logarithms of the 

intensity values. 

Working on local averages gives both the human eye and this silicon retina the abil-

ity to find detail in both light and dark areas on the same image. As the output also repre-

sents the intensity gradient, a large output will indicate that a transition or edge is present 

at that point in the image. This is similar in concept to the Laplacian filters used in pre-

sent day computer vision systems. 

ts) 
'<•vrv 
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The main advantages of operating in the sub-threshold region are the low power 

consumption which is important for large synaptic arrays and the ability to operate from 

power supply voltages as low as 13V (battery power). Also the logarithmic transfer 

function simplifies synaptic multiplication to the addition of currents. A problem with 

this mode of operation is that the limited input voltage ranges mean that the circuits are 

susceptible to noise. The small currents flowing in the circuits result in a limited drive 

capability and a slow response to a change in input data. 

xl 
9J 	

"l 

1 M1 

	

1p 	ii 	I 	I 	H 	LJ 

X2 

.M2 

_F
M3  

X2 	____ 
II 

	

Y2D 	
II 	'M4 	

fl y 

'2 
xl 

	

Figure 3.12 	4 Transistor MOS Transconductor 

3.3.3. Linear Transconductance Multipliers 

The current through a NMOS transistor in its linear region of operation is roughly 

proportional to the multiplication of its gate-source voltage, V(Js, and drain-source volt-

age, VDS.This characteristic is the basis of the highly linear multipliers used in many 

MOS integrated filter designs [70-75]. In general, the designs are based on the 4-quad-

rant transconductance multiplier shown in Figure 3.12. The response of the 4 identical 

transistors in this circuit is 

I 12 = fl{(Yi 	'2)(X1  —X2)] 	 (3.1) 
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where 6 is the transistors' transconductance, confirming the linear nature of the circuit's 

4-quadrant multiplication. 
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Figure 3.13 	2 Transistor MOS Transconductor 

Figure 3.13 illustrates a 4-quadrant multiplier based on just 2 transistors in their lin-

ear regions. The response of the 2 transistor version is 

'I 12 = 	— V)(X 1  —X2)] 	 (3.2) 

As Equation 3.2 shows, the 2 transistor multiplier suffers from the disadvantage that its 

output current difference is dependent on the value of reference voltage V. Thus the 4 

transistor variant is more immune to variations in V. 

Tsividis and Satyanarayana [76],  Bibyk and Ismail [77],  Verleysen, Jespers et al [78, 

791 have all proposed the use of linear transconductance multipliers for neural networks 

but no-one has yet reported results from a neural network implementation based on these 

circuits. A variant of the 2 transistor multiplier is however used as a linear, voltage con-

trolled current source in our own more recent pulse stream work [80]. 

3.3.4. Multiplying Digital to Analogue Converters (MDACs) 

Unlike the previous three implementation styles where both the neural state and 

synaptic weight information are represented as voltages, in a MDAC one of the inputs is 

digital. This is an example of a hybrid implementation. In an N-bit CMOS DAC imple-

mentation based on transistors there are N switchable current sources, the magnitudes of 

which increase by a factor of 2 as the significance of the associated bit increases. The 

magnitude of the output currents is controlled by a common current mirror whose input is 

&ef' and the ratioing of current mirrors is achieved by doubling the aspect ratio of the cur-

rent source transistors as the bit significance increases. The output current is thus propor-

tional to 'Ref multiplied by the number represented by the N-bit digital input. The 
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Figure 3.14 	Circuit Diagram of 7-bit Multiplying DAC. 

advantage of this particular implementational style is that the interface to a digital host 

computer is now more straightforward. However as one of the inputs to the network is 

quantised typically to 7-bit accuracy there may be problems during the learning phase of 

an MLP network. 

In the MDAC implementation (Figure 3.14) by Moopenn et al [8 11 the digital input 

represents the weight while either a transistor or an external resistor converts the input 

neural state voltage into 'Ref  for the appropriate MDAC's. As Figure 3.14 shows the digi-

tal input is 7-bits with the most significant bit used as a sign bit to reverse the direction of 

the output current via a differential stage. Only 2-quadrant multiplication is possible 

using this particular arrangement. The fabricated device contains a 32 by 32 array of 

multiplier cells. An array of four of these chips has been used successfully to solve the 

8-city HopfieldiTank TSP in about 50us, producing the optimal tour 11% of the time. 

The work by Hollis and Paulos [82] is similar, with the weights stored as 7-bit digi-

tal values but the neural state is represented as a voltage difference. Multiplication is 



Chapter 3 	 55 

achieved in this implementation, not by varying the reference current 'Ret'  but rather by a 

differential stage multiplying the DAC output current by a factor less than 1 determined 

by the neural state voltage difference. For negative weights the sign bit of the weight 

reverses the polarity of the differential input. Load transistors convert the differential out-

put current into a differential voltage. A transistor connected between the 2 current sum-

mation lines provides a primitive gain control with the output zero when the transistor is 

on and maximum gain when it is off. As the proposed application is a fully intercon-

nected network like HopfieldlTank, the input voltage levels need to be the same as the 

output voltage levels. To ensure this a common feedback circuit controls the value of a 

bias current to give the desired levels for the output voltage range. The fabricated inte-

grated circuit contains 7 neurons fully interconnected via an array of 49 MDAC synapses. 

The neuron is as used by Sivilotti et al [83]. It has successfully solved small scale graph 

partitioning problems. 

The Analogue Neural Network Arithmetic (ANNA) unit is a well established VLSI 

neural implementation based on MDAC circuitry [84-86]. Despite weights inside the 

device being represented by voltages, the interface to the chip is purely digital with two 

on-chip DAC's converting the 6-bit digital weight values into the appropriate voltages. 

The neural states are limited to 3-bit accuracy. The pattern recognition results reported 

indicate that this limited accuracy is adequate except in the final layer of an MLP net-

work. However this will restrict the range of applications which will run successfully on 

this hardware. The adverse effects of quantisation of values on network performance also 

apply to the Moopenn and Hollis implementation. On the system board for the ANNA 

chip a floating point DSP-32C processor is provided to calculate the final layer of an 

MLP network and perform learning, partially alleviating the quantisation problem. The 

ANNA chip comprises 4096 synapses and 8 linear neurons, and can handle up to 256 

neural state inputs. The aspect ratio of the synapse array is re-configurable, supporting 

neurons with 16 to 256 inputs. The silicon area of the die is 4.5mm by 7mm (0.9tm 

CMOS process). Peak computation rate of the ANNA chip is 5000 MCPS. The average 

performance of the system as a whole much less at about 1000 to 2000MCPS. This is 

because the supporting architecture is not able to supply data to the multipliers inside 

ANNA fast enough, to maintain the multipliers at their maximum computation rate. 

3.3.5. Switched Current Sources 

In some neural applications it is feasible to binarise the neural state values to either 

0 or 1. This simplifies the synapse circuitry to a variable current source and a switch to 

gate its output. Ismail et al [77, 87] use a differential stage made up of 2 floating-gate 

MOS (FGMOS) transistors, Ml and M2, and a current source, M3 (Figure 3.15) to create 

a voltage controlled current source. The difference between Ml and M2's pre- 
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Figure 3.15 	Ismail et at Programmable Synaptic Element (PSE). 

programmed threshold voltages determines the difference between currents 1 1  and 12. 

The threshold voltage difference represents the synaptic weight in an analogue manner. 

Vth, which is either ground or Vdd, switches the FOMOS transistors off or on, so gating 

the output current difference. A testchip, containing a 4 by 4 array of these cells and cur -

rent comparators for the neurons, successfully proved the operation of this circuit. 

The implementations by Verleysen [88, 89] and Graf [90] simplify the synapse fur-

ther by restricting the synaptic weight range to {-1.0,0,+1.0}. In these systems the neural 

states are limited to {-1.0,+1.0} rather than {0,+1.0}. An XOR gate is used in the 

synapse to re-direct the fixed-value current source between the positive, I, and negative, 

I_, current summation lines (Figure 3.16 (a)). To turn the synapse off, Mem 1, the control 

voltage for the current source, is set to 0. As Figure 3.16 (b) shows, load transistors con-

vert the summed current difference into a voltage difference. A comparator then trans-

lates this into the binary neural output. Because of the simplifications made to the 

synapse a new learning algorithm which took into account the restrictions on the synapse 

weights and the neural state had to be developed. 

The 32000 synapses and 256 neurons contained in the reconfigurable neural network 

chip developed at At&T Bell Laboratories by Graf et al demonstrates the high levels of 

integration which can be obtained by the use of binary weights and states. To run 
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Figure 3.16 	Verleysen et al synapse and neuron circuits. 

networks that require a higher level of synaptic precision, up to 4 synaptic columns can 

be cascaded together to form a 4-bit weight. While this increases the precision of the sys-

tem it reduces the number of synapses available. Thus there is a direct trade off between 

the accuracy of the weights and states, and the silicon area required. A multiplier in each 

neuron scales each column by the appropriate factor 11,1/2,1/4,1/81.  Two internal 

128-bit wide shift registers are present to speed-up the computation throughput for sig-

nals or images which are network scans. The speed of the bit-wise computation is very 

fast with the chip rated at 320,000MCPS. The pattern classification results reported 

demonstrate that a system based on such simple processing elements is capable of per-

forming feature extraction and convolutional algorithms very effectively, though obvi-

ously the limited computational accuracy will limit the range of applications. 

3.3.6. Analogue Weight Storage Techniques 

Normally in analogue VLSI neural implementations, the synaptic weight values are 

stored locally in the synapse. Thus a way of storing the analogue voltage which repre-

sents the weight value is required. 

The ideal analogue storage mechanism needs to be small, to allow high levels of 

integration, and continuous in nature. The desire for on-chip learning also means that it 
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must be easily adjustable and non-volatile [91]. There presently exist 4 main techniques 

for programmable analogue weight storage. The programmability requirement precludes 

VLSI resistors from the following discussion as their value is fixed at the time of fabrica-

tion. 

1 	Capacitors 

2 Floating-gate MOS (FGMOS) Transistors 

3 Charge-Coupled Devices (CCDs) 

4 Amorphous Silicon 

None of these techniques satisfies all the criteria for an ideal analogue storage mech-

anism. The following sections outline the merits and demerits of each technique. 
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Figure 3.17 	A simple capacitive sample-hold. 

3.3.6.1. Capacitive Weight Storage 

The most common way to store a synaptic weight voltage is to use a simple sample-

hold circuit based on a capacitor (Figure 3.17). Its advantages are that it is compact, easy 

to increment/decrement via charge pump circuitry, and continuous. The problem with 

this technique is that charge leakage through the access transistors causes the stored volt-

age to decay in time. As the access transistors, when they are off, are in their sub-

threshold regions, the leakage current is of the order 10_1  to 10-12  A. For these current 

values, - the weight storage capacitor will hold the weight voltage to within 1% of the 

maximum weight voltage for seconds. Thus the weight voltages need to be continuously 

refreshed, typically from external RAM via an external DAC. The refresh operation is 

normally transparent to the neural network application running on the chip. Care does 

need to be exercised as the RAM/DAC combination introduces quantisation effects into 
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the weights. 

The Satyanarayana et al [65] chip uses such an arrangement and a single external 

DAC is able to update a weight in ljzs (1 MHz). To reduce the time taken to load the 

weights this chip has 8 input weight lines, which when driven in parallel allow the 1024 

synapses to be updated in 1301s. The ANNA chip [84] achieves a much faster weight 

update time of SOns (20 MHz) per weight through the use of twin on-chip DAC 's and cur-

rent-mode operation. The twin DAC's are able to refresh all of the 4096 synapses in 

1 lOps. Thus not only does a weight refresh scheme eliminate the weight decay problem, 

it allows the complete weight array to be updated very quickly. 

To extend the weight storage time, the synaptic weight can be stored as a voltage 

difference between two capacitors. The idea is that the voltage on each capacitor decays 

at the same rate, so the voltage difference will be preserved for a much longer time. The 

work by Kub et a! [62] shows that the storage of a voltage difference reduces the weight 

decay rate compared to that of a single capacitor by a factor of 50 from 30mV/s to 

0.6mV/s at room temperature. 

The flexibility and update speed possible with capacitive storage are reasons why at 

present, it is the most common analogue weight storage technique. 

1'type Silicon 	 P.wpc Silicon 

	

(a) MNOS Trwisista 	 - 	(b) MMOS Transistor 

	

Figure 3.18 	Cross-sections of MNOS and FGMOS transistors. 

3.3.6.2. MNOS and FGMOS Transistors 

The Metal-Nitride-Oxide-Semiconductor (MNOS) and Floating-Gate MOS 

(FGMOS) transistors are examples of programmable threshold-voltage transistors. They 

are widely used in electrically erasable programmable read-only memories (EEPROM) 

and electrically programmable ROM's (EPROM) respectively, to provide non-volatile 

storage of digital data. 
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For both devices, the threshold voltage is altered by modifying the size of charge 

layer between the transistor's gate and drain-source channel (Figure 3.18). This in turn 

alters the gate voltage required to create the depletion region between the source and 

drain, and so turn the transistor on. By varying the amount of charge stored, the transis-

tor's threshold voltage can be made to change in an analogue manner, creating a non-

volatile, analogue memory cell. As Figure 3.19 shows, adding charge to a floating gate is 

equivalent to adding a positive offset to the transistor's characteristic. 

For the MNOS transistor large voltage pulses (±10V) are used to tunnel charge into 

the nitride layer between the polysilicon gate and the silicon oxide layer. By changing 

the polarity of the pulse the threshold voltage can either be incremented or decremented. 

Programming is an iterative process, with the transistor's threshold voltage examined 

after each cycle to determine if another pulse is needed to increment or decrement the 

stored charge. The programming pulses are typically 100ps in length so setting one 

threshold voltage may take 100's of ps. The result is weight load times which are 100 to 

1000 times slower than capacitive weight storage. On the other hand the transistor has 

the ability to retain digital information for 1 to 10 years depending on device. Intel's 

ETANN chip [61] uses two MNOS transistors to define the synaptic weight as a differ-

ence in threshold voltages. The relatively slow update times for a MNOS device mean 

that ETANN becomes very slow during the learning phase of the network. 
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Figure 3.19 	The MNOS/FGMOS Transistor Symbol and Characteristic. 

Rather than storing charge in an insulating layer, a FUMOS transistor stores charge 

in a thin conducting layer trapped between two insulation layers. The FGMOS transistors 

in EPROM's use avalanche breakdown to store charge on the floating-gate; however 
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radiation with ultra-violet light is required to remove the stored charge. The FGMOS 

transistor in Figure 3.18(b) overcomes this requirement by having a polysilicon top gate 

to which a negative voltage is applied. This encourages hole injection into the floating 

gate, so reducing the charge present. Its behaviour is now similar to that of a MNOS 

device. Only Borgstrom et al [87] have so far proposed the use of this particular pro-

grammable threshold transistor. 

Both the MNOS and FGMOS transistors outlined require specialist fabrication pro-

cesses due to the additional processing steps need to create the charge storage locations. 

3.3.6.3. Charge-Coupled Devices 

In charge-coupled devices (CCD) information is passed as packets of charge instead 

of as a current or a voltage. By using a three phase clock signal a CCD shift register can 

be constructed. The main application of such shift registers is to read out the charge gen-

erated by photo detectors as part of an imager array. The CCD cell has the advantage of 

being very compact. 

As size of the charge packet is an analogue quantity it can be used to represent a 

synaptic weight. Agranat et a! [92] have fabricated a CCD based neural integrated circuit 

in which the charge packets representing the weights can be loaded either electrically or 

optically in a manner similar to a CCD camera. The use of an optical weight input was 

an attempt to speed up the weight load times which are presently one of main bottlenecks 

in VLSI neural implementations. However, the electrical weight inputs were found to be 

more reliable and consistent. Each of the 256 neurons consists of an integrator and a 

CCD ring of 256 shift registers. Neural states are either 0 or 1, so either the weight 

charge packet is reproduced and transferred into the integrator (a very large CCD cell) or 

it is ignored. 

A successor to this chip replaced the 256 element shift registers with an array of 

synapses each consisting of 2 CCD cells [93].  One cell contains the synaptic weight 

charge; if the binary state input is 1 then during the computation phase the charge packet 

will be transferred into the adjacent cell. As the top electrodes for the synapse output 

cells within a synaptic column are commoned together, the capacitances of the CCD cells 

add together. Thus the voltage of this common electrode is the sum of the charge packets 

transferred divided by the total capacitance of the electrode. The neuron has the ability to 

divide its output voltage by 2 so that the system can process multi-bit neural states in a 

bit-serial fashion. To emphasise the compact nature of CCD, the synapse just outlined 

only occupies 24gm by 24gm. 
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Figure 3.20 	Cross-section of an Amorphous Silicon Programmable Resistor. 

3.3.6.4. Amorphous Silicon 

A three layer sandwich of metal, amorphous silicon and metal forms a two terminal 

device the resistance of which can be programmed using variable height voltages pulses 

(Figure 3.20). The first devices developed by Hajto et al [94] used a chromium-

amorphous-chromium structure. This gave a digital device which had two stable resis-

tance states, 10 3  and 106  ohms. Analogue devices were subsequently created by replac-

ing the chromium top metal with vanadium. The device size is typically 10 4um by 10pm. 

By varying the height of the lOOns programming pulses between ±1V and ±4V the resis-

tor can be set to any value in the 10 3  to 106  ohm range. As with MNOS transistors, pro-

gramming is an iterative affair with several attempts normally required before the device 

has the correct resistance. Due to the use of lOOns pulses the process of setting the resis-

tances is much faster than with MNOS devices. The devices have two main problems. 

1 	The resistor requires a 15V forming pulse to make the device operational. On 

a standard CMOS processes, 15V is bigger than reverse breakdown voltages 

for the diodes which are integral to a CMOS transistor. 

2 	The voltage across the device must be restricted to less than 1V otherwise it 

will reprogram itself. 

A simple 5 by 4 array of the programmable resistors with operational amplifier cir-

cuits to convert the summed currents into voltages has successfully solved the benchmark 

XOR problem. Other proposals include using the resistors linked to a current source to 

set the synaptic weight voltages. 

Both AT&T Bell Laboratories [95] and the Jet Propulsion Laboratory (JPL) [96] 

have implemented large scale binary matrices with amorphous silicon devices. The Bell 

device required the use of electron-beam lithography to define which resistors are con-

nected in the matrix array. Thus the function of the device was fixed by the final process-

ing steps. The JPL chip was like an EPROM in that it was programmable electrically 

once only. 
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Advantages Disadvantages 

Small Area Process Variant 

High Speed/Area Product Accuracy Limited by Noise 

Continuous Representation 

(No Quantisation)  

Table 3.2 	The Advantages and Disadvantages of Analogue Multipliers. 

3.3.7. Conclusions 

As the demerits and merits listed in Table 3.2 show, the main advantage of analogue 

multipliers is the small silicon area which they occupy. The high level of synaptic inte-

gration possible means that a complete network containing 1000's of synapses can be 

built on a single integrated circuit. The much larger size of digital multipliers would 

allow only a small fraction of such a network to be put on an integrated circuit of similar 

size. Thus analogue circuits offer the potential for completely parallel, and asyn-

chronous, neural implementations in silicon. 

Non- Speed of 
Technique Small Programmable 

Volatile  Programming 

Capacitor Yes No Yes Fast 

MNOS/FGMOS Transistor Yes Yes Yes Slow 

CCDs Yes No Yes Fast 

Amorphous Silicon Yes Yes Yes Fast 

Table 3.3 	The Advantages and Disadvantages of Analogue Weight Storage 

Techniques. 

Process variations will cause the synapse response within an analogue synaptic array 

to be non-uniform, but both this and the effects of noise can be controlled by careful 

design. 

Table 3.3 illustrates the pertinent features of the weight storage techniques outlined 

in Section 3.3.6. While amorphous silicon appears to have all the desired features for 

weight storage, the technology is still in the early stages of development. The slow pro-

gramming speed of MNOS/FGMOS transistors greatly limits the speed of the system 

when the weights are being constantly modified for example during the training phase of 
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a Kohonen or a MLP network. Of the two remaining techniques, capacitive storage is 

compatible with a wide range of analogue multipliers, due to the storage of the weight as 

a voltage. Since CCD's deal in packets of charge a different type of multiplier needs to 

been designed [92]. CCD 's also require a specialist fabrication process. 

3.4. On-Chip Learning 

The complexity of the back-propagation learning for MLP networks means that in 

most analogue VLSI MLP implementations the modifications to the synaptic weights are 

normally calculated by the host computer. Variants of the simpler Hebbian learning have 

however been implemented in analogue VLSI [97, 98, 63].  As learning will not be 

included in the proposed implementation, further discussion of this topic is not appropri-

ate for this review chapter. Descriptions of the Hebbian learning implementations men-

tioned earlier are however contained in Appendix 3. 

3.5. Pulse Based Implementations 

In biological neurons the neuron state is encoded as the firing rate of a train of 

pulses. This inspired Murray [99, 1001 to propose VLSI neural networks where the neu-

ral information is represented as a pulse stream. 

Figure 3.21 shows 4 ways of coding neural state information, V 1 , using a pulse 

stream. 

1 	Pulse Amplitude Modulation (PAM): the height of the fixed-frequency pulses 

varies with V1 . 

2 	Pulse Width Modulation (PWM) : the frequency of the pulses is fixed but the 

width of pulse varies with V 1 . 

3 	Pulse Frequency Modulation (PFM) : the frequency of the fixed-width pulses is 

directly proportional to V 1 . 

4 Pulse Density Modulation (PDM) : the number of fixed-width pulses per sec-

ond is directly proportional to V 1 . This differs from PFM in that the inter-pulse 

spacing is not necessarily related to V 1 . 

5 Pulse Phase Modulation (PPM) : V 1  is encoded as the phase difference between 

the pulses in 2 separate pulse trains. 

To help differentiate between voltage and pulse representations of neural states, in 

the remainder of this thesis, a neural state encoded as a pulse will be referred to as S i  with 

V1  signifying neural states represented as voltages. 

The latter 4 techniques have the advantage that the magnitude of the pulse does not 

vary and thus can assume digital levels. PPM requires an extra line to encode the state 
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Figure 3.21 3.21 	Pulse Stream Encryption. 

data. For this reason, PWM, PFM and PDM are the most commonly used of these tech-

niques. In all of these cases the neural state information is encoded in the time domain. 

Circuits based on pulse encoding have the robust nature of digital signal levels and 

the compactness of an analogue multiplier. For example in a digital implementation the 

multiplication of 2 stochastic bit streams is achieved via an AND gate, whereas in an ana-

logue implementation the multiplier reduces to a variable magnitude current source the 

output of which is gated by the pulse stream. The distribution of the multiplication in 

time inevitably slows the computation rate of a pulse based system. However, while indi-

vidual biological neurons have very slow response times compared with the speed of pre-

sent day computers, the human neural system is able to outperform the same computers at 

image processing tasks due to its massively parallel nature. Thus the speed limitations of 

pulse based systems should not be viewed as a major problem, especially when the com-

pactness of its circuits will allow higher levels of synaptic integration in silicon. 

Section 4.1 describes the history of pulse based circuits within the author's research 

group. 
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The Design of a Process Invariant Neural Network 

The comparison of the Hopfield/Tank and the Kohonen neural networks for the 10 

city TSP in Table 4.1 shows clearly that the HopfieldlTank network requires by far the 

greater number of synapses and neurons. Thus the HopfieldlTank  network fixes the mini-

mum size of the VLSI implementation at 100 neurons and 10000 synapses. 

The requirement for a large scale VLSI network, coupled with the desire for a com-

pletely parallel implementation of the synaptic array, dictates the use of analogue VLSI 

design techniques. To increase further the levels of synaptic integration and to retain 

some of the benefits of digital signal levels, pulse stream encoding was used. 

Network Cities Neurons Synapses 

N N2  N4  
HopfieldTl'ank 

10 100 10000 

N 2N-3N 6N-9N 
Kohonen 

10 1 	20-30 1 	60-90 

Table 4.1 	Network Specifications of the TSP. 

As was discussed in Section 3.1 the limitation of analogue circuits is their sensitivity 

to the tolerances of the fabrication process. An important consequence of such variations 

is that the characteristics of analogue circuits such as multipliers will vary across and 

between chips. In software simulations of neural networks the characteristics of the 

synapses and the neurons are completely uniform. Thus as the the hardware is behaving 

differently from the simulation model, the performance of a neural network implemented 

in analogue hardware is degraded. 

One solution to this problem is to use a network and an algorithm, eg an MLP net-

work and the Back-Propagation learning rule, which compensate for process variations, at 

least to a first order. Provided the analogue VLSI chip is included in the learning cycle, 

the weight-set will evolve in a way which compensates for synapse mis-matching. 

Such a solution is not suitable for HopfieldlTank and Kohonen neural networks. 

These neural networks rely on accurate multiply and accumulate operations for the 
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algorithms to be effective. It is important to note, that the main aim of this thesis was to 

maximise the accuracy of neural VLSI implementations and not to carry out an investiga-

tion into the accuracy required by the HopfieldiTank and Kohonen neural networks to 

successfully solve the TSP. 

An alternative approach, is to develop circuit techniques which minimise the harm-

ful effects of process variations. If the circuits can be made sufficiently accurate, then the 

degradation of the networks performance can be greatly reduced. This approach avoids 

the need to develop new neural optimisation algorithms which compensate for process 

variations, and which in any case would probably be both problem- and network-

specific. Furthermore, it yields a solution which will extend the range of applications for 

analogue VLSI in general and for neural networks in particular. 

The next section reviews pulse based implementations within and outside this 

research group to put the circuits developed later in the chapter into context. 

Inhibition 	Excitation 

11111 	
Sri  Sign Bit 

STU 

Si 

xi 

Integrator 	 vco H 5i 

I 
Figure 4.1 	Multiplication and Addition of Stochastic Pulse Streams. 

4.1. An Overview of Pulse Based Implementations 

4.1.1. Digital Implementations 

In digital pulse based implementations, if the synaptic weight is also encoded as a 

PFM pulse train, S T-,j , the synapse multiplier simplifies to a single AND gate (Figure 4.1). 

This can be proven by assigning to each pulse stream a probability equal to the value the 
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pulse train is representing, ie P(A)=STIi  and P(B)=S3 . If P(A) and P(B) are statistically 

independent then 

P(A AND B) = P(A). P(B) = SS 
	

(4.1) 

These signals are easily summed via an OR gate. To achieve positive and negative 

weights, two summation lines feed into an integrator which calculates the difference 

between the signals. A Voltage Controlled Oscillator (VCO) can be used to convert this 

voltage into a pulse stream. The main problem with using stochastic pulse trains in such 

a way, is that long integration times are required to obtain an accurate answer. 

Murray et a! [100] Neural Semiconductor [101] Ricoh [102] and Spaanenburg et al 

[103] have all developed digital VLSI implementations based on PFM/PDM pulse trains. 

The Neural Semiconductor work is interesting as the implementation is a commercially 

available product. Each chip contains a 32 by 32 synaptic array and 32 neurons on a 

standard CMOS process. The chips are also cascadable. 

4.1.2. Switched-Capacitor Implementations 

In switched-capacitor circuits a resistance is implemented by clocking charge on and 

off a capacitor. If a capacitor, C, is clocked at a frequency, f, then its equivalent resis-

tance is 11fC. As this frequency is effectively a PFM pulse train, standard switched-

capacitor circuits can be used to implement neural networks. This idea was first proposed 

by Tsividis in 1987 [104]. 

-- - - I 

VcOl V Ow 	VDD: S 	S 

C f  
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--- ---------------------- --------- -------------- ---------------- -----------------. 1 
Weight Memory 	 Buffer 	Multiplier 	Integrator 	 Sigmoid 

Figure 4.2 	Switched-Capacitor Pulse Stream Synapse and Neuron. 
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The work by Browniow et a! at Oxford [105-107] is a good example of the tech-

nique. The weight voltage is buffered in the synapse by a simple source follower buffer 

(Figure 4.2). The value of this voltage determines how much charge is stored on capaci-

tor, C. The pulse frequency of the complementary signals S i  and S, fixes how often 

these packets of charge are transferred to the integrator. Thus the total charge transferred 

over a period of time is proportional to the weight voltage multiplied by the pulse fre-

quency. 

