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Abstract 

Over the past few years there has been a relative explosion of data in the biological 

sciences. At the heart of this data explosion is the budding yeast Saccharomyces 

cerevisiae (S. cerevisiae) which is one of the most widely studied eukaryotes due to 

its value as a model organism in biological research; it has a fully sequenced genome 

that is well annotated and a variety of publicly available functional genomic data 

sets. Analysis of this vast amount of data is a key challenge and computers in 

conjunction with effective software tools are an essential part of this process. There 

has been a rapid increase in the number of software tools available for the 

visualisation and analysis of individual types of functional genomic data sets. 

However, there are relatively few tools available that are capable of bringing together 

a number of different types of data sets for integrated visualisation and analysis. As 

many new biological insights are likely to emerge from the combined use of data 

from different functional genomic strategies, there is a need for a new generation of 

software tools that are capable of effectively utilising the wealth of data available for 

S. cerevisiae enabling users to perform integrative analyses. 

The Yeast Exploration Tool Integrator (YETI) is a novel bioinformatics tool for the 

integrated visualisation and analysis of S. cerevisiae functional genomic data sets. 

The YETI system consists of a database for the storage and management of data and 

a Java program for the integrated visualisation and analysis of data. YETI utilises 

publicly available data sets from a number of different functional genomic strategies, 

such as gene expression microarrays and yeast two-hybrid screens, and provides an 
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effective means for their integrated visualisation and analysis. YETI consists of a 

number of individual sections for the visualisation and analysis of functional 

genomic data sets which are closely inter-linked enabling users to swiftly move 

between them and investigate all aspects of any genes or proteins of interest as well 

as providing access to textual information, including Gene Ontology (GO) 

annotations, at any point. YETI enables users to easily explore the data in an 

integrated modular fashion, investigate the intricacies of broad biological processes 

and test specific hypotheses. 

In this thesis, we detail the design and development of YETI and also report a 

number of case studies which clearly demonstrate its potential and utility as an 

analysis and exploration tool. Furthermore, the results of a number of correlation 

analyses performed between the stored functional genomic data sets are also 

reported. 
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1.1: The Budding Yeast Saccharomyces cerevisiae 

Yeasts are fungi that grow as single cells. They are simple unicellular eukaryotes that 

multiply by budding or direct division (fission). They typically grow in moist 

environments where there is a plentiful supply of simple, soluble nutrients such as 

sugars and amino acids. For this reason they are commonly found on fruits, leaves, 

flowers, roots and in various types of food. The precise classification of yeasts is 

accomplished using the characteristics of the cell, ascospores and colonies. 

Physiological characteristics are also used to identify species, with one of the more 

well known characteristics being the ability to ferment sugars for the production of 

ethanol. Budding yeasts are true fungi of the phylum Ascomycetes, class 

Hemiascomycetes and the true yeasts are separated into one main order, 

Saccharomycetales. 

The best known and commercially significant yeasts are the related species and 

strains of the budding yeast Saccharomyces cerevisiae (S. cerevisiae; Figure 1.1), 

also known as baker's or brewer's yeast. S. cerevisiae has played an important part in 

human history for a long time through the production food, beverages and a variety 

of fermentation products for industry. It also has a great scientific importance 

through its use in biological research where it has been the subject of extensive study 

for the past few decades. 
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Figure 1.1: Saccharomyces cerevisiae 
This is an image of the budding yeast S. cerevisiae in the process of budding. This image 
was taken from the Munich Information Centre for Protein Sequences (MIPS) 
Comprehensive Yeast Genome Database (CYGD; Mewes et al., 1998; 
http://mir)s.qsf.de/genre/i)ro'/veast/index.wsr)).  

1.2: The S. cerevisiae Genome 

The genome contains all the biological information needed to build and maintain a 

living organism and can be defined as the complete set of genes of an organism or its 

organelles (Oliver, 2000). The biological information contained in a genome is 

encoded in its deoxyribonucleic acid (DNA) base pair (bp) sequence which is 

typically determined by systematic DNA sequencing techniques. S. cerevisiae was 

the first eukaryotic organism to have its genome sequenced and it was chosen to be 

so for a number of reasons: (1) S. cerevisiae is one of the most widely studied 

cuLar\otic oranisms due to its value as a model organism in biological research; (2) 

N. iiac is a powerful eukaryotic model system because the basic cellular 

mechanics of replication, recombination, cell division and metabolism are generally 

conserved between the yeasts and higher eukaryotes such as Homo sapiens; (3) S. 

ccrevisiae is cheap, easy to cultivate, has short generation times and has a relatively 

snial enonic hich can be manipulated and analysed readily. It can be grown on 

defined media wvina the e.\pennlenter comiIetc control over its chemical and 
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physical environment; and (4) S. cerevisiae is easy to manipulate by molecular 

techniques and its genetics and biochemistry have been well characterised. It is a 

unicellular eukaryote and an ideal organism for geneticists as it allows genes to be 

replaced, mutated or deleted by homologous recombination. 

S. cerevisiäe has 16 nuclear chromosomes of varying lengths and a circular 

mitochondrial chromosome of 86 kilo bases (kb). The mitochondrial chromosome 

was initially sequenced in segments during the 1980s but was subsequently re-

sequenced in the 1990s (Foury et al., 1998). The S. cerevisiae genome sequencing 

project began in January 1989 when a consortium of 35 European laboratories began 

the sequencing of S. cerevisiae chromosome III (Vassarotti et al., 1992). In 1992 this 

project resulted in the release of the complete DNA sequence of chromosome 111 

which was presented to be 315 kb in length (Oliver et al., 1992). This was a scientific 

landmark because it was the first eukaryotic chromosome to be sequenced. However, 

it also revealed the extent of what remained to be understood in the genome of an 

otherwise extensively studied organism. 

A total of 182 open reading frames (ORFs) encoding putative proteins longer than or 

equal to 100 codons were identified from the DNA sequence of chromosome III 

(Oliver et al., 1992). The size limit of 100 codons was chosen because ORFs of this 

length have less than 0.2 % probability of occurring by chance (Sharp et al., 1991), it 

was however recognised that a few shorter genes were likely to exist. Of the 182 

genes identified, only 34 appeared on the existing S. cerevisiae genetic map 

(Mortimer et al., 1989; Oliver et al., 1992). This showed that even in the genome of 
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an organism as small and intensively studied as S. cerevisiae, only a minor 

proportion of the genes had been identified by classical means. Analyses of the 

newly discovered ORFs revealed how much was still left to learn about this 

organism. Only 10 % of ORFs showed significant sequence similarity to other genes 

from S. cerevisiae, 10 % were similar to genes from other organisms and 80 % 

showed no significant sequence similarity to any previously sequenced genes in any 

organism (Oliver et al., 1992). The majority of genes on chromosome III were 

completely novel and to many, completely unexpected. 

In April 1996, S. cerevisiae became the first eukaryotic organism for which a 

complete genome sequence was publicly available (Goffeau et al., 1996); S. 

cerevisiae was shown to have a relatively small and compact genome of 12,068 kb 

(Goffeau et al., 1996). At the beginning of the sequencing project 1,000 genes 

encoding either protein products or ribonucleic acids (RNA) had been identified on 

the S. cerevisiae genome by genetic analyses (Mortimer et al., 1992; Goffeau et al., 

1996). However, initial analysis of the S. cerevisiae genome sequence revealed the 

presence of 6,275 ORFs, 5,885 of which were believed to represent protein encoding 

genes (Goffeau et al., 1996). The presence of an ORF in a genome sequence does not 

necessarily imply the existence of a functional gene and despite advances in 

bioinformatics it is still difficult to predict genes, especially small ones, accurately 

from genomic data (Eisenberg et al., 2000; Mathe et al., 2002). For example, due to 

discrepancies in gene numbers indicated by previous analyses, the S. cerevisiae 

genome underwent a complete re-annotation in 2001 (Wood et al., 2001). In this 

analysis, 3 new ORFs were identified, 46 ORF coordinates were altered, 370 ORFs 
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were defined as totally spurious and a further 193 ORFs were defined as very 

hypothetical. Overall, the S. cerevisiae gene number estimate was revised to a new 

upper limit of 5,570. Although this number is likely to be closer to the true upper 

limit, it is still predicted to be an overestimate of the real gene number (Wood et al., 

2001). 

The longest known ORF is YLR106C located on chromosome XII with a length of 

14,733 bp (4,910 codons). However, very few ORFs are longer than 1,500 codons. 

The lower size limit is less clear cut because without direct information on function, 

real short genes cannot be easily distinguished from random occurrences of apparent 

short ORFs. Short genes can be identified from the genome by the presence of 

introns, biased codon usage or the existence of corresponding transcripts. On average 

a protein encoding gene is found every 2 kb of the S. cerevisiae genome with the 

typical S. cerevisiae gene being 1,450 bp (483 codons) in length preceded by an 

upstream region of 309 bp and followed by a downstream region of 163 bp making a 

total of only 1,922 bp (Dujon, 1996). ORFs occupy approximately 70 % of the S. 

cerevisiae genome (Dujon, 1996) which leaves little space for all other structural and 

functional elements as well as non-coding DNA. 

One of the major findings of the initial genome sequence analysis was the presence 

of 'orphan' genes (Dujon, 1996). The orphan genes are a large set of previously 

undiscovered genes of unknown function with no sequence homologues of known 

function. Although gene numbers are undergoing continuous revision by the yeast 

community, it is currently reasonable to estimate that - 30 % of S. cerevisiae genes 
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are orphans. It is widely believed that these genes do make a contribution to the 

upkeep of the organism and there is little doubt that the majority of the sequenced 

ORFs are actual genes that are expressed under certain conditions. S. cerevisiae 

deletion mutants have been generated by homologous recombination for -96% of the 

predicted ORFs (Winzeler et al., 1999) and —1500 genes were identified as essential 

for viability (Giaever el al., 2002); numerous nonessential genes have been found to 

be required for various biological processes (Ooi et al., 2001; Begley et al., 2002; 

Deutschbauer et al., 2002). Ultimately, the validity and function of each ORF can 

only be proven by experiments in the laboratory but given the number of orphans in 

the S. cerevisiae genome this could take some time. Therefore, there is a clear need 

for new experimental and computational methods to aid in the assignment of 

biochemical functionality. 

Analysis of sequences also revealed that many genes were part of families with two 

or more members whose predicted protein products were at least 50 % identical 

(Mewes et al., 1997). This apparent genetic redundancy can be partly explained by 

the presence of gene sets with overlapping functions (Goffeau et al., 1996); most of 

the duplicated genes are members of families with just two or three members but 

some gene families are significantly larger. In addition, blocks of duplicated ORFs 

called cluster homology regions (CHR) were found in both the telomeric regions and 

at internal sites within chromosome arms (Goffeau et al., 1996). Genetic redundancy 

appears to be common at chromosome ends and many duplicate genes seem to be 

phenotypically redundant. However, single gene duplication mechanisms are 

insufficient to account for the full extent of redundancy in the S. cerevisiae genome. 
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An alternative explanation is that the S. cerevisiae genome underwent a complete 

duplication at some stage in its evolutionary history and has subsequently been 

reduced to its present size via a series of deletions (Wolfe et al., 1997). A recent 

study demonstrated that the S. cerevisiae genome could indeed have arisen from an 

ancient whole genome duplication (Kellis et al., 2004). In this study, the genome of a 

related yeast species called Kluyverornyces waltii (K. waltii), which diverged from S. 

cerevisiae before the duplication event, was sequenced and analysed. The two 

genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to 

two regions of S. cerevisiae, as expected for a whole genome duplication. 

1.3: Gene Ontology 

The 	Gene 	Ontology 	(GO) 	project 	(Ashburner et 	al., 	2000; 

http://www.geneontology.org/)  is a collaborative effort to address the need for 

consistent descriptions of gene products in different genomic databases. The project 

began in 1998 as a collaboration between three model organism databases: FlyBase 

(Gelbart et al., 1996; http://flybase.orgJ ), the Saccharomyces Genome Database 

(Cherry et al., 1998; http://www.yeastgenome.org/)  and the Mouse Genome 

Database (Blake et al., 2000; http://www.informatics.jax.org/) . Since then, the GO 

Consortium (Ashburner et al., 2001) has grown to include many databases including 

several of the world's major repositories for plant, animal and microbial genomes. 

The GO annotation system is split into three structured, controlled vocabularies 

(ontologies) that describe gene products in terms of their associated molecular 
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functions, biological processes and cellular components in a species-independent 

manner. The three ontologies are defined by the GO Consortium as follows: 

Molecular Function: "A molecular function describes activities, such as 

catalytic or binding activities, at the molecular level. GO molecular function 

-- terms repréen(activities rather than the entities (molecules or complexes) 

that perform the actions, and do not specify where or when, or in what 

context, the action takes place. Molecular functions generally correspond to 

activities that can be performed by individual gene products, but some 

activities are performed by assembled complexes of gene products. Examples 

of broad functional terms are catalytic activity, transporter activity or 

binding; examples of narrower functional terms are adenylate cyclase activity 

or Toll receptor binding", (http://www.geneontology.org/).  

Biological Process: "A biological process is accomplished by one or more 

ordered assemblies of molecular functions. Examples of broad biological 

process terms are cell growth and maintenance or signal transduction; 

examples of more specific terms are pyrimidine metabolism or alpha-

glucoside transport. It can be difficult to distinguish between a biological 

process and a molecular function, but the general rule is that a process must 

have more than one distinct steps", (http://www.geneontology.org/).  

Cellular Component: "A cellular component is simply a component of a cell 

but with the proviso that it is part of some larger object, which may be an 

anatomical structure (e.g. rough endoplasmic reticulum or nucleus) or a gene 
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product group (e.g. ribosome, proteasome or a protein dimer)", 

(http://www.geneontology.org/).  

The ontologies are organised into structures called 'directed acyclic graphs' which 

differ from hierarchies in that a 'child' can have many 'parents'. This structure also 

enables queries to be performed at different levels: for example, one can use the GO 

system to find all the gene products in the S. cerevisiae genome that are involved in 

signal transduction, or you can zoom in on all the receptor tyrosine kinases. 

Furthermore, annotators are able to assign properties to gene products at different 

levels, depending on how much is known about a gene product. It is also important to 

note that a gene product can have multiple GO annotations; a gene has one or more 

molecular functions, is used in one or more biological processes and can be 

associated with one or more cellular components. 

GO slims (http://www.geneontology.org/)  are cut-down versions of the GO 

ontologies that contain a subset of the terms from the complete GO. They give a 

broad overview of the ontology content without the detail of the specific fine grained 

terms. GO slims are particularly useful for giving a summary of the results of GO 

annotations of a genome when broad classifications of gene product function are 

required. The GO Consortium provides a generic GO slim which, like the GO itself, 

is not species specific. However, many organism specific databases such as the 

Saccharomyces Genome Database (SGD; Cherry et al., 1998; 

http://www.yeastgenome.org/)  have created their own specie specific GO slim. 

Chapter 1: Background 	 10 



1.4: Functional Genomics 

The sequencing project has essentially provided biologists with a complete catalogue 

of all the genes present in S. cerevisiae. The goal now is to understand the 

interactions of all gene products and ultimately their function in creating this simple 

eukaryOtic organism. However, a large proportion of the genes in S. cerevisiae are 

still classified as proteins of unknown function and additional information is needed 

to place them within a biological context. Functional genomics strategies are 

becoming increasingly important in characterising novel proteins discovered by 

genome sequencing projects. Many such strategies use the principle of 'guilt by 

association' (Oliver, 2000) as the means of elucidating function, i.e. genes that are 

coexpressed or proteins that interact with one another are likely to be involved in the 

same or related cellular process. 

1.5: The S. cerevisiae Transcriptome 

The transcriptome can be defined as the complete set of RNA molecules present in a 

cell, tissue or organ at a certain point in time (Oliver, 2000). Unlike the genome, the 

transcriptome is highly dynamic and changes rapidly and dramatically in response to 

changes in the environment and during cellular events. In terms of understanding the 

function of a gene, knowing when and to what extent it is expressed can be crucial to 

understanding the activity and biological role of its encoded protein. Gene expression 

studies have previously relied on techniques such as northern blot analysis which 

measure the expression of only a single or small set of genes at one time. Newer 
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technologies including Serial Analysis of Gene Expression (SAGE; Velculescu et al., 

1997), high throughput northern analysis (Planta et al., 1999) and gene expression 

microarrays (Schena et al., 1995; Lockhart et al., 1996) enable thousands of genes to 

be analysed at once. 

1.5.1: Microarrays 

Microarrays are microscopic arrays of large sets of nucleic acids immobilised on 

solid substrates such as glass, they are used for a wide range of analytical methods 

based around the detection of sequence specific nucleic acid hybridisation. 

Microarrays can monitor, rapidly and efficiently, the messenger RNA (mRNA) 

abundance of all an organism's genes, allowing massive parallel data acquisition and 

analysis; they provide a sensitive, global readout of the physiological state of the cell. 

It is important to note that the relationship between the quantity of IURNA and the 

abundance of the corresponding protein in the cell is not trivial due to the fact that 

the speed of production varies for different proteins as does the half-life of both the 

protein and mRNA. However, it is widely accepted that measuring the level of 

mRNA gives us a reasonable insight into the abundance of the corresponding protein 

and it is this that can be measured on a genomic scale using microarrays. 

Currently, there are two general types of microarrays widely used in biological 

research, spotted microarrays (Schena et al., 1995) and Affymetrix chips (Lockhart 

et al., 1996), both of which rely on the same binding property of DNA. DNA and 

RNA are examples of nucleic acids, one characteristic of which is their tendency to 
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form double stranded molecules through complementary base pairing. This tendency 

of nucleic acids to form double stranded molecules is known as hybridisation and 

plays an important role in the measurement of mRNA abundance. For example, 

consider a specific gene and its mRNA product; given a sample of this mRNA, it is 

possible to reverse transcribe it to single stranded complimentary DNA (cDNA) 

which will hybndise to a single strand of the gene's original DNA. It is this 

hybridisation that underlies the operation of microarrays. 

Spotted microarrays (Schena et al., 1995; Figure 1.2) typically consist of a small 

glass slide onto which the DNA sequences of the genes to be analysed are printed at 

pre-defined locations to create an array of tiny spots; each spot contains many copies 

of the sequence of one gene. A basic spotted microarray experiment proceeds as 

follows (Figure 1.3), mRNA is extracted from the cell sample of interest and also 

from a separate control cell sample; the two samples are kept separate at this point. 

Reverse transcription is used to transform all the mRNA molecules into cDNA 

molecules labelled with distinct fluorescent dyes; typically Cy5 (red) for the 

experimental sample and Cy3 (green) for the control sample. The two samples are 

then pooled and washed over the slide and left to hybridise for a set period of time. 

Once this time has elapsed, the slides are rinsed and are ready to be analysed. The 

microarray is then scanned using a laser to excite the dyes and independent images 

for the green (control) and red (experimental) channels are generated. These images 

must then be analysed to identify all the arrayed spots and to measure their 

fluorescence intensities. Currently, image analysis requires significant human 

intervention to ensure that grids are properly aligned and artefacts are flagged and 
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excluded from subsequent analysis. After image processing, it is necessary to 

normalise the relative fluorescence intensities in each of the two scanned channels. 

Normalisation adjusts for differences in labelling and detection efficiencies for the 

fluorescent labels and for differences in the quantity of initial RNA from the two 

samples examined in the assay. There are three widely used techniques that can be 

used to normalise gene expression data (Quackenbush, 2001): (1) Total intensity 

normalisation; (2) Normalisation using regression analysis; and (3) Normalisation 

using ratio statistics. 

Figure 1.2: S. cerevisIae spotted microarray 
This is an image of a spotted microarray with all the - 6,000 S. cerevisiae OAFs spotted 
onto it. Each spot on the microarray represents a separate ORF that has been individually 
synthesised and mechanically spotted onto the microarray. The colour and intensity of each 
spot can be used to calculate the relative expression level of the corresponding ORF in the 
S. cerevisiae genome under the experimental conditions used. This image was taken from 
the Stanford Microarray Database (SMD; Sherlock et aL, 2001; http://penome-
www5.stanford.edu/).  
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Figure 1.3: Spotted microarray experimental procedure 
This image displays the experimental procedure for a typical microarray experiment from 
RNA extraction to image analysis: (1) Extract the RNA from both the control and 
experimental cell samples; (2) Prepare cDNA probes by incorporating either Cy3 (green; 
control) or Cy5 (red; experimental) using a single round of reverse transcription; (3) Pool the 
two cDNA samples; (4) Hybridise the pooled sample to a single microarray slide; (5) Scan 
the microarray slide in the green and red channels to create a green and red image, 
respectively; (6) Combine the two images to create a single image of the microarray, identify 
the spots and measure the fluorescence intensities in each channel for each spot. 
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Ultimately, the result of a spotted microarray experiment is two fluorescence values 

(experimental and control) for each gene spot on the microarray. The ratio of these 

readings provides us with a relative level of expression for the experimental sample 

with respect to the control. For example, if for a particular gene there is much more 

mRNA in the experimental sample relative to the control, the dye corresponding to 

the experimental sample (typically red Cy5) will fluoresce much more than the dye 

for the control (typically green Cy3) and we will have a high ratio. These ratios are 

normally logged (base 2) to preserve the symmetry between over and under 

expression (Eisen et al., 1999). 

Affymetrix chips (Lockhart et al., 1996) are high density arrays of oligonucleotides 

synthesised in situ using light directed chemistry. They combine photolithography 

technology with DNA synthetic chemistry to enable high density oligonucleotide 

manufacture (Schena et al., 1998). Affymetrix chips use a slightly more complicated 

procedure when compared to spotted microarrays, but do not need a separate control 

sample and hence provide absolute rather than relative expression values. For each 

gene that is being analysed, a number of small sections of the gene's DNA are 

printed at various locations around the array; these are referred to as perfect match 

(PM) probes. Next to each of these, the same sequence is printed but with the middle 

base switched; these are referred to as mismatch (MM) probes. The mRNA from an 

experimental sample is reverse transcribed to cDNA, labelled with a fluorescent dye, 

washed over the array and then excited with a laser to generate an image. Various 

algorithms exist to combine all these probe values into one expression value (e.g. 
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http://www.affymetrix.con-i/supportitechnicalJtechnotes/staistjcal  reference guide.pdf) for 

each gene analysed. 

1.5.2: Cluster Analysis 

One of the biggest challenges in applying gene expression microarray technology lies 

in data analysis. Currently, there are a wide variety of methods referred to as 'Cluster 

Analysis' that attempt to organise genes with similar expression patterns into related 

groups or clusters; a gene's expression pattern over a number of microarray 

experiments is also known as it's expression profile. The basic assumption 

underlying these approaches is that genes with similar expression patterns are likely 

to be related functionally. In this way, genes without functional assignments can be 

given tentative assignments based on the functions of known genes in the same 

expression cluster; the concept of 'guilt by association'. However, a tentative 

functional assignment may not be much more than a vague description or general 

classification. 

1.5.3: Hierarchical Clustering 

Hierarchical clustering has the advantage that it is simple and that the result can be 

easily visualised. As a result it has become one of the most widely used techniques 

for the analysis of gene expression data; a seminal paper in the use of hierarchical 

clustering• for gene expression analysis was published by Eisen et al. (1998). 

Hierarchical clustering is an agglomerative approach in which single gene expression 
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profiles are joined together to form clusters of genes which are further joined 

together until the process is completed; thus forming a single hierarchical tree with a 

corresponding clustered gene expression data table. 

The hierarchical clustering process through a number of distinct steps (Table 1.1; 

Quackenbush, 2001). The first step is to create a pairwise gene expression matrix. 

The matrix is generated by mathematically comparing every gene expression profile 

to every other gene expression profile in a pairwise fashion to create a distance (or 

similarity) score; the matrix is therefore comprised of all the pairwise distance scores 

between all the profiles. It is important to note that the way in which distance is 

measured between gene expression profiles can have a profound effect on the 

clusters that are produced and there are a number of different distance metrics that 

can be used. Perhaps the simplest method used to do this is the Euclidean distance 

metric which is a generalisation of the Pythagorean Theorem. However, the Pearson 

correlation coefficient is perhaps the most widely used measurement of distance 

between two expression profiles and the averaged dot (or inner) product is also 

commonly used; a good review of distance measures is presented in Stum, 2001. 
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Step Description 

1 The pairwise distance matrix is calculated for all genes to be clustered. 

2 The pairwise distance matrix is searched for the two most similar clusters (initially 
all clusters consist of a single gene). If more than one pair of clusters has the same 
similarity measure, a predetermined rule is used to decide between them. 

3 The two selected clusters are merged to produce a single new cluster. 

4 The distances are calculated between the new cluster and all the other clusters in 
the matrix. There is no need tocalculate all the distances in the -matrix as only 
those involving the new cluster have changed. 

5 Steps 2-4 are repeated until all the clusters have been joined to form a single 
hierarchical tree. 

Table 1.1: Steps of the hierarchical clustering processing 
This table contains a step wise description of the hierarchical clustering process. 

Pairwise linkage is a form of hierarchical clustering that has been successfully 

applied to sequence and phylogenetic analysis and has now been applied to 

clustering gene expression data. There are several variations of pairwise linkage 

clustering that differ in the way distances are measured between clusters as they are 

constructed (Table 1.2; Quackenbush, 2001), each of which will produce slightly 

different results. Typically for gene expression data 'pairwise average linkage' 

clustering gives acceptable results (Quackenbush, 2001). However, one potential 

problem with many hierarchical clustering methods is that as clusters grow in size 

the expression profile that represents the cluster might no longer represent any of the 

genes in the cluster. Consequently, as clustering progresses the actual expression 

patterns of the genes themselves become less relevant. Furthermore, if a poor 

assignment is made early in the process it cannot be corrected. 
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Method Description 

Pairwise single linkage The distance between two clusters is calculated as the 
minimum distance between a member of the first cluster and 
a member of the second cluster. 

Pairwise complete linkage The distance between two clusters is calculated as the 
maximum distance between a member of the first cluster and 
a member of the second cluster. 

Pairwise average linkage The distance between two clusters is calculated as the 
- average distance between all members of the first cluster 

- and all members of the second cluster. 

