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Abstract 

 

Trypanosoma brucei is a protozoan parasite that is the causative agent of sleeping 

sickness in sub-Saharan Africa. T. brucei has a complex life cycle involving passage 

between a mammalian host and the tsetse fly. The parasite evades the mammalian 

immune system via expression of Variant Surface Glycoprotein (VSG) on the cell 

surface. VSG genes are expressed at telomeric expression sites and at these sites are 

a number of Expression Site Associated Genes (ESAGs). One unusual ESAG, 

ESAG9, is developmentally regulated: RNA for these genes accumulates during the 

transition from slender to stumpy cells in the mammalian bloodstream and cell-

associated protein is only detected transiently in stumpy and differentiating cells. 

Transgenic cell lines were generated which ectopically express one or more members 

of the ESAG9 gene family. Biochemical and cytological analyses using these cell 

lines indicated that some members of this family are glycosylated and GPI-anchored, 

and also that one gene, ESAG9-K69, is secreted. ESAG9-K69 is also secreted by 

wild-type stumpy parasites. In vivo experiments with tsetse flies did not conclusively 

show whether ESAG9 proteins play a role in the establishment of a tsetse fly mid-gut 

infection by transgenic trypanosomes. However, In vivo and ex vivo experiments 

using the mouse model of trypanosomiasis indicated that expression of ESAG9 

proteins may alter parasitaemia in the mouse and results in a significant decrease in 

the proportion of CD4+ T cells in the mouse spleen. 
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Chapter 1 Introduction 

 

This PhD project is regarding the characterisation and functional analysis of an 

expression site associated gene 9 (ESAG9) gene family in Trypanosoma brucei. 

Following a general introduction to African trypanosomiasis, this introductory 

chapter covers the following areas in more detail: the life cycle of T. brucei, the 

variant surface glycoproteins of T. brucei, antigenic variation, expression site 

associated genes, and the immune responses to T. brucei in the tsetse fly and 

mammal hosts. This sets a framework for the experimental analyses to be described 

in the subsequent chapters.  

 

1.1 General background 

 

1.1.1 African trypanosomes 

African trypanosomes, Trypanosoma brucei ssp., are extracellular protozoan 

parasites of the order Kinetoplastida. They are the causative agents of sleeping 

sickness in humans and Nagana in cattle in sub-Saharan Africa (Bruce & Nabarro, 

1903). The term ‘Nagana’ also refers to disease caused in ruminants by Trypanosoma 

congolense (Welburn et al., 2006). Between 300,000 and 500,000 people are thought 

to be infected with sleeping sickness and the disease is lethal unless treated (WHO 

African trypanosomiasis factsheet http://www.who.int/mediacentre/factsheets 

/fs259/en). Attempts to control the disease in the long term have not been successful; 

in fact the area affected by the disease has increased, and the disease is currently 

epidemic in Sudan, Angola and The Democratic Republic of Congo, where it causes 

more deaths that HIV/AIDS (http://www.who.int/mediacentre/factsheets/fs259/en). 

In contrast, T. evansi, T. congolense, and T. vivax cause disease in livestock but not 

in humans. 
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1.1.2 Geographical range of African trypanosomiasis 

There are three subspecies of the African trypanosome Trypanosoma brucei: 

Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, and Trypanosoma 

brucei gambiense (Hoare, 1972). T. b. brucei causes Ngana in cattle. T. b. 

rhodesiense causes human sleeping sickness in the East of sub-Saharan Africa; this 

sub-species is also infective to cattle and wild animals which are a zoonotic reservoir 

of the disease (Welburn et al., 2006). T. b. gambiense causes human sleeping 

sickness in West and central sub-Saharan Africa and is only infective to humans 

(Gibson 1987). There are 36 countries in sub-Saharan African in which sleeping 

sickness is a threat to 60 million people. The areas affected are shown in Figure 1.1. 

Figure 1.1: Map of the continent of Africa 

showing which regions are affected by 

sleeping sickness. Countries that are 

coloured in green are not currently affected, 

countries that are coloured in blue or brown 

experience endemic African trypanosmiasis, 

and countries coloured in red experience 

epidemic African trypanosomiasis 

(www.who.int). 
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1.1.3 Symptoms and treatment of the disease 

The West African form of the disease, caused by T. b. gambiense, causes a chronic 

infection where the patient may survive for several months or years. The East 

African form of the disease, caused by T. b. rhodesiense, is more acute and usually 

kills the patient within weeks or months. The initial period of the disease is 

characterised by a fever and joint pain, during which stage the parasites are in the 

bloodstream and lymphatic system. Once the parasites have crossed the blood-brain 

barrier, sleep alterations occur, as do psychiatric and sensory imbalances (Lundkvist 

et al., 2004). The early stage of the disease is treated by either Pentamidine 

isethionate or Suramine; the only treatments for the advanced stage of the disease are 

compounds based on arsenic, such as Melarsoprol, and the drug itself can have lethal 

side effects (Gull, 2002). There is evidence of resistance to both the early-stage and 

late-stage drugs in a number of field isolates (de Koning, 2008). 

 

1.2 The life cycle of the African trypanosome 

 

1.2.1 Overview of the life cycle 

The life cycle of this parasite involves transmission between mammal hosts by an 

insect vector, which is the tsetse fly, of the genus Glossina (Bruce, 1909). Tsetse 

flies are bloodsucking insects; the metacyclic infective stages of the parasite reside in 

the salivary glands of the fly and are passed on when the fly bites a mammal host. 

The parasites then multiply rapidly in the bloodstream as ‘slender’ forms and, once a 

threshold density is reached, the cells begin to differentiate to ‘stumpy’ forms. The 

stumpy cells are cell cycle arrested and can only re-enter the cell cycle once they 

have been taken up in the fly blood meal and differentiated to the procyclic insect 

form. The life cycle of the parasite, and the morphology of the parasites at each 

stage, are summarised in Figure 1.2. 
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1.2.2 The mammalian stage of the life cycle 

 

1.2.2.1 Slender form cells in the mammalian bloodstream 

African trypanosome parasites are extracellular in the bloodstream of the mammal. 

They are covered with a dense surface coat of variant surface glycoprotein (VSG) 

and this will be discussed in detail in section 1.3. Bloodstream forms exist as a 

pleiomorphic population with two distinct morphologies: ‘slender’ forms and 

‘stumpy’ forms (Robertson, 1912; Vickerman, 1965). Slender forms of the parasites 

are proliferative and divide rapidly in the bloodstream. 

Figure 1.2: Summarised life cycle of the African trypanosome. African 

trypanosomes are zoonotic and are capable of invading a range of 

mammalian hosts. They are transmitted by the tsetse fly. The different cell 

morphologies of each stage of the life cycle are shown. This figure was made  

by Melanie Buhlmann using cell drawings by Keith Vickerman (Vickerman, 

1985). 
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1.2.2.2 Differentiation of slender forms to stumpy forms 

Slender form cells differentiate in a density-dependent manner to stumpy forms, as 

shown in Figure 1.3. It was noted as early as 1912 by Muriel Robertson that only the 

stumpy forms are capable of colonising the fly mid-gut (Robertson, 1912). 

This differentiation process of slender to stumpy has been shown to be independent 

of cues from the mammal host (Mclintock et al., 1990), and is in fact initiated by a 

quorum-sensing mechanism (Reuner et al., 1997; Vassella et al., 1997). The stumpy 

induction factor (SIF) is a small, soluble molecule released by the parasites which 

triggers the process of differentiation from slender to stumpy form (Vassella et al., 

1997); the identity of SIF has yet to be determined.  

The molecule SIF was thought to initiate differentiation of slender cells to stumpy 

cells via the cyclic adenosine monophosphate (cAMP) signalling pathway (Vassella 

et al., 1997); cAMP had previously been attributed a role in the life cycle of T. brucei 

as intracellular concentrations were shown to increase as the cells reached the peak 

of parasitaemia (Mancini & Patton, 1981). A comparison of the effects exposing 

slender cells to cAMP analogs, versus the hydrolysis products of cAMP analogs, 

indicated that it is in fact hydrolysed products of cAMP that are able to mediate 

differentiation to stumpy forms (Laxman et al., 2006). 

Additionally, other molecules apart from cAMP hydrolysis products have been 

implicated in slender to stumpy differentiation. A protein kinase called ZFK has been 

suggested to play a role as shown by the fact that a null mutant line displayed an 

increased rate of differentiation from slender forms to stumpy forms (Vassella et al., 

2001). However this effect was only seen in culture; the ZFK null mutants did not 

display an altered progression of parasitaemia in the mouse host, which would be 

expected if the parasites were differentiating more quickly to stumpy forms.  

Other kinases have been implicated in differentiation of trypanosomatids, including 

the Mitogen-Activated Protein (MAP) kinase family (Rotureau et al., 2009). MAP 

kinase enzymes are involved in signal cascades and can be activated by both 

extracellular stimuli and by stress (Theodosiou & Ashworth, 2002). A null mutant of 
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TbMAPK5 MAP kinase showed an increased rate of differentiation and this effect 

was seen both in vitro and in vivo (Domenicali Pfister et al., 2006).  

Figure 1.3: Density-dependent differentiation from slender to stumpy 

forms in the bloodstream of a mammal. Whilst the parasites are 

proliferating as slender forms in the bloodstream, they are secreting a 

molecule called Stumpy Induction Factor (SIF), which causes them to 

differentiate to the non-dividing stumpy form. Stumpy forms are competent for 

transmission to the tsetse fly vector. Stumpy forms that have not been 

transmitted will be destroyed by the host antibody response. Slender and 

stumpy forms express the VSG surface coat (VSG+), and procyclic forms 

express the Procyclin surface coat (EP/GPEET procyclin+) (Matthews et al., 

2004). 
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1.2.2.3 Differentiation from stumpy forms to procyclic (insect) forms 

The stumpy cells are arrested at the G1/G0 phase of the cell cycle (Shapiro et al., 

1984) and remain cell cycle arrested until they have been transmitted to a tsetse fly 

and received signals to differentiate to the insect stage of the life cycle, the procyclic 

form. The commitment to undergo differentiation is irreversible once the cells have 

become cell cycle arrested (Matthews & Gull, 1994). 

Stumpy cells are pre-adapted for survival in the tsetse fly midgut in a number of 

ways. The energy source used by the cells changes from glucose, which is utilised in 

the bloodstream of the mammal (Michels et al. 2000), to the amino acid proline 

which is available from the blood meal in the tsetse fly midgut. Metabolic and 

structural modifications take place to facilitate this change, including reorganisation 

of the mitochondrial structure (Brown 1973) to allow proline metabolism to 

commence. The components required for the mitochondrial metabolism are encoded 

by both nuclear and mitochondrial genes, and complex processes must be involved in 

their coordinate regulation (Priest & Hajduk, 1994; Timms et al., 2002). 

Stumpy cells are competent to differentiate in a synchronous fashion over a short 

timescale to the procyclic form once the correct signals have been received 

(Ziegelbauer et al., 1990). They are more resistant to the proteolytic environment of 

the midgut than slender forms (Sbicego et al., 1999; Turner et al., 1988b). Stumpy 

cells shed their VSG coat from four hours after the initiation of differentiation and 

gain a Procyclin coat over 4 to 16 hours (Matthews & Gull, 1994; Roditi et al., 1989; 

Ziegelbauer et al., 1990).  

The process of differentiation can be triggered in vitro by a temperature drop to 27°C 

and addition of citrate/cis-aconitate (CCA) to the media (Brun & Schonenberger, 

1981; Czichos et al., 1986). The mechanisms via which synchronous differentiation 

could be triggered by the same signals in vivo have been explored. By selecting a cell 

line called DiD-1 (Tasker et al., 2000), which was unable to undergo differentiation, 

the PAD family of proteins were identified as potential regulators of differentiation. 

PAD proteins are stumpy-specific, thermo-regulated carboxylate transporters 
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expressed on the surface of stumpy cells (Dean et al., 2009). They are capable of 

transmitting the CCA signal that triggers stumpy cells to differentiate in vitro. Indeed 

citrate could also be the in vivo trigger given that, when combined with a reduction in 

temperature, it is effective at inducing stumpy to procyclic differentiation at 

concentrations in vitro that correspond to endogenous levels in the mammalian 

bloodstream and in the tsetse fly (Hunt et al., 1994; Jacobs & Lee, 1964). 

The reduction in temperature, or ‘cold-shock’, of stumpy parasites is also a trigger of 

differentiation. A drop in temperature of 15°C causes both slender and stumpy form 

parasites to express EP Procyclin protein, which is a surface molecule of procyclic 

form parasites (Engstler & Boshart, 2004). Fascinatingly, this protein only gains 

access to the surface of the cell in stumpy form parasites, indicating that surface 

expression of GPI-anchored proteins is differentially controlled in slender and 

stumpy forms. Cold-shock also increases the expression of at least one of the PAD 

family of proteins (Dean et al., 2009). Temperature has been found to be an 

important factor in regulating the gene transcription and morphology of other 

protozoan parasites, including Plasmodium falciparum (Fang & McCutchan, 2002) 

and Leishmania spp. (Zilberstein & Shapira, 1994). 

A protein tyrosine phosphatase has also been identified as a regulator of 

differentiation. The inhibition of a protein tyrosine phosphatase called TbPTP1 

results in a small proportion of monomorphic cells spontaneously undergoing 

differentiation (Szoor et al., 2006). Tyrosine dephosphorylation of proteins therefore 

prevents stumpy form cells from differentiating to procyclic forms, and so could be 

described as a molecular brake that prevents differentiation from occurring until the 

correct stimuli are received. 

The stumpy cells can only re-enter the cell cycle once they have been taken up in the 

fly blood meal, otherwise they will eventually be killed by the host antibody 

response. However they are more resistant to antibody-mediated lysis than slender 

forms (McLintock et al., 1993). The speed at which slender forms and stumpy forms 

clear host antibody from their surface has been investigated. Host antibody binds to 

the VSG molecules on the surface of the cell, and these complexes, which have been 

described as ‘molecular sails’, are then cleared from the surface of forward-
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swimming trypanosomes by hydrodynamic forces (Engstler et al., 2007). Stumpy 

cells are capable of clearing immune complexes from their surface in 20 seconds, 

whereas it takes slender cells 35-42 seconds; however the immune complexes are not 

moving at a higher speed across the surface of stumpy forms (Engstler et al., 2007). 

The faster rate of clearance may therefore be because stumpy forms have a higher 

rate of endocytosis into the flagellar pocket at the posterior of the cell. The flagellar 

pocket is the only site of endo- and exocytosis in trypanosomes (Vickerman, 1969; 

Webster & Russell, 1993). 

 

1.2.3 The insect stages of the life cycle 

The tsetse fly insect vector of African trypanosmiasis is blood-feeding, and the 

parasites are transmitted to the vector in the blood meal. Stumpy-form cells are 

competent to undergo differentiation to the insect stage of the life cycle, procyclic 

forms, as discussed in section 1.2.2.3. Procyclic forms are characterised by a 

metabolism based on mitochondrial activity, the expression of the Procyclin coat, 

and the ability to evade the tsetse fly innate immune system and complete the insect 

stage of the life cycle over a course of several weeks (Aksoy et al., 2003). Tsetse fly 

innate immunity against trypanosome invasion will be discussed in detail in section 

1.5.1. However, it is not only the capability of the trypanosome versus the immune 

system of the fly that determines if an infection can progress. Female flies are 

typically found to have higher infection rates, as are older flies, and a warmer climate 

also correlates with higher infection rates (Aksoy et al., 2003). 

The tsetse fly blood meal is taken into the fly crop, the position of which is shown in 

a diagram of the tsetse fly in Figure 1.4. Once in the fly mid-gut, the trypanosomes 

are enclosed in a peritrophic matrix, which partitions the bloodmeal. During the 

following three days, the bloodmeal is digested by the fly and the trypanosomes 

progress to the posterior midgut until they eventually penetrate the peritrophic matrix 

(Ellis & Maudlin, 1985). The Procyclin coat molecule is predominantly GPEET 

Procyclin for the first week of infection and it then switches to predominantly EP 

Procyclin (Acosta-Serrano et al., 2001). After approximately seven days, the 

trypanosomes halt cellular division and become proventricular forms which are very 
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elongated; these return to the gut lumen and then migrate to the salivary glands. 

Proventricular forms become epimastigotes, which are proliferative and divide in an 

asymmetric fashion (Sharma et al., 2008; Van Den Abbeele et al., 1999). These cells 

become attached to the lining of the salivary glands (Robertson, 1913) via an 

outgrowth of their flagellar membrane. Epimastigote forms express a novel BARP 

surface coat molecule, the function of which is not known (Urwyler et al., 2007). A 

further developmental step results in metacyclic cells, which are motile and 

proliferative (Vickerman, 1985). Metacyclics are competent for transmission to the 

mammal, and express the VSG surface coat (Tetley et al., 1987) from metacyclic 

expression sites (Ginger et al., 2002). Unlike the VSG repertoire in slender 

bloodstream forms (which will be discussed in section 1.3), the metacyclic form 

parasites only have around 27 possible VSG genes to choose from (Turner et al., 

1988a). 

 

 

 

 

 

 

 

 

When a fly bites a mammal host, the infective metacyclic cells are transmitted to the 

mammal where they initially divide at the site of the bite before progressing further 

into the bloodstream (Aksoy et al., 2003). Interestingly, it has been suggested that 

tsetse fly saliva passed into the mammal bite results in an increased rate of 

Figure 1.4: Diagram of a male tsetse fly. The body parts labeled are: C = crop;    

L = labrum; H = hypopharynx; Li = labium; M = midgut; MI = malpighian tubule;    P 

= proventriculus; S = salivary glands (Aksoy et al., 2003). 
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trypanosome infection (Caljon et al., 2006). Tsetse flies appear to probe the mammal 

they are feeding upon more frequently when they are infected with trypanosomes 

(Jenni et al., 1980). This may be because the presence of trypanosomes in the 

salivary glands interferes with the ability of the tsetse fly to detect the flow of blood. 

This could be a behaviour that the trypanosomes have evolved to enhance their 

transmission to the mammal host. 

Trypanosomes are able to sexually reproduce whilst in the tsetse fly, though this is 

not an obligate stage of the life cycle (Gibson & Stevens, 1999; Jenni et al., 1986). 

The genetic exchange is thought to occur in a Mendelian fashion by meiosis 

(MacLeod et al., 2005; Turner et al., 1990), after the parasites have migrated back to 

the salivary glands, but before they have become transmission-competent 

metacyclics (Tait et al., 2007). A pleasing technique to further explore trypanosome 

mating has been developed by Gibson et al., whereby trypanosome lines expressing 

green fluorescent protein or red fluorescent protein are crossed in the fly, and the 

progeny of matings are distinguishable as they exhibit yellow fluorescence (Gibson 

et al., 2008). 

 

1.3 The variant surface glycoprotein coat 

 

1.3.1 The structure of the VSG coat 

Variant Surface Glycoproteins (VSGs) form a dense monolayer of around 107 

molecules covering the entire trypanosome (Cross, 1975). These proteins are key to 

the immune evasion of bloodstream form African trypanosomes (Cross, 1978). The 

transmission electron micrograph in Figure 1.5 shows a cross-section through a cell 

and flagellum, and the VSG coat is visible as a very electron-dense covering over the 

whole surface.  
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Glycosylphosphatidylinositol (GPI) anchors attach proteins to cell membranes in 

eukaryotic cells (Ferguson, 1999). The ability of phosphatidylinositols to anchor 

proteins to lipid membranes was first realised when it was observed that a 

phospholipase C enzyme specific to phosphatidylinositol was capable of releasing 

alkaline phosphatase from cell membranes (Ikezawa et al., 1976; Low & Finean, 

1977). VSGs are dimeric proteins that are attached to the cell surface of bloodstream 

form African trypanosomes via two GPI anchors (Ferguson et al., 1985a; Ferguson et 

al., 1985b). The structure of a VSG dimer is shown in Figure 1.6, with each 

monomer having a GPI anchor which attaches it to the plasma membrane.  

The C-terminal GPI anchor of VSG is hydrophobic, and can be cleaved off to release 

a soluble form of VSG by the action of either GPI phospholipase C (GPI-PLC) or 

metalloproteases. The GPI-PLC enzyme is only found in bloodstream-form parasites 

(Bulow et al., 1989) and functions, alongside the zine metalloprotease Tb-MSPB, to 

remove the VSG coat from differentiating stumpy form trypanosomes (Grandgenett 

et al., 2007; Gruszynski et al., 2006). Bloodstream form and procyclic form parasites 

have stage-specific GPI anchors, and during differentiation the expression of the 

bloodstream form anchor is switched off, and the GPI-PLC resistant procyclic-form 

Figure 1.5: Transmission Electron 

Micrograph of T. brucei showing the 

VSG coat. In this cross section of a 

parasite, the VSG can be seen as the 

electron dense coat surrounding the 

parasite cell body and flagellum. Beneath 

the VSG coat is the plasma membrane. 

The sub-pellicular microtubules are visible 

as a series of hollow rings in the main body 

of the cell, and in the flagellum the 

microtubules form the 9+2 arrangement. 

Scale bar is 100nm (Cross, 1978). 
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anchor is switched on (Gruszynski et al., 2006). The GPI-PLC enzyme is in fact non-

essential, as null-mutants are still viable, though they are less virulent as infected 

mice survive longer when infected with null mutants than when infected with wild 

type parasites (Webb et al., 1997). The facility of addition of GPI anchors to proteins 

is necessary for survival of bloodstream (though not procyclic) forms however 

(Lillico et al., 2003). 

Figure 1.6: The structure of the VSG coat. Clockwise from top left: a scanning 

electron micrograph of a bloodstream form trypanosome; a diagram of the 

membrane lipid bi-layer with the VSG molecules protruding from the surface; a 

more detailed diagram of a VSG homodimer with two GPI anchors attached; the 

structure of a GPI anchor (Ferguson 1999). 
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1.3.2 Antigenic variation 

The VSG surface coat of bloodstream form trypanosomes is highly immunogenic 

and results in the mammal raising an antibody-mediate response which kills all 

parasites with that particular surface coat. It was first noted by Ross and Thompson 

in 1910 that a patient with African trypanosomiasis experienced waves of 

parasitaemia (see Figure 1.7, panel A)(Ross & Thompson, 1910). Each wave of 

parasitaemia is characterised by the expression of a different surface antigen (VSG), 

in a process termed antigenic variation (Cross, 1978; Vickerman & Luckins, 1969). 

During the rise in parasitaemia, the majority of the parasites will express the same 

VSG coat as a monolayer over their entire surface. Antibodies will be raised against 

this VSG, which will then result in the majority of the parasites being destroyed by 

antibody-mediated lysis. However a few parasites will have switched to an 

alternative VSG gene and these parasites will evade the immune response to 

repopulate the host. This process is represented in a schematic fashion in Figure 1.7, 

panel B. 

However it is important to note that it is not only the host antibody response and 

antigenic variation that cause the fluctuating parasitaemia typical of a trypanosome 

infection. As the parasitaemia in the host is increasing, slender form parasites are 

secreting SIF and a quorum-sensing mechanism results in them differentiating to 

cell-cycle arrested stumpy forms in a density-dependent fashion, as discussed in 

Section 1.2.2.2. Mathematical modelling indicates that this density-dependent 

differentiation is also capable of causing fluctuating parasitaemia in the host 

(Lythgoe et al., 2007; Tyler et al., 2001).  At the peak of parasitaemia, the majority 

of cells will be stumpy form and have the same dominant VSG type as the slender 

population from which they differentiated (Matthews and Gull, 1994). 

The combination of antigenic variation and density-dependent differentiation, and 

the fluctuating parasitaemia that they cause, result in a limitation of the parasite 

population size in the host. This allows a chronic infection to develop. It is beneficial 

for the parasite to increase host longevity as this will increase its chances of 

transmission to a tsetse fly vector. 
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Figure 1.7: Antigenic variation during trypanosomiasis. Panel A shows 

the classic fluctuating parasitaemia profile in a patient with African 

trypanosomiasis (Ross and Thompson, 1910). Each peak in parasitaemia 

will be characterised by a different version of the VSG surface antigen. 

Panel B shows the majority of parasites expressing the same surface coat 

molecule (represented by a colour), against which antibodies will be raised 

(shown as a Y-shaped structure of the same colour). However a few 

trypanosomes will have switched their surface antigen to a slightly different 

version and hence escape the host antibody response. 
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1.3.3 Molecular mechanisms of antigenic variation 

Complex molecular mechanisms underlie the process of antigenic variation. There 

are around one thousand VSG genes in the T. b. brucei genome (Berriman et al., 

2005; Van der Ploeg et al., 1982); these are expressed from telomeric expression 

sites (ESs) (De Lange & Borst, 1982). There are around twenty VSG ESs and only 

one locus is actively transcribed at any one time by RNA polymerase I (pol I) (Gunzl 

et al., 2003; Navarro & Gull, 2001); pol I only transcribes ribosomal RNAs in 

organisms outside the kinetoplastids (Lee & Van der Ploeg, 1997). The active 

expression site is located to a special expression site body (ESB) containing pol I 

(Navarro & Gull, 2001). The expression sites can be divided into metacyclic ESs, 

which are utilised in the salivary glands of the tsetse fly, and bloodstream ESs which 

take over after the first few days of infection into a mammalian host (Borst & Ulbert, 

2001). The structure and contents of ESs will be discussed further in section 1.4. 

There are complex molecular mechanisms underlying the phenotype of antigenic 

variation, in which only one VSG antigen is expressed at a time out of a large 

repertoire, and these are summarised in Figure 1.8. The mechanisms can be placed 

into four categories: first, and most frequent, is a process whereby the VSG gene in 

an active ES is replaced with a chromosome-internal VSG gene. This is the most 

common method for switching variant antigen gene (McCulloch, 2004), and allows 

the parasite to utilise the vast number of VSG genes that are not telomeric (Van der 

Ploeg et al., 1982). A VSG gene can also be moved from another telomeric position 

by either telomere conversion or reciprocal exchange of telomeres (Borst et al., 

1998; Pays et al., 1985). The trypanosome genome consists of 11 paired megabase 

chromosomes of sizes varying from 0.9 to 7 Mb as well as large numbers of 

intermediate and minichromosomes (Melville et al., 1999). There are VSG genes 

available at the telomeres of the megabase chromosomes and also at the telomeres of 

many minichromosomes (Van der Ploeg et al., 1984; Weiden et al., 1991). Finally, 

an in situ switch can occur, whereby the active ES is switched off, and a new ES is 

switched on.  
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The genome contains a vast repertoire of VSG genes, but interestingly a large 

majority of these genes do not have fully intact coding regions (Berriman et al., 

2005; Taylor & Rudenko, 2006). New VSG genes can be generated from these 

pseudogenes by recombination between homologous regions of these pseudogenes 

(Thon et al., 1990). 

 

Figure 1.8: Mechanisms of switching expression to a new VSG surface 

coat molecule. There are four mechanisms for switching VSG antigen: A: gene 

conversion from a non-telomeric gene; B: telomere conversion (the same 

promoter is still used); C: telomere exchange (again the same promoter is still 

used); D: in situ activation of a different expression site (ES). The flags 

represent ES promoters, the dashed box represents a hygromycin resistance 

cassette used experimentally in distinguishing these mechanisms, the other 

boxes represent VSG genes, and the dashed arrow indicates which ES is being 

actively transcribed. This diagram is taken from a review by Borst et al. (Borst et 

al., 1998). 
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1.4 Expression sites and Expression Site Associated Genes 

 

It was discovered in 1985 that VSG genes are not the only genes transcribed from the 

telomeric expression sites. A number of mRNAs were identified which are co-

transcribed within an active ES (Cully et al., 1985b) by bloodstream form parasites. 

These genes were termed Expression Site Associated Genes, or ESAGs. ESAGs 

were subsequently demonstrated to be transcribed with VSG in a polycistronic 

fashion, from a promoter approximately 60 kb upstream of the telomeric VSG gene 

(Johnson et al., 1987). This was the first report of polycistronic transcription in a 

eukaryotic cell.  

It has since become clear that most trypanosomatid protein-coding genes are in fact 

transcribed in this fashion (Vanhamme and Pays, 1995), the one known exception 

being the metacyclic VSG genes expressed from metacyclic expression sites, which 

are transcribed monocistronically (Alarcon et al., 1994; Ginger et al., 2002). 

Metacyclic VSG ESs differ from those utilised by bloodstream form parasites in 

other ways. Metacyclic ESs contain only a small number of ESAG pseudogenes 

(Graham et al., 1999), and not only are they transcribed in a monocistronic fashion, 

but they are also not subject to post-transcriptional control which is very unusual in 

trypanosomatids (Graham & Barry, 1995). 

 

1.4.1 Genomic context of Expression Site Associate Genes 

The structure of a typical T. brucei brucei ES is shown in Figure 1.9. There is a 

telomeric VSG gene, which is followed by a series of telomeric repeats, and then the 

end of the chromosome. Upstream of the VSG gene are 70 base-pair repeats, then a 

series of ESAG genes, and each ES is preceded by a promoter. The exact content of 

the ES varies in terms of which ESAGs are present. Indeed ESAGs, as is the case for 

VSG genes, are not found uniquely within expression sites. They are found both in 

sub-telomeric and chromosome-internal positions, and are usually found adjacent to 

or near other ESAG genes and/or other VSG genes (Berriman et al., 2005; Hertz-
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Fowler et al., 2008). Unlike VSG genes, ESAGs that are outside telomeric ESs can 

be transcribed, as demonstrated by the fact that when a VSG is expressed from an ES 

containing no ESAGs, expression of certain ESAGs still occurs (Graham & Barry, 

1991). 

 

 

 

 

 

 

 

 

 

 

 

1.4.2 Diversity in Expression Sites 

Thirteen ESAGs have been identified so far; ESAGs do not constitute one specific 

family of genes, instead many different types of genes can be ESAGs. Only ESAGs 

6 and 7 are in all VSG bloodstream ESs that have been sequenced (Berriman et al., 

2002). It has been hypothesised that a function of the existence of different sets of 

ESAGs in different ESs could be to aid parasite survival in a range of mammalian 

hosts (Bitter et al., 1998; Pays et al., 2001). This is particularly relevant for ESAGs 6 

and 7, and the Serum Resistance Associated gene (SRA), and these will be discussed 

further in sections 1.4.3 and 1.4.4. However the comparison of bloodstream form ESs 

from T. b. brucei, T. b. gambiense, and T. equiperdum did not provide any supportive 

evidence that the size of the host range (which varies between these species) 

correlates with the genetic diversity of the ESs (Young et al., 2008). Although there 

is variation in the size of ESs and in the ESAGs present, the overall architecture of 

bloodstream form ESs is conserved (Hertz-Fowler et al., 2008).  

Figure 1.9: The structure of a typical bloodstream form expression site. 

Upstream of the telomeric VSG gene are a number of other genes, termed 

Expression Site Associated Genes (ESAGs). These are transcribed from the 

same promoter as VSG as a polycistronic transcription unit. 
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1.4.3 ESAGs 6 and 7: the Transferrin Receptor 

ESAG 6 was initially ascribed as a membrane-associated, GPI-anchored transferrin-

binding protein (Schell et al., 1991b; Schell et al., 1993). It was purified from 

membrane extracts by affinity chromatography using human transferrin. Treatment 

with GPI-PLC enzyme rendered ESAG6 hydrophilic which indicated that it is GPI 

anchored; the protein is specific to bloodstream-form parasites (Schell et al., 1991b).  

It was subsequently discovered that a heterodimer of ESAG6 and ESAG7 forms the 

transferrin receptor (Tf-R). While ESAG6 is GPI-anchored, ESAG7 is not, and both 

proteins are glycosylated (Salmon et al., 1994; Steverding et al., 1994). Immunogold 

labelling combined with scanning electron microscopy revealed that Tf-R is localised 

to the flagellar pocket lumen, the flagellar pocket membrane, and intracellular 

vesicles (Steverding et al., 1994). Once transferrin is bound, the complex is 

internalised and trafficked to a lysosome where the transferrin is degraded to release 

the iron for use by the trypanosome and the receptor is subsequently recycled 

(Steverding et al., 1995). Transferrin is therefore necessary for the growth of 

bloodstream form parasites (Schell et al., 1991a). The transferrins available to 

trypanosomes in different hosts are not highly conserved. For example there is only a 

70% amino acid sequence identity between bovine and human transferrin (Retzer et 

al., 1996). 

All the ESs in T. b. brucei contain ESAGs 6 and 7 and the genes in the different ESs 

vary in a hypervariable region. It was found that the Tf-Rs formed by ESAGs 6 and 7 

from different ESs have stronger binding affinities for transferrin from different 

mammals. For example, the Tf-R from the 221 VSG expression site has a high 

binding affinity for bovine serum, but a low binding affinity for canine serum (Bitter 

et al., 1998). When parasites in which the 221 VSG ES was active were grown in 

canine serum, this resulted in an outgrowth of parasites which had switched to an 

alternative ES containing a Tf-R with higher affinity for canine serum (Bitter et al., 

1998). Trypanosomes have also been found to be capable of switching the ESAG7 

gene within an ES to a different one, rather than switching the active ES. When 

trypanosomes were forced to maintain expression from the 221 VSG ES via a 
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hygromycin resistance cassette, and grown in canine serum, some clones which had 

adapted to canine serum were found to retain the same ESAG6 gene in the 221 VSG 

ES, but replace the ESAG7 gene in the 221 VSG ES with another version from 

elsewhere in the genome (van Luenen et al., 2005).  

The ability of trypanosomes to switch Tf-R to maximise their ability to bind host 

transferrin has led to the hypothesis that ESAGs have evolved to facilitate the 

survival of trypanosomes in a range of mammal hosts (Bitter et al., 1998; Pays et al., 

2001). However, there has been some debate as to whether the affinity of the Tf-R 

for transferrins from different mammals is actually physiologically relevant. When 

trypanosomes expressing Tf-R with a high affinity for human transferrin were grown 

in transferrin-depleted medium supplemented with transferrin from either bovine or 

human transferrin, the transferrins were equally well able to restore growth (Salmon 

et al., 2005). The authors speculate that it was some other stress on the parasites 

resulting from growing them in canine serum that caused them to switch to another 

ES containing a different Tf-R in the experiments by Bitter et al. (Salmon et al., 

2005). 

It has been hypothesised a high affinity of the Tf-R for the transferrin allows 

transferrin to successfully compete with anti-Tf-R antibodies for binding and 

internalisation. The host makes antibodies against Tf-R, which is exposed in the 

flagellar pocket (Bitter et al., 1998). In in vitro assays, the incubation of anti-ESAG7 

antibodies with trypanosomes significantly inhibited the uptake of transferrin 

(Salmon et al., 1994) and polyclonal antibodies raised against the Tf-R were 

internalised by the parasites (Gerrits et al., 2002). Indeed, growth of parasites which 

expressed the Tf-R from the 221 ES (which has a low affinity for canine serum) in 

canine serum and anti-221-Tf-R antibodies resulted in outgrowth of parasites which 

had switched to a different ES (with a Tf-R with a higher affinity for canine serum) 

occurring faster than it did if there were no antibodies present (Gerrits et al., 2002). It 

is worth noting that this effect was only seen with certain anti-Tf-R antibodies and 

batches of canine serum. 

However there has been evidence published that does not support the theory that 

competition by antibodies inhibits uptake of transferrin by the Tf-R. The study by 
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Gerrits et al. used rabbits that had been immunised with recombinant Tf-R to 

measure physiological antibody concentrations. When the titres of anti-Tf-R 

antibodies in mice chronically infected with trypanosomes (as opposed to in 

immunised rabbits) were measured they were found to be too low to significantly 

affect the ability of the Tf-R to take up transferrin (Steverding, 2006).  

 

1.4.4 Serum Resistance Associated gene 

It was noted that T. b. rhodesiense parasites displayed two phenotypes in terms of 

their susceptibility to lysis by human serum: sensitive and resistant, whilst T. b. 

gambiense parasites were always resistant (De Greef et al., 1989). Resistance in T. b. 

rhodesiense parasites was found to correlate with the presence of a specific mRNA 

(De Greef et al., 1989). Isolates were observed to switch from the resistant to the 

susceptible form and vice versa and all isolates were found to contain the gene for 

the transcript expressed by resistant forms. This gene was named the Serum 

Resistance-Associated gene (SRA) (De Greef & Hamers, 1994). The protein has 

sequence homology with VSG, especially at the C-termini (De Greef & Hamers, 

1994) and was designated as having its evolutionary origins in a truncated VSG gene 

(Campillo & Carrington, 2003). The gene is an ESAG and is found within some 

VSG expression sites; cloning of the gene into the normally non human-infective T. 

b. brucei subspecies rendered these parasites resistant to lysis by human serum 

(Xong et al., 1998). However SRA is not the only mechanism in the trypanosome’s 

repertoire for resisting lysis by human serum; T. b. gambiense parasites are 

completely resistant, and T. b. brucei TRUE 927/4 parasites show an intermediate 

resistance phenotype (Vanhamme et al., 2004); the mechanisms for these have not 

been elucidated but SRA is not responsible (Turner et al., 2004). 

Expression of SRA from a particular VSG ES is a definitive example of an ESAG 

playing a vital role increasing the host range of T. b. rhodesiense. The mechanism by 

which the SRA protein confers resistance to lysis by human serum will be discussed 

in section 1.5.2.4 of this chapter. 
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1.4.5 Characterisation of other ESAGs 

 

Definitive functions have not been ascribed to the other ESAG genes. ESAG 1 is a 

membrane glycoprotein (Cully et al., 1985a) of unknown function. ESAG4 appears 

to be an adenylate cyclase with transmembrane domains (Alexandre et al., 1990; 

Paindavoine et al., 1992; Pays et al., 1989). ESAG8 is unusual in that it is a 

predominantly nucleolar protein which interacts with a Puf protein that is involved in 

mRNA stability (Hoek et al., 2002). ESAG10 contains ten transmembrane domains 

and so is likely to be a membrane protein (Gottesdiener, 1994) and ESAG11 is 

predicted to be a glycosylated cell surface protein (Redpath et al., 2000). 

Bioinformatic analysis of ESAG5 protein sequences indicates that they have 

similarity to a family of lipid transfer proteins, and predicts that ESAG5 proteins 

would be glycosylated and could be either membrane-bound or secreted (Barker et 

al., 2008). A summary of what is known about the function and genomic location of 

the different ESAGs is given in Table 1.1. 



 

 24 

  

Table 1.1: Summary table of ESAGs and their functions. The number of 

expression sites (ESs) in T. b. brucei Lister 427 which contain each ESAG are 

shown (Hertz-Fowler et al., 2008), as are the number of ESAGs in non-

telomeric positions in T. b. brucei TREU 927/4 (Berriman et al., 2005). The 

function or putative function is given and a core reference for each ESAG.
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1.5 African trypanosomes and immunity 

 

1.5.1 The tsetse fly innate immune response 

 

The tsetse fly mounts an immune response against trypanosomes to prevent both the 

establishment and the maturation of a trypanosome infection (Welburn & Maudlin, 

1999). The effectiveness of this response is shown by the low level of trypanosome 

infections detected in field samples of tsetse flies in endemic areas, typically 10-12% 

(Masiga et al., 1992; Morlais et al., 1998a; Morlais et al., 1998). The refractoriness 

of tsetse flies depends upon many factors and processes, involving the midgut, 

proventriculus, fat body and hemolymph (Lehane et al., 2004).  

The innate immune system has been more thoroughly studied in Drosophila 

melanogaster, and this has revealed similarities between well-characterised 

mammalian immune pathways such as the Tumor Necrosis Factor pathway, and the 

insect immune response (Tzou et al., 2002). The occurrence of similar processes in 

tsetse flies has not been verified; however a number of innate immune molecules and 

functions have been characterised and these will be discussed. 

 

1.5.1.1 Antimicrobial peptides 

Four antimicrobial peptides have so far been conclusively identified in tsetse flies, 

and it is likely that there are more yet to be identified. Attacin, defensin, diptericin, 

and cecropin are all expressed in the fat body, and attacin and cecropin are also 

expressed in the proventriculus and haemolymph (Hao et al., 2001; Hu & Aksoy, 

2006; Kaaya et al., 1987; Lehane et al., 2008). These genes are differentially 

regulated depending on the microbial challenge. Exposing tsetse flies to Escherichia 

coli resulted in the transcription of attacin and defensin being strongly induced 

whereas procyclic trypanosomes elicited a lesser and temporary response, and 

bloodstream form trypanosomes did not induce the expression of defensin at all (Hao 
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et al., 2001). Diptericin however is always expressed regardless of the microbial 

challenge. 

Exposure of procyclic and bloodstream form T. b. brucei to recombinant attacin 

protein (GmAttA1 gene) resulted in an inhibition of growth of both cell types (Hu & 

Aksoy, 2005). The recombinant protein did not have any activity against the tsetse 

fly gut endosymbiont Sodalis glossinidius. The expression of attacin is controlled by 

Relish (GmmRel), which is a transcriptional regulator of invertebrate humoral 

immune response genes that was originally identified in D. melanogaster (Hedengren 

et al., 1999). Knockdown by RNA interference of GmmRel resulted in loss of 90% 

of the attacin transcript in tsetse flies (Hu & Aksoy, 2006). These flies experienced a 

two to three fold increase in parasite load in the midgut when exposed to 

trypanosomes compared to flies expressing normal levels of attacin.  

 

1.5.1.2 Lectins 

Exposure to lectins such as Con A is lethal to procyclic-form trypanosomes (Pearson 

et al., 2000). The mechanism of killing involves the binding of the lectin to glycan 

chains on the Procyclin surface coat molecule. Mutants have been identified that 

express different EP surface protein isoforms, with only partial or no glycosylation, 

and are resistant to Con A (Acosta-Serrano et al., 2000; Hwa et al., 1999). 