The synapse, including the weight address circuitry and the buffer stage, only occu-

pies 65 pm by 65 pm, emphasising the compact nature of switched-capacitor circuits. An 

additional advantage of this circuit is that as the transfer function depends on the ratio of 

capacitors, CJC f, the transfer function remains very stable as the fabrication process 

varies, giving accurate multiplications. The software/hardware comparison reported, 

found the synapse to be accurate within 1.2% [106]. 

There are however, scalability and noise problems with this circuit. Every time the 

network is scaled, the current and capacitive load on the operational amplifier increases; 

thus each time the array size increases the operational amplifier needs to be re-designed. 

The problem of noise from the large number of pulse streams which exist in a reasonably 

sized network afflicts all pulse stream implementations and not just this particular 

synapse. 

The Tomberg switched-capacitor implementation [108, 1091 is similar in concept to 

Brownlow 's implementation but the weight is stored as a 16-bit PDM pulse stream with 

the neural state also represented by a PDM signal. Due to digital weight storage the 

synapse area (50, 000pm 2) is 10 times that of the Brownlow synapse. 

4.1.3. Analogue Implementations 

Using pulse streams to encode neural states simplifies synapse circuitry. A synapse 

becomes a voltage controlled current source with a switch to gate its output. The fre-

quency or width of the output current pulses is modulated by the neural state pulse stream 

while the amplitude is controlled by the synaptic weight voltage via the voltage con-

trolled current source. The area under these current pulses is thus proportional to product 

of the neural state and the synaptic weight. 

In PWM implementations the synaptic multiplications are usually synchronised 

[110, 111] while in PPM circuits the pulse trains are generated by free running oscillators 

[112] so the update is asynchronous. As the simulation results in Chapter 2 show, the 

order of updating neural states in the fully connected neural networks influences the 

choice of minimum "found" by the network. 
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Figure 4.3 	Programmable Pulse Width Modulation Synapse. 

Such hybrid implementations can have many advantages. The digital states are 

robust and easily regenerated while the analogue multipliers are compact and provide a 

continuous representation for the synaptic weight. 

An early PFM synapse (Figure 4.3) by Hamilton [113-115, 112] used fixed value 

current sources (as opposed to a variable current sources). Multiplication is obtained by 

'chopping the pulse width of the incoming pulse stream. Varying the neural state 

changes the frequency of the fixed amplitude current pulses output from the synapses 

while decreasing the synaptic weight decreases the width of these pulses. 

The modulation of the incoming pulse width is achieved as follows. When a pulse 

is received capacitor C starts discharging. The initial voltage for this discharge is deter-

mined by the synaptic weight. A higher initial voltage will result in a longer time for the 

constant rate discharge to reach the switch point of inverter 1. At the switch point, the 

output of inverter 1 goes high. When the input pulse ends the voltage on the capacitor 

returns very quickly to its preset voltage, taking inverter l's output low. Thus there is a 

linear relationship between the initial discharge voltage and the pulse width generated by 

inverter 1. This variable pulse width controls the size of the charge dumped on to the 

activity capacitor by transistor M6. At the same time transistor M7, under the control of 

the input pulse, removes enough charge so that when the weight is at its zero voltage, the 

net charge added to the activity capacitor is zero. 
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The synapse in the fabricated 10 by 10 test array occupied 173pm by 73#m. The 

results reported confirm the successful operation of the synapse. Unfortunately the test 

results also show that the synapse is sensitive to the effects of process variation. 

4.2. A Process Invariant Synapse 

4.2.1. The Transconductance Multiplier 

At the Neural Information Processing Systems conference in 1989 [115], the 

author's research group proposed 2 pulse stream (PFM) synapses based on linear 

transconductance multipliers [72, 731 (Figure 4.4). The attractions of these two circuits 

are two-fold. 

1 	Compactness: only 3 or 4 transistors are required. 

2 	A highly linear input/output characteristic. 

The principles behind the operation of the 4 and 3 transistor variants are similar. In 

both cases transistors Ml and M2 form a transconductance multiplier. The output current 

from these transistors, I, which is proportional to the synaptic weight voltage V, is 

pulsed at a frequency controlled by the incoming neural state Sj.  In the 3 transistor 

synapse this pulsing action is achieved via switching transistor M3. However, in the 4 

transistor variant, the gating of current, Ij,  is accomplished using transistors M3 and M4 

to switch the whole of the transconductance multiplier in and out. By integrating the 

resultant output current over a period of time the required Vyj S multiplication is 

achieved. A Voltage Controlled Oscillator (VCO) then converts this activation level into 

a stream of fixed width pulses. 

The operation of these two synapses can be explained with reference to the 'DS 

equation for a MOSFET transistor in its linear region of operation. Equation 4.2 shows 

that for a such a transistor the drain-source current, 'DS'  is proportional to the gate-source 

voltage, VGS, multiplied by the drain-source voltage, VDS. 

'DS = YOOX [ VV - VTVDS - VDS2 ] 
2 tox 

(4.2) 

where 

(VGS - VT) > VDS 

flo= 	Surface mobility of the channel (cm 2/V/s) 

Eox= 	Permittivity of Silicon Dioxide (3. 45 x 10 13F/cm) 

tox= 	Thickness of the transistor's gate oxide (m) 

W 	= 	Effective transistor gate width (m) 
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(b) 3 Transistor Synapse. 

Figure 4.4 	Transconductance Multiplier Synapses. 

L 	= 	Effective transistor gate length (m) 

VT 	= 	Transistor's threshold voltage (V) 

Unfortunately in Equation 4.2, two non-linear terms are present in addition to the 

desired VGSVDS term. A second transistor, Ml, which is identical to M2, is used to elimi-

nate these terms. For the second and third terms of Equation 4.2 to be cancelled exactly 

the VDS and VT must also be the same for both transistors. It is straightforward to 

arrange for VDSI to equal VDS2.  However, transistors Ml and M2 have different VBS, and 

thus have different threshold voltages (due to the body effect). To investigate whether 

this difference, (VT! - VT2), is small enough to neglect, it is necessary to calculate the 

shifts in threshold voltage caused by the body effect. 

The threshold voltages for the NMOS transistors Ml and M2 are given by the equa- 

tions 

VT! = VTO + r[2IØFI+vBs1  -  

V12  = V + r[V2I00 + VBS2 - '.121*FI] 	 (4.4) 

where 
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y 	= 	Bulk Threshold Parameter (Vi) 	= 
Lox 

= 	Strong Inversion Surface Potential (V) 	= 	In
kT  

q 	( ni 
Vn 	Threshold Voltage for VBS = 0 (V) 

NSUB 	= 	Substrate Doping Concentration (cm -3 ) 

= 	Intrinsic Carrier Concentration (1.45 x 10 10cm 3 ) 

= 	Permittivity of silicon (1.0359 x 10' 2F/cm) 

k 	= 	Boltzmann's Constant (1.381 x 10 23JfK) 

T 	= 	Temperature (300°K) 

q 	= 	Charge on an Electron (1.6 x 10 19 C) 

ES2 2pm Process 
Parameter 

L2 - Fast L2 - Typical L2 - Slow 

VT 0.7V 0.9V 1.OV 

tox 38nm 40nm 42nm 

530cm2/V/s 5 1Ocm2/V/s 480cm 2/VJs 

NSUB 0.48 x 10 16cm 3  0.53x 10 16cm 3  0.60 x l0' 6cnf3  

Table 4.2 	The Variation of Selected N-Type Transistor Parameters. 

Thus the difference in threshold voltages is 

AVT = VTJ - VT2 =  V2 I00 + VBSI - '1210F 1  + VBS2] 	 (4.5) 

If VSS = 0, VDSI = V052  = 0. 8V and VDD = 1. 6V then V 81  = 0. 8V and VBS2 = OV. 

Using the process parameters given in Table 4.2 gives AVT as approximately 0. 2V ±10%. 

This value is significant when compared to (VGSI - V 052) and thus in this case it is not 

valid to assume that AVT = 0. 

Therefore the output current of the transconductance synapse is given by 

= 	[v - Al/T) - VGS2)VDS] 	 (4.6) 
tox 

Thus the current, I ii  is directly proportional to the voltage difference 

((VGsI  - AVT) - V052) multiplied by VDS. 

In this implementation the transconductance multiplier is being used as a voltage 

controlled current source. This is achieved by keeping the VDS voltages constant and 

only varying VGSI. Thus the output current is now proportional to V 051  which represents 



Si 

VDD 

MI 

vsz 	

t 

R  
M2  

VT s-H 
	

1' 	V1 

Vss 

Si 

Chapter 4 	 74 

the synaptic weight. VGS2 determines the value of V Gsj  at which the output current is 

zero. The output of the circuit M1/M2/M3 is therefore a stream of pulses whose magni-

tude is proportional to V, with a frequency S i  pulses/second and a pulse width At. 

Alternatively, the area under the pulse stream can be expressed as a duty cycle, DC 

where DC =AtS.  Thus the charge being transferred onto the integration capacitor over 

the time interval t 1  to t2  by synapse ij is 

Qjj 	
Eox W r 

= (t2  - t 1 ) x DC x Po 	
- I ((VGs1 - AVT) - VGS2)VDS] 	(4.7) 

tox LL 

Extending this to a column of N synapses gives the following equation for the 

charge being sourced/sunk from the integration capacitor in over the time interval t1 to t2. 

= 42 - t1) /'x 	05 r-i [DC, x ((V0s1 - AVT) - VGS2)] 	(4.8) 

This confirms that the charge being transferred is indeed proportional to the sum of 

the synaptic weights, V0S21 multiplied by their appropriate pulse frequences, S. 

Figure 4.5 The 3 Transistor Synapse and Neuron. 

As Figure 4.5 shows, the neuron for the transconductance synapse is composed of a 

"leaky" integrator and a Voltage Controlled Oscillator (VCO). The "leaky" integrator 

sums the packets of charge from a column of these transconductance synapses, converting 

them into the neuron's activity voltage. This voltage then controls the duty cycle of the 

VCO which has a sigmoidal transfer characteristic. 
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Thanks to the small numbers of transistors, and to the fact that all the transistors are 

N-types (there are no area-hungry well crossings), this synapse occupies an area of only 

100pm by 100pm. This is one of the main advantages of the synapse, allowing 1000's of 

synapses to be implemented on a single integrated circuit. 
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Figure 4.6 	Simulated Process Variation for the Transconductance Multiplier. 

HSPICE simulations using the HSPICE Level 2 transistor models for the European 

Silicon Structures 2pm process, revealed four problems with this system. 

Due to the large settling time, incurred by switching the whole of the transconduc-

tance stage and its associated capacitance in and out, the 4 transistor synapse had a 

poor transient response. As the 3 transistor synapse pulses only the output current 

from the transconductance stage, it has a superior transient response. 

2 	The results in Table 4.3 and Figure 4.6 show the transconductance synapse's voltage 

to current relationship for the 'fast", "typical" and "slow" process parameters. 

While the voltage to current relationship is very linear, the slope of the response 

varies by approximately ±11%. Equation 4.6 shows that variations in the surface 

mobility of the transistor channel, Pb'  and the gate oxide thickness, t<,  have a 

direct effect on the magnitude of the output current. The variation in AVT is ±2OmV 

(±10% of 0.2V) and thus can be ignored. The process parameters in Table 4.2, 

reveal that the tolerance on t ox  is ±5% while for Po  it is -601o/+4%. This accounts 

for the overall 11% variation. 
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Ti (V) 
'r (MA)  Percentage 

Variation L2 - Fast L2 - Typical L2 - Slow 

1.00 6.427 7.885 9.646 +25.90/o/-31.3% 

2.00 5.277 5.948 6.534 +11.901o/-10.4% 

3.00 1.722 1.936 2.132 

4.00 -1.701 -1.917 -2.120 

5.00 1 	-4.990 -5.634 
1 	-6.241 +10.801o/-11.4% 

Table 4.3 	Percentage Process Variation for the Transconductance Synapse. 

3 	The output current is sensitive to the value of the mid-point voltage between transis- 

tors Ml and M2. To maintain this point to 1% of the transistors V05 , the integrator 

must include a 2 stage operational amplifier. Other amplifiers (such as simple 

inverters) have neither the drive capability nor a high enough gain (>1000). 

4 As the number of synapses per neuron is scaled up, both the maximum current and 

the capacitance will also increase. The operational amplifier in the "leaky" integra-

tor has a finite current drive capability and is only compensated up to a specified 

capacitive load, so every time the system is scaled the operational amplifier must be 

redesigned. This effectively renders the system uncascadable. 

The combination of limited cascadability and process variance renders this system 

unsuitable for implementing neural networks in the form just described. 

4.2.2. A Synapse Based on Distributed Feedback 

To solve the problems of process variation and poor cascadability, a buffer stage 

(M4 and MS in Figure 4.7) was added to the transconductance synapse. As both of these 

transistors operate in their linear regions, this buffer stage is effectively another transcon-

ductance multiplier. The operational amplifier at the foot of each post-synaptic column 

provides a feedback signal, that controls the current in all the buffer stages in that 

column of synapses such that the buffer current balances the current being sourced or 

sunk by the multipliers. The gate voltage of transistor M5, VBIaS , determines the voltage 

level about which V 0uti  varies. Thus the buffer stage plus the feedback operational ampli-

fier is functionally equivalent to a standard operational amplifier current to voltage con-

verter, where the resistor in the feedback loop has been replaced by transistor M4 (Figure 

4.8). As in Section 4.2.1, the current pulses from the transconductance stage are summed 

within a synaptic column, at the common output node of transistor M3. The buffer stage 

under the control of the feedback operational amplifier converts the stream of the 
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Figure 4.7 A Synapse Based on Operational Amplifier Feedback. 

summed current pulses into a stream of voltage pulses. The process invariant voltage 

integrator, discussed in Section 4.3.2, then integrates the area under the stream of voltage 

pulses, to yield the required multiplication result. 

The problem of cascadability has now been eased, as the operational amplifier drives 

only transistor gates, instead of a large integration capacitor. Also, the current demanded 

by the transconductance synapses is now supplied by the distributed buffer stage rather 

than by the operational amplifier. As the current and capacitive drive demands are now 

less, the resulting operational amplifier is much more compact. 

Assuming that the buffer and transconductance stages are well matched, then their 

voltage to current characteristics will be very similar. Thus the overall voltage to voltage 

transfer function for the synapse should remain constant even although the voltage to cur-

rent functions for the buffer and transconductance stages vary with process imperfections. 

To confirm this process invariance, a more formal examination of the synapse is required. 

The analysis of a column of N synapses is simplified by breaking the synapse into its two 

components: the transconductance synapse and the buffer stage. By assuming that when 

M3 is ON the voltage across it is zero, the synapse can be analysed as a pair of back to 

back transconductance multipliers (Equation 4.6), where V 55  = OV and VDD = 2Vnec . 

Thus the current output by the transconductance stages within the synaptic column is 
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Figure 4.8 The Equivalent Circuit for the Distributed Feedback Synapse. 

N—i 

'Trans = PTrans L ((Vsz - Ref - AVT) - VTij)VR eI 	 (49) 
jO 

/IOEOX WTrans  
where Pu = P2 = P'rrans = 

toX 	'-'Frans 

Similarly for the N buffer stages 

'Buf = NPBUI((VOUti - Ref - AVT) - VBI)VR Cf 	 (4.10) 

where 64  = P5 =flBuf= 
fLoEox WBUI 

 
tOX L 

The feedback operational amplifier ensures that the current in the buffer stages bal-

ances the current in the transconductance stages i.e. 

IT s +IBuf=O 	 (4.11) 

Substituting for 'Ts  and IB.f  in Equation 4.11 gives 

N—i 

PTrans E ((Vsz - VReI - AVT) - Vrij)VRef = 	 (4.12) 
j=o 

- VR0f - AVT) - VBi)Vgef 

Solving for V.ui  yields 
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= - 	E(Vrr(Vsz_"ReCAVT)) 	 (4.13) 
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+ VIM. + VRf + MT 

VTijz 

(VBI  ) 

vsz  
(Voz ) 
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Figure 4.9 
	

The use of Feedback to determine V sz  and V0 . 

On-chip feedback loops incorporating a transconductance multiplier and an opera-

tional amplifier determine the values of V sz  and Voz automatically from the input volt-

age references VTIJZ and VBI respectively (Figure 4.9). The Vsz feedback loop balances 

the transconductance stages so that there is no output current when VTI=VT IJZ (zero 

weight). The second feedback loop calculates the zero" voltage around which the output 

of the feedback operational amplifier varies, thus generating the correct balance voltage 

for the voltage integrator. These mechanisms compensate for process variations between 

chips. By analysing these circuits in a similar manner to those of the transconductance 

synapse the following equations are derived: 

Vsz = V 1jz +VRef+AVT 	 (4.14) 

'oz = VBI + VR.f + MT 	 (4.15) 

Substituting into Equation 4.13 then gives 

1 PTTanS N—i 
 Voz - 	

- 	
L (V.r - VTIz) 	 (4.16) 

- N PBUf j0 

This is the voltage to voltage characteristic for the synaptic column. Now to find the area 
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under the output voltage pulse train, let the 0-5V input pulse streams to the synaptic col-

umn have duty cycles, DC 0 ,.., DC3 ,.., DCN_I . This gives the area over the time interval t1 

to t2  as 

t2 
1 flT 

J (Vouu - V0z)dt = (t2 - t 1 ) x 	L[ D 3  x (V113 - VTI3Z) 	 (4.17) 
Nor j L 

tl 

This confirms that the area under the output voltage signal is indeed proportional to 

the sum of the synaptic multiplications within the column. Furthermore, the output, 

- Va), is dependent on a ratio of fl's rather than directly on fi, as is the case for the 

output current of the transconductance multiplier. Since transistors Ml, M2, M4 and M5 

are close together and are thus well matched, the effects of variations in the surface 

mobility of the channel and the gate oxide thickness are cancelled to a first order, greatly 

reducing the effects of process variations on the synapse output voltage. 
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Figure 4.10 	Simulated Process Variation for the Synapse. 

The results for the simulation of the synapse performance are shown in Figure 4.10. 

These graphs demonstrate both the linearity of the synapse and its potentially high level 

of process invariance. The percentage variations for selected results are shown in Table 

4.4. 

These results results indicate that for positive weight values (V 113>3.5V) the process varia-

tion is at least 1 order of magnitude less than that for the same weight voltages applied to 

the straightforward transconductance multiplier. At low weight voltages, transistor M2 
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(V) 
- Voz (V)  

% Variation 
L2-Fast  L2-Slow L2-Typical 

1.00 -1.022 -1.046 -1.064 +3.50/o/-2.7% 

2.00 -0.751 -0.713 -0.692 +3.2%/-5.7% 

3.00 -0.230 -0.228 -0.224 +0.5961-0.2% 

4.00 0.228 0.228 0.229 +0.1%/0.0% 

5.00 0.669 0.669 0.668 +0.1%f-0.1% 

Table 4.4 	Percentage Process Variation for the Distributed Feedback Synapse. 

operates on the edge of its linear region. As a result, the matching between it and the 

other transistors breaks down giving an increase in process variance at the bottom end of 

the weight range. 

This mis-match is also responsible for the decrease in linearity in the synapse char-

acteristic, such that VTI=2V gives a bigger output swing than VTIJ=5V. The condition for 

the linear operation, (VGS  - VT) > VDS, implies that the crossover voltage for linear oper-

ation depends directly on the value of the threshold voltage. Thus the degree of this non-

linearity is affected by the nature of the process, with a slow process (highest VT) creat-

ing the worst case variations for low weight voltages. 

The process within a single chip must remain approximately constant for the 

synapse to function correctly. This is necessary to ensure that the transconductance stage 

and the buffer stages are properly matched. However the synapse circuit design and the 

automatic bias circuitry will compensate for any gross variations between chips. 

This compensation feature, combined with the improved cascadability of the system, 

gives the distributed feedback synapse a clear performance edge over the transconduc-

tance multiplier described in Section 4.2.1. 

4.3. A Process Invariant Neuron 

The matching neuron for the above process-invariant synapse contains 3 compo-

nents (Figure 4.11). 

1 	The operational amplifier for controlling the buffer stage of the synapse. 

2 	The voltage integrator to convert the voltage pulse stream output from the oper- 

ational amplifier into the aggregated neural activity. 

3 	A Voltage Controlled Oscillator (VCO) with a sigmoidal transfer characteristic 

to convert the activity voltage into a stream of variable frequency, fixed width 
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Figure 4.11 	An Overview of the Complete System. 

pulses. 

4.3.1. The Feedback Operational Amplifier 

The feedback amplifier must be fast enough to be able to respond to lps pulse 

widths. This gives a slew rate specification of 5V/ps. To maintain VR CI to the required 

1% accuracy, the operational amplifier must keep VR ef constant to within 8mV over its 

1.6V output range. This gives a minimum amplifier gain of 200 (1.6/0.008). However, in 

order to provide a good safety margin and to further improve accuracy the operational 

amplifier was designed with a minimum gain of 1000. The amplifier had also to be able 

to drive capacitive loads of up to 20pF. To meet these specifications a 2 stage operational 

amplifier was designed (Figure 4.12). 

Before the correct value of the compensation capacitor can be determined the gain 

around the feedback loop must be known. To calculate the relationship between V 0utj  and 

VR er for the distributed feedback synapse, let us first assume that M3 is on and thus VDS3 

=OV Now let 

Vss = OV 	flIfl2fiTrans 	64fl5flBuf 

Since all of the transistors are in their linear regions of operation the current equa-

tions for transistors Ml, M2, M4 and MS are as follows 

2 	
] 	

(4.18) 
'MI = flTmns[ (VSZ - 	- VT! )WDD - VRef) - (

VDD - VReI)2 
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Figure 4.12 	A 2 Stage Unbuffered CMOS Operational Amplifier. 

1 'M2 = PTrans[ (VT-.j - VT2)VRef - VR©f2 
 2 	

(4.19) 

- 	 1 

	

'M4 = flBu{ Wouti - Ref - VTa(vDD - VRCI) - (VDD 2 
\TRec)2 j 

	

(4.20) 

'MS = flD4(VBi - VTS)VReI - VRCI2 
	 (4.21) 
1 

2J 

Applying Kirchhoff's Current Law yields 

'Ml +IM41M2+1M5 	 (4.22) 

Substituting Equations 4.18 to 4.21 into Equation 4.22 and re-arranging it into a 

quadratic in terms of VRf gives 
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(flTrans + PBuf)vRef + 	 (4.23) 

[flTransWTI - 'VSZ + 'VT2 
- VTj) + flBuf(VT4 - Vouti +VT5 - VBias)]VRef + 

[&~ (V

SZ
V 	

VT4 
VDD 

- T1TjlThOBu 	) DD
= O 

As Equation 4.23 has the form 

aVRCf2  + bVRf  + c = 0 	 (4.24) 

it can be solved by using the equation shown below 

—b ± I62  - 4ac 
VRCI = 	

2a 	
(4.25) 

Comparing Equations 4.23 and 4.24 gives the coefficients of the quadratic as follows 

a = (#TMIIS + flBf) 

b = fiTrans(VTl - Vsz + V - V) + flBUI(VT4 - V011  + VTS - VBj) 

C 
 = [

'\ 
flTS(VSZ - 

 VT' 

 - 

VDD + flBf
(V 

outi - VT4 - 2 
DD 

 )DD 

Now to obtain the gain around the feedback loop Equation 4.25 is differentiated 

with respect to V utj  giving 

dVRf -  1 ' 	
± 

1 (-2bflBUf - 4aPDQfVDD) 1 
I flui - 	 ______ 

dVouti  - 2a 	2 	Jb2 - 	 j 	(4.26) 

The above equation describes the gain around the feedback loop with the transcon-

ductance multiplier switched in. To derive the equation for the gain around the feedback 

loop with the transconductance multiplier switched out, set flTrs  to zero in Equation 

4.23. As flBuf  is now a common factor in Equation 4.23, the equation further simplifies to 

	

)
VDDVRCI2 	

DD
+ (VT4 - Vouu + VTS - VBIJVRf + (vouti  - VT4 - 	= 0 (4.27) 

Thus 

a= 1 

b = (VT4 - 	 + VT5 -  VBJ 

C = (VOuti - VT4 - 
VDD) 

 

This then gives the gain around the feedback loop with the transconductance stage 

switched out as 
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dVRCf 
- 	

~ 1 (-2b 
- 

dV01  - 
2 
	2 4b2 -4c 

(4.28) 

dVRer/dVouti  

Theory 
HSPICE Level 2 VT (V) 

Slow 1'p Fast 

2.0 0.258 0.230 0.246 0.221 

3.5 0.174 0.190 0.172 0.145 

5.0 0.131 0.132 0.122 0.107 

Table 4.5a 	Feedback loop gain with M3 ON. 

V111 	(V) 

dVRef/dVO(Jt i 

Theory 
HSPICE Level 2 

Slow Typ Fast 

2.5 0.308 0.380 0.332 0.269 

Table 4.5b 	Feedback loop gain with M3 OFF. 

Tables 4.5a and 4.5b compare the feedback loop gain values calculated using Equa-

tions 4.26 and 4.28 with the values obtained from HSPICE Level 2 simulations. The 

peak in the plot of these results in Figure 4.13 occurs when the transistor M4 crosses into 

the saturation region. Below are the values of the parameters used in the theoretical gain 

calculation. 

VDo l .6V 	Vgf 0.8V 	V=4.5V 	VBI=15V 

VTI=l.OV 	VT2=0.8V 	VT4=l.OV 	VT5=0.8V 

As all of the feedback loop gain values are less than 1, the proposed synaptic feed-

back loop will remain stable under all weight values. 

An interesting feature of this feedback system is that the gain varies with the weight 

voltage and also according to whether the transconductance stage is switched in or not. 

This variation results from the variation in the conductance of transistor M4 with its DC 

bias conditions. An expression for the small signal gain between the gate and source ter-

minals of a transistor can be derived using the conductances g and g 8 . 

6D 
 Z 	

=
PVDS 	 (4.29) 
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Figure 4.13 	Theoretical and Simulated Feedback Loop Gains for the Distribut- 

ed Feedback Synapse. 

gds = 
	

P(VGS - VT - VDS) 	 (4.30) 
ÔVDS 

Now noting that the gain can be expressed as a ratio of g o, to ga,. 

ÔVDS = 5VDS 5 'D =9. 	 (4.31) 
5v05 	olD OVGS &1s 

The desired small signal gain is then given by 

OvDs - 	PVDS 	- 	VDS 
(4.32) 

6VGS -  fl(Vos - VT - V05) - (V05 - VT - VDS) 

Thus as V05  increases the 6v/6v of a transistor decreases, explaining why the 

feedback loop gain decreases as the weight voltage increases. 

The gain is smaller with the transconductance stage switched in as the larger current 

flowing at the amplifier's negative terminal means that the current in transistor M4 has a 

proportionately smaller effect on the voltage value at the amplifier's negative terminal. 

The variation of gain with the synaptic weight voltage manifests itself in the switch-

ing characteristics of the amplifier's output. On the leading edge of an input pulse the 

transconductance stage is switched in. As high weight voltages give small feedback loop 

gains and thus large phase margins, the response of the system to the leading edge of a 

pulse is slower than for a low weight voltage. On the trailing edge however, as the 
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Figure 4.14 	HSPICE Simulation of Feedback Amplifier's Response to a Pulse 

Stream for VTJ=2.OV and Vm=5.OV. 

transconductance stage has now has been switched out, the response is now solely deter-

mined by the buffer stage. Thus the leading and trailing edges of a pulse have different 

responses. The simulation results in Figure 4.14 show these effects. 

In determining the size of the compensation capacitor, a worst case feedback loop 

gain of 0.4 was used. Therefore the compensation capacitor can be reduced by a factor of 

2.5. 

The operational amplifier was designed for capacitive loads of up to 20 pF. The 

above feedback gain will allow loads of up to 50 pF to be driven before the operational 

amplifier starts to become unstable. As the estimated capacitive load for 100 synapses is 

about 5 pF there is a useful safety margin. 

4.3.2. A Voltage Integrator 

The voltage integrator comprises a differential stage and cascode current mirrors 

(Figure 4.15). Current, 'Dc' for the current mirrors is determined off-chip to minimise 

the effects of process variation on the integrator's output current range. 