Table 1.2: Pairwise linkage clustering techniques 
This table contains the names and descriptions of the three main types of pairwise linkage 
hierarchical clustering techniques. 

Hierarchical clustering methods group genes with similar expression profiles 

together. The computed hierarchical tree can then be used to reorder the genes in the 

original expression data table so that genes with similar expression profiles are 

juxtaposed. However, the resulting ordered but still massive collection of numbers 

can remain difficult to visualise and comprehend. Therefore, it is essential to include 

a graphical representation of the data table by representing each gene expression data 

point with a colour that reflects its value; the hierarchical tree is then typically 

displayed alongside this table. The most commonly used method colours each data 

point on the basis of its 1092  ratio, with those close to zero coloured black, those 

greater than zero coloured red and those with negative values coloured green. The 

end product is a graphical representation of complex gene expression data that, 

through statistical organisation and graphical display, allows biologists to understand 

and explore the data in a natural intuitive manner (Figure 1.4). 
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Figure 1.4: Hierarchically clustered gene expression data table 
This figure shows the main steps involved in the hierarchical clustering of a microarray gene 
expression data set. The first step involves hierarchically clustering the gene expression data 
table to produce a hierarchical tree and a corresponding ordered data table. The second 
step involves visually representing each gene expression data point with a colour that 
represents its value, thus creating a clustered graphical representation of the gene 
expression data set. The extension of this example to include many more genes and 
microarray experiments is simple. 

Although cluster analysis techniques are extremely powerful, great care must be 

taken in applying this family of techniques. The algorithms used are well defined and 

reproducible but selecting di liereni algorithms, normal i sati ons nr distance metrics 

ill place di tierent genes into di flerent clusters; thus giving di lierent results 

depending on the route taken. Furthermore, clustering unrelated data will still 

produce clusters although they might not be biologically meaningful. It is therefore 

essential to select relevant data and apply algorithms appropriately so that data is 

clustered sen1bl\. 
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1.5.4: Other Clustering Methods 

There are a variety of other statistical methods that can be used to analyse gene 

expression data and cluster genes into similar groups. Three of the major 

unsupervised methods for clustering gene expression data are (Quackenbush, 2001; 

Sturn, 2001): - 

k-means clustering (Tavazoie et al., 1999) can be used as an alternative to 

hierarchical methods if there is advanced knowledge about the numbers of 

clusters that should be represented in the data. In k-means clustering, objects 

are partitioned into a fixed number (k) of clusters such that the clusters are 

internally similar but externally dissimilar; no dendrograms are produced. 

Self Organising Maps (SUM; Tamayo et al., 1999) are an unsupervised 

neural network based divisive clustering approach. A SUM assigns genes 

into a series of partitions on the basis of the similarity of their expression 

vectors to reference vectors that are defined for each partition. It is the 

process of defining these reference vectors that distinguishes SOMs from k-

mean clustering. 

Principal Component Analysis (PCA; Raychaudhun et al., 2000), also 

known as Singular Value Decomposition (SVD) is a mathematical technique 

that reduces the effective dimensionality of gene expression space without 

significant loss of information. PCA provides a 'projection' of complex data 

sets onto a reduced, easily visualised space. 
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In addition to the unsupervised methods discussed above, there are a variety of 

supervised methods that can be used in the analysis of gene expression data. 

Supervised methods represent a powerful alternative that can be applied if one has 

previous information about which genes are expected to cluster together. One widely 

used supervised approach is the Support Vector Machine (SVM; Brown et at., 2000). 

1.5.5: S. cerevisiae Microarray Experiments 

Over recent years, microarrays have been used widely in biological research to 

effectively measure the relative mRNA abundance of all the genes in S. cerevisiae 

under a variety of experimental conditions. For example, the Stanford Microarray 

Database (SMID; Sherlock et at., 2001; http://genome-www5.stanford.edu/)  alone 

currently contains 40 S. cerevisiae microarray studies. Contained within the mass of 

numbers produced by this technology is an immense amount of biological 

information. Furthermore, microarray results can represent the first indication to the 

function of many S. cerevisiae genes and with each new microarray experiment 

additional information is added. 

Microarrays are well suited for the analysis of temporal changes in gene expression 

during cellular events such as the cell cycle. Cell populations are synchronised by 

arresting them at a homogeneous cell cycle state then released from the arrested state 

and sampled at subsequent time intervals. Cho et al. (1998) were the first to analyse 

cell cycle periodic transcription patterns using microarrays. This study was quickly 

followed by additional studies of the mitotic (Spellman et al., 1998) and meiotic 
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(Chu et al., 1998) cell cycles in the budding yeast. Cho et al. (1998) used visual 

examination of time series plots to identify a set of 416 periodic transcripts. 

Spellman et al. (1998) used Fourier analysis of both their own data and the data from 

Cho et al. (1998) to compute a periodicity score for each gene in the array. Using this 

approach they scored 800 yeast genes as cell cycle periodic. Chu et al. (1998) 

evaluated the transcript profile of synchronously sporulating yeast cells in 

comparison with an asynchronous vegetative culture. They distinguished seven 

temporal classes of sporulation specific genes using cluster analysis and other 

methods. Other studies revealed that in rich medium, 87 % of all putative S. 

cerevisiae genes had a detectable level of expression, approximately 7 % of which 

were shown to have cell cycle dependent periodicity (Zweiger et al., 1999). 

It is well known that yeast cells change their patterns of gene expression in response 

to environmental stresses and microarrays can be used to measure these changes. To 

this end, Gasch et al. (2000) measured the genomic expression patterns of S. 

cerevisiae in response to environmental changes such as heat and cold shock, amino 

acid starvation, nitrogen depletion and steady state growth on alternative carbon 

sources. Microarrays have also been used to evaluate transcripts differentially 

expressed in yeast cells treated with DNA damaging agents (Jelinsky et al., 1999; 

Gasch et al., 2001) and for evolutionary studies of S. cerevisiae (Ferea et al., 1999). 

Combining the data from several unrelated expression profiling experiments can 

result in more detailed and informative clustering; this was first demonstrated in S. 

cerevisiae when —300 different experimental and genetic conditions were combined 

to create a so-called transcriptome compendium (Hughes et al., 2000). 
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1.6: The S. cerevisiae Proteome 

The proteome can be defined as the complete set of protein molecules present in a 

cell, tissue or organ at a certain point in time (Oliver, 2000). Messenger RNA 

transcripts are the transmitters of genetic information; they are not functional cellular 

entities. Proteins by contrast are the main catalysts, structural elements, signalling 

messengers and molecular machines of living cells. Proteomics is the large scale 

study of proteins usually by experimental biochemical means. The main methods 

used in proteomic research are large scale identification and localisation studies 

(Burns et al., 1994) and protein-protein interaction studies (Fields et al., 1989). 

The study of protein-protein interactions is currently an important area of functional 

genomics. It is well recognised that protein-protein interactions play a key role in the 

structural and functional organisation of the cell; most proteins require physical 

interaction with other proteins to fulfil their biological goal. If two proteins interact 

with one another they often participate in the same or related cellular functions; the 

concept of 'guilt by association'. A detected protein-protein interaction has the 

potential to yield a wide array of information which can generally be classified into 

one of four categories (Oliver, 2000): (1) An interaction between a protein of known 

and a protein of unknown function may allow the role of the latter to be inferred; 

placing functionally unclassified proteins into a biological context; (2) An interaction 

between proteins involved in the same biological process can provide information on 

how functionally related proteins are working together in order to fulfil biological 

goals; (3) An interaction between proteins involved in different biological processes 
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can provide clues as to how processes are combining together to create larger cellular 

processes; and (4) An interaction between two S. cerevisiae proteins can imply an 

interaction between the orthologous proteins in another organism. 

1.6.1: The Yeast Two-Hybrid System 

The yeast two-hybrid system (Fields et al., 1989) can be used to identify pairs of 

proteins that physically interact with one another (Figure 1.5). It works by separating 

the coding sequences of the DNA binding and activation domains of a transcriptional 

activator, which are then cloned into different vector molecules. The coding 

sequence of the protein whose partners are sought (the 'bait') is fused with the DNA 

binding domain. Typically, a library of coding sequences for proteins that might 

interact with the bait (the 'prey') is fused with the activation domain. As S. 

cerevisiae has two sexes (a and a) baits and preys can easily be introduced into the 

same S. cerevisiae cell by mating. If the two proteins physically interact, the DNA 

binding and activation domains are closely juxtaposed and the reconstituted 

transcriptional activator can mediate the switching on of a reporter gene that 

typically brings about a colour change to the host S. cerevisiae cell. As a result, the 

yeast two-hybrid system is simple, sensitive and amenable to high throughput 

methods. 

Oe disadvantage of this approach is that it typically uses the entire protein sequence 

derived from the DNA sequence and so does not account for the different splice 

variants or post-translational modifications of the protein which could interact 
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differently. In addition, the two-hybrid system reveals potential protein interactions 

but not the biological context in which they happen. Some may occur only when S. 

cerevisiae is in a particular physiological state (i.e. when both proteins are expressed 

and translated from their corresponding genes), whereas others may never occur 

because in real life the proteins are located in separate cellular compartments. 
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Figure 1.5: The yeast two-hybrid system 
This is an image depicting the main steps of the yeast two-hybrid system. The DNA binding 
and activation domains of a transcription activator are split (1) and fused to a bait and prey 
protein, respectively (2). The DNA binding domain fused to the bait protein is still able to bind 
the reporter genes' promoter (3). If the two proteins interact together, the two domains are 
juxtaposed and the transcriptional activator is reconstituted, thus switching on the reporter 
gene which brings about a colour change to the hosting yeast cell (4). 

The two-hybrid system combined with the complete genome sequence of S. 

cerevisiae has given biologists the opportunity to identify all possible pairwise 

interactions between the - 6,000 proteins of S. cerevisiae. A collaborative group 

Chapter 1: Background 	 27 



from the University of Washington and the biotechnology company CuraGen used 

the two-hybrid system on a large scale to identify 957 putative interactions involving 

1,004 proteins (Uetz et al., 2000); this group subsequently reported an additional 553 

interactions, available at http://depts.washington.edu/sfields/yplm/data/index.html . A 

different collaborative group from Japan also used the two-hybrid system to begin 

the construction of a comprehensive protein-protein interaction map of S. cerevisiae. 

This group followed up their initial pilot study (Ito et al., 2000) with a 

comprehensive two-hybrid analysis of the yeast interactome (Ito et al., 2001). This 

study resulted in the identification of 4,549 interactions among 3,728 proteins; a core 

data set from within the main data set was also identified consisting of 841 

interactions that were reported more than three times and involved 797 proteins. 

Surprisingly, there was only a small overlap between the data generated from the 

Uetz et al. (2000) and Ito et al. (2000 & 2001) studies (Hazbun et al., 2001). 

Furthermore, neither of the two studies reproduced more than 13 % of the 

published interactions previously detected by the scientific community using 

conventional interaction analyses (Hazbun et al., 2001). Smaller scale yeast two-

hybrid screens have also been performed in S. cerevisiae to investigate the specific 

interactions of splicing factors, RNA polymerase ifi and Sm-like proteins (Fromont-

Racine et al., 1997; Flores et al., 1999; Fromont-Racine et al., 2000). Furthermore, 

large scale yeast two-hybrid screens have also been performed in other organisms 

such as Drosphilia melanogaster (D. melanogaster; Stanyon et al., 2004; Giot et al., 

2003), Caenorhabditis elegans (C. elegans; Li et at., 2004), bacteria and phage (Rain 

et al., 2001; Bartel et al., 1996) and viruses (Uetz et at., 2004). 
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The simplest way to display a data set of protein-protein interactions is in a simple 

linear list or table containing the names of all the interacting protein pairs. However, 

this is impractical when the data sets are large due to the sheer amount of interactions 

being displayed. A much more intuitive way of representing protein-protein 

interactions is to use a visual graphical format (Figure 1.6). Although graphical 

representations do in essence just repeat the information shown in textual lists and 

tables, the graphical representation has fundamental advantages with respect to 

human perception (Uetz et al., 2002). Firstly, humans are better able to understand 

and remember a graphical representation. Secondly, in a textual representation the 

interactions involving a particular protein are usually spread out over different 

positions in the list; this requires an exhaustive search through the whole list to find 

all the relevant interactions. However, in a graphical layout each protein only occurs 

once and its interacting partners and their relationships can be easily identified and 

examined. 
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Figure 1.6: Visualisation of protein-protein interactions 
This is an image of the two main ways of displaying a set of protein-protein interactions. The 
first way (shown on the left) is to display the interactions as a simple table where each row 
contains the names of the two interacting proteins. However, this method requires the user 
to search through the whole table to find interactions involving a protein of interest. As can 
be seen, a much more intuitive method of displaying interactions is by using a graphical 
representation (shown on the right). The user is easily able to see all the interactions, pick 
out proteins of interest and also get an impression of the overall connectivity between the 
proteins. 

Protein-protein interactions can be effectively visualised using a range of 

computational approaches known as 'graph drawing' (Battista et al., 1999). A graph 

consists of nodes (proteins) and edges (interactions) linking pairs of nodes together. 

In order to draw the graph, coordinates in either two or three dimensional space need 

to be associated with each node. One of the most important factors in drawing a 

graph is minimising the number of edge intersections and evenly spacing out nodes 

in the drawing space. Currently, one of the most widely used algorithms for protein-

protein interaction graphs is the 'spring embedder' or 'springs and rings' algorithm 

(Eades, 1984). This algorithm is relatively simple and works by representing edges 

as springs and nodes as rings. The springs create an attracting force between the rings 

when they are far apart and a repulsive force when they are close together. The 
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algorithm searches for a placement of rings that minimises the total energy present in 

the system; this is commonly achieved by simulating the behaviour of the system 

over a certain period of time. However, these algorithms struggle to cope when the 

number of nodes reaches the hundreds and when there is a high connectivity between 

the nodes. This is because current computer technology struggles to cope with the 

processor time required to calculate the minimum energy in the system and 

sometimes to even draw an aesthetically pleasing and understandable graph. An 

additional problem when viewing graphs displaying a large number of nodes is the 

sheer size; it becomes virtually impossible to display the graph at a readable size on 

an object such as a computer screen. Other strategies for visualising protein-protein 

interaction networks include zoom and pan, focus and context (also known as fish-

eye or the magnifying glass), and collapsing protein classes (Uetz et al, 2002). 

1.6.2: Protein Interaction Complexes 

Most proteins function within cellular pathways where they interact with other 

proteins either in pairs or as components of larger complexes. Two groups (Gavin et 

al., 2002; Ho et al., 2002) have characterised hundreds of distinct multi-protein 

complexes in S. cerevisiae using approaches in which individual bait proteins are 

tagged and used to catch associated proteins which are then analysed by mass 

spectroscopy. The approaches used by Gavin et al. (2002) and Ho et al. (2002) are 

similar and proceed through a number of distinct steps (Kumar & Snyder, 2002): (1) 

A tag is attached to the DNA coding sequence of a bait protein; (2) The DNA 

encoding the tagged bait protein is introduced into a yeast cell. The host cell 
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expresses the tagged protein allowing it to form complexes with other proteins which 

are naturally present in the cell at that time; (3) The bait protein is extracted using the 

tag which often results in the entire protein complex involving the bait protein being 

extracted as well; and (4) The proteins extracted with the tagged bait are identified 

using standard mass spectrometry methods. 

Gavin et al. (2002) used tandem-affinity purification (TAP) and mass spectrometry 

in a large scale approach to characterise multi-protein complexes in S. cerevisiae. In 

this study 1,739 genes were processed and 589 protein assemblies were purified. 

Subsequent analysis of these assemblies identified 1,440 distinct proteins within 232 

multi-protein complexes. More importantly, it proposed new cellular roles for 344 

proteins including 231 with no previous functional annotation. Their analysis showed 

the S. cerevisiae proteome as a network of protein complexes at a level of 

organisation above pairwi se interactions. 

Ho et at., (2002) used a technique termed high throughput mass spectrometric 

protein complex identification (HtvIS-PCI) to identify protein complexes. Numerous 

protein complexes were identified from the initial construction of 725 bait proteins; 

3,617 associated proteins were detected involving 1,578 different proteins. The bait 

proteins were representative of a number of different functional classes including 

protein kinases, phosphatases, regulatory subunits and proteins involved in DNA 

damage response. 
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One interesting issue is how to represent the potential protein-protein interactions 

reported from this type of technique. Technically, these techniques only provide the 

identities of all the proteins in a particular complex, they do not tell use which 

proteins interact with which other proteins. Therefore, there are two general ways to 

represent the potential protein-protein interactions from these techniques: (1) The 

Spoke model represents a complex as a set of interactions where every protein only 

interacts with the tagged bait protein; and (2) The Matrix model represents a complex 

as a set of interactions where every protein interacts with every other protein. 

Furthermore, the potential protein-protein interactions detected from this technique 

are not really physical interactions; they are technically functional interactions as 

they detect groups of proteins in stable complexes, implying that they function 

together (Uetz et al., 2005). However, functional interactions could be characterised 

as physical interactions in the future if additional data becomes available. It is also 

important to note that this type of technique has an additional difference to the yeast 

two-hybrid system: only proteins that are naturally present in the cell at the time of 

experimentation can interact with the bait protein. 

Another example of a functional interaction is a genetic interaction. Genetic 

interactions are where the combination of alleles of two different genes has specific 

phenotypic consequences which is often taken to suggest that the two genes function 

in the same or parallel pathways affecting a particular biological process. Ongoing 

large-scale screens in S. cerevisiae have mapped thousands of genetic interactions 

derived from synthetic lethal mutations (Tong et al., 2004). Other related functional 

genomic data sets include protein-DNA interaction data sets (Ren et al., 2000), large 
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scale yeast protein localization data using GFP tagged yeast proteins (Huh et al., 

2003; Kumar et al., 2002) and the quantification of the expression levels of 

approximately 4500 affinity tagged yeast proteins through western blot analysis 

(Ghaemmaghami et al., 2003). 

1.6.3: False Positives and False Negatives 

The occurrence of both 'false positive' and 'false negative' interactions is perhaps 

the major disadvantage of the high throughput protein-protein interaction detection 

techniques described above. False positives wrongly indicate that two proteins 

interact with one another; they are generally caused by experimental errors and can 

be commonplace in large scale screens. On the other hand, false negative interactions 

wrongly indicate that two proteins do not interact with one another. Various studies 

have estimated that the —6,000 S. cerevisiae proteins are connected by - 12,000 - 

40,000 interactions (Wallhout et al., 2000; Tucker et al., 2001; Grigoriev et al., 

2003; Uetz et al., 2005). However, the high throughput protein-protein interaction 

data sets described above have only detected a fraction of these. Furthermore, there is 

a lack of overlap between the different datasets themselves and also with published 

low-throughput studies which are generally considered to be less prone to false 

positives and false negatives (Ito et al., 2001; Grunenfelder et al., 2002; Cornell et 

al., 2004; Uetz et al., 2005). Taken together, this not only suggests that new or 

improved technologies are needed (especially for interactions involving membrane 

proteins) but also that more interactions could be detected by more exhaustive 
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application of these current techniques and that confidence scores for all detected 

interactions are of great importance. 

There are now a number of different strategies for evaluating the reliability of large-

scale protein interaction data sets (Bork et al., 2004). In a recent study, various 

interaction data sets were tested for accuracy on confident sets of interactions and the 

rate of false positives for the various large-scale experimental approaches was found 

to vary widely, but was always larger than that for confident small scale experiments 

(von Mering et al., 2002). However, high quality subsets could often be selected on 

the basis of additional criteria such as the degree to which mRNAs of interacting 

proteins are co-expressed in microarray experiments (Ge et al., 2001; Deane et al., 

2002; Kemmeren et al., 2002), topological properties of the resulting network 

(Goldberg et al., 2003; Saito et al., 2003), shared pathways or sub-cellular 

localisation (Date et al., 2003; Spnnzak et al., 2003) or combinations of these 

approaches (Bader et al., 2004; Bork et al. 2004). Furthermore, several studies have 

suggested that interactions detected in multiple data sets and by different techniques 

or in different species are more likely to be true positives than those only found once 

(von Mering et al., 2002; Uetz et al., 2005). However, due to the high rates of false 

negatives in high throughput screens, there has been very little overlap between 

different datasets, thus limiting the opportunities for such experimental cross-

validation (Uetz et al., 2005). Therefore, computational tools that are able to 

effectively integrate the different interaction data sets together and then integrate 

them further with other functional genomic data sets would be extremely useful 

developments. 
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Since the first large scale data sets were published, the topological properties of 

protein interaction networks themselves have also been intensively studied. These 

networks have been shown to be both small world and scale free (Barabasi et al., 

2004). Interaction networks contain highly connected hub proteins which have been 

shown to correlate with evolutionary conserved proteins and in S. cerevisiae with 

proteins encoded by essential genes (Jeong et al., 2001; Han et al., 2004; Said et al., 

2004); therefore, a proteins relative position in a network can have implications for 

its function and importance. Analysis of topology also reveals clusters of highly 

interconnected proteins that correlate with conserved functional modules (Spirin et 

al., 2003; von Mering, Zdobnov et al., 2003; Poyatos et al., 2004). This highlights 

the fact that even the current error prone networks can still be used to explore the 

hierarchical organisation of biological networks and to reveal interconnected 

modules that control specific biological properties (Uetz et al., 2005). In addition to 

the study of the global topology of interacting networks, the existence of recurring 

local topological features, known as network motifs, has also been shown in protein-

protein interaction networks (Wutchy et al., 2003). 

Over recent years computational methods have been increasingly used to predict 

protein-protein interactions; some prediction tools are now conveniently available as 

online services (e.g. von Mering, Huynen et al., 2003). Gene expression profiles 

have been used to infer functional interactions among gene products based on the 

assumption that proteins that function together should be frequently expressed 

together (Jansen et al., 2002; Jansen et al., 2003). Genetic interactions have been 

predicted based on physical interactions, gene expression, protein localisation and 

Chapter 1: Background 	 36 



other experimental data (Marcotte et al., 1999; Wong et al., 2004). In addition, 

numerous methods for predicting physical protein-protein interaction have also been 

developed (Enright et al., 1999; Aloy et al., 2002; Jansen et al., 2003; Lu et al., 

2003; Aloy et al., 2004; Reiss et al., 2004; Zhang et al., 2004). One commonly used 

approach predicts that two proteins will interact if their orthologs have been shown to 

interact; such conserved interactions have been referred to as interlogs (Matthews et 

al., 2001; Lehner et al., 2004). Interactions have also been predicted between pairs of 

proteins with domains that are often observed in interacting proteins (Ng et al., 

2003). 

1.7: Computational Resources 

Currently, there is a wide variety of functional genomic data sets publicly available 

for the budding yeast S. cerevisiae which are described above; additional data sets 

are constantly being produced by existing and new high-throughput technologies. 

These data sets are often both large and complex and the analysis of this vast amount 

of data is now the key problem and computers in conjunction with effective software 

tools are an essential part of this process. Over the past few years there has been a 

rapid increase in the number of software tools available for the storage, visualisation 

and analysis of these data sets; a selection of the major resources available are 

described below. 
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1.7.1: Genome Resources 

There is now a large amount of genome related data associated with S. cerevisiae that 

is being continuously generated by laboratories across the globe. This data ranges 

from the genome sequence and gene coordinates to descriptions and functional 

annotations of protein products. This vast amount of data requires efficient database 

systems to store and manage it as well as effective web interfaces to make it readily 

available to the scientific community. Currently, there are three main S. cerevisiae 

database resources available over the World Wide Web (Table 1.3). 
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Saccharomyces Genome Database (SGD) 
Cherry etaL, 1998 
http://www.yeastgenome.o r 

 SGD was established to provide a fast, easy and reliable method for yeast researchers 
to obtain information about the S. cerevisiae genome, the genes it contains and their 
possible interactions. The genome information in the SGD is organised around a 'locus' page 
for each ORE containing a summary of the gene, its protein product and any mutant 
phenotypes. The SGD contains an enormous amount of data on every ORE in S. cerevisiae 
and also provides a vast array of links to a number of relevant scientific web sites. In 
addition, the SGD makes a large proportion of its data publicly available for download and 
use. 

Munich Information Centre for Protein Sequences (MIPS) 
Comprehensive Yeast Genome Database (CYGD) 
Mewes et aL, 1998 
http:llmips.gsf.de/genre/proi/yeasthndex.isp 

MIPS coordinated the collaborative effort of European groups during the S. cerevisiae 
genome sequencing project and now manages a web site that provides the yeast community 
with access to several genome databases. The information in MIPS is also organised around 
a web page for each ORE which contains a brief summary of the gene and a number of links 
to relevant data sources and web sites. In addition, MIPS makes a proportion of its data 
publicly available for download and use. 

Yeast Proteome Database (YPD) 
Garrels etaL, 1996 
http://www.incyte.com/controVresearchproducts/insilico/proteome  

YPD began as a protein database rather than a genome database as emphasis was placed 
on providing detailed information about the S. cerevisiae proteins. Although much of YPDs 
data is included in MIPS and SGD, YPD excels at presenting its information in a very 
readable, compact form. It is important to note that the YPD recently became a commercial 
database that charges users a fee for access and use. 

Table 1.3: S. cerevisiae online databases 
This table contains the names and descriptions of the three main S. cerevisiae specific 
online database resources available to the yeast researcher. 

These resources are primarily data warehouses, the main function of which is the 

dissemination of as much information as possible. Although, these resources do 

contain large amounts of information on all the genes in S. cerevisiae they have 

limited search and navigation mechanisms, basic visualisation tools and generally 

centre around displaying information on a single gene at a time as opposed to 

displaying information on entire groups of related genes at once to enable rapid 

comparison and analysis. 
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In addition to the S. cerevisiae specific resources described above there are also a 

number of more general resources that provide access to the fully sequenced 

genomes of other organisms, for example Schuler et al. (1996), Kyrpides (1999) and 

Peterson et al. (2001). Perhaps the most comprehensive of these resources is the 

National Centre for Biotechnology Information (NCBI) Entrez Genome database 

(Schuler et al., 1996; http://www.ncbi.nlm.nih.jzov/entrez/guery.fcgi?db=Genome).  

