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ABSTRACT 

The Euclidean version of field theory is defined on a d-

dimensional Euclidean space; the surfaces and interfaces are (d-n)

dimensional extended objects given by imposing n constraints on the 

d-dimensional Euclidean space. The effective action describing the 

latter can be derived from the former, in the long-wavelength limit, 

by a semiclassical method. One can then study the renorinalisability, 

and associated properties, of the effective action. 

In Chapter I of this thesis, the connection between field 

theory and classical statistical mechanics is discussed; ideas of 

renormalisation group and differential geometry of manifolds are 

also covered. in chapter II, the actual derivation of effective 

action from scalar field theory is demonstrated by using the method 

of collective coordinates, which is a semiclassical method. The 

higher derivative geometrical interactions are also derived, from the 

scalar field theory by using a generalised collective coordinate 

method. In Chapter III, the differential geometric analysis, on the 

(d-l)-dimensional subxnanifold embedded in a d-dimensional Euclidean 

space, is set up in order to identify those geometrically invariant 

interactions from Chapter II. In Chapter IV, the renormalisation of 

the simplest of those interactions, the contraction of the second 

fundamental form with the metric tensor (g.b), is studied and 

carried out within the framework of an CC expansion in 1+6 

dimensions. In Chapter V, the technique developed in Chapter IV is 

extended to consider a system with extra Goldstone modes. 
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INTRODUCTION 

CHAPTER I INTRODUCTION 

Parallelism and analogy have been used as very powerful tools 

to understand the mysteries of our universe since the time of Greek 

physics. Recently, the connection between quantum field theory and 

classical statistical mechanics has generated very fruitful results 

both in particle physics and many-body theories. In this 

introduction, we shall first discuss important phenomena occuring 

in statistical physics, i.e., phase transitions and critical 

phenomena, then the connection between these phenomena and quantum 

field theory will be pointed out. The ideas of renormalisation group 

will also be explained, especially their applications in both 

fields. Some differential geometry concerning manifolds will be 

introduced next as the tool to understand surfaces and interfaces. 

Finally, the physical significance of these extended objects will be 

discussed. 

1.1. Many Scales of Length in Physics 

Most of the problems in conventional physics have their own 

scales of length, i.e., a certain scale of length is usually 

associated with a physical problem. Even in the same physical 

system, the effects of different scales of length have little 

influence on each other. But there is a class of problems whose many 

scales of length make equal contributions in the same physical 

system. A simple example is given by the critical point in a fluid 

[Wilson 19791: The critical point of water is specified by that 

temperature and pressure where the density difference between 
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INTRODUCTION 

coexisting liquid and vapour goes to zero (at 217 atmospheres, 647 

K). At its critical point, fluctuations in water density could be 

seen from the mixture of liquid drops and gas bubbles;' moreover, 

these fluctuations in density happen at all possible scales from 

single molecule up to the volume of the specimen. This phenomenon 

can be observed directly in fluids: as the system approaches its 

critical point, one of the length scales will be comparable to the 

wavelength of light, the fluctuations begin to scatter light 

strongly and the fluid turns milky. This opalescence persists even 

when the system is extremely close to the critical point. Problems 

with many scales of length often relate to phenomena near the 

critical region, therefore, they are the problems of critical 

phenomena. 

In physics, the equal importance of multiple scales of length 

is usually associated with scale invariance. We may use the notion 

of the scale transformation to classify physical systems into scale-

dependent and scale-invariant systems. Ordinary physics relating to 

some particular length scale is of course scale-dependent. Scale-

invariant physics is quite different from ordinary physics. If 

scale-invariant physics is described by, for instance, the 

Hamiltonian of the system, then the effective Hamiltonian will not 

change even when the length scales change. Examples are: the 

critical point of a statistical system undergoing a second order 

phase transition (A discussion of the order of phase transitions 

will appear in the next section); the limit of collision energy very 

much 'larger than the typical hadron masses in particle physics. In 
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such cases, the effects of the degrees of freedom associated with 

all scales of length are naturally very important; many scales of 

length mean very many degrees of freedom in the physical system, 

which is then usually not solvable in the conventional sense. A 

mathematical method called the renormalisation group (RG), which 

originates from particle physics, has been generalised to deal with 

problems that have multiple scales of length. The essential ideas of 

the RG method are to incorporate the effects of the short 

wavelengths into the effective Hamiltonian at each step of scale 

transformation, i.e., the old Hamiltonian H(s) for the old degrees 

of freedom (s), will be transformed into H'(s') for the new degrees 

of freedom (s'), the number of degrees of freedom being reduced as 

the length scale increases. The change from H(s) to H'(s') is 

called a renormalisation group transformation. The method of 

renormalisation group is thus very closely related to the scaling 

behaviour of the physical systems. 

Close to, but not at critical point, there is a limit to the 

range of all possible scales of length, called the correlation 

length. At separations greater than the correlation length, density 

correlations decrease exponentially with distances; up to the 

correlation length, they decay only by a power law. Therefore, 

regions separated by a distance greater than the correlation length 

are essentially independent from each other. Phase transitions of 

second order (now more commonly known as continuous phase 

transition) correspond to the divergence of the correlation length. 

When the method of renoririalisation group is used to reduce the 
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number of degrees of freedom in a physical system, correlation 

length may also be regarded as the minimum size one can reduce to 

without qualitatively changing the properties of the system [Wilson 

and Kogut 19741. In the case of quantum field theory, which has 

infinite number of degrees of freedom, the correlation length is 

usually the Compton wavelength of the particle with the lowest mass. 

This hints to us that quantum field theory corresponds to a critical 

region and massless field theory to a critical point. 

In the following sections, we expand on these ideas and 

relationships. 

1.2. Phase Transitions and Critical Phenomena 

In equilibrium statistical mechanics, the study of phase 

transitions is one of the most interesting and challenging problems. 

Most substances in thermodynamical systems change from one distinct 

form or phase to another, as the temperature, pressure, or other 

conditions are varied. Simple examples of phase transitions are: 

liquid-gas transition, order-disorder transition in the magnetic 

system, etc. Mathematically, the task is to explain or derive the 

existence of phase transitions and the behaviour of the transition 

point from the statistical-mechanical ensembles. If we believe that 

the partition function of a statistical system contains all the 

essential information necessary for the study of phase transitions 

[Onsager, 19441, a phase transition point would be a singular point 
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of the partition function. Therefore, it is necessary to go to the 

thermodynamic limit to have a phase transition in the mathematical 

sense. Consider a statistical system specified by some thermodynamic 

potential; the potential cannot be expanded by the Taylor's series 

about the transition point because of the above-mentioned non-

analiticity. Normally, the order of phase transitions corresponds 

to one of the particular derivative of some thermodynamic potential, 

which could be discontinuous or infinite. Thus following Landau 

[Landau and Lifshitz, 19691, the liquid-gas transition is a first 

order transition (but water-vapour transition at 647 degrees Kelvin 

and pressure of 217 atmospheres is a second order transition) since 

the state of the body, which may be characterised by the order 

parameter, changes discontinuously. In general, it is sufficient to 

use the value of the order parameter, if one exists, to specify the 

order of the phase transition [Pfeuty and Toulouse, 1977]. But what 

is the order parameter? We shall use a thermodynamical argument to 

illustrate its physical meanings. The order-disorder phase 

transition is actually quite a general property of many-body 

systems. For a system restricted to a fixed volume, the state of 

thermodynamic equilibrium at temperature T is that which minimises 

the free energy 

(1.1) 	 F=U - TS. 

At high temperature, the negative second term dominates, so that the 

minimum value of F is related to the maximum value of entropy S; 

therefore, it is a disordered phase at high temperature and the 
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order parameter is typically zero. At low temperature, the internal 

energy. U is the dominating factor, the state with the minimum 

internal energy is the ordered state and the order parameter is 

typically non-zero. Examples of order parameters are: the 

homogeneous magnetisation in a ferromagnetic transition, the 

magnitude of the alternating magnetisation in an antiferromagnetic 

transition, and the difference in density between liquid and gas in 

the liquid-gas transition. 

Near a critical point, one observes that physical quantities 

obey some sort of power laws. Taking the spin system as an example, 

the order parameter M, which is the magnetisation in this case, the 

specific heat C, the magnetic susceptibility % and the correlation 

length behave respectively as 

(1.2)  
/ 

where all critical properties are proportional to the absolute value 

of the reduced temperature t, t=(T-T)/T,  raised to the power of 

the critical exponent o, 9 , 	, 9, respectively. These critical 

exponents are the physical quantities measured by 	the 

experimentalists. One remarkable thing about critical exponents is 

that they do not take any arbitrary values; they satisfy some sort 

of simple relations like Q + 2 + = 2, which are called 
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scaling laws. The idea of scaling was first suggested by Widom 

[Widom 19651, who conjectured that the equation of state near the 

critical point should be written as the following form 

( ± )

(1.3) 	H = M ~ M4 

where H is the applied magnetic field. The equation of state (1.3) 

depends only on a single variable, instead of the expected two 

variables, M and T. We may then apply the following scale 

transformation to Widom's equation of state, 

tA 	 Ii.4 '  

(1.4) 	 1< 
H - 
	/ 	 H 

it is very easy to see that it is invariant. Other similar scaling 

functions may be written for the singular part of the free energy 

and for the correlation function. Using the above equations plus the 

equation of state, the relations among critical exponents, e.g. O + 

2 + = 2, can be derived. This is the reason why the relations 

among the critical exponents are called the scaling laws. 

There is another interesting property of critical behaviours, 

namely, different physical systems can be assigned to a small number 

of classes. Specifically, the critical exponents are quite 

independent of the microscopic details such as the strength and the 

precise range of the interaction (first and second neighbours etc.) 
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or the structure of the lattices as in the Ising model. This is the 

concept of universality. As we shall see in the later sections, 

scaling and universality near the critical region may be explained 

by the renormalisation group analysis. But what characteristics of a 

physical system specify the class which the system belongs to? 

Since the critical exponents have shown a clear dependence on the 

number of space dimensions d and on the number of dimensions and 

symmetry of the order parameter n, therefore, at least d and n 

are required to specify the universality classes (If the range of 

interactions decays as a power law, e.g. dipolar forces, this may 

also be important). A table of universality classes is given in 

Wilson [Wilson 1979]. 

1.3. Connections Between Field Theory and Statistical Mechanics 

Quantum field theory is one of the most obscure and complicated 

subjects in the history of science. It has been studied since the 

the time of the discovery of quantum mechanics, and it is still 

being developed nowadays. There were times that the majority of 

theoretical physicists believed that the concepts of quantum field 

theories should be abandoned altogether, but quantum field theories 

still survive today and are even stronger than ever. When quantum 

theory was discovered by Planck at the turn of the century, the 

essential research interests were the behaviours of atoms and 

radiation. Although the radiation is a "field" itself, physicists 

were more interested in the behaviour of the sources of the fields, 
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the electrons in the atoms, instead of the fields. This lead to the 

discovery of quantum mechanics, which deals mainly with material 

particles, during 1925 to 1926. The classical electromagnetic field 

theory was completed after the discovery of Einstein's special 

theory of relativity in 1905. The quantisation of electrodynamics 

was only partially completed by Dirac in his 1927 paper [Dirac 19271 

of the mathematical treatment of the spontaneous emission of 

radiation from the atom. His ideas are based on the classical ideas 

of treating fields as oscillators. This quantum mechanical treatment 

of radiation provides a mechanism to explain how photons can be 

freely created and destroyed. Thus, fundamentally speaking, 

particles and fields are treated differently in quantum mechanics; a 

physical system composed of material particles is described by 

calculating the probabilities for finding each particle in any given 

region of space or range of velocities, but the fields are quantised 

into photons which can be created and destroyed. 

The central new ingredient of quantum field theory is the idea 

that the probability wave of a material particle should also be 

quantised as the electromagnetic radiation has been done; this is 

often referred to as second quantisation. The material particles can 

be understood as the quanta of various fields, just as the photon is 

the quantum of the electromagnetic field. Based on the principles of 

relativity and quantum mechanics, quantum field theory adopts the 

philosophy that the essential reality is a set of fields. All else 

is derived as a consequence of the quantum dynamics of these fields. 

Of course, there were some immediate problems for quantum field 
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theory. 	The first one is the existence of particles with negative 

energy; this problem was first solved by Dirac in his "hole" theory. 

There may exist some unfilled "holes" in the sea of the negative 

energy particles, and these "holes" would behave like particles of 

positive energy with opposite electrical charges; they are the 

"antiparticles" in contrast to the particles. Dirac's "hole" theory 

can even offer a mechanism for the creation and annihilation of 

particles without using the ideas of quantum field theory. To the 

mind of Dirac, the "hole" theory is the result of the marriage of 

quantum mechanics and special relativity, therefore, it is not 

necessary to accept the quantum field theory in order to describe 

any. material particles except the photon. This negative energy 

problem can also be solved in quantum field theory without using the 

ideas of unobserved particles of negative energy, and still keeps 

the mechanism of creation and annihilation of particles and 

antiparticles. The second major problem is that of infinities. This 

one can only be solved by the method of renormalisation, which will 

be discussed in the next section. Quantum field theory gave the 

concepts of particles new interpretations, and also changed the 

concepts of interactions or forces. For example, the force between 

two charged particles is no longer understood as the interaction of 

the classical electromagnetic field with the charged particles. 

Instead, the interaction happens as the results of the continual 

exchange of the quanta of the electromagnetic field, i.e. by 

exchanging the photons. This picture of interactions should also 

apply to other types of forces as the results of exchanging virtual 

particles. They are called virtual particles because it would 
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violate the conservation law of energy to create these exchanging 

particles as real particles; the process is allowed by the 

uncertainty principle of Heisenberg. 

