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Abstract. Optimal Feedback Control (OFC) has been proposed as an attractive
movement generation strategy in goal reaching tasks for anthropomorphic manip-
ulator systems. Recent developments, such as the Iterative Linear Quadratic Gaus-
sian (ILQG) algorithm, have focused on the case of non-linear, but still analytically
available, dynamics. For realistic control systems, however, the dynamics may of-
ten be unknown, difficult to estimate, or subject to frequent systematic changes. In
this chapter, we combine the ILQG framework with learning the forward dynam-
ics for simulated arms, which exhibit large redundancies, both, in kinematics and
in the actuation. We demonstrate how our approach can compensate for complex
dynamic perturbations in an online fashion. The specific adaptive framework intro-
duced lends itself to a computationally more efficient implementation of the ILQG
optimisation without sacrificing control accuracy – allowing the method to scale to
large DoF systems.

1 Introduction

The human motion apparatus is by nature a highly redundant system and modern
humanoid robots, designed to mimic human behaviour and performance, typically
exhibit large degrees of freedom (DoF) in the kinematics domain (joints) and in the
dynamics domain (actuation). Many recent humanoid system designs are extending
the classic joint torque operated designs (i.e., one motor per joint) by redundantly
actuated systems based on antagonistic or pseudo-antagonistic architectures (e.g.,
[11, 32]). Therefore producing even the simplest movement, such as reaching to-
wards a particular position, involves an enormous amount of information processing
and a controller has to make a choice from a very large space of possible movements
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to achieve a task. An important question to answer therefore is how to resolve this
redundancy?

Optimal control theory [23] answers this question by establishing a certain cost
function, and selecting the solution with minimal cost (e.g., minimum jerk [10],
minimum torque change [29]). Quite often these control schemes are only concerned
with trajectory planning and an open loop optimisation of the control commands,
while the correction of errors during execution is left to simple PID controllers. As
an alternative, closed loop optimisation models are aimed at providing a control law
which is explicitly based on feedback from the system. In the ideal case, the system
state is directly mapped to control signals during execution, and the form of this
mapping is again governed by a cost function [25].

Another characteristic property of anthropomorphic systems, besides the high re-
dundancies, is a lightweight and flexible-joint construction which is a key ingredient
for achieving compliant human-like motion. However such a morphology compli-
cates analytic dynamics calculations, which usually are based on unrealistic rigid
body assumptions. Moreover, even if the different links of a manipulator could be
modelled as a rigid body, the required parameters such as mass and inertia may be
unknown or hard to estimate. Finally, unforeseen changes in the plant dynamics are
hard to model based purely on analytic dynamics. In order to overcome these short-
comings we can employ online supervised learning methods to extract dynamics
models driven by data from the movement system itself. This enables the controller
to adapt on the fly to changes in dynamics conditions due to wear and tear or external
perturbations. Applying such methods has previously been studied in robot control
[8, 6, 18, 31] but has not found much attention in the perspective of the optimal
control framework. Indeed the ability to adapt to perturbations is a key feature of
biological motion systems and enabling optimal control to be adaptive is a valuable
theoretical test-bed for human adaptation experiments.

By combining optimal control with dynamics learning we can create a powerful
framework for the realisation of efficient control for high dimensional systems. This
will provide a viable and principled control strategy for the biomorphic based highly
redundant actuation systems that are currently being developed. Furthermore, we
would like to exploit this framework for understanding optimal control and its link
to biological motor control.

2 Optimal Feedback Control

In the past, although many control problems have been described within the frame-
work of optimality, most optimal motor control models have focused on open loop
(feed-forward) optimisation [10, 29]. Assuming deterministic dynamics (i.e., no
perturbations or noise), open-loop control will produce a sequence of optimal mo-
tor signals or limb states. However if the system leaves the optimal path due to
inevitable modelling imperfections, it must be corrected for example with a hand-
tuned PID controller. This will often lead to suboptimal behaviour, because the error
feedback has not been incorporated into the optimisation process.
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Stable optimal performance can only be achieved by constructing an optimal feed-
back law that produces a mapping from states to actions by making use of all avail-
able sensory data. In such a scheme, which is referred to as optimal feedback control
(OFC) [26], there is no separation anymore between trajectory planning and trajec-
tory execution for the completion of a given task. Rather, one directly seeks to obtain
the gains of a feedback controller which produce an optimal mapping from state to
control signals (control law). A key property of OFC is that errors are only corrected
by the controller if they adversely affect the task performance, otherwise they are
neglected (minimum intervention principle [27]). This is an important property es-
pecially in systems that suffer from control dependent noise, since task-irrelevant
correction could destabilise the system beside expending additional control effort.

