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Abstract

Haematopoietic stem cells (HSCs) are routinely used to treat haematological

disorders, as they can engraft into the bone marrow of immuno-compromised

recipients where they undergo self-renewal and multilineage differentiation to

provide long-term reconstitution of the blood system. Identification of novel factors
able to regulate or expand HSCs would have a significant impact in a clinical setting.
Mouse embryonic stem (ES) cells can be used as a model system to investigate

haematopoietic regulation, since these pluripotent cells are amenable to large-scale
culture and have the capacity to differentiate into a variety of cell types in vitro,

including cells of haematopoietic lineages. Mature blood cells can be generated

relatively easily from ES cells; however, HSCs are generated at relatively low

frequencies and there has been only limited success in the contribution of these cells
to the adult haematopoietic system in vivo. Previous work demonstrated that the

frequency of haematopoietic progenitors was significantly increased when ES cells
were co-cultured with primary El0.5 aorta-gonad-mesonephros (AGM) tissue

explants, a region which is able to give rise to HSCs in vivo. Therefore, the AGM

region is a potent source of haematopoietic inductive signals both in vivo and for ES
cells in vitro.

This project aimed to determine which subregion(s) of the AGM were

responsible for the haematopoietic enhancing effects that primary AGM explants had
on differentiating ES cells. To this end, a novel co-culture system has been
established to test the enhancing effects of a panel of clonal stromal cell lines derived
from different subregions of the midgestational AGM. It was found that three clonal
stromal cell lines derived from the dorsal aorta and surrounding mesenchyme (AM)

subregion of the AGM were able to significantly enhance the frequency of ES cell
derived multipotent haematopoietic progenitors, as measured by in vitro colony

assays and flow cytometry. By contrast, two stromal cell lines derived from the
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urogenital ridges (UG) of the AGM did not enhance haematopoietic differentiation of
ES cells. Interestingly, the enhancing capacity of the AM-derived stroma was

comparable with that of the bone marrow derived OP9 stromal cell line, which has
been widely used in the literature to promote haematopoietic differentiation of ES
cells. Further investigation revealed that the enhancing capacity is not retained by
extracellular matrices isolated from the AM stromal cell layers and the effects were

dependent on direct ES cell-stromal cell contact. Co-culture of an ES cell line

carrying a mesoderm specific Brachyury-eGFP reporter gene demonstrated that the
stromal lines mediated their effects post- Brachyury (mesoderm) induction in the ES
cells. In addition, co-culture of sorted ES cell populations confirmed that

Brachyury*, but not Brachyury', cells gave rise to haematopoietic progenitors in AM
stromal co-culture, supporting the notion that ES cell differentiation recapitulated the
in vivo pattern of lineage specification. Transplantation of co-cultured ES cells into
irradiated adult NOD/SCID mouse recipients led to low levels of donor cell

engraftment in the spleen and bone marrow, which expanded upon serial

transplantation; but full repopulation of the recipient haematopoietic system was not

confirmed. Adult bone marrow cells were found to achieve repopulation more

readily in the NOD/SCID animal model when transplanted intra-splenically, as

compared to intra-venous injection. This suggests that transplantation of ES-derived

haematopoietic cells directly into the haematopoietic niche, by intra-splenic or intra-
femoral injection, could facilitate repopulation.
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Chapter One: Introduction

1.1 Introduction

Haematopoietic differentiation of embryonic stem (ES) cells in vitro has thus far
been a valuable model system in which to study induction and regulation of

haematopoietic cells; however, some limitations remain. For instance,

haematopoietic stem and progenitor cells which have multilineage potential in vivo

are generated at relatively low frequencies and the ES cell derived populations are

highly heterogenous. This project aimed to optimise the culture conditions for

directing haematopoietic differentiation of mouse ES cells. A novel differentiation

system has been established using embryo-derived stromal cell lines to enhance the

frequency of early multipotent haematopoietic progenitors generated in culture.

Therefore, this introduction will focus on the murine system to review the properties
of adult haematopoietic stem cells, their induction during embryogenesis and the

haematopoietic differentiation ofmouse embryonic stem cells.

1.2 Adult haematopoietic stem cells (HSCs)

Haematopoiesis is the process whereby a limited number of haematopoietic stem

cells (HSCs) undergo multilineage differentiation to give rise to the mature cells of
the blood and immune system (Figure 1.1). This includes terminally differentiated
cells of erythroid, myeloid and lymphoid lineages. These mature haematopoietic
cells are short-lived and therefore need to be continually replaced from a pool of
stem cells. In the adult, long-term repopulating (LTR) HSCs residing in the bone
marrow (BM) are at the top of the haematopoietic hierarchy. These stem cells are

characterised by their high self-renewal and proliferative potential, as well as their

multilineage differentiation capacity.
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Figure 1.1 The haematopoietic hierarchy (simplified). The diagram
illustrates the differentiation of HSCs into mature cell types of the adult
haematopoietic system. Included are the cytokine combinations to which
progenitors are responsive. Diagram adapted from figures in reviews by
Orkin and Zon (2008) and Robb (2007).
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Chapter One: Introduction

Bone marrow HSCs are a valuable resource for the treatment of haematological

disorders, as they can provide stable and long term repopulation of the host

haematopoietic system (for more than 6 months in mice) when transplanted into

immuno-compromised irradiated adult recipients (Morrison and Weissman, 1994).
HSCs are a rare population in adult bone marrow (1 to 2 per 100,000 cells) (Micklem
et al., 1987; Harrison et al., 1990) and they are largely quiescent (Jordan and

Lemishka, 1990). However, it has been shown that single HSCs are able to achieve
full multilineage and long-term reconstitution of a recipient (Keller et al., 1985;
Lemischka et al., 1986; Osawa et al., 1996). This was shown by transplanting

retrovirally marked bone marrow cell populations into irradiated adult mice. Unique

proviral integration sites, which stably marked HSCs and their progeny, were used to

demonstrate that a single HSC clone could contribute to both lymphoid and myeloid

lineages in recipients. More recently, Krause et al (2001) have also shown that a

single HSC, selected on the basis of its ability to home to the adult bone marrow, can

be serially transplanted without loss of repopulating ability, thus demonstrating the

high self-renewal potential of these cells.

Differentiation of HSCs occurs via a series of defined steps through which the cells
become sequentially more lineage restricted, lose proliferative potential and

progressively acquire characteristics of mature blood cells until they terminally
differentiate. Compared to LTR-HSCs, short-term repopulating (STR)-HSCs are

more limited in their potential, in that they can only transiently repopulate an

irradiated adult recipient by contributing to lymphoid and myeloid cell lineages

(Adolfsson et al., 2001; Christensen and Weissman, 2001). The quiescent nature of
LTR-HSCs and this hierarchy of stem cells and progenitors with increasingly limited
self-renewal potential is believed to protect against genetic mutations arising in the

highly potent stem cells.

1.2.1 Phenotype ofHSCs
The haematopoietic compartment in bone marrow is highly heterogenous and no

single surface antigen exclusively expressed on HSCs has been identified, as many

haematopoietic surface markers are also expressed by cells of non-haematopoietic

3



Chapter One: Introduction

lineages. To date it is not possible to isolate a pure population comprising only LTR-

HSCs; however, the expression of particular combinations of surface antigens can be
used to enrich for HSC activity in a given cell population. LTR-HSCs are highly
enriched in the population of bone marrow cells which co-express c-kit, stem cell

antigen (Sca)-l and Thyl.llow, but do not express lineage specific markers (such as

myeloid markers Macl and Grl, erythroid marker Terll9 and lymphoid markers

B220, CD4 or CD8). These c-Kit+Thyl.llowLin"Sca-l+ cells are known as the KTLS

population (Okada et al., 1991; Spangrude et al., 1988).

Kiel and colleagues (2005) reported that the differential expression pattern of

signalling lymphocyte activation molecule (SLAM) family receptors on LTR-HSCs,
STR-HSCs and restricted haematopoietic progenitors correlates with the potency of
the cells. CD 150 was detected in the KTLS HSC population derived from adult
mouse bone marrow, but was not detected in the Thy-lloSca-l+Mac-lloCD4loB220~
progenitor population nor in restricted haematopoietic populations. The authors

reported that bone marrow LTR-HSCs were CD150+CD244"CD48~, whereas

multipotent haematopoietic progenitors (STR-HSCs) were CD150"CD244+CD48~
and some more restricted haematopoietic cells were CD150"CD244+CD48+. Thus,
the expression of CD 150 and other SLAM receptors could be used to predict the

developmental potential of haematopoietic cells and to enrich for LTR-HSCs in a

population. In an important development, the use of combinations of SLAM

receptors simplified the identification of HSCs, as compared to KTLS markers, thus

allowing HSCs to be readily detected in tissue sections and thereby facilitating the
examination of HSC localisation within the bone marrow niche in vivo (Kiel et al.,

2005)(see section 1.4.2). Further to this study, Kim et al (2006) reported that LTR-
HSC activity is highly enriched in the CD150+CD48~ fraction of E14.5 foetal liver

cells; demonstrating that these markers can be used to isolate and detect both adult
bone marrow and foetal HSCs.

HSCs can be enriched in a cell population by a number of methods. For instance, the
treatment of cells with the cytotoxic drug 5-Fluorouracil enriches for quiescent HSCs
as it is toxic to actively cycling progenitors (Hodgson and Bradley, 1979).
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Chapter One: Introduction

Haematopoietic populations can also be separated by fluorescence activated cell

sorting (FACS) based 011 their exclusion of fluorescent dyes. In adult bone marrow,

a small subset or "side population" of cells (0.1%) are able to efficiently efflux
Hoechst 33342 fluorescent (DNA-binding) dye and therefore exhibit a distinct

pattern of fluorescence when analysed by flow cytometry. This side population (SP)

comprises of quiescent lin 'loSca-l* cells and is highly enriched for multilineage
LTR-HSC activity (Goodell et al., 1996). This distinct fluorescence profile could be
conferred by the high expression of p-glycoprotein (CD44) or multidrug resistance

protein (mdr) on HSCs. a membrane pump that effluxes the dye. In support of this.
Hoechst staining ofwhole bone marrow in the presence of verapamil, which inhibits

p-glycoprotein. eliminates the SP cells from the fluorescence profile (Goodell et al.,

1996). P-glycoprotein is a member of the ATP-binding cassette (ABC) transporter

superfamily and. more recently, another member of this family, Abcg2 (or Bcrpl).
has been implicated in the active efflux of Hoechst from SP cells (Zhou et al.. 2001).
HSCs can also be identified (using flow cytometric analysis) by efflux of
Rhodamine-123 (mitochondrial binding) dye, as the highly quiescent LTR-HSC

population is Rhodamine-123low or dull, whereas STR haematopoietic cells are

Rliodamine-123medlumhlgh or bright (Spangrude et al.. 1990; Zijlmans et al.. 1995).

1.2.2 In vivo repopulating assays and in vitro colony assays

In vivo repopulating assays and in vitro colony assays can be used to retrospectively
demonstrate the presence of HSCs and their progenitors in a given population of
cells. The only way to definitively demonstrate that LTR-HSCs are present in a test

cell population is to show that the cells can achieve full and long-term reconstitution
of all the haematopoietic lineages for more than 6 months after (serial)

transplantation into irradiated (or immuno-compromised) adult recipients. Limiting
dilution or competitive long-term repopulating assays have been used to estimate the
number LTR-HSCs in a test cell population. This involves injecting limiting doses
of test donor cells along with a known defined number of competing bone marrow
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derived cells. The number of recipients that are not reconstituted in each test cell
dose is used to calculate the number of HSCs present (by poisson

statistics)(Szilvassy et al., 1989, 1990).

The first quantitative in vivo assay for short-term repopulating haematopoietic

progenitor cells was designed by Till and McCulloch (1961). Bone marrow cells
were injected into irradiated recipient mice and the macroscopic colonies (nodules)
which formed on the spleens 8 to 12 days later were termed spleen colony forming
units (CFU-S). At first, these were thought to represent LTR-HSCs, as the frequency
of CFU-S correlated with the numbers of bone marrow cells injected; however,

secondary transplantation of cells excised from CFU-S colonies demonstrated that

they comprised of multipotent progenitors of erythroid and myeloid lineages, but

they had limited self-renewal capacity and were therefore likely to represent short-
term repopulating HSCs (Siminovitch et al., 1963; Jones et al., 1990). In support of
this, CFU-S content of 5-Fluorouracil treated bone marrow was not representative of
LTR-HSC activity (Hodgson and Bradley, 1979). It was determined that some day
12-13 CFU-S colonies had radioprotective properties when injected into irradiated

recipients, as they could rapidly induce transient haematopoietic repopulation, but
this only persisted for 3 to 4 months (Jones et al., 1990).

In vitro colony forming assays can be used to assess the differentiation potential of

haematopoietic stem and progenitor cells prior to in vivo transplantation. For

instance, cells can be placed onto stromal layers for long-term in vitro culture.
Cobblestone-areas (CA) are formed by actively proliferating early haematopoietic

progenitor cells which preferentially grow beneath the adherent stromal layer

(Dexter et al., 1976, 1984). As the progeny of these cells differentiate, they migrate
to the surface of the stromal layer and shed into the growth medium. These cells can

be harvested and analysed to determine which terminally differentiated cell types are

present. Analysis of cobblestone-area forming cells (CAFC) at different time points
can reveal the differentiation and self-renewal potential of subsets of HSCs. For

example, CAFCs appearing 10 days after bone marrow cells are seeded onto the
stromal layers have been correlated with CFU-S12 content, whereas 28 day CAFCs
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correlate with cells displaying LTR activity (Ploemacher et al., 1989, 1991). In

long-term cultures, the least potent haematopoietic cells appear to exhaust their self-
renewal potential, giving rise to terminally differentiated haematopoietic cells. By

contrast, HSCs with higher self-renewal potential are maintained in culture for

longer before generating differentiated cell types. This type of assay (long term

culture initiating cell assay, LTC-IC) can be used to detect HSCs with high self-
renewal and differentiation potential. A limiting dilution strategy can be used to

calculate the frequency of CAFC in a test population (by poisson statistics), thus

providing an estimate of the number of HSCs present. This is also a useful assay for

assessing the effects of exogenous factors or stromal layers on the in vitro
maintenance of HSCs.

Test cell populations can also be seeded directly into semi-solid medium

supplemented with specific combinations of cytokines to which haematopoietic

progenitor cells respond by differentiating and forming colonies. These colonies can

comprise of erythroid and/or myeloid or lymphoid cells depending on the potential of
the progenitor cell from which the colony originated. Thus, colony assays can

reliably detect haematopoietic progenitors with multilineage and unilineage potential
in vitro. Each colony represents a single progenitor cell or colony forming unit/cell

(CFU/CFC), thereby allowing enumeration of the progenitors present in a given

population.

The colony forming unit-A (CFU-A) and the HPP-CFC (high proliferative potential-

colony forming cell) assays are believed to detect amongst the earliest

haematopoietic progenitors measurable by in vitro colony assay. Replating strategies
have shown that CFU-A and HPP-CFC progenitor cells have self-renewal potential
in vitro. The CFU-A assay uses medium conditioned on L929 cells (a mouse lung
fibroblast cell line) and AF1.19T cells (a rat fibroblast cell line) as sources of colony

stimulating factor (CSF)-l and granulocyte/macrophage (GM)-CSF, respectively

(Pragnell et al., 1988). CFU-A are thought to share properties with cells forming

CFU-Sn in vivo (Lorimore et al., 1990). Furthermore, intra-venous injection of bone
marrow derived CFU-A colonies (picked from assays after 5 days and pooled)
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resulted in CFU-S12 formation in recipient mice (Pragnell et al., 1988). Despite this,
it is possible that the CFU-A could detect more mature cells, such as macrophage and

granulocytic progenitors, which also respond to CSF-1 and GM-CSF.

CFU-A are thought to be included in the HPP-CFC producing population, which are

myeloid cells with high proliferative potential (McNiece et ah, 1986). HPP-CFC(l)

progenitors respond to CSF-1, interleukin (IL)-3 and IL-1. These cells are Lin" Sca-
l+and Rhodamine-123du" and are proposed to be the most immature subpopulation
as they have the least restricted differentiation capacity. HPP-CFC(2) respond to

CSF-1 and IL-3, are Rhodamine-123br,ght and can produce macrophage progenitors

(CFU-M). HPP-CFC(3) respond to CSF-1 only and are present in higher numbers in
the bone marrow compared to HPP-CFC(l) and (2), suggesting that they represent a

more mature haematopoietic cell (Freshney, Pragnell and Freshney, 1994).

Methylcellulose-based colony assays supplemented with defined concentrations of
recombinant cytokines are routinely used to detect more mature haematopoietic

progenitor cells. A combination of IL-3, IL-6, stem cell factor (SCF) and

erythropoietin (Epo) is routinely used to detect erythroid progenitors (BFU-E or

CFU-E), as well as macrophage (CFU-M) and granulocyte-macrophage (CFU-GM)

progenitors. Multilineage CFU-GEMM (-Mix) progenitors that have granulocyte,

erythroid, macrophage and megakaryocyte potential in vitro can also be detected.

1.3 Emergence of definitive HSCs in the developing embryo

During mammalian embryogenesis, haematopoiesis is thought to be established in
two waves. The first wave is initiated extra-embryonically; this transient ''primitive"

haematopoiesis is believed to meet the immediate needs of the embryo once

circulation is established. The second wave of haematopoiesis, known as

"definitive", takes place in the intra-embryonic tissues and gives rise to adult HSCs.

Primitive haematopoiesis originates in the yolk sac and is marked by the formation of
blood islands at E7 (to E8.5). These contain macrophages, which develop before

monocytes are detectable (Naito et al., 1996). Both nucleated and enucleated
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primitive erythrocytes expressing yHl embryonic globin are also present (Kingsley
et al., 2004). Primitive megakaryocytes and their progenitors have also been
detected in the pre-circulation yolk sac and platelets are detectable in circulation
before definitive haematopoiesis is established (Tober et al., 2007). These
committed yolk sac derived haematopoietic cells with uni- or bi-lineage potential
enter the circulation when the circulation between the yolk sac and embryo proper is
established at E8.5 (Palis and Yoder, 2001). These cells expand and differentiate
until E13.

At first, yolk sac blood islands were believed to be the source of adult-type HSCs in
the embryo (Moore and Metcalf, 1970). This hypothesis was contested when
Dieterlen-Lievre (1975) demonstrated, by means of quail-chick (embryo proper-yolk

sac) chimaeras, that yolk sac haematopoietic progenitors have limited self-renewal

capacity and that definitive long-term haematopoiesis has intra-embryonic origins.
In these experiments, chick extra-embryonic tissue was grafted onto quail embryo
bodies before circulation was established. Quail and chick derived cells were

distinguished by visualising cell nucleoli. This study created a significant shift in the
field of haematopoietic research by bringing into focus the role of the embryo proper

in establishing haematopoiesis.

It is now widely accepted that definitive haematopoiesis in the mouse is initiated in
the embryo proper in the para-aortic splanchnopleura (P-Sp, E7.5 to E9), which goes

on to become the aorta, gonad and mesonephros (AGM) region (from E9). These
sites were found to harbour potent haematopoietic activity (Godin et al., 1993;

Medvinsky et al., 1993) and HSCs capable of long-term multilineage repopulation of
irradiated adult recipients (El 0.5-11) (Muller et al., 1994). It was found that the pre-

circulation P-Sp region is the first site in which multipotent lymphoid and myeloid

haematopoietic progenitors are detectable (Cumano et al., 1996). The establishment
of circulation between the embryo proper and yolk sac at E8.5 facilitates the

migration of haematopoietic cells between these tissues. This complicates

experiments aimed at identifying the origins of LTR-HSCs. In order to overcome

this, Medvinsky and Dzierzak (1996) carried out in vitro organ culture of E8 to El 1
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yolk sac, P-Sp and foetal liver explants to allow haematopoietic cell induction and

expansion to take place while preventing migration between sites. It was found that
E8-9 P-Sp explants do not contain cells with the capacity to repopulate adult

recipients, but long term multilineage repopulating HSCs were present in E10 AGM

explants after 2 days of in vitro organ culture. Only the P-Sp/AGM was able to

initiate and proliferate LTR-HSCs during the organ culture period; E8-9 yolk sac

explants did not develop HSC activity. Therefore, the E10 AGM region is believed
to be the earliest site in the embryo proper capable of autonomously generating
definitive LTR-HSCs with the ability to achieve long-term reconstitution of
irradiated adult recipients (Medvinsky and Dzierzak, 1996). The HSCs which

emerge in the AGM undergo expansion and are proposed to be the founders of adult
definitive haematopoiesis (Cumano et al., 2000).

Cumano and colleagues (2001) demonstrated that E7.5 P-Sp, isolated prior to

circulation and cultured in vitro, were able to achieve multilineage repopulation for
6-8 months in adult Rag2yc"A mice, which are devoid of natural killer cells and

depleted of B and T lymphoid cells. By contrast, cultured E7.5 yolk sac cells only
contributed transiently to erythroid and myeloid lineages (Cumano et ah, 2001).

Rag2yc_/~ (recombination activating gene 2 common y chain) mice are believed to be
suitable recipients of embryo-derived cells, as the lack ofMHC class I expression on

embryonic cells prior to El0.5 could lead to these cells being targeted by natural
killer cells. This report supports the P-Sp/AGM origin of LTR-HSCs, as tissues were
removed prior to the establishment of circulation between embryo proper and yolk
sac. Before El 1-11.5, the yolk sac does not contain HSCs able to engraft adult

recipients (Cumano et ah, 1996; Palis and Yoder, 2001; Palis et ah, 1999, 2001),
whereas the AGM first shows this ability by El0-10.5 (de Bruijn et ah, 2000a,

2000b; Muller et ah, 1994), suggesting that AGM HSCs enter the yolk sac through
the circulatory system. Interestingly, CD34+c-kit+ yolk sac cells isolated from E9-10

embryos are capable of long-term reconstitution in (busulfan conditioned) newborn,
but not adult, mice (Yoder and Hiatt, 1997; Yoder et ah, 1997a, 1997b). This alludes
to the presence of an immature population of pre-LTR-HSCs in the E9-10 yolk sac,

though these cells could have migrated there from intra-embryonic haematopoietic
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sites. These studies also bring into question whether it is reasonable to expect an

embryonic HSC to achieve reconstitution in adult recipients, as these cells may not

yet have the ability to home to, respond and/or function in the adult haematopoietic
microenvironment.

A summary of the emergence of definitive HSCs during embryogenesis is depicted
in Figure 1.2. After circulation is established, adult repopulating LTR-HSCs can be
detected in the yolk sac as well as the embryo proper (Kumaravelu et al., 2002).
Pools of definitive HSCs have also been identified in the umbilical and vitelline

arteries (de Bruijn et al., 2000a) and in the placenta from El0.5-11 (Gekas et al.,

2005; Ottersbach and Dzierzak, 2005); however, it is unclear whether the HSCs are

generated de novo in these tissues or whether they migrate there from other

haematopoietic sites to undergo expansion. In the AGM, HSC and progenitor
numbers peak at El 1-12 (Muller et al., 1994; Godin et al., 1999; Kumaravelu et al.,

2002). At El 1.5, an increase in HSCs in the blood circulation coincides with their
colonisation of the foetal liver (Kumaravelu et al., 2002, Christensen et al., 2004,
Ema and Nakauchi, 2000; Morrison et al., 1995). By El2.5, definitive HSCs from
different haematopoietic tissues in the embryo (AGM, yolk sac and placenta) migrate
to the foetal liver, which serves as the major haematopoietic site for the remainder of
foetal development (Kumaravelu et al., 2002). Here, HSCs undergo significant

expansion in numbers prior to colonising the bone marrow at El6, where they will
reside in a highly regulated stem cell niche throughout the adult lifespan.

The E10.5 AGM region is widely viewed as the principal site of HSC induction in
the embryo, while other embryonic sites are thought to mediate proliferation of these
cells. A recent publication by Samokhvalov and colleagues (2007) rekindled the
debate over the exact site of HSC emergence during mammalian embryogenesis. In

attempt to resolve the developmental relationship between AGM and yolk sac, the
authors carried out in vivo lineage tracing of yolk sac cells by using Runxlcrel+
transgenic mice in which a Rosa26-Flox-LacZ reporter gene was conditionally
activated by administration of tamoxifen to pregnant female mice, resulting in LacZ

marking cells that expressed Runxl.
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Figure 1.2 Emergence of HSCs in the mouse embryo. Shown are the
haematopoietic sites in the embryo and some surface markers and genes
associated with HSCs at different stages of development. This diagram was

adapted from figures in the following review articles: Mikkola and Orkin
(2006), Teitell and Mikkola (2006), Orkin and Zon (2008).
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Runxl is required for definitive haematopoiesis. When the embryos were treated at

E7.5, a time when yolk sac appears to be the only haematopoietic site, the authors

reported that Runxl (LacZ+)yolk sac derived cells contributed to the definitive HSC

pool in the El2.5 foetal liver and to adult bone marrow LSK cells, leading them to

conclude that yolk sac can contribute to definitive haematopoiesis. However, Runxl

haplo-insufficiency is known to affect the temporal and spatial emergence of HSCs,

by causing an acceleration in the timing of HSC induction (Cai et al., 2000; North et

ah, 1999; North et ah, 2002). Thus, these experiments did not reflect the normal in
vivo development of HSCs. This study has been the subject of heated debate; but the
two-wave model of haematopoiesis described here remains the prevalent view.

1.3.1 Pre-HSCpopulation

When AGM regions were sub-dissected and disaggregated cells transplanted, it was
found that HSCs arise de novo in the dorsal aorta and surrounding mesenchyme

(AM) subregion of the AGM (de Bruijn et ah, 2000a, 2000b; de Bruijn et ah, 2002).

Repopulating LTR-HSC activity at El0-10.5 correlates with the formation of
rounded cell clusters on the ventral floor of the dorsal aorta, from which HSCs are

believed to bud (Medvinsky and Dzierzak, 1996; North et ah, 2002; North et ah,

1999; de Bruijn et ah, 2002). HSCs are in close association with aortic endothelium
and are localised to the ventral portion of the El 0.5 dorsal aorta (Taoudi et ah, 2007).
Similar rounded cell clusters have also been identified in the umbilical and vitelline

arteries of the embryo (Garcia-Porrero et ah, 1995). It is thought that HSCs which

emerge from the AM subregion of the AGM subsequently move to the urogenital

ridges at Ell where they undergo proliferation (de Bruijn et ah, 2000a, 2000b,

2002). The urogenital ridge, the UG subregion of the AGM, appears to be the only
site in the embryo where HSC proliferation occurs with limited differentiation.

Characterisation of the intra-aortic clusters in the AM subregion has revealed that the
cells express both haematopoietic and endothelial markers (CD45+, CD34+,
CD31+)(Taoudi et ah, 2007). The cells also express endothelial-specific vascular
endothelial (VE)-cadherin (Yao et ah, 2007; Taoudi et ah, 2005). Furthermore, the
definitive haematopoietic transcription factor Runxl is expressed in these clusters at
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E10 (North et al., 1999, 2002) and genetic markers that are common to endothelial
and haematopoietic cells have also been detected (Yao et al., 2007). For these

reasons, the rounded cell clusters are thought to represent haemogenic endothelium.

Though, it is not clear whether HSCs have endothelial origins or whether they

emerge from a precursor in the mesenchyme (in sub-aortic patches) and migrate

through the aorta wall before being released into the vessel (Bertrand et al., 2005;
North et al., 2002; Taoudi et al., 2008).

It has been proposed that the direct precursor of the HSC is the "haemangioblast", a

common bi-potent endothelial and haematopoietic precursor. In the yolk sac, the
close association between the vasculature and haematopoietic progenitors fuelled this

theory. While the existence of the haemangioblast in vivo has not been proven

conclusively, there is some evidence supporting this hypothesis. Yao et al (2007)
have shown that a bi-potent cell, which can give rise to cells of both endothelial and

haematopoietic lineages, is present in the P-Sp at E8.5 and further develops in the
AGM at El 0.5-12.5. However, the bi-potency of the cells was demonstrated by in
vitro colony assay after removing the cells from the in vivo microenvironment. Thus,
it remains unclear whether cells with haemangioblast potential indeed give rise to

both these lineages in vivo. Although, the absence of both endothelial and

haematopoietic lineages in Flk-1-/- mice, which die at E8-9 with no blood island

formation, seems to point towards the existence of the haemangioblast in vivo

(Shalaby et al., 1997; Shalaby et al., 1995).

Huber and colleagues (2004) demonstrated that a population of cells with

haemangioblast potential exists in the posterior primitive streak at E7 to 7.5. These
cells migrate to the yolk sac and could therefore represent the progenitors of yolk sac

(primitive) haematopoiesis. Again, the bi-potency of these cells was demonstrated

by means of colony assay after removal from the in vivo microenvironment, therefore
these cells do not necessarily give rise to both endothelial and haematopoietic

progenitors in the embryo. Ueno and Weissman (2006) have shown that yolk sac

blood islands might not have clonal origins, which appears to contradict the

haemangioblast theory. In their study, three distinguishable marked ES cell lines
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were co-injected into blastocysts and subsequent analysis of individual yolk sac

blood islands in E7.5 chimaeras revealed the contribution of more than one ES cell,

suggesting that blood and vascular cells did not arise from a single (haemangioblast)

progenitor. It has been proposed that the polyclonal nature of the blood islands is a

reflection of the transience of haemangioblast cells (Pearson et al., 2008), as they are

first detected at E7 in the primitive streak (Huber et ah, 2004) and could have already
differentiated to endothelial and haematopoietic progenitor cell types on reaching the

yolk sac, thereby generating non-clonal blood islands.

1.3.2 Surface phenotype ofembryo-derived HSCs
A number of transplantation studies have shown that within the El 1.5 AGM region,
LTR-HSCs fall within the fraction of cells that express the following markers: cKit,

CD34, Sca-1, VE-cadherin, CD45 and CD49d (alpha4 integrin) (Sanchez et ah, 1996;
Taoudi et ah, 2005; Gribi et ah, 2006; Taoudi et ah, 2008). El 1 AGM-derived HSCs

are reported to be cKit+CD34+ (Sanchez et ah, 1996) and Gribi et al (2006) showed
that 30% of cKit+ cells within the El 1.5 AGM co-express CD49d. Gribi and

colleagues (2006) identified a rare CD34+CD49d+ co-expressing population within
the El 1.5 AGM region and also found that CD49d was expressed on most of the
cells within the VE-cadherin+CD45+ fraction of the El 1.5 AGM, which is a

population highly enriched for LTR-HSC (Taoudi et ah, 2005). Transplantation

experiments demonstrated that the repopulating activity of El 1.5 AGM cells was

only found in the CD49d+ cell fraction. Gribi et al (2006) proposed that CD49d

expression on LTR-HSCs mediates their interaction with the foetal/neonatal
microenvironment. Other reports suggest a role for CD49d in haematopoietic

homing and differentiation, as it may mediate interaction of these cells with

haematopoietic stroma (Arroyo et ah, 1996; Arroyo et ah, 1999).

Taoudi and colleagues (2005) also reported that in the E12.5 yolk sac, HSCs capable
of adult repopulation were also present in the VE-cadherin+CD45+ co-expressing

fraction, similar to those in the El 1.5 AGM. VE-cadherin expression was lost as

HSCs matured, since VE-cadherin positive and negative LTR-HSCs were present in
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El2.5 AGM, placenta and El3.5 foetal liver. Finally, LTR-HSC in adult BM were

VE-cadherin".

It has been reported that CD41 could be expressed on embryonic HSCs, as CD41 +
cells were found to co-express markers of definitive haematopoiesis (CD45) and
markers of repopulating cells (cK.it and CD34) (Mikkola et al., 2003). In support of

this, CD41+ cells are present in the haematopoietic clusters of the dorsal aorta and
vitelline and umbilical vessels (Muller et al., 1994; Medvinsky and Dziezak, 1996;
Cumano et al., 1996; Sanchez et al., 1996; Cumano et al., 2001). Mikkola et al

(2003) sorted cKit+CD41+CD45+ and cKit+CD41+CD45" cells from the E8.5, E9.5

and El0.5 yolk sac and found that these cells could generate CFU-Mix

haematopoietic colonies in assays. CD45 is a pan-haematopoietic cell marker, yet
CD45 expression did not enrich for progenitor activity, suggesting that CD41 is an

earlier haematopoietic marker than CD45. The authors also found that CD41 was

expressed by CD34+cKit+ cells in the E9 yolk sac, a population which has been

reported to be able to repopulate newborn but not adult recipients (Yoder and Hiatt,

1997; Yoder et al., 1997a, 1997b). One caveat of this study was that the data were

based on in vitro colony assays and the repopulating potential of CD41+ cells in the

embryo is yet to be assessed by in vivo assay.

1.4 Regulation of embryonic and adult haematopoiesis
The induction and subsequent regulation of haematopoiesis in the embryo and adult
is achieved by an intricate network of factors that activate certain signalling

pathways and act in concert with those that suppress other pathways. Signalling
from the in vivo microenvironment has a dynamic influence on these processes. The

following is a brief overview of the key regulators involved in haematopoietic
induction in the embryo, regulation of bone marrow HSCs in the adult and the role of
the adult bone marrow niche in maintaining haematopoietic homeostasis.

1.4.1 Regulation ofHSC induction in the embryo
A number of transcription factors have been implicated in the induction and

regulation of embryonic haematopoiesis and many of these genes were first
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recognized in chromosomal translocations associated with haematopoietic

malignancies. These factors can be classified according to their roles in

haematopoiesis; for instance, some are important in establishing or regulating both

primitive and definitive haematopoiesis (such as Scl and Lmo2), whereas others are

required only for definitive haematopoiesis (as is the case for Runxl).

Scl/TALl

The transcription factor stem cell leukemia (Scl) was originally identified as a target

of chromosomal rearrangements which leads to childhood T cell acute leukaemia.
Scl is expressed in HSCs, haemangioblasts and some mature haematopoietic cells
and endothelium. Scl is also expressed in the El 1.5 dorsal aorta where HSCs are

specified (Pimanda et al., 2007). Work carried out by Robb et al (1995) and
Shivdasani et al (1995) has shown that Set'' knock out mice die at E8.5-10.5 due to a

complete lack of yolk sac primitive haematopoiesis which results in severe anaemia.
It has also been reported that Scl'1' ES cells do not contribute to primitive or

definitive haematopoiesis in chimaeras (Robb et al., 1996; Porcher et al., 1996). In
further studies, Mikkola and colleagues (2003) found that adult bone marrow HSCs
in which Scl was conditionally inactivated, did have multilineage repopulating

potential in serial recipients. Therefore, Scl is dispensable for long-term HSC self-
renewal and differentiation in adults, but is required for their induction during

embryogenesis. Though, terminal erythroid and megakaryocyte differentiation and
short-term repopulation activity of Scl" HSCs is affected (Curtis et al., 2004; Hall et

al., 2005). These data led to the conclusion that Scl is required for the establishment
of primitive and definitive haematopoiesis in the embryo, but that its continued

expression is not necessary for the maintenance of LTR-HSCs in adult bone marrow.

Lmo2

Lim finger protein (Lmo2) knockout mice die at El0.5 due to anaemia, which is
caused by a lack of primitive yolk sac erythropoiesis (yolk sac macrophages were

unaffected) (Warren et al., 1994). Knockout mice died before establishment of

definitive haematopoiesis, but Yamada and colleagues (1998) generated Lmo2~'~ ES
cells and reported that these do not contribute to haematopoiesis in chimaeras,
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including definitive myeloid or lymphoid lineages, demonstrating a role in definitive

haematopoiesis. Therefore, Lmo2 is considered to be important for primitive

erythropoiesis, as well as establishment of definitive haematopoiesis. However, the
adult HSC compartment has not yet been assessed in a conditional Lmo2~'~ knockout
model, therefore it is unknown whether continued expression of Lmo2 is required for
maintenance of adult HSCs after they have been induced. Though, Lmo2 is

expressed in mature definitive haematopoietic cell types and it is believed to interact
with Scl in a multiprotein complex such that definitive haematopoiesis can occur

(Lecuyer et al., 2007). Lmo2-Scl interactions are thought to be important for

haematopoetic fate specification, which explains the phenotypic similarity between
Set1' and Lmo2~'~ embryos (Schlaeger et al., 2004; Patterson et al., 2007).

Runxl/AMLl

Runx-1 (AML-1 or Cbfal) gene encodes the alpha DNA-binding subunit of core

binding factor. This was the first transcription factor found to be exclusively

required for definitive haematopoiesis in the embryo, while being dispensable for

primitive haematopoiesis. Ruwcl~'~ knockout mice die between El2.5 and El3.5 due
to internal bleeding (Okuda et al., 1996; Wang et al., 1996a). There was complete
absence of blood cell emergence from the dorsal aorta, umbilical and vitelline
arteries (North et al., 1999); while, primitive erythropoiesis was unaffected. It has
been reported that the expression of Runx-1 is restricted to intra-aortic clusters and,

prior to their formation, expression is restricted to some cells in the ventral floor of
the dorsal aorta (North et al., 1999). Intra-aortic clusters are absent in Runxl
deficient embryos; therefore, it has been postulated that this factor plays a role in the

specification of definitive HSCs from a pre-HSC population in the haemogenic
endothelium (North et al., 1999; North et al., 2002). Runxl has been found to act in
a dose-dependent manner. In RunxllacZI+ mice, LTR-HSC emergence in the AGM is
accelerated by 1 day (Cai et al., 2000; North et al., 2002). Furthermore, Mukouyama
and colleagues (2000) reported that Runxl+I~ mice have a reduction in colony
formation from E9.5 P-Sp and El 1.5 AGM. Nottingham et al (2007) have shown
that the transcription factors Gata-2 and Ets are direct upstream regulators of Runxl.

Landry and colleagues (2008) have recently shown that in the yolk sac and foetal
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liver, a ScI/Lmo-2/Gata-2 protein complex directly binds to and regulates Runxl (and
Runx3). Ichikawa and others (2004) demonstrated that, in conditional knockout

mice, continued expression of Runxl is not required to maintain adult bone marrow

HSCs; but it is required for megakarocyte development and for B- and T-cell
differentiation. In the bone marrow, Runxl is expressed at relatively constant levels
in all haematopoietic lineages, except the erythroid lineage (North et al., 2004; de

Bruijn and Speck, 2004).

1.4.2 Regulation ofHSCs in the adult bone marrow niche
In the adult, definitive HSCs reside primarily in the bone marrow, where they are

supported by a scaffold of stromal (mesenchymal) cells, which produce a plethora of

stimulatory and inhibitory factors that enable this organised stem cell compartment to

regulate the cell cycle status, self-renewal, apoptosis and differentiation of LTR-
HSCs and their progeny. Adult HSCs are predominantly quiescent, with a turn over

of 30 days; this may be important in safeguarding against excess differentiation and
exhaustion of the HSC pool and also to limit the possibility of acquiring genetic
mutations. A combination of intrinsic and extrinsic factors has been implicated in
the maintenance of adult haematopoietic homeostasis. Here, the focus is on extrinsic

regulation of HSCs by the bone marrow niche; in which growth factors, chemokines,

accessory cells and extracellular matrix proteins play a role.

HSCs interact closely and reciprocally with stromal elements of the bone marrow

niche, these include osteoblast, osteocyte, adipocyte and endothelial cells. The most

potent HSCs are located in the endosteal marrow (Gong 1978; Lord et al., 1990;
Nilsson et al., 2001). Osteoblasts, which line the endosteal surfaces, have been

found to secrete cytokines that could modulate HSCs and their progeny and are

thought to regulate HSC number. Calvi et al (2003) observed that when parathyroid
hormone (PTH) was constitutively expressed or administered, an increase in
osteoblasts was accompanied by an increase in HSCs. The authors proposed that the
increase in HSC number occurred via Notch activation, since the Notch ligand

Jagged-1 was up-regulated by osteoblasts in their system. Activated Notch

(NotchIC) was shown to increase the HSC pool by promoting self-renewal (Stier et

19



Chapter One: Introduction

al., 2002; Varnum-Finney et al., 2000). Zhang et al (2003) reported that conditional
inactivation of the BMP receptor type 1A in bone marrow resulted in a significant
increase in the number of functional (repopulating) HSCs, which was associated with
an increase in the number of specialised spindle-shaped N-cadherin expressing
osteoblasts (SNO cells) on the endosteal surfaces. There was no increase in numbers
of differentiated haematopoietic progenitors. N-cadherin was proposed to be critical
for HSC anchorage to osteoblasts and it was suggested that normal BMP signalling
in osteoblasts promotes HSC quiescence. Further to this, Nilsson et al (2005)
demonstrated that osteopontin, which is synthesised by osteoblasts, negatively

regulates proliferation of HSCs both in vivo and in vitro. Recent findings have

suggested that thrombopoietin-producing osteoblasts play a role in maintaining HSCs
in their quiescent state (Yoshihara et al., 2007). A number of other factors have also
been implicated in the regulation of HSCs in the endosteal niche. These include
membrane-bound stem cell factor (SCF)/cKit interactions, implicated in HSC

lodgement in bone marrow (Driessen et al., 2003); angiopoietin-l/Tie2 interactions,

whereby quiescent Tie2+ HSCs attach to angiopoietin-1 expressed on the surface of
osteoblast cells (Arai et al., 2004) and calcium sensing receptors, which have been

implicated in HSC localisation and retention in bone marrow (Adams et al., 2006).
Conditional knockout of c-Myc has revealed it may control the balance between
HSC differentiation and self-renewal in the endosteal niche (Wilson et al., 2004).

Ex vivo, expansion of repopulating HSCs can be facilitated by transduction of

primary bone marrow cells with HoxB4, which results in an increase in LTC-IC and
LTR-HSC activity (Antonchuk et al., 2002; Schiedlmeier et al., 2007; Schmittwolf et

al., 2005; Thorsteinsdottir et al., 1999). In a recent study in Nature, North and

colleagues (2007) demonstrated that ex vivo exposure of cKit+Sca-l+Lin" mouse bone
marrow cells to a stabilised form of prostaglandin E2 (PGE2) significantly increased
the frequency of LTR-HSCs, as assessed by competitive repopulation assays.

In addition to the endosteal niche, HSCs have been found to reside in the bone

marrow vasculature, as visualised by SLAM expression in wild-type bone marrow

tissue sections (Kiel et al., 2005). Recent publications have proposed that the
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vasculature niche does not simply act as a means for nutrient supply and a conduit
for HSC/HPC migration, but that it represents a second niche which mediates

homing and engraftmeut via endothelial specific factors and interactions.
Endothelial cells are located at the juncture between blood vessel lumen and bone
marrow. In accordance with this proposed role, circulating HSCs home to and

engraft in the vasculature endothelium of the bone marrow. This niche is
characterised by distinct areas where endothelial cells express high levels of
chemokines and specific cell adhesion molecules, including stromal derived factor

(SDF)-l. integrins. endothelial cell (E)-selectin and vascular cell adhesion molecule

(VCAM)-l (Sipkins et al., 2005; Kiel et al., 2005). These factors are believed to be
involved in HSC homing and engraftment. SDF-1 is a well documented chemokine.
also known as CXC-chemokine ligand 12 (CXCL12). SDF-1 is highly expressed by
reticular cells around bone marrow sinusoids (vasculaUire) to which HSCs localise

(Sugiyama et al.. 2006; Kiel and Morrison. 2006). The receptor for CXCL12/SDF-1
is CXCR4. which is widely expressed on haematopoietic cells and also by HSCs.
Knockout strategies have demonstrated that SDF-1/CXCR4 interactions mediate
HSC homing to the bone marrow and are important for HSC retention and
maintenance (Ma et al., 1998). In addition, leukaemic tumour cells have also been

shown to home to and engraft in the vascular endothelial bone marrow niche in an

SDF-1 dependent maimer (Sipkins et al.. 2005) and it has been proposed that tumour
cells could utilise the same signalling cues as normal HSCs.