The Entrez Genome database is publicly available and contains the whole genomes 

of a large number of viruses and over 100 other organisms. However, these resources 

are primarily focussed on providing information on the genome of specific organisms 

and do not utilise the wealth of functional genomic data available such as gene 

expression and protein-protein interaction data. 

1.7.2: Gene Ontology Resources 

Over the past few years, the Gene Ontology (GO) annotation system has been 

adopted by the majority of the world's major database repositories for plant, animal 

and microbial genomes. Furthermore, a wide variety of computational tools have 

now been developed that enable users to browse and search the GO annotation 

system itself as well as searching for the annotations of specific genes (Table 1.4). 
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AmiGO 
Developed and maintained within the GO Consortium (Ashburner etal., 2001) 
http://www.ciodatabase.orq/ 

AmiGO is an HTML based application that allows the user to browse, query and visualize 
data from the Gene Ontology. It allows the user to search for a GO term and view all gene 
products annotated to it, or search for a gene product and view all its associations. Users 
can also browse the ontologies to view relationships between terms as well as the number of 
gene products annotated to a given term. 

Ge nelnt a Viz 
Zhou etal., 2004 
http:llgenenet.orq/geneinfovizlsearch.php 

GenelnfoViz is a web based tool for batch retrieval of gene function information, visualization 
of GO structure and construction of gene relation networks. It takes an input list of genes and 
returns their functional annotation information. Based on the GO annotations of the given 
genes, GenelnfoViz allows users to visualize these genes in the DAG structure of GO, and 
construct a gene relation network at a selected level of the DAG. 

GoFish 
Berriz et al., 2003 
http:llllama.med.harvard.edu/-.berriz/GoFishWelcome.html 

GoFish is a Java application that allows users to search for gene products with particular 
gene ontology (GO) attributes, or combinations of attributes. GoFish ranks gene products by 
the degree to which they satisfy the search query. 

GoMiner 
Zeeberg etaL, 2003 
http://discover.nci.nih.Qov/clominer/  

GoMiner is a Java-based program package that displays groups of interesting genes within 
the framework of the GO hierarchy, both as a DAG and as the equivalent tree structure. 

Onto-Express 
Khatri et al., 2002 
http://vortex.cs.wayne.edu/progects.htm#Onto-Express  

Onto-Express (OE) is a novel tool to automatically translate lists of differentially regulated 
genes from microarray experiments into functional profiles characterizing the impact of the 
condition studied. OE constructs functional profiles (using GO terms) for the following 
categories: biochemical function, biological process, cellular role, cellular component, 
molecular function and chromosome location. Statistical significance values are calculated 
for each category. 

Table 1.4: Gene ontology related computational resources 
This table contains the names and descriptions of a few of the major Gene Ontology (GO) 
related computational resources. A full list of GO related computational tools is available at 
httry//www.peneontolopy.ora/GO.tools.shtml. 

However, these tools tend to only be concerned with investigating the GO annotation 

system itself. They provide good mechanisms to visualise and browse the GO system 
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and search for specific terms and some tools permit the input of a group of gene 

names (such as the names of all genes within an expression cluster of interest) which 

can then collectively visualised and analysed. However, the user has to manually 

input gene names as these tools are not themselves integrated with other functional 

genomic data sources such as gene expression data. 

1.7.3: Transcriptome Resources 

The use of microarray technologies for the analysis of gene expression has increased 

dramatically over the past few years. As a result, there has been a relative explosion 

in the number of computational tools and resources available for the storage, 

visualisation and analysis of the data generated; a few of the major resources are 

described in Table 1.5. However, these resources tend to be solely aimed at the 

analysis of gene expression data, only a few have features to integrate other forms of 

data such as chromosome maps in Genesis (Sturn et al., 2002), protein-protein 

interaction data in Expression Profiler (Brazma et al., 2003) and cellular pathways in 

GeneSpring. In addition, only a few resources such as the yeast microarray global 

viewer (yMGV; Marc et al., 2001) are aimed specifically at S. cerevisiae, which 

means that most resources are not utilising the vast array of additional information 

available on the genes being analysed such as GO annotations. 
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Cluster and TreeView 
Eisen etaL, 1998 
http://rana.lbl.gov/Ejsen5oftware.htm  

Cluster and TreeView are an integrated pair of computer programs for visualising and 
analysing the results of complex microarray experiments. Cluster is a freely available 
Windows based computer program that is widely used for the analysis of gene expression 
data from microarray experiments; it performs a variety of data normalisation and cluster 
analysis techniques including hierarchical clustering, k-means clustering, Self-Organising 
Maps (SOMs) and Principal Component Analysis (PCA). TreeView is a freely available 
Windows based computer program that can be used to graphically browse the results of a 
hierarchical cluster analysis performed by Cluster; it supports tree and image based 
browsing of hierarchical trees and provides a number of output options for the generation of 
images. 

GeneSpring 
Silicon Genetics 
http:IIwww.siliconcienetics.comIcgi/SiG.cci/Products/GeneSprin/index.smf 

GeneSpring is a commercial standalone program that is widely regarded as one of the 
leading tools for gene expression data analysis. It has a number of advanced features 
including: scripting, data normalisation, data clustering, 3D data visualisation, pathway 
views, expression profile comparison and statistical tools. 

yeast Microarray Global Viewer (yMGV) 
Marc et aL, 2001 
http://www.transcriptome.ens.fr/vm q 

 is an online database providing a synthetic view of the transcriptional expression 
profiles of S. cerevisiae genes in a number of published expression data sets. yMGV 
displays a one-screen graphical representation of gene expression variations for each 
published genome-wide experiment, allowing a quick retrieval of experimental conditions 
having an effect upon expression of a selected gene. yMGV also provides tools to isolate 
groups of genes sharing similar transcription profiles in a defined subset of experiments. 

Stanford Microarray Database (SMD) 
Sherlock et aL, 2001 
http:/Icienome-www5.stanford.edu/ 

SMD stores raw and normalised data from microarray experiments from ongoing research 
projects at Stanford University and provides a web interface for the public to retrieve, 
analyse and visualise the data. 

Genesis 
Sturn etaL, 2002 
http:llpenome.tugraz.at/Software/Genesis/Description.html 

Genesis is a versatile, platform independent and easy to use Java suite for large-scale gene 
expression analysis. Genesis integrates various tools for microarray data analysis such as 
filters, normalization and visualization tools, distance measures as well as common 
clustering algorithms including hierarchical clustering, self-organizing maps, k-means, 
principal component analysis, and support vector machines. The results of the clustering are 
transparent across all implemented methods and enable the analysis of the outcome of 
different algorithms and parameters. Additionally, mapping of gene expression data onto 
chromosomal sequences has been implemented to enhance promoter analysis and 
investigation of transcriptional control mechanisms. 
Table 1.5: Continued overleaf 
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Array Express 
Brazma etal., 2003 
hftp://www.ebi.ac.uk/arravexpress/  

ArrayExpress is a public database of microarray gene expression data at the European 
Bioinformatics Institute (EBI), it is a generic gene expression database designed to hold data 
from all microarray platforms. ArrayExpress uses the annotation standard Minimum 
Information About a Microarray Experiment (MIAME) and the associated XML data 
exchange format Microarray Gene Expression Markup Language (MAGE-ML) and it is 
designed to store well annotated data in a structured way. The ArrayExpress infrastructure 
consists of the database itself, data submissions in MAGE-ML format or via an online 
submission tool MlAMExpress, an online database query interface and the Expression 
Profiler online analysis tool. 

Table 1.5: Microarray related computational resources 
This table contains the names and descriptions of a few of the major computational tools and 
resources available for the analysis and interpretation of gene expression data generated 
from microarray experiments. 

The establishment of standards for microarray data annotation and exchange is a key 

issue currently being addressed by the Microarray Gene Expression Data society 

(MGED; http://www.mged.org). MGED is an international organisation of 

biologists, computer scientists and data analysts that aims to facilitate the sharing of 

microarray data. The current focus of MGED is on establishing standards for 

microarray data annotation and exchange, facilitating the creation of microarray 

databases and related software implementing these standards and promoting the 

sharing of high quality, well annotated data. The Minimum Information About a 

Microarray Experiment initiative (MIAMIE; Brazma et al., 2001; 

http://www.mged.orglWorkgroups/MIAMIE/miame.html)  aims to outline the 

minimum information required to unambiguously interpret microarray data and to 

subsequently allow independent verification of this data at a later stage if required. 

MIAMIE is a set of guidelines that will assist with the development of microarray 

repositories and data analysis tools. 
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1.7.4: Proteome Resources 

The use of high-throughput techniques in the detection of protein-protein interactions 

has increased rapidly over the past few years. As a result, there has also been an 

explosion in the number of computational tools and resources available for the 

storage, visualisation and analysis of protein-protein interactions. The majority of 

these resources are online database repositories for interaction data which have a 

simple graphical display tool (typically using a 'springs and rings' type algorithm); 

the major resources available are described in Table 1.6. However, most these 

resources are only concerned with protein-protein interactions and therefore do not 

incorporate other data such as the genomic location, GO annotations or gene 

expression profiles of the interacting proteins. In addition, relatively few are 

specifically aimed at the budding yeast S. cerevisiae and so do not utilise the wealth 

of functional genomic data available for this organism. 
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A Java applet for visualizing protein—protein interactions 
Mrowka, 2001 
http://www.charite.de/bioinformatics/  

This is a web applet for browsing protein—protein interactions It enables the display of 
interaction relationships, based upon neighbouring distance and biological function. This 
applet was one of the first protein-protein interaction visualisation tools to use a 'springs and 
rings' type algorithm. 

Biomolecular Interaction Network Database (BIND) 
Bader et al., 2001 
httD://www.bind.cal 

BIND is an expanding database of biomolecular interaction, pathway and complex 
information. All information stored in BIND is freely available through a web interface that 
allows users to query, view and submit records. The interactions come from scientific 
literature, public submitters and other interaction databases. 

Database of Interacting Proteins (DIP) 
Xenarios et al., 2000 
http://diD.doe-mbi.ucla.edu/ 

DIP catalogues experimentally determined interactions between proteins. It combines 
information from a variety of sources to create a single, consistent set of protein-protein 
interactions. The data stored within the DIP database were curated manually and also 
automatically using computational approaches. The database is publicly available on the 
web and is intended to aid those studying protein-protein interactions, signalling pathways, 
multiple interactions and complex systems. 

General Repository for Interaction Datasets (GRID) 
Breitkreutz et aL, 2003 
http:llbiodata.mshri.on.ca/cirid/servletllndex 

GRID is a database of genetic and physical interactions. It contains interaction data from 
many sources, including several proteome wide studies and other interaction databases. 
GRID also has a software platform for the visualization of complex interaction networks 
called Osprey. Recently, the GRID database split into three organism specific databases 
called YeastGRlD, FIyGRID and WormGRID. The YeastGRlD database is now strongly 
linked to the SGD and incorporates the GO annotations of interacting proteins. 

IntAct 
Hermjakob et aL, (2004) 
http:llwww.ebi.ac.uklintact 

IntAct provides an open source database and toolkit for the storage, presentation and 
analysis of protein interactions. It has a web interface that provides both textual and 
graphical representations of protein interactions and allows the exploration of interaction 
networks in the context of the GO annotations of the interacting proteins. A web service 
allows direct computational access to retrieve interaction networks in XML format. 

Table 1.6: Continued overleaf 
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Molecular Interactions Database (MINT) 
Zanzoni etaL, 2002 
http:llcbm.bio.uniroma2.it/mint/ 

MINT is a database designed to store functional interactions between biological molecules 
(proteins, RNA, DNA). Beyond cataloguing the formation of binary complexes, MINT was 
conceived to store other types of functional interactions namely enzymatic modifications of 
one of the partners. The interaction data can be easily extracted and viewed graphically with 
'MINT Viewer'. 

PathCalling Yeast Interaction Database 
Uetz et al., 2000 
http://portal.curacen.com/cgi-bin/com.curagen.portaI.servIet.PortaIYeastList  

PathCalling is a yeast specific interaction database that was initially designed to store the 
data generated from the Uetz et al. (2000) yeast two-hybrid study. It allows users to search 
for information on putative protein interactions, perform sequence analyses and view the 
results, extend interactions to construct pathways and to view homologues of the yeast 
genes. PathCalling has a basic visualisation tool that displays a static diagram of a protein 
and all the interactions it is involved in. 

PIMRider 
Hybrigenics 
http:flpim.hybricienics.com/pimrider/pimriderlobby/PimRiderLobby.isp 

PlMRider is a commercial functional proteomics software platform for the exploration of 
reliable protein-protein interaction data and protein pathways. 

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
Von Mering et al., 2003 
http://www.bork.embl-heidelberg.de/STRING/  

STRING is a database of known and predicted protein-protein interactions. The interactions 
include direct (physical) and indirect (functional) associations; they are derived from four 
sources: (1) Genomic Context; (2) High-throughput Experiments; (3) Co-expression; and (4) 
Previous Knowledge. STRING quantitatively integrates interaction data from these sources 
for a large number of organisms, and transfers information between these organisms where 
applicable. 

Table 1.6: Protein-Protein interaction related computational resources 
This table contains the names and descriptions of some of the major computational 
resources available for the visualisation and analysis of protein-protein interaction data. 

Currently, there are several well established databases for protein-protein interaction 

data. However, these databases provide their data in many different formats and are 

not synchronised with each other. Therefore, the task of combining interaction data 

from different sources is a common and tedious problem. The Proteomics Standards 

Initiative (PSI; Hermjakob et al., 2004; http://psidev.sourceforge.net/)  aims to define 
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community standards for data representation in proteomics to facilitate data 

comparison, exchange and verification. PSI is developing a common data standard 

for protein-protein interactions that will allow users to retrieve all relevant data from 

different sites and perform comparative analyses of different data sets much more 

easily.than is currently possible. This standard will allow a synchronisation of the 

core data between public protein interaction database providers. 

1.8: Integrated Analysis 

The availability of complete genome sequences along with gene predictions has 

resulted in the development of new technologies such as microarrays and the yeast 

two-hybrid system enabling the analysis of gene expression and protein interactions 

on a genomic scale. These techniques have been used to sort genes and proteins into 

related groups based on shared expression profiles or interactions; the concept of 

guilt by association. However, these high-throughput techniques all have their own 

disadvantages and therefore the data obtained from any single approach should be 

interpreted cautiously. Furthermore, as the data from any single approach can only 

provide a tentative indication of a gene or protein function, it has been proposed that 

these limitations can be overcome by integrating data obtained from two or more 

distinct approaches (Waihout et al., 1998; Vidal, 2001; Ge et al., 2003). For 

example, a cluster of interacting proteins whose corresponding genes are similarly 

expressed under various experimental conditions and have similar GO annotations is 

likely to be more relevant than any other cluster for which additional information is 

not available. In addition, the expression profiles and GO annotations might indicate 
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dynamic and functional aspects of the cluster. Therefore, new biological insights are 

likely to emerge from the integration of data from different functional analyses and 

computers in conjunction with effective software tools are an essential part of this 

process. 

Several groups have investigated the potential relationship between gene expression 

and protein interaction data sets (Ge et al., 2001; Grigoriev, 2001; Mrowka et al., 

2001; Jansen et al., 2002; Kemmeren et al., 2002). Ge et al. (2001) combined a 

variety of high throughput and low throughput interaction data sets with expression 

data from cell cycle, sporulation and environmental stress experiments. A Protein 

Interaction Density (PD) value was calculated as the ratio of the number of observed 

interactions over the total number of possible interactions for a given set of proteins. 

PIDs were then compared between sets of protein pairs encoded by genes belonging 

to the same expression cluster (or intracluster pairs) and sets of protein pairs encoded 

by genes belonging to different clusters (or intercluster pairs). In general, average 

intracluster PIDs were found to be significantly greater than intercluster PIDs for 

interactome data sets, whereas the average intracluster and intercluster PIDs were 

similar for random data sets. Furthermore, low throughput data sets gave larger PIDs 

than high throughput data sets. This was interpreted as evidence that genes with 

similar expression profiles are more likely to encode interacting proteins and 

indicated that there was a global correlation between gene expression and protein 

interaction data. However, although the actual approach used seems to be sound 

(Mrowka et al., 2003; Ge, Liu et al., 2003), self-interacting protein interactions were 

not filtered out of the experimental data sets which would obviously bias the results. 
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Removal of these self-interactions was found to give similar results for the 

experimental and random data sets (Mrowka et al., 2003). 

Grigoriev (2001) investigated the relationship between the similarity of expression 

patterns for a pair of genes and interaction of the proteins they encoded for both S. 

cerevisiae and the bacteriophage T7. Grigoriev (2001) found that, on average, the 

Pearson correlation coefficients of transcript abundance corresponding to interacting 

protein pairs were significantly higher (indicating a better correlation) for 

interactome data sets than for sets of random protein pairs. This led to the suggestion 

that protein pairs encoded by co-expressed genes interact with each other more 

frequently than with random pairs. Mrowka et al. (2001) compared a number of high 

and low throughput interaction data sets and found that interacting proteins from the 

low throughput data sets were much more closely related to each other with respect 

to transcription profiles when compared to the high throughput data sets. One 

explanation for this difference was the high false positives rates in the high 

throughput data sets. Jansen et al. (2002) integrated a variety of data sources for 

yeast to investigate the relationship of protein-protein interactions with mRNA 

expression levels. By focusing on known protein complexes with high confidence 

interactions they found that subunits of the same protein complex show significant 

coexpression. However, they also investigated the interactions in genome-wide data 

sets and found them to have only a weak relationship with gene expression. 

Kemmeren et al. (2002) showed how integration improves the utility of different 

types of functional genomic data by using collections of microarray expression data 

to assess the quality of different high-throughput protein interaction data sets and 
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provide functional annotation for a large number of previously uncharacterised 

genes. They found that, on average, the cosine correlation distances of transcript 

abundance corresponding to proteins pairs are significantly lower (indicating a better 

correlation) for interactome data sets than for random protein pairs. Werner-

Washburne et al. (2002) created a novel tool for the visualisation and comparison of 

S. cerevisiae gene expression and protein-protein interaction data sets; visual analysis 

of the data using this tool showed no clear overall correlation between co-expression 

of genes and protein interactions. However, interesting insights were generated by 

focusing in on ribosomal proteins as opposed to analysing whole data sets. 

Global relationships have also been examined for other pairwise combinations of 

functional genomic data sets. Cohen et al. (2000) investigated correlations between 

the expression patterns of genes on the same chromosome and found that in many 

cases adjacent pairs of genes, as well as nearby non-adjacent pairs of genes, showed 

correlated expression. Furthermore, they showed that genes with similar functions 

tended to occur in adjacent positions along the chromosome. Drawid et al. (2000) 

investigated the relationship between protein subcellular localisation and gene 

expression for a variety of S. cerevisiae whole genome expression data sets. They 

found high expression levels for cytoplasmic proteins, low levels for nuclear and 

membrane proteins and large fluctuating levels for excreted proteins. Fellenberg et 

al. (2000) developed a method for the integrative analysis of protein-protein 

interaction and functional classification data from S. cerevisiae to deduce hypotheses 

about the functional role of uncharacterised proteins. Ogata et al. (2000) 

investigated, for a number of different organisms, if enzymes located near each other 
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in the KEGG metabolic pathways (http://www.genome.jp/keg/kegg2.html)  were 

located near each other on the genome, forming Functionally Related Enzyme 

Clusters (FRECs). They found that the relative number of enzymes in FRECs was 

close to 50 % for Bacillus subtilis and Escherichia coli but was less than 10 % for S. 

cerevisiae. Ideker et al. (2001) developed an approach to integrate gene expression, 

protein expression and protein interaction data sets and assimilate them into 

biological models to predict cellular behaviour; they used this approach to investigate 

the properties and behaviour of the galactose-utilisation pathway. Jeong et al. (2001) 

and Oltvai et al. (2002) investigated correlations between high throughput protein-

protein interaction and phenotype data sets in S. cerevisiae and found that proteins 

with large numbers of potential interaction partners (hubs) were often found to be 

essential. 

As discussed above, there have now been a number of studies that have combined 

different functional genomic data sets together for integrated analysis which have led 

to some interesting insights; these studies most commonly integrate two different 

types of data sets in a pairwise fashion. However, there are currently very few 

computational resources available that enable users to perform analyses on the 

functional genomic data sets in an integrated fashion themselves (Table 1.7); in 

addition, these resources are only recent developments. Therefore, there is a now a 

clear need for a new generation of software tools that are capable of effectively 

integrating the wealth of data available for S. cerevisiae enabling users to readily 

utilise all of this data in their analyses and investigations. 
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Cytoscape 
Shannon et aL, 2003 
http://www.cvtoscape.org/ 

Cytoscape is an open source software project for integrating biomolecular interaction 
networks with high-throughput expression data and other molecular states into a unified 
conceptual framework. Although applicable to any system of molecular components and 
interactions, Cytoscape is most powerful when used in conjunction with large databases of 
protein—protein, protein—DNA, and genetic interactions that are increasingly available for 
humans and model organisms. Cytoscape's software Core provides basic functionality to 
layout and query the network; to visually integrate the network with expression profiles, 
phenotypes, and other molecular states; and to link the network to databases of functional 
annotations. The Core is extensible through a straightforward plug-in architecture, allowing 
rapid development of additional computational analyses and features. 

Genome Information Management System (GIMS) 
Cornell et aL, 2003 
http://www.cs.man.ac.uk/imq/qi m 

 is an object database that integrates genomic data with data on the transcriptome, 
protein-protein interactions, metabolic pathways and annotations, such as gene ontology 
terms and identifiers. GIMS supports the running of integrated analyses over database and 
provides comprehensive facilities for handling and inter-relating the results of these 
analyses. 

Database for Annotation, Visualisation and Integrated Discovery (David) 
Dennis etaL, 2003 
http://www.david.niaid.nih.ciov  

DAVID is a web-based tool that provides integrated solutions for the annotation and analysis 
of genome-scale datasets derived from high-throughput technologies such as microarray 
and proteomic platforms. Analysis results and graphical displays remain dynamically linked 
to primary data and external data repositories, thereby furnishing in-depth as well as broad-
based data coverage. The functionality provided by DAVID accelerates the analysis of 
genome-scale datasets by facilitating the transition from data collection to biological 
meaning. 

Genostar 
http://www.genostar.o r 

 is a bloinformatics platform for exploratory genomics offering a unified way of 
representing and managing data of various types and origins (high throughput sequencing, 
micro-arrays, proteomics, etc) through a set of software modules which can exchange 
information. The first version of Genostar consisted of three modules: (1) GenoAnnot 
provides an innovative solution to the annotation of genomic sequences; (2) GenoLink 
enables the exploration of relationships between data sets; and (3) GenoBool helps to 
identify correlations between data sets. 

Table 1.7: Integrated computational resources 
This table contains the names and descriptions of some of the major integrated 
computational resources. 
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1.9: Thesis Outline 

This chapter has essentially given a broad overview of the subject areas relating to 

this PhD project. In Chapter 2, the specific aims and motivations behind this project 

are detailed and discussed. In Chapters 3 and 4, the features and functionality of the 

software tool developed through this project are described along with an overview of 

the functional genomic data sets used. In Chapter 5, a number of case studies are 

presented that demonstrate the utility of the developed tool to investigate the function 

of unknown genes. In Chapters 6 and 7, the utility of the tool in the analysis of 

correlations between functional genomic data sets is detailed and discussed along 

with the results from a number of correlation analyses; in addition, a number of case 

studies are presented that investigate specific genes and biological processes 

highlighted through the correlation analysis results. In Chapter 8, an overall 

discussion of the tool and the analysis results is presented along with concluding 

remarks and future directions. 

Chapter 1: Background 	 54 



Chapter 2 

Aims 



2.1: Concept 

Although the budding yeast Saccharomyces cerevisiae (S. cerevisiae) is one of the 

most intensively studied eukaryotic organisms (due to its value as a model organism 

in biological research) there is still a great deal left to learn about this organism and 

the biological processes that maintain it. The genome sequencing project has 

essentially provided a complete catalogue of all the genes present in S. cerevisiae and 

the goal now is to understand the function of all the gene products and ultimately 

how they interact to create this simple eukaryotic organism. However, a large 

proportion of the genes in S. cerevisiae are still classified as genes of unknown 

function and additional information is needed to place them within a biological 

context. Ultimately, the validity and function of each gene can only be proven by 

experiments in the laboratory but given the number of unknown genes in the S. 

cerevisiae genome this could take some time. Therefore, there is a clear need for new 

experimental and computational methods to aid in the assignment of biochemical 

functionality; these methods could suggest possible biological roles for genes of 

unknown function which could then be validated by experiments in the laboratory. 

Functional genomic strategies have become increasingly valuable in characterising 

novel genes discovered by genome sequencing projects. Many such strategies use the 

principle of 'guilt by association' as the means of elucidating function, i.e. genes that 

are coexpressed or proteins that interact with one another are likely to be involved in 

the same or related biological processes. Over recent years there has been a relative 

explosion of functional genomic data available for S. cerevisiae such as gene 

expression and protein-protein interaction data sets. As these data sets can be both 
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large and complex, the intelligent exploitation of them is dependent upon the 

provision of effective software tools. Software tools facilitate the exploration and 

analysis of these data sets by providing effective search, visualisation and analysis 

mechanisms. The overall aim of such tools is to aid in improving our biological 

understanding of S. cerevisiae by helping to functionally characterise individual 

genes and proteins, and to decipher how they work together to fulfil broader 

biological goals. 

Over recent years, there has been a rapid increase in the number of software tools 

available for the visualisation and analysis of individual types of functional genomic 

data sets; for example, there are now many tools for the visualisation of protein-

protein interactions (e.g. Mrowka, 2001) and many tools for the analysis of gene 

expression data (e.g. Eisen et al., 1998). However, the majority of functional 

genomic strategies have weaknesses and disadvantages that can make the data sets 

produced incomplete and error prone. Combining data sets from the same strategy 

can reduce these disadvantages and therefore give greater confidence in any 

biological interpretations made from analyses of them. More importantly, many new 

biological insights are likely to emerge from the combined use of data from different 

functional genomic strategies. For example, there have now been a number of 

individual scientific studies that have integrated functional genomic data sets 

together for analysis which have led to some interesting biological insights (see 

section 1.8 of this thesis for more details). However, there are still relatively few 

software tools available that can effectively combine functional genomic data sets 

together and present them to the user for integrated visualisation and analysis. 
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Therefore, there is a clear need for a new generation of software tools that are 

capable of effectively integrating the wealth of functional genomic data available for 

S. cerevisiae enabling users to readily utilise all of this data in their analyses and 

investigations of specific genes and broader biological processes. 