In this work, we focus on the investigation of OFC in limb reaching movements
for highly nonlinear and redundant systems. Let x(t) denote the state of a plant and
u(t) the applied control signal at time t. The state consists of the joint angles q and
velocities q̇ of a robot, and the actuator control signals u. If the system would be
deterministic, we could express its dynamics as ẋ = f(x,u), whereas in the presence
of noise we write the dynamics as a stochastic differential equation

dx = f(x,u)dt + F(x,u)dωωω. (1)

Here, dωωω is assumed to be Brownian motion noise, which is transformed by a pos-
sibly state- and control-dependent matrix F(x,u). We formally specify the problem
of carrying out a (reaching) movement as follows: Given an initial state x0 at time
t = 0, we seek a control sequence u(t) such that the system’s state is x∗ at time
t = T . Stochastic optimal control theory approaches the problem by first specifying
a cost function which is composed of (i) some evaluation h(x(T )) of the final state,
usually penalising deviations from the desired state x∗, and (ii) the accumulated cost
c(t,x,u) of sending a control signal u at time t in state x, typically penalising large
motor commands. Introducing a policy πππ(t,x) for selecting u(t), we can write the
expected cost of following that policy from time t as [28]

vπππ(t,x(t)) =
〈

h(x(T ))+
∫ T

t
c(s,x(s),πππ(s,x(s)))ds

〉
. (2)

In OFC one then aims to find the policy πππ that minimises the total expected cost
vπππ(0,x0). Thus, in contrast to classical control, calculation of the trajectory (plan-
ning) and the control signal (execution) is handled in one go. Notably, optimal
control provides a principled approach to resolve redundancy: Whereas redundant
degrees of freedom are often a nuisance for kinematic path planning, in OFC redun-
dancy can actually be exploited in order to decrease the cost.

If the dynamics f is linear in x and u, the cost is quadratic, and the noise is Gaus-
sian, the resulting so-called LQG or LQR1 problem is convex and can be solved

1 LQR stands for linear quadratic regulator and describes the optimal controller for linear
systems and quadratic costs. LQG also includes an optimal state estimator (under the as-
sumption of Gaussian noise), but because for linear systems estimation and control are
independent of each other, LQR and LQG essentially compute the same control law.
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analytically [23]. Finding an optimal control policy for nonlinear systems, in con-
trast, is a much harder challenge. Global solutions could be found in theory by
applying dynamic programming methods [5] that are based on the Hamilton-Jacobi-
Bellman equations. However, in their basic form these methods rely on a discreti-
sation of the state and action space, an approach that is not viable for large DoF
systems. Some research has been carried out on random sampling in a continuous
state and action space [24], and it has been suggested that sampling can avoid the
curse of dimensionality if the underlying problem is simple enough [2], as is the
case if the dynamics and cost functions are very smooth.

A promising alternative to global OFC methods are approaches that compromise
between open loop and closed loop optimisation and iteratively compute an opti-
mal trajectory together with a locally valid feedback law. These trajectory-based
methods are not directly subject to the curse of dimensionality but still yield lo-
cally optimal controllers. Differential dynamic programming (DDP) [9, 12] is a
well-known successive approximation technique for solving nonlinear dynamic op-
timisation problems. This method uses second order approximations of the system
dynamics and cost function to perform dynamic programming in the neighbourhood
of a nominal trajectory. A more recent algorithm is the Iterative Linear Quadratic
Regulator (ILQR) [16]. This algorithm uses iterative linearisation of the nonlinear
dynamics around the nominal trajectory, and solves a locally valid LQR problem
to iteratively improve the trajectory. However, ILQR is still deterministic and can-
not deal with control constraints. A recent extension to ILQR, the Iterative Linear
Quadratic Gaussian (ILQG) framework [28], allows to model nondeterministic dy-
namics by incorporating a Gaussian noise model. Furthermore it supports control
constraints like non-negative muscle activations or upper control boundaries and
therefore is well suited for the investigation of biologically inspired systems. The
ILQG framework has been shown to be computationally significantly more effi-
cient than DDP [16] and also has been previously tested on biologically inspired
movement systems and therefore is the favourite approach for us to investigate
further.

The ILQG algorithm starts with a time-discretised initial guess of an optimal
control sequence and then iteratively improves it w.r.t. the performance criteria in v
(eq. 2). From the initial control sequence ūi at the i-iteration, the corresponding state
sequence x̄i is retrieved using the deterministic forward dynamics f with a standard
Euler integration x̄i

k+1 = x̄i
k + Δt f(x̄i

k, ū
i
k). In a next step the discretised dynamics

(eq. 1) are linearly approximated around x̄i
k and ūi

k.:

δxk+1 =
(

I+Δt
∂f
∂x

∣∣∣
x̄k

)
δxk + Δt

∂f
∂u

∣∣∣
ūk

δuk +
√

Δt

(
F(uk)+

∂F
∂u

∣∣∣
ūk

δuk

)
ξξξk. (3)

Similarly to the linearised dynamics in (3) one can derive an approximate cost func-
tion which is quadratic in δu and δx (for details please see [28]). Both approxima-
tions are formulated as deviations of the current optimal trajectory δxi

k = xi
k − x̄i

k
and δui

k = ui
k − ūi

k and therefore form a local LQG problem. This linear quadratic
problem can be solved efficiently via a modified Ricatti-like set of equations. The
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optimisation supports constraints for the control variable u, such as lower and up-
per bounds. After the optimal control signal correction δūi has been obtained, it
can be used to improve the current optimal control sequence for the next iteration
using ūi+1

k = ūi
k + δūi. At last ūi+1

k is applied to the system dynamics (eq. 1) and
the new total cost along the trajectory is computed. The algorithm stops once the
cost v cannot be significantly decreased anymore. After convergence, ILQG returns
an optimal control sequence ū and a corresponding optimal state sequence x̄ (i.e.,
trajectory). Along with the optimal open loop parameters x̄ and ū, ILQG produces a
feedback matrix L which may serve as optimal feedback gains for correcting local
deviations from the optimal trajectory on the plant.