It is important to note that Con A is a plant lectin. However expressed sequence tag 

(EST) analysis of the G. morsitans morsitans midgut has revealed the presence of 

three putative lectin genes (Lehane et al., 2003). A protein called TsetseEP has also 

been identified that is expressed in the midgut, though not the salivary glands, of G. 

morsitans (Chandra et al., 2004). This protein has tentatively been classified as a 

lectin as it has structural similarity to known insect lectins, but it has not yet been 

shown to have lectin activity. Interestingly, the protein has some sequence similarity 

to the EP procyclin surface coat molecule of insect-form trypanosomes (Chandra et 

al., 2004).  

Circumstantial evidence for the involvement of lectins in the tsetse fly innate 

immune response to trypanosomes comes from the effect of feeding tsetse flies 
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sugars that inhibit lectin activity. Both D-glucosamine and N-acetyl-glucosamine 

block the binding of lectins to glycosylated macromolecules. The inclusion of these 

sugars with a tsetse fly feed results in the flies being more susceptible to 

trypanosome infection (Peacock et al., 2006). 

1.5.1.3 Proteases 

Proteases are also found in the midgut of tsetse flies. The protease trypsin has been 

identified in the midgut as a lectin-trypsin complex (Abubakar et al., 2006) and a 

number of enzymes with trypsin-like properties have also been found in the midgut 

(Liniger et al., 2003). Exposure of pleiomorphic trypanosomes to trypsin showed that 

whilst slender forms are killed by these proteases, stumpy forms are resistant. In fact, 

interestingly, the trypsin stimulated the stumpy form parasites to undergo 

differentiation and express Procyclin (Sbicego et al., 1999), so the presence of 

proteases in the midgut may actually be a signal to the invading parasites. One 

function of Procyclins on the surface of trypanosomes may be to protect the parasite 

from protease attack, and, indeed, the N-termini of the protein is cleaved in the tsetse 

midgut by proteolysis (Acosta-Serrano et al., 2001). Although the Procyclin coat is 

not required for parasite survival in the fly gut, parasites lacking the coat do colonise 

the fly gut to a lesser degree (Guther et al., 2006; Nagamune et al., 2000; Ruepp et 

al., 1997; Vassella et al., 2009). 

 

1.5.1.4 Reactive oxygen species 

Reactive oxygen species (ROS) are known to be an important part of the mammalian 

immune system (this will be discussed in section 1.5.3) and they are also thought to 

play a role in invertebrate innate immunity. These ROS may be a method of 

signalling between different organs in the tsetse fly (Lehane et al., 2004). The 

proventriculus of the tsetse fly produces nitric oxide (NO), hydrogen peroxide, and 

other reactive oxygen intermediates as a result of challenge with microbes (Hao et 

al., 2003). Indirect evidence for a role for ROS comes from the fact that ‘self-cured’ 

flies (i.e. those that have successfully eliminated a trypanosome infection) have 

increased levels of catalase expression when compared to infected flies, and 
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increased levels of lambda crystallin when compared to uninfected flies. These 

antioxidant molecules could be involved in protecting the flies from reactive oxygen 

intermediates that they are producing (Lehane et al., 2008). A total of 18 putative 

antioxidant genes were identified by EST analysis of the midgut of G. morsitans 

morsitans (Lehane et al., 2003). 

 

1.5.1.5 The role of endosymbionts 

Tsetse flies have (at least) three important endosymbionts: Wolbachia spp., 

Wigglesworthia glossinidia, and Sodalis glossinidius. This last endosymbiont, S. 

glossinidius, has been found to be involved in the susceptibility of tsetse flies to 

trypanosome infection. It is not an obligate endosymbiont, and its elimination from 

tsetse flies using streptozotocin results in the flies having a lower rate of midgut 

infections (Dale & Welburn, 2001).  

Refractoriness to trypanosome infection is inherited down the female line in tsetse 

flies (Moloo et al., 1998). The endosymbionts of tsetse flies are also maternally 

inherited and they could be involved in susceptibility or resistance to infection. This 

phenotype of maternally-inherited refractoriness has been reported to only be seen in 

teneral flies (newly hatched unfed flies) however, and not those which have already 

received a blood feed (Welburn et al., 1989). 

An interesting model has been put forward which connects the endosymbiont 

populations of tsetse fly midguts with the susceptibility of teneral tsetse flies, via the 

action of lectins. When the fly is in the pupa, endosymbiotic bacteria digest chitin 

and release sugars which could be lectin-inhibitory (Peacock et al., 2006; Welburn et 

al., 1993); this may be a reason why younger flies are more susceptible to infection 

with trypanosomes. 
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1.5.2 Immune responses and immune evasion in the mammal stage of the life 
cycle 

 

There is an evolutionary conflict between the host and the pathogen in terms of the 

host’s ability to clear an infection and the pathogen’s ability to avoid this clearance. 

The mammalian immune response and the complex immune evasion strategies of the 

trypanosome parasite will be discussed. The literature discussed in regards to 

mammalian immune responses will, unless specified, be referring to experiments 

using the murine model of trypanosomiasis. 

 

1.5.2.1 Mammalian immune responses 

During the course of trypanosomiasis, the majority of the parasites are periodically 

ablated through antibody-mediated cell destruction (Cross, 1978). This process is not 

mediated by complement, to which the parasites are not susceptible due to their VSG 

coat, but involves binding of antibody to the VSG surface antigen and subsequent 

phagocytosis of opsonised parasites by macrophages (Tomlinson and Raper, 1998). 

Antibody-mediated parasite clearance is not the only tool that the mammalian 

immune system uses to counter trypanosomiasis however. Many cell types and 

cytokines are involved. There is an early interferon gamma (IFN-γ) response during 

trypanosomiasis – this type I cytokine is produced primarily during the first wave of 

infection and is involved in inflammatory immune responses and classical activation 

of macrophages (Baetselier et al., 2001). These classically activated macrophages 

have dual functions in protecting the host. They secrete molecules that are toxic to 

trypanosomes, particularly nitric oxide (NO) and Tumor Necrosis Factor α (TNF-α). 

They also have the ability to phagocytose parasites that have been opsonised. 

Although the early production of IFN-γ is beneficial, over longer term infections the 

type I interferons α and β may cause a downregulation in IFN-γ which makes a 

mouse host more susceptible (Lopez et al., 2008). 
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Nitric oxide (NO) is a reactive nitrogen intermediate with antimicrobial properties 

(Bogdan, 2001). NO results from the oxidation of L-arginine to L-citrulline by nitric 

oxide synthase (NOS). It is produced primarily, though not uniquely, by 

macrophages and can function to both stimulate and suppress the mammalian 

immune system (Bogdan, 2001). NO seems to have antagonistic properties during 

trypanosomiasis. It could benefit the host via its antimicrobial action and the 

depletion of the substrate L-arginine, which is required by trypanosomes, but it has 

also been reported to be a key element in immunosuppression caused by 

trypanosome infection (Beschin et al., 1998). From day 4 of a trypanosome infection 

in mice, an increase in NO production by macrophages is seen when compared to 

uninfected mice, and this correlates with a decrease in proliferation of T cells in the 

spleen and a decrease in IFN-γ production (Beschin et al., 1998). The inclusion of an 

NO synthesis inhibitor resulted in the proliferation of spleen cells being reduced to a 

lesser degree. So-called ‘suppressor macrophages’ have also been reported to 

produce prostaglandin E during trypanosomiasis, and this is thought to help mediate 

this decrease in proliferation of T cells (Schleifer & Mansfield, 1993).  

Tumour Necrosis Factor α (TNF-α) is a cytokine that was originally discovered to 

have a role in tumour cell apoptosis, but has since also been found to have important 

roles in immune responses against pathogens (Pfeffer, 2003). TNF-α has both direct 

trypanolytic effects and indirect immunosuppressive effects during trypanosome 

infection. TNF-α lyses bloodstream-form trypanosomes in vitro (Daulouede et al., 

2001; Lucas et al., 1994), and is endocytosed via the flagellar pocket (Magez et al., 

1997). After endocytosis, the TNF-α is trafficked to lysosome-like organelles, where 

it prevents proper osmoregulation by the parasites (Magez et al., 1997). Interestingly, 

in pleiomorphic parasites, TNF-α only lysed cells if they were harvested at the peak 

of infection of a mouse and not early on in infection, which suggests that this 

cytokine has a more potent trypanolytic effect on stumpy cells. TNF-α knockout 

mice experience higher levels of parasitaemia, and a reduction in IFN-γ production 

(Magez et al., 1999).  
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1.5.2.2 Protozoan parasite GPI-anchored proteins stimulate immune 

responses 

 

Protozoan GPI-anchored proteins and purified GPIs have been shown to stimulate an 

immune response in their mammalian host. Effects have been seen in Plasmodium 

spp., T. cruzi and T. brucei (Magez et al., 2002; Tachado et al., 1997).  

GPI anchored mucin glycoproteins from T. cruzi trypomastigotes were shown to 

stimulate production of nitric oxide (NO) by macrophages (Camargo et al., 1997a; 

Camargo et al., 1997b). This work was extended to compare the effect of GPI 

fractions from epimastigote (insect stage) and trypomastigote (extracellular 

bloodstream form stage) T. cruzi parasites (Almeida et al., 2000). In T. cruzi, 

epimastigote GPI anchor fractions from mucins were not found to be bioactive, 

whereas very low concentrations of GPI fractions from trypomastigote mucins 

induced a macrophage response. GPI-mucins were able to bind to Cluster of 

Differentiation 1 d (CD1d) (Procopio et al., 2002), which is a surface glycoprotein 

(Park & Bendelac, 2000) and is a ligand of NK1.1+ T cells (Bendelac et al., 1995). 

However T. cruzi GPI-mucins but did not elicit an activation of NK1.1+ T cells 

(Procopio et al., 2002). 

GPI-anchored VSGs from T. brucei parasites have also been shown to have 

immunogenic properties (Coller et al., 2003; Leppert et al., 2007; Lopez et al., 2008; 

Magez et al., 1998; Schleifer & Mansfield, 1993). Soluble VSG (sVSG, cleaved 

from the surface of bloodstream form parasites via the action of GPI-PLC enzyme) 

binds to receptors on the surface of the macrophage (Leppert et al., 2007). It induces 

IFN-γ dependent signals of macrophage activation, for example the production of 

NO (Coller et al., 2003). This effect is thought to be important especially in the early 

stages of parasitemia in the mammal host.  
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1.5.2.3 Trypanosomes avoid and modulate the mammalian immune 

response 

 

Trypanosomes avoid complete eradication by the mammalian immune system 

predominantly via the process of antigenic variation (as described in section 1.3.2), 

which allows them to evade obliteration by the antibody response mounted against 

VSG. However they also have other tactics for avoiding and suppressing the immune 

response of the host. Trypanosomiasis patients are more susceptible to secondary 

infections due to immunosuppression resulting from the parasite infection 

(Greenwood et al., 1973).  

Bloodstream form T. brucei parasites have been reported to secrete soluble factors 

that act as immunomodulators (Holzmuller et al., 2008; Olsson et al., 1991; 

Sternberg & Mabbott, 1996). In vitro culture of bloodstream form trypanosomes with 

either peritoneal macrophages or spleen cells resulted in an increase in production of 

NO by macrophages, and an inhibition of proliferation of T cells, respectively 

(Sternberg & Mabbott, 1996). This process was dependent on the presence of IFN-γ, 

and independent of cell contact between the trypanosomes and the macrophages. 

Procyclic forms did not elicit the same effects. Mortality in susceptible strains of 

mice has been linked with CD4+ T cells producing large quantities of IFN-γ (Shi et 

al., 2006), so it could be beneficial to the parasite to down-regulate T cell 

proliferation and hence increase the longevity of the host.  

The secretomes of T. brucei strains that differ in virulence and pathogenicity, but are 

genetically similar, have been investigated. Trypanosomes secrete a large number of 

molecules, some of which are specific to strains that display different disease 

phenotypes (Holzmuller et al., 2008). Medium containing the secreted molecules can 

activate arginase activity, which is involved in the alternative activation of 

macrophages (Holzmuller et al., 2008). 
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A molecule termed Trypanosome-Derived Lymphocyte-Triggering Factor (TLTF; 

also called trypanin) was identified as a secreted immunomodulatory protein. TLTF 

was reported to be a 185 kDa protein, released by bloodstream form parasites, which 

caused CD8+ lymphoid cells to secrete IFN-γ (Olsson et al., 1991; Olsson et al., 

1993).  It was also suggested that the IFN-γ was taken up by the parasites and acted 

as a growth factor. The gene for TLTF was subsequently cloned and the recombinant 

protein found to have the same stimulatory effect on CD8+ T cells (Vaidya et al., 

1997). However further analysis of TLTF defined it as being a flagellar protein (Hill 

et al., 2000), which would therefore not be either secreted or surface-associated. In 

the light of the localisation of the protein, and the fact that other laboratories have 

failed to replicate the stimulatory effects on CD8+ T cells, TLTF is considered to be 

an unlikely candidate immunomodulator (personal communication, Professor John 

Mansfield, University of Wisconsin-Madison). 

B cells form part of the adaptive immune response to pathogens by creating 

antibodies against microbial antigens. Thus they are an important part of the immune 

response to trypanosomes, which is centred around antibody-mediated lysis. 

However, it appears that trypanosomes do not only use antigenic variation to avoid 

the host antibody response; they are also capable of manipulating the B cell 

populations responsible for creating antibodies. Experimental infection of mice with 

trypanosomes resulted in significant levels of B cell apoptosis, and mice were also 

then susceptible to challenge with trypanosomes expressing a VSG antigen to which 

they have already been exposed (Radwanska et al., 2008). 
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1.5.2.4 The Trypanosome Lytic Factor in human serum 

 

The Trypanosome Lytic Factor (TLF) in human serum causes lysis of susceptible 

strains of trypanosomes. It confers innate immunity against T. b. brucei parasites 

(Raper et al., 2001). 

An Apolipoprotein L-1 (ApoL-1) subfraction of the human high-density lipoprotein 

(which has long been known to be toxic to trypanosomes) has been isolated as the 

trypanosome lytic factor (TLF) (Hajduk et al., 1989; Rifkin, 1978; Vanhamme et al., 

2003). In susceptible trypanosomes, the TLF is endocytosed via the flagellar pocket, 

and it forms a pore across the membrane of a late endosome or lysosome. This 

allows an influx of chloride ions, which causes the lysosome to swell and eventually 

results in cell death. However in resistant trypanosomes the TLF is trafficked to a 

vesicle containing the SRA (serum resistance associated) protein (Oli et al., 2006). 

SRA is an ESAG, as discussed in section 1.4.4, and is responsible for resistance to 

lysis by TLF in resistant strains of T. b. rhodesiense. An alpha helix in the SRA 

protein has been shown to interact with an alpha helix in ApoL-1 (Vanhamme et al., 

2003) and via this interaction presumably prevents pore formation across the vesicle 

membrane. The mechanism for susceptibility or resistance to lysis is shown in Figure 

1.10, which is taken from a Nature Reviews Microbiology review by Pays et al. 

(Pays et al., 2006).  Although the ApoL-1 is responsible for lysis, this lysis is much 

more efficient when the ApoL-1 is still in the human high density lipoprotein 

complex rather than when it is in isolation (Shiflett et al., 2005).  

The receptor responsible for taking up the trypanosome lytic factor is a Haptoglobin-

Hemoglobin Receptor (TbHpHbR) (Vanhollebeke et al., 2008). The prime function 

of this receptor is to take up Haptoglobin-Hemoglobin (Hp-Hb); the uptake of the 

Hp-Hb by TbHpHbR is associated with an increase in growth rate of bloodstream 

form trypanosomes because the heme is required by the cell (Vanhollebeke et al., 

2008). The heme appears to have a further potential function in bloodstream form 

trypanosomes. In vivo and in vitro analyses suggest that the uptake of Hp-Hb enables 



 

 35 

parasites survive better when exposed to oxidative stress from macrophages; and this 

effect is negated when the oxidative stress is inhibited (Vanhollebeke et al., 2008), 

for example by incubation with L-NAME, which is an inhibitor of NO synthase. The 

mechanism of this protection has not been elucidated. 

However the TbHpHbR binds equally well to a Haptoglobin-related protein, which is 

associated with the human high density lipoprotein complex (which contains ApoL-

1, the trypanolytic factor) (Vanhollebeke et al., 2008; Vanhollebeke et al., 2007). 

Therefore the receptor is beneficial to the parasite in all but human hosts (and some 

monkeys) as the Hp-Hb complex confers on the parasites both the ability to grow 

faster, and the ability to escape from oxidative stress induced by macrophages of the 

mammalian immune system. However, in human hosts this receptor becomes 

detrimental as it results in the uptake of ApoL-1 with the rest of the complex (Pays & 

Vanhollebeke, 2008). This effect has been evaded via the evolution of the SRA gene 

(an ESAG) in T .b. rhodesiense. T. b. gambiense is also immune to TLF but the 

mechanism is not known; resistance in this sub-species is not though to be associated 

with an ESAG (Pays et al., 2006). 
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Figure 1.10: The mechanism of trypanosome lysis by ApoL-1. The human high 

density lipoprotein (HDL particle) is endocytosed via the flagellar pocket. It is 

enclosed in an endosome, wherein a sub-fraction of ApoL-1 is able to form a pore 

through the endosome plasma membrane. This results in an influx of chloride ions 

into the mature lysosome from the cytosol, followed subsequently by excessive 

swelling of lysosomes and hence trypanosome death. The SRA protein in some way 

prevents the ApoL-1 from making a pore across the plasma membrane of the 

maturing lysosome. The diagram is taken from a review in Nature Reviews 

Microbiology by Pays et al. (Pays et al., 2006). 
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1.6 Aims of this PhD project 

 

Prior to the commencement of this PhD project, the extent of knowledge regarding 

the expression site associated gene 9 (ESAG9) gene family was limited to: (i) There 

are (at least) two ESAG9 genes in Trypanosoma equiperdum, one of which is in an 

expression site (Florent et al., 1991); (ii) Sequencing of different strains of T. brucei 

brucei has revealed that ESAG9 genes are usually chromosome-internal and are 

rarely found in expression sites (Berriman et al., 2005; Hertz-Fowler et al., 2008); 

and (iii) the expression of ESAG9 genes is up-regulated in T. b. brucei stumpy form 

parasites (Keith Matthews, unpublished data). 

We aimed to increase the depth of knowledge regarding this gene family in T. b. 

brucei in the following ways: 

 

• By determining the protein expression profile of ESAG9 genes in slender, 

stumpy and differentiating parasites. 

• By exploring, using a bioinformatic approach, the similarity of ESAG9 genes 

to any other characterised gene family, and the presence of any motifs of 

known function or predictions of post-translational modifications. 

• By using transgenic cell lines, and antibodies raised against ESAG9 proteins, 

to explore the subcellular location and post-translational modifications of 

ESAG9 proteins. 

• By using in vitro, in vivo, and ex vivo approaches to determine if ESAG9 

genes have any function in host-parasite interactions, as is the case for some 

other ESAG genes. 
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Chapter 2 Materials and Methods 

 

2.1 Trypanosomes 

 

2.1.1 Strains 

The 427-449 cell line was used for transfection in this study. The cell line originates 

from the Trypanosoma brucei brucei Lister 427 strain, which is monomorphic and 

culture-adapted. The isolation and history of this cell line can be found on the 

website of Professor George Cross (http://tryps.rockefeller.edu/). This cell line was 

stably transfected with a construct called pHD449 (Wirtz et al., 1999), containing a 

tetracycline repressor gene to allow inducible ectopic expression, hence the name 

‘427-449’. The pHD449 vector is described in section 2.2.3.5.1. 

A pleiomorphic strain called EATRO 2340 was also used in this project. The term 

‘EATRO’ refers to the East African Trypanosmiasis Research Organisation in 

Tororo, Uganda, where the strain was first isolated (Cunningham & Vickerman, 

1962). This strain was thought until recently to be T. b. rhodesiense, but has recently 

been tentatively renamed as T. b. brucei (Young et al., 2008). 

Pleiomorphic cells are those that exhibit two morphologies in the bloodstream of the 

life cycle: slender and stumpy. They are competent to complete the life cycle via 

passage through tsetses flies. Monomorphic cells have been culture adapted to the 

extent that they no longer produce stumpy forms, and proliferate very rapidly in the 

mouse host causing a virulent infection (Fenn & Matthews, 2007). 

 

2.1.2 Cell culture 

Procyclic form cells were maintained at between 2×106 and 2×107 cells/ml in culture 

flasks and incubated at 27°C and passaged every 24 to 48 hours. SDM-79 media 

(Brun & Schonenberger, 1979; Cross & Manning, 1973) was used, with 10% v/v of 

foetal bovine serum (FBS, Gibco) and haemin to a final concentration of 2.5µg/ml. 
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Bloodstream form cells were maintained at between 1×105 and 2×106 cells/ml in 

culture flasks with filter lids to allow diffusion of CO2, and passaged every 24 to 48 

hours. They were incubated at 37°C with a CO2 concentration of 5%. HMI-9 media 

was used (Hirumi & Hirumi, 1989) with 20% v/v FBS. 

 

2.1.3 Purification from blood 

Blood from trypanosome-infected mice was obtained by heart-puncture. The blood 

was then passed through a DEAE cellulose anion exchange column (Lanham & 

Godfrey, 1970) and the trypanosomes washed through the column with PSG (for all 

buffer recipes refer to Appendix A). The cell density was then counted using a 

Coulter Particle Count and Size Analyser (Beckman Coulter), the cells pelleted by 

centrifugation at 600 g for ten minutes, and the cells then resuspended in an 

appropriate volume of HMI-9 media. All mouse handling work was carried out by 

either Deborah Hall or Keith Matthews. 

 

2.1.4 Differentiation 

Stumpy cells extracted from blood were resuspended in pre-warmed HMI-9 media at 

a concentration of 2×106 cells per ml. They were incubated at 27°C with addition of 

cis-aconitate to a final concentration of 6mM to induce differentiation.  

 

2.1.5 Transfection 

For procyclic form transfections, 3×107 cells (per transfection) were harvested by 

centrifugation at 600 g for 10 minutes whilst in the log phase of growth. The cell 

pellets were washed in ice-cold ZPFM buffer (for recipe see Appendix A) and the 

resultant cell pellet resuspended in 500µl of ice-cold ZPFM buffer. Either 10µg 

linearised DNA, or an equivalent volume of sterile dH2O for the negative control, 

was added to an electroporation cuvette (with a 4mm gap, from Molecular 

BioProducts) and then a 500µl aliquot of cells added to each cuvette. The cells were 

then transfected with a BTX 830 Electro Square Porator set to 3× 100µs pulses of 

1700v with 200ms intervals. The transfected cells were immediately transferred to 

10mls of pre-warmed SDM-79 media and recovered overnight in the incubator. 
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Successful transfectants were those which had integrated the linearised plasmid into 

their genome in the ribosomal RNA intergenic region. The constructs used contained 

drug resistance cassettes, which inferred drug resistance to the parasites. Successful 

transfectants were therefore selected with the drug hygromycin at 30µg/ml in culture 

flasks at a cell density of 2×106 cells/ml.  

Bloodstream form cells were transfected as above, as far as the overnight recovery 

step, except that ZPFMG buffer was used instead of ZPFM, and the overnight 

recovery step was carried out in HMI-9 media. Successful transfectants were selected 

with either hygromycin (2µg/ml) or puromycin (0.5µg/ml) and selection was carried 

out in 96-well plates at a cell density of 1×105 cells/ml.  

 

2.1.6 Cryopreservation of cell lines 

Procyclic or bloodstream form cells were harvested by centrifugation at 600 g for 10 

minutes whilst in the log phase of growth. The supernatant was poured off, leaving 

approximately 500µl of media, in which the cells were resuspended by flicking. An 

equal volume of either procyclic form freezing mix (SDM-79 with 14% glycerol) or 

bloodstream form freezing mix (HMI-9 with 14% glycerol) was then added and the 

cells transferred to cryotubes. The cells were stored at -80°C for 1-2 weeks, and then 

transferred to liquid nitrogen if longer-term storage was required. 

 

2.2 Molecular biology 

 

2.2.1 DNA gel electrophoresis 

Agarose gels were made up in TAE buffer (for recipe see Appendix A) and the 

agarose was melted by heating in a microwave prior to addition of 3.5µl of Safeview 

(NBS Biologicals) for every 100ml of agarose gel. Generally a 1% gel was used for 

maximum separation in the relevant size range. Gels were cast in Biorad tanks and an 

appropriate volume of sample loaded along with 5µl of SmartLadder DNA ladder 

(Eurogentec). The samples were run at 95V until a sufficient degree of resolution 

was achieved, and the gel was then viewed using a UV light source. 
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2.2.2 PCR 

The polymerase chain reaction (PCR) was carried out using either T. b. brucei 

EATRO 2340 genomic DNA or Escherichia coli purified plasmid DNA as a 

template. PCR reactions were set up in a final volume of 50µl with the following 

ingredients: 5µl dNTPs (2mM stock), 10µl of 5× PCR buffer (as supplied with the 

DNA polymerase), 6µl MgCl2 (25mM), 2µl of forward and reverse primers (10mM 

stock), 1µl of DNA polymerase (either GoTaq® from Promega or Expand High 

Fidelity PCR system from Roche), 2µl DNA, and 22µl H2O. The PCR was carried 

out using a PCR Sprint thermal cycler (Thermo Electron Corporation) with the 

following cycles: one cycle of 95°C for 4 minutes; 30 cycles of: 94°C 30 seconds, 

55°C 45 seconds, 72°C 1 minute per kb; one cycle of 72°C for 2 minutes. 5µl of the 

resultant PCR was then run out in a 1% agarose gel. The sequences of primers used 

are given in Appendix B. 

 

2.2.3 Cloning 

2.2.3.1 Restriction enzyme digestion 

Restriction enzyme digestions were typically carried out in a 30µl volume with 

between 1 and 6µl DNA, 1µl of each of the required enzyme(s), 3µl of 10× digestion 

buffer (as supplied with the enzyme), and the volume made up with dH2O. The 

digestion reactions were incubated at 37°C for either 3 hours or overnight. 

2.2.3.2 Ligation 

Ligation of PCR products into P-Gem T-easy was carried out using the following 

ingredients: 0.5µl T4 DNA ligase, 0.5µl P-Gem T-easy vector, 1µl buffer, 8µl PCR 

product. Ligations were incubated either at room temperature for one hour, or at 4°C 

overnight.  

Ligations of restriction-enzyme digested inserts into all other vectors was carried out 

with: 2µl plasmid DNA, beween 2 and 6µl insert DNA (dependent on concentration 
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of insert versus plasmid), 1µl of buffer, 0.5µl of T4 DNA ligase, and the volume 

made up to 10µl with dH2O. These ligations were incubated at 4°C overnight. 

2.2.3.3 Transformation of bacteria 

Aliquots of chemically competent Escherichia coli (XL1-Blue from Stratagene) were 

thawed on ice and 3µl of ligation reaction added to 100µl of cells. The mixture was 

flicked gently and incubated for 20 minutes on ice. The cells were heat-shocked for 

45 seconds at 42°C and then incubated on ice for 5 minutes. 150µl of L-broth was 

added and then the cells were incubated in a shaking incubator for one hour at 37°C. 

The cells were then plated out on LB agar containing 100µg/ml ampicillin and 

incubated overnight at 37°C. 

2.2.3.4 Isolation and purification of DNA  

DNA was purified from restriction enzyme digestions, or from agarose after gel 

electrophoresis, using a NucleoSpin Extract II kit (Machery-Nagel) according to the 

manufacturers instructions. 

Small-scale preparations of plasmid DNA were achieved by inoculating 1.5ml of L-

broth containing 100µg/ml ampicillin with a single colony from an agar plate and 

growing overnight at 37°C with shaking. The plasmid DNA was then isolated using 

solutions I, II and III (Birnboim & Doly, 1979). The bacterial suspension was 

pelleted by centrifugation in a table-top microcentrifuge at 13,000rpm for 5 minutes. 

The supernatant was removed, the pellet resuspended in 100µl of solution I, and 

incubated on ice for 5 minutes. 200µl solution II was added, followed by several 

inversions to mix and a 5 minute incubation on ice. 150µl of solution III was then 

added and the mixture inverted several times and incubated on ice for 5 minutes. The 

mixture was then centrifuged for 10 minutes at 13,000rpm in a table-top 

microcentrifuge. The supernatant was transferred to a new eppendorf, 900µl of 100% 

ethanol added, and the DNA then precipitated on ice for 15 minutes. The DNA was 

then pelleted by centrifugation for 10 minutes at 13,000rpm in a table-top 

microcentrifuge. The resultant DNA pellet was washed with 70% ethanol, then 

resuspended in 40µl of TE buffer and 2µl RNase (10mg/ml) and incubated at room 

temperature for five minutes. Samples were stored at -20°C. 
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Large-scale isolations of plasmid DNA were achieved by growing a 100ml bacterial 

culture and isolating the DNA using a QIAGEN Plasmid Midi kit according to 

manufacturer’s instructions. 

2.2.3.5 Plasmid constructs used 

2.2.3.5.1 pHD 449 and pHD 451 

The pHD 449 plasmid, designed by Biebinger et al. (Biebinger et al., 1997), contains 

an open reading frame for the Tetracyclin repressor (TetR) bacterial protein, driven 

by the trypanosome procyclin promoter. The construct also contains a phleomycin 

resistance cassette for selection of successful transfectants. The construct is 

linearised with Not I enzyme and integrates into the ribosomal RNA spacer. 

The pHD 451 plasmid, also designed by Biebinger et al. (Biebinger et al., 1997), was 

used for tetracycline-inducible ectopic expression of proteins in both procyclic and 

bloodstream form parasites. The plasmid integrates into the ribosomal RNA spacer; a 

diagram of the plasmid is shown in Chapter 4 Figure 4.3. 

2.2.3.5.2 pGEM T easy 

This is a commercially-available plasmid (Promega) which was used to clone PCR 

products. A diagram of the plasmid is shown in Appendix C. 

 

2.2.4 Sequencing reaction 

Sequencing was carried out by the School of Biological Sciences Sequencing Service 

at Edinburgh University. For the sequencing reaction a 6µl sample was prepared 

containing 10-40 ng of plasmid DNA and 26 pmol of the required primer. The 

sequences were viewed using 4Peaks version 1.7.1 (© Mek&Tosj). 



 

 44 

 

2.3 Western blotting 

 

2.3.1 Preparation of protein samples 

Between 1 and 4×107 cells were harvested by centrifugation for 10 minutes and 

2,000rpm in a table-top centrifuge. The pellets were washed in PBS and the 

centrifuge step repeated. The resultant pellets were then resuspended in Laemmli 

(Laemmli, 1970) buffer to a concentration of 2×105 cells per 1µl of buffer. The 

samples were incubated at 100°C for 5 minutes and then vortexed and stored at         

-20°C until required. 

 

2.3.2 SDS polyacrylamide gel electrophoresis 

The polyacrylamide gels were prepared according to the recipes in Appendix A and 

poured into a Bio-Rad PROTEAN II casting apparatus. A resolving gel was poured 

first and allowed to set, and then a stacking gel was poured on top. The percentage of 

acrylamide used in the resolving gel was dependent upon the size of the protein 

being investigated; for ESAG9 proteins a 13% gel was utilised for maximum 

separation in the relevant size range. 

Samples made from 2×106 cell equivalents were run in each lane, alongside a 

Benchmark protein ladder (Invitrogen). The gels were run in a Biorad apparatus at 

150V in SDS Running Buffer for approximately 80 minutes, or until the dye front 

reached the bottom of the gel. Gels were stained in Coomasie’s blue stain for 10 

minutes if required, and then washed several times in Destain solution. 

The gels were transferred to nitrocellulose transfer membrane (Whatman Protran 

membrane) at 25V for 30 minutes using a BioRad Trans-Blot semi-dry transfer cell. 

If required, the membranes were then stained with 0.4% ponceau solution for 10 

minutes to visualise protein, and washed several times in dH2O. 
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2.3.3 Antibody staining of the blot 

Two systems were used for visualisation of proteins on blots: either 

chemiluminescence, or the LI-COR Odyssey system, which uses secondary 

antibodies conjugated to a fluorochrome. Membranes were blocked overnight at 4°C 

in either 5% Marvel (for chemiluminescent detection) or in 50% LI-COR Odyssey 

block, in PBS. Primary antibodies were applied (for concentrations see Appendix D) 

for one hour at room temperature with rocking, diluted in either 5% Marvel or 50% 

LI-COR Odyssey block in PBS. Membranes were then washed three times for 5 

minutes in PBS. Secondary antibodies (either HRP-conjugated or LI-COR 

fluorochrome-conjugated) were applied for one hour at room temperature with 

rocking, diluted in either 5% Marvel or 50% LI-COR Odyssey block in PBS. 

Membranes were then washed three times for 5 minutes in PBS. In some instances 

more stringent washing was required, in which case the membranes were washed 

three times for 5 minutes in PBS, followed by once for 5 minutes in TBS-TNT, and 

once for 5 minutes in PBS. 

For visualisation of a chemiluminescence signal, Enhanced chemiluminescence 

(ECL) substrate (GE Healthcare, Amersham) was applied for one minute. The blot 

was then exposed to an X ray film in a photographic cassette for between 1 minute 

and overnight depending on the primary antibody used, and exposed in a Compact 

X2 X-ograph. 

For visualisation using the LI-COR Odyssey system, the blots were scanned using a 

LI-COR Odyssey Imager, which uses an infrared laser to detect the fluorochrome on 

the secondary antibody. 

 

2.4 Immunoprecipitation with cell lysate or concentrated medium 

 

2.4.1 Preparation of G-beads 

For each 500µl volume IP, 180µl of G-beads (Sigma) were pelleted by centrifugation 

at maximum speed in a benchtop centrifuge for 1 minute. The supernant was 

removed and the beads were washed four times with IP lysis buffer (for recipe see 
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Appendix A) at 4°C. The beads were then resuspended in IP lysis buffer to a final 

concentration of 10% v/v.  

 

2.4.2 Preparation of cell lysate for immunoprecipitation 

Cells were cultured for 48 hours with tetracycline at a final concentration of 2µg/ml 

to induce ectopic gene expression. Between 2 and 5×108 cells were pelleted by 

centrifugation at 600 g for 10 minutes. The cell pellets were washed once in 50mls of 

PBS. The cell pellets were resuspended in 1ml of IP lysis buffer and the cells lysed 

by freeze-thawing in liquid nitrogen followed by 2 minutes incubation in a sonicating 

water bath (Geprüfte Sicherheit). A small amount of the cell lysate was then checked 

microscopically to ensure there were no intact cells. The cell lysate was stored at       

-80°C. 

 

2.4.3 Preparation of concentrated medium for immunoprecipitation 

Bloodstream form cells were grown to a concentration 6×106 cells/ml in a volume of 

200mls over 48 hours with tetracycline at a final concentration of 2µg/ml. The cells 

were harvested by centrifugation at 600 g for 10 minutes. The cell pellet was saved 

for Western analysis. The medium (supernatant) was removed and filtered through 

0.22µm filters. The medium was concentrated by centrifuging through 20ml 

VivaSpin (Invitrogen) columns at 4 000g at 4°C. The volume was reduced by a 

factor of 50. Roche EDTA-free protease inhibitor was added to the concentrated 

medium and it was stored at 4°C. 

 

2.4.4 Immunoprecipitation 

The cell lysate or concentrated medium was incubated for 30 minutes with a 1:10 

dilution of G-beads to pre-block. Simultaneously, the antibody was incubated with 

10µg of blocking peptide for 30 minutes, as a control to test the specificity of the 

immunoprecipitation, or with an equivalent volume of IP lysis buffer. Incubations 

were at 4°C on a rotating wheel. The supernatant was centrifuged at 10,000×g for 3 

minutes at 4°C and removed from the blocking beads. The antibody, with or without 

pre-block, was incubated with the supernatant for 1 hour at 4°C on a rotating wheel 
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(for antibody concentrations see Appendix D). An equivalent volume of pre-washed 

G-beads were then added and incubated for a further hour. 

The IP was pelleted by centrifugation at 10 000 g for 3 minutes at 4°C. The 

supernant was saved for Western analysis. The beads were then washed 6 times with 

IP lysis buffer. The protein was eluted from the washed beads by incubation at 

100°C for 10 minutes in 50µl of Laemmli buffer. The beads were vortexed and 

pelleted by centrifugation for 3 minutes at 10 000 g and the supernant (IP) removed. 

The flow-through and washes 1 to 6 were boiled in an equal volume of Laemmli 

buffer for 5 minutes. Samples were then analysed by Western blotting. 

 

2.5 Immunofluorescence 

 

Immunofluorescence was carried out using a protocol modified from Field et al. 

(Field et al., 2004). Transgenic cells were induced 48 hours prior to 

immunofluorescence by addition of tetracycline to a final concentration of 2µg/ml. 

5×106 cells were harvested by centrifugation at 600 g for 10 minutes. The cell pellets 

were washed in 5ml PBS. The cell pellets were then resuspended in 100µl of 1% 

paraformaldehyde in PBS and incubated for 10 minutes at 4°C. The fixed cells were 

spread out on the surface of either a normal glass slide for procyclic cells, or a 

silanised glass slide (Polysine® slides from Thermo Scientific) for bloodstream form 

cells. The cells were allowed to settle for 15 minutes. If required, the cells were 

permeabilised with 0.5% Triton (Sigma) in PBS for 45 seconds. Pre-block solution 

of 1% bovine serum albumin (BSA, Sigma) in PBS was applied to the slides for 10 

minutes. The slides were then incubated in the required antibody (diluted to an 

appropriate concentration, see Appendix D) in a humid chamber for one hour. Slides 

were washed three times for 5 minutes in PBS. Slides were incubated in a 

fluorescent-conjugated secondary antibody for one hour in a humid chamber and 

then washed three times for 5 minutes in PBS. The slides were stained for 2 minutes 

with 10µg/ml 4’,6-diamidino-2-phenylindole (DAPI) to visualise the DNA, and 

washed once in PBS. Coverslips were adhered to the slide using 50µl of Mowiol® 
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glue with p-Phenylenediamine (PDA) to a final concentration of 1mg/ml. The slides 

were stored in the dark at 4°C. 

 

 

2.6 N-glycosylation assay 

 

Transgenic bloodstream form cells were induced by addition of tetracycline to a final 

concentration of 2µg/ml 48 hours prior to assay. 6×107 cells were harvested by 

centrifugation at 600 g for ten minutes, washed with PBS, and the resultant cell pellet 

incubated at 100°C for 10 minutes in 30µl denaturing buffer (in PNGase F kit from 

New England Biosciences). 3µl reaction buffer, 3µl 10% NP.40 and 1µl Peptide N-

Glycosidase F (all from the NEB kit) were then added and the sample incubated for 

one hour at 37°C. A negative control with no enzyme added was also included. The 

samples were then incubated at 100°C for 5 mins in Laemmli sample buffer and 

analysed by Western blotting. 

 

2.7 GPI-anchor addition assays 

 

2.7.1 Hypotonic lysis 

Hypotonic lysis was carried out according to an adapted protocol for small-scale 

VSG isolation (Jones et al., 2005). Bloodstream form cells (approximately 1×108 

cells) were harvested by centrifugation for 10 minutes at 600 g and washed twice in 

ice-cold PBSG (1.8g/litre glucose in PBS). The cell pellets were resuspended in 

100µl of hypotonic lysis buffer (10mM NaH2PO4 with Roche Complete, EDTA-free 

protease inhibitor) and incubated at 37°C for 5 minutes. The samples were then 

centrifuged at 14,000 g for 5 minutes at 4°C. The resultant pellets and supernatants 

were incubated at 100°C in Laemmli buffer for 5 minutes and analysed by Western 

blotting. 
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2.7.2 Myristate labeling and immunoprecipitation 

2.7.2.1 Myristate labeling 

Transgenic bloodstream form trypanosomes were induced at a concentration of 

1×105 cells/ml in 50mls for 48 hours with 2µg/ml tetracycline. When the cultures had 

reached a density of 4×106 cells/ml they were harvested by centrifugation at 600 g for 

ten minutes. The cell pellets were resuspended in 50ml of modified fatty acid-free 

RPMI medium (see recipe in Appendix A) (Buxbaum et al., 1994), and incubated at 

37°C for 30 minutes to allow equilibration. Cells were pelleted by centrifugation at 

600 g for ten minutes and resuspended in 9ml of the modified fatty acid free RPMI 

medium. To this medium 500µl of modified RPMI medium containing 80 micro-

curies of triatiated myristate was then added. The flasks were incubated at 37°C for 3 

hours to allow for incorporation of the tritiated myristate into newly-synthesised GPI 

anchors. 

After 3 hours, the cells were pelleted by centrifugation at 600 g for ten minutes. The 

resultant supernatant was set aside for immunoprecipitation anlaysis. The cell pellet 

was washed in 5ml of ice-cold PBS and then stored on dry ice for 

immunoprecipitation analysis. 

2.7.2.2 Immunoprecipitation and analysis 

The immunoprecipitations of the conditioned medium and cell lysate were carried 

out as described in section 2.4. The resultant protein samples (in laemmli buffer) 

were run out in a 10% B.T. Nu-PAGE pre-case gel (Invitrogen) in NuPAGE SDS 

running buffer (Invitrogen). The gel was run at 150V for approximately one hour at 

which point the dye front was 0.5cm from the bottom of the gel. The gel was then 

stained in Coomasie’s stain as previously described. The gel was de-stained by four 

15 minute incubations in destain buffer. The gel was then washed in Amplify 

Fluorographic Reagent (Amersham) for fifteen minutes. The gel was placed between 

a piece of filter paper and a piece of clingfilm and dried in a gel drier for one hour at 

80°C. The dried gel was then exposed to an Amersham high-sensitivity 

autoradiography film for 5 weeks in at -80°C. 
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2.8 AlamarBlue growth assay 

 

AlamarBlue™ (Serotec) is a chemical that enables the growth of cells in culture to be 

assayed via a change in redox potential. As the cells divide and deplete the culture 

medium, this results in a change in the redox potential and hence absorbance of 

alamarBlue.  