The differential amplifier steers currents down the two paths, M1/M3A/1v13B and 

M2/M4A/M4B, according to the voltage difference between V 1  and reference voltage 

Voz. When these 2 inputs are at the same voltage, the current through transistors 

M3A/M3B (i3B ) equals the current through M4A/M4B (IM4AmI4B).  Thus 'M4A/M4B 
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Figure 4.15 	A Voltage Integrator Based on a Differential Amplifier and Cas- 

code Current Mirrors. 

is half the value of 'M5AJfl  At this point the current being supplied to the integration 

capacitance should balance the current being removed. Thus 'M7NM7B  must be half 

'M5A/M58' so that the net current to the integration capacitor is zero. 

As both transistors Ml and M2 are in their saturation regions of operation, the actual 

voltage to current relationship is sigmoidal. However, by reducing the gain of the differ -

ential stage, the linearity over the required input range can be improved. As the integra-

tor capacitor has been implemented as a NMOS transistor, any variations in the gain of 

the differential stage are tracked by the variations in the integration capacitance. Thus the 

rate of change of voltage will remain approximately the same over all process variations. 

To prove the process tolerance of the voltage to dX 1/dt transfer characteristic, a more 

stringent analysis is required. First let us assume that Ml and M2 are matched transistors 

and are both operating in the saturation region. Allen and Holberg [116] give the impor-

tant equations for the differential stage as 
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Figure 4.16 	Simulated Process Variation for the Voltage Integrator. 

	

VDiff 	
(2IM2' 	(2IMl "t 

= V0 1 - Voz 
= 	- I¼jMlJ 	

(4.33) 

and 

	

'Tail = 'Ml + 'M2 	 (434) 

Substituting Equation 4.34 into Equation 4.33 and solving for 'M2 in terms of VDIff 

gives 

l' 

'Tail 	
2 P 	VDff2 )2j 

 

 
+ VDIff 

	

'M2 = 	
L 	\'TaII - 'Tail 	4 	

(4.35) 

By using the cascode current mirror relationships the integrator output current, I, 

can be expressed in terms of IM2  and I-. 

M6 	flM7 
'i 'M6'M7 = 	'M2 	'Tail 	 (436) 

PM4 	PMS 

The overall input/output transfer function is given by combining Equations 4.35 and 

4.36. 



	

Chapter 4• 	 90 

I") 
PM6 1 	M2 fiNE VDIfI 	PM7 1  

YD 	
2 

i  

	

1=ITa I_Il+ 	iff 
[PM4 2 	 TTM? 4 

)2j  

	j 	
(4.37) 

For the voltage integrator to be correctly balanced, I i  must be zero when VDIfI equals 

zero. This leads to the following condition on the above fi ratios. 

(4.38) 
PM5 PM4 

Therefore 

= TTa11RP'VDIIf "PM2 PM22 VDIff2'\2 

	

2 	 'Tail 	
(4.39) 

Differentiating Equation 4.39 with respect to V fl1ff  and then setting VDIff OV gives 

the differential gain of the voltage integrator at its mid point as 

dT 	 (ItoEox 	1TaI1"2 

	

R01 	17 _4_) 	 (4.40) 
dVDIff (VDIII=OV) 	\ tOX 

/IO EOX WM2 
where fiM2 = 

tox 1M2 

This allows the rate of dV/dt for the activity capacitor to be found 

dV1 	- 	1 	(poeox WM2 ITail '2  

	

dt (VDV) - LoXWALA 	t0 	LNE 4 ) 	
(4.41) 

tox  

where 

LOXWACtLAOt 	= 	Capacitance of the transistor acting as the activity capaci- 

	

t0 	 tor(F) 

Re-arranging gives the gain of the dV/dt characteristic for VDIOV as 

dVj- 	1 	( ii0t0 WM2 TTai1' 2  
RpI 	L 	4) 	(4.42) 

	

dt (VDjV) - WA,tLACt 	\ Lox 

The process parameters in Table 4.2 show that the tolerances of the fabrication pro-

cess cause the gate oxide thickness, t,, and the channel mobility, Po'  to vary in opposite 

directions. For example in the Level 2 Slow transistor model tox  is 5% bigger than nor-

mal while the value of to  is 6% smaller. Due to the division in Equation 4.40, the varia-

tion of these values is amplified while in Equation 4.42 the multiplication results in the 

variations approximately cancelling each other out, confirming the hypothesis made about 
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the variations in the integration capacitance tracking the variations in the gain of the dif-

ferential stage. 

dT/d(V0 	- Voz) (pAN) 
% Variation 

Slow Typical Fast 

Theory 0.629 0.663 0.694 +4.70/o/-5.1% 

HSPICE 0.548 0.586 0.620 +5.8%/-6.5% 

Table 4.6a 	Percentage Variation in the Gain of the Voltage Integrator's 

Voltage to Current Characteristic. All percentages are tak-

en relative to the typical responses. 

CA (pF) 
% Variation 

Slow Typical Fast 

2.896 3.031 3.183 +5.0%/-4.5% 

Table 4.6b 	Percentage Variation of the Activity Capacitance, CA Ct . 

V01g1  - Voz (V) 
dX1/dt (V/ps) 

% Variation 
Slow I 	Typical Fast 

-1.00 -0.158 -0.156 -0.152 +2.51/o/-1.7% 

-0.50 -0.092 -0.092 -0.092 -i-0.401o/-0.1% 

0.00 0 0 0 

0.50 0.091 0.093 0.093 -i-0.201o/-1.0% 

1.00 0.158 0.156 0.153 +1.1 0/o/-2.6% 

Table 4.6c 	Percentage Variation for the Voltage Integrator Rate of 

dv/dt. All percentages are taken relative to the mean re-

sponse for V0 1 - Voz = -1 .00V. 

The results of the HSPICE Level 2 simulations to confirm this theoretical result are 

summarised in Tables 4.6a, 4.6b and 4.6c. HSPICE gives the variations in the voltage 

integrator's current gain and the activity capacitance as both ±5% (Tables 4.6a and 4.6b). 

Thus the variations should cancel. Over the middle section of the input range 

(0.5V<(V 0 1 - Voz)<+0.5V) the tracking of the variations is very good, reducing the 

variance of the results for the dX1/dt characteristic to less than 1% (Figure 4.16 and Table 

4.6c). At the extreme ends of the input range, the nature of the differential stage causes 
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the output current to tend towards a limit (Figure 4.16). Thus a change in the differential 

gain will not significantly alter the output current and the variations in output current are 

no longer cancelled out by the capacitance variations. 

Table 4.7 compares the linearity of the Level 2 typical response with that of its best 

fit straight line over the maximum range for (V01 - V0). The worst case variation is 

±4.6% at the extremes of the response. However as the magnitude of (V01 - Vo) 

becomes smaller, the match between the linear best fit line and the actual response 

improves greatly. 

The standard operational amplifier integrator circuit would also have been suitable, 

but the need for a second operational amplifier would render the resultant neuron far too 

big and power-hungry. Thus a voltage integrator based on a differential stage offers a 

good compromise between performance, size and power consumption. 

VTIJ - Voz (V) 
I (zA) 

Typical 

Linear 

Best Fit 
% Variation 

-0.800 -0.412 -0.432 +4.6% 

-0.500 -0.280 -0.270 -2.3% 

0.000 0.000 0.001 -0.0% 

0.500 0.281 0.271 +2.3% 

0.800 0.415 0.433 -4.6% 

Table 4.7 The Linearity of the Voltage Integrator. 

4.3.3. A Voltage Controlled Oscillator 

To form a complete neural network the integrated output of the voltage integrator is 

used to control the duty cycle of a Voltage Controlled Oscillator (VCO). The VCO for 

this system was designed by Alister Hamilton [80].  The VCO outputs a pulse stream of 

fixed width pulses at a frequency determined by its neural activity input. For this work, 

the neural state represented by the PPM signal produced by the VCO is specified as a 

duty cycle, DC 1 , rather than as a pulse frequency. 

The naturally non-linear transfer characteristic of the differential stage within this 

VCO design, allows the duty cycle to vary from 0 to 50% as a sigmoidal function of the 

input activity voltage. A process invariant pulse width is achieved by using a Phase 

Locked Loop and an external reference clock to determine the current, 'h  (Figure 4.17). 

Current 11  determines the inter-pulse spacing. It is this current which is controlled by the 

differential transconductance stage. 
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Figure 4.18 	A HSPICE Level 2 Typical Simulation of Full Excitation and Inhibition. 
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4.4. The Complete System 

Figure 4.18 shows a HSPICE simulation of the distributed feedback synapses and 

the voltage integrator working together. For the initial part of the simulation the synapse 

has a fully excitatory weight (5V) and a 500kHz, 1 4us pulse stream (50% duty cycle) 

applied to it. After 90us the weight is changed to fully inhibitory (2V). This change is 

clearly shown by the output of the feedback operational amplifier, V 01, swinging from its 

upper to lower limit. 

There are a few points worth noting here. The very fast rates of change in X 1  below 

1V occur because the transistor which is being used as an integration capacitor does not 

reach the desired capacitance until it is fully switched on. This means that the voltage 

across the transistor must be at least one threshold voltage. Again the imbalance between 

the magnitude of the response to fully inhibitory and excitatory weights is illustrated by 

the slope of the X trace for the inhibitory weight, which is greater than that for the exci-

tatory weight. 

4.5. Conclusions 

The 3-transistor transconductance synapse has two main problems. Firstly, its out-

put current is subject to the full effects of process variations. Secondly, the cascadability 

of a system built around it is poor, as the operational amplifier in the current integrator 

must supply large currents and drive large activity capacitors. The development of the 

distributed feedback synapse solved these problems while still retaining the transconduc-

tance multiplier's twin advantages of linearity and compactness. These additional virtues 

of process invariance and cascadability are the keys to the construction of massively par-

allel arrays of uniform synaptic multipliers. 

The mixed signal nature of the synapse multiplication plays a significant role in 

achieving process invariance. The use of the neural state represented by a pulse stream, 

to switch the transconductance multiplier current, means that the duty cycle of the resul-

tant current pulses is process invariant, because the duty cycle of the input pulse streams 

maps directly to the duty cycles of the current pulses. 

Comparing the voltages integrator's power consumption of 15uW with the 1-10mW 

consumption of a standard operational amplifier "leaky" integrator illustrates its very low 

power consumption. Thus while the voltage integrator may be linear only to within 5% at 

the extremes of its response, it offers the best compromise between performance, area, 

power consumption and process invariance. 

The addition of the final component in the pulse stream system, the VCO designed 

by Mister Hamilton, creates an analogue CMOS neural network implementation which is 

both cascadable and admirably process tolerant. 
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Chapter 5 goes on to describe the implementation of these circuits in silicon and the 

results obtained from the testchip. 
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Chapter 5 

SADMANN 1010PI 

The previous chapter outlined the design of circuits for a process invariant synapse 

and a voltage integrator. This chapter discusses the implementation of the SADMANN 

1010PI devicet fabricated to prove these circuits. A comparison is carried out between 

the simulation results presented in chapter 4 and measurements from SADMANN. 

5.1. Design of SADMANN 

The SADMANN device was laid out using a combination of the Magic custom lay-

out software and ES2's (European Silicon Structures) Solo 1400 silicon compiler tools. 

The custom layout tool was used to create an optimised layout, both in terms of area and 

the matching of transistors, for the synapse and neuron circuits. Standard cell libraries 

within Solo 1400 were used to add the necessary address decoding logic and pads to the 

custom layout to complete the integrated circuit. 

In analogue VLSI circuits, the detailed layout of the circuit is vital to the final per-

formance of the fabricated circuit. Both the feedback operational amplifier and the volt-

age integrator used standard layout techniques to improve the match between important 

pairs of transistors. These are: 

As the synapse is sensitive to the value of the reference voltage, VRef (Figure 

4.7), the input transistors in the differential stage of the operational amplifier 

(Ml, M2 in Figure 4.12) were cross-coupled to minimise the voltage offset 

between the input terminals. 

2 	To minimise the possible mis-match in reduction ratio of the cascode current 

mirrors within the voltage integrator, the mirroring transistors were imple-

mented as multiples of the same transistor. This eliminates errors caused by 

variations in the transistor's aspect ratio, and gives a more constant current 

ratio. 

SADMANN contained three separate pieces of work: 

I 	A small test array for the distributed feedback synapse described in the last 

chapter. 

t Steve's, Mister's and Donald's Monolithic Analogue Neural Network, 10 output neurons, 10 input neurons, Process 

Invariant 
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2 	A neural array based on a "self-depleting" neuron [117]. 

3 An inter-chip self-timed communication scheme loosely based on RS-232 pro-

tocols [118]. 

The latter 2 pieces of work were carried out by Stephen Churcher [117] and Mister 

Hamilton [118], respectively. Each of the 2 test networks contained a 10 by 10 synaptic 

array plus 10 output neurons. The resultant 7.5mm by 7.5mm testchip was fabricated 

using ES2's (European Silicon Structures) ECDM20 2/An digital CMOS process. 

The sizes of the synapse, operation amplifier, voltage integrator and VCO cells for 

the distributed feedback synapse system are shown in Table 5.1. The size of the synapse, 

while small, is non-optimal due to the need to pitch match to a larger synapse in the sec-

ond neural test array contained in the SADMANN device. A better indication of the size 

of the distributed feedback synapse is given by the 200pm by 100pm double synapse 

cell, in the successor to SADMANN, EPSILON, described in Chapter 6. 

Cell Size 

Synapse 165pm x 130pm 

Feedback Op-amp 165pm x 250pm 

Integrator 165 pm x 200pm 

VCO 165pmx165pm 

Table 5.1 	Cell Sizes for Synapse and Neuron Circuits. 

At this point it should be emphasised that SADMANN was only designed to work 

with PPM signals. 

Sections 5.2 and 5.3 describe static and dynamic measurements obtained from SAD-

MANN while Section 5.4 discusses the systematic variations found in the synaptic char -

acteristics. 

5.2. Static Measurements 

A simple test board was constructed to perform the initial static tests of the SAD-

MANN. No digital support circuitry was included in an effort to reduce noise on the 

board and thus increase the accuracy of the measurements. To this end the clock signal 

required to clock the weights in was provided by an external pulse generator. 

All 10 devices received from ES2 powered up correctly without any latch-up prob-

lems. However, on one chip, the multiplexer for monitoring the feedback operational 

amplifier outputs and activity capacitor voltages failed. The performance of a second 
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Figure 5.1 	Silicon Layout of Testchip. 

chip was significantly altered after 20V had been inadvertently applied to it due to a 

faulty ground connection. Thus only 8 of the 10 chips were suitable for detailed testing. 

5.2.1. Automatic Bias Circuits 

The first test performed on SADMANN was to determine if the V Oz  and Vsz  feed-

back loops (Figure 4.9) were supplying the correct bias voltages to the neural array. A 

comparison of the statistics for the measurements of V Oz  and Vsz  in Table 5.2 with the 

worst case Level 2 HSPICE simulation values (Table 5.3), yielded some interesting con-

clusions. 

For the Voz  and Vsz  feedback loops, the measured and HSPICE results differ by 

less than lOOmV. This was a very good match considering the limited accuracy of the 

Level 2 HSPICE model. The small (±0.501o) variations in the measured bias values indi-

cated that the circuits correctly compensated for process variations. 

To determine whether the bias voltages were correct for the synapse array additional 

testing was required. With the transconductance stage switched out, the operational 



Chapter 5 	 99 

Figure 5.2 	Silicon Layout of Synapse and Neuron. 

amplifier output was expected to settle around V Oz  for that chip and indeed it did. The 

change in the operational amplifier's output as the transconductance stage was switched 

in and out (with VTIJ=VTiJZ)  was expected to be zero, provided the V sz  feedback loop 

functioned. Unfortunately, this was not the case. To achieve the correct balance VTUZ 

had to be raised for all chips by 70mV to 3.57V. This slight mis-match may have been 

caused by temperature differences created by a non-optimal cell placement. The cell 

which determines V sz  lies at the bottom left corner of the synaptic array and thus does 

not experience the same heating effect as synapses deep in the array. Another possibility 

is that due to the effects of averaging, the output of a feedback circuit based on a single 

transconductance stage may not be representative of the mean response of 100 synapses. 

The systematic nature of the problem would tend to suggest that the former explanation is 

correct. 

However, neither of these explanations accounts for the fact that the V Oz  feedback 

loop works while the feedback loop does not, despite the feedback loops having very 

similar circuits. This points to a mis-match between the V sz  cell and the synapse cell, 
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V0  (V) 

(VBa 	= 2.50V) 

Vsz (V) 

VTI]Z = 3. 50V VZ = 3.57V 

Minimum 3.52 4.56 4.61 

Mean 3.53 4.57 4.63 

Maximum 3.54 4.60 4.67 

Variation ±03% +0.7 0/o/-0.2% +0.90/o/-0.4% 

Standard 
±0.2% ±03% ±0.4% 

Deviation 

Table 5.2 	The Percentage Variations for Voz  and Vsz  Bias Voltages. All per- 

centages are taken relative to the mean responses. 

Process 
V0  (V) 

(VBias  = 2. 50V) 

Vsz (V) 

VTZ = 3. 50V = 3.57V 

Level 	- Slow 3.51 4.52 4.59 

Level 2 - Typical 3.49 4.49 4.56 

Level 2 - Fast 3.47 4.47 4.54 

Variation +0.601o/-0.5% +0.59o/-0.5% +05%1-0.6% 

Table 5.3 	The Simulated Variations in Voz and V sz  Bias Voltages. All per- 

centages are taken relative to the mean responses. 

caused by the non-identical layout around the transconductance multipliers. 

This mis-matching can be prevented by making the automatic bias cells exact repli-

cas of the synapses. The accuracy of the bias voltages would also be improved by having 

a column of feedback cells in the middle of the synaptic array to take into account the 

effects of averaging and temperature. 

VDD=1.60V 	VRF0 .80V 	VTIg=3.57V 

VSS=OV 	VBI=2.50V 	0V.cVTI.c5.O0V 

Table 5.4 	The Voltages applied to the Synapse for the Static and Dynamic 

Measurements. 
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5.2.2. Synapse 

The output swing of the operational amplifier for a single sweep of the synaptic 

weight from OV to 5V is less than 200mV. It is therefore very difficult to measure the 

characteristics of a single synapse accurately. Thus the static results presented in this sec-

tion are for a column of 10 synapses working in parallel. 

To give a common base for the measurements, the reference voltages in Table 5.4 

were applied to all chips. The aim was to test the process tolerance of the synapse circuit 

in association with the automatic bias feedback loops. All of the pulse stream inputs 

were switched to 5V (ON), and the output of a synaptic column was taken as the voltage 

difference (V01  - V0) 
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Figure 5.3 	The Variation in the Static Measurements of the V 	to 

- V0) characteristic. 

- 

Figure 5.3 shows the worst case variation for the post-fabrication measurements 

from 80 synaptic columns (8 chips x 10 synaptic columns). This graph confirms the lin-

ear relationship between the synaptic weight voltage and the output voltage of the opera-

tional amplifier. Comparing the results in Table 5.5 with that of the HSPICE simulations 

of the synapse (Table 4.4) demonstrates a close agreement between theory and reality. 

The maximum variation in operational amplifier output voltage over the linear weight 

range as a fraction of the total operational amplifier output range was found to be about 

±10% (Table 5.5). This result was very encouraging and it compared very favourably 

with the 20% to 50% variation in performance quoted for simple current mirrors fabri-

cated using the MOSIS digital process [83, 119, 66]. 
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- V01) (V) 

VTIi 

(V) td 
Minimum nimum Mean Maximum Variation 

Dev 

0.00 -1.13 -1.06 -1.02 +7.50/o/-10.8% ±3.6% 

1.00 -1.11 -1.06 -1.01 -e-7.80/o/-8.8% ±3.5% 

2.00 -0.72 -0.68 -0.65 -i-4.5 0/o/-7.1% ±2.3% 

3.00 -0.25 -0.21 -6.18 +5.501o/-6.1% ±2.4% 

4.00 0.16 0.21 0.25 +7.00/o/-7.9% ±2.8% 

5.00 0.54 0.60 0.66 +9.3%/-10.6% ±3.4% 

Table 5.5 	The Percentage Variations of the VTIJ to V01 - Voz  Characteristic. 

All percentages are taken relative to the mean response for 

VTiJ 5.00V (0.60V). (The full set of results can be found in Table 

A4.1 in Appendix 4) 

5.2.3. Voltage Integrator 

During the design of SADMANN, provision was made for the output currents of the 

voltage integrators in neurons 0, 1 and 2 to be monitored. Current-to-voltage converter 

circuits, based on external operational amplifiers, were used to convert the integrators' 

output currents into values which could be measured directly. 

0.80 
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0.20 
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Maximum -C)--- 

060 
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 
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Figure 5.4 	The Variation in the Output Current, I, of the Voltage Integrator. 
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(V01  - Voz) 

(V) Standard 
Minimum Mean Maximum Variation 

Deviation 

-1.00 -0.49 -0.46 -0.43 +6.3%/-6.6% ±3.2% 

-0.40 -0.20 -0.15 -0.12 +7.20/o/-10.0% ±4.1% 

0.00 0.10 0.16 0.21 +10.9%/-13.5% ±5.4% 

0.40 0.39 0.46 0.52 +14.21/o/-15.7% ±69% 

1.00 1 	0.63 0.71 0.79 +16.81/o/-18.1% ±7.8% 

Table 5.6 	The Percentage Variations of the V 0 1 - Voz to I Characteristic. 

Al.! percentages are taken relative to the mean response for 

- Voz)4.00V (-0.46jtA). (The full set of results can be 

found in Table A4.2 in Appendix 4) 

Figure 5.4 shows the worst case measurements from the 24 voltage integrators (3 

integrators x 8 chips) tested. Comparison with Figure 4.16 shows that there was a sub-

stantial difference between the measured results and the simulations for the voltage inte-

grator. This is due to a mis-match in the M4/M6 current mirror (Figure 4.15) from the 

differential stage to the integration capacitor, increasing the output of the current mirror 

by 25%. Unfortunately no definite explanation has been found to account for this mis-

match problem. Since the circuit extracted from the layout simulates satisfactorily, it 

appears that there is a problem with this particular layout of the circuit rather than a prob-

lem with the circuit itself. The voltage integrator effectively has an offset voltage of 

about 200mV which needs to be compensated for. 

The increase in the variation of the output current from ±6% at (V01 - V0)=- 1 .00V 

to ±18% at (V01  - Voz)=1.00V (Table 5.6), is due to the cumulative effect of 3 separate 

sub-circuits within the voltage integrator: 

1 	The M8/M5 current mirror (Figure 4.15) providing the balance current. 

2 	The Ml and M2 differential input transistors. 

3 The M4/M6 current mirror copying the differential stage output current onto 

the activity capacitor. 

For large negative voltage differences, the integrator output current is due solely to 

the current mirror providing the balance current. Thus the ±6% variation is the result of 

the effects of process variation on this current mirror. As V01  increases, the contribu-

tions from the differential stage and the second current mirror become more significant. 
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At the same time these stages introduce their own additional variations into the integra-

tor's output current. When (V1 - 'V0 ) reaches +1 .00V both current mirrors contribute a 

±6% variation. With the variation in the differential stage gain supplying a further ±6%, 

the overall variation is ±18%. The implication is that using a current mirror introduces a 

±6% variation in current due to non-uniformities in the fabrication process across a chip. 
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Figure 5.5 
	

The Test System for SADMANN. 

5.3. Dynamic Measurements 

After the static tests had confirmed the operation of SADMANN, a more sophisti-

cated test board was built. At the heart of this automated test system (Figure 5.5) was an 

IBM PS2 Model 30 containing parallel JO and IEEE 488 interface cards, through which it 

controlled the test board and digital storage oscilloscope respectively. The following 

sequence is initiated by the IBM P82 to measure the output of a synaptic column: 

1 	Transfer weight and state information down to the test board via parallel 10 

card. 
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2 	Select activity voltage to be monitored using the analogue multiplexer in SAD- 

MANN. 

3 	Fire state information into the synaptic array while the digital storage oscillo- 

scope captures the response of the activity capacitor. 

4 	Apply linear regression to the captured signal to determine the activity capaci- 

tor's rate of change, dX/dt. 

Input 
Pulse 
Stream 

Integrated 
Activity 

Output 
Pulse 
Stream 

Figure 5.6 	An Oscilloscope Photograph of the System in Operation. 

Using this system it proved possible to characterise the response of individual 

synapses, but not without complication. The voltage offset problems of the voltage inte-

grator, coupled with the inability to reset the activity capacitors to a known voltage made 

initialising the system to a known state difficult. The lack of a reset mechanism was an 

oversight at the design stage. The presence of a reset capability would have eased the 

integration of the testchip into the system. Also, the ability to disconnect the activity 

capacitor from the output stage of the integrator after the completion of a calculation 

would have prevented the activity voltage from drifting, due the integrator offset. 

However these small obstacles were overcome. The voltage integrator has an offset 

of about 200mV. To compensate for this offset the output of the feedback operational 

amplifier has to be shifted downwards by 200mV. Each synapse can only generate a shift 

of approximately ±6OmV. Thus 4 synapses in each synaptic column were required as 

biases to compensate for the voltage integrator's offset. The pulse inputs to these 4 

synapses were permanently switched on. The calculation of the bias values required for 

each neuron was performed automatically by the software written for the test system. 

While this automatic bias procedure did allow the prototype system to run more or less as 

desired, it did not completely eliminate the problems caused by current mis-matches 
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within the voltage integrator. 

The operation of a synaptic column and its neuron is illustrated in the oscilloscope 

photographs of Figure 5.6. The top trace shows a pulse stream arriving at the synapse 

inputs. The synaptic weights are fully excitatory. The integrator output, shown in the 

second trace, increases linearly with time. 

As the integrator output, and therefore the neuron activity increases the neuron 

switches on, outputting a pulse stream shown in the third oscilloscope trace. 

The upper frequency of the pulse input signals was constrainted by the limited band-

width of the operational amplifier used in the synapse feedback circuit. Therefore the 

input pulse width was set to lys and the maximum pulse frequency limited to 500kHz. 

The capacitance of the current monitor lines on the outputs of the voltage integrators 

in neurons 0, 1 and 2 gave them a slower response than neurons 3 to 9. This, in addition 

to the use of 4 synapses per column as biases, limited the number of synapses charac-

terised on each chip to 42. With S chips tested this gave 336 measurements for each com-

bination of weight voltage and duty cycle, which provided sufficient information to allow 

a conclusion to be reached regarding the process invariance of this neural system. 

The variation figures quoted in the text and tables are all expressed relative to the 

mean rate of dX 1/dt of a pulse stream with a duty cycle of 50% and VTIi = 5.00V (4.95 

V/ms, Table 5.7). It should be emphasised that this choice is fairly arbitrary. For exam-

ple choosing a duty cycle of 50% and VTIi = 1.99V (dX1/dt -5.93V/ms, Table 5.7) as the 

reference point, would lower the percentage variation figures by 20%. 

5.3.1. Measurements of Process Variation 

To characterise the system in operation, and to determine the process variation of the 

synapse/voltage integrator combination, 3 sets of measurements were taken for each 

synapse. They were as follows 

1 A sweep of VTIi  from 1.11V to 5.00V for a S=50%. 

2 A sweep of the S i  from 0% to 50% with VTIi= 1 .99V. 

3 A double sweep where VTjj varied from 1.99V to 5 .00V while Si  varied 

between 0% and 50%. 

Once these results had been gathered, a second set of experiments was performed to 

probe the measurement accuracy of the test system. This was done by re-running the 

above sweeps for testchip number 9 except that for the first two sweeps 25 samples were 

taken at each measurement point. For the third sweep, only 10 samples per measurement 

point were taken due to the long run time required (overnight). 
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Figure 5.7 	Process Variation for Weight (V-) Sweep. 
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Figure 5.8 	Process Variation for Duty Cycle (Si)  Sweep. 

Figures 5.7, 5.8 and 5.9 show the synaptic characteristics found. Table 5.7 gives a 

summary of the percentage variations and Table 5.8 gives the measurement accuracy of 

the system for selected measurements. Appendix AS, Tables A5.1-A5.4 contain full list-

ings of the results gathered. 
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Figure 5.9 	Process Variation for Double Sweep. 

The linearity of this system is immediately apparent from the characteristics shown 

in Figures 5.7, 5.8 and 5.9. There are slight non-linearities in these graphs but as is 

explained below, these are due to system problems rather than to the circuits themselves. 