Since the focus of this work is on utilising dynamics learning within ILQG, and
its implications to adaptivity, we do not utilise an explicit noise model F for the
sake of clarity of results. In fact it has been shown that a matching feedback control
law is only marginally superior to one that is optimised for a deterministic system
[28]. We also do not include any model for estimating the state, that is, we assume
that noise-free measurements of the system are available (full observability). How-
ever an ILQG implementation for systems with partial observability has been been
developed recently [17].

3 Adaptive Optimal Feedback Control

As mentioned earlier a major shortcoming of ILQG (and other OFC methods) is
the dependence on an analytic form of the system dynamics, which often may be
unknown or subject to change. We overcome this limitation by learning an adaptive
internal model of the system dynamics using an online, supervised learning method.
We consequently use the learned model to derive an ILQG formulation that is com-
putationally efficient, reacts optimally to transient perturbations, and most notably
adapts to systematic changes in plant dynamics. We name this algorithm ILQG with
learned dynamics (ILQG–LD).

The idea of learning the system dynamics in combination with iterative optimi-
sations of trajectory or policy has been explored previously in the literature, e.g., for
learning to swing up a pendulum [4] using some prior knowledge about the form
of the dynamics. Similarly, Abeel et al. [1] proposed a hybrid reinforcement learn-
ing algorithm, where a policy and an internal model get subsequently updated from
“real life” trials. In contrast to their method, however, we employ a second-order
optimisation method, and we refine the control law solely from the internal model.
To our knowledge, learning dynamics in conjunction with control optimisation has
not been studied in the light of adaptability to changing plant dynamics.

From a biological point of view, enabling OFC to be adaptive would allow us
to investigate the role of optimal control in human adaptation scenarios. Indeed,
adaptation in humans, for example towards external perturbations, is a key property
of human motion and is a very active area of research since nearly two decades
[21, 22].
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3.1 ILQG with Learned Dynamics (ILQG–LD)

In order to eliminate the need for an analytic dynamics model and to make ILQG
adaptive, we wish to learn an approximation f̃ of the real plant forward dynam-
ics ẋ = f(x,u). Assuming our model f̃ has been coarsely pre-trained, for exam-
ple by motor babbling, we can refine that model in an online fashion as shown in
Fig. 1. For optimising and carrying out a movement, we have to define a cost func-
tion (where also the desired final state is encoded), the start state, and the number of
discrete time steps because the ILQG algorithm in its current form requires a speci-
fied final time. Given an initial torque sequence ū0

k , the ILQG iterations can be car-
ried out as described in the Section 2, but utilising the learned model f̃. This yields a
locally optimal control sequence ūk, a corresponding desired state sequence x̄k, and
feedback correction gain matrices Lk. Denoting the plant’s true state by x, at each
time step k, the feedback controller calculates the required correction to the control
signal as δuk = Lk(xk − x̄k). We then use the final control signal uk = ūk + δuk,
the plant’s state xk and its change dxk to update our internal forward model f̃. As
we show in Section 4, we can thus account for (systematic) perturbations and also
bootstrap a dynamics model from scratch.

ILQG u plantlearned
dynamics model +

feedback
controller

x, dx

L, x

u

u

perturbationsxcost function
(incl. target)

δ

-

- u +- uδ

Fig. 1. Illustration of our ILQG–LD learning and control scheme.

3.2 Learning the Dynamics

Various machine learning algorithms could be applied to the robot control learning
problem just mentioned. Global learning methods like sigmoid neural networks of-
ten suffer from the problem of negative interference, i.e., interference between learn-
ing in different parts of the input space when input data distributions are not uniform
[20]. Local learning methods, in contrast, represent a function by using small sim-
plistic patches - e.g. first order polynomials. The range of these local patches is
determined by weighting kernels, and the number and parameters of the local ker-
nels are adapted during learning to represent the non-linear function. Because any
given training sample activates only a few patches, local learning algorithms are ro-
bust against global negative interference. This ensures the flexibility of the learned
model towards changes in the dynamics properties of the arm (e.g. load, material
wear, and different motion). Furthermore the domain of real-time robot control de-
mands certain properties of a learning algorithm, namely fast learning rates and
high computational efficiency for predictions and updates if the model is trained
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incrementally. Locally Weighted Projection Regression (LWPR) has been shown to
exhibit these properties, and to be very efficient for incremental learning of non-
linear models in high dimensions [30].