To this end, the first aim of this project was to design and develop a novel 

bioinformatics tool for the integrated visualisation and analysis of functional 

genomic data sets from the budding yeast S. cerevisiae. The initial data sets 

considered were gene expression data from microarrays, protein-protein interaction 

data from yeast two-hybrid screens as well as functional annotation data on the genes 

and proteins of S. cerevisiae; these data sets were selected as they were generated 

from exciting modern technologies and the combination of them had the potential to 

yield interesting associations. This tool was planned to be a user friendly workbench 

that would enable both wet and dry laboratory scientists to easily explore any and all 

aspects of the data in an integrated modular fashion. The second aim of this project 

was to use the developed tool to try and assign biochemical functionality to genes of 

unknown function, investigate specific biological processes, analyse the stored 

functional genomic data sets individually and investigate possible correlations 

between them. 

2.2: Software Life Cycle 

As one of the primary aims of this project involves the design and development of a 

software product, it is important to give an overview of the software life cycle at this 
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point. The software life cycle can be defined as the period of time beginning when a 

software product is conceived and ending when the product is no longer available for 

use. The software life cycle is typically broken into phases denoting activities such as 

requirements, design, programming, testing, installation, and operation and 

maintenance. There are many different software life cycle models such as the 

waterfall, prototyping, incremental, rapid application development, transformation 

and spiral models; for more information on the different software life cycles models 

see, for example, Jacobson et al., 1999. The software life cycle model that best 

describes the design and development of the software product in this project is shown 

in Figure 2.1. Briefly, after the initial concept for the project was devised, potential 

users were consulted and an initial system design was drawn up. The development of 

the system then went through a number of cycles of coding and testing with a new 

version of the system released at the end of each development cycle, ultimately 

resulting in the release Of the final version of the system at the end of the project. 

Overall, the system went through four broad cycles of development which are 

described in detail in section 2.6, "System Development", below. 
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Figure 2.1: The Software Life Cycle 
This is a diagram of the software life cycle model that best describes the design and 
development of the software product in this project. 

2.3: User Requirements 

A user requirement' can be defined as a condition or capability needed by a user to 

solve a problem, achieve an objective or increase piodLlctivitv and the - requirements 

gathering phase can be defined as the period of time in the solt are life cycle during 

which the user requirements, such as functional and performance capabilities, are 

identified and documented. The requirements gathering phase is therefore one of the 

most important phases as it forms the basis for the design and implementation phases 

that I ol lo . In this project. the initial target users crc members o[ Professor Jean 

l3egs s lahorator\ (ho p:Yh r11cp:cc .cd.ac . a klTcanN/) in the Institute of ('elI and 

Molecular Biology, University of Edinburgh. However, it is important to note that 

the other primary user in this project was also myself as I would he using the 

(liapler 2: /1111. 	 6() 



developed software product to explore the stored functional genomic data sets and 

investigate possible correlations between them. 

As described above, the initial concept of the project was to develop a bioinformatics 

tool for the integrated visualisation and analysis of functional genomic data sets from 

the budding yeast S. cerevisiae. Therefore, preliminary meetings were organised with 

the initial target users to discuss the potential usefulness of such a tool, what essential 

features would be needed and what novel features would be useful; essentially, this 

was the requirements gathering phase of the project. The concept for the tool 

received good feedback from the target users and was further backed up by 

observations of their current working practices. The target users would typically use 

multiple computational resources to find information on a specific gene of interest. 

For example, the Saccharomyces Genome Database (SGD; Cherry et al., 1998) 

would be used to view textual information such as descriptions and annotations on a 

specific gene but an alternative resource would need to be used to view the gene's 

corresponding protein-protein interactions (e.g. PathCalling; Uetz et al., 2000); 

furthermore, another resource would need to be used to view the expression data on 

the gene (e.g. Cluster; Eisen et al., 1998). This lack of integration between these 

resources and their corresponding data sets was evidently a problem as if any genes 

were found to be of interest in one resource their names would have to be manually 

noted and subsequently entered into the other resources to be investigated further. 

Therefore, this would often result in users manually noting down gene names and 

constantly shifting between different resources to examine relevant data in the 

process of their investigation. In addition, users were often interested in investigating 
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the properties of multiple genes of interest. However, as the existing resources 

revolved around a single gene approach, users would have to investigate each of the 

genes individually, as opposed to collectively, making comparisons of their 

properties tedious. Whereas a group approach in conjunction with integrated 

functional genomic data sets would enable all the genes involved in an entire 

biological process to be collectively examined as a whole to investigate the dynamics 

of how they are working together to achieve their biological goal and to also examine 

what other genes they may be working with. Furthermore, this approach would 

enable any features of interest from one functional genomic data set to be selected 

and collectively investigated in further detail in the other data sets; for example, 

investigating if all the genes located in a specific expression cluster share similar 

functions and encode proteins that interact with one another. 

After meeting with the target users, the essential features for the planned software 

tool were identified as easy to use navigation, search and display mechanisms 

combined with clear graphical representations of the data. While the novel features 

for the tool were identified as: (1) A modular or group approach enabling the 

collective investigation of all the properties of an entire group of genes at once; and 

(2) Effective integration of the data enabling users to select a feature of interest from 

one data set to collectively investigate further as a whole in the other data sets. In 

conclusion, the target users were in favour of the development of an easy to use but 

advanced tool for the visualisation and analysis of S. cerevisiae functional genomic 

data sets in an integrated modular fashion. 
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2.4: Existing Tools 

This project began in October 2000 and at this time there were relatively few 

computational tools available for the visualisation and analysis of S. cerevisiae 

functional genomic data sets compared to the large variety available today. The 

available tools tended to be either data warehouses centred on displaying a large 

amount of textual information on a single gene of interest or tools for the 

visualisation and analysis of only a specific type of functional genomic data set. 

There were no established tools available that could effectively integrate the wealth 

of functional genomic data available for S. cerevisiae and none that could utilise a 

group approach in the analysis of the data. 

The major computational resources available to S. cerevisiae researchers were the 

SGD, the Munich Information Centre for Protein Sequence (MIPS; Mewes et at., 

1998) and the Yeast Proteome Database (YPD; Garrels et al., 1996). However, these 

resources were primarily data warehouses, the main function of which was the 

dissemination of as much information as possible on the genes of S. cerevisiae. 

These resources revolved around a single gene approach and were essentially 

designed to search for and subsequently display a datasheet on a single gene of 

interest. They had fairly limited and rigid search and navigation systems to find 

information where the main and sometimes only way of searching for information 

was by entering a single gene name which typically led to a datasheet on that gene. 

Although this is an essential feature, more flexible search mechanisms allowing 

keyword searches of descriptions were seldom provided; those that were would 
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simply lead to a list of all the genes associated with the keyword, each of which 

would have to be examined individually to see what they were and what their 

function was. Whereas, more flexible search mechanisms combined with a group 

approach for analysis would allow the data on an entire group of genes to be easily 

searched for and then collectively displayed enabling users to investigate entire 

biological processes as a whole. Furthermore, the above resources generally 

displayed data in a textual format; although some graphical representations of data 

were provided, such as an image of the chromosomal region surrounding a gene of 

interest, these displays tended to be relatively basic. Whereas more intuitive and 

dynamic graphical representations of the data would enable users to easily and 

rapidly explore the data and then select any features of interest to investigate further 

collectively. 

There were also a number of computational tools available for the visualisation and 

analysis of specific types of functional genomic data sets. However, these tools 

tended to be focussed on a single data type and none of these were specifically aimed 

at S. cerevisiae and so did not utilise the wealth of other functional genomic data 

available. For example, Cluster (Eisen et al., 1998) was a widely used computational 

tool for the analysis of gene expression data from microarray experiments. It could 

perform a variety of data normalisation and cluster analysis techniques including 

hierarchical clustering, the results of which could be graphically viewed and browsed 

in its associated computational tool Treeview (Eisen et al., 1998). However, although 

Cluster and Treeview were good tools for the analysis and subsequent visualisation 

of gene expression data, they were only concerned with gene expression data and 
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therefore did not utilise the wealth of other functional genomic data available for S. 

cerevisiae. Furthermore, although annotations of the genes analysed could be 

incorporated into the input files, this data needed to be incorporated manually by the 

users themselves. 

There were also a number of computational tools available for the visualisation and 

analysis of protein-protein interaction data. For example, PathCalling (Uetz et al., 

2000) was a computational tool specifically designed for the protein-protein 

interaction data generated from the Uetz et al. (2000) yeast two-hybrid study. 

However, this tool had limited search mechanisms, basic graphical displays and 

although it did include brief descriptions of the interacting proteins it did not utilise 

the wealth of other functional genomic data available for S. cerevisiae. The Database 

of Interacting Proteins (DIP; Xenanos et al., 2000) contained interactions manually 

curated from the scientific literature. Although it provided a number of effective 

search mechanisms, these searches would simply return textual lists of interactions, 

as opposed to graphical displays, each of which would need to be examined 

individually. Furthermore, although it did contain a brief amount of information on 

the interacting proteins, it too did not utilise the wealth of other functional genomic 

data available for S. cerevisiae. 

Therefore, there was a clear need to design and develop a new tool that would 

combine the advantages of the existing data warehouses, by containing a large 

variety of information on every gene in S. cerevisiae, with the advantages of the 

existing visualisation and analysis tools, by enabling users to explore the stored 
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functional genomic data sets. However, the tool would also need to utilise the wealth 

of functional genomic data available for S. cerevisiae and be able to effectively 

integrate the different types of data sets together as well as utilising a group approach 

that would enable users to collectively investigate all the properties of an entire 

group of genes at once 

2.5: System Design 

After the initial discussions with the target users, the next step in the development 

process was to sketch out an initial system design of the planned software tool 

(Figure 2.2). The initial design split the system into two parts: (1) A database for the 

storage and management of the data; and (2) An associated software tool for the 

integrated visualisation and analysis of the data. The database was planned to store a 

variety of information on all the genes of S. cerevisiae in conjunction with a variety 

of functional genomic data sets. The source of the information on the genes of S. 

cerevisiae was initially identified as the SGD and the initial functional genomic data 

sets that were considered were protein-protein interactions from large scale yeast 

two-hybrid screens (Uetz et al., 2000 & Ito et al., 2000) and genome scale gene 

expression microarray experiments (e.g. Eisen et al., 1999 & Gasch et al., 2000). The 

initial system design split the software tool itself into a number of inter-linked 

sections, namely: (1) A Genome Section for the visualisation and analysis of the S. 

cerevisiae genome; (2) A Transcnptome Section for the visualisation and analysis of 

gene expression data; (3) A Proteome Section for the visualisation and analysis of 

protein-protein interactions; (4) A Cell Section for the visualisation and analysis of a 
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typical S. cerevisiae cell and (5) An Analysis Section for searching for information 

and collectively visualising data on all the search results. 
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Figure 2.2: Initial system design of the software tool 
This is a schema of the initial system design of the planned software tool. Briefly, the system 
is comprised of a database for the storage and management of the data and a software tool 
for the visualisation and analysis of the data. The software tool is split into a number of inter-
linked sections and utilises a group approach enabling all the properties of an entire group to 
be analysed collectively. For example, data on the 5 genes highlighted in red on the Genome 
Section can be collectively viewed in the Transcriptome, Proteome, Analysis and Cell 
Sections. and vice versa. 
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The software tool was planned to utilise a group approach that, combined with the 

inter-linked sections, would enable users to easily select a feature of interest from 

one section and then swiftly move to any of the other sections where the 

corresponding data related to their selection would be automatically displayed and 

highlighted. Therefore, the tool would enable all the properties of an entire group of 

genes to be collectively investigated. For example, the chromosomal region 

surrounding a gene of interest could be selected in the Genome Section and then all 

the genes in this region could be collectively investigated in the other sections to 

examine if they are coexpressed, if their encoded products interact, if they share 

similar functions and if they are located in the same cellular location. Furthermore, 

the tool was planned to be easy to use with simple navigation and functional features, 

have flexible search mechanisms and provide clear graphical representations of the 

data enabling users to easily and rapidly find the data they want, investigate the 

intricacies of broad biological processes and test specific hypotheses. In addition to 

the initial target users, the software tool was also aimed at both wet and dry 

laboratory scientists with an interest in S. cerevisiae who would use the tool as a 

workbench to investigate specific genes and biological processes and to easily 

explore any and all aspects of the functional genomic data in an integrated modular 

fashion. The typical questions that this software tool aimed to help users answer are 

detailed in Table 2.1 below; these questions were identified through discussions with 

the target users. Furthermore, although the tool was specifically aimed at the budding 

yeast S. cerevisiae, it was designed with flexibility in mind so that it could be applied 

to other organisms with relative ease in the future. 
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I am interested in a particular gene of unknown function; What can this tool tell me about it 
and can it help me to assign biochemical functionality to it? 

I am interested in a particular gene of known function; What can this tool tell me about it and 
what other genes it is working with to achieve its biological goals? 

I am interested in a particular gene which I believe is involved in a particular biological 
process; Can this tool help me to investigate this? 

I am interested in a specific biological process; What can this tool tell me about it, what 
proteins are involved and how are they working together? Can this tool help identify any new 
proteins of unknown or known function involved in this process? 

I am interested in a specific chromosomal region; What can this tool tell me about it, what 
genes are located within it, what are their functions and do they work together to achieve 
common biological goals? Can this tool help characterise any proteins of unknown function 
in this region? 

I am interested in a particular hierarchically clustered gene expression data set; How can this 
tool help me explore this data set? 

I am interested in a particular gene expression cluster from this data set; What can this tool 
tell me about it, what genes are located within it, what are their functions and do they work 
together to achieve common biological goals? Can this tool help characterise any genes of 
unknown function in this cluster? 

I am interested in a particular protein-protein interaction data set; How can this tool help me 
explore this data set? 

I am interested in a particular protein interaction cluster from this data set; What can this tool 
tell me about it, what proteins are located within it, what are their functions and do they work 
together to achieve common biological goals? Can this tool help characterise any proteins of 
unknown function in this cluster? 

I am interested in two groups of proteins that I believe are evolutionary or functionally 
related; Can this tool help me investigate this? 

Table 2.1: Typical user questions the software tool aims to address 
This table contains the typical questions the software tool aims to help users answer. 

The initial system design also identified the computational technologies that would 

be used to actually build the system itself; the database and software tool would be 

built using MySQL (http://www.myscil.com) and Java (http://iava.sun.coml ), 

respectively. MySQL is an open source database management system that is fast, 

compact, stable and is available for most of the major computer platforms. The Java 

programming language is a state-of-the-art, object-oriented language with a syntax 

similar to the C++ programming language and is also available for most of the major 
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computer platforms. Furthermore, Java has a rich set of routines to support Graphical 

User Interface (GUI) creation, communication with databases and web based 

applications. Taken together, MySQL and Java would therefore enable the creation 

of a fast, stable, user-friendly, platform independent and web-enabled system. Before 

construction of the system began, the initial system design was discussed with and 

approved by the initial users. 

2.6: System Development 

The planned system was fairly large but could be effectively split up into two parts, 

namely the database and the software tool; furthermore, the software tool itself could 

be effectively split up into a number of inter-linked sections. Therefore, the system 

was developed in a number of stages starting from the development of the database 

and the core architecture of the software tool followed by the development and 

subsequent integration into the system of each individual section of the software tool. 

Each stage resulted in the release of a new version of the system which was delivered 

to the users for testing and feedback. 

The first stage of development involved identifying and obtaining data on all the 

genes in the S. cerevisiae genome, building the database to effectively store this data 

and building the Genome and Analysis Sections of the software tool which could 

utilise this data. The SGD was identified as the initial source of this data as it 

contains a large amount of information on all the genes of S. cerevisiae and makes a 

large proportion of this publicly available. The initial data obtained and processed 
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included the name, size, location, description, GO annotations and phenotype of 

every gene in the genome. The MySQL database to store this data was then designed, 

built and subsequently loaded with the data obtained from the SGD. The core section 

of the software tool concerned with initialisation and communicating with the 

database was then developed. This was quickly followed by the development and 

integration of the Genome and Analysis Section. The result of this stage was the 

internal release of a software tool called the Virtual Yeast Cell (Version 1) which 

was a standalone system that could be used to visualise and analyse the S. cerevisiae 

genome as well as for searching for information and collectively visualising data on 

all the search results. This version highlighted the main principles underlying the 

whole system as it utilised a group approach for analysis, had two inter-linked 

sections and offered clear graphical representations of the data. As a result, this 

version received good feedback from the initial target users and the further 

development of the system was approved. 

The second stage of development involved expanding the system to incorporate the 

Proteome Section and its associated data. The initial data identified for the Proteome 

Section were the two large scale yeast two-hybrid screens of the time (Uetz et al., 

2000; Ito et al., 2001). This data was processed and subsequently integrated into the 

database. The Proteome Section itself was then developed and inter-linked with the 

other sections of the software tool. During this stage of development, the entire 

system was also made available for use over the World Wide Web enabling users to 

use the system without having to install the database or program locally. As 

described above, the initial name given to the system was the Virtual Yeast Cell. 
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However, this name frequently gave the impression that the main aim of the system 

was to recreate a living S. cerevisiae cell in silico as opposed to being a workbench 

for the integrated visualisation and analysis of S. cerevisiae functional genomic data 

sets. Therefore, the name of the system was changed to the Yeast Exploration Tool 

Integrator (YETI) during this stage. The result of this stage was the public release of 

YETI Version 1 (Orton et al., 2004) which could be used as a standalone or web 

based system. YETI Version 1 had all the features and functionality of the Virtual 

Yeast Cell Version 1 but also included the Proteome Section for the visualisation and 

analysis of protein-protein interactions. This Proteome Section was effectively inter-

linked with both the Genome and Analysis Sections and could also utilise a group 

approach for analysis enabling users to explore the stored data sets in an integrated 

modular fashion. 

The third stage of development involved expanding the system to incorporate the 

Transcnptome Section and its associated data. The initial data identified for the 

Transcriptome Section were two large microarray studies that monitored the 

expression of all the genes in S. cerevisiae under a number of environmental 

conditions (Gasch et al., 2000; Gasch et al., 2001). This data was processed and 

subsequently integrated into the database. The Transcriptome Section itself was then 

developed and inter-linked with the other sections of the software tool. During this 

stage, additional features were also added to the existing sections that enabled them 

to utilise the recently incorporated gene expression data. The result of this stage was 

the public release of YET! Version 2 which had all the features and functionality of 

YETI Version 1 but also included the Transcnptome Section for the visualisation and 
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analysis of gene expression data. This Transcriptome Section was effectively inter-

linked with the Genome, Analysis and Proteome Sections and could also utilise a 

group approach for analysis enabling users to further explore the stored data sets in 

an integrated modular fashion. 

As mentioned previously, at the end of each stage of development the latest version 

of the system was delivered to the users for testing and feedback. The latest version 

of the system would be installed on the user's computer and the user would be given 

a demonstration of how the system works and how to use all of the features and 

functions. After a few weeks, the users would be met with to discuss any problems, 

bugs and suggestions for improvement. At this point, it is important to note that the 

user base was always expanding, especially after the system was made publicly 

available for use over the World Wide Web, and feedback from these additional 

users was always invited via email. 

In addition, there was also an a final stage of development which involved expanding 

the system further to incorporate a number of additional sections that enable users to 

directly investigate possible global correlations between the stored functional 

genomic data sets, specifically: (1) A Genome vs Transcnptome Section to 

investigate possible correlations between gene location and gene expression; (2) A 

Genome vs Proteome Section to investigate possible correlations between gene 

location and protein interaction; and (3) A Proteome vs Transcriptome Section to 

investigate possible correlations between protein interaction and gene expression. 

During this stage of development no new data needed to be incorporated into the 
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database, however, some new data was generated through analysis of the existing 

data sets. Furthermore, these additional correlation sections were effectively inter-

linked in YETI through the Analysis Section. The result of this stage was Version 3 

of YETI which had all the features and functionality of YETI Version 2 but with the 

additional correlation analysis sections integrated into the system. 

Further details on the features and functionality of the YETI system are now 

discussed in the forthcoming chapters of this thesis along with a number of case 

studies and analyses which demonstrate the utility of the tool. 
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Chapter 3 

YETI Data & Database 



3.1: Introduction 

The Yeast Exploration Tool Integrator (YETI) is a novel bioinformatics tool for the 

integrated visualisation and analysis of Saccharomyces cerevisiae (S. cerevisiae) 

functional genomic data sets. Essentially, YET! consists of two parts: (1) A database 

for the storage and management of data; and (2) A Java program for the integrated 

visualisation and analysis of data. The YET! database is populated with publicly 

available data from both online databases and published scientific studies. However, 

this data needs to be checked and processed into the necessary formats before it can 

be imported into the YETI database. Therefore, a number of computer programs 

were written to extract the relevant data, check and process it into the necessary 

formats and then automatically update the YETI database. The data used to populate 

the YETI database can be split into three categories: 

Genome: genomic data from the Saccharomyces Genome Database (SGD; 

Cherry et al., 1998; http://www.yeastgenome.org ). 

Transcriptome: gene expression data from the Stanford Microarray 

Database (SMID; Sherlock et al., 2001; http://genome-www5.stanford.edul ). 

Proteome: protein-protein interaction data from the General Repository for 

Interaction 	Datasets 	(GRID; 	Breitkreutz 	et 	al., 	2003; 

http:/Ibiodata.mshri .on .ca/gridlservlet/Index).  

Each of these three categories of data has had a separate computer program written 

for data processing. These programs have been designed for use by advanced users 
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only as they involve modifying large amounts of essential data in the YETI database 

and have limited error handing capabilities. However, the average user does not need 

to use these programs as updated versions of the YETI database itself are regularly 

available from the YETI website (httl2://www.bru.ed.ac.uk/—orton/yeti.html). In 

addition, the web based version of YETI (Web YETI) automatically connects to the 

latest database at the University of Edinburgh and the standalone version of YETI 

(Standalone YETI) also has an option to connect to this database. 

3.2: Genome Data 

The SGD is perhaps the largest information resource available for S. cerevisiae; it 

contains a wealth of genomic and biological information on the genes of S. 

cerevisiae, is constantly updated by a number of database curators and is a central 

resource for the yeast community. Therefore, the SGD is widely used and respected 

by yeast researchers. A large amount of its data is publicly available from the SGD 

data download site (ftp://genome-ftp.stanford.edulpub/yeastl)  in the form of text 

files. YETI currently uses six of these files to populate its own database (Table 3.1) 

with the extracted data ranging from gene names and chromosomal locations to 

descriptions of gene products and GO annotations. 
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File Name & Location Description 

data download/ This file contains information on all the current chromosomal 
chromosomal—feature/ features in the SGD. It also contains the coordinates of 
SGD_features.tab introns, exons and other subfeatures that are located within a 

chromosomal feature. 

data _download/ This file contains the primary set of GO annotations for every 
literature_curation/ ORF in the S. cerevisiae genome. 
ort_geneontology.tab 

data download/ This file contains all the GO annotations for all S. cerevisiae 
literature_curation/ gene products (protein and RNA). 
gene_association.sgd.gz 

data _download/ This file contains the mapping of all S. cerevisiae gene 
literature_curation! products (protein and RNA) to a GO Slim annotation term. 
go_slim_mapping.tab 

data—download/ This 	file 	contains 	detailed 	definitions 	of 	all 	the 	GO 
literatu re—cu ration/ annotations used to characterise all the S. cerevisiae gene 
go_terms.tab products. 

data _download! This file contains phenotype data for S. cerevisiae gene 
literature_curation/ products; the majority of this data is from the systematic 
phenotypes.tab deletion project (Winzeler et al., 1999). 

Table 3.1: SGD data files used to populate the YETI database 
This table contains the names, locations and descriptions of the six files available from the 
SGD data download site that are currently used to populate the YETI database. 

Essentially, the data from the SGD is the core data of the YETI database because it 

defines the number of ORFs in the S. cerevisiae genome along with the name, type 

and location of each ORF. Recently, the SGD began characterising all ORFs as either 

verified, uncharacterised or dubious; these categories are defined by the SGD as 

follows: 

1) Verified: OR-Fs for which experimental evidence exists that a gene product is 

produced in S. cerevisiae. Generally these have obvious orthologs in one or 

more other Saccharomyces species. Most named genes are in this class. 
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Uncharacterized: ORFs that are likely to be real due to the existence of 

orthologs in one or more other species, but which are not supported with 

specific experimental data demonstrating that a gene product is produced in 

S. cerevisiae. A few named genes may be in this class if there is no 

experimental evidence that they are produced. Evidence from large-scale 

analyses that indicates an ORF may be biologically relevant is sometimes but 

not always enough to upgrade an ORF from "Uncharacterized" to "Verified", 

depending on the individual case. 

Dubious: ORFs which are not conserved in other Saccharomyces species and 

for which there is no experimental evidence that a gene product is produced 

in S. cerevisiae. Many ORFs classified as "Dubious" are small and overlap a 

larger ORF of the class "Verified" or "Uncharacterized"; however, overlap 

with another ORF does not mandate that an ORF be classified as "Dubious." 

This new characterisation system can be used to eliminate ORFs that are highly 

unlikely to be real genes from analyses and investigations as well as highlighting 

those that may not be real. However, knowing the name and location of each ORF in 

the S. cerevisiae genome means little in the absence of what the function of each 

ORF is. Therefore, the SGD data is even more important because it describes the 

function of each ORF through textual descriptions of gene products and GO 

annotations. GO annotations provide a standard for characterising gene products and 

can readily be used to examine all the genes located in a specific cellular component 

or involved in a specific biological process. Furthermore, as standard GO annotations 

can be very specific, the SGD also characterises each ORF with a set of GO Slim 
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annotations. GO Slims are a cut-down version of the complete GO ontology and give 

a broad overview of the ontology content without the detail of the specific fine 

grained terms. Both the standard and slim GO annotations for each ORF in the S. 

cerevisiae genome are utilised in YETI. 