1.5 Stromal cell lines as microenvironments for the support of HSCs

in vitro

Stromal cell lines have been generated from various haematopoietic niches, including
adult bone marrow, foetal liver and AGM tissues, in order to test their ability to

support or expand HSCs in vitro, with a view to identifying novel regulatory factors

(Moore et al., 1997; Yoder et al.. 1994; Ohneda et al.. 1998; Xu et al., 1998;

Oostendorp et al.. 2002b).
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To investigate the early HSC niche, Ohneda and colleagues (1998) derived
endothelial CD34+ cell lines from the El 1 AGM region. It was demonstrated that the
endothelial cell line, DAS 104-4, was capable of inducing a 3 to 5 fold expansion of
lin"CD34+Sca-l+cKit+ murine foetal liver derived HSCs after 7 days of co-culture,
without loss of repopulating potential. This supported a role for AGM endothelium
in the regulation of embryonic HSCs. Indeed, a number of studies have generated
and identified AGM derived cell lines that are highly supportive to embryonic and
adult HSC/HPCs from both murine and human tissues. Several of these stromal cell

lines display a surface phenotype consistent with cells on a vascular smooth muscle
differentiation pathway (Charbord et al., 2002) and many are able to differentiate
into mesenchymal cell types such as osteoblasts, adipocytes and chrondrocytes

(Durand et al., 2006).

Weisel and others (2006) isolated 106 stromal cell lines from mouse E10.5 AGM
tissue. Most of these stromal lines could support adult murine BM haematopoietic

progenitor cells (CFU and CAFC) for up to 3 weeks in co-culture. Some of these
lines could also maintain human cord blood CD34+ cells in culture without the

addition of exogenous cytokines (aside from those present in foetal calf serum) and 1
cell line was capable of promoting haematopoietic differentiation of mouse

embryonic stem cells. In an earlier study, Xu and colleagues (1998) derived 17
stromal cell lines (non-clonal) from the El0.5 AGM region and 3 of these lines

supported haematopoiesis. In particular, the AGM-S3 stromal line could promote

production of CFU-S and haematopoietic progenitors from Sca-l+cKit+Lin" murine
adult BM cells and human cord blood CD34+CD38" cells, respectively. A significant

finding was that AGM-S3 supported repopulating activity of human cord blood LTR-
HSCs even after 4 weeks of in vitro co-culture. Furthermore, Matsuoka et al (2001)

demonstrated that culture of E8.5 yolk sac and P-Sp cells on the AGM-S3 stromal
line supported the generation of CFU-S and LTR-HSC activity from these embryonic

populations. AGM-S3 were found to express SCF, 1L11 and Oncostatin M, but
culture of P-Sp cells in these cytokines alone did not result in CFU-S or LTR-HSC

activity, suggesting the involvement of additional interactions or factors.
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An important finding was that when E8 yolk sac-derived neonatal repopulating pre-

HSCs were co-cultured with AGM-S3 for 4 days in the absence of exogenous

cytokines, the cells could subsequently achieve long-term repopulation of irradiated
adult recipients (Matsuoka et ah, 2001). Therefore, AGM-S3 could support or

induce the generation of definitive HSCs from a pre-HSC yolk sac population in
vitro. These observations suggest that pre-HSCs from the yolk sac require an

additional, perhaps AGM-specific, maturation step in order to achieve repopulation
in an adult microenvironment.

Oostendorp and colleagues (2002b) derived over 100 clonal stromal cell lines from
Ell foetal livers (EL stromal clones) or from sub-dissections of E10-11 AGM

regions; namely, the aorta and surrounding mesenchyme (AM) region and the

urogenital ridges (UG). The authors reported that many of the stromal clones

supported CFU production and repopulating activity of adult BM and human CD34+
cord blood cells (Oostendorp et ah, 2002a; 2002b). Both the UG and AM subregions
of the El0-11 AGM produced supportive stromal clones, but fewer supportive cell
lines were derived from the Ell foetal liver, suggesting that the mid-gestational
AGM region is a potent haematopoietic microenvironment. Furthermore, several
stromal clones were comparable or more highly supportive than control BM-derived
stroma. In long term cultures, UG26.1B6 and EL08.1D2 stroma were particularly

potent supporters of repopulating HSCs isolated from murine adult BM

(CD31+cKit+Ly6C" cells), as well as human CD34+ cord blood HSCs (Oostendorp et

ah, 2002a). Interestingly, UG26.1B6 or EL08.1D2 were also able to support

repopulating activity of CD34+c-kit+ cells sorted from Ell AGM and yolk sac

tissues. However, yolk sac CD34+c-kit+ pre-HSCs, previously shown to repopulate
newborn but not adult recipients, failed to repopulate adult recipients after co-culture
with these stromal clones. Therefore, contrary to AGM-S3 (Matsuoka et ah, 2001),
UG26.1B6 and EL08.1D2 stroma were unable to support or induce pre-HSCs to

acquire definitive long term repopulating capabilities.

Harvey and Dzierzak (2004) co-cultured El 1 AM or UG-derived cells on UG26.1B6
and found that direct contact with stromal cells was required to maintain the
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repopulating activity of the embryonic HSCs in these tissues. Interestingly,
UG26.1B6 and EL08.1D2 lines supported adult BM-derived HSCs in non-contact

cultures, suggesting that secreted soluble factors might play a role in their effect on
adult HSCs (Oostendorp et al., 2005).

In the studies described above, characterisation of the supportive stromal cell lines
revealed that they express different combinations of known haematopoietic

cytokines; such as monocyte-colony stimulating factor (M-CSF), interleukins, LIF,

thrombopoietin, transforming growth factor |3 (TGF|3) , stem cell factor (SCF), Flt3-

ligand and bone morphogenic protein 4 (BMP4). However, even when combinations
of known haematopoietic factors are added to in vitro cultures, it is very difficult to
maintain self-renewal or promote expansion of repopulating HSCs or HPCs in the
absence of stromal cell layers. This suggests that additional interactions, such as

those mediated by cell adhesion molecules and extracellular matrix proteins, play

important roles in haematopoietic regulation in vitro.

Durand and others (2007) found that UG26.1B6 stromal cells expressed high levels
of |3-NGF (neurotrophic growth factor) and BMP4 (bone morphogenic protein)

compared to the non-supportive UG26.3B5 clone, which instead expressed high
levels of MIP-1 gamma (a member of the c-c chemokine family). Addition of

exogenous y-NGF, MlP-ly and BMP4 to Ell AGM explant cultures all enhanced
the repopulating activity of AGM-HSCs. The activity of Ell AGM-HSCs, which

express BMP receptors, was inhibited when cultured with a BMP antagonist.

Furthermore, localised BMP4 expression was detected in the mesenchyme

underlying the haematopoietic aortic clusters at El 1, which is in support of a role for
BMP4 in the regulation of HSC emergence in the AGM. This study is an elegant

example of how investigation of stromal support in vitro can be used to identify

haematopoietic regulators that play a role in vivo.
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1.6 Embryonic stem (ES) cells

Embryonic stem (ES) cells were first derived from the pre-implantation (E3.5)
mouse blastocyst in 1981 by Professor Sir Martin Evans and colleagues (Evans and

Kaufman, 1981; Martin, 1981). These pluripotent cells have since become a

powerful tool in the study of mammalian developmental biology, as they can be

readily genetically modified in vitro and are able to contribute to all three germ

layers and the germ line when re-introduced into host blastocysts (Bradley et al.,

1984). ES cells can be cultured indefinitely in their undifferentiated, pluripotent
state in vitro by maintaining them on murine embryonic fibroblasts (MEF) or in the

presence of optimal concentrations of exogenous leukaemia inhibitory factor (LIF)

(Smith et al., 1988; Williams et al., 1988; Nichols et al., 1990). Importantly, ES cells
retain a normal karyotype in culture. In vitro, withdrawal of LIF causes mouse ES
cells to spontaneously differentiate into a broad spectrum of cell types, including
those of ectodermal, mesodermal and endodermal germlayers. Under appropriate
culture conditions, they can be directed to differentiate into lineages of interest,

making this a valuable system in which to study tissue-specific differentiation and

possibly to generate cells for drug screening. When human ES cells were isolated by
Thomson and colleagues (1998) this presented the possibility of using differentiated
cells for autologous cell replacement therapies; which would involve deriving ES
cells from embryos generated by somatic cell nuclear transfer. Even though there are

ethical considerations and technical limitations still to address before ES-derived

cells can be used in humans, they represent an important and highly accessible

system for in vitro studies.

There is accumulating evidence that haematopoietic differentiation of ES cells in

vitro recapitulates the in vivo pattern of early haematopoietic specification and that
functional ES-derived HSCs can be generated (section 1.6.1, 1.6.2). Thus, ES cells
can serve as an alternative source of cells in which to study the specification,
maintenance and regulation of FISC/HPCs. Identification of novel factors able to

regulate or expand FISCs ex vivo would have a significant impact in a clinical setting,
as it can be difficult to obtain suitable tissue-matched donor bone marrow and it has

proven difficult to maintain or expand HSCs for extended times in culture.
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1.6.1 Haematopoietic differentiation ofmurine ES cells

Haematopoietic differentiation of ES cells is routinely initiated by the formation of
ES cell aggregates. These semi-organised 3-dimensional structures, known as

embryoid bodies (EBs), can support differentiation into a number of lineages,

including haematopoietic cells (Keller et al., 2005). EBs of a uniform size can be

generated by preparing ES cells in hanging drops on the underside of a petri dish.

Alternatively, high numbers of ES cells can be cultured in suspension, which causes

spontaneous aggregation of the cells, thereby forming EBs of variable sizes. Seeding
ES cells directly into semi-solid medium such as methylcellulose facilitates the
formation of clonal EBs (Dang et al., 2002; Wiles and Keller, 1991). Initial
observations of haemoglobinised cells (blood islands) in EBs were made by
Doetschman and colleagues (1985) and it is now well-documented that mature

haematopoietic cells can be generated from ES cells, including those of erythroid,

myeloid and lymphoid lineages (Wiles and Keller, 1991; Fujimoto et al., 2003;
Nakano et al., 1994; Potocnik et al., 1994).

Cells within EBs can undergo haematopoietic differentiation in the presence of foetal
calf serum alone, without supplementing with exogenous cytokines, and some have

proposed that this indicates that EBs inherently express haematopoietic cytokines
and the corresponding receptors that facilitate differentiation (Hole et al., 1996;
Keller et al., 1993; Kennedy et al., 1997). Under serum-free conditions, mouse ES
cells can be induced to mesodermal and haematopoietic lineages by addition of
BMP4 and vascular endothelial growth factor (VEGF) (Nakayama et al., 2000; Park
et al., 2004; Ng et al., 2004). Recently, Pearson and colleagues (2008) have reported
that under serum-free conditions, step-wise addition of BMP4 (at 2.5 days), Activin

A, bFGF and VEGF (from 4 days) are sufficient to promote haematopoietic
differentiation in mouse suspension EBs. Detailed analyses revealed that BMP4
enhanced mesoderm formation, bFGF and Activin A promoted the generation of

haemangioblast cells and VEGF mediated maturation of the cells to committed

haematopoietic progenitors. The authors reported robust production of

haematopoietic progenitors. The absence of serum reduces variability in

differentiation; since different batches of serum can contain varying levels of known
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and unknown growth factors. Unless otherwise stated, the studies described below
have used serum-containing media.

Addition of haematopoietic cytokines or culture of ES cells on specific stromal cell
lines or extracellular matrices can also promote differentiation to particular

haematopoietic lineages. For instance, the OP9 stromal cell line is known to enhance

lymphoid differentiation of ES cells when they are seeded directly onto stromal

layers for up to 14 days of differentiation. The OP9 cell line was derived from the
bone marrow calvaria of newborn osteopetrotic op/op mice, which do not express

functional M-CSF (Nakano et al., 1994). This property was thought to facilitate

lymphoid differentiation, as M-CSF preferentially induces ES cells to

monocytic/macrophage lineages. Addition of exogenous M-CSF to OP9/ES cell co-
cultures significantly increased the frequency of macrophage progenitors and
reduced the differentiation of ES cells to other haematopoietic lineages (Nakano et

ah, 1994). Direct comparison of the EB differentiation system and the OP9/ES co-

culture system by Zhang and colleagues (2005) revealed that haematopoietic cells

(CD45+ and Terl 19+ cells) were more efficiently generated in the EB system. In
their hands, the OP9 system supported endothelial differentiation (VE-cadherin+
cells) rather than haematopoietic differentiation.

It has been proposed that haematopoietic commitment in EBs in vitro recapitulates
that of embryonic yolk sac development in vivo (E6.5 to E7.5) (Keller et ah, 1993;

Keller, 2005). According to gene expression patterns and colony forming assays,

suspension EBs generate primitive erythroid cells after 3.5 days of differentiation,

marking the time after LIF withdrawal (Keller et ah, 1993). This transient

population peaks at day 4 of differentiation and reduces thereafter. Definitive

haematopoietic progenitor cells are detected after these primitive cells have emerged;
these include definitive erythrocytes (day 5), macrophage progenitors (day 6

onwards) and mast cell progenitors (day 10 to 14). Progenitors with

granulocyte/macrophage potential (CFU-GM) and multipotent CFU-GEMM appear

at day 6 and are present at maximum numbers at day 8 of differentiation, after which
their numbers gradually decline. According to Keller et al (1993), the growth factor
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responsiveness of these EB-derived CFUs is similar to that of haematopoietic

precursors present in the E10 yolk sac and El2 foetal liver. This supports the notion
that EB haematopoiesis parallels in vivo development.

Keller and colleagues have also demonstrated that bipotent haemangioblast

progenitors, which can give rise to both endothelial and haematopoietic cells, are

generated in EBs between 3.25 and 3.75 days of differentiation (Kennedy et al.,

1997; Choi et al., 1998). Much of the evidence supporting the existence of the

haemangioblast has come from the ES cell model. Haemangioblasts can be
enumerated using an in vitro blast-colony or BL-CFC assay, which comprises

methylcellulose supplemented with VEGF and SCF (Kennedy et al., 1997). After 4

days in the assay, resultant blast colonies express genes of endothelial and

haematopoietic lineages and replating studies showed that clonal blast colonies
indeed consist of cells with both endothelial and haematopoietic potential (primitive
and definitive). Recently, BL-CFCs have also been detected in human ES cell
cultures (Kennedy et al., 2007). In murine EBs, haemangioblast (BL-CFC) and

haematopoietic progenitor numbers are positively regulated by bFGF, VEGF, BMP4,
ActivinA (Nakayama et al., 2000; Faloon et al., 2000; Pearson et al., 2008; Park et

al., 2004; Purpura et al., 2008). North et al (2007) reported that addition of

prostaglandin E2 to ES cells and OP9/ES cultures increases CFU-GEMM formation.
Further factors involved in haematopoietic differentiation of ES cells include:

endoglin (Perlingeiro et al., 2007); Notch signalling (Cheng et al., 2008); Wnt

signalling (Kim et al., 2008; Wang et al., 2007) and Ephrin/Eph (Wang et al., 2004).

In support of the haemangioblast origins of haematopoietic lineages in EBs,
Nishikawa et al (1998) demonstrated that haematopoietic and endothelial cells arise
from a precursor that co-expresses endothelial markers Flkl and VE-cadherin.

Furthermore, Faloon et al (2000) reported that BL-CFCs are generated by Flkl+, but
not Flkl", EB derived cells. This is perhaps not unexpected as the BL-CFC assay

comprises VEGF, the ligand for Flkl receptor. Consistent with this, Schuh et al

(1999) reported that Flkl" EBs generate reduced numbers of BL-CFCs; however,
their subsequent differentiation into haematopoietic and endothelial lineages was not
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disrupted. This suggested that functional haemangioblast cells are specified
independently of Flkl, but that Flkl mediated signalling is required for proliferation
of these cells (Schuh et al., 1999; Hidaka et ah, 1999). This is in agreement with the

phenotype of Flkl'1' embryos, which die between E8.5 and E9.5 with a lack of blood
vessels and yolk sac blood islands and virtually no haematopoietic progenitors

(Shalaby et ah, 1995; Shalaby et ah, 1997). Schuh et al (1999) have shown that even

though Flkl'1' is embryonic lethal at E8.5, normal numbers of haematopoietic

progenitors are present at E7.5, again suggesting that Flkl is not required for

haemangioblast specification, but is necessary for expansion of these cells and their

progeny. It has been reported that in chimaeras, Flkl'1' ES cells do not contribute to

the vasculature or primitive and definitive haematopoietic lineages (Shalaby et ah,

1997). This is thought to be due to a defect in the migration of Flkl " cells from the

posterior primitive streak to the yolk sac and possibly intra-embryonic sites,

suggesting a role for Flkl in mediating cell migration in vivo.

In later studies, it was reported that the precursor to BL-CFC haemangioblast cells

expresses the early mesodermal gene, Brachyury (Robertson et ah, 2000; Fehling et

ah, 2003). These pre-haemangioblast cells emerge in EBs one day earlier than BL-
CFCs and give rise to blast-like colonies (or trans-CFC), which can in turn generate

BL-CFC colonies upon replating. Pre-haemangioblast mesoderm was contained in
the Brachyury expressing subpopulation of cells present in differentiating EBs at 2.5
to 3 days of differentiation (Fehling et ah, 2003) and by using Brachyury-eGFP

transgenic ES cells (serum-free), Kouskoff and colleagues demonstrated that as

Brachyury+ pre-haemangioblast cells mature, they show differential Flk-1 expression

(Kouskoff et ah, 2005). This is in agreement with the report by Huber and

colleagues (2004), which showed that cells with BL-CFC potential isolated from the

primitive streak of embryos co-expressed Brachyury and Flkl. Kouskoff et al (2005)

reported that Bry+Flk-1+ cells sorted from 3.25 day EBs expressed Runx-1 and Scl,
and that this fraction contained most of the BL-CFC activity. By contrast, Bry+Flk-1"
ES-derived cells had little BL-CFC activity, but cardiac potential was restricted to

this population.
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Mikkola and colleagues (2003) demonstrated that during EB differentiation in vitro,
CD41 is first expressed at day 4.25 to 4.75 of differentiation and increases to day 7.
In their study, definitive haematopoietic progenitors (CFU) were enriched in CD41 +
EB cell fractions, which were also found to co-express neonatal reconstituting HSC
markers CD34 and c-K.it. Sorting of CD41+cKit+ co-expressing cells from EBs
further enriched haematopoietic CFU activity. By contrast, endothelial cells, but few

haematopoietic cells, developed from CD4E fractions. The authors also isolated

populations from E8.5, E9.5 and El0.5 yolk sacs and found that haematopoietic CFU
were present in CD41+CD45" and CD41+CD45+ fractions; suggesting that CD41 is
an earlier marker than CD45 for definitive haematopoiesis in both EBs and in yolk
sac. In support of this proposed role, CD41 was found to be the earliest marker
absent in differentiating Set1' EBs, which do not generate primitive or definitive

haematopoietic CFU. Furthermore, the CD41+cKit+ population was not present in
Runx-l/AML-E" EBs lacking definitive haematopoietic potential. These data

suggest that between days 5 and 7 of differentiation in EBs, CD41+cKit+ expression
marks the appearance of definitive haematopoiesis.

A number of other reports using gene-targeting strategies have confirmed that many
of the genes involved in embryonic and adult haematopoiesis also play roles in

haematopoietic differentiation of ES cells (Robb et al., 1996; Robertson et al., 2000;
D'Souza et ah, 2005; Ng et ah, 2005; Hidaka et ah, 1999; Chan et ah, 2003; Lacaud
et ah, 2002). For example, D'Souza et al (2005) reported that Scf' ES cells can

generate BL-CFCs (or trans-CFC) by day 3 of EB differentiation, but that the

replated colonies only produce vascular smooth muscle and do not generate

haematopoietic or endothelial lineages. This defect was rescued by exogenous

expression of Scl (D'Souza et ah, 2005), but not by ectopic expression of the closely
related Scl paralog, Lyll, which is expressed later in development (Chan et ah, 2007).

Elefanty and others (1997) assessed the gene expression patterns in differentiating
ScF~ EBs and found they had normal mesoderm and haemangioblast commitment,
but expression of downstream haematopoietic genes was disrupted. These data are

consistent with a role for Scl in the establishment of both primitive and definitive

haematopoiesis.

30



Chapter One: Introduction

It has also been shown that Runxl is expressed in ES cell derived haematopoietic

progenitors (Miller et al., 2001; Okuda et ah, 1996; Lacaud et ah, 2002; Lacaud et

ah, 2004; Cai et ah, 2000; Okumura et ah, 2007). In a gene-targeting study, Lacaud
and colleagues (2004) demonstrated that Runxl, required for definitive

haematopoiesis in vivo, is expressed in EBs at the haemangioblast stage and is

important in the development of normal numbers of BL-CFCs. Furthermore, haplo-

insufficiency in Runxl+/' ES cells resulted in accelerated mesodermal,

haemangioblast and haematopoietic specification, in that Brachyury+ cells, BL-

CFCs, Flkl+ and cKit+ cells emerged approximately 12-24 hours earlier in

heterozygous EBs compared to wild-type EBs. This is reminiscent of the Runxl

haplo-insufficiency phenotype observed in vivo (Cai et ah, 2000; North et ah, 1999,

2002). These studies validate the ES cell differentiation system as a model of

developmental haematopoiesis and highlight the value of such an accessible system.

1.6.2 Production of transplantable ES-HSCs
Mature haematopoietic cell types are generated relatively easily from ES cells;

however, multipotent haematopoietic stem and progenitor cells with in vivo

repopulating potential are generated at low frequencies. As of yet, no specific EB-
derived cell population has been shown to be LTR-HSCs and transplantation of ES-
derived progeny into adult recipients has met with limited success. To illustrate,
Muller and Dzierzak (1993) observed only 0.1-6% reconstitution in newborn severe

combined immuno-deficient (SCID) mice for up to 6.5 months after injection of EB
cells that had been differentiated in suspension cultures for 5 to 22 days. There was a

peak in repopulating activity between days 11 and 13 of ES cell differentiation and
no tumour formation was observed in any recipients of differentiated cells.

However, the lineage differentiation potential of the cells was limited. Even though
ES derived cells had myeloid CFU forming potential in vitro, only B and T lymphoid
reconstitution was observed in vivo and donor macrophages and mast cells were not

detected. This lymphoid restricted repopulation by ES derived haematopoietic cells
was also observed by Gutierrez-Ramos and Palacios (1992). Later, Palacios et al

(1995) reported that multilineage repopulating ES-HSCs could be generated by co-

culture of ES cells on bone marrow-derived stromal cell layers (RP.0.10) in the
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presence of exogenous recombinant IL3 and IL6 and conditioned medium from a

foetal liver stromal line reported to contain Flt3 ligand, steel factor and an unknown

cytokine able to support HSCs. ES cells were replated every 5-7 days and after 21

days, CD44+Lin" ES-derived cells were sorted from co-cultures and injected into

sublethally irradiated SC1D mice. Donor contribution to erythroid, myeloid and

lymphoid haematopoiesis was detected for up to 6 months in primary and secondary

recipients. However, the authors did not assess which time points were critical in
HSC commitment in vitro and the roles of the exogenous cytokines were not

elucidated. Subsequently, Hole and colleagues (1996) demonstrated that

multilineage repopulating ES-HSCs were present in 4 day old EBs prepared by the

hanging drop method and differentiated in suspension culture without exogenous

cytokines. This study highlighted that HSCs can be generated in EBs in the absence
of stromal cell layers and exogenous cytokines aside from those in foetal calf serum

(FCS), though these cells may only be present for a short time in vitro.

It has also been demonstrated that Flkl+ ES-derived cells arising in 4 day EBs

generated in methylcellulose cultures are able to reconstitute the haematopoietic

system of recipients (Miyagi et al., 2002). The Flkl+ population was enriched for
cKit+ cells, indicative of haematopoietic cell types. After transplantation into
irradiated SCID recipients, approximately 10% of the CD45 cells in bone marrow

were donor derived and there was donor contribution to myeloid cells (granulocytes)
and lymphocytes (CD3+ and CD19+ cells) in peripheral blood. Repopulation was not

achieved with FlkT sorted ES cell populations, suggesting that the differentiation of
ES cells to HSCs includes a haemangioblast (Flkl+) stage. This supports the notion
that ES cell differentiation in vitro could recapitulate in vivo HSC specification.

A number of explanations could account for the low levels of haematopoietic
reconstitution achieved with ES-derived cells. ES-HSCs might share key
characteristics with yolk sac progenitors which do not have LTR capacity in the adult
microenvironment (Yoder and Hiatt, 1997; Cumano et al., 2001). Alternatively, ES-
HSCs might not be produced in adequate numbers to facilitate reconstitution. It is

possible that self-renewal of these cells is not supported in standard culture
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conditions and that they are present for only a brief time period. Furthermore, ES-
HSCs might have difficulty homing or responding to the adult bone marrow stem cell
niche, thus leading to the low repopulation levels in recipients' haematopoietic

compartments. Burt and colleagues investigated the efficiency with which ES cell-
derived progenitors are able to home to the adult bone marrow by comparing intra¬
venous and intra-femoral injections of ES derived haematopoietic cells (Burt et al.,

2004). In their experiments, ES cells were differentiated in vitro by cytokine-
stimulation (IL-3, 1L-6 and SCF) in methylcellulose culture for 7-10 days.
cKit+CD45+ cells that were isolated from resultant EBs comprised of Sca-1+Lin"
cells, suggesting an enrichment of haematopoietic stem cells (KTLS). Interestingly,
105 sorted cKit+CD45+ cells achieved particularly high levels of long-term
reconstitution when transplanted directly into the intra-femoral cavity (with a range

of 45.7-95.5% 20 weeks post-transplantation). This was significantly higher than
that achieved by intra-femoral injection of non-sorted cells (2-12%) and intra-venous

injection of 106 sorted cells (7.9-18.6%). These data indicate that ES-HSCs could be
aberrant in their ability to home to the adult bone marrow niche and that intra-
femoral injection can significantly improve repopulation activity. Furthermore,

transplantation of sorted haematopoietic populations improved repopulating activity,

by enriching for ES-HSCs. This suggests that transplantation of low frequencies of
ES-HSCs could account for the limited repopulation previously observed.

To improve the self-renewal of ES-HSCs and thereby increase the numbers that are

generated in culture, many studies have utilised genetically modified ES cell lines
which over-express haematopoietic genes (Kyba et al., 2002; Kyba et al., 2003;

Wang et al., 2005; Schuringa et al., 2004). For instance, Kyba and colleagues (2002)

ectopically expressed a doxycycline inducible HoxB4 transgene in suspension EBs
between days 4 and 6 of differentiation. Induced 6 day EBs were found to contain

significantly higher frequencies of CFU-GEMM compared to their un-induced

counterparts. HoxB4 induced 6 day old EBs were disaggregated and plated onto

OP9 stromal layers in the presence of exogenous SCF, VEGF, TPO and Flt-3 ligand
and doxycycline to maintain HoxB4 over-expression. When confluent, the cultures
were replated onto fresh OP9 layers, so the OP9 co-culture duration was 10-14 days.

33



Chapter One: Introduction

2x106 differentiated ES cells were injected i.v. into lethally irradiated adult mice,

resulting in 5 to 32% engraftment in primary recipient bone marrow and multilineage
donor contribution in peripheral blood of secondary recipients for up to 5 months.
More recently, Wang et al (2005) used the same differentiation protocol to compare

the effects of ectopic expression of doxycycline inducible HoxB4 to those of Cdx4
induction. The authors reported that enforced expression of Cdx4, a modulator of
Hox genes, in this differentiation system did not result in LTR-HSC activity.

Though, a combination of Cdx4 and HoxB4 induction led to stable long term

multilineage repopulation of primary and secondary recipients, with improved

lymphoid contribution compared to ectopic expression of only HoxB4.

Many reports of transplantable ES-HSCs have used OP9 stromal co-culture in
combination with over-expressing haematopoietic genes in ES cells. However, the
role of OP9 stroma in these differentiation systems has not been directly assessed
until recently. Ji and colleagues (2008) assessed the ability of OP9 cells to support

haematopoietic precursors isolated from human EB cell populations. The authors
found that OP9 co-culture supported proliferation of human haematopoietic

precursors in vitro, but resultant cells were unable to repopulate irradiated recipients

upon intra-femoral or intra-hepatic transplantation. Furthermore, in their hands,
enforced expression of HoxB4 and/or Cdx4 in human ES cells in combination with
OP9 co-culture did not generate cells with repopulating potential. Thus, the effects
of OP9 co-culture and induction of HoxB4 and Cdx4 on human ES cells contrasts to

their effects on murine ES cells, as reported by Kyba et al (2002) and Wang et al

(2005). Though, the differentiation strategies differed in the exogenous cytokines
used and co-culture timing was changed to accommodate the human ES cells.

Nevertheless, it is possible that role of OP9 stroma in these co-culture systems is to

support haematopoietic progenitors that arise, as opposed to inducing ES cells to

haematopoietic fates. In support of this hypothesis, Matsuoka et al (2001) reported
that culture of E8.5 PSp or yolk sac cells with OP9 did not support the generation of
CFU-S or LTR-HSC activity. Taken together, these data suggest that OP9 stroma

can support haematopoietic progenitors, but do not appear to support or induce LTR-
HSCs derived from embryonic tissues or ES cell populations.
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1.6.3 Limitations ofcurrent haematopoietic differentiation strategies
The systems to direct haematopoietic differentiation of ES cells are still subject to

limitations, as multipotent HSC/HPCs are generated at relatively low frequencies and
the differentiated ES cell populations are highly heterogenous. For instance, Hole et

al (1996) reported that even though up to 40% of EBs had CFU-A activity over 8

days of differentiation, only 0.08% of total EB cells had CFU-A potential. In

suspension EBs differentiated for 6 days in the presence of FCS but no additional

growth factors, Keller (1993) reported that the EB population comprised of 0.5-1%

haematopoietic CFUs. In recent studies, the total haematopoietic progenitor (CFU)

output of EBs differentiated for 6 days in suspension was reported to be

approximately 0.04-0.3% (un-induced EB cells of Wang et al., 2005; Kyba et al.,

2003; Kyba et al., 2002). Transplantation of ES-derived haematopoietic cells,
without over-expressing haematopoietic genes in culture, has led to only limited

repopulation in immuno-compromised recipients (Muller and Dzierzak, 1993; Hole
et al., 1996). Direct injection of cells into the femoral cavity led to the highest levels
of repopulation reported thus far with non-genetically manipulated ES cells (Burt et

al., 2004). As stated previously, these studies indicate that homing defects associated
with ES-derived HSCs, as well as low HSC frequencies, could account for the

previous difficulties in achieving repopulation. It is possible that standard culture
conditions are not optimal for the maintenance of ES-HSCs in their self-renewing
state. These cells may be inclined to differentiate in culture and might therefore only
be present for a relatively short time period.

There is clearly a need to improve these differentiation protocols, since manipulation
of haematopoietic genes in ES cells is not ideal in terms of the future clinical

applications of this cell resource. Krassowska et al (2006) hypothesised that

exposure of ES cells to AGM explants could enhance haematopoietic differentiation.
The El0.5 AGM autonomously generates the first LTR-HSCs and these cells are

able to home to different haematopoietic sites in the embryo, indicating that the
AGM provides signals which lead to the generation of HSCs that have homing

capabilities (Medvinsky and Dzierzak, 1996; Muller et al., 1994; Kumaravelu et al.,

2002). In support of this strategy, in vitro culture of AGM tissue explants results in
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the expansion of endogenous LTR-HSCs, suggesting that the elements responsible
for maintaining and expanding these cells were retained during in vitro culture

(Medvinsky and Dzierzak, 1996). In addition, others have identified AGM-derived
stromal cell lines that are able to provide in vitro support to both adult and embryonic

repopulating HSCs from human and mouse tissues (Xu et al., 1998; Ohneda et ah,

1998; Matsuoka et ah, 2001; Oostendorp et ah, 2002a; Oostendorp et ah, 2002b;
Weisel et ah, 2006). In light of these characteristics, Krassowska established a novel

explant co-culture system whereby EBs were differentiated in contact with El0.5
AGM tissue in vitro at the air-surface interface. This strategy significantly increased
ES cell -derived haematopoietic activity, with a 20-fold increase in CFU-A and a 50-
fold increase HPP-CFC progenitors, as compared to EBs differentiated in the
absence of AGM explants (Krassowska et ah, 2006). The ES cells constitutively

expressed GFP, allowing GFP+ ES-derived CFU to be distinguished from GFP-
AGM-derived colonies by fluorescence microscopy. This work demonstrated for the
first time that primary AGM explants provide a potent source of signals that

significantly enhance haematopoietic differentiation of ES cells.

1.7 Thesis Aims

1.7.1 Hypothesis
The AGM microenvironment can provide the necessary signals to enhance

haematopoietic differentiation of ES cells.

1.7.2 Strategy
To further the investigations of Krassowska et al (2006), the work presented in this
thesis aimed to determine which subregion(s) of the AGM are responsible for the

enhancing effects of primary AGM/EB co-culture. It was hypothesised that co-
culture of EBs with stromal cell lines derived from different subregions of the
E10/11 AGM might provide insight into which cells were responsible for the

haematopoietic enhancing effects. The clonal stromal cell lines used in this project
were kindly provided by Prof. Elaine Dzierzak, Prof. Alexander Medvinsky and

colleagues (Oostendorp et al., 2002a; 2002b; 2005). Some of these stromal clones
have already been shown to support both murine and human haematopoietic
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progenitor and stem cells derived from embryonic and/or adult tissues (described in
section 1.5). This work was carried out with a view to establishing a novel, reliable
and highly efficient ES cell differentiation system using clonal AGM-derived stromal
cell lines. The use of cell lines instead of primary AGM tissue explants lends itself
to large scale investigation into the cellular interactions and molecular signalling

underlying the haematopoietic enhancing effects of co-culture. In future, such a

system would be extremely useful in the identification of novel haematopoietic

regulatory factors.

1.7.3 Experimental aims
• To assess the haematopoietic inductive properties of AGM-derived clonal

stromal cell lines on differentiating EBs:
o Co-culture EBs on stromal cell layers and determine resultant

haematopoietic activity in EBs by colony assays, flow cytometry and
in vivo repopulating assays.

• To understand the mechanisms underlying the ability of stromal cell lines to

promote haematopoietic differentiation of EBs:
o Determine if the mechanism of action is dependent on cell-cell

contact between EBs and stroma by culturing EBs in transwell inserts
above the stroma to prevent direct contact.

o Determine the role of extracellular matrices (ECMs) by culturing EBs

directly on ECMs isolated from stromal cell layers.

• To assess the stage at which the stromal cells mediate their effects on

differentiating ES cells:
o Determine which ES-derived cell populations are responsive to

haematopoietic signals from stromal cells by co-culturing defined

populations of cells isolated from EBs by FACS.
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2.1 Tissue culture

Cell culture was carried out using sterile technique in a specialised tissue culture

facility fitted with Class II vertical laminar flow hoods or Biomat2 Class II

microbiological safety cabinets and in compliance with requirements for work with

genetically modified cells. The media were not normally supplemented with

antibiotics, unless otherwise stated. All cell lines used in this tissue culture facility
were shown to be free of mycoplasma (using Cambio or Invitrogen detection kits)
before use in experiments. Mycoplasma testing, preparation of tissue culture stock

solutions, batch testing of serum and production of LIF, L929 and AF1 were

routinely carried out by Helen Taylor, Julie Wilson and Aileen Leask.

2.1.1 Maintenance ofembryonic stem (ES) cells

Embryonic stem (ES) cell medium comprised of lx Glasgow Minimal Essential
Medium (Gibco) supplemented with 10% FCS (Sigma), 0.25% sodium bicarbonate

(Gibco), 1% non-essential amino acids (Gibco), 4mM L-glutamine (Gibco), 2mM
sodium pyruvate (Gibco) and 0. ImM 2-mercaptoethanol (Sigma). This was

supplemented with lOOU/ml Leukaemia Inhibitory Factor (LIF) as required. Unless
otherwise stated, all experiments were carried out in serum-containing media.

LIF was acquired from medium conditioned on cos-7 cells which were transiently
transfected with the murine LIF expression plasmid pCAGGSLIF-418. LIF

concentration in the conditioned medium was determined by analysing the ability of
serial dilutions to retain CP1 ES cells (Bradley et al., 1984) in a morphologically
undifferentiated state. 1U of LIF was the lowest concentration required to maintain
CP1 ES cells undifferentiated.

The ES cells were maintained in an undifferentiated state by passage every second

day onto (feeder-free) gelatin (porcine)-coated 25cm2 tissue culture flasks. To

gelatinise flasks, 2-5ml 0.1% gelatin (Sigma) in PBS was applied to the flasks for

approximately 5 minutes then aspirated prior to use. When passaging ES cells, the
medium was first aspirated and the cells washed with 2-5ml PBS to remove
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remaining serum. The cells were treated with 2ml trypsin solution (0.025% trypsin

(Sigma), 0.1% chicken serum (Gibco) and 1.3mM EDTA (BDH) in PBS) for 2
minutes at 37°C in order to dissociate them. The flask was tapped sharply to obtain a

single cell suspension, which was added to 8ml of ES medium to quench the tryspin

activity and centrifuged at lOOxg for 5 minutes (Mistral 1000 centrifuge, MSE). The

supernatant was aspirated, the pellet resuspended in 10ml fresh ES medium and a

cell count obtained (with a Nebauer haemocytometer). lxlO6 ES cells were seeded
into a total of 10ml ES medium (plus lOOU/ml LIF) in 25cm tissue culture flasks

(i.e. 4xl04 cells per cm2), which yielded approximately 4-8x106 cells after two days.
The cells were incubated at 37°C in a humidified 5% CCE atmosphere, with the flask

lid loosened slightly to allow gaseous exchange to take place.

ES cell lines used:

• 7a-GFP ES cells, which constitutively expresses eGFP (Gilchrist et al., 2003)
• Bry-201 ES cells, which express eGFP under the control of endogenous

Brachyury promoter (Fehling et al., 2003)
• Wild-type E14 ES cells
• Wild-type CGR8 ES cells

2.1.2 Freezing and thawing ofcells
To freeze cell stocks, cells were dissociated from flasks in trypsin, quenched in
medium and centrifuged as during standard passage. The cell pellet was resuspended
in freezing medium, which consisted of 10% dimethyl sulphoxide [DMSO] (Sigma)
in ES medium or FCS. 1ml freezing medium was used per confluent 25cm flask

and this cell suspension was divided between 2 cryovials (each hold maximum 1ml).
Cells were frozen slowly by placing them at -80°C overnight and then moving them

to -140°C or liquid nitrogen for long-term storage.

To thaw cell stocks, cryovials were held in a 37°C water bath to thaw rapidly and

then cell suspensions were immediately placed in 8ml of pre-warmed ES medium
and centrifuged at 120xg for 3 minutes. After aspirating the medium, the pellet was

resuspended in 10ml fresh ES medium (plus lOOU/ml LIF) and transferred to a
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gelatinised 25cm2 flask. The medium was replaced approximately 8 hours later (or
the following day) to remove dead cells and residual DMSO.

2.1.3 The stromal cell lines

The stromal cell lines were derived from haematopoietic tissues of mid-gestational
mouse embryos and were kindly provided by Prof. Elaine Dzierzak, Prof Alexander

Medvinsky and colleagues (Oostendorp et al., 2002a; Oostendorp et ah, 2002b)

(Figure 2.1). A summary of the clonal stromal cell lines used in this thesis is

provided in Table 2.1. AM20.1B4 and AM20.1A4 stromal lines were derived from
the dorsal aorta and surrounding mesenchyme (AM) of the AGM region from E10
tsA58 transgenic embryos. UG26.1B6 and UG26.2D3 were derived from the

urogenital ridges (UG) of the AGM region from Ell tsA58 transgenic embryos.
These lines were derived from transgenic mouse embryos carrying the SV40 T-

antigen Tag (tsA58) immortalising gene, which is conditionally active at the

permissive temperature of 33°C and is under the control of endogenous PGK or (3-

actin promoters to ensure constitutive and ubiquitous expression. The immortalising

gene facilitated the isolation and establishment of clonal stromal cell lines from

embryonic haematopoietic tissues. EL08.1D2 was derived from the foetal liver of a
control BLlb Ell embryo. BLlb embryos carried a transgene whereby a LacZ

reporter gene was under the control of Ly-6E (Sca-1). AM14.1C4 was derived from
the AM subregion ofAGM regions from Ell BLlb transgenic embryos.

2.1.3.1 Maintenance ofembiyo-derived stromal cells
Stromal cell lines AM20.1B4, AM20.1A4, AM14.1C4, UG26.1B6, UG26.2D3 and

EL08.1D2 were maintained as described (Oostendorp et ah, 2002a; Oostendorp et

ah, 2002b) on gelatinised flasks in specialised stromal medium consisting of 50%

MyeloCult long-term culture medium M5300 (Stem Cell Technologies), 40% a-

minimal essential medium (Invitrogen) and 10% FCS (Sigma) and an additional
ImM L-glutamine (Gibco) and 0.05mM 2-mercaptoethanol (Sigma) were added. At

passage, this medium was supplemented with 10-20% 0.2pm-filtered conditioned
medium obtained from the preceeding passage. Sub-confluent cells were typically

passaged (using trypsin solution) every 2-3 days after a 1:2 or 1:3 ratio split.
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Foetal Liver

Dorsal Aorta and

surrounding Mesenchyme

Figure 2.1 Stromal cell lines were derived from haematopoietic tissues of mid-
gestational (E10 and Ell) mouse embryos. These were kindly provided by
Dzierzak and colleagues. Photographs of mouse embryo and AGM region
kindly provided by Dr Anna Krassowska. AGM, aorta-gonad-mesenephros;
AM, aorta-mesenchyme of the AGM; UG, urogenital ridge sub-region ofAGM;
EL, embryonic liver.
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Stromal
cell line

Primary tissue Embryonic
day

Transgenic
Embryo

AM20.1B4 Aorta-mesenchyme of AGM E10 tsA58

AM20.1A4 Aorta-mesenchyme of AGM E10 tsA58

AM14.1C4 Aorta-mesenchyme of AGM Ell BLlb

UG26.1B6 Urogenital ridges of AGM Ell tsA58

UG26.2D3 Urogenital ridges ofAGM Ell tsA58

EL08.1D2 Foetal liver Ell BLlb

Table 2.1 Summary of the clonal stromal cell lines. The tsA58 Tag
immortalising gene is temperature sensitive at 33°C and was expressed under
the PGK or Beta-actin promoter. BLlb mice express the LacZ reporter gene
under the control ofLy6E (Sca-1).
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AM- and UG-derived stromal cell cultures were incubated at 33°C to activate the

tsA58 immortalising transgene. EL08.1D2 cells were maintained at 37°C. All the
stromal lines were incubated in a humidified 5% CO2 atmosphere.