There are several equivalent formalisms of quantum field 

theories. The path integral formulation of Feynnian's [Nash 1978] is 

the simplest and clearest in physical concepts among all the 

different formalisms of quantum field theories. The advantages of 

working in the path integral formulation are at least two fold: 

first of all, it gives a very simple and physically intuitive 

connection. between classical and quantum theories; secondly, it 

also provides an extremely beautiful analpgy with classical 

statistical mechanics [Symanzik, 1958]. It is a well known fact that 

a field theory defined on a d-dimensional Minkowski space will be 

transformed into a field theory on a d-dimensional Euclidean space 

by applying the Wick rotation to the original theory. This 

Euclidean field theory is also one of the essential tools in the 

rigorous approach to the construction of an interacting quantum 

field theory [Simon, 1975]. The connections between quantum field 

theory and classical statistical mechanics started to be noticed by 

the majority of physicists after they had realised that some of the 

long standing difficult problems in classical statistical mechanics 

could be solved by borrowing techniques developed in quantum field 

theories, for example, the problem of calculating the critical 

exponents for the second order phase transitions is connected to the 

control of infrared divergencY es in the massless field theory [Amit 

19781. The explicit connection between the two subjects are 
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given in the following table which is summarised from Parisi [Parisi 

1980]. 

Quantum Field Theory Classical Statistical Mechanics 

Minkowski space Euclidean space 

(3=kT 

H 

Feynman factor for amplitudes: 

exp (i/'t) 

Boltzmann factor for probabilities 

: exp (-(9 H) 

Sum of all vacuum to vacuum 

diagrams 

j
D[#] 	exp (i2/i) 

Partition function: 

JD[] 	exp 

Vacuum energy Free energy 

Vacuum expectation value: 

('0IA0> 

Statistical expectation value: 

<A> 

Quantum fluctuations Statistical fluctuations 

Mass (Correlation length) 
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Green functions: 

('O(T[(x)(0)]J 0> 

.,, exp im 
( 	

t 

Correlation functions: 

<'(x)(0)>i..exp - m 

Change of vacuum Phase transition 

Goldstone bosons Spin waves 

Decrease to zero-mass Approach to a 

transition 

second order phase 

Hamiltbnian (Logarithm of) Transfer matrix 

Cutoff e.g. 	(lattice spacing) 

1.4. Ideas of Renormalisation Group Method 

Historically, the methods of renormalisation group were based 

on the ideas of renormalisation, which were devised in order to 

solve the problems of infinities in the quantum electrodynamics 

(QED) [Bjorken and Drell 1965]. QED is the theory which describes 

the interactions between electrically charged particles and the 

electromagnetic field, and the problems of infinities are the 

unphysical appearances of infinity in unobservable quantities in the 

13 
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theories which describe some real physical processes. Some of the 

well known examples of problems of infinities in QED are: self-

energy of the electron, which is produced by the emission of virtual 

photons and their reabsorption by the same electron; the 

polarisation of the vacuum by the applied electric field; and the 

scattering of electrons by the electric fields of atoms. Take the 

example of the self-energy of the electron. Since an electron would 

change into a photon and an electron in the process which produces 

the self-energy, these two particles can share the momentum of the 

original electron in an infinite variety of ways and there is no 

limit to how large the two momenta can be. Therefore, the sum over 

all the ways that the momentum can be shared out can and does lead 

to an infinite contribution to the self-energy of the electron. The 

cure of this problem is based on the ideas that the physically 

observed mass is not only just the "bare" mass, which appears in the 

equations for the electron, but also the infinite "self" mass, which 

is produced by the interactions of the electron with its own virtual 

photon cloud. The finiteness of the physically observed mass is the 

result of the cancellation of the infinite part of the bare mass 

with that of the self mass. Similar procedures would also apply to 

other physical parameters such as the charge of the electron. This 

method of eliminating infinities by absorbing them into the 

redefinitions of the physical parameters is called renormalisation. 

The procedure of renormalisation also reveals a picture of the 

structure of matters, which is more natural and consistent with the 

field theory than with the mechanics. In the context of the quantum 

14 
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field theory, the renormalisation effects of the photon-electron-

positron cloud may be stripped away as one probes successively 

shorter distances. The infinities, such as bare mass, appearing in 

our fundamental field equations leave no physical paradox, however, 

since, for example, the virtual photon cloud of the electron can 

never be completely switched off in order to measure the bare mass 

of the electron. This picture of the renormalisation can hardly be 

realised from the mechanical point of view. 

As the procedure of the renormalisation can be pictured as 

probing successively shorter distances (or incorporating their 

effects in the effective Lagrangian), there is a freedom of the 

choice of the initial distance to start probing. This arbitrariness 

of choice means that any initial value can be chosen without 

changing the ultimate results of the physical quantities; this also 

means that there is an infinite set of equivalent renormalisation 

procedures. This infinite set of renormalisation procedures forms 

what is called the renormalisation group. The idea of the 

renormalisation group was first suggested by Stueckelberg and 

Petermann [Stueckelberg and Petermann 19531, and was applied to the 

actual physical processes of QED by Gell-Mann and Low [Gell-Mann and 

Low 19541. A group is a set of objects which satisfies certain rules 

such as the product of any two objects must also be in the group 

(the renormalisation group is, in some formulation, a semigroup 

since the inverse of the group element may not be defined [Pfeuty 

and Toulouse 1977]). The above renormalisation group procedure in 

the context of particle physics may also be called the "older" 

15 
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version of the renormalisation group. In this original version, the 

inverse of the initial distance may be treated as a "cutoff" 

parameter, which has to go to infinity at the end of the day in 

order to preserve the locality, i.e. causality of the field theory. 

The methods of renormalisation group guarantee the validity of the 

theory by ensuring that it is independent of the cutoff. In other 

words, by allowing an arbitrary choice of the initial distance, we 

can make the theory independent of the cutoff parameter. 

A new version of the renormalisation group was suggested by 

K.G.Wilson [Wilson and Kogut 19741. His approach is a combination of 

the block spin picture of Kadanoff [Kadanoff 1966] and the original 

version of the renormalisation group of Gell-Mann and Low. In his 

treatment of, for example, the ferromagnetic phase transition, 

Kadanoff used a model consisting of a lattice of interacting spins 

with each spin sitting at a site. When the system approaches the 

critical point, the correlation length becomes very much larger than 

the lattice spacing; as was discussed in the previous sections, the 

problem of extremely large number of degrees of freedom comes in and 

this makes the problem too complicated and difficult to be solved by 

conventional methods. The way to solve a large problem is to break 

it into a sequence of smaller and more manageable pieces. Kadanoff, 

firstly, divides the lattice into blocks of spins, the blocks being 

square or triangular or whatever. Then, he considers the blocks to 

be the new basic entities and the effective interactions between the 

blocks are calculated. After finding the effective interactions of 

the new entities, he rescales the dimensions of the lattice down to 

16 
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the original scale such that the lattice spacings are kept constant. 

Repeating this process would create a family of corresponding 

effective Hamiltonians with coupling constants covering different 

ranges of distance. In this manner, we may choose a very simple type 

of interacting spins to start with, such as the Ising model of the 

nearest neighbouring couplings. Clearly, the fundamental scale of 

length gets longer after each iterative operation of the block-spin 

transformation; and this would average out or include the short-

wavelength fluctuations whose scales are shorter than the block 

sizes up to the correlation length. The resultant system would 

reflect only the long-range properties of the original Ising model, 

the effects of the smaller, scale fluctuations all being incorporated 

into the effective couplings. Wilson used the block spin picture of 

Kadanoff as a basis to illustrate his new version of renormalisation 

group, where the block-spin transformation can be treated as an 

example of a renormalisation group transformation. In particular, it 

provides a very clear physical meaning for the renormalisation 

procedure. (The fact that the renormalisation group may be a semi-

group is illustrated by the block-spin techniques, since the 

original spin configuration before any block-spin (renorinalisation 

group) transformation could not be recovered as the essential 

information has been lost during the averaging out procedures for 

calculating the effective Hamiltonian for the new block spins.) 

Another feature of the new version of the renormalisation group is 

that it usually allows more than one quantity to vary (there may be 

many couplings constants), instead of only one (for example, the 

charge of the electron in QED). The many longer-range coupling 

17 
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constants generated by the new version of the renormalisation group 

transformations may form a multi-dimensional parameter space, while 

the parameter in the original version can form a line only. The new 

version of the renormalisation group is more general than the 

original version; the crucial link between the two versions lies in 

the cutoff parameter. In the original version, the cutoff has to be 

eliminated at the end by letting it go to infinity (zero spacing); 

the cutoff parameter is always kept as a constant in the block-spin 

techniques, since the rescaling to the original lattice takes place 

at each iteration. But ideas behind the two versions are still quite 

similar: infinite cutoff (zero spacing) in the original version is, 

in fact, equivalent to the large size of the correlation length 

compared with the small, finite lattice spacing of the new version. 

In conclusion, Wilson's renormalisation group methods offer new 

physical ideas about reducing the degrees of freedom in a systematic 

way, and they can also be made to work in real space. 

The principal structures in the generalised renormalisation 

group formalism are the following. We start from the existence of 

the transformation 

(1.5) 	 H"' 	R (H) 

giving the couplings of the new effective Hamiltonian in terms of 

the old one. At criticality, this transformation can be iterated an 

infinite number of times. The simplest property of such a sequence 

is to tend to a limit which must be a fixed point: 

18 
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Universality will emerge naturally if there exists an H* which is 

stable to all critical perturbations (This is infrared stable since 

the transformation leads to successively larger distances). The 

fixed paint must, however, be (infrared) unstable to deviations away 

from criticality because the correlation in units of lattice spacing 

(or inverse cutoff) is being decreased at each stage. For a given 

fixed point, it is natural to decompose interactions with respect to 

a basis which are eigenperturbations of the fixed point. Associated 

with each eigenperturbation is an eigenvalue or critical exponent. 

These interactions can then be classified as relevant or irrelevant 

according to the sign of this exponent. 

1.5. Differential Geometry of Manifolds 

In Chapter III, we shall use the tools of differential geometry 

to calculate the geometrical invariants of the (d-1)-dimensional 

submanifold embedded in a d-dimensional Euclidean space. It is 

quite helpful, therefore, to introduce the concepts of 

differentiable manifolds here [Auslander and MacKenzie 1977; 

Klingenberg 19781, 

DEF (i) A topological manifold M of dimension n is a Hausdorff 

topological space with a countable basis such that there 

19 
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exists a family of homeomorphisms u: N— 	U C R" 1. 
from open sets MMCM to open sets UCRIt  and U M M. These 

homeomorphisms will usually be denoted by ( u, M ), and 

they are called coordinate systems or charts for N. The 

collection (u,M.,)(A is called a (topological) atlas for M. 

An atlas ( 	EA is a differentiable atlas if, 

for every (Q(, (3)A x A, the homeomorphism uo u;' : u. ( M 

fl M ) -* u( m  M ) is a diffeomorphisms. 

Two atlases ( u ,M )cA and ( u., " ,M)EA'are 

equivalent if the union of these atlases is a 

differentiable atlas. 

A differentiable manifold is a topological manifold 

together with an equivalence class of differentiable 

atlases. 

The essential ideas of a manifold are that it is locally 

homeomorphic to an Euclidean space and can be represented by more 

than one coordinate system. Two sets are homeomorphic to each other 

if there exists a homeomorphism u ; u€ is a homeomorphism if u is 

bijective (one-to-one and onto) and both u and u are continuous. 

Roughly speaking, two sets are homeomorphic if these two sets can be 

continuously deformed into each other. A diffeomorphism is a 

differentiable homeomorphism. If more than one local coordinate 

system were to be allowed on a manifold, then the change of 

coordinate systems must satisfy condition (ii) of the above 

definition such that the transformation of the two coordinate 

systems must be smooth between the intersections of the two 

20 
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coordinate systems u( M.,() MP ) _. u( MflM O1  ), i.e., uo umust 

be a diffeomorphism. (The field theoretic treatment in this thesis 

is open to criticism precisely because it does not allow for the 

possibility of several coordinate patches.) In this definition of 

the differentiable manifold, a manifold is also called a surface for 

the case dim m = 2. But, what we are really interested is not only 

in the differentiable manifold but also in the embedding of the 

surface in Euclidean space, which is one of the core topics of 

classical differential geometry [Eisenhart 1926; Sternberg 19641. 

There are two pairs of concepts related to the descriptions of 

surfaces: a local and global properties; intrinsic and extrinsic 

aspects. The two pairs of concepts are, in fact, quite independent 

from each other. The local behaviour of a surface should be able to 

be specified by one local coordinate system, and may or may not 

involve the total behaviour of the surface, which depends on the 

type of the surface. The study of the surface from the local point 

of view uses the differential and integrational techniques based on 

a local coordinate system, while a "global" problem can be described 

as one which, in general, could not be stated locally in terms of 

one single coordinate system on a surface, but must necessarily 

involve the total behaviour of the surface. The most interesting and 

important aspect of the total behaviour of a surface is related to 

the topology of the surface. Another important object of interests 

in the global geometry is the fibre space which is the extension of 

the differentiable manifold; fibre space is, locally, a cartesian 

product of 'a base manifold times a fibre, and. each fibre could carry 
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some sort of algebraic structures such as vector space or a Lie 

group etc. [Kobayashi 1963 and 19691. When the fibre is a Lie group 

locally, the fibre space becomes a fibre bundle which has enormous 

interesting applications to the core of the current theoretical 

physics, i.e., gauge theories [Chouquet-Bruhat, Y. et al, 1977; 

Schutz 19801. The study of global geometry on differentiable 

manifolds and fibre space manifests one of the most striking and 

beautiful achievements of modern mathematics, i.e., the unification 

of the geometry, topology and analysis. 

The studies of the intrinsic and extrinsic properties of the 

surfaces are much older fields in differential geometry, although 

there are some more modern studies on these fields [Chern 19671. 

The intrinsic properties of the surfaces are those which could be 

defined in terms of the tangent vectors to the surface and the first 

fundamental form and its derivatives. In contrast, those geometrical 

properties, which are related to the normal vector fields and the 

second fundamental form, are called the extrinsic properties of the 

surfaces. The extrinsic properties are usually related to the 

details of how the surfaces embed in Euclidean space and cannot, in 

general, be reduced to expressions in terms of the first fundamental 

form and its derivatives. We may use a model to illustrate the 

intrinsic properties of surfaces. Imagine a "flat" creature which 

lives on a surface; those creatures cannot imagine what the surface, 

which they live on, looks like from the "extrinsic" point of view. 