A single combined Java program called YETI_SGD was written to collectively 

process all the required data from the six SGD data files described in Table 3.1. This 

program extracts all the required data from each of the files, checks the data, 

combines portions of it, assigns the appropriate ID numbers and then automatically 

updates the YETI database. The YETI_SGD program plays an essential role in 

keeping YETI an up-to-date resource as it updates the database with all the relevant 

data from the SGD; it can be run manually at any time or set up to run at regular 

intervals by the host operating system. However, it is important to note that if the 

data files available from the SGD change format, which has happened numerous 

times over the past few years, the YETI_SGD program will have to be modified in 

order to cope with the changes and still perform its function; in extreme cases of 

change, the YETI database and program will also have to be modified. This 

highlights one of the problems with using third party data sources in that you do not 

have control over the format or assurances on its continued availability. 

A brief overview of the SGD data set currently stored in the YETI database is 

presented in Table 3.2; as can be seen a large proportion of the ORFs in the S. 

cerevisiae genome are still classified as genes of unknown function highlighting how 

much is still left to learn about this organism. It is important to note that the function 
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of a verified ORF is not necessarily known (899 verified ORFs are characterised as 

unknown GO molecular function) and the function of an uncharacterised ORF is not 

necessarily unknown (197 uncharacterised ORFs are classified as known GO 

molecular function). 

Category Total Number 

Genomic Features 7783 
ORFs 6591 
Verified OR Fs 4303 
Uncharacterised ORFs 1470 
Dubious ORFs 818 
Unknown GO Function 2172 
Unknown GO Process 1562 
Unknown GO Component 868 

Table 3.2: Overview of the current SGD data set 
This table contains an overview of the SGD data set currently stored in the YETI database 
which was used for all the analyses and case studies presented in this thesis. Genomic 
Features represents the total number of genomic features in the S. cerevisiae genome; 
ORFs represents the total number of ORFs in the S. cerevisiae genome; Verified ORFs, 
Uncharacterised ORFs and Dubious OREs represents the total number of verified, 
uncharacterised and dubious ORFs in the S. cerevisiae genome, respectively; Unknown GO 
Function, Unknown GO Process and Unknown GO Component represents the total number 
of non-dubious OREs characterised with unknown GO molecular function, biological process 
and cellular component annotations, respectively. 

3.3: Transcriptome Data 

The SMD stores a large amount of raw and normalised data from microarray 

experiments from ongoing research projects at Stanford University. This data is 

available in a variety of formats ranging from raw microarray image files to 

normalised and clustered gene expression ratio tables. At present, the data from two 

large S. cerevisiae genome wide microarray studies available from the SMID are used 

to populate the YETI database: 
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Genomic expression programs in the response of yeast cells to 

environmental changes (Gasch et al., 2000): In this study, spotted (two-

colour) DNA microarrays were used to measure changes in transcript levels 

over time for almost every S. cerevisiae gene as cells responded to 

temperature shocks, hydrogen peroxide, the superoxide generating drug 

menadione, the sulfydryl -oxidi sing agent diamide, the disulfide reducing 

agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation, 

nitrogen source depletion and progression into stationary phase. A total of 93 

individual microarray experiments, grouped into 13 related categories, were 

used to monitor how S. cerevisiae cells responded (via gene expression) to 

changes in a number of environmental conditions. 

Genomic expression responses to DNA damaging agents and the 

regulatory role of the yeast ATR homolog Mecip (Gasch et al., 2001): In 

this study, spotted (two-colour) DNA microarrays were used to observe 

genomic expression of wild-type and mutant S. cerevisiae cells responding to 

the methylating agent methylmethane sulfonate (MMS) and ionising 

radiation. A total of 40 individual microarray experiments, grouped into 7 

related categories, were used to monitor how different S. cerevisiae cell types 

responded (via gene expression) to a number of DNA damaging agents. 

These two studies were chosen as the initial microarray data sets to populate the 

YETI database with; they are large genome wide data sets that complement each 

other well, monitoring how S. cerevisiae cells respond to a wide variety of 

environmental conditions and DNA damaging agents. The Gasch et al. (2000) study 
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is especially well respected and as a result is commonly used as a test data set for 

gene expression analysis programs; for example, the Gasch et al. (2000) data set was 

selected at the Yeast 2003 Conference 

(http://www.yeastgenome.orgJcommunity/meetings/yeast03/)  as a test data set to 

enable biologists to easily compare the functions and performance of microarray 

analysis programs. The data generated from these two studies are publicly available 

for download from the SMD in the a variety of formats including output files 

generated by the Cluster program (Eisen et al., 1998) after a hierarchical cluster 

analysis has been performed. 

Cluster is a freely available Windows based computer program that is widely used 

for the analysis of gene expression data from microarray experiments; it performs a 

variety of data normalisation and cluster analysis techniques including hierarchical 

clustering, k-means clustering, Self-Organising Maps (SUMs) and Principal 

Component Analysis (PCA). Cluster is perhaps most commonly used for hierarchical 

clustering which is a conceptually simple yet very effective method of clustering 

gene expression data. The results of such an analysis can be represented in a visual 

manner that is easily comprehensible to the human mind even when hundreds of 

experiments are analysed on a genomic scale. 

After a hierarchical cluster analysis has been performed, Cluster generates three 

output files containing the clustering results (Table 3.3). The clustering results can 

then be visualised using an associated program called TreeView (Eisen et al., 1998) 

by importing the three Cluster output files. TreeView is a freely available Windows 
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based computer program that can be used to graphically browse the results of a 

hierarchical cluster analysis performed by Cluster; it supports tree and image based 

browsing of hierarchical trees and provides a number of output options for the 

generation of images. 

File Name Description 

.cdt (clustered data table) This file contains the original or normalised (depending on 
the selection) gene expression ratio data table with the 
rows and columns reordered based on the hierarchical 
clustering result. It also contains unique identifiers for each 
gene and microarray experiment that relate to the .gtr and 
.atr files. 

.gtr (gene tree) These two files contain the history of node joining events 
from the gene (.gtr) and array (.atr) clustering processes; 

.atr (array tree) the history of node joining events is used to recreate the 
resultant hierarchical tree. When clustering begins each 
item to be clustered is assigned a unique identifier and it is 
these identifiers that relate to the .cdt file. As each node is 
generated it is also assigned a unique identifier and each 
joining event is stored as a row with the node identifier, the 
identifier of the two joined elements and a similarity score 
between the two joined elements. 

Table 3.3: Output files generated by the Cluster program 
This table contains the names and descriptions of the three output files generated by Cluster 
after a hierarchical cluster analysis has been performed. 

Cluster is a fairly advanced program for gene expression analysis but TreeView is a 

fairly basic visualisation program. TreeView was designed for the sole purpose of 

visualising the results of a hierarchical cluster analysis performed by Cluster. It has 

limited search functions to find and subsequently view relevant data, it does not 

utilise the underlying gene expression data tables and it is not integrated with any 

other data sources or resources. In addition, both Cluster and TreeView can only be 

used on the Windows platform which limits their usability. 
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A Java program called YETI—Cluster was written to process the output files 

generated by Cluster after a hierarchical cluster analysis has been performed and then 

import the results into the YETI database. The YETI—Cluster program checks all 

gene names, assigns the appropriate ID numbers to link the data into the YETI 

database, calculates precise coordinates for drawing the resultant hierarchical tree 

and then updates the YETI database. The YETI—Cluster program was used to process 

and subsequently import the Gasch et al. (2000) and Gasch et al. (2001) Cluster 

output files downloaded from the SIVIID. 

Essentially, this means that the original Cluster program can be used to normalise 

and hierarchically cluster any S. cerevisiae spotted (two-colour) gene expression 

microarray data set and then the associated output files can be processed and 

imported into the YETI database using the YETI—Cluster program. YETI is then able 

to access the database to retrieve the expression data for visualisation and analysis 

via the YETI Transcnptome Section. In essence, the Transcriptome Section is a 

much more sophisticated version of TreeView that is fully integrated with all the 

other YETI Sections, has advanced search and display features and is not limited to 

the Windows platform. 

The YETI—Cluster program described above enables hierarchically clustered gene 

expression data to be incorporated and integrated into the YETI system. Hierarchical 

clustering is a simple but effective technique for clustering gene expression data into 

related groups (or clusters); for example, it enables one to easily examine if a pair of 

genes of interest are located in the same expression cluster of the hierarchical tree. 
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However, hierarchical clustering lacks a true quantitative measurement of how 

similar two gene expression profiles are to each other. A good quantitative 

measurement of the similarity of two gene expression profiles is needed for 

correlation analyses comparing the expression profiles of, for example, neighbouring 

genes or interacting proteins. Therefore, an additional Java program called 

YETI—Pearson was written to calculate the Pearson correlation coefficient between 

all genes with expression profiles in the Gasch et al. (2000) data set. The Pearson 

correlation coefficient (http://mathworld.wolfram.com/CorrelationCoefficient.html;  

Figure 3.1) is perhaps the most widely used measure of the similarity between two 

expression profiles in gene expression analyses. The Pearson correlation coefficient 

(R) lies between —1 and 1 (inclusive) with 1 meaning that the two profiles are 

identical, 0 meaning they are completely independent, and -1 meaning they are 

perfect opposites. 

R 	
N 

- 	

IXY . IXE y 

- V(Nj X2  -(x)2)(Ny2 _()2) 

Figure 3.1: The Pearson correlation coefficient equation 
This figure shows the Pearson correlation coefficient equation used to calculate the similarity 
between the two gene expression profiles x and y with N data points. 

3.4: Proteome Data 

Many protein-protein interaction data sets are available as a simple list of 

interactions where each interaction is represented by the names of the two interacting 

proteins; for example, 'LSM1-LSM2' represents an interaction between the LSM1 

Chapter 3: YET! Data & Database 	 86 



protein and the LSM2 protein. A Java program called YETI_PPINTS was written to 

process this type of protein-protein interaction data set and integrate it into the YETI 

database. The YETI_PPINTS program assigns the relevant ID numbers to the 

interactions and the proteins themselves, checks protein names and adds a source 

field. It also checks for and merges any duplicate entries, counts the total number of 

unique interactions each protein is involved in and also identifies interactions that 

consist of a protein interacting with itself. Identifying self-interacting proteins is 

important because these interactions can bias correlation analyses investigating 

trends in the function, location and expression of interacting proteins. Identifying and 

merging duplicate protein-protein interactions serves an additional purpose as 

protein-protein interactions that are reported in multiple data sets are more likely to 

be real protein-protein interactions. Keeping track of the source of each protein-

protein interaction enables users to judge for themselves if they trust the source. 

After the processing is complete, the program automatically updates the YETI 

database. 

One of the largest protein-protein interaction data sets available for S. cerevisiae can 

be downloaded from the GRID database. GRID is a database of genetic and physical 

interactions covering many organisms including S. cerevisiae, it contains a large 

number of protein-protein interactions from a variety of sources including Mewes et 

al. (1998), Uetz et al. (2000), Bader et al. (2001), Ito et al. (2001), Gavin et al. 

(2002) and Ho et al. (2002). The GRID database currently contains - 20,000 S. 

cerevisiae protein-protein interactions; these interactions were processed by the 

YETI_PPINTS program and are currently used to populate the YETI database. 
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The YETI_PPINTS program described above essentially ensures that the YETI 

database contains a set of unique protein-protein interactions and also highlights the 

interactions that were reported multiple times as these interactions have a higher 

confidence of being real. However, there are also a number of other confidence 

measures that can be applied to protein-protein interactions. Therefore, an additional 

Java program called YETI_PPCON was written to apply confidence scores to all the 

protein-protein interactions stored in the YETI database. The YIETI_PPCON 

program first checks whether interacting proteins are located in the same cellular 

component as defined by their GO annotations and additionally their GO Slim 

annotations; this is because two proteins can not physically interact with each other if 

they are not located in the same cellular compartment. The program then checks 

whether interacting proteins are coexpressed, as defined by the Pearson correlation 

coefficient of the their corresponding genes; this is because two proteins can not 

physically interact with each other if they are not present in the cell at the same time. 

The program also identifies interactions involving dubious ORFs and also highlights 

interactions involving uncharacterised ORFs; this is because dubious ORFs and 

therefore the interactions involving its encoded protein product are highly unlikely to 

be real. Additionally, the program also identifies the protein-protein interactions 

where both interacting partners share the same GO Molecular Function, Biological 

Process or Cellular Compartment annotation and also identifies the interactions 

where both the interacting protein's corresponding genes are located on the same 

chromosome; these checks facilitate additional analyses comparing the properties of 

interacting proteins. 
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3.5: YETI Database 

Essentially, the YETI database has two main functions: (1) To store and manage all 

of the data outputted from the YETI data processing programs described above; and 

(2) To communicate with the YETI Java program by receiving and running search 

queries and passing back the search results. The YETI database was designed with 

the YETI Java program specifically in mind and the architecture of the database 

reflects the architecture of the program. The database itself is a relational database 

consisting of a number of data tables linked together through key fields (Figure 3.2); 

a brief description of each database table and the data it contains is presented in 

Table 3.4. The ORF_DATA table is the core table of the YETI database as it 

contains a wide variety of information on all the features in the S. cerevisiae genome 

and therefore also defines the number of current features in the genome. Each 

genomic feature in the ORF_DATA table is assigned a unique YETTID number and 

it is this number that is the main way of linking the database tables (and therefore the 

data within them) together. Briefly, each ORF in the ORF_DATA table can be 

involved in multiple protein-protein interactions in the HYBRID table, can have 

multiple GO annotations in the ONT_DATA table, can have multiple GO Slim 

annotations in the GO—SLIM table, can have an expression profile in _DATA table 

of each microarray study and can be involved in multiple Pearson correlation 

coefficients in the PEARSON table. 

Chapter 3: YETI Data & Database 	 89 



I GASCH200I_TREE  I 
ii 

ii 

FILTERS 	 PEA SON 
	

i)  GASCH200I_DATA 1 
1 	 00 

HYBRID 
00 	 1 

 ORF_DATA 
	

ARRAYS 

'\CO 	N 
GO SLIM ONT_DATA 

eo\ 	 /00 

1\/1 

I 
 

GO—TERMS I  

I GASCH2000_DATA  I 
ii 

II 

I GASCH2000_TREE  I 

Figure 3.2: Schematic of the YETI database 
This is a schematic of the YETI database showing the names of all the database tables as 
well as the relationships between tables; brief descriptions of each table and the data it 
contains can be found in Table 3.4. 
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Table Name Description 

ORF_DATA This is the core table of the YETI database as it contains a wide 
range of information on all the features in the S. cerevisiae genome; 
this information includes the name and location of each genomic 
feature as well as textual descriptions and phenotypic data. 

ONT_DATA This table contains all the GO annotations of all the features in the 
S. cerevisiae genome. 

GO—SLIM This table contains all the GO Slim annotations of all the features in 
the S. cerevisiae genome. 

GO—TERMS This table contains detailed definitions of all the GO annotations 
used to characterise all the features in the S. cerevisiae genome. 

HYBRID This table contains all of the protein-protein interactions. 

FILTERS This table contains a number of different confidence scores for all of 
the protein-protein interactions stored in the HYBRID table. 

ARRAYS This 	table 	contains 	information 	on 	all 	the 	gene 	expression 
microarray data sets currently stored in the database. 

GASCH2000_DATA This table contains the hierarchically clustered gene expression ratio 
data from the Gasch et aL (2000) study. 

GASCH2000_TREE This table contains the node joining history and information for 
drawing the hierarchical tree for the Gasch et al. (2000) study. 

GASCH2001_DATA This table contains the hierarchically clustered gene expression ratio 
data from the Gasch et al. (2001) study. 

GASCH2001_TREE This table contains the node joining history and information for 
drawing the hierarchical tree for the Gasch et al. (2001) study. 

PEARSON This 	table 	contains 	all 	of 	the 	Pearson 	correlation 	coefficients 
between all of the ORFs with expression data in the Gasch et al. 
(2000) study. 

Table 3.4: YETI database tables 
This table contains the names of the tables in the YETI database and general descriptions of 
the data they contain. 

The YETI database stores and manages all of the data that is generated from the 

YET! data processing programs in the format required by the YETI program for 

visualisation and analysis. The database was developed in tandem with the YET! 

program and as new sections and features were added to the program, new data and 

tables were incorporated in the database. The database does have some data 
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duplication but this duplication allows the YETI Java program to perform at faster 

speeds whilst having relatively little effect on the performance of the database. 

Furthermore, this duplication enables specific sections of the YETI program to be 

detached and used as standalone applications with their corresponding sections of the 

YETI database. 

The YETI database is primarily available in MySQL format which is an open source 

database management system that is fast, compact, stable and is available for most of 

the major computer platforms. One disadvantage of MySQL is that it is fairly 

complicated to install from the point of view of the standard wet laboratory scientist. 

However, users can avoid downloading and installing the database by either using 

Web YETI or by connecting to the YETI database housed at the University of 

Edinburgh from Standalone YETI. In addition, the YETI database has also been 

ported across to Microsoft Access format which is much simpler to install; however, 

this version of the database can only be used on the Windows platform. 

The YETI database has always been relatively small in size but steadily increasing as 

more protein-protein interactions and microarray data sets were added; this steady 

increase in the size of the database has not significantly affected the speed or 

performance of the YETI program. However, the addition of the Pearson correlation 

coefficients between all the ORFs with expression data in the Gasch et al. (2000) 

study increased the size of the database from —30 MB to —800 MB. This is because 

there are —18,000,000 unique Pearson correlation coefficients stored along with the 

two YETIID numbers of the ORFs that each coefficient corresponds to as well as 
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data indexes to enable efficient database searching. This does affect the usability of 

YETI from the point of view of disk space and longer download and installation 

times. However, disk space is not the major problem it once was as modern 

computers currently come with extremely large hard disks and download time can be 

improved by compression and high speed networks. Furthermore, YETI can be used 

over the internet avoiding the need to download and install the database locally; 

however, this option will also need a high speed network to be effective as large 

amounts of data often need to be transferred between the YETI database and 

program. 

3.6: Discussion 

The core data in the YETI database consists of the name, location and function of 

every feature in the S. cerevisiae genome; the source of this data is the SGD which is 

a well respected resource of the yeast community. The SGD recently began defining 

each ORF as either verified, uncharacterised or dubious which can essentially be 

used as a confidence measure as to the validity of each ORF with verified ORFs 

having very high confidence, dubious ORFs having very low confidence, and 

uncharacterised ORFs having medium confidence of being real genes. The source of 

the gene expression data in the YETI database are the Gasch et al. (2000) and Gasch 

et al. (2001) studies which are well respected and often used as a test data set for 

gene expression analysis programs; these expression data sets have already been 

normalised and hierarchically clustered by the Cluster program. Furthermore, the 

Gasch et al. (2000) is also used to directly calculate the Pearson correlation 
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coefficient between all gene expression profiles. The source of the protein-protein 

interaction data in the YETI database is the GRID database which is a large and 

widely used resource. However, this protein-protein interaction data contains many 

interactions detected from techniques such as the yeast two-hybrid system which can 

be error-prone. Therefore, the protein-protein interactions in this data set are 

thoroughly evaluated with a number of confidence scores assigned to each 

interaction. 

The YETI database effectively stores and links all of the data described above in a 

relational way. The YETI database was specifically designed for use by the YETI 

Java program as both were developed in tandem. The features and functions of the 

YETI program itself and now discussed in further detail in the next chapter of this 

thesis. 
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Chapter 4 

YETI Program 



4.1: Introduction 

The Yeast Exploration Tool Integrator (YETI) is a novel bioinformatics tool for the 

integrated visualisation and analysis of Saccharomyces cerevisiae (S. cerevisiae) 

functional genomic data sets. Essentially, YETI consists of two parts: (1) A database 

for the storage and management of data; and (2) A Java program for the integrated 

visualisation and analysis of data. The YETI Java program itself consists of a 

MainFrame and a number of core inter-linked sections. The YETI MainFrame is 

concerned with establishing a connection with the YETI database, handling database 

searches as well as launching and monitoring all the other YETI sections. All the 

core YETI sections are closely inter-linked enabling users to swiftly move between 

them and investigate all aspects of any genes or proteins of interest as well as 

providing access to textual information, including Gene Ontology (GO) annotations, 

at any point. Furthermore, there are also a number of additional YETI correlation 

sections that enable users to investigate possible correlations between the stored 

functional genomic data sets. An overview of the structure of the YETI program is 

presented in Figure 4.1 and an overview of the main function of each of the YETI 

sections is presented in Table 4.1. 
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Figure 4.1: Schematic of the YETI program 
This is a schematic of the overall structure of YET!. Essentially, YETI consists of two parts: 
(1) A database for the storage and management of data; and (2) A Java program for the 
integrated visualisation and analysis of data. The YETI Java program consists of a 
MainFrame which communicates with the database and a number of closely inter-linked core 
sections where data can be visualised and analysed. Sections highlighted in blue are the 
core sections of the YETI program whereas sections highlighted in red are additional 
correlation analysis sections. An overview of the main function of each section is presented 
in Table 4.1. 
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Name Description 

Genome Section The Genome Section is concerned with the informative display 
of the S. cerevisiae genome, its chromosomes, and known and 
predicted genes. 

Transcriptome Section The Transcriptome Section is concerned with the visualisation 
and 	integration 	of 	gene 	expression 	data 	from 	microarray 
experiments. 

Proteome Section The 	Proteome 	Section 	is 	concerned 	with 	the 	effective 
visualisation 	of 	protein-protein 	interactions 	on 	a 	dynamic 
graphical display panel. 

Analysis Section The Analysis Section is concerned with providing a graphical 
interface to the YETI database and has a number of easy to use 
search mechanisms for both simple and complex queries. 

FPC Section The 	Function, 	Process 	and 	Component 	(FPC) 	Section 	is 
concerned with enabling users to browse GO annotations and 
define specific groups of genes which can then be investigated 
in further detail in the other YETI sections. 

Datasheet Window The Datasheet Window is concerned with displaying a wide 
range of information on a specific gene of interest and contains 
a number of direct links to the YETI Sections. 

G vs T Section The Genome vs Transcriptome (G vs T) Section is concerned 
with enabling users to find and investigate chromosomal regions 
of coexpression. 

G vs P Section The Genome vs Proteome (G vs P) Section is concerned with 
enabling users to find and investigate chromosomal regions 
containing genes whose corresponding proteins interact with 
one-another. 

P vs T Section The Proteome vs Transcriptome (P vs T) Section is concerned 
with enabling users to find and investigate interacting proteins 
whose corresponding genes are coexpressed. 

Table 4.1: Overview of the main functions of the YETI Sections 
This table contains the names and descriptions of the sections of the YETI Java program. 

)' FA I i 	rillcn in tlic Java Ir 	ianiimn LT lannuic \¼ hich P,  a tatc-ot-thc-ari. obleci-- 

oiiciiicd Idi1UaLL 	It 11 a 	\nta\ 	iniilar to thc C++ pi'oiam III in 	anivae. 

Furthermore, the Java programming language is platform independent with Java 

Virtual Machines (JVM) available for all of the major operating systems. Therefore, 

hi iiiean' that YkI! an \ oiL on am operating system that has access to a JVM of 
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version 1.4 or above making it highly portable. YETI has been thoroughly tested and 

performs very well on the Windows operating system and also performs well on the 

Linux and Mac OS-X operating systems. YETI can be used online via a simple Java 

applet (Web YETI) or can be downloaded and installed locally onto the users own 

computer (Standalone YETI). 

4.2: Analysis Section 

CU -rent computational resources tend to utilise a single gene approach where users 

si niplv \1c\;, a datasheet on a single gene of interest at once. Although this approach 

is an essential feature, it does not enable users to collectively view and compare the 

data on a number of genes to investigate possible shared functionality, for example. 

In addition, current computational resources tend to have limited search capabilities 

where the main and sometimes only way of searching for data is by entering a single 

gene name. In contrastS the Anal vsi s Section ol YETI provides a sophisticated 

raphical interlace to the YETI database with a 11 umber of' di ft'erent search functions 

to find data and an interactive data table to collectively visualise and analyse all the 

search results together. 

At the heart of the .'\nal\sls Section [stile interacti\c data table 	hich displays all the 

ftsults hi'oin it database si'ch (1-'iu'e 4.2. l'his table can cohlecti\e]\ displa\ it wide 

range of data on a large number of genes at once enabling easy visual examination 

and comparison of all the properties of all the genes; each row in the table 

corresponds to a distinct gene and contains a wide range of information on that gene. 
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By collectively displaying all the results of a search together in one table users are 

easily able to scroll along the table to view all the data on an individual gene of 

interest. But more importantly, users can also scroll up and down the table to 

compare the properties of all the genes found in the search; this feature is extremely 

useful when investigating possible shared functionality among a group of genes. 

Furthermore, any of the genes displayed in the data table can be individually selected 

and investigated in further detail individually in YETI. 