Procyclic form or bloodstream form cells were grown in culture flasks to a 

concentration of between 1 and 3×106 cells/ml. Cells were plated out in a 96-well 

plate (100µl per well) and AlamarBlue and either untreated or heat-inactivated 

animal sera were both added to a final concentration of 10% v/v. Absorbance at 540 

and 595nm was measured at a series of time points over a 24 hour period using a 

BioTek® Elx808 plate reader and Gen5 software. The percentage reduction of 

alamarBlue was then calculated. 

 

2.9 Tsetse fly experiments 

 

2.9.1 Tsetse fly infections 

Tsetse fly pupae (delivered by post from the Department of Entomology, Slovak 

Academy of Science, Bratislava, Slovakia) were hatched at room temperature and 

kept in wire cages, being fed on horses blood every other day. The tsetse flies were 

fed in a dark room with blood placed on a warmed plate under a membrane to 

simulate probing through skin. Bloodstream form trypanosomes were cultured in 

HMI-9 medium, and procyclic form trypanosomes in SDM-79 medium, with or 

without tetracycline. Prior to feeding to tsetse flies, the trypanosome cells were 

washed twice in SDM-79 medium (for procyclic form cells) or HMI-9 medium (for 

bloodstream form cells) and resuspended in 10ml horses blood to a concentration of 

1×106 cells/ml; tetracycline was added to a final concentration of 25µg/ml as 

required. The trypanosome-infected blood was placed under a membrane on a warm 

plate (37°C), the cages containing tsetse flies placed over the top, and the flies 

allowed to feed through the membrane for 10 minutes at room temperature in the 
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dark. The flies that had fed were then separated into individual 5ml Bijoux pots. Flies 

were then dissected and the mid-gut removed at 24, 48, or 72 hours or seven days 

post-infection.  

 

2.9.2 Quantification by microscopy 

For microscope counting, the mid-gut was broken up using dissection scissors and 

then a micro-pestle in PBS. The number of trypanosomes present in 10µl of the mid-

gut solution was counted in a haemocytometer. The number of trypanosomes in the 

whole mid-gut was then estimated. 

 

2.9.3 DNA extraction using phenol chloroform 

The tsetse fly mid-guts were dissected out, cut up with dissection scissors, 

transferred to 500µl buffer, broken up with a micropestle, vortexed for ten seconds, 

and stored on ice until transferral to a -80°C freezer. The buffers used were either 

PBS, CTAB, or TNES-Urea, the recipes for which can be found in Appendix A. The 

DNA was then extracted from the fly guts using a phenol-chloroform extraction. An 

equal volume of phenol chloroform was added to the thawed gut mixture. The 

sample was vortexed for 20 seconds and spun for 5 minutes at full speed in a table-

top microcentrifuge. The upper layer was transferred to a new 1.5ml polypropylene 

tube and the lower layer discarded. These steps were then repeated once. A half-

volume of ice-cold isopropanol was added and the DNA precipitated by incubation at 

-20°C for one hour. The DNA was washed twice in 70% ethanol, eluted in 10µl 

sterile H2O, and incubated at 100°C for 5 minutes before storage at -20°C. 

 

2.9.4 DNA extraction using Gentra kit 

The tsetse fly mid-guts were excised and placed in a test tube without any buffer and 

placed on dry ice. The fly guts were then thawed and 200µl cell lysis solution added 

(from the Gentra systems Puregene® Genomic DNA Purification Kit). The fly gut 

and the cell lysis solution were then thoroughly mixed by pipetting, mashing with a 

micropestle, and then vortexing for 20 seconds. The DNA was then extracted 

according to Gentra kit protocol D-5000A, including an overnight digestion in 
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Proteinase K. The DNA was rehydrated in 20µl sterile H2O and incubated at room 

temperature overnight. Samples were stored at -20°C. 

 

2.9.5 Quantification by Real Time PCR 

Quantitative PCR reactions were set up in 96-well plates. The primers and probes 

used recognise a VSG gene and were designed by Andy Bell and Rosie Allister. The 

reaction volume in each well was 25µl, which included forward primer 600nM 

(TAGCGGCCACGAAAATGA), reverse primer 600nM 

(CCAGTTCCCCTAGCTTGGTT), TaqMan probe® 40nM (6-FAM-

CAGCAATAGAAAAGCTCA-MGB), half the final volume of TaqMan® Universal 

PCR Master Mix No AmpErase®, 2µl DNA, and the volume made up to 25µl with 

sterile dH2O. The samples were run in an Applied Biosystems 7000 Sequence 

Detection System for 40 cycles according to standard settings. To make standards for 

quantification, the DNA from a known number of cultured trypanosomes was 

extracted in phenol-chloroform. The standards were diluted by factors of 1×101, 

1×102, 1×103 and 1×104 and each standard was plated out in triplicate. The number 

of trypanosome genomes in each sample was then determined by comparison to the 

standards using Applied Biosystems 7000 software. 

 

2.10 Mouse infections 

 

Transgenic parasites were inoculated into MF1 mice; the starting inoculation was of 

1×103 or 1×104 bloodstream form monomorphic parasites. Ectopic expression of 

proteins was induced in the parasites via administering doxycycline to the mice in 

their drinking water at 200µg/ml with 5% sucrose to disguise the flavour. The control 

mice received drinking water with 5% sucrose only. The parasitaemia was recorded 

daily by blood smears from a tail snip using the Herbert and Lumsden rapid-

matching method(Herbert & Lumsden, 1976). The mice were culled if they showed 

signs of discomfort. If naïve mice were required then they were inoculated with an 

equivalent volume of HMI-9 medium alone. 
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2.11 Ex vivo FACS  

 

2.11.1 Mouse inoculation and spleen harvest 

Mice (MF1) were inoculated with 1×104 bloodstream form transgenic parasites, or an 

equivalent volume of medium containing no parasites for the naïve controls. On the 

fourth day after inoculation, the mice were culled and spleens dissected out and 

placed in 2mls RPMI medium (from Sigma with 5% FCS added). The spleens were 

placed between two sterile pieces of gauze and mashed with forceps. The samples 

were then centrifuged for 5 minutes at 600 g. The pellet was resuspended in Sigma 

red blood cell lysing buffer and incubated at room temperature for four minutes prior 

to washing with RPMI medium. The cell densities of each spleen sample were 

measured with a CASY®1 cell counter. 

 

2.11.2 FACS analysis 

The spleen cell samples were stained for FACS (fluorescent-activated cell sorting) 

analysis in V-bottomed 96-well plates. Cells were washed with PBS containing 2% 

FCS and blocked with a 1:10 dilution of 5mg/ml rat IgG for 10 minutes. Cells were 

incubated on ice for 20 minutes with a 1:100 dilution (in PBS with 2% FCS) of the 

appropriate primary antibody or isotype control, which were conjugated to FITC, 

alexafluor 488 or PE to allow detection by the FACS machine (for suppliers of 

antibodies see Appendix D). All staining was carried out in the dark. Cells were then 

washed three times in PBS with 2% FCS and transferred to FACS tubes. 50,000 cells 

from each sample were analysed using a FACScalibur machine (Beckton Dickinson) 

and the data analysed with FlowJo software (Tree Star).  

For analysis of the cytokine interferon gamma, the spleen cells were incubated with 

the protein transport inhibitor Golgistop™ (BD Biosciences) according to 

manufacturers protocol for four hours at 37°C prior to staining. 
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2.12 Statistical analysis  

 

Statistical analyses of data were carried out using Minitab software version 15. The 

test used was analysis of variance (ANOVA), which is a general linear model. An 

ANOVA assumes that the data are normally distributed so this was confirmed prior 

to carrying out the test. P-values of less than 0.05 were considered to be statistically 

significant. A P-value of 0.05 can be described as a 5% chance that the null 

hypothesis (that there is no difference between the means of the samples) will be 

rejected when it should have been accepted. The outcomes of the ANOVAs were 

expressed as ‘Fxy = 5, p = 0.05’ where x is the degrees of freedom, y is the error 

degrees of freedom, F is the F-ratio, and p is the P-value. 
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Chapter 3 Expression Site Associated Gene 9 genes are 

developmentally regulated in T. brucei and are predicted 
to have post-translational modifications and potential 

mucin-like properties 

3.1 Identification of stage-specific mRNAs in T. brucei 

 

3.1.1 Introduction 

There are currently no published data regarding genes which are up-regulated only in 

the bloodstream stumpy form stage of the T. brucei life cycle. Stumpy cells are cell-

cycle arrested, are able to survive for a limited amount of time in both the 

mammalian bloodstream and tsetse fly mid-gut environments, and are competent to 

differentiate to procyclic forms if the correct signals are received (refer to Chapter 1 

section 1.2.2.3). It is highly likely that some of the unique capabilities of stumpy 

cells are controlled by stage-specific gene expression. Therefore, prior to the 

commencement of this PhD project, a cDNA subtraction selection was carried out by 

members of the Matthews lab to identify stumpy-specific mRNAs in T. brucei and, 

hence, genes which are only expressed by stumpy cells.  

 

3.1.2 A search for stage-specific mRNAs in T. brucei rhodesiense 
yielded two genes that are developmentally regulated 

A cDNA subtraction selection was carried out to compare transcripts present in 

slender and stumpy cells. Mice (Balb/c) were infected with monomorphic slender 

bloodstream forms (T. b. brucei EATRO 2340, stabilate GUP 2965) or pleiomorphic 

slender forms (T. b. brucei EATRO 2340, stabilate GUP 2962). The monomorphic 

cells were harvested and mRNA extracted as the control ‘slender’ population, and the 

pleiomorphic cells were allowed to progress until homogenously in the stumpy stage 

of the life cycle prior to harvesting. The mRNA was reverse transcribed to cDNA 

and this was then used to perform the subtraction selection. In simple terms, this 

involves mixing a ‘tester’ cDNA population (in this case, the stumpy form cDNA), 

and a ‘driver’ population (slender) which is in ten fold excess. The cDNA is heated 
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to denature the molecules and render them single-stranded. Adaptors are ligated to 

the ends of the tester cDNA molecules. The tester and driver cDNA populations are 

then incubated to allow annealing. Any tester single-stranded cDNAs which have not 

annealed (and so in this experiment were unique to the stumpy stage) are enriched by 

PCR using primers that anneal to the adaptors on the ends of the tester cDNA 

molecules (Sagerstrom et al., 1997). The unique tester cDNAs can then be cloned. 

The two clones that were isolated from this process most frequently were called ‘K9’ 

and ‘K69’. To confirm the stage-specific expression of K9 and K69, a Northern blot 

was performed using probes for these two genes against monomorphic slender, 

stumpy, and procyclic total RNA. The ‘Defective in Differentiation clone1’ or DiD-1 

cell line was also used as this cell line is unable to differentiate from stumpy to 

procyclic forms (Tasker et al., 2000) and has been proposed to lack a characteristic 

required for differentiation. The Northern blot is shown in Figure 3.1 (Professor 

Keith Matthews, unpublished data). This confirms that the mRNA abundance for 

these genes is highly up-regulated in stumpy forms, with a very low level of the 

transcripts present in monomorphic slender forms, and none in procyclic forms. A 

feint band for ESAG9-K9 was visible in the DiD-1 sample, whereas there was no 

band for ESAG9-K69, but this may simply reflect the length of exposure of the 

respective blots.  

Figure 3.1:  Northern blots showing that K9 and K69 are upregulated in Stumpy form 

cells. The lanes correspond to: Defective in Differentiation cell line 1 (D1) (Tasker et al., 

2000); Monomorphic T. b. brucei EATRO 2340 (stabilate GUP 2965) (M); Stumpy form T. b. 

brucei EATRO 2340 (stabilate GUP 2962) (St); and procylic forms (P). The gels were stained 

with ethidium bromide to ensure equal loading (EtBr), and the Northern blots were carried out 

with probes against ESAG9-K9, ESAG9-K69, and α tubulin as a loading control. 
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3.1.3 These developmentally regulated genes are Expression Site 
Associated Gene 9 (ESAG9) genes 

The genome of T. b. brucei strain TREU 927/4 (which will subsequently be referred 

to as T. b. brucei 927) has been sequenced and was published in 2005 (Berriman et 

al., 2005), and the annotated genome is available at GeneDB (www.genedb.org). The 

sequence of the clone K9 is present in the T. b. brucei 927 genome (accession 

number: Tb927.7.170), and is annotated as an Expression Site Associated Gene 9 

(ESAG9). ESAG9 was first named in T. equiperdum: there are two characterised 

ESAG9 genes in this closely related species, ESAG9c being found within a VSG 

expression site and ESAG9u found outwith an expression site (Florent et al., 1991). 

No function has been ascribed to these genes, but they are known to be transcribed. 

T. b. brucei, T. b. gambiense, and T. b. rhodesiense are very closely related sub-

species that are morphologically indistinguishable, but have different disease-causing 

characteristics. T. equiperdum is a parasite of horses that is morphologically 

indistinguishable from T. brucei, but has a different geographic range and a truncated 

life cycle. It has been argued by some that T. equiperdum should in fact be 

designated as a sub-species of T. brucei, for example see Lai et al. (Lai et al., 2008). 

There are nine intact ESAG9 genes annotated in the T. b. brucei 927 genome, 

including ESAG9-K9, and ten pseudogenes. ESAG9-K69 is not present, but it can be 

termed an ESAG9 as it is as similar to the other ESAG9 genes as they are to each 

other (for an alignment of ESAG9 protein sequences, see Figure 3.9). All of the 

ESAG9 genes in T. b. brucei 927 are chromosome internal or sub-telomeric, and this 

reflects the fact that telomeres are not represented in the bacterial artitifical 

chromosome (BAC) library used for genome sequencing. However sequencing of the 

telomeres of T. b. brucei strain Lister 427 (which is more commonly used in 

laboratory experiments than 927) has been carried out with clones generated by 

transformation-associated recombination (TAR) cloning. Only one expression site in 

the 427 telomeres has been found to contain an ESAG9 gene (Hertz-Fowler et al., 

2008). Sequencing of T. b. gambiense strain DAL 927 is in progress and so far one 

ESAG9 gene has been annotated. An ESAG9 pseudogene has also been identified in 

a metacyclic expression site in T. brucei strain EATRO 795 (Graham et al., 1999). 
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The precise genomic location of ESAG9-K69 in T. b. brucei strain EATRO 2340 is 

not known as this strain has not been sequenced. However, a 200-nucleotide cDNA 

clone from T. b. rhodesiense strain WRATat1.1 (NCBI accession W06557) has been 

annotated as an ESAG9 (Djikeng, Donelson and Majiwa, unpublished data) and 

bears 87% similarity to the ESAG9 Tb927.5.4620, and 59% similarity to ESAG9-

K69. 

 

3.1.4 A number of ESAG9 mRNAs are expressed in a stage-specific 
manner in T. b. brucei 

To explore whether other ESAG9 genes were expressed in a stage-specific manner, 

Northern blots were performed with mRNA from two parasite strains: T. b. brucei 

EATRO 2340 (previously thought to be T. b. rhodesiense but tentatively renamed by 

the Rudenko group (Young et al. 2008) and T. b. brucei AnTat 1.1. Probes for K9 

and K69 were used, as well as for three other ESAG9s: Tb927.5.4620, Tb09.v1.0330 

and Tb927.3.5790 (an ESAG9 pseudogene which has a stop codon around two thirds 

of the way through the sequence). In addition, a control gene, ESAG2, was also 

assayed for its expression. This Northern blot is shown in Figure 3.2 (Professor Keith 

Matthews, unpublished data) and shows three interesting features of ESAG9 gene 

expression in EATRO 2340 parasites: (i) all ESAG9 transcripts are enriched in 

stumpy form parasites; (iii) both the strains express more than one ESAG9 gene at 

the same time; and (iii) the two strains express a different repertoire of ESAG9 

genes. The differential patterns in the two strains is due to the presence or absence of 

these genes in the strains (Professor Keith Matthews, unpublished data), rather than 

the silencing of certain genes. ESAG2 was not expressed in a stumpy-specific 

manner, nor was another control gene, Pk2.7 (a protein kinase). AnTat 1.1 slender 

RNA was not used in this assay so it was not possible to confirm the enrichment of 

ESAG9 transcripts in stumpy forms in this strain. 
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Figure 3.2: Northern blot showing ESAG9 mRNAs up-regulated in stumpy 

form cells. RNA was made from T. b. brucei EATRO 2340 slender and stumpy 

cells, and T. b. brucei AnTat 1.1 stumpy cells. Probes were used against 

ESAG9s: Tb927.3.5790 (pseudogene), Tb.v1.0330, Tb927.5.4620, ESAG9-K9, 

ESAG9-K69; ESAG2; and a control RNA (Pk2.7). The top panels are the Northern 

blots, and the bottom panels are ethidium bromide-stained agarose gels showing 

the ribosomal subunits to confirm equal loading of each lane.  
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3.1.5 A peptide antibody raised against ESAG9-K9 reveals that the 
protein is primarily expressed in differentiating stumpy form 
cells 

An anti-peptide antibody was raised against ESAG9-K9 in rabbits using the 

following peptides, which are highlighted in Figure 3.3: C-TGPSKTVRRSNSVTS 

and QVHDGEQRDLEGRGC. The first step of this PhD project was to determine the 

ESAG9-K9 protein expression in stumpy form cells and during their synchronous 

differentiation to procyclic form cells using this anti-peptide antibody. Hence, 

stumpy form cells were harvested from a mouse and caused to initiate differentiation 

in vitro by a temperature drop to 27°C and addition of cis-aconitate (to a final 

concentration of 6mM), as shown in the schematic diagram in Figure 3.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

MLKVAVTALL TLRSCAGPAE SRGTSLKVGT 
GGVGVTVSTY SGCSESWSPD GRNMVCGSPS 
TGPSKTVRRS NSVTSTPQKI QGQPVSGSIA 
GAKRQEMQTA APSSGGAPHL TSVTLDNPRE 
GKTQTKNTSD AVIRGPTERL TDLSSRGEPA 
HAPVGNGKAT ERVKQVHDGE QRDLEGRGCK 
DQSPARSEPA SGLMRDDGMD VSRPPARRTV 
SGAEQESTRE LMTRNLSEQE SAENSTQEKK 
SAANKGHAVM ISAALTLISF 

Figure 3.4: Schematic diagram of in vitro differentation of stumpy cells.  Stumpy 

form parasites were harvested from a mouse and induced to differentiate to procyclic 

forms in vitro via the addition of 6mM cis-aconitate and a drop in temperature to 27°C. 

Protein samples were taken over a time-course from 0 hours to 30 hours.  

 

Figure 3.3: The location in the K9 

protein sequence of the peptides 

used to raise the K9 antipeptide 
antibody. The antibody was raised 

against both peptides in two rabbits 

and affinity purified.  
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Protein samples were prepared over a time-course of differentiation from 0h to 30h 

and analysed by Western blotting, as shown in Figure 5. This Western blot showed 

that the ESAG9-K9 had an interesting and unusual protein expression profile. The 

protein was expressed at a low level at 0h (i.e. in stumpy bloodstream form cells) but 

increased until expression peaked from 6 to 9 hours after the start of differentiation 

to procyclic form cells, after which the protein was reduced to undetectable levels. 

This profile was suggestive of ESAG9-K9 protein performing a function specifically 

during differentiation from stumpy to procyclic form. Comparison with the size 

markers indicated that ESAG9-K9 protein migrated at approximately 37kDa, which 

is 10kDa higher than its predicted protein mass of 27.1kDa as annotated in the 

GeneDB database. This could be due to post-translational modifications. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Western blot showing the expression of ESAG9-K9 protein 

during a 30-hour differentiation time course. The top panel shows a SDS-

PAGE gel stained with Coomasie’s stain with the band for VSG being indicated 

with an arrow. The middle panel is a Western blot generated using the ESAG9-

K9 anti-peptide antibody. The bottom panel is a Western blot probed for α 

tubulin as a control for equal loading of lanes. The size markers indicated are in 

kilo-Daltons.  
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3.1.6 ESAG9-K9 protein is located intracellularly and sometimes in 
the flagella pocket 

Using the ESAG9-K9 antibody, immunofluorescence was carried out on stumpy 

forms 6 hours into differentiation to procyclic forms (i.e. at the peak of ESAG9-K9 

protein expression). Figure 3.6 panel A shows the signal from the ESAG9-K9 

antibody when reacted with a mixed population of slender (non-differentiating) and 

stumpy (differentiating) cells. The cells were counter stained for EP procyclin 

expression to indicate those which had initiated differentiation to procyclic forms. It 

was clear that the cells staining positive for EP procyclin also had a much stronger 

signal with the ESAG9-K9 antibody. Although the EP-negative cells also showed a 

weak signal from ESAG9-K9, this was because this antibody gives a certain degree 

of background staining, as demonstrated when reacted against procyclic form cells 

(data not shown). 

Figure 3.6 panel B shows two differentiating stumpy cells at a higher magnification. 

The ESAG9-K9 protein was located intracellularly, in a loosely punctate fashion 

with a halo around the nucleus. This could represent a signal from the endoplasmic 

reticulum, though the punctate spots within the cytoplasm could also be small 

vesicles such as lysosomes or glycosomes. Also a signal was sometimes observed at 

the flagellar pocket, which is the site of endo- and exocytosis in trypanosomes. EP 

procyclin showed a peripheral staining around the cell due to its surface location. 

Further analysis of the cellular distribution of ESAG9-K9 is detailed in Chapter 4.
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DAPI                                                                                           EP PROCYCLIN 

PHASE                                                                                                ESAG9-K9 

PHASE                      DAPI                       EP PROCYCLIN           ESAG9-K9 

Figure 3.6: Immunofluorescent staining of stumpy form cells six hours into 
differentiation. T. b. brucei EATRO 2340 stumpy bloodstream-form cells were induced to 

differentiate with addition of cis-aconitate and a temperature drop to 27°C and stained with 

DAPI, to visualise the DNA, EP-procyclin antibody detecting the procyclic surface-coat 

molecule, and the ESAG9-K9 anti-peptide antibody.  The phase images and the different 

channels are shown as labelled. Panel A shows four cells, two of which are procyclin-

positive and differentiating, and these two cells are marked with an asterisk to distinguish 

them from the two cells which are not differentiating. Panel B shows differentiating, 

procyclin-positive cells, at a higher magnification. Scale bars represent 15 microns. 

A 

B 
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3.2 Bioinformatic analysis of ESAG9 sequences 

 

3.2.1 Introduction 

ESAG9 genes were shown to be transcribed, and translated in the case of ESAG9-

K9, in a stage specific manner, with enrichment during differentiation. To date, no 

other genes have been identified with a similar expression profile in T. brucei.  

The first step in the process of exploring the potential function of ESAG9 proteins 

was to analyse the DNA and protein sequences of the genes using bioinformatic 

comparison. Bioinformatic analysis is the process of carrying out in silico 

experiments on sequence data using algorithms to find or predict certain attributes of 

that data. Many algorithms have been written for this purpose and these are 

incorporated into tools that are freely available online and are straightforward to use. 

When utilised in conjunction with the genome database information which is also 

available online for many organisms, this represents a vast resource of information 

for the biologist. The databases and programmes used, and the web addresses at 

which they can be found, are summarised in Table 3.1. 

Initially, the degree of conservation in the ESAG9 family was investigated. ESAG9 

sequences were analysed for the presence of functional motifs, predicted post-

translational modification sites, and their similarity to other proteins of known 

function. In addition, the 3’UTR sequences of ESAG9 mRNAs were searched for 

motifs that might be involved in their post-transcriptional regulation of gene 

expression. The analyses carried out, and the bioinformatics programmes used, will 

be discussed in more detail in the following sections. 
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3.2.2 The genomic context of ESAG9 genes 

The diverse family of Expression Site Associated Genes, or ESAGs, are so called 

because of their genomic location (Cully et al., 1986; Cully et al., 1985b). They are 

located upstream of the single VSG gene found in telomeric expression sites and are 

co-transcribed by RNA polymerase I with VSG genes as part of a polycistronic unit 

in the active expression site. Many copies of ESAG genes are also found in sub-

telomeric and chromosome internal positions, as is the case for VSG genes. The 

 

 

Table 3.1: Bioinformatics tools used and the web addresses at which they can be 

found. The bioinformatics tools used in this chapter are listed, along with a brief 

description of their purpose, the web address at which they can be accessed and the 

literature reference if the work has been published. 
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ESAG9 genes in the T. b. brucei genome were named as such due to their similarity 

to two genes in T. equiperdum, one of which was found in a telomeric expression 

site, as discussed in section 1.1.2. Because the regions at or near the telomeres are 

poorly represented in the BAC sequencing, only ESAG9s within the chromosomes 

have so far been identified in the T. b. brucei strain 927 genome. The telomeres of 

chromosomes 4 and 6 from the genome reference strain are being sequenced but 

there are no reads available as yet. However, sixteen bloodstream form expression 

sites have been sequenced from T. b. brucei Lister 427 and of these only one contains 

a copy of ESAG9 (Becker et al., 2004; Hertz-Fowler et al., 2008). 

Although ESAG9 members are not ubiquitous ES components, the naming of the 

ESAG9 genes as ESAGs remains appropriate. This is because ESAG9s are always 

located in the genome near other VSG and ESAG genes and this is unlikely to be 

coincidental. This suggests that, even though most VSG expression sites that have 

been sequenced do not contain an ESAG9, there is some adaptive link between 

ESAG9 genes and other ESAGs and VSG genes.  

Figure 3.7 shows the genomic context of each of the nine intact ESAG9 genes in the 

T. b. brucei 927 genome database. Figure 3.8 shows the position of the single 

ESAG9 gene annotated in the T. b. brucei strain Lister 427 genome, which is in 

BES1.22. In each case, an approximately 40 kilobase region is represented 

schematically, showing what other genes are near to each ESAG9. They are, in every 

case, found with VSG genes either as the adjacent gene or close by. Further, they are 

also often near other ESAGs, specifically ESAG1 (most frequently), ESAG2, 

ESAG3 and ESAG11. ESAG1 is a membranous glycoprotein (Cully et al., 1986) of 

unknown function (Carruthers et al., 1996); there is no published experimental data 

regarding the function of ESAGs 2 and 3; and ESAG11 is suggested to be a cell 

surface protein though this has not been demonstrated experimentally and its 

function is not known (Redpath et al., 2000).  
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Figure 3.7: The genomic locations of ESAG9 genes 

in T. b. brucei strain TREU 927.  The genomic 

locations of all ESAG9 genes and one pseudogene are 

shown, excepting Tb11.1000 which is on chromosome 

11 but in an unordered contig so the precise location is 

not defined. The key indicates which colour relates to 

which type of gene. The diagrams are schematic and 

not exactly to scale.  
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3.2.3 Alignment of ESAG9 gene family members 

As detailed above, there are nine ESAG9 genes, and ten ESAG9 pseudogenes, in the 

T. b. brucei 927 genome. There is also one copy of ESAG9 in the Lister 427 

expression sites, one so far sequenced in the T. b. gambiense genome, two copies in 

T. equiperdum, and the version ESAG9-K69 previously identified by members of the 

Matthews lab in T. b. brucei strain EATRO 2340. These genes combined constitute a 

group of 14 genes (excluding pseudogenes) in T. b. brucei, T. b. gambiense and T. 

equiperdum. T. equiperdum is very closely related to T. brucei and it has been argued 

that T. equiperdum should in fact be designated a subspecies of T. brucei, as 

phylogenetic analysis did not result in T. equiperdum sequences forming a 

monophyletic group (Lai et al., 2008). A starting point for exploring the attributes of 

this protein family was to look at how similar the genes are to each other. This can be 

achieved using an alignment tool called Clustal W 2.0 (Larkin et al., 2007; 

Thompson et al., 1994). The Clustal W programme performs an alignment by 

carrying out three steps which consist of, in simple terms: aligning each possible pair 

of sequences to see how divergent they are from one another, building a phylogenetic 

Figure 3.8: The genomic context of an ESAG9 gene in a bloodstream form 

expression site (BES122) in T. b. brucei strain 427. See Figure 3.7 for a key of the 

colours. The ESAG9 gene is the last gene before the 70 base-pair repeats, which are 

followed by the VSG gene and the chromosome end.  
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tree based on this information and aligning all the sequences in order based on how 

they branch in the tree. 

The fourteen ESAG9 protein sequences were analysed using Clustal W and Figure 

3.9 shows the phylogenetic tree generated by this programme. Phylogenetic trees are 

used to infer evolutionary relationships between sequences and species. This un-

rooted tree indicates that Tb927.5.4620 is most closely related to the ESAG9c gene 

in T. equiperdum; this gene was therefore named ESAG9-EQ. The ESAG9c and 

ESAG9u genes are 67% similar to each other, and are 84% and 67% similar to 

ESAG9-EQ respectively. These three genes formed a cluster with Tb427.BES122.10 

which is in a bloodstream form expression site in strain Lister 427. This tree also 

shows that the ESAG9 copy detected in T. b. gambiense is most closely related to 

Tb927.1.5080; these genes are 42% similar at the amino acid level.  

 

 

Figure 3.9: Phylogenetic tree of ESAG9 protein sequences. ESAG9 protein 

sequences from T. b. brucei, T. b. gambiense, and T. equiperdum were subjected to 

phylogenetic analysis using the ClustalW programme. This is an un-rooted tree where the 

length of the branches are proportional to the evolutionary distance between divergence 

events.  
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Figure 3.10:  ClustalW alignment of the ESAG9 protein sequences in T. b. 

brucei, T. b. gambiense and T. equiperdum. A blue background indicates that the 

residue is conserved in all sequences; a yellow background indicates residues that 

are identical but not present in all sequences; and a turquoise background indicates 

residues that are similar (for example acidic residues). 
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The Clustal W alignment of the identified ESAG9 sequences is shown in Figure 

3.10. Amino acid residues that were conserved in all sequences were coloured in 

blue, residues that were identical but were not in every sequence were coloured in 

yellow, and resides that were similar were coloured in turquoise. There is a large 

degree of divergence between the protein sequences. The sequences are more similar 

to each other at the N terminus, and to some degree at the C terminus, but in between 

there is little similarity, excepting T. equiperdum ESAG9c and ESAG9u, and T. b. 

brucei Tb927.5.4620, which are very closely related. The gene Tb927.5.4620 will 

subsequently be referred to as ESAG9-EQ in this thesis due to it being the ESAG9 

gene in the T. brucei genome that is most similar to the ESAG9 in an expression site 

in the T. equiperdum genome. 

The greater degree of similarity between the protein sequences at the N terminus 

could be explained by the presence of a signal peptide, and this will be discussed in 

section 3.2.9. However there are also five highly conserved residues that are not at 

the immediate N terminus, and these are: a serine (S, amino acid 25 in ESAG9-K9), 

a cysteine (C, aa43 in EASG-K9), a tyrosine (Y, aa46 in ESAG-K9), a tryptophan 

(W, aa47 in ESAG-K9), and another cysteine (aa56 in ESAG-K9). Not all sequences 

contain the conserved tyrosine and tryptophan but they are present in at least 12 out 

of 14 sequences.  

3.2.4 A common motif in ESAG9 sequences is similar to a metal-
binding domain in Protein Phosphatase 2 C enzyme 

To explore whether the conserved residues discussed in section 3.2.3 are found as a 

motif in other proteins, a motif search of the T. b. brucei genome was carried out 

using the GeneDB website. The motifs used to search the genome were as follows, 

where X represents any amino acid: either SX9, SX10, SX15, or SX17, followed by 

either CXYWX8C, CX2YWX8C or CX3WX8C. 

Most of the combinations only recognised either other ESAG9 genes or 

pseudogenes, or hypothetical proteins of unknown function. One interesting 

exception to this is that the motif SX15CX2YWX8C is also found in a putative zinc-

finger domain protein (accession: Tb927.3.4220). This series of 30 amino acids 
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overlaps with the cysteine-rich C3HC4 zinc-finger domain (Borden & Freemont, 

1996) that is annotated in the database entry for this gene. However the ESAG9 

sequences do not contain the other residues required for a zinc-finger so this hit may 

be coincidental. 

More proteins were recognised if the serine residue was excluded from the motif. 

The motif CX3WX8C is found in a putative dynein heavy chain (Tb10.70.1720), a 

putative protein kinase (Tb11.01.2900), and in protein phosphatase 2C (PP2C; 

Tb10.70.2270). A literature search revealed that some of the conserved amino acids 

in this motif are vital for the activity and metal binding properties of mouse and 

human PP2C (Das et al., 1996; Kusuda et al., 1998), so an alignment of this domain 

in ESAG9s and in PP2C sequences from trypanosomatids, Schizosaccharomyces 

pombe, Homo sapiens and Mus musculus was performed, shown in Figure 3.10.  

Amino acid substitution mutants have been made in M. musculus PP2C and the 

substitution of the first aspartic acid (D) in the consensus sequence, the tryptophan 

(W), and the second aspartic acid were shown to significantly decrease or completely 

ablate the activity of the enzyme (Kusuda et al., 1998). These residues are marked 

with black asterisks in Figure 3.10. The first aspartic acid, marked with a red asterisk 

in Figure 3.10, is predicted to bind Magnesium or Manganese ions in the H. sapiens 

protein phosphatase 1A (PPM1A; formerly named PP2C), and the glycine also 

marked with a red asterisk, is predicted to assist in this binding by maintaining the 

tertiary peptide structure (Das et al., 1996). However these residues are only present 

in some of the ESAG9 sequences, for example they are both present in ESAG9-EQ 

(Tb927.5.4620), but ESAG9-K9 (Tb927.7.170) and ESAG9-K69 both lack the 

aspartic acid. Due to the lack of overall homology between the ESAG9 and PP2C 

sequences it is not feasible that the ESAG9s are enzymically active, but it is perhaps 

possible that those ESAG9s with the relevant aspartic acid could bind Magnesium or 

Manganese ions. However it is worth noting that other parts of the PP2C protein are 

involved in creating this metal-binding site. Figure 3.11 shows that in the H. sapiens 

protein the Manganese ions interact not only with the ASP 239, which is found in the 

short conserved motif also present in ESAG9 proteins, but also with other parts of 

the PPM1A (formerly PP2C) protein which are not conserved in ESAG9 proteins.
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Figure 3.10: ClustalW alignment of the conserved motif that is found in 

ESAG9 proteins and Protein Phosphatase 2C (PP2C). The top 12 sequences 

are the ESAG9s in T. b. brucei and T. equiperdum. The bottom six sequences are 

PP2Cs in Homo sapiens, Mus musculus, Trypanosoma cruzi, Leishmania major, 

T. b. brucei, and Schizosaccharomyces pombe. The bottom line shows the 

consensus sequence with residues that are present in all sequences indicated as 

a capital letter, resides that are present in most sequences indicated as a lower 

case letter, and dashes indicating where there is no conservation. The residues 

marked with red asterisks are involved in binding metal ions in H. sapiens PPM1A 

(Das et al., 1996). The residues marked with black asterisks are required for 

enzymic activity of PP2C in M. musculus (Kusuda et al., 1998).  

Figure 3.11: The metal-binding 

site in Homo sapiens PPM1A 

protein. The two Manganese 

ions, M1 and M2, are shown 

interacting with the surrounding 

amino acids. The ASP 239 

residue is found in the short 

conserved motif which is also 

present in ESAG9 protein 

sequences. This diagram is from 

Das et al., 1996. 
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3.2.5 BLAST and PSI-BLAST searches using ESAG9 gene family 
sequences 

As well as searching the genome databases for specific protein motifs, it is possible 

to search databases for sequences with similarity to the whole protein, or proteins, of 

interest. The Basic Local Alignment Search Tool, or BLAST, is a tool for searching 

databases of nucleotide or protein sequences for similarity to the query sequence 

(Altschul et al., 1990). The presence of similar sequences or genes in the genomes of 

other organisms can therefore be ascertained. Position-Specific Iterated BLAST, or 

PSI-BLAST (Altschul et al., 1997) is a more advanced search tool for protein 

sequences whereby alignments generated by BLAST are used to search the genome 

database, such that weak similarities between sequences can be identified that would 

be missed by a normal BLAST search. 

Using the 12 ESAG9 protein sequences from T. b. brucei and T. b. rhodesiense as a 

query, the genomes of a large number of organisms were searched using either 

BLAST or PSI-BLAST. PSI-BLAST is accessible via the NCBI (National Centre for 

Biotechnology Information) server and this incorporates many genome databases, 

including mammals, plants, fungi and a number of protozoa including Leishmania 

spp., Giardia intestinalis, Eimeria tenella, Trichomonas vagnialis, and Trypanosoma 

brucei (strain 927). However this database does not include the fully annotated 

genome of the trypanosomatids T. cruzi, T. vivax, T. annulata, T. congolense, T. b. 

gambiense, or the Lister 427 strain of T. b. brucei. These genomes were therefore 

searched using the normal BLAST search, which is accessible via GeneDB. The 

predicted proteins of the salivary glands and midgut of the tsetse fly vector Glossina 

mortisans were also searched via GeneDB. 

The PSI-BLAST searches resulted in only a limited number of hits that were better 

than the default E-value threshold set by the programme. The E-value represents the 

number of times you would expect to get a hit with the same score by chance in a 

database of a given size. These hits were unanimously either other ESAG9 genes or 

pseudogenes and occasionally hypothetical proteins of unknown function, all from 

the T. b. brucei genome. There were no hits above the threshold from proteins found 
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in any other organisms. Of those hits which occurred which were worse than the E-

value threshold, no particular patterns emerged. There were only two instances of an 

ESAG9 protein hitting a particular type of protein from another organism more than 

once. ESAG9-K69 and Tb09.160.5430 hit two zinc metalloproteases (accessions: 

ZP_02711752 and ZP_01818470.1 respectively) in Streptococccus pneumoniae; and 

Tb09.160.5430 and Tb09.v1.0330 hit multidrug resistance proteins in Plasmodium 

knowlesi (accession CAQ41661.1) and P. vivax (accession XP_001615913.1) 

respectively. The two zinc metalloproteases are fully conserved at the N-terminus 

and are overall 50% similar to each other, and the two multidrug resistance proteins 

are 78% similar to each other. To verify that these hits were meaningful, reciprocal 

blasts of the T. b. brucei 927 genome were carried out with these four protein 

sequences as queries. Out of the four reciprocal BLAST searches, only the S. 

pneumoniae zinc metalloprotease ZP_01818470.1 hit any ESAG9 sequences in T. b. 

brucei. It did not hit Tb09.160.5430, which is the sequence that originally selected it, 

but instead hit ESAG9-EQ, with an E value of 0.22. 

PSI-BLAST searches were also carried out with the ESAG9 sequences from T. b. 

gambiense and T. equiperdum. Interestingly, the ESAG9u gene in T. equiperdum 

selected two secreted bacterial proteins: a putative secreted hemolysin-type calcium-

binding bacteriocin in Roseobacter sp. (accession ZP_01058523), and a secreted 

protein in Streptomycins sp. (accession EDX26763). However again the E-values for 

these hits were above the threshold and so the hits may be spurious. The proteins do 

not appear to be related to each other and it was not possible to do a reciprocal 

BLAST of the T. equiperdum genome as this species has not been sequenced. 

More useful data regarding the potential function of ESAG9 were gained from doing 

BLAST searches of the other trypanosomatid genomes. Here, a threshold E-value of 

less than 1×10-4 was used to designate a database hit as being significant. This value 

was chosen because the PSI-BLAST programme designated hits with an E-value in 

the region of 1×10-4 and lower to be significant. Out of the 12 ESAG9 genes used to 

query the Trypanosoma cruzi database, seven of them resulted in one or more hits to 

T. cruzi proteins with an E-value better than the threshold. These were unanimously 

either mucin-associated surface proteins (MASPS), mucins, or mucin-like 
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glycoproteins. The results of this BLAST search are summarised in Table 3.2, where 

either all the hits for a given ESAG9 protein sequence are shown, or the top five if 

there were more than five.  

To verify these data, reciprocal BLASTS were carried out using the highest scoring 

mucin or MASP hit from each ESAG9 protein sequence query to BLAST the T. 

brucei strain 927 genome. In eight out of eleven reciprocal BLASTS, at least one 

ESAG9 sequence was pulled out, though often with a low E value. An ESAG9 

(ESAG9-EQ) was the highest scoring hit for only two of these BLASTS.  

BLAST searches of trypanosomatids also resulted in hits to T. vivax proteins that 

were better than the threshold E-value: ESAG9-EQ (Tb927.5.4620) and 

Tb427.BES122.10 both hit a 347 amino-acid T. vivax protein (accession 

tviv651a01.q1k_1) with E values of 1.1×10-8 and 2.1×10-7 respectively. However this 

was a hypothetical protein with no useful annotation assigned to it, and the degree of 

similarity to the ESAG9s was low. No other kinetoplastids appeared to have any 

related sequences, nor did the tsetse fly vector G. morsitans. 
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3.2.6 ESAG9 gene family sequences show some similarity to mucin-
associated surface proteins 

The outcome of the BLAST searches of the Trypanosoma cruzi genome, as described 

in section 3.2.5, were the most compelling and least ambiguous results of the 

database searches carried out. Mucin-associated surface proteins (MASPs) were the 

most frequent hits. T. cruzi has an extensive and fairly well-characterised array of 

GPI-anchored and glycosylated surface proteins, including mucin-like glycoproteins 

(TcMUC), the small mucin-like gene family (TcSMUG) and MASPs, and these 

represent an impressive 6% of all T. cruzi genes (Buscaglia et al., 2006). Different 

sub-families of these proteins cover the cell surface in both the insect and 

mammalian stages of the life cycle and are proposed to have different roles in these 

stages. Trypomastigotes are the extracellular stage of development in the mammal 

host and their cell surface is covered with TcMUC proteins which, when sialylated, 

are involved in protecting the parasites from antibody-mediated lysis (Pereira-

Chioccola et al., 2000) The family of MASP genes is extensive and contains over 

1300 genes (El-Sayed et al., 2005); members of this family have been shown to be 

membrane associated and glycosylated by N-linked glycosylation (Atwood et al., 

2006) but the specific function of MASPs has not yet been elucidated. The insect 

stages of the T. cruzi life cycle also express a variety of mucin or mucin-like 

molecules on their surface, including TcSMUGs and SAPs. The SAP (serine, 

alanine, and proline rich protein) family of proteins, which bears some resemblance 

to MASPs and mucins, may play a role in the invasion of mammalian cells by 

metacyclics, and are also shed by metacyclics (Baida et al., 2006). 