What the "flat" creatures could understand are those properties 

which relate to the measurement of the distance between two points 
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on the surface. These properties, such as the angle between two 

lines and the areas on the surface etc., are collectively called the 

intrinsic properties of the surface. The extrinsic properties are 

usually related to how the surface is curved. It turns Out that not 

all the different curvatures defined on the surface are extrinsic: 

the mean curvature is extrinsic, but the Gaussian curvature is 

intrinsic, which is the result of the Gauss Theorema Egregium (The 

Principal Theorem of Gauss). The difference between the intrinsic 

and extrinsic properties may be illustrated by an example: take a 

flat piece of paper, the extrinsic properties of the piece of paper 

will change if the paper is rolled into a cylindrical shape, but the 

intrinsic properties are not changed at all. The intrinsic 

properties of the surface may determine the extrinsic properties of 

the same surface if the surface is closed and convex. This is the 

implication of the Cohn-Vossen theorem [Chern 1967]. 

1.6. Significance of Interfaces 

In this last section, we introduce a mathematical formalism for 

the description of an rn-dimensional submanifold embedded in n-

dimensional Euclidean space. Apart from the special parametrisation 

for the description of the rn-dimensional subnianifold, which is 

relevant to the field theories of interfaces and surfaces, most of 

the geometrical properties of the rn-dimensional submanifolds of n-

dimensional Euclidean space are well investigated by mathematicians. 

This mathematical formalism of the rn-dimensional submanifold of the 
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n-dimensional Euclidean space, with a and m are treated as any 

integer value, is very useful for its applications to field 

theories, especially in classical statistical mechanics. Following 

the conventional notations in field theory, we shall use d and n, 

where n is the number of constraints imposed on the d-dimensional 

Euclidean space in which the generalised (d-n)-dimensional 

submanifold is embedded. The range, of physical applications of the 

(d-n)-dimensional manifolds are enormous [Zia 1983 a];  they include 

the applications in both statistical mechanics and elementary 

particle physics: the (d-n)-dimensional extended objects could be 

interfaces between two coexisting phases, critical droplets, 

topological excitations like strings, membranes or whatever. The 

statistics and dynamics of interfaces also have vast applications in 

the theory - of metastable and unstable states [Gunton and Droz 1983]. 

Most of the theories related to the (d-n)-dimensional extended 

objects postulate a special expression for the Lagrangian or 

Hamiltonian of the form [Zia 1983 b] 

(1.7) 	 H cc (d-n)-dimensional volume s  

This generalised "volume" would include the surface area for the 

(d-n) = 2 case, and the constant of proportionality would have the 

dimensionality of the energy per unit volume. The models of the 

extended objects are usually treated as the phenomenological models 

for the various physical phenomena. But, these Haxniltonians may also 

be treated as the effective Hamiltonian derived from the long-

wavelength (or low-temperature) limit of a field theory which is 
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this approach, we shall 

interfacial Hamiltonian 

in the long-wavelength 

in the next chapter, 

coexisting phases, and 

these two coexisting 

defined on the full d-dimensional space. In 

derive, in the next chapter, the effective 

from the Landau-Ginsburg-Wilson Hamiltonian 

limit. The characteristic of our derivation 

is based on a physical system which has two 

the interface plays the role of dividing 

phases. We now turn to this derivation. 
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CHAPTER II FROM LGW MODEL TO INTERFACE MODEL 

As we have mentioned in last chapter, near the critical region, 

scaling behaviour and universality suggested that the microscopic 

details of a system are not relevant, since, we are interested in 

the long-range behaviour. The success of solving the problems of 

critical phenomena depends on a good and simple model to start with. 

In the history of physics, the earlier attempts to propose models 

for the critical phenomena were collectively called the mean field 

theories. Examples of mean field theories are: the theory for the 

phase changes in fluids by van der Waals in 1873, the theory of 

magnetic phase transition by P. Weiss in 1907 and a general 

formulation of the mean field theory by L.D. Landau in 1937 [Landau 

19371. The reason why the above theories are called the mean field 

.theories is because, in all of them, the state of any selected 

particle or spin of the system is determined by the average 

properties of all the material as a whole. One may view all the 

particles or spins in the system as contributing equally to the 

forces at every site of the system, in other words, we have assumed 

that the interactions in the system have infinite range and all the 

microscopic behaviours of the system are ignored. 	(In the 

renormalisation group approaches, 	microscopic behaviours are 

incorporated, instead of being ignored, into the renormalisation 

group transformation.) We shall start to discuss Landau's mean 

field theory and its applications to the critical phenomena. Then, a 

simple field theoretical model, which is based on Landau's mean 
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field theory, will be discussed. The derivations of the effective 

Hamiltonian from the field theoretical model of Landau-Ginsburg-

Wilson, in the long-wavelength limit, will also be given via the 

methods of collective coordinates [Gervais & Neveu 1976]. Finally, 

possible generalisations of the effective Hamiltonian of the 

interface model will also be discussed. 

2.1. Landau's theory of critical phenomena 

We shall use a magnetic system to illustrate the ideas of 

Landau's mean field theory [Landau and Lifshitz, 19691. The 

thermodynamics of this system is determined by the Helmholtz 

thermodynamic potential or free energy A( T, M). Landau assumed 

that A( T, M) is an analytic function of T and M, where T is the 

temperature and M is the magnetisation, even in the region near Td. 

If we consider a system with symmetry 

(2.1) 	 M 	-M, 

as in the case of Ising model, analyticity implies that A(T, H) as 

(2.2) 	A( T, M) = 0(T) + a, (T) M2+ 	(T) M4+ 	O( H 6  ). 

Guided by the phenomenology of the Ising spin 	systems, the 

disordered state, T > T, corresponds to zero magnetisation and the 

ordered state, T < T, corresponds to the "spontaneous non-zero 

magnetisation". We may thus assume that 
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(2.3) 	£1 (T) r'  a•(T - Tc) 

1 (T) 	0, 

where a is a positive constant. If T ) Te then a 1 (T) > 0, the 
shape of the potential is trivial; if T ( T, the value of 

changes from positive to negative, the shape of the potential 

develops into a double-well potential, then the system will have to 

choose from either up or down values of the spontaneous 

magnetisation. This spontaneous magnetisation corresponds to the 

occurance of some sort of "ordering" phenomenon, that is to say, 

some symmetry have been lost. This illustrates the analogy between 

the second order phase transitions and spontaneous symmetry 

breakings in the field theory. 

Rewrite A( T, M) as 

(2.4) 	A( T, M) = a 0 ( T) + 1/2 ( T - T ) MZ + 1/4 M '  

where a and a(T) have been absorbed into the scales of ( T- TC 

and M (or rescale them). The Equation of State is given by the 

external magnetic field H, 

(2.5) 	H = aA(T,I1) 	(T- T)M + 
11 

or H = M3[(T)+ 1] 

= Mf( t / 0) 
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where the scaling form (1.3), from Section 1.2., has been used. We 

may deduce that 

(2.6) 	S = 3, (3 = 1 / 2, 	f ( x) = x + 1. 

This is not bad compared with three dimensional experimental 

results: 4.5, 3 0.35. The susceptibility X is given by 

the change of the magnetisation in the presence of the applied 

external magnetic field, 

(2.7) 	or 	

= 	

( T - T) + 1 
3 

i1 

The magnetic susceptibility for Landau's mean field theory may be 

written as 

I 
(2.8) 	x = _____________________ 

(T-T)+3 

At T ) T with H = 0 and so H = 0, the susceptibility can be written 

as 

(2.9) 	 = 	(T- T) 

with 	= 1. The experimental values for 	in three dimensional 

space, range from 1.25 to 1.37 for different magnetic system. 
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If we would like to calculate the correlation length of a 

system in mean field theory, we need to know the correlation 

function first. It is possible to generalise Landau's theory to 

incorporate a treatment for the correlation function by allowing the 

order parameter to be a function of position in the system. 

Therefore, the general free energy can be written as [Wallace and 

Zia, 1977; Amit 19781 

f 	 r 	 '71 	 In 

(2.10) 	A ( T,)) = 	dx 	[ a( T) 	+ b( T) ()] 

where 6-(x)  is the magnetisation density. Assuming only small 

spatial variations exist in çb() (i.e. 	is small) and the 

system is symmetric under 	- _) , we may again rewrite the 

free energy as 

(2.11) 	A ( T,) = Id j x [ ao( T) + 1/2 	(V) 2  

± 1/2 ( T- T ) 	(x) + 1/4 	( x) ] 

Effectively, the smooth spatial variations in the magnetisation give 

rise to an extra term proportional to (V4 )Z 
 The correlation 

function G( x, y) is a sort of measurement of the correlation: 

G(x, y) gives the change in (x) due to the change of the external 

field H(y), since the external field at y, H(y), may flip a spin 

at y, for example, as in the Ising model. 

;!-:1 () 
(2.12) 	G ( x, y) = 
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There are two ways to get the correlation length 	from the 

correlation function: The indirect way is to look at the behaviour 

of the correlation function at large separation, 

- 

(2.13) 	 G ( x, y) cx 	exp ( - 

	

) 

where the correlation length 	is the effective range of 

correlation and fx.) Ls the separation of the two points. The direct 

way is to examine the location of the singularity of the correlation 

function, 

ot  V4 
(2.14) 	 - 

j 
(~j 

fix X 2 (x) 
or equivalently 	

2,

f4d 

where G = Jexp ( i q.x) G(x) is the momentum representation of 

the correlation function which is presumed to be translational 

invariant, i.e. G (x, y) G (x - 
y), for a homogeneous external 

field. 

We shall start to calculate the correlation length 	now. The 

applied external field H (y) is given by 

• 	SA 
H (y) = 

= 

 

f d  j  x [ aG  (T) + 1/2 	V7 0 (X) 2. 

z 	 17 

	

+ 1/2 (T - TC ) 	 (x) + 1/4 
!
(x) ] 
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(2.15) 	= - 	 + (T - T ) 	() + 

And since 

______ - 
(2.16) 	 = i: 	~ ;: 

S 	
(T— Td)  

I 

the correlation function is 

S 	- 

(2.17) 	 G ( x, y) = 

Taking 	(y) = 	as a constant, the Fourier transform for G (x) 

x, 0) can be written as 

= J  d
4 x exp ( i q.x) G ( x) 

(2.18) 

+ (T-T) +3 

The correlation length is given by 

T, 	 I-V 	I 
I 	I 

() = - 	
to CT*

(2.19)  

(T-Th) 3 

For T ' T, 	= 0 and from the definition of 	cx(T - TC )2) week 
identify 2)= 1/2 in mean field theory ( 2) 0.63 for the Ising model 

in three dimensions). Many other properties are calculable in this 

mean field approximation. 
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2.2. Field Theoretic Model of Landau-Ginsburg-Wison 

In last section, we found out that the predicted values of 

Landau's theory of critical phenomena are not far from the 

experimental values, despite its amazing simplicity. These factors 

give some very strong arguments for treating Landau's theory as a 

starting point for further investigations. Of course, there is 

something wrong with Landau's theory, since this theory does not 

agree with experiments exactly. But what are the reasons for the 

discrepancies and can the theory be cured? From the assumptions of 

Landau's mean field theory, it seems quite plausible that the main 

origins of the inadequacies of Landau's theory may lie on the total 

neglect of the microscopic behaviour of the system. The very 

important phenomenon of statistical fluctuations should have been 

considered, before any other microscopic characteristic, since it is 

so universal. As was discussed in Section 1.3, there are very 

close connections between quantum field theory and classical 

statistical mechanics. A field c(x) can be treated as a random 

variable or order parameter, in the classical statistical mechanical 

system, and the statistical mechanics of (x) will give the 

average value which can then be identified as, for instance, the 

mean magnetisation (mean order parameter). The fact, that the 

statistical fluctuations are analogous to the quantum fluctuations 

in the field theory, would imply that all the good old perturbation 

theoretical techniques can be applied to statistical mechanics and 

also to critical phenomena (as a massless field theory). 
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The physics of a statistical system is determined by the 

Hamiltonian of the system. The free energy in Landau's theory 

corresponds to the Hamiltonian of a 0'theory [Wallace and Zia, 

19781, i.e., 

	

(2.20) 	H = f d'x [ 
1/2 ()Z + 1/2 m+ 1/41 g*] 

where the spatial dimension is taken to be d for the applications of 

general cases, m2  contains the temperature dependent factors and - 

equivalent to ( T- T ) near T, and ('7 
)Z 

ensures that the 

short-wavelength fluctuations have higher energies. The partition 

function or generating functional is given by 

	

(2.21) 	Z = f D [] 	 exp (- H ) 

where 1/k 3  T is absorbed into H in the Boltzmann factor. The 

presence of an external field J( x) in the statistical system 

corresponds to adding a term to the original Hamiltonian, 

	

(2.22) 	 - J d4x J (x) 	(x). 

The prescription for calculating the averages is given by the 

correlation functions or n-point functions, which average the 

Boltzmann factor over all the configurations of the field 

(XI)(xZ)(X3) ........ 	(xjt) > 
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fD çcj 	(2 J (Xi) 	(c4i) 	
(- H) 

(2.23) 	= 

f  J)[~] -(H) 
In the above, 	D [4)] denotes the functional integral which  sums 

over all the possible field configurations 	x). This method used 

to calculate the average of a single field would give rise to the 

mean order parameter < 0  of a specific system. It is also 
straightforward to set up a perturbation theory for the above 

expressions; for example, the vertex is "- g/4" and the propagator 

looks like " 1/ q2 + m ", without "i" compared with the ordinary 

relativistic quantum field theory. Note also that, in our case, q 

is a d-dimensional vector in the d-dimensional space. The complete 

details of the full perturbation theory are given in Amit's book 

[Amit 19781. 

By the principle of correspondence, we would like to recover 

Landau's theory of critical phenomenon, from the field theoretical 

model, as a zeroth order approximation. It turns out that this 

emerges naturally in the loop expansion, in which the functional 

integral is presumed to be dominated by the maximum of the 

integrand, as follows. We start from the partition function with 

the external applied field included in the Boltzmann factor 

(2.24) 	ZJ}=D[] 	exP(H+fJ). 