2.1.3.2 Maintenance ofbone marrow-derived OP9 stromal cells
OP9 stromal cells are routinely used to promote haematopoietic differentiation of ES
cells in vitro. The OP9 stromal cell line was derived from the BM of newborn

osteopetrotic M-CSF-/- (macrophage colony stimulating factor) mice (Nakano et al.,

1994). Therefore, OP9 stromal cells do not express functional M-CSF, which would

preferentially promote ES cell differentiation into monocyte-macrophage lineages.
In the absence of functional M-CSF, ES cells cultured on OP9 stromal cell layers

reproducibly undergo lympho-haematopoietic differentiation (into erythroid, myeloid
and B cell lineages). In the experiments presented in this thesis, OP9 cells were

maintained at 37°C (in a humidified 5% CO2 atmosphere). They were passaged,

stored and maintained as described for the embryo-derived stromal lines, except that

specialised OP9 medium was used for optimal growth. This consisted of 80% a-

minimal essential medium (Invitrogen) and 20% FCS, with an additional 2mM L-

glutamine and O.lmM 2-mercaptoethanol.

2.2 Differentiation of ES cells

2.2.1 Embryoid body (EB) formation for ES cell Differentiation - hanging drop
method

Prior to differentiation, ES cells were prepared by the hanging drop method (Hole et

ah, 1996) to form embryoid bodies (EBs). This generated undifferentiated ES cell

aggregates relatively uniform in size (Figure 2.2 a and b). ES cells were harvested

by standard passage and resuspended at 3xl04 cells per ml in ES medium containing
lOOU/ml LIF (typically 20 ml). A multi-channelled pipette was used to aliquot 10pl

droplets (300 cells per droplet) onto the bottom of an up-turned lid of a sterile

bacteriological grade square petri dish.
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Figure 2.2 Embryoid body (EB) formation, (a) Hanging drop (hd) method
generates EBs that are relatively uniform in size (b). (c) EBs formed in
suspension are more variable in size as shown in (d).
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Lids with droplets were carefully turned over and placed onto the dish bases, holding
8-10ml tissue culture grade water, intended to humidify the hanging droplets. The

hanging drops were incubated at 37°C (humidified 5% CO2 atmosphere) for 2 days.

Subsequently, the undifferentiated ES cell aggregates were harvested from hanging

drops by tapping the dish lid against the hood worktop and transferring the medium
which collected at the edge to a fresh universal tube. The EB suspension was

centrifuged gently at 80xg for 3 minutes. The supernatant was aspirated and the
loose pellet of EBs resuspended in fresh ES medium in the absence of LIF to permit
differentiation. These aggregates were known as 0 day EBs, marking the time

elapsed from LIF withdrawal. Differentiating EBs were cultured in suspension in
bacterial grade petri dishes to prevent them from adhering to the dish. Every 2 days,
EBs were transferred to a new universal and allowed to settle slowly by gravity, then

supernatant was aspirated. EBs were resuspended in fresh ES medium (no LIF) and
transferred into a sterile bacterial grade petri dish. For the first 2 days after harvest,

penicillin/streptomycin (Sigma, 2,000 units and 2mg, respectively) were added to the

medium, as this stage was susceptible to bacterial contamination.

2.2.2 Embryoid body (EB) formation for ES cell Differentiation - suspension
method

The hanging drop method of EB fonnation generated undifferentiated ES cell

aggregates of relatively uniform size. However, ES cell aggregates can also be

prepared in suspension. This relies on the ability of ES cells to spontaneously form

aggregates when in suspension culture, producing EBs of many different sizes

(Figure 2.2 c and d).

To generate suspension EBs, ES cells were harvested as during a normal passage and
a suspension of 3x104 cells per ml of ES medium containing no LIF was prepared

(typically 6x105 cells in 20 ml). The 20ml ES cell suspension was placed in a sterile

bacteriological grade petri dish and incubated at 37°C (humidified 5% CO2

atmosphere). At this point, LIF had been removed and the culture contained day 0
EB. Therefore, suspension EBs formed in the absence of LIF, in contrast to the

hanging drop method, where EBs formed in the presence of LIF. Every 2 days, EBs
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were transferred from the petri dish into a universal tube and allowed to settle by

gravity, before aspirating the supernatant and resuspending the EBs in fresh ES
medium (no L1F) and placing them into a sterile bacterial grade petri dish.
Antibiotics were not used during this procedure.

2.2.3 Co-culture ofembryoid bodies with stromal cell lines to induce differentiation
Mouse ES cells differentiate upon withdrawal of LIF. In these experiments, EBs
were generated to initiate differentiation and these were co-cultured with stromal cell

layers with a view to testing whether the stromal lines could promote haematopoietic
differentiation of ES cells. The co-culture strategies used are outlined in Figure 2.3.
For co-culture experiments, stromal cells were grown to confluence in tissue culture

grade flasks or wells and y-irradiated (30Gy) no more than 2 days prior to co-culture.

Irradiation prevented further cell divisions. A GammaCeMO irradiator (Nordion)
was used to irradiate cells, this irradiator uses caesium 137 as a source of unstable

atoms that decay and emit beta and gamma radiation. The source is encapsulated
such that only gamma radiation reaches the sample. After irradiation of the

(adherent) stromal cells, the specialised stromal medium was aspirated, the stromal
cell layers washed in PBS and then placed in ES medium (containing no LIF). EB
differentiation was carried out in ES medium (-LIF) and with no additional

cytokines, at 37°C (in a humidified 5% CO2 atmosphere). Differentiation was

allowed to proceed for up to 16 days in these experiments, with 50% of the medium

being replaced every 2-3 days. Co-cultured cells were harvested and analysed at

defined time points for ES cell -derived haematopoietic activity.
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Figure 2.3 Summary of the EB/ stromal co-culture strategies.
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EBs were co-cultured in the following ways:

a) Co-cultures with hanging drop EBs:
• 50-100 EBs (1 day old) per 25cm2 tissue culture flask, in direct contact with

stromal cells. This strategy was used for in vitro analysis and transplantation

experiments.
• A single EB (1 day old) co-cultured per well of a 24 well plate (direct cell

contact).
• Approximately 5 EBs (1 day old) per well of a 24 well plate (direct cell contact).
• Single EBs or approximately 5 EBs (1 day old) per transwell in a 24 well plate

(no cell contact). Transparent Greiner Bio-one 24 well ThinCert-tissue culture
inserts were used to inhibit direct contact between the EBs and stromal cells,

while allowing exchange of components through the porous membrane (PET
membrane pore size of 0.4pm and pore density of 2x106 cm"2).

b) Co-cultures with suspension EBs or defined populations of cells isolated from
EBs:

Fluorescence activated cell sorting (FACS) was used to isolate defined cell

populations from EBs. EBs were generated by the suspension method to maximise
the numbers of cells available for FACS and subsequent co-culture on irradiated
stromal cells (in 25cm2 flasks).

c) Co-cultures with extracellular matrix extracted from irradiated stroma:

50 to 100 hanging drop EBs (1 day old) were plated per 25cm"" tissue culture flask, in
contact with extracellular matrices isolated from irradiated stromal cells (procedure
described in section 2.2.8).

d) Co-cultures in medium conditioned by the irradiated stromal layers:
ES medium (containing no LIF) was conditioned on irradiated stromal cells for a

duration of 1, 2 or 4 days. Equal measures of 1, 2 and 4 day conditioned medium
were 0.2pm fdter-sterilised and mixed. Flanging drop EBs were differentiated in

suspension with 50% conditioned medium and 50% fresh ES medium (-LIF), in
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bacteriological grade dishes. The EBs were transferred to fresh petri dishes every 2

days and analysed for haematopoietic activity at defined time points.

2.2.4 Harvesting co-cultured cells for in vitro analysis or in vivo transplantation

a) Harvesting cells co-cultured in 25cm2 flasks
Co-cultured cells were harvested at defined time points to assess their haematopoietic

activity. The medium was aspirated (or kept for analysis) and the adherent cells of
the co-cultures were then washed briefly with PBS. Single cell suspensions were

obtained by enzymatic digestion with dispase solution (PBS containing 1.2U/ml

dispasell, Roche and 70pg/ml DNAsel, deoxyribonucleasel, Sigma) for 45 minutes
at 37°C. Approximately 2ml dispase solution was used per 25cm2 flask. Dispase is

a neutral protease obtained from Bacillus polymyxa, it was used here to disaggregate
the cells in co-culture, as it does not damage cell membranes, is stable during
incubation and is free of mycoplasma. These properties made it more suitable for
this application than proteolytic enzymes such as trypsin or collagenase. DNAsel is
an endonuclease that digests double and single stranded DNA into oligo- and mono¬

nucleotides. This was added to prevent cell clumping due to release of DNA from

any sheared cells.

After incubation with dispase solution the flasks were tapped sharply to dislodge the

cells, which were transferred to universal tubes containing 8ml ES medium (-LIF) to
dilute the dispase and quench its activity. This was followed by passing the cells

through a 23-gauge needle, to obtain a single cell suspension by mechanical

disruption. Cells were centrifuged at lOOxg for 5 minutes and pellets resuspended in
ES medium (usually 5ml). Cell suspensions were counted using a haemocytometer.

Appropriate numbers of cells were then (i) seeded into colony assays to determine
the cell types present, (ii) analysed by flow cytometry to detect expression of
different surface markers and (iii) the remaining cells were pelleted by

centrifugation, snap frozen on dry ice and stored at -80°C for molecular analysis.

Samples of co-cultured cells were always analysed by flow cytometry to determine

the percentage of ES-derived cells in the suspensions. The 7a-GFP ES cells
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constitutively expressed GFP and when unlabelled ES cells were used, the stromal

layers were dyed prior to irradiation and co-culture. In this way, data could be
normalised according to the number of ES-derived cells seeded into assays

(described in section 2.2.5).

b) Harvesting EBs co-cultured in 24 well plates
To test whether the effects of co-culture were contact-dependent, 5 EBs were co-

cultured per well of a 24 well plate, with or without direct contact with stromal cells.
In these experiments, cells were harvested by picking the EBs from the stromal layer

or transwell insert with a Gilson pipette with yellow tip. The EBs were then placed
into 2ml dispase solution in universal tubes and incubated for 45 minutes at 37°C.
One universal tube was used per co-culture condition (stromal line); therefore, a pool
of EBs was analysed for each co-culture. The EBs were disaggregated by
mechanical disruption, centrifuged, resuspended and counted as described, before

assessing haematopoietic activity. The remainder of the cell suspensions were

analysed by flow cytometry to normalise the data.

When EBs were co-cultured at 1 EB per well in 24 well plates, individual EBs were

picked from the stromal layer or transwell insert using a Gilson pipette with yellow

tip. Individual EBs were transferred to separate wells of a 96 well plate with

lOOpl/well dispase solution and incubated in dispase solution for 45 minutes at 37°C.

Subsequently, each EB was gently disaggregated to a single cell suspension by

pipetting. Single EB cell suspensions were then transferred to individual wells of 24
well plates containing lOOpl of fresh ES medium (-LIF) to neutralise the dispase
solution. Each EB cell suspension was individually seeded into its own assay dish to
assess haematopoietic activity. Results were expressed as the frequency of colonies
obtained per EB, so normalisation of data was not necessary.
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2.2.5 Normalisation of data to exclude irradiated stromal cells present in cell

suspensions that were seeded into assays

It was determined that irradiated stromal cells could not give rise to colonies in the

assays used. However, in cases where ES cell suspensions containing irradiated
stromal cells were seeded into assays, it was necessary to normalise the data

according to the actual number of ES-derived cells seeded. This allowed data to be

expressed in terms of the frequency of colonies obtained for a defined number of

input ES-derived cells. Co-cultured cells were harvested as described above. After

removing cells for assays, samples of the cell suspensions were washed and

resuspended in FACS PBS (containing 0.1% sodium azide plus 0.1% BSA). A
FACSCaliber flow cytometer equipped with 488nm and 633nm lasers (Becton

Dickinson) was used to collect data for l-5xl04 live events. When 7a-GFP cells
were used, they constitutively expressed eGFP. Therefore, GFP-positive ES cells

(7a-GFP) were used to set the electronic gate on fluorescence channel 1 (green),
which was used to exclude GFP-negative stromal cells. In cases where unmarked or

reporter ES cells were used, stromal cells were labelled prior to co-culture so that

these could be excluded from analysis using electronic gates. In this way, the

proportion of ES-derived cells in each cell suspension was determined. This

proportion was used to adjust the colony numbers obtained in the assays to take into
account the actual number of ES-derived cells seeded. Samples were run by myself
and Kay Samuel (SNBTS) helped set the gates on flow cytometric plots. The

following formula was used to normalise colony numbers:
Normalised number of EB-derived colonies = number of colonies scored

proportion of ES cells in cell suspension

2.2.6 Labelling ofstromal cells
When the ES cells carrying a reporter construct or unlabelled wild type E14 or CGR8
ES cells were co-cultured, it was necessary to label the stromal cells to allow the

proportion of ES-derived cells to be determined by flow cytometry in order to

normalise data appropriately. The Vybrant DiD labelling system from MP-

Invitrogen was used to stain the stromal cells. This is an intracellular membrane

carbocyanine dye that has low cytotoxicity and is highly resistant to intercellular
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transfer. DiD labelling solution could be added directly to normal culture medium to

label attached cells uniformly. DiD has an absorption maximum of 644nm and a

fluorescence emission spectrum (maximum) of 665nm. Using a conventional flow

cytometer, this dye can be detected in the FL3 detection channel. Stromal cells were

grown to confluence in flasks or wells and prior to staining they were washed briefly
with PBS, which was aspirated before addition of a 1:250 solution of DiD in PBS, at

approximately 120pl solution per cm2 area of adherent stromal cells. Typically, 2pl
DiD in 500pl PBS was used per well of a 6 well plate and 12pl DiD in 3ml PBS was

used per 25cm2 flask. The cells were incubated with the dye for 20 minutes at 37°C.
The dye solution was then aspirated and the cells washed at least 3 times by repeated
addition and aspiration of PBS. Finally, the PBS was aspirated and replaced with ES
medium (-LIF). The labelled cells were then ready to be irradiated before a co-

culture experiment.

2.2.7 Co-culture ofES cells with labelled stroma
ES cells carrying a Brachyury-eGFP reporter gene (Bry-201 ES cells) were co-

cultured on confluent adherent stromal lines that were dyed with Vybrant DiD prior
to irradiation in the following ways:

• Approximately 50-100 hanging drop EBs (1 day old) per 25cm flask.
• Approximately 20 hanging drop EBs (1 day old) per well of a 6 well plate

(for Brachyury kinetics experiments).
• Approximately 50-100 suspension EBs (4 day old) per 25cm flask.
• 4 day old suspension EBs were disaggregated and cells were then sorted

using FACS according to Brachyury-GFP expression. 1x10s sorted

Brachyuiy-GFP positive or GFP negative ES-derived cells were co-cultured

per 25cm2 flask of dyed irradiated stromal cells for a further 6 days
differentiation.

Bry-201/stromal co-cultures were harvested for analysis as described in section 2.2.4.
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2.2.8 Isolation ofextracellular matrix (ECM) from irradiated stromal cell layers
The protocol for the isolation of extracellular matrix (ECM) from cell layers was

obtained from Hedman et ah, (1979). The isolated ECM is believed to be identical to
that of intact cell layers. In these experiments, stromal cells were grown to dense

layers and then irradiated as usual, the stromal medium removed, the cells were

washed with PBS and placed in fresh ES medium (-LIF) overnight in a 37°C (5%

CO2 humidified atmosphere) incubator. The day after irradiation, the medium was

aspirated gently and the cells briefly rinsed three times with PBS at room

temperature. The PBS was gently aspirated and the cells were treated with a

combination of 0.5% sodium deoxycholate (DOC, cell lysis detergent from Sigma)
and ImM phenylmethyl-sulfonylfluoride (PMSF, stock solution 0.4M in ethanol,

Sigma) in lOmM Tris-Cl buffered saline (pH8.0). 6ml solution was used per 25cm2,
the cells were left in this for 10 minutes on a four-way slow moving shaker at 4°C.
The solution was then gently removed by aspiration, being careful to keep the flasks
horizontal so that ECM did not peel off during washing. This cell lysis step was

repeated three times in total. Following this, the ECMs were treated with a low ionic

strength buffer (2mM Tris-Cl pF18.0 containing ImM PMSF) for 5min at 4°C with

gentle shaking. This wash step was also repeated 3 times. The buffer was gently
removed and 10ml ES medium (-LIF) placed in each flask and the isolated ECM was

ready for use in co-culture.

2.2.9 Serum free culture conditions
2.2.9.1 Weaning ES cells
In order to assess the extent to which the co-culture system relied on the presence of
serum in the medium, 7a-GFP ES cells were transferred to serum-free media.

ESGRO complete clonal medium (Chemicon International) was used for serum-free
maintenance of undifferentiated ES cells. Cells were weaned in serum-free

conditions and passaged according to the manufacturer's instructions. Briefly, lxlO6
ES cells were seeded into 25cm2 gelatin-coated flasks with 10ml of clonal medium,
which contains BMP4 and LIF. These were incubated at 37°C in a humidified 5%

CO2 atmosphere. 2-3 days later, the cells were passaged by removing the medium,

washing with PBS and treated with 1ml accutase (Chemicon International) per 25cm
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flask for 3 minutes at 37°C to detach the cells. The cells were transferred to a

universal containing 8ml basal medium (Chemicon International), which does not

contain LIF or serum. Due to the absence of serum, the aceutase activity is not

quenched and must therefore be diluted quickly. Therefore, the cells were washed
twice in 8ml basal medium by centrifugation at lOOxg for 3 minutes. Finally, the
cells were resuspended in clonal medium, counted using a haemocytometer and
lxl06 cells were seeded into fresh gelatin-coated flasks with 10ml clonal medium.
The growth lates of the ES cells weie assessed for at least three weeks prior to use in
co-culture experiments to ensure they were comparable to those grown in serum-

containing media.

2.2.9.2 ES cell differentiation in serum-free conditions
Serum-free ES cells were prepared in hanging drops in the same way as for cells in
the presence of serum. Cells in clonal medium, which contained LIF, were prepared
in lOpl hanging droplets containing approximately 300 cells per drop. Day 0 EBs

were harvested after 2 days incubation at 37°C (in humidified 5% CCF atmosphere).

In order for differentiation to proceed, the clonal medium containing LIF was

withdrawn and EBs were placed in bacterial grade petri dishes in serum-free
differentiation medium which was modified for this experiment from a protocol
described by Gouon-Evans and colleagues (Gouon-Evans et al., 2006). The medium
consisted of 75% IMDM (Gibco), 25% Ham's F12 medium (Gibco), 0.5x N2

(Gibco), 0.5x B27 (Gibco), 2,000 units penicillin (Sigma), 2mg streptomycin

(Sigma), 0.05% BSA (Gibco), 2mM glutamine, 0.5mM ascorbic acid, 4.5xlO"4M
monothioglycerol (MTG) (Sigma). This serum-free differentiation medium was

supplemented by adding SCF and BMP4 directly to the wells or flasks.

2.2.9.3 Co-culture in serum-free conditions
Stromal cells were prepared in 25cm flasks for co-culture as described above in the

presence of serum; however, after irradiation and thorough washing of stromal cell

layers with PBS, 10ml of serum-free differentiation medium was added per flask.
Co-cultures were setup as follows:
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• Approximately 50-100 serum-free 1 day old hanging drop EBs were co-

cultured on the stromal layers for up to 6 days of differentiation in the
modified Gouon-Evans medium, supplemented with SCF (Stem Cell

Technologies) and BMP4 (R&D Systems) at final concentrations of 30ng/pl.
In these experiments, 50% of the medium was replaced every second day. At
defined time points, the co-cultured cells were harvested and treated in as described
for cells in serum-containing conditions (described above). Subsequent to

harvesting, samples of cell suspensions were seeded into assays and analysed by flow

cytometry to determine the proportion of GFP positive ES-derived cells for
normalisation of data.

2.3 ES cell self-renewal assays

To determine the number of undifferentiated self-renewing ES cells present in a cell

suspension, self-renewal assays were setup. Cells were seeded at low density (lxlO3
or 0.5x103), in duplicate wells of a gelatin-coated 6 well plate, with ES medium

containing concentrations of LIF between 0U and lOOU/ml. The cells were

incubated for 5 days at 37°C (in a humidified 5% CO2 atmosphere) and subsequently
stained for alkaline phosphatase (AP) activity with the Leukocyte AP staining kit

(Sigma Diagnostics) as directed by the manufacturer. Eindifferentiated ES cells are

AP+. The following procedure was carried out at room temperature: colonies were

fixed with citrate-acetone-formaldehyde fixture [65ml acetone, 8ml 37%

formaldehyde and 25ml citrate solution. Citrate solution consisted of 18mM citric

acid, 9mM sodium citrate, 12mM sodium chloride with surfactant at pH3.6], This
was applied for approximately 30 seconds and was washed off carefully with water

for 45 seconds. Subsequently, colonies were stained with 1.5ml/well alkaline dye
solution for 15 minutes in a dry dark place at room temperature. To prepare the dye
mixture using the kit: 1ml 0.1M sodium nitrite solution was added to 1ml FRV-
Alkaline solution, this was placed into 45ml deionised water containing 1ml

Naphthol AS-B1 Alkaline solution. After staining, colonies were washed in water,

air-dried and colonies were analysed and categorised according to AP staining by

light microscopy (Figure 2.4).
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Figure 2.4 Colonies formed in the ES cell self-renewal assay. Colonies were
considered to be clonal and were stained for alkaline phosphatase activity,
which marked undifferentiated self-renewing ES cells, (a) Undifferentiated
ES cell colonies, (b) mixed colonies containing stained undifferentiated and
unstained differentiated cells and (c) differentiated colonies containing no
stained cells.

57



Chapter Two: Materials and Methods

2.4 Haematopoietic progenitor colony assays

Colony assays involve seeding single cell suspensions into semi-solid medium

supplemented with cytokines. Progenitor cells respond to cytokines and generate

clonal colonies which can be categorised by their morphology and enumerated under
a light microscope. Colony assays allowed retrospective determination of the

frequency of haematopoietic colony forming units (CFU) or cells present in a starting

sample population.

2.4.1 Agarose-based haematopoietic colony assays
In the CFU-A (colony forming unit- A) assay: a bottom feeder layer of 0.6% agarose

in specialised Eagle's medium (25% a-MEM, 20% horse serum, 0.25% sodium

bicarbonate and 4mM L-glutamine) that contained 10% conditioned medium from
both the L929 and the AF1-19T cell lines (sources of M-CSF and GM-CSF,

respectively) was aliquoted (1ml) into each 30mm tissue culture grade dish and

allowed to set. Test cells (3x104 cells/ml) were seeded into warm 0.3% agarose in
modified Eagle's medium (with no conditioned medium) and poured onto the bottom

agarose layers (in triplicate). After incubation at 37°C in a 5% CP and 10% CO2
humidified atmosphere for 10 days, the colonies (>2mm in diameter, primarily

comprising myeloid cells) were counted.

2.4.2 Methylcellulose-based haematopoietic colony assays

Methylcellulose-based assays allowed CFU-Mix (granulocyte/macrophage and red

cells), CFU-GM (granulocyte/macrophage), CFU-Mac (macrophage/monocyte) and

erythroid/macrophage colony forming cells to be detected. For these assays, 1x10s
test cells were plated into 35mm dishes containing 1.5ml 1% methylcelloluse in
Iscove's Modified Dulbeccos Medium (IMDM) (Stem Cell Technologies (SCT)),

supplemented with 10% fetal bovine serum (SCT); 340pM monothioglycerol; 3

Units/ml mouse erythropoietin (Epo) (Roche); 10pg/ml recombinant human Insulin

(Sigma); lOng/ml murine IL3 (SCT); lOng/ml recombinant human IL6 (SCT);

50ng/ml recombinant mouse Stem Cell Factor (SCT), 2mM L-Glutamine and 1,000
units penicillin/lmg streptomycin (Sigma). The dishes were placed in a larger
culture dish (with lid) containing an open sterilin dish with 5ml UHP water to ensure
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the conditions were humid enough to prevent the methylcellulose from drying out.

These were incubated at 37°C (in a humidified 5% CO2 atmosphere). The colonies
were identified morphologically by light microscopy and counted after 4 and 10

days.

The haematopoietic readout was scored as follows: Clonal colonies containing red
cells and at least two different types of white cell were scored as CFU-Mix, thought
to represent multipotent progenitors. CFU-GM were heterogenous white cell
colonies with at least two different types of white cell but containing no red cells.
CFU-Mac represented macrophage colonies and Erythroid/Macrophage had a similar

morphology to CFU-Mac but also contained red cells. Examples of these colonies
are provided in Chapter 4, Figure 4.1. Colonies that did not fall into the afore¬
mentioned categories were termed "other"; these colonies represented unipotent

progenitor cells such as definitive erythroid cells, primitive erythroid cells or mast

cells. In this way, all the haematopoietic colonies in the assay dishes were accounted

for, to ensure that the total haematopoietic activity could be determined.

When differentiating ES cells were seeded into the methycellulose-based assay, it
was found that secondary EBs formed. These secondary EBs were thought to

represent undifferentiated ES cells present in the samples. These undifferentiated
cells within the secondary EBs differentiated in response to the exogenous cytokines
in the assay, resulting in haematopoietic cells emanating from the secondary EBs,
these were called "burst" secondary EBs. These burst secondary EBs did not

represent haematopoietic progenitor cells (CFU) which were present in the test

population at the initiation of the assay. Therefore, secondary EBs and burst

secondary EBs that formed in the methylcellulose assay were not considered as part

of the haematopoietic CFU readout. Examples of burst and non-burst secondary EBs
are provided in Chapter 3, Figure 3.4.
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2.5 Cytospins and staining
Colonies picked from methylcellulose assays were prepared as cytospins and stained
to determine the cell types present. Individual colonies (or up to 5 pooled colonies)
were picked after 10 days in assay using a Gilson pipette (yellow tip) set to lOOpl.

Colonies (lxlO4 to 0.5xl06 cells) were placed into a universal containing 2 to 6ml
warmed PBS (37°C) to dissolve the methylcellulose. The cell suspensions were

centrifuged for 5 minutes at lOOxg. PBS was aspirated and the cell pellet

resuspended in lOOpl PBS plus 10% FCS.

Poly-L-lysine coated microscope slides (25x75x1.0mm, BDH Laboratories, pre-

treated for superior cellular adhesion) were labelled and a specialised filter card

(Shandon Inc.) was placed between the slide and a cytospin funnel, ensuring that the

sample chamber and the fdter hole lined up. The labelled slide, fdter and funnel
were then carefully placed into a cytofuge (Cytospin4, Shandon) and held in place by
a metal sprung pin, ensuring the holes lined up with the viewer. If fewer than 5x104
cells were present, 50pl of FCS was loaded into the funnel and centrifuged for a few
seconds to wet the filter and to help the cells adhere to the slide. Subsequently, the
cell suspension was loaded into the funnel (100-250pl maximum) and centrifuged for

5 minutes at 120xg. The slide/filter/funnel was then carefully removed from the

cytofuge and the filter and funnel carefully peeled away from the slide, without

smudging the cytospin. Slides were air-dried on a paper towel. Dry slides were

carefully placed into coplin jars containing 100% methanol for up to 15 minutes to

fix the cytospins. The slides were then air dried in a cool dust-free environment.
The cytospins were stained with Quick-DIFF (from Reagena), a fonn of May
Grunwald Giemsa which stains nuclei blue and cytoplasm pink/rose. Fixed and air-
dried cytospin slides were dipped into the Quick-DIFF dye I (red eosin) for 10

seconds, followed by dipping into Quick-DIFF dye II (blue hematoxylin) for 10
seconds and then dipped into dH20 to wash. The slides were air-dried overnight
before analysis by light microscopy.
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2.6 Molecular analysis of co-cultured cells
2.6.1 RNA isolation and reverse transcription

Co-cultures were harvested as described above and, after seeding samples of cells
into haematopoietic colony assays or removing cells for analysis by flow cytomtery,

the remainder of the cell suspensions were briefly centrifuged in eppendorfs and cell

pellets were snap frozen on dry ice and stored at -80°C. Total RNA was extracted

using the RNA aqueous-4PCR kit from Ambion or the Qiagen Rneasy extraction kit;
in both cases, the RNA was treated with DNAsel to remove residual genomic DNA.
cDNA was prepared using the Taqman reverse transcription reagents supplied by

Applied Biosystems, or the reverse transcription Superscript III kit from Invitrogen.
When using the Applied Biosystems reagents, 400ng RNA was reversed transcribed
with random hexamers and oligo(dT) as follows: lx TaqMan RT buffer, 5.5mM

MgCh , 500pM each dNTP, 2.5pM oligo(dT), 2.5pM random hexamers, 0.4 units/pl

Rnase inhibitor, 1.25 units/pl Multiscribe RT and400ng RNA, made up to 20pl with

nuclease-free water. The reaction was incubated at 25°C for 10 minutes, followed by

30 minutes at 48°C and then inactivated at 95°C for 5 minutes. cDNA was kept at

4°C or -20°C for long term storage. The Superscript III kit from Invitrogen

consisted of a 2xRT reaction mix and a lOxRT enzyme mix. These contained 2.5pM

oligo(dT), 2.5ng/pl random hexamers, lOmM MgCh, 500pM each dNTP,

Superscript III RT enzyme and RNaseOUT. The reaction was setup with 400ng
RNA and was made up to 20pl with nuclease-free water and incubated at 25°C for

10 minutes, followed by 30 minutes at 50°C and then inactivated at 85°C for 5

minutes. Again, cDNA was kept at 4°C or -20°C for long term storage.

2.6.2 Quantitative real time reverse transcriptase (RT) polymerase chain reaction

(PCR)

Quantitative real-time reverse transcription (RT)-PCR was performed on an ABI
7500 FAST qPCR machine (Applied Biosystems) using lOng cDNA per reaction.

Taqman chemistry was used and validated Taqman gene expression assays were

purchased from Applied Biosystems (Table 2.2).
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Gene Description Supplier

Beta-actin Endogenous control MWG

HPRT Endogenous control MWG

Lmo2 Expressed by definitive haematopoietic
cells, required for establishement of
primitive haematopoiesis

ABI assay
Mm00493153_ml

Runxl Expressed by definitive haematopoietic
cells

ABI assay

Mm00486762_ml

Sry Y chromosome specific marker ABI assay
Mm00441712_sl

Table 2.2 Taqman gene expression kits used for quantitative PCR analysis.
Purchased from Applied Biosystems (ABI) or MWG.
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The housekeeping gene HPRT was used as the endogenous control to enable relative

quantitation of gene expression according to the amount of cDNA loaded. Reactions
were set up in triplicate in 96 well plates, using the recommended Taqman program

for universal conditions: 55°C for 2 minutes, 95°C for 10 minutes to activate the

AmpliTaq Gold, followed by 40 cycles of 95°C for 15 seconds to denature cDNA

and 60°C for 1 minute to allow annealing/extension. Relative quantitation was

calculated using the delta delta CT method using SDS vl.4 software from Applied

Biosystems. Using this software, the gene expression in each reaction was first
normalized according to the amount of cDNA loaded (HPRT endogenous control).
The data were then shown as fold change in gene expression compared to an internal
calibrator sample within each experiment. The gene expression assays supplied by

Applied Biosystems were already validated to ensure efficiency of the reactions. In
the case of HPRT, the primer set and probe were designed and validated by Dr

Melany Jackson in the John Hughes Bennett Laboratory.

2.1 In vivo experiments
In vivo experiments were carried out with help from Kay Samuel (SNBTS), who also

helped set the gates on flow cytometric plots for tissue samples screened (Chapter 6).

2.7.1 Markers of reconstitution
Prior to carrying out transplantation experiments, it is vital that appropriate markers
are in place to allow the investigator to reliably distinguish between donor and host
cells. This allows assessment of chimaerism of the recipient (i.e. to determine if
donor cells have engrafted host tissues), according to the unique properties of the

recipient and donor cells. When 7a-GFP ES cells were used, ES-derived donor cells

constitutively expressed an eGFP reporter gene, allowing them to be distinguished by
flow cytometry. When unmarked ES cells were transplanted, these were stained with
the Vybrant DiD label (Invitrogen) prior to differentiation and injection. When the
donor cells originated from primary bone marrow, Rosa26-LacZ (male) mice were

used as the donors so that the donor cells could be detected by assessing FDG

activity (procedure described in section 2.9.2.2).
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As an additional marker, donor cells were male and were transplanted into female

recipients so that Y chromosome PCR could be used to detect donor cell contribution
to host tissues.

2.7.2 Preparation ofcells for in vivo transplantation
2.7.2.1 Co-cultured ES cells

7a-GFP ES cells were co-cultured with stromal cells and harvested at defined time

points as described and disaggregated to single cell suspensions on the day of

transplantation. Samples of cell suspensions were analysed by flow cytometry to

determine the proportion of ES cells present. The equivalent of lxlO6 ES-derived
cells were transplanted per recipient.

Co-culture cell suspensions could be sorted by FACS prior to transplantation

according to expression of surface markers or sorted to separate GFP positive 7a-
GFP ES-derived cells from the stromal layers. These sorted.cells were injected intra¬

venously (i.v.) or intra-splenically (i.s.) at approximately lxlO6 ES cells (in no more

than 200pl or lOOpl PBS, respectively) per recipient.

2.7.2.2 Bone marrow or spleen cells
Bone marrow or spleen cells were harvested from animals as described in section
2.7.4. To accurately enumerate leukocytes in these cell suspensions, red blood cells
were excluded using white cell counting fluid. A lOpl aliquot of cell suspension was

diluted in 40pl white cell counting fluid (3% acetic acid in distilled water plus lOpg
of crystal violet or Gentian). lOpl of this was immediately mounted on a

haemocytometer for counting, as prolonged exposure to white cell counting fluid can

destroy white cells too. Alternatively, cell counts were obtained using a Beckman-
Coulter counter. For transplantation, the cells were counted, pelleted and

resuspended in an appropriate volume (maximum 200pl cells in PBS per recipient,
5x10 cells per ml). For staining and flow cytometry analysis, the remaining cell

suspensions were resuspended at lxl07 cells/ml. .
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2.7.2.3 Preparation of labelled ES andBM cells for short-term in vivo experiments

Experiments were carried out to test the ability of ES cells to home to different
tissues and to assess whether 7a-GFP ES cells continued to express GFP upon

transplantation. Disaggregated 4d 7a-GFP EB cells were labelled with Vybrant DiD

labelling solution (Invitrogen) as adherent monolayers prior to EB formation, as

described in section 2.2.6. Undifferentiated ES cells and male C57 bone marrow cells

were dyed in suspension on the day of transplantation. Briefly, lxl06 cells/ml PBS
were incubated with 5pl/ml DiD cell-labelling solution for 20-30 minutes at 37°C.
Cell suspensions were centrifuged at 120xg for 3 minutes, the supernatant removed
and pellet resuspended in warm ES medium (no L1F). This wash step was repeated 2
more times. At least 10 minutes recovery time was allowed before injection or flow

cytometry of dyed cells. Labelled ES or EB cells and bone marrow-derived cells
were injected i.v. at lxlO7 cells per recipient. Recipients were killed 5 minutes, 1
hour or 24 hours later and tissues analysed for donor cells.

2.7.3 Preparation of transplant recipients
All animal work was carried out under the provisions of the Animals (Scientific

Procedures) Act (UK) 1986. All procedures on live animals were permitted under a

Home Office Project Licence (PPL 60/3360) and were carried out by Kay Samuel

(Scottish National Blood Transfusion Service, New Royal Infirmary Edinburgh) who
holds a Personal Licence also permitting the procedures. The animals were bred and
maintained at the Biomedical Research Facility (BRF) of the University of

Edinburgh and the daily care of animals was carried out by staff at the BRF. All

transplant recipients were euthanased by means of cervical dislocation (Schedule 1)
or administration of Euthatal.

Non-obese diabetic severe combined immuno-deficient (NOD/SCID) mice were

used as recipients (Jackson Laboratories). These mice are homozygous for the

spontaneous SCID mutation Prkdcscui and are diabetes free. They lack functional B
and T cells, have defective myeloid development and have low natural killer cell

activity. NOG/SCID or NOD-scidIL2Rynu11 mice carry the Prkdcc"' and lack the
interleukin-2 receptor gamma c. Therefore, they lack T and B lymphoid cells
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without leakiness, have extremely low natural killer cell activity and they are

resistant to lymphoma formation even after sublethal irradiation, leading to a longer

lifespan.

The water supply of recipient mice was supplemented with antibiotics (Baytril) 7

days prior to the transplantation. Prior to transplant, recipient mice were sub-lethally
irradiated (250rad) using the GammaCeMO irradiator at the Biomedical Research

Facility (BRF). Prior to administration of cells by intra-venous injection, mice were

warmed in a 37°C "hot box" for 10-15 minutes to dilate the tail vein. Mice were

held in a retraint for injection of cells using a 1ml syringe and 25G needle. On the

day of transplantation, a single cell suspension of the donor sample was prepared; for

instance, for a 6-8 week old recipient, no more than 200pl cell suspension in PBS
was injected per recipient.

For intra-splenic injections, mice were sub-lethally irradiated, warmed and
anaesthetised using vetlar (ketamine anaesthetic and domitor analgesic) injected

intra-peritoneally. Once unconscious, the recipient was placed on its back on a

heated pad and swabbed with 70% ethanol to sterilise the site of incision. A small
area to the left of the midline, just below the sternum, was shaved and a small
incision made in the skin to reveal the peritoneum. Once the spleen had been

visually located, a small incision was made in the peritoneum and the spleen was

gently grasped near one end and carefully externalised to lie on the peritoneum. A
maximum of lOOpl of cell suspension was carefully injected directly into the spleen

using an insulin syringe and 29G needle. The spleen was then tucked back into the

peritoneal cavity and the peritoneal membrane sutured closed. The skin was closed
with surgical stainless steel clips. Anaesthesia was reversed using the reversal agent

atipamezole injected sub-cutaneaously and their recovery monitored closely.
Antibiotic supplementation of recipients' drinking water was withdrawn 28 days
after transplantation. After 56 days (8 weeks), reconstitution should be complete, but
to detect long-term reconstituting cells, recipients had to be repopulated for up to 6
months.
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2.7.3.1 Primary, secondary and tertiary transplants
8-12 weeks post transplantation, peripheral blood samples were obtained from

recipients which were to be kept alive for a further 12 weeks. Alternatively, 8 weeks

post-primary transplant, recipients were killed. Single cell suspensions of bone
marrow and spleen of each primary recipient were counted, pelleted and resuspended
in an appropriate volume (200pl cells in PBS per recipient). The BM and spleen
cells were transplanted separately into two sub-lethally irradiated female secondary

recipients and assessed after 8 weeks for reconstitution. Samples of bone marrow

and spleen cells from each primary recipient were also analysed by flow cytometry

or stored at -80°C for molecular analysis at a later date. Tertiary transplants were

carried out in the same way 8 weeks post-secondary transplant.

2.7.4 Recovery andpreparation of tissues from mice for transplantation or analysis
Mice were killed at appropriate time points and tissues analysed to determine if
reconstitution had taken place, to determine the level of chimaerism (donor cell

engraftment) and to carry out secondary or tertiary transplantation.

2.7.4.1 Peripheral blood
For sampling of peripheral blood (PBL) during reconstitution, mice were

anaethetised using halothane and allowed to recover. While unconscious, a few

droplets of PBL (from the retro-orbital sinus) were collected into an eppendorf using
a tube containing 101U heparin to prevent clotting. Samples were pelleted and
stored at -80°C for later analysis of genomic DNA by Y chromosome PCR. In

addition, a few droplets were collected into 15ml conical tubes containing 10ml PBS

supplemented with 101U heparin. Following removal of red blood cells by

hypotonic shock, isolated white cells were subjected to analysis by flow cytometry.

Briefly, to carry out hypotonic shock PBL samples in PBS were centrifuged for 5
minutes at 160xg. The supernatant (containing plasma) was removed by aspiration

(as pellets are loose). The pellet was loosened by flicking the tube base. 9ml dFLO
was added and the sample mixed by inversion for 12 seconds. 1ml lOx PBS was

added and mixed by inversion, followed by another centrifuge for 5 minutes at
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160xg. The supernatant was removed by aspiration to preserve the loosely packed

pellet. This process of hypotonic shock lysed the red blood cells, though the pellet
needed to be washed to remove residual red cell "ghosts". In order to do this, the

supernatant was removed by aspiration, the pellet loosened by flicking and 10ml of
PBS was added. The suspension was centrifuged again and the supernatant tipped
off. The pellet was then loosened and resuspended in 100-500pl. After hypotonic

shock, the samples should contain mainly white blood cells. However, some red
blood cells would remain and, in order to count the cells, these needed to be

removed. Therefore, the cells were counted using white blood cell counting fluid
and a haemocytometer, or using a Beckman-Coulter counter.

2.7.4.2 Bone Marrow

Bone marrow was harvested from both femurs. All the instruments used for

dissection were sterilised, the freshly killed mouse was placed on its back, swabbed
with 70% ethanol and both femurs dissected. The muscle was trimmed away from
the femurs and they were immediately placed in a petri dish of PBS. To harvest the
bone marrow, the bones were flushed with 500pl to 1ml PBS per femur. The bone
was held with forceps and the ends carefully removed with scissors. A 1 or 2ml

syringe was filled with PBS and a 25G needle attached, which was inserted into one

end of the bone and the PBS was flushed through into an eppendorf (1.5ml) to collect
the marrow. A single cell suspension was prepared by gently passing the sample

through a series of needles of increasing gauge. For secondary or tertiary

transplantation, half the sample was kept for analysis and counting and the other half

transplanted.

2.7.4.3 Peritoneal exudate cells (PEC)
To harvest PECs, the mouse was laid on its back and the skin pulled back to expose

the peritoneal membrane. A 5ml syringe was filled with PBS and a 21G needle

attached, which was inserted into the peritoneal cavity low on the left hand side. The
PBS was injected into the cavity, the needle removed and the mouse was gently
shaken holding its hind feet. The same syringe and needle was used to recover the
PBS from the peritoneal cavity. This wash step was repeated three times in total to
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maximise PEC recovery. The cell suspension was transferred to a universal tube and

made up to 25ml with PBS. The samples were centrifuged at 160xg for 5 minutes to

pellet the cells. The supernatant was discarded and the pellet resuspended in lrnl
PBS. The cells were counted with a haemocytometer, no white blood cell counting
fluid was necessary unless bleeding had occurred. The cells were either stored as a

pellet at -80°C for later molecular analysis or analysed by flow cytometry

immediately.

2.7.4.4 Spleen

Spleens were usually harvested after removal of the femurs to harvest bone marrow.

The spleens were removed and homogenised using sterile technique. Using forceps,
the spleens were individually transferred to a 5ml loose fitting glass homogeniser.
lml PBS was added and the glass rod inserted. A gentle force was exerted and the
rod turned 3 times to release the pulp from the spleen capsule. The cell suspension
was transferred to an eppendorf using a Pasteur pipette. This was left to stand for a

few minutes to allow the debris to settle. The supernatant was then decanted to a

fresh tube with a Pasteur pipette. The suspension was divided between two

eppendorfs, one for analysis and one for secondary transplantation.