1 	The pinch in the traces relating to the weight voltage sweep (Figure 5.7) around the 

zero weight value was due to the integrator ramping from OV or 5V. If the integrator 

was at OV, and the synapse was slightly inhibitory due to the effects of process varia-

tion, the measured dX 1/dt was zero, as it was not possible for the activity voltage to 

drop below OV. The ability to reset the activity capacitors to a known value, say 

2.5V, would have avoided these problems. 

2 The mean response of the duty cycle sweep (Figure 5.8) was expected to pass 

through the origin because, if the input duty cycle is 0%, ie no pulses, then the rate 

of dX/dt should be zero. As Figure 5.8 shows, the mean value trace was in fact off-

set by 1 V/ms. The offset was again due to the problems experienced in balancing 

the voltage integrator correctly. This also applies to the results for the double 

sweep, Figure 5.9. 

3 	The step nature of the graphs in Figures 5.8 and 5.9 was due to limitations in the 

pulse generation hardware rather than in the synapse circuit. As the static RAM 

chip supplying the pulse signal was clocked at 4MHz, the pulse signal was quantised 

in steps of 250ns. With this limited resolution, only a few distinct high value 

(30%-50%) duty cycles could be generated. For example 37%-39% maps to 40%, 
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dX1/dt (V/rn s) 

Sweep 
Si  

(%) 
V  m 
(V) 

Mm Mean Max Variation 
Std 

Dev 

VTij 50 5.00 4.35 4.95 5.75 +16.00/o/-12.3% ±5.2% 

DCj  50 1.99 -7.02 -5.93 -5.25 +13.6%/-22.2% ±6.1% 

50 1.99 -6.56 -5.87 -5.19 +13.60/o/-13.9% ±55% 
Double 

50 5.00 4.16 4.94 5.66 +14.4%/-15.8% ±5.8% 

Table 5.7 	Selected Variations for the Measurements of dxjdt. All percent- 

ages are taken relative to the mean response for V.=5.00V  and 

5=50 (4.95 V/ms). 

Sweep 
5 .i 

(%) 
VTij 
(V) 

dX/dt (V/ms) 

Variation Std Dev 

V_rij 50 5.00 i-4.2%/-6.0% ±1.7% 

DC 50 1.99 +2.8%/-3.2% ±1.4% 

Double 
50 

50 

1.99 

5.00 

+2.4%/-2.8% 

+3.3 0/o/-4.7% 

±1.6% 

±1.8% 

Table 5.8 	The Accuracy of the dX 3/dt Measurements. All percentages are 

taken relative to the mean response for V yi  =5 .00V and Si =50% 

(4.95 V/ms). 

40%-44% to 44% and 45%-50% to 50%. Subsequent designs will reduce these 

effects by clocking the system at 10MHz, improving the resolution by a factor of 

2.5. 

It was, however, pleasing to note that the synapse and integrator circuitry was sensi-

tive enough to reveal the inadequacies of the system around it. 

The percentage variations for the 336 synapses characterised in the 8 chips tested 

are given on Table 5.7. The variations for the worst case measurements were typically 

about ±15%. The full set of figures in Appendix AS show that there was significant vari-

ation in the worst case variation percentages. This may have been due to the presence of 

one or two "rogue measurements. A more consistent measure of the variations can be 
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found by calculating the standard deviation of the results which in this case is ±6%. 

Comparing the above variation with the measured static variations for the synapse, 

±3.4%, and the voltage integrator, ±5.4% (Vouti - Voz=OV), leads to the conclusion that 

the variations in the differential gain were tracked by the variations in the activity capaci-

tance, thus decreasing the overall variation. 

The reported standard deviation figure for a similar characterisation of the Hamilton 

pulse stream synapse [118] was ± 18.06%, with -40.0 0/o/-s-44.9% as the worst case varia-

tions. A direct comparison with the Hamilton synapse is valid, as it was fabricated on the 

same ECDM20 2pm process. This comparison verifies that the distributed feedback 

synapse is indeed relatively tolerant to the effects of process variations. The comparison 

is further enhanced by the observation that the Hamilton synapse process variation figures 

are based on the results from only one chip. They do not, therefore, represent the synap-

tic multiplication accuracy of a multichip system. 

The above variations relate to the system as a whole (ie the testchip plus the support 

circuitry, digital oscilloscope and the analysis software). The second set of experiments 

mentioned at the beginning of this section measured the accuracy of the test system by 

taking up to 25 samples for each combination of VTIi  and Si  for a particular synapse. The 

percentage accuracy as a standard deviation was ±2% (Table 5.8). 

This indicates that the variation due the circuits themselves is less than the ±6% 

reported above. Comparing this with the standard deviation of the current produced by 

the current mirror in the voltage integrator, ±3.2% (Table 5.6) demonstrates that for a sys-

tem made up of such a large number components, a variation as small as ±6% is very 

good. 

5.3.2. Systematic Variations 

Finally, to find systematic variations across the synaptic array, the results for the 

DC=50%, VTIJ=2.08V. and  DC=50%, Vm=5.00V measurements for a particular synapse 

were averaged over the 8 chips tested. The 3 dimensional plots of the responses are 

shown in Figures 5.10 and 5.11. There are two observations to be made here. 

1 	The variation within a synaptic column is small compared with the variation 

between synaptic columns. Thus the matching between synapses is better than the 

matching between the voltage integrators. 

2 	The performance of the synapses degrades very slightly, moving across the array 

from neuron 9 to neuron 3. This degradation in performance is due to the voltage 

gradient in the power supplies across the array caused by the resistance of the power 

tracks. 
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Figure 5.10 	Across Chip Variation in the Synaptic Response for VTIJ=2.08V 

and S=50%. 
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Figure 5.11 	Across Chip Variation in the Synaptic Response for VTIJ =5.00V 

and S=50%. 
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5.4. Conclusions 

The results of the static and dynamic tests clearly prove that the circuits described in 

Chapter 4 perform functionally as desired. The performance of the synapse/voltage inte-

grator combination compares well with the measured variations of the cascode current 

mirrors on the same chip and the reported variations for the Hamilton synapse. The 

major objective of the design, that of creating circuits which have an in-built resistance to 

process variations, has been achieved on a fabrication process optimised for digital rather 

than analogue circuits to the extent that variations due to process have been limited to 

±6%. 

Several valuable lessons in analogue circuit design have also been learned. 

The results of the performance tests on the voltage integrator confirm the suspicion 

that the more components a system includes, the greater are the effects of changes in 

the process parameters. Thus simple analogue circuits will usually be more process 

invariant than complex ones, unless special design techniques are used, for instance 

cancelling the variations in the integrator's gain with the variations in the activity 

capacitance. 

2 	While it proved impossible to trace the detailed reason for the voltage integrator's 

mirroring problem, a definite solution is known in that the circuit can be re-designed 

with the tail current for the differential stage and the balance current determined 

separately to ensure that the integrator can always be balanced. 

3 	HSPICE simulations in which there is perfect transistor matching, are not a reliable 

guide to the use of feedback loops. In practice it appears that, as the fabrication pro-

cess is not constant within a chip, the feedback value may not be correct for a 

synapse which is far away from the feedback circuit. This problem should be eased 

by placing a column of the feedback cells in the centre of the synapse array. How-

ever, if the process changes significantly across a chip, it becomes almost impossible 

to calculate bias voltages to any degree of accuracy. Under this scenario each 

synapse would require its own process compensation circuitry. 

4 	Truly accurate analogue designs can only be developed if creative circuit and layout 

techniques, such as those described in this chapter, are used in combination with a 

fabrication process optimised for analogue circuits. 

Despite the fact that SADMANN was only designed for PPM signals, the synaptic 

multiplier circuits are also capable of working with PWM signals. In the successor to 

SADMANIN, EPSILON (described in Chapter 6), this duality is exploited and as a result 

EPSILON has two distinct operating modes; PPM and PWM. 
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Chapter 6 

EPSILON 30120PI 

With the characterisation of the distributed feedback synapse complete, a compari-

son with other pulse based multipliers is now necessary to find the most appropriate 

synapse design for the final neural VLSI demonstrator. What follows is a comparison of 

the salient features of the distributed feedback synapse and the previous pulse stream 

synapses developed by Browniow [105-107] and Hamilton [115, 112] (Table 6.1). 

Distributed Brownlow Hamilton 

Feedback 
Synapse Synapse 

Synapse  

Linear Multiplication Yes Yes Yes 

Area 165x130pm 2  65x65,um 2  17503gm2  

Pulse Modes PPM & PWM PPM PPM 

Cascadable Yes No Yes 

Process Invariant Yes No No 

Table 6.1 	A Comparison of 3 Pulse Based Synapse Designs. 

1 	All three designs possess a linear multiplication characteristic over a wide 

range of synaptic weight and state values. This compares well with the sig-

moidal characteristic of the Gilbert multiplier used in Intel's ETANN device. 

2 	The relatively large area for the distributed feedback synapse is misleading. 

The SADMANN layout is non-optimal, since the synapse is pitch-matched to 

the synapse contained in the second neural test array. A more realistic area 

estimate for a fully-optimised SADMANN synapse is 100x100Mm 2 . 

3 	The Brownlow and Hamilton synapses are fundamentally restricted to operat- 

ing on PPM signals. The distributed feedback synapse is more flexible as it 

works equally well with PPM or PWM signals. 

4 	As the operational amplifier in the integrator needs to redesigned when the 

number of switch-capacitor synapses is scaled, the Brownlow synapse is the 

only one of the three which is not easily cascadable. 



Chapter 6 
	 'It' 

5 The source follower buffer stages in the Browniow and Hamilton synapses ren-

der both designs process variant. The output of a source follower buffer is 

directly dependent on the value of the threshold voltage for the process. 

While the distributed feedback synapse is not the smallest of the 3 synapses, this 

shortcoming is amply compensated by its ability to work with different pulse encoding 

techniques without modification, and by its process invariance. As process invariance is 

the overriding concern for the HopfieldlTank and the Kohonen neural networks, the dis-

tributed feedback synapse was chosen to form the basis of the full scale VLSI neural 

implementation. 

As intimated at the start of Chapter 2, this implementation was designed to integrate 

MLP networks as well as the HopfieldlTank and the Kohonen networks. The specifica-

tions for the networks are shown below. 

1 	A 89-16-2t (89 input neurons, 16 hidden neurons and 2 output neurons) MLP 

network for finding roads in images [117]. Sigmoidal neuron transfer function. 

2 	A 100-64-32 MLP network [118]. Sigmoidal neuron transfer function. 

3 A HopfieldlTank network consisting of 100 neurons and 10000 synapses 

(1 OOxl 00 array). Sigmoidal neuron transfer function. 

4 A Kohonen network consisting of 30 neurons and 90 synapses (30,3 array). 

Linear neuron transfer function. 

Unfortunately, funding restrictions limited the maximum die size to 100mm 2 . The 

10000 synapses required by the largest of the above four networks, the HopfieldlTank 

network for the 10-city TSP, occupies all of the available l0xl0mm 2  of silicon, before 

taking into account the area required the neurons, the weight addressing circuitry and the 

input/output pads. Thus it was not feasible under this area limitation to implement a net-

work large enough to run the HopfieldiTank network for the 10-city TSP on a single sili-

con die. 

To solve this problem the generic neural VLSI building block, EPSILON 30120P1t, 

was developed. This device was something of a creative compromise. The specifications 

for EPSILON are shown in Table 6.2. For the HopfieldlTank  and the Kohonen neural 

networks 4 EPSILON's are linked in parallel to form a 120 by 120 synaptic array. MLP 

architectures are constructed by cascading rows of EPSILONs in series, each row repre-

senting one layer of the MLP. 

t This is the original specification for the network. Subsequent work reduced the network size to 45-14-2. 

t (Edinburgh Pulse Stream Integrated Learning Oriented Network, 30 output neurons, 120 input neurons, Process In-

variant) 
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Figure 6.1 	Pulse Width Modulation Scheme. 

The versatility of EPSILON is due, in part, to its ability to handle either PFM or 

PWM signals. Thus PFM signals can be used where asynchrony is important, and PWM 

signals can be used when fast computation is the foremost consideration. Also, to ease 

the interfacing to analogue voltages, EPSILON can sample and hold 120 analogue volt-

ages internally, converting them into PWM signals via a bank of comparators and a dou-

ble-sided ramp signal (Figure 6.1). The value of the analogue voltage determines the 

comparator switch-point, thus controlling the width of the output pulse. The double-

sided nature of the ramp ensures that neither the leading nor the trailing edges of pulse 

width inputs are synchronised. A similar configuration is used to convert the activity 

voltages into pulse widths. The use of an external ramp to convert an analogue voltage 

into pulse width allows great flexibility, as the shape of the ramp defines the transfer 

function of the neuron. So by changing the shape of the ramp the transfer function can be 

varied from a linear function to a high gain siginoid. The work concerning the analogue 

inputs and pulse width outputs was done by Stephen Churcher [117] while the VCOs to 

convert the activity voltages in PPM signals were designed by Alister Hamilton [118]. 
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Number of Inputs: 

Number of Neurons 

Number of Synapses 

Input Modes: 

120 

30 

3600 (120x30) 

Pulse Frequency Modulation 

Pulse Width Modulation 

Analogue Voltage 

Output Modes: 	Pulse Frequency Modulation 

Pulse Width Modulation 

Table 6.2 	The Specifications for EPSILON 30120P1. 

This programmability, cascadability, input/output reconfigurability and process 

invariance are the main merits of EPSILON. 

6.1. Circuit Design Modifications 

ES2's 2 1um process (ECDM20) was being phased out as EPSILON was gestaing 

and was only available for prototyping by special order. As a result the ECDM20 process 

had a high setup cost associated with it. Thus, primarily for funding reasons, EPSILON 

had to be fabricated using the more economic 1 .5jtm process (ECPD 15/1). This was 

technically undesirable as the synapse and neuron circuits had been proven using the bet-

ter toleranced ECDM20 process and the different characteristics of the ECPD 15/1 pro-

cess might create new problems. 

Table 6.3 compares the most relevant process parameters for the two different pro-

cesses for Level 2 typical models. The main differences are summarised below: 

1 	The transistor fi values for the 1 .Spm process are about 40% larger for both N- 

Type and P-Type transistors than the old ES2 2.Ojim process. This is due to the 

field oxide for the transistors now being 40% thinner. Also all transistors are 

now 40% more capacitive. 

2 	The threshold voltage for a P-Type transistor is now 0.5V higher. 

The above differences in the characteristics of the ECDM20 and ECPD 15/1 pro-

cesses were significant enough to necessitate redesign of the circuits implemented in 

SADMANN. At the same time the opportunity was taken to incorporate the lessons 

learnt from SADMANN into the circuits. 
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Process NMOS PMOS 

Parameter ECDM20 ECPD15/1 ECDM20 ECPD15/1 

VT 0.9V 0.7V 0.6V 1. IV 

tox 40nm 25nm 40nm 25nm 

Pb 510cm2/V/s 510cm2/V/s 175cm/V/s 210cm2/V/s 

NSUB 0.53 x 10 16cm 3  2.0 x 1016cm 3  1.9 x 10 16cm 3  5.0 x 1016cm 3  

Table 6.3 A Comparison of Selected ECDM20 and ECPD15/1 Typical Pro-

cess Parameters. 
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Figure 6.2 	The Revised Process Invariant Synapse Design 

6.1.1. Revised Synapse Design 

The move to the ECPD15I1 process brought about only minor changes to the 

synapse. The first was to limit the current sourced by the synapse. The transistors in the 
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transconductance multiplier Ml/M2 were simply made longer and thinner to compensate 

for the faster process. 

By decreasing the VDs  voltages of the transistors in the transconductance stages 

from 0.8V to 0.5V, the current consumption was reduced further. The new power supply 

voltages are shown in Table 6.4. 

VDD1.5V 	V eç l.OV 

V 5 0.5V 	V5 3. 1OV 	2.5V<Vrjj <5.0V 

Table 6.4 	New Voltages for the Distributed Feedback Synapse. 

The increase in the threshold voltages of the 2 P-type pass transistors for the weight 

storage capacitor raised the lower limit of the voltage range which they are able to pass. 

This restricted the usable weight range to 2.5V to 5V, with V=3.75V. 

To minimise the size of the synapse, 2 synapses were implemented as one cell. This 

reduced the area requirement by simplifying the synapse circuitry to 2 transconductance 

multiplier stages and just 1 buffer stage (Figure 6.2). Also, area was saved, as the resul-

tant cell has fewer N-wells and thus fewer well crossings in the layout. The size of this 

"double synapse" was 200pm by 100pm. 

6.1.2. Revised Operational Amplifier Design 

The tolerances on the ECPD 15/1 process are not as fight as those of the ECDM20 

process. As a result, the redesign of the operational amplifier was very conservative to 

guarantee that the amplifier would work. A comparison of the specifications for the 

ECDM20 and ECPD 15/1 versions of £S2's standard cell Operational Amplifier 13 (Table 

6.5) illustrates the problems caused by the wider variations of the ECPD15/1 process. 

Since EPSILON requires at least 30 operational amplifiers, the slew rate and power con-

sumption had to be tightly controlled if the custom operational amplifier was to remain 

compact and the worst case power consumption contained. 

The transistor chain (transistors M8, M9 and M10 in Figure 4.12) which determines 

the differential stage tail current and output pull-up current, is sensitive to the value of 

VT. Small variations in the value of VT thus have a large effect on the current flowing in 

the transistor chain. This current not only influences the operational amplifier's slew rate 

and power consumption but also helps determine the amplifier's gain and phase margin. 

Thus the ability to determine the value of this current accurately will "tighten' the ampli-

fier specification. 
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Figure 6.3 	A Simple Controllable Tail Current Operational Amplifier Design. 
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Figure 6.4 	The Revised Operational Amplifier Design. 
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Process Parameter Minimum Typical Maximum 

ECDM20 Slew Rate: 	Rise 5.7V/s 18.5V/s 20V/s 

Fall 7.3V/s 18V/s 25V/s 

Power 3.4mW 9.4mW 26mW 

ECPD15/1 Slew Rate: 	Rise 1.8V/s 7.6V/s 29.6V/s 

Fall 3.4V/s 17.7V/s 47.2V/s 

Power 3.2mW 15mW 56mW 

Table 6.5 	Slew Rate and Power Specifications for ES2's Operational Ampli- 

fier 13 [120, 121]. 

An obvious approach to determine this current accurately is to replace the transistor 

chain with an externally controlled current mirror which copies the current to all opera-

tional amplifiers within the chip (Figure 6.3). The disadvantage of this arrangement is 

that fast transients occurring at the inputs or at the output of the operational amplifier will 

couple onto the "current-set line of the global current mirror, via the parasitic capacitors 

in the transistors. This coupling alters the currents in all of the operational amplifiers 

linked to that current mirror causing their outputs to change. 

To decouple the operational amplifiers from each other further, whilst maintaining 

control over the differential tail current and output pull-up current, the circuits in Figure 

6.4 and 6.5 were developed. The chain of capacitors linking the output and input nodes 

to the "current-set" line of the current mirror is now longer. Thus the coupling onto this 

line is now smaller due to the greater attenuation effect of the longer capacitor chain. 

The "current-set" voltage, VTthI, is determined within the chip and buffered through 

an external operational amplifier before applying it to the on-board operational amplifiers. 

The large drive capability of an external operational amplifier enables it to restore VTjl to 

the correct value quickly. This further improves the stability of the "current-set" line. 

HSPICE simulation showed this two-pronged approach of increasing the isolation 

between operational amplifiers, while turning the common "current-set" line into an 

external reference voltage, decreased the magnitude of transients on the "current-set" line 

by a factor of 10. 

6.1.3. Revised Voltage Integrator Design 

The design changes to the voltage integrator were necessitated by the change of pro-

cess and the current mirror mis-match problem discussed in Chapter 5. 
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Figure 6.5 	The Current Set Circuitry for the Feedback Amplifier. 
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Figure 6.6 	The Revised Voltage Integrator Design. 
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As no definite explanation could be found for the current mirroring problems it was 

decided that separate current mirrors for the tail and balance currents should be intro-

duced. Independent control of these two current mirrors ensured that the integrator could 

be balanced correctly if the current mis-match problem in SADMANN recurred. 

The much higher P-type threshold voltages meant that there was no longer enough 

voltage between the power supplies (5V) to allow the P-1Sipe cascode current mirror to 

operate. This problem was solved by replacing the cascode current mirror with a simple 

current mirror. To compensate for the resultant loss of mirroring accuracy, the transistors 

used in this simple current mirror were designed with a long channel length (20pm) to 

reduce the inaccuracies caused by the lambda t of a transistor. 

To ease the interfacing of EPSILON to its support system, two additional features 

have been included in the voltage integrator circuit. 

1 	A transmission gate to isolate the output current stage of the integrator from 

the activity capacitor. 

2 	A transistor to reset all the activity voltages to a known voltage before the start 

of computation. 

As it is unrealistic to expect the output currents of the voltage integrator to be per-

fectly matched, the transmission gate is required to prevent the activity voltage from drift-

ing after the synaptic calculation cycle is complete. The ability to reset the activity volt-

age to a known value is vital for proper multiplication. In its absence all results are rela-

tive to different start points, and comparison is impossible. 

As a result of these changes there is a significant difference in the way SADMANN 

and EPSILON operate. In SADMANN as the VCO is always connected to the output of 

the voltage integrator, the output frequency of the VCO changes smoothly as the activity 

voltage increases or decreases. The operation of EPSILON comprises of 2 separate 

phases. 

1 	Calculate the neural activities. 

2 	Fire the output neurons. 

In between these two phases the output of the synaptic array is disabled. Thus the 

operation of the synaptic array has been separated from the operation of the output neu-

rons. 

The resulting circuit is shown in Figure 6.6. 

* Lambda is the channel length modulation parameter of a transistor. 
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Cell Size 

Double Input Neuron 336x100ym2  

Double Synapse 200x100pm2  

Feedback Operational Amplifier 200x262um2  

Voltage Integrator 200x200pm 2  

VCO 200x100um 2  

PWM Comparator 86x1 16pm2  

EPSILON 10x9. 5mm2  

Table 6.6 	Cell Sizes for Circuits in EPSILON. 

6.1.4. EPSILON Device Details 

To complete the system these circuits were combined with the input neurons and 

PWM output neurons designed by Stephen Churcher [117], and the VCOs designed by 

Mister Hamilton [118]. Table 6.6 shows the sizes of each component and the die size of 

EPSILON. 

The main data transfer bottleneck in such a large neural VLSI implementation is the 

loading of the 3600 synaptic weights. To reduce this overhead EPSILON has 2 weight 

load lines. The estimated worst case power consumption for this device is 350mW which 

is well within the safe limits (1W) for a chip of this size. Power consumption per synapse 

is 97pW. The equivalent figure for Intel's ETANN device is 220yW(450mA x 5V / 

10240 synapses) [61].  Thus a synapse in EPSILON dissipates under half the power of a 

synapse in ETANN. 

In this implementation the neural state values, 0 :9 V :9 1. 0, are either encoded as 

PFM signals in the range 0-500kHz (0-50% duty cycle) or as a 0 -20M PWM signal. The 

analogue input mode is functionally equivalent to the PWM input mode, as the sampled 

voltages are converted into 0-20ts PWM signals by the input neurons. For both PFM 

and PWM signals the meaning of the input and output pulse streams is slightly different. 

For input pulse streams, a pulse width of 0ys and a duty cycle of 0% both represent zero. 

However the result of reseting the activity capacitor to 2.5V (the mid-point of the 

PFMJPWM output ranges) is that for the output pulse streams zero activity is represented 

by a pulse width of 10ps and a duty cycle of 25%. At present this difference is corrected 

in software. 

As the largest package size available contained only 144 pins it was not possible to 

pin out all of the 120 inputs directly. This restriction resulted in the organisation of the 

120 inputs into 4 banks of 30 which are multiplexed in turn onto 30 input pins. 
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Figure 6.7 	Photograph of EPSILON 30120P1. 

The operation of EPSILON has 2 distinct phases. 

1 	The calculation of activity voltages by firing either pulse widths or frequencies 

into the chip. 

2 	Evaluation of the neural output states by capturing the output PWM or PPM 

pulse trains. 

Thus, while for PWM signals the 3600 synaptic multiply accumulate operations are 

performed in 20,us, another 20,us is required to read back the neural state value. 3600 

calculations in 20,us gives EPSILON a peak computation rate of 180 MCPS (pipelined). 

A photograph of the resultant fabricated device is shown in Figure 6.7 

6.2. FENICS (Fast Electronic Neural Integrated Computer System) 

The FENICS board to support EPSILON was designed as an autonomous system. 

A host computer downloads weight and state data to the board and waits for the resultant 

neural states to be sent back. 
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Figure 6.8 	A block diagram of FENTCS. 

As Figure 6.8 shows FENTCS contains 4 main function blocks. 

1 	80537 Microcontroller 

2 	A state-machine for weight load and refresh. 

3 	A state-machine for firing the pre-synaptic neural states and capturing the post- 

synaptic states. 

4 Two EPSILON 30120P1 integrated circuits. 

At the heart of the board is the microcontroller which interfaces to the host com-

puter system via its in-built RS232 interface. The use of the microcontroller allows a 

degree of intelligence to be built into the board. For example when the microcontroller 

receives a command followed by data, it automatically performs all the operations neces-

sary to transfer the data to the appropriate state machine. This gives the desired level of 

autonomy and provides a straightforward user interface. 

Once the weights have been loaded into the SRAM of the weight state-machine, the 

refresh cycle for the capacitively stored weights in EPSILON is transparent to the opera-

tion of the FENICS board. During the calculation and evaluation phases of EPSILON, 

weight refresh is switched off to reduce the effects of noise in the chip, thus enhancing 

the accuracy of the computation. 

The SRAM in the S3/S 1  state-machine contains the bit-streams representing the PFM 

or PWM input signals. This block also contains circuitry for the generation of the 
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double-sided ramp used by the comparators in the input and output neurons to convert 

analogue voltages into PWM signals. The sequence of operations to fire pulses into 

EPSILON and capture the output pulse signals is as follows. 

1 For PFM and PWM input modes the microcontroller enables the clock to the 

state SRAM address counter. This clocks the pulse signals contained in the 

state SRAM into EPSILON. 

2 In analogue mode, the state values from the microcontroller are loaded into 

EPSILON via a DAC and two 16-way analogue multiplexers. The double-

sided ramp to convert these voltages into PWM signals is generated by clock-

ing the contents of a SRAM containing the ramp data into a DAC. 

3 The output PPM signals are captured by enabling the state SRAM write signal 

while clocking the state SRAM address counter. The 10MHz clock rate of the 

SRAM address counter resolves pulse signals to an accuracy of 0.1ts. 

4 Capture of PWM signals is similar to above, except that while the state SRAM 

is clocked the ramp SRAM is also clocked. This supplies the output neurons 

with the double-sided ramp necessary for the production of PWM signals. 

State data can be transmitted to and from the microcontroller in 2 ways. 

1 Raw SRAM pulse data. 

2 	Duty cycle, pulse width and analogue voltage (input neural state only). 

In the second case the microcontroller has the necessary algorithms built in to con-

vert duty cycles and pulse width data to SRAM data and back again. Unfortunately the 

microcontroller's 1/is instruction cycle time is not fast enough to perform the duty cycle 

and pulse width to SRAM conversion quickly. As a result it is faster to perform the state 

to SRAM conversion on the IBM PS2 and then download up to 4Kbytes of data to the 

board. 

To facilitate the construction of large networks, such as the 100 by 100 synaptic 

array required for the proposed neural VLSI optimisation task, the FEMCS board has a 

bidirectional state bus to allow data transfer between multiple FENICS boards. 

6.3. Calibration Results 

Due to package and die size limitations, only a small number of pads were available 

for test purposes. As a result, only the output of the feedback operational amplifier and 

voltage integrator in neuron 0 could be monitored. 

The 30 untested EPSILON devices received from ES2 were subjected to a series of 

4 tests. 
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1 	Power up test. 

2 	Clocking data through the x and y shift registers for addressing the synaptic 

weights. 

3 	Measuring the Vsz  and Voz  values produced by the automatic bias circuits. 

4 	Quantitative measurement of the multiplication characteristic of neuron 0. 

Of the 30, only 3 failed the power up test, with another 11 failing one or more of the 

remaining 3 tests, leaving 16 working devices. For the large die size (10mm by 9.5mm), 

a raw yield of just over 50% is very good. 