Sech 
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SQL mantes 

StOlID ORE GENE ALIAS - 	80010 TYPE CUR 	LENGTH START STOP STRAND DESCRIPTION-1 
I 7AL332: PRP46 FUN2C 00003030 3R7 1 140 34476 63337 pre-mR74A splicing factor 

226 Y8L026W LOMO SMO5I0NP3 00000122 ORE 2 4115 70535 171000 74 snRNA-ussocialed protein 0715, 
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930 YBR180C EITC2O 90000392 ORE 2 423 604064 603643 C spliciriglactor 
885 YOLO3OW PRP9 00002188 ORE 4 1593 397533 399125 W 885 splicing factor 
898 YDLO43C PRPI 1 RNA1 1 00002201 ORE 4 801 378476 375676 C 5nRNA-associated protein 
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1382 YDR235W PRP42 MUDI6ISN 00007843 ORE 4 1635 933495 935129 W UI SnRNP protein Sal share -,  
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1049 Y0R079C 5851 0M8 50000831 ORE 5 591 213175 212508 C Lit 	iRNP protein 
1942 88117W I_0M4 00823100 S0000914 ORE 5 564 387228 387791 W US soRNA associated protein 
1979 YER1 46W LSM5 00000948 ORE 5 782 482580 462861 W Sm-lore protein 
2077 YFLO1 7W-A 85402 8NP2IYFLO 50007995 ORE 8 234 103693 103926 W snRNP 0 protein 5118 00150108 
2141 YEROOSC 5501 00001901 ORE 6 1347 155887 154521 C Product of9ene unknown 
2489 008006w P8818 S0053738 ORE 7 660 506065 506724 W 8146 splicing factor associated 
2455 708013W ONU71 00003245 ORE 7 1863 510948 516410 W UI sRNP protein 
2961 708074W SNOt SPPS2 S0003309 ORE 7 441 634708 638148 W U6 5nRNP protein 
2962 YORO75C PRP38 00003307 ORE 7 779 636869 536141 C RNA splicing factor 
2578 YGR091W PRP31 60003373 ORE 7 1485 668335 667819 W pre-rnRfdA splicing protein 
3058 51-fR1 65C PRP8 DBE3IDNA S0001206 ORE 8 7242 436948 429707 C US snRNP and spliceosorne 
3197 711.0610 SNP1 S0001323 ORE 9 903 245958 244654 C U15nRNP 70K protein hornolo 
3337 718559W MOLt 00001448 ORE 9 336 374522 374957 W encodes 71378, a component 
3345 YIRO?IW MRS PETI 57 90001460 ORE 9 1092 387291 399387 W rndocriondrial 885 splicing 
3575 YJL2O3W P8821 8Pp91 00003739 ORE 10 843 53341 54183 W P8.8 splicing facto, 
1637 YJR577W LOMB 80003783 ORE IS 387 189419 469805 W Sm-like protein 
3885 738050W 1051 NTC3OILJT 00003811 ORE IS 708 928389 529098 W Interacts with the Spllceosome 
3901 YI'ILOI 2W PRP4O 50001498 ORE 11 1757 417948 419699 W UI 5nRNP protein 
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Figure 4.2: Screenshot of the Analysis Section 
This is a screenshot of the Analysis Section which displays all the results of a database 
search collectively in an interactive data table. Each row of the table corresponds to a 
specific gene and contains a large amount of data relating to that gene. Search queries can 
be entered into the textfield at the top of the window or can be generated by using the 
QueryBuilder function (see below). 
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The Analysis Section has a flexible and powerful QueryBuilder function that enables 

users to search on any aspect of the available data and perform both simple and 

complex database searches. The QueryBuilder function enables users to easily 

construct large and complex queries to search the database with by simply entering 

their desired search criteria into a variety of labelled textfields. One of the main 

reasons for constructing the QueryBuilder function was to enable users to perform 

keyword searches on gene descriptions and GO annotations to rapidly find and then 

collectively examine related genes. In this case, the user simply needs to enter their 

desired keyword(s) into the appropriate textfield(s) and YETI will automatically 

search the database and collectively display the search results in the interactive data 

table. For example, searching for all the genes with the keyword 'spliceosome' in 

their description or GO annotations would return all the spliceosome and 

spliceosome related genes for examination and further investigation. However, the 

QueryBuilder function can be used to perform a wide variety of other searches both 

simple and complex; for example, users can search for all the genes with the text 

'LSM' in their name, all the genes that contain introns, all the genes with an inviable 

phenotype, all the genes located on chromosome 1 or any combinations of the above. 

Alternatively, users can simply enter the names of multiple genes of interest and 

YETI will collectively display information on all of them in the data table. 

Furthermore, an advanced search option is also provided that enables users to 

directly enter a Structured Query Language (SQL) statement which YETI then uses 

to search the database with and collectively displays any results found in the data 

table; however, although this powerful option gives the user complete control over 

the search criteria and display settings it obviously requires knowledge of both SQL 
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and the YETI database structure. 

The Analysis Section is effectively inter-linked with the other YETI sections 

enabling users to swiftly move directly into another YETI section where information 

related to all the genes currently displayed in the data table will be automatically 

displayed and highlighted. Alternatively, users can move swiftly into the Analysis 

Section from the other YETI sections where a range of information on all their 

selected genes would be automatically displayed in the data table. 

4.3: Genome Section 

Current computational resources such as the Saccharomyces Genome Database 

(SGD; Cherry et al., 1998) tend to only have a basic graphical representation of the 

chromosomal area surrounding a specific gene of interest; there are few resources 

available that enable users to view the location of genes from a genomic perspective 

or enable users to easily and rapidly scroll along detailed visual representations of the 

chromosomes. In contrast, the Genome Section of YETI is concerned with the 

informative display of the S. cerevisiae genome, its chromosomes, and known and 

predicted genes. The Genome Section enables users to examine and compare the 

genomic location of multiple genes or multiple groups of genes on a schematic of the 

entire S. cerevisiae genome. It also enables users to scroll along detailed visual 

representations of the chromosomes themselves and select regions of interest to 

investigate in further detail in the other YETI sections. 
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At the heart of the Genome Section is the genome schematic which is a scaled 

graphical representation of the 16 nuclear chromosomes of S. cerevisiae (Figure 4.3). 

This schematic firstly provides a visual overview of the genome which enables users 

to make quick comparisons of chromosome sizes and centromere positions. The 

Genome Section does not currently take account of the mitochondrial chromosome 

as it fits into a different model; it is circular whereas the nuclear chromosomes are 

linear. In addition, there is generally less of a scientific interest in the mitochondrial 

genes as they do not tend to be investigated in functional genomic analyses. 

However, data on all the mitochondrial genes can still be accessed and examined 

through the Analysis Section. 

The genomic location of any genes of interest can be collectively displayed on the 

genome schematic by simply entering their names and YETI will then highlight their 

location on the genome schematic; genes are highlighted with a red line at their 

corresponding start position on the scaled representation of their chromosome. This 

feature provides a quick and simple means to examine and compare the genomic 

location of multiple genes; a group of genes of interest could well be located near 

each other on a particular chromosome or be located on different chromosomes but at 

similar positions such as the centromere. Alternatively, as the YETI sections are 

closely inter-linked, the Analysis Section could be used to search for a specific group 

of genes to highlight on the genome schematic. For example, in Figure 4.3 YETI was 

used to search for all genes with an inviable phenotype and to subsequently highlight 

their location on the genome schematic enabling all their genomic locations to be 

collectively examined and compared; as can clearly be seen, there a very few 
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inviable and therefore essential genes located in the telomeric regions of the 16 

nuclear chromosomes. This feature also enables the investigation of possible 

functional hotspots in the S. cerevisiae genome, for example, examining if genes 

characterised to the same or related GO biological process annotations are located in 

the same genomic region. 

___ 	• 	 • i, 

Figure 4.3: Screenshot of the Genome Section 
This is a screenshot of the Genome Section displaying the genome schematic. The genome 
schematic displays a scaled representation of all 16 nuclear chromosomes of S. cerevisiae; 
chromosome 4 is the longest at 1,532,000 base pairs (bp) and chromosome 1 is the smallest 
at 230,000 bp. In this case, the genomic location of all genes with an inviable phenotype 
have been highlighted on the genome schematic with red lines enabling the genomic 
location of the entire group to be collectively examined. As can be seen, very few inviable 
and therefore essential genes are located in the telomeric regions of the chromosomes. 
Furthermore, numerous high density red regions are observed which consist of a number of 
inviable genes located next to each on the chromosome; these chromosomal regions could 
be easily selected and investigated in further detail in YETI. 
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The genomic location of multiple groups of genes can also be examined and 

compared on the genome schematic. In YETI, two different groups of genes can be 

defined, the so called Red and Green groups which are highlighted on the genome 

schematic with red and green lines, respectively. A broad example is shown in Figure 

4.4 where the genomic location of all genes whose protein products are located in the 

cytoplasm and nucleus are highlighted with red and green lines, respectively; this 

example shows that even the genomic location of very large groups of genes can still 

be collectively examined and compared on the genome schematic. This feature is 

useful for investigating possible evolutionary relationships between two groups of 

genes through the collective comparison of their genomic locations; for example, 

members of the two groups could be colocated across the genome. 
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Figure 4.4: Screenshot of the Genome Section with multiple groups highlighted 
This is a screenshot of the Genome Section with the location of multiple groups of genes 
highlighted on the genome schematic. The Red group consists of all the gene's whose 
protein products are located in the cytoplasm and are highlighted with red lines on the 
genome schematic. The Green group consists of all the gene's whose protein products are 
located in the nucleus and are highlighted with green lines on the genome schematic. As can 
be seen, even the genomic locations of very large groups can still be collectively compared 
and examined on the genome schematic with ease. 

A unique feature ol the Genorne Section is the ability to overlay gene expression data 

onto the zcnome schematic to display the relative expression of every gene in the 

enomc: C\ Ci\ ccnc P, lIiLflIhL, 1ItCC1 on the een mc chen]atic \ ith a line that i 

coloured to relied iK reiati\c LICtIC c\pIelon ratio \ alue Ironi the eIecied 

iiicroarray experiment. This fairly unique feature essentially enables users to view 

the gene expression profile of the entire S. cerevisiae genome; it enables users to 

c\amine the eprcssion state of particular areas of the genome and find areas that 

Fia\C i III iiai idlali\ C ehiiic in CeliC c\picion. 
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4.3.1: Chromosome Window 

The Chromosome Window of YETI displays a detailed visual representation of one 

of the 16 nuclear chromosome of S. cerevisiae (Figure 4.5). The chromosome is 

visually represented by two scaled black bars which correspond to the two strands of 

chromosomal DNA (Watson strand at the top and Crick strand at the bottom). Genes 

are represented by white rectangles within the chromosomal strands extending from 

their corresponding start to stop positions along with the name of the gene. The 

chromosome is contained within a scrollpane that enables users to easily scroll along 

the chromosome to view the location and distribution of genes across the whole 

chromosome and rapidly find areas of interest. As some genes can be located quite 

close together making them hard to distinguish from one another, there is a zoom 

function to magnify the chromosomal display and clarify the situation. By default 

only verified and uncharacterised ORFs are displayed on the chromosome; however, 

dubious ORFs and any other genomic feature types can also be selected and 

subsequently displayed. In addition, there is also a simple Find function that can be 

used to search for and subsequently highlight the location of a specific gene of 

interest on the chromosome. 

A single datasheet on any of the genes displayed on the chromosome can be viewed 

simply by mouse clicking on them. The datasheet contains a wide range of 

information on the selected gene and has a number of direct links to the other YETI 

sections; more information on the features of the YETI Datasheet Window can be 

found below in section 4.6 of this chapter. Furthermore, entire regions of the 
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chromosome can be selected simply by dragging the mouse to create a selection box 

(Figure 4.5); all the genes located within the selection box are automatically selected 

and highlighted in red and can then be collectively investigated in further detail in 

the other sections of YETI. The Chromosome Window is effectively linked to the 

other YETI sections enabling users to swiftly move directly into another YETI 

section where information related to all the genes currently selected on the 

chromosome will be automatically displayed and highlighted. For example, the 

Transcriptome Section would automatically display and highlight the gene 

expression profiles of all the genes currently selected on the chromosome; this 

enables users to investigate if all the genes located in a particular chromosomal 

region, such as a telomeric region or the region surrounding a gene of interest, are 

coexpressed with one another. 
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Figure 4.5: Screenshot of the Chromosome Window 
This is a screenshot of the Chromosome Window with chromosome 4 displayed and the 
chromosomal region around the LSM6 gene selected. The top panel (above the horizontal 
grey bar) displays a graphical overview of the whole chromosome with the area currently 
being viewed in the bottom panel represented by the white box. The bottom panel displays a 
detailed graphical representation of the selected chromosome in a scrollpane. Selected 
genes are highlighted in red in the bottom panel and their location is also highlighted with red 
lines in the top panel. 

(I)ne of the unique features of the Chromosome Window is that gene expression data 

from any of the microarray experiments stored in the YETI datahase can he overlaid 

onto the chromosome to display the relative expression of every gene on the 

chromosome; gene expression data is overlaid onto the chromosome by colouring 

each gene with a colour that reflects its relative expression ratio value from the 

clected n crariav experiment. This essentially enables users to view the gene 

e\plc1oI1 pmli!e ot the entire chioniosome and enahle them to easil\ tind 

chrim'oinul ieiion with similar relative ci inee in e\ptesion. Fur hermorc. users 
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are able to save an image of the entire chromosome that is currently displayed 

complete with any gene selections or overlaid expression data (Figure 4.6). This 

feature is useful because it creates a detailed image of the entire chromosome that 

allows easy visual examination of gene locations and distributions as well as the 

rapid examination of the relative expression of every gene on the chromosome. 
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Figure 4.6: YETI generated image of chromosome 6 
This is an image, created by YETI, of the whole of chromosome 6 
.ith a microarray experiment overlaid. The image created is a large, 
Jetailed view of the entire chromosome that enables users to view 
jene locations and distributions along the entire length of the 
hromosome. In this case, a gene expression microarray experiment 

nas been overlaid onto the chromosome which colours all the gene 
oxes corresponding to their relative gene expression ratio values 
rom the selected experiment. This image allows the user to easily 
and rapidly examine the expression of all the genes on the 
ohromosome and find regions of interest. 
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4.4: Transcriptome Section 

The Transcriptome Section of YETI provides an effective means for the visualisation 

and analysis of gene expression data generated from microarray experiments. The 

YETI database contains processed gene expression data sets that have already been 

hierarchically clustered using the Cluster computer program (Eisen et al., 1998). 

These hierarchically clustered gene expression data sets can be loaded into the 

Transcnptome Section for visualisation and analysis as well as integration with the 

other YETI sections and their corresponding functional genomic data sets. This 

highlights one of the advantages of YETI as there are few computational resources 

available that can effectively integrate gene expression data with other functional 

genomic data sets for visualisation and analysis. 

At the heart of the Transcriptome Section is the graphical panel which can display 

any one of the hierarchically clustered gene expression microarray data sets stored in 

the YETI database (Figure 4.7). The graphical panel displays the gene expression 

data set visually by representing each relative gene expression ratio data point with a 

colour that reflects its value; values greater than zero are coloured with progressively 

brighter shades of red and values less than zero are coloured with progressively 

brighter shades of green. Therefore, each gene's expression profile in the data set is 

represented on the graphical panel by a row of data points that are all individually 

coloured to reflect their value. The gene rows are ordered with respect to the data 

set's hierarchical tree which is also displayed on the graphical panel so that the 

relationship between genes can be easily examined. Furthermore, the graphical panel 
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is contained within a scroilpane which enables users to easily scroll up and down to 

examine the entire hierarchically clustered gene expression data set and rapidly find 

regions of interest such as a particular cluster. Any regions of interest from the 

displayed data set can be selected simply by dragging the mouse to create a white 

selection box; all the genes contained within the selection box are then automatically 

selected and highlighted with red lines to their left (Figure 4.7). Furthermore, 

multiple regions of interest can simply be selected by creating multiple selection 

boxes. 

View 	 av 
	

Help 

Figure 4.7: Screenshot of the Transcriptome Section 
This is a screenshot of the Transcriptome Section with a region of interest selected from the 
hierarchically clustered gene expression data set. The graphical panel is shown in light blue 
and displays a visual representation of the clustered gene expression data set with the 
corresponding hierarchical tree. Each row in the data set corresponds to the gene 
expression profile of a particular gene. In this case, a region has been selected by dragging 
the mouse vertically to create a white selection box. All genes contained within the selection 
box are then automatically selected and highlighted with red lines to their left. 
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Once a region or regions of the gene expression data set have been selected they can 

be examined in more detail in the Transcriptome Section itself. The Data option of 

the Transcriptome Section can be used to display an expanded view of the selected 

regions of the data set along with the name and description of all the genes within 

these regions (Figure 4.8). This option enables users to rapidly examine what each 

selected gene is as well as giving a much clearer view of all the selected gene's 

expression profiles allowing easy visual examination and comparison of possible 

shared properties between the selected genes. 

VIew Croups inowje AuaV Sections 
	

Help 

R*d 0,uD 

IIIIIIIlIIItlIUtIIIIIUII 	uI!&lflhuuIHuIIuIItIIIIIUIfl!IIIIIUtulIII ulUhIDhIHIlfihlIN 	<' CDC' •5.O 
!hhhhIHUIHIlihIIhIhII 	I 	IHhthhhhIhhhhhIhhIhhIhhIl 
hIhhlhIHhttIUhIHHDhIhhhhh!tItIHhhhIHJthIhh UliftitI 	hIIhtIhIflhlIL 

IlitIflhltIllihhIf hlthhhhhItthI 	0t5C 

I'UhIJhIpH 	--0t0 
DtL4 OR 	 00 

Nyooth.le OPt 
hhhItIhlhhIIthIfhhhhhJlIfU I 	tfhIUhIJlUhhIhhJl I hIhItIIhIuhIhIhl 11111 I 	IfIIhhIh'lthI 	to' ttt,t. 	opt 

IHIUIflhhhIthhIhhhIIIhIhlt 	III I 	lIhhhhhhItIlUhIhhhI I IIIIUIIIIIIIIIIIIII huh 	It 	PD.0 COOt 2.4.os 	cc.-5-plwpt.t.  Phe.P'.t. 
1111111! hhIhhhIlIIlhhflhIflI 	hIllhIJPIhhhhlhhlIIl hhhI9ItIHhIlIhhlih 1111111 	111*111 1110 	0 tGtW tt.11 

hIhhIhIhhIUhhIUIlhuhIhIhhhhIll 
. hill 11111 	IhhIIhiihhhiIhIltIPhhhIIllhihhhIhhhlIhilIllhhil 

IlhIhuhhIllhhhI 11111111 	hPhIllhlhiftithi' IIhIIIhIHIfluI 
hhhhlIthhIhIIiihIIhtIhIlIIlIhhI4 

,04a 
ctVI3t 

FREt 
cacaO Pcp 	 S.bOntI 

111111 liii 111111 hIIfIIIhI.fiItlttlhlIhIu 11111 IIfIUlflhIIhiiitIfltIIjiItIIlIlhflhIhlIIflhhI 00PS HtPctcCtl ORF 
1111111 	hIIIihiIIIhibilhIlhIIhiIIi IiiIIhIlIilIhuIiIhihhhIthlIIIIUhIIlhIhhiIl 1 	I ulhlhihliN - P013 '8 	 tt.,c 	2o,50 

hliIlIIIhhhiIuIHuihI!IUuhtii0IUhiuuul uIUhIUhhhihIhIUhItIIIU!U11!'! 
IlhilhillUhl W1 	iiiujjjieljuIflJIJtIlflhIN&hIUhhhhJIUlUhtJIIIUhjIlIIhli5hllMhIPIIii 

•uIIhiihhiIuIuuhIuhiIuuhpiuiiHhII!niuIINuIIhuifliuuuhiHuIItJuuhimii IU,IIIhIIUI *t' DPpt0pc.e 	 oR.ct(E2)ttp5 

hiuIIuhIuuhIhIhiUIItflhIIUIIIuhtUftIUUIUWhuhIUhtflhIhlIUhIUiUUhIUIluI11Uffllihi - - 00023 cccc. .ccc teSt. 	cot,cpcn.nl cI It. 0th 	tSP 

ihIiIIIHIliiUhIlIhIIhhhIhIIIlhIiIhhhIItiihiIIIiIiIihIuiIIIIIIIIUIIittIihhIIhilIIIIiUIUItIhIhJ SPat .ect 	 I • 	.Ictc p.1st!. 0 Op p.ct..er.c. 

11 on  lhlhIllilIlIllIhi IlIIhIIhhthIhlIMflMhIII 111111151101 2C SBPt 
RP T5 

Stcq.e,.ct cCP!. 	 ,st c.S , u poheIn 
It 	 !SS 

 

hIihIllhhIhhIIhhIIIIItfthhIl5hhIhtltl 
11111111 	iuhiIhtIhhhJhhIihIIIIhIhh 

PiiIhulfltIhhI 
ItlIhlIWhihhhh! 

II1IiIIIlfltIlflUphIi!iIt 
liIhIIIhIUHhhhiUhIhIlIIhhl 

I PIIIiflhIflfl 
01111101111 S PRR 

255 ptt.he SpthSttl h5t 
225 55. 	 .OtP• 

IIfluhI$IIhhhuIIIIIIIIIIihhhIlIhhI hhhIhIIihIIulO IhliIIlUHhlIItIluII I I 	hIIIHIIltIh 0 5' PUC t,te. Pt!.. 	 ' 	001 

IIhhIhuIihihhiIIIhiJhIiIihIiIIIhIIhIflIthIhlhIflhIhIIUhuIIIIuIIIflIiUhJhhIIhit t hlhIlhhIhliflhf 1r PFNt3 P.t. 25S 	00 SePt 
IhIhhIthIhhhIi 51111 1011111111 lhhItIuIlIhiIiItIliIIIhI hhhifIhIhIIhhhhihIhhIt WhfhitHUl 002 S005 

IhhhiJhIthIhhhIhhlIhlihIIiIhhlhl 
IlIhIShlIhIhI hllihhlIlhll 	111111 hhhltIlhIhhl 

ihhhhIhIhhIIllhhIIhIIlfIhh 11111 11111 
II 	111111 	hIhhllhIIlihIhl 

liii iIhIp$h$lfllMl 
UllUulhJIM 

.t 
50505 

11252 
5PPI 

Sncpt. 0 	P.05,5 pcI.,, 
theN, POSItS 	05! 

ulhlhIuIIllIhIIlulhlhlIhlIuhhlLIIhhIhllIlliIlUIIIIIlllthnr Ih'IIIIIIIIIUIIIIS I HIIIIUHU! C 	s205 t4.ctthcttcS! 

11111 	IlhhithlhIllIl liii llIIiIlhhtIIIIIUhhIhlIhhuuIhlIftIIfhItIl IhIhhhhhhlIl fIfthlihliPif S 120 11503 EnISI 

II hllhlhullhlhi 1111111111 	fIIhhIIUllUhhIhIfhlPIIhhIPIfhlflhIIIhPIlPhlhUIhIhlI 
IllIIUhIiIhhPUttiIUUIiUtiIihuIIIIhItflhlhIiiihll 

ItlUIPIhhhIl 
flPtl$IIPIlhl 

'p0251. 
IF S36 
11102 

nt0.t n sates P5,he' 	Ptl , 0 
Pe,costptpIt.Op. 

II flhlfIlhlPIhl hlUlhhlU 	hhhIlJlPlUhIhIhhhhIuhhhhIlUIUII! UIIIIIIHIIIHII PIfIUhIRhlI -t!255W ctpp,cttcsl 

JhhthhhIlhtPIhhhhPhhIlIihhhhI 	1 	II IltIliflIr 11111 	hIll 110 111111 	ff1111 1110 os a aLSO Cpnc.c,c St•h5,tc 0.t0I.5.t 

ihhhUItthIIhhhIhhlitIhJhhluIIhlilhl 	IhlhhhlIf I IllIltfhhlhIl 	lIPIIIIPMIIIIUI Mliii IHN •PE atascep.ptto. .50 
iUhlIhfitJhhhIhItIhIlIi 	1111111 	II 	UIIIIIIIII1IIIUIIIIIPIII 
111 	I 1111111 lhlIlthhhihUhlI 	II 	11111 I I 	III 11111111 

III 	III 	I !11 MIII 
III 111111 1111$ 

It ct2C 
050W 

lORD 
2*01 

Dl. Q!c.t0  2-pOtSOtt.Ut. 
cO Ss! 