During LWPR training, the parameters of the local models (locality and fit) are
updated using incremental Partial Least Squares, and local models can be pruned
or added on an as-need basis, for example, when training data is generated in pre-
viously unexplored regions. Usually the areas of validity (also termed its receptive
field) of each local model are modelled by Gaussian kernels, so their activation or
response to a query vector z = (xT ,uT )T (combining the state and control inputs of
the forward dynamics f) is given by

wk(z) = exp

(
−1

2
(z− ck)T Dk(z− ck)

)
, (4)

where ck is the centre of the kth linear model and Dk is its distance metric. Treat-
ing each output dimension2 separately for notational convenience, and ignoring the
details about the underlying PLS computations [14], the regression function can be
written as

f̃ (z) =
1

W

K

∑
k=1

wk(z)ψk(z), W =
K

∑
k=1

wk(z), (5)

ψk(z) = b0
k + bT

k (z− ck), (6)

where b0
k and bk denote the offset and slope of the k-th model, respectively.

LWPR learning has the desirable property that it can be carried out online, and
moreover, the learned model can be adapted to changes in the dynamics in real-time.
A forgetting factor λ [30], which balances the trade-off between preserving what
has been learned and quickly adapting to the non-stationarity, can be tuned to the
expected rate of external changes. In order to provide some insight, LWPR internally
uses update rules within each receptive field of the form Enew = λ ·Eold +w ·ecur. In
this example, E is the sufficient statistics for the squared prediction error, and ecur

is the error from the current training sample alone, but the same principle applies
for other quantities such as the correlation between input and output data. In this
way, after N updates to a receptive field, the original value of the sufficient statistics
has been down-weighted (or forgotten) by a factor of λN . As we will see later, the
factor λ can be used to model biologically realistic adaptive behaviour to external
force-fields.

3.3 Reducing the Computational Cost

So far, we have shown how the problem of unknown or changing system dynam-
ics can be addressed within ILQG–LD. Another important issue to discuss is the

2 In the case of learning forward dynamics, the target values are the joint accelerations. We
effectively learn a separate model for each joint.
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computational complexity. The ILQG framework has been shown to be the most
effective locally optimal control method in terms of convergence speed and accu-
racy [15]. Nevertheless the computational cost of ILQG remains daunting even for
simple movement systems, preventing their application to real-time optimal motion
planning for large DoF systems. A large part of the computational cost arises from
the linearisation of the system dynamics, which involves repetitive calculation of the
system dynamics’ derivatives ∂f/∂x and ∂f/∂u. When the analytical form of these
derivatives is not available, they must be approximated using finite differences. The
computational cost of such an approximation scales linearly with the sum of the di-
mensionalities of x = (q; q̇) and u = τττ (i.e., 3N for an N DoF joint torque controlled
robot). In simulations, our analysis show that for the 2 DoF manipulator, 60% of the
total ILQG computations can be attributed to finite differences calculations. For a 6
DoF arm, this rises to 80%.

Within our ILQG–LD scheme, we can avoid finite difference calculations and
rather use the analytic derivatives of the learned model, as has similarly been pro-
posed in [3]. Differentiating the LWPR predictions (5) with respect to z = (x;u)
yields terms

∂ f̃ (z)
∂z

=
1

W ∑
k

(
∂wk

∂z
ψk(z)+ wk

∂ψk

∂z

)
− 1

W 2 ∑
k

wk(z)ψk(z)∑
l

∂wl

∂z
(7)

=
1

W ∑
k

(−ψkwkDk(z− ck)+ wkbk)+
f̃ (z)
W ∑

k

wkDk(z− ck) (8)

for the different rows of the Jacobian matrix

(
∂f̃/∂x
∂f̃/∂u

)
= ∂

∂z ( f̃1, f̃2, . . . f̃N)T .

Table 1 illustrates the computational gain (mean CPU time per ILQG iteration)
across 3 test manipulators – highlighting added benefits for more complex systems.
On a notebook running at 1.6 GHz, the average CPU times for a complete ILQG
trajectory using the analytic method are 0.8 sec (2 DoF), 1.9 sec (6 DoF), and 9.8
sec (12 DoF), respectively. Note that LWPR is a highly parallelisable algorithm:
Since the local models learn independently of each other, the respective computa-
tions can be distributed across multiple processors or processor cores, which can
yield a further significant performance gain [14].

Table 1. CPU time for one ILQG–LD iteration (sec).

finite differences analytic Jacobian improvement factor

2 DoF 0.438 0.193 2.269
6 DoF 4.511 0.469 9.618
12 DoF 29.726 1.569 18.946



Adaptive Optimal Feedback Control with Learned Internal Dynamics Models 73

4 Evaluation

In this section we evaluate ILQG–LD in several setups with increasing complexity.
We start with joint torque controlled manipulators setups first, which will be anal-
ysed under stationary and non-stationary conditions. We then present ILQG–LD
results from an antagonistic humanoid arm model which embodies the challenge of
large redundancies in the dynamics domain.