2.8 Molecular analysis of tissue samples from transplant recipients
2.8.1 Genomic DNA extraction and quantitative real time Y chromosome PCR

Genomic DNA was prepared from tissues of recipient mice to assess donor cell
contribution by Y chromosome PCR. The QIAGEN blood and tissue DNA
extraction kit was used to extract genomic DNA, according to manufacturer's
instructions. The optical densities of the DNA preparations were determined using
an eppendorf BIO photometer or a Nanodrop spectrophotometer to ascertain the
DNA concentrations. To detect the Y chromosome present in male donor cells,

quantitative real time PCR was performed on an ABI 7500 FAST qPCR machine

(Applied Biosystems) using the recommended program for universal conditions.
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The following Y chromosome qPCR assay was established and validated for this

project (with technical advice from Dr Melany Jackson, JHBL) to facilitate the

quantification ofmale donor cells in female recipient tissues.

The SRY gene is the sex-determining region of Y chromosome and as SRY is a

single exon gene, primers against it will detect genomic DNA and transcript.

Therefore, the SRY TaqMan® Gene Expression Assay (Assay ID:

Mm00441712_sl) from Applied Biosystems was used to detect the Y chromosome.
The PCR reactions were carried out in triplicate using 40ng genomic DNA per

reaction and the validated SRY 20xGEX mastermix (containing 900nM forward

primer, 900nM reverse primer and 250nM FAM probe).

Beta-actin was chosen as an internal (endogenous) control to detect the amount of
DNA loaded per well. Primers for Beta-actin were obtained from MWG and were

designed in primer express by Wang and colleagues (Wang et al., 2002, Liver

Transplantation): BACTINreverse 5'-CAA GAA GGA AGG CTG GAA AAG A-3'

and BACTINforward 5'-ACG GCC AGG TCA TCA CTA TTG-3'. A VIC labelled

probe was purchased from Applied Biosystems: BACTIN probe-VIC

CAACGAGCGGTTCCGATGCCCT, MGBNFQ (minor groove binder non-

fluorescent quencher). The primers and probe were used at concentrations of 900nM
forward primer, 900nM reverse primer and 250nM VIC probe. Beta-actin was used
as the endogenous control to detect and quantify the DNA loaded in each reaction.

Prior to use with experimental samples, the Y chromosome quantitative PCR strategy

was validated with control tissue samples consisting of known ratios of male and
female cells. In these control experiments, spleen and bone marrow were harvested
from male and female C57/B16 control mice, cell suspensions made and counted as

described above. A dilution series of male cells in a background of female cells was

prepared (1:10, 1:30, TlxlO2, l:3xl02, l:lxl03, l:3xl03, l:lxl04, l:3xl04, l:lxl05,
1:3x10s and l:lxl06), each preparation containing a total of lxlO6 cells. Genomic
DNA was extracted from this series of cell preparations using the QIAGEN kit and
assessed using the SRY and Beta-actin primers. Using the standard curve method, it
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was determined that 1 in 10 male cells in a female background could be detected.
This would represent 0.001% reconstitution of a recipient, making this a highly
sensitive method of detecting host-donor chimaerism.

2.9 Flow cytometry and fluorescence activated cell sorting (FACS)
The flow cytometry described in this thesis was carried out with the guidance of Kay
Samuel at the Scottish National Blood Transfusion Service, New Royal Infirmary

Edinburgh; or using the flow cytometry facilities at the Centre for Inflammation

Research, Queen's Medical Research Institute, Edinburgh. A BD FACSCalibur flow

cytometer (with 488nm and 633nm lasers, Becton Dickinson) and CellQuest

software (Becton Dickinson) were used. Fluorescence activated cell sorting (FACS)
was carried out by Dr Martin Waterfall at the Roslin Institute or with Shonna

Johnson at the Queen's Medical Research Institute. Cells were sorted with a FACS

Vantage SE cell sorter (Beckton Dickinson & co., Mountain View, CA) equipped
with a dual output 351nm/488nm laser and a 633nm laser using FACSDiva software

(Beckton Dickinson).

2.9.1 Flow cytometry analysis and FACS ofES-derived cells

Flow cytometry was used to determine the proportion of ES-derived cells in co-

cultures and to detect expression of various lineage-specific surface markers. Co-
cultured cells were harvested as described above and washed in FACS PBS (highly

toxic, PBS containing 0.1% BSA and 0.1% sodium azide). When analysing cells by
flow cytometry, approximately 2x105 cells per FACS tube were incubated for 20
minutes at 4°C with optimal concentrations (titrated) of monoclonal antibodies.

Table 2.3 summarises the antibodies used. Samples were quenched in FACS PBS
and centrifuged at 160xg for 5 minutes. This wash removed unbound primary

antibody. A secondary avidin-phycoerythrin (PE) conjugate was used to detect

biotinylated primary antibodies. This was added after the first wash, incubated for
20 minutes at 4°C, washed and centrifuged again. Samples were analysed using a

BD FACSCalibur flow cytometer and CellQuest software (Becton Dickinson).
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Surface
Marker

Conjugate Cell populations marked Supplier

cK.it Biotin Haematopoietic stem cells Caltag

Sca-1 PE Haematopoietic stem cells BD

CD45 APC Pan-haematopoietic marker Caltag

Gr-1 APC Granulocytes (myeloid) Caltag

CDllb PE Macrophages/monocytes (myeloid) Caltag

CD49d PE Alpha-4-integrin, marks haematopoietic and
endothelial cells

BD

Terl 19 PE Erythroid cells BD

B220 PE or APC B-lymphoid cells Caltag

CD 106 Biotin VCAM-1, marking endothelial cells Caltag

CD34 PE or APC Cord blood HSC, mobilised adult BM
derived HSC

Caltag

CD31 PE PECAM-1 (platelet endothelial cell
adhesion moecule). Platelets, endothelial
cells.

Caltag

Flk-1 PE Endothelial cells, haemangioblast BD

CD54 PE Intracellular adhesion molecule-1. Resting
and activated lymphocytes and monocytes.

BD

CD41 purified Megakaryocytes, embryonic HSCs BD

CD150 APC SLAM receptor. LTR-HSCs Biolegend

CD48 PE SLAM receptor. STR-HSCs BD

CD244 Biotin SLAM receptor. Haematopoietic progenitor
cells.

BD

Avidin APC Secondary antibody Caltag

*APC = allophycocyanin, PE = phycoerythrin

Table 2.3 Monoclonal antibodies used for flow cytometry analysis or
fluorescence activated cell sorting (FACS).
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For co-cultured cells, data for lxlO5 live cells were acquired. Control samples
included unstained cell samples and cells stained with the second step (avidin-PE)

only. For cell sorting experiments, approximately 5 to lOxlO6 cells were

resuspended in PBS containing 2% FCS. Sorted cells were collected into PBS

containing 10% FCS and were used in an experiment immediately.

2.9.2 Flow cytometry analysis of recipient tissue samples - detection of
reconstitution

To assess reconstitution, samples of peripheral blood, bone marrow and spleen were

analysed by flow cytometry. Tissue samples were obtained from recipients and

single cell suspensions made as described above. Cell suspensions were centrifuged
for 5 minutes at 160xg, the supernatant discarded and the pellet loosened by flicking
the tube base. The pellet was resuspended in 2ml PBS and counted. For flow

cytometry, the cells were resuspended at lxl07/ml FACS PBS.

2.9.2.1 Detection ofES donor cells
Donor 7a-GFP ES cells would be detected in the FL1 channel. If GFP positive cells
were present in haematopoietic tissues, repopulation of the different blood

compartments could be assessed by flow cytometry of cells stained with

fluorescently labelled monoclonal antibodies against CD45 (a pan-haematopoietic

marker), B220 (marking B-lymphocytes), CD4 and CD8 (T-lymphocytes), Grl and
CD1 lb (granulocytes, monocytes and macrophages).

2.9.2.2 Detection ofRosa26 bone marrow donor cells
Rosa26 mice (and cells) have LacZ (which encodes the enzyme Beta-galactosidase)
under the control of the Rosa26 promoter, which is expressed ubiquitously. Beta-

galactosidase activity can be measured in Rosa26-derived tissues or in cells
transfected with Beta-galactosidase reporter construct. This is done by exposing the
cells to fluorescein di-D-galactopyranoside (FDG, Sigma), which is a non-

fluorescent substrate that is converted by beta-galactosidase to give a fluorescent

product that can be readily detected by flow cytometry.
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Stock solutions of lOOmM FDG (lOOmM per pi) in DMSO were kept in 5pi aliquots

at -20°C. In order to obtain a working solution of 2mM FDG, 245pi distilled water

was added to 5pl of lOOmM stock solution (1 in 50 dilution). To assess FDG

conversion, cells were pelleted in eppendorfs by centrifugation for 4 minutes at

160xg. Supernatant was poured off and the pellet was resuspended in residual PBS

(150pl). 40pl of this cell suspension was aliquotted into two FACS tubes (one for

staining and one as an unstained control). These cells were warmed to 37°C in a

water bath. 40pl of water (unstained controls) or 40pl FDG working solution (2mM

in distilled water) was added to each cell suspension. These were incubated for 2
minutes at 37°C in a water bath. Following this, 2ml of ice cold PBS was added to

each tube and left on ice for 30 minutes. Cell suspensions were then centrifuged for
5 minutes at 160xg and a Pasteur pipette was used to remove supernatant, leaving

500pl supernatant in which to resuspend the cells. These suspensions were then

analysed by flow cytometry to assess fluorescence present in the FDG treated

samples compared to the water controls.

It should be noted that Beta-galactosidase mediates its effects in membranes of cells,
so cells with more membranes (e.g. granulocytes have more internal membrane than

lymphocytes) would be brighter due to more fluorescent product being released in
the same length of time.

2.10 Microscopy and Photography
Cells were routinely inspected and counted using a Leitz Labovert light microscope.
A Zeiss Axiovert 25 fluorescence microscope (with a UV light source) was used to

analyse and count haematopoietic colonies and to visualise eGFP expression. eGFP
excites at 488nm and emits at 509nm and was therefore visualised using the Zeiss
0911 filter set (excitation 450-490nm, emission 520nm). Images were captured with
an AxioCam digital camera and AxisVision 3.1 software. The white balance of some

images was edited using Adobe Photoshop 7.0; in these cases, the adjustments were

applied to the entire image.
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2.11 Statistical analysis

GraphPad Prism4 software was used to determine whether or not there was a

significant difference between data sets. Mann-Whitney U tests and Wilcoxon

Signed Rank (paired) tests were used to analyse non-parametric data which did not

have a normal distribution, whereas paired or unpaired student's t tests weie used to

analyse parametric data with normal distribution.
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Chapter Three: Results

3.1 Aims

To determine the effects of stromal cell lines derived from the haematopoietic
tissues ofmid-gestational mouse embryos on the maintenance and growth rates of ES
cells.

3.2 Introduction

A novel haematopoietic differentiation system has been established whereby

embryoid bodies (EBs) are co-cultured in contact with stromal cell lines derived
from mid-gestational mouse haematopoietic niches (see Chapter 2, Figure 2.1 and
Table 2.1). The stromal cell lines were derived by Elaine Dzierzak and colleagues
from transgenic mice carrying the temperature sensitive SV40 large T antigen (Tag)

immortalising transgene (tsA58), which was expressed under the control of Beta-
actin or PGK promoters. A large panel (-100) of clonal stromal cell lines was

derived from foetal livers and AGM subregions of embryos (E10-11). Oostendorp
and others screened the stroma for their capacity to maintain/expand mouse bone
marrow LTR-HSCs and CFUs (Oostendorp et al., 2002a, 2002b, 2005). Briefly, the
AM20.1B4 and AM20.1A4 stromal cell lines were derived from the aorta and

surrounding mesenchyme (AM subregion) of AGMs from E10 transgenic embryos.
AM14.1C4 was derived from Ell AM subregions. UG26.1B6 and UG26.2D3 were

derived from urogenital ridge (UG) subregions of Ell embryos. EL08.1D2 was

derived from El 1 foetal liver. In the experiments described in this thesis, mouse EBs
were co-cultured with these stromal cell lines to determine whether they can promote

haematopoietic differentiation (Chapter 4). Oostendorp and colleagues (2002b)

reported that one of the stromal lines used here (UG26.1B6) expresses low levels of
LIF transcript; therefore, it was possible that stromal co-culture might inhibit
differentiation of ES cells. In light of this observation, it was considered necessary

to first determine the effects of the stromal cell lines on basic aspects of ES cell

biology; such as self-renewal and growth rates.
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3.3 Experimental approach
• Determine whether the growth rates of the differentiating ES cells under the

different co-culture conditions were statistically comparable.

• Determine whether ES cells were maintained in their undifferentiated state in co-

cultures by carrying out self-renewal assays and by assessing secondary EB
formation in colony assays.

3.4 Results

3.4.1 There were no significant differences in the growth rates of ES cells in co-

culture with different stromal eel! lines
7a-GFP ES cells were prepared in hanging drops in the presence of LIF to form EBs.
These were harvested 2 days later and placed into suspension cultures in petri dishes,
at which time LIF was withdrawn to initiate differentiation. The EBs were'termed

day 0, marking the time after LIF withdrawal. After 1 day of differentiation in
• 2 •

suspension, EBs were co-cultured on irradiated stromal cell layers in 25cm flasks in
the absence of exogenous LIF. At defined time points (2, 4, 6 and 10 days of

differentiation) whole co-cultures were harvested and counted. The 7a-GFP ES cells
used here constitutively expressed eGFP (Gilchrist et al., 2003); therefore, the

proportion of ES cells present in each sample was determined by flow cytometry, as

shown in Figure 3.1. The rate of growth of the ES-derived cells was determined by

normalising the cell counts according to the proportion of ES cells present in co-

cultures at each time point (Figure 3.2). Using this strategy, it was found that there
was no significant difference between the growth rates of ES cells in the AM20.1B4,
UG26.1B6 and EL08.1D2 co-cultures as compared to the control, where EBs were

cultured on gelatin alone (-LIF) (p=0.75).
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Figure 3.1 Co-culture of 7a-GFP hanging drop EBs on stromal layers, (a)
Light and (b) fluorescence microscopy of 4 day 7a-GFP EBs in suspension,
(c, d) Flow cytometric analysis of 6 day 7a-GFP EBs cultured on gelatin, (e,
f) 6 day 7a-GFP EBs on unstained AM20.1B4 stromal cells. The proportion
of GFP+ ES cells present in the co-cultures could be readily determined.
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Figure 3.2 Growth rates of ES cells differentiated in co-culture. There were
no significant differences in the growth rates of 7a-GFP EB cells co-cultured
on AM20.1B4, UG26.1B6, EL08.1D2 stromal cells or on gelatin (4
independent experiments, p=0.75. Data analysed using a paired non-
parametric one way ANOVA or Friedman test).
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3.4.2 StromaI cells do not maintain ES ceils in their undifferentiated state during
co-culture

Oostendorp and colleagues (2002b) reported that the UG26.1B6 stromal cell line

expresses low levels of L1F transcript. In their study, AM14.1C4, UG26.2D3 and
EL08.1D2 did not express LIF transcripts, but the data are unavailable for the
AM20.1B4 and AM20.1A4 stromal cell lines. Since the presence of LIF could
inhibit ES cell differentiation, it was determined whether the stromal lines had the

capacity to maintain ES cells in their undifferentiated state.

Self-renewal assays:

In order to quantify the numbers of undifferentiated ES cells present in co-cultures,
the cells were subjected to self-renewal assays. One day old hanging drop 7a-GFP
EBs were co-cultured on irradiated stromal cell layers for up to 6 days of
differentiation in the absence of exogenous LIF. At defined time points during

differentiation, co-cultures were disaggregated to single cell suspensions and samples
of cells seeded into self-renewal assays (Figure 3.3). Cells were plated at low
densities onto gelatin in the presence of optimal concentrations of LIF (100U). After
5 days incubation, resultant colonies were fixed and stained for alkaline phosphatase

activity. In the presence of optimal concentrations of LIF, undifferentiated ES cells

respond by forming tight ES colonies, which are positive for alkaline phosphatase

activity. By contrast, when differentiated cells are seeded into the self-renewal

assay, they form colonies that are alkaline phosphatase negative (images in Chapter

2, Figure 2.4)(Berstine et al., 1973; Wobus et al., 1984). Self-renewal assays were

carried out for EBs co-cultured on AM20.1B4, UG26.1B6, EL08.1D2 and gelatin for

2, 4 and 6 days differentiation (Figure 3.4). Assays carried out at 8 and 10 days gave

results comparable to those at 6 days (data not shown). The numbers of
undifferentiated ES cells, represented by mixed and stem cell colonies, were greatly
reduced by 4 days of differentiation and this was maintained for up to 10 days

(Figures 3.4 b and c, respectively). Therefore, AM20.1B4, UG26.1B6 and
EL08.1D2 stromal cell lines did not maintain ES cells in their undifferentiated state

during co-culture, suggesting that LIF was not expressed at a level which could
inhibit differentiation.
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Figure 3.3 Testing whether ES cells are maintained in their undifferentiated
state in co-cultures.
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Figure 3.4 Self-renewal assays setup with co-cultured cells after 2, 4 and 6
days of differentiation. The numbers of (a) differentiated, (b) mixed and (c)
stem cell colonies obtained per lxlO3 input ES-derived cells, in the presence of
100U LIF. Colony numbers were normalised according to the proportion of
7a-GFP ES cells seeded. Data represent 3 independent co-culture
experiments. Friedman tests showed there were no significant differences in
the colony numbers obtained from the gelatin, AM20.1B4, UG26.1B6 and
EL08.1D2 co-culture conditions at any of the time points analysed (p>0.05).
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The decrease in stem cell and mixed colonies was concomitant with the generation of
a relatively constant number of differentiated colonies (Figure 3.4 a). There was no

significant difference between the number of differentiated colonies under the
various co-culture conditions at any of the time points tested (p>0.05). Between

days 4 and 10 of differentiation, a range of 25 to 100 differentiated colonies was

obtained from all the co-cultures; indicating that the stromal lines tested here (and

gelatin) permitted survival of differentiated cells that are detectable in self-renewal

assays (in the presence of 100U LIF), but that there was no increase in the numbers
of these differentiated cell types.

Methylcellulose-based colony assays:

In the absence of LIF, undifferentiated ES cells seeded directly into semi-solid
medium (such as methylcellulose supplemented with cytokines) form aggregates or

secondary EBs, which then undergo differentiation (Keller et al., 1993; Dang et al.,

2002). The methylcellulose colony assays used here were designed to

retrospectively measure the frequency of haematopoietic progenitor cells (HPCs) or

colony forming units (CFU) present in a test cell population. Though, seeding

increasing numbers of undifferentiated ES cells in the assay was found to correlate
with an increase in the number of secondary EBs (data not shown). When EBs
which were co-cultured with stromal layers to 6 days of differentiation were

subjected to the haematopoietic colony assays, colonies representing HPCs as well as
some secondary EBs were observed. As shown in Figure 3.5, the secondary EBs
were morphologically distinct from HPC-derived colonies; though, some of the

secondary EBs did appear to be undergoing haematopoietic differentiation, seen as a

halo of myeloid or erythroid cells emanating from the EB. It was possible that the

secondary EBs represented undifferentiated ES cells present in the co-cultures at the
time of assay setup, even though the ES cells had undergone 6 days differentiation in
the absence of exogenous LIF and the colony assay did not contain LIF. In order to
test this, secondary EBs were picked directly from the assay dishes and analysed by
flow cytometry for expression of SSEA1 and SSEA4 surface antigens. SSEA1

(stage-specific embryonic antigen 1) is a carbohydrate antigen which is strongly

expressed by cells of the murine inner cell mass (ICM) (Solter and Knowles, 1978).
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Figure 3.5 Undifferentiated ES cells formed aggregates (secondary EBs) in
the colony assays. These ES cells appeared to respond to cytokines in the
assay by undergoing haematopoietic differentiation, resulting in generation
of erythocytes and a halo of myeloid cells emanating from the secondary
EB. (a) Secondary EBs, (b) secondary EBs containing erythrocytes, (c and
d) secondary EBs with a myeloid burst, (e and f) secondary EBs containing
erythroid and myeloid cells, (g) a non-secondary EB CFU-Mix colony for
comparison.
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By contrast, SSEA4 is expressed by cells of early cleavage mouse embryos, but is
not expressed in the ICM (Kannagi et al., 1983). In culture, SSEA1 is known to be

expressed on the surface of undifferentiated mouse ES cells and differentiation is
characterised by loss of SSEA1 expression and may be accompanied by the

appearance of SSEA4 (Henderson et al., 2002; Solter and Knowles, 1978). It was

found that 28.4% of cells within secondary EBs expressed the undifferentiated
mouse ES cell marker SSEA1 and 9% of cells expressed the differentiated cell
marker SSEA4 (Figure 3.6), confirming that secondary EBs generated in the

haematopoietic colony assays indeed consisted of undifferentiated ES cells.

In light of these results, the frequency of secondary EBs in the colony assays was

used to measure the numbers of undifferentiated ES cells present in co-cultures.

Colony assays were setup with EBs co-cultured with stroma for 6 days of
differentiation (Figure 3.7). UG26.2D3 co-cultures had reduced numbers of

secondary EBs compared to gelatin (p=0.02), but there was no significant difference
in numbers of secondary EBs formed in assays setup with cells from the other co-
cultures (p-values ranged from 0.2 to 1.0). These data demonstrate that none of the
stromal cell lines used in this project, namely AM20.1B4, AM20.1A4, AM14.1C4,

UG26.1B6, UG26.2D3, EL08.1D2 and OP9, maintain ES cells in their

undifferentiated state.
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Figure 3.6 Flow cytometry showing SSEA1 and SSEA4 expression in
secondary EBs that were picked from colony assays. Unstained cell controls
for (a) PE and (b) FITC channels are shown. (c) SSEA1 marking
undifferentiated mouse ES cells, (d) SSEA4, a marker of differentiated cells.
Colony assays were initially set up with disaggregated 6 day old EBs that had
been differentiated in co-culture and secondary EBs were picked 10 days after
assay setup.
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Figure 3.7 Frequency of secondary EBs generated in the haematopoietic
colony assays. 1 day 7a-GFP EBs were co-cultured on gelatin or stromal
cell layers to 6 days differentiation and disaggregated for analysis. Data
represent 5 to 11 independent experiments, p-values ranged from 0.2 to 1.0
when stromal co-cultures were compared to gelatin controls. Except for
UG26.1B6, which had reduced numbers of secondary EBs compared to
gelatin (p=0.02)(Mann Whitney U tests).
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3.5 Discussion

The aim of these experiments was to determine the effects of stromal co-culture on

basic aspects of ES cell biology, such as ES cell growth rates and self-renewal. The
UG26.1B6 stromal cell line has been reported to express low levels of LIF transcript

(Oostendorp et al., 2002b). However, self-renewal assays demonstrated that in the
absence of exogenous LIF, ES cells co-cultured on this stromal line were not

maintained in their undifferentiated state (Figure 3.4). This suggested that the levels
of LIF expressed are too low to sustain self-renewal of undifferentiated ES cells.
The results of self-renewal assays were confirmed by measuring the frequency of

secondary EBs generated in the colony assays setup with 6 day co-cultured cells

(Figure 3.7). None of the co-cultures were found to maintain ES cells in their
undifferentiated state; therefore, it is unlikely that any of the stromal cell lines used
in this study express high levels of LIF.

The haematopoietic colony assays used here were designed to measure the frequency
of ES cell -derived HPCs generated in co-culture. When considering haematopoietic

colony assay data, it is important to bear in mind that undifferentiated ES cells may

respond to cytokines in the colony assays by undergoing haematopoietic
differentiation and therefore could contribute to the haematopoietic readout. Thus,
even though undifferentiated ES cells were not maintained by stromal culture

(Figures 3.4), subtle differences in the numbers of undifferentiated ES cells

persisting in co-cultures could skew the colony assay readout. It was found that
undifferentiated ES cells contributed to haematopoietic colony assays in the form of

secondary EBs. These contained a high proportion (28.4%) of cells expressing

SSEA1, a marker of undifferentiated mouse ES cells. These secondary EBs were

morphologically distinct from colonies originating from HPCs, and could be readily

distinguished by light microscopy, even when they appeared to be undergoing

haematopoietic differentiation. This feature made it possible to use the numbers of

secondary EBs to measure undifferentiated ES cells present in the co-cultures; and

importantly, this also enabled the secondary EBs to be excluded from the colony
readout when assessing the HPC-derived haematopoietic activity in co-cultures. This
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precluded the possibility of undifferentiated ES cells skewing the haematopoietic

colony readout.

It was determined that none of the stromal lines enhanced the growth rates of the ES-
derived cells over that of gelatin control cultures (Figure 3.2). Thus, there was no

difference in differentiated ES cell output from the different co-cultures.

Importantly, these data also serve to validate the interpretation of subsequent

haematopoietic colony assay data. To illustrate, when co-cultured cells were

analysed by colony assay, the cell suspensions consisted of ES-derived cells as well
as irradiated stromal cells. Even though equal numbers of co-cultured cells were

seeded into each assay dish, it was possible that a difference in differentiated ES cell

output from the co-cultures (i.e. growth rates) could lead to a difference in the
number of ES-derived cells seeded into the colony assays. This could in turn bias a

particular co-culture towards a higher CFU readout. However, the growth rate data
demonstrate that co-cultures with different stromal lines generated comparable
numbers of ES-derived cells and therefore it is unlikely that there was any bias
towards enhanced colony readout dependent upon the stromal cell line. Even so, a

labelling strategy was employed, whereby fluorescently labelled ES cells were used
to allow normalisation of colony data (in retrospect) according to the proportion of
ES-derived cells seeded into each assay. In this way, the colony readout of the
different co-cultures could be directly compared by expressing the data in terms of
the frequency ofCFU obtained from a defined number of input ES-derived cells.
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Chapter Four: Results

4.1 Aim

To investigate whether haematopoietic differentiation of mouse ES cells can

be enhanced by co-culture with AGM-derived clonal stromal cell lines.

4.2 Introduction

Previous work in the John Hughes Bennett Laboratory (JHBL) demonstrated that co-
culture of EBs with primary El0.5 AGM explants significantly increased ES cell
derived haematopoietic activity (Krassowska, Gordon-Keylock et ah, 2006). After 6

days of differentiation, a 20-fold increase in CFU-A and a 50-fold increase in HPP-

CFC frequencies were observed, as compared with that seen in the absence of AGM

explants. The experiments presented in this chapter aimed to determine whether
clonal stromal cell lines derived from AM or UG subregions of the E10-11 AGM

region retained the enhancing capacity of primary AGM explants. It was

hypothesised that this might provide insight into which subregion(s) of the AGM
mediated the enhancement of haematopoiesis. Oostendorp and colleagues found that

UG26.1B6, as well as an Ell foetal liver derived line, EL08.1D2, provided potent

support to adult mouse bone marrow LTR-HSCs (Oostendorp et ah, 2002a, 2002b,

2005). Therefore, it was of particular interest to test the effects of these two stromal
lines on differentiating ES cells. The stromal co-culture system also offered a

number of advantages over the use of AGM explants; for instance, the stromal cell
lines would be readily available and amenable to large-scale culture. Furthermore, a

simplified co-culture system would be more likely to yield reproducible results.

In order to determine whether the efficiency of the novel stromal co-culture system

compared favourably with other culture methods, the OP9 stromal cell line was

included in the study as a positive control. The only way to unequivocally
demonstrate that definitive LTR-HSCs are present in a cell population is by

transplanting the cells into immuno-compromised adult recipients and demonstrating
that donor cells can achieve long-term reconstitution of the recipient haematopoietic

system (>6 months). However, prohibitive numbers of recipients would have been

92



Chapter Four: Results

required to assess all the co-cultures by in vivo repopulating assays. Therefore, the
stromal cell lines were screened in the first instance for haematopoietic enhancing

activity by a number of in vitro methods; namely, haematopoietic colony assay, flow

cytometry and reverse transcriptase (RT) quantitative PCR. Haematopoietic colony

assays, such as CFU-A, CFU-Mix, CFU-GM, CFU-M and Ery/Mac, should reflect
the ability of cultures to induce and/or maintain multipotent HPCs. Flow cytometry

and RT-PCR were used to determine whether cells differentiated in co-culture

display the surface phenotype and molecular characteristics of definitive

haematopoietic cell types.

4.3 Experimental approach
■ Validate the use of colony assays as an in vitro measure of ES cell-derived

haematopoietic progenitors. To confirm that colonies consisted of

haematopoietic cells types, individual colonies were picked and the presence of

haematopoietic lineage cells confirmed by their morphology and surface

phenotype analysed by microscopy and flow cytometry, respectively.

■ 1 day old hanging drop 7a-GFP EBs were co-cultured on confluent irradiated
stromal cell layeis and assessed at vaiious time points foi haematopoietic activity

using haematopoietic colony assays.

■ The enhancing effects of co-culture were confirmed by flow cytometric analysis
to detect expression of markers associated with terminally differentiated

haematopoietic cells of myeloid, lymphoid and erythroid lineages.

■ Flow cytometry was used to detect ES-derived cells expressing combinations of
surface markers which are known to be associated with adult bone marrow HSCs

or embryo-derived HSCs.

■ Co-cultured ES cells were analysed by quantitative RT-PCR for expression of

gene transcripts associated with definitive haematopoietic cells.

93



Chapter Four: Results

4.4 Results

4.4.1 Colonies in the assays consist ofhaematopoietic cells

Haematopoietic colony assays used semi-solid medium (methylcellulose),

supplemented with a number of haematopoietic cytokines (including IL3, IL6, SCF
and Epo). These were seeded with single cell suspensions of recovered EB/stromal
co-cultured cells. Haematopoietic progenitor cells (HPCs) respond to the assay

conditions by forming morphologically identifiable colonies such as CFU-Mix,
CFU-GM and CFU-M, which can be readily distinguished by light microscopy.

Examples of ES-derived HPC colonies and their categorisation are provided in

Figure 4.1. Each colony is believed to originate from a single progenitor (i.e. colony

forming unit, CFU) present in the test cell suspension; thus, the frequency of ES-
derived HPCs in co-cultures could be determined in retrospect. To confinn that
these colonies comprised of haematopoietic cells, cytospins of individual colonies

picked directly from the assay dishes were prepared, fixed and subsequently stained
for H and E (using a quick-DIFF kit) to allow visualisation of intracellular

components. The morphology and staining of the cells was consistent with

haematopoietic cell types. Figure 4.2 shows a single CFU-Mix colony which
consisted of cells with granulocytic, erythroid, macrophage and megakaryocyte

morphologies.

Colonies picked from the assay dishes (CFU-Mix, CFU-GM, CFU-M and Ery/mac)
were pooled for flow cytometric analysis to detect expression of surface markers
associated with undifferentiated ES cells and haematopoietic cell types. It was found
that these cells did not express SSEA1, a surface marker of undifferentiated mouse

ES cells (Figure 4.3) (Solter and Knowles, 1978; Henderson et al., 2002). Therefore,
it is unlikely that the colonies originated from undifferentiated ES cells which may

have persisted during co-culture and would therefore have also been taken forward
into the colony assay. Only a small proportion (1.42%) of the cells within the
colonies expressed SSEA4, a marker of differentiated mouse ES cells (Figure 4.3).
This was probably due to the length of time in co-culture (6 days) and colony assay

(10 days), as SSEA4 can be down-regulated as cells terminally differentiate.
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Figure 4.1 Examples of colonies observed in the haematopoietic colony assays
and their categorisation. Colony assays were initially set up with disaggregated
6 day old EBs that had been differentiated in co-culture, (a) CFU-A colony
containing myeloid cells, (b) CFU-Mix colonies contained erythrocytes and at
least two types of white cell, (c) CFU-GM contained at least two types of white
cell and no erythrocytes, (d) CFU-M consisted of macrophages and (e)
erythroid/macrophage colony.
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Figure 4.2 Cytospin analysis of colonies picked from methylcellulose-based
assays, (a) to (f) represent cells from a single CFU-Mix colony, which was
cytocentrifuged and stained with FI&E to visualise intracellular components.
CFU-Mix colonies were found to contain cells with macrophage morphology
(M), as well as granulocytes (G), megakaryocytes (Mk) and erythrocytes (rbc).

96



Figure 4.3 Flow cytometry analysis of haematopoietic colonies that were

picked from methylcellulose-based assays. CFU-Mix, CFU-GM, CFU-M and
Ery/Mac colonies were pooled for analysis, (a) Unstained cells in PE channel,
(b) unstained control for FITC channel, (c) SSEA1-PE stained cells, (d)
SSEA4-FITC stained cells.
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Further flow cytometry analysis confirmed that haematopoietic surface markers of

myeloid, erythroid and lymphoid lineages were expressed by cells within the
colonies (Figure 4.4). The plots in Figure 4.4 show that CDllb (Mac-1) marked
34% of cells. This antigen is expressed by cells of the macrophage/monocytic

lineage (Springer et ah, 1979). 7.2% of cells expressed Grl, which is a granulocytic
marker. These data demonstrate that myeloid cells were represented in the colonies.

Erythroid cells were also present in the colonies, as Terll9 was expressed on 5.4%
of the cells. Terll9 antibody marks mouse erythroid cells from early pro¬

erythroblast to mature erythrocyte stages, but is not expressed by cells with BFU-E
or CFU-E activities (Kina et ah, 2000). A small proportion (2%) of B220 positive
cells was also detected in the picked colonies. B220 is expressed on resting as well
as activated B cells and pro-B cells (Hardy et ah, 1991) and is used as a lineage
marker for B lymphocytes. It has been noted that these markers only represent

48.6% of cells within the colonies. It is possible that making use of other

haematopoietic markers, such as cKit, Sca-1 or CD45, could account for more

haematopoietic cell types present in the colonies.

Taken together, these data confirmed that the colonies scored according to their gross

morphology indeed consisted of haematopoietic cells and that they were likely to

represent HPCs which were present in the co-culture cell suspension at the time of

assay setup. In other experiments, it was found that primary adult bone marrow cells
formed colonies in this methylcellulose-based assay (data not shown), confirming
that this assay is capable of detecting definitive adult haematopoietic cell types.
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Figure 4.4 Flow cytometry analysis showing expression of haematopoietic
surface markers in haematopoietic colonies that were picked from
methylcellulose-based assays. Colonies were pooled for analysis. The
unstained controls for the PE and APC channels are shown in (a) and (b),
respectively. Haematopoietic surface markers such as (c) CD1 lb, (d) Grl, (e)
Terl 19 and (f) B220 were expressed on cells in the colonies.
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4.4.2 The haematopoietic enhancing activity of primary AGM co-culture is

partially retained by a stromal cell line derivedfrom the AMsubregion of theAGM
One day old 7a-GFP EBs that were prepared in hanging drops were co-cultured on

confluent irradiated stromal cell layers in 25cm2 flasks. AM20.1B4, derived from
the AM subregion of the AGM was used and this was compared with UG26.1B6 and

EL08.1D2, which are reported to be highly supportive to adult mouse bone marrow

LTR-HSCs (Oostendorp et ah, 2002b). Co-cultured cells were harvested at defined
time points, assessed by colony assays and haematopoietic CFE1 were categorised as

shown in Figure 4.1. Even though the growth rates of ES cells in the co-cultures
were statistically comparable (Chapter 3, Figure 3.2), it was possible that small
differences in ES-derived cell numbers could bias the colony readout. In order to
circumvent this, 7a-GFP ES cells were used to enable colony numbers to be
normalised in retrospect according to the proportion of ES-derived (GFP+) cells

present in the cell suspensions seeded into each assay. This strategy facilitated the
direct comparison of different co-cultures, as the colony data could be expressed in
terms of the frequency of CFU observed for a defined number of input ES-derived
cells.

Co-cultures were assessed by CFU-A colony assay after 4, 6 and 10 days
differentiation (Figures 4.5). EB/AM20.1B4 co-culture resulted in significantly
enhanced CFU-A activity compared with EBs differentiated on gelatin (p=0.001 at 4

days and p=0.0009 at 6 days). By 10 days of differentiation, CFU-A activity in
AM20.1B4 co-cultures was reduced such that they were not significantly different
from 10 day gelatin controls (p=0.17). Krassowska et al (2006) reported that co-
culture of EBs with primary El0.5 AGM explants resulted in an average of 148
CFU-A per 3xl04 input ES-derived cells at 6 days differentiation, representing a 20
fold increase in CFU-A progenitors compared to control EBs, which were cultured
alone at the air-surface interface. By contrast, at 6 days in EB/AM20.1B4 co-

cultures there was only an average of 3 fold increase in CFU-A progenitors

compared to EBs differentiated on gelatin (Figure 4.5).
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Figure 4.5 CFU-A colony assays of AM20.1B4, UG26.1B6, EL08.1D2 and
gelatin/ EB co-cultures at 4, 6 and 10 days differentiation. Data represent 5
independent co-culture experiments, which were normalised according to the
proportion of ES cells seeded into the assays. Paired Mann Whitney U tests
were used to calculate p-values comparing stromal co-cultures to gelatin
controls.
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The enhancing capacity of the primary AGM region appeared to be only partially
retained by the AM20.1B4 stromal cell line. However, in EB/AM20.1B4 co-cultures
163±108 CFU-A were generated per 3xl04 ES cells, demonstrating that the

frequency of CFU-A progenitors was broadly comparable with that of primary AGM

explant co-cultures. These data probably reflect the differences between the two co-

culture systems. For example, the primary AGM/EB co-cultures were carried out at

the air-surface interface and the AGM tissue was not irradiated. While, in the

stromal cell co-culture system EBs were differentiated on confluent irradiated
stromal layers in 25cm" flasks and were fully submerged in medium. Furthermore,

primary AGMs comprise of a number of cell types, which are likely to interact or
have additive effects in their provision of a haematopoietic microenvironment.
Irradiation of the stromal cell layers prevents the cells from proliferating; though

they do continue to secrete factors, but the exact effects of irradiation are unknown.

By contrast to AM20.1B4, CFU-A activity in EB/UG26.1B6 co-culture was not

significantly different from gelatin controls at 4 or 10 days of differentiation and was

significantly reduced at 6 days (p=0.002). CFU-A activity following co-culture on

EL08.1D2 stromal cells was significantly reduced compared to gelatin controls at 4,
6 and 10 days differentiation (p=0.03, p=0.001 and p=0.0005, respectively).

Primary AGM/EB co-cultures were only assessed by CFU-A and FIPP-CFC assay;

however, in order to further characterise the haematopoietic cell types generated in
AM20.1B4 co-cultures, methylcellulose-based colony assays were carried out at 4, 6
and 10 days (Figure 4.6). At all the time points tested, it was found that EB-derived

CFU-Mix, CFU-GM, Ery/Mac and CFU-M frequencies were significantly increased
in AM20.1B4 co-cultures as compared to gelatin controls (p<0.04). Haematopoietic

activity in AM20.1B4 co-cultures peaked at 6 days and was reduced by 10 days
differentiation. At 16 days, haematopoietic colony readout from the co-cultures was

even further reduced (data not shown). Again, UG26.1B4 and EL08.1D2 were not

found to enhance haematopoietic differentiation of ES cells.
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Figure 4.6 Methylcellulose-based haematopoietic colony assays ofAM20.1B4,
UG26.1B6, EL08.1D2 and gelatin/ EB co-cultures at 4, 6 and 10 days
differentiation. Shown are the frequencies of (a) CFU-Mix, (b) CFU-GM, (c)
Ery/Mac and (d) CFU-M colonies per 3xl05 input ES-derived cells. Data
represent 3 independent co-culture experiments and p-values were calculated
by paired Mann Whitney U tests.

103



Chapter Four: Results

These data demonstrate that a stromal line from the AM subregion of the AGM

partially retains the enhancing effects of primary AGM co-culture, while a UG-
derived line does not. It is interesting that AM20.1B4 had a potent haematopoietic

enhancing effect on EBs (Figure 4.5), yet it was non-supportive of adult BM derived
HSCs (Oostendorp et al., 2002a; 2002b). Conversely, UG26.1B6 and EL08.1D2
were reported to provide powerful long term support to adult HSCs, yet these lines
did not enhance haematopoietic differentiation of ES cells. These data could

highlight that the signals required for the support of adult LTR-HSCs and those

required to promote haematopoietic differentiation of ES cells differ.

4.4.3 The enhancing effects ofthree AM-derived stromal lines are comparable with
those of the OP9 stromal cell line
In order to confinn that cells in the AM subregion of the AGM mediated the

enhancing effects of primary AGM culture, further AM and UG derived stromal cell
lines were screened for enhancing activity. In addition, OP9 stromal cells were

included as a positive control to facilitate comparison of colony data with other

published work. It was found that only the AM20.1B4 stromal cell line enhanced
CFU-A activity at 6 days differentiation (Figure 4.7), corroborating previous data for
this cell line (Figure 4.6). AM20.1A4, AM14.1C4, UG26.2D3 stroma and OP9 did
not enhance CFU-A activity as compared to gelatin controls. Though, this does not
rule out the possibility that the timing of CFU-A emergence in these stromal co-
cultures differs from that of AM20.1B4. Therefore, it would be interesting to test

CFU-A activity over a time course of differentiation in these co-cultures.

Methylcellulose-based colony assays revealed that after 6 days of differentiation, all
three stromal cell lines derived from the AM subregion of the AGM significantly
enhanced the overall haematopoietic CFU readout over that of gelatin controls,

p<0.0035 (Figure 4.8). Statistically, the total haematopoietic activity in AM20.1B4
and AM20.1A4 co-cultures was comparable with OP9 co-cultures (p>0.3). While,
AM14.1C4 co-culture resulted in significantly higher haematopoietic activity than
OP9 co-culture (p=0.038).
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Figure 4.7 Resultant CFU-A activity when 7a-EBs were co-cultured to 6
days of differentiation. Only AM20.1B4 co-culture led to a significant
increase in ES-derived CFU-A activity compared gelatin controls (* p=0.02,
according to Mann Whitney U test). These data represent 3 to 11
independent co-culture experiments.

105



*p>0.3 when compared to QP9

*p<0.0035 when compared to gelatin

*p=0.038 when compared to OP9

§3Ph
s .S

S1 x
$ "

1600

1400

1200

1000

800

600

400

200

0 XL

*
*

*
*

j? y y
Vs Vs

*
*

1A
c*

y

4i "h
n<°*

.<9
cF

_Xl

y

■ other

■ CFU-GM

CFU-Mix

CFU-M

■ Ery/Nac

Figure 4.8 Total haematopoietic readout when 7a-GFP EBs were co-cultured to
6 days differentiation. The frequency of CFU per 3xl05 ES-derived cells in
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The haematopoietic readouts ofAM and OP9 co-cultures were all significantly better
than that of gelatin controls, where EBs were differentiated in the absence of a

stromal layer (p<0.0035). In contrast, the two UG-derived lines (UG26.1B6 and

UG26.2D3) and the foetal liver stromal line (EL08.1D2) were not significantly
different from gelatin controls (p>0.05). These data indicate that it was not merely
the presence of a stromal layer which enhanced haematopoietic differentiation, but
that the effects were specific to the AM subregion derived cell lines and OP9.