Unfortunately, pressure of time dictated that full calibration of all 16 working 

EPSILONs was not possible. Thus the following calibration results were based on mea-

surements from only 6 devices. The exception was the automatic bias measurement. As 

the measurement of V sz  and Voz was part of the initial test procedure, data was available 

for all 16 working BPS ILONs. 

6.3.1. Static Measurements 

Automatic Bias Circuits 

In accordance with the insight obtained from the implementation of the automatic 

bias circuits in SADMANN, the feedback loops for generating V sz  and Voz on-chip con-

tained a column of 64 cells (as opposed to just 1). Also, the link between these circuits 

and the Vsz  and Voz  lines for the synaptic array and voltage integrator is made off chip. 

This allows the automatically generated biases to be overdriven if their values prove inac-

curate. 

VTijz  = 3.75V 	VBI = 3.1OV 

The above voltages were applied to the V sz  and Voz bias circuits respectively and 

the resultant voltages noted. To gauge the accuracy of these voltages, the monitor point 

on the feedback amplifier in neuron 0 was used to determine the values of V sz  and V0  

manually. 

1 Vsz  was measured manually by setting V n =VTI =3.75V. Then the "Vsz  over-

drive" line to the synaptic array was varied until the feedback amplifier's volt-

age remained constant as all the presynaptic inputs were switched on and off. 

2 	V02  was measured manually by simply noting the feedback amplifier's output 

voltage with all the presynaptic inputs switched off. 

Tables 6.7 and 6.8 compare the results obtained from the automatic bias circuits and 

the manual measurements with the HSPICE Level 2 simulation values. 
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V (V) Voz (V) 

Bias Cct Measured IDifti Bias Cct Measured IDiffi 

Minimum 4.18 4.10 0.01 3.44 3.43 0.01 

Mean 4.252 4.257 0.056 3.621 3.601 0.041 

Maximum 4.33 4.34 0.17 3.70 3.66 0.15 

+2.0% +2.0% +2.2% +1.6% 
Variation - - 

-1.7% -3.7%  -5.0% -4.7%  

Table 6.7 	The Percentage Variations for V0z and Vsz Bias Voltages for the 

Bias Circuits and Measured Values. All percentages are expressed 

relative to the mean responses. 

Process Voz (V) Vsz (V) 

Level 2-Slow 4.37 3.72 

Level 2 - Typical 4.36 3.71 

Level 2 - Fast 4.34 3.70 

Variation +0.2%/-0.5% ±03% 

Table 6.8 	The Simulated Variations in Voz  and V5z Bias Voltages. All per- 

centages are expressed relative to the typical responses. 

There are two main observations: 

1 	The match between the simulation results and the measured values is reason- 

able, differing by only 1 OOmV. 

2 	While the average values for the bias circuit outputs and the measured results 

are very similar, within the same chip there is an offset of approximately 

40-6OmV between the two. 

The power line resistance problem discussed in the next section means that the 

power supply voltages degrade from right to left across the array. As the feed-

back columns and neuron 0 are on the opposite sides of the synaptic array, they 

will be operating from different power supply voltages. A performance mis-

match results. 

Synapse failure or transistor defects within the column could also explain this 

difference. As the areas of the column for the automatic bias circuits and a 

normal synaptic column are the same, the number of defects they contain 
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should also be similar. Thus for a large sample size the mean values of the two 

outputs should be similar. This is in fact the case. 

The solution in the short term for EPSILON is to set the Vsz  and Voz  manually. 

Longer term solutions would involve feedback on a more local level, perhaps even per 

synapse. 
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Figure 6.9 	Process Variation for Static Weight Sweep. 

Static Measurements of Synapse 

As the swing in the feedback amplifier output for a single synaptic weight sweep 

from OV to 5V is about l5mV (120th of 1.75V), it was impossible to characterise individ-

ual synapses. Thus, as for SADMANN, the static synaptic measurements represent a 

whole column of synapses working in parallel. 

As the feedback amplifier output in neuron 0 is the only neuron to have an external 

monitor point, static synaptic measurements relate to only one synapse column per 

device. In view of the problems with the automatic bias circuitry described in the previ-

ous section, the Vsz  voltage reference was set manually for each measurement sweep. 

All of the presynaptic inputs were switched to 5V (ON) and the whole weight array was 

loaded with the same voltage. 

Figure 6.9 and Table 6.9 show that the worst case variations between the 6 sets of 

VTjj  to (V0,11 - V0z) characteristics were +53% and -7.9%. While this compares 
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V11  CV) 
V011 

- Voz (V) ______ 

Min Mean Max Variation 

0.00 -1.17 -1.138 -1.11 -i-4.60/o/-53% 

1.00 -1.17 -1.138 -1.11 +4.60/of-5.3% 

2.00 -1.02 -0.990 -0.96 -i-4.996/-4.9% 

3.00 -0.44 -0.415 -0.39 +4.1 01o/-4.1% 

4.00 0.09 0.123 0.15 +4.40/o/-5.4% 

5.00 0.56 0.608 0.64 -i-5.3 0/o/-7.9% 

Table 6.9 	The Percentage Variations of the VTjj to V01 - V0z Characteristic. 

All percentages are taken relative to the mean response for 

VT=5.00V (0.608V). 

favourably with the +93% and -10.6% worst case variations quoted in Table 5.5 for the 

equivalent SADMANN results, the limited number of data for EPSILON makes any com-

parison statistically unsound. 

The results confirmed the linearity of the synapse and compare well with HSPICE 

Level 2 typical simulation values (Appendix 6, Table A6.1). However, the results also 

revealed a problem. Ideally as the weight voltage is varied from 0 to 5V with the 

transconductance multiplier switched out, the output voltage of the feedback amplifier, 

should remain constant. This was not the case. The output of the amplifier 

decreases slightly as the weight voltage increases (Trace V outjz, Figure 6.9). 

Since the whole of the synaptic array is set to the same weight voltage, the supply 

current demanded by the synaptic array changes by a factor of 2 as the weight voltage 

varies from 0 to 5V. This current variation in turn causes the voltage drop along the 

power tracks feeding the synapses to change, altering the performance of the synapse. 

While this voltage drop is probably only 10-20mV, the transconductance multiplier is 

very sensitive to its power supply voltages. 

The resistance of the 2001im by 8pm metal 2 power supply tracks in the double 

synapse cell is 10. With the iransconductance stage of the distributed feedback synapse 

switched out, the feedback amplifier's voltage is determined solely by the buffer stage. 

As the weight voltage increases, the current demanded by the transconductance multipli-

ers also increases. This reduces the value of the 1.5V supply for the synapse and 

increases the 0.5V supply. Thus the VDS and the V0  voltages for transistor M5 (Figure 

4.7) in the buffer stage are reduced, while for transistor M4 only VDS  is decreased. As 

the current in transistor MS decreases more rapidly, the value of V 0  falls to compensate. 
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This is exaggerated by the greater resistance of the 0.5V supply track which has more 

vias than the 1.5V track. Taking into account vias and the effects of over-etching, we can 

estimate the cell power track resistance as 2Q for the 1.5V and 4Q for the 0.5V line. 

HSPICE simulations (Appendix 6, Table A6.2) confirmed that these resistances would 

indeed explain the measured 60mV change in V 1  over the 0-5V weight sweep. 

As the power supplies enter the array on the right-hand-side of the synaptic array the 

synapse performance deteriorates progressively right to left across the array. This means 

that neuron 0 on the left-hand-side of the array, 6.4mm from the power supply bus, expe-

riences the worst effects of the resistance in the power supply lines. 

To reduce the power track resistance, the length of tracks should be shortened and 

their width increased. For EPSILON it would be possible to quarter the track resistance 

by introducing two power buses, one 1/4 along the array and the other 3/4 along the array. 

Augmenting this with an increase in the track width within the synapse will reduce the 

variation in the zero voltage of the feedback amplifier to less than lOmV. 

6.3.2. Dynamic Measurements 

The initial dynamic tests of EPSILON determined the device's performance under 

the three possible input modes. 

1 Pulse Frequency Modulation 

2 Pulse Width Modulation 

3 Analogue Voltage. 

The extra capacitance caused by having a monitor point on the output of the activity 

capacitor of neuron 0 gave it a slow response. Thus in calculating the statistics for the 

dynamic tests in this section, neuron 0 was ignored. For these tests the synaptic column 

was treated as one synapse with all the weights and input states equal. The output states 

were measured via the PWM output comparator and a double-sided ramp to give the neu-

ron a linear transfer function. Vsz and V oz  were set manually using the following proce-

dures: 

To set Voz, all the presynaptic inputs, S, are set to zero and all synaptic 

weights are set to V=3.75V. Then V0z is varied until, after the calculation 

and evaluation phases of EPSILON, the average of all the output pulse widths, 

S, is lOps (zero activity). 

2 	For setting Vsz  the average of the S i values for all Sj  off and all S fully on are 

compared 	= VT1JZ). Vsz is then varied until the means match. 

Appendix 7 contains the graphs of the mean response of neurons 1 to 29 in 

EPSILON chip 3, to a double sweep of input state values and weight voltages, for the 
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above 3 input modes. These graphs demonstrate that for all 3 input modes the synaptic 

multiplication characteristic is indeed linear. 

The voltage offset problem which was present in the voltage integrator in the SAD-

MANN device is not present in EPSILON. This reinforces the suspicion that, since the 

two circuits were very similar, the problem in SADMANN was indeed a layout problem 

rather than a circuit problem. 

During this series of tests it became clear that there was a peculiarity during switch-

ing associated with the feedback operational amplifier. The multiplication characteristic 

was as expected for analogue and PWM input modes but for PPM signals the multiplier 

characteristic was non-linear. This was due to an oversight in the routing of signals from 

the core of EPSILON to the pad ring. The state input signals come directly from the pads 

on the left-hand-side of the chip to the left-hand-side of the synaptic area. The tracks for 

the current mirror lines for the feedback operational amplifier start at the top left-hand 

corner of the die and enter the core of the chip at the bottom left-hand-side of the synaptic 

array, passing as they go under all 30 of the state input lines. The coupling from these 

input lines thus has a significant effect on the current set line of the feedback amplifiers. 

The greater the number of pulses (edges) on the input lines the larger the effect on the 

feedback amplifier's output voltages. This explains the difference in performance 

between the PPM input mode and PWM/Analogue input modes. For this test, due to all 

the inputs working in parallel, all edges were synchronised, giving a large 'kick" to the 

operational amplifier every time an edge occurs. By introducing a random offset between 

the input pulse streams, the edges of the PPM signals become asynchronous, reducing the 

effect on the operational amplifier current set line. The PPM characteristic in Figure 

A7.1 was measured in the presence of just such a random offset. 

The next stage was to look at the performance of individual synapses. Measurement 

of a single synapse was, however, impossible as its small response at the feedback opera-

tional amplifier, l5mV, would be overwhelmed by noise. The 120 by 30 synaptic array in 

EPSILON was therefore configured as a 10 by 30 array for this series of tests. 

PWM input signals were chosen for two reasons. 

1 	The large number of edges present in PPM signals create unwanted noise due 

to the coupling onto the current set line of the feedback amplifier. 

2 The FENTCS hardware allowed the pulse width range to be extended to 

0-100us, so that the response due to the groups of 12 syna$es was amplified, 

making better use of the dynamic range of the output measurement system 

(0-20/a in 0. 1ps steps). N.B. The hardware limited the PWM signal generated 

inside EPSILON from analogue inputs from 0 to 25us. 
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Figure 6.10 	Process Variation for Weight (VTI) Sweep. 
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Figure 6.11 	Process Variation for Pulse Width (S) Sweep. 
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Figure 6.12 	Process Variation for Double Sweep. 

Initial attempts to characterise the groups of 12 synapses proved problematic, thanks 

to imbalances within the voltage integrator created by transistor mis-matches. These 

caused the integration capacitor voltage to drift. It should be pointed out that these mis-

matches are simply due to the effects of process variations between transistors in the 

same current mirror rather than the systematic offset problem which occurred in SAD-

MANN. The voltage drift created by this current mirror mis-match was eliminated by 

using one of the groupings of 12 synapses within each synaptic column as a bias to com-

pensate for the drift. A software routine on the IBM PC host computer altered a bias 

value iteratively until either the drift had been cancelled or the bias value reached the end 

limits of its influence. If a particular synaptic column could not be correctly biased then 

the results from it were ignored in calculating the statistics. 

It should to be pointed out that the use of extended pulse widths and characterising 

synapses in groups of 12, implies that the process variation figures below are only an 

indication of the variance in synaptic multiplications rather than a precise value. For 

comparison with the results from SADMANN the same 3 sweeps were carried out. 

	

Sweep 	Range 	Step Size 

	

1. V1  sweep 	2.5-5.OV O.OSV 	(S=100/1s) 
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Si  sweep 

Double sweep 

0-100ps 	4jis 

O-lOOgs 	lOps 

2.5-5.OV 0.32V 

(VTIi=5.OV) 

To eliminate noise from the measurements and increase accuracy, 10 samples were 

taken for each measurement and the average used as the system response for that mea-

surement. 

Sweep 
Si 

(us) 
VTIi 

(V) 
S i (4us) 

Min Mean Max Variation Std Dev 

VTIi 75.4 4.90 12.10 13.20 14.50 +38.20/o/-32.4% ±12.3% 

75.4 5.00 12.20 13.40 14.70 i-38.20/o/-35.3% ±12.0010 

Double 75.4 5.00 12.10 13.40 14.50 +32.40/o/-38.2% ±12.2% 

Table 6.10 	Worst Case Process Variations for Dynamic Measurements of S. 

All percentage are expressed relative to the mean response for 

VT-,=5.0V and S=100ps (13.4-10.01s) 

Figures 6.10, 6.11 and 6.12 contain the responses to the 3 sweeps and Table 6.10 

summarises the worst case process variations in each sweep. 

Resetting the integrator capacitor to 2.5V at the start of each calculation/evaluation 

cycle means that 10.0ps represents the zero activity value of the system. Thus, all S i val-

ues have to be referenced to 10.0ps. For example, in the calculation of percentages, the 

system response used as the reference value was 3.4ps and not 13.4ps (VTI=5.0V  and 

S=100/s). 

These results again confirm the linearity of the distributed feedback synapse at the 

heart of EPSILON. The other salient points are as follows: 

1 	As the scales in Figures 6.11 and 6.12 show, rather than generating 0-1001& pulse 

widths, the pulse outputs from the Si/Si SRAM on FENICS were 0-75ps. Pulse 

widths in the 0-501s range were output from the RAM without any problems, but 

50-1001& pulses were compressed into 50-751& pulses. The problem was thought to 

lie with the incorrect loading of the count sequence length into the counter which 

clocked pulse signals out of the state SRAM. During normal PWM operation 

(0-20ps pulses) there is no such compression. 

2 The double sweep in Figure 6.12 clearly shows how the power supply line resistance 

distorts the position of the zero crossing point of the multiplier characteristic. Since 
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only 10% of the synaptic column is active during these sweeps, the effects of the 

offset caused by the other 90% of the column are of the same order. When the 

whole column is active (Figure A7.3) the significance of the problems caused by the 

power supply line resistance is greatly reduced. 

3 	The process variation percentages in Table 6.10 are a factor of 2 greater than those 

for the SADMANN device (Table 5.7). The primary reason for this increase in pro-

cess variance is that the tolerances on the ECDM20 process used for SADMANN 

are much tighter than those for the ECPD15/1 process used for EPSILON. As a 

result the matching between transistors in the synapse and in current mirrors is not 

as good, resulting in greater performance variations. Mother contributory factor is 

that 1 or 2 synapses within the groups of 12 tested could contain processing defects. 

This would distort the overall performance of that synaptic grouping. 

To estimate the reliability of the neural calculations, the weight and pulse width 

experiments were re-repeated for chip 3, row 1, column 0, with 50 samples taken for each 

combination of VTjj and S. Tables A9.1 and A9.2 in Appendix 9 show the worst case 

variations and standard deviations. Although in both cases the typical worst case varia-

tion and standard deviation were ±15% and ±8% respectively, there were several mea-

surements in which the "rogue" samples resulted in standard deviations of ±20-25%. 

Expressing the sample variance figures as pulse width variations, ±0.5lps and ±0.271is 

respectively, and comparing them with the 0-20ys output range, and the Ups resolution 

of the pulse width output mode, puts the, sample variance figures into a better context. 

Furthermore, the characterisation procedure drives EPSILON in a non-standard environ-

ment. As a result, these measurements are not representative of normal operation. Even 

so, results for the same weight and state data could differ by up to ±0.51& between runs. 

In conclusion, the degree of transistor matching required for the performance of the 

circuits to be process invariant is not available within the ECPD 15/1 process. Fundamen-

tally the problem is that analogue circuits are being fabricated on a digital process 

(ECPD15 = ES2 CMOS Philips Digital 1.5im process). This means that even current 

mirrors cannot be depended upon to copy current accurately from one part of a circuit to 

another. Feedback on a more local (ideally synaptic) level would solve the problem of 

the non-uniformity of the ECPD15/1 process. The problems caused by the resistance of 

the synapse power supply lines simply reinforces the knowledge that large scale analogue 

neural systems require very careful design. 

Despite the limitations of the process, the circuits perform very well, combining to 

form a system which has a linear response and has a higher level of process invariance 

than the synapse fabricated by Hamilton [118] despite being produced on a more variant 

process. 
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Figure 6.13 	Software and Hardware Responses for the 9 city data set. 

6.4. Kohonen Demonstrator 

Unfortunately, pressure of time prevented the completion of the full 2 board, 4 chip 

neural optimisation system. However, to determine the feasibility of the analogue VLSI 

hardware for solving optimisation problems, a small-scale problem was tested on the 

hardware available. 

At that time the hardware consisted of 1 FENICS board incorporating a single 

EPSILON device. The limited number of neurons available dictated that the test problem 

should be the 10 city TSP solved via the Kohonen Self-organising neural network. 

EPSILON contains only synaptic multipliers and neurons with linear or non-linear 

transfer functions. There is no built in mechanism for adjusting the values of synaptic 
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weights. Thus the weight update calculations for the Kohonen network were performed 

on the host computer. For this test problem, EPSILON's PWM input and output modes 

were used. 

The software/hardware comparison was performed as follows for each TSP data set. 

1 	Solve TSP using floating point precision on the IBM PS2 host computer. 

2 Download final weight set to FENTCS board. 

3 In turn present each city vector to EPSILON and measure the neurons' output 

response. Determine best match neuron in each case, and calculate resultant 

tour length. 

4 	Calculate the ideal response to the city vectors in software. 

The first comparison was performed using the Hopfieldlrank 10 city TSP example. 

As Table 6.11 shows EPSILON did not produce the same tour as the software simulation. 

EPSILON grouped cities 0, 1 and 2 incorrectly onto neuron 6, and cities 8 and 9 onto 

neuron 13. This confusion was attributable to the mis-matches in the synaptic multiplica-

tions masking out the small differences in response between neurons associated with 

cities close together. For this particular city set, cities 8 and 9 are extremely close 

together, requiring very high accuracy to separate the responses of the neurons associated 

with the cities correctly. Thus this data set is, perhaps, a difficult one. As Table 6.11 

illustrates, however, EPSILON's responses to the 10 city vectors were a good attempt at a 

hard problem. 

To provide more information about EPSILON's ability to discriminate between the 

the responses of neurons, the Kohonen neural network was applied to 3 progressively 

tougher artificial city sets. 

1 	4 City Data Set: The city coordinates form the vertices of a unit square 

{ (0,0),(0,1 .0),(1.0,0),(1.0,1.0) }. 

2 	5 City Data Set: Similar to 4 city data set but an extra city has been added at 

the centre of the square 

{ (0,0),(0,1.0),(0.5,0.5),(1.0,0),(1.0,1.0) }. 

3 	9 City Data Set: A 3 by 3 grid of cities {(0,0),(0,0.5),(0,1.0), 

(0.5,0),(0.5,0.5),(0.5,l.0), (1 .0,0),(1 .0,0.5),(1.0, 1.0) }. 

As can be seen from the above data sets, the cities have been positioned as far apart 

as possible to increase the separation between neurons' responses. This was to provide 

EPSILON with a better chance of deciphering the positions of cities in the tour correctly. 

For all three of these data sets EPSILON identified the same tour for the software weight 

set as the software simulation. 
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City Coordinates 
Best Match Neuron 

Software EPSILON 

0 0.4000,0.4439 5 6 

1 0.2439,0.1463 10 6 

2 0.1707,0.2293 8 6 

3 0.2293,03610 2 1 

4 0.5171,0.9414 28 26 

5 0.8732,0.6536 24 17 

6 0.6878,0.5219 21 21 

7 0.8488,0.3609 18 17 

8 0.6683,0.2536 15 13 

9 0.6195,0.2634 13 13 

Table 6.11 	A Comparison of the Software and EPSILON Best Match Neurons 

for the HopfieldlTank 10 city TSP Data Set. 

The two graphs in Figure 6.13 compare the ideal (software) response of the 9 city 

TSP weight set and the vectors for cities 5 and 9, with the response of EPSILON for the 

same weight and state data. The responses from neurons 0 and 15 of EPSILON were not 

used. The activation capacitor 0 has extra capacitance due to the external test point con-

nected to it. Neuron 15 was ruled out by the autobias procedure. 

To map the output pulse width range on to the 0-0.333 software output range, the 

mean of EPSILON responses for zero activity and maximum Kohonen activation values 

were calculated. This information was then used to convert the outputs from EPSILON 

into values which could be compared directly with the software outputs. Appendix 10 

details the variations between the EPSILON and software responses for cities 5 and 9. 

For the city 5 vector the match between the two responses varies from -16.2% to 

0%, whereas for the city 9 vector the match varies between -5.4% and +6.6%. This does 

not compare well with the 1.2% deviation between software and hardware results, 

reported for the Browniow switched-capacitor synapse [107]. There are four reasons for 

this significant difference in multiplication accuracy. 

1. The switched-capacitor synapse was fabricated on the more uniform ECDM20 

process. The results from SADMANN and EPSILON demonstrate that the 

ECPD15/1 process is twice as variant as the ECDM20 process. 

2 EPSILON's uniformity is degraded by the voltage gradient in the synapse 

power supplies caused by track resistance. 
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3 The multiplication accuracy of the Browniow implementation is for a column 

of synapses whereas the accuracy figures for EPSILON are for a whole device 

[122]. Thus the figures for the Browniow implementation do not include the 

variations in performance of the integrators at the end of each synaptic column. 

4 EPSILON is a complete system comprising synapse, integrator and linear/non-

linear transfer function. The Browniow implementation comprises only 

synapses and integrators. Thus the figures for the accuracy of EPSILON are 

for a complete system while the figures for the Browniow synapse are only for 

a partial system. As there are fewer components in the Brownlow implementa-

tion, the cumulative effects of mis-matches between transistors are less. 

Taking the above four factors into account, the performance of the Brownlow cir-

cuits and EPSILON are probably equivalent, but the differences between the implementa-

tions are such that any direct comparison is difficult. The distributed feedback synapse in 

EPSILON has two main advantages over the Brownlow synapse. 

1 	Cascadability 

2 Flexibility: both PFM and PWM signals can be used. 

Thus overall, the circuitry in EPSILON offers the better combination of process invari-

ance, linearity, flexibility and cascadability. 

The non-uniformity of the fabrication process within a die is the main factor limiting 

EPSILON's accuracy. The problems with controlling the effects of process variations 

have already been discussed at length in the previous section, with the conclusion that 

without resorting to process compensation circuitry within the synapse (large area 

penalty) the uniformity of multiplication cannot be significantly improved for this pro-

cess. 

Mother factor detrimental to the performance of EPSILON in this context, is the 

fact that the Kohonen network uses only a fraction of the available output dynamic range. 

The distribution of weight and state data in networks is such the occurrence of all state 

inputs and weights fully on is very rare. For example in the Kohonen network for the 

TSP the magnitude of the input vector is always 1, while the magnitude of the vector with 

all 3 inputs to the Kohonen network fully on (1.0) is 3. Thus only a third of the available 

dynamic range is used. The consequence of this limited use of the dynamic range is that 

EPSILON is required to distinguish accurately between neuron outputs differing by less 

than 1 ys. Thus the use of the Kohonen network is a very tough test of an analogue VLSI 

system. Bearing in mind the levels of process and measurement variation reported in the 

last section, EPSILON is performing remarkably well in being able to correctly deter-

mine the tours for the 4, 5 and 9 city data sets. 
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Figure 6.14 	Distributed Feedback Synapse with Switchable Buffer Stage. 

To exploit the full dynamic range of a neuron's output, the gain between the 

synapses and the voltage integrator should be variable. This can be achieved in one of 

three ways in the present version of EPSILON. 

1 	Increasing the reference currents for the voltage integrator. 

2 	Extending the length of the input pulse widths. 

3 	Changing the slope of the double-side ramp to make it more sensitive to the 

activity voltage. 

In all cases the amplification of the synaptic sum is taking place after the feedback 

operational amplifier has compressed the sum of the synaptic multiplications into its 1.2V 

output range. Consequently, the above 3 techniques amplify both the synaptic sum and 

noise component of the signal. As the double-sided ramp signal is calculated in software 

on the IBM PS2 and then downloaded to the FENICS, the slope of the ramp can be easily 

and quickly altered. For the present version of EPSILON, this is the most appropriate 

technique for increasing the exploitation of the available dynamic range. 

To avoid amplifying the noise at the feedback amplifier's output, the amplification of 

the synaptic sum has to take place before the sum is compressed by the feedback ampli-

fier into the ±0.6V voltage range which drives the voltage integrator. This can be 

achieved by adding transistor M6 to the synapse circuit (Figure 6.14) to make the buffer 

stage switchable. Analysing a column of these circuits in Figure 6.14 in a similar manner 
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to the analysis of the distributed feedback synapse in Section 4.2.2 yields: 

1 PTranS 
L(VTI - (V5 - VRef - AVT))  

Vouti 
_M &d  j 	 (6.1) 

+ VBI  + VR0f  + AVT 

where N is the number of synapses within the synaptic column and M is the number of 

buffer stages selected within the column. Decreasing the number of buffer stages 

switched in within a synaptic column, increases the sensitivity of the feedback amplifier's 

output to the value of the weight voltages. Thus the value of the synaptic sum can be 

amplified in a controllable manner. By enabling just one buffer stage per column, the 

effects of a single synapse can be measured accurately. This greatly improves the testa-

bility of a large scale implementation. 

6.5. Conclusions 

Unfortunately, while EPSILON is performing very well, it and probably most other 

analogue neural VLSI implementations on digital processes do not have the raw accuracy 

required to run the Kohonen neural network. Subsequent work by Hamilton [118] uses 

EPSILON to run a MLP network for vowel recognition. The Virtual Targets training 

algorithm [123] used to train the network successfully compensated for synaptic mis-

matches in a way not possible with the networks described here. 

The effects of noise within EPSILON and in the supporting system FENICS, meant 

that the results of synaptic multiplications were only repeatable to within ±0.3/4. Thus 

accuracy of the system is not only limited by the harmful effects of process variations but 

also by the noise level within the system. For the Hopfield]Tank and the Kohonen net-

works the effects of noise could prevent the networks from converging to a valid solution. 

In a MLP network, noise extends the training time of a network and limits the network's 

classification abilities. Only careful integrated circuit and PCB design can reduce the 

noise levels in the system, and the associated uncertainty in the results of the synaptic cal-

culations. 

The important conclusion is that unless the neural network actively compensates for 

process variations, the performance of analogue neural VLSI hardware fabricated on digi-

tal processes will be distinctly non-optimal. As a result, networks based on learning algo-

rithms such as the delta rule, back propagation and virtual targets will perform well on 

analogue VLSI hardware providing the VLSI implementation is included in the learning 

phase of the network. The HopfieldlTank and the Kohonen networks which depend on 

the synaptic calculations being uniform are not suited to analogue VLSI circuits imple-

mented on digital processes. Access to a well setup analogue process would improve 

matters, probably reducing synaptic variations to about 1%. Since the Kohonen network 

requires very high multiplication accuracy to be able to discriminate correctly between 
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neurons, even a synapse uniformity of 1% is probably not good enough. For such a pro-

cess the performance of analogue circuits is limited by the effects of noise rather than the 

effects of process variations. Thus the noise levels within the system are just as important 

as the process tolerances in determining the performance of an analogue VLSI neural 

implementation. 
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Conclusions and Discussion 

This chapter brings together the results of the software simulations, the hardware 

characterisation measurements and the Kohonen neural network implemented on ana-

logue VLSI hardware. Conclusions are drawn both about the performance of the Hop-

field/Tank and the Kohonen neural networks as optimisation techniques, and the process 

invariance of the fabricated analogue VLSI hardware. Recommendations are then made 

about future improvements to the VLSI circuitry. 