All simulations are performed with the Matlab Robotics Toolbox [7]. This sim-
ulation model computes the non-linear plant dynamics using standard equations of
motion. For an N-DoF manipulator the joint torques τττ are given by

τττ = M(q)q̈ + C(q, q̇)q̇+ b(q̇)+ g(q), (9)

where q and q̇ are the joint angles and joint velocities respectively; M(q) is the N-
dimensional symmetric joint space inertia matrix, C(q, q̇) accounts for Coriolis and
centripetal effects, b(q̇) describes the viscous and Coulomb friction in the joints, and
g(q) defines the gravity loading depending on the joint angles q of the manipulator.

We study movements for a fixed motion duration of one second, which we dis-
cretise into K = 100 steps (Δt = 0.01s). The manipulator starts at an initial position
q0 and reaches towards a target qtar. During movement we wish to minimise the
energy consumption of the system. We therefore use the cost function

v = wp |qK −qtar |2 + wv | q̇K |2 + we

K

∑
k=0

|uk |2Δt, (10)

where the factors for the target position accuracy (wp), for the zero end-point veloc-
ity (wv), and for the energy term (we) weight the importance of each component. We
compare the control results of ILQG–LD and ILQG with respect to the number of
iterations, the end point accuracy and the generated costs. In this paper we will refer
to cost as total cost defined in (10) and to running cost to the energy consumption
only, i.e., the summation term in (10).
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Fig. 2. Two different joint-torque controlled manipulator models with selected targets (cir-
cles) and ILQG generated trajectories as benchmark data. All models are simulated using
the Matlab Robotics Toolbox. Left: 2 DoF planar manipulator model; Middle: picture of the
Kuka Light-Weight Robot arm (LWR); Right: Simulated 6 DoF LWR model (without hand).
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4.1 Planar Arm with 2 Torque-Controlled Joints

The first setup (Fig. 2 left) is a horizontally planar 2 DoF manipulator similar to the
one used in [28]. The arm is controlled by directly commanding joint torques. This
low DoF system is ideal for performing extensive (quantitative) comparison studies
and to test the manipulator under controlled perturbations and force fields during
planar motion.

4.1.1 Stationary Dynamics

First, we compared the characteristics of ILQG–LD and ILQG (both operated in
open loop mode) in the case of stationary dynamics without any noise in the 2
DoF plant. Fig. 3 shows three trajectories generated by learned models of different
predictive quality, which is reflected by the different normalised means square errors
(nMSE) on test data. The nMSE is defined as nmse(y, ỹ) = 1

nσ2
y

∑n
i=1 (yi − ỹi)2 where

y is the desired output data set of size n and ỹ represents the LWPR predictions.
The nMSE takes into account the output distribution of the data (variance σ2

y in the
data) and therefore produces a “dimensionless” error measure. As one would expect,
the quality of the model plays an important role for the final cost, the number of
ILQG–LD iterations, and the final target distances (cf. the table within Fig. 3). For
the final learned model, we observe a striking resemblance with the analytic ILQG
performance.

Next, we carried out a reaching task to 5 reference targets covering a wide oper-
ating area of the planar arm. To simulate control dependent noise, we contaminated
the commands u just before feeding them into the plant, using Gaussian noise with
50% of the variance of the signal u. We then generated motor commands to move
the system towards the targets, both with and without the feedback controller. As
expected, closed loop control (utilising gain matrices Lk) is superior to open loop
operation regarding reaching accuracy. Fig. 4 depicts the performance of ILQG–LD
and ILQG under both control schemes. Averaged over all trials, both methods show
similar endpoint variances and behaviour which is statistically indistinguishable.

ILQG–LD (L) (M) (H) ILQG
No. of training points 111 146 276 –
Prediction error (nMSE) 0.80 0.50 0.001 –
Iterations 19 17 5 4
Cost 2777.36 1810.20 191.91 192.07
Eucl. target distance (cm) 19.50 7.20 0.40 0.01

0 10 20 30 40 cm
-20

-10

0

cm

(L)

(M)
(H)

Fig. 3. Behaviour of ILQG–LD for learned models of different quality: (L)-Low, (M)-
Medium, (H)-High. Right: Trajectories in task space produced by ILQG–LD (black lines)
and ILQG (grey line).
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Fig. 4. Illustration of the target reaching performances for the planar 2 DoF in the presence
of strong control dependent noise, where d represents the average Euclidean distance to the
five reference targets.

4.1.2 Non-stationary Dynamics

A major advantage of ILQG–LD is that it does not rely on an accurate analytic
dynamics model; consequently, it can adapt on the fly to external perturbations and
to changes in the plant dynamics that may result from altered morphology or wear
and tear. We carried out adaptive reaching experiments in our simulation similar
to the human manipulandum experiments in [21]. First, we generated a constant
unidirectional force field (FF) acting perpendicular to the reaching movement (see
Fig. 5). Using the ILQG–LD models from the previous experiments, the manipulator
gets strongly deflected when reaching for the target because the learned dynamics
model cannot account for the spurious forces. However, using the resultant deflected
trajectory (100 data points) as training data, updating the dynamics model online
brings the manipulator nearer to the target with each new trial. We repeated this
procedure until the ILQG–LD performance converged successfully. At that point,
the internal model successfully accounts for the change in dynamics caused by the
FF. Then, removing the FF results in the manipulator overshooting to the other side,
compensating for a non-existing FF. Just as before, we re-adapted the dynamics
online over repeated trials.