The Gibbs free energy or generating functional for connected graphs 

can be defined as 
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(2.25) exp(-G ' J} ) = f D [ I 
	

exp ( - H +JJ ) 

= zfj} 
or 	GCJI = -th Z 1 

In the saddle-point method [Mathews and Walker, 1970; Migda]. 19761, 

the dominant contribution to Z f j} comes from the extremum 

of H, 

SN 
(2.26) 	 = 	J. 

c1 	+= 
For a homogeneous system, the solution 	(x) of this equation will 

be independent of x. Expanding 	(x) as, 

(2.27) 	 ( x ) 	= 	+')11(x) 

and using the relation, exp ( - G ) = D [] exp ( - H ), we get 

exp ( - G ) = exp f _$dx ( 1/2 m+ 1/4! g 	- 	)} 

(2.28) 	J D [] exp [ - (ff112 
3 

+ 0 (1)1)) ] 

The zeroth order approximation giverise to 

(2.29) 	 exp _$ddx g 

36 



INTERFACE MODEL 

where g is the Gibbs free energy density: 

1 (2.30) 	g = 1/2 m+ 1/4! g- J 0 	t
* 

0 	10 

The mean order-parameter < 	equals the magnetisation N in the 
spin system 

N  _= < 0 = 
fT) 	p(-H) 

SI) [Pj 	(- H) 

=  jD113 A t*(x))-a-Y-K—fd'x 	ff1fl ~ .] 

	

f-[ T'ff 	tr~qjl 5'prrpj 	C-Jd 	
.] 

W  121. 
= th + fDl-~] 	f 	+  60  

JD 	 Jf1JJ 
XY 

(2.31) 	= 

where those terms of order "/'inJD 	are neglected. The 

Legendre transform in the thermodynamics is usually written as 

(2.32) 	A(M) - g(h) = h 	with h = 

where A(M) is the Helmholtz potential density (or Helmholtz free 

energy), g(h) is Gibbs free energy density, 	h is the external 

field and N is the magnetisation (order parameter). This Legendre 
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transform in thermodynamics is analogous to the following in the 

field theory [Taylor 19761 

(2.33) 	T E* 	- w [j ] = - 4i 
f 

 i ~e_ 
FC] 

with 	 J = 

where r 	] is the generating functional of the one particle 

irreducible (lPI) diagram, and W [J] is the generating functional 

for the connected diagrams as pointed Out before. Using the 

Legendre transform, we may obtain the free energy of Landau's theory 

at the zeroth order in the Feynman graph expansion, 

A = g + h  

= 1/2 m M 1  + 1/4! g M - h M + h M 

(2.34) 	= 1/2 ( T - T ) M 2  + 1/4! g 

with the equation of state 

(2.35) 	h = ( T - T ) M + 1/31M3 . 

Comparing this equation with (2.5), we see that Landau's theory of 

critical phenomenon may also be regarded as the zeroth order of the 

full Landau-Ginsburg-Wilson field theoretical model, in a steepest 

descent or saddle point approximation. 
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2.3. Interfacial Hamiltonian 

In this section, we shall discuss the interface model derived 

from the Landau-Ginsburg-Wilson model. A simple and intuitive 

derivation of the interfacial Hamiltonian [Wallace 1982; 1980] will 

be given and some of the technical details of a formal treatment 

[Diehl, Kroll and Wagner, 1980] will be discussed as well. As was 

pointed out in Section 1.6 the subject of interfaces, surfaces and 

strings is contained in the study of extended objects of (d-n) 

dimensions embedded in a d-dimensional world. The simplest example 

of this category is the (d-l)-dimensional interface, which can be 

applied to many physical systems [Zia 1983]. The characteristic of 

this type of system is the existence of two coexisting phases, the 

interface dividing these two coexisting phases. Therefore, the model 

which we are going to discuss is a rather general theory. We shall 

start from the Landau-Ginsburg-Wilson (LGW) model with a general 

potential V () 

(2.36) 	H = J d x [ 1/2 () + V () ] 

where the scalar field 4(x) is the order parameter which may be the 
magnetisation in the spin system or the density difference of the 

liquid-gas system and the general potential V (6 ) may, sometimes, 
be given in the form of the familiar 	-potential for 

demonstrations. 	If we wish to use the LGW model to describe 

interfaces, we then have to impose some restrictions on the general 

potential V (4). Since the vacuum or the ground state in field 
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theory is analogous to the equilibrium state of a statistical 

system, if two coexisting phases in the system are desired then the 

general potential V () must have two degenerate minima; that is 

to say, the potential V (4)) will somehow look like a double well 
potential, at least near the bottom of the potential. 	In the 

steepest descent or saddle point approach, 	we look for a 

configuration 
t. 

 W to describe how the order parameter changes 

from one phase to another in the z-direction, which is taken to be 

perpendicular 	to the 	(d-l)-dimensional 	interface. 	This 

configuration 	(z) 	is the solution of the classical field 

equation (or Euler-Lagrange equation), 

(2.37) 	 d 	cb z ) = 	1T 
1. 

subject to the boundary conditions 	(z) -> 	as z 

where 	and 	correspond to different phases, respectively. 	If 

the potential V () is of 	type then the solution looks like 

d(z) =)c2g tanh m/2 ( z - z 0 ), where z 0  is a constant, and is 

usually called the kink solution. There has been some extensive 

studies of such classical solutions of field theories and their 

quantum meanings [Coleman 1975; Jackiw 19771. We follow a 

development based on the method of collective coordinates in which 

perturbation theory is employed around the coordinate dependent 

classical configuration [Gervais and Sakita, 1975; Gervais, Jevicki 

and Sakita, 1975]. The meaning of the method of collective 

coordinates will be discussed later. 
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For the interfacial configuration th(z), we may expand the 

original field 	(x) by - 

(2.38) 	(x) 	= 	(z) 	+(x) 

where x = ( z, y) represents the d-dimensional coordinate and y are 

the remaining (d-l)-dimensional coordinates. The translational 

invariance of the original system implies that the classical 

solution 6 is a function of (z - ze) where z 0  represents the 

position of the interface, i.e., (z - z0 ). By differentiating 

the Euler-Lagrange Equation (2.37) with respect to z 0 , we obtain 

(2.39) 	7(z) 	= 	0 

where 	is the Schrdinger operator in the perturbation theory and 

equals - + . It is clear to see that is the 

zero mode of the differential operator. This is the consequence 

of the expansion, in the ( 2.38), about a classical solution with a 

given position z 0 . In practice, this expansion spontaneously breaks 

the translational invariance of the original model and is the 

Goldstone mode. The field configuration corresponding to a 

fluctuation ? 	with small amplitude "a" is given as 
o c 

= 	(z) + a4 

(2.40) 	 ( z - a ) 
fr 

this corresponds to an (infinitesimal) shift in the interface by the 
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amount of a. 	If we denote q as the (d-l)-component wave vector 

perpendicular to z, we find 

(2.41)exp(iq.y)(z) 	= 	q 2  exp(iq.)4(z). 

In the long-wavelength limit of q ----> 0, we obtain a continuous 

spectrum of eigenfunctions offl with no mass gap. The field 

configuration corresponding to a superposition of these modes is 

=
z 	+ f .exp(iq. 	(z 

 (2it)' ' 	 o Id 
(2.42) 	 z- f(y) ) 

with f(y), a function of the (d-l) coordinates, isdefined as 

(2.43) f ( y ) = J 
	

a(q)exp(iq.)+O(a2 ). 

The configuration
Id 
 ( z - f(y) ) may be interpreted as a surface 

which is translated locally by an amount f (y) from the planar 

surface. Therefore, the Goldstone modes of the spontaneously broken 

Euclidean geometry represent the collective displacement of the 

general surface away from the planar surface, and the amount of 

displacement f(y) is called the collective coordinate. 
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In the long-wavelength limit, we may substitute f (y)(z) 

into the expansion around the classical configuration 	(x) 

(z) + f (y) a(J)(z) an I put it back into the expansion of the 

Hamiltonian, (write 	= f (Y) 
D16, 0 (z) for convenience) 

"3 
H () = H () + 1/2 f d' x( x ) 	( x ) + 0 () 

= J d4 x [ 1/2 	+ V () ] 

4 	41 
+ 1/2 J d x j 	a ( q') . exp ( i q ) 

.(z)172J 	a(q).exp(iq..)(z) 

+ 0()  + 

I 	J- I 
= Jd 	dz ( d 	z 

+ $ d 
	( 	) j d y 1 1/2 (f) ] + 2. 

Z 
(2.44) 	= 	( d4 	) I 

d 	
jdY r1+1/2(v.f?. .......i 

where the identity1/2 	) d z d 	2 	= f V () d z has been ( 

ct 
used. 

In (2.44), it is not really easy to see what the next order 

terms would look like, besides, the methods are not systematic at 

all. A systematic method to obtain the higher order terms in f in 

(2.44) was given by H. W. Diehl et al., who used a version of the 

method of collective coordinates. The original configuration in the 

d-dimensional space can be written in terms of the collective 
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coordinate f(y) and others [Diehl, Kroll and Wagner, 1980] 

(2.45) 	4) ( y, z) = (/) ( z - f (y) ) + 4) ( y, z - f(y) ) 

where the kink position (or the interface position) 	f(y) is 

considered as the collective coordinate. 	The meaning of this 

expansion can be understood as •a s 

from the original set of variables 

{f,  4 } . Since some new variables 

a subsidiary condition with (2.45) 

Drt of canonical transformation 

Ic} to a new set of variables 
have been introduced, we impose 

A 
so that 	does not contain the 

zero frequency modes: 

(2.46) 	Jd 	4%() 	) 	0 )  

where 4(z) is the derivative of the classical solution and is the 

eigenfunction of the zero mode. The Hamiltonian (2.36) can be 

expanded by substituting (2.45) into the Hamiltonian 

H(4)  
(2.47) 

2. 
A S H  

+ fj -X 
~ S~ It-tc 

+ (9 
- 

where the 	 term is no longer zero again, due to the 
r H 

introduction of the collective coordinate transformation. 	In 

AN 
deriving the formula (2.44), 	in (2.45) is effectively ignored. 

Diehl et al. examined the effects of the ignored 	's by setting 

up a systematic approximation scheme in the context of the methods 

of collective coordinates. If we would like to sum over all the 	- 
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modes, 	the 	-tree diagrams are the most important and 

significant terms in the expansion and they contribute to the same 

order as H (4)). Therefore, it is necessary to include the term, 

which is linear in 	, in the expansion (2.47) and the source term 
T 

for the 	is nothing but 	 . 	From the formula (2.47), 

we may write 

H = fd 	a 	 ( 

(2.48) 

	

+$} 	+9() 

where the H() is the same as in (2.44). 	Letting u = z - f(y), 

the 	-source can be writtènas 

Ecç 

(2.49) 
 

where the Euler-Lagrange equation (2.37) have been used. Using 

(2.46) to ensure that the zero modes are excluded from 	
, 	

the 

source term which consists of ( 	f) has to vanish and only (f) 
2. 

terms left as the sources. So the 	-trees will contribute powers 

of (V f) to H. The resunimation of these tree diagrams has been 
done in different contexts. 	J-L Gervais et al. [Gervais, Jevicki 

and Sakita, 	19751 first developed a scheme of resuimnation of the 

tree diagrams for the soliton; 	H.W. Diehl et al. [Diehl, Kroll and 

Wagner 19801 have calculated the tree diagrams in this particular 
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case to derive the effective Hamiltonian for interfaces 

4-I 
(2.50) 	H = 	id y 

where 	
= 5 dz ( 	) is the surface tension and the integral is 

just the surface area of the manifold. 	The first two terms in the 

expansion in (f) 
2. 

reduce to (2.44), of course. 

2.4. Higher Order Corrections 

The resuinmation of the tree diagrams in the calculation for the 

effective interfacial Hamiltonian is indeed quite tedious and long. 

The collective coordinate, in our treatment, is identified as f(y). 

This field f could be either the interface or kink position. The 

collective coordinate transformation is given by expanding around 

the field configuration as in equation (2.45) with the subsidiary 

condition (2.46). Under this transformation, the variable set 

describing the same system changes from 	- 	 $ 

Therefore, the partition functional, Hamiltonian (or Lagrangian) and 

Euler-Lagrange Equation will all have to change accordingly. After 

the transformation, the whole systematic perturbation theory can 

also be set up in terms of the fluctuating field or perturbation 

But in the case of looking for the effective Hamiltonian of 

the Goldstone modes or for the interface, we are actually interested 

in the long wavelength (or low temperature) behaviour of the system 

only. The surface tension model discussed in the previous section 
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is the effective interfacial Hamiltonian in the long wavelength 

limit; it depends only on the gapless modes f describing thermal 

capillary waves, the average having been already performed over the 

A. 
modes 	which has a gap of order O(17t2 ). 	As was discussed in the 

previous section, the choice of the interface position f(y) as a 

collective coordinate has led us to the tedious resurnmation of tree 

diagrams. 	Since the source term for the tree diagrams comes from 

th first variation of the Hamiltonian 	 , in order to avoid
SH  

r71  
the tedious calculation of tree diagrams, there is a natural 

question to ask, "Is there a better choice of the collective 

coordinate such that the source term derived from 	will 

contain only the higher derivatives of f ?". 	In this case, the 

surface tension term inside the effective Hamiltonian will appear 

naturally within the effective Hamiltonian H( 	such that we can 

avoid the resununation of the tree diagrams entirely. 	A better 

choice for the collective coordinate was suggested as [Wallace 1980, 

1982; Lin and Lowe 19831 

(-f() ) 
(2.51) 	 = 

Geometrically, this choice of the collective coordinate means that 

the classical configuration is not only translated but also rotated, 

since the added factor 1 / [1 + ( ff ]' is the directional 

cosine for the z-y axis rotations. For f up to linear in y, we are 

expanding about an exact solution of the Euler-Lagrange equation. 