7.1. Neural Optimisation Network Simulations 

The software simulations of the HopfieldlTank and the Kohonen neural networks 

confirmed their abilities to produce optimal solutions to the Travelling Salesman Problem 

(TSP). The 3-way comparison between the performance of the above two networks and 

an exhaustive technique, applied to 100 randomly generated 10 city TSP data sets, proved 

very revealing: 

1 	The Kohonen network found the optimal tour for 73 of the city sets and in the 

remaining 27 cases the length of the tour was always better than the average of 

all possible valid tours for that city set. 

2 The HopfieldlTank network found the optimal tour 65 times, in 3 cases was not 

able to find any tour, while the remaining 32 tours were shorter than the aver-

age tour length. 

Thus in terms of tour quality the Kohonen neural network performs significantly 

better than the Hopfield/Tank network. The failure of the HopfieldlTank network to find 

any tour in 3 of the city sets illustrates the network's sensitivity to the energy function, 

which is partly derived from the coordinates of the cities. Importantly, when a tour was 

produced by either network it was always better than the mean of all possible valid tours. 

Thus while the networks did not always find the optimal tour they did in general produce 

an acceptable tour. 

The Kohonen neural network with a run time of 3s (Sun IPC Sparc Workstation) for 

the 10 city TSP was by far the fastest of the 3 techniques. The HopfieldlTank network 

required typically 24s for each of the 100 runs of the network while the exhaustive search 

took 75s to find all possible tours. 
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As the 10-city TSP was a relatively small optimisation problem it was important to 

examine how the performance of the three optimisation techniques changed as the prob-

lem size increased. Once again the Kohonen network was the clear winner. It found 

acceptable tours for problem sizes as large as 1000 cities and its computational load 

scales as the square of the number of cities. An exhaustive search will always find the 

optimum tour. However, for TSP sizes greater than 10 cities the compute time becomes 

prohibitive, as the computational load increases exponentially with the problem size. For 

example, an exhaustive search solution to the 50 city TSP would take 10 5 ' years, based 

on the timings for the 10 city TSP. Unfortunately as the problem size is scaled up the 

sensitivity of the HopfieldlTank network to its parameters is heightened. As a result per-

suading the network to converge to any solution becomes a major problem. 

The superior combination of speed, scalability and high quality tours of the Koho-

nen neural network gives it the clear edge in this 3 way comparison. However, because 

the Kohonen network and the TSP are very well matched, the Kohonen network may per-

form very differently on task assignment and scheduling problems. 

7.2. SADMANN and EPSILON 

The performance of the synapse and neuron circuits, designed to improve the unifor-

mity of synaptic multiplications, was initially proven in a testchip (SADMANN) before 

the large scale, generic neural building block device (EPSILON) was fabricated. This 

provided two sets of measurements for the distributed feedback synapse and voltage inte-

grator. 

1 	As expected the overall multiplication characteristic for the distributed feedback 

synapse and the voltage integrator was highly linear. 

2 The static measurements of the synapse in both SADMANN and EPSILON corre-

spond very well with the results of HSPICE Level 2 simulations. Thus any future 

design work based on this synapse can be simulated in HSPICE with a high degree 

of confidence. 

3 The voltage integrator in the SADMANN testchip had an offset voltage due to a sys-

tematic mis-match between different legs of the same current mirror (M4/M6 in Fig-

ure 4.15). No definite explanation for this offset could be found. However, a very 

similar version of the voltage integrator worked without any problems in EPSILON. 

The problem in SADMANN was thus thought to be attributable to non-identical lay-

outs around the transistors in the different legs of the current mirror. It appears that 

this created the systematic mis-match between transistors. 

4 	The automatic bias circuits produced the desired reference voltages but the values 

proved unrepresentative of the average response of the synaptic array. This, in 
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SADMANN, was due to the positioning of just one feedback cell at a corner of the 

array and in EPSILON to defective cells within the feedback column. To increase 

the match between the performance of feedback circuits and the synapses, there 

should have been a column of feedback cells positioned in the middle of the synap-

tic array. 

5 The combination of the long power tracks and the 20-4OmA synaptic current con-

sumption resulted in a voltage gradient in the power supply lines across the synaptic 

array. While this voltage drop was probably only 10-20mV, the effect on the 

synapse was significant due to its sensitivity to the value of its power supplies. Mul-

tiple power buses within the synaptic array to shorten track lengths and wider power 

tracks would alleviate this problem. 

6 	An oversight in the routing between the synaptic array and the pad ring resulted in 

the current set line for the feedback operational amplifier passing directly under all 

30 pulse input lines. The coupling effects from the large number of edges in a PFM 

signal resulted in a significant distortion of a synapse's multiplication characteristic. 

Better routing would have prevented this problem. 

Percentage Variation 
Device Process 

(Standard Deviation) 

Hamilton Synapse ECDM20 - 2.0jan ±18.1% 

Cascode Current Mirror 
ECDM20 - 2.0pm ±3.2% 

(M8/M7 - Figure 4.15)  

SADMANN ECDM20 - 2.0um ±6.1% 

EPSILON ECPD15/1 -1.5um ±12.4% 

Table 7.1 	The Percentage Variation in the Performance of the Hamilton 

Synapse, a Cascode Current Minor, SADMANN and EPSILON. 

7 	Since the ECDM20 process became unavailable for prototyping shortly after the 

fabrication of SADMANN, EPSILON was fabricated using ES2's ECPD15/1 pro-

cess. The disadvantage of the smaller geometry was that the tolerances of the pro-

cess were greater than the ECDM20 process; thus with the ECPD15/1 process there 

was greater potential for the mis-matching of transistors. As both the distributed 

feedback synapsp and the voltage integrator depend on the process within a single 

die remaining approximately constant, any mis-matches between transistors 

degrades the uniformity of the synaptic multiplications. Table 7.1 shows that the 

wider tolerances of the ECPD15/l process did result in a decrease in the consistency 
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of the synaptic multiplications. 

In SADMANIN the standard deviations of the static process variation measurements 

for the distributed feedback synapse and the voltage integrator were ±3.4% and 

±7.8%, respectively. Thus the overall ±6.1% variation is less than the sum of the 

parts. However, the static measurement does not take into account the tracking of 

the voltage integrator's gain by the activity capacitance whereas the dynamic mea-

surements do. This leads to the conclusion that the voltage integrator design suc-

cessfully reduced the effects of process variations. 

Comparing the above variation with the ±3.2% standard deviation for the variation 

in the M8/M7 cascode current mirror in the voltage integrator (SADMANN, Figure 

4.9) and the ±18.1% standard deviation for the variations in the Hamilton synapse 

[1181 (ECDM20), demonstrates the successful performance of the circuits in SAD-

150M 

7.3. The Performance of the Kohonen Network Running on Analogue Hardware 

Of the 4, 5, 9 and the HopfieldjTank 10 city problems, using weight sets evolved in 

software and downloaded to FENICS, EPSILON was only able to determine the correct 

tour order, in the 4, 5 and 9 city cases. The failure to correctly resolve the 10 city tour 

was due to two reasons: 

The mis-matches in synaptic multiplications masked small differences between 

neurons. The software/hardware comparison in Section 6.4 gave the worst 

case match between the response of one of EPSILON's neurons and its corre-

sponding software neuron as 16.2%. However a mis-match of 5% is more rep-

resentative of the other neurons' responses (Appendix 10). 

2 The output of the Kohonen network only used a third of the available 0-20ps 

output dynamic range. Thus the full accuracy of EPSILON was not exploited. 

A close comparison of the actual and the expected outputs from EPSILON revealed 

that it was required to differentiate accurately between neuron responses differing by less 

than lys. The Kohonen network was therefore a very tough test of the capabilities of 

EPSILON, and it was performing very well in determining the 4, 5 and 9 city tours cor-

rectly. On the basis of these results EPSILON does not have the very high accuracy 

required to implement a medium to large scale Kohonen network. 

The cycle time to load weights and states to FENICS, and then to read the output 

states, was about 5s. The main bottleneck was the RS232 link between the host computer 

and FENTCS. Even with the use of a fast data rate (19200 baud), the transfer of 3600 

bytes of weight data and 2000 bytes of state data every cycle via the RS232 link was still 

relatively slow. Thus the 20ps calculation period of EPSILON was insignificant 
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compared with the system overheads. In the subsequent MLP work by Alister Hamilton 

[118], the cycle time was improved by connecting the FENTCS state bus to the parallel JO 

card in the IBM PS2. This gave a data transfer rate of 40Kbytes/s for state data and a rate 

of 20Kbytes/s for weight data, emphasising the point that the performance of any inte-

grated circuit is strongly affected by the architecture of the system around it. 
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Figure 7.1 	Modifications to Distributed Feedback Synapse. 

7.4. Future Work 

The investigation into the performance of EPSILON running the Kohonen and Hop-

field/Tank neural networks is presently incomplete. Further work is required to determine 

how the Kohonen neural network performs when EPSILON is used during the self-

organising phase of the network. To complete the comparison, the performance of the 

HopfieldlTank network implemented on EPSILON also needs to be examined. 
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There are two areas in which the design of the distributed feedback synapse can be 

improved: 

1 	Testability. 

2 4 Quadrant Multiplication. 

The first problem stems from the difficulty, during the testing of EPSILON, to 

examine the performance of a single synapse. If the buffer stages within a column of dis-

tributed feedback synapses are individually switchable (M4,M5 and M6 in Figure 7.1), 

then the sensitivity of the operational amplifier output voltage to the synaptic weights can 

be varied. By enabling only one buffer stage within a column the performance of a single 

synapse can be measured accurately, allowing every synapse to be tested and charac-

terised. The ability to increase the sensitivity of the operational amplifier output allows 

networks like the Kohonen neural network, which normally use only a fraction of the 

available output range, to use all of it, thus increasing accuracy and reducing the effects 

of noise. 

VTIJO VTiji 

30 Output Neurons 	30 Output Neurons 

Two 120 by 15 "TTij  Arrays 	Four 30 by 30 Vj- Arrays 

Figure 7.2 	A Faster Architecture for Loading Synaptic Weights. 
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The second limitation of the distributed feedback synapse in its present form is that 

the synapse only performs 2 quadrant multiplication. This is not a restriction for the 

Hopfield)Tank, Kohonen or MLP networks as they all have unipolar states, 0 ! ~ yj  !~ 1. 0. 

Full 4 quadrant multiplication is however necessary for the calculation of the error signals 

during the training phase of an MLP neural network. Thus to implement MLP learning 

algorithms on-chip a full 4 quadrant multiplier circuit is required. A simple 4 quadrant 

multiplier consists of two transconductance multipliers (Figure 7.1), one driven by the 

weight voltage, VTij , and the second by the voltage V rjm which is the "mirror" of VT ij  

around the zero weight voltage, VTIJZ [124]. Due to the linearity of the multipliers, the 2 

currents will have the same magnitude but opposite directions. By using the sign of the 

input states to switch in one or other of these 2 currents, 4 quadrant multiplication can be 

achieved. The sign of the state inputs is encoded as a sign bit which is added as a header 

to each of the PWM or PPM bit streams stored in the SRAM. The value of this sign 

bit is latched within the control logic and directs the following pulse signal to either the 

positive or negative lines. As only one set of control logic is required per input the extra 

silicon area is small. The synapse in EPSILON is capable of performing 4 quadrant mul-

tiplication by pairing up adjacent input lines and applying the pulse signal to the appro-

priate line while keeping the other input switched off. 

Mis-match between the two transconductance multiplier characteristics due to the 

effects of process variations will cause the negative and positive phases of the state inputs 

to become unbalanced. To avoid this problem, the capacitors storing the weight voltage 

and its mirror voltage can be switched between the same transconductance multiplier. 

Careful design is required however if charge sharing problems are to be avoided. 

The relatively slow cycle time of the FENICS system is due to the large quantities of 

weight and state data which are transferred between the IBM PS2 and the FENICS board 

during each cycle [118]. 

The 3600 element weight array is the largest contributor to this overhead. Down-

loading this array via the parallel JO card takes 180ms. An additional 3.6ms is required 

to read the weights into EPSILON. The use of machine code inserts for the data transfer 

across the parallel JO/state-bus link would double the data transfer rate for weights from 

20Kbytes/s to 4oKbytes/s. Even with this increased data rate, 90ms is still required for 

downloading weights. To improve further on these figures the weight array within 

EPSILON should be reorganised. At present the 120x30 synaptic array is split into two 

120x15 arrays for weighting loading. A more intelligent split would have been to organ-

ise EPSILON into four 3000 arrays, each with an external programming line (Figure 

7.2). If the network running on EPSILON requires only 30 inputs, then the 4 banks of 30 

inputs and the 4 weight arrays would operate in parallel. The advantage is that now only 

a 30 by 30 weight array is downloaded, quartering both the data transfer time and the 
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time to read the weights into EPSILON. Similarly if only 60 of the 120 inputs are 

needed, the weight load times are halved. 

While the use of SRAM to store the pulse signals is simple, it incurs a large data 

transfer overhead. For example, to load 30 pulse widths down to FENTCS, approximately 

1Kbyte t of data must be transferred. A much faster way of generating pulse signals 

would be to use counter based circuits. The 0 to 255 state value loaded into the counter 

would determine either the pulse frequency or the pulse width of the pulse stream pro-

duced by the counter. Similar circuitry can be used on the outputs to convert the output 

pulse signals into a single byte state value. This would speed up the transfer of state data 

by a factor of 255. Thus the 25ms presently taken to transfer 1Kbyte of state data via the 

parallel JO port would be reduced to 0.lms. The disadvantage is that, as each of the 30 

circuits would require three or four 4-bit counters, the number of components required is 

large. The use of Field Programmable Gate Arrays (FPGA5) would greatly reduce the 

PCB area. 

7.5. Other Work 

Appendix 11 outlines work carried out to combine the process invariance of dis-

tributed feedback synapse with the fully analogue nature of the transconductance multi-

pliers described in Section 3.3.3. The main advantage of these circuits is that the compu-

tation speed is limited only by the speed of the operational amplifiers used. HSPICE sim-

ulations showed that a synapse array based on these circuits would settle in 5-10gs. Thus 

this continuous synapse has a faster computation rate than the distributed feedback 

synapse while still retaining the theoretical process invariance. Unfortunately, due to 

funding problems, the testchip containing these circuits was not fabricated. 

7.6. Final Remarks 

The main objective of the work, to find a means of increasing the synapse's immu-

nity to process variations in comparison with a previous pulse-based synapse [118], was 

achieved. The distributed feedback synapse performed very well, giving a highly linear 

multiplication characteristic on a process which was optimised for digital rather than ana-

logue circuits. 

The performance of the circuits within EPSILON could be further enhanced by the 

following alterations: 

1 	The addition of switchable buffer stages to aid testability and allow the gain of 

a synaptic column to be varied. 

P 30bit streamsx256 bits of data =7680 bits c. 1KByte 
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2 	The addition of a sign bit to pulse signals and control logic to enable the 

synapse to perform 4 quadrant multiplication. 

3 The use of multiple power buses to reduce the voltage gradient in the synapse 

power supplies. 

4 	Better routing of the current set lines for the current mirrors in the feedback 

amplifiers to reduce the effects of coupling. 

Nevertheless, the wide process tolerances did cause inconsistences in the synaptic 

multiplication. Unless these effects are compensated for, the performance of analogue 

circuits fabricated on a digital process will be inferior to a software implementation. 

When implementing a neural network such as the Kohonen network which requires 

accurate computation EPSILON's process problems degraded the system's performance. 

For such a network, a feedback circuit within each synapse would counteract process 

problems but would greatly increase the synapse area, thus sacrificing the compactness of 

analogue circuit techniques. It therefore appears that a well setup analogue process is 

necessary before the circuits in EPSILON can provide the uniformity of multiplication 

required to perform at software levels. 

Neural networks based on learning algorithms such as the delta rule, back propaga-

tion and virtual targets are better suited to implementation on EPSILON, as the learning 

phase of the network will automatically compensate for the effects of process variations. 

Preliminary results using EPSILON to implement an MLP network for vowel recognition 

produced more promising results [118]. The virtual targets learning algorithm success-

fully trained the network to recognise 22 different vowel patterns. 
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Appendix 1 

Results for the 100 Randomly Generated 10 City Data Sets 

Brute Force 
City Set Kohonen 

Min Mean Max Mm Mean Max 

city10_0 2.691 4.760 6.288 2.691 2.934 3.949 2.691 

ran1O_00 2.434 3.886 4.920 2.434 2.581 3.151 2.450 

ran1O_01 2.743 4.366 5.433 2.743 2.955 3.323 2.743 

ran10_02 3.300 5.758 7.718 3.310 3.523 4.126 3.346 

ranl0_03 2.809 5.088 6.722 2.809 3.154 4.313 2.889 

ranl0_04 2.5 16 4.978 6.688 2.5 16 2.856 4.046 2.516 

ran1O_05 2.986 5.490 7.209 2.986 3.210 4.073 2.986 

ran1O_06 3.290 5.898 7.706 3.394 3.583 3.939 3.290 

ran10_07 3.409 5.963 7.764 3.409 3.594 4.495 3.409 

ran10_08 3.246 6.081 8.185 3.252 3.437 4.170 3.252 

ranl0_09 3.203 5.374 6.936 3.262 3.455 3.892 3.203 



Appendix 1 

Brute Force HopfieldiTank 
City Set 

Mm Mean Max Mm Mean Max 
Kohonen 

ranlO_10 2.897 5.153 6.807 2.897 3.219 3.896 2.897 

ranlO_li 2.888 5.091 6.714 2.888 3.226 3.957 2.888 

ranlO2 2.929 5.490 7.273 3.055 3.276 3.954 2.929 

ranlO3 2.624 4.239 5.375 2.624 2.812 3.101 2.624 

ranl0_14 3.161 5.130 6.543 3.237 3.420 3.576 3.161 

ranlO_15 2.635 4.065 5.135 2.635 2.923 3.354 2.635 

ranlo_16 3.047 5.252 6.680 3.047 3.363 3.737 3.047 

ran l0_17 2.469 4.939 6.772 2.503 2.705 3.169 2.477 

ranl0_18 3.400 6.082 8.156 3.431 3.670 4.065 3.400 

ranlO9 2.955 4.853 6.140 2.955 3.261 3.813 3.176 

ran 1020 2.634 5.116 6.893 2.689 2.961 3.289 2.648 

ran 1021 3.426 5.714 7.364 3.590 3.693 3.749 3.543 

ran 1022 1.758 3.367 4.479 1.758 2.113 2.739 1.758 

ranl0_23 2.433 4.523 6.028 2.433 2.786 3.302 2.433 

ran 1024 2.406 4.540 5.914 2.406 2.658 4.205 2.406 

ran 1025 3.357 5.914 7.806 3.357 3.460 3.666 3.357 

ranl0_26 2.753 5.090 6.738 2.753 3.054 3.378 2.866 

ran 1027 2.732 5.433 7.309 2.732 3.030 3.280 2.782 

ranlO_28 2.885 6.120 8.483 2.885 3.273 4.012 2.885 

ranlO29 3.547 5.697 7.239 3.580 3.680 3.780 3.579 

ran 1030 2.810 4.709 6.177 3.149 3.155 3.160 2.818 

ranlo_31 2.657 5.406 7.318 2.657 2.844 3.292 2.657 

ran 1032 3.501 5.747 7.253 - - - 3.501 

ranlO_33 3.004 5.408 7.176 3.004 3.203 3.895 3.004 

ran 1034 2.579 5.066 6.639 2.768 2.885 3.005 2.579 

ranl0_35 2.911 5.122 6.817 2.911 2.999 3.295 2.911 

ranlO_36 2.575 4.265 5.290 2.575 2.869 3.452 2.590 

ranlo_37 2.397 4.565 6.033 2.397 2.703 3.239 2.397 

ranlo_38 2.881 5.106 6.896 3.051 3.279 3.748 3.051 

ranlO_39 2.263 1 	4.163 5.601 2.263 2.563 2.994 2.263 
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Brute Force HopfieldiTank 
City Set 

M.in Mean Max Mm I Mean I Max 
Kohonen 

ranlO_40 2.853 4.891 6.250 2.854 3.006 3.270 2.872 

ranlO_41 3.518 5.211 6.471 3.631 3.631 3.631 3.518 

ranlO_42 3.302 5.809 7.679 3.385 3.654 3.970 3.302 

ranlo_43 3.193 5.914 7.945 3.193 3.324 3.914 3.193 

ranl0_44 2.496 4.538 5.990 2.496 2.670 2.845 2.496 

ranl0_45 3.527 6.840 9.196 3.527 3.585 3.948 3.527 

ranlO_46 2.339 4.506 6.048 2.339 2.616 3.414 2.339 

ranl0_47 3.323 5.229 6.443 3.340 3.482 3.634 3.340 

fi10_48 2.905 5.725 7.714 2.905 3.082 3.392 2.905 

ranl0_49 3.274 5.418 7.063 3.274 3.589 4.272 3.335 

ranl0_50 2.495 5.051 6.875 2.495 2.774 3.210 2.495 

ranlO_51 2.463 4.573 6.163 2.463 2.675 3.144 2.463 

ranl0_52 1.828 3.312 4.331 1.828 2.171 2.751 1.828 

ranl0_53 2.477 3.836 4.872 2.751 2.757 2.763 2.477 

ranlo_54 3.004 4.878 6.256 3.012 3.300 3.673 3.004 

ranl0_55 3.030 5.109 6.607 3.075 3.439 3.840 3.055 

ranlO_56 2.722 5.178 7.031 2.722 3.018 3.517 2.722 

ranl0_57 3.298 5.261 6.812 3.354 3.412 3.445 3.354 

ranl0_58 3.001 5.613 7.417 3.001 3.314 4.419 3.001 

ranlO9 2.607 4.405 5.595 2.647 2.853 3.113 2.628 

ranlO60 3.286 5.318 6.700 3.342 3.600 3.960 3.343 

ranlo_61 2.817 4.655 5.911 2.817 3.151 3.366 2.817 

ranlO_62 3.346 5.653 7.273 3.346 3.698 4.449 3.346 

ranlo_63 2.647 4.154 5.286 2.647 2.857 3.457 2.647 

ranlO64 2.411 4.697 6.259 2.411 2.654 3.203 2.411 

ranl0_65 2.560 4.248 5.374 2.631 2.937 3.245 2.560 

ranl0_66 2.861 4.821 6.377 2.873 3.207 3.541 2.861 

ranlO_67 2.704 4.563 6.050 2.704 2.931 3.579 2.852 

ranlO_68 2.485 4.718 6.185 2.485 2.743 3.111 2.485 

ranlO69 2.749 5.691 7.886 2.775 3.261 4.054 2.749 
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Brute Force HopfieldlTank 
City Set 

.Min Mean Max Mm Mean Max 
Kohonen 

ranlo_70 3.206 5.610 7.355 3.206 3.421 3.973 3.206 

ranl0_71 2.589 4.029 5.115 2.613 2.862 3.420 2.589 

ranl0_72 2.907 5.883 8.033 - - - 2.926 

ranl0_73 2.515 4.804 6.491 2.515 2.704 3.588 2.635 

ranl0_74 2.512 4.654 6.260 2.512 2.873 3.561 2.512 

ranl0_75 3.105 6.168 8.349 3.105 3.358 4.347 3.105 

ranl0_76 2.882 5.026 6.515 2.901 3.123 3.443 2.882 

ranlO_77 3.415 5.165 6.661 - - - 3.415 

ranl0_78 3.062 5.340 6.881 3.084 3.365 3.610 3.062 

ranlo_79 3.252 5.887 7.670 3.252 3.476 3.987 3.252 

ranlo_80 3.325 5.860 7.556 3.326 3.477 3.998 3.326 

ranlO_81 2.684 5.014 6.602 2.684 2.930 3.412 2.736 

ranl0_82 2.621 5.112 6.860 2.621 2.829 3.281 2.621 

ranl0_83 2.857 4.946 6.508 2.857 3.107 3.825 3.021 

ran 1084 2.893 5.986 8.081 2.893 3.105 3.662 2.893 

ranl0_85 2.981 5.140 6.735 2.981 3.228 4.238 2.981 

ranlO86 3.016 5.382 7.088 3.050 3.188 3.813 3.016 

ranl0_87 2.937 5.307 7.127 2.937 3.093 3.763 2.937 

ranlO88 3.104 5.501 7.338 3.104 3.402 3.926 3.104 

ranl0_89 2.768 5.636 7.639 2.768 3.158 3.914 2.768 

ranl0_90 2.707 5.286 7.184 2.707 3.126 3.748 2.707 

ranl0_91 3.170 6.072 8.138 3.170 3.521 4.272 3.170 

ranlO92 2.694 4.680 6.165 2.694 2.990 3.640 2.694 

ranl0_93 2.215 4.366 5.899 2.215 2.535 3.155 2.215 

ranlO_94 3.226 5.517 7.167 3.226 3.368 3.687 3.226 

ranl0_95 3.072 5.033 6.381 3.072 3.482 4.248 3.072 

ranl0_96 2.715 4.966 6.436 2.715 3.011 3.621 2.715 

ranl0_97 2.048 3.485 4.538 2.048 2.443 2.868 2.048 

ranl0_98 2.428 4.744 6.418 2.428 2.756 3.305 2.428 

ranl0_99 2.566 4.420 5.655 2.566 2.800 3.124 2.566 
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Appendix 2 

The Stirling's Approximation for Factorials of Large Numbers 

For numbers larger than 69 approximations have to be made to estimate the value of 

the factorials of large positive numbers. The Gamma function of (n+ 1) is equal to n fac-

torial. 

n! =f(n+l) 

Using the Stirling's Approximation to the Gamma function [1] gives 

Example: 1000! 

1000! 	= 	'42000ir1 1000 
1000 

= 	79.267(367. g8)0C 
100 1000  

10 °°  

References 

1. E. Kreyszig, in Advanced Engineering Mathematics (Fifth Edition), John Wiley & 

Sons, 1983. 
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On-Chip Learning Implementations 

The heavy area penalty incurred by distributing signals globally within a synaptic 

array encourages the implementation of learning algorithms which use local information 

such as the presynaptic and postsynaptic states to modify a synapse's weight. As a result 

most of the implementations of on-chip learning use local algorithms such as Hebbian 

and Boltzmann learning rather than Back-Propagation which requires error signals to be 

passed between layers. The use of Boltzmann learning further simplifies the implementa-

tion as it has binary neural states. 

12 

Vdd 

Circuit 

VTJI  xV, 	 r 
ACP- 

Vj 
I I 	I 	 Weight 	(n,j 
L._1  

MW.Circuit 

Vb TI ++ -- 
UJ_ Vivj 

VTIJ XV 

Figure A3.1 	Schematic of Arima et al Synapse Cell 

A3.1 Mitsubishi Boltzmann 

Arima eta! [1, 2] have recently implemented a very large Boltzmann neural network 

in silicon. The combination of 1pm CMOS technology and the Boltzmann algorithm's 

binary neural states, enabled them to squeeze 336 neurons and 28000 synapses into a 

14.5mm by 14.5mm die size. The Branch-Neuron-Unit (BNU) architecture used enables 

200 such devices to be cascaded together creating a true, massively parallel, neural net-

work. 

To keep the synapse design simple (Figure All) the mean field approximation of 

the Boltzmann weight update algorithm is used. 
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Figure A3.2 	Schematic of Arima et al Branch Neuron Unit 

AVT] = 	- v(vj -J 	(A3.1) 

Two charge pump circuits either increment or decrement the voltage stored on the 

the weight capacitor, Cl, under the control of the above equation. The learning is carried 

out in 2 distinct phases. During the first phase the input and output neurons are set to 

their desired values, y and Vi '. The NAND gate in the learning control circuit carries 

out the required multiplication states, the result of which gates the pulses applied to the 

ACP + line. During the second phase of learning inputs Vf, remain fixed but the outputs 

are allowed to settle to their own values, V(. Again the NAND gate carries out the 

required state multiplication but this time it is the ACP - line which is pulsed, decrement-

ing the weight voltage as appropriate. Thus the net weight change is as defined in Equa-

tion A3.1. The resultant weight voltage controls the current of 2 current sources, repre-

senting the weights V. j  and VTJI respectively. Their currents are switched in and out by 

Vi  and V to give the desired V Tij  X V and VTji X V1  multiplications. 