111111 	hlhhIIhIhhthhIilhIIl 	11111 I lhIIhIhlIhhIlliISIhiIhI 	ltJhIIIUhhhIhINhIhitHhhINHlH 03505 .Svec!tctc.! OPt 
IIiIi*hlIhlI11111111111111111 1  life W IPlIhIthhhhilIhl I hhhIIhhIhhhIIhhhhtflhIflhIIihtIUIIfthhli 50o P05,07 tpscsIsp! 	vIcOtcOti 
tilhhlhlIhhhhll hhIhPh!IPIIhIthhhlIIIlhIlI hIhhIhhiIhIIhIhhI 11111111 
11111 IPhhhhIIIhhhiIIhhItIf ill 	illIlIhIhIhI 1111111 1111 H. $1111 

UUhihIhPIhhhhhPIIIflhlhI 
111111 hIfhhllUIflI 

Osoc3tt5t 
tol 

5QIh l0. 	ntsIV cc 5I5ltlItO-lPp52. 50n111c55*cM a 
SyptttI,c5 DSP 

IIihIuIIIIiIhIiiIIihIhIiIlIhhhIll-61,11111111111111111 III 	IhIUifIhuIIIIhIhhhhIhlIhhIhthihI '0050 NOAh 50th tItN .ect.,,. cc ISP7O hatch,. thtopitccn,c 

51111 iIIhhhhiIIIhIIIIIhiIhhhIhl 	IIlIhhIhhIIuhlhuhhIhui 	lhhIhIhhIfhuhIhhIhhIhhhIhhIIlhIIhJI 5,31.0 SSC 11.ItOlItn5,aI ,,.tO edIt ,ccp!l0 c echen ecp.03P 
101 	IhilIIPhIlhIhIIIlIhIhh III 	thIIIthlIhhlIIhhIuhhlIIhhIIlhIhlhIHIIIPllIlfthUuhhhhhhh 0035 DD DNA D.p.p. 0scb!., NtcSn Is 0. •cd V InSt IIIRI 

till 	hihlthhilIhhhhlhlhlh 	lIhhIthiUlJ IIhllhlilIUhIhIIlIhhIhlhhhIIlhlilillI 1111111111 lIlt I 028* uSAI 
III IIItlIIIhIIhlIIhIIllIh 	III 	01111110 IIIIIILIIUIIIIIIIIS tIll liii 1111131111 _03.0C P'hhdD 01.541 Sn... 

liIlIlhhIlIIIIIIUIhhIhI iIhIhIhlhhhihlIIlIIhhl 	liii 	lhIIhIihhIhhhlhlIllhhk 
U1111 	Of 	IIlIhlhhhIIIhhiIIIFIlhhI 

1111111111 	Ii 	2135 

	

11111111 Ihpnhlluuphh 	C 13,5, 
Hpptn*Ip.l SRI 
Ieccth.cc.! oat 

111111 1111 sill I IfthIIlhJhIIIhfIhIItIhIIhlhlIlhIlIPhJPhI 1hlhhhhIIIhlI lillIlIlihhhl .0t35 c_SOt 

LI IiihIIIIIflhIItIIhIhIlIhlhIII 
I 	hIIhhhhhIIIhhlhhIIhIliI 

111111111 hIhhPIIIhhIhhlhlIl,I 	111111111 1111111 
II 	I 	11111111 IhIIfhIIhllhhhhIII 	11111111111 	hhlIhihIhIW 

III 	25C 
.2000 

!IBPSO 
115152 

,n7ccncndo.t C!IpIcdnn ttccR,Vl the cdl! p,dPL thaI 
*210. 	•.I 004 pates, I0hcd!,N 51 nottn5,4h5R !*pf( 

111111111 iihhIhhhlUhttJhIIh I) 	hIIhIhIhhII, hhhIhIII5lhIIhiIh 	ill 	II IlUlhIhlIhl 	'*0* ttSCPO ccn*Oet,st. .e5.a5 t0 	 01.1.0 
IUIllIIhIlIlIIhhhhlIhIIllIIl 
hIlhhllIhIUIhhI'hhIhIhlItPIl 

I 	PluldhIIlIItlhIhIIhIhIhlhIlhhl 	III III, 	15111111 
I 	IItI5hIPIhIlhIhIlhPIJIIlh0 I 	I II 	111th ltII5I I 	c2'tC III  

CP*0 dltcpneOI.3 I,,. nSt,t,n.tltn PeP he 
IUIIIIIIIIIIIIIIIIU 1111111 hltIllhiIIhIhIhllthIItIhItlhI 	cfliIlhIl.I 	11111111! 1020 sap,e' 100'. 	t 	tc,4!.I 0.0 clIche plot,,, 
IUIIIIIIIUIIsII! uIIslfiflfI fIlth 	IIIIIIIIIIIII 	IIISIIIIIII .1 IPII hUll ! 	131 00*1 15,05100 5!011, 

UHIIU 1111 	I 15020Cc 5111 ,, the:.dayne..nn..,g.5 

l 	 L._ Iff -0lr,r 	*t!IItuIl 

Figure 4.8: Screenshot of the Transcriptome Section with the expanded data view 

This is a screenshot of the Transcriptome Section displaying an expanded view of the region 

of the data set selected in Figure 4.7. Each individual gene expression data point is 

increased in size giving an expanded view and the names and descriptions of every selected 

gene is displayed to its right 
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The Transcriptome Section is effectively inter-linked with the other YETI sections 

enabling users to swiftly move directly into another YETI section where information 

related to all the genes currently selected from the gene expression data set will be 

automatically displayed and highlighted. For example, the Genome Section would 

automatically display and highlight the location of all the selected genes on the 

genome schematic; this enables users to examine if the selected coexpressed genes 

are also located in the same or similar regions of the genome. Alternatively, users 

can move swiftly into the Transcriptome Section from the other YETI sections where 

the expression profiles of all their selected genes would be automatically highlighted 

in the gene expression data set. For example, the Analysis Section could be used to 

search for a group of related genes, such as all the genes that contain introns, and the 

Transcriptome Section would highlight all their expression profiles in the data set 

enabling users to examine if they are coexpressed. For example, Figure 4.9 shows 

that a large number of the genes containing introns are coexpressed forming a large 

cluster of genes in the gene expression data set. This feature enables the investigation 

of possible functional hotspots in the gene expression data sets by examining if genes 

characterised with the same or related GO biological process annotations have been 

clustered with or near each other in the hierarchical tree. Furthermore, the 

Transcriptome Section can highlight the location of multiple groups of genes in the 

gene expression data set enabling the properties of the groups as a whole to be 

examined and compared; in YETI two groups can be defined, the so-called Red and 

Green groups, which are highlighted in the gene expression data set with red and 

green lines respectively. 
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Figure 4.9: Screenshot of the Transcriptome Section highlighting the location of 
intron containing genes 
This is a screenshot of the Transcriptome Section highlighting the expression profiles of all 
the genes that contain introns. As can be seen, a large cluster of genes containing introns 
can be observed in the data set 

\n addit naI feature of the Transcripiome Section is the ability to sae an image ol 

the cnn re ci usiered gene e \ pression microana\ data set current lv di splayed in the 

erapEucil puiel ( Ii gore 4.10). This option is useful because it enables users to create 

a detailed image of the entire data set allowing easy visual examination of the overall 

properties of the entire hierarchically clustered gene expression data. 
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Figure 4.10: YETI generated image of the Transcriptome Section's 
graphical panel 
This is an image of the Transcriptome Section's graphical panel displaying a 
hierarchically clustered gene expression data set created by YETI. The 
image created is a large, detailed view of the entire data set that contains 
both the hierarchical tree and the clustered visual representation of the gene 
expression data itself. This enables users to easily examine the entire data 
set and find regions of potential interest. 
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4.5: Proteome Section 

Current proteomic computational resources tend to only be concerned with the 

visualisation of protein-protein interactions, provide only basic information on the 

interacting proteins and tend to utilise a single protein approach with limited search 

functions. In contrast, the Proteome Section of YETI is concerned with the effective 

visualisation of protein-protein interactions, utilises both a single protein approach 

and a group approach, has a number of advanced features and flexible search 

functions, and is fully inter-linked with the other sections of YETI. This again 

highlights one of the advantages of YETI as there are few computational resources 

available that can effectively integrate protein interaction data with other functional 

genomic data sets. 

At the heart of this section is the dynamical graphical panel which displays all the 

relevant protein-protein interactions (Figure 4.11). Proteins are represented on the 

panel by labelled yellow boxes with a black bond linking two protein boxes together 

representing a protein-protein interaction between those two proteins. The graphical 

panel uses a 'springs and rings' type relaxation algorithm to automatically arrange all 

the displayed proteins in an optimal way; this algorithm is based on the publicly 

available relaxation algorithm from the Sun Network Mapping Java applet 

(http://java.sun.com/products/plugin/1.4 . 1/demos/applets/GraphLayoutlexample 1 .html). The 

relaxation algorithm is conceptually simple and essentially attempts to find space on 

the panel for all the displayed proteins and their interactions. It treats the bonds 

linking proteins together as springs which pull the two proteins together when they 
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are far away and which pushes them apart when they are too close together. Initially, 

the algorithm assigns random x and y coordinates to all the proteins displayed on the 

panel and then starts to calculate new positions for the proteins and begins to move 

them on the panel; this has the affect of bringing proteins that interact with one 

another closer together and moving proteins that do not interact with one another 

further apart. 

All the protein-protein interactions of a specific protein of interest can be visualised 

simply by entering the protein's name; YETI then searches the database for all 

interactions involving the selected protein and displays any interactions found 

dynamically on the graphical panel (Figure 4.11). This enables users to easily and 

rapidly examine what proteins a specific protein of interest interacts with. 

Furthermore, a range of confidence scores for all the displayed interactions can be 

accessed via the Analysis Section enabling users to judge the relevance of each 

interaction themselves; these confidence scores show users if an interaction has been 

reported in multiple studies, whether the two interacting proteins are located in the 

same cellular compartment, and whether the two interacting protein's corresponding 

genes are coexpressed. 
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Figure 4.11: Screenshot of the Proteome Section 
This is a screenshot of the Proteome Section displaying all of the protein-protein interactions 
involving the LSM2 protein. After LSM2 was entered into the white textfield YETI searched 
for all the protein-protein interactions involving LSM2 and automatically displayed all the 
interactions found on the dynamic graphical panel. LSM2 is highlighted in red and located in 
the centre of the map whereas all the proteins it interacts with are highlighted in yellow and 
have been automatically positioned around LSM2 in a circular fashion; the black bonds 
linking the protein boxes together represent the interactions between proteins. 

All the interactions of multiple proteins of interest can be collectively visualised 

simply by enterin all of their names; this enables users to examine if the proteins of 

Interest inlet act (ilrCCtl\ with one another. or interact indirectly via common proteins, 

and to also examine v hat other procin the\ interact ith. The Proteome Section 

also enables paths of interactions between two proteins of interest to be visualised 

simply be entering their names; a path length of five was selected to be the default 

and maximum ' aJue as paths longer than this were not viewed as significant. This 

leatLIre enables users to in\etiiate ii t\\ 0 proteins  that nla\ not interact directly oh 
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each other, interact via one or more intermediate proteins. 

Simply displaying all of the proteins a protein of interest interacts with means little if 

you do not know what all of the interacting proteins are and what their functions are. 

Therefore, any and all of the proteins currently displayed on the graphical panel can 

be selected and investigated in further detail individually or as a whole. Proteins can 

be investigated individually by simply mouse clicking on them and YETI will launch 

a Datasheet enabling users to examine a wide range of information on the selected 

protein. An alternative option enables multiple proteins to be selected simply by 

mouse clicking on them which highlights them in red; furthermore, there is also an 

option to select entire clusters of interacting proteins simply by mouse clicking one 

of the proteins in the cluster and all the other proteins in the cluster are also 

automatically selected. As the Proteome Section is effectively inter-linked with the 

other YETI sections, after a number of proteins have been selected they can be 

collectively investigated in further detail by swiftly moving into another YETI 

section where data related to the selected proteins will be automatically displayed 

and highlighted. For example, all of the proteins that interact with a specific protein 

of interest can be selected in the Proteome Section and the Analysis Section would 

collectively display a wide range of information on all of the selected proteins 

enabling users to rapidly examine and compare the functions of all the proteins. This 

feature is especially useful when investigating a protein of unknown function as 

users can examine if the unknown protein is interacting with a number of proteins of 

the same function. 
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Alternatively, users can move swiftly into the Proteome Section from another YETI 

section where all the protein-protein interactions involving any of their selected 

proteins will be automatically displayed and highlighted. For example, the Analysis 

Section could be used to search for a group of related proteins, such as all the 

proteins that contain the keyword 'cytochrome' in their description, and the 

Proteome Section would display all of their interactions and also highlight all of the 

cytochrome proteins automatically (Figure 4.12). This enables users to rapidly 

examine if and how a group of related proteins are interacting with one another to 

achieve their biological goals and to also examine what other proteins the group as a 

whole are interacting with. For example, in the bottom left corner of Figure 4.12 

there are four cytochrome proteins (COX9, COX6, COX4 and COX5A) interacting 

with one another and further investigation reveals that these are all subunits of 

cytochrome c oxidase; furthermore, in the top left corner of Figure 4.12 there are 

three cytochrome proteins (COX17, SCO1 and SCO2) interacting with one another 

and further investigation reveals that these are all involved in the delivery of copper 

to cytochrome c oxidase. Overall, this feature enables users to collectively examine 

all the interactions of a functionally related group of proteins; it enables users to 

examine if a group of proteins are interacting directly with each other perhaps in 

order to fulfil their biological role or if they are using other key proteins as mediators 

to link functionally related proteins together. Furthermore, this feature has the 

potential to aid in the characterisation of unknown proteins; for example, when a 

protein of unknown function interacts with a number of proteins in the same 

functional group it could well have a similar function. 
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Figure 4.12: Screenshot of the Proteome Section displaying all the interactions of 
cytochrome proteins 
This is a screenshot of the Proteome Section displaying all of the interactions involving 
cytochrome proteins. In this case, the Analysis Section was used to search for all proteins 
with the keyword 'cytochrome' in their description and the Proteome Section has displayed 
all of the interactions involving these proteins. Furthermore, all of the cytochrome proteins 
have automatically been highlighted in red. This enables users to easily and rapidly examine 
all of the interactions of a functionally related group of proteins to see if and how they are 
interacting to fulfil their biological goal. 

One ol the iiniue leatures of the Proteome Section is the ability to overlay gene 

C\lcIofl ditu ohio the !1nphIC[] panel  to dHplUV the relnt!\e gene e\p1e1on ol 

c\er\ protein di'pLtved on the cruphical panel i[iure 4.13). It i Important to note 

that it is genes that are expressed not the proteins themselves: however, gene 

expression data can be overlaid onto the graphical panel by linking proteins to their 

coiieponding gene. Any of the microarray experiments stored in the YETI database 

eati he elcctcd and o\erlald onto the craphica I panel: the e\pheiofl ol e\ei\ lroleitl 

	

on the panel i repiecntCC! h coIonrin the protein 	ith a colour that relleek 
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its relative gene expression ratio value from the selected experiment. Therefore, this 

feature enables users to easily examine if particular clusters of interacting proteins 

have similar relative changes in gene expression. This is useful because a cluster of 

interacting proteins that are also coexpressed is more likely to be functionally 

relevant. 
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Figure 4.13: Screenshot of the Proteome Section with expression data overlaid 
This is a screenshot of the Proteome Section displaying a number of protein-protein 
interactions with a gene expression microarray experiment overlaid onto the graphical panel. 
The relative expression of every protein on the panel is represented by colouring the protein 
boxes; the colour of each protein box is calculated from the relative gene expression ratio of 
the protein's corresponding gene in the selected microarray experiment. This fairly unique 
feature enables the user to easily see if particular clusters of interacting proteins have similar 
relative changes in gene expression. 

One of the advanced features of the Proteome Section is the Extend function which 

enables users to extend or expand out of the interactions currently displayed on the 

L" 

VLRUM 
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graphical panel. To do this, users simply need to click on a displayed protein and 

YETI searches for all interactions involving the selected protein and dynamically 

adds any interactions that are not already displayed onto the graphical panel. This 

feature enables the current investigation to be extended further through the proteins 

that are currently at the periphery; peripheral proteins do not tend to have all of their 

interactions currently displayed so they could well be linked to other proteins on the 

panel either directly or indirectly through intermediate proteins. An additional 

advanced feature is the ability to enter SQL statements directly into the Proteome 

Section; YETI then uses the entered SQL statement to search the database with and 

displays any interactions found on the graphical panel. This powerful function gives 

users complete control over the search criteria enabling them to perform large and 

complex searches; however, this function obviously requires knowledge of both SQL 

and the YETI database structure. 

Another advanced feature is the Small function which replaces the large labelled 

protein boxes with small unlabelled boxes (Figure 4.14). This feature enables users 

to examine entire data sets of protein-protein interactions on the graphical panel to 

give a good overall impression of the size and connectivity of the data set. 

Furthermore, the Proteome Section has a Find function that can be used to highlight 

the location of multiple proteins of interest on the graphical panel; this feature 

enables users to see where a specific protein of interest is located and to examine if a 

specific group of proteins are located in the same region of an entire data set (Figure 

4.14). 
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Figure 4.14:  4.14: Screenshot of the Proteome Section displaying an entire data set 
This is a screenshot of the Proteome Section displaying the entire Uetz et al. (2000) data 
set. When the number of interactions displayed on the graphical panel is very large the Small 
function is automatically activated. The small function replaces the large labelled yellow 
protein boxes with small unlabelled yellow protein boxes. This means that entire data sets of 
protein interactions can be displayed on the graphical panel at once; this gives a good 
overall impression of the size and connectivity of the data set. In this case, a large cluster of 
proteins is observed in the centre of the panel with numerous smaller clusters located 
around the periphery. Furthermore, the location of proteins of interest can still be highlighted 
on the graphical panel. In this case, the location of all the LSM proteins have been 
highlighted on the panel in red; the LSM proteins form a small cluster within the main large 
cluster located to the left of the panel centre. 

There are also a number of additional features available to users in the Proteome 

Section: (1) The Direction function can be used to show the direction of all protein 

nieract I n' di splayed on the raphical panel by colourl rig the bonds Ii nLi ng 

I ntcracti n p0 )1ci n t gct hcr: (2 1 lie Slait. Stop and Reset buttons Lan Nc used to 

manually start, stop and rest the relaxation algorithm, respectively; (3) The Move 

option can be used to manually arrange the proteins on the graphical panel by simply 

mouse clicking on them and dragging them to a new location: (4) The Length option 
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can be used to increase the default length for all protein interaction bonds on the 

graphical panel; and (5) The Save option can be used to save the layout of the current 

graphical panel complete with any protein selections and the Open option can be 

used to open a previously save graphical panel file. 

4.6: Datasheet Window 

The Datasheet Window of YETI (Figure 4.15) displays a wide range of information 

on a single gene of interest and can be launched from numerous points in the YETI 

program; for example, by mouse clicking on a displayed chromosomal gene in the 

Chromosome Window as described above. Alternatively, the datasheet of any gene 

of interest can be viewed simply by entering its name into the Quick Search textfield 

of the YETI MainFrame. YETI then searches the database for the entered gene name 

and, if found, subsequently launches a datasheet for the selected gene; if many genes 

share the entered name, YETI launches a small window displaying the full names 

and chromosomal locations of all the genes found enabling users to identify the gene 

they wish to investigate further. The Datasheet Window itself displays a wide range 

of textual information on the selected gene such as its name(s), length, number of 

introns, chromosomal location, phenotype, description and GO annotations. Overall, 

this feature enables users to easily and rapidly view a wide range of information on a 

specific gene of interest; this is a core feature of YETI which is also utilised by most 

computational resources revolving around a single gene approach. 
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Figure 4.15: Screenshot of the Datasheet Window 
This is a screenshot of the YETI Datasheet Window which contains a wide range of 
information for a selected gene of interest. In this case, the Quick Search function of the 
YETI Main Frame was used to launch the datasheet of LSM8. 
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main advantages of YETI: (1) The inter-linked sections enable users to investigate all 

the aspects of a specific gene of interest; and (2) The group approach enables all the 

genes related to a specific gene of interest to be collectively examined and 

investigated. 

Option Description 

Genome This option launches the Genome Section and highlights the location of 
the selected gene on the genome schematic in red. 

Chromosome This option launches the Chromosome Window displaying the relevant 
chromosome with the selected gene highlighted in red. 

Transcriptome This 	option 	launches 	the 	Transcriptome 	Section 	displaying 	a 
hierarchically clustered genome wide gene expression microarray data 
set and highlights the selected genes location in red. 

Proteome This option launches the Proteome Section displaying all the protein- 
protein interactions that the selected genes protein product is involved in 
and highlights the selected gene's protein product in red. 

Function This 	option 	launches the Analysis 	Section 	displaying 	a data table 
containing a wide range of information on all the genes that have been 
characterised with the same GO Molecular Function annotation as the 
selected gene. 

Process This option 	launches the Analysis 	Section 	displaying 	a 	data table 
containing a wide range of information on all the genes that have been 
characterised with the same GO Biological Process annotation as the 
selected gene. 

Component This 	option 	launches the Analysis Section 	displaying 	a data table 
containing a wide range of information on all the genes that have been 
characterised with the same GO Cellular Component annotation as the 
selected gene. 

Hybrid This 	option 	launches 	the Analysis 	Section 	displaying 	a data table 
containing a wide range of information on all the genes whose protein 
product interacts with the selected genes protein product. 

Pearson This 	option 	launches the 	Analysis Section 	displaying 	a data table 
containing 	a wide 	range of 	information 	on 	all 	the genes that are 
coexpressed with the selected gene. 

Table 4.2: Links available from the YETI Datasheet Window 
This table contains the names and descriptions of the links available from the Datasheet 
Window that move users directly into one of the YETI sections where data relating to the 
selected gene is automatically displayed and highlighted. 
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4.7: FPC Section 

Most current computational resources do not enable users to collectively investigate 

the properties of entire groups of genes at once. In contrast, the FPC Section of YETI 

enables users to define specific groups of genes which can then be investigated in 

further detail in the other sections of YETI; FPC stands for Function, Process and 

Component which are the three organising principles of the GO annotation system. 

The GO annotation system has been used over recent years to functionally 

characterise a large proportion of the genes in S. cerevisiae. This characterisation 

system means that functionally related groups of genes can easily be created 

consisting of genes that share the same or similar GO annotations. In the FPC 

Section, there are two groups that can be defined, the so called Red and Green 

groups, either or both of the groups can be defined and subsequently investigated in 

further detail in the other sections of YETI. 

At the heart of the FPC Section is the GO annotation list which contains all the GO 

annotations that have been used to characterise S. cerevisiae genes (Figure 4.16). By 

default the list contains all the annotations from all three GO organising principles 

(Function, Process and Component) which are sorted in alphabetical order; however, 

principles can easily be removed and added to control what annotations are displayed 

in the list. Although simple, this comprehensive list enables users to easily browse all 

the GO annotations used to characterise S. cerevisiae genes and rapidly find any 

annotations of interest. Single or multiple annotations of interest in the list can 

simply be selected by mouse clicking on them and then assigning them to either the 
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Red or Green group; this results in all the genes characterised with the selected 

annotations being assigned to the selected group. Therefore, the FPC Section enables 

users to easily and rapidly construct specific or broad groups of functionally related 

genes to investigate in further detail in the other sections of YETI. Furthermore, as 

two different groups of genes can be defined this enables the properties of both 

groups to be collectively examined and compared. Alternatively, users can manually 

define groups themselves by simply entering the names of multiple genes of interest 

and assigning them to one of the two groups. 
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Figure 4.16: Screenshot of the FPC Section 
This is a screenshot of the Function, Process and Component (FPC) Section. The FPC 
Section enables users to define up to two groups of genes (Red & Green) to investigate in 
further detail. The groups can be defined by entering the names of multiple genes into the 
corresponding textfield or by selecting GO annotations from the comprehensive list. Once a 
group has been defined users can move directly into the other YETI Sections to collectively 
view relevant data on all the members of the group. 
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The FPC Section is effectively inter-linked with the other YETI sections enabling 

users to swiftly move directly into another YETI section where information related to 

all the selected genes will be automatically displayed and highlighted. This enables 

all of the properties of a group of genes defined in the FPC Section to be collectively 

investigated in the other YETI Sections. For example, all of the genes characterised 

with the GO biological process annotation of 'nuclear mRNA splicing, via 

spliceosome' could be selected in the FPC Section and then collectively investigated 

in all the other YETI sections. The Analysis Section would display a wide range of 

information on all the spliceosome genes enabling users to examine how many genes 

are currently characterised as being involved in the spliceosome, what each gene is 

as well descriptions as to what each gene does. The Genome Section would highlight 

the location of all the spliceosome genes on the genome schematic enabling users to 

investigate if any of the genes are colocated in the same or similar genomic regions 

and to also examine what other genes are located in these regions. The 

Transcriptome Section would highlight the gene expression profiles of all the 

spliceosome genes in the hierarchically clustered gene expression data set enabling 

users to investigate if any of the genes are located in the same expression cluster and 

to also examine what other genes are located in these regions. The Proteome Section 

would display all of the protein interactions involving the spliceosome proteins 

enabling users to investigate if the spliceosome proteins are interacting directly or 

indirectly with one another and to also examine what other proteins they are 

interacting with. Overall, this enables all the properties of the whole group to be 

collectively investigated to examine if and how they are working together to achieve 

their biological goal and to also investigate what other genes/proteins they may be 
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working with; this could enable functions to be inferred on any unknown gene 

consistently associated with the group. 

In addition, YETI also includes a Slim FPC Section which is essentially identical to 

the FPC Section except that it concerned with GO Slim annotations as opposed to the 

complete GO annotations. GO Slims are a cut-down version of the complete GO 

ontology and give a broad overview of the ontology content without the detail of the 

specific fine grained terms. The YETI Slim FPC Section displays a list of all the GO 

Slim annotations used to characterise the genes of S. cerevisiae and therefore enables 

users to select annotations to construct much broader groups of functionally related 

genes which can then be collectively investigated in the other YETI sections. 

4.8: Discussion 

One of the main advantages of YETI is its ease of use. YETI was designed with 

simplicity in mind with simple navigation mechanisms to move through the program, 

flexible search mechanisms and clear graphical representations of the data in unison 

with a number of advanced features and functionality. YETI aims to be a user 

friendly workbench that enables both wet and dry laboratory scientists to easily and 

rapidly explore all the aspects of the stored functional genomics data in an integrated 

modular fashion; it enables users to easily and rapidly find the data they want, 

investigate the intricacies of broad biological processes and test specific hypotheses. 
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One of the unique features of YETI is the fact that it can utilise both a single gene 

approach and a group approach. The single gene approach enables users to examine 

all of the properties of a specific gene of interest. For example, YETI can display a 

wide range of textual information on the gene, display what genes are located in the 

same chromosomal region, display what genes it is coexpressed with, display what 

proteins the gene's corresponding protein interacts it, and display what genes share 

the same GO annotations. This single gene approach is especially useful for helping 

to investigate the function of an unknown gene in a 'guilt by association' approach as 

it enables users to examine what other genes the selected gene is associated with and 

what their functions are. On the other hand, the group approach enables all the 

properties of an entire group of genes to be collectively investigated. For example, 

YETI can collectively display a wide range of textual information on all the genes to 

examine if they share the same GO annotations and are involved in the same 

biological process, collectively display where they are all located in the genome to 

examine if they are colocated and what other genes are colocated with them, 

collectively display all their expression profiles to examine if they are coexpressed 

and what other genes are coexpressed with them, and collectively display what 

proteins they interact with to examine if they interact with one-another and what 

other proteins they interact with. This group approach enables all the genes/proteins 

involved in an entire biological process to be collectively examined as a whole to 

investigate the dynamics of how they are working together to achieve their biological 

goal and to also examine what other proteins they may be working with; this could 

enable functional roles for any common proteins of unknown function to be inferred. 
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Furthermore, YETI enables the properties of multiple groups to be collectively 

examined at the same time enabling comparisons to be made between the groups. 

Another unique feature of YETI is its inter-linked sections which enable users to 

select any feature of interest from one section and then swiftly move to another 

section where data relating to their selection is automatically displayed and 

highlighted. A feature of interest could be a specific chromosomal region from the 

Genome Section, a gene expression cluster from the Transcriptome Section, a protein 

interaction cluster from the Proteome Section, all the genes sharing a specific GO 

annotation from the FPC Section or all the genes returned from a specific data search 

from the Analysis Section. For example, when examining the hierarchically clustered 

gene expression data in the Transcnptome Section a specific cluster of interest can be 

readily selected to examine what genes are located in the cluster and what their 

functions are in the Analysis Section (to investigate possible shared functionality), 

examine where all the genes are located in the Genome Section (to investigate 

possible colocation), and examine what their corresponding proteins are interacting 

with in the Proteome Section (to investigate possible inter-connectivity). Therefore, 

these inter-linked sections (in combination with the group approach) enable all the 

properties of a specific feature of interest to be collectively investigated and also 

enable expansion of the investigation at any point as additional genes can be selected 

and added to the search group. 