With the argument for t in (2.51), therefore, the source term must 

depend on second derivatives of f (or higher). Thus the source 
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term is 	negligible in the long wavelength limit. 	Substituting 

(2.51) into the LGW Hamiltonian, the first term in the expansion of 

the LGW Hamiltonian, H(), can be written as 

H () = J4 [+   ()a 
+ 

E 1 
 

f T()  (u)t V()J 
t(7 8 — 

2 	(u)) (2.52) 	 - Ja ( ~e" 	 ~ 47 7V —~) 

+ V( ~e 

where 	u = 	(Z - f(y) ) / [1 + (IV f) ] 	Using the identity 

again, 

(2.53) 	V()4 	+f'i 
and changing the variables 

(2.54) 
 

in the above expression, (2.52) can be rewritten as 

H  ( 4 ) = j 	r  7t() 

+  
(2.55) 

j 2- 
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where 	 2 

(2.56) 
CPO 	

(4) du1 

The first term in the expression (2.55) is indeed the surface 

tension term as obtained from the tree diagram resunimation in the 

previous section. 

The better choice for the collective coordinate in (2.51) is 

fine, provided that we are not interested in the higher derivatives 

of f at all. The difficulty for the effective Hamiltonian (2.55) 

is that the higher order contributions are not significant since 

comparable terms have been neglected in the source term; also they 

are not geometrically invariant. We propose now an even better 

choice of the collective coordinate:[ Lin arA Lowe I3) 

(2.57) 	- 	
(,W) + 

	

() 

with 

i-lq) 

_ 	(- f()) 
(2.58) 	 + L 

2 

In this choice of collective coordinate, it would imply that the 

transformation on the surface should include not only a translation 
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and rotation from a plane surface collectively but also a small 

distance of shift due to the deviation of the surface from the 

tangent plane as indicated in the following graph: 

A 

where S is a small deviation from the tangent plane. 	What we have 

achieved in this method is the following: 	apart from the natural 

appearance of the interface or surface model, we are also exposing 

the higher order corrections such as the curvature R and other 

terms which relate to the embedding details of the interface 

contained in the coefficients of the metric tensor g.. and that of 
"3.  

the second fundamental forms b 

Using .this formalism, 	we have calculated the 	effective 

Hamiltonian with up to two more derivatives than the surface tension 

term. 	This may be viewed as higher order contribution from the 

higher derivative geometric invariants. As will be discussed in the 
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next chapter, that these terms will be identified with geometric 

invariants such as curvature R, (g.b)2 , and b2. In the expansion 

of 

H 	(i±)J 
2. 

1 

(2.59) 
- 	 H 	4 ,c 	+ 	((1)J) 

where 

lu 
_____ 

 

	

(2.60) 	
2 	

(I-+ 

we obtain the effective Hamiltonian up to two extra derivatives 

H C(w)J 

H [ (w ] +  fdl + () Jd u( 

	

(2.61) 	
i 2  ~ v1 

) Jd ke l  
 

E—  

By using the Euler-Lagrange equation and performing partial 

differentiation plus integration by parts of various types (in order 

to throw away the total derivatives), such as 

(2.62) f lZ3  

the final result for the effective Hamiltonian reads 
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H C 4c  Cv)J 

= Jt dTf3 
,z 	ri 

(2.63) 	•5du{J 	I + 
[(vtJ 

	

2 	CI+(J1 

We shall see in the next chapter how all of these extra terms can be 

identified with differential geometric invariants. 
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CHAPTER III GEOMETRY OF THE INTERFACE AND SURFACE 

In this chapter, we are going to discuss some geometrical 

details of surfaces. The general geometrical properties of surfaces 

have been discussed in Section 1.5. The origin of the interfacial 

Hamiltonian in the context of field theory has also been 

demonstrated in the previous chapter, and the physical and 

geometrical reasonings for the emergence of an interface model from 

the LGW field theoretic model are given there. The further pursuit 

of the higher order corrections to the simple interface model shows 

that the understanding of the geometrical meaning of the terms which 

we have played with are essential to our calculation in Section 2.4. 

It will be essential to set up tensor calculus on the surface and 

interface so that the higher derivative geometric invariants can be 

derived. Then, some symmetries relating to the theories in Chapter 

II will also be discussed, namely, the nonlinear realisation of the 

group of transformations for a spontaneous broken global theory. 

Finally, a discussion on the method of normal coordinates, which is 

a geometric invariant extension for the collective coordinate, due 

to R. Zia, will follow. 

3.1. Tensor Calculus on the Surface and Interface 

There are several ways to set up the geometrical analysis on a 

geometrical object, some of which are covariant and some not. The 

most natural and fashionable way to set up the analysis on the 
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geometrical objects is to use differential forms on manifolds. But, 

in order to be as close as possible to the notation used in field 

theory, the conventional tensor calculus techniques will be used 

instead. The parametrisation of the surface or interface in a 

Euclidean d-dimensional space can be chosen as 

(3.1) 	 = 

where 
3 , 

is a vector in Euclidean d-dimensional space and y  are the 

remaining (d-1) dimensional coordinates. This is the geometry of 

the (d-l) dimensional submanifold embedded in a Euclidean d-

dimensional space and the description of the submanifold (3.1) is 

obtained by imposing a constraint on the d-dimensional coordinate 

( y, z) to be ( ,, z = f(y) ). Of course, by imposing moreIV  

constraints on the d-dimensional space, it would be possible to get 

many submanifolds with lower dimensionality. In general, this type 

of submanifold of a d-dimensional Euclidean (flat) space is curved. 

Taking the example of a three-dimensional flat space, the 

description of a two-dimensional embedded surface can be written as 

(3.2) 	
= f 	). 

The geometry of this surface is determined by the coefficients of 

the first fundamental form (or the metric tensor) g.. and those of 

the second fundamental form b 	[Klingenberg 1978]. The first and 
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second fundamental forms are usually written in terms of their 

coefficients, respectively, 

I =  

(3.3) 	= 
b 	d' 

1 )  2. 

The intrinsic properties of the embedded surface are specified by 

and the extrinsic properties are specified by b . All the 

geometrical invariant properties of the embedded surface are also 

determined by g. .and b.., and the tensor calculus on the embedded .,;. 

surface can be set up by the same set of coefficients f g;.  b.k 

The geometry of the two-dimensional embedded surface in the 

Euclidean three-dimensional space is well understood, therefore, the 

most obvious extension of this knowledge is the generalisation to a 

higher dimension d. The nineteenth century geometers did much 

research into this subject [Eisenhart 1926]. But, unfortunately, 

most of their works were done in a parametrisation of the surface 

such that the direct application to the field theory can not be 

established easily. Therefore, we have to develop our own tensor 

calculus of the (d-l)-dimensional embedded submanifold on the d-

dimensional Euclidean space. Our approach is to find out the 

generalisation of the ( g, b.) of the (d4)-dimensional embedded 

submanifold, then, to use the coefficients ( g, b.ã) in order to 

set up the tensor calculus of the (d-1)-dimensional submanifold. 
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Let the first fundamental form in the d-dimensional flat space be 

written as 

1=:: c3($2 

(3.4) 	= S ex % 

in d dimensions. 	Since this is a flat space, the metric tensor of 

the d-dimensional space, 	is a unit matrix. Recall the 

constraint Z = f(y), the first fundamental form of the d-dimensional 

Euclidean space becomes 

I 	+ ( dUz 

= 

(3.5) 

where 	a 
dj. 	+ 

are the coefficients of the first fundamental form (or the metric 

tensor) on the (d-l)-dimensional-embedded submanifold. The metric 

tensor with two contravariant indices can be obtained through 
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(3.6) 	 . 	 = 	 ; 

therefore, the g -;' i can be written as 

I 	ff 
= - ____ 

(3.7) 	0 	 1-f- 
2C 	X 2  

We shall proceed to find out the generalised b, of the (d-1)-

dimensional embedded submanifold. As was explained in Chapter I, 

the extrinsic properties of the embedded surface are related to the 

normal vector ,  fields and the second fundamental form, and the 

coefficients of the second fundamental form b.-give the measure of 
Ilk 

the embedding details. 	This measure of the embedding details is 

related to the deviation of the surface from the tangent plane, and 

is summarised in the following theorem [Goetz 19701. 

Thin The signed distance of the point ( 
u 1 + h', uZ+  h) of a surface 

from the tangent plane at ( 
u' , ua 

) equals 

I 	j 
	k I! 

(3.8) 	 h. 

with an error of order higher than two relative to 

( h't+ ( 

This is a theorem in the case of two dimensions. The geometrical 

interpretation will give us a useful guiding principle to derive the 
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second fundamental form for the (d-l)-dimensional submanifold on 

the d-dimensional Euclidean space. In the case of the two 

dimensional embedded surface, the second fundamental form is given 

as [do Carmo 19761, 

(3.9) 
Tt=—I .  d 

= b dx'd.O 

where N is a unit normal and r = ( x, y, f(x,y) ). The unit normal 
F.- 

N is given, in the two dimensional case, as 
PV 

(3.10) +) 1) 
rJ 1 

The normalisation factor in the two dimensional case can be easily 

generalised to 

(3.11) 	 J I + ()2  
where the gradient of f is taken in the (d-1) dimensions. 	The 

geometric meaning of b gives the measure of the curvature of 

surface relative to the Euclidean space and since we are interested 

in the analytical surface only, this measure of embedding details 

could be- given by the ordinary Taylor's expansion in (d-l) 

dimensions 

(3.12) 	 - f (1 4)
)  

1, 2 	3%  ' ' 	. 	
(d-i). 
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Since the first order contribution from the expansion would be 

perpendicular to the normal at the (d-l)-dimensional coordinate 

(y ), therefore, we just have to examine the second order effect 

l 	
)Z+ 

1 06 

(3.13) 

where 

(.- 
I) 

With our choice of normalisation, the second fundamental form can be 

written as 

(3.14)  

with 
 

= 	
I + 

()Z  

where 

The geometry of the (d-l)-dimensional embedded submanifold of a 

Euclidean d-dimensional manifold can thus be completely determined 

STA 

-f 

(3.15)  

2. 
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and  

given these fundamental expressions, we now turn to the tensor 

calculus in this coordinate system. 

The Riemann symbols of the second kind are usually defined in 

terms of g; 's and their derivatives, 

(3.16) 	= 	+ 1-;; I'7n'4 

where 

(3.17) 	
= 	I 	+ 	- ? 

	

2 L 	 J 

are the Christoffel symbols of the first kind, and 

(3.18) 
 

are the Christoffel symbols of the second kind. 	The associated 

Riemann symbols of first kind are defined as 

12 - 

The Riemann symbols of the second kind can also be defined in terms 

of the coefficients of the second fundamental forms, b, as 

(3.19) 	 b —  b 
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Although the Riemann symbols can be defined in terms of b 	only, 

they are still related to the intrinsic properties of the 	(d-l)- 

dimensional manifold since they are also expressible in terms of 

the coefficients of the first fundamental form, i.e., the metric 

tensors, and their derivatives. The symmetry properties of the 

above geometrical quantities are also useful: 

(i) 	g. and bare symmetrical with respect to ( i (_> j ), 

i.e. g..= 	g ,  and b, 	b. 

cjj 	are smnietrical w.r.t ( i ( ) j ), i.e. 	= 
- 

(iii) R,,,.&are antisynimetric 	w.r.t. ( 	m 	oE- 	) i ) 	or 	( j 

k 	), 	i.e. - 	or R= - 

Substituting the Christoffel symbols into (3.16), we obtain 

(3.2O) 	J. 	r 	
%'M - 

•1 

Write the Christoffel symbols in terms of the metric tensors, 	the 

Riemann symbols of the second kind looks like 

IR 
(3.21) 

14 	.1fl 2L 

QO 

cr 
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--:  ~ P" I at %, + a'4 ~4 ~ — a) ~'; j  I 

a [ a"01 hc + 	
- o(  L 2  j . 

If we intend to simplify this expression to the 	it 

level, there will be 

4 x 4 + 18 x 4 = 88 

terms to be calculated although most of them will cancel among each 

other. A straightforward but tedious calculation yields 

(3.22) 	
V 

= 
+  

Now we shall use 	 derive the Ricci scalar (curvature), 

R, 	using the standard procedure of deriving the curvature from the 

Riemann symbols 

= 

(3.23) 	 T 
Therefore, the curvature scalar is 

F = 	
1 	2. 

(. ' 	
a 

(3.24) 	 1 +(V) 	 - 

+ [1 +fl2  f 	 L4 

 - 

A. 4f
)

.  
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2. 
By contracting two second fundamental forms, 	b can also be 

obtained 

b2 = b 
a-  NQf 

(3.25) 	
2 

- 	 + 
fl z J Z 

123;1 af 	{ 

The ( g.b ) is 

— 	.. 

(3.26) 
 ) 

2 
so ( g.b 	is written as 

= 	— 2 - 

3.27 	
C I -f (v) 1 J 

	

± 	a; ~S  D~~  4f  a-bmf - ~V 
C I 

* (f) a 3 3 

The above geometrical quantities give us the identity 

(3.28) 	'f 	+ 	(a.. b) = 

which is 	 very useful to simplify the geometrical 

quantities or transform them to some more presentable forms. 	We 

have found a great deal of applications to the calculation 

involved with the method of collective coordinate. 
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We turn now to the application of the above formalism to the 

interpretation of the interfacial Hamiltonian of Chapter II. 

3.2. Symmetry of the Interface Model 

The discussion of the tensor calculus of surfaces in the 

previous section gives us a geometrical description of surfaces and 

interfaces. The study of symmetry properties of the interface are 

also essential to our understanding of the geometrical properties of 

the interface model. With the results of the previous section and 

using integration by parts such as . 

f 
d-I 
	

f 	f - 
(3.29) 	 [ 	+ C1) J 

_ 	 ___________________________ 

- j 	JT+() 	[1 + 

we can identify the appearance of (g.b) and R terms in the 

effective Hamiltonian (2.63) ELn avtd Lowe 1933 

(3.30) Hff. = fd r,  f ()Z (-L + 	d ) 

where -b =1(t] 3/t 	f 	+ 

= E'  

= $c 

LI 
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a 	t'  (-'L)j  2.  U d 

There is a further symmetry aspect. 	As the effective Hamiltonian 

can be derived from the Landau-Ginsburg-Wilson model in d-

dimensional Euclidean space, it is argued that, in the spirit of 

Section 2.3., the classical solution breaks translational symmetry 

in the z axis and rotational symmetry in the z-y plane in our case 

[Wallace 1980 and 1982]. This is a special case of the property 

that f(y) carries a nonlinear realisation of the original full 

symmetry group of the LGW model, namely the Euclidean group E(d) of 

rotations and translations in d dimensions. That is to say, the 

Goldstone field f(y) carries the original large symmetry group with 

the transformations corresponding to spontaneously broken symmetries 

acting nonlinearly on the field. This is analogous to the use of 

the nonlinear sigma model to describe the interaction of the 

Goldstone modes of a global symmetry spontaneously broken, for 

example, from 0(n) to 0(n-1). Mathematically, a realisation of a 

group G is an association (map) between any element g of G and a 

transformation T(g) of some space M in such a way that the group 

properties are preserved: 

T(e) = I, the identity transformation. 