When individual CFU colony types were assessed, there were no significant
differences in the frequencies of CFU-Mix present in AM20.1B4, AM20.1A4 and
AM14.1C4 co-cultures compared to OP9 cultures, p>0.05 (Figure 4.9 a). The

average number of colonies and standard deviations between experiments are

provided in Table 4.1. From 3xl05 input ES-derived cells, 43±23 CFU-Mix colonies
were generated by AM20.1B4 co-culture, 15±17 CFU-Mix were obtained from
AM20.1A4 and 37±44 from AM14.1C4. These frequencies were statistically

comparable with OP9 cultures (25±19 CFU-Mix per 3xl05 ES-derived cells). When
these data were expressed in terms of fold change relative to gelatin controls; on

average in AM20.1B4, AM20.1A4, AM14.1C4 and OP9 co-cultures, CFU-Mix

frequencies were 23x, 8x, 19x and 13x (fold) higher than gelatin controls,

respectively. Therefore, co-culture of ES cells with AM-derived stromal lines

significantly enhanced numbers of multipotent progenitors with CFU-Mix potential
in vitro.

There is a considerable standard deviation between experiments. This is likely to be
a consequence of pooling data from 3 to 9 independent co-culture experiments;
which were performed with different batches of foetal calf serum. When considering
each AM co-culture experiment separately, however, there was a consistent increase
in haematopoietic activity over gelatin controls (Table 4.2). Furthermore, the AM
co-cultures consistently compared favourably with OP9 positive controls.
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Figure 4.9 Haematopoietic activity in 7a-GFP embryoid bodies co-cultured to 6
days differentiation, (a) CFU-Mix, (b) CFU-GM, (c) CFU-M, (d) Ery/Mac.
Data represent between 3 and 9 independent co-culture experiments. Mann
Whitney U tests showed that haematopoietic activity in co-cultures with AM-
derived lines was statistically comparable with OP9 co-cultures (*).
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Co-culture Exp CFU-Mix CFU-GM Ery/Mac CFU-M

Gelatin n=9 1.9± 1.8 7.1 ± 6.5 9.0 ± 11.1 137.4 ± 113.4

AM20.1B4 n=9 42.9 ± 22.5 48.9 ± 44.5 35.4 ± 47.2 589.7 ± 514.7

AM20.1A4 n=6 15.2 ± 17.4 46.3 ± 26.3 15.6 ± 12.4 292.4 ± 214.8

AM14.1C4 n=6 36.8 ± 43.7 64.1 ± 63.6 17.2 ± 9.7 403.9 ± 327.6

OP9 n=6 25.3 ± 18.8 69.3 ± 73.2 31.5 ± 19.3 129.7 ± 48.3

UG26.1B6 n=9 9.8 ± 12.4 21.4 ± 28.6 2.8 ± 2.6 102.7 ± 90.1

UG26.2D3 n=3 3.4 ± 4.8 20.5 ± 18.5 2.4 ± 2.1 192.2 ± 80.3

EL08.1D2 n=6 3.5 ± 3.3 5.2 ± 6.4 9.7 ± 8.7 57.2 ± 57.6

Table 4.1 The frequencies of CFU-Mix, -GM, -M and Ery/Mac colonies in stromal
co-cultures and gelatin controls at 6 days differentiation. Average frequencies (per
3xl05 input ES-derived cells) and standard deviations of between 3 and 9 co-culture
experiments are shown.
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Co-culture Fold increase
in CFU-Mix
over gelatin
control

Number of experiments in which CFU-Mix
frequencies in AM co-culture were higher,

comparable or reduced relative to OP9 system

Higher Comparable Reduced

AM20.1B4 22.6 ± 20.6 2 of 5 2 of 5 1 of 5

AM20.1A4 7.6 ±6.5 2 of 6 3 of 6 1 of 6

AM14.1C4 19.4 ± 16.7 3 of 6 2 of 6 1 of 6

OP9 13.3 ±5.7 N/A N/A N/A

Table 4.2 Summary of the fold change in frequency of CFU-Mix observed in
co-cultures relative to gelatin. Shown are the colony numbers per 3xl05 input
ES-derived cells and the number of experiments in which CFU-Mix
frequencies in AM co-cultures were comparable with or better than OP9
culture.
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It was found that the frequency of CFU-Mix in AM14.1C4 co-cultures was greater

than or comparable to OP9 culture in 5 out of 6 independent experiments.
AM20.1B4 was comparable to OP9 in 4 of 5 experiments and AM20.1A4 was

comparable in 5 of 6 experiments (Table 4.2). This indicates that, while there was

variability in the base level of haematopoietic activity between experiments, the AM
co-cultures were relatively consistent in their ability to enhance haematopoietic
differentiation as compared to OP9.

The frequency of CFU-GM, CFU-M and Erythroid/Macrophage colonies in AM co-

cultures were also statistically comparable to that in OP9 cultures and enhanced

compared to gelatin (Figure 4.9 b, c, d). It should be noted that OP9 stromal cells do
not express functional M-CSF and this is thought to allow lymphoid differentiation
to take place as ES cells do not preferentially undergo differentiation into

macrophage/monocyte lineages. In accordance with this, there appears to be a

minimal CFU-M readout from OP9 co-cultures and the frequency was not

significantly different from gelatin controls (p>0.05) (Figure 4.9 c).

When co-cultures were harvested and analysed, irradiated stromal cells were still

present in the cell suspensions which were seeded into colony assays. Control

experiments demonstrated that irradiated stromal cells seeded into the colony assays

alone were unable to generate colonies and therefore would not affect the ES-derived

colony readout (Appendix 1 and 2). This verified that colonies represented ES cell-
derived ElPCs which were present in the co-cultures at the time of assay setup.

Other ES cell lines have also been tested in this co-culture system; including wild-

type E14 and CGR8 ES cells (data not shown). In these co-cultures, the AM-derived
stromal cell lines consistently had significant haematopoietic enhancing effects
which were comparable to or better than OP9 cultures. This demonstrates that the

enhancing activity was not specific to 7a-GFP ES cells and that the novel stromal co-
culture system described here can be used to differentiate other ES cell lines in a

reproducible and efficient manner.
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4.4.4 Enhanced haematopoietic activity in AM-derived stromal co-cultures
demonstrated by flow cytometry analysis at 10 days differentiation
To further characterise the cell types generated in co-culture, flow cytometry analysis
was carried out at defined time points during differentiation. Monoclonal antibodies

against a variety of surface markers were used and for each co-culture, no less than
lxl05 cells were collected for analysis (Chapter 2, Table 2.2). In Tables 4.3, 4.4 and
4.5 to follow, gating on the flow cytometry plots was carried out by Kay Samuel.

Flow cytometry analysis demonstrated that at 4 and 6 days differentiation, there were

no differences in the proportions of ES-derived cells expressing haematopoietic
surface antigens in gelatin or AM20.1B4, UG26.1B6 and EL08.1D2 co-cultures

(Appendix 3). Further analysis revealed that by 10 days of differentiation there was

an increase in the proportion of cells expressing haematopoietic surface markers in
AM20.1B4 stromal co-culture compared to gelatin. Figure 4.10 shows an increase in
cells expressing adult HSC markers, Sca-1 and cKit, as well as CD49d, which is

reported to be expressed on Ell AGM-derived LTR-HSCs (Gribi et al., 2006).

Increases in cells expressing myeloid markers Gr-1 and GDI lb, lymphoid lineage
marker B220 and the erythroid marker Terl 19, were also observed.

To further the investigation, the three AM-derived stromal co-cultures were

compared to OP9 co-cultures and gelatin controls at 10 days of differentiation.
These data are summarised in Table 4.3 and markers that were comparable to OP9
culture are highlighted. All three AM stromal lines enhanced the proportions of EB
cells expressing haematopoietic surface markers characteristic of myeloid (CDlib,

Grl), lymphoid (B220) and erythroid (Terl 19) lineages. This was coupled with an

increase in the proportion of cells expressing the pan-haematopoietic cell marker

CD45, with an average of 7 to 11% of ES-derived cells expressing CD45 in

enhancing co-cultures compared to only 1.6% in gelatin cultures.
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Figure 4.10 Flow cytometry analysis of 7a-GFP EBs co-cultured to 10 days of
differentiation. AM20.1B4 co-cultures contained higher proportions of EB-derived cells
expressing haematopoietic surface markers compared to EBs differentiated on gelatin.
Data represent one co-culture experiment, histograms were prepared by Kay Samuel.
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Surface
Marker

% Positive ES-derived cells

Gelatin AM20.1B4 AM20.1A4 AM14.1C4 OP9

CD45 1.6 ± 1.6 7.2 ± 10.2 9.6 ±4.8 7.0 ±0.3 11.0 ± 9.3

Grl 0.8 ± 1.2 6.1 ±9.5 2.2 ± 1.1 1.4 ± 0.1 4.4 ±3.2

CDllb 1.5 ± 1.5 7.5 ± 11.0 15.1 ± 14.0 2.3 ± 1.3 5.1 ±2.7

B220 2.9 ±6.0 3.6 ±3.0 17.0 ± 12.1 4.4 ± 0.7 4.8 ±4.7

Terll9 0.5 ±0.6 2.9 ±5.0 2.4 ± 1.3 2.1 ±2.3 1.6 ±2.2

Grl+ CDllb+ 0.8 ± 1.2 6.0 ±9.6 1.9 ± 1.0 0.8 ±0.4 3.5 ±2.8

Tabic 4.3 Flow cytometry analysis of 7a-GFP EBs co-cultured on irradiated stromal
cells to 10 days differentiation. The proportions (%) of ES-derived cells expressing
haematopoietic surface markers in co-cultures with AM-derived stromal lines were
broadly comparable to that of OP9 co-cultures. Data represent up to 9 independent
co-culture experiments and in each condition, no less than 1x10s cells were collected
for analysis.
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In the literature, ES cells are plated directly onto OP9 stromal layers which are not

irradiated and cells are replated onto fresh OP9 layers after 5 and 10 days
differentiation. This differs from the differentiation strategy employed here,

whereby EBs were co-cultured on irradiated stroma for 6 days differentiation with no

replating step. Nonetheless, when ES cell/OP9 stromal co-culture was first described

by Nakano and colleagues (1994), they reported that 15% of cells were cKit+, 25%
Terll9+, 5% CDllb' and 7% B2201. These data broadly correlate with the

expression pattern observed reported here (Table 4.3 and 4.4); other than for Terll9

expression, which was only expressed on an average of 1.6% of OP9 co-cultured EB
cells.

It is interesting that 10 days of differentiation was required to detect enhanced

frequencies of cells expressing these haematopoietic surface markers, whereas CFU

activity peaked at 6 days of differentiation and was reduced by 10 days
differentiation (Figures 4.5 and 4.6). One explanation may be that CFU progenitors

present at 6 days terminally differentiate to give rise to cells which express myeloid,

lymphoid and erythroid markers by 10 days, but can no longer generate colonies in
the assays. This may also explain the variability in flow cytometry data between co-

culture experiments, as the ability of the stromal microenvironment to promote

production of haematopoietic progenitors may be more consistent that the ability of
the microenvironment to support continual self-renewal and expansion of these

progenitors, as opposed to their differentiation. In attempt to improve the self-

renewing support of the co-cultures, a selection of cytokines (including IL3, IL6 and

SCF) was added to test whether haematopoietic activity could be prolonged or

enhanced further. It was found that addition of these cytokines during co-culture did
not appear to make a difference to colony readout (data not shown), but these

preliminary findings do not preclude that the addition of other cytokines as a means

to improving the co-cultures further. Nevertheless, flow cytometry analysis of
markers associated with terminally differentiated haematopoietic cells has confirmed
that AM-derived stromal co-cultures enhance haematopoietic differentiation of ES
cells such that they are comparable to OP9 positive control cultures.
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4.4.5 Enhanced proportions of cells expressing combinations of surface markers
associated with adult BM-derived HSCs

The haematopoietic colony assays indicated that numbers of multipotent HPCs

(CFU-Mix) were enhanced in the AM stromal co-cultures and that these progenitors
were functional in vitro, in that they could respond to cytokines and undergo multi-

lineage differentiation to form mixed colonies. Since the surface phenotypes of adult
and embryo LTR-HSCs have been well documented, it was of interest to analyse co-

cultured cells for expression of combinations of surface markers associated with
these progenitors. It was found that expression of cKit and Sca-1 were greatly
enhanced in AM co-cultures compared to gelatin controls and that they were

comparable to or better than OP9 (Table 4.4). On average, there were 15 to 18%
cKit+ cells in AM co-cultures and 10% in OP9 cultures compared to only 4% in

gelatin. An average of 7 to 22% Sca-1+ cells were detected in AM cultures

compared to 5% in OP9 and only 1.5% in gelatin cultures. Notably, the average

proportions of cKifSca-l* co-expressing cells in AM20.1B4 (2.6±2.3%),
AM20.1A4 (5.8%) and AM14.1C4 (2.7%) co-cultures were comparable to OP9

(2.9±4.8%) and these populations were enhanced compared to gelatin controls

(0.05±0.07%). A combination of cKit and Sca-1 expression is characteristic of
definitive adult BM-HSCs and it is possible that these cells represent a small

population of definitive HSCs present in the co-cultures. Though, it is yet to be
shown that these double positive cells are negative for lineage markers.

Kiel and colleagues (2005) reported that differential expression of SLAM family

receptors can be used to distinguish between adult BM-derived LTR-HSCs, HPCs
and more restricted progenitors; these populations were reported to express

CD 150+CD48~CD244~, CD150"CD48"CD244+ and CD150~CD48+CD244+,
respectively. In attempt to identify ES-derived HSCs within the stromal co-cultures,

expression of the SLAM receptors was assessed. As shown in Table 4.4, CD150+
cell populations were enhanced in all the AM and OP9 co-cultures as compared to

gelatin controls. In particular, AM20.1A4 cultures contained 14.8±20% CD150+
cells and OP9 contained 12.8±3.5% compared to only 0.9±0.2% in gelatin controls.
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Surface

Marker

% Positive ES-derived cells

Gelatin AM20.1B4 AM20.1A4 AM14.1C4 OP9

cKit+ 3.95 + 5.0 14.9 ± 16.7 18.4 16.9 9.8 ± 8.0

Scal+ 1.5 ±3.1 6.7 + 8.6 21.6 8.2 5.0 + 8.5

cKit+ Scal + 0.05 + 0.1 2.6 + 2.3 5.8 2.7 2.9 + 4.8

CD150+ 0. 9 ± 0.2 2.0+1.4 14.8 + 20 3.7 + 5.0 12.8 + 3.5

CD 150+ CD48+ 0.1+0.06 0.9+ 0.8 0.8+ 0.6 0.3+ 0.3 1.6+1.0

Table 4.4 Flow cytometry analysis of 7a-GFP EBs co-cultured on irradiated stromal cells to
10 days differentiation. These analyses aimed to detect combinations of surface markers
which are expressed on adult BM-FISCs. Highlighted in yellow are the co-cultures where
the proportions (%) of ES-derived cells expressing the surface markers were enhanced.
Data represent between 1 and 9 independent co-culture experiments.
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A significant finding was that these CD150+ cells did not co-express CD48, which is
a pan-haematopoietic cell marker and is not expressed on mouse bone marrow (or
foetal liver) LTR-HSCs (Kiel et al., 2005; Kim et al., 2006). In addition, it was

found that CD244 was not expressed by cells in any of the co-cultures (data not

shown). Therefore, it is possible that the CD 150+CD48~ cells present in AM and OP9
co-cultures may represent definitive HSCs.

There is evidence that ES-derived HSCs may not display a complete surface

phenotype consistent with that of adult BM-HSCs. This is reflected by the apparent

inefficiency in ES-derived HSC homing to appropriate niches upon intra-venous

transplantation (Burt et al., 2004). Alternatively, ES-HSCs present in the co-cultures

may have a surface phenotype that it similar to that of AGM-derived HSCs.

Therefore, it was determined whether co-cultured cells expressed surface markers
which are characteristic of AGM-derived HSCs and markers that were previously

reported to be expressed on definitive ES-derived HPCs (Table 4.5). CD34 is

expressed on cord blood HSCs, mobilised BM-HSCs and endothelial cells (Sato et

al., 1999). In the mouse embryo, Ell AGM HSCs co-express cKit and CD34 and
the repopulating fraction of cells all express CD49d (alpha4 integrin) (Sanchez et al.,

1996; Taoudi et al., 2005; Gribi et al., 2006). Analysis for these markers revealed
that AM20.1B4 and OP9 co-cultures did not contain enhanced numbers of CD341 or

cKit+CD34' co-expressing cells. However, AM20.1B4 cultures did contain a high

proportion of CD49d+ cells (41.7±4.7%) compared to gelatin controls (17.9%). The

expression of this marker was not assessed in AM20.1A4, AM14.1C4 or OP9 co-

cultures.

Mikkola and colleagues (2003) found that CD41 was expressed by CD34'cKitf cells
in the E9 YS, a population which was previously reported to be able to repopulate
newborn recipients and is therefore thought to contain pre-HSC cells (Yoder et al.,

1997a, 1997b). Mikkola et al (2003) also reported that during EB differentiation in

vitro, cells co-expressing cKit+CD41+ appeared to represent definitive ES-derived
HPCs.
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Surface

Marker

% Positive ES-derived cells

Gelatin AM20.1B4 AM20.1A4 AM14.1C4 OP9

CD34 0.1 ±0.07 0.3 ±0.2 nd nd 0.4 ± 0.06

cKit+ CD34+ 0.1 ±0.07 0.2 ±0.2 nd nd 0.3 ± 0.08

CD49d 17.94 41.7 ± 4.7 nd nd nd

CD41 0.06 ±0.1 0.06 ±0.1 18.1 1.4 0.2 ± 0.3

cKit+ CD41 + 0.02 ± 0.02 0.06 ±0.1 nd nd 0.2 ±0.3

*nd = not determined

Table 4.5 Flow cytometry analysis of 7a-GFP EBs co-cultured on irradiated stromal
cells to 10 days differentiation. These analyses aimed to detect combinations of
surface markers which are expressed on embryo-derived HSCs. Data represent
between 1 and 9 independent co-culture experiments.
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The proportions of cKit+CD41+ double positive cells were not enhanced in

AM20.1B4 (0.06±0.02%) or OP9 co-cultures (0.2±0.3%) (Table 4.5). However,
AM20.1A4 co-cultures contained a high proportion of cells expressing CD41

(18.1%) compared to gelatin controls (0.06±0.09%). It was not determined whether
these CD41+ cells co-expressed cKit. This would be an important control, as CD41
is also a marker ofmegakaryocytes.

These analyses were all carried out on co-cultures at 10 days differentiation;

however, CFU-Mix progenitor numbers were found to peak at 6 days differentiation
and were reduced by 10 days. Therefore, it may be useful to carry out flow

cytometry analysis for these definitive HSC markers at 6 days differentiation. Taken

together, the data so far could suggest that adult-type HSCs may have been generated
in the co-cultures; though, these surface markers are not necessarily exclusively

expressed on haematopoietic cells and expression of surface markers is not a

measure of function or potential of the cells. Repopulation assays need to be carried
out to determine the in vivo potential of the co-cultured ES cells.

4.4.6 Co-cultured cells display the molecular characteristics of definitive

haematopoietic cells
It has been suggested that haematopoietic differentiation in EBs recapitulates

primitive haematopoietic lineage specification within the yolk sac (Keller et al.,

1993; Keller et al., 2005). Therefore, it cannot be assumed that the haematopoietic
cells generated in the AM stromal co-culture system arose from definitive ES-
derived HSCs which have repopulating ability. According to the flow cytometry

data described above, definitive HPCs or HSCs might be present in some co-cultures.
In order to reliably detect definitive haematopoietic cell types, quantitative real-time
RT-PCR was carried out to detect definitive gene transcripts. One day old hanging

drop EBs (Bry-201) were co-cultured to 5 days of differentiation and then isolated
from stromal layers (DiD stained) by FACS. When these sorted ES cell samples
were assessed by quantitative RT-PCR, it was found that Runxl and Lmo2 gene

transcripts were expressed. As a control, RT-PCR was carried out on adult bone
marrow samples (C57/B16), which confirmed that definitive haematopoietic cells
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express these gene transcripts (Figures 4.11 and 4.12). In these experiments, the

target gene expression is expressed as fold increase relative to a calibrator (1 day old

EBs), which is assigned a value of 1.

In a further experiment, 1 day old hanging drop 7a-GFP EBs were co-cultured to 10

days differentiation and then analysed by RT-PCR without prior sorting to remove

the irradiated stromal cells, thus irradiated stromal cells alone were included as

controls (Figure 4.13). It should be noted that the control stromal layers were

harvested 5 days post-irradiation, as the RNA content in the stromal cells 10 days
after irradiation was considerably lower than at earlier time points. Therefore, these
control samples have been used only as an indication of haematopoietic transcript

expression, but do not represent the levels of transcript which the stromal layers
contribute to the 10 day co-culture samples. As shown in Figure 4.13, Runxl was

expressed in AM20.1B4, AM20.1A4, AM14.1C4 and OP9 co-cultures at 10 days
differentiation. The irradiated stromal cell controls appeared to express lower levels
of Runxl. Therefore, these cells were unlikely to account for the high levels of
Runxl transcript in 10 day co-cultures. In these experiments the RT- controls, where
no reverse transcriptase enzyme was included in the RT reaction, showed no gene

expression in any of the samples (data not shown). This confirmed that the PCR

amplification arose from cDNA and not genomic DNA. Taken together, these data
demonstrate that definitive genes, Runxl and Lmo2, are expressed by ES cells
differentiated in AM20.1B4, AM20.1A4, AM14.1C4 and OP9 co-cultures. Runxl

gene expression was detected at 5 and 10 days differentiation in co-cultures;
therefore it is possible that definitive cell types detected at 10 days by flow

cytometry could have arisen from definitive cells present at earlier time points.
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Figure 4.11 Quantitative RT-PCR analysis of co-cultured ES cells. One day
hanging drop EBs were co-cultured to 5 days differentiation and sorted from
stromal layers by FACS for RT-PCR analysis for (a) Runxl and (b) Lmo2
gene expression. Relative quantitation was calculated using the delta delta Ct
method in ABI FAST7500 software. One day EBs were used as the calibrator
and HPRT was used as the endogenous control. NTC, no template control; -
RT, no reverse transcriptase enzyme control.
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Figure 4.13 Quantitative RT-PCR analysis of 7a-GFP EBs co-cultured to 10
days of differentiation. Irradiated (i) stromal cells alone were also analysed.
Bone marrow (BM) cells were used as the calibrator and HPRT was used as
the endogenous control. NTC, no template control.
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4.5 Discussion

4.5.1 A reliable and efficient AM stromal co-culture system has been established
which potently promotes haematopoietic differentiation ofES cells
Krassowska et al (2006) reported that haematopoietic activity was significantly
enhanced when EBs were co-cultured with primary E10.5 AGM explants. The

experiments reported in this chapter aimed to screen clonal stromal cell lines derived

from AM and UG subregions of the midgestational AGM region for their ability to

promote haematopoietic differentiation of ES cells. The AM20.1B4 stromal cell line
was found to partially retain the CFU-A enhancing activity of primary AGM/EB co-

culture (Figures 4.5 and 4.7). It has been demonstrated that all three stromal cell
lines derived from AM subregion of the AGM (AM20.1B4, AM20.1A4 and
AM14.1C4) significantly enhanced the frequencies of multipotent HPCs. In contrast,

urogenital ridge (UG26.1B6, UG26.2D3) and foetal liver (EL08.1D2) stromal lines
did not promote haematopoietic differentiation as compared to gelatin (no feeder)
controls when assessed by colony assay or by flow cytometry. This indicated that it
was not simply the presence of a stromal cell layer which promoted haematopoietic

differentiation, but that the haematopoietic enhancing effects were specific to AM-
derived stromal cell lines. It is possible that the UG and EL stromal lines promote

ES cell differentiation into other lineages, generating cell types which are not

detected by haematopoietic colony assays.

The effects of AM stromal co-culture were compared with that of the OP9 cell line,
which is a bone marrow derived stromal cell line well-known to promote

haematopoietic differentiation of ES cells. In the literature, ES cells are plated

directly onto non-irradiated OP9 stromal layers and cells are replated onto fresh OP9

layers after 5 and 10 days differentiation. This differs from the differentiation

strategy employed here, whereby ES cells were prepared in hanging drops to form

EBs, which were co-cultured on irradiated stroma for 6 days differentiation with no

replating step. Nonetheless, using this EB co-culture strategy, OP9 stroma

consistently enhanced haematopoietic activity compared to gelatin controls.

Furthermore, the enhancing activity of the AM lines was comparable to that of OP9
co-cultures. A range of haematopoietic progenitors, represented by CFU-Mix, CFU-
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GM, CFU-M and Ery/Mac colonies, were enhanced in AM co-cultures (Figures 4.8
and 4.9). In addition, at 10 days differentiation AM co-cultures contained increased

proportions of ES-derived cells expressing haematopoietic surface markers
associated with cells of myeloid, lymphoid and erythroid lineages such as CD45,

Grl, CDllb, B220 and Terll9 (Table 4.3). Importantly, quantitative RT-PCR

analysis demonstrated that gene transcripts associated with definitive

haematopoiesis, Runxl and Lmo2, were expressed by co-cultured ES cells at 5 and
10 days differentiation (Figures 4.11 and 4.13). Therefore, it is possible that
definitive haematopoiesis had occurred, though this does not rule out the presence of

primitive haematopoietic cell types. One way to conclusively demonstrate that
definitive cells were present (in vitro) would be to pick colonies containing

erythrocytes from haematopoietic colony assays (CFU-Mix, Ery/Mac) and to analyse
them individually by RT-PCR for expression of embryonic and adult globins (such
as (3H1 and Pmajor, respectively). Colonies derived from definitive progenitors
would only express adult globins, while primitive cells would express either

embryonic or a combination of embryonic and adult globins.

It is interesting that the frequencies of CFU-Mix progenitors were significantly
enhanced in AM co-cultures (Figure 4.9). Early studies using mouse bone marrow

cells reported that CFU-GEMM could be closely related to CFU-S in the

haematopoietic hierarchy (Flumphries et al., 1981). Nakahata and Ogawa (1982)

suggested that the pre-CFU-S (or HSC) is an earlier progenitor to the CFU-GEMM
and that CFU-GEMM forming cells overlap with the CFU-S population. In a study

by Kerk and colleagues (1985), it was shown that when adherent bone marrow cells

were seeded into colony assays, primary CFU-GEMM were likely to be derived from

early multilineage haematopoietic progenitors. The primary CFU-GEMM
themselves were not able to generate secondary CFU-GEMM upon replating.

However, it was found that the adherent HPCs from which the primary colonies
formed were able to generate secondary colonies and these progenitors were

correlated with cells that are capable of achieving long-term repopulation in vivo.

Hence, they concluded that the presence of CFU-GEMM in vitro could be used as an

indicator for the presence of LTR-HSCs in a cell population. It should be noted that
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these initial studies of the CFU-GEMM colony were carried out with BM-derived
cell populations and the assays were setup with conditioned medium, unlike the

system used in this thesis, which used known concentrations of recombinant

cytokines and where the cells were ES-derived. Despite this, it is possible that the

presence of CFU-Mix cells in the EB/AM co-cultures could be an indication that

HSCs had been present prior to the time at which the colony assays were performed.

4.5.2 Co-cultured cells display a surface phenotype characteristic of adult BM-
derived HSCs

It cannot be assumed that ES-derived HSCs or HPCs will have the same cell surface

phenotype as their in vivo adult counterparts. To this end, co-cultured ES derived
cells were assessed for expression of surface markers characteristic of AGM-derived
HSCs or were previously reported to be expressed on definitive ES-derived HPCs.
The analysis of cell surface markers associated with AGM-derived LTR-HSCs was

inconclusive, since CD49d was expressed on large proportions of cells in AM20.1B4

co-cultures, but cKit+CD34+ cells were not detected at high levels (Table 4.5). In

addition, high proportions of CD41+ cells were present in AM20.1A4 co-cultures,
but it was not determined whether these cells co-expressed cKit. However, the data
were not determined for all the enhancing co-cultures and further analysis might still
reveal these populations.

An important finding was that between 2.6 and 5.8% of cells were cKit+Scalf in
AM-derived co-cultures compared to 3% on OP9 and only 0.05% on gelatin (Table

4.4). Since adult BM-HSCs express cKit and Seal, these double positive cells could

represent HSCs. Kiel et al (2005) and Kim et al (2006) reported that the differential

expression pattern of CD 150, CD48 and CD244 SLAM receptors on adult bone
marrow and foetal liver mouse LTR-HSCs, STR-HSCs and restricted haematopoietic

progenitors correlates with the in vivo potential of the cells. CD 150 is expressed on

T and B cell subsets and on thymocytes, whereas CD48 is expressed on leukocytes
and CD244 marks natural killer cells and a T cell subset. In the co-cultures, the

frequency of CD150+ expressing cells was enhanced in all the AM and OP9 co-

cultures. In particular, AM20.1A4 co-cultures contained 14.8±20% CD150+ cells
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and OP9 contained 12.8±3.5% compared to only 0.9±0.2% in gelatin controls. These
CD150+ cells did not co-express CD48 (Table 4.4) and CD244 expression was not

detected in any of the co-cultures (data not shown). The presence of this
CD15CPCD48" population may suggest that HSCs were generated in co-cultures.

Though, surface markers are not a measure of cell potential or function and

transplantations of these cells is required to confirm the potential of co-cultured cells
in vivo.

4.5.3 Timing ofhaematopoietic activity

No differences in expression of haematopoietic surface markers of terminally
differentiated cell types were evident at 4 and 6 days differentiation in any of the

enhancing or non-enhancing co-cultures. At 10 days differentiation high proportions
of cells in AM and OP9 co-cultures expressed these markers compared to gelatin and

non-enhancing controls. At first glance, this timing of surface marker expression

appears to contradict the colony assay data, which showed that (i) significantly more

HPCs were present in AM-derived stromal co-cultures at 6 days differentiation

compared to the other co-cultures (Figure 4.8) and (ii) haematopoietic activity peaks
at 6 days differentiation and is reduced by 10 days (Figures 4.5 and 4.6). These
observations support the hypothesis that FIPCs present at 6 days differentiation can

respond to assay conditions to form CFUs, but that they do not yet display the
surface phenotype of terminally differentiated haematopoietic cells. It may be that
the HPCs present in co-cultures at 6 days (which are detectable by CFU assay)

expand in numbers and terminally differentiate in culture such that by 10 days, high

proportions of cells express these surface markers, but are too differentiated to

respond to and form colonies in assays. If this were the case, it could suggest that
AM stromal co-culture provided a potent microenvironment for the production
and/or expansion of HPC/HSCs from ES cells over the course of 6 days

differentiation, but that the stroma did not provide long-term support for the
maintenance of these cells in their self-renewing state.

It is interesting that both CD15CPCD48" and Sca-l+cKit+ populations, which could

represent adult-type HSC populations, were detected at 10 days differentiation, when
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CFU-Mix activity is reduced. It is possible that analysis for these markers at earlier
time points could reveal higher proportions of these populations. In support of this

hypothesis, co-cultured ES cells were found to express Runxl and Lmo2 gene

transcripts as early as 5 days differentiation, suggesting that definitive

haematopoiesis could have taken place at earlier time points. Keller and colleagues

(1993; 2005) have reported that EB differentiation appears to recapitulate the yolk
sac pattern of primitive haematopoietic lineage specification. Therefore, in the co-

cultures, primitive haematopoiesis might take place first, giving rise to primitive cells
with limited self-renewal potential, which then exhaust their ability to self-renew and
so terminally differentiate. This might be followed by a wave of definitive

haematopoiesis, where HSCs arise and expand in numbers if the conditions are

appropriate. It is likely that both primitive and definitive haematopoiesis takes place
in the co-cultures. Further in vitro analysis at different time points and

transplantation studies will help to clarify the timing of HSC emergence (if any) in
the co-cultures, as well as demonstrating their in vivo repopulating potential.

4.5.4 Why would AM but not UG subregions promote haematopoietic

differentiation ofES cells?
The effects of AM-derived lines on haematopoietic differentiation of ES cells is

interesting; since, in the embryo, the AM subregion of the AGM is where LTR-HSCs
are believed to first arise de novo (de Bruijn et al., 2000a, 2000b, 2002). Definitive
HSCs bud from rounded cell clusters present on the ventral floor of the dorsal aorta
at E10-10.5. These intra-aortic clusters are thought to represent haemogenic
endothelium as they express both haematopoietic and endothelial markers

(CD45+CD34+) (Wood et al., 1997) and Runxl is expressed in these clusters at E10

(North et al., 1999). The AM stromal cell lines were derived from E10-11 AGM

regions; therefore, it is possible that the factors responsible for the initial induction
and emergence of HSCs are potently expressed by these lines. This could explain

why undifferentiated ES cells, which have not yet committed to a particular lineage,
can readily respond by undergoing haematopoietic differentiation; or why ES-
derived haematopoietic progenitors which arise spontaneously in EBs can respond.
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It is thought that HSCs which emerge from the AM subregion of the AGM

subsequently move to urogenital ridges at Ell where they undergo proliferation (de

Bruijn et ah, 2000a, 2000b, 2002). The urogenital ridges appear to be the only site in
the embryo where HSC proliferation occurs without differentiation (Taoudi et ah,

2007, 2008). At El2-13, HSCs migrate to the foetal liver where they expand in
numbers prior to colonising the bone marrow (Kumaravelu et ah, 2002). Therefore,
the foetal liver and urogenital ridges are sites where HSC proliferation occurs and it
is likely that the UG- and EL-derived stromal lines produce a plethora of

proliferative factors, while AM-derived stroma produce HSC inductive factors. In

agreement with this, Oostendorp and colleagues (2002b) have reported that the
UG26.1B6 and EL08.1D2 lines are potent supporters of transplantable adult BM-
derived HSCs. The best supporter, UG26.1B6, was found to maintain adult BM
HSCs for up to 4 weeks in culture without the loss of repopulating ability

(Oostendorp et ah, 2002b). AM14.1C4 stroma could maintain repopulating cells for

up to 1 week, but were unable to provide such potent long-term support; AM20.1B4
and AM20.1A4 were not tested. In another study, UG26.1B6 and EL08.1D2 stromal
lines were reported to support CFU production from human CD34f cord blood HSCs
for up to 12 weeks in culture and the AM-derived lines tested (including AM20.1B4
and AM20.1A4) were not found to provide this support (Oostendorp et al.,2002a).
UG26.1B6 and EL08.1D2 were also able to support transplantable Ell AGM-

derived HSC (CD34 cKitF sorted cells); however, they did not support CD34+cKit+
pre-HSCs derived from E10 AGM or E10 yolk sac and were unable to induce these
cells to become transplantable LTR-HSCs. The AM20.1B4, AM20.1A4 and
AM14.1C4 stromal lines were not tested in this way. Collectively, these data show
that UG26.1B6 and EL08.1D2 stroma used in this thesis can support adult HSCs and

embryo-derived HSCs, but cannot maintain pre-HSCs or induce them to become

transplantable.

It could be that AM-derived stromal lines have the ability to induce haematopoietic
cells and can support subsequent haematopoietic commitment. While, the UG and
EL stromal lines may only act on haematopoietic stem cells once they have reached a

certain level of maturation; conversely, haematopoietic cells might only be able to
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respond to the stroma after they have reached this level. In support of this, the EL
stromal lines were derived from Ell foetal livers and at El 1-12, the foetal liver is

not yet a highly supportive EISC niche. This may be reflected by the fact that a low
number of clones from this tissue were found to be supportive to adult HSCs

(Oostendorp et al 2002b). During embryogenesis, ElSCs emerge in the AM

subregion and migrate to and expand in other haematopoietic sites in a highly

reproducible manner, before colonising the bone marrow niche. Therefore, it is

possible that during embryogenesis, HSCs need to mature in a highly regulated
fashion and that this is mediated by their interaction with specific niches in different
sites in the embryo. If this is the case, this might explain why the UG and EL lines
tested in the co-culture system were unable to promote haematopoietic induction of
ES cells. Given that UG26.1B6 is able to maintain/expand mature BM-HSC, a two

step co-culture has been attempted whereby EBs were differentiated on AM20.1B4
for 6 days, followed by culture on UG26.1B6 for 4 further days. In these preliminary

experiments, however, the haematopoietic activity was not increased over that of
AM20.1B4 co-culture (data not shown).

Taken together, the data presented here suggest that there are biological differences
between supporting embryonic cells (AGM or ES-derived cells) and adult BM-
derived haematopoietic cells. Since AM20.1B4, AM20.1A4 and AM14.1C4 were

able to enhance haematopoietic differentiation of ES cells, it may be interesting to

test the ability of these lines to induce and/or maintain pre-HSC (CD34+cKit+)
populations isolated from AGM or yolk sac. This is plausible, as Matsuoka et al

(2001) reported that another AGM-derived stromal cell line, AGM-S3, was able to

support induction of LTR-HSCs from E8.5 yolk sac and para-aortic splanchnopleural
cells.

UG and EL lines were derived from El 1 embryos, while AM20.1B4 and AM20.1A4
were derived from E10 embryos. Therefore it may seem as though the differential
effects of the lines on ES cells could be due to a timing difference. However, this is

unlikely to be the case, as AM14.1C4 was derived from Ell AGM tissue and has
also been found to be a potent promoter of ES cell haematopoietic differentiation. It
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could also be argued that the effects of the lines could be due to the difference in

transgenic embryos used, since AM20.1B4 and AM20.1A4 lines were derived from
tsA58 transgenic embryos and EL08.1D2 was derived from BLlb Sca-l-LacZ

transgenic embryos. However, AM14.1C4 cells were also derived from BLlb

embryos, therefore this does not correlate with the differential effects of the lines. In

light of this, the data presented here strongly suggest that the AM subregion of the
E10 and Ell AGM is rich in haematopoietic inductive factors which can

significantly promote haematopoietic differentiation of ES cells.

It is interesting that, to date, few embryo-derived stroma have been found to be

comparable with OP9 bone marrow stroma in their ability to promote haematopoietic
differentiation of ES cells. For instance, Weisel and Moore (2006) generated 106

clonal stromal lines from E10.5 AGM regions. Of ten selected stromal lines, only
one was reported to be comparable with OP9 stroma. In their study, and in most

others, stromal lines have been derived from whole AGM regions (Xu et ah, 1998;
Ohneda et ah, 1998) as opposed to AM or UG subregions. Here, 3 stromal lines
have been identified which are comparable to OP9 and are all derived from the same

subregion of the AGM. Taken together, these observations could indicate that the
differential effects of the AM, UG and EL stromal lines are due to the difference in

anatomical sites from which the lines were derived. However, it cannot be assumed

that all stromal clones derived from the AM subregion will be potent promoters of

haematopoietic differentiation of ES cells, nor can it be assumed that other UG or EL
derived lines will not have enhancing capabilities. In accordance with this,

Oostendorp and colleagues (2002a; 2002b) found that some AM-derived lines had
intermediate supportive effects on adult HSCs and cord blood HPCs. Therefore, they
did not conclude that the supportiveness of the stromal lines was wholly dependent
on their embryonic site of origin. It would be necessary to test a larger panel of
clonal stromal cell lines from the AM and UG subregions in the EB co-culture

system to conclusively determine whether the ability to enhance haematopoietic
differentiation of ES cells falls mainly in the AM subregion of the E10-11 AGM.
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5.1 Aim

To identify cellular interactions involved in the enhancement of

haematopoietic differentiation of ES cells mediated by AM-derived stromal cell
lines.

5.2 Introduction

Three clonal stromal cell lines derived from the AM subregion of the E10-11 AGM
have been identified which are capable of significantly enhancing haematopoietic
differentiation of mouse ES cells. The experiments described here investigate
cellular interactions which may have a role in this enhancing activity. Experiments
have been designed to test (i) whether EB/stromal cell-cell contact was important or
if haematopoietic enhancing factors were secreted; (ii) whether extracellular matrices
isolated from the stromal cell layers retained the enhancing effects of co-culture and

(iii) whether stromal lines act by inducing ES cells to haematopoietic fates or by

promoting proliferation of ES cell derived haematopoietic progenitors. In addition,
ES cells carrying a Brachyury-eGFP reporter gene (Bry-201 ES cells), which is a

marker of mesoderm, have been used in co-culture to test whether AM stroma

mediate their enhancing effects by promoting commitment of ES cells to mesodermal
fates.

5.3 Experimental approach
• To determine whether the enhancing effects of co-culture were dependent on

direct cell-cell contact, EBs were cultured in medium conditioned on stromal

layers or co-cultured in transwell inserts above the stroma.

• To determine if extracellular matrices (ECMs) retain the enhancing effects of co-

culture, EBs were co-cultured on ECMs that were isolated from confluent

irradiated stromal cells.

• To test whether the stromal lines stimulate de novo induction of ES cells to

haematopoietic fates or whether they act by promoting proliferation of
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haematopoietic progenitors, individual EBs were co-cultured on stromal cells,
before disaggregation and seeding into colony assays to determine the proportion
of single EBs with haematopoietic activity and the number of haematopoietic
CFU in each EB.

• To determine if the AM-derived lines mediate their enhancing effects by

promoting numbers of ES cells committing to mesodermal fates, Bry-201 EBs
were co-cultured. The kinetics of Brachyury-eGFV expression during co-culture
was determined to reveal if a higher proportion of Bry+ cells were present in AM
co-cultures compared to gelatin controls.

• To test whether the Bry+ cells and their progeny are the populations which are

responsive to the haematopoietic inductive effects of co-culture, Bry-tGFP

positive and negative ES cells were sorted by FACS and co-cultured to determine
whether haematopoietic CFU activity correlated with cells that had expressed

Brachyury.

5.4 Results

5.4.1 The enhancing effects of the AM-derived lines are dependent on direct cell-
cell contact or on short-range secretedfactors

Hanging drop 7a-GFP EBs were differentiated in suspension in the presence of
medium which had been conditioned on AM20.1B4, UG26.1B6 or EL08.1D2

irradiated stromal cell layers (-LIF). The resultant CFU-A activity in EBs was

measured at 2, 4, 6, 8 and 10 days differentiation (Figure 5.1). CFU-A activity was

markedly reduced in EBs differentiated in conditioned medium, as compared to those
in unconditioned medium (p=0.004). However, there were no significant differences
between AM20.1B4 conditioned medium and that of UG26.1B6 (p=0.56) or

EL08.1D2 (p=0.77). Therefore, AM20.1B4 conditioned medium did not retain the
CFU-A enhancing effects of co-culture. On the contrary, conditioned media

appeared to inhibit CFU-A activity in differentiating EBs.
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Figure 5.1 CFU-A activity in 7a-GFP EBs differentiated in suspension cultures
containing medium conditioned on irradiated stromal layers. CFU-A activity
was significantly reduced in EBs differentiated in the presence of medium
conditioned on the stromal cell lines, p=0.004. There were no significant
differences between AM20.1B4 conditioned medium and that of UG26.1B6

(p=0.56) or EL08.1D2 (p=0.77). Shown are triplicate assays from one
representative experiment. P-values calculated using paired Mann Whitney U
tests.
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In the AM stromal/EB co-culture system, EBs were plated down on stromal layers
and it is possible that this direct interaction with EBs might affect the factors or

concentration of factors secreted by the stroma. In order to mimic this

microenvironment when testing the role of cell-cell contact, 1 day 7a-GFP EBs were

cultured in transwell inserts above the stroma. The transwells prevented direct cell-
cell contact, but allowed secreted factors to pass through a porous membrane (pore

6 2size 0.4pm, pore density 2x10 cm""). Thus, direct contact between ES cells and
stromal cells was prevented, while the supernatant microenvironment remained the
same. After 6 days of differentiation, EBs were harvested from the wells or

transwell inserts and analysed by colony assay (Figure 5.2). The frequency of

multipotent progenitors (CFU-Mix, CFU-GM and Ery/Mac) in AM20.1B4,

AM20.1A4, AM14.1C4 and OP9 cultures was significantly reduced in non-contact

cultures compared to the corresponding contact cultures (p<0.03, paired Mann

Whitney U tests). The frequency of unipotent CFU-M colonies was also reduced
when contact was prevented with AM stroma, p<0.05 (Figure 5.2b). There were no

significant differences between contact and non-contact gelatin control cultures,

demonstrating that the transwell inserts themselves did not affect haematopoietic

output. Taken together, these data demonstrate that AM-derived stroma are likely to

mediate their haematopoietic enhancing effects in a contact-dependent manner. As
stated previously, OP9 stromal cells do not express functional M-CSF, which

promotes macrophage differentiation. In agreement with this, low numbers of CFU-
M colonies were generated in OP9 cultures (Figure 5.2b). Interestingly, CFU-M

activity in contact and non-contact OP9 cultures was comparable (p=0.13),

suggesting that EBs might express M-CSF which allows some CFU-M formation.