The similarity of ESAG9s to these GPI-anchored, N-glycosylated surface proteins 

could provide an insight into the potential function of ESAG9s. To explore the 

homology between ESAG9s and these T. cruzi surface proteins, a ClustalW 

alignment was carried out with ESAG9-EQ (which hit the most MASPs in the T. 

cruzi genome), and the top three MASPs that it hit (see Figure 3.12). The ESAG9-

EQ sequence was only between 14% and 19% similar to the MASP sequences, and 

was shorter at only 296 amino acids long, compared to the MASPs that are around 

427 residues long. Nonetheless, there were some conserved residues shared by the 
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ESAG9-EQ and MASP sequences. The conserved resides are clustered in specific 

regions of homology rather than scattered through the length of the alignment. The 

MASP sequences do not contain the CX3WX8C motif that is conserved amongst the 

ESAG9s.  

Figure 3.12: ClustalW alignment of ESAG9-EQ with three T. cruzi Mucin-

Associated Surface Protein (MASP) sequences. Asterisks indicate a residue 

that is conserved in all sequences; “:” indicates conserved substitutions, and “.” 

indicates semi-conservative substitutions. 
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3.2.7 Search for potential functional motifs in ESAG9 gene family 
members using online databases 

There are a number of online databases that contain information about protein 

families and domains and these can be searched with query protein sequences. These 

are a useful additional resource to BLAST searches. Whereas a BLAST search will 

compare the query sequence to individual sequences in a genome, these domain 

databases contain information about protein families that is generated from large data 

sets, and can therefore represent a more powerful tool.  

The databases queried with ESAG9 protein sequences were: Pfam, Prosite, SMART, 

TMHMM v2.0, and SignalP v3.0. The web addresses at which these tools can be 

found are listed in Table 3.1. Pfam is a database of protein families created from 

alignments using large numbers of proteins, and from hidden Markov models 

(Sonnhammer et al., 1997), which currently contains information on 9318 protein 

families (Finn et al., 2008). Prosite is a database of 1319 patterns and 745 profiles 

which are used to identify protein families (Hulo et al., 2008). SMART (Letunic et 

al., 2006) is constructed in a similar way to Pfam but is more successful at finding 

regulatory motifs. TMHMM v.20 predicts transmembrane helices (Sonnhammer et 

al., 1998). Finally SignalP v3.0 (Bendtsen et al., 2004) predicts the cleavage sites for 

potential signal peptides.  

These databases were queried with the protein sequences of the eleven ESAG9s so 

far identified in T. b. brucei (nine in strain TREU 927/4, one in Lister 427 and 

ESAG9-K69 in EATRO 2340). The results of these queries are shown in Table 3.3. 

The most striking outcome of these queries was that no ESAG9 sequence was found 

to have a significant hit to any protein family, which is suggestive of ESAG9 

proteins performing a novel and previously undescribed function. However the query 

of the Pfam database with ESAG9-K69 generated an insignificant hit (meaning that 

the E-value was higher than the cut-off) to a mucin-like glycoprotein family. 

Although the hit was not significant, this was supportive of the outcome of the 
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BLAST searches (section 3.2.5) which also suggested similarities between ESAG9s 

and the mucin glycoprotein family.  

TMHMM v2.0 did not predict ESAG9s to have any transmembrane domains.  The 

SignalP v3.0 and SMART hidden Markov models predicted that all the ESAG9s, 

excepting ESAG9-K69 in the case of the SMART model, have a signal peptide 

which is cleaved at between 18 and 35 residues from the N terminus. A signal 

peptide would target the transport of a protein to a specific organelle or trafficking 

pathway.  
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3.2.8 Search for potential post-translational modification sites in 
ESAG9 gene family members using online prediction tools  

In addition to the resources available to search for functional motifs in a protein 

sequence, it is also possible to predict whether post-translational modifications of a 

protein are likely to occur using online prediction tools. The occurrence of post-

translational modification can assist in the prediction of the sub-cellular location of a 

protein, in particular whether or not it is located to the cell surface membrane. The 

ESAG9 protein sequences were searched for potential sites for GPI-anchor addition 

and N-glycosylation. Both of these post-translational modifications occur in the T. 

cruzi mucin-like and MASP protein families, as discussed in section 1.2.6. 

3.2.8.1 Some ESAG9 proteins may be GPI-anchored 

There are a number of tools to predict the addition of a GPI-anchor to a peptide. Big-

PI uses an algorithm based on a set of known GPI-anchor sites from the SWISS-

PROT database (Eisenhaber et al., 1999). GPI-SOM uses a Kohonen self-organising 

map to predict GPI-anchor sites (unpublished). DGPI was the programme used in the 

annotation proteins in the T. b. brucei genome database; it is no longer possible to 

access the DGPI server, though the ESAG9 genes that are annotated in GeneDB had 

already been subjected to this analysis.  

The results of the predictions are shown in Table 3.4. The outcome varies depending 

upon which prediction tool was used. GPI-SOM predicted that all eleven T. b. brucei 

ESAG9 proteins would have a GPI anchor. DGPI predicted that seven of the proteins 

would have an anchor, and Big-PI predicted that only three would (Tb09.v1.0330, 

Tb927.5.4620, Tb427.BES122.10). Moreover, DGPI and Big-PI did not agree on the 

predictions, so it was not just a case of Big-PI being more stringent. Despite the 

variations in the outcomes of these programmes, the fact that some of the ESAG9 

proteins were predicted to have an anchor by at least two out of the three 

programmes suggested that it is probable that at least some ESAG9s are post-

translationally modified in this way. The most likely candidates are Tb09.v1.0330 

and Tb927.5.4620 (ESAG9-EQ) as they were predicted to have an anchor by all 

three programmes.  



 

 84 

 

 

 

 

 

 

Table 3.4: Predictions of GPI-anchor addition in ESAG9 proteins. Two online 

prediction tools, Big-PI and GPI-SOM, were used to predict which ESAG9 proteins 

are likely to have a GPI anchor. The gene annotation at GeneDB used D-GPI to 

predict addition of GPI anchors and these results are also listed.  

* D-GPI was not used to predict GPI-anchor addition to K69 because it was not 

possible to access the server  
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3.2.8.2 Some ESAG9 proteins may be N-glycosylated 

The sites in a protein sequence which are likely to be modified by the addition of 

glycans to asparagine residues can be predicted using the online prediction tool 

NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/). NetNGlyc uses artificial 

neural networks based on N-glycosylation in human proteins; it is therefore not 

optimised for protozoa, but there are no tools currently available that are designed 

specifically for use on protozoal sequences. Therefore, the eleven T. b. brucei 

ESAG9 protein sequences were subjected to N-glycosylation prediction, and the 

results are shown in Table 3.5 and in a schematic diagram in Figure 3.13. Four of the 

eleven sequences did not have any predicted glycosylation sites (Tb927.1.5080, 

Tb09.160.5340, Tb927.1.5220, Tb427.BES122.10); three have one potential 

glycosylation site (Tb927.5.120, Tb11.1000, Tb927.5.4620 [ESAG9-EQ]); three 

have two potential glycosylation sites (Tb09.v1.0330, Tb09.160.5400, ESAG9-K69); 

and ESAG9-K9 has three potential glycosylation sites. It is therefore likely that some 

ESAG9 proteins will be post-translationally modified by N-glycosylation, whereas 

others will not.  
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Table 3.5: Prediction of N-glycosylation of ESAG9 proteins. The online tool 

NetNGlyc was used to predict likely sites of N-glycosylation of ESAG9 proteins. The 

sites at which N-glycosylation could occur (the amino acid position where 1 is the N-

terminus of the protein), and the potential of this occurring, are listed.  

 

   

Figure 3.13: Schematic 

diagram showing the 

positions of predicted N-
glycosylation sites in 

ESAG9 protein sequences. 

The online tool NetNGlyc 

was used to predict likely 

sites of N-glycosylation of 

ESAG9 proteins. The sites at 

which N-glycosylation could 

occur are indicated by an ‘N’. 

The diagram is drawn to 

scale.  
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3.2.9 The 3’ Untranslated Regions of ESAG9 genes  

The 3’ untranslated regions (UTRs) of ESAG9 genes may be involved in regulation 

of gene expression. The trypanosomatids are unusual in that they control gene 

expression almost uniquely via post-transcriptional mechanisms. Some genes, 

including nuclear-encoded mitochondrial components that are up-regulated in 

procyclic form cells, have been shown to contain regulatory motifs within the 

3’UTRs that are involved in stage-specific gene expression (Mayho et al., 2006). 

Due to the unusual mRNA and protein expression profiles of ESAG9 genes, it is 

likely that there are novel signals in their 3’UTRs involved in controlling gene 

expression.  

The first step in this analysis was to identify the UTRs of the ESAG9 genes. Benz et 

al. (Benz et al., 2005) have written an algorithm that predicts all the likely trans 

splice sites in the T. b. brucei strain 927 genome. They also investigated all 

sequenced cDNAs from T. b. brucei and found that polyadenylation at the 3’ end of 

an mRNA transcript tends to occur between 80 and 140 nucleotides upstream of the 

trans splice site for the next gene. The full sequences of the relevant T. b. brucei 

chromosomes were downloaded from GeneDB. Artemis software was then used to 

view the annotated chromosomes, and the trans splice site predictions, in parallel. In 

the case of the Tb427.BES122.10, which is the final gene prior to the 70 base pair 

repeat region at the end of the chromosome, the 3’UTR sequence was taken to be 

from the 3’ end of the coding region to the beginning of the 70 base pair repeats 

downstream. The ten 3’UTRs of T. b. brucei ESAG9s were predicted to have lengths 

varying from 510 to 8,159 base pairs long. The 3’UTR of ESAG9-K69 was not 

included in this analysis because it has not been sequenced. 

The 3’UTRs were aligned using the programme ClustalW, as described in section 

3.2.3. The purpose of this analysis was to explore how similar the 3’UTRs are, and to 

see if there were any obviously conserved motifs. The alignment is shown in 

Appendix E (the final 4,000 base pairs of the 3’UTR of gene Tb927.5.120 were left 

out of the alignment because this predicted UTR was so much longer than the 

others). The alignment shows that there is not a high degree of conservation between 
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these sequences. There are 24 fully conserved residues, and these are marked with an 

asterisk. Some pairs or groups of sequences did however show a higher degree of 

similarity: Tb427.BES122.10 and Tb927.5.4620 (ESAG9-EQ) are 77% similar. 

Tb09.v1.0330 and Tb09.160.5400 are 77% similar to each other, and are 62% and 

54% similar to Tb927.7.170 (ESAG9-K9) respectively. Tb11.1000 and 

Tb927.1.5080 are 61% similar. 

No obvious highly conserved motifs were found by aligning the 3’UTRs, so a more 

powerful method was used to find motifs common between the sequences. A tool 

called Multiple Em for Motif Elicitation, or MEME (Bailey & Elkan, 1995) was 

used. This programme is not based on a database of known motifs, but instead 

searches for any motifs which are found more than once in a sequence, or set of 

sequences. Included in the output is a E-value which represents the chance of finding 

this motif purely by chance in a set of sequences of the same length. Two motifs 

present in all ESAG9 3’UTRs were identified by MEME and these are shown in 

Figure 3.14.  The motifs, termed A and B, had E values of 5.1×10-37 and 3.5×10-29. 

These motifs could be involved in post-transcriptional gene regulation. 

FOLLOWING PAGE: Figure 3.14: The two conserved motifs in ESAG9 3’UTRs 

identified by MEME. The online tool MEME, or Multiple Em for Motif Elicitation, was 

used to identify motifs common to all ESAG9 3’UTRs. Two motifs (A and B) were found 

in all ten 3’UTRs of the ESAG9 genes in T. b. brucei (ESAG9-K69 was excluded as this  

UTR has not been sequenced). The charts represent the consensus sequence with the 

height of each letter proportional to how many of the sequences that nucleotide is found 

in. For example the A at position 14 is the full height of the y-axis as it is found in that 

position in every single sequence. The sequence of the motif in each 3’UTR is shown, 

along with what strand the motif is found on, the start point of the motif, and the P-value. 

The P-value represents the probability of finding this motif by chance in a random set of 

sequences of the same size. In this case all the P-values were extremely low meaning 

that the occurrence of these motifs is highly unlikely to have occurred by chance. 
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The potential 2-dimensional folding of the 3’ UTRs was also investigated. A 

programme called s-fold uses algorithms which incorporate a Boltzmann distribution 

of possible RNA secondary structures to predict the most likely structure, called the 

ensemble centroid. The 3’UTRs assigned using the predictions by Benz et al. were 

too long to use in this programme so only the first 300 nucleotides of each 3’ UTR 

was subjected to analysis. Ensemble centroid structures were generated using the ten 

abridged 3’UTRs of T. b. brucei ESAG9s (ESAG9-K69 was excluded as the 3’UTR 

has not been sequenced). The outputs from the s-fold programme were visually 

examined and no conserved folds were seen (data not shown). Either the secondary 

structure of the ESAG9 3’UTRs was not conserved between genes, or the 

programme failed to elucidate the correct folding structure. It is important to note 

that the s-fold algorithm takes into account factors such as temperature and ionic 

conditions that may not be physiological for trypanosomes. 

To investigate whether other genes in the T. b. brucei genome had similar 3’UTRs to 

any of the ESAG9 genes, BLAST searches were carried out using the ESAG9 

3’UTR sequences to search the contigs (rather than just the open reading frames). 

These searches resulted in a number of hits. When investigated in more detail all 

these hits turned out to be either intergenic regions far from any annotated open 

reading frames, the 3’ UTRs of other ESAG9 genes or pseudogenes, or the 3’ UTRs 

of two genes which have been annotated as similar to ESAG9. These genes were 

Tb09.142.0380 (354 base pairs long) and Tb927.5.150 (816 base pairs long) and they 

were annotated as being 46% and 43% similar to the ESAG9 Tb927.1.5220. The 

3’UTRs of ESAG9s did not select any 3’ UTRS of genes known to be 

developmentally regulated, such as procyclin. Hence it is likely that any signals in 

the 3’UTRs of ESAG9s that regulate gene expression are novel and previously 

undescribed. 

 

3.2.10 The 5’ UTRs of ESAG9 genes 

The 5’UTRs of the ten ESAG9 genes in T. b. brucei were ascertained using the 

predictions by Benz et al. The 5’UTRs were taken to be the region from the 
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beginning of the predicted trans splice site to the start codon for each given gene. 

The 5’UTRs ranged in length from 22 to 223 nucleotides. The 5’UTRs were aligned 

using ClustalW, as previously described (see Figure 3.15). This revealed that there 

was very little conservation. The two ESAG9s that were most conserved in their 

3’UTRs, ESAG9-EQ and Tb927.BES122.10, were only 13% similar to each other in 

their 5’UTRs. The greatest degree of conservation in the 5’UTRs was between 

Tb927.1.5220 and Tb927.1.5080 which were 82% similar to each other.  The overall 

lack of conservation in the 5’UTRs suggested that there are no universal mechanisms 

for gene regulation present in the 5’UTRs of ESAG9 genes so this was not 

investigated further.  

Figure 3.15: ClustalW alignment of the 5’UTRs of T. b. brucei ESAG9 genes. The 

5’UTRs were predicted using the algorithm written by Benz et al. and aligned using 

ClustalW. There is one full conserved nucleotide, coloured in blue. The nucleotides 

coloured in cyan are found in that position in 50% or more of the sequences. 
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3.3 Summary 

Prior to the commencement of this PhD project, two ESAG9 genes (ESAG9-K9 and 

ESAG9-K69) were identified as bloodstream stumpy form-enriched transcripts. No 

gene has been previously described to have the expression profile of ESAG9-K9 and 

ESAG9-K69. Moreover, Western blot analysis using an anti-peptide antibody against 

one of these, ESAG9-K9, revealed that this protein is expressed during 

differentiation from stumpy to procyclic forms in vitro.  

The ESAG9 gene family so far identified in trypanosomes includes: nine genes in T. 

b. brucei strain TREU 927/4; one gene in both T. b. brucei strain Lister 427 and T. b. 

gambiense (though note that the sequencing of these genomes is not complete); one 

cDNA clone in T. b. gambiense which looks like an ESAG9; one gene in T. b. brucei 

strain EATRO 2340 (called ESAG9-K69) which is not present in the genome 

reference strain; and two genes in T. equiperdum.  

Bioinformatic analyses were carried out using ESAG9 sequences. The purpose of 

these in silico experiments was to find any potential clues in the sequence data about 

characteristics and functions of ESAG9 proteins. These analyses revealed that the 

ESAG9 gene family, though most often not found within VSG ESs, are always found 

near VSG genes or other ESAGs. The family is not highly conserved, though retains 

a short motif similar to one found in PP2C. ESAG9 sequences bear some similarity 

to T. cruzi MASPS and mucin-like glycoproteins, and it is likely that at least some 

ESAG9 proteins would be post-translationally modified. The 3’UTRs of these genes 

are not highly conserved but contain two motifs which could be relevant in terms of 

post-transcriptional control of gene expression.  

These bioinformatic analyses were used to inform decisions about what experiments 

should be carried out to ascertain the function of ESAG9 proteins. Of particular 

interest were the potential for post-translational modification of ESAG9 proteins, and 

also the potential functional similarity to mucin-like glycoproteins. These 

possibilities were explored with wet-bench experiments as described in later 

chapters. Based on the expression profiles of ESAG9 genes and the attributes 
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described above, we postulated that ESAG9 proteins could be involved in host-

parasite interactions or play a role in the early establishment of an infection in the 

tsetse fly mid gut. 
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Chapter 4 Generation and subsequent analysis of transgenic 

cell lines which ectopically express one or more ESAG9 
protein 

 

4.1 Introduction 

 

Two ESAG9 transcripts (ESAG9-K9 and ESAG9-K69) were shown to be 

upregulated in bloodstream stumpy form parasites (see Chapter 3 section 3.1.2). An 

anti-peptide antibody was raised against one ESAG9 protein, ESAG9-K9, and this 

revealed that expression of this protein peaked between six and nine hours into in 

vitro differentiation to the procyclic life form. By 30 hours into differentiation there 

was no protein detected (see Chapter 3 section 3.1.5).  

To further explore the characteristics of ESAG9 proteins it was necessary to create 

transgenic cell lines in order to manipulate their expression and analyse the 

consequences. African trypanosomes are amenable to stable transfection with 

linearised plasmids, and these can be used as vectors for, for example, ectopic over-

expression of a gene, or gene knockdown by RNA interference (RNAi) (Ngo et al., 

1998).  

RNAi was not an option for this project. There are nine ESAG9 genes so far 

identified in the T. b. brucei genome reference strain and these genes and their 3’ 

UTRs are quite divergent, as shown by the bioinformatic analyses carried out in 

Chapter 3. Hence, RNAi knockdown of one gene may well not have shown a 

phenotype due to potential redundancy of function between family members, and a 

knockdown of multiple genes simultaneously with one RNAi construct would have 

required a region very highly conserved between genes.   

Ectopic over expression of ESAG9 proteins provided a potentially powerful tool 

however. ESAG9 genes are known not to be constitutively expressed by 

monomorphic slender bloodstream forms or by procyclic forms, though it is worth 

noting that the expression profile of all ESAG9 genes has not yet been explored. 
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Therefore transgenic cell lines were engineered to express an ESAG9 protein (or 

proteins) in each of these life cycle stages, with the assumption that no other ESAG9 

protein was being expressed (however it is worth noting that not all of the expression 

profiles of ESAG9 genes in T. b. brucei have been characterised). The system used 

also had the advantage of protein expression being inducible by the addition of the 

drug tetracycline to the culture media of transfected trypanosomes (Biebinger et al., 

1997). A construct for ectopic overexpression of proteins called pHD451 was 

utilised. This construct contains a procyclin promoter to drive gene expression, 

downstream of which is a TetR operator and then a site for insertion of the required 

open reading frame (ORF) (see Figure 4.3) (Wirtz and Clayton, 1995; Biebinger et 

al., 1997). The TetR (Tet Repressor) is an element of the bacterial tetracycline 

resistance cassette (Wirtz and Clayton, 1995). In the absence of tetracycline, the 

TetR protein binds to the TetR operator and this interferes with transcription from the 

procyclin promoter by blocking the progression of the polymerase enzyme. In the 

presence of tetracycline, the tetracycline binds to the TetR and therefore prevents it 

from having this blocking effect, allowing transcription to continue. A stable T. b. 

brucei cell line (named 427-449) which expesses the Tet repressor protein (TetR) 

had been previously generated. Therefore pHD451 constructs containing the required 

ESAG9 ORF were linearised with NotI restriction enzyme and transfected into this 

cell line where they integrated into the intergenic spacer of the ribosomal RNA locus. 

Another tool that was very useful to this project was the epitope-tagging of proteins 

using an epitope tag developed by the laboratory of Professor Keith Gull (Bastin et 

al., 1996). The Ty-epitope tag is a ten amino-acid sequence (EVHTNQDPLD) found in 

a Saccharomyces cerevisiae virus-like particle called Ty1. This Ty tag is recognised 

by an antibody called BB2 (Brookman et al., 1995),which means that Ty-tagged 

proteins can be visualised on western blots, and in fixed cells by 

immunofluorescence.  

Cell lines were generated that expressed Ty-tagged versions of ESAG9-K9, ESAG9-

K69, and ESAG9-EQ. Cell lines were also generated which simultaneously 

expressed pairs of ESAG9 genes: either ESAG9-K9 and ESAG9-K69 together, or 

ESAG9-EQ and ESAG9-K69 together.  
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These various cell lines were then used to determine the subcellular location (or 

shedding from the cell) of the expressed proteins, the occurrence of post-translational 

modifications, and in functional studies that will be discussed in later chapters. An 

anti-peptide antibody was also raised against ESAG9-K69 to assist in determining 

the expression profile and localisation of this protein in ‘wild-type’ pleiomorphic 

stumpy cells. 

 

4.2 Generation of stable transgenic cell lines which ectopically and 
inducibly express ESAG9 proteins 

 

4.2.1 Sub-cloning of Ty-tagged ESAG9s into a plasmid vector for ectopic 
expression in trypanosomes 

Prior to the commencement of this PhD project, bloodstream form cell lines were 

generated which ectopically and inducibly over-expressed either un-tagged ESAG9-

K9 protein (this cell line will subsequently be referred to as ‘bsf K9(no tag)’), or 

ESAG9-K9 protein with an internal Ty tag (which will subsequently be referred to as 

‘bsf K9’) (K.M., unpublished data). It was also necessary to clone tagged versions of 

ESAG9-EQ and ESAG9-K69 for ectopic expression. The tag was required as no 

antibodies were available against either of these proteins, although an anti-peptide 

antibody against ESAG9-K69 was subsequently generated (see section 4.4 of this 

chapter). For both ESAG9-EQ and ESAG9-K69 the tag was inserted internally in the 

polypeptide sequence, in a region of low homology between ESAG9 proteins, and 

replaced existing amino acids. This was necessary because it was predicted that 

either an N-terminal or a C-terminal epitope tag would disrupt the trafficking signals 

of the encoded protein (a signal peptide and GPI-anchor addition site respectively). 

The location of the tag in ESAG9-K9, ESAG9-EQ and ESAG9-K69 sequences is 

indicated by a box in Figure 4.1. It was hoped that by choosing a region of low 

homology between the ESAG9 proteins, the tag would not unduly disrupt the 

structure of the proteins, though this was not confirmed in in silico or in vitro 

experiments. The tag was not located near any of the N-glycosylation sites discussed 

in Chapter 3. 
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The tag was introduced into the nucleotide sequences by three rounds of PCR, as 

shown in a schematic diagram in Figure 4.2. A template was generated by a PCR 

reaction with 5’ and 3’ oligonucleotide primers for the ESAG9 gene of interest 

(primers 1 and 2 in Figure 4.2). Next, two PCR reactions were carried out with 

oligonucleotide primers which flanked the region to be replaced. These contained the 

sequence of the Ty tag in the 3’ oligonucleotide primer of the upstream amplicon 

(primer 3 in Figure 4.2), and the 5’ primer of the downstream amplicon (primer 4 in 

Figure 4.2). Finally, these two PCR products were used as the template for a final 

round of PCR resulting in a full-length PCR product incorporating the Ty tag. Sites 

for digestion by restriction enzymes were incorporated into the 5’ and 3’ primers 

Figure 4.1: Alignment showing the location of the inserted Ty-tag in ESAG9-EQ, 

ESAG9-K69 and ESAG9-K9 protein sequences. The ten amino acids that were 

replaced with the Ty-tag are indicated by a box. This region does not include any of the 

predicted N-glycosylation sites discussed in chapter 3.  
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(primers 1 and 2 in Figure 4.2) to allow sub-cloning of the PCR products. A 

polymerase with proof-reading capability was used to minimise the probability of 

insertions, deletions, or substitutions being introduced into the PCR products. The 

Expand High Fidelity PCR System (Roche) incorporates both Taq DNA polymerase 

(which is standardly used for PCR) and Tgo DNA polymerase which has a 3’-5’ 

proof-reading activity. Once generated, the resulting PCR products were sequenced 

to ensure that the sequence was correct and that the inserted Ty-tag was in frame.  

The PCR products were then cloned into a pHD-451 vector backbone (Biebinger et 

al., 1997). This vector incorporates a procyclin promoter to drive ectopic expression 

of the gene of interest, a sub-cloning region containing restriction enzyme digestion 

sites, an aldolase 3’UTR, and a drug resistance cassette as indicated in Figure 4.3. 

Either a hygromycin (used in cloning the ESAG9-EQ gene) or puromycin (used in 

cloning the ESAG9-K69 gene) drug resistance cassette enabled the selection of 

successful transfectants. Two different drug resistant cassettes were used so that cell 

lines could be generated containing two distinct constructs.  
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Figure 4.2: Insertion of the Ty-tag sequence into ESAG9 genes by three rounds of 

PCR. An initial template was generated, using primers 1 and 2, which was then used to 

generate two fragments that incorporated the Ty-tag sequence in the 3’ primer of the 

upstream fragment and the 5’ primer of the downstream fragment. These two fragments 

were then used as a template to generate a full length PCR product containing the Ty-tag. 

 

Figure 4.3: Schematic diagram showing the a Ty-tagged ESAG9 gene incorporated 

into a linearised pHD 451 plamid vector. The cloned gene is inserted into a multi-

cloning site downstream of the procyclin promoter, and preceded by the EP procyclin 

5’UTR and followed by the aldolase 3’ UTR. Either a hygromycin or a puromycin drug 

resistance cassette is driven by a VSG promoter, and this allowed drug selection of 

successful transfectants. The construct is linearised with the Not I restriction enzyme prior 

to transfection. 
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4.2.2 Generation and protein expression analysis of procyclic form cell lines 
that ectopically express ESAG9-K9 or ESAG9-EQ  

 

Procyclic form cell lines were generated which stably expressed either Ty-tagged 

ESAG9-K9 protein, or Ty-tagged ESAG9-EQ protein. Procyclic form T. b. brucei 

427-449 cells were transfected with 10µg of linearised plasmid DNA (linearised with 

Not I enzyme) and successful transfectants selected with 30µg/ml Hygromycin, as 

described in Chapter 2, section 2.1.5. These cell lines will subsequently be referred to 

as ‘pcf K9’ and ‘pcf EQ’. 

Inducible ectopic expression of ESAG9-K9 protein in the stable procyclic form 

transfectants was confirmed by Western blotting, shown in Figure 4.4. Pcf K9 cells 

were induced for ESAG9-K9 protein expression by addition of 2µg/ml tetracycline, 

and protein samples made after 48 hours of induction. Western blotting with the BB2 

antibody, which recognises the Ty tag, revealed an inducible band of approximately 

40 kDa. This was 13 kDa bigger than the expected size of ESAG9-K9 (27.1 kDa) 

according to the GeneDB online database. This difference in size could be explained 

by post-translational modification of the protein. The pcf K9 + (i.e. induced with 

tetracycline) cells grew at the same rate as the pcf K9 - (i.e. uninduced) cells, as 

shown in Figure 4.4. This suggested that ectopic expression of the ESAG9-K9 

protein was not having a detectable negative effect on the growth of the cells.  

 

Inducible ectopic expression of ESAG9-EQ was also successfully achieved in pcf 

EQ cells.  Cells were induced by the addition of 2µg/ml tetracycline, and protein 

samples made after 48 hours of induction. Western blotting with the BB2 antibody 

revealed that a band of approximately 34kDa was present in both the induced and 

uninduced samples, though the signal was much stronger in the induced sample, as 
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shown in Figure 4.5. In this cell line the tet repressor protein was not completely 

silencing transcription of the ectopic ESAG9-EQ gene in the absence of tetracycline 

and so the expression was leaky.  The band migrated at approximately 3kDa higher 

than the 30.8kDa predicted by the GeneDB Trypanosoma brucei database. The 

induced and uninduced populations grew at the same rate, as shown in Figure 4.5.  

 

Figure 4.4: Growth and Western blot analysis of transgenic procyclic forms 

expressing Ty-tagged ESAG9-K9. The growth curve (panel A) shows uninduced 

cells (solid line) and cells induced for ectopic expression of ESAG9-K9 by addition 

of 2µg/ml tetracycline (dashed line) growing over a 120 hour time-course. The cells 

were counted every 24 or 48 hours and were passaged to a concentration of 1×106 

cells/ml after 48 hours. Panel B shows a Western blot using the BB2 antibody which 

recognises the Ty-tag (top) and an antibody detecting α tubulin (bottom) which 

indicated equal loading across lanes. The ‘+’ indicates the induced (with 

tetracycline) lane, and the ‘-’ the uninduced (no tetracycline) lane. Size markers are 

in kilo Daltons (kDa). A clearly induced band of approximately 40 kDa was 

observed.  
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Figure 4.5: Growth and Western blot analysis of transgenic procyclic forms 

expressing Ty-tagged ESAG9-EQ. The growth curve (panel A) shows 

uninduced cells (solid line) and cells induced for ectopic expression of ESAG9-EQ 

by addition of 2µg/ml tetracycline (dashed line) growing over a 96 hour time-

course. The cells were counted every 24 hours and were passaged to a 

concentration of 1×106 cells/ml after 48 hours. Panel B shows a Western blot 

using the BB2 antibody which recognises the Ty-tag (top), and an antibody 

detecting α tubulin (bottom), which indicated equal loading across lanes. The ‘+’ 

indicates the induced (with tetracycline) lane, and the ‘-’ the uninduced (no 

tetracycline) lane. Size markers are in kilo Daltons (kDa). A band of approximately 

34 kDa was observed in both lanes but is stronger in the ‘+’ lane.  
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4.2.3 Generation and Western analysis of bloodstream form cell lines that 
ectopically express ESAG9-K9, ESAG9-K69 or ESAG9-EQ 

 

T. b. brucei bloodstream form cell lines that inducibly express either Ty-tagged 

(referred to as ‘bsf K9’) or untagged (referred to as ‘bsf K9(no tag)’) ESAG9-K9 

protein had previously been generated (K. M., unpublished data). Inducible 

expression of the untagged or tagged protein was confirmed by induction with 

tetracycline and Western blotting, shown in Figures 4.6 and 4.7. Growth curves 

indicated that expression of ESAG9-K9 protein expression did not cause a growth 

phenotype in either cell line. 

Figure 4.6: Growth and Western blot analysis of transgenic bloodstream forms 

expressing Ty-tagged ESAG9-K9 protein. The growth curve (panel A) shows 

uninduced cells (solid line) and cells induced for ectopic expression of ESAG9-K9 by 

addition of 2µg/ml tetracycline (dashed line) growing over a 144 hour time-course. The 

cells were counted every 24 or 48 hours and were passaged to a concentration of 1×105 

cells/ml after 24, 72 and 120 hours. Panel B shows a Western blot using the BB2 

antibody which recognises the Ty-tag. The ‘+’ indicates the induced (with tetracycline) 

lane, and the ‘-’ the uninduced (no tetracycline) lane. Size markers are in kilo Daltons 

(kDa). A band of approximately 37 kDa was observed in the ‘+’ lane. The Coomasie’s 

stained image of the gel (bottom) illustrates equivalent loading in each lane. 
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T. b. brucei bloodstream form cell lines were also generated that inducibly expressed 

a Ty-tagged version of ESAG9-EQ or ESAG9-K69. T. b. brucei strain 427-449 cells 

were transfected with 10µg of linearised plasmid DNA. Successful transfectants 

were selected with 5µg/ml hygromycin, in the case of ESAG9-EQ, or with 0.5µg/ml 

puromycin, in the case of ESAG9-K69, as described in the Materials and Methods. 

Inducible ectopic expression of each ESAG9 protein was confirmed by Western 

Figure 4.7: Growth and Western blot analysis of transgenic bloodstream forms 

expressing un-tagged ESAG9-K9 protein. The growth curve (panel A) shows 

uninduced cells (solid line) and cells induced for ectopic expression of ESAG9-K9 by 

addition of 2µg/ml tetracycline (dashed line) growing over a 144 hour time-course. The 

cells were counted every 24 or 48 hours and were passaged to a concentration of 1×105 

cells/ml after 24, 72 and 120 hours. Panel B shows a Western blot using the ESAG9-K9 

anti-peptide antibody. The ‘+’ indicates the induced (with tetracycline) lane, and the ‘-’ 

the uninduced (no tetracycline) lane. Size markers are in kilo Daltons (kDa). A band of 

approximately 34 kDa is seen in the ‘+’ lane. The Coomasie’s stained image of the gel 

(bottom) demonstrates equivalent loading across lanes. 
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blotting with the BB2 antibody, as shown in Figure 4.8 (for ESAG9-EQ) and Figure 

4.9 (for ESAG9-K69). In both these cases, induction of protein expression was not 

shown to have any affect on the growth rate of the cells, also shown in Figures 4.8 

and 4.9. In the bsf EQ cell line, the ESAG9-EQ protein ran at the same size in the 

procyclic form and the bloodstream form transgenic cells (34 kDa). In the bsf K69 

cell line, ESAG9-K69 ran at approximately 50kDa, which is considerably larger than 

the mass of 26.6kDa predicted using the online prediction tool PeptideMass. 

(www.expasy.org/tools/peptide-mass). This suggested that the protein was being 

extensively post-translationally modified. Also the quantity of ESAG9-K69 protein 

produced by the cells was much lower than for ESAG9-EQ. Thus, a sample from 

6×106 cells was required to achieve a clear signal on Western blots whereas only 

2×106 cells were used for all other Westerns described. Moreover, the ESAG9-K69 

Western was visualised using the LI-COR® system. This detects proteins on Western 

blots using infrared fluorescence, and is more sensitive than the HRP (horse radish 

peroxidase) system used for the bsf EQ Western blot. This indicated that the levels of 

cell-associated ESAG9-K69 were less than for the other ectopically-expressed 

ESAG9 proteins assayed. 
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Figure 4.8: Growth and Western blot analysis of transgenic bloodstream forms 

expressing Ty-tagged ESAG9-EQ. The growth curve (panel A) shows uninduced cells 

(solid line) and cells induced for ectopic expression of ESAG9-EQ by addition of 2µg/ml 

tetracycline (dashed line) growing over a 192 hour time-course. The cells were counted 

every 24 or 48 hours and were passaged to a concentration of 1×105 cells/ml after 48, 96 

and 144 hours. Panel B shows a Western blot using the BB2 antibody which recognises 

the Ty-tag (top) and an α tubulin antibody (bottom) which indicated equal loading across 

lanes. The ‘+’ indicates the induced (with tetracycline) lane, and the ‘-’ the uninduced lane. 

Size markers are in kilo Daltons (kDa). A band of approximately 34 kDa was observed in 

the ‘+’ lane.  
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Figure 4.9: Growth and Western blot analysis of transgenic bloodstream forms 

expressing Ty-tagged ESAG9-K69. The growth curve (panel A) shows uninduced 

cells (solid line) and cells induced for ectopic expression of ESAG9-K69 by addition of 

2µg/ml tetracycline (dashed line) growing over a 168 hour time-course. The cells were 

counted every 24 or 48 hours and were passaged to a concentration of 5×105 cells/ml 

after 24 hours, and to a concentration of 1×105 cells/ml after 48, 96 and 120 hours. 

Panel B shows a Western blot using the BB2 antibody which recognises the Ty-tag 

(top) and an α-tubulin antibody (bottom) which indicated equal loading across lanes. 

The ‘+’ indicates the induced (with tetracycline) lane, and the ‘-’ the uninduced lane. 

Size markers are in kilo Daltons (kDa). A band of approximately 50 kDa was observed 

in the ‘+’ lane.  
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4.2.4 Generation and Western analysis of bloodstream form cell lines that 
express two different ESAG9 proteins concurrently 

 

Pleiomorphic cells were shown to express more than one ESAG9 mRNA 

concurrently by Northern blotting, as shown in Chapter 3, Figure 3.2 (K. M., 

unpublished data). It is possible that ESAG9 proteins interact with one another in 

some way, in which case the ectopic expression of one ESAG9 protein alone might 

not generate a phenotype. There is a precedent for this in the ESAG gene family, in 

that ESAGs 6 and 7 combine to form the transferrin receptor complex (Steverding et 

al., 1994).  

Bloodstream form cell lines that expressed two ESAG9 proteins concurrently were 

therefore generated. The combination of ESAG9-K9 and ESAG9-K69 was 

considered most interesting because these two genes are co-expressed in the T. b. 

brucei EATRO 2340 strain, and both mRNAs are expressed at a high level (see 

Chapter 3, Figure 3.2). The dual expression of these genes in monomorphic cells was 

made possible by the fact that the previously generated bsf K9(no tag) cell line was 

resistant to hygromycin, and the Ty-tagged ESAG9-K69 gene was cloned into a 

vector containing a puromycin drug resistance cassette. It was also possible to 

distinguish between the two proteins when co-expressed because the un-tagged 

ESAG9-K9 was recognised by the ESAG9-K9 anti-peptide antibody, whereas the 

Ty-tagged K69 was recognised by the BB2 antibody. There was no cross-reaction 

between the K9 anti-peptide antibody and the K69 protein (data not shown). A 

bloodstream form cell line that co-expressed ESAG9-EQ and ESAG9-K69 was also 

generated in the same manner, although it was not possible to distinguish between 

these two proteins as they were both Ty-tagged, except on the basis of size. 

Thus, bsf K9(no tag) and bsf EQ cell lines were transfected with 10µg of linearised 

vector DNA containing the tagged ESAG9-K69 gene. Successful transfectants were 

selected with 0.5µg/ml puromycin, as described previously.  
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Expression of ESAG9-K69 protein concurrently with ESAG9-K9 was confirmed by 

Western blotting, shown in Figure 4.10 (this cell line will subsequently be referred to 

as bsf K9:K69). Stable transfectants were induced to express both proteins by 

addition of 2µg/ml tetracycline, and protein samples made after 48 hours of 

induction. Two Western blots were carried out, one with the ESAG9-K9 anti-peptide 

antibody, and the other with the BB2 antibody (detecting ESAG9-K69). The 

inducible expression of ESAG9-K9 was confirmed, and two bands were seen of 38 

and 42 kDa, which differed from the bsf K9 cell line, where one band of 37 kDa was 

seen. The signal from the BB2 antibody, which detects the ESAG9-K69 protein, was 

extremely weak but a very faint band of 40 kDa was seen in both lanes and was 

stronger in the induced lane. The weakness of the signal could indicate that there is 

less expression of this ectopic gene occurring for some reason, or that less protein 

was cell associated. The protein could be degraded by the lysosomal machinery in 

the cell, or it could be secreted out of the cell. Interestingly, the detected ESAG9-

K69 protein was running at a smaller size in this cell line, 40 kDa, compared to 50 

kDa in the bsf K69 cell line which only expressed ESAG9-K69.  
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Figure 4.10: Growth and Western blot analysis of K9:K69 transgenic bloodstream 

forms which express un-tagged ESAG9-K9 and Ty-tagged ESAG9-K69 

concurrently. The growth curve (panel A) shows uninduced cells (solid line) and cells 

induced for ectopic expression of the ESAG9 proteins by addition of 2µg/ml tetracycline 

(dashed line) growing over a 120 hour time-course. The cells were counted every 24 or 

48 hours and were passaged to a concentration of 1×105 cells/ml after 48 and 96 hours. 

Panel B shows Western blots using the ESAG9-K9 anti-peptide antibody (top), the BB2 

antibody which recognises the Ty-tagged ESAG9-K69 protein (middle) and an α tubulin 

antibody (bottom) which indicated equal loading across lanes. The ‘+’ indicates the 

induced lane, and the ‘-’ the uninduced lane. Size markers are in kilo Daltons (kDa). A 

faint band of approximately 43 kDa and a stronger band of approximately 38 kDa were 

both observed in the ‘+’ lane of the ESAG9-K9 Western blot. Very faint bands of 40 kDa 

were observed in the BB2 Western blot (middle), indicating that a low level of 

expression of ESAG9-K69 protein was achieved, and that protein expression was leaky. 
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Expression of ESAG9-K69 and ESAG9-EQ concurrently in the bsf EQ:K69 cell line 

was also confirmed by Western blotting. Stable transfectants were induced as 

described above, and the resultant protein samples analysed by Western blotting. 

Two bands were seen, as shown in Figure 4.11. Although it was not possible to 

definitively ascribe one protein to each band, it is likely that ESAG9-EQ constitutes 

the lower band of 35kDa, which is the size the ESAG9-EQ protein runs at in the 

single-expressing cell line (see Figure 4.8). ESAG9-K69 is likely to constitute the 

upper band, as it runs at the same size as ESAG9-K69 in the bsf K9:K69 cell line 

(see Figure 4.10).  The double expression of ESAG9 proteins in either bsf K9:K69 or 

bsf EQ:K69 cell lines did not result in a growth phenotype. 