T(g 1 ) = [T(g)] 1  

T(g).T(h) = T(gh). 

It is clear that a realisation of a group is more general than a 

representation of a group. 	In fact, when N is a vector space and 

every T(g) is a linear transformation then the realisation is called 
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a representation [Schutz 19801. 	The corresponding nonlinear 

transformations on f are given by [Wallace 1980 and 19821, 

- 

 

f + 

(3.31) 	 f - 	 + 

for translation by "a" in the z axis and rotation by some 

infinitesimal angle Q in the (z-y) plane. It is easy to check 
that terms appearing in the effective Hamiltonian are invariant 

under the above transformations up to a total derivative. The first 

derivative of the transformed field f '  reads 

+ 
(3.32) 

= a;+...- 9(-F 	-F + 	+  S'Z ~ ) . 

By the help of integration by parts, we arrive at the expected 

result, for example, 

(3.33) $d  

It should also be pointed out that there is only one single field f 

acting as a Goldstone field for the breaking of the symmetry from 

E(d) to E(d-1) [Wallace 19801. This is in contrast to the general 

theory of nonlinear realisations in field theory, which requires one 

Goldstone field for each spontaneously broken generator Of an 

internal symmetry group. This happens in the case of the nonlinear 

sigma model with a spontaneously broken global symmetry from 0(n) 
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to O(n-l). 	In our case, the original action of E(d) on the 	d- 

dimensional coordinates (z, y) is already a representation on the 

coset space of the Euclidean group factored by rotations. 

Apart from the nonlinear realisations of symmetry groups, there 

are some other symmetry properties possessed by our system. For a 

magnetic system as discussed in Section 2.3, we know that the 

Hamiltonian of the LGW model H is symmetric with respect to 

(3.34) 	 - 

By imposing nonvanishing value to the field configuration (#)in  the 

boundary value condition, the nontrivial solution of the Euler-

Lagrange equation in that system must be atodd function of z, i.e. 

() = 

The consequence of the odd property of the field configuration is 

that 	no 	odd 	number of f fields contributions in 	the 	effective 

Hamiltonian 	H(f). Terms with odd number of f fields, 	such 	as 

(g.b), 	do 	not 	then appear in the 	effective Hamiltonian H(f). 

In summary, 

H()=H() (3.35) 

j 

However, the LGW model for fluids, for example, where Od represents 
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the fluid density has no such symmetry properties and a (g.b) term 

must be allowed in the effective surface model. 

3.3. Method of Normal Coordinates 

In our method of generalised collective coordinate of. Section 

2.4., the choice of collective coordinate represents some sort of 

transformation on a surface given by zf(y). The transformation 

includes a translation and rotation from a plane surface 

collectively plus the distance due to the deviation of the surface 

from the tangent plane. R.K.P. Zia rewrites our choice of collective 

coordinate (2.62) as the first two terms in an expansion of u(y, z) 

for small (z - f) [Zia 19841 

-y 
(3.36) 

where 	. ~ = C I t 
	

J 
He then argues that the second term would be the first correction to 

a region of the surface where V2f k 0, since the competition 

between (z - f) and the radius of curvature is responsible for the 

correction. He suggests that we may regard "u" as a curvilinear 

coordinate, which is associated with each f, where the "uconstant" 

surfaces are equally spaced along the whole surface as shown in the 

figure. The curvilinear coordinate "u" is called a normal coordinate 

[Zia 19831. 
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>' 

1<=1 

The d dimensional space (y, z) is covered by the coordinates (, u) 

and is chosen to be y for the sake of simplicity. The original 

d dimensional coordinate can be written as 

(3. 37) 	= ( I)  ) = ± () + 	()  0-0 

where f is a d-dimensional vector instead of f which is a scalar 

function. The two d dimensional vectors f and n are given by 

(3. 38) 
ç_c74, 1) = 

where both n and u depend on f. The vector f(.) is a vector of the 

point "" on the interface relative to the origin of the space. If 

we denote the components of f and as 

(3. 39)  
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0- 

derivatives with respect to 0wil1 be written as a subscript with a 

comma, e.g. f,ô,  are the components of V f. 

By using the above general formalism, we may start to look for 

the effective Hamiltonian in this formalism. First the Jacobian of 

the transformation is given by 

(3. 40) 
	 I kt Tj 

where 

VA04  

(d-) 

- 1 

,nTM 

The measure of the normal's changes can be expanded in terms of the 

(}1 	— k 4 "  (3. 41) 	IL)Q.. - 

where k b are the components of the extrinsic curvature. The metric 
OL 

for ( 	, u) space is given as 

clap 
(3.42) 	

:-) 	 =a 
 CL 

i 

0 
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where 

(3. 43) 	 = 	. 

	

= 	+ J +,b 

is the metric on the original z= f(y) surface. Substituting (3.41) 

into (3.40) and using (3.43), the Jacobian of the transformation 

is given by 

(3. 44) 
k  Tj =I  

We now expand (3.44) in power of u 

45) (DèTJ if Ii - Tr.j 

where 	 ( r- 
 )r )Y- 	Tr li~ 2)  

is the curvature scalar. If we write the Hamiltonian as 

(3. 46) H [ (v)] = Jd 	d v I At T1 fJ 

which can be expanded by the help of (3.45). Therefore, the 

effective Hamiltonian is given by 

fa (. 	H1i1.= 	
_____ 

 
- 	 ++i(r+ 

) 
 R 	) 

where 
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{Jd 	tN) 
This gives the same result as our previous calculation. 	Although 

the two method are equivalent in physical and geometrical pictures, 

the beauty and power of the method of normal coordinates certainly 

makes our treatment of the effective Hamiltonian rather ugly. 
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CHAPTER IV Correction to Scaling 

In the field theoretic model of surface tension, the higher 

derivative interactions beyond the surface tension term take the 

form of geometric invariants such as (g.b), curvature, (g.b)2  , etc, 

in the long wavelength limit. The forms of those geometric 

invariant interactions are derived in the previous chapter by using 

a generalised method of collective coordinates and the geometric 

identifications are made by differential geometric techniques. The 

next interesting question is how to renormalise those geometric 

invariants and what the scaling properties of those invariants are. 

Our approach to the renormalisation analysis is based on two other 

calculations: the E  -expansion for the interface model in d=l+.E 

dimensions [Wallace and Zia 19791, which is analogous to the 

renormalisation of the nonlinear sigma model in 2+ . dimensions 

[Brezin and Zinn-Justin 1976a, b]; and the effective potential 

techniques [Forster and Gabriunas 1981]. The renormalisation of the 

higher derivative geometric invariants, such as the curvature term, 

proves to be too complicated to be done; besides, they may be 

phenomenologically irrelevant anyway. This leaves the simplest of 

the geometric invariants, the contraction of the coefficients of the 

second fundamental form b.- those of the metric tensor g 

i.e., (g.b). The problem then is to perform a perturbative 

analysis of the resulting effective Hamiltonian in dl+E bulk 

dimensions, where the higher geometric invariant interactions 

appearing within the resulting effective Hamiltonian are generally 

treated as small perturbations to the surface tension term. Before 
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we proceed to perform the perturbative calculation for (g.b), we 

shall discuss the nonlinear sigma model in 2+ dimensions and the 

analogous analysis of the interface in 1+ 6 dimensions. The 
renormalisation and scaling properties of (g.b) in 1+ 6 dimensions 

will be performed up to one loop level in the context of the 

perturbation analysis. The result shows that this type of 

interaction is indeed irrelevant to the leading long distance 

behaviour in low dimensions; it is just a correction to scaling [Lin  

and Lowe 1983]. 	In higher dimensions, it is possibly a relevant 

operator, 	but such a regime is beyond the control of the 

perturbative one loop calculation described in this chapter. 

4.1. Nonlinear Sigma Model 

There is a long history of the study of the linear and 

nonlinear sigma model in physics. The sigma model was proposed by 

Gell-Mann and Lvy [Gell-Mann and Levy 1960] in the context of 

chiral symmetry breaking in elementary particle physics. They 

suggested it as a field theoretic model which realises chiral 

symmetry and partial conservation of the axial current. The 

Lagrangian is written as 

(4.1) 	 = 	- 	0 

(4.2) 	 = 	± 	C-  +  

2 	a 	2. 
(- 

'-. 
I 

__  
(o- 

2.  + 
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where 	is a fermionic isodoublet field of zero mass, Tt is a 

triplet of pseudoscalar pions, and is a scalar field. The 

symmetric part of the Lagrangian, cLs,  is invariant under the 

SU(2)xSU(2) chiral group. It is a well known fact that SU(2)xSU(2) 

is isomorphic to the 0(4) group, and the (1/2, 1/2) representation 

of SU(2)xSU(2) group, (C, tTC ), will transform as a vector under 

0(4). If the fermion fields are omitted, the Lagrangian becomes 

(4.3) cL =4 ± 	a- 

(4.4) 	CX—,s 	2) - -- 

where 

(a- 

(4.5) 

is the compact notation for a multiplet of four fields transforming 

according to the vector representation of the symmetry group 0(4). 

If the symmetry is broken from the larger group 0(4) to the little 

group 0(3), 	6 - 3 = 3 Goldstone bosons corresponding to the 

spontaneous symmetry breaking will be generated. 	These three 

Goldstone bosons are usually identified as pions. In the 

renormalisation of this spontaneous symmetry breaking scheme, it 

seems reasonable to start with the renormalised symmetric theory 

with ) 0 and then continue to the region of 0. This 

procedure would generate a transition through a singular point for c 

= 0 in (4.3). Therefore, it is necessary to keep c k 0 as a small 
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breaking term in (4.3) to circumvent the singularity. 	In the limit 

of vanishing c, the theory is spontaneous broken without any 

renormalisation problem. 

As was discussed in the previous chapter, a realisation of a group 

is more general than a representation of a group. If one chooses a 

space on which the group of transformation acts in such a way that 

the space is not necessary a linear vector space, one obtains a 

realisation of a group. We can choose a constraint condition to 

specify a realisation of group 0(4), for example, the nonlinear 

realisation of the chiral group on the manifold given by 

(4.6) (f) = a-  (X) + jjC-  ('x) - iT 

where v is a constant value. 	The nonlinearly realised Lagrangian 

for the 0(4) group is written as 

(4.7)  

Writing 0-in terms of 'it , the Lagrangian becomes 
2. 

('7 . TL  I 	Ft2-fr (4.8) 

 

From the above Lagrangian, it is straightforward to see that the 

chiral symmetry is realised in the Goldstone mode. The composite 

field T=f v 2  -ir has a nonvanishing value, i.e. it is massive, 

and the TC stand for three massless fields. In the long wavelength, 
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low energy limit, the nonlinear sigma model is a good approximation. 

In statistical mechanics, the Hamiltonian of the classical 

Heisenberg model with an 0(n) symmetric group is given as [Brzin 

and Zinn-Justin 1976b] 

(4.9) .  

z..' ~ 	
. 

where the s . are unit n-component vectors associated with the sites 

i of a periodic d-dimensional lattice, 	k is a short range 

positive translationally invariant interaction. 	The critical 

prOpëities of the classical Heisenberg model can also be described 

by a continuous field theoretic model called the linear sigma model, 

(4.10) H = Jdc 

Brzin and Zinn-Justin showed that, in the long distance limit, the 

classical Heisenberg model is equivalent to the nonlinear sigma 

model [Brzin and Zinn-Justin 1976b]. The Euclidean action of the 

nonlinear sigma model again looks like 

(4.11) 	
- 	

[(?)+ ()]# 

Renormalisation of this nonlinear sigma model in 2+ E 

dimensions has been carried out by the same authors [Brzin and 

Zinn-Justin 1976a; B, Z-J and Le Guillou 1976]. They use a 
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generating functional for Green's functions in Euclidean space, 

defined by: 

(4.12) 	 rn - i 

f ( 17 07)2-  + 

where T is a dimensionless coupling constant and a regularisation, 

which preserves the 0(n) symmetry, must be introduced in (4.12). 

By integrating out the delta function within the generating 

functional, the 2N-point interaction vertices are obtained by 

expanding the [ (1 - 9tYy,2  ]' . It turns out that only field 

strength and coupling constant renormalisation are needed, so that 

the renormalised Lagrangian is 

61-2 	 Y 
(4.13) 	-. 	 f ( ;) ~   V(I- 	j2  cl, 

where the parameter ,U fixes the scale of the renormalised theory. 

The lattice spacing or dimensional regularisation may be used to 

regularise the theory. The infrared divergence generated from the 

pion propagator, 1 / p, can also be controlled by introducing 

an external source term, h, coupled linearly to the field. 

[Brzin, Zinn-Justin, and Le Guillou 19761. 	The source term h 

plays the role of the magnetic field. 	The essential role of this 

term lies in the observation that the expansion of 

(4.14) 	k  
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2. 

in powers of 	generates a mass for the pion. 	The generating 

functional of the Green's function, thus, reads as 

(4.15) 	(, k) 	
f= (- 	

<P• f R 
 

with 

'7 Tr. J ____ 
(4.16)( k) Jx [+v) I- ) 

For the lattice regularisation, the vertex functions of the 0 and 

1T fields satisfy the renormalisation group equation 

---- 
(7,

(N) 
(4.17) I (T 	) 

= 	q2 	
F (T 	). 