The enhancing effects of the stromal cell lines in the wells did not appear as

pronounced as previously observed in 25cm flasks (chapter 4). This may indicate
that the overall haematopoietic output is affected when the surface area into which
the ES cells can expand is limited. Nevertheless, non-contact cultures did not show

any enhancing activity in 4 independent experiments. Haematopoietic activity was

significantly higher in contact cultures compared to non-contact cultures and
conditioned medium caused a reduction in CFU-A activity in EBs.
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Figure 5.2 Flaematopoietic CFU generated when I day 7a-GFP EBs were co-
cultured to 6 days differentiation in direct contact with stromal cell layers (+)
or in transwell inserts (-). Shown are the frequencies of (a) multipotent CFU-
Mix, CFU-GM and Ery/Mac (*p<0.03) and (b) CFU-M (*p<0.05). Data
represent 4 independent stromal co-culture experiments and 1 gelatin control
experiment.

138



Chapter Five: Results

Given these observations, it is possible that the enhancing activity of stromal co-
culture relies on a delicate balance between positive regulators and secreted

inhibitory factors. The data presented here have highlighted the importance of direct
cell-cell contact in mediating the haematopoietic enhancing effects of the AM-
derived stromal cell lines. It should be noted, however, that the effects of high
concentrations of short-range secreted factors cannot be ruled out using this non-

contact transwell strategy.

5.4.2 Enhancing effects of the stromal lines are not retained by extracellular
matrices isolatedfrom AM stromal cell layers
In light of the above results, it was determined whether extracellular matrices

(ECMs) isolated from the stromal lines retained the haematopoietic enhancing

activity of co-culture. ECMs were extracted from confluent stromal cell layers 1 day
after irradiation using the deoxycholate method described by Hedman et al (1979).
One day old 7a-GFP EBs were cultured on intact stromal layers or on ECMs for up
to 6 days differentiation before disaggregation and analysis by haematopoietic

colony assay (Figure 5.3). Co-culture of EBs with ECMs isolated from AM20.1A4
and AM14.1C4 stroma resulted in a significant reduction in overall CFU activity

compared to the corresponding stromal co-cultures (p<0.05, paired Mann Whitney U

tests). Thus, ECM components did not retain the enhancing effects of co-culture.
The reduction in haematopoietic readout in ECM cultures appeared to be due to a

decrease in multipotent CFU-Mix, CFU-GM and Ery/Mac, as well as CFU-M.

Therefore, the ECMs did not retain enhancing activities specific to particular

haematopoietic lineages.
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Figure 5.3 Haematopoietic activity in 7a-GFP EBs co-cultured on extracellular
matrices (ECM) isolated from irradiated stromal cell layers. Shown are the
frequencies of (a) multipotent CFU-Mix, CFU-GM and Ery/Mac and (b) CFU-
M generated from EBs in culture with ECM or on intact stroma (+). Data
represent 4 independent co-culture experiments. There was a reduction in
haematopoietic activity in EBs differentiated on ECMs compared to the
corresponding co-cultures (*p<0.05) and some ECMs inhibited CFU
compared to gelatin controls (*p<0.014).
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In these experiments, AM20.1B4 co-culture did not enhance haematopoietic
differentiation in EBs compared to gelatin control cultures; however, it is interesting
to note that the ECM isolated from AM20.1B4 stromal layers caused a significant
reduction in EB-derived haematopoietic activity compared to gelatin controls

(p<0.014) (Figure 5.3). This was also seen with ECMs isolated from AM20.1A4
stroma. While this could be due to residual deoxycholate detergent left behind after
the ECM extraction, it is possible that some ECM components could have an

inhibitory effect on haematopoietic differentiation. Stromal layers might secrete

negative regulators of differentiation, which cell-cell interactions need to overcome

in order to mediate haematopoietic enhancing effects. These data support the

hypothesis that a balance between positive and negative regulatory signals
determines the outcome of AM stromal/EB co-culture and slight changes in this
balance might contribute to the variability between co-culture experiments.

5.4.3 AM20.1B4 can have a de novo inductive effect on haematopoietic

differentiation ofES cells
In the El 0-11 AGM region, de novo induction as well as proliferation of definitive
LTR-HSCs takes place (Medvinsky and Dzierzak, 1996, de Bruijn et al., 2000a,

2000b, 2002). This suggests that the AGM provides a signals for both these

processes. Therefore, it was of interest to determine whether AM-derived stroma

had a proliferative effect on haematopoietic progenitors arising spontaneously upon

ES cell differentiation or whether co-cultures could promote de novo induction of ES
cells to haematopoietic fates. Single cell differentiation studies could distinguish
between inductive and proliferative effects; however, this strategy could not be

applied to the stromal/EB co-culture system used here. To date, there are no

published reports which explicitly distinguish between haematopoietic induction of
cells within EBs and proliferation of EB-derived haematopoietic progenitors. Yet,

this is an important question to address if one is aiming to identify novel factors that
can induce haematopoietic differentiation of ES cells and not simply expand

haematopoietic progenitors in culture.

141



Chapter Five: Results

To distinguish between inductive and proliferative effects, individual 1 day old 7a-
GFP EBs were co-cultured on stromal layers in wells of a 24 well plate to 6 or 10

days of differentiation. Individual EBs were disaggregated and subjected to colony

assays to determine the proportion of EBs with haematopoietic activity and the
number of haematopoietic CFE1 in each EB. It was hypothesised that an increase in
the proportion of EBs with CFU activity compared to gelatin controls could imply
that de novo induction had occurred; whereas an increase in the number of CFU per

EB could be due to proliferation of haematopoietic progenitors (Figure 5.4).

The CFU-A assay was used to measure haematopoietic activity, as it lends itself to

analysis of multiple samples. Table 5.1 summarises the data from the single EB

analyses. In accordance with previous findings, UG26.1B6 and EL08.1D2 did not

enhance CFU-A activity as compared to gelatin controls. In contrast, AM20.1B4 had
a considerable proliferative effect on CFU-A progenitors at 6 days of differentiation.
There was a significant increase in the number of CFU-A progenitors in each EB,
with an average of 16.8 CFU-A/EB on AM20.1B4 compared to only 3.2 CFU-A/EB
on gelatin, equating to a 5 fold increase (pO.OOl, n=201). After 10 days of

differentiation, there was a 3 fold increase in CFU-A per EB differentiated on

AM20.1B4 compared to those cultured on gelatin (37 CFU-A/EB compared to 11

CFU-A/EB, respectively, p<0.0001, n=48). This correlates with the CFU-A activity
observed in AM20.1B4 co-cultures carried out in 25cm2 flasks, where there was a 3

fold increase at 6 days of differentiation and a 3.2 fold increase at 10 days, as

compared to gelatin (Chapter 4, Figure 4.5).

Interestingly, AM20.1B4 co-culture also caused in a significant increase in the

proportion of EBs with CFU-A activity, suggesting that this line could induce ES
cells to CFU-A fates (Table 5.1). At 6 days differentiation, 64.2% of EBs co-

cultured on AM20.1B4 generated 1 or more CFU-A colonies compared to 52.7% on

gelatin (p=0.02, n=201). After 10 days of differentiation, 93.5% of AM20.1B4/EBs
had CFU-A activity compared to only 68.3% of EBs on gelatin (p=0.0044, n=48);

providing further evidence of the inductive effects of the AM20.1B4 cell line.
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Co-culture

(n= number ofEBs)

% EBs with

haematopoietic
activity

Haematopoietic colonies per EB

6

days
Gelatin/EB (n=207)

AM20.1B4/EB (n=201)

UG26.1B6/EB (n=47)

EL08.1D2/EB (n=48)

52.66%

64.18% (p=0.02)

42.55% (p=0.26)

27.08% (p=0.002)

3.15 (+/- 6.9) (range 0-62)

16.78 (-I-/-33.7) (range 0-164) (p<0.001)

1.68 (H-/-3.7) (range 0-22) (p=0.14)

0.38 (+/-0.7) (range 0-3) (p=0.0003)

10

days
Gelatin/EB (n=48)

AM20.1B4/EB (n=48)

EL08.1D2/EB (n=48)

68.3%

93.5% (p=0.004)

60.9%(p=0.51)

11.1 (range 0-45)

36.98 (range 0-110) (p<0.0001)

7.0 (range 0-40) (p=0.09)

Table 5.1 Co-culture of individual EBs and analysis of haematopoietic activity in
each EB by CFU-A assay. The proportion of EBs with haematopoietic activity and
the average number ofCFU-A per EB was determined. Data represent EBs from 2 to
7 independent co-culture experiments and p-values were calculated by performing
Fisher's exact tests on contingency tables, comparing stromal co-cultures to gelatin
controls.
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To confirm that the CFU-A enhancing effects were dependent on direct stromal cell-
ES cell contact, single EBs were co-cultured per well or transwell insert to 6 or 10

days of differentiation (Table 5.2). At both time points, CFU-A activity was

significantly reduced in EBs when contact with AM20.1B4 stroma was prevented;

yet, the activity in contact and transwell gelatin control cultures was comparable.

Again, these data demonstrate that the enhancing activity of AM20.1B4 is likely to

be dependent on direct cell-cell contact. Furthermore, in non-contact AM20.1B4

cultures, there was a significant reduction in the proportion of EBs with CFU-A

activity as well as the number of CFU-A progenitors per EB. Therefore, both the

proliferative and inductive effects of AM20.1B4 appear to be contact-dependent.

When considering these data, it is important to note that two key assumptions have

been made; namely, (i) each colony represents a single progenitor cell (CFU) and,

(ii) every progenitor with CFU-A capability is detected. The latter point is pertinent,
since if the number of progenitors seeded into the assay have to exceed a threshold
before a CFU-A colony is likely to be detected, then one might argue that an increase
in the proportion of EBs with CFU-A activity could also be due to proliferation of

progenitors, provided that progenitor numbers in the cultured EBs were stimulated to

expand beyond this threshold. Flowever, even if the latter were the case, the data

presented here demonstrate that AM20.1B4 exerted an enhancing effect on a

significant proportion of co-cultured EBs, in that enhanced CFU-A activity did not

arise from a small number of EBs that responded to co-culture. Another important

point is that the growth rates of the differentiating ES cells were not significantly
different between the co-cultures (Chapter 3, Figure 3.2). Therefore, the apparent

inductive and proliferative effects of AM20.1B4 are unlikely to be due to a

difference in the cell numbers within EBs differentiated on the stromal cell line or on

gelatin.
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Co-culture % EB with CFU-A

activity
Frequency ofCFU-A per EB

Contact Non-contact Contact Non-contact

6

day
Gelatin/F.B

(n=24)
50% 37.5%

(p=0.56)

3.5 (range 0-18) 4.5 (range 0-38)
(p=0.67)

AM20.1B4
/EB (n=24)

75% 16.7%

(p=0.0001)

4.0 (range 0-20) 0.6 (range 0-11)
(p=0.0001)

10

day
Gelatin/EB

(n=24)
54.2% 70.8%

(p=0.37)

5.4 (range 0-30) 10.3 (range 0-38)
(p=0.29)

AM20.1B4
/EB (n=24)

87% 47.8%

(p=0.01)

46.9 (range 0-110) 11 (range 0-43)
(p=0.0001)

Table 5.2 CFU-A activity in single EBs in contact and non-contact (transwell
insert) cultures was determined after 6 days and 10 days differentiation. CFU-A
activity in AM20.1B4/ EBs was reduced in non-contact (□) compared to contact
( □ ) cultures. Data represent EBs from 2 independent experiments. P-values
calculated using Fisher's exact tests on contingency tables comparing non-
contact cultures with corresponding contact cultures.
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It has been shown previously (Chapter 4, Figures 4.8 and 4.9) that AM20.1A4,
AM14.1C4 and OP9 co-culture do not promote CFU-A activity in EBs, but do

significantly enhance the frequencies of multipotent progenitors such as CFU-Mix,
CFU-GM and Ery/Mac, as well as CFU-M. Therefore, in order to assess whether
these stromal lines have inductive or proliferative effects, it will be necessary to

repeat the single EB analyses using methylcellulose-based colony assays which can

detect these haematopoietic progenitors.

5.4.4 Kinetics ofBrachyury expression during co-culture
To gain further insight into the cellular interactions playing a role in the enhancing
AM stromal microenvironments, it was considered important to identify which ES-
derived population was responsive to the haematopoietic enhancing effects of co-
culture. This has been addressed by co-culturing an ES cell line, Bry-201, which

expresses eGFP under the control of endogenous Brachyury (mesoderm-specific)

promoter elements (Fehling et ah, 2003). The targeted allele is disrupted, as

approximately two-thirds of the first exon is replaced by the eGFP expression
cassette. Fehling et al (2003) demonstrated that the heterozygosity of the Bry-201
ES cells does not affect the in vitro expression pattern of Brachywy nor the

haematopoietic specification or development within EBs. In addition, Herrmann et

al (1991) reported that Brachyury heterozygosity had no significant impact on

mesoderm development in vivo and did not affect the viability of mice.

Since Brachyury is an early mesoderm marker, flow cytometry analysis of the
kinetics of GFP* cell emergence during co-culture should give an indication of the

proportion of cells committing to mesodermal cell fates. To ensure that the

proportion of GFP' ES-derived cells could be accurately measured by flow

cytometry, stromal layers were stained with Vybrant DiD labelling solution

(Invitrogen) prior to irradiation and co-culture (Figure 5.5). This enabled GFP+ and
GFP" ES cell populations to be readily distinguished from stained stromal cells.
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Figure 5.5 Co-culture of Bry-201 EBs on DiD stained stromal layers, (a) Light
and (b) fluorescence microscopy images of a 4 day Bry-201 EB on AM20.1B4
stromal layer, showing some Brachyury-GFP positive ES cells. Flow cytometry
of (c) unstained AM20.1B4 cells, (d) AM20.1B4 cells stained with DiD. (e) 6
day Bry-201 EBs differentiated on gelatin containing GFP+ and GFP- cells, (f)
6 day Bry-201 EBs co-cultured on DiD labeled AM20.1B4. Flow cytometry
plots (c) to (f) were prepared by Kay Samuel.
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Flow cytometric analysis demonstrated that in all the co-cultures, Bry-GFP

expressing cells were first detected at 2 days of differentiation. Numbers of Bry-
GFP+ cells were increased by 4 days and peaked at 5 days of differentiation, after
which the numbers were reduced (Figure 5.6). Comparisons of Biy-GFP kinetics
revealed that there were no significant differences in the proportions of Bry

expressing cells generated in AM20.1B4, AM20.1A4 AM14.1C4 or OP9 stromal co-
cultures compared to gelatin controls, p=0.08 (Figure 5.6a). Non-enhancing

UG26.1B6, UG26.2D3 and EL08.1D2 co-cultures were also comparable to gelatin

controls, p=0.19 (Figure 5.6b). It was determined that the growth rates of the Bry-
201 ES cells in these co-cultures were not significantly different, p=0.054 (Figure

5.7). Taken together, these data suggest that AM lines did not promote numbers of
cells expressing Bry+ and non-enhancing UG-derived and EL08.1D2 stroma did not

block haematopoietic differentiation by reducing numbers of (Biy+) cells committing
to mesoderm. Therefore, all the stromal lines are likely to mediate their

haematopoietic enhancing effects after Brachyury is expressed in EBs. In

conjunction with flow cytometric analyses, 5ry-GFP expression was visualised by

fluorescence microscopy, which showed that similar numbers of Biy-GFP+ EBs were

present in the different co-cultures (data not shown). Thus, the Bry-GFP+ cells
enumerated by flow cytometry did not originate in only a small number of responsive

EBs; thereby supporting the notion that the stromal lines do not enhance or block the

emergence of Bry-GFP expressing ES cells. Bry-GFP+ cell numbers peaked at 5

days of differentiation in all the co-cultures in 3 independent experiments (Figure

5.8). Comparison of the co-cultures at this time point showed no significant

differences, p=0.25. Yet, when these cultures were analysed by methylcellulose

colony assay at 6 days of differentiation, the haematopoietic activity in AM and OP9
co-cultures was significantly higher than in gelatin controls (p<0.002) (Figure 5.8b).

Interestingly, in these experiments UG26.1B6 co-culture also resulted in increased
CFU output (p=0.006). Regression analysis showed no correlation between the

proportion of ib-y-GFP' cells present at 5 days and the haematopoietic CFU output at

6 days, r2=0.0273 (Figure 5.9); thus confirming that the AM lines do not mediate
their haematopoietic enhancing effects by promoting the numbers of ES cells

committing to mesodermal (Brachyuiy+) cell fates.
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Figure 5.6 Kinetics of Brachyury-eGFP expression during co-culture. Co-
cultured Bry-201 EB cells were analysed by flow cytometry at days 2, 3, 4, 5,
6 and 8 of differentiation, (a) Comparison of the enhancing AM-derived
stroma with OP9 and gelatin (p=0.08). (b) Comparison of non-enhancing
UG-derived and EL08.1D2 stroma against OP9 and gelatin (p=0.19). Data
represent 3 independent experiments. P-values were calculated using paired
one way ANOVA statistical tests.
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Figure 5.7 Growth rates of Bry-201 ES-derived cells differentiated in co-
cultures. There were no significant differences in ES cell growth rates in the
different co-cultures, p=0.054, 2 independent experiments.
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Figure 5.8 Enhancing stromal co-cultures did not contain increased proportions
of Brachyury-eGFP positive cells, (a) Proportion of ES-derived Bry-GY?
positive cells in co-cultures at 5 days differentiation. There were no significant
differences when stromal co-cultures were compared with gelatin controls,
p=0.25. (b) The haematopoietic readout of Bry-201 EBs in co-cultures at 6
days differentiation. Paired Mann Whitney U tests were used to calculate p-
values.
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Figure 5.9 Regression analysis of Brachyury-eGFP positive cells in co-culture at
5 days against the haematopoietic CFU output at 6 days. There was no
correlation (r2=0.0273) between the proportion of Brachyury-GFP expressing
ES-derived cells present in co-cultures at 5 days differentiation and the resultant
haematopoietic CFU readout at 6 days differentiation.
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5.4.5 Progeny of bracliyury-GFP expressing cells respond to the haematopoietic

enhancing effects ofAM14.1C4
It was of interest to determine whether the stromal cells act after mesoderm

(Brachyury) specification by increasing the numbers of Brachyury-expressing cells
that go on to commit to haematopoietic fates. To address this, Bry-GFP positive and

negative cells were sorted by FACS from 4 day suspension EBs and co-cultured for a
further 6 days of differentiation (Figures 5.10 and 5.11). Due to limited cell

numbers, only AM14.1C4, OP9 and gelatin conditions were tested. The sorted cell

populations were co-cultured per 25cm2 flask as follows: (i) lxlO5 Bry+ cells, (ii)
lxlO5 Bry cells and (iii) 0.5x105 Bry+ cells mixed with 0.5x10s Bry' cells. To
control for the sorting step, intact 4 day suspension EBs (no FACS) were co-cultured

(Figure 5.12a).

Haematopoietic CFU were only detected when Bry+ cells were present in the starting
co-cultured population (Figure 5.12b). Little or no CFU activity arose from Bry'

populations. These data elegantly demonstrate that the haematopoietic activity in co-

cultures was indeed derived from cells that had expressed Brachyury and therefore
ES cells likely followed a pathway of haematopoietic lineage specification which
included a Biy+ stage. It is interesting that in AM14.1C4 co-cultures, haematopoietic

activity did not appear to be further enhanced by culturing lxlO5 sorted Bry+ cells

alone, compared to culturing a mixture of 0.5xl05 Bry+ and 0.5xl05 Bry' cells

(p=0.06). This suggests that, though Bry' cells and their progeny may not contribute

directly to the haematopoietic CFU readout, these cells may contribute to the

supportive co-culture niche in vitro. This might be in the form of other differentiated
cell types with supportive abilities, or simply by acting as a carrier cell population

during the co-culture procedure. The latter could be tested by co-culturing Bry cells

along with fibroblast cells instead of Bry' ES cells. This observation highlights the

complexity of the co-culture microenvironment and underscores the importance of

determining which other ES-derived cell types are generated in co-cultures.
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Figure 5.10 Strategy to assess whether Brachyury expressing cells and their
progeny are the populations which respond to the haematopoietic enhancing
effects of the stromal co-culture. 5^-eGFP positive and negative cells were
sorted from 4 day old suspension EBs. lxlO5 Bry+, 1x10s Bry- or a mixture of
5xl04 Bry+ and 5xl04 Bry- cells were co-cultured on DiD labeled stromal
layers or gelatin for a further 6 days differentiation. Colony assays and RT-
PCR were carried out to assess haematopoietic activity. Flow cytometry
enabled normalisation of colony data.
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Figure 5.11 Fluorescence activated cell sorting (FACS) of Brachyury-eGFP
positive and Brachyuty-eGFP negative cells from 4 day old suspension EBs.
The sorted populations were highly enriched. The data shown are from one
representative sort.
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Figure 5.12 Co-culture of sorted Z?i7-GFP+ or Bry-GFP- sorted ES cells, (a)
Intact 4 day old suspension EBs were co-cultured on gelatin, AM14.1C4 or
OP9 stromal layers for a further 6 days differentiation and assessed by
colony assay for haematopoietic activity, (b) 5>y-GFP+ or Z?iy-GFP- cells
were sorted from 4 day suspension EBs and co-cultured separately, or as a
50:50 mixture of positive and negative cells. The data shown represent two
independent co-culture experiments. P-values calculated using paired Mann
Whitney U tests.
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Another possibility is that the presence of Bry-GFP+ cells in AM14.1C4 co-cultures
could stimulate Bry-GFP cells to express Brachyury, thus allowing them to

contribute to the haematopoietic CFU readout. This would explain why there was no

significant difference between co-culturing 1CP sorted Bry-GFP+ cells or a mixture of
0.5xlCP Bry-GFP+ and 0.5xl05 Bry-GFP" cells. This hypothesis could be tested by

labeling Bry-GFP" cells (perhaps with DiD) prior to mixing with Bry-GFP+ cells and

monitoring the cells during co-culture to determine whether they become GFP+ and
whether they contribute to the haematopoietic readout.

In AM14.1C4 cultures, the frequency of haematopoietic CFUs was significantly
increased when sorted (disaggregated) EB cells were co-cultured compared to

control cultures carried out with intact 4 day old EBs (Figure 5.12). An average of
648±298 CFU colonies was generated when a mixture of Bry+I- cells were co-

cultured with AM14.1C4 compared to an output of only 53±35 CFU when 4 day old

intact EBs were co-cultured, p=0.03. Since Bry+ cells and their progeny are the

populations which give rise to the haematopoietic CFU readout and the enhancing
effects of AM14.1C4 appear to be contact-dependent, it is perhaps not surprising that
the CFU output is further enhanced by disaggregating EBs to release the responsive

Biy+ population such that more of these cells can be in direct contact with stroma.

The responsive Biy+ derived populations might display specific surface phenotypes
which facilitate their ability to respond to enhancing effects of co-culture. Therefore,
when novel factors involved in the enhancing activity are identified, one could
narrow the search by looking for the corresponding surface receptors on the

responsive ES derived population. In contrast to AM14.1C4, co-culture of sorted

Bry+/- ES cells with OP9 stroma did not result in an increase in haematopoietic

colony activity compared to culturing intact 4 day EBs, p=0.7 (Figure 5.12). These
data indicate that it was not simply the presence of a stromal layer which supported

haematopoietic differentiation of sorted ES cells, but that the effects were specific to

the AM14.1C4 co-cultures. Furthermore, it could suggest that the OP9 stromal line
mediates enhancing activity via different mechanisms to AM-derived stroma. This is
not unexpected, given that OP9 stromal cells are derived from newborn bone

marrow, while AM stroma are derived from the mid-gestational AGM region; and
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that in vivo, these two stromal cell types would interact with haematopoietic cells at

different stages of development.

5.4.5 ES cells differentiated in contact with AM14.1C4 express the definitive

marker, Lmo2

When sorted Bry+ or Bry~ cells were co-cultured with AM14.1C4, resultant cells
were also assessed by reverse transcriptase quantitative PCR to determine whether
the Biy expressing population go on to generate cells which display the molecular
characteristics of definitive haematopoietic cell types. Expression of Lmo2 gene

transcript was found to correlate closely with haematopoietic CFU activity in
AM14.1C4 co-cultures after 10 days of differentiation (Figure 5.13). Lmo2

expression also corresponded with co-culture of cells that had expressed Bry+. These

preliminary data suggest that definitive haematopoietic cell types might have been

generated. The RNA extractions and qPCR analyses depicted in Figure 5.13b were

carried out by Caoxin Fluang as part of her Master's project in the JHBL.

5.5 Discussion

It is well established that the stem cell niche plays a vital role in the induction,

maintenance, expansion and differentiation of HSCs and haematopoietic progenitor
cells. A complex network of interactions controls these processes in vivo, both
within the haemogenic endothelium of the dorsal aorta when FISCs first emerge and
in the adult bone marrow stem cell niche. However, the exact combination of

cellular interactions, ECM components and secreted factors involved in these

processes have not been elucidated. Results presented in Chapter 4 provided
evidence that three clonal stromal cell lines derived from the AM subregion of the
El0-11 AGM are capable of significantly enhancing haematopoietic differentiation
of mouse ES cells. The aim of the experiments described here was to gain
mechanistic insight into the cellular interactions which underlie these haematopoietic

enhancing effects.
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Figure 5.13 Bry-GFP+ or - cells sorted from 4 day suspension EBs co-cultured
with AM14.1C4 to a total of 10 days differentiation, (a) Colony readout at 10
days differentiation, 2 independent experiments; (b) quantitative RT-PCR for
Lmo2 gene expression in 1 co-culture experiment. Lmo2 gene expression
correlated with co-culture of cells that had expressed Bry-GFP+ and with
haematopoietic CFU activity. RNA extractions and quantitative RT-PCR
shown in (b) were carried out by Caoxin Huang.
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5. 5, 7 Enhancing effects ofAM-derived stroma are dependent on contact or short

range secreted factors
It has been shown that AM20.1B4 conditioned medium did not retain the CFU-A

enhancing capacity of stromal co-culture. In addition, haematopoietic activity was

not enhanced when direct cell-cell contact was prevented between EBs and

AM20.1B4, AM20.1A4 or AM14.1C4. The data do not rule out the involvement of

short-range secreted factors, but they suggest that direct cell-cell interactions play a

major role in promoting haematopoietic differentiation of ES cells in the co-culture

system. Furthermore, ECMs isolated from AM stroma did not retain the enhancing
effects of stromal/EB co-culture and some ECMs had inhibitory effects on

haematopoietic differentiation; therefore, it is possible that a balance between

positive and negative regulatory signals determines the outcome of stromal/EB co-

culture. Complex signalling pathways, cellular and ECM interactions can govern

cell fate decisions in ES differentiation, therefore combinations of a number of

mechanisms could be involved in the enhancing effects mediated by AM stromal cell
lines.

These observations corroborate published findings, since the dependence of
FISC/HPC maintenance on direct contact with stromal cells is a well documented

phenomenon. Harvey and Dzierzak (2004) reported that contact was essential in the

support and expansion of Ell aorta-derived (long-term repopulating) HSCs by
UG26.1B6 and 2 additional UG-derived cell lines. In another study, Xu et al (1998)

reported that proliferation of HPCs (e.g. CFU-Mix) from CD34+ human cord blood
cells by the AGM-S3 stromal cell line was also dependent on contact. Ohneda et al

(1998) found that DAS 104-4, an endothelial cell line derived from AGM, was able to

significantly expand E13 foetal liver-derived HSCs (cKit+ Scal+ CD34hlin"). In only
7 days of co-culture with DAS 104-4, numbers of these cells in contact cultures were

increased by 2,600 fold, compared to only 70 fold amplification in non-contact

cultures. Importantly, it was demonstrated that contact was required to maintain the

long-term repopulating abilities of the foetal liver HSCs.
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It is interesting to note that, in contrast to the studies which used embryo-derived

HSCs, Oostendorp et al (2005) have reported that cell-cell contact was not necessary
for the maintenance of repopulating adult BM HSCs. In their experiments, cKit'Ly-
6C~ Hoechst33342 side population HSCs were sorted from adult BM and were

maintained in contact and non-contact cultures with UG26.1B6 or EL08.1D2 for up

to 6 weeks without loss of repopulating ability. This was a surprising finding, as

contact mediated mechanisms are believed to be important for HSC regulation in
vivo. Once more, these data highlight that there may be mechanistic differences
between the regulation of adult HSCs, embryonic HSCs and ES cell-derived
HSC/HPCs.

5.5.2 AM20.1B4 can have de novo haematopoietic inductive effects on ES cells
De novo induction and proliferation of LTR-HSCs take place in the El0-11 AGM

region. Analysis of individual EBs co-cultured on stromal lines showed that the
AM20.1B4 stromal line had a considerable proliferative effect on CFU-A activity of
EBs and was also able induce ES cells to haematopoietic fates (Table 5.1 and Table

5.2). Neither the inductive nor the proliferative effects of AM201.B4 were observed
when direct stromal/EB cell contact was prevented (Table 5.3).

The CFU-A is believed to represent amongst the earliest multipotent haematopoietic

progenitors detectable by in vitro colony assay; one caveat is that the conditioned
medium used in the assay is a source of GM-CSF and CSF-1, which can stimulate

macrophages. Therefore, it is possible that the assay detects cells of the macrophage

lineage. Nonetheless, CFU-A activity in single EBs is a reflection of the
commitment of ES cells to haematopoietic fates, be they early multipotent

progenitors or more mature macrophage progenitors.

It is interesting that AM20.1B4 can induce ES cells to haematopoietic fates and
enhance proliferation of progenitors, yet it is non-supportive to adult BM-derived

HSCs (Oostendorp et al., 2002a). This suggests that the signals required for the
induction of HPC/HSCs from ES cells differ from the signals governing the

proliferation and/or the maintenance of adult BM HSCs. Another AGM derived
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stromal line, AGM-S3, has been reported to be able to induce repopulating activity in

pre-HSCs derived from E8.5 yolk sac and para-aortic splanchnopleura tissues

(Matsuoka et al., 2001). Given that AM20.1B4 has haematopoietic inductive effects
on ES cells, it would be interesting to determine whether this line can support or

induce yolk sac or AGM pre-HSC populations.

5.5.3 Enhancing stromaI lines do not act by promoting numbers ofcells expressing

Brachyury
Co-culture of Bry-201 ES cells expressing GFP targeted to the mesoderm-specific

Brachyiny gene demonstrated that all the stromal lines mediate their haematopoietic

enhancing activity after Brachywy has been expressed in EBs (Figure 5.6).

Regression analysis confirmed that haematopoietic enhancement in AM and OP9 co-

cultures did not correlate with an increase in the proportion of cells expressing Bry-
GFP (Figure 5.9).

Fehling and colleagues (2003) assessed 5ry-GFP expression in Bry-201 EBs
differentiated in suspension cultures and detected Bry-GBV+ cells between days 2 and
4 of differentiation. 65% Bry+ cells were present at day 3, this peaked at 85% on day
4 and by day 6 Bry+ cell numbers were reduced to undetectable levels. Similar
kinetics were observed by Robertson et al (2000). In Figure 5.6, the proportions of

Bry-GFPf cells on gelatin were 12, 30, 50 and 30% on days 3, 4, 5 and 6,

respectively. Thus, the pattern of Bry kinetics broadly correlates with that described

by Fehling et al (2003), but the peak is delayed by 1 day and expression may be

slightly prolonged. In the experiments described here, Bry-201 EBs were prepared
in hanging drops and plated down onto gelatin or stroma on day 1 of differentiation;
in contrast, Fehling et al (2003) prepared and differentiated EBs in suspension
cultures. Therefore, the difference in the timing of Biy expression could reflect
differences between these two culture methods. In addition, according to a study by

Dang et al (2002), plating down EBs on gelatin prior to 4 days differentiation impairs
Flk-l induction, which can in turn impair haematopoietic differentiation and CFU

activity (compared to suspension EBs). This might also account for the delay in the

peak ofBiy expression. Interestingly, this may explain the low CFU activity when 1
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day old EBs are plated down on gelatin, but it suggests that the AM and OP9 stromal
lines are able to overcome the haematopoietic drawbacks associated with plating
down 1 day old EBs, such that they can still significantly promote haematopoietic
differentiation.

When Bry+ and Bry~ cells were sorted from 4 day Bry-201 EBs and co-cultured, it
was found that Bry+ cells and their progeny are the populations which respond to the

haematopoietic signals in AM14.1C4 co-cultures (Figure 5.12). Interestingly,

disaggregation of 4 day EBs prior to co-culture significantly improved the enhancing
effects of AM14.1C4 compared to culture of intact EBs, perhaps due to the release of

responsive Bry+ cells such that higher numbers came in direct contact with the
stromal layer. This supports the hypothesis of a contact-dependent mechanism.

Expression of Lmo2 gene transcript was shown to correlate with haematopoietic
CFU activity when sorted Bry+ cells were co-cultured on AM14.1C4 (Figure 5.13).

During mouse embryogenesis, Lmo2 is required for establishing primitive

haematopoiesis in the yolk sac and Lmo2 null embryos die at E9-10 from anaemia
due to a lack of yolk sac erythropoiesis (Warren et al., 1994). Lmo2 is also known to

be important in definitive haematopoiesis (Yamada et al., 1998) and has been shown
to interact with Scl such that definitive haematopoiesis can occur (Lecuyer et al.,

2007). Therefore, expression of Lmo2 in AM14.1C4 co-cultures could indicate that
definitive haematopoietic cells were generated. However, this is not conclusive and
further RT-PCR analyses need to be carried out.

In light of the in vivo expression pattern of Brachyury and the role of the AM

subregion as the site of HSC emergence, it is not surprising that AM stroma act on

cells that are downstream of Brachyury expression. During mouse embryogenesis,

Brachyuiy is first expressed in the primitive streak at gastrulation (E6.5). Expression

persists in early mesoderm and epiblast cells for a short time, but is down-regulated
when paraxial mesoderm cells undergo lateral migration (Herrmann et al., 1991).
Later at E10, HSCs are believed to bud from intra-aortic clusters which form on the

ventral wall of the dorsal aorta in the AM subregion of the AGM. These aortic
clusters consist of haemogenic endothelium, which expresses both endothelial-
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specific markers (VE-cadherin), as well as markers that are common to endothelial
and haematopoietic cells. It is not clear whether HSCs have endothelial origins or

whether they emerge from a precursor at the level of the mesenchyme and migrate

through the aorta wall (Bertrand et al., 2005; Taoudi et ah, 2005, 2007, 2008). The

bi-potency of cell populations in E8.5 P-Sp and E10-12.5 AGM tissue has been
demonstrated by in vitro colony assay after removing the cells from the in vivo

microenvironment (Yao et al., 2007; Huber et al., 2004). Thus, it remains unclear

whether cells with haemangioblast potential indeed give rise to both endothelial and

haematopoietic lineages in vivo. However, during ES cell differentiation in vitro,

haemangioblast cells have been identified; they arise in EBs at day 3.25 to 3.75 of
differentiation and they have been shown to co-express Brachyury and Flk-1

(Fehling et al., 2003). Since AM stroma do not enhance numbers of ES cells

expressing Brachyury, they are likely to act on a cell type that is down stream of the

haemagioblast. It is possible that the AM lines act on an in vitro ES-derived cell type
that shares characteristics with pre-HSCs present in aortic clusters or their progeny.

5.5.4 Surface phenotype and cytokine expression by stromal lines
The stromal cell lines used in this thesis could express a variety of factors which
underlie their effects on ES cells and embryo-derived and adult HSCs. In attempt to

identify novel factors involved in the haematopoietic supportiveness of the AGM-

and foetal liver -derived stromal cell lines, Oostendorp and colleagues have
characterised a large panel of these cell lines (Oostendorp et al., 2002a; Oostendorp
et al., 2002b; Charbord et al., 2002; Oostendorp et al., 2005).

Oostendorp et al (2002a; 2002b) reported that the stromal lines used in this thesis

express a number of haematopoietic cytokines; such as TPO, SCF, Flt3-L, G-CSF,

IL-ip, IL6 and IL11. However, there was no correlation between expression of
known haematopoietic cytokines by the stroma and their haematopoietic supportive
abilities. AM14.1C4, UG26.1B6, UG26.2D3 and EL08.1D2 cells all expressed SCF
and TPO transcripts. AM20.1B4 cells express surface bound SCF, which is in

agreement with the contact-dependent effect of this stromal line. SCF is reportedly
involved in the migration, proliferation and/or differentiation of HPC/HSCs
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(Driessen et al., 2003) and TPO may support or regulate HSCs, as they express TPO

receptor c-mpl (McKinstry et al., 1997; Yoshihara et al., 2007). Expression of IL11
and IL1 transcripts was variable in the stroma and IL3 and Oncostatin M were not

detected. This expression profile is similar to the AGM derived lines used by
Ohneda et al (1998) and Xu et al (1998), though the latter lines do not express G-
CSF.

Since the effects of AM-derived stromal cells on ES cells were likely to be

dependent on contact, it is of particular interest to compare the surface phenotypes of
the enhancing and non-enhancing stromal cells. However, to date, no clear
correlation has been identified between surface antigen expression and

haematopoietic supportiveness of the stromal lines. Comparisons of surface

phenotypes by Charbord and others (2002) revealed that none of the stromal clones

express surface markers characteristic of endothelial cells or haematopoietic surface

antigens (including VE-cadherin). Krassowska et al (unpublished observations)
confirmed that AM20.1B4, UG26.1B6 and EL08.1D2 cells do not express CD31,

CD45, c-Kit or Flk-1. Krassowska found that these stromal lines expressed

comparable levels of CD29 (integrin (31), CD44 (polymorphic glycoprotein 1) and
VCAM-1. Interestingly, AM20.1B4 cells expressed higher levels of CD49e (integrin
subunit a5) compared to UG26.1B6 and EL08.1D2; however, it is unlikely that this

is wholly responsible for the differential effects of these lines on haematopoietic
differentiation of ES cells. It is more likely that slight differences in expression
levels of positive and negative regulators underlie the differential effects that the
stromal lines have on haematopoiesis.

Charbord et al (2002) reported that, in addition to VCAM-1, CD44 and integrin
subunit a5, the stroma also express integrin subunits a6 and (31, as well as Sca-1,

Thyl and CD34. Sca-1 is well known to be associated with stroma that have

haematopoietic supportive abilities. Furthermore, this marker is expressed on adult
HSCs and it is thought that a homotypic adhesive pathway (i.e. Sca-1 on HSCs to

bone marrow Sca-1) could play a role in homing of HSCs to the bone marrow niche

(Remy-Martin et al., 1999; Charbord et al., 2002). The expression of integrin
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subunits on the stromal cell lines could indicate that interactions mediated by very

late activating antigens (VLA) might play roles. VLA-4, VLA-5 and VLA-6

antigens consist of integrin subunits a4|Jl, a5(31 and oc6[31, respectively. The

ligands for these receptors are VCAM-1, fibronectin and laminin, respectively.
VLA-4/VCAM-1 interactions are thought to be important for haematopoietic

development and cell cycle regulation by facilitating HSC anchorage to stromal cells
in the bone marrow (Funk et al., 1995; Hurley et al., 1997; Oostendorp et al., 1997;

Peled et al., 1999). CD44 (polymorphic glycoprotein 1) is also thought to facilitate
HSC interaction with the stromal cells in the bone marrow niche (Nilsson et al.,

2005; Chan and Watt, 2001). Interestingly, VLA-4, VCAM-1, VLA-5 and CD44 are

also expressed by AGM-S3 stroma (Xu et al., 1998).

When Charbord and colleagues (2002) compared a panel of stromal cell lines with
different anatomic and developmental origins, they found that foetal liver derived
stroma express higher levels of ECM markers compared to BM- and AGM-derived

stroma; these included osteopontin, laminin and fibronectin (perhaps involved in
FISC homing to the foetal liver). BM-derived stromal lines expressed higher levels
of Sca-1 and less VCAM-1 compared to the other stromal lines, consistent with a

role for HSC anchorage in the bone marrow niche. Assessment of AGM-derived
stroma revealed that these cell lines express higher levels of vascular smooth muscle
cell (VSMC) markers such as alpha-smooth muscle actin (ASMA), SM actinin and

endoglin. Interestingly, endoglin has been shown to be required for haemangioblast

specification and early haematopoietic development from murine ES cells

(Perlingeiro et al., 2007). Endoglin is a TGF|3 associated (non-signalling accessory)

receptor and the expression of this antigen could indicate that this transduction

pathway might play a role in co-cultures with AGM-derived lines.

In collaboration with members of the John Hughes Bennett Laboratory (JHBL) in

Edinburgh, Ledran and colleagues (2008) investigated the effects of the clonal
stromal lines on human ES cells. They reported that haematopoietic differentiation
of hES cells was enhanced by co-culture on AM20.1B4, UG26.1B6 and EL08.1D2
stroma. Importantly, intra-femoral transplantation of hES cells differentiated on
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AM20.1B4 resulted in long term engraftment in immuno-compromised adult

NOD/SClD-IL2Rymi" mice. Up to 16% donor contribution (human CD45+ cells) was

observed, which is higher than that previously described for human ES-derived cells.

Transcriptional analysis demonstrated that AM20.1B4, UG26.1B6 and EL08.1D2 all

express TGF|31 and TGF|33, but AM20.1B4 stroma expressed the highest levels of

TGF|31. Blocking studies revealed that TGF|31 and TGF|33 acted as positive

regulators in the haematopoietic enhancing activity of stromal co-culture. In

contrast, TGF|32, BMP4 and ActivinA appeared to be negative regulators of

haematopoietic differentiation of hES cells in the co-culture system. In the murine
ES cell differentiation system, Park et al (2004) and Pearson et al (2008) have
demonstrated that BMP4, bFGF, ActivinA, VEGF and TFG|31 signalling can play
roles in mesoderm, haemangioblast and subsequent haematopoietic differentiation.
In light of these reports and the observations by Ledran et al (2008), experiments will
be undertaken to test the role of TGF(31 and TGF(33 in the AM stroma/ murine EB

co-culture system established here.