The sum of the synaptic currents within a row or column is converted into a voltage 

via the resistor RL in the Branch Neuron Unit (Figure A3.2). The neural activity obtained 

forms one input to the comparator. The second input, VR eI, determines the neuron's 

threshold voltage. By applying a damped oscillating signal to this input, simulated 

annealing can be implemented. Unfortunately, due to the presence of only 4 VRf  lines 

per device, many of the neurons will have exactly the same noise source and as a result 

will be correlated. Arima et al are presently researching the implications of this pseu-

dosimulated annealing process. 

A major limitation of this chip is that storing the learned weight capacitively 

requires the chip to be retrained on a regular basis to correct the capacitive decay of the 

weights. Also, the size of the weight increments is about 10% of their full range values 



Appendix 3 	 170 

which may not be accurate enough for stable convergence in some multilayer network 

architectures. 

A3.2 Bellcore Boltzmann 

Alspector et al [3-6] have concentrated on developing multiple, on-chip, uncorre-

lated noise sources based on a single linear feedback shift register (LFSR). The use of 

one LFSR per chip rather than one per neuron allows a much higher level of integration 

on a single chip. A cascadable 32-neuron chip containing 496 bidirectional synapses has 

been fabricated. The synapses store the 5-bit weights digitally on flip-flops. These flip-

flops are driven from an up/down counter which is incremented/decremented according to 

the correlation between the neuron states that intersect at that synapse. The digital 

weights are converted into a current via circuitry similar to the MDAC circuitry men-

tioned in Section 2.3.4. As in the Arima chip there are two phases during learning, 

teacher and student. 

The chip has successfully solved the parity and input replication problems achieving 

a computation rate of 1 OOMCPS for both learning and evaluation. In general, the limited 

5-bit accuracy of the synaptic weights did not affect the performance of the network. 

A3.3 Manitoba Hebbian 

The wide-range Gilbert multiplier is the basis of the Hebbian and mean field learn-

ing chips designed by Schneider et al [7-10]. As the analogue weight voltages are stored 

on a capacitor, weight decay is a problem but the consequent need to retrain periodically 

is promoted as an advantage since it should compensate for drifts in circuit parameters. 
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Appendix 4 

Static Measurements of SADMANN 1010PI 

V0ffi 
- VOz (V) 

VTIJ 

HSPICE Std 
(V) Nlin Variation 

L2-Typ  Dev 

0.00 -1.11 -1.13 -1.06 -1.02 +7.51/o/-10.8% ±3.6% 

0.25 -1.11 -1.12 -1.06 -1.01 -i-8.8 1/o/-9.4% ±3.5% 

0.50 -1.11 -1.12 -1.06 -1.01 +8.3%f-9.9% ±3.5% 

0.75 -1.11 -1.12 -1.06 -1.01 +81 11o/-10.1% ±35% 

1.00 -1.11 -1.11 -1.06 -1.01 +7.80/o/-8.8% ±3.5% 

1.25 -1.11 -1.06 -1.00 -0.96 -i-7.30/o/-9.3% ±3.3% 

1.50 -1.03 -0.97 -0.93 -0.89 +6.501o/-6.8% ±2.8% 

1.75 -0.90 -0.85 -0.81 -0.78 +4.3%/-7.3% ±2.5% 

2.00 -0.75 -0.72 -0.68 -0.65 +4.5%/-7.1% ±23% 

2.25 -0.61 -0.59 -0.55 -0.53 +3.1 0/o/-6.8% ±2.2% 

2.50 -0.49 -0.47 -0.44 -0.41 +4.39o/-5.6% ±2.1% 

2.75 -0.38 -0.36 -0.32 -0.30 +4.001o/-6.0% ±2.4% 

3.00 -0.26 -0.25 -0.21 -0.18 +5.5%/-6.1% ±2.4% 

3.25 -0.14 -0.15 -0.10 -0.07 +5.1 11o/-8.1% ±2.5% 

3.50 -0.03 -0.04 0.00 0.04 +6.1%/-7.1% ±2.6% 

3.75 0.08 0.06 0.11 0.14 +5.5961-7.8% ±2.7% 

4.00 0.20 0.16 0.21 0.25 +7.0961-7.9% ±2.8% 

4.25 0.31 0.26 0.31 0.35 +7.0%/-7.9% ±3.0% 

4.50 0.42 0.35 0.41 0.45 +6.8%/-9.8% ±3.1% 

4.75 0.53 0.45 0.51 0.55 +7.396/-9.3% ±33% 

5.00 0.64 0.54 0.60 0.66 +9.30/o/-10.6% ±3.4% 

Table A4.1 	The Percentage Variations of the VTI] to V01 - Voz  Characteristic. 

All percentages are taken relative to the mean response for 

VTI=5.00V (0.60V). 
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lj (pA) 

vout i - voz 
HSPICE Std 

CV) Min Mean Max Variation 
L2-Typ  Dev 

-1.00 -0.47 -0.49 -0.46 -0.43 +6.3%I-6.6% ±3.2% 

-0.90 -0.45 -0.47 -0.43 -0.40 +7.0%/-7.2% ±3.3% 

-0.80 -0.41 -0.43 -0.39 -0.36 +6.80/o/-8.5% ±3.5% 

-0.70 -0.37 -0.39 -0.34 -0.32 +6.1 0/o/-8.7% ±3.2% 

-0.60 -0.33 -0.33 -0.29 -0.26 +6.60/o/-9.4% ±3.6% 

-0.50 -0.28 -0.27 -0.22 -0.19 +7.00/o/-9.8% ±3.9% 

-0.40 -0.23 -0.20 -0.15 -0.12 +7.20/o/-10.0% ±4.1% 

-0.30 -0.17 -0.13 -0.08 -0.04 +8.50/o/-10.9% ±4.4% 

-0.20 -0.12 -0.06 -0.00 0.04 +9.40/o/-11.8% ±4.8% 

-0.10 -0.06 0.02 0.08 0.12 +10.0961-12.7% ±5.1% 

0.00 0.0 0.10 0.16 0.21 +10.9961-13.5% ±5.4% 

0.10 0.06 0.17 0.24 0.29 +11.80/o/-14.2% ±5.8% 

0.20 0.12 0.25 0.31 0.37 +12.4961-14.6% ±6.0% 

0.30 0.17 0.32 0.39 0.45 +13.1 0/o/-15.3% ±6.4% 

0.40 0.23 0.39 0.46 0.52 +14.20/o/-15.7% ±6.9% 

0.50 0.28 0.45 0.53 0.59 +14.6%/-16.4% ±7.0% 

0.60 0.33 0.51 0.58 0.65 +15.1%/-16.6% ±7.2% 

0.70 0.37 0.55 0.63 0.70 +15.30/oJ-17.0% ±7.4% 

0.80 0.41 0.58 0.67 0.74 +15.5961-17.5% ±7.4% 

0.90 0.45 0.61 0.69 0.76 +15.1961-18.3% ±73% 

1.00 0.47 0.63 0.71 0.79 +16.8%/-18.1% ±7.8% 

Table A4.2 	The Percentage Variations of the (V0111 - Vø) to T. Characteristic. 

All percentages are taken relative to the mean response for 

(V - Voz)1.00V (-0.46pA). 
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Appendix 5 

Dynamic Measurements of SADMANN 1O1OPI 

dX 1/dt (V/ms) Measurement Accuracy 

VTIJ 

(V) Std Std 
Mm Mean Max Variation Variation 

Dev Dev 

1.11 -8.36 -7.67 -6.79 +17.60/o/-14.1% ±6.7% -i-4.20/o/-3.2% ±1.4% 

1.31 -8.31 -7.67 -6.90 +15.40/o/-13.0% ±6.6% -i-4.001o/-3.5% ±1.6% 

1.50 -8.23 -7.52 -6.74 +15.80/o/-14.3% ±6.4% +3.90/o/-3.6% ±1.6% 

1.70 -7.64 -6.98 -6.28 +14.1 0/o/-13.2% ±6.3% +3.81/o/-2.9% ±1.5% 

1.89 -6.87 -6.25 -5.58 +13.60/o/-12.6% ±6.0% +3.501o/-3.0% ±1.4% 

2.08 -6.12 -5.45 -4.84 +12.20/o/-13.7% ±5.6% +3.00/o/-3.7% ±1.4% 

2.28 -5.28 -4.66 -4.05 +12.3%/-12.4% ±5.2% +4.20/o/-3.1% ±1.8% 

2.47 -4.46 -3.90 -3.31 +11.9%/-11.2% ±4.8% +3.00/o/-3.9% ±1.6% 

2.67 -3.71 -3.15 -2.61 +10.8%/-11.2% ±4.6% +3.20/o/-2.9% ±1.3% 

2.86 -2.91 -2.43 -1.90 +10.80/o/-9.5% ±4.2% +2.59'o/-3.4% ±1.2% 

3.06 -2.27 -1.72 -1.24 +9.80/o/-11.1% ±4.1% +2.5%/-3.3% ±1.2% 

3.25 -1.52 -1.03 -0.48 -s-11.1 0/o/-9.9% ±4.1% +14.7%/-2.9% ±3.1% 

3.45 -0.90 -0.37 -0.03 +6.90/o/-10.7% ±3.6% +2.40/o/-3.0% ±1.2% 

3.64 0.12 0.45 1.13 +13.60/oI-6.8% ±3.5% +2.90/o/-2.4% ±1.1% 

3.84 0.56 1.08 1.77 .i-13.9%/-10.5% ±4.4% +3.3%/-2.6% ±1.2% 

4.03 1.16 1.75 2.48 +14.7%/-11.9% ±4.6% +2.70/o/-3.8% ±1.3% 

4.22 1.81 2.40 3.23 -s-16.6%/-12.0% ±4.7% +3.101o/-3.5% ±1.4% 

4.42 2.43 3.08 3.86 +15.71/o/-13.1% ±5.0% +5.901o/-5.3% ±2.8% 

4.61 3.26 3.72 4.41 +13.90/o/-9.3% ±4.5% +4.2%/-7.8% ±1.9% 

4.81 3.79 4.32 5.05 -s-14.6%/-10.8% ±4.8% +2.8%/-6.6% ±1.7% 

5.00 4.35 4.95 5.75 +16.0%/-12.3% ±5.2% -s-4.2%/-6.0% ±1.7% 

Table AS.! 	The Percentage Variations of the VTjj to dXIdt Characteristic 

(S=50%). All percentages are taken relative to the mean response 

for VTIJ=5.00V and S=5.0%. 
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dXjdt (V/ms) Measurement Accuracy 

Si  

(%) Std Std 
Mm Mean Max Variation Variation 

Dev Dev 

0 -1.80 -1.09 -0.61 +9.71/o/-14.3% ±4.0% +2.80/o/-2.6% ±1.0% 

2 -1.97 -1.28 -0.79 -i-9.90/o/-14.0% ±4.0% +2.50/o/-2.3% ±1.1% 

4 -2.18 -1.46 -0.91 +11.1%/-14.4% ±4.0% +3.0%/-2.2% ±1.1% 

6 -2.43 -1.67 -1.15 +10.401o/-15.5% ±4.2% +2.1%/-2.2% ±1.0% 

8 -2.62 -1.85 -1.36 +9.81/o/-15.7% ±4.2% +2.8%/-2.7% ±1.1% 

10 -2.82 -2.04 -1.52 i-10.5 01o/-15.7% ±4.2% +2.71/oJ-2.5%  ±1.1% 

12 -3.03 -2.24 -1.74 +10.1 01o/-16.0% ±4.3% +2.3 0/o/-2.5% ±1.1% 

14 -3.31 -2.45 -1.91 +11.00/o/-17.4% ±4.4% +3.1 0/o/-3.3% ±1.2% 

16 -3.47 -2.61 -2.11 +10.21/o/-17.3% ±4.5% +3.1 0/o/-3.4% ±1.3% 

18 -3.67 -2.83 -2.34 +9.99o/-17.1% ±4.5% +2.80/o/-3.1% ±1.2% 

20 -3.86 -3.00 -2.50 +10.01/o/-17.4% ±4.6% +3.00/o/-2.6% ±1.1% 

22 -4.08 -3.22 -2.69 +10.70/o/-17.4% ±4.5% +3.80/o/-2.8% ±1.3% 

24 -4.37 -3.48 -2.85 +12.90/o/-17.8% ±4.7% +2.60/o/-2.5% ±1.2% 

26 -4.48 -3.64 -3.12 +10.5 01o/-17.0% ±4.7% +2.70/o/-2.9% ±1.1% 

28 -4.69 -3.82 -3.28 +10.80/o/-17.7% ±4.8% +3.7%/-4.4% ±2.3% 

30 -4.94 -4.02 -3.49 +10.71/o/-18.5% ±4.9% +2.50/o/-3.2% ±1.2% 

32 -5.23 -4.28 -3.72 +11.30/o/-19.1% ±5.1% +3.70/o/-2.5% ±1.2% 

34 -5.56 -4.57 -4.00 +11.40/o/-20.0% ±5.2% +3.4%/-3.1% ±1.1% 

36 -5.51 -4.56 -4.01 +11.20/o/-19.1% ±5.1% +2.60/o/-2.9% ±1.1% 

38 -5.93 -4.92 -4.30 +12.41/o/-20.3% ±5.5% +3.50/o/-2.5% ±1.2% 

40 -5.93 -4.92 -4.39 +10.8 0/o/-20.4% ±5.5% +2.61/o/-2.5% ±1.2% 

42 -6.41 -5.37 -4.71 +13.21/o/-21.1% ±5.8% -i-2.87o/-2.6% ±1.1% 

44 -6.39 -5.36 -4.82 +11.00/o/-20.8% ±5.8% +2.90/o/-2.6% ±1.2% 

46 -7.02 -5.93 -5.31 +12.60/o/-22.1% ±6.1% +3.50/o/-3.6% ±1.3% 

48 -7.06 -5.93 -5.30 +12.60/o/-22.8% ±6.0% +3.00/o/-2.6% ±1.3% 

50 -7.02 1 	-5.93 -5.25 +13.60/o/-22.2% ±6.1% +2.80/o/-3.2% ±1.4% 

Table A5.2 	The Percentage Variations of the S to dX 4/dt Characteristic 

(VTIi=2.00V). All percentages are taken relative to the mean re-

sponse for VTIJ 5.00V and S50%. 
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dX1/dt (V/ms) 

S 

Std 
(%) (V) Min Mean Max Variation 

Dev 

o 1.99 -1.64 -1.04 -0.56 i-9.7%/-12.1% ±3.9% 

o 5.00 0.12 0.80 1.37 +11.5 0/o/-13.7% ±5.0% 

5 1.99 -2.05 -1.51 -0.94 +11.401o/-11.0%, ±3.9% 

5 5.00 0.55 1.22 1.81 +11.8 1/o/-13.7% ±5.2% 

10 1.99 -2.55 -1.98 -1.40 +11.8 1/o/-11.3% ±3.9% 

10 5.00 0.96 1.64 2.24 +12.00/o/-13.7% ±5.2% 

15 1.99 -3.00 -2.49 -1.93 +11.3 0/o/-10.2% ±4.0% 

15 5.00 1.36 2.08 2.78 +13.90/o/-14.6% ±5.3% 

20 1.99 -3.47 -2.94 -2.43 +10.3 0/o/-10.7% ±4.1% 

20 5.00 1.78 2.46 3.16 +14.20/o/-13.6% ±5.3% 

25 1.99 -3.89 -3.43 -2.92 +10.40/o/-9.2% ±4.2% 

25 5.00 2.19 2.90 3.56 +13.30/o/-14.4% ±5.7% 

30 1.99 -4.47 -3.97 -3.44 +10.70/o/-10.2% ±4.5% 

30 5.00 2.63 3.39 3.98 +11.90/o/-15.4% ±5.1% 

35 1.99 -5.06 -4.51 -3.94 +11.3%/-11.1% ±4.8% 

35 5.00 2.99 3.83 4.47 +12.90/o/-16.8% ±5.4% 

40 1.99 -5.45 -4.86 -4.28 +11.601o/-11.9% ±49% 

40 5.00 3.25 4.12 4.88 +15.30/o/-17.6% ±5.6% 

45 1.99 -6.57 -5.87 -5.23 +12.8 0/o/-14.2% ±5.5% 

45 5.00 4.10 4.93 5.64 +14.3 0/o/-16.8% ±6.1% 

50 1.99 -6.56 -5.87 -5.19 +13.60/o/-13.9% ±5.5% 

50 5.00 4.16 4.94 5.66 +14.401o/-15.8% ±5.8% 

Table A5.3 	The Deviations from the Mean of the dX 1/dt Measurements for the 

Synaptic Multiplication Characteristic. All percentages are taken 

relative to the mean response for V.=5. 00V and  S=50%. 
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dX1/dt (V/ms) 

Standard S (%) Vyij 
Variation 

Deviation 

o 1.99 +3.20/o/-2.7% ±1.8% 

o 5.00 +2.50/o/-3.8% ±1.5% 

5 1.99 +2.51/o/-2.2% ±1.2% 

5 5.00 +4.20/o/-3.4% ±1.7% 

10 1.99 +2.51/o/-2.3% ±1.2% 

10 5.00 +3.5%/-4.4% ±1.8% 

15 1.99 +3.3%I-3.8% ±2.0% 

15 5.00 +3.01/o/-4.8% ±1.8% 

20. 1.99 +2.40/o/-2.8% ±1.5% 

20 5.00 +5.20/o/-4.6% ±2.1% 

25 1.99 i-2.3 0/o/-3.4% ±1.4% 

25 5.00 +6.71/o/-8.8% ±3.7% 

30 1.99 +2.60/o/-2.4% ±1.3% 

30 5.00 +2.80/o/-7.9% ±2.7% 

35 1.99 +2.80/o/-2.5% ±1.2% 

35 5.00 +4.1 0/o/-6.0% ±2.1% 

40 1.99 +2.41/o/-3.4% ±1.5% 

40 5.00 +4.71/o/-6.8% ±2.7% 

45 1.99 +3.21/o/-2.7% ±1.5% 

45 5.00 +3.00/o/-4.8% ±19% 

50 1.99 +2.4%/-2.8% ±1.6% 

50 5.00 +3.3%/-4.7% ±1.8% 

Table A5.4 	The Accuracy of the Measurements of the S j  to dX 1/dt Characteris- 

tic. All percentages are taken relative to the mean response for 

VT=5.00V and Sj=SO%. 
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Appendix 6 

Static Measurements of Process Variance 

for EPSILON 30120P1 

V 	- V0  (V)  

V 	(V) HSPICE 
Min Mean Max Variation 

L2-Typ  

0.00 -1.09 -1.17 -1.138 -1.11 +4.60/o/-5.3% 

0.25 -1.09 -1.17 -1.138 -1.11 -s-4.60/o/-5.3% 

0.50 -1.09 -1.17 -1.138 -1.11 -i-4.60/o/-5.3% 

0.75 -1.09 -1.17 -1.138 -1.11 +4.69o/-5.3% 

1.00 -1.09 -1.17 -1.138 -1.11 -i-4.60/o/-5.3% 

1.25 -1.09 -1.17 -1.138 -1.11 +4.60/o/-5.3% 

1.50 -1.09 -1.17 -1.137 -1.11 -e-4.4%/-5.4% 

1.75 -1.08 -1.13 -1.097 -1.07 +4.4%/-5.4% 

2.00 -1.04 -1.02 -0.990 -0.96 +4.9%/-4.9% 

2.25 -0.88 -0.87 -0.842 -0.82 +3.6%/-4.6% 

2.50 -0.73 -0.71 -0.693 -0.67 +3.81/o/-2.8% 

2.75 -0.58 -0.57 -0.550 -0.52 +4.90/o/-3.3% 

3.00 -0.43 -0.44 -0.415 -0.39 i-4.1 0/o/-4.1% 

3.25 -0.28 -0.30 -0.273 -0.25 +3.8%/-4.4% 

3.50 -0.14 -0.17 -0.138 -0.11 -i-4.60/o/-5.3% 

3.75 0.00 -0.04 -0.007 0.02 +4.49o/-5.4% 

4.00 0.14 0.09 0.123 0.15 +4.40/o/-5.4% 

4.25 0.28 0.22 0.252 0.27 +3.001o/-5.3% 

4.50 0.42 0.33 0.377 0.40 +3.81/o/-7.7% 

4.75 0.56 0.45 0.497 0.52 +3.80/o/-7.7% 

5.00 0.69 0.56 0.608 0.64 +5.30/o/-7.9% 

Table A6.1 	The Percentage Variations of the VTJ to V 0 1 - Voz Characteristic. 

All percentages are relative to the mean response for VTIJ=S  .OV 

(0.608V). 
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V011 - V0  (V)  

VTI (V) HSPICE 
Min Mean Max Variation 

L2-Typ  

0.00 0.03 0.01 0.042 0.07 +4.60/o/-5.3% 

0.25 0.03 0.01 0.042 0.07 +4.60/o/-5.3% 

0.50 0.03 0.01 0.042 0.07 +4.60/o/-5.3% 

0.75 0.03 0.01 0.042 0.07 +4.6%/-5.3% 

1.00 0.03 0.01 0.042 0.07 +4.6%/-5.3% 

1.25 0.03 0.01 0.042 0.07 i-4.60/o/-5.3% 

1.50 0.03 0.01 0.042 0.07 +4.69'o/-5.3% 

1.75 0.03 0.01 0.042 0.07 +4.601o/-5.3% 

2.00 0.03 0.00 0.035 0.06 +4.101o/-5.8% 

2.25 0.03 -0.01 0.028 0.05 +3.61/o/-6.2% 

2.50 0.02 -0.02 0.018 0.04 +3.60/o/-6.2% 

2.75 0.02 -0.02 0.013 0.04 +4.4%/-5.4% 

3.00 0.01 -0.03 0.003 0.03 +4.40/o/-5.4% 

3.25 0.01 -0.04 -0.002 0.02 +3.61/o/-6.2% 

3.50 0 -0.04 -0.005 0.02 +4.1 01o/-5.8% 

3.75 0 -0.04 -0.007 0.02 +4.4%/-5.4% 

4.00 0 -0.05 -0.012 0.01 +3.6%/-6.3% 

4.25 0.01 -0.05 -0.015 0.01 +4.1%/-5.8% 

4.50 -0.01 -0.05 -0.017 0.01 +4.4%f-5.4% 

4.75 -0.02 -0.05 -0.017 0.01 +4.401o/-5.4% 

5.00 -0.02 -0.05 -0.018 0.00 +3.00/o/-5.3% 

Table A6.2 	The Percentage Variation in the V 0  as a Function of Vyj  . All 

percentages are relative to the mean response for V=5.0V 

(0.608V). 
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Dynamic Measurements of Process Variance 

for EPSILON 30120P1 
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Figure A7.1 	PFM Input Mode Multiplication Characteristic. 
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Figure A7.2 	PWM Input Mode Multiplication Characteristic. 
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Figure A7.3 	Analogue Input Mode Multiplication Characteristic. 
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Appendix 8 

Dynamic Measurements of Process Variance 

for EPSILON 30120P1 
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Si(ys)  _______ 
VTU (V) 

Mm Mean Max Variation Std Dev 

5.00 12.20 13.40 14.70 +38.2%/-35.3% ±12.0% 

4.92 12.10 13.20 14.50 +38.20/o/-32.4% ±12.3% 

4.84 11.80 13.00 14.10 +32.40/o/-35.3% ±11.8% 

4.76 11.60 12.70 13.90 +35.30/o/-32.4% ±11.6% 

4.67 11.50 12.50 13.60 +32.40/o/-29.4% ±11.2% 

4.59 11.30 12.30 13.40 +32.40/o/-29.4% ±10.9% 

4.51 11.10 12.10 13.30 +35.3%/-29.4% ±11.0% 

4.42 10.90 11.80 12.80 +29.40/o/-26.5% ±10.1% 

4.34 10.60 11.60 12.60 +29.40/o/-29.4% ±9.9% 

4.26 10.40 11.40 12.40 +29.40/o/-29.4% ±9.5% 

4.17 10.20 11.10 12.20 +32.4%/-26.5% ±9.7% 

4.09 9.90 10.90 12.00 +32.4%/-29.4% ±9.6% 

4.01 9.70 10.70 11.60 +26.5%/-29.4% ±9.8% 

3.92 9.50 10.40 11.40 +29.40/o/-26.5% ±9.9% 

3.84 9.30 10.20 11.10 +26.5 0/o/-26.5% ±9.7% 

3.76 9.10 9.90 10.90 +29.49'o/-23.5% ±9.3% 

3.67 8.80 9.70 10.60 +26.5%/-26.5% ±8.5% 

3.59 8.60 9.50 10.50 +29.40/oJ-26.5% ±8.1% 

3.51 8.50 9.20 10.00 +23.5%/-20.6% ±7.9% 

3.42 8.20 9.00 9.80 +23.5%/-23.5% ±7.9% 

3.34 8.00 8.80 9.60 +23.5%/-23.5% ±7.8% 

3.26 7.80 8.60 9.50 +26.50/o/-23.5% ±7.8% 

3.17 7.60 8.40 9.10 +20.60/o/-23.5% ±7.6% 

3.09 7.30 8.20 9.00 +23.50/o/-26.5% ±7.8% 

3.01 6.90 7.90 8.80 +26.50/o/-29.4% ±8.4% 

2.92 6.70 7.70 8.40 +20.60/o/-29.4% ±8.3% 

2.84 6.40 7.50 8.30 +23.50/o/-32.4% ±9.1% 

2.76 6.30 7.30 8.10 +23.5 0/o/-29.4% ±8.6% 

2.67 6.00 7.10 7.90 +23.5 0/o/-32.4% ±9.0% 

2.59 6.10 6.90 7.60 +20.6%/-23.5% ±8.6% 

2.51 5.80 6.80 7.50 +20.6%/-29.4% ±8.7% 

Table A8.1 	The Percentage Variations of the 	to Si  Characteristic 

(S=75.4V). All percentages are relative to the mean response for 

VTIJ=5.OV and S= 75. 4 1us (13.4ys-10.04us). 
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Si (us)  _______ 
VTIi (V) 

Mm Mean I Max Variation Std Dev 

0.00 8.80 9.30 10.10 +23.5 0/o/-14.7% ±5.0% 

4.00 9.00 9.50 10.40 +26.5 0/o/-14.7% ±5.6% 

8.00 9.20 9.70 10.90 +35.30/o/-14.7% ±6.7% 

12.00 9.40 9.90 10.90 +29.4%/-14.7% ±63% 

16.00 9.60 10.20 11.50 +38.2%/-17.6% ±7.3% 

20.00 9.80 10.40 11.20 +23.5%/-17.6% ±6.0% 

24.00 9.90 10.70 11.60 +26.5%/-23.5% ±6.6% 

28.00 10.10 10.90 12.00 +32.40/o/-23.5% ±7.1% 

32.00 10.40 11.10 11.90 +23.5 0/o/-20.6% ±7.1% 

36.00 10.60 11.30 12.30 +29.40/o/-20.6% ±7.8% 

40.00 10.70 11.50 12.60 +32.40/o/-23.5% ±8.2% 

44.00 11.00 11.80 12.80 +29.40/o/-23.5% ±8.4% 

48.00 11.10 12.00 12.90 +26.5 0/o/-26.5% ±8.9% 

51.40 11.20 12.20 13.20 +29.4%/-29.4% ±9.3% 

53.40 11.30 12.30 13.20 +26.5%/-29.4% ±9.2% 

55.40 11.40 12.40 1340 +29.40/o/-29.4% ±9.6% 

57.40 11.50 12.50 13.80 +38.20/o/-29.4% ±10.5% 

59.40 11.50 12.60 14.00 +41.20/o/-32.4% ±10.8% 

61.40 11.70 12.70 13.70 +29.40/o/-29.4% ±10.5% 

6340 11.70 12.80 13.90 +32.41/o/-32.4% ±10.7% 

65.40 11.70 12.90 14.00 +32.40/o/-35.3% ±10.7% 

67.40 12.00 13.00 14.20 +35.30/o/-29.4% ±10.7% 

69.40 11.90 13.10 14.40 +38.20/o/-35.3% ±11.6% 

71.40 11.90 13.20 14.50 +38.20/o/-38.2% ±11.9% 

73.40 12.10 13.30 14.50 +35.30/o/-35.3% ±11.5% 

75.40 12.20 13.40 14.70 +38.2%/-35.3% ±12.0% 

Table A8.2 	The Percentage Variations of the S i  to Si Characteristic 

(Vri=S.00V). All percentages are relative to the mean response 

for VT=5.OV and S= 75. 4ps (13.41us-10.0gs). 
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Si (/Is) ______  
Si  (his) VTI (V) 