Fig. 5 summarises the results of the sequential adaptation process just described.
The closed loop control scheme clearly converges faster than the open loop scheme,
which is mainly due to the OFC’s desirable property of always correcting the system
towards the target. Therefore, it produces more relevant dynamics training data.
Furthermore, we can accelerate the adaptation process significantly by tuning the
forgetting factor λ, allowing the learner to weight the importance of new data more
strongly [30]. A value of λ = 0.95 produces significantly faster adaptation results
than the default of λ = 0.999. As a follow-up experiment, we made the force field
dependent on the velocity v of the end-effector, i.e. we applied a force

F = Bv, with B =
(

0 50
−50 0

)
Nm−1s (11)
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Fig. 5. Illustration of adaptation experiments for open loop (rows 1,2) and closed loop (rows
3,4) ILQG–LD. Arrows depict the presence of a (constant) force field; n represents the num-
ber of training points required to successfully update the internal LWPR dynamics model.
Darker lines indicate better trained models, corresponding to later trials in the adaption
process.
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Fig. 6. Adaptation to a velocity-dependent force field (as indicated by the bent arrow) and
re-adaptation after the force field is switched off (right column). Top: open loop. Bottom:
closed loop.
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to the end-effector. The results are illustrated in Fig. 6: For the more complex FF,
more iterations are needed in order to adapt the model, but otherwise ILQG–LD
shows a similar behaviour as for the constant FF. Interestingly, the overshoot be-
haviour depicted in Fig. 5 and 6 has been observed similarly in human adaptation
experiments where it was referred to as “after effects” [21]. We believe this to be
an interesting insight for future investigation of ILQG–LD and its role in model-
ing sensorimotor adaptation data in the (now extensive) human reach experimental
paradigm [22].

4.2 Anthropomorphic 6 DoF Robot Arm

Our next experimental setup is a 6 DoF manipulator (Fig. 2, right), the physical
parameters (i.e., link inertia, mass, etc.) of which are a faithful model of the first 6
links of the Kuka Light-Weight Robot (LWR).

Using this arm, we studied reaching targets specified in Cartesian coordinates
r ∈ IR3 in order to highlight the redundancy resolution capability and trial-to-trial
variability in large DoF systems. We set up the cost function (cf. eq. 10) as

v = wp |r(qK)− rtar |2 + wv | q̇K |2 + we

K

∑
k=0

|uk |2Δt, (12)

where r(q) denotes the end-effector position as calculated from forward kinemat-
ics. It should be noted that for the specific kinematic structure of this arm, this 3D
position depends only on the first 4 joint angles. Joints 5 and 6 only change the ori-
entation of the end-effector3, which does not play a role in our reaching task and
correspondingly in the cost function. In summary, our arm has one redundant and
further two irrelevant degrees of freedom for this task.

Table 2. Comparison of the performance of ILQG–LD and ILQG for controlling a 6 DoF
robot arm. We report the number of iterations required to compute the control law, the average
running cost, and the average Euclidean distance d to the three reference targets.

ILQG ILQG–LD
Targets Iter. Run. cost d (cm) Iter. Run. cost d (cm)

(a) 51 18.50± 0.13 2.63± 1.63 51 18.32± 0.55 1.92± 1.03
(b) 61 18.77± 0.25 1.32± 0.69 99 18.65± 1.61 0.53± 0.20
(c) 132 12.92± 0.04 1.75± 1.30 153 12.18± 0.03 2.00± 1.02

Similar to the 2 DoF experiments, we bootstrapped a forward dynamics model
through extensive data collection (i.e., motor babbling). Next, we used ILQG–LD
(closed loop, with noise) to train our dynamics model online until it converged to
stable reaching behaviour. Fig. 7 depicts reaching trials, 20 for each reference target,

3 The same holds true for the 7th joint of the original LWR arm.



78 D. Mitrovic, S. Klanke, and S. Vijayakumar

cm

cm−50 0   

−50

0

50

X

Y
(a)

(b)

(c)

cm

cm

−50 0   

0   

50

X

Z

(b)

(a)

(c)

Fig. 7. Illustration of the trial-to-trial variability of the 6-DoF arm when reaching towards
target (a,b,c). Left: top-view, right: side-view.

using ILQG–LD with the final learned model. Table 2 quantifies the performance.
The targets are reached reliably and no statistically significant differences can be
spotted between ILQG–LD and ILQG. An investigation of the trials in joint angle
space also shows similarities. Fig. 8 depicts the 6 joint angle trajectories for the 20
reaching trials towards target (c). Please note the high variance of the joint angles
especially for the irrelevant joints 5 and 6, which nicely show that task irrelevant
errors are not corrected unless they adversely affect the task (minimum interven-
tion principle of OFC). Moreover, the joint angle variances (trial-to-trial variability)
between the ILQG–LD and ILQG trials are in a similar range, indicating an equiv-
alent corrective behaviour – the shift of the absolute variances can be explained by
the slight mismatch between the learned and analytical dynamics. We can conclude
from our results that ILQG–LD scales up very well to 6 DoF, not suffering from
any losses in terms of accuracy, cost or convergence behaviour. Furthermore, its
computational cost is significantly lower than the one of ILQG.