A complex network of cellular and ECM interactions and signals controls the

induction, proliferation and differentiation of HSC/HPCs during development in
vivo. Therefore, it is doubtful that a single factor or interaction is wholly responsible
for the enhancing effects of AM-derived stromal cells. The data presented here

suggest that subtle differences in the expression levels of positive and negative

regulatory factors are likely to contribute to the differential haematopoietic

enhancing activities of the stromal lines. Furthermore, there may be mechanistic
differences between the regulation of adult HSCs, embryonic FISCs and ES cell-
derived HSC/HPCs. Investigation into the differences and common characteristics of
these panels of stromal cell lines could pave the way to identifying novel factors and
interactions involved in the regulation of HSCs and HPCs derived from different
sources.
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6.1 Aim

To determine whether ES-derived cells generated in co-culture can achieve

long term repopulation of the haematopoietic system in immuno-compromised adult

recipients.

6.2 Introduction

In vitro analyses have demonstrated that the AM-derived stromal cell lines are

comparable to OP9 stroma in their ability to promote haematopoietic differentiation
of murine ES cells. AM stroma /EB co-culture significantly enhanced the

frequencies of CFU-Mix colonies, which are thought to represent early multipotent

haematopoietic progenitor cells and might reflect the presence of a cell type that has
in vivo repopulating potential. The experiments reported in this chapter aimed (i) to
test whether ES cell -derived adult repopulating LTR-HSCs were generated in co-

culture and (ii) to assess the possible reasons for the difficulties in achieving

haematopoietic repopulation with ES-derived cells, by testing the ability of ES-
derived cells to home and by testing different routes of injection. In the experiments
described here, Kay Samuel (SNBTS) carried out the work on live animals and also

helped with tissue harvesting and setting gates on flow cytometric plots.

6.3 Experimental approach
• To establish a suitable molecular assay to quantify male donor cells in female

recipient tissues, by performing Sry quantitative PCR on genomic DNA

samples comprising known dilutions of male C57/B16 cells in a female

background.

• To determine the in vivo repopulating potential of co-cultured cells, 7a-GFP
EBs were cultured with irradiated stromal layers for up to 10 days

differentiation and transplanted into sublethally irradiated NOD/SCID adult
female mice. Secondary and tertiary transplantations were carried out where

possible.
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• To determine the number of HSCs required to achieve repopulation in the
NOD/SCID mouse model, limiting dilutions of Rosa26 BM cells were

transplanted into adult mice. Intra-venous, intra-splenic and intra-peritoneal

injections were carried out to test the most efficient route of transplantation.

• To test the homing abilities of ES-derived cells, DiD stained E14 and 7a-GFP
ES cells, EBs and C57/B16 BM cells were injected intra-venously into
NOD/SCID recipients. Tissues were harvested 1 hour and 24 hours post¬

transplantation to assess donor contribution.

6.4 Results

6.4.1 Establishing a quantitative PCR strategy to detect male donor cells
The 7a-GFP ES cells used in co-cultures for transplantation experiments

constitutively expressed eGFP and were karyotypically male (Gilchrist et al., 2003).
This should allow donor cells to be distinguished from host tissues by flow

cytometry for GFP and by PCR for the male Y chromosome-specific genes. To
establish a reliable molecular assay for detection and quantification of male donor
cells present in female host tissues, quantitative PCR was performed to detect the Y

chromosome-specific Sry gene. In the first instance, Y chromosome PCR was

carried out on genomic DNA isolated from samples containing known numbers of
male C57/B16 bone marrow cells in a female C57/B16 cell background. It was found
that the fold increase in Sry target signal incremented appropriately in the presence of

increasing male cells (Figure 6.1 and 6.2). fiactin was used as the endogenous

control to account for the amount of DNA loaded per well. Validation of these

primer sets confirmed that they were equally efficient and could be used together in
this way (Appendix 4). The relative quantitation of Sry target was determined by the
delta delta Ct Method in ABI 7500FAST software. Briefly, to quantify the Sry

target, this signal was first normalised against (Sactin and then expressed as fold

change relative to the chosen calibrator (1 in 300 male:female dilution) which was

assigned a value of 1.
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100% male
1 in 10
1 in 30

1 in 100
1 in 300
1 in 1000

1 in 3000

Cycle number

Figure 6.1 Establishing a quantitative PCR Y chromosome detection assay.
Shown are the fluorescence amplification plots for Pactin and Sry targets in a
dilution series of male C57 bone marrow cells in a female cell background.
The raw fluorescence measurement (delta RN) in each sample is plotted
against the cycle number. The green line represents the threshold at which
the Ct values were determined. NTC, no template control.

female
NTC

Delta Rn Cycle
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Male: female cell dilutions

Figure 6.2 Establishing a quantitative PCR Y chromosome detection assay.
qPCR for Sry performed on serial dilutions of male C57 bone marrow cells
in a female cell background. Using the delta delta Ct method in ABI
7500FAST software, Sry has been normalised against corresponding Pactin
endogenous controls and calibrated relative to the 1 in 300 dilution sample.
Relative quantitation incremented appropriately according to the number of
male cells present in a sample. NTC, no template control.
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As seen in Figure 6.2, the Sry target in the 1 in 100 male:female dilution sample was

approximately 3 fold higher than the calibrator and the 1 in 30 sample was 10 fold

higher. Similarly, the 1 in 1,000 dilution was 0.3 fold of the 1 in 300 calibrator.
These data demonstrate that the Y chromosome qPCR assay established here could

reliably quantify the number of male donor cells present in recipient tissues.

6.4.2 Transplantation of ES-derived cells differentiated in the novel stromal
cell/EB co-culture system to assess their in vivo potential
To determine the in vivo potential of co-cultured cells, 1 day old 7a-GFP EBs were

co-cultured with irradiated stromal cell layers for up to 10 days of differentiation.
Co-cultures were transplanted into sublethally irradiated adult female NOD/SCID
mice. Cells were injected by intra-venous or intra-splenic routes and serial

transplantations into secondary and tertiary recipients were carried out where

possible (Figure 6.3, Table 6.1). When 7a-GFP ES-derived cells were sorted from 4

day EB/AM14.1C4 co-cultures (using GFP as a marker for ES cells) were injected

by the intra-splenic route, teratomas formed at the injection site within 4 weeks,

resulting in mortality (Experiment 2, Table 6.1). This was likely due to residual
undifferentiated ES cells being lodged in the spleens at the site of injection.
Tumours only formed when ES derived cells were injected intra-splenically and were

not observed in intra-venous recipients.

Genomic DNA was extracted from recipient tissues for Y chromosome qPCR

analysis. When 10 day sorted or unsorted co-cultures were transplanted into

NOD/SCID, no male donor cells were detected in peripheral blood of recipients after
3 or 6 months (Experiments 3, 4, 5 and 6, Table 6.1). Bone marrow and spleens of
these animals were not tested; though one recipient of cKit+ cells isolated from 10

day EB/AM20.1B4 co-cultures had a very low level (less than 0.1%) of male donor
cells in its spleen and bone marrow (Experiment 5, data not shown). This suggested

that the cells present in co-cultures at 10 days differentiation did not have long term

repopulating potential in adult recipients; though these experiments do not rule out

the presence of short term repopulating CFU-S.
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EB/ stromal co-culture

Flow cytometry
\j Haematopoietic colony assay

Single cell suspension

Primary transplant lxl06 cells

r 8 weeks

Repeat with .

tertiary <
transplants j spleen cells/

Peripheral blood
Spleen
Bone marrow

bone marrow cells

V
Secondary transplants

Flow cytometry
qPCR

Figure 6.3 Transplantation strategy. 7a-GFP EBs were co-cultured for up to
10 days differentiation. Cells were disaggregated to a single cell suspension
for in vitro analysis and the equivalent of lxlO6 ES-derived cells were
transplanted into sub-lethally irradiated (250rad) female NOD/SCID adult
recipients. Secondary and tertiary transplantations of bone marrow and
spleen cells were carried out where possible. Half the bone marrow and
spleen cells were kept for molecular analysis and the other half (on average
35x107 cells) injected per secondary or tertiary recipient.
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Co-culture FACS Control Route Recipients 1°, 2°, 3°
transplant

1 4d AM20.1B4 N/A EB suspension i.v NOD/SCID 1°, 2°, 3°

2 4d AM14.1C4 GFP+ EB suspension i.s./i.v NOG/SCID 1 ° only

3 lOd AM20.1B4 N/A EB/gelatin i.v NOD/SCID 1° only

4 lOd UG26.IB6 N/A EB/gelatin i.v NOD/SCID 1 ° only

5 lOd AM20.1B4 GFP+ cKit+ EB/gelatin cKit+ i.v NOD/SCID 1° only

6 lOd AM20.IB4 GFP+ cK.it- EB/gelatin cKit" i.v NOD/SCID 1° only

Table 6.1 Summary of transplantations carried out with co-cultured cells. In
experiments 2, 5 and 6 GFP+ 7a-GFP ES cells were sorted from the stromal layer by
FACS. Cells were transplanted by intra-venous (i.v) or intra-splenic (i.s) routes. When
only primary transplantations were carried out, the mice were killed approximately 6
months post-transplantation to assess donor contribution. When serial transplantations
were carried out, primary mice were killed 8-12 weeks post-transplantation, secondary
recipients were injected on the same day and killed approximately 8 weeks later. This
was repeated for tertiary transplantation.
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Intra-venous injection of EBs co-cultured with AM20.1B4 to 4 days of
differentiation led to low levels of male donor cell engraftment in primary, secondary
and tertiary recipients (Experiment 1, Table 6.1). Approximately 8-12 weeks post-

injection, 3 out of 4 primary recipients had 0.1% to 0.6% male donor cell

engraftment in their spleens and 1 spleen had <0.1%; though, no donor contribution
was detected in the bone marrow at this time (Figure 6.4a). Low levels of donor
cells must have been present in the bone marrow, however, since secondary

transplantation of primary bone marrow led to some donor engraftment. In spleens
of secondary recipients of primary bone marrow, between 0.65 and 1.8% donor
contribution was detected in all 3 surviving recipients (1 died)(Figure 6.4b). Again,
low levels of donor cells were detected in the bone marrow of these recipients (0.08
to 0.17%)(Figure 6.4b). Interestingly, these donor cells appeared to have long term

self-renewal potential, as tertiary transplantation of bone marrow from secondary

recipients resulted in 0.001 to 13.55% contribution to tertiary spleens and bone
marrow (in 3 recipients)(Figure 6.4d). Similarly, transplantation of secondary

spleens led to 0.001 to 10.2% donor contribution in tertiary bone marrow and spleens
of 2 surviving recipients (1 died)(Figure 6.4e).

EB/AM20.1B4 co-cultured cells that engrafted in the spleens of primary recipients
did not appear to have long term self-renewal potential. Transplantation of primary

spleen cells (Figure 6.4a) into secondary recipients resulted in 0.4 to 3.7% donor
contribution in spleens (in 4 of 4 recipients) and 0.07 to 0.33% contribution to

secondary bone marrow (in 4 of 4 recipients) (Figure 6.4c). However, all the tertiary

recipients of these tissues had less than 0.1% donor contribution (Figure 6.4e),

suggesting that these populations had exhausted their self-renewal capacity. Only 3
of the 8 tertiary recipients survived (a 37.5% survival rate), suggesting that the

frequency of long term repopulating cells was low (Figure 6.4e). By contrast,

tertiary recipients of primary bone marrow cells (Figure 6.4d) had better survival

rate, as 5 of 6 tertiary recipients survived (83% survival rate); despite donor cells

being undetectable in the primary bone marrow.
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Figure 6.4 Serial transplantation of 4 day 7a-GFP EB/AM20.1B4 co-cultures. Y
chromosome qPCR was used to measure male donor contribution to bone marrow
(BM) and spleens (SPL) of (a) primary recipients (n=4); (b) secondary recipients that
received primary BM (n=3); (c) secondary recipients that received primary SPL
(n=4); (d) tertiary recipients that received either BM (n=3) or SPL (n=2) from
secondary mice in (b); and (e) tertiary recipients that received either BM (n=l) or
SPL (n=2) from secondary mice in (c). The green line represents a threshold of 0.1 %
donor cell contribution.
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These data suggest that co-cultured EB cells that are able to home to and engraft in
the adult bone marrow after intra-venous transplantation are more likely (than cells
that home to the spleen) to have long term self-renewal potential and radioprotective
abilities upon serial transplantation. In addition, these cells expanded in numbers
with each transplantation.

In the experiment described above (Figure 6.4), the proportion of male donor cells in

recipient tissues was determined by the Y chromosome qPCR assay and the Sry

target was calibrated against a sample known to consist of 0.1% male 7a-GFP ES-
derived cells in a background of female NOD/SCID bone marrow. The raw Y

chromosome qPCR data is provided in Appendices 5 to 9. These data demonstrate
that 4 day EB/AM20.1B4 co-cultured cells could achieve low levels of engraftment
for >6 months in serial recipients, and that cells expanded in numbers upon serial

transplantation (Figure 6.4). However, the contribution of donor cells to different

haematopoietic compartments (lymphoid, myeloid) could not be determined, as flow

cytometry analysis did not show any 7a-GFP+ cells in recipient tissues. This could

have been due to silencing of the GFP transgene in donor cells.

6.4.3 Silencing of the eGFP transgene in 7a-GFP ES cells in vivo

Flow cytometry analysis of co-cultured 7a-GFP EBs confirmed that eGFP was

constitutively expressed by the differentiating ES cells and 7a-GFP ES cells formed
GFP+ haematopoietic colonies in methylcellulose-based colony assays (Chapter 3).

Furthermore, it has been shown that 7a-GFP ES cells can contribute to

haematopoietic tissues in chimaeras when microinjected into blastocysts, where they
continued to express GFP (Gilchrist et al., 2003).

To assess the stability of GFP expression when differentiated 7a-GFP ES cells were

injected into adult NOD/SCID recipients, undifferentiated 7a-GFP ES cells and 4 day
7a-GFP EBs were stained with Vybrant DiD cell labelling solution (Invitrogen) and

subsequently injected intra-venously into NOD/SCID recipients, which were killed
24 hours later (Figure 6.5).
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Figure 6.5 eGFP transgene in 7a-GFP ES cells is silenced within 24 hours
after transplantation, (a) DiD stained 7a-GFP ES cells and (b) DiD stained 4
day 7a-GFP EB cells were injected intra-venously into female NOD/SC1D.
Peripheral blood (PBL), spleen (SPL) and bone marrow (BM) were harvested
24 hours after injection and analysed by flow cytometry for donor cell
contribution. Gating was carried out by Kay Samuel.
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Flow cytometry confirmed that the donor cells were double positive for DiD and
GFP before injection. Peripheral blood, spleen and bone marrow samples were

harvested 24 hours post-transplantation. Even though donor cells were GFP+DiD+

prior to transplantation, only DiD+ cells were detected in host tissues after

transplantation (n=3) (Figure 6.5). This was also observed when DiD labelled 7 day
old 7a-GFP EB cells were injected (n=10, data not shown). Y chromosome qPCR
confirmed that male donor cells were indeed present in these tissue samples (data not

shown). Thus, these data indicate that the eGFP transgene was silenced when 7a-
GFP ES-derived cells were transplanted into adult recipients. In light of this, it was
not possible to determine which haematopoietic compartments were repopulated in

recipient tissues, as GFP expression in donor cells could not be correlated with
surface markers specific to cells of the myeloid (CDlib, Grl) or lymphoid (B220,

CD4) lineages. Therefore, engraftment of non-haematopoietic EB-derived cells
could not be ruled out.

Naturally occurring GFP from jellyfish contains only 12 CpG sites; however,
enhanced GFP (eGFP) contains 60 CpG sites as a result of changes made at specific
residues to optimise the stability and fluorescence characteristics of the protein. One

explanation for the silencing of eGFP in donor cells could be that the high CpG
dinucleotide content within its 720bp sequence becomes a high-density target of
DNA methylation, thereby triggering silencing of nearby promoter elements (PGK in

7aGFP ES cells). Dalle and colleagues (2005) highlighted this as a possible

silencing mechanism by synthesising and testing a CpG-free eGFP variant against
the effects of eGFP in transgenic mice, ES cells and mouse bone marrow CFU-S

progenitors. The CpG-free eGFP variant was silenced less frequently than eGFP;

therefore, it is possible that a CpG-mediated silencing pathway could contribute to

the effects observed here, likely in addition to other silencing mechanisms.
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6.4.4 Assessing possible reasons for difficulties in achieving repopulation with ES-
derived haematopoietic cells
6.4.4.1 Could ES-derived HSC be present in too few numbers to achieve high levels

of repopulation in the NOD/SCID mouse model?
It was possible that low numbers of ES-HSCs could account for the low levels of

repopulation observed; therefore, it was of interest to determine the number of bone
marrow cells required to achieve repopulation in the NOD/SCID mice. It was also
considered important to test whether the NOD/SCID mouse model used in these

transplantation studies could be successfully repopulated by adult BM derived HSCs.

Limiting dilutions of Rosa26-LacZ BM cells were transplanted into NOD/SCID
adult mice. Four groups of 5 mice received (A) 5xl06, (B) 5x10s, (C) 5xl04 or (D)
5xl03 bone marrow mononuclear cells per recipient (Figure 6.6). LTR-HSCs (SP

cells) represent approximately 0.1% of mouse BM mononuclear cells (Goodell et al.,

1996). Therefore, approximately 5,000 LTR-HSCs would be present in the 5xl06
BM cells injected into the mice of group A. Likewise, each recipient in groups B, C
and D received 500, 50 and 5 LTR-HSCs, respectively.

The recipients were killed 8 weeks post-transplantation and spleen and bone marrow

samples were analysed for donor Rosa26 cell contribution. Rosa26 mice express (3-

galactosidase under the control of Rosa26 promoter elements, which are expressed

constitutively and ubiquitously. Rosa26 donor cells could therefore be detected by

assessing |3-galactosidase activity; thus, recipient tissues were treated with non-

fluorescent fluorescein-di-|3-galactosidase (FDG) substrate. (3-galactosidase enzyme

metabolises FDG, causing the release of a fluorescent by-product which can be

readily detected in donor Rosa26 cells by flow cytometry. Untreated Rosa26 cells
were used as controls.
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Figure 6.6 Testing the ability of bone marrow cells to reconstitute
NOD/SCID mice.
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It was found that spleens of mice that received higher numbers of Rosa26 BM cells

(5xl06 and 5x10s) were highly repopulated (Figure 6.7 and Table 6.2). The bone
marrow of mice that received 5xl06 cells showed higher repopulation than those that
received 5x10s cells (93.1±5.9 compared to 32.7±2.9%, respectively).

Transplantation of lower numbers of BM cells (5xl04 and 5xl03) also led to high
levels of bone marrow repopulation (approximately 86%), but lower levels of

engraftment were observed in recipient spleens (approximately 25%). Interestingly,

recipients of 5xl04 and 5xl03 BM cells had higher bone marrow engraftment

compared to those that received 5xl05 cells (approximately 86% compared to 33%,

respectively). This suggests that donor cell contribution to recipient bone marrow

after intra-venous injection can be variable. Furthermore, injection of low numbers
of HSCs (5 to 50 HSCs per recipient) led to lower spleen repopulation compared to

injecting 500 to 5,000 HSCs. This could suggest that HSCs required more time to

self-renew in the bone marrow before they would undergo multilineage
differentiation to repopulate other haematopoietic tissues such as the spleen. It is

possible that secondary transplantations could stimulate repopulation by BM-HSCs,

as the NOD/SCID mice were kept in individually vented cages and were not subject
to immune challenges which could promote differentiation of HSCs.

Transplantation of HSCs directly into haematopoietic niches could result in higher

(or less variable) levels of engraftment when HSC numbers are low (Burt et al.,

2004). In order to test the most efficient route of transplantation, 5xl04 Rosa26 BM
cells were injected intra-venously or directly into the spleen or peritoneal cavity

(Table 6.3). Recipients were killed 8 weeks post-transplantation. Bone marrow,

spleen and peripheral blood samples were harvested, treated with FDG and analysed

by flow cytometry to quantify donor cell contribution. When BM cells were injected

intra-venously, only 3 of 5 recipients had high levels of donor contribution to the
bone marrow (88.3±3.9%). These recipients also had consistently high levels of

engraftment in the spleen and peripheral blood. By contrast, two intra-venous

recipients showed low levels of engraftment in the bone marrow (5.6±0.01%) and the
contribution of donor cells to spleen and peripheral blood was highly variable

(50±46.2 and 51.9±47.5%, respectively).
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Figure 6.7 Intra-venous transplantation of Rosa26 bone marrow cells in
limiting dilutions into NOD/SCID recipients. Donor cell contribution was
determined by measuring P-galactosidase activity in (a) spleens and (b) bone
marrow of recipients 8 weeks after injection. Each peak represents a replicate
recipient from one transplantation experiment. Untreated spleen or bone
marrow cells were used as controls (no FDG added). Control peaks in black
are representative controls for the samples depicted in grey (recipients of
5xl04 and 5xl03 donor cells); control peaks in dark green relate to samples
shown in green (recipients of 5xl06 and 5xl05 donor cells), ^denotes high
levels of repopulation. Histograms prepared by Kay Samuel.
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Rosa26 BM
donor cells

HSCs Number

of

recipients

Average donor cell
contribution (%)

Spleen Bone Marrow

A 5xl06 5,000 4 68.5 ±0.03 93.1 ±5.9

B 5xl05 500 4 58.9 ±5.9 32.7 ±2.9

C 5xl04 50 5 24.8 ±4.5 85.9 ±4.6

D 5xl03 5 5 24.7 ±1.7 85.5 ±7.4

Table 6.2 Limiting dilutions of Rosa26 BM cells injected intra-venously into
NOD/SCID recipients. Average contribution of donor cells to recipient
tissues was assessed 8 weeks after injection by measuring (3-galactosidase
activity.
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Route Recipients Donor

contribution
to BIV1

Average donor cell contribution (%)

BM SPL PBL PEC

Intra¬
venous

n=5 Low n=2

High n=3

5.6 ±0.1

88.3 ±3.9

50 ±46.2

85.1 ±0.8

51.9 ±47.5

75.6 ±31.3

9.6 ±2.8

7.7 ±2.2

Intra¬

peritoneal
n=5 High n=5 69.8 ±18.9 63.4 ±19.3 5.2 ±3.1 71.5 ±21.2

Intra-

splenic
n=5 High n=5 72.2 ±4.7 52.8 ±16.4 88.5 ±5.9 38.6 ±27.6

Table 6.3 Transplantation of Rosa26 BM cells by different routes. Intra-venous, intra-peritoneal
and intra-splenic routes were tested. Donor cell contribution to bone marrow (BM), spleen
(SPL), peripheral blood (PBL) and peritoneal exudate cells (PEC) was determined by measuring
(3-galactosidase activity.

187



Chapter Six: Results

Intra-peritoneal and intra-splenic injection of Rosa26 BM cells led to high levels of

engraftment in the bone marrow of all the recipients (69.8± 18.9 and 72.2±4.7%

respectively). High numbers of donor cells were also detected in the spleens of these

recipients (63.4+19.3 and 52.8±16.4% respectively). However, in intra-peritoneal

recipients, repopulation of peripheral blood was low (5.2+3.1%), though high levels
of donor cells were detected in the peritoneal cavity (71.5+21.2%). By contrast,

intra-splenic injection led to high levels of contribution to peripheral blood

(88.5±5.7%). Thus, transplantation of BM cells by the intra-splenic route

reproducibly resulted in high levels of donor engraftment in the bone marrow, spleen
and peripheral blood. Donor cells were also detected in the peritoneal cavity,

probably due to the transplant procedure. These data demonstrate that intra-splenic

transplantation of low numbers of BM cells results in the highest levels of

engraftment when recipients were assessed 8 weeks post-transplantation. This

supports the notion that if only low numbers of ES-derived HSCs were present, they
would achieve higher repopulation of spleen and peripheral blood upon direct

injection into a haematopoietic microenvironment.

6.4.4.2 Do ES-derived cells have aberrant homing capabilities?

ES-derived HSCs might have the potential to repopulate immuno-compromised adult

recipients, but could be defective in homing to appropriate adult niches to carry out

their functions (Burt et al., 2004). In order to test whether ES-derived cells were

defective in homing to the haematopoietic niches of adult recipients, undifferentiated
ES cells and 4 or 7 day old EB cells (differentiated in suspension) were injected

intra-venously into sublethally irradiated NOD/SCID recipients (lxlO6 donor cells

per mouse). 7a-GFP or wild-type E14 ES cells were used. C57 BM cells were

injected as positive controls. All donor cells were stained with Vybrant DiD prior to

transplantation to enable detection by flow cytometry and recipient tissues were

harvested 1 hour and 24 hours post-transplantation to assess donor contribution

(Figure 6.8). C57 BM cells were able to rapidly home to the bone marrow, as donor
cells were detected 1 hour after injection (23.4+5.8%) (Table 6.4). Lower numbers

of C57 donor cells were present in the spleen after 1 hour (3.3±0.5%), but numbers
were increased after 24 hours (34.3±9.3%).
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Sublethally irradiated
NOD/SCID

DiD ESC lxl 0s
/ up to 24 hours

DiD EB cells 1x10s

DiD C57 BM 1x10s

f
PBL. SPL and BM:
Flow cytometry

/

No injection

Figure 6.8 Assessing the homing capabilities of ES derived cells.
Undifferentiated ES cells, differentiated EB cells and C57 bone marrow cells
were injected intra-venously into NOD/SCID recipients (lxlO6 cells per
recipient). Donor cells were stained with Vybrant DiD prior to
transplantation to enable donor cells to be distinguished from unstained host
tissue by flow cytometry. Mice were killed 1 hour and 24 hours later to
assess donor cell contribution to spleens (SPL) and bone marrow (BM).
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Donor
cells

(DiD+)

Number of

recipients
Tissue

harvest
Average donor cell contribution

(%)

SPL BM

ES cells n=5 1 hour 2.0 ±0.4 22.3 ±1.3

n=7 24 hours 8.7 ±7.3 23.3 ±14.6

4 day
EBs

n=3 24 hours 14.8 ±9.5 0.2 ±0.02

7 day
EBs

n=5 1 hour 1.7 ±0.2 24.4 ±4.3

n=5 24 hours 7.8 ±1.3 27.9 ±5.7

C57BM n=5 1 hour 3.3 ±0.5 23.4 ±5.8

n=8 24 hours 34.3 ±9.3 35.0 ±9.3

Table 6.4 Homing capabilities of ES derived cells in NOD/SCID recipients.
Undifferentiated ES cells, 4 day or 7 day old suspension EBs and C57/B16 bone
marrow cells were injected at lxlO6 cells per recipient.
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When undifferentiated ES cells or 7 day old EB cells were injected, the pattern of
donor contribution after 1 hour was broadly comparable with that of control C57 BM

cells, with 22.3± 1.3 and 24.4±4.3% donor contribution to the bone marrow,

respectively. Again, low donor contribution was observed in recipient spleens

(2.0±0.4% donor ES cells and 1.7±0.2% 7 day EBs cells). After 24 hours, however,
the numbers of ES-derived cells in the spleens did not reach the level observed for
C57 BM donor cells. By contrast, 4 day EB cells were able to home to and

accumulate in the spleen, as there was 14.8±9.5% donor contribution after 24 hours,
but only low numbers of donor cells were detected in the bone marrow

(0.2±0.002%). This implies that ES cells at different stages of differentiation vary in
their homing capabilities in an adult microenvironment. These data are also
consistent with the 4 day EB/AM20.1B4 transplantation study, where 4 day EB
donor cells engrafted in the spleens of primary recipients, but numbers were

undetectable in bone marrow (Figure 6.4a).

Y chromosome qPCR analysis of genomic DNA isolated from selected tissues in

Table 6.4 confirmed that male donor cells were present (data not shown); therefore, it
was unlikely that the DiD stain leaked from donor cells and marked host tissues.

Though, fusion of donor and host cells could not be ruled out; however, this could
still indicate that the donor cells had homed to the niches in which their markers were

detected.

It has been suggested that full body irradiation of recipients prior to transplantation
can affect the SDF-1/CXCR4 homing signal pathway in adult bone marrow niches.
The data described here demonstrate that C57 BM cells were able to home to the

bone marrow niche after intra-venous injection into sublethally irradiated
NOD/SCID recipients, suggesting that full body irradiation does not disrupt the

signalling pathways required for these cells to home. It is possible, however, that
irradiation could disrupt the pathways on which ES-HSCs rely for homing to adult
niches.
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6.5 Discussion

6.5.1 Derivation of transplantable EB-derived cells
To date, there has been only limited success in generating HSCs with long term

repopulating capabilities from mouse ES cells which have not been genetically

manipulated to over-express haematopoietic genes. Furthermore, there have been no

reports that ES cells differentiated on OP9 stroma generate LTR-HSCs which can

repopulate recipients, without over-expressing haematopoietic genes in culture (Ji et

ah, 2008; Kyba et ah, 2002; Wang et ah, 2005). Muller and Dzierzak (1993)

reported that EB cells differentiated in suspension for 5-22 days were able to achieve
0.1-6% engraftment (mainly lymphoid) in recipients for over 6.5 months.

Repopulation activity peaked between days 11 and 13 of differentiation. This
contrasts with the transplantation experiments described here, where no repopulation

activity was present in 10 day EB/AM stromal co-cultures. This could be a reflection
of the different methods used for ES differentiation. Hole et al (1996) reported that 4

day EB cells differentiated in suspension cultures could achieve long term

repopulation in irradiated adult recipients, though donor contribution was low and

variable (less than 5% in most recipients). The experiments described in this chapter

were designed to determine whether HSCs with long term repopulating potential
were generated in EBs differentiated in AM stromal co-cultures. The data confirm
the observation by Hole et al (1996) that ES derived cells able to engraft adult

recipients are present in 4 day EBs (also reported by Miyagi et al., 2002). However,
the strategy used here differs from that of Hole et al (1996), as no irradiated spleen
carrier cells were co-injected with donor EB cells. In Hole's experiments, no

repopulation was achieved by EB cells in the absence of spleen carriers (Kay

Samuel, personal communication).

EBs that were co-cultured with AM20.1B4 stroma to 4 days differentiation were able

to engraft in spleens and bone marrow of primary, secondary and tertiary recipients
and were detected for >6 months (Figure 6.4). The ES-derived donor cells were

found to expand in numbers when serially transplanted into secondary and tertiary

recipients. Donor contribution of between 0.1% and 13.55% was detected in spleens
and/or bone marrow in 13 out of 18 recipients (Figure 6.4). Starting populations of
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only lxlO6 co-cultured EB cells were injected and, on average, 54xl07 and 85xl07
cells were recovered from NOD/SCID recipient spleens and bone marrow,

respectively. This equates to an expansion of up to 115 fold in donor cell numbers
from the time of primary injection to tertiary recipients >6 months later.

In primary recipients, higher numbers of donor cells engrafted in the spleens,

compared to the bone marrow. This is consistent with the data presented in Table

6.4, where 4 day disaggregated EB cells were detected at higher levels in spleens

compared to bone marrow 24 hours after intra-venous injection into NOD/SCID

recipients. Interestingly, serial transplantation of EB/AM20.1B4 donor cells that had

engrafted into primary bone marrow (at levels undetectable by qPCR) had higher

self-renewal/proliferation potential compared to those that engrafted in the spleens of

primary recipients. The highest levels of donor chimaerism (10.2 and 13.55%) were
detected in two tertiary recipients of primary bone marrow cells more than 6 months
after the primary injection of EB/AM20.1B4 co-cultures. By contrast, spleen-
derived repopulating donor cells had only short term engraftment capabilities, as

higher levels of donor cells were detected in secondary recipients, but the levels
reduced to <0.1% in tertiary recipients. Furthermore, only 37.5% of tertiary

recipients survived when spleen repopulating cells were serially transplanted,

suggesting that these donor cells had only short term radioprotective abilities.

Conversely, a high tertiary survival rate (83%) was associated with serial

transplantation of donor cells that homed to and engrafted in primary bone marrow.

This suggested that these cells had long term self-renewal capabilities and also
conferred radioprotection. It is important to note that in this transplantation

experiment, it was not possible to confirm that haematopoietic compartments were

repopulated, as the GFP transgene in donor cells was silenced (Figure 6.5). Thus, it
cannot be ruled out that the male donor contribution was due to engraftment of non-

haematopoietic ES derived cells. It will therefore be important to repeat these

transplantation experiments using another ES cell line, such as C57/BL6 ES cells,
which would be distinguishable from host tissues by differential expression of Ly5
alleles that can be detected by flow cytometry. Alternatively, haematopoietic
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populations (e.g. CD45+) could be isolated by FACS from recipient tissue samples

prior to genomic DNA extraction and Y chromosome qPCR analysis.

One could argue that engraftment of donor ES-derived cells with high tumour

forming ability could also expand upon serial transplantation. However,

transplantation of undifferentiated ES cells leads to teratoma formation and 100%

mortality within 8-13 days (Burt et al., 2004). In addition, Muller and Dzierzak

(1993) reported that injection of 3 day EB cells led to teratoma formation and

mortality within 6 weeks after transplantation; while injection of EBs on or after 5

days of differentiation did not lead to tumour formation. In the transplantation

experiment described in Figure 6.4, no tumour formation was observed, even though
donor cells were serially transplanted every 8-10 weeks and recipients monitored for

longer than 6 months. Therefore, it is unlikely that tumour cells were responsible for
the engraftment observed. Furthermore, serial transplantation and expansion of
tumour-like cells would not correlate with an increased recipient survival rate or

radioprotective abilities, which were specifically observed in donor cells that

engrafted in primary bone marrow. It is possible that these observations are a

reflection of a clonal dominance effect in a small proportion of karyotypically
abnormal (but non-malignant) ES-derived cells that have been selected for by serial

transplantation. This phenomenon has been observed in retrovirally marked mouse

HSCs, whereby retroviral integrations occurring near loci involved in self-renewal or
cell survival conferred a selective advantage by promoting non-malignant expansion
of HSC clones in long-term serial transplantation experiments (Kustikova et al.,

2005).

The correlation between spleen colonisation by donor cells and short-term self-
renewal abilities is perhaps not surprising (Figure 6.4a, c, e); since CFU-S cells,
known to confer short term radioprotection, home to the spleen upon intra-venous

injection and form macroscopic colonies comprising of myeloid cells that have short
term self-renewal capabilities when excised and serially transplanted into new

recipients (Till and McCulloch, 1961). In light of the data presented here, it would
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be interesting to assess the CFU-S potential of 4 day EB/AM20.1B4 co-cultured
cells.

It is enticing that a small number of donor cells that home to and engraft in the adult
bone marrow (though undetectable by qPCR), are apparently able to confer

radioprotection and persist on serial transplantation (Figure 6.4a, b and d). It is

possible that host bone marrow and spleen cells co-injected with donor cells into

secondary and tertiary recipients could act as carriers to aid the survival and homing
of donor cells, thereby facilitating the expansion of donor cell numbers. In addition,
serial transplantation of the primary bone marrow could have selected for a rare EB-
derived cell type that has LTR-HSC adult homing characteristics. In support of this

hypothesis, Krause et al (2001) used a selection strategy, whereby they labelled
donor BM cells and injected them intra-venously into lethally irradiated adult mice.
48 hours later, labelled donor cells were recovered (by FACS) from the recipient
bone marrow. By limiting dilution, a single labelled donor cell was transplanted into
each new recipient. It was found that a single HSC, selected on the basis of its

ability to home to the adult bone marrow, could be serially transplanted without loss
of self-renewal or repopulating ability.

It should be noted that the donor contribution reported in Figure 6.4 is consistent
with results recently published by Ledran and colleagues (2008), where AM20.1B4
stroma were able to promote haematopoietic repopulating activity in human ES cells.
In collaboration with my colleagues in Edinburgh, Ledran and colleagues (2008)

investigated the effects of the AM20.1B4, UG26.1B6 and EL08.1D2 stromal lines on

human ES cells. The authors differentiated human ES cells on AM20.1B4 stroma for

12 days and transplanted 5x10s co-cultured cells directly into the femoral cavities of
irradiated NOD/SCID-IL2RynuU adult recipients. 8-12 weeks post-transplantation,
2.06-16.26% of recipient bone marrow and peripheral blood was donor derived

(measured by expression of human CD45^) and there was donor contribution to

myeloid and lymphoid compartments. Higher levels of repopulation were achieved

with AM20.1B4 co-cultures compared to UG26.1B6, EL08.1D2 and primary AGM
derived monolayers, suggesting that AM20.1B4 was particularly potent in enhancing
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repopulating activity in human ES cells. Importantly, these data represent the

highest levels of human ES cell derived repopulation achieved to date. Therefore, it
will be extremely useful to further characterise the effects and properties of the
AM20.1B4 stromal cell line.

6.5.2 Reasons for difficulties in achieving repopulation with ES-derived cells
A number of reasons have been put forward to account for the difficulties in

achieving high levels of repopulation with ES cell-derived HSCs in adult recipients.
For instance, ES-HSCs could be developmentally too immature to function in or

respond to an adult microenvironment. Prior to El0.5, CD34+cKit+ cells derived
from the yolk sac or P-Sp region can repopulate neonatal, but not adult, recipients

(Yoder et al., 1997a, 1997b). This supports the notion that a pre-HSC exists that can

repopulate only when transplanted into a developmentally appropriate
microenvironment. In light of this, it would be interesting to determine whether the
ES-HSCs generated in AM stromal co-cultures are able to provide long-term

multilineage repopulation in newborn recipients, as newborn mice still have a

functional foetal liver haematopoietic niche.

Another explanation could be that ES-HSCs have a tendency to terminally
differentiate in culture and might therefore only be present in a small time window.
Low frequencies of ES-HSCs could make these cell populations less likely to

achieve repopulation by intra-venous injection within the time frame of the LTR

assay. In support of this hypothesis, it has been demonstrated that intra-venous

injection of fewer than 50 Rosa26 BM-HSCs can achieve high levels of repopulation
in recipient bone marrow, but lower repopulation of the spleens after 8 weeks (Table

6.2). Increased numbers of BM-HSCs (500 to 5,000) were required to achieve high
levels of repopulation in both spleen and bone marrow. These data suggest that
when cells are injected intra-venously into NOD/SCID, the equivalent of 500 to

5,000 ES-HSCs would need to be injected per recipient to achieve high levels of

repopulation after 8 weeks in primary recipients, provided that the cells were fully

competent in homing and responding to the adult bone marrow niche. In vitro, CFU-
Mix colonies might represent cells that are functional in vivo, or could represent CFU
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down-stream of cells which may have repopulating abilities (Kerk et al., 1985;
Nakahata et al., 1982; Humphries et al., 1981). In 6 day EB/AM20.1B4 and
AM14.1C4 co-cultures, CFU-Mix were detected at frequencies of 42.9 and 36.8 per

3xl05 ES-derived cells, respectively (Chapter 4). Starting populations of lxlO6 EB-
derived co-cultured cells were transplanted into each NOD/SCID recipient, equating
to only 123 to 143 CFU-Mix progenitors per recipient. Presuming that each CFU-
Mix represented a cell with repopulating potential, then low numbers of ES-HSCs
could account for the low levels of engraftment observed in recipients. In order to

transplant the equivalent of 500 ES-HSCs, more than 4xl06 EB-derived cells would
need to be injected into each recipient. In the experiments here, only 4 day and 10

day co-cultures were assessed. Since CFU-Mix numbers in EB/stromal co-cultures

peaked at 6 days of differentiation, it would be important to transplant the cells at

this time point.

Retroviral marking studies have shown that a single adult BM-derived definitive
HSC is able to achieve long-term repopulation of an immuno-compromised adult

recipient when injected intra-venously (Osawa et al., 1996). This relies on the cell

surviving the injection and successfully homing to the appropriate adult bone marrow

niche, evading any residual host immunity. Subsequently, the HSC must respond to

the niche by undergoing self-renewal to expand the HSC pool and some of these
HSCs have to undergo multilineage differentiation to provide repopulation of the
blood and immune system. In light of all these requirements, it follows that the more

HSCs transplanted, the more likely it is that high levels of haematopoietic

repopulation will be achieved within the time frame of the experiment.

It is possible that ES-HSCs are unable to home appropriately to adult haematopoietic
niches upon intra-venous transplantation, which could account for the low levels of

engraftment observed. In support of this hypothesis, after intra-venous injection 4

day EB cells were defective in their ability to home to the adult bone marrow,

compared to 7 day EBs and C57 BM cells (Table 6.4). Thus, the stage of EB
differentiation appears to influence the homing capabilities of the ES-derived cells.
It would be useful to assess expression of SDF-1 and CXCR4 receptor on
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differentiating EB cells in co-culture to determine which time point would be
amenable to intra-venous injection into adult recipients. Furthermore, a study by
Burt and colleagues (2004) showed that injection of ES-derived haematopoietic cells

(CD45+cKit+) sorted from 7 day suspension EBs directly into the femoral cavity
resulted in significantly higher levels of repopulation compared to intra-venous

injection. When different routes of injection were tested with Rosa 26 BM cells

(Table 6.3), it was found that injection of the cells directly into recipient spleens was

more efficient at achieving repopulation compared to intra-venous injection. In light
of all these observations, it would be interesting to test the ability of the EB/AM co-

cultured cells to repopulate recipients when injected directly into the femoral cavity.
This would also be in accordance with the strategy of Ledran and colleagues (2008),
where repopulation was achieved with human ES/AM20.1B4 co-cultures by using
the intra-femoral route.

6.5.3 Summary

It is promising that 4 day EB/AM20.1B4 stromal co-cultures generate cells that are
able to achieve long term engraftment in bone marrow and spleen niches of adult

recipients; though, engraftment of non-haematopoietic donor cells has not been ruled
out. It will be important to repeat these transplantation experiments with another ES
cell line, such as C57/B16 derived ES cells, that will allow donor and host cells to be

distinguishable by flow cytometry, so that haematopoietic repopulation can be
demonstrated. The data presented in this chapter have highlighted ways in which the

transplantation experiments with murine EB/stromal co-cultures can be improved.
For instance, transplantation of higher numbers of EB-derived cells (at least 4xl06)
directly into the intra-femoral cavity, could improve repopulation. In addition, co-
cultures could be transplanted at 6 days differentiation when CFU-Mix activity is

highly enriched and CFU-S assays could be performed to assess the short-term

repopulating potential of the co-cultured cells. Alternatively, cells could be injected
into newborn recipients to test their repopulating potential in an embryonic niche.
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7.1 Summary
A novel co-culture system has been established using AGM-derived clonal stromal
cell lines to reliably and efficiently enhance haematopoietic differentiation of mouse
ES cells. It has been demonstrated that stromal cell lines derived from the AM

subregion of the E10.5-11 AGM, but not the UG subregion, potently promote

haematopoietic differentiation. In future, this could be an important factor to

consider when deriving AGM stromal cell lines for the purpose of differentiating ES
cells. Furthermore, the enhancing activity of AM stroma was comparable or better
than that of the widely used OP9 stromal cell line (Nakano et ah, 1994). Importantly,
EBs co-cultured with AM20.1B4 were apparently capable of low levels (0.1 to

13.55%) of long-term engraftment in NOD/SCID mice, though contribution of donor
cells to haematopoietic compartments in recipient animals is yet to be confirmed.