Mm Mean Max Variation Std Dcv 

0.0 5.00 8.70 9.20 10.40 +35.30/o/-14.7% ±63% 

50.0 5.00 10.90 12.00 13.80 +52.9%/-32.4% ±10.9% 

75.4 5.00 12.10 13.40 14.50 +32.4%/-38.2% ±12.2% 

0.0 4.76 8.70 9.30 9.90 +17.60/o/-17.6% ±5.3% 

50.0 4.76 10.60 11.60 13.10 -i-44.1 0/o/-29.4% ±11.8% 

75.4 4.76 11.50 12.70 14.50 +52.90/o/-35.3% ±12.2% 

0.0 4.42 9.00 9.50 10.10 +17.61/o/-14.7% ±53% 

50.0 4.42 10.20 11.10 12.30 +35.3%/-26.5% ±9.5% 

75.4 4.42 10.50 11.80 12.80 +29.4%/-38.2% ±10.7% 

0.0 4.09 9.20 9.70 10.20 +14.7 0/o/-14.7% ±5.0% 

50.0 4.09 9.50 10.50 11.30 +23.51/o/-29.4% ±9.0% 

75.4 4.09 9.90 10.90 11.80 +26.50/o/-29.4% ±9.7% 

0.0 3.76 9.40 9.90 10.40 +14.70/o/-14.7% ±4.7% 

50.0 3.76 8.90 9.90 10.80 i-26.50/o/-29.4% ±7.8% 

75.4 3.76 8.90 9.90 10.80 +26.50/o/-29.4% ±99% 

0.0 3.42 9.60 10.30 10.70 +11.80/o/-20.6% ±5.6% 

50.0 3.42 8.60 9.40 10.10 t20•6I-23•5 ±6.1% 

75.4 3.42 8.10 9.00 9.80 +23.5%/-26.5% ±8.2% 

0.0 3.09 10.10 10.70 11.10 +11.8%/-17.6% ±53% 

50.0 3.09 8.00 8.90 9.40 +14.71/o/-26.5% ±7.3% 

75.4 3.09 7.10 8.10 8.80 +20.61/o/-29.4% ±8.8% 

0.0 2.76 10.70 11.30 11.70 +11.8%/-17.6% ±5.4% 

50.0 2.76 7.60 8.50 9.20 +20.61/o/-26.5% ±8.2% 

75.4 2.76 6.30 7.30 8.10 +23.50/o/-29.4% ±8.6% 

Table A8.3 	The Deviations from the Mean of the S 1  Measurements for the 

Synaptic Multiplication Characteristic. All percentages are relative 

to the mean response for VTIi=S.OV  and S= 75. 4#s 

(13.41us-10.0gs). 
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Si (,us)  V 	(V) 
S(ps)  ______ 

Mm Mean Max Variation Std Dev 

75.4 5.00 13.00 13.49 13.80 +9.0%/-14.5% ±6.0% 

75.4 4.92 12.60 13.46 17.00 +104.1 0/o/-25.3% ±22.4% 

75.4 4.84 12.60 13.13 13.80 i-19.7%/-15.6% ±7.8% 

75.4 4.76 12.20 13.03 16.30 +96.1%/-24.5% ±19.2% 

75.4 4.67 12.30 12.77 15.80 +89.0%/-13.9% ±17.3% 

75.4 4.59 11.90 12.47 13.00 +15.51/o/-16.8% ±6.3% 

75.4 4.51 11.80 12.26 12.70 +13.00/o/-13.5% ±6.9% 

75.4 4.42 9.50 11.98 12.50 +15.40/o/-72.8% ±12.3% 

75.4 4.34 11.40 11.88 13.80 +56.40/o/-14.2% ±13.2% 

75.4 4.26 9.90 11.60 13.70 +61.8%/-50.0% ±12.6% 

75.4 4.17 10.80 11.41 12.90 +43.7 0/o/-18.1% ±8.8% 

75.4 4.09 10.70 11.21 12.20 +29.1 0/o/-15.0% ±8.3% 

75.4 4.01 9.00 10.89 11.40 +15.101o/-55.5% ±10.5% 

75.4 3.92 10.30 10.71 11.40 +20.4%/-12.0% ±6.6% 

75.4 3.84 9.80 10.49 10.90 +12.2%/-20.2% ±7.3% 

75.4 3.76 9.70 10.22 10.80 +16.90/o/-15.4% ±83% 

75.4 3.67 9.10 9.95 10.50 +16.20/o/-25.0% ±9.0% 

75.4 3.59 9.40 9.74 10.20 +13.501o/-10.0% ±7.1% 

75.4 3.51 8.50 9.50 10.00 +14.80/o/-29.3% ±7.2% 

75.4 3.42 7.80 9.26 9.80 i-15.90/o/-42.9% ±9.7% 

75.4 3.34 8.60 9.08 9.50 +12.20/o/-14.2% ±6.7% 

75.4 3.26 7.50 8.88 9.40 i-15.20/o/-40.6% ±8.8% 

75.4 3.17 7.20 8.64 9.10 +13.40/o/-42.5% ±8.7% 

75.4 3.09 8.20 8.52 8.90 +11.2%/-9.4% ±6.1% 

75.4 3.01 7.70 8.32 8.80 +14.2%/-18.1% ±6.3% 

75.4 2.92 4.60 7.99 8.50 +14.9%/-99.8% ±19.9% 

75.4 2.84 4.60 7.89 8.40 +15.0%/-96.8% ±14.9% 

75.4 2.76 7.40 7.75 8.20 +13.2%/-10.3% ±6.3% 

75.4 2.67 6.60 7.58 8.00 +12.2%/-28.9% ±7.3% 

75.4 2.59 3.30 7.35 7.90 +16.29o/-119.1% ±17.9% 

75.4 2.51 7.00 7.35 7.70 +10.4%/-10.2% ±5.7% 

Table A9.1 	Percentage Measurement Variation in Samples for the VTij  to S 

EPSILON Characteristic. All percentages are relative to the mean 

response for VTI=5.0V and S=75.4us (Results from Chip 3, Row 

1, Column 1). 
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Si  (us) (V) 
Si (us)  ______  

Mm Mean Max Variation Std Dev 

0.0 5.00 8.50 9.24 9.60 +10.60/o/-21.8% ±6.6% 

4.0 5.00 9.10 9.50 10.00 +14.60/o/-11.8% ±5.4% 

8.0 5.00 9.30 9.79 13.80 +118.0%/-14.4% ±23.6% 

12.0 5.00 9.50 9.88 10.50 +18.20/o/-11.2% ±6.9% 

16.0 5.00 9.70 10.21 10.70 +14.401o/-15.0% ±8.5% 

20.0 5.00 10.10 10.49 10.90 +11.9%/-11.6% ±5.7% 

24.0 5.00 10.40 10.74 11.10 +10.6%/-9.9% ±5.0% 

28.0 5.00 10.60 11.01 14.50 +102.61/oJ-12.1% ±15.9% 

32.0 5.00 10.70 11.19 11.70 +14.90/o/-14.5% ±7.4% 

36.0 5.00 10.90 11.41 11.80 +11.5%/-15.0% ±7.4% 

40.0 5.00 11.20 11.60 12.00 +11.9%/-11.6% ±6.0% 

44.0 5.00 11.50 11.82 12.20 +11.2%/-9.4% ±5.8% 

48.0 5.00 11.70 12.04 12.50 +13.501o/-10.0% ±6.0% 

51.4 5.00 11.70 12.25 12.80 +16.1 0/o/-16.3% ±6.7% 

53.4 5.00 11.80 12.39 12.90 +15.00/o/-17.4% ±7.2% 

55.4 5.00 12.10 12.54 13.00 +13.5%/-13.0% ±6.9% 

57.4 5.00 12.20 12.61 13.20 +17.40/o/-12.1% ±6.9% 

59.4 5.00 12.20 12.69 13.10 +12.1%/-14.4% ±6.4% 

61.4 5.00 12.30 12.88 16.60 +109.4%/-17.1% ±17.1% 

63.4 5.00 12.50 12.98 16.20 +94.8 0/o/-14:1% ±15.2% 

65.4 5.00 12.60 13.05 13.60 +16.3 0/o/-13.1% ±6.8% 

67.4 5.00 12.70 13.25 17.20 +116.2%/-16.2% ±17.6% 

69.4 5.00 12.70 13.33 17.40 +119.6%/-18.6% ±18.5% 

71.4 5.00 13.00 13.39 13.80 +11.90/o/-11.6% ±6.1% 

73.4 5.00 13.00 13.48 13.90 +12.40/o/-14.1% ±6.8% 

75.4 5.00 13.30 13.75 17.90 +122.20/o/-13.1% ±24.4% 

Table A9.2 	Percentage Measurement Variation in Samples for the S T-,j  to Si  

EPSILON Characteristic. All percentages are relative to the mean 

response for VTIJ=5.OV and S=75.4ps (Results from Chip 3, Row 

1, Column 1). 
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City 5 __________ __________ 	City 9 
Neuron 

Software EPSILON Variation Software EPSILON Variation 

0 0.302 - - 0.250 - - 

1 0.302 0.294 -2.4% 0.251 0.259 2.4% 

2 0.249 0.237 -3.6% 0.313 0.329 4.8% 

3 0.168 0.127 -12.3% 0.333 0.355 6.6% 

4 0.167 0.127 -12.0% 0.333 0.337 1.2% 

5 0.168 0.114 -16.2% 0.333 0.333 0.0% 

6 0.249 0.241 -2.4% 0.313 0.333 6.0% 

7 0.302 0.294 -2.4% 0.251 0.263 3.6% 

8 0.302 0.289 -3.9% 0.250 0.259 2.7% 

9 0.302 0.294 -2.4% 0.248 0.259 3.3% 

10 0.289 0.267 -6.6% 0.171 0.158 -3.9% 

11 0.287 0.280 -2.1% 0.167 0.158 -2.7% 

12 0.288 0.267 -6.3% 0.167 0.153 -4.2% 

13 0.306 0.298 -2.4% 0.130 0.123 -2.1% 

14 0.312 0.285 -8.1% 0.084 0.079 -1.5% 

15 0.312 - - 0.084 - - 

16 0.312 0.285 -8.1% 0.081 0.070 -3.3% 

17 0.290 0.272 -5.4% 0.004 0.009 1.5% 

18 0.289 0.254 -10.5% 0.000 0.004 1.2% 

19 0.290 0.250 -12.0% 0.004 -0.004 -2.4% 

20 0.312 0.294 -5.4% 0.081 0.079 -0.6% 

21 0.312 0.302 -3.0% 0.084 0.088 1.2% 

22 0.313 0.302 -3.3% 0.088 0.088 0.0% 

23 0.333 0.333 0.0% 0.164 0.175 3.3% 

24 0.333 0.333 0.0% 0.167 0.184 5.1% 

25 0.333 0.298 -10.5% 0.168 0.158 -3.0% 

26 0.291 0.285 -1.8% 0.168 0.158 -3.0% 

27 0.287 0.272 -4.5% 0.167 0.158 -2.7% 

28 0.289 0.267 -6.6% 0.171 0.153 -5.4% 

29 0.302 0.289 -3.9% 0.248 0.254 1.8% 

Table A10.1 	The Percentage Variation between the Responses of EPSILON and 

Software, for the City 5 and City 9 Vectors applied to the Kohonen 

Neural Network for the Example 9 City TSP. All percentages are 

relative to 0.333. 
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Appendix 11 

A Continuous Time Analogue Synaptic Multiplier 

The circuits outlined in this appendix combine the process invariance of the dis-

tributed feedback synapse (Chapters 4-6) with the 2 transistor 4 quadrant transconduc-

tance multiplier (Section 3.3.3) to produce a continuous time, process invariant, fully 

integrated, fast analogue multiplier. The multiplication is now purely analogue as the 

neural state is represented by an analogue voltage, V, rather than as a pulse frequency or 

a pulse width. 

VTij 

	

'Ml 	91 	'1 

	

0 	Ml 
VRef  

TiJZ 

	

'M2 	_ 	12 

	

Pr 	M2 

'TRef 

Figure A11.1 	2 Transistor MOS Transconductor. 

A11.l The Design of a 2-Quadrant Analogue Multiplier 

As Equation All. 1 shows, the 2 transistor transconductor (figure All. 1) possesses 

an accurate 4 quadrant multiplication characteristic [1-6]. 

Ii -12 = #I (VTU - VTUZ)(Vj - 
	 (A11.1) 

The supply of the reference voltages for the transistors' gates is straightforward but 

to maintain the correct voltages at the drain and source terminals requires buffers which 

can sink and source current. The DenyerfMavor implementation [3] uses a simple MOS 

source follower buffer to set the drain voltage with an operational amplifier with resistive 

feedback maintaining the virtual earth, VRf, at the source as well as summing the current 

from a column of these multipliers. In this setup both the output voltage of the source 



vi+  

VRef 

V. 

VBij 

... ---E] V9  
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follower buffer and the output current of the transconductor are subject to the effects of 

process variations. This is due to the source follower output being dependent on the 

threshold voltage and multiplier output current depending on the value of p. There are 

also cascadabiity problems similar to those of the 3 transistor pulse stream synapse (Sec-

tion 4.2.1). The reported variation of these circuits implemented on a properly setup ana-

logue MOS process is less than 1%. From the results presented in Chapters 5 and 6, 

ES2's 2pm or 1 .Spm digital processes cannot be expected to be as uniform. Distributed 

feedback was used to combat the effects of process variations. 

vss 1 

Figure A11.2 	A Completely Analogue Synapse. 

The resultant feedback circuitry for a single multiplier transistor (Ml) is shown in 

Figure A 11.2. Two of these circuits form the desired multiplier. As in the distributed 

feedback synapse the output is a voltage rather than a current. The final result is repre-

sented as a voltage difference as opposed to a current difference. The feedback loop set-

ting V holds the drain of transistor Ml at the desired V by controlling the gate voltage of 

transistor M4 which is in its linear operating region. Transistor M5 is present to ensure 

that the drain of Ml is always actively driven towards the desired V even if Ml sinks no 

current (Vj=VReI). This permanent current flow in the M4/M5 leg ensures a fast response 
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vs81 
	 vss2  

Figure A11.3 
	

The Components of Continuous Time Synaptic Multiplication System. 

to a change in V. Transistors M2 and M3 form a buffer stage identical to that used in the 

distributed feedback synapse, thus forming a current to voltage converter. This makes the 

overall voltage to voltage transfer function theoretically process invariant. 

To prove this result it is necessary to analyse the circuit in Figure Al 1.2 in more 

detail. As the combination of transistors M4, M5 and the input operational amplifier 

accurately maintain the value of V, they have no effect of the circuit's multiplication 

characteristic. The currents for the remaining transistors Ml, M2 and M3 which are in 

their linear regions of operation, are as follows 

(V - VRf)2  1 
'ML = 

	

(VTIJ —VR0f—VT1)(VJ 	
- 

VReI) 	
2 	

j 	

(All.2) 
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Ref 1 
= fl2[ w0 VRefVT2)VRef 'T

2 j 	
(A11.3) 

2. 1 
'M3 = 	W 	

'Rf 
(Vi, 	 (A11.4) 

2 J 
Applying Kirchhoff's Current Law to the common node between Ml, M2 and M3 

yields 

'Ml +'M2'M3 =0 
	

(All.5) 

Substituting Equations Al 1.2, Al ii and Al 1.4 into Equation Al 1.5 and solving for 

V1+  now gives 

11 

	

ip1 [ 	 (VyVRef)
2  

	

I 	I 
(VTl - 'VRef - VTJ )W - VRef) 

VRf 	 2 
Vi, 

 

	

L 	 J 	(All.6) 
I VRef 	y~ Vn+ 

VRf 

j P3 

The equation for the the second half of the multiplier circuit is obtained by substitut-

ing VTIjZ and VOIZ  for VTjj and V91  respectively. 

1 1 
(VTIjz - VRef - VTO(V - VRef) 

- ( —VRf)2 
 

VRefP3 	 2 
V2 = 	L 	 J 	(All.7) 

VRef 	I P3 

Subtracting Equation All.7 from Equation All.6 cancels out the non-linear terms 

leaving 

V1+ 
- Viz = 	

P ' 

	

VRCf 	
[(Vrui - V.nz)(V - VRCf)] 

+ 	(V81  - VOIZ) 	(Al 1.8) 
#3 

This equation can now be extended to a column of N multipliers 

1 1 p N—i 

Vi+ - Viz = - 	 [(V1 - Vz)W - VRer) + 
p3 

(V01 - VOIZ) (Al 1.9) 
N VRef P3 i L 

This shows that the voltage difference, (V1 - V1), is proportional to the sum of 

multiplications. Due to the presence of fi ratios in the equation, the response is 

process invariant to a first order. The second term in the equation is a bonus in that it 

allows each synaptic column to have a variable offset which can be used either to com- 

pensate for process variations or to implement the variable biases required by neurons in 
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the MLP and HopfieldfFank neural networks. 

The circuitry to perform the subtraction necessary to obtain the final result is shown 

on the left-hand-side of Figure Al 1.3.  The equations for these circuits are 

Vsz  = V + VRC  + MIT 
	 (All. 10) 

Vi = V1.4. - "SZ + VRef - MIT + VB  + VRef  + MIT 
	(Al 1.11) 

Thus combining 

V 1  = (V 1  - V 1+) + VBI  + ' Ref  + MIT 	 (A1l.12). 
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VTij (V) 

Figure A11.4 
	

Multiplier Characteristic for a sweep of V T-,j  from 3 .OV to 5.OV and 

V from tOY to 2.OV (0.25V steps). 

The subtraction is not quite what is required as the order of the coefficients is wrong. 

However, this is solved simply by using the lower half of the weight voltage range to rep-

resent excitatory weights, and the upper half to represent inhibitory weights. 

A quick component count reveals that to carry out a single multiplication using this 

circuitry requires at least 5 operational amplifiers plus 2 multiplier cells and a subtraction 

cell. Thus the area and power-required to achieve a single multiplication is excessive but 

these overheads are much smaller when an array of multipliers is considered. For a 10 by 

10 synaptic array only 10 input operational amplifiers are required, one per V input. The 

nature of this vector-into-matrix multiplication means that only one column of zero 
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V1  (V)  Simulated 
VTI (V) V. CV) 

Slow Typ Fast Variance 

3.00 1.00 3.522 3.529 3.531 +1.8%/+0.6% 

3.50 1.00 3.522 3.529 3.531 i-1.8%/+0.6% 

4.00 1.00 3.522 3.529 3.531 +1.90/o/+0.7% 

4.50 1.00 3.521 3.529 3.531 +1.91/o/+0.7% 

5.00 1.00 3.521 3.528 3.531 +2.00/o/-i-0.7% 

3.00 1.50 3.933 3.930 3.922 -0.7 0/o/-2.3% 

3.50 1.50 3.766 3.766 3.760 +0.2%/-1.5% 

4.00 1.50 3.601 3.604 3.601 +0.8%/-0.8% 

4.50 1.50 3.438 3.442 3.442 +1.301o/-0.1% 

5.00 1.50 3.275 3.283 3.285 +2.00/o/+0.6% 

3.00 2.00 4.253 4.282 4.302 +8.01/o/-i-5.3% 

3.50 2.00 4.007 4.003 3.989 -1.0%/-3.8% 

4.00 2.00 3.679 3.678 3.670 -0.2%/-2.3% 

4.50 2.00 3.352 3.356 3.353 -s-1.0%/-0.9% 

5.00 2.00 3.029 3.037 3.039 +2.20/o/+0.6% 

Table A11.1 	HSPICE Simulation Results for the Continuous Time System. Per- 

centages are relative to voltage difference between the typical re-

sponse to V3 =1.OV and V3 =2.OV for V 1 -5.0V. 

reference (V) multipliers is required per array. Finally a column of synapses needs just 

two operational amplifiers, one to calculate the sum of the multiplications and a second to 

subtract the zero reference to give the required result. So for a 10 by 10 array (100 multi-

plications) only 32 (10+2+20) operational amplifiers are required. As the number of 

operational amplifiers scales linearly with array size the continuous time synaptic multi-

plier is well suited to large 2 dimensional arrays eg 128 by 32. 

In general for MLP's, the Hopfieldfl'ank and the Kohonen neural networks, the neu-

ral states are unipolar, 0 to 1.0. This means that full 4 quadrant multiplication is not nec-

essary and 2 quadrant multiplication is perfectly adequate. Thus the setup of the continu-

ous multiplier synapse was optimised for 2 quadrant multiplication. 

The voltage ranges for VTIJ and Vj  have to be carefully chosen to ensure that, for all 

combinations, transistors Ml, M2 and M3 are always in their linear regions of operation. 

For this implementation 1 SV !~ VTI ~ 5. OV and 1. OV :~ V !~ 2. OV. The HSPICE Level 

2 simulation results shown in Figure A 11.4 and Table Al 1. 1, confirm both the linearity 
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and the process invariance of the proposed continuous time neural system over the chosen 

input ranges. Also the system is cascadable with the buffer stages formed by transistors 

MI, M3, M4 and MS supplying the current required by the multiplier transistor Ml rather 

than the operational amplifier. 

Bearing in mind the results for the distributed feedback synapse reported in Chap-

ters 5 and 6, the simulated process variation of ±2% for the continuous time synapse is 

probably not a good indication of its performance on either the ECDM20 or the 

ECPD 15/1 process. However with a good analogue process it would not be unreasonable 

to expect the effects of process variations to be less than 1% and thus comparable to the 

work of Mayor and Denyer [3]. 
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Theory 
U - Slow -  -'---- 
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VTij (V) 

Figure AilS 
	

Feedback Loop Gains for a sweep of VTjj from 3.OV to 5.OV and 

V from l.OV and 2.OV. 

A11.2 Stability Analysis and Operational Amplifier Design 

To find the gain around the feedback loop an expression relating Vk ec to V01  needs 

to be derived. The first step is to substitute Equations 5.2, 5.3, and 5.4 into Equation 

Al 1.5. and re-arrange in terms in powers of VRCI. 
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Figure A11.6 	2-Stage Operational Amplifier with Controllable Tail Current. 

(p1 + fl2 + 3)Vf 	 (A1l.13) 

+[fll(vTl —VTIJ) + 62WT2 —V01) + fl3 (V 

+ #lVTI 	Tl - ')V) + #2((V01  —VT2  -1 -)V00 ) = 0 

The feedback loop gain is then found by using the quadratic root equation (Equation 

4.25) and differentiating the result with respect to V 1 .1. 

"Ref - 	± 	
—2b,63 1 	(Al1.14) 

dV1 .1. - 2a1 	2 Ib2 _4acj 

where 

a 
1 

= 

b 	= 	Pl(VTI - VTI]) + P2(VT2 - V90 + fl3(V. - V1..) 

c 	= 	PlVTI —VT! - --)V) + fi2 ((V —VT2 - V
00 

 V
i 

Figure All .5 shows that the results produced by Equation A11. 14  correspond very 

well to the values given by HSPICE Level 2 simulations. The negative sign of the gain 

values is important as the use of the positive input terminal of the operational amplifier 
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necessitates a negative feedback loop gain for the system to be stable. Over the chosen 

weight range, as the magnitude of the feedback loop gain is always less than 0.6, the sys-

tem is stable. The changes in the gain with the weight voltage are related to the magni-

tude of the current in transistor Ml, 'M1  For small values of 'Ml  the proportion of current 

at the common node due to the feedback transistor M3 is large. Thus a change in V i.  has 

a relatively large effective on VRef. M VTjj  and V increase, 'MI  also increases. So the 

proportion of the current at the common node due to M3 decreases, resulting in V 1~ hav-

ing a smaller influence on the changes in VRf, thus accounting for the decrease in the 

magnitude of the gain as both VTjj and V increase. 

With the stability of the synapse circuit now proven, the feedback operational ampli-

fier can be designed. One of the problems with large numbers of on-chip operational 

amplifiers is that of high power consumption. To make the power consumption more 

manageable, the load transistors (M9 and MlO in Figure 4.12), which normally determine 

the tail current have been replaced by a current mirror whose current is determined exter-

nally (Figure A 11.6). The tail current is then mirrored to either the feedback amplifiers in 

the neuron or V buffer amplifiers. Unfortunately the operational amplifiers are now 

linked by a common current mirror, increasing the coupling of signals between opera-

tional amplifiers. In this case, in the absence of integrators, and with the feedforward 

nature of the vector matrix multiplication, the system simply takes longer to settle to its 

final voltage, the value of which is unchanged. 

The specifications for the feedback and the V buffer operational amplifiers were dif-

ferent, in that the feedback amplifier was required to buffer the V i  voltage off-chip 

through an analogue output pad. Thus the feedback amplifier was compensated for loads 

up to 30pF while the buffer amplifier was designed to drive up to 20pF of load. To main-

tain either V or VRCf to 1% accuracy a gain of at least 1000 was required. HSPICE simu-

lations showed that if the system was to settle in under lOps. the slew rates of the opera-

tional amplifiers had to be greater than 5V/,us 

Cell Size 

Double Synapse 200pm x 1151im 

Feedback Op-amp 200pm x 240pm 

Vj  Buffer Op-amp 250pm x 115pm 

Subtractor 200/um x 100pm 

Table Al1.2 	Cell Sizes for Synapse and Neuron Circuits. 
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A11.3 Layout 

The synapse and operational amplifiers plus support circuitry were laid out using the 

Magic custom layout tool for ES2's 2 ,um digital process. The resulting cell sizes are 

show in Table Al 1.2. To yield a more compact implementation two synapses were laid 

out as one cell. This reduces the number of well crossings required and thus the area of 

the cell. While the basic circuits of the V j  buffer amplifiers and the main feedback ampli-

fiers were the same, the layouts were different. To maintain maximum accuracy in the 

neural multiplication and summation the differential inputs (Ml, M2 Figure Al 1.6) for 

the feedback amplifiers in the neuron were cross-coupled with individual N-wells to elim-

inate body effect problems. Neither of these layout techniques is used in the V buffer 

amplifier, so that it was small enough to be pitch-matched to the synaptic array. 

An 8 by 4 array of these synapses and the associated feedback amplifiers was then 

created for inclusion in a testchip. Alongside this array on the testchip were 2 other 

arrays based on variations of the pulse width modulation technique designed by Stephen 

Churcher [7] and Jon Tombs [8] respectively. ES2's Solo 1400 software was used to add 

pads and decoder logic to these arrays to complete the testchip. Unfortunately due to 

insurmountable funding problems this testchip was not fabricated. 

A11.4 Conclusions 

The virtues of this continuous time neural system are that is fast, cascadable, highly 

linear and nominally process invariant. Ultimately, the speed of the system depends on 

the performance of the amplifiers used. The amplifiers used here give a settling time of 

5-10ps but with faster amplifiers the system should settle in under ips. As the testchip 

was to have been the precursor to a much larger implementation, the slower amplifier set-

tling time offered a more appropriate compromise between speed, power consumption 

and area. Also to provide tight control over the operational amplifier's power consump-

tion the tail current for the amplifier was determined externally. 

While the HSPICE simulation results indicate that the system's performance will 

only vary by ±2% due to variations in the process, without results from fabricated circuits 

it is not possible to say what the true level of process invariance is. 

A potentially serious limitation of the system is the absence of a sigmoid function to 

determine the neuron's neural state. It proved impossible to develop circuitry for a sig-

moidal voltage to voltage transfer function that was both process invariant and continuous 

time in nature. A sigmoidal transfer characteristic is not required for the Kohonen Self-

Organising network and thus it would be a suitable network to implement using this sys-

tem. Other possible applications include analogue correlators and filters, or any algo-

rithm which is based on a multiply accumulate architecture. 
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