(1)

(2) (3)

iLQG
iLQG-LD

(4) (5) (6)

Fig. 8. Illustration of the trial-to-trial variability in the joint angles (1–6) over time when
reaching towards target (c). Grey lines indicate ILQG, black lines stem from ILQG–LD.

4.3 Antagonistic Planar Arm

In order to analyse ILQG–LD in a dynamically redundant scenario, we studied
a two DoF planar human arm model, which is actuated by four single-joint and
two double-joint antagonistic muscles (Fig. 9 left). The arm model described in
this section is based on [13]. Although kinematically simple, the system is over-
actuated and therefore an interesting testbed for our control scheme, because large
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Fig. 9. Left: Human arm model with 6 muscles (adapted from [13]). Right: Same arm
model with selected targets (circles) and ILQG generated trajectories as benchmark data.
The physics of the model is simulated using the Matlab Robotics Toolbox [7].

redundancies in the dynamics have to be resolved. The dimensionality of the control
signals makes adaptation processes (e.g., to external force fields) quite demanding.
Indeed this arm poses a harder learning problem than the 6-DoF manipulator of
the previous section, because the muscle-based actuation makes the dynamics less
linear.

As before the dynamics of the arm is in part based on standard equations of
motion, given by

τττ = M(q)q̈ + C(q, q̇)q̇. (13)

Given the antagonistic muscle-based actuation, we cannot command joint torques
directly, but rather we have to calculate effective torques from the muscle activations
u. For the present model the corresponding transfer function is given by

τττ(q, q̇,u) = −A(q)TT(l, l̇,u), (14)

where A represents the moment arm. For simplicity, we assume A to be constant
and independent of the joint angles q:

A(q) = A =
(

a1 a2 0 0 a5 a6

0 0 a3 a4 a7 a8

)T

. (15)

The muscle lengths l depend on the joint angles q through the affine relationship
l = lm −Aq, which also implies l̇ = −Aq̇. The term T(l, l̇,u) in (14) denotes the
muscle tension, for which we follow the Kelvin-Voight model [19] and define:

T(l, l̇,u) = K(u)
(
lr(u)− l

)−B(u)l̇. (16)

Here, K(u), B(u), and lr(u) denote the muscle stiffness, the muscle viscosity and
the muscle rest length, respectively. Each of these terms depends linearly on the
motor commands u, as given by

K(u) = diag(k0 + ku), B(u) = diag(b0 + bu), lr(u) = l0 + ru. (17)
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The elasticity coefficient k, the viscosity coefficient b, and the constant r are given
from the muscle model. The same holds true for k0, b0, and l0, which are the in-
trinsic elasticity, viscosity and rest length for u = 0, respectively. For the exact val-
ues of these coefficients please refer to [13]. ILQG has been applied previously
to similar antagonistic arm models, that are slightly more complex. Most notably,
non-constant moment arms A(q), stochastic control signals, and a muscle activa-
tion dynamics which increase the dimensionality of the state space have been used
[15].

Please note that in contrast to standard torque-controlled robots, in our arm model
the dynamics (13) is not linear in the control signals, since u enters (16) quadrati-
cally. We follow the same cost function as before (eq. 10) and the same fixed motion
duration of one second. Here we discretise the time into K = 50 steps (Δt = 0.02s).

4.3.1 Stationary Dynamics

In order to make ILQG–LD converge for our three reference targets we coarsely pre-
trained our LWPR model with a focus on a wide coverage of the workspace. The
training data are given as tuples consisting of (q, q̇,u) as inputs (10 dimensions in
total), and the observed joint accelerations q̈ as the desired two-dimensional output.
We stopped training once the normalised mean squared error (nMSE) in the predic-
tions reached ≤ 0.005. At this point LWPR had seen 1.2 · 106 training data points
and had acquired 852 receptive fields, which is in accordance with the previously
discussed high non-linearity of the plant dynamics.

We carried out a reaching task to the 3 reference targets (Fig. 9, right) using
the feedback controller (feedback gain matrix L) that falls out of ILQG(-LD). To
compare the stability of the control solution, we simulated control dependent noise
by contaminating the muscle commands u just before feeding them into the plant.
We applied Gaussian noise with 50% of the variance of the signal u.