Figure 4.11: Growth and Western blot analysis of EQ:K69 transgenic bloodstream 

forms which express Ty-tagged ESAG9-EQ and Ty-tagged ESAG9-K69 concurrently. 

The growth curve (panel A) shows uninduced cells (solid line) and cells induced for ectopic 

expression of the ESAG9 proteins by addition of 2µg/ml tetracycline (dashed line) growing 

over a 120 hour time-course. The cells were counted every 24 or 48 hours and were 

passaged to a concentration of 1×105 cells/ml after 48 and 96 hours. Panel B shows a 

Western blot using the BB2 antibody which recognises the Ty-tag (top) and an α tubulin 

antibody (bottom) which indicated equal loading across lanes. The ‘+’ indicates the induced 

(with tetracycline) lane, and the ‘-’ the uninduced lane. Size markers are in kilo Daltons (kDa). 

A faint band of approximately 40 kDa and a stronger band of approximately 34 kDa were both 

observed in the ‘+’ lane. It was not possible to distinguish definitively between the ESAG9-EQ 

and the ESAG9-K69 proteins as they were modified with the same Ty-tag, but it is likely that 

ESAG9-K69 constitutes the upper band and ESAG9-EQ constitutes the lower band. 
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4.3 Immunoprecipitation analysis of bloodstream form conditioned 
media 

 

The level of ESAG9-K69 protein that was detected in the cell extracts from the bsf 

K69 and bsf K9:K69 cell lines was low. Therefore the possibility that some of the 

protein was being secreted or shed by the cells into the medium was explored by 

performing immunoprecipitations with trypanosome-conditioned media. No naturally 

secreted proteins have previously been characterised in bloodstream form T. brucei 

apart from a molecule called TLTF that was reported to induce CD8+ T cells to 

produce interferon gamma (Olsson et al., 1991). However the gene was subsequently 

cloned and the protein characterized as being in the flagellum (Hill et al., 2000). The 

effect on CD8+ T cells was not seen when other labs attempted to repeat the 

experiments so the work is considered highly suspect (personal communication, 

Professor John M. Mansfield, University of Wisconsin-Madison). 

 

4.3.1 Immunoprecipitation of Ty-tagged protein using the BB2 antibody 

 

The ability to successfully immunoprecipitate (IP) Ty-tagged proteins using the BB2 

antibody was initially verified using 1ml of bsf K9 cell lysate derived from 1×108 

cells. A schematic diagram summarising how the IP was carried out is shown in 

Figure 4.12. As a control, blocking peptide was generated that prevents the BB2 

antibody from binding to the Ty tag. This blocking peptide was of the same sequence 

as the epitope recognised by the BB2 antibody, allowing it to block detection of Ty-

tagged proteins. Induced bsf K9 + cell lysate was incubated with protein G beads for 

45 minutes prior to the IP and the beads subsequently removed. Protein G beads 

should only bind antibody but the blocking step was required to remove any proteins 

from the cell lysate that bind non-specifically to the protein-G beads. The antibody 

was also incubated for 45 minutes prior to the IP with and without the blocking 

peptide. This was to ensure that any positive result seen was due to a Ty-tagged 
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protein binding to the BB2 antibody and to rule out non-specific binding. The 

blocked and unblocked antibody was then added to the cell lysate and incubated at 

4ºC for one hour to allow the Ty-tagged ESAG9-K9 protein to bind to the BB2 

antibody. Protein-G beads were then added to the mixture and again incubated for 

one hour at 4ºC to allow the bound BB2 antibody to bind to the protein-G beads. The 

antibody and the Ty-tagged protein were then eluted from the G-beads by incubation 

at 100ºC for ten minutes in Laemmli buffer.  

The results of this test assay are shown in Figure 4.13. A faint band of the correct 

size for ESAG9-K9 was detected in the IP lane (left lane) and this band disappeared 

when the blocking peptide was used to prevent antibody binding (right lane). This 

indicated that the IP reaction conditions were effective.  

 

 

Figure 4.12: Schematic diagram showing the selection of Ty-tagged protein from 

cell lysate or conditioned media by immunoprecipitation with BB2 antibody. The 

steps are as follows, in simple terms: 1. cell lysate is made from a cell pellet, or the 

conditioned medium is reduced in volume, 2. BB2 is incubated with the mixture and this 

recognises and binds to Ty-tagged proteins (in red), 3. Protein-G beads are incubated 

with the mixture and the BB2 antibody binds to the beads, 4. The beads are isolated by 

centrifugation and wash steps, 5. The proteins are eluted from the beads and analysed 

by Western blotting. 
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4.3.2 ESAG9-K69 protein is not secreted/shed by bsf K69 cells 

 

IPs were carried out using bsf K69 + cell lysate and conditioned medium. The cell 

lysate IP was carried out as described in Section 4.2.2. For the media IP, 180mls of 

conditioned media was reduced in volume to approximately 4mls by centrifugation 

through Vivaspin columns with a 10 kDa cut-off (VWR cat. no. 512-3783). The IP 

was then carried out as for the cell lysate, excepting that the volumes of antibody and 

G-beads used were scaled up to adjust for the larger volume.  

No signal for K69 was seen from the conditioned media but a strong signal was seen 

from the cell lysate (see Figure 4.14). This indicated that in the bsf K69 cell line, all 

the K69 protein remained cell associated.  

 

 

Figure 4.13: Test immunoprecipitation 

with Ty-tagged ESAG9-K9 protein. Bsf 

K9 + cells were harvested and the Ty-

tagged protein pulled down by 

immunoprecipitation (IP) with BB2 antibody 

as described in the Materials and Methods. 

The left hand lane is the IP without 

blocking peptide and the right hand lane is 

with blocking peptide. The top band is the 

BB2 antibody, the faint middle band (which 

is only present in the absence of blocking 

peptide) is the Ty-tagged ESAG9-K9 

protein, and the large band at the bottom is 

the Protein G. Size markers are in kilo 

Daltons.  
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4.3.3 ESAG9-K69 protein is secreted/shed by bsf K9:K69 cells 

 

An IP with cell lysate and conditioned medium from bsf K9:K69 + cells was also 

carried out as described in section 4.3.2. In this assay, the IP would only pull down 

the ESAG9-K69 protein since the ESAG9-K9 protein did not have a Ty tag. 

Significantly, there was no signal for K69 from the cell lysate IP, but there was a 

strong signal from the conditioned medium (see Figure 4.15). A blocking peptide 

control was not used in this particular assay, but the experiment was repeated twice 

with a blocking peptide control and the same result of a strong band from the 

conditioned medium was seen on both occasions when the blocking peptide was 

absent (data not shown).  

To ensure that the signal seen in the medium was not a result of cells lysing prior to 

the IP and releasing their contents into the medium, a control IP was also carried out 

with an antibody to TbZFP3. TbZFP3 is a small zinc-finger protein involved in 

stage-specific expression in the trypanosome life cycle (Paterou et al., 2006) that 

always remains cell-associated. Cell lysate and conditioned medium IPs were carried 

out with bsf K9:K69 + cells and the anti-TbZFP3 antibody. A signal for TbZFP3 was 

Figure 4.14: IP with bsf K69 cells 

and conditioned medium. ESAG9-

K69 protein was immunoprecipitated 

from the cell lysate in the absence of 

blocking peptide (far left lane, middle 

band). However, no signal was seen 

from bsf K69 + conditioned medium 

(right panel) indicating that this protein 

was not being secreted out of the cells. 

Size markers are in kilo Daltons. 
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only seen from the cell lysate IP and not from the medium (see figure 4.16) 

confirming that this constitutively expressed protein was remaining cell associated. 

Hence ESAG9-K69 seemed to be released to the medium specifically from the bsf 

K9:K69 cell line. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Cell lysate and 

conditioned media IPs using K9:K69 

bsf cells. The ESAG9-K69 protein was 

immunoprecipitated using BB2 

antibody. A strong signal was seen 

from the conditioned medium IP (right 

hand panel, middle band). No signal 

was seen for ESAG9-K69 from the cell 

lysate IP (left hand panel). In this 

experiment no blocking peptide control 

was included. Size markers are in kilo 

Daltons.  

 

Figure 4.16: Cell lysate and media IPs with ZFP3 

antibody. Bsf K9:K69 + cells were subjected to 

immunoprecipitation with the α TbZFP3 antibody 

which recognises constitutively expressed and cell-

associated TbZFP3 protein.  As expected, a signal 

for TbZFP3 was seen in the cell lysate IP in the 

absence of blocking peptide (top panel) and no 

signal was seen from the conditioned medium IP 

(bottom panel).  
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4.3.4 ESAG9-EQ protein is not shed by bsf EQ cells 

 

Immunoprecipitations using the BB2 antibody were also carried out with bsf EQ + 

conditioned medium as previously described. In this assay, no signal was seen from 

the medium for Ty-tagged ESAG9-EQ protein, indicating that this protein remained 

cell associated and was not shed from the cell (data not shown).  

 

4.3.5 Ty-tagged protein is shed by bsf EQ:K69 cells 

 

To explore whether Ty-tagged protein was being shed from bsf EQ:K69 + cells, IPs 

were carried out with BB2 on the conditioned medium from this cell line. In this cell 

line, both the ESAG9-EQ and ESAG9-K69 proteins were tagged with the Ty-tag and 

so it was not possible to distinguish between them; either or both could be pulled 

down by immunoprecipitation. Figure 4.17 shows that a band of approximately 36 

kDa was seen in the medium IP lane indicating that at least one of the proteins was 

being shed from the trypanosomes. In the cell lysate there were three bands visible: a 

double band at 36 kDa and a single band at 42 kDa. The band seen in the IP lane is 

likely to correspond to the double band seen in the cell lysate as they are running at 

the same size. Given the size of this band, it is more likely to correspond to ESAG9-

EQ protein because ESAG9-EQ migrated at approximately 35 kDa in the bsf EQ cell 

line (see Figure 4.8). 
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Figure 4.17: Conditioned medium IP with bsf EQ:K69 conditioned media. 

The cell lysate is shown as a confirmation that there was protein expression. 

Three bands were seen in the cell lysate: a double band at about 36 kDa and 

a single band at about 40 kDa (left lane). It was not possible to distinguish 

between the ESAG9-K69 and ESAG9-EQ proteins as they are both Ty-

tagged and recognised by BB2 antibody. In the conditioned medium IP a 

band is seen at 36 kDa which could be either ESAG9-EQ or ESAG9-K69. 

This band was not present when the blocking peptide was used (far right 

lane). Size markers are in kilo Daltons.  
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4.4 Analysis of shedding of ESAG9-K69 protein by stumpy parasites  

 

ESAG9-K69 protein was shown to be shed by transgenic bsf K9:K69 and bsf 

EQ:K69 cells. It was vital therefore to address the question of whether this 

phenomenon was seen purely in transgenic cells, or whether ESAG9-K69 protein 

was also shed by ‘wild-type’ pleiomorphic parasites. To this end, an anti-peptide 

antibody was raised against ESAG9-K69 to enable detection of this protein in wild-

type cells. 

 

4.4.1 Generation and verification of ESAG9-K69 anti-peptide antibody 

 

Two peptides were chosen against which two antibodies would be raised in rabbits. 

The peptides chosen are shown in Figure 4.18, and are compared with the position of 

the peptides used to raise the ESAG9-K9 antibody. The sequences were searched 

against the T. b. brucei 927 genome to confirm that they were not homologous to 

other proteins in the genome. The antibodies were generated by Eurogentec. 

 

 

Figure 4.18: Alignment of ESAG9-K9 and ESAG9-K69 peptide sequences 

showing the peptides used to raise antibodies. The two peptides used to raise 

antibodies against ESAG9-K9 and ESAG9-K69 are highlighted in blue and red 

respectively. 
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The two anti-peptide antibodies, A and B, were tested by Western analysis at a range 

of concentrations against cell lysate from bsf K69 cells, induced and uninduced for 

ESAG9-K69 protein expression (data not shown). Antibody B was found to give a 

stronger signal, and further testing confirmed that a concentration of 1:250 gave a 

clean signal. Figure 4.19 shows a Western blot using the ESAG9-K69 anti-peptide 

antibody B against bsf K69 cell lysate. The same membrane was also probed with 

BB2 antibody that recognised the Ty-tag on the ESAG9-K69 protein. The LI-COR 

Odyssey system was used which allowed the detection of two antibodies 

simultaneously because they were raised in different animals and so could be 

visualised with two secondary antibodies with fluorochromes which were excited at 

different wavelengths. 

 

 

Figure 4.19: Confirmation that the ESAG9-K69 antibody recognises ectopically 

expressed ESAG9-K69 protein. Bloodstream form K69 cells were induced with 

tetracycline for ectopic expression of ESAG9-K69 protein (+tet, left hand lanes), and 

analysed by Western blotting along with uninduced cells (- tet, right hand lanes) using 

the α-ESAG9-K69 antipeptide antibody (left) and BB2 antibody that recognises the 

Ty-tag (right). This confirmed that there was an inducible signal with both antibodies. 

Size markers are in kilo Daltons.  
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4.4.2 Stumpy conditioned medium contains ESAG9-K69 protein 

 

A mouse was inoculated with slender form pleiomorphic T. b. brucei EATRO 2340 

parasites and the infection allowed to progress until the population was 

predominantly stumpy in morphology (5 days). The parasites were harvested from 

the mouse (a total of 1×109 cells), re-suspended in serum-free HMI-9 medium at a 

concentration of 3×106 cells per ml, and incubated at 37°C for 4 hours. The length of 

incubation was a balance between allowing sufficient time for any proteins secreted 

by the stumpy cells to accumulate in the medium, and the fact that the stumpy cells 

would not survive indefinitely in serum-free medium. The stumpy cells were 

harvested by centrifugation and cell lysate made at a concentration of 2×105 cells per 

µl in Laemmli buffer. The stumpy-conditioned medium was filtered to remove any 

remaining trypanosomes, and reduced in volume by centrifugation through Vivaspin 

columns. The volume was reduced by a factor of 1,332 to 250µl. The concentrated 

stumpy-conditioned medium was then boiled in 50% v/v laemmli buffer. The cell 

lysate and stumpy-conditioned medium samples were analysed by Western blotting 

using the ESAG9-K69 anti-peptide antibody. A control antibody, Hsp-70, was also 

used, as this protein should always remain cell associated and should not be shed into 

the medium. 

Figure 4.20 shows the Western analyses using ESAG9-K69 and Hsp-70 antibodies. 

There was a signal from both antibodies from the stumpy-conditioned medium and 

the stumpy cell lysate. Several bands were detected by the ESAG9-K69 antibody. At 

50 kDa, there was a single band in the cell lysate lane, and a double band in the 

conditioned medium lane. At 25 kDa there was a very faint single band in the cell 

lysate lane, and a faint double band in the conditioned medium lane. The predicted 

size of ESAG9-K69 is 26.6 kDa. The lower band is therefore of approximately the 

correct size for ESAG9-K69, and the higher band could be the protein having been 

extensively post-translationaly modified. The higher band migrates at approximately 

twice the mass of the lower band so it could represent a dimer of the protein, 

however it is likely that such an interaction would have been disrupted by the 
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denaturing conditions of the SDS-PAGE gel. Alternatively, the protein may be 

running aberrantly and therefore the size marker would not be equivalent to the true 

size of the protein. It is also worth noting that in the transgenic bsf K69 cell line, the 

Ty-tagged ESAG9-K69 protein runs at 50kDa (refer to Figure 4.9). 

 

Figure 4.20: Western analysis of cell lysate and conditioned medium from T. b. 

brucei EATRO 2340 stumpy cells. Stumpy cells were harvested from a mouse and 

incubated at 37°C in serum-free medium for 4 hours. The cells were harvested by 

centrifugation and boiled in Laemmli buffer. The stumpy-conditioned medium was 

reduced in volume by centrifugation through Vivaspin columns. The samples were 

then analysed by Western blotting with ESAG9-K69 antibody (left hand lanes) and 

Hsp70 antibody (right hand lanes). There is a signal for both antibodies from both the 

cell lysate and conditioned medium lanes; the signal for ESAG9-K69 is stronger in the 

conditioned medium lane and the signal for Hsp70 is stronger in the cell lysate lane. 

The lanes were not equally loaded, with approximately 13.3 times more cell 

equivalents loaded in the conditioned medium lanes. The cell lysate and conditioned 

medium lanes are from the same blot scanned in at the same time, but irrelevant 

lanes were cropped for clarity. Size markers are in kilo Daltons.  
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The signal for the ESAG9-K69 protein was much stronger in the medium, and the 

signal for Hsp-70 was stronger in the cell lysate. However an equal number of cell 

equivalents were not loaded in each lane; 2.4×106 cell equivalents were loaded in the 

cell lysate lane, whereas 3.2×107 cell equivalents were loaded in the stumpy-

conditioned medium lane. To quantify the relative signal from the lanes, the intensity 

of each band was measured using a LI-COR Odyssey 2.1 infrared imager and 

software. The measured intensity from the conditioned medium lanes was adjusted to 

take account of the fact that it was overloaded in comparison to the cell lysate lanes, 

and the percentage of signal from each antibody in the cell lysate versus the 

conditioned medium was then calculated. These values are shown in Table 4.1. The 

percentage of ESAG9-K69 remaining cell-associated in this experiment was 60.6%, 

and 39.4% of the signal for the protein was in the stumpy-conditioned medium (the 

upper band of 50kDa was used to calculate these values). Contrastingly, 95.6% of the 

signal for Hsp-70 protein remained cell-associated and 4.4% was in the stumpy-

conditioned medium. It is not surprising that there was some Hsp-70 protein in the 

medium because some of the stumpy cells may have lysed due to the stress of 

incubation in the serum-free medium, or other manipulations such as the 

centrifugation step. 

The fact that the percentage of ESAG9-K69 protein in the stumpy-conditioned 

medium was much higher than for Hsp-70 was strongly suggestive of ESAG9-K69 

protein being shed actively by stumpy cells. 

 

 

Table 4.1: The quantification of the percentage of the signal from ESAG9-K69 

and Hsp-70 antibodies that was cell-associated or from the conditioned 

medium. The intensities of the relevant bands were measured using LI-COR infrared 

imaging software, and the bands from the medium were then adjusted for cell 

equivalents. The percentage of the total signal that was from the cell lysate or the 

conditioned medium was then calculated. 
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4.4.3 The expression profile of ESAG9-K69 protein during differentiation 

 

It was also interesting to use the newly-generated ESAG9-K69 anti-peptide antibody 

to explore the expression of the protein during in vitro differentiation from stumpy to 

procyclic cells. A Western blot was carried out using the same samples that were 

used to explore ESAG9-K9 protein expression during differentiation, as described in 

Chapter 3 section 3.1.5. Samples were taken at 0, 3, 6, 9, 12, 15 and 30 hours into 

differentiation and the Western blot is shown in Figure 4.21. The observed protein 

expression was weak and seemingly fairly consistent across the lanes, although 

comparison with the tubulin loading control showed that the lanes from the later time 

points were relatively overloaded. This indicated that, in fact, there was less ESAG9-

K69 protein present at 9, 12, 15 and 30 hours than there was at 0, 3 and 6 hours into 

differentiation. The ESAG9-K69 protein migrated at approximately 48 kDa, and 

there was no band seen at the lower size of 25 kDa, unlike in Figure 4.20. The 

protein expression profile contrasts with that of ESAG9-K9 during differentiation, 

whereby ESAG9-K9 expression peaks between 6 and 9 hours into differentiation and 

by 30 hours its expression was longer detectable.  
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Figure 4.21: Expression profile of ESAG9-K69 protein during in vitro 

differentiation of T. b. brucei EATRO 2340 stumpy cells. Stumpy cells were 

harvested from a mouse and triggered to differentiate by the addition of cis-aconitate 

(6mM) and a drop in temperature to 27°C. Protein samples were prepared at 0, 3, 6, 

9, 12, 15 and 30 hours into differentiation to procyclic forms. The protein expression 

profile of ESAG9-K69 protein is shown (top) along with a loading control of anti-tubulin 

antibody (bottom). The loading control indicates that loading was not equal across all 

the lanes, with the 9, 12, 15 and 30 hour time points being overloaded in comparision 

to the earlier time points. The size markers are in kilo Daltons. 
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4.5 Immunofluorescence analysis of the sub-cellular location of 
ESAG9 proteins in transgenic cell lines 

 

4.5.1 ESAG9-K9 is detectable in the endoplasmic reticulum 

 

In order to determine the precise sub-cellular location of ESAG9-K9 protein in 

transgenic cell lines, immunofluorescence staining of paraformaldehyde-fixed 

procyclic form cells was carried out. Pcf K9 cells were induced by addition of 

2µg/ml tetracycline and after 48 hours cells were fixed in 2% paraformaldehyde and 

adhered to glass slides. The fixed cells were permeabilised with 0.5% Triton X-100 

and blocked with 1% BSA to prevent non-specific binding of antibody. The BB2 

antibody was then applied for one hour in a humid chamber, followed by a FITC-

conjugated anti-mouse secondary antibody to allow visualisation. To ensure that any 

signal seen was due to the presence of ESAG9-K9 protein and not the result of non-

specific binding, two controls were also used. Pcf K9- (i.e. uninduced) cells were 

stained with primary and secondary antibody as described. Also, wild-type (WT) 

cells were exposed to the secondary antibody alone. These controls were included in 

all subsequent immunofluorescence staining experiments described later in this 

chapter, but will not be shown. 

Figure 4.22 shows that the the immunofluorescent signal was seen as a distinct web-

like pattern throughout the cell. The pattern of staining was compatible with the 

ESAG9-K9 protein being located to the endoplasmic reticulum. To further explore 

this possible localisation, bsf K9 + cells were fixed in paraformaldehyde as described 

previously. The cells were then co-labelled with BB2 and an antibody against the 

endoplasmic reticulum marker BiP (Bangs et al., 1993). BiP antibody was raised in 

rabbits and so could be visualised with an anti-rabbit Alexa Fluor® 633 secondary 

antibody, which is visible through a different fluorescent channel to FITC. 

The co-labelled cells were then subjected to analysis using a confocal microscope. A 

series of pictures of a chosen cell were taken through the Z-axis in both green (for 
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BB2) and the red (for the BiP endoplasmic reticulum marker) channels. These 

pictures were then combined using Zeiss LSM Image Browser software to create a 

‘Z-stack’, which is a 3-dimensional approximation of a cell. The Z-stacks were 

converted to movies, available on the Supplementary CD, and these can be viewed 

using programmes such as Windows Medium Player or Quicktime (available to 

download free from http://www.apple.com/quicktime/download/). 

Movie 1 shows the localisation, in 3D, of the ESAG9-K9 protein in bsf K9 + cells. 

Movie 2 shows the localisation of the endoplasmic reticulum marker BiP. Movie 3 is 

the combined data from Movies 1 and 2 and any yellow staining indicates a co-

localisation of the two proteins. These data show that K9 and BiP are co-localised to 

the endoplasmic reticulum. Two-dimensional images of the same cell are also shown 

in Figure 4.23. 
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Figure 4.22: Location of Ty-tagged ESAG9-K9 protein in procyclic form 

cells. Procyclic form cells were fixed and stained with both BB2 primary 

antibody and an anti-mouse FITC secondary antibody, or with just the FITC 

secondary antibody. Row A is pcf K9 + cells stained with both antibodies, row 

B is WT cells stained with both antibodies, and row C is WT cells stained with 

the FITC secondary antibody alone. The signal from the FITC channel (middle 

column) is much stronger in the K9 + cells and indicates that the ESAG9-K9 

protein is found in a web-like pattern through the cell. The left column shows 

DAPI staining of the cell nucleus and kinetoplast, and the right column shows 

phase-contrast images of the cells. The scale bar is 15 microns. 
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4.5.2 ESAG9-EQ is more diffuse in the cell than ESAG9-K9 

Pcf EQ + and bsf EQ + cells were fixed and stained with BB2 antibody as described 

in Section 1.3.2. The procyclic-form staining is shown in Figure 4.24. The signal was 

more diffuse through the cell than for ESAG9-K9, with a gap where the nucleus is 

located. It was not completely evenly distributed throughout the cell however and 

was slightly flocculant. This pattern of staining was not indicative of ESAG9-EQ 

localising to a particular organelle. 

Figure 4.23: Co-localisation of Ty-tagged ESAG9-K9 protein and the 

endoplasmic reticulum marker BiP in bloodstream form cells. Bsf K9 + 

cells were co-stained with BB2, which recognises Ty-tagged ESAG9-K9 (green 

channel, left), and αBiP which is an endoplasmic reticulum marker (red channel, 

middle). Cells were visualized using a Zeiss confocal microscope and images 

analysed using Zeiss LSM Image Browser software. The right panel is an 

overlay of the red and green channels and co-localisation of the two signals is 

indicated in yellow. Scale bar represents 15 microns. 
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Figure 4.24: Localisation of Ty-tagged ESAG9-EQ protein in procyclic form cells. 

Pcf EQ + cells were stained with BB2 antibody, which recognises the Ty-tagged ESAG-

EQ protein (middle panel). The left panel shows the nucleus and kinetoplast stained 

with DAPI and the right panel the phase-contrast image of the cell. The scale bar 

represents 15 microns. 

 

Figure 4.25: Localisation of Ty-tagged ESAG9-EQ protein in bloostream form 

cells. Bsf EQ + cells were stained with BB2 antibody, which recognises the Ty-tagged 

ESAG9-EQ protein (middle panel). The left panel shows the nucleus and kinetoplast 

stained with DAPI and the right panel the phase-contrast image of the cell. The scale 

bar represents 15 microns. 
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The localisation of ESAG9-EQ in bsf EQ + cells is shown in Figure 4.25. The 

pattern of staining was similar to that of procyclic cells, with a diffuse signal through 

the cell and a gap where the nucleus was located. ESAG9-EQ protein may be in the 

cytoplasm in both bsf and pcf EQ + cells. However it is also possible that this signal 

is from the cell surface. The gap in signal where the nucleus is could be due to the 

DAPI, which is used to visualise DNA, quenching the signal from the FITC-

conjugated secondary antibody. This has been reported in other experiments (K.M., 

personal comment). To definitively determine whether ESAG9-EQ protein was 

internal or cell-surface located, confocal microscopy or electron microscopy would 

have been required, but this was not carried out as part of this project. 

 

4.5.3 ESAG9-K69 is sometimes seen in the flagellar pocket or surrounding the 
cell 

 

The location of Ty-tagged ESAG9-K69 protein in bsf K69, bsf EQ:K69 and bsf 

K9:K69 cells was also investigated. Bsf K69 +, bsf EQ:K69 + and bsf K9:K69 + 

cells were fixed and stained with BB2 antibody as described previously. In the bsf 

K69 + cells no fluorescent signal above the background was visible (data not shown). 

This may be because the expression of ESAG9-K69 protein in this cell line was quite 

low, as discussed in section 4.2.3. The bsf K9:K69 cell line ectopically expresses 

both un-tagged ESAG9-K9 protein, and Ty-tagged ESAG9-K69 that is recognised by 

the BB2 antibody. In this cell line, a signal from BB2 was seen from the flagellar 

pocket in some cells, and an example of such a staining is shown in Figure 4.26. A 

‘dotty’ pattern of staining was also seen on the slide surrounding the fixed cells (see 

Figure 4.27). This was indicative of some of the ESAG9-K69 protein being released 

by the cells, consistent with the immunoprecipitation data shown in section 4.3.3. A 

signal from the flagellar pocket or from around the cells on the slide was not seen 

when bsf K9+ cells were immunofluorescently stained with the ESAG9-K9 anti-

peptide antibody (data not shown). However, when stumpy T. b. brucei EATRO 
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2340 cells were stained with the ESAG9-K9 anti-peptide antibody a signal was 

sometimes seen from the flagellar pocket (refer to Chapter 3 Figure 3.5).  

 

 

Figure 4.27: The location of K69 protein in bloodstream form K9:K69 cells. Bsf K9:K69 

+ cells were fixed and stained with BB2 antibody which recognises the Ty-tagged ESAG9-

K69 protein (middle panel) but does not recognise un-tagged K9 protein. A faint signal is 

seen at the cell body and in some cells a signal is also seen at the flagellar pocket (as 

indicated by white arrows). There was also BB2 antibody adhered to the slide, as indicated 

by the dotty staining surrounding the cells. This was an indication that ESAG9-K69 protein 

was possibly being secreted and supports the immunoprecipitation analysis. The left panel 

shows the nuclei and kinetoplasts of the cells stained with DAPI, and the right panel is a 

phase-contrast image of the cells. The scale bar represents 50 microns. 

 

Figure 4.26: The location of ESAG9-K69 protein in a bloodstream form cell. Bsf K9:K69 

+ cells were fixed and stained with BB2 antibody which recognises the Ty-tagged ESAG9-

K69 protein (middle panel) but does not recognise un-tagged K9 protein. A faint signal is 

seen from the cell body and a stronger signal from the flagellar pocket. The left panel shows 

the nuclei and kinetoplast stained with DAPI, and the right panel is a phase-contrast image 

of the cell. The scale bar represents 15 microns. 
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The ESAG9-K69 antibody was also utilised in immunofluorescent assays to explore 

the localisation of the protein in the stumpy cells. No signal was seen for the protein, 

which could have been because the protein was being shed, or it alternatively it could 

have been because the ESAG9-K69 anti-peptide antibody was not effective for 

immunofluorescence. This was not explored any further due to time constraints. 

In conclusion, from the immunofluorescence assays discussed in this section, the 

distribution of different ESAG9 proteins seems to differ in the cell. ESAG9-K9 was 

associated with the endoplasmic reticulum, ESAG9-EQ was cytosolic or at the cell 

surface, and ESAG9-K69 was released from the cell, at least when expressed 

concurrently with another ESAG9 (ESAG9-K9 or ESAG9-EQ). 

 

4.6 Analysis of post-translational modification of ESAG9 proteins 

 

4.6.1 N-glycosylation of ESAG9 proteins 

 
As discussed in Chapter 3, Section 3.2.6, the ESAG9 gene family appears to bear 

some resemblance to the mucin and MASP families of proteins in the related parasite 

Trypanosoma cruzi. These proteins are extensively post-translationally modified by 

addition of N-glycan chains to the peptides. Bioinformatic analysis using an online 

prediction tool (NetNGlyc, see Chapter 3 section 3.2.8.2) revealed potential sites for 

N-glycosylation in many of the ESAG9 protein sequences (a schematic diagram of 

the locations of potential N-glycosylation sites in the peptide sequences is shown in 

Chapter 3 Figure 3.13). 

Therefore the question of whether the ESAG9 proteins expressed by transgenic cells 

were N-glycosylated was addressed using a simple assay. The enzyme Peptide N-

Glycosidase F (PNGaseF) cleaves N-glycans from proteins and is available from 

New England Biosciences as a kit. To investigate this potential modification, bsf K9, 

bsf K69 and bsf EQ cells were induced by addition of 2µg/ml tetracycline. After 48 

hours the parasites were harvested and the cell pellet resuspended in a Glycoprotein 

Denaturing Buffer. Samples were boiled for ten minutes then split into two aliquots 
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and incubated for one hour at 37°C either with or without the addition of PNGaseF 

enzyme. The samples were then analysed by Western blotting with either the 

ESAG9-K9 anti-peptide antibody or the BB2 antibody, as required.  

The ESAG9-K9 protein ran at a lower size after incubation with PNGaseF enzyme, 

as shown in Figure 4.28. The decrease in size was approximately 4 kDa. Also, the 

ESAG9-K69 protein ran approximately 2kDa lower after treatment with PNGase F. 

However the ESAG9-EQ protein did not show a band-shift after enzyme treatment. 

This indicates that whilst the ESAG9-K9 and ESAG9-K69 proteins were N-

glycosylated, ESAG9-EQ was not.  

Bioinformatic analyses had revealed 3 potential sites for N-glycosylation in the 

ESAG9-K9 protein sequence, 2 sites for N-glycosylation in ESAG9-K69 and one 

potential site in ESAG9-EQ. When VSG221 receives one glycan chain, it increased 

in size from 53 kDa to 54.5 kDa and when it receives two glycan chains, it increased 

in size from 53 kDa to 57 kDa (Jones et al., 2005). Another ESAG protein, ESAG7, 

has three potential sites of N-glycosylation (Schell et al., 1991b), and treatment with 

PNGase F resulted in a band shift of approximately 5 kDa (Salmon et al., 1994). 

Although approximate, the size of the band-shifts of ESAG9 proteins therefore 

suggests that ESAG9-K9 may be glycosylated at two of its 3 potential glycosylation 

sites and ESAG9-K69 may be glycosylated at one of its two potential glycosylation 

sites. 
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Figure 4.28: N-glycosylation of ESAG9 proteins. Bloodstream form cells expressing 

either ESAG9-EQ, -K9, or -K69 protein were subjected to enzymatic digestion with 

PNGaseF which cleaves N-glycans. ‘+tet’ indicates cell lysate from cells induced for protein 

expression; ‘-tet’ indicates uninduced cells; ‘+PNGaseF’ cell lysate was incubated with the 

enzyme for one hour at 37°C; and ‘-PNGaseF’ was incubated in the enzyme buffers for one 

hour at 37°C without the addition of the enzyme. Western blotting with BB2 antibody 

indicated that all cell lines showed inducible expression of the Ty-tagged protein. ESAG9-

EQ protein did not change size as a result of PNGaseF treatment, whereas ESAG9-K9 

protein changed size by approximately 4 kDa, and ESAG9-K69 by 2 kDa, indicating that 

both these proteins were N-glycosylated. Size markers are in kilo Daltons. 
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4.6.2 GPI-anchor addition to ESAG9 proteins 

 

Bioinformatic analyses revealed the potential for addition of GPI anchors to ESAG9 

proteins (see Chapter 3, section 3.2.8.1). Three different online tools were used to 

predict GPI anchor addition and all the ESAG9 proteins were predicted by at least 

one of them to have a GPI anchor. The most likely candidates were Tb09.v1.0330 

and ESAG9-EQ as these were predicted to have an anchor by all three programmes. 

The usual function of a GPI anchor would be to anchor a protein to the plasma 

membrane of the cell, as is the case for T. brucei surface proteins such as VSG 

(Ferguson et al., 1985a). Immunofluorescent staining of transgenic cells expressing 

ESAG9-K9, ESAG9-K69 or both proteins concurrently did not reveal any staining of 

the cell surface.  Work by the Bangs lab has shown that there is an alternative fate for 

reporter proteins with only one GPI anchor. Specifically, procyclin was ectopically 

expressed as a transgenic protein in bloodstream form cells, and this resulted in the 

addition of a single bloodstream form GPI anchor to the protein and its subsequent 

release into the medium (Schwartz et al., 2005). The location of ESAG9-EQ in 

transgenic bsf EQ cells was not definitively characterised, but it is possible that the 

protein was at the cell surface. 

Bloodstream form cells ectopically expressing either ESAG9-K9 or ESAG9-EQ 

were subjected to a hypotonic lysis assay to explore whether they were GPI 

anchored. This assay utilises the endogenously expressed GPI-PLC enzyme to cleave 

any GPI anchors in lysed cells, resulting in proteins that were GPI anchored being 

released into the supernatant, and those which were not anchored remaining in the 

cell pellet after centrifugation. This assay was not carried out with bloodstream form 

cells expressing ESAG9-K69 because the level of protein that was cell-associated in 

this cell line was insufficient. Transgenic bloodstream form cells were induced for 

expression of either ESAG9-K9 or ESAG9-EQ by addition of 2µg/ml tetracycline 

and the cells harvested by centrifugation after 48 hours and washed in ice-cold VPBS 

(Voorheis-modified PBS, for recipe see Materials and Methods). The cell pellets 
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were then resuspended in 100µl of pre-warmed hypotonic lysis buffer and incubated 

at 37°C to allow the GPI-PLC enzyme to act. Cells expressing ESAG9-K9 were 

incubated for 0, 5 and 10 minutes at 37°C as a range-finding experiment. Cells 

expressing ESAG9-EQ were only incubated for 5 minutes as this turned out to be the 

optimal length of time for incubation. 

The samples were analysed by Western blotting and probed with either the ESAG9-

K9 anti-peptide antibody, or the BB2 antibody in the case of ESAG9-EQ. The results 

are shown in Figure 4.29. In the case of ESAG9-K9 (panel A) there was a band of 

the correct size for the protein in only the pellet fraction (P) for the three incubation 

times used. The protein was not released into the supernatant, which suggested that 

the protein was not GPI anchored. In the case of ESAG9-EQ (panel C) there was a 

strong signal for the protein from the supernatant (S) as well as the pellet fractions, 

which suggests that this ESAG9 protein was GPI anchored and was being cleaved by 

the action of endogenous GPI-PLC enzyme. VSG was used as a positive control in 

both of these experiments. In both cases there was a signal from the VSG-221 

antibody (which detects the VSG expressed by these cell lines) from the supernatant 

as well as the pellet, indicating that GPI-PLC activity was intact in both of these 

experiments.  

The experiment was also repeated to see whether the ESAG9-K9 protein was GPI-

anchored in WT stumpy-form T. b. brucei strain EATRO 2340 cells (Figure 4.29 

panel B). Again the ESAG9-K9 localised to the pellet fraction after five minutes 

incubation at 37°C and there was no indication of cleavage by GPI-PLC. 

Unfortunately it was not possible to run a positive control for VSG in this instance 

because it was not known which VSG gene the T. b. brucei EATRO cells were 

expressing. 
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Figure 4.29: Hypotonic lysis experiments with transgenic bsf K9 and bsf EQ 

cells and pleiomorphic T. b. brucei EATRO 2340 cells. Cells were lysed with 

hypotonic lysis buffer and incubated at 37°C for 0, 5 and 10 minutes in the case of bsf 

K9 cells (panel A), or just for 5 minutes for the pleiomorphic T. b. brucei EATRO 2340 

cells (panel B) or bsf EQ cells (panel C). Panel A shows a Western blot with the 

ESAG9-K9 antipeptide antibody (top), a Western blot with VSG-221 antibody (middle) 

and a coomassie stained gel (bottom). Panel B shows a Western blot with the 

ESAG9-K9 antibody (top) and a coomassie stained gel, but it was not possible to do a 

Western with an antibody against VSG as it was not known which VSG the T. b. 

brucei EATRO 2340 cells were expressing. Panel C shows a Western blot with BB2 

antibody (top), and a Western blot with VSG-221 antibody (bottom). In this instance, 

there was proteolytic degradation of the VSG occurring, which explains the presence 

of multiple bands. Size markers indicated are in kilo Daltons.  
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To explore whether ESAG9-K69 protein was GPI anchored, two different techniques 

were employed. The first technique involved radioactively labelling cells with 

tritiated myristate. The triated myristate is incorporated into any newly synthesised 

GPI anchors, and hence GPI-anchored proteins can be detected as they become 

radioactively labelled.  

Two cell types were used for this assay: bsf K9:K69 and bsf EQ. The bsf EQ cells 

were included as a positive control because the ESAG9-EQ protein is thought to be 

GPI anchored (see Figure 4.29). Cells were induced by addition of 2µg/ml 

tetracycline, harvested after 48 hours, and equilibrated in fatty-acid free medium 

(modified RPMI medium, see Buxbaum et al., 1994) for 30 minutes. A radioactive 

‘pulse’ of 80 microcuries of triated myristate was then added and the cells incubated 

at 37°C for three hours. The cells were harvested by centrifugation, and both the cells 

and the conditioned medium subjected to immunoprecipitation to pull down the Ty-

tagged protein (ESAG9-EQ protein from bsf EQ cells or medium, and ESAG9-K69 

protein from bsf K9:K69 cells or medium), as previously described. The IPs were 

resolved on an SDS-PAGE gel and the gel dried and exposed to an autoradiography 

film for 5 weeks in a -80°C freezer.  

Unfortunately no signals were seen from the cell or medium IPs from either the bsf 

EQ or the bsf K9:K69 samples (data not shown). This negative result had two 

potential explanations. Either the quantity of radioactive myristate used was 

insufficient to get a signal, or neither the ESAG9-EQ or ESAG9-K69 proteins were 

GPI-anchored. It was not possible to distinguish between these outcomes. 

 

It was not known by what precise mechanism the ESAG9-K69 protein exits the cell 

in bsf K9:K69 cells. If the ESAG9-K69 protein was GPI-anchored then one possible 

pathway involved trafficking of the protein to the cell surface, followed by cleavage 

of the GPI anchor by endogenous GPI-PLC enzyme, which would release the protein 

from the cell. Cleavage of a bloodstream form GPI anchor from a protein reveals a 

domain called the Cross Reacting Domain (CRD), which is recognised by the anti-
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CRD antibody (Cardoso de Almeida & Turner, 1983). Therefore Western blot 

analysis was used to determine whether the ESAG9-K69 protein, which was pulled 

out of conditioned medium by IP, cross-reacted with the anti-CRD antibody. 

The Western analysis is shown in Figure 4.30. No signal was seen in the ESAG9-

K69 IP lane with the anti-CRD antibody. Therefore the ESAG9-K69 protein was not 

having a GPI anchor cleaved when it exited the cell. This did not rule out the 

possibility, however, that the ESAG9-K69 protein had a GPI anchor that was not 

cleaved.  

To confirm that the anti-CRD antibody was working, it was also used in Western 

analysis of the bsf EQ GPI hypotonic lysis experiment previously discussed in 

section 4.5.2. Multiple bands were seen in the supernatant (S) fraction, also shown in 

Figure 4.30, with the very strong signal likely to be representing cleavage of VSG 

protein. This confirmed that the anti-CRD antibody was recognising proteins from 

which the GPI anchor had been cleaved.  