Co-culture of sorted ES cell populations isolated from EBs revealed that the stromal
lines mediate their haematopoietic enhancing effects after mesoderm (Brachyury)

specification in EBs (after day 4 of differentiation). Such sorting experiments will

contribute to the understanding of which ES-derived cell populations are responsive
to haematopoietic regulation by the stromal cells. It was also found that the

enhancing activity of co-culture is dependent on direct contact between EBs and the
stromal cells, as demonstrated in experiments using transwell inserts to inhibit
contact. Extracellular matrices (ECMs) isolated from stromal cell layers did not

retain the enhancing activity of intact stromal co-cultures. These data strongly

support a contact-dependent mechanism of action. Interestingly, some ECMs had

inhibitory effects on haematopoietic differentiation of EBs, as compared to those
cultured on gelatin alone. Thus, it is possible that a balance between positive and

negative haematopoietic regulators underlie the effects of co-culture. It will be

important to keep this in mind when investigating the factors involved in the

haematopoietic enhancing effects of the AM-derived stromal cell lines.
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7.2 Ongoing work
A master's project was undertaken by Caoxin Huang, under my supervision, to

further the investigations described in this thesis. In an important development,

Huang has shown that AM stroma are able to efficiently enhance haematopoietic
differentiation of EBs under serum-free conditions. The serum-free differentiation

medium was modified from a protocol described by Gouon-Evans and colleagues

(Gouon-Evans et al., 2006) and supplemented with SCF and BMP4. Importantly,

comparable levels of haematopoietic activity were observed in serum-containing and
serum-free EB/AM co-cultures (observed in 3 independent experiments). The use of
serum-free media in the stromal co-culture system should reduce the variability in

haematopoietic enhancement between experiments, which can be augmented by
differences between batches of foetal calf serum. A highly defined differentiation

protocol such as this will also facilitate future investigations into the molecular

signalling underlying the enhancing activity of AM stroma.

Quantitative RT-PCR analysis of the stromal cell lines revealed that they all express
Notch 1 receptor and its ligands Jaggedl and Delta-like4 (Huang, unpublished

observations). Notch 1 and Jaggedl were also expressed by 5 day EB cells sorted
from (serum-containing) co-cultures (Gordon-Keylock, unpublished). Notch

signalling has been implicated in the regulation of haematopoiesis in vivo (Stier et

al., 2002; Calvi et al., 2003). Therefore, experiments were designed to test whether
the enhancing activity of the stroma was dependent on Notch signalling. To block
Notch signalling during EB/stromal co-culture, a gamma-secretase inhibitor

(Calbiochem)(Lowell et al., 2006) was added to (serum-containing) co-cultures
between 4 and 6 days of EB differentiation. In the presence of the inhibitor, the

frequency of multipotent haematopoietic progenitors (CFU-Mix, CFU-GM and

Ery/Mac) was reduced by 57, 63 and 56% in AM20.1B4, AM14.1C4 and OP9 co-

cultures, respectively, as compared to the corresponding co-cultures where only
diluent was added (p<0.05, 3 independent experiments). By contrast, the inhibitor
did not significantly affect haematopoietic differentiation of EBs cultured on gelatin,
as compared to the diluent control (p=0.61). Thus, blocking Notch signalling

significantly reduced the haematopoietic enhancing activity of EB/stromal co-
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culture, suggesting that the effects of these stroma are at least partially dependent on
Notch signalling pathways. This is in accordance with a recent publication by Cheng
et al (2008) showing that Notch signalling is required for definitive haematopoietic
differentiation of mouse ES cells. In future experiments, Huang will ectopically

express Notch ligands, such as Jaggedl, in UG26.1B6 stromal cells to determine if
these ligands can confer haematopoietic promoting activity on a non-supportive cell
line.

To date, there have been no reports of long-term engraftment by ES-derived cells
differentiated on OP9 stroma without over-expressing haematopoietic genes in
culture (Kyba et al., 2002; Wang et al., 2005; Ji et al., 2008). A tamoxifen inducible
HoxB4-ERT ES cell line has been established by Dr Melany Jackson and Dr Richard

T2Axton in the JHBL. The induction of HoxB4-ER in EBs cultured on gelatin

significantly enhances haematopoietic differentiation by 6 days (on average, there is
a 7-fold increase in total haematopoietic CFUs generated from induced EBs

T2
compared to non-induced EBs). However, when HoxB4-ER EBs were

differentiated in the AM stromal co-culture system (in the presence of serum), it was
found that induction of HoxB4 did not further enhance the haematopoietic activity in
EBs co-cultured with AM14.1C4, suggesting that these two approaches did not have
additive effects (3 independent experiments, Gordon-Keylock, unpublished). One

interpretation is that AM co-culture and HoxB4 induction mediate their effects on

EBs through overlapping signalling pathways. It has been reported that Notch 1 is

up-regulated when HoxB4 is over-expressed in differentiating ES cells (Schiedlmeier
et al., 2007) and Notch signalling has already been shown to be involved in the

haematopoietic enhancing activity of AM stroma (Huang et al, unpublished).

Therefore, it is possible that both these systems utilise the Notch pathway. To test
T2this hypothesis, experiments are underway to determine whether HoxB4-ER

induction can still enhance haematopoietic activity in EBs (on gelatin) when Notch

signalling is blocked by the gamma-secretase inhibitor.
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7.3 Prospective
The work described in this thesis has already been translated into the human ES cell

system. As stated previously, Ledran and colleagues (2008) have demonstrated that
co-culture of human ES cells with AM20.1B4 for 12 days can promote multilineage

repopulating HSC activity. The authors reported the highest levels of repopulation
described for human ES cells to date (up to 16% donor contribution to peripheral
blood and bone marrow of NOD/SCID-IL2Rynu" recipients). Therefore, further

investigations into the molecular mechanisms underlying the effects of AM20.1B4
on murine ES cells will be directly applicable to the human ES cell differentiation

system. These studies could ultimately facilitate the generation of transplantable
human ES cell derived HSCs for autologous cell replacement therapies, for use in

drug discovery or to identify novel factors able to expand or maintain HSCs in
culture.

It has recently been shown that functional enucleated definitive erythrocytes can be
derived from human ES cells on a large scale (Lu et al., 2008). Lu and colleagues

(2008) demonstrated, for the first time, that the oxygen transport capabilities of ES-
derived erythrocytes were comparable with that of normal adult erythrocytes and

they responded appropriately to environmental changes (such as pH levels). Another

key aspect of this publication was that the cells were derived under highly defined
serum-free conditions and it was the first time erythrocytes were produced in large

enough numbers to validate their potential for use in the clinic. The work is ongoing,
but it is a promising demonstration of how ES cells could provide a limitless source

of blood for transfusions, which is often in short supply. If the erythrocytes were

derived from ES cells of blood group O negative, they would be compatible with any

patient. The advantages of this "universal" blood supply would include the absence
of blood pathogens such as HIV and hepatitis. Since erythrocytes do not have nuclei,
this removes the possibility of uncontrolled growth upon transfusion, provided that a

pure population of donor cells can be isolated from the starting undifferentiated ES
cell population. This study represents a promising advance towards the clinical

application of differentiated ES cells.
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Recently, there have been two significant developments in the wider stem cell field;

namely, the generation of induced pluripotent stem (iPS) cells from human
fibroblasts and the generation of animal-human hybrid embryos to establish human
ES cell lines. The UK human embryology and fertilisation association (HEFA)

recently approved the generation of bovine-human hybrid embryos to derive disease-

specific human ES cells (February 2008). The work will be carried out at King's

College London and the University ofNewcastle Upon Tyne. Nuclei from skin cells
of individuals carrying genetic mutations for human neurodegenerative diseases

(such as Parkinson's and Alzheimer's disease) will be introduced into enucleated
bovine oocytes by somatic cell nuclear transfer. Disease-specific human ES cell
lines will be derived from resultant hybrid embryos, which will be incubated for no

longer than 14 days before being destroyed. The ES cells will be 99.9% human and
will only contain 0.1% bovine DNA derived from oocyte mitochondria. Directed
differentiation of disease-specific hES cells will provide novel insights into the

pathogenesis, genetic and cellular factors underlying these diseases. Importantly,
this approach will generate cellular tools for the study of diseases which are not well
understood and thus will facilitate the development of novel therapies. These types

of investigation represent an exciting new application for ES cells, but they will

largely depend on efficient differentiation protocols. Even though the initial studies
will focus on neurodegenerative disorders, work will also be carried out to elucidate
the molecular pathways underpinning somatic cell nuclear reprogramming events.

The use of animal-human hybrid embryos will facilitate this research, as human

oocytes are often in short supply. This work could also pave the way to deriving
better quality human ES cell lines for use in research, as the human ES cell lines to

date have been generated from surplus embryos from in vitro fertilisation clinics and
are therefore not of the highest quality. Thus, this work will have a positive impact
on all human ES cell differentiation applications; including differentiation into

haematopoietic lineages.

Yamanaka and colleagues (Takahashi et al., 2007) and Yu and colleagues (Yu et al.,

2007) have demonstrated that transduction of four specific transcription factors into

human fibroblasts results in somatic cell reprogramming such that the cells revert to
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a pluripotent state. These induced pluripotent stem (iPS) cells display many

characteristics associated with human ES cells; including morphology, cell surface

phenotype, gene expression and telomerase expression. Importantly, the iPS cells

were able to differentiate into lineages of all three germlayers in vitro and after

transplantation into immuno-compromised mice (teratomas formed). The advent of
human iPS cells is an exciting breakthrough for autologous cell replacement

therapies, as the use of somatic cells bypasses the ethical problems associated with

embryonic stem cells. Interestingly, the two groups used different cocktails of

transcription factors to generate the iPS cells. Takahashi et al (2007) used Oct3/4,

Sox2, Klf4 and c-Myc, whereas Yu et al (2007) used Oct4, Sox2, Nanog and LIN28.

However, the molecular mechanisms underlying the reprogramming are unknown.
The authors noted that the iPS clones contained a number of retroviral integrations
for each transcription factor. This feature and the use of oncogenes raises safety
concerns for the use of these cells in humans. This highlights a need for novel

reprogramming methods that do not use retroviruses or oncogenes and, ideally, do
not require permanent genetic modification of the cells. This technology is still in its

early stages, but there is clearly enormous research potential. For instance, Park et al

(2008) have recently generated patient-specific iPS cells, which could serve as new

disease models for research and drug discovery. The differentiation of disease-

specific and normal human ES cells will function as a key model system to

complement these studies.

It has been only 27 years since the isolation of the first mouse ES cells in 1981

(Evans and Kaufman, 1981; Martin, 1981), which dramatically altered the way in
which gene function can be studied in developmental biology. Since the derivation
of the first human ES cell lines in 1998 (Thomson et al., 1998), the field of stem cell
research has rapidly progressed as promising new technologies have emerged,

including the generation of iPS cells and new human ES cell lines from animal-
human hybrid embryos. The success of these technologies will rely heavily on

efficient, reliable and well-defined large-scale culture methods to direct
differentiation into lineages of interest. In terms of haematopoietic differentiation,
the large-scale production of human ES cell derived erythrocytes by Lu et al (2008)
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has brought the field a step closer the clinic. The success of this study has

highlighted the importance of projects such as the one described in this thesis.

Importantly, the work presented here has already been translated into the human ES
cell system by Lako and colleagues in Newcastle (Ledran et al., 2008). This
collaboration will continue as further investigations are made into the murine AM
stromal co-culture system.
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Appendix 1 The presence of irradiated stromal cells did not affect
haematopoietic activity of EB cells in methylcellulose-based colony assays, (a)
Diagrammatic summary of experiment, (b) Colony assays set up with 0 day or
6 day suspension EB cells alone or mixed with irradiated stromal cells.
Irradiated AM20.1B4 and UG26.1B6 cells did not generate any colonies in the
assays. There was no significant difference in the numbers of colonies
obtained from 0 day or 6 day EB cells seeded alone or when they were seeded
along with irradiated stromal cells (p=0.43 and p=0.65, respectively).
Friedman tests were carried out (non-parametric one-way ANOVA with
matched pairs).
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Appendix 2 The presence of irradiated stromal cells did not significantly affect
CFU-A activity of EB cells in the assays, (a) Diagrammatic summary of
experiment, (b) Testing the effects of stromal cells present in the CFU-A assay
with disaggregated 6 day EBs. Non-parametric one-way ANOVA showed that
there was no difference in CFU-A colony numbers when 6 day old EB cells
were seeded alone or when seeded together with irradiated stromal cells
(p=0.086).
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Surface % Positive ES-derived cells

4 days differentiation 6 days differentiation

Gelatin AM20.1B4 UG26.1B6 EL08.1D2 Gelatin AM20.1B4 UG26.1B6 EL08.1D2

cKit 1.9 ±
1.9

0.6 ±0.6 0.6 ±0.6 0.3 ±0.3 9.4 ±4.9 7.0 ±6.0 2.8 ± 2.1 1.5 ±0.6

Seal nd nd nd nd 3.9 ±2.2 3.4 ±2.5 3.7 ±3.0 1.9 ± 1.2

CD45 nd nd nd nd 0.1 ±

0.04
0.7 ±0.5 0.1 ±0.1 0.4 ±0.3

Grl nd nd nd nd 0.03 ±

0.04
0.1 ±0.1 0.01 ±

0.02
0.2 ±0.4

CDllb nd nd nd nd 0.12 ±
0.1

1.8 ± 1.6 0.15 ±

0.18
0.22 ±

0.38

CD49d 7.21 4.98 9.53 2.48 25.8 ±

17.2
18.1 ±9.7 4.6 ±0.6 0.8 ± 1.1

Terl 19 nd nd nd nd 0.04 ±

0.06
1.31 ±2.06 0.01 ±

0.01
0.54 ±

0.77

B220 nd nd nd nd 2.98 ±

0.3
1.57 ± 1.2 0.6 ±0.14 0.14 ±

0.19

Grid-

CD! lb+

nd nd nd nd 0.03 ±

0.04
0.1 ±0.1 0±0 0.22 ±

0.38

VCAM-1 0.42 0.02 0.33 0.36 3.5 ±0.8 2.4 ±2.1 1.4 ± 1.2 1.7 ± 1.3

CD31 0.86 4.75 4.32 2.37 25.8 ±

2.7
20 ± 14 16 ± 12 1.7 ± 1.9

Flkl 1.24 0 0.11 0.84 3.6 ± 1.0 2.0 ± 1.2 2.3 ± 1.01 0.6 ±0.97

CD54 nd nd nd nd 34.6 ±

3.2
40.1 ±6.2 26.6 ± 1.8 17 ± 3.3

cKit+

Flkl +

0.54 0 0.11 0.29 2.1 ±0.7 0.6 ±0.5 0.6 ±0.8 0.3 ±0.4

VCAM+

CD31 +

0.42 0 0.28 0.36 2.3 ± 1.8 2.1 ± 1.9 0.9 ±0.9 1.4 ±2.1

* nd = not determined

Appendix 3 Flow cytometry analysis of 7a-GFP EB/stromal co-cultures at 4 and 6 days
differentiation. Shown are the proportions (%) of ES-derived cells expressing different
haematopoietic surface markers (cKit, Sca-1, CD45, Gr-1, CDllb, Terll9, B220) and
CD49d (alpha4 integrin). VCAM-1 and CD31 are endothelial markers, Flk-1 marks
haemangioblasts. CD54 is an intercellular adhesion molecule. Data represent up to 3
independent co-culture experiments and in each condition, no less than lxlO5 cells were
collected for analysis.
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Appendix 4 Validation of Sry and p-actin primer sets. Standard curve of Ct
values against increasing concentrations of male C57 bone marrow DNA
loaded per well (reactions in triplicate). The slopes (efficiencies) for the
primer sets were comparable, indicating that p-actin could be used as the
endogenous control for the Sry detection assay. A slope of -3.34 denotes the
most efficient reaction.
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Primary recipients
12 0

BM

Appendix 5 Primary NOD/SCID recipients of 4 day 7a-GFP EB/ AM20.1B4
co-cultured cells. Raw data for Figure 6.4a. Mice were killed 8 weeks after
intra-venous transplantation and tissues harvested. Y chromosome qPCR was
carried out on genomic DNA to quantify the male donor ES-derived cells in
(a) spleens and (b) bone marrow. A sample known to comprise of 0.1% male
7a-GFP ES cells in NOD/SCID bone marrow was used as the calibrator, which
is assigned a value of 1. All samples are expressed as relative fold increase
over the calibrator. Relative quantitation was determined by the delta delta Ct
method in AB1 7500FAST software. NTC, no template control.
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Secondary recipients of primary SPL

Appendix 6 Secondary NOD/SC1D recipients of (a) primary SPL and (b)
primary BM samples. Raw data for Figure 6.4 b and c. Primary recipients
received 4 day 7a-GFP EB/ AM20.1B4 co-cultured cells. Secondary mice were
killed 8 weeks after transplantation (i.v.) and tissues harvested. Y chromosome
qPCR was carried out on genomic DNA to quantify male donor ES cell
contribution.
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Tertiary recipients
2.80

Spleens of 3° recipients

Tertiary recipients
24.0

Bone marrow of 3° recipients

Appendix 7 Tertiary recipients of bone marrow and spleen samples from
secondary mice. Raw data for Figure 6.4 d and e. Primary recipients
received 4 day 7a-GFP EB/ AM20.1B4 co-cultured cells. Tertiary mice
received cells from secondary mice as indicated. Tertiary mice were
killed 8 weeks after transplantation (i.v.) and tissues harvested. Y
chromosome qPCR was carried out on genomic DNA to quantify male
donor ES cell contribution in (a) spleens and (b) bone marrow of tertiary
mice.
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Appendix 8 Tertiary recipients in which the highest repopulation was seen. Y
chromosome qPCR on tissues from tertiary mice that received (a) bone marrow
and (b) spleen from a secondary mouse that received BM from the primary
EB/AM20.1B4 recipient.
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Primary % Secondary % Tertiary %

Tissues Donor cells Tissues Donor cells Tissues Donor cells

Ml BM undetected BM 0.17% BM nd

SPL nd

SPL 1.13% BM nd

SPL nd

SPL 0.6% BM 0.24% BM 0.001%

SPL 0.001%

SPL 3.69% BM 0.001%

SPL undetected

M2 BM undetected BM 0.08% BM 13.55%

SPL 1%

SPL 0.65% BM 1.26%

SPL 0.003%

SPL 0.043% BM 0.12% BM nd

SPL nd

SPL 3.0% BM nd

SPL nd

M3 BM undetected BM Undetected BM 1.4%

SPL 0.001%

SPL 1.78% BM 0.19%

SPL * 10.21%

SPL 0.313% BM 0.072% BM nd

SPL nd

SPL 1.4% BM nd

SPL nd

M4 BM undetected BM nd BM nd

SPL nd

SPL nd BM nd

SPL nd

SPL 0.124% BM 0.33% BM nd

SPL nd

SPL 0.38% BM 0.008%

SPL 0.01%

Appendix 9 Serial transplantation of 4 day 7a-GFP EB/AM20.1B4 co-cultures injected
intra-venously into NOD/SCID recipients. Donor contribution to host tissues was
quantified by the Y chromosome qPCR assay. (*spleen containing a small white
colony).
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Wo investigated whether the in vitro differentiation of ES cello into haematopoietic
progenitors could be enhanced by exposure to the aorta-gonadal-mesonephros (AGM)
microenvironment that is involved in the generation of haematopoietic stem cells (HSC)
during embryonic development. We established a co-culture system that combines the
requiremento for primary organ culture and differentiating ES cello and showed that
expoouro of differentiating ES cello to the primary ACM region reculto in a significant
increase in the number of ES-derived haematopoietic progenitors Co-culture of ES cells on
the AM20-1B4 stromal cell line derived from the AGM region also increases haematopoietic
activity. We conclude that factors promoting the haematopoietic activity of differentiating
F.S cells present in primary AGM explants are partially retained in the AM20 1R4 stromal cell
line and that these factors are likely to be different to those required for adult HSC
maintenance.

© 2006 Elsevier Inc. All rights reserved.

Introduction

Embryonic stem (ES) cells arc able to differentiate into a wide
variety of mature cells in vitro [1] including a range of
haematopoietic cell lineages [2-7], A number of studies
indicate that haematopoietic commitment in differentiating
ES cells parallels that found in early stage embryos, malting
this a suitable in vitro model system of haematopoietic
development [0-10], In most of these studies, haematopoietic
differentiation is achieved after the initial generation of three-

dimensional cmbryoid bodies (EBs) and subsequent culture in
classical haematopoietic progenitor colony assays. The differ¬
entiation of ES cells into haematopoietic lineages using a two
dimensional culture system has also been achieved when, for
example, ES cells were differentiated directly on the OP9
stromal cell line derived from the CSF-1-deficient adult hone
marrow [4], A recent study directly comparing haematopoietic
differentiation between the EB and OP9 system has indicated
that optimal haematopoietic cell differentiation occurs when
the three-dimensional EB system is used [11].
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Several studies have shown that exposure of ES cells to
embryonic tissue may have a significant effect on the dif¬
ferentiation of the cells. For example, an increase in cardio-
myocyte differentiation was observed when human ES cells
were cultured with visceral endoderm cells from the mouse

embryo [1?], and when mouse ES cells were cultured with
explanted avian precardiac endoderm [13]. T lymphocytes
were generated from ES cells in vitro by culture with foetal
thymic rudiments [7], and pancreatic differentiation of ES
cells in vitro was influenced by soluble factors produced from
the developing pancreas [14]. We tested here whether
exposure of differentiating ES cells to organ rudiments in¬
volved in lympho/haematopoietic development in vivo could
stimulate haematopoietic differentiation of ES cells in vitro.
Several embryonic organs have been implicated in haema¬
topoietic development including the yolk sac [15], aorta-
gonad-mesonephros (AGM) region [16], liver [17] and the
placenta [18,19], The AGM region plays an important role in
initiating the generation of haematopoietic stem cells (HSCs)
capable of long-term repopulation (LTR) of adult recipients
[16,20]. In organ culture, the AGM demonstrated its autono¬
mous capacity to expand LTR-HSCs [16,21], indicating that
elements of their supporting microenvironment can be cap¬
tured in vitro.

To investigate the impact of the AGM microenvironment
on haematopoietic differentiation of ES cellc, wc established
a co-culture system that combines the requirements for
primary AGM organ culture with the defined conditions for
ES cell embryoid body differentiation. We show that the
number of haematopoietic progenitors arising from differ¬
entiating ES cells is significantly increased when they are
co-cultured with the primary AGM region. We then co-
cultured differentiating ES cells on stromal lines derived
from the AGM and foetal liver that had previously boon
tested for their ability to support adult haematopoietic stem
cells. Interestingly, the ability of the different stromal cell
lines to promote haematopoietic activity in ES cells did not
correlate with their supportive effect on adult bone marrow

haematopoietic stem cells [22-24]. The UG26-1B6 and EL08-
1D2 lines that had been shown to support adult haemato¬
poietic stem cells (HSCs) did not promote ES cell haemato¬
poietic activity whereas the number of haematopoietic
progenitors generated from ES cells after co-culture on the
AM20-1B4 cell line was significantly increased. As adult
HSCs could not be maintained on the AM20-1B4 line, these
data highlight important differences between the mechan¬
isms involved in the induction and maintenance of HSC

activity.

Materials and methods

Animals

C57B1/6 mice were mated, the day of the vaginal plug
designated as E0.5, and AGM regions were dissected from
E10.5 and E11.5 embryos using fine tungsten needles [25],
Foetal liver was harvested from E13.5 embryos. All animal
procedures were carried out according to the provisions of the
Animals (Scientific Procedures) Act (UK) 1986.

Cell culture

The ES cell lines which express GFP either constitutively
(GFP#7a) [26] or driven by the Brachyury promoter (Bry-201) [27]
were maintained on gelatin-coated tissue culture flasks as
described previously and differentiated into embryoid bodies
(EBs) using the hanging drop method to make undifferentiated
ES cell aggregates of as uniform a size as possible [28]. Stromal
cell lines AM20-1B4, UG26-1B6 and EL08-1D2 were maintained
as described [22] on gelatin coated flasks in specialised stroma
medium (50% MyeloCult long-term culture medium M5300
and 35% a-minimal essential medium containing 15% FCS,
4 mM l glutamine and 10 nM 2-mercaptocthanol supplcmcn
ted with 10-20% 0.2 nm-filtered supernatant from the previous
passage). All stromal cultures were maintained at 33°C due to
the presence of tsA58 transgene encoding the temperature-
sensitive SV40 large T antigen.

For AGM co-culture experiments, embryo tissue explants
and EBs were placed in direct contact at the air/medium
interface on semi-permeable hydrophilic 0.65 |im Durapore
membranes supported by stainless steel grids (Fig. 1) in ES
medium (in the absence ofLIF) and with no additional cytokines.
Co-cultures were harvested at defined time points, and the
number of ES-derived (GFP+) haematopoietic progenitors was
determined using the agar-based CFU-A and/or HPP-CFC assays.
In the co cultures involving stromal cell lines, EBs were cultured
directly on 7-irradiated (30 Gy) stromal cells or transparent
Greiner Bio-one 24 well ThinCert-tissue culture inserts (mem¬
brane pore size of0.4 nm and pore density of2 x 106) were used to
inhibit direct contact between the EBs and stromal cells.

Cultures were harvested, digested with dispase II (1.2 U/ml)
and DNAse I (7 pg/ml) in PBS for 1 h at 37°C then passed through
a 23-gauge needle to generate single cell suspensions for
analysis by haematopoietic colony assays and flow cytomctcry.

Haematopoietic colony assays

Agar-based assays
The CFU-A assay was performed as described previously
[29,30] A feeder layer of 0.6% agar in a modified Eagle's
medium (25% a-MEM, 20% horse serum, 0.25% sodium
bicarbonate and 4 mM L-glutamine) supplemented with 10%
conditioned medium from each of two cell lines, L929 and
AF1-19T (a source of M-CSF and GM-CSF, respectively), was
poured into 3 cm diameter tissue culture grade dishes (1 ml
per dish). Cells were resuspended in 0.3% agar in Eagle's
medium at a density of 3xl04 cells/ml and plated onto the
agar feeder layers in triplicate. After incubation at 37°C in a 5%
02 and 10% C02 humidified atmosphere for 11 days, the
colonies (>2 mm in diameter) that primarily consisted of
myeloid cells were counted. The procedure for the HPP-CFC
[31] assay was similar to the method for the CFU-A assay but
conditioned medium from the L929 and WEHI 3b cell lines (a
source of M-CSF and IL3, respectively) was added. Colonies
were counted after 14 days and, like the CFU-A assay,
consisted ofmyeloid cell types.

Methylcellulose-based assays
CFU-mix and CFU-GM assays were performed by plating 1 x 105
test cells in 35 mm plates containing 1.5 ml 1%methylcellulose
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Fig. 1 - Co-culture procedure. Flow diagram illustrating the air-medium interface co-culture of primary embryonic AGM region
and EBs made by the hanging drop method and the subsequent analysis for haematopoietic differentiation.

in Iscove's Modified Dulbecco's Medium (IMDM) (Stem Cell
Technologies (SCT)) supplemented with 10% foetal bovine
serum (SCT); 340 pM monothioglycerol; 3 Units/ml mouse Epo
(Roche); 10 pg/ml recombinant human insulin (Sigma) 10 ng/ml
muIL3 (SCT); 10 ng/ml rhIL6 (SCT); 50 ng/ml recombinant
mouse Stem Cell Factor (SCT), 2mM L-glutamine and penicillin/
streptomycin and incubated at 37°C. CFU-Mix and CFU-GM
were identified morphologically and counted after 10 days.
Statistical significance of the numbers of resulting colonies
was assessed using the t test.

Analysis of GFP expression

Harvested co-cultures were analysed by a FACSCaliber
equipped with a 488 nm laser (Becton Dickinson) to determine
the percentage of GFP+ (ES-derived) cells. CFU-A colony assays
were scored by fluorescence microscopy to determine the
number of ES-derived colonies expressing GFP, thus excluding
the colonies derived from the non-GFP AGM region in the
analysis. The number of GFP-expressing EB-derived CFU-A
colonies from the co-cultures was then normalised to

represent the number of colonies per 3 x 104 GFP+ (EB-derived)
cells.

Floiu cytometry

Single cell suspensions of harvested cultures were washed
twice in FACS-PBS (PBS supplemented with 0.1% BSA and
0.1% sodium azide (Sigma, UK)) and resuspended at 2xl07
cells/ml. 2 x 105 cells were incubated for 40 min at 4°C with

optimum concentrations (determined by titration) of fluoro-
chrome-conjugated anti-mouse monoclonal antibodies Sca-
1-PE and CD45-APC, whereas c-Kit expression was detected
using a biotinylated antibody and detected using APC-avidin
(Caltag Medsystems Ltd, UK). Cells were washed twice to
remove unbound antibody and resuspended in FACS-PBS for
acquisition, unstained cells and cells labelled with APC-
avidin alone were included as controls. Dead and apoptotic
cells and debris were excluded from analysis using an
electronic 'live' gate on forward scatter and side scatter
parameters. Data for 10,000-100,000 'live' events were

acquired using a FACSCaliber cytometer equipped with
488 nm and 633 nm lasers and analysed using CellQuest
software (Becton Dickinson). Post-acquisition, EB-derived
cells were identified by GFP expression and an electronic
gate applied to exclude stromal cells from analysis for
expression of markers.



3598 EXPERIMENTAL CELL RESEARCH 312 (2006) 3595-3603

Results

AGM region co-culture enhances haematopoietic
differentiation of ES cells in uitro

EBs were co-cultured in direct contact with dissected primary
embryonic tissues then assayed for haematopoietic activity
(Fig. 1). In these experiments, it was necessary to differentiate
between AGM- and ES-derived colonies using fluorescence
microscopic detection of the GFP transgene that was con-
stitutively expressed in the GFP#7a ES cell line [26]. We found
that prolonged culture in standard methylcellulose-based
assays resulted in a high level of auto-fluorescence of all cell
types that precluded the detection of GFP expression in this
standard haematopoietic assay. To overcome this problem,
we used the agar-based CFU-A [29,30] and HPP-CFC [31]
assays reported to detect early multi-lineage progenitor cells.
Using these assays, we confidently distinguished between
AGM- and ES-derived colonies that were GFP negative and

positive, respectively. We tested the haematopoietic activity
of EBs after co-culture with E10.5 (Fig. 2A) and E11.5 AGM
regions (Fig. 2B) or E13.5 foetal liver (Fig. 2C). After 6 days of
co-culture, the E10.5 and Ell.5 AGM regions significantly
increased haematopoietic activity in EBs 10-fold (p<0.001)
and 2-fold (p<0.023), respectively, compared to the equivalent
control cultures. The data presented represent the results of
one experiment performed in triplicate. In two additional
experiments where we directly compared AGM derived from
E10.5 and 11.5, we consistently observed a higher level of
induction in the E10.5 (2.5-19 fold) compared to the Ell.5 (1.5-
to 2-fold) primary AGM tissue. E13.5 foetal liver co-culture had
no significant effect (p<0.72) on ES-derived CFU-A formation
in three independent experiments and co-cultures set-up
with remnants of E10.5 embryos (limb buds or foetal head)
similarly had no effect on haematopoietic activity of differ¬
entiating ES cells (data not shown). The variability in
inductive activity observed between experiments with the
primary AGM tissue could reflect the inherent variability in
the organ culture system or the precise timing of embryonic
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Fig. 2 - Haematopoietic activity of differentiating ES cells is increased in AGM region co-cultures. The number of CFU-A per
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were obtained from three independent experiments (see text).
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development in tissue collection. Despite this inherent
variability, our data show that the primary AGM, but no
other regions of the E10.5 embryo, can provide the necessary
microenvironment to induce haematopoietic differentiation
of ES cells and that the E10.5 AGM appears to be more potent
than the AGM derived from embryos 1 day later.

We then concentrated our efforts on the E10.5 AGM tissue,
and a time course analysis showed that the emergence ofCFU-
A from differentiating ES cells was maximal after 6 days of co-
culture (Figs. 2D, E). We also assessed these cultures using the
HPP-CFC assay that has also been reported to detect early
haematopoietic progenitors [31]. The frequency of CFU-A and
HPP-CFC colonies from control EBs was comparable to our own
unpublished data and to published data [15], respectively. Co-
culture of ES cells with E10.5 AGM region resulted in a highly
significant (p <0.0004), 19-fold increase in CFU-A (Fig. 2D) and a
57-fold increase in HPP-CFC (p <0.0009) (Fig. 2E). The reduction
in the numbers of colonies detected after this 6-day time point
could indicate that the cells further differentiate into more

mature cell types that are not detected by the CFU-A assay.

Co-culture of ES cells with the AM20-1B4 stromal cell line
enhances haematopoietic differentiation

EBs were cultured on a panel of stromal cell lines derived from
the haematopoietic tissues of the midgestation embryo
[22,23], Three cell lines (AM20-1B4, UG26-1B6 and EL08-1D2)
derived from the dorsal aorta and surrounding mesenchyme,
urogenital ridge and foetal liver, respectively, were chosen
based on their ability to support bone marrow-derived HSCs.
UG26-1B6 and EL08-1D2 lines had been shown to be supportive
of adult bone marrow-derived HSCs, whereas the AM20-1B4
was shown to be non-supportive. To assay for haematopoietic
commitment in this series of experiments, we initially used
the CFU-A assay to directly compare our data with the primary
AGM culture (Fig. 3A). We were also able to use the more
standard methylcellulose based assays since no haemato¬
poietic colonies were generated from the irradiated stromal
cells alone (data not shown) so our analysis did not rely on the
detection of the GFP transgene.

We observed a significant (p<0.002), 3.5-fold increase in the
number ofCFU-A when EBs were co-cultured on the AM20-1B4

cells, compared to EBs cultured alone, but this increase was not
observed when EBs were co-cultured on UG26-1B6 and EL08-

1D2 stromal cell lines (Fig. 3A). The AM20-1B4 stromal cell line
also showed an inductive effect when haematopoietic activity
was assessed using methylcellulose based haematopoietic
colony assays (Figs. 3B, C). The type of haematopoietic
progenitor detected in such assays can be inferred from the
morphology of the resulting colony: we defined CFU-Mix
colonies as consisting of erythroid cells and at least two
white cell types and were presumably generated from a multi-
lineage progenitor. There was a significant increase (p <0.016)
in the number of CFU-Mix colonies generated after co-culture
on the AM20-1B4 stromal cell line compared to control cul¬
tures, and this increase ranged from 10- to 54-fold compared to
control cultures in three independent experiments (Fig. 3B).
We also observed a significant increase (p< 0.023) in the num¬
ber of CFU-GM colonies when EBs were cultured on the AM20-

1B4 cell line compared to control EBs (Fig. 3C). The fold increase
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no significant difference in the overall growth rates.

in this type of colony ranged from 17 to 37 in three independent
experiments. No significant increase in either CFU-Mix or CFU-
GM was observed when ES cells were co-cultured on the UG26-
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1B6 and EL08-1D2 stromal cell lines (Figs. 3B, C). We observed
no significant difference in the number of secondary EBs
(presumably formed from undifferentiated ES cells) that were
generated in the control and co-culture conditions (data not
shown), and any haematopoietic activity associated with these
secondary EBs (although rare) was not included in the true
haematopoietic colony assays described above.

It is formally possible that the differences observed in the
frequency of haematopoietic colonies in the differentiating ES
cells grown on the different stromal cell lines could have been
due to differences in the number of output ES-derived cells
and not due to an increase in the efficiency of differentiation.
For example, a relative reduction in the total number of ES-
derived cells after co-culture compared to controls could result
in an apparent increase in the frequency of ES-derived
haematopoietic progenitor production. To address this point,
we counted the total number of EB-derived cells in control

cultures and in 2- to 10-day co-cultures and found no

significant difference in growth rate (Fig. 3D) which indicates
that co-culture on the AM20-1B4 cell line results in an increase
in the frequency of haematopoietic progenitors produced.

We therefore conclude that the AM20-1B4 stromal cell line

has an inductive effect on the differentiation of ES cells into

haematopoietic lineages. The difference in the level of
induction observed in the different progenitor assays possibly
reflects the types of progenitors detected by each assay. The
CFU-A is reported to assay for a more primitive progenitor
[29,30] while the CFU-Mix and CFU-GM possibly represent
progenitors at a later point in the haematopoietic hierarchy.

Co-culture ofES cells on the AM20-1B4 stromal cell line also
increased the proportion of ES cells expressing the haemato-
poetic markers CD45, Sca-1 and c-Kit (Table 1), further
supporting the haematopoietic promoting activity of this
AGM-derived stromal cell line.

Cell contact is required for the inductive activity of the
AM20-1B4 cell line

Conditioned medium from the AM20-1B4 had no consistent
inductive effect on the haematopoietic activity of ES cells (data
not shown), indicating that either cell contact or short range
signals were responsible for the inductive effect. To assess
whether cell contact was required, we co-cultured EBs with
the stromal cell lines in transwell cultures (Fig. 4). In this
experiment, we again observed a significant (P = 0.006)
increase in the number of haematopoietic colonies when EB
were cultured for 6 days on the AM20-1B4 stromal cell line
compared to control EBs, but this increase in colony number

Table 1 - Expression of haematopoietic markers on
differentiating ES cells cultured on gelatin or in
co-culture with the AM20-1B4, UG26-1B6 and EL08-1D2
stromal cell lines

Co-culture c-Kit (%) Sca-1 (%) CD45 (%)
Gelatin
AM20.1B4

UG26.1B6

EL08.1D2

8.14±6.5

28.95 ±18.8

7.24±4.2

3.67 ±2.0

4.42 ±4.8

13.33 ±10.2

3.06 ±2.4

2.12 ±2.5

3.51 ±1.98

17.2 ±13.92

1.69±0.45

0.51±0.61
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Fig. 4 - Cell contact is required for the haematopoietic
promoting activity of the AM20-1B4 stromal cell line. The
number of CFU-A colonies per 3 x 104 ES cells detected in EBs
cultured in direct contact (+) with gelatin (EB) or with the
AM20-1B4, UG26-1B6 or EL08-1D2 stromal cell lines or
separated (-) from the gelatin and stromal cell lines by a
porous membrane in a transwell culture. Error bars represent
the SD of the mean of triplicate cultures.

was prevented by a membrane with a pore size of0.4 nm in the
transwell culture conditions.

The AM20-1B4 stromal cell lines did not have an inductive

effect on early mesoderm commitment

To assess whether the differential effect of the stromal cell
lines on the haematopoietic activity was due to a differential
effect on early mesoderm commitment, we used an ES cell line
that had been engineered to express GFP driven by the Bra-
chyury (Bry) promoter [27], We did not observe a significant
increase in the proportion of cells expression GFP in ES cells
differentiated in co-culture with AM20-1B4 compared to ES
cells co-cultured on gelatin or on the UG26-1B6 or EL08-1D2
stromal cell lines (Fig. 5). This suggests that the effect of the
AM20-1B4 stromal cell line on the amount of haematopoietic
activity likely occurs after the commitment of ES cells to a
mesodermal cell fate.

Discussion

We have established a co-culture system that combines the
requirements for primary AGM organ culture with the defined
conditions for optimal haematopoietic differentiation of ES
cells into three-dimensional EBs. We show that the primary
AGM region environment increases haematopoietic progeni¬
tor numbers in differentiating ES cells. The increase in EB
derived CFU-A activity is also observed when the AM20-1B4
stromal cell line derived from the aorta and surrounding
mesenchyme of the AGM region is substituted in the co-
culture system. In contrast to the primary AGM tissue, which
results in a 19-fold increase in the number of EB derived CFU-A

colonies, the maximum increase in haematopoietic progenitor
activity achieved using this stromal cell line was only 3.5-fold.
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Fig. 5 - Biy-GFP expression after culture of ES cells on AGM region and foetal liver stromal cell lines. Biy-GFP expression in EBs
after 4 days of differentiation on gelatin (A, B) or on the stromal cell lines AM20-1B4 (C, D), UG26-1B6 (D, F) or EL08-1D2 (G, H).
Individual EBs were photographed using light (A, C, E, G) and UV fluorescence microscopy (B, D, F, H) to visualise GFP. Flow
cytometry analysis ofES cells co-cultured on AM20-1B4 (I) and UG26-1B6 (J) stromal cells showing that the proportion of Biy-GFP
expression cells was not significantly increased after co-culture on the AM20-1B4 cell line.

This could be explained by the fact that the single stromal cell
line is only one component of a complex microenvironment
but it is also possible that the immortalised cell line does not
function as efficiently in vitro as analogous cells in vivo. A
higher level of induction was observed after co-culture on the
AM20-1B4 stromal cell line when haematopoietic activity was
assayed using the CFU-Mix and CFU-GM assays that possibly
represent more mature haematopoietic progenitors. This
could suggest that the primary AGM provides a superior
inductive and/or expansive environment for the more primi¬
tive haematopoietic precursors compared to the AM20-1B4
stromal cell line. Despite differences in the level of induction,
the fact that haematopoietic amplification is observed with
the AM20-1B4 cell line using a range of different progenitor
assays is encouraging and, consequently, this cell line will be
useful in the identification of factors involved in ES-derived

haematopoietic induction and/or amplification. We also
observed a significant increase in the number of ES-derived
cells expressing a range of haematopoietic markers (including
CD45, c-Kit, Sca-1) by flow cytometry after co-culture on the
AM20-1B4 stromal cell line. This further supports our finding
that haematopoietic differentiation is enhanced by this
stromal cell line. Experiments are under way to directly
compare the AGM-derived AM20-1B4 cell line to the OP9
stromal cell line that was derived from the CSF-l-deficient

bone marrow stroma and also shown to induce haematopoie¬
tic activity in differentiating ES cells [4],

We observed that co-culture of ES cells on the AM20-1B4

stromal cell lines did not increase the proportion of cells
that had committed to a mesodermal fate as assessed by the
appearance of Bry-GFP+ expressing cells during differentiation.
These data suggest that the factor(s) produced by the AM20-
1B4 cell line affecting the numbers ofhaematopoietic colonies
produced were acting after the induction of ES cells into a
mesodermal cell fate. We are currently investigating whether
the cell lines promote differentiation of ES cells into meso¬
dermal lineages other than haematopoietic cell types, and
preliminary data suggest that the differentiation of ES cells
into beating cardiomyocytes is differentially affected (A.K.,
unpublished).

Previous studies have shown that the AM20-1B4 cell line
was less supportive than the UG26-1B6 and the EL08-1D2 cell
lines in the maintenance and expansion of HSCs derived from
adult bone marrow [22,23]. In our studies on the effects of
these cells on ES cell differentiation, we found that AM20-1B4
can increase the numbers of ES-derived haematopoietic
progenitors while the other two cell lines had no significant
effect after 6 days of co-culture. The long-term maintenance of
adult bone marrow-derived HSCs by the UG26-1B6 and the
EL08-1D2 cell lines did not require contact, suggesting that
secreted molecules are involved in this support [24],
whereas we show using transwell cultures that the haema¬
topoietic amplification observed in our ES cell differentia¬
tion system is dependent upon stromal cell contact. Taken
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together, these data suggest, not surprisingly, that the sig¬
nals required for the induction and/or amplification of hae¬
matopoietic progenitors from ES cells are different to that
required for the maintenance of adult bone marrow-derived
HSCs.

To date, there has been only limited success in obtaining
engraftable long-term repopulating HSCs from ES cells directly
in vitro [32-35]. This limitation of ES-derived cells to engraft in
the adult haematopoietic system may be attributed to the sub-
optimal microenvironment provided by existing in vitro
protocols for the differentiation of mature HSCs or the
inability of these cells to home to the appropriate niche.
Recently, it was shown that c-Kit+CD45+ cells derived from
differentiated ES cells were capable of high levels of multi-
lineage engraftment when injected directly into the femur
cavity of the mice, providing strong evidence for a homing
defect in ES-derived HSCs [36], Experiments are underway to
determine whether our novel co-culture system promotes the
production of engraftable HSCs via the intra-femoral route.
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