Fig. 10 depicts the generated control signals and the resulting performance of
ILQG–LD and ILQG over 20 reaching trials per target. Both methods show similar
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Fig. 10. Illustration of an optimised control sequence (left) and resulting trajectories (right)
when using a) the known analytic dynamics model and b) the LWPR model learned from
data. The control sequences (left target only) for each muscle (1–6) are drawn from bottom
to top, with darker grey levels indicating stronger muscle activation.
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Table 3. Comparison of the performance of ILQG–LD and ILQG with respect to the number
of iterations required to compute the control law, the average running cost, and the average
Euclidean distance to the three reference targets (left, center, right).

ILQG ILQG–LD
Targets Iter. Run. cost d (cm) Iter. Run. cost d (cm)

Center 19 0.0345± 0.0060 0.11± 0.07 14 0.0427± 0.0069 0.38± 0.22
Left 40 0.1873± 0.0204 0.10± 0.06 36 0.1670± 0.0136 0.21± 0.16
Right 41 0.1858± 0.0202 0.57± 0.49 36 0.1534± 0.0273 0.19± 0.12

endpoint variances and trajectories which are in close match. As can be seen from
the visualisation of the control sequences, antagonistic muscles (i.e., muscle pairs
1/2, 3/4, and 5/6 in Fig. 9, left) are never activated at the same time. This is a direct
consequence of the cost function, which penalises co-contraction as a waste of en-
ergy. Table 3 quantifies the control results of ILQG–LD and ILQG for each target
with respect to the number of iterations, the generated running costs and the end
point accuracy.

4.3.2 Adaptation Results

As before we carried out adaptive reaching experiments (towards the center target)
and we generated a constant unidirectional force field (FF) acting perpendicular to
the reaching movement (see Fig. 11). Using the ILQG–LD model from the previ-
ous experiment, the manipulator gets strongly deflected when reaching for the target
because the learned dynamics model cannot yet account for the “spurious” forces.
However, using the resultant deflected trajectory as training data, updating the dy-
namics model online brings the manipulator nearer to the target with each new trial.
In order to produce enough training data, as is required for a successful adaptation,
we generated 20 slightly jittered versions of the optimised control sequences, ran
these on the plant, and trained the LWPR model with the resulting 50 samples each.
We repeated this procedure until the ILQG–LD performance converged success-
fully, which was the case after 27000 training samples. At that point, the internal
model successfully accounted for the change in dynamics caused by the FF. Then,
we switched off the FF while continuing to use the adapted LWPR model. This re-
sulted in an overshooting of the manipulator to the other side, trying to compensate
for non-existing forces. Just as before, we re-adapted the dynamics online over re-
peated trials. The arm reached the target again after 7000 training points. One should
note that compared to the initial global motor babbling, where we required 1.2 ·106

training data points, for the local (re-)adaptation we need only a fraction of the data
points.

Fig. 11 summarises the results of the sequential adaptation process just de-
scribed. Please note how the optimised adapted control sequence contains consider-
ably stronger activations of the extensor muscles responsible for pulling the arm to
the right (denoted by “2” and “6” in Fig. 9), while still exhibiting practically no
co-contraction.
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Fig. 11. Left: Adaptation to a unidirectional constant force field (indicated by the arrows).
Darker lines indicate better trained models. In particular, the left-most trajectory corresponds
to the “initial” control sequence, which was calculated using the LWPR model (from motor
babbling) before the adaptation process. The fully “adapted” control sequence results in a
nearly straight line reaching movement. Right: Resulting trajectories during re-adaptation
after the force field has been switched off (i.e., after effects).

5 Discussion

In this work we introduced ILQG–LD, a method that realises adaptive optimal
feedback control by incorporating a learned dynamics model into the ILQG frame-
work. Most importantly, we carried over the favourable properties of ILQG to more
realistic control problems where the analytic dynamics model is often unknown,
difficult to estimate accurately or subject to changes. As with ILQG control, redun-
dancies are implicitly resolved by the OFC framework through a cost function, elim-
inating the need for a separate trajectory planner and inverse kinematics/dynamics
computation.

Utilising the derivatives (8) of the learned dynamics model f̃ avoids expensive
finite difference calculations during the dynamics linearisation step of ILQG. This
significantly reduces the computational complexity, allowing the framework to scale
to larger DoF systems. We empirically showed that ILQG–LD performs reliably in
the presence of noise and that it is adaptive with respect to systematic changes in the
dynamics; hence, the framework has the potential to provide a unifying tool for mod-
elling (and informing) non-linear sensorimotor adaptation experiments even under
complex dynamic perturbations. As with ILQG control, redundancies are implicitly
resolved by the OFC framework through a cost function, eliminating the need for a
separate trajectory planner and inverse kinematics/dynamics computation.

Our future work will concentrate on implementing the ILQG–LD framework on
an anthropomorphic hardware – this will not only explore an alternative control
paradigm, but will also provide the only viable and principled control strategy for
the biomorphic variable stiffness based highly redundant actuation system that we
are currently developing. Indeed, exploiting this framework for understanding OFC
and its link to biological motor control is another very important strand.
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