Figure 4.30: Determining presence of proteins from which a GPI anchor has 

been cleaved using the α-CRD antibody. The α-CRD antibody was cross-reacted 

against a bsf K9:K69 conditioned media IP (left hand panel). However no signal was 

seen from the IP in the absence of blocking peptide, indicating that the IP had not 

specifically selected any protein with a cross-reacting domain. To confirm that the α-

CRD worked, it was also reacted against a Western blot of the bsf EQ hypotonic 

lysis experiment (refer to Figure 4.29, panel C), shown in the right-hand panel. 

There were multiple bands in the supernatant fraction (S) which confirmed that the 

antibody worked. Size markers indicated are in kilo Daltons. 
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4.7 Summary 

 

In this chapter, transgenic cell lines and anti-peptide antibodies were used in 

combination with various techniques to attempt to resolve the sub-cellular 

localisation and the post-translational modifications of three ESAG9 proteins. The 

findings are summarised in Table 4.2. 

ESAG9-K9 protein was found to be located to the endoplasmic reticulum, and is N-

glycosylated. It was not shed from bloodstream form cells, nor did it appear to have a 

GPI anchor. The endoplasmic reticulum is the site of addition of the N-glycans 

(Shental-Bechor & Levy, 2008), so it is possible that once the protein is 

glycosylated, the transgenic cell lines then for some reason fail to properly traffic the 

ectopic ESAG9-K9 protein to its final destination. 

ESAG9-EQ protein is located either in the cytoplasm or at the cell surface. An 

immunoprecipitation (IP) using BB2 antibody and conditioned medium from bsf 

EQ:K69 cells resulted in a signal for a Ty-tagged protein. This could have been 

either the ESAG9-EQ protein or the ESAG9-K69 protein although the size that the 

protein migrated at was indicative of it being ESAG9-EQ. ESAG9-EQ protein is 

GPI-anchored, as shown by a hypotonic lysis experiment. It is not N-glycosylated. 

ESAG9-K69 protein was shed by both transgenic bsf K9:K69 cells and by T. b. 

brucei EATRO 2340 stumpy cells (and possibly by bsf EQ:K69 cells, see previous 

paragraph). Immunofluorescent staining of bsf K9:K69 cells revealed that some cells 

had a signal from the flagellar pocket, and also that there was a dotty pattern of 

staining on the slides which could be secreted protein. ESAG9-K69 protein showed a 

small band-shift upon treatment with PNGase F enzyme, indicating that it is N-

glycosylated, and probably only at one out of two possible sites predicted 

bioinformatically. 

It was not possible to determine whether or not ESAG9-K69 protein was GPI-

anchored, for the reasons described in section 4.6.2. 
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The different sizes that ESAG9-K69 migrated at in SDS-PAGE gels was somewhat 

perplexing. In the bsf K69 cell line, which ectopically expresses ESAG9-K69 protein 

alone, the protein ran at 50 kDa (see Figure 4.9). When the ESAG9-K69 protein was 

expressed concurrently with either ESAG9-K9 or ESAG9-EQ, the ESAG9-K69 

protein ran at approximately 40 kDa (see Figures 4.10 and 4.11). An anti-peptide 

antibody was raised against ESAG9-K69 and reacted against stumpy cell lysate and 

stumpy-conditioned medium (see Figure 4.20). In the cell lysate, single bands were 

detected at approximately 25 kDa and 50 kDa. In the stumpy-conditioned medium, 

double bands were seen at 25 kDa and 50 kDa. The different sizes of the ESAG9-

K69 protein could be the result of dimerisation or post-translational modification. 

However N-glycosylation is probably not solely responsible for the different sizes of 

the proteins; treatment of ectopically-expressed ESAG9-K69 protein with PNGase F 

only resulted in a small change in size of the protein. 

Table 4.2: Summary of findings regarding the characterisation of three ESAG9 

proteins. The properties of three ESAG9 proteins, ESAG9-K9, ESAG9-EQ and 

ESAG9-K69, were investigated by generating transgenic cell lines that ectopically 

expressed one or more of these proteins. These cell lines were then used in assays to 

determine the occurrence of post-translational modifications and the localisation of the 

proteins. 
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Chapter 5 : Functional analysis of the role of ESAG9 proteins 

in the early colonisation of the tsetse fly midgut: in vitro 

and in vivo experiments 

 

5.1 Introduction 

 

Bloodstream stumpy forms are taken up in the tsetse fly bloodmeal, and upon entry 

into the fly mid-gut, receive signals that cause them to differentiate to the next life 

cycle stage, the procyclic form. Procyclic forms do not have the protective VSG coat, 

which is lost during the first 4 to 6 hours by pleiomorphic differentiating parasites 

(Roditi et al., 1989; Ziegelbauer et al., 1990), and therefore are susceptible to any 

mammalian immune factors that remain in the digesting blood meal.  

Due to the unusual expression profile of ESAG9-K9 protein, whereby the protein is 

expressed in the early stages of differentiation from stumpy forms to procyclic forms 

in vitro (see Chapter 3 Figure 3.5), we hypothesised that the protein could have a 

function in the early colonisation of the tsetse fly midgut. For example, it may 

protect the parasites in some way from complement present in the blood meal or the 

fly innate immune system. 

There is not, to date, any published material regarding the activity of the mammalian 

immune response in the tsetse fly mid-gut. However, in mosquitoes, the alternative 

pathway of complement present in rats’ blood remains active in the mid-gut for up to 

six hours post-feed (Margos et al., 2001). The tsetse fly innate immune system also 

responds to trypanosome infection, involving the secretion of, for example, 

antimicrobial peptides (Hu & Aksoy, 2006). 

 

To test the potential functions of ESAG9, a number of approaches were used. In 

particular, an alamarBlue assay was used which allowed parasite growth or survival 

to be monitored, such that the ability of ESAG9 proteins to protect the parasites 
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against lysis by mammalian sera could be assessed. Procyclic form parasites were 

used in these experiments, which are usually lysed by the complement in mammalian 

serum. AlamarBlue is a redox reagent that undergoes a change in redox potential as 

the nutrients in the parasite culture medium are depleted. The percent reduction of 

the alamarBlue can be calculated from the absorption at 540 and 595nm, allowing 

quantitative data to be obtained from a microplate reader. The difference in redox 

potential can also be observed by the naked eye, as seen in Figure 5.1, which shows 

an assay in which procyclic cells have been incubated in medium containing 

alamarBlue for 1 hour and 24 hours at 27°C. 

As a second approach, in vivo experiments with tsetse flies were carried out 

whereupon flies were fed blood containing procyclic or bloodstream form transgenic 

trypanosomes, induced or not induced for ESAG9 protein expression. In these 

experiments, both microscopy and quantitative PCR were used to attempt to quantify 

parasite numbers, but with limited success, as will be discussed. 

 

 

 

 

Figure 5.1: Procyclic form parasites 
growing in AlamarBlue over a period of 24 

hours. Parasites were grown in a 96-well plate 

and the plate photographed at one and 24 

hours. Row A shows procyclic form parasites 

grown in normal media with 10% AlamarBlue. 

The colour change from blue to pink indicates 

that the parasites have grown during a 24 hour 

incubation at 27°C. Row B shows media and 

AlamarBlue with no parasites present and 

there is no colour change after 24 hours. 

A

B

0h 24h
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5.2 ESAG9-K9 protein expression by procyclic form cells in vitro 
does not protect them from lysis by complement in sera from a 
range of different mammals 

Transgenic procyclic parasites, engineered to express ESAG9-K9 protein under 

tetracycline induction (pcf K9 cells), were exposed to serial dilutions of various 

mammalian sera. Guinea Pig Serum (GPS) was used due to its known high 

concentration of active complement. Horse and Bovine sera were also utilised. It has 

been hypothesised by Bitter et al. (1998) and Pays et al. (2001) that a function of 

ESAGs may be to enhance the ability of African trypanosomes to survive in a range 

of mammalian hosts. It was possible that the expression of different ESAG9 proteins 

could protect parasites in the fly gut from complement from different mammals. 

The mechanism of parasite killing by the serum can be determined by incubating 

procyclic form parasites in serum in the presence and absence of EDTA (data not 

shown). This chelates divalent cations, thereby inhibiting the alternative pathway of 

complement, which requires magnesium ions (Mg2+) for its activity. Confirming this, 

microscopic observation revealed that parasite lysis by guinea pig serum was 

inhibited by the presence of 0.1M EDTA, indicating that the alternative pathway of 

complement was responsible for lysis rather than any other factors of the immune 

system. The classical pathway of complement, part of the adaptive immune response, 

would also be inhibited by the presence of EDTA, but this could not be responsible 

for lysis since the animals used for the sera were never exposed to African 

trypanosomes (the bovine and horse sera were sourced from New Zealand). 

Importantly, the sera used in these assays were never freeze-thawed more than once 

to ensure that the complement retained activity. 

Further controls for theses assays involved exposing the parasites to guinea pig, 

bovine, and horse serum that had been heat-inactived by incubation at 57°C for 30 

minutes, or to heat-inactivated Foetal Bovine Serum sourced from Gibco (HI-FCS). 

Figure 5.2 shows an example of a 96-well plate used for this type of assay with 

procyclic form parasites growing in serial dilutions of GPS. Figure 5.3 represents 

graphically the reduction of alamarBlue by pcf K9+ (induced) and pcf K9- 

(uninduced) parasites, when grown for 24 hours in GPS. These data show that there 
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was no difference in growth between the induced and uninduced parasites, as assayed 

by the percentage reduction of alamarBlue, in either GPS, heat-inactivated GPS, or 

HI-FCS. The parasites grew most effectively in FCS, probably because they are 

culture-adapted to grow in this serum.  

 

 

 

  

Figure 5.2: An alamarBlue assay with procyclic form parasites growing in 
serial dilutions of Guinea Pig Serum. Column 1 is a positive control with no 

guinea pig serum (GPS) present, and columns 2 to 6 are decreasing concentrations 

of GPS. Column 2 is 20% GPS and columns 3 to 6 are serial 1:2 dilutions. Rows A 

are procyclic forms induced for expression of ESAG9-K9; rows B are the uninduced 

controls, and row C is blank wells without (columns 1-3) and with (columns 4-6) 

alamarBlue. The pink wells are those in which the trypanosomes have grown the 

most after 24 hours incubation at 27°C. 
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Figure 5.3: Growth of procyclic cells expressing ESAG9-K9 in guinea pig 

serum. Procyclic cells induced (+ tet; dashed line) and uninduced (-tet; solid 

line) for ESAG9-K9 protein expression were grown for 24 hours in either 10% 

active guinea pig serum (GPS; red); 10% heat inactivated GPS (GPS_HI; blue) 

or 10% heat-inactivated FCS (FCS_HI; black). Each point represents the mean 

of three wells and the error bars are the standard deviations from the means. 
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Figure 5.4 shows similar results for the growth of parasites in active bovine serum, 

heat-inactivated bovine serum, and heat-inactivated foetal calf serum. Parasite 

growth was not fully inhibited by active bovine serum. This could be because the 

bovine serum contained a low quantity or activity of complement. Another point to 

note is that the pcf K9+ grew less than the pcf K9- parasites when exposed to the 

active serum. However this is unlikely to be an important effect as it was not 

reproduced in other assays, and variability between wells was observed (as 

represented by the error bars which are the standard deviations from the mean). 

Figure 5.5 shows the growth of pcf K9+ and pcf K9- parasites in active and heat-

inactivated horse serum, and in heat-inactivated foetal calf serum. Interestingly, in 

this case, the parasites grew faster in the heat-inactivated horse serum than in the 

heat-inactivated foetal calf serum during the first five hours of the assay, as indicated 

by a greater reduction of alamarBlue over time. Again, the pcf K9+ parasites did not 

survive better than the pcf K9- parasites.  

Hence, in these assays the ectopic expression of ESAG9-K9 protein did not favour 

survival or growth of procyclic form parasites in active guinea pig, horse, or bovine 

serum. 

 

 

Figure 5.4: Growth of procyclic cells expressing ESAG9-K9 in bovine serum. 

Procyclic cells induced (+ tet; dashed line) and uninduced (-tet; solid line) for ESAG9-K9 

protein expression were grown for 24 hours in either 10% active bovine serum (BS; red); 

10% heat inactivated bovine serum (BS_HI; blue) or 10% heat-inactivated FCS (FCS_HI; 

black). Each point represents the mean of three wells and the error bars are the standard 

deviations from the means. 
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5.3 ESAG9-EQ protein expression by procyclic form cells does not 
protect them from lysis by complement in guinea pig serum 

 

ESAG9-EQ expression has also been shown to be regulated in a stage-specific 

manner. Like ESAG9-K9, its mRNA was up-regulated in stumpy form parasites, as 

shown by Northern blotting (see Chapter 3, Figure 3.2). This version of ESAG9 is 

named EQ because it is the most similar ESAG9 in the T. b. brucei genome database 

to the ESAG9 gene that was originally identified in Trypanosoma equiperdum 

(Florent et al., 1991).   

Since there was no antibody available against ESAG9-EQ, it was not possible to 

confirm that the protein is expressed in a stage-specific manner. However, it was 

assumed that this was likely to be the case. In order to test whether this protein 

protects cells from lysis by the complement present in guinea pig serum, pcf EQ 

Figure 5.5: Growth of procyclic cells expressing ESAG9-K9 in horse serum. 

Procyclic cells induced (+ tet; dashed line) and uninduced (-tet; solid line) for ESAG9-K9 

protein expression were grown for 24 hours in either 10% active horse serum (HS; red); 

10% heat in-activated horse serum (HS_HI; blue) or 10% heat-inactivated FCS (FCS_HI; 

black). Each point represents the mean of three wells and the error bars are the standard 

deviations from the means. 
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parasites were exposed to GPS and their growth monitored by the alamarBlue 

colorimetric assay as detailed in Section 5.2.  

As was the case for ESAG9-K9, it was found that the ectopic expression of ESAG9-

EQ protein by procyclic form cells did not increase their survival in GPS (Figure 

5.6). The relative growth of the uninduced and induced pcf EQ parasites was the 

same in the active serum, the heat-inactivated GPS, and in the heat-inactivated FCS. 

This demonstrated that the expression of ESAG9-EQ protein did not confer 

complement resistance on procyclic form parasites. 

 

 

 

 

 

Figure 5.6: Growth in guinea pig serum of procyclic cells expressing ESAG9-EQ. 
Procyclic cells induced (+ tet; dashed line) and uninduced (-tet; solid line) for ESAG9-EQ 

protein expression were grown for 8 hours in either 10% active guinea pig serum (GPS; 

red), 10% heat inactivated guinea pig serum (GPS_HI; blue), or 10% heat-inactivated 

FCS (FCS_HI; black). Each point represents the mean of three wells and the error bars 

are the standard deviations from the mean. 
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5.4 ESAG9-K69 protein secreted from bloodstream form cells does 

not protect procyclic cells from lysis by complement in guinea pig 
serum 

 

The transgenic bloodstream form cell line (called bsf K9:K69) that expresses both 

ESAG9-K9 and ESAG9-K69 proteins simultaneously has been shown to secrete 

ESAG9-K69 protein into the culture medium (see Chapter 4 Figure 4.15). This led us 

to hypothesise that, in an in vivo situation, pleiomorphic stumpy form cells could be 

secreting ESAG9-K69 whilst they are differentiating to procyclic forms in the tsetse 

fly mid-gut. A potential function of the secreted protein could be to inhibit the action 

of, for example, blood meal complement. This seems a more likely scenario than a 

protein which is intracellular having an inhibitory effect, since complement, unlike 

trypanosome lytic factor (see Introduction section 1.5.4.2), operates at the cell 

surface.  

Given that bloodstream forms are not, due to their VSG coat, susceptible to lysis via 

the membrane attack complex, we used procyclic form cells to assay the potential 

function of the secreted ESAG9-K69 protein. Bloodstream form K9:K69 cells, 

induced or uninduced for the simultaneous expression of ESAG9-K9 and ESAG9-

K69 protein, were grown in HMI-9 medium for 48 hours and the conditioned 

medium was then isolated. Procyclic form 427-449 cells (which do not express any 

ESAG9 proteins) were then exposed to: active GPS, heat-inactivated GPS, or heat-

inactivated FCS, in the presence of the conditioned medium from induced or 

uninduced K9:K69 bsf cells. Haemin at a concentration of 0.1% was also included in 

the assay because procyclic form cells tend to clump in the absence of this 

supplement. 

Figure 5.7 shows that the growth of procyclic cells was inhibited by the presence of 

10% GPS whether they were incubated with conditioned medium from induced or 

uninduced bsf K9:K69 cells, as assayed by the percentage reduction of alamarBlue. 

In the control assays using either 10% heat-inactivated GPS or 10% heat-inactivated 
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FCS, the procyclic cells grew to the same extent whether they were incubated with 

conditioned medium from induced or uninduced cells.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In case the presence of conditioned medium would only have an effect at lower 

concentrations of GPS, a range of serial dilutions of GPS were assayed, represented 

in Figure 5.8. At all of the concentrations of GPS the procyclic form cells grew to a 

similar degree whether they were in conditioned medium from induced or uninduced 

bloodstream form parasites. In these assays, reduction in alamarBlue was followed 

over a 24-hour time course using a Biotek® plate reader and integrated 

Gen5software. 

Figure 5.7: Growth of procyclic cells in guinea pig serum and conditioned media 

from induced or uninduced bsf K9:K69 cells. Procyclic cells (427-449 cells) were 

grown for 24 hours in 10% v/v of either active guinea pig serum (GPS; red); heat in-

activated guinea pig serum (GPS_HI; in blue) or heat-inactivated FCS (in black). 

Growth in conditioned media isolated from bsf K9:K69 cells induced (+tet; dashed 

line) or uninduced (-tet; solid line) for expression ESAG9-K69 and ESAG9-K9 was 

assayed. Each point represents the mean of three wells and the error bars are the 

standard deviations from the means. 
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Figure 5.8: Growth of procyclic cells in bloodsteam form conditioned media and 

serial dilutions of guinea pig serum. Procyclic cells were grown for 24 hours in serial 

dilutions of active guinea pig serum, the highest being 10% v/v (pale blue), and the lowest 

being 1.25% v/v (orange). Growth in conditioned media isolated from bsf K9:K69 cells 

induced (+tet; dashed line) or uninduced (-tet; solid line) for expression of ESAG9-K69 

and ESAG9-K9 was assayed. Each point represents the mean of three wells and the error 

bars are the standard deviations from the means. 
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5.5 Analysis of the tsetse infection efficiency of bloodstream form 
parasites expressing ESAG9-K9 protein 

 

The assays described in sections 5.2 to 5.4 show that ESAG9 proteins do not protect 

procyclic cells from lysis by complement under the in vitro conditions used.  

However there are other factors that are responsible for parasite death in the tsetse fly 

midgut. These include antimicrobial peptides secreted in response to invasion (Hu 

and Aksoy 2006) and lectins (Chandra et al., 2004), as discussed in the Chapter 1 

section 1.5.5. Rather than design in vitro assays to test all these factors, it was 

possible to look directly at the in vivo situation by feeding tsetse flies on horses’ 

blood which is supplemented with cultured trypanosomes. Tetracycline can be 

included in this blood meal to induce the expression of ESAG9 protein in transgenic 

cells whilst they are in the fly mid-gut. This technique of induction of expression has 

been verified by Peacock et al. (Peacock et al., 2005). The experiment in summarised 

in a flow chart, depicted in Figure 5.9. 

 

 

 

 

 

 

 

 

 

Figure 5.9: Schematic diagram of experimental infections of tsetse flies with cultured 

trypanosomes. Bloodstream or procyclic form transgenic (either bsf K9 or bsf EQ cell lines) 

or wild-type cells were cultured in the presence or absence of tetracycline, then added to the 

tsetse fly bloodmeal. Thereafter, the tsetse flies were dissected between 24 hours and 7 days 

post-blood meal and the mid-gut examined microscopically for the presence of trypanosomes. 
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Tsetse flies were fed (i) horse blood containing wild-type (427-449) bloodstream 

form cells with tetracycline, (ii) transgenic parasites induced with tetracycline to 

ectopically express one version of ESAG9, or (iii) uninduced transgenic parasites 

with no tetracycline. The addition of the tetracycline to the blood feed with wild-type 

cells was an important control because the tetracycline could potentially affect the 

population of symbiotic micro-organisms in the tsetse fly mid-gut. These in turn have 

been shown to be involved in the refractoriness of tsetse flies to trypanosome 

infection (Dale & Welburn, 2001; Moloo et al., 1998). However, the concentration of 

tetracycline that we used, 25µg/ml, has been shown to have no effect on the 

longevity of tsetse flies (Peacock et al., 2005). 

Dissections were carried out after either 24 hours or 72 hours. These time points 

were chosen in order to balance, on the one hand, the fact that in differentiating 

stumpy forms the ESAG9-K9 protein is only expressed for a few hours (see Chapter 

3 Figure 3.5) and so is likely to function early on in the colonisation of the fly mid-

gut and, on the other hand, the need to allow the parasites sufficient time to establish 

an infection so that their numbers could be quantified. The standard method used for 

quantifying tsetse fly infections by other investigators involves the scoring of the 

mid-gut infection as being ‘heavy’, ‘intermediumte’, ‘weak’, or ‘negative’ (for 

example:(Liniger et al., 2004; Vassella et al., 2009)). This seems subjective and so 

we decided to attempt to assess the infections in a more quantitative fashion by 

parasite counting.  

In general, the level of infection that could be achieved in the tsetse fly mid-guts was 

very low. The infection level was estimated by removing the fly gut and dicing it in a 

small volume of PBS, and then observing a drop of the material under a microscope. 

After counting how many parasites were visible, the number of parasites in the whole 

volume of the mid-gut was estimated, although often either none or only one parasite 

was visible.  

Figure 5.10 shows the detectable infection level in the flies 24 hours after feeding 

with horses’ blood containing pcf K9 or wild-type (427-449) parasites. The number 

of flies with a detectable infection was low (the highest being 4 positives out of a 

total of 18 flies in the bsf K9+ group). Lower infection levels were achieved in the 



 

 156 

flies fed with wild-type cells and those fed with bsf K9 – cells (uninduced for 

ESAG9-K9 expression). 

 

 

 

 

 

 

 

 

 

 

The experiment was also carried out over a 72 hour period with the same cell lines. 

Figure 5.11 shows the results of an experiment where between 13 and 17 flies were 

used in each group. Figure 5.12 shows the results of a lager scale experiment where 

between 27 and 30 flies were used in each group. Again the detectable infection level 

was low, although there was a larger number of flies with a positive infection than 

after 24 hours. In both these experiments (Figure 5.11, Figure 5.12), the bsf K9+ 

achieved the most intensive infection level in individual flies. However, in the larger 

scale experiment (Figure 5.12) it was the bsf K9- parasites that showed the highest 

proportion of flies with a detectable infection.  

Figure 5.10: Experimental infection of tsetse flies with transgenic or wild-type 

parasites over 24 hours. Either wild-type bloodstream form (bsf) cells with 

tetracycline (WT+), bsf cells induced for ectopic expression of ESAG9-K9 protein 

(K9+), or uninduced cells (K9-) were fed to flies. These flies were then dissected 

and the mid-guts excised after 24 hours. The number of parasites present in the 

midgut was counted and the counts grouped into: zero parasites (white), 1-49 

parasites per fly (pale grey), 50-99 parasites per gut (dark grey), or 100-199 

parasites per gut (black). 
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Figure 5.11: Experimental infection of tsetse flies with transgenic or wild-type 

parasites over 72 hours. Either wild-type bloodstream form (bsf) cells with 

tetracycline (WT+), bsf cells induced for ectopic expression of ESAG9-K9 protein 

(K9+), or uninduced cells (K9-) were fed to flies. These flies were then dissected and 

the mid-guts excised after 72 hours. The number of parasites present in the midgut 

was counted and the counts grouped into: zero parasites (white), 1-49 parasites per 

fly gut (pale grey), 50-99 parasites per gut (dark grey), or 100-199 parasites per gut 

(black). 
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Figure 5.12: Experimental infection of tsetse flies with transgenic or wild-type 

parasites over 72 hours; repeat experiment with larger number of flies. Either wild-

type bloodstream form (bsf) cells with tetracycline (WT+), bsf cells induced for ectopic 

expression of ESAG9-K9 protein (K9+), or uninduced cells (K9-) were fed to flies. These 

flies were then dissected and the mid-guts excised after 72 hours. The number of 

parasites present in the midgut was counted and the counts grouped into: zero 

parasites (white), 1-49 parasites per fly gut (pale grey), 50-99 parasites per gut (dark 

grey), or 100-199 parasites per gut (black). 
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5.6 Analysis of the tsetse infection efficiency of procyclic form 
parasites expressing ESAG9-EQ protein 

 

As discussed in section 5.3, ESAG9-EQ is another ESAG9 gene that is up-regulated 

in stumpy form parasites. ESAG9-EQ protein could therefore possibly have a role in 

the establishment of the parasite infection in the early colonisation of the tsetse fly 

midgut, though it is important to note that an antibody has not been raised against 

ESAG9-EQ so the protein expression profile has not been investigated in wild-type 

cells. The microscopic counting of bloodstream-form infections in tsetse flies had 

proved challenging so it was decided in these experiments to use pcf EQ parasites 

that are inducible for ectopic expression of ESAG9-EQ protein. Procyclic form 

parasites are more adapted to the midgut environment and so were expected to 

survive better and provide higher levels of infection for microscopic counting. 

Although using procyclic forms was unrealistic because these parasites would not 

normaly express ESAG9s, procyclic forms are still susceptible to the immune factors 

in the mammalian blood feed and, possibly, the antimicrobial factors produced by the 

tsetse fly.  

Teneral tsetse flies (those which are newly hatched and have not yet received a blood 

meal) were fed with blood containing (i) procyclic form parasites induced for ectopic 

expression of ESAG9-EQ, (ii) the same cell line but uninduced,  or (iii) wild-type 

parasites with tetracycline. The fly mid-guts were dissected and the numbers of 

parasites present were counted by microscopy 48 hours and seven days post-feed. 

The results of the first assay in which the flies were dissected after 48 hours are 

shown in Figure 5.13. Figure 5.13, panel A shows the percentage the tsetse flies in 

each group that showed a detectable level of parasite infection by microscopy. Figure 

5.13, panel B, shows the infection level in those flies that were positive for an 

infection. The graphical representation used is a box plot. The two boxes are the 

interquartile ranges, which contain twenty five percent of the values either side of the 

mediumn value. The bars represent the full spread of the data, with outliers 

represented by asterisks. These results indicated, unexpectedly, that those parasites 
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that were most effective at colonising the mid-gut of the flies were transgenic 

parasites that were not induced for ectopic ESAG9-EQ protein expression.  

A 

B 

Figure 5.13: Experimental infections with procyclic form wild-type and transgenic 

parasites. Flies were fed with blood containing either wild-type procyclic form parasites 

with tetracycline (WT or 427 +); transgenic procyclic form parasites induced for ectopic 

expression of ESAG9-EQ protein (EQ+); or uninduced parasites (EQ-). The midguts were 

dissected after 48 hours and the trypanosome infection level counted via microscopy. 

Panel A shows the percentage of infected flies in each group; the number of flies used for 

each group is indicated on the bars. Panel B shows the number of parasites per fly in 

those flies which were infected; the results are represented as a Box Plot where the boxes 

represent the two interquartile ranges either side of the median value, and the asterisks 

represent anomalous outliers. 

 N= 23                              N= 23                              N= 20 
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However, when this assay was repeated a quite different result was obtained. In this 

second experiment the parasite numbers were so low that they were scored only as 

‘positive’ or ‘negative’, without quantification of the level of infection. The 

percentage of flies in each group with a positive infection are shown in Figure 5.14, 

panel A. These results suggested that the expression of ESAG9-EQ protein was in 

fact having a detrimental affect on the parasites’ ability to colonise the tsetse midgut. 

Indeed, the wild-type cells achieved the highest number of infected tsetse flies 

whereas transgenic cells induced for expression of ESAG9-EQ protein achieved the 

lowest. There was obviously a great deal of variability in this assay so it was not 

possible to draw any firm conclusions from these data. 

The infection levels after seven days were also assayed in a separate experiment, as 

shown in Figure 5.14, panel B. Here, there was a 2-fold enhancement of the number 

of flies infected when ESAG9-EQ protein was being expressed, compared to the 

wild-type or uninduced infections. This could indicate that ESAG9-EQ protein was 

having a beneficial effect on the parasites ability to survive and grow in the tsetse fly 

mid-gut over the longer term. However this assay was not repeated, and if it had 

been, the results may have been different due to the overall variability of the assay. 

Moreover the role of ESAG9 genes is unlikely to involve the longer-term survival of 

parasites in the fly because the ESAG9 mRNA is not normally expressed by 

procyclic forms.  

It is hard to interpret the results from sections 5.5 and 5.6 with any great confidence. 

The method of detecting trypanosomes, by visualising down a microscope, is 

problematic. For example, the dissections and counting were performed concurrently 

by more than one person due to the time involved, and so different investigators may 

have had differing abilities to detect low level infections. Also, as fly guts were kept 

on ice for perhaps several hours whilst the counting was completed, it is possible that 

some death of the parasites would have occurred during this period, introducing 

another variable. So, although the results of these three experiments detailed in 

section 5.5 appear to show that the expression of ESAG9-K9 protein in the fly gut 

increased the ability of the parasites to colonise the gut, extreme caution should be 

used when attributing this as a function of ESAG9-K9 protein.  
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Figure 5.14: Percentage of flies infected after 48 hours and seven days post-

feed. In two separate experiments, flies were fed with either wild-type procyclic 

form cells with tetracycline (WT); transgenic procyclic form cells induced for 

ectopic expression of ESAG9-EQ protein (EQ+); or uninduced cells (EQ-). In the 

first experiment, the mid-guts were excised after 48 hours (panel A) and the 

number of infected flies were scored, and in the second the mid-guts were 

excised after seven days (panel B). The number of flies used in each group for 

each experiment is indicated. 

A 

B 

N= 26                         N= 23                           N= 27 

N= 33                         N= 29                           N= 31 
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5.7 Quantitative Real-Time PCR as a method to quantify low-level 
trypanosome infections in tsetse fly midguts 

In a bid to find a way to reliably quantify the infection level of trypanosomes in 

tsetse fly mid-guts, we decided to test quantitative PCR.  

Quantitative PCR (qPCR) involves a real-time PCR reaction where a gene is 

amplified and a fluorescent probe incorporated into the amplicon (in the assays to be 

described TaqMan® probes were used). The fluorescence is measured during the 

reaction and, by comparing to known standards, the number of genomes present in 

the sample can be extrapolated. This method is increasingly being used in 

parasitology (Zarlenga & Higgins, 2001), and has been used to accurately quantify 

the infection level of malaria parasites in mosquitoes (Bell & Ranford-Cartwright, 

2004).  

To date, there is no published protocol for use of qPCR to quantify midgut infections 

in tsetse flies. Quantitative PCR from isolated RNA has been used to analyse relative 

procyclin mRNA expression in tsetse flies (Urwyler et al., 2005), but in this case the 

salivary glands only were isolated so the technique is not comparable. Also, PCR has 

been used to confirm the presence of trypanosomes in tsetse fly field samples 

(Masiga et al., 1992; Morlais et al., 1998), but not in a quantitative manner. 

As a first step to develop a protocol for qPCR, different techniques for extracting the 

DNA were tested. The method used by Bell and Ranford-Cartwright (2004) involved 

extracting the mosquito mid-gut into a buffer and then doing a phenol chloroform 

extraction of the DNA. For this study, two buffers were compared; TNES-Urea 

(Asahida et al., 1996) and CTAB (Stewart & Via, 1993). These have been used for 

DNA extraction from fish and plant samples, respectively. Flies were infected with 

427-449 procyclic form trypanosomes and the mid-guts dissected after 8 days; the 

first ten mid-guts were also examined microscopically for the presence of a 

trypanosome infection but no trypanosomes were seen. A comparison of the number 

of parasite genomes detectable in eleven tsetse fly mid-guts in each buffer by qPCR 

revealed that the CTAB buffer was more effective for this purpose (the absolute 

quantification is shown in Table 5.1). Five out of 11 flies were positive for 

trypanosome infection when the CTAB buffer was used, whereas zero were positive 
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in the TNES-Urea buffer. Figure 5.15 shows an example of a standard curve for a 

qPCR assay, which demonstrates that the standards used were reliable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

LEFT. Table 5.1: Test qPCR assays with mid-

gut DNA from flies infected with procyclic 

427-449 cells. The fly gut DNA was placed in 

either TNES-Urea or CTAB buffer and then 

phenol-chloroform extracted prior to quantifying 

the infection by real-time quantitative PCR.  

BELOW. Figure 5.15: Example of a standard 

curve for the qPCR assay. The standard used 

was DNA extracted from a known number of 

cultured trypanosomes. Serial dilutions of the 

standards were carried out (x-axis) and the critical 

threshold measured (y-axis). The critical threshold 

is the PCR cycle at which the fluorescence from a 

given sample increases above the background 

fluorescence. The points should lie as close to a 

straight line as possible.  
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To further test the reliability of this assay, a number of midguts were excised from 

uninfected flies, and then a known number of trypanosome cells added to the midgut 

mixture prior to carrying out the phenol-chloroform DNA extraction. Also, a number 

of different treatments of the fly midguts were tested to inform how best to carry out 

the assay. The results of these tests are shown in Table 5.2. The absolute 

quantification of the number of trypanosome genomes by qPCR is compared with the 

number of cells added to the midgut. It is clear from this data that the CTAB-phenol-

chloroform extraction is not a satisfactory technique; the quantification by qPCR is 

not very reproducible and does not tally accurately with the number of cells added to 

the fly gut.  

To improve this assay a kit specifically designed for extracting DNA from tissues 

was evaluated. The Puregene Genomic DNA Purification Kit (Tissue Kit D-7000A 

from Gentra Systems) is a system based on using salt rather than organic solvents for 

DNA extraction (Buffone & Darlington, 1985) and can be used on a variety of 

tissues. As before, a number of midguts were excised from uninfected flies, a known 

number of trypanosome cells added, the DNA extracted according to manufacturer’s 

instructions, and the infections quantified using qPCR. The results of two assays, 

without and with an overnight Proteinase K digestion step, are shown in Tables 5.3.  

The Proteinase K digestion resulted in an increase in the number of genomes 

detected by qPCR, presumably because there were less contaminants.  
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Table 5.2: Results of quantitative PCR tests on DNA samples extracted using a 

range of treatments. Midguts were dissected from the flies and either 1×103 or 1×106 

cultured procyclic form trypanosomes added, prior to the midguts receiving a range of 

treatments (see column 2). The counts derived by qPCR are shown in column 3 and 

compared to the number of parasites that should have been present, shown in column 4.  
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Although the results achieved using this assay were not as good as those derived 

when qPCR has been used to quantify infections in mosquitoes, it was still an 

improvement on microscope counting. Moreover, it allowed the assay of a much 

larger number of flies at once, the flies could be processed quickly, and it removed 

the human error of microscope counting. We therefore concluded that it was valid to 

attempt this assay on a larger scale experiment.  

 

 

 

 

A B 

Tables 5.3: Results of quantitative PCR tests with DNA samples extracted using a 

Gentra DNA Purification Kit. Tstse fly midguts were excised and a known number of 

procyclic form cells were added. The DNA was extracted with the Gentra kit and either not 

treated with Proteinase K (table A); or treated overnight with Proteinase K (table B). The 

number of parasites counted by qPCR (left hand columns) is compared with the number 

of cells added to the gut prior to carrying out the DNA extractions (right hand columns). 
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5.8 Analysis of the effect of ESAG9-K9 protein expression on tsetse 
fly infection level using qPCR 

The ability of transgenic bloodstream form cells, ectopically expressing ESAG9-K9 

protein, to infect tsetse flies was compared with that of uninduced transgenic cells 

and wild-type cells, as in section 5.5. In this experiment the infections were 

quanitified using qPCR rather than microscopy. Another variable was also 

introduced into this experiment. One of our hypotheses for the function of ESAG9 

protein was that it may protect differentiating cells from the complement in the tsetse 

fly blood meal. To test this hypothesis we compared the outcome of the infection 

when the serum in the horses’ blood used to feed the flies (which contains the 

complement factors) was either present or absent. Thus in the presence of serum 

ESAG9 protein might promote survival whereas in its absence no clear effect of 

ESAG9 expression would be seen.  

Three different parasite cell types were used: transgenic bloodstream form parasites 

induced to express ESAG9-K9 protein; the same cells but uninduced; and wild type 

cells with tetracycline. Two different types of blood were used: whole blood; or 

blood which had been centrifuged, the serum removed, and the volume made up with 

SDM-79 medium. A total of around 240 flies were used in the six treatment groups 

and, of these, 178 flies took a blood meal and so could be used for quantification. 

The flies were dissected after 72 hours, their midguts excised, and the DNA extracted 

according to the Puregene Genomic DNA Purification Kit instructions.  

The results of this experiment are shown in Figure 5.16. The graphical representation 

used is a box plot, as in Figure 5.13. The data did not support the hypothesis that the 

role of ESAG9-K9 is to protect cells from complement present in serum. The level of 

infection was similar in the flies fed with wild-type parasites and those fed with 

parasites induced to express ESAG9-K9. In these groups there was no difference in 

the level of parasite numbers whether whole blood, or blood without serum, was 

used. This suggests that the presence of serum was not causing parasite death. 
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Further, the highest parasite numbers achieved were in those flies fed with whole 

blood containing transgenic cells which were not induced for ESAG9-K9 expression. 

Figure 5.16: Results of tsetse fly infections with bloodstream form transgenic and 

wild-type cells as quantified by qPCR. Flies were fed with either wild-type bloodstream 

form cells with tetracycline (WT plus tet); bsf K9 cells induced for expression of ESAG9-

K9 protein (K9 plus tet); or uninduced cells (K9 no tet). The horse blood used to feed the 

flies was either used complete (whole blood); or it was centrifuged, the serum removed, 

and the volume made up to the original with additional SDM-79 media (no serum). The 

boxes represent the interquartile ranges, containing 25% of values either side of the 

median value. The bars represent the spread of the data and the asterixes represent 

outlying values. The number of flies used for each treatment group are indicated. 
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In order to test the reproducibility of the assay, internal repeats were carried out on 

eighteen of the samples whereby they were run three times (in different 96-well 

plates) instead of once in the qPCR machine. These counts, shown in Table 5.4, 

indicate how unreliable this assay was; there was a large variation in the derived 

counts between the three plates. This may indicate that the DNA was not cleanly 

isolated from the mid-gut material, potentially leaving proteins in the sample, which 

could inhibit the PCR reaction.  

The apparent unreliability of this assay means that, although there is no apparent 

difference between the groups, we cannot assert that ESAG9-K9 protein does not 

play role in the survival of the parasites in the tsetse fly mid-gut. It is likely that 

anything but a very large difference between the infection levels would be missed 

using this assay. 

 

Table 5.4: Repeats of 

qPCR assay using 

samples from procyclic 
form infections. Eighteen 

samples from the tsetse fly 

infections shown in Figure 

5.16 were run three times 

rather than once in three 

separate qPCR plates. The 

counts from the three 

attempts are shown in 

colums 2-4. 
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5.9 Summary 

In this chapter an attempt was made to address the hypothesis that ESAG9 proteins 

have a function whilst parasites are differentiating in the tsetse midgut. This 

hypothesis was posed due to the unusual mRNA expression profiles of ESAG9-K9, 

ESAG9-EQ and ESAG9-K69 whereby expression was up-regulated in bloodstream 

form stumpy parasites (see Chapter 3 Figure 3.2). ESAG9-K9 and ESAG9-K69 

proteins were expressed during in vitro differentiation from stumpy to procyclic form 

(refer to Chapter 3 Figure 3.5 and Chapter 4 Figure 4.21). 

The growth assays with procyclic form cells detailed in sections 5.2, 5.3 and 5.4 

indicate that the expression of the three ESAG9 proteins investigated do not give the 

parasites a survival advantage in mammalian serum. It can therefore be concluded 

that, in the in vitro conditions used, ESAG9 proteins are not interacting with the 

complement pathway to prevent parasite killing by the alternative pathway of 

complement. A potential flaw of the in vitro growth assays was that in reality the 

ESAG9 proteins are expressed by differentiating stumpy cells, and not by fully 

differentiated procyclic forms. The procyclic cells used are culture adapted and may 

have lost some of the phenotypic characteristics of their forebears. A more realistic 

model would be to use parasites that are undergoing differentiation, although the 

asynchronous differentiation of transgenic monomorphic parasites would make these 

experiments very difficult to interpret. 

The tsetse fly assays proved problematic in terms of accurate quantification of the 

infections, and in experimental design. In deciding whether to use procyclic form or 

bloodstream form parasites for these assays, there were advantages and 

disadvantages of both cell types. Bloodstream form parasites should in theory 

provide a more ‘realistic’ model in that tsetse flies would normally ingest 

bloodstream forms. The caveat, however, is that the culture-adapted monomorphic 

parasites never produce stumpy forms, and so may not be adapted for the mid-gut 

environment. Also their ability to infect the flies was very low. Using procyclic form 

parasites avoids these problems, but if our hypothesis is that ESAG9 protein is 

important in differentiating parasites, it may have not have a role to play in parasites 
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which are fully adapted for this environment. Using pleiomorphic parasites would 

not provide a solution to these problems. Pleiomorphic stumpy bloodstream form 

cells have been shown to express multiple ESAG9 genes simultaneously (see 

Chapter 3 Figure 3.2). Therefore creating transgenic cell lines which over-express 

one version of ESAG9 is unlikely to enhance infections over wild type levels. 

Moreover, RNAi could not be used to ablate multiple copies of ESAG9 in 

pleiomorphic cells because the genes are too divergent to be targeted with one RNAi 

vector.  