The ordinary differential form of the renormalisation group equation 

is obtained by differentiation with respect to 	, at fixed T.2  and 

Al 

f A ~) + (T) 	
() 

2 	)) 	(T ) 

- 0, 
with 

(4.19) 	( (T) = - A 	A 

I 
(4.20) 	

T VV (T) = A AI R  
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The renormalisation group equation may also be written in terms of 
(frJ) 

the renormalised vertex function 

W) 

(4.21) 	a + 0/ (T) 
	- 	(Tg) 1 ) o 

ITg 	2 

If one deals with external 	lines, it is easier to calculate the 

connected Green's function, G 	instead of the vertex function, I' 
The equation reads 

Of) 

(4.22) A 	1 W(T) 	 (T).j (f7 (T, 
I 

The form of W(Tg) at one loop in perturbation theory, 

(t-2 ) 	2 
(4.23) 	 6 TR--TR +(T) 

is 	crucial to the physical interpretation of the theory since 	it 

controls 	the flow of the effective coupling Tk(,L1) 	at momentum 

scale )J according to 

(4.24) 	
d T = 

In two dimensions (- 0), the theory is asymptotically free, with 

TR ()A)"(ln)A 0 as P - CkO . In 2+Edimensions, the 

fixed point at T,= 0 is infrared stable. The new fixed point T ' = 

2 / (n-2) 6  + O( a) is ultraviolet stable, i.e. infrared 
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unstable. Thus deviations of T from TR  are relevant in the sense 

of Section 1.5, so that Tcan be interpreted as a critical 

temperature, 	in fact as the phase 	transition temperature 

corresponding to the restoration of the 0(n) symmetry. The key 

concept is that the linear and nonlinear sigma models are in the 

same [0(n)] universality class; the former is simple to renormalise 

near four dimensions, the latter near two. In the next section, we 

shall discuss an analogous interpretation of the renormalisation of 

the surface tension term in 1+ 6 dimensions in terms of the Ising 

universality class. 

4.2. Interface Model In 1+ G Dimensions 

The observation, made in the previous chapter, that 	the 

capillary waves transform as a nonlinear realisation of the 

Euclidean group of d dimensions gives us an interpretation of the 

capillary waves, as the Goldstone modes whose fluctuations lower to 

zero the critical temperature as d - 1+. This is analogous 

to the use of the nonlinear sigma model to describe the 

interaction of the Goldstone modes (spin waves) arising from the 

spontaneous symmetry breaking of a global symmetry, such as the 

0(n) group, which was discussed in the previous section. The 

difference between these two systems, interface model and nonlinear 

sigma model, lies in the type of symmetry which they possess: the 

Ising model has a discrete internal symmetry, - , which 

supports an interface model; the(continuous)internal symmetry of the 
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nonlinear sigma model is 0(n). 

The renormalisation group calculations of the interface 

model in 1+ 6 dimensions follow very closely with the calculations 

of the nonlinear sigma model in 2+ 6 dimensions. We start from 

the effective Hamiltonian of the field f in the form 

(4.25) H (+) = +Ix f E'+ 2 4 

with 

I - 
	

---  _ 

(4.26) 	1- 	- 

where the first term is the surface area of the interface, (7- is the 

interfacial energy per unit area at zero temperature. The mass 

term in H is introduced as an infrared regulator to control the 

infrared problem. The generating functional of the Green's 

function can be written as usual 

(4.27) 	 = J 
In order to set up the perturbation theory, it is necessary to 

expand the square root term inside the effective Hamiltonian. 	This 

leads 	to an infinite number of interaction vertices: 

H =  
(4.28) 

T5 	1+ (v2- ((Vfy) 

t .  -L (( V 
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This gives the propagator 

(4.29) 	
-r 

( V+ 1vz) 

and the interaction vertices are 

I 	 1 

	

Four oints: 	- F 
(4.30) Six 	Points: 	

ICT () 

Eight Points: 

etc. The correlation functions (generating functional for connected 

diagrams) of the field f can also be written down. The ultraviolet 

and infrared properties for the interface model are controlled by 

the dimension of T. The effective Hamiltonian H is dimensionless in 

the power counting, T = ft( where K is an inverse length, or 
momentum. Thus H is naively nonrenormalisable for d >1; the large 

momentum behaviour of the system cannot be controlled in a 

straightforward perturbative expansion in T. This problem can be 

solved perturbatively in 1 + 6 dimensions by using the 

renormalisation group techniques. Wallace and Zia have calculated 

the two and four-point vertex functions to two loops in a 

dimensional regularisation scheme. They found that the 

renormalisation required is a coupling constant renormalisation 
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T 	Kk0 

(4.31) 	= 	 {+ _ 

t 
and a mass renorrnalisation 

(4.32) 	 - 
T 

where t is the dimensionless renormalised coupling constant. 	They 

argued that it is not necessary to have a field strength (wave 

function) renormalisation, to all orders in perturbation theory. 

This is the consequence of the Ward identities and is also based on 

the interpretation that f represents a length. 

The renormalisation group equation for all vertex functions 

t7p. is thus written as 

R° J  
where the beta function and the anomalous dimension are given as 

13 (t)= (o - t - f- kf+ ........ 

(4.34) 

* 
There are two fixed points related to the beta function: 	the 

infrared stable fixed point, t = 0, which controls the low momentum 
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behaviour of H, and the ultraviolet stable one, 

(4.35) 	
= (— 	— 	(— ttt  

which is the effective coupling for the high momentum behaviour. 

The essential differences between the interface model in 1+ 

dimensions and the nonlinear sigma model in 2+E dimensions are: 

(1) The nonlinear sigma model requires field strength and 

coupling constant renormalisation; the interface model requires 

coupling constant and mass renormalisation. (2) An external source 

term (a magnetic field) coupling linearly to the sigma field is 

used to control the infrared divergence in the nonlinear 

sigma model; the interface model employs a mass regulator to 

control the problem explicitly (It can be interpreted in the fluid 

case as the effect of gravity). 

Forster and Gabriunas carried out the calculations of the 

interface model in 1 + 6 dimensions up to four loops [Forster and 

Gabriunas 19811. 	They used a method of effective potential instead 

of calculating the n-point vertex functions directly. 	The 

generating functional for the vertex functions (Gibbs free energy 

functional) is given as 

(4.36) 
r{} 	JoIx hc 	C?c) 

L 5 9 f (— HJa k), 
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which generates the vertex functions as the derivatives with respect 

to (x) = ( f(x)>. In order to cure the divergences of the 

theory, they introduce a field redefinition 

(4.37) f = M•X tØ(7) 

where M is a constant vector. 	This enables one to study the 

divergent parts of the n-point vertex functions. 	It follows that 

the free energy functional can be rewritten as 

— 	 -, 
(4.38) 	 Ck 	 t 0 ()), 

where 
1 •  

(4.39) -J 	xto()=LJØr(H'), 

with 

_ 	 2J 
(4.40) H'(; n, 	— + 	x{ 

I 	 is 
The beauty of the effective potential method is that once the 

effective potential is renormalised, the whole theory is also 

renormalised. 

4.3. Renormalisation of (g.b) 

By employing the techniques developed in the renormalisation of 

the interface model in 1 + 	dimensions, we may proceed to perform 
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a perturbative analysis of the effective Hamiltonian which includes 

the higher derivative interactions. In this section, we shall 

demonstrate the renormalisation of the simplest of the higher 

derivative interactions, i.e. (g.b), to one loop. The result shows 

that this type of interaction remains in low dimensions is 

irrelevant, in the sense of the renorirtalisation group flow, for the 

leading critical behaviour; it is only a correction to scaling [Li n  

and Lowe 1983]. However, in higher dimensions, it can still be 

relevant. 	We extend the effective potential techniques, developed 

by Forster and Gabriunas, 	to study the following effective 

Hamiltonian: 

H€ff (+)=Jo('fOth7)) (T 	 ;21 
 

(4.41) 

= H0 t  H1 
with 

N0 r f ~-I+(-7f 	A -,  f 
H=Cj6 

where c is a small parameter, and the mass term is introduced as a 

infrared regulator to control the infrared problem as usual. The 

contraction of the coefficients of the second fundamental form with 

those of the metric tensor, g.b, is given as 

(442) 
	a 

b- 

 Since c is treated as a small parameter, it implies that c (g.b) is 

treated as a small perturbation to the surface tension term. 	The 

idea behind this treatment is that we intend to demonstrate that 
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g.b [1 + (Vf) 2]is multiplicatively renormalisable. This means that 

we consider the diagrams with only one vertex, coming from the 

expansion of g.b [1 + ( 7 f),] Y. in powers of f; they are the terms 

which are linear in c. In their treatment of the method of effective 

potential, Forster and Gabriunas demonstrated that, in order to 

control the divergent parts of the vertex functions, it is only 

necessary to renormalise the effective potential (free energy) for 

certain field configurations. The divergent parts of the n-point 

vertex functions in our system involve one insertion from g.b 

11 + (V ff ] and any number of insertions from the [1 + (V f) ] 

(surface tension) part of the Hamiltonian. We introduce, in order 

to cope with the extra derivative of f, a field configuration of f 

involving terms linear and quadratic in y (i.e. with first and 

second derivatives only), 

(4.43) 	 )=N2 + 	M () 

and work to first order in M and to any power of N. 	The above 

argument and other conventional considerations give us a set of 

criteria for the expansion of the generating functional of the 

vertex functions (Gibbs free energy functional) in powers of 

(1+ N2 ): 

( 1 ) Throw away terms which are of orders higher than M. 
I 

( ii) Terms which are linear in 	do not contribute to the one 

particle irreducible diagrams. 

(iii) Total derivatives can be ignored. 

E1 



CORRECTION TO SCALING 

( iv) Terms which are of the orders higher than O( 	do not 
contribute to one loop diagrams. 

We are now in a position to carry out the perturbation theory 

for the higher derivative interactions. By substituting the 

configuration of f, (4.43), into the effective potential, we first 

arrive at 

(I t 	 Y2. 	
'2  

(4.44) 

(Y M 1  
and 

	

(I +(fl -1 4 	

A &S- 
I ~'~a 

el-le (L+)' k M A 	4t 
(4.45) 

- ( 	14  
- (tt/)/½A4 M2 { 	- 	 /V /Y3 

The propagator for our perturbation theory can be derived from 

(4.44) as follows: 

I 	
I 

T 	 cz ? 	

± 
T t 

(4.46) 

= 
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where we have used the partial integration and plane waves as the 

eigenfunctions. The propagator can be written as 

(447) T 
1+9 

with '  

(4.48) 	 tN1t1  

-r '2 
There are several types of vertices of interaction involved for the 

contractions of diagrams which contribute up to one loop level. 

The vertices from H
.

are: 

(4.49) 

 

(i) 

(1+ N2 ) - '  N2 

- 4 (I+Ni2 N M2 N5  a5 7 

-2 (+N2)///. /\' 

(v) (+ 
01~ 

 rN2 t1 ,v f 
& ti '4N /N 

By 	connecting '17 legs together we form the one loop contributions. 

Since we are working in the effective Hamiltonian to first 	power in 

M and to any power of N , there are still two types of diagrams to 

be done. If we denote the vertex from H. as "." and vertices from 
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H y  as "x", the self contraction of a vertex from H 0  is 

" 

(4.50) 

I 
S .4 s t tqk /VS 

and the contractions from one "." and one "x" are: 

(4.51) • 	+) 
I-. - 

Nr 

r5tNr 

$st 

2 (f+N O Nt m ?, 

ao(. 

A/, N 
There are a few tricks to employ in order to calculate the 

dimensionally regularised integrals. We need some identities in 

order to do the dimensionally regularised integrals: 

(oI—A 	AJc&A 
(4.52) 

• 	o(N)= 

-Al 

 
2ftNZ/'4 

The calculations of the integrals present some interesting technical 

aspects. The contributions from part (ii) and (iv) of (4.49) 

vanish because they both involve integration of odd functions. For 

the diagrams of (4.50) and (4.51), the vertices involved in the 

calculation depend linearly on y The integrals of these vertices 

91 



CORRECTION TO SCALING 

can be performed in momentum space with y
1  interpreted as a Fourier 

transformation of a derivative of a momentum conservation delta 

function 

(4.53) . =, I d_____ 
A 	

) 

 

This trick shows that the integral calculated in 	(4.50) is, in 

fact, a total derivative only. 	These techniques would also be 

useful for future calculations which relate to the higher derivative 

interactions. 	The contribution for (4.51) is also involved with 

both coordinates and momenta. 	We also need the momentum 

representation of the Green function 

Q (x,)= <?7()();')> 
e 

(4.54) 	

1' and 

(&rt Ali  IV, )(rsiWyiVsJ' 	
Js, 

and using relations, such as 

( a- I ___ I 1 v t2i.. 1P s 12,\ (4.55) 	

a 

in order to transform (by using integration by parts) 	the 

contractions of 	(4.51) into shapes on which the technique of 

dimensional regularisation can perform. 

After a 	long and tedious calculation, 	we obtain the 
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final contributions from the divergent parts of the dimensionally 

regularised integrals 

Le T/4*TN/v/V 
(4.56) 

+ - /4 T ' 
1&f2: _ 
	ZyW4 /i4# IV? 

I+f\Ja 	JI 
MMt/ 

We obtain the divergent part of the effective functional (free 

energy functional) as 

(4.57) 	 1w11  

44 2  C ltNa 

As discussed in the previous section, Wallace and Zia have 

demonstrated that the surface tension term of the Hamiltonian is 

perturbatively renormalisable in an epsilon expansion context for 

.= (d-l) with a coupling constant (T) renormalisation. 

(4.58) T = 	± , 

where t is introduced as a dimensionless renormalised coupling 

constant and X is a renormalisation mass scale. Now we require an 
additional renormaljsatjon to make the system finite. A simple 

multiplicative renormalisation of the coefficient c can be written 

down as in the coupling constant renormalisation. 

Rzz 
-1 
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where 

(4.60) 	It  - ( I- 

 and 	is a renormalised coefficient. 	The renormalisation group 

flow of the renormalised cR , for temperatures close to the 

critical value, is thus obtained as 

(4.61)  

Here the X , arises from the extra derivative in (g.b) and the 

correction of order 6 from the one loop renormalisation above. The 

long distance behaviour is obtained in the limit fl— 0. When the 

power of) is positive, the insertion is therefore irrelevant. This 

is indeed the case for small 	but there is clearly a.warning here 

that for larger 6 this term may be relevant. 	If this is the case, 

the 1+ & expansion is inappropriate for 3e?ve - c Cr7tk 	eAc4.,iour. 