In general, the infections resulted in very low levels of parasites in the flies. The 

level of infection was difficult to quantify either microscopically, or by qPCR. A 

further issue was that anecdotal evidence from other investigators in the field (Alvaro 

Acosta-Serrano, personal comment) has indicated that the tsetse fly populations 

routinely used in these types of assays in labs across Europe have become infected 

with another protozoa, Gregarine spp., which has resulted in low and unpredictable 

levels of trypanosomes in experimental infections.  

We have not been able to either confirm or rule out a function of ESAG9 proteins in 

the tsetse fly. However given that two of the proteins, ESAG9-K9 and ESAG9-EQ, 

are not secreted, we have to question how they might function. ESAG9-K69 protein 

is secreted by transgenic monomorphic parasites and by ‘wild-type’ stumpy form 

parasites (refer to Chapter 4 sections 4.3.3 and 4.4.2). Therefore, further functional 

assays focused on that stage of the life cycle were carried out, utilising the mouse 

model of trypanosome infection, and these will be detailed in Chapter 6. 
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Chapter 6 In vivo and ex vivo analysis using the murine 

model of trypanosome infection 

 

6.1 Introduction 

Bloodstream form K9:K69 parasites were shown to secrete ESAG9-K69 protein out 

of the cell (see Chapter 4 Figure 4.15). Similarly, pleiomorphic T. b. brucei EATRO 

2340 stumpy form parasites were also shown to secrete ESAG9-K69 protein 

(Chapter 4 Figure 4.20). We therefore postulated that ESAG9-K69 protein could be 

involved in host-parasite interactions in the host. It has been shown that other ESAG 

proteins have functions in host-parasite interactions. For example the expression of 

slightly different ESAGs 6 and 7 (which form the transferrin receptor) are proposed 

to enhance parasite survival in serum from different mammals (Bitter et al., 1998) 

though this is still somewhat controversial. 

The ESAG9-K69 protein could potentially interact with the mammalian immune 

system in some way. Other organisms, for example nematode worms, have been 

shown to secrete molecules that mimic human cytokines (Maizels et al., 2004). 

Furthermore, the protozoal parasites Plasmodium spp. and Leishmania major both 

have homologues to the cytokine Macrophage Inhibitory Factor (MIF)(Augustijn et 

al., 2007; Ivens et al., 2005). The presence of a MIF-like protein in the secretome of 

Leishmania donovani has been verified, though a biological function has not yet been 

verified for this molecule (Silverman et al., 2008). BLAST searches using the 

ESAG9 protein sequences did not reveal any similarity to any known 

immunomodulatory molecule. This does not rule out the possibility of ESAG9-K69 

protein having a previously undescribed function however.  

 

6.2 In vivo analysis of growth rates of bsf K9:K69 cells in mice 

To determine whether the secretion of ESAG9-K69 protein by bsf parasites had any 

effect on parasitaemia in the mammal host, mice were infected with bsf K9:K69 

parasites. This double-expressing cell line was chosen as it had been shown 
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previously that ESAG9-K69 protein is secreted by these cells. MF1 mice were 

inoculated with parasites by intra-peritoneal injection. The induction of ectopic gene 

expression in the parasites was achieved by adding 200µg/ml doxycycline to the 

drinking water of the mice, with the control mice being inoculated with the same 

parasites, but without the provision of doxycycline. Doxycycline is taken up by the 

parasites whilst in the bloodstream and is sufficiently similar to tetracycline to 

function in the same way and so induce gene expression from constructs silenced by 

the Tet repressor. The flavour of the doxycycline was disguised by addition of 5% 

sucrose to the drinking water, whereas the ‘-dox’ control mice received water with 

5% sucrose only.  

The results of five independent experiments will be presented. In the first two 

experiments, a starting inoculation of 1×104 parasites per mouse was used. This had 

been shown to be an appropriate initial dose from previous experiments carried out in 

the Matthews lab. Figure 6.1 shows the outcome of the first experiment. Sixteen 

mice were used, split into two groups of eight mice. One group was injected with 

1×104 K9:K69 parasites, and the other with 1×104 WT parasites. Half the mice in 

each group were provided with water with 200µg/ml doxycycline and 5% sucrose, 

and half were provided with water containing only 5% sucrose. The parasitaemia in 

each mouse was then recorded over a period of five to seven days by counting the 

number of parasites visible in tail smears using the rapid matching method of Herbert 

and Lumsden (Herbert & Lumsden, 1976). This method involves making a smear on 

a slide using a drop of blood from a tail snip. The number of parasites visible in a 

field of view at a specified magnification is then compared to a key, which indicates 

the likely cell density this represents in cells per ml of blood. The mice were culled 

or found dead usually at either day five or day six post-infection. This is typical of 

infections with monomorphic parasites, which are very virulent and kill a mouse host 

more rapidly than pleiomorphic parasites. 

Figure 6.1 panel A shows the parasitaemia in individual mice infected with bsf 

K9:K69 parasites (mice A-D were provided with doxycycline; mice E-H were not). 

The data are split into two graphs for clarity. All of the -dox mice survived until day 

6, whereas three out of four of the +dox mice were culled due to sickness or died 
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naturally on day 5. Panel B shows the mean parasitaemias in the -dox and + dox 

mice, with the mean only being calculated as long as all the mice in each group were 

still alive. This graph indicates that the mean growth of +dox parasites was greater 

than the -dox parasites from day 3 to day 4, but that the mean growth then decreased 

from day 4 to day 5. Panel C shows the mean growth of the WT controls, and a 

similar effect was seen in that the +dox parasites grew slightly faster from day 3 to 

day 4. 

The growth rates from day 3 to day 4 and from day 4 to day 5 of the bsf K9:K69 

parasites in the +dox and -dox mice were compared statistically using an Analysis of 

Variance (ANOVA). An ANOVA tests whether the variance within samples is the 

same as the variance between samples, and can therefore be used to determine 

whether the means of two samples are significantly different. An ANOVA assumes 

that data are normally distributed, and in all cases this was verified prior to carrying 

out the ANOVA. A cut-off p-value of 0.05 was used to determine whether the 

outcome was significant. For more details on the p-value and the statistical package 

used, refer to Chapter 2 section 2.12.  

There was a significant difference between growth rate of +dox and -dox parasites 

from day 3 to day 4 (F1,6 = 8.19, p = 0.029). The difference in growth rate from day 4 

to day 5 was not significant however (F1,6 = 4.89, p = 0.069). 

The longevity of the mice was not analysed using statistical methods as it was not 

possible to quantify this accurately. For example, some of the mice were found dead 

in their cages, and without knowing at exactly what time the mice had died, an 

accurate lifespan could not be assigned to the mice. Moreover, others were culled 

when exhibiting distress, and so the natural time of death for these mice would not be 

known either. However the trend indicated that +dox mice, in which the bsf K9:K69 

parasites were induced to express ESAG9-K9 and ESAG9-K69, tended to live less 

long than the -dox mice.

Figure 6.1 (following page): Growth of bsf K9:K69 and WT parasites in mice. Eight mice 

were inoculated with 1×104 bsf K9:K69 parasites, and eight mice with 1×104 WT parasites. Half 

the mice in each group were provided with drinking water with 200µg/ml doxycycline and 5% 

sucrose (+dox mice), and half provided with water containing 5% sucrose only (-dox). Parasites 

per ml of blood were estimated daily from day 2 by counting the number of parasites visible in a 

tail smear using the rapid matching method of Herbert and Lumsden (1976). Panel A shows the 

parasitaemias in individual mice infected with K9:K69 parasites. Panel B shows the mean 

parasitaemias from mice infected with K9:K69 parasites (top) or WT parasites (bottom). Error 

bars are standard deviations from the mean.  
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To determine if this trend was reproducible, the experiment was repeated in exactly 

the same way, excepting that the WT controls were excluded. The results of this 

experiment are shown in Figure 6.2. Panel A shows the parasitaemia in four +dox 

mice and four -dox mice, again represented on separate graphs for clarity. In this 

experiment, three +dox mice and two -dox mice died or were culled on day 5. The 

mean parasitaemias are shown in panel B. This shows that there was clearly no 

difference in the mean parasitaemia of the +dox and -dox mice up until day 5. It can 

be concluded from these data that in this experiment there was no difference between 

parasitaemia in +dox and -dox mice.  

Figure 6.2 (following page): Growth of bsf K9:K69 parasites in mice. Eight mice were 

inoculated with 1×104 bsf K9:K69 parasites. Half the mice were provided with drinking 

water with 200µg/ml doxycycline and 5% sucrose (+dox mice), and half provided with 

water containing 5% sucrose only (-dox). Parasites per ml of blood were estimated daily 

from day 2 by counting the number of parasites visible in a tail smear by the rapid 

matching method of Herbert and Lumsden (1976). Panel A shows the parasitaemias in 

individual mice infected with K9:K69 parasites. Panel B shows the mean parasitaemias 

from mice infected with K9:K69 parasites. Error bars are standard deviations from the 

mean.  
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With a starting inoculation of 1×104 parasites, the mice were found dead or were 

being culled due to sickness on day 5 or day 6. A lower inoculation was therefore 

also used to determine if it was possible to achieve a longer-term infection that might 

be more informative. Previous experiments with other monomorphic cell lines had 

shown that an inoculation of 1×103 parasites resulted in the mice surviving the first 

wave of parasitaemia, and not being killed by the infection until the second wave 

(K.M., unpublished data). Therefore three independent experiments were set up in 

exactly the same way as described for Figures 6.1 and 6.2, except that a lower 

starting dose of 1×103 parasites was used.  

The first of the lower dose experiments is shown in Figure 6.3. Eight mice were 

inoculated with 1×103 bsf K9:K69 parasites and the parasitaemia in each mouse is 

shown in panel A. In the +dox group, two mice died or were culled on day 5, one on 

day 6, and one survived until day 7. In the -dox group, three mice survived until day 

6, and one until day 7. The mice did not survive as long as they were expected to, 

and in no case did the mice control the infection, allowing development of a second 

wave of parasitaemia. This particular cell line could for some reason be more 

virulent than ones previously tested. Panel B shows the mean parasitaemia whilst all 

the mice were alive, and demonstrates that the +dox parasites were, on average, 

increasing in number more rapidly from days 3 – 4 and days 4 – 5. The growth rates 

in +dox and –dox mice were analysed with ANOVAs. The growth rates from days 3 

– 4 were not found to be significantly different (F1,6 = 3.23, p = 0. 123), but there was 

a significant difference in growth rate from days 4 – 5 between the +dox and -dox 

mice (F1,6 = 6.89, p = 0.039). The fact that the parasites are increasing in number 

more rapidly could be due to a faster rate of cell division, or it could be due to host 

factors. 
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Figure 6.3: Growth of bsf K9:K69 parasites in mice. Eight mice were 

inoculated with 1×103 bsf K9:K69 parasites. Half the mice were provided with 

drinking water with 200µg/ml doxycycline and 5% sucrose (+dox mice), and half 

provided with water containing 5% sucrose only (-dox). Parasites per ml of blood 

were estimated daily from day 2 by counting the number of parasites visible in a 

tail smear using the rapid matching method of Herbert and Lumsden (1976). 

Panel A shows the parasitaemias in individual mice infected with K9:K69 

parasites. Panel B shows the mean parasitaemias from mice infected with K9:K69 

parasites. Error bars are standard deviations from the mean.  
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To verify (or otherwise) the results from this experiment, the experiment was 

repeated in exactly the same way and these results are shown in Figure 6.4. However, 

the results of this experiment differed from those represented in Figure 6.3. In the 

+dox group, two mice survived until day 6 and two until day 7. In the -dox group, 

three mice survived until day 6 and one until day 7. Panel B shows the mean 

parasitaemias. The difference in growth rate from days 3-4 and 4-5 were again 

analysed using ANOVAs. In this case, the difference in growth rate between +dox 

and –dox groups was significant on both days 3-4 (F1,6 = 22.6, p = 0.003) and days 4-

5 (F1,6 = 19.69, p = 0.004). 

Figure 6.4 (following page): Growth of bsf K9:K69 parasites in mice. Eight 

mice were inoculated with 1×103 bsf K9:K69 parasites. Half the mice were fed 

drinking water with 200µg/ml doxycycline and 5% sucrose (+dox mice), and half 

fed with 5% sucrose only (-dox). Parasites per ml of blood were estimated daily 

from day 2 by counting the number of parasites visible in a tail smear. Panel A 

shows the parasitaemias in individual mice infected with K9:K69 parasites. Panel 

B shows the mean parasitaemias from mice infected with K9:K69 parasites. Error 

bars are standard deviations from the mean.  
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Because of the inconsistencies between the experiments, the experiment was again 

repeated but this time WT control inoculations were included. This was to ensure 

that the addition of doxycycline did not have an affect on parasitaemia, independent 

of cell line, when a low initial starting dose was used. Figure 6.5 panel A shows the 

parasitaemias in four mice inoculated with 1×103 bsf K9:K69 parasites. All mice 

were culled on day 5, as they were exhibiting discomfort. Panel B shows the mean 

parasitaemias in the bsf K9:K69 infected mice, and there was a clear difference in 

mean parasite density on day 5 between the +dox and -dox groups. However when 

the growth rates between days 3 - 4 and days 4 - 5 were analysed using an ANOVA 

no significant difference between +dox and -dox was observed in either case [(F1,6 = 

1.14, p = 0.327) and (F1,6 = 2.5, p = 0.165) respectively]. 

Panel B also shows the mean parasitaemias in the WT infections, and this shows that 

the addition of doxycycline had no effect on the number of parasites. 

A summary of the five mouse infection experiments with bsf K9:K69 and WT 

parasites is shown in Table 6.1. Overall there was no reliably reproducible effect of 

ESAG9-K9 and ESAG9-K69 expression by bsf K9:K69 parasites on parasiteamia in 

mice; however in some experiments the expression of these proteins did result in an 

increase in the virulence of the infection. 

Figure 6.5 (following page): Growth of bsf K9:K69 and WT parasites in mice. 

Eight mice were inoculated with 1×103 bsf K9:K69 parasites, and eight mice with 

1×103 WT parasites. Half the mice in each group were fed drinking water with 

200µg/ml doxycycline and 5% sucrose (+dox mice), and half fed with 5% sucrose 

only (-dox). Parasites per ml of blood were estimated daily from day 2 by counting 

the number of parasites visible in a tail smear. Panel A shows the parasitaemias in 

individual mice infected with K9:K69 parasites. Panel B shows the mean 

parasitaemias from mice infected with K9:K69 parasites (top) or WT parasites 

(bottom). Error bars are standard deviations from the mean.  
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Table 6.1: Summary of mouse infection experiments with bsf K9:K69 

parasites. The figures in which the full data are shown are indicated in the far left 

column. The number of mice used, the cell types used, and the starting 

inoculations are shown in columns 2 to 5. The two far right columns summarise 

the longevity and growth rate outcomes of the experiments. 
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6.3 In vivo analysis of growth rates of bsf EQ cells in mice  

 

To explore whether the ectopic expression of ESAG9-EQ protein altered 

parasitaemia in mice, bsf EQ cells were injected into parasites as described 

previously. The ectopic expression of ESAG9-EQ protein by transgenic parasites 

differs from that of ESAG9-K69 protein in that the ESAG9-EQ protein remains cell-

associated and is not secreted.  

Eight mice were inoculated with 1×104 parasites and four of those mice were 

provided with doxycycline in their drinking water to induce gene expression by the 

parasites. The parasitaemia in each mouse was then recorded over a period of five 

days by scoring the number of parasites visible in tail smears using the Herbert and 

Lumsden rapid matching method (Herbert and Lumsden, 1976). 

The results are shown in Figure 6.6. Panel A shows the parasitaemias in individual 

mice and Panel B shows the mean parasitaemia for the first five days when all the 

mice were still alive. The +dox mice had a lower mean parasitaemia overall, and one 

of these mice survived to day 6 whereas all the -dox mice died or were culled on day 

five. This differs from the results when mice were infected with bsf K9:K69 parasites 

– in these experiments the trend was for the +dox mice to experience a more virulent 

infection. The parasitaemias were analysed using an ANOVA as described 

previously. There was not found to be any statistically significant difference between 

growth rates in +dox and -dox groups on day 3-4  (F1,6 = 0.59, p = 0.473) or on day 

4-5 (F1,6 = 0.43, p = 0.537). 

It was not possible to draw firm conclusions form the data in sections 6.2 and 6.3 of 

this chapter. Effects on virulence were seen in some experiments, but these were 

subtle and experimentally variable. The results were not considered sufficiently 

convincing to conclude that ESAG9 was having an effect on virulence. 
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Figure 6.6: Growth of bsf EQ parasites in mice. Eight mice were inoculated 

with 1×104 bsf EQ parasites. Half the mice were provided with drinking water with 

200µg/ml doxycycline and 5% sucrose (+dox mice), and half provided with water 

containing 5% sucrose only (-dox). Parasites per ml of blood were estimated daily 

from day 2 by counting the number of parasites visible in a tail smear according to 

the rapid matching method of Herbert and Lumsden (1976). Panel A shows the 

parasitaemias in individual mice infected with K9:K69 parasites. Panel B shows 

the mean parasitaemias from mice infected with K9:K69 parasites. Error bars are 

standard deviations from the mean.  
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6.4 Ex vivo FACS analysis of murine spleen cells in mice infected 
with bsf K9:K69 cells 

 

6.4.1 Introduction 

When mice were infected with bsf K9:K69 parasites and provided with drinking 

water containing doxycycline, in some experiments this resulted in the parasite 

infection being more virulent and in earlier death of the mice (see Section 6.2). 

However this was not the case in every experiment, and it was not possible to 

statistically analyse the longevity of the mice for the reasons previously described. 

To determine whether the ectopic expression of ESAG9 proteins by the bsf K9:K69 

parasites was having an effect on the immune responses of the mice, ex vivo 

fluorescent-activated cell sorting (ex vivo FACS) of the spleen cells was utilised. The 

spleen contains large numbers of both erythrocytes, and more importantly, white 

blood cells. The technique is called ‘ex vivo’ because the mice are infected with 

parasites and the infection allowed to progress, and then the mice are culled and the 

spleens removed for analysis of the white blood cell populations. FACS analysis 

combines flow cytometry and fluorescent staining of the cells and can provide a lot 

of information about the cell populations. Flow cytometry uses the forward scatter 

(FSC) and side scatter (SSC) of visible light to separate cell populations on the basis 

of cell size and granularity. Cells can also be stained with primary antibodies to 

certain cell markers, which are conjugated to fluorochromes to allow detection.  

For this experiment, three groups of four mice were used. Two groups of the mice 

were inoculated with 1×104 bsf K9:K69 parsites by intra-peritoneal injection. One of 

these groups was provided with drinking water with 200µg/ml doxycycline and 5% 

sucrose (‘+dox’ mice), whilst the other group was provided with drinking water with 

5% sucrose alone (‘-dox’ mice). The final group were the naïve mice that were 

inoculated with medium alone via intra-peritoneal injection (these mice were also 

provided with drinking water supplemented with 200µg/ml doxycycline and 5% 

sucrose). This was to control for any stimulatory effect the injection itself might have 

on the murine immune system. For a schematic diagram of the infections, see Figure 
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6.7. Four days after infection, the mice were culled and the spleens removed. The 

parasitaemias in the mice were counted prior to culling and these data are shown in 

Table 6.2. The spleens were the placed in 2mls RPMI medium (Gibco) with 5% FCS. 

The spleens were placed between two pieces of mesh and mashed with forceps to 

release the spleen cells into the medium. Following this, the cells were stained with 

antibodies for FACS analysis. 

Figure 6.7: Schematic representation of ex vivo FACS experiment. Three 

different groups were used and each group contained four mice. Two groups 

of mice were each inoculated with 1×104 parasites; one group was fed water 

with 5% sucrose and 200µg/ml doxycycline, and the other group was fed 

water with only 5% sucrose. The naïve group (ie not inoculated with 

parasites) was also fed water with 5% sucrose and 200µg/ml doxycycline. 

After four days the spleens were harvested and the spleen cell populations 

analysed by FACS.  
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The spleen cells were stained with a number of different markers. The 

secretion of IFN-γ by T cells has been linked with susceptibility to trypanosmiasis in 

mice (Shi et al., 2006), and so secretion of this cytokine by T cells was explored 

using the appropriate markers. Trypanosome infection of mice has been reported to 

result in the inhibition of proliferation of lymphocytes (Beschin et al., 1998; 

Sternberg & Mabbott, 1996). Hence the proportion of different classes of 

lymphocytes (CD4+ T cells, CD8+ T cells, and B cells) was also looked at, though 

the proliferation of lymphocytes was not explored. It had been suggested this 

inhibition might come about by apoptosis of lymphocytes (Sternberg and Mabbott, 

1996); also the apoptosis of B cells as a result of trypanosome infection has been 

reported (Radwanska et al., 2008), and so the apoptosis of lymphocytes was also 

investigated using the appropriate antibodies. Finally, the proliferation of the 

different classes of granulocytes was investigated. Macrophages are granulocytes, 

and the activation of, and secretion of nitric oxide by, macrophages is an important 

Table 6.2: Parasitaemias in mice 

after four days. A smear of blood from 

a tail snip was taken from each mouse 

and the parasitaemia scored using the 

rapid matching method of Herbert and 

Lumsden (1976). 
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early event in murine trypanosomiasis (Baetselier et al., 2001). A list of the 

antibodies and suppliers can be found in Appendix D. 

 

6.4.2 Secretion of interferon gamma by T cells 

To determine whether T cells were secreting the cytokine interferon gamma (IFN-γ), 

they were first incubated in a protein transport inhibitor named GolgiStop™ (BD 

Pharmingen) for five hours so that the cytokine remained cell-associated. The spleen 

cells were then co-labelled with an antibody for IFN-γ, and an antibody to either 

CD4+ or CD8+ T cells to determine cell type. Initially, the sub set of white blood 

cells which were lymphocytes was determined from the FSC/SSC plot and a gate 

was set to exclude other cell types. Figure 6.8 shows examples of the raw data for 

one mouse from each group, and also the isotype control and single-staining controls. 

The percentages of each T cell type that were producing IFN-γ were then calculated, 

and are represented in Individual Value Plots, and these data are shown in Figure 6.9. 

Panel A shows the percentage of CD4+ T cells that were secreting IFN-γ. The +dox 

mice had the highest mean percentage of CD4+ T cells positive for IFN-γ. The –dox 

mice had an intermediumte mean percentage, and the naïve mice the lowest mean 

percentage. To determine whether these differences were statistically significant, 

ANOVAs were carried out. The -dox mice had significantly more CD4+ T cells 

secreting IFN-γ than the naïve mice (F1,6 = 8.8, p = 0.025). The +dox mice also had 

significantly more CD4+ T cells secreting IFN-γ than the naïve mice (F1,6 = 14.78, p 

= 0.009). However the difference between the number of CD4+ T cells secreting 

IFN-γ in +dox mice and -dox mice was not significant (F1,6 = 1.3, p = 0.298). It is 

worth noting that overall the percentages of cells which were positive for IFN-γ were 

very low. 

Figure 6.9 panel B shows the percentage of CD8+ T cells that were secreting IFN-γ. 

Again the percentages of CD8+ T cells which were secreting IFN-γ were very low, 

and although the +dox and -dox mice had higher mean percentages than the naïve 

mice, the difference was not great so it was not considered worthwhile testing 

whether the difference was statistically significant. 
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Figure 6.8: An example of raw FACS data and controls. An example of FACS plots for 

one mouse from each group is shown. Mouse R1 = +dox, B1 = -dox, and BL1 = naïve. The 

top row shows the FSC/SSC plots for each mouse, and the region that was judged to be 

lymphocytes is shown surrounded by a pink line; this was used to gate the lymphocyte 

analysis. The middle row shows the lymphocyte-gated plots for staining of an antibody 

against CD4+ T cells versus an antibody against IFN-γ. All the cells in the top right portion of 

the graph are positive for both markers. FITC and PerCP refer to the fluorochrome markers 

that are conjugated to the antibodies. The bottom row shows the controls: the left graph is 

the isotype control, the middle is a single staining control with α IFN-γ and the right hand 

graph is a single staining control with α CD4. 
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Figure 6.9: Percentage of CD4 and CD8 T cells that were secreting interferon 

gamma. Eight mice were inoculated with bsf K9:K69 parasites. Half of these were 

provided with water containing 200µg/ml doxycycline and 5% sucrose (+ DOX) 

and half were provided with water containing 5% sucrose alone (-DOX). Four 

mice were inoculated with media alone (NAÏVE) and fed 200µg/ml doxycycline 

and 5% sucrose. Each red circle represents the percentage of that cell type in an 

individual mouse, and each black triangle represents the mean value for that 

group. Panel A is an Individual Value Plot for the percentage CD4+ T cells that 

were secreting IFN-γ, and panel B is a plot for the percentage of CD8+ T cells that 

were secreting IFN-γ. 
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6.4.3 Proportion of different classes of lymphocytes in the spleen 

To determine the proportions of different classes of lymphocytes, CD4+ T cells, 

CD8+ T cells, and B cells were identified by staining with α-CD4, α-CD8a and α-

B220 antibodies respectively. For each mouse, the percentage of total lymphocytes 

which were CD4+ T cells, CD8+ T cells or B cells was then calculated. These data 

are shown in Figure 6.10.  

Panel A shows the percentage of lymphocytes that were CD4+ T cells. The value for 

each mouse is represented by a circle, and the mean for each group is represented by 

a triangle. This plot shows that there were differences between the percentages of 

CD4+ T cells in each group. The naïve mice had the highest mean percentage of 

CD4+ T cells, the -dox mice an intermediumte mean percentage of CD4+ T cells, 

and the +dox mice the lowest mean percentage. To determine whether these 

differences were statistically significant, ANOVAs were carried out as previously 

described. The +dox mice had significantly less CD4+ T cells than the -dox mice 

(F1,6 = 8.73, p = 0.025). However the -dox mice did not have significantly less CD4+ 

T cells than the naïve mice (F1,6 = 5.21, p = 0.063). This was strongly suggestive of 

the expression of the ectopic ESAG9 proteins by the bsf K9:K69 cells having an 

effect on the CD4+ T cell population in +dox mice. 

Figure 6.10 Panel B shows the percentage of lymphocytes that were CD8+ T cells. 

Although there was an increase in the mean percentage when comparing the -dox 

mice with the naïve mice, and an increase when comparing the +dox mice with the -

dox mice, the increase was very small and so was not considered important. 

Figure 6.10 Panel C shows the percentage of lymphocytes that were B cells. Both the     

-dox and +dox mice showed an increase in B cells when compared to naïve mice, 

and +dox mice have slightly more B cells than -dox mice. To determine whether 

these differences were statistically significant, ANOVAs were carried out as 

previously described. The -dox mice had significantly more B cells than the naïve 

mice (F1,6 = 15.33, p = 0.008). The +dox mice also, not surprisingly, had significantly 

more B cells than the naïve mice (F1,6 = 36.7, p = 0.001). However the +dox mice did 

not have significantly more B cells than the -dox mice (F1,6 = 2.55, p = 0.162). This 
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indicates that although the inoculation with parasites resulted in a higher number of 

B cells compared to the naïve mice, the presence of doxycycline and induction of 

gene expression by the bsf K9:K69 parasites was not having a significant effect on 

the B cell population. 

 

Figure 6.10 (following page): Percentage of spleen lymphocytes that were CD4 

T cells, CD8 T cells or B cells. Eight mice were inoculated with bsf K9:K69 

parasites. Half of these were provided with water containing 200µg/ml doxycycline 

and 5% sucrose (+ DOX) and half were provided with water containing 5% sucrose 

alone (-DOX). Four mice were inoculated with media alone (NAÏVE) and provided 

with water containing 200µg/ml doxycycline and 5% sucrose. Each red circle 

represents the percentage of that cell type in an individual mouse, and each black 

triangle represents the mean value for that group. Panel A is an Individual Value 

Plot for the percentage of lymphocytes that were CD4+ T cells, panel B is a plot for 

the percentage of lymphocytes that were CD8+ T cells, and panel C is a plot for the 

percentage of lymphocytes that were B cells. 
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6.4.4 Lymphocyte populations undergoing apoptosis 

To determine what proportion of CD4+ T cells, CD8+ T cells and B cells were 

undergoing apoptosis, the spleen cells were stained with the appropriate cell type 

marker (as described in Section 6.5.2) and an apoptosis marker called Annexin V.  

Annexin V is a phospholipid-binding protein (Kaplan et al., 1988). The exposure of 

phosphatidylserine residues on cell surface membranes is an early event in apoptosis 

(Naito et al., 1997) and the Annexin V marker recognises these exposed residues 

(Koopman et al., 1994; van Engeland et al., 1998). 

The results of this FACS analysis are shown in Figure 6.11. Panel A shows the 

percentage of CD4+ T cells that were undergoing apoptosis in +dox, -dox and naïve 

mice. There was no difference between the mean percentage of CD4+ T cells 

undergoing apoptosis between the +dox and -dox mice. In the naïve mice there were 

less CD4+ T cells undergoing apoptosis. The differences in percentage of CD4+ T 

cells undergoing apoptosis between +dox and naïve mice, and between –dox and 

naïve mice, were analysed using ANOVAs and found to be statistically significant 

[(F1,6 = 8.02, p = 0.03) and (F1,6 = 13.29, p = 0.011) respectively]. This suggests that 

trypanosome infection in some way triggers the apoptosis of CD4+ T cells, 

independent of whether or not the expression of ectopic genes in the bsf K9:K69 

parasites was induced. 

There were no large differences between the percentages of CD8+ T cells 

undergoing apoptosis in +dox, -dox or naïve mice, as shown in Figure 6.11 Panel B. 

Panel C shows that in B cells the mean percentage of cells undergoing apoptosis in 

naïve and -dox mice was very similar. The mean was lower however in +dox mice. 

The percentages of B cells undergoing apoptosis in +dox and -dox mice were 

analysed using an ANOVA. The +dox mice were not found to have significantly less 

B cells undergoing apoptosis than the -dox mice (F1,6 = 3.07, p = 0.13). However the 

+dox mice were found to have significantly less B cells undergoing apoptosis than 

the naïve mice (F1,6 = 7.32, p = 0.035). 
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Figure 6.11: Percentage of spleen lymphocytes that were undergoing apoptosis. 

Eight mice were inoculated with bsf K9:K69 parasites. Half of these were provided with 

water containing 200µg/ml doxycycline and 5% sucrose (+ DOX) and half were provided 

with water containing 5% sucrose alone (-DOX). Four mice were inoculated with media 

alone (NAÏVE) and provided with water containing 200µg/ml doxycycline and 5% 

sucrose. Each red circle represents the percentage of that cell type in an individual 

mouse, and each black triangle represents the mean value for that group. Panel A is an 

Individual Value Plot for the percentage CD4+ T cells that were undergoing apoptosis, 

panel B is a plot for the percentage of CD8+ T cells that were undergoing apoptosis, 

and panel C is a plot for the percentage of B cells that were undergoing apoptosis. 
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6.4.5 Proportion of different classes of granulocytes 

Granulocytes can be differentiated from the rest of the spleen cell population by their 

granularity. This is determined by the side scatter of visible light by the FACS 

machine. Different sub-classes of granulocytes can then be identified by staining 

with cell-type specific markers. Macrophages were identified using F4/80, which is a 

general macrophage marker (Schaller et al., 2002). Eosinophils and neutrophils were 

identified by staining with Siglec-F (Angata et al., 2001) and Gr-1 (Hestdal et al., 

1991) respectively.  

The results are shown in Figure 6.12. Panel A shows the percentage of all 

granulocytes which were macrophages, Panel B the percentage which were 

eosinophils and Panel C the percentage which were neutrophils. It is clear from these 

data that, although in both +dox and -dox mice there is an up-regulation of all three 

types of granulocytes when compared to naïve mice, there is no difference between 

the percentages in the +dox and -dox mice. This indicates that a trypanosome 

infection resulted in increased numbers of macrophages, neutrophils and eosinophils, 

but that induction of ectopic gene expression in the bsf K9:K69 parasites did not 

have any effect on this. The differences between the percentages of macrophages, 

neutrophils, and eosinophils in –dox and naïve mice were tested using an ANOVA 

and in all cases the difference was found to be statistically significant [(F1,6 = 6.91, p 

= 0.039), (F1,6 = 66.98, p <0.0005) and (F1,6 = 13.3, p = 0.011) respectively]. 
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Figure 6.12: Percentage granulocytes that were macrophages, eosinophils, or 

neutrophils. Eight mice were inoculated with bsf K9:K69 parasites. Half of these were 

provided with water containing 200µg/ml doxycycline and 5% sucrose (+ DOX) and half 

were provided with water containing 5% sucrose alone (-DOX). Four mice were inoculated 

with media alone (NAÏVE) and fed 200µg/ml doxycycline and 5% sucrose. Each red circle 

represents the percentage of that cell type in an individual mouse, and each black triangle 

represents the mean value for that group. Panel A is an Individual Value Plot for the 

percentage granulocytes that were macrophages, Panel B is a plot for the percentage of 

granulocytes that were eosinophils, and Panel C is a plot for the percentage of 

granulocytes that were neutrophils. 
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6.5 Summary 

 

The mice infection experiments discussed in Sections 6.2 and 6.3 gave varying 

results. The infection experiments with bsf K9:K69 parasites were carried out with 

two different starting inoculations and were repeated two or three times. The 

outcomes of these experiments are summarised in Table 6.1. It is hard to draw strong 

conclusions from data where there is such variability between individual 

experiments, though the +dox mice in some cases experienced an increased growth 

rate of parasites compared to the –dox, and also a shortened longevity. 

The method used to count the parasite density in blood was not very precise. Tail 

smears were taken and the cells per ml of blood estimated from the number of 

parasites visible in a field of view under the microscope, according to the rapid 

matching method of Herbert and Lumsden (Herbert and Lumsden, 1976). There was 

therefore a possibility that human error occurred during counting. The experiment 

was blinded in terms of which mice were receiving the doxycycline. A more accurate 

way of quantifying the parasitaemia would have been to take blood samples for 

quantitative Real-Time PCR, however this was beyond the scope of this PhD project. 

The longevity of the mice was hard to assess. To determine this accurately would 

have required the mice to be checked 24 hours a day, or for a heat sensitive camera 

to be set up which would help determine time of death. 

The ex vivo FACS analysis gave some intriguing results. The down-regulation in the 

number of CD4+ T cells in the +dox mice (see Figure 6.10) is an interesting 

phenotype, and the data were statistically significant when analysed using an 

ANOVA. Other published data have shown an inhibition of T cell proliferation as a 

response to infection with T. brucei and this will be discussed in Chapter 7 section 

7.9. There were also some smaller and not statistically significant differences 

between the +dox and –dox groups in terms of the number of B cells, the number of 

CD4 and T cells undergoing apoptosis, and the number of CD4 cells secreting IFN-γ.  
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Although these results are fascinating, it is important to repeat these experiments. 

Other controls also need to be included. As well as naïve mice, and mice inoculated 

with bsf K9:K69 parasites, it would be very useful to have mice inoculated with bsf 

WT parasites, both with and without doxycycline. This would control for the fact that 

the ectopic gene expression by bsf K9:K69 parasites may be leaky, and therefore 

some ESAG9-K69 protein could be secreted by bsf K9:K69 parasites in the absence 

of doxycycline. It would also determine whether the presence of doxycycline had any 

effect when mice were inoculated with parasites, independent of cell line. 
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Chapter 7 Discussion 

 

African trypanosomes cause a lethal disease of humans, and a debilitating disease in 

cattle, and are therefore of huge socio-economic importance. 

The African trypanosome has a complicated life cycle, whereby it is passed between 

mammalian hosts by the tsetse fly vector. The stumpy cells are of special interest as 

they are the agents of transmission between the mammal and the insect vector. The 

specific attributes of stumpy cells, which allow them to survive in both a mammalian 

and tsetse fly host, have not been extensively characterised as of yet. Prior to the 

commencement of this PhD project, members of the ESAG9 gene family had been 

identified as stumpy-specific messenger RNAs, which is a novel expression profile 

in Trypanosoma brucei. 

The aims of this project will be reiterated, followed by a summary of the findings. 

The overall conclusions that can be drawn from the findings will then be outlined, 

and these will be put in the context of other research in this field of biology. Potential 

future directions for this project will then be discussed. 

 

7.1 Overview of aims 

 

In brief, the aims of the PhD project were to:  

• Determine the protein expression profile of ESAG9 proteins. 

• Explore attributes of ESAG9 protein sequences using bioinformatics and use 

this information to predict post-translational modifications or functions of 

ESAG9s. 

• Create transgenic cell lines with which to determine sub-cellular localisation 

and post-translational modification of ESAG9 proteins. 

• Use these transgenic cell lines in functional assays. 
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7.2 Stage-specific gene expression 

 

A search for genes that are up-regulated in the stumpy stage of the trypanosome life 

cycle was carried out prior to the commencement of this PhD project. A family of 

genes called ESAG9s were found to be upregulated in the stumpy stage (see Chapter 

3 sections 3.1.2-3.1.4). The raising of anti-peptide antibodies against two members of 

this gene family, ESAG9-K9 and ESAG9-K69 revealed that they had differing 

protein expression profiles. ESAG9-K9 protein was shown to be expressed at a low 

level by stumpy cells, and its expression peaked between 6 and 9 hours through 

differentiation to procyclic forms. By 30 hours into differentiation the ESAG9-K9 

protein was no longer detectable (see Chapter 3 section 1.1.5, Figure 5). Such an 

expression profile had not been described before in T. brucei. ESAG9-K69 protein 

had a different protein expression profile whereby there was a low level of cell-

associated protein in stumpy cells and differentiating cells. There is no antibody 

available against ESAG9-EQ so the protein expression in stumpy and differentiating 

cells could not be investigated. 

ESAG9 genes were attributed to be ESAGs (expression site-associated genes) 

because when they were first identified in T. equiperdum, one ESAG9 gene was 

found to be within an expression site (ES) (Florent et al., 1991). None of the nine 

ESAG9 genes and ten pseudogenes so far identified in T. b. brucei 927 are in 

expression sites (Berriman et al 2005) but there was an absence of sequenced ESs in 

that analysis. However, one ESAG9 gene has been found in an ES in T. b. brucei 

strain Lister 427 (Hertz-Fowler et al., 2008), where a specific analysis of ESs has 

been carried out. 

The genomic context of ESAG9 genes in T. b. brucei EATRO 2340 has not been 

explored during this project. This pleiomorphic strain of the parasite contains at least 

four ESAG9 genes (see Chapter 3, Figure 3.2), including the three genes that we 

have focused on: ESAG9-K9, ESAG9-K69 and ESAG9-EQ. It would be interesting 

to know whether or not these genes are in ESs in T. b. brucei EATRO 2340. This 
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could be deduced by investigating whether the transcription of these genes is 

sensitive to α-amanitin. The ESAGs and VSG in an ES are transcribed by pol I 

which is insensitive to α-amanitin (Gunzl et al., 2003; Rudenko et al., 1989) whereas 

genes outwith ESs are transcribed by pol II which is sensitive. 

 

7.3 Bioinformatic analysis 

 

The genomic context of the ESAG9 genes, conservation within the gene family, 

similarity to any other characterised genes, the presence of functional motifs or 

signals for post-translational modification, and the conservation of the UTRs were all 

explored using bioinformatic analyses.  

The ESAG9 gene family is not highly conserved, with between 16% and 88% 

identity between the peptide sequences. There are no homologues in other organisms 

(excluding the very closely related T. equiperdum) as determined by BLAST 

searches. However there was a motif common to most of the ESAG9 peptide 

sequences that was also found in protein phosphatase 2C (PP2C) enzymes. The motif 

CX3WX8C is involved in the binding of divalent cations in PP2C enzymes (Das et 

al., 1996; Kusuda et al., 1998). It is unlikely to perform this function in ESAG9 

proteins because they do not have the other amino acids involved in the binding site, 

but this conserved motif could be performing another function in ESAG9s. 

Although there were no true homologues of ESAG9s in other organisms, the ESAG9 

sequences did show some similarity to the mucin-associated surface protein (MASP) 

gene family of T. cruzi (see Chapter 3 sections 3.2.5 and 3.2.6). MASPs are 

membrane-associated, glycosylated proteins of unknown function in T. cruzi. These 

proteins do not contain the CX3WX8C motif. 

ESAG9 protein sequences were queried for the presence of any characterised 

functional motifs, using a range of databases. The only useful information from these 

searches was that all ESAG9 sequences have a signal peptide at the N terminus. 
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ESAG9 proteins do not bear any significant resemblance to any characterised 

functional motifs.  

Tools for predicting post-translational modifications of peptide sequences were used 

to explore whether ESAG9 proteins were likely to by modified by the addition of a 

GPI anchor and/or N-glycans (see Chapter 3 section 3.2.8). GPI-SOM predicted GPI 

anchor addition to all ESAG9 peptides. Seven out of the eleven ESAG9 sequences 

queried were predicted to be N-glycosylated at at least one position.  

The un-translated regions (UTRs) of ESAG9 genes were explored for conserved 

regions, motifs, or 2D folds (see Chapter 3 section 3.2.9). The 3’UTRs were not 

found to be highly conserved, and contained no unanimous 2D fold structures. 

However MEME analysis did reveal that there were two conserved motifs common 

to the ESAG9 3’UTRs. There was no conservation between the 5’ UTRs of ESAG9 

genes. 

To conclude, the bioinformatic analyses were not highly informative in terms of 

predicting function of the ESAG9 genes. This gene family has no homologues and 

the sequences contain no motifs of known function. However the similarity of 

ESAG9 protein sequences to MASPs in T. cruzi was interesting, especially given that 

the ESAG9s were predicted to be GPI-anchored and, in some cases, N-glycosylated, 

as are the MASP proteins (Atwood et al., 2006). Unfortunately MASP proteins have 

not yet been assigned a function. The presence of two conserved motifs in the 3’ 

UTRs could provide a mechanism by which the unusual expression profile of the 

ESAG9 genes is controlled; but experimental exploration of this possibility was 

beyond the realms of this project. 