The picture of a long distance behaviour of the effective 

Hamiltonian (4.41) governed by the fixed point of the surface 

tension term in the Hamiltonian modified by corrections due to the 

higher derivative geometric invariants is, therefore, confirmed to 

be stable under renormalisation group flows for cniodL e. 
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CHAPTER V ONE-LOOP CALCULATION. IN SYSTEMS WITH ADDITIONAL 

GOLDSTONE MODES 

The renormalisation calculations of (g.b), concerned with the 

(d-l)-dimensional fluctuating interface and surface, have been 

completed in the last chapter. In this chapter, we shall start to 

investigate the effective Hamiltonian for (d-n)-dimensional 

generalised "interfaces" or "strings". This effective Hamiltonian 

governs the interactions of the Goldstone modes, in the long 

wavelength limit, due to the spontaneous breaking of the spatial 

(Euclidean) symmetries by a solution of the Euler-Lagrange 

equations. The difference between the (d-l)- and (d-n)-

dimensional models lies in the dimension of the Euler-Lagrange 

equation: the dimension of the solution for the (d-l)-dimensional 

case is one; the solution describing a flat (d-n)-dimensional 

surface depends on n of the d coordinates of the system. In fact, 

the (d-l)-dimensional interface model can be regarded as a special 

case of the (d-n)-dimensional model [Lowe and Wallace 1980]. This 

flat (d-n)-dimensional interface obtained from the classical 

solution will fluctuate into the remaining n dimensions in d bulk 

dimensions. The effective Hamiltonian of the (d-n)-dimensional 

interface or "string" usually takes a form which is proportional to 

the hypersurface area of the "string" (or the generalised (d-n)-

dimensional volume) 

(5.1) 	 c f 	
ot-,n 
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where g2 . is the metric of the generalised interface or string. In 

Section 5.1, we shall derive this effective Hamiltonian [Lowe 1982] 

by using a semiclassical method similar to the generalised 

collective coordinate method of Chapter II. We shall also consider 

the possibility of a (d-n)-dimensional surface with an extra 0(2) 

Goldstone mode which arises in addition to the breaking of the 

spatial symmetry. In the long distance limit, the effective 

Hamiltonian, which represents the nonlinear sigma model for the 

0(2) Goldstone mode, is defined on a curved surface given by the 

interface's position. The renormalisation calculations for the 

effective Hamiltonian of a (d-1)-dimersiönal interface carrying an 

extra 0(2) Goldstone mode have been carried out, in the same spirit 

as in Chapter IV, up to one. loop.: the one-loop 

calculations will be discussed in Section 5.2. 

5.1. Effective Hamiltonians for Strings 

The string solution to the Euler-Lagrange equation of a system 

is a n-dimensional solution with n > 1. We shall start to 

investigate the possibility of constructing a string solution for 

the scalar field theory, such as the LGW model in Chapter II. 	For 

the classical solution of a scalar field system, 	(x), the energy 

will be given by the Hamiltonian 

(5.2)  H = fx (V 0C 	X U 
E 
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Under a scale transformation 

(•) 	;K.. 

the Hamiltonian is transformed into 

(5.4) H (Q) = a 2-? Ff 1  -I- C?% 	
2. 

This Hamiltonian must be stable under variations of the would-be 

classical solution, 

=0,( 5 . 5 ) 	 I 

i.e., the variations of the Hamiltonian with respect to the scale 

change must be zero. This leads to the equation 

(5.6) 	i-2) H,±mn k2 = 0. 

The only possible solution for positive integer n to this equation 

is 	n = 1. 	Therefore, it is impossible to construct a string 

solution (n > 2) for the scalar field theory. 	This result is 

called Derrick's theorem [Coleman 1975]. 

One possibility for a scalar field theory to possess a higher 

dimensional solution is by coupling with some vector field. A 

specific example is the vortex solution of the abelian Higgs model 
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H Fc4v F4 v t 
(5.7) 

 t 	01 —  - )J, 
with 

F  A V = 	- àv A-a. 
(5.8) 

T9S AA) 91 

(this is the Euclidean version with complex scalar field 0 (x)). 
The field equations (Euler-Lagrange equations) are 

Fu -v = 
(5.9) 	 a  

DP (1 ~ 
 

with 

(5.10)  

- .2  -e- Ao 0 * 0 .  
The above equations are gauge invariant under the U(1) group of 

phase transformations. The vortex solutions are constructed as 

[Nielsen and Olesen 1973] 

()= c x 
(5.11) 

Acpx9
))  

with 

W. 
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(5.12) 	
= AJ X,* ;< 	, t 	xI 

c & = x, 

By substituting 	into AM(x),  we may rewrite the (d-2)- 

dimensional "string" solution in a d bulk dimensional system as 

(-X) 	(Y)  

(5.13)  

AA (:)=4 c (Y) 0 
where 

I 
I 

Following the notation introduced by D.J. Wallace [Wallace 

19801, the above solutions have the general form 

(5.14) 	 (k) 
where 	a = 1, 2 . ..... n 	and all indices which specify the 

components of the field are suppressed. These stable classical 

solutions would give a description of a planar (d-n)-dimensional 

reference hyperplane, at say z = 0. The fluctuations of the 

surface from this reference hyperplane are given by 

(5.15) 	k , 

where 	9C= 
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(-7) 
with 

• '71. 
A figure is given in the following for a (d-n)-dimensional "string" 

fluctuating into the remaining n dimensions. 

F 

ill 

The descriptions of "strings" in this way transforms this problem 

into a similar situation to our (d-l)-dimensional interface model. 

We are interested in looking for the effective Hamiltonian, in the 

long distance limit, of the modified field configuration which must 

be related to the original solution by the symmetry carried by the 

system. Again, f(y) carry nonlinear realisations of the original 

full Euclidean symmetry group. 	The modified field configuration is 

given as [Lowe 1 9 923.4 

(5.16) 	 (k0 '), 
where 

47 	
PI f 6 (1) 

with 	
~ h 	+b 
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The leading order contribution from the effective Hamiltonian for 

the modified field configuration, (z), involves a change of 

variables only 

(5.17) 
(• 	 b) 	(, 	 ck'). 

, f 	, 

This would give rise to a Jacobian which relates to the change of 

variables 

(5.18) 	 'N'j 	) 

with 

(5.19)  
- 

We, thus, obtain a surface tension type model again 

	

C 	{-i 
(5.20) 	f(+) 

It is argued that it is possible for strings to possess other 

types of Goldstone modes than those which arise from the breaking of 

the spatial symmetry [Lowe 19821. In the n = 1 case, there is a 

system which may allow.a one-dimensional solution with an extra 

0(2) symmetry [Lajzerowicz and Neiz 1979; Lawrie and Lowe 19811 

(5.21) 
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whereis a real scalar field and 	is a complex field. For r,-1.2h 

there is a stable generalised interface-type solution 

C'/'  ~ C) 
(5.22) 

7Ii 

where 0< is an arbitrary phase factor. 	This field configuration 

breaks not only the Euclidean spatial symmetry but also the 0(2) 

symmetry. 	In the n = 2 case, a string with an associated 0(2) 

Goldstone mode occurs for the following modified Abelian Higgs model 

H =Jx [ 	i4t 	2± crn&- I it 
(5.23) 

where 7' is an additional complex scalar field. 	For small h and 

large 	, there is a stable string solution 

(5.24) 	
= 

(3- (x) = 
which 	still represents a 	(d-2)-dimensional 	string in a d- 

dimensional system but with an associated 0(2) Goldstone mode. 

In the general case, the effective Hamiltonian takes the 

following form [Lowe 19821 

(5.25) 	
= 

J_nG 	
0 	 9  A, ~ 	e 	 18 	, )i I 
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where G is a complicated function which depends on the details of 

the potential and the modified field configurations. In this model, 

we see the expected form for a "free" 0(2) Goldstone mode (Q) in 

a curved surface of metric g2. The arbitrariness of the function 

G leads us-to consider a simplified model in which the reference 

hyperplane is held flat and fixed and the fluctuations from the 

reference plane are described by e(y). The unknown (V'O 
)Z  

dependence inside the G function is written in the form, in the 

n1 case, 

(5.26)-j 	= a5o( 	eJ' [f (V  ,j 
 

which is anyway the natural form which emerges from (5.25), i#keia o. 
is I'tO.UF —ocIc ir'te5&. 

The remaining section 	in this chapter is 	concerned 

with a study of the renormalisation of the operator insertions of 

[1+ (VG )], such as appear in (5.26). 

5.2. One Loop Calculations 

We shall start to set up the calculations for the effective 

Hamiltonian of the (d-l)-dimensional generalised interface or 

"string" with extra 0(2) symmetry. The technique involved in this 

section( is a simplified version of the method of 

effective potential developed in last chapter. 	The one loop 
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calculation for our effective Hamiltonian will be done in this 

section, and the techniques developed in the one loop calculations 

are 	also 	applicable to 	the 	higher 	loop calculations. 

The Hamiltonian of interest reads 

(5.27)H 
 

where '&' is treated as a small parameter and "a"is some rational 

number, that is, the higher order contribution in the effective 

2 	. 
Hamiltonian, 	[ 1 ± ( Vs) 1 , is also treated as a small 

perturbation in the sense of Section 4.3 (in the hope that it will 

be multiplicatively renormalisable). The mass term is also 

introduced as a infrared regulator to control the infrared problem 

as was done in Chapter IV. Since the renormalisability of the 

effective potential would also ensure the renormalisability of the 

whole theory, once again, we are interested in the generating 

functional of the vertex functions (Gibbs free energy functional) 

(5.28) 	 Jt? 	Q(oI 

x 

Since 	(5.27) involves with first derivative of the field e cL 
only, it is only necessary to introduce a linear term in the field 

configuration redefinition 

(5.29) 9 () - 
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(5.30) 

iVi-  
The idea is, of course, to transform the original generating 

functional for the n-point vertex functions into a new one such that 

interacting vertices from the surface tension part of the 

Hamiltonian are already included. The transformation looks like 

(5.31) (O()J  

There are two ways to expand the above Hamiltonian (5.27) with 

respect to the field configuration redefinition (5.30). The first 

one is similar to the method in Chapter IV, the field configuration 

(5.30) is substituted into the effective Hamiltonian (5.27) which is 

then expanded in powers of ( 1 + N ) with one particle reducible 

diagrams discarded. It is also possible to expand the effective 

Hamiltonian around N directly; the expansion would be simplified 

greatly since there is no higher derivatives in the Hamiltonian and 

the contribution from field configuration (y) can be easily 

separated from H( N 2). Of course, these two schemes are equivalent 

to each other and they have been checked to be valid up to fourth 

order of the expansion. 

We therefore write the effective Hamiltonian as 

HO.V)= H C Nfa(J 

=H(N)t c 	H I 
(5.32) 	 S Pie) 

H 	I 
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where the functional differentiation of H = H 0 + H1  should be done 

separately for the free and perturbative parts. For the free part, 

we have 

SNi T 

(5.33) 	

- 	 L_ 	( (-1- Ho. 	Al 

T (tNN) 

The propagator is obtained with the help of the mass regulator, 

I, 

(_H-_ NY2 	 _ 
T 

The perturbation from the interacting vertex, up to one loop level, 

is written as 

k  
In our formalism of effective potential, there is only one diagram, 

up to one loop and to first order in c. The result reads 

(5.36) 	
T 

where a dimensional regularisation has been introduced as in the 

calculations of Section 4.3. 

We observe that the dimensional regularisation of the power "a" 
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term in the original effective Hamiltonian has generated a term with 

power "a+l". In order to renormalise the system with a power "a" 

perturbation term in a multiplicative way, we must introduce two 

other perturbative terms with powers of "a-l"  and "a+i", 

respectively, since "a-l" term would generate terms with power "a-i" 

and "a" and "a+i" term would give "a±l" and "a+2 1'. Of course, the 

"a-l" term would then need "a-2", etc. In theory then, an infinite 

number of terms with rational number power varying from "a-n" to 

"a+n" are needed in order to make the system finite. For the sake 

of simplicity, we shall restrict ourselves to three terms only to 

illustrate how the idea of multiplicative renormalisation works. We 

write the three term effective Hamiltonian as 

= 
t 0 Ji+(vO)J' 

(5.37) 	 a. 

(V  0 )2,jotl . 

t C,J[ Ii- (VOtJ 

The generating functional of vertex functions is also modified 

accordingly, 

(5.38) r 1 +(l A)C 
where A , J. are matrices and j?1, 	are row and column vectors. They 

are given by the following: 

) (\J ) 	Ii-j-M ) 	• (14W) 

/ 
- I 	I 

C a  
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= U,i14t 'i\&+riX 

Ao 	 ) 	A0=2()(°2) 

- o  

A2 =2(i-i-I) 

We introduce a simple multiplicative renormalisation scheme in order 

to make the system finite 

(5.40) 	e  = 
 'k 

. (~ (~ 

where the generalised coupling constant renornialisation is described 

by a matrix equation. The quantities in the equation are given as 

(5.41) 	
0 	 '~'? d = i.-4 M 

with 	 ± T— - . 
The finiteness, up to one loop level, of the system after the 

renorinalisation is thus very easy to verify. 

An extended attempt has been made to extend these calculations 

to two loops, to confirm this picture of matrix-multiplicative 

renormalisation. The technique is similar to the one loop but much 

more demanding technically: fourth order in 	must be retained in 
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H, there are four generic types of diagrams and each involves 

complicated tensorial algebra. This calculation has been carried 

through to the point where 1 / divergent terms have been isolated 

and identified. As one might anticipate, it is clear that the 

matrix-multiplicative renormalisation must be extended to include 

mixing between (1+ ) and (1+ N P+2. What we have been unable 
to verify in the time available is whether the coefficients of the 

divergences are consistent with the one loop renormalisation. The 

structure of the renormalisation at higher order remains therefore 

an open question. 
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