 

7.4 Sub-cellular localisation of ESAG9 proteins 

 

Bloodstream form and procyclic form transgenic cell lines were engineered to 

ectopically express one or more of the following ESAG9 proteins: ESAG9-K9, 
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ESAG9-EQ and ESAG9-K69. These were then used to explore various attributes of 

ESAG9 proteins including their sub-cellular localisation.  

 

7.4.1 Sub-cellular localisation of ESAG9-K9 

ESAG9-K9 was located in the endoplasmic reticulum (ER) in both procyclic and 

bloodstream form transgenic cells. Co-staining of bsf K9 cells with the ER marker 

BiP and BB2 (which recognises the Ty-tag in the ectopic ESAG9-K9 protein) and 

confocal microscopy analysis revealed that these proteins co-localise in the ER (see 

Chapter 4 Figure 4.23). The localisation of ESAG9-K9 in differentiating stumpy T. 

b. brucei EATRO 2340 cells was explored using the ESAG9-K9 anti-peptide 

antibody. Although this antibody gave a certain degree of background in 

immunofluorescence, it was possible to compare slender cells (which do not express 

ESAG9-K9 protein) with differentiating stumpy cells and see that the protein was 

intracellular with a halo around the nucleus (see Chapter 3 Figure 3.6). This could 

represent an ER localisation. Some differentiating stumpy cells also had a signal 

from the ESAG9-K9 antibody at the flagellar pocket. 

 

7.4.2 Localisation of ESAG9-EQ protein 

ESAG9-EQ was seen as a diffuse signal with a gap coincident with the nucleus in 

both procyclic and bloodstream form transgenic cells. As discussed in Chapter 4, 

section 4.5.2, this staining could represent a cytoplasmic location for ESAG9-EQ, 

but it could also possibly be at the cell surface. This was not explored further as part 

of this project. However it would be very interesting to conclusively determine the 

localisation of ESAG9-EQ. This could be achieved by staining bsf EQ cells with 

BB2 antibody and analysing the staining pattern by confocal microscopy. This would 

give information about the localisation of the protein in 3D, which would make it 

easier to determine whether or not the protein is cell surface located. Another 

possible route would be to use a commercially-available cell fractionation kit which 

fractions lysed cells into cytosolic, membrane and organellar vesicle, nuclear, and 

cytoskeletal fractions, as utilised by Paterou et al. to localise TbZFP3 protein 

(Paterou et al., 2006). The resultant fractions are then analysed by Western blotting. 
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If there was a signal for ESAG9-EQ in the membranous fraction, then it could be 

inferred that the protein was associated with the cell surface membrane, given that 

the immunofluorescent staining was not indicative of the protein being in the 

membrane of any sub-cellular organelle.  

Procyclic cell lines have been engineered by the laboratory of Jeremy Mottram that 

are lacking a catalytic subunit required for the addition of GPI anchors to proteins 

(Lillico et al., 2003). Using this mutant, ESAG9-EQ could be ectopically expressed 

and analysed by immunofluorescence to determine if its localisation changed when 

the protein was not modified by the addition of a GPI anchor. It would not be 

possible to do the same experiment in bloodstream forms because GPI anchor 

addition is essential for survival in that stage of the life cycle (Nagamune et al., 

2000). 

 

7.4.3 Localisation of ESAG9-K69 protein 

 

ESAG9-K69 protein, when expressed concurrently with ESAG9-K9 protein in 

bloodstream form transgenic cells, was secreted out of (or shed from) the cell into the 

medium (see Chapter 4 section 4.3.3), as assayed by immunoprecipitation of 

conditioned medium. When ESA9-K69 and ESAG9-EQ protein were expressed 

concurrently, a signal for Ty-tagged protein was seen from an IP of conditioned 

medium (section 4.3.5). This could be either protein as they were both Ty-tagged, 

however it was most likely to be ESAG9-EQ protein due to the size it migrated at. 

An ESAG9-K69 anti-peptide antibody was also used to explore whether T. b. brucei 

EATRO 2340 stumpy cells secreted ESAG9-K69. Western analysis using the LI-

COR infrared imaging system revealed that stumpy cells secreted/shed 39.4% of the 

ESAG9-K69 protein. A cell-associated control, Hsp-70, was used and 4.4% of this 

protein was released into the medium. This indicates that the amount of ESAG-K69 

protein that is in the medium was very unlikely to be due to cell death but will be an 

active process of secretion or shedding by the stumpy cells. The secretion of other 

proteins by T. b. brucei will be discussed in section 7.9.2. 
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7.5 Post-translational modification of ESAG9 proteins 

 

7.5.1 N-glycosylation of ESAG9 proteins 

 

N-glycosylation and GPI anchor addition to ESAG9 proteins was explored. ESAG9-

K9 protein and ESAG9-K69 protein were both found to be N-glycosylated, as shown 

by their increased migration in an SDS-PAGE gel after treatment with PNGase F 

enzyme. ESAG9-EQ, in contrast, was not N-glycosylated. The altered migration 

profile of the ESAG9 proteins suggested that ESAG9-K9 was potentially 

glycosylated at two of its 3 potential glycosylation sites and ESAG9-K69 was 

glycosylated at one of its two potential glycosylation sites (see Chapter 4 section 

4.6.1). This modification of ESAG9 proteins was predicted by the bioinformatic 

analyses carried out in Chapter 3. As mentioned above, ESAG9 protein sequences 

were found to have some similarities to the mucin-associated surface proteins 

(MASPs) and mucin-like glycoproteins of T. cruzi; these proteins are extensively 

glycosylated (Buscaglia et al., 2006). 

 

 

7.5.2 GPI-anchor addition to ESAG9 proteins 

 

A hypotonic assay was used to explore whether the ESAG9 proteins investigated 

were modified by the addition of a GPI anchor. This assay indicated that ESAG9-EQ 

was indeed GPI anchored, whereas ESAG9-K9 was not. The fact that ESAG9-EQ 

was GPI anchored strongly suggests that the signal seen in the immunofluorescence 

assay with bloodstream form cells (see Chapter 4 section 4.5.2) was in fact a cell 

surface staining.  

ESAG9-K9 had been predicted by bioinformatic analyses to be modified by the 

addition of a GPI anchor. It has been suggested that the addition of a GPI anchor acts 

as a signal on the protein that allows it to leave the endoplasmic reticulum (Muniz 

2000). It could be hypothesised therefore that ESAG9-K9 localises to the 
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endoplasmic reticulum in transgenic cells (refer to section 1.4.1) due to a failure by 

the cells to successfully add a GPI anchor to an ectopically-expressed protein. 

However there are several lines of argument against this idea. Ectopically-expressed 

proteins have been found to be successfully GPI-anchored in other cell lines, for 

example Bangs et al. (Bangs et al., 1997). When VSG is truncated so that it lacks the 

signal for the addition of a GPI anchor, it was found to remain in the ER in procyclic 

form cells (McDowell et al., 1998), but importantly it was found to be quickly 

degraded in lysosomes by bloodstream form cells (Triggs & Bangs, 2003), whereas 

we saw a strong signal from the ER for ESAG9-K9 protein in the bsf K9 cell line. 

Moreover, in wild-type pleiomorphic stumpy cells there was no signal for ESAG9-

K9 from the supernatant in the hypotonic lysis experiment (see Chapter 4 section 

4.6.2). This indicates that endogenous ESAG9-K9 protein is not GPI anchored, and 

that the bioinformatic predictions were in this case incorrect. 

It was not possible to determine whether or not ESAG9-K69 protein was GPI 

anchored (see Chapter 4 section 4.6.2), since there was insufficient ESAG9-K69 

protein remaining cell-associated to perform a hypotonic lysis assay. An attempt at 

pulse-labelling cells with tritiated myristate did not give any signal; this may have 

been because the amount of tritiated myristate used was insufficient, or it could have 

been because the ESAG9-K69 protein was not GPI anchored. A Western blot of 

ESAG9-K69 protein selected from conditioned medium by immunoprecipitation did 

not give a signal with the anti-CRD (cross-reacting domain) antibody. This indicated 

that if ESAG9-K69 was GPI anchored, then this anchor was not being cleaved by 

GPI-PLC when the protein was shed from the cell. When ESAG6 was shed from the 

cell by hypotonic lysis a signal was seen with the anti-CRD antibody (Schell et al., 

1991). The addition of GPI anchors has been implicated in intracellular trafficking 

and secretion in trypanosomes (Schwartz et al., 2005; Triggs & Bangs, 2003), and so 

would provide a pathway by which ESAG9-K69 is secreted. It would be very 

interesting to conclusively determine whether or not this protein is GPI anchored. 
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7.6 Analysis of role of ESAG9 proteins in the early colonisation of the 
tsetse fly midgut 

 

Analysis of the expression profile of ESAG9-K9 protein revealed that it was 

expressed at a low level by stumpy cells, and its expression peaked 6 to 9 hours into 

differentiation, before being undetectable by 30 hours into differentiation to the 

procyclic form. This expression profile was indicative of ESAG9-K9 protein playing 

a possible role in the early colonisation of the tsetse fly midgut. 

To explore this possibility, in vitro and in vivo assays were used. One potential role 

of the ESAG9 protein is in protecting the parasites from the mammalian complement 

active in the bloodmeal. To investigate this, procyclic form cells, engineered to 

inducibly express either ESAG9-K9 or ESAG-EQ, were incubated with serum 

(containing active complement) from various mammals and their growth assayed 

using a reagent called alamarBlue. It was found that the expression of either protein 

did not enhance survival of parasites under the in vitro conditions used.  

In contrast to ESAG9-K9, ESAG9-K69 protein was secreted/shed by stumpy cells. 

Hence, the protein could also be secreted/shed by stumpy cells differentiating to 

procyclic forms, although this was not confirmed experimentally. Instead, wild-type 

procyclic form cells were incubated with bsf K9:K69 conditioned medium, from 

cells both induced and uninduced for ectopic protein expression, and guinea pig 

serum containing active complement. However, although the conditioned medium 

would contain the secreted ESAG9-K69, this did not enhance the survival of 

procyclic cells.  

In vivo assays were also used to attempt to determine whether ESAG9 proteins play a 

role in the colonisation of the tsetse fly midgut. Tsetse flies were fed with horses’ 

blood supplemented with cultured trypanosomes, as described in Chapter 5 section 

5.4. The ability of bsf K9 and pcf EQ parasites to colonise the fly midgut was then 

assayed by counting the burden of infection by microscopy between 24 hours and 

seven days post-feed. However it proved extremely difficult to quantify the infection 

levels with any degree of accuracy due to the low levels of trypanosome infection 

and the difficulties in counting the infection levels accurately by microscopy. 



 

 212 

Quantitative real-time PCR was also used to quantify the infection levels of 

trypanosomes in tsetse flies (see Chapter 5 section 5.6). This technique also proved 

problematic however; the qPCR reaction was not repeatable. Quantitative PCR has 

been used to successfully quantify levels of parasites in mosquitoes (Bell and 

Ranford-Cartwright 2004) and sandflies (Ranasinghe et al., 2008) but these insects 

are much smaller than tsetse flies, which may make it easier to cleanly extract the 

DNA. Given the difficulties in quantifying the trypanosome infection levels in tsetse 

flies, it was not possible to draw any firm conclusions about whether the ESAG9 

proteins play a role in the early colonisation of the tsetse fly midgut. The expression 

of ESAG9-K9 protein by bloodstream form cells did enhance their ability to infect 

tsetse flies to a small degree (Chapter 5 Figures 5.10, 5.11 and 5.12) but this would 

need to be investigated further and with a more rigorous assay before this could be 

assigned as a function of ESAG9-K9 protein. 

 

7.7 Analysis of the effect of ESAG9 protein expression during murine 
trypanosomiasis 

 

Given that the ESAG9-K69 protein was secreted/shed by both transgenic 

monomorphic cells and by wild-type pleiomorphic stumpy cells, it was possible that 

this protein played a role in parasite-host interactions. This was, therefore, explored 

by performing in vivo and ex vivo experiments with the murine model of 

trypanosomiasis. 

 

7.7.1 Effect of ESAG9 protein expression on parasitaemia in mice 

 

In a series of experiments, mice were inoculated with either 1×104 or 1×103 parasites, 

and their parasitaemias assessed by counting how many parasites were visible in 

blood smears.  

In five separate experiments, mice were infected with bsf K9:K69 parasites (which 

had been shown to secrete/shed ESAG9-K69 protein). In the first two experiments, a 
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starting inoculation of 1×104 was used and in the final three experiments a starting 

inoculation of 1×103 parasites was used. The induction of ectopic gene expression 

was achieved in half of the mice by providing the mice with water containing 

doxycycline. The parasitaemias were then compared between the mice in which gene 

expression had been induced, and those in which gene expression had not been 

induced.  

The experiments and outcomes are summarised in Chapter 6 Table 6.1. In the two 

experiments in which a starting inoculation of 1×104 parasites was used, the +dox 

experienced a higher growth rate of parasites than the -dox mice in one experiment, 

and this difference was statistically significant only between day 3 and day 4. In the 

other experiment there was no difference in growth rate of parasites between +dox 

and -dox mice. 

Of the three experiments in which a starting inoculation of 1×103 parasites was used, 

in one experiment the +dox mice experienced a statistically significant higher growth 

rate than the -dox mice between both days 3 and 4, and days 4 and 5. In a second 

experiment, the growth rate in +dox mice was only significantly higher between days 

4 and 5. In the final experiment there were no statistically significant differences 

between the growth rates of parasites in +dox and -dox mice. 

Thus it can be summarised that the outcomes of these infections of mice with 

transgenic parasites were very variable. It was not therefore possible to draw firm 

conclusions about whether the expression of ESAG9-K9 and ESAG9-K69 proteins 

(and hence the secretion/shedding of ESAG9-K69 protein) was having an effect on 

virulence in the mouse model of trypanosomiasis. However the fact that sometimes 

an effect was seen was, in our opinion, sufficient justification to further explore a 

potential role for ESAG9 proteins in host-parasite interactions using ex vivo FACS 

analysis. 

To determine with more certainty whether the expression of ESAG9-K9 and 

ESAG9-K69 has an effect on the virulence of the infection, quantitative real-time 

PCR could be utilised to determine the number of parasites in the bloodstream of the 

mammal. This would give more accurate data than the Herbert and Lumsden method 

of rapid matching (Herbert and Lumsden, 1976).  
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7.7.2 Ex vivo FACS analysis of spleen cell populations 

 

We utilised ex vivo FACS to analyse the effect of ESAG9 protein expression on 

populations of spleen cells. The technique involved inoculating mice with 

trypanosomes, allowing the infection to develop in vivo, and then harvesting the 

spleens for FACS analysis. Twelve mice were used in this experiment. Eight mice 

were inoculated with 1×104 bsf K9:K69 parasites; half of these were administered 

drinking water containing doxycycline (to induce ectopic gene expression). Four 

mice were inoculated with medium alone, to control for any stimulatory effect on the 

murine immune system that might result from receiving an injection. 

The proportions or apoptosis of, and the interferon gamma production by, different 

spleen cell populations were then analysed by FACS (see Chapter 6, sections 1.4.2 – 

1.4.5). The aspects of the spleen cell populations that were assayed were: the 

proportions of CD4+ T cells, CD8+ T cells, B cells and granulocytes in the spleen; 

apoptosis of CD4+ T cells, CD8+ T cells and B cells; and secretion of interferon 

gamma by CD4+ and CD8+ T cells. The most interesting outcome of these 

experiments was that there was a statistically significant down-regulation of CD4+ T 

cells in the spleens of mice infected with bsf K9:K69 parasites induced with 

doxycycline, when compared to mice infected with bsf K9:K69 parasites that had not 

been induced (Chapter 6, section 6.4.2). No statistically significant differences were 

found between the +dox and -dox mice that were infected with bsf K9:K69 parasites 

in any of the other assays. In some of the assays, there was a statistically significant 

difference between trypanosome-infected (irrespective of induction of gene 

expression) and naïve mice, which was not surprising, and these differences are 

discussed in Chapter 6. 

The mechanism by which the ectopic expression of ESAG9 and ESAGK69 proteins 

by the transgenic parasites might cause a down-regulation of CD4+ T cells is not 

known. Given that the ESAG9-K69 protein is secreted by the cells (see Chapter 4, 

Figure 4.15), whereas ESAG9-K9 remains internal, it is highly likely that the 

ESAG9-K69 protein is the causative agent of the effect seen.  
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The effect of an inhibition of T cell proliferation as a result of trypanosomiasis has 

been observed in in vitro and ex vivo assays a number of other investigators, and this 

will be discussed in section 7.9.4. Macrophages are classically activated during 

early-stage trypanosomiasis (Baetselier et al., 2001), and will therefore be producing 

NO. The importance of macrophages was not explored as part of this study beyond 

whether there was a difference in proportions of macrophages in the spleen between 

the different treatment groups. It would be very interesting to explore whether 

ESAG9-K69 protein could be having an effect on macrophage activation and NO 

production given that other studies have highlighted a link between NO production 

and inhibition of lymphocyte proliferation during trypanosomiasis. 

The activation of macrophages could be explored by various assays. The production 

of NO by cultured macrophages or macrophages harvested from the spleen or lymph 

nodes of trypanosome-infected mice could be measured using a Greiss assay (Green 

et al., 1982). Also, quantitative reverse-transcriptase PCR could be used to determine 

the level of transcription of genes that are involved in NO production, such as NO 

synthase and arginase.  

The proliferation of different classes of lymphocytes (as opposed to the proportion of 

different classes of lymphocytes in the spleen, expressed as a percentage of the total 

number of lymphocytes in the spleen, which is what was assayed in this project) 

could be determined by doing, for example, ex vivo or in vitro growth assays with 

tritiated thymidine. 

A control that was not included in this experiment, but which would be useful for our 

understanding of this process of down-regulation of CD4+ T cells, would be to infect 

mice with transgenic parasites that secrete an alternative protein. This would help to 

determine whether it is the secretion of any protein that results in the effect seen, or 

whether the effect is in fact specific to the secretion of ESAG9-K69. However it 

might be challenging to engineer parasites to secrete an alternative protein. 

Stimulatory effects on the murine immune system by protozoal GPI-anchored 

proteins have been extensively reported (Magez et al., 2002; Tachado et al., 1997). It 

is not known whether ESAG-K69 is GPI-anchored. 
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There are also some other controls that would be beneficial that were not included in 

the original assay. Mice were inoculated with transgenic bsf K9:K69 parasites, or 

with medium for the naïve controls. The ectopic expression of ESAG9 proteins by 

the bsf K9:K69 cell line may have been leaky. Therefore it would also be very useful 

to include the control of mice inoculated with the 427-449 parental cell line (which 

does not express ESAG9 proteins), and provided with water containing doxycycline 

and sucrose or containing sucrose alone. This would also therefore control for the 

effect of administering doxycycline, independent of gene expression. Unfortunately 

these assays have not yet been attempted because our collaborator, Simmi Mahajan, 

is detained in India due to visa issues. 

 

7.8 Overall conclusions 

 

This PhD project has explored the expression profiles, post-translational 

modifications, and functions, of members of the ESAG9 family of proteins. 

ESAGs are a diverse family of proteins found in the telomeric expression sites of 

VSG, and also in chromosome-internal positions. They have been implicated in host-

parasite interactions (Pays et al., 2001). This has been shown conclusively for an 

ESAG gene called SRA (De Greef et al., 1989; De Greef et al., 1994; Xong et al., 

1998). ESAGs 6 and 7, which form the transferrin receptor (Salmon et al. 1994; 

Steverding et al. 1994), have also been implicated in increasing the host range of 

African trypanosomes (Bitter et al., 1998), though evidence which is contrary to this 

theory has also been published (Salmon et al., 2005; Steverding et al., 2006). 

 

In the context of the wider knowledge regarding the functions of some ESAG 

proteins, we explored the possibility of ESAG9 proteins having a function in host-

parasite interactions. Our findings can be summarised as follows:  
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1. Initial bioinformatic analysis showed some similarity to Trypanosoma cruzi 

mucin-associated surface proteins (MASPs), and predicted the occurrence of 

post-translational modifications.  

2. Messenger RNA expression profiles of various ESAG9 proteins had been 

characterised and the mRNAs shown to be up-regulated in stumpy forms; the 

protein-expression profiles of ESAG9-K9 and ESAG9-K69 showed that these 

proteins were expressed by stumpy and differentiating cells.  

3. The three proteins investigated using transgenic cell lines, ESAG9-K9, 

ESAG9-K69, and ESAG9-EQ, varied in their sub-cellular location and post-

translational modifications.  

4. ESAG9-K69 was shown to be secreted/shed by bloodstream form transgenic 

and wild-type pleiomorphic cells.  

5. The ability of ESAG9-K9 and ESAG9-EQ proteins to enhance the 

colonisation of the tsetse fly midgut by transgenic parasites was explored but 

these data were inconclusive.  

6. The expression of ESAG9-K9 and ESAG9-K69 by transgenic bloodstream 

form parasites in the mouse host resulted in a significant decrease in the 

number of CD4+ T cells in the spleen when compared to controls. ESAG-

K69 can therefore be tentatively assigned a role in suppression of the host 

immune response by the parasite, though it is important to note that this 

experiment has not yet been repeated. 

 

7.9 The impact and relevance of these data 

 

The characterisation of an ESAG9 protein as a potential immunomodulator that is 

secreted/shed by Trypanosoma brucei brucei is a novel and interesting one. The 

findings of this project can be compared and contrasted with what is known about 

other ESAGs, other stumpy cell specialisations, other trypanosomatid secreted 

proteins and immunomodulators, and also compared with what is known about the 
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MASP proteins of T. cruzi. This puts the data regarding ESAG9 in the wider context 

of what has been discovered so far in this field of trypanosomatid biology. 

 

7.9.1 Comparison to other ESAG gene families 

 

The attributes of the other ESAG gene families are summarised in Chapter 1, Table 

1.1. Not all of the ESAG families have been characterised in much detail, indeed 

only ESAGs 6, 7 and SRA have had a function conclusively ascribed to them. Where 

characterised, however, the genes have been shown to be important in host-parasite 

interactions. ESAGs 6 and 7 form the transferrin receptor (Tf-R), which is 

responsible for binding and uptake via the flagellar pocket of host transferrin in 

bloodstream form parasites (Salmon et al., 1994; Steverding et al., 1994).  Both these 

proteins are N-glycosylated and ESAG6 has a GPI anchor, as does ESAG9-EQ. 

However there is no sequence similarity between either of these ESAGs, which ruled 

out ESAG9 playing a similar role.  

 

It was the discovery that the different Tf-Rs formed by ESAGs 6 and 7 from different 

VSG expression sites had varying abilities to bind transferrin from different mammal 

hosts (Bitter et al., 1998) that first bought about the hypothesis that a function of 

ESAGs is to increase the host range of T. brucei (Bitter et al., 1998; Pays et al., 

2001). Indeed, the serum resistance associated gene (SRA) is an ESAG, and has been 

shown to be responsible for the ability of T. b. rhodesiense to be human infective 

(whereas T. b. brucei is not human infective) (De Greef et al., 1994). 

 

In this context, if the function of ESAG9s is, as discussed, to aid the survival of 

stumpy parasites by manipulating the mammal host immune system, it is possible 

that slightly different versions of ESAG9 could perform this role optimally in 

different mammal hosts. However, the mode of expression of ESAG9 genes is very 

different to that of ESAGs 6 and 7. ESAGs 6 and 7 could be described as canonical 

ESAG genes, in that they are present in all the ESs that have been sequenced so far 
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(Berriman et al., 2002; Hertz-Fowler et al., 2008). Members of the ESAG9 gene 

family are rarely found in expression sites however: there is one ESAG9 gene in an 

expression site in T. equiperdum (Florent et al., 1991), one in an expression site in T. 

b. brucei strain Lister 427 (Hertz- Fowler et al., 2008), and one ESAG9 pseudogene 

in a metacyclic expression site in T. brucei strain EATRO 795 (Graham et al., 1999) 

(though there may be other ESAG9 genes in expression sites that have not yet been 

sequenced). Therefore most expression sites do not in fact contain ESAG9. There 

does not seem to be selective expression of ESAG9 mRNAs by stumpy parasites; the 

T. b. brucei EATRO 2340 and AnTat1.1 strains express a different array of ESAG9 

mRNAs, but this is due to the presence or absence of the genes in each strain 

(Chapter 3 section 3.1.4 and K.M. unpublished data) rather than selective expression. 

There could be differences between the relative abundance ESAG9 transcripts or 

proteins expressed within each strain but this has not been investigated. 

 

It may be more pertinent to compare ESAG9 to ESAG5 than to the other ESAGs that 

have been characterised. There is not as yet any published experimental data 

regarding the function of ESAG5. However, bioinformatic analyses have predicted 

ESAG5 proteins to be N-glycosylated, and either secreted (due to the presence of a 

signal peptide), or membrane-bound (Barker et al., 2008). ESAG5 could therefore 

represent another family of glycosylated, secreted proteins, alongside ESAG9. 

ESAG5 and GRESAG5 (Gene Related to ESAG5) bear some resemblance to the 

bactericidal/permeability increasing (BPI) protein family, and it was hypothesised 

that ESAG5 may function as a receptor (Barker et al., 2008). There is no sequence 

similarity between ESAG5 and ESAG9 genes (data not shown). ESAG5 genes are 

more canonical ESAGs than ESAG9 in that they are found in 13 out of the 14 

sequenced expression sites in T. b. brucei strain Lister 427 (Hertz-Fowler et al., 

2008). ESAG5 genes are also found in Trypanosoma vivax, T. congolense, and there 

is on GRESAG5 gene in both T. cruzi and Leishmania ssp. Therefore they also 

appear to be more conserved in evolution than ESAG9 genes, which are apparently 

confined to T. brucei ssp and T. equiperdum.  
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It can be summarised from comparing ESAG9 with the other ESAGs that, although 

ESAG9 is not a canonical ESAG, the characterisation of ESAG9 as a potential 

immunomodulator is new and additional evidence that ESAG gene families are 

important in host-parasite interactions. 



 

 221 

 

7.9.2 Other specialisations of stumpy form parasites 

 

ESAG9 transcripts are enriched in stumpy forms. If ESAG9 proteins perform a 

function in immunomodulation, and therefore enhance parasite survival, it is 

surprising perhaps that there is not selective pressure for slender cells to express 

these proteins. However stumpy cells have other specialisations to help them avoid 

the mammalian immune response. Stumpy cells are more resistant to antibody-

mediumted lysis, and can clear VSG-antibody complexes from their surface almost 

twice as fast as slender forms (Engstler et al., 2007), as discussed in Chapter 1 

section 1.2.2.3. Stumpy cells are cell cycle arrested and are not undergoing antigenic 

variation and any mechanisms that prolong their survival will increase the chance of 

transmission to the tsetse fly. Some of these mechanisms may be unique to stumpy 

cells because if they were expressed throughout the mammal stage of the life cycle 

they would make the disease more virulent. If this resulted in decreasing the 

longevity of the host it would be disadvantageous to the parasite. 

 

7.9.3 Comparison to other secreted factors 

 

ESAG7, which is a constituent of the transferrin receptor (Tf-R), has been identified 

in the conditioned medium of T. b. brucei bloodstream form cells by Western 

blotting (Salmon et al., 1994). However, it was not clear from this paper whether the 

conditioned medium was filtered prior to analysis to remove any remaining 

trypanosomes. Also, the Tf-R remains membrane associated in the flagellar pocket 

via ESAG6, which is GPI-anchored. The ESAG7 does not have a GPI anchor, so it is 

probably not, in fact, being actively secreted by bloodstream form cells, rather it is 

shed from the membrane if it comes loose from its heterodimeric partner, ESAG6. 

Other factors secreted by T. brucei and other trypanosomatid parasites have been 

identified. A molecule called TLTF was identified as an immunomodulator secreted 

by T. brucei (Olsson et al., 1991) but this work has been called into question by other 
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researchers in the field (refer to Chapter 1 section 1.5.2.3). The conditioned medium 

of T. brucei parasites has been shown to have immunomodulatory properties 

(Holzmuller et al., 2008) but the secretome of T. brucei has not, to date, been 

analysed in detail by proteomics so no other specific secreted molecules have been 

identified. 

Trypanosoma cruzi parasites have been shown to shed SAP proteins, and these have 

been implicated in the process of host cell invasion by this parasite (Baida et al., 

2006). Given that T. brucei parasites remain extracellular throughout their life cycle 

and do not need to invade host cells, it is unlikely that there are any functional 

similarities between ESAG9s and SAPs, although ESAG9s did select other members 

of the T. cruzi mucin-like glycoprotein superfamily in BLAST analysis, as described 

previously. 

The secretome of the kinetoplastid parasite Leishmania donovani has been analysed 

in more detail. This study revealed that a large number of molecules are secreted by 

the promastigote stage of the parasites life cycle. Promastigotes are found in the 

midgut and proboscis of the insect vector of Leishmaniasis (the sand fly) and are the 

infective stage that are taken up into the bloodmeal and phagocytosed by 

macrophages. Amongst other molecules, an ortholog of the mammalian Macrophage 

Migration Inhibitory Factor (MIF) was secreted by these parasites (Silverman et al., 

2008). In mammals, MIF is secreted primarily by activated macrophages (Calandra 

et al., 1994) and is involved in T cell activation and in reducing the rate of 

macrophage apoptosis. There are in fact two MIF proteins in Leishmania major, 

LmjMIF1 and LmjMIF2, with LmjMIF1 only being found in amastigotes which is 

the intracellular stage (Richardson et al., 2009). These proteins have some structural 

similarities to the mammalian MIF (Richardson et al., 2009). No experimental 

evidence has been published to date to show a biological function for MIF in 

Leishmaniasis however this is no doubt an area of active investigation. There was no 

sequence similarity between MIF and the ESAG9 protein sequences (data not 

shown), so it is unlikely that ESAG9 proteins would be performing a similar 

function.  
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Although MIF and ESAG9-K69 are unlikely to perform the same function, the fact 

that L. donovani secretes an ortholog of a characterised immunomodulatory 

molecule, and that T. brucei conditioned medium has been shown to have 

immunomodulatory properties, does set a precedent for secretion of immunodulators 

by kinetoplastid parasites. 

 

7.9.4 Inhibition of lymphocyte proliferation during trypanosomiasis 

 

Published data indicate that an inhibition of lymphocyte proliferation occurs as a 

result of trypanosomiasis in mice. Macrophages were transferred from T. brucei 

infected mice to a new host and this resulted in an inhibition of proliferation of 

lymphocytes when stimulated with the mitogen Con-A (Mabbott et al., 1995). The 

same experiment was carried out but using mice in which NO synthesis had been 

temporarily inhibited by administering L-NAME in the mouse drinking water, and 

this resulted in a partial recovery of the proliferation of lymphocytes (Mabbott et al., 

1995). In in vitro assays, spleen cells were incubated with soluble trypanosome 

lysate, or live T. brucei parasites, and an inhibition of the proliferation of 

lymphocytes was reported (Sternberg & Mabbott, 1996). Moreover, the inclusion of 

a nitric-oxide synthase inhibitor decreased the degree of inhibition. This experiment 

was not carried out with trypanosome-conditioned medium however, which would 

have been interesting. The results were suggestive of nitric oxide (NO) playing a role 

in this inhibition. Similar results were seen by Beschin et al., whereby an inhibition 

of T cell proliferation early on in murine trypanosomiasis was seen, and this process 

was partially NO-dependent (Beschin et al., 1998). Mutant mice have been generated 

by Wei et al. that are deficient in inducible Nitric Oxide Synthase (iNOS) (Wei et al., 

1995). The proliferation of CD4+ lymphocytes during trypanosomiasis was 

compared in iNOS-deficient mice and control mice and found to be inhibited in the 

control mice compared to the iNOS-deficient mice (Millar et al., 1999).  

Therefore there is a precedent in the literature for trypanosomiasis to cause an 

inhibition of CD4+ T cell proliferation early on in the course of the disease. This 

process seems to be partially dependent on the presence of NO. Secreted ESAG9-
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K69 protein could be a candidate mediator of this process, and could be exerting an 

effect via the NO pathway. A number of experiments would have to be carried out to 

validate this hypothesis, including confirming that ESAG9-K69 results in an 

inhibition of proliferation of CD4+ T cells as well as a decrease in the percentage of 

CD4+ T cells. 

 

7.9.5 Comparison to mucin and MASP proteins 

 

Bioinformatic analysis revealed that ESAG9 proteins had some sequence similarity 

to the mucin-associated surface proteins (MASPs) of T. cruzi. Mucins were 

originally identified in vertebrate epithelial tissues. Genes encoding mucin-like 

glycoproteins, termed TcMUCs were then also discovered Trypanosoma cruzi (Di 

Noia et al., 1995; Reyes et al., 1994), which is the causative agent of Chagas disease. 

The mucin-like glycoprotein superfamily encompasses a large number of genes, 

which total 6% of the T. cruzi genome (Buscaglia et al., 2006). Within this are the 

mucin-associated surface proteins (MASPs), which are small GPI-anchored proteins 

with sequence similarity to TcMUCs (Atwood et al., 2005; El-Sayed et al., 2005), 

and the Serin-, Alanine-, and Proline-Rich (SAP) proteins which also have some 

sequence similarity to mucins (Baida et al., 2006). MASPs are glycosylated by N-

linked glycosylation (Atwood et al., 2006), as are some ESAG9 proteins. MASPs are 

also assigned as being membrane-associated or extracellular (Atwood et al., 2006) 

and are expressed by trypomastigotes, which is the extracellular stage of the T. cruzi 

life cycle whilst in the mammal host. Therefore the similarities between MASPs and 

ESAG9s goes beyond the peptide sequences, but extends to their expression profile 

and post-translational modifications. When reciprocal BLAST analysis was carried 

out (refer to Chapter 3 section 3.2.5) it was in fact ESAG-EQ which was the highest 

scoring hit out of any of the ESAG sequences, which is surprising perhaps given that 

this particular ESAG9 does not appear to be modified by N-glycosylation. 

Unfortunately, a biological function has not been proposed for MASPs, so it is not 

possible to contrast their function with the putative function of ESAG9s as 
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immunomodulators. However it will be interesting to see if future research in this 

area reveals any similarity of function between these gene families. 

 

 

7.10 Future Directions 

 

There are some questions that still remain from the work that was carried out during 

this PhD project. There are also avenues that would be very interesting to explore in 

future experiments. 

The genomic context of ESAG9 genes has only been partially determined by 

sequencing efforts so far. The T. b. brucei genome was sequenced using strain 927 

(Berriman et al., 2005) and the telomeric expression sites are not represented in this 

database. The telomeres of strain Lister 427 have subsequently been sequenced, and 

an ESAG9 was found in only one of the characterised bloodstream form expression 

sites (Hertz-Fowler et al., 2008). It would be very interesting to determine whether 

the three ESAG9 genes most extensively explored in this project (termed ESAG9-

K9, ESAG9-K69 and ESAG9-EQ) are within expression sites in the pleiomorphic T. 

b. brucei EATRO 2340 strain in which they were first identified by Keith Matthews. 

RNA run-on analysis based on the sensitivity of gene expression to α-amanitin 

would answer this question. It is unlikely that all three genes are in expression sites 

however because they are expressed simultaneously, and therefore would have to be 

in the same expression site. 

This project did not explore the control of ESAG9 gene expression. Bioinformatic 

analyses using a tool called MEME indicate that there are at least two motifs 

common to the 3’ UTRs of ESAG9 genes; these could be involved in controlling 

gene expression. It would be possible to create transgenic cell lines in which certain 

ESAG9 gene(s) were lacking these motifs and use these to determine if this altered 

gene expression patterns. 
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Finally, and perhaps most importantly, the phenotype of immunomodulation 

resulting from ectopic expression of ESAG9 proteins could be explored in greater 

detail. Initially these experiments need to be repeated with further controls, as 

detailed in Section 7.7.2.  
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Appendix A: Buffers and Recipes 

 

Western blot solutions 

[10x] Running Buffer 

Tris-HCl, pH8.3 0.25 M 

Glycine 1.92 M 

SDS 1% 

Laemmli Sample Buffer 

Tris-HCl, pH6.8 62.5 mM 

SDS 2 % 

Glycerol 10 % 

Bromophenol blue 20 µg 

Coomassie Blue Stain 

Methanol 50% 

Acetic Acid 10% 

Coomassie Brilliant blue R250 0.1 % w/v 

Destain Solution 

Methanol  40% 

Acetic Acid 10% 

Water  50% 

[10x] Blot Transfer Buffer Stock 

 Tris (do not pH) 0.025 M 

Glycine  0.15 M  

1×  Completed Transfer Buffer 

SDS 0.2 % 

[10x] Transfer Buffer Stock 10 %  

Methanol 20 % 



 

 252 

Ponceau Stain  

Ponceau S 0.4% 

TCA 3% 

  

  

Trypanosome transfection  

ZPFM  

NaCl 132 mM 

KCl 8 mM 

Na2HPO4 8 mM 

KH2PO4 1.5 mM 

MgOAc.4H2O 0.5 mM 

CaOAc/Cl2 90 µM 

Glucose (ZPFMG) 0.5% 

Immunoprecipitation 

IP lysis buffer  

Tris HCl 10 mM 

NaCl 150 mM 

pH 8.0  

Complete with Roche EDTA-free Protease inhibitor cocktail, one tablet per 25ml. 

Myristate labelling 

Modified RPMI medium  

Commercially available RPMI medium plus:  

Na-HEPES 25 mM 

L-methionine 0.15 µg/ml 

L-cysteine 50 µg/ml 

L-tyrosine 20 µg/ml 

L-valine 20 µg/ml 
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Glucose 10 mg/ml 

Fatty acid-free BSA 1 mg/ml 

Immunofluorescence solutions 

DAPI working stock 

4',6-diamidino-2-phenylindole (DAPI) 10 µg ml-1 

MOWIOL Mounting Medium 

Glycerol 25 % w/v 

MOWIOL 10 % w/v 

Tris pH8.5 0.1 M 

Medium required heating at 50 °C to dissolve MOWIOL.  Aliquots were stored at -20 °C. 

Voorheis’s modified PBS (vPBS) 

NaCl 137 mM 

KCl 3 mM 

Na2HPO4 16 mM 

KH2PO4 3 mM 

Sucrose 46 mM 

Glucose 10 mM 

pH7.6  

Phosphate Buffer Solution (PBS) 

NaCl 137 mM 

KCl 3 mM 

Na2HPO4 16 mM 

KH2PO4 3 mM 

pH7.6  

 

Miscellaneous solutions 

TAE 1×   

Tris-Acetate 40 mM 
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EDTA 1 mM 

pH 8.0  

TBS 10x  

NaCl 140mM 

Tris  10mM 

TE  

TrisCl 10 mM 

EDTA 1 mM 

  

 

Small scale plasmid preperation solutions 

Solution I  

glucose 50 mM 

EDTA 10 mM 

Tris-HC1 (pH 8.0) 25 mM 

Solution II  

NaOH 0.2 M 

Sodium dodecyl sulfate (SDS). 1% 

Solution III  

Potassium acetate 3 M 

pH 5.2  

  

Tsetse fly DNA extraction buffers 

TNES-Urea  

Tris-HCl 10 mM 

NaCl 125 mM 

EDTA 10 mM 

SDS 0.5% 
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Urea 4M 

CTAB  

CTAB (Sigma) 2% 

NaCl 1.4 M 

EDTA 20 mM 

Tris HCl 100 mM 
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Appendix B: Primers 

 

Name of primer Sequence 

TaqMan Forward TAGCGGCCACGAAAATGA 

TaqMan Reverse CCAGTTCCCCTAGCTTGGTT 

TaqMan Probe 6-FAM-CAGCAATAGAAAAGCTCA-MGB 

EQ Forward A AAGCTTATGCACCGGCTTGCAACAGTTC 

EQ Reverse A GGATCCTGGTTAGTATGGACCTCTGTTCCCATATTCTGAGTCCAG 

EQ Forward B ATACTAACCAGGATCCACTTGACCCTTCGGTTTCGCGGCACC 

EQ Reverse B GGATCCTTAAGAGTACATGAGGATTAAT 

K69 Forward A CTCGAGATGTTGAGTTTCAGAACGGC 

K69 Reverse A GGATCCTGGTTAGTATGGACCTCCACGCCTGTAGGCTGAGG 

K69 Forward B ATACTAACCAGGATCCACTTGACACTCCAGTTTCCCCAACCC 

K69 Reverse B GGATCCTTAAAAACTCATGAGACCC 

 

 

Ty-tag sequence 

 

GluValHisThrAsnGlnAspProLeuAsp 

 

 

EVHTNQDPLD 
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Appendix C: pGEM-T Easy Vector Map 
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Appendix D: Antibody concentrations 

 

Western blotting 

 

α-ESAG9-K9 

α-ESAG9-K69 

BB2 

α-Tubulin 

α-VSG-221 

α-CRD 

1:100 

1:250 

1:5 

1:5,000 

1:10,000 

1:60 

 

Immunofluorescence 

 

α-ESAG9-K9 

BB2 

α-EP procyclin 

α-BiP 

1:250 

1:50 

1:500 

1:500 

 

Immunoprecipitation 

 

BB2 

α-TbZFP3 

1:10 

1:500 

 

FACS analysis antibodies and suppliers (all antibodies used at 1:100) 

Rat Ig2a isotype control, PE-conjugated, eBioscience 

Rat Ig2a isotype control, FITC-conjugated, BD Pharmingen 

Rat Ig2a isotype control, Biotin-conjugated, BD Pharmingen 

α-CD4, FITC-conjugated, BioLegend 

α-CD8a, PE-conjugated, BD Pharmingen 

F4/80, alexa-flour 488-conjugated, Caltag Laboratories 

Siglec-F, PE-conjugated, BD Pharmingen 

Gr-1, Biotin conjugated, BD Pharmingen 

B220, PerCP-conjugated, BD Pharmingen 

APC Annexin V, BD Pharmingen 
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Appendix E: Alignment of ESAG9 3’UTRs 
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