In this chapter, the features and functions of the core YETI program were detailed 

and discussed along with a number of examples to illustrate their potential use. 
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However, in order to demonstrate the potential and utility of YETI as an analysis 

tool, a number of case studies are presented in the forthcoming chapters of this 

thesis. In the next chapter, a number of single gene case studies are presented which 

demonstrate the utility of YETI in investigating potential functions for specific genes 

of unknown function. In later chapters, the additional correlation sections of YETI 

are discussed along with the results of various correlation analyses performed 

between the stored functional genomic data sets. Furthermore, these chapters also 

include a number of much broader case studies which demonstrate the utility of 

YETI in investigating the dynamics of how groups of functionally related proteins 

are working together to achieve their biological goal. 
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Chapter 5 

Single Gene Case Studies 



5.1: Introduction 

As described previously, the YETI Datasheet Window enables users to easily and 

rapidly view a wide range of information on a specific gene of interest. However, the 

Datasheet Window also provides a number of direct links to the core YETI Sections 

where data relating to the selected gene is automatically displayed and highlighted. 

These links are especially useful when investigating a potential function for a gene of 

unknown function in a 'guilt-by-association' approach as they enable users to rapidly 

examine what genes/proteins are colocated, coexpressed and interact with the 

selected gene and also enable users to compare all of their functions to investigate 

possible shared functionality. 

To illustrate the potential of YETI to aid in the assignment of biochemical 

functionality in a 'guilt by association' approach, a simple computer program was 

written to suggest a potential biological role for every gene of unknown function in 

the S. cerevisiae genome. Initially, this program simply finds every gene in the 

genome that currently has both a 'molecular function unknown' and 'biological 

process unknown' GO annotation. For each gene, the program retrieves all the GO 

biological process annotations of all the genes that it is coexpressed with (Pearson >= 

0.7) and also all the GO biological process annotations of all the proteins that interact 

with its protein product; biological process annotations were chosen because they 

tend to be much broader than molecular function annotations. The program then 

searches for the most common GO biological process annotation associated with 

each gene of unknown function and outputs this annotation along with an occurrence 

score. Any genes that are associated with a large number of genes involved in the 
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same biological process could then be investigated in further detail in YETI. To 

illustrate this, a number of case studies are presented below that investigate possible 

biological roles for genes of unknown function; the title of each case study reflects 

the name of the unknown gene along with the GO biological process that it is 

potentially involved in, as suggested by the computer program. 

5.2: MOM - Negative regulation of gluconeogenesis 

The YETI Datasheet Window for MOH1 (YBL049W) shows that it is currently an 

'uncharacterised ORF' of unknown function; its three GO annotations are 'molecular 

function unknown', 'biological process unknown' and 'cellular component 

unknown'. However, one clue as to the function of MOM is provided in its textual 

description which states that MOM is 'not required for growth on non-fermentable 

carbon sources'. To investigate possible functional roles for MOM further, the links 

from the Datasheet Window of MOH1 to the core sections of YETI were utilised to 

examine what genes were coexpressed with MOH1 and what proteins interacted with 

its corresponding protein product. 

Firstly, the Hybrid link from the MOM Datasheet Window was used to move 

directly into the Analysis Section to collectively examine what proteins interact with 

MOM and what their functions are. YETI shows that MOM interacts with a total of 

12 other proteins, 6 of which are characterised with the GO biological process of 

'negative regulation of gluconeogenesis'; specifically: GID7, GID8, FYV1O, RMID5, 

V1D28 and VID30. Secondly, the Pearson link from the MOM Datasheet Window 
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was used to move directly into the Analysis Section to collectively examine what 

genes MOM was coexpressed with and what their functions are. YETI shows that 

MOH1 is most highly coexpressed with SPG4 (Pearson = 0.92) and also coexpressed 

SPG1 (Pearson = 0.89), SPG5 (Pearson = 0.77) which are all of unknown function. 

Interestingly, the descriptions of SPG4, SPG1 and SPG5 all state that, like MOH1, 

they are 'not required for growth on non-fermentable carbon sources'. Furthermore, 

YETI also shows that MOM is coexpressed with GID8 (Pearson = 0.70) and FYV10 

(Pearson = 0.80) both of which were previously shown to interact directly with 

MOH1 and are both characterised with the 'negative regulation of gluconeogenesis' 

annotation. 

As the biological process 'negative regulation of gluconeogenesis' was consistently 

associated with MOM, this biological process was itself investigated in further 

detail in YETI. To this end, the 'negative regulation of gluconeogenesis' annotation 

was selected in the FPC Section; selecting an annotation in the FPC Section has the 

affect of selecting all the proteins currently characterised with the selected annotation 

and therefore enables all these proteins to be collectively investigated in the other 

sections of YETI. The GO biological process of 'negative regulation of 

gluconeogenesis' is defined as 'any process that stops, prevents or reduces the rate of 

gluconeogenesis'; the GO biological process of 'gluconeogenesis' is itself defined as 

'the formation of glucose from non-carbohydrate precursors, such as pyruvate, amino 

acids and glycerol'. The Analysis Section shows that there are currently nine proteins 

characterised with the 'negative regulation of gluconeogenesis' annotation; 

specifically: GID7, GID8, FYV10, RMD5, UBC8, UBP14, V1D24, V1D28 and 
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VID30. The Proteome Section shows that a large number of these proteins interact 

highly with one another forming a tight interaction cluster (Figure 5.1). An integral 

part of this cluster is MOH1 which (as described above) directly interacts with a 

number of the negative regulation of gluconeogenesis' proteins. 
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Figure 5.1: Screenshot of the Proteome Section displaying all the interactions 
involving 'negative regulation of gluconeogenesis' proteins 
This is a screenshot of the Proteome Section displaying all the protein-protein interactions 
involving any of 'negative regulation of gluconeogenesis' proteins. The proteins involved in 
the 'negative regulation of gluconeogenesis' are highlighted in green on the graphical panel. 
As can be seen, there is a tight cluster consisting of a number of the 'negative regulation of 
gluconeogenesis' proteins. Furthermore, an integral member of this cluster is MOH1 
(highlighted in red) which interacts with a number of 'negative regulation of giuconeogenesis' 
proteins. 
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proteins naturally leads one to suggest that this protein is also involved in this 

biological process. Interestingly, there are a number of additional observations that 

support this. Firstly, the fact that MOH1 is not required for growth on non-

fermentable carbon sources supports its role as a negative regulator of 

gluconeogenesis; examples of non-fermentable carbon sources are glycerol, lactate, 

ethanol and acetate whereas examples of fermentable carbon sources are glucose and 

fructose. Non-fermentable carbon sources such as ethanol are metabolised in the 

Krebs cycle, with ATP being obtained from respiration (Ronne, 1995). However, the 

cell also needs hexose phosphates for biosynthetic reactions and in the absence of 

glucose these must be produced by gluconeogenesis. Most gluconeogenic steps are 

catalysed by glycolytic enzymes but two steps are irreversible and therefore have 

unique gluconeogenic enzymes; specifically: fructose bisphophatase (FBP1) and PEP 

carboxykinase (PCK1). FBP1 and PCK1 are repressed by glucose to prevent 

glycolysis and gluconeogenesis from taking place simultaneously which would 

rapidly deplete ATP levels. Therefore, if MOH1 is involved in the negative 

regulation of gluconeogenesis it will be required for effective growth on fermentable 

carbon sources where gluconeogenesis is repressed but not required on non-

fermentable carbon sources where gluconeogenesis is de-repressed. Indeed, this 

seems to be the case as the description of MOH1 states that it is not required for 

growth on non-fermentable carbon sources. Secondly, collectively examining the 

descriptions of all the genes currently characterised with the 'negative regulation of 

gluconeogenesis' annotation in the Analysis Section reveals further proof to suggest 

that MOH1 is also involved in this biological process. Specifically, the description of 

GID7 (also known as MOH2) states that 'computational analysis suggests that GID7 
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and MOM have similar functions' which further links MOM to this biological 

process. 

5.3: YKL056C - Protein Biosynthesis 

The 'YETI Datasheet Window for YKL056C shows that it is currently an 

'uncharacterised ORF of unknown function; its three GO annotations are 'molecular 

function unknown', 'biological process unknown' and 'cytoplasm'. YETI shows that 

YKL056C is coexpressed (Pearson cutoff of 0.7) with a staggering 121 genes that are 

characterised with both the 'structural constituent of ribosome' and 'protein 

biosynthesis' GO molecular function and biological process annotations, 

respectively; furthermore, YKL056C is coexpressed with 97 of these genes using a 

Pearson cutoff of 0.8, 65 at a Pearson cutoff of 0.85, and 9 at a Pearson cutoff of 0.9. 

Virtually all of these 'protein biosynthesis' genes are characterised equally with 

either the 'cytosolic small ribosomal subunit (sensu Eukaryota)' or 'cytosolic large 

ribosomal subunit (sensu Eukaryota)' GO cellular component annotations; as 

opposed to the 'mitochondrial small ribosomal subunit' or 'mitochondrial large 

ribosomal subunit'. Therefore, this strongly suggest that YKL056C is also a 

'structural constituent of ribosome' involved in 'protein biosynthesis' and part of 

either the 'cytosolic small ribosomal subunit (sensu Eukaryota)' or 'cytosolic large 

ribosomal subunit (sensu Eukaryota)'; this is further supported by the fact that 

YKL056C is already characterised as being located in the cytoplasm. 

There are a number of other genes of unknown function that are also highly 
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coexpressed with a large number of 'protein biosynthesis' genes. YMIR116C is a 

'verified ORF' with 'molecular function unknown', 'biological process unknown' 

and 'cytoplasm' as its three GO annotations. YETI shows that YMIR1 16C is 

coexpressed with 112 'protein biosynthesis' genes at a Pearson cutoff of 0.7 and 74 

at a Pearson cutoff of 0.8. However, the description of YMR1 16C already states that 

it is a 'core component of the ribosome' and the observations made through YETI 

further support this. YMR321C is currently an 'uncharacterised ORF' of unknown 

function; its three GO annotations are 'molecular function unknown', 'biological 

process unknown' and 'cellular component unknown'. YETI shows that YMR321C 

is coexpressed with 108 'protein biosynthesis' genes at a Pearson cutoff of 0.7 and 

49 at a Pearson cutoff of 0.8. Similarly, YJR124C, YJL193W and YBR025C are all 

genes of unknown function that are highly coexpressed with a large number of 

'protein biosynthesis' genes. 

YETI has therefore been used to suggest possible functional roles for all the genes of 

unknown function discussed above (YKL056C, YIvIR116C, YMR321C, YJR124C, 

YJL193W and YBR025C) through examination of the GO annotations of their 

coexpressed genes. Specifically, they are all potentially a 'structural constituent of 

ribosome' involved in 'protein biosynthesis' and part of either the 'cytosolic small 

ribosomal subunit (sensu Eukaryota)' or 'cytosolic large ribosomal subunit (sensu 

Eukaryota)'. Interestingly, a number of additional facts support these predictions. 

Firstly, although the Saccharomyces Genome Database (SGD; Cherry et al., 1998; 

http://www.yeastgenome.org/)  characterises YKL056C as a protein of unknown 

function, the Munich Information Centre for Protein Sequences (MIPS; Mewes et al., 
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1998; http://mips.gsf.de/genre/proj/yeast/index.jsp)  characterises it as a 'protein 

putative involved in cytoplasmic ribosome function'. Furthermore, a recent study by 

Barriot et al. (2004) also associated YKL056C and YMR1 16C with numerous 

ribosomal genes. Barriot et al. (2004) proposed a new strategy for the integration of 

sequence data with other functional genomic data such as gene expression profiles. 

They developed an associated tool (BlastSets) which was used to automatically 

retrieve the members of the ribosome complex based on the mining of expression 

profiles; this enabled functional roles for genes of unknown function associated with 

this complex to be inferred. 

5.4: YMR1 48W - Tricarboxylic Acid Cycle 

The YETI Datasheet Window for YMR148W shows that it is currently an 

'uncharacterised ORF' of unknown function; its three GO annotations are 'molecular 

function unknown', 'biological process unknown' and 'integral to the membrane'. 

YETI shows that although the protein product of YMR148W does not interact with 

any other proteins, YMR148W itself is coexpressed with nine other genes; four of 

these genes are also of unknown function. YMR148W is coexpressed with SDH4 

(Pearson = 0.85), SDH1 (Pearson = 0.72) and SDH2 (Pearson = 0.71) all of which 

are subunits of succinate dehydrogenase characterised with both the 'tricarboxlylic 

acid cycle' and 'mitochondrial electron transport, succinate to ubiquinone' GO 

biological process annotations. YMIR148W is also coexpressed with CYB2 (Pearson 

= 0.79) which is a cytochrome involved in 'electron transport', and IVIBR1 which is a 

mitochondrial stress response protein involved in 'aerobic respiration'. Furthermore, 
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all of these genes have cellular component annotations linking them to the 

mitochondria. 

YETI has firmly linked, through its coexpression, YMR148W with aerobic 

respiration and the mitochondrial electron transport chain; therefore, YMR148W 

could well have a functional role involved in this or a related biological process as 

well. This hypothesis is further supported by the fact that YMR148W is already 

characterised with the 'integral to membrane' GO cellular component annotation; 

many of the proteins involved in the mitochondnal electron transport chain are 

located in the inner mitochondrial membrane. In addition, although YETI showed 

that YMR148W was only coexpressed (Pearson >= 0.7) with 9 other genes, the 

Transcnptome Section of YETI shows that YMR148W is located in a small cluster 

of genes in the gene expression hierarchical tree (Figure 5.2). Further examination of 

this cluster in the Analysis Section reveals that virtually all of these genes are 

associated with the mitochondria and are characterised with either 'aerobic 

respiration', 'tricarboxylic acid cycle' or 'ATP synthesis coupled proton transport' 

GO biological process annotations. Therefore, this further links YMIR148W to the 

biological process of aerobic respiration and the mitochondnal electron transport 

chain. Although this is a fairly broad functional assignment it is a good starting point 

for further investigation and characterisation of this gene and its encoded protein 

product. 
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Figure 5.2: Screenshot of the Transcriptome Section highlighting the location of 
YMR1 48W 
This is a screenshot of the Transcriptome Section with the location of YMR148W in the gene 
expression hierarchical tree highlighted with a green line to the left. Furthermore, the entire 
cluster that YMR148W is located in has subsequently been selected for further investigation 
and highlighted with red lines to the left. 

5.5: YLR364W - Sulphate Assimilation 

The YETI Datasheet Window for YLR364W shows that it is currently an 

'uncharacterised ORF' of unknown function; its three GO annotations are 'molecular 

function unknown'. 'biological process unknown' and 'cytoplasm'. YETI shows that 

although the protein product of YLR364W does not interact with any other proteins, 

YLR364W itself is coexpressed with five other genes. Four of the genes YLR364W 

is coexpressed with are MET3 (Pearson = 0.73), MET10 (Pearson = 0.72), MIET1 

(Pearson = 0.72) and MET16 (Pearson = 0.71); all four of these MET genes are 
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characterised with the 'sulphate assimilation' GO biological process annotation. 

Furthermore, three of these MET genes have protein products located in the 

cytoplasm which is also where the protein product of YLR364W is located; the 

cellular location of the protein product of MET1 is currently unknown. 

The Transcriptome Section of YETI shows that YLR364W is located in a small 

cluster of genes in the gene expression hierarchical tree (Figure 5.3). Further 

examination of this cluster in the Analysis Section reveals that there are a large 

number of genes involved in the metabolism of sulphur compounds with GO 

biological process annotations such as 'sulphur amino acid metabolism', 'methionine 

metabolism', 'sulphate assimilation', 'sulphur metabolism' and 'sulphate transport'. 

However, there are also a large number of genes involved in the metabolism of 

nitrogen compounds located in this cluster with GO biological process annotations 

such as 'nitrogen compound metabolism', 'allantoin catabolism', 'asparagine 

metabolism' and 'serine family amino acid biosynthesis'. 
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Figure 5.3: Screenshot of the Transcriptome Section highlighting the location of 
V LR364W 
This is a screenshot of the Transcriptome Section with the location of YLR364W in the gene 
expression hierarchical tree highlighted with a green line to the left. Furthermore, the entire 
cluster that YLR364W is located in has subsequently been selected for further investigation 
and highlighted with red lines to the left. 
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study, YLR364W was characterised as 'specifically higher expression under sulfur 

limitation' and was therefore hypothesised to be involved in sulphur compound 

metabolism. 

5.6: IES5 - Chromatin Remodelling 

The YETI Datasheet Window for IES5 (YIER092W) shows that it is currently a 

'verified ORF of unknown function; its three GO annotations are 'molecular 

function unknown', 'biological process unknown' and 'nucleus'. However, lESS's 

description states that it is a 'protein that associates with the 1N080 chromatin 

remodelling complex under low salt-conditions'; this description is based on a study 

by Shen et al. (2003) who found, through complex purification and peptide 

sequencing techniques, IES5 to be associated with the 1N080 complex under low salt 

conditions. Therefore, YETI was used to see if it could further associate IES5 with 

the IN080 chromatin remodelling complex and also clarify its molecular function. 

The GO cellular component IN080 complex is defined as a 'multisubunit protein 

complex that contains the Ino8Op ATPase; exhibits chromatin remodelling activity 

and 3' to 5' DNA helicase activity'. As described above, IES5 is already 

characterised as being located in the nucleus which places it in the correct cellular 

location to potentially be involved in chromatin remodelling. The Proteome Section 

of YETI shows that IES5 interacts with four proteins; specifically: NHP10, DID4, 

ISE3 and ATG17. NHP1O are ISE3 are both characterised with the 'chromatin 

remodelling' biological process annotation and the '1N080 complex' cellular 
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component annotation. YETI shows that these interactions were not derived from the 

Shen et al. (2003) study described above, rather, they were derived from high 

throughput protein-protein interactions studies; the NHP10-IES5 interaction was 

reported in both the Gavin et al. (2002) and Uetz et al. (2000) studies whereas the 

IES3-IES5 interaction was reported in the Ito et al. (2001) study. Therefore, this 

directly links IES5 to the 1N080 complex and also links it with a certain degree of 

confidence due to the interactions being reported in multiple studies. YETI shows 

that IES5 is only coexpressed with one gene at a Pearson cutoff of 0.7; specifically, 

YKL069W which is of unknown function. Furthermore, the Transcriptome Section 

shows that IES5 is not located in a distinct cluster in the gene expression hierarchical 

tree and that the surrounding genes have a range of functions, none of which are 

related to chromatin remodelling. Therefore, IES5 could not be linked to the 1N080 

Complex through its expression pattern; however, lowering the Pearson cutoff 

reveals that IES5 is coexpressed with SLD3 (Pearson = 0.64) which is involved in 

the initiation of DNA replication and has chromatin binding activity. 

By using the FPC Section to select the '1N080 complex' annotation from the GO 

list, all of the proteins that are currently assigned to this complex could be 

collectively investigated in the other sections of YETI to examine how they are 

working together in order to achieve their biological goal. The Proteome Section 

shows that a single cluster of interacting proteins is formed that contains all of the 

1N080 complex proteins (Figure 5.4); this is to be expected as they are members of 

the same complex. At the centre of this cluster is the protein NIHP10 which directly 

interacts with all but one of the other 1N080 complex proteins; in addition, NHP10 
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also interacts with IES5 (as described above). Although none of the other 1N080 

complex proteins interact directly with one another, there are a number of additional 

'bridging' proteins that link proteins of the 1N080 complex together; specifically: 

ESA1 (histone deacetyltransferase activity), RVS 167 (actin associated protein), 

SAP105 (protein phosphatase activity) and our protein of interest IES5. The 

Transcnptome Section shows that members of the 1N080 complex are not colocated 

and are dispersed fairly evenly through the gene expression hierarchical tree. 

Furthermore, YETI shows that none of the 1N080 complex genes are coexpressed 

with each other at a Pearson cutoff of 0.7. It is quite surprising that none of the 

1N080 complex genes are coexpressed together given that they are all members of 

the same functional complex. One explanation for this observation could be that the 

microarray data set currently stored in the YETI database (Gasch et al., 2000) may 

not be suitable for highlighting the relationships between the expression of these 

genes and perhaps other microarray data sets would yield better results in this case. 

Overall, YETI further supports the hypothesis that IES5 is part of the 'INO80 

complex'. IES5 is located in the nucleus, directly interacts with two other members 

of the complex (including the apparent core member) and although it is not 

coexpressed with any of the other members, none of the members of this complex 

appear to be coexpressed with one another. However, YETI can not shed any light on 

the functional role of 1E55 within the 1N080 complex in this instance. 
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Figure 5.4: Screenshot of the Proteome Section displaying all the interactions 
involving '1N080 complex' proteins 
This is a screenshot of the Proteome Section displaying all the protein-protein interactions 
involving any of '1N080 complex' proteins. The proteins involved in the 'lN080 complex' are 
highlighted in green on the graphical panel. As can be seen, one large cluster is formed 
consisting of all the '1N080 complex' proteins. At the centre of this cluster is NHP10 which 
also interacts with IES5 (highlighted in red). 

5.7: Discussion 
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coexpressed, interacted, colocated in the cell or colocated in the genome. If a gene of 

unknown function is associated with a large number of genes involved in the same 

biological process then this could enable a possible functional role to be inferred (the 

concept of guilt by association). Overall, the Datasheet Window and its associated 

links enable users to investigate the potential function of a specific gene of interest, 

to test whether it is involved in a specific biological process, and to investigate what 

others genes it may be working with in order to achieve its biological goal. However, 

it is important to note although the guilt by association approach can readily be used 

to suggest possible functional roles for genes of unknown function, these suggestions 

need to be confirmed by experiments in the laboratory. 

The case studies presented above also highlight that the textual descriptions of genes 

can contain a wealth of useful information but unlike the GO annotations this 

information is not structured or linked in any way. For example, the description of 

GID7 states that it has a similar function to MOH1, however this information is not 

present in the description of MOM where it is perhaps of more use. The lack of 

linkage and structure of this information also highlights the usefulness of the YETI 

QueryBuilder function which enables keyword searches of descriptions and 

annotations to find potentially related groups of genes. Furthermore, these case 

studies also highlight that the different S. cerevisiae computational resources can 

contain different information and that the scientific literature contains a wealth of 

predicted biological roles for the unknown genes of S. cerevisiae. Therefore, the 

integration of effective text mining techniques that can automatically extract 

functional associations of unknown genes from the scientific literature with the major 
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S. cerevisiae computational resources would be useful developments. 
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Chapter 6 

Genome vs Proteome Correlation Analysis 



6.1: Introduction 

A Genome vs Proteome correlation analysis was performed using YETI to 

investigate if there was a tendency for proteins that interact with one another to be 

located near each other on the genome. As interacting proteins are likely to be related 

functionally, this analysis could reveal a high level organisation of the genome where 

interacting proteins of similar function are colocated. For this analysis, it is important 

to note that every interacting protein corresponds to a specific ORF in the S. 

cerevisiae genome. The first step is to identify the number of protein-protein 

interactions where both interacting proteins are located on the same chromosome and 

test if this number is statistically relevant by comparing it to the number expected if 

it is assumed the genomic location of interacting proteins is random. The second step 

is to calculate the average distance between all interacting proteins located on the 

same chromosome to see if there is a tendency for them to be located near each other. 

In addition, whether there is an overall correlation or not, the closest interacting 

proteins and the chromosomal regions they are located in can be investigated in 

further detail using YETI. 

6.2: Correlation Matrix 

To investigate a potential correlation between the genomic locations of interacting 

proteins the approach developed by Ge et al. (2001) was applied. Ge et al. (2001) 

originally investigated a potential correlation between expression clusters and 

interaction clusters. In this analysis, expression clusters are replaced with 

chromosome clusters where each nuclear chromosome is considered to be a cluster 
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comprised of all the ORFs located on it; therefore, the 16 nuclear chromosomes of S. 

cerevisiae correspond to 16 chromosome clusters. A two-dimensional interaction 

matrix is generated by organising the chromosome clusters into two identical axes; 

for the 16 chromosome clusters, the matrix arrangement results in 162  squares. Each 

square in the matrix represents all the pairwise interactions of ORFs within a single 

chromosome cluster (diagonal or intracluster squares) or between different 

chromosome clusters (nondiagonal or interciuster squares). Therefore, pairs of ORFs 

whose products interact can be assigned to their corresponding intracluster or 

intercluster squares (Figure 6.1). For each square, an index of protein interaction 

density (PD) is calculated as the ratio of the number of observed protein-protein 

interactions (IP) to the total number of possible protein-protein interactions (PP); this 

IP/PP ratio is scaled by a factor of 100,000 to give PD values typically in the range 

of 0 to 100. It can be reasoned that for a given protein-protein interaction data set, 

significantly higher PIDs for intracluster (diagonal) versus interciuster (non-

diagonal) squares would be the first step in revealing a possible correlation between 

genome location and protein interaction. 
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Figure 6.1: Strategy for genome-proteome correlation mapping 
The two-dimensional matrix on the left shows the pairwise combinations between the 16 
chromosome clusters; the chromosome cluster numbers are indicated on the corresponding 
rows and columns of the matrix along with the number of ORFs each chromosome cluster 
contains (in brackets). The table on the right shows protein interaction pairs together with the 
chromosome cluster to which the corresponding OREs belong. For each interaction pair, 
arrows point to its corresponding squares in the two-dimensional chromosome matrix. For 
example, the first interaction is between two ORFs which are both located on chromosome 
1; therefore, this interaction is assigned to chromosome l's intracluster (diagonal) square 
which represents pairwise interactions within chromosome 1. Whereas, the second 
interaction is between an ORF located on chromosome 2 and an ORF located on 
chromosome 3; therefore, this interaction is assigned to both the chromosome 
2/chromosome 3 and the chromosome 3/chromosome 2 intercluster (non-diagonal) squares 
which both represent pairwise interactions between these two chromosomes. In actual fact, 
as the matrix is duplicated on either side of the diagonal, only the squares along and below 
the diagonal need to be displayed. This figure is based on Figure 1 a from Ge et al. (2001). 

6.3: YETI Genome vs Proteome Section 

The Genome vs Proteome Section of YETI was used to perform the genome vs 

proteome correlation analysis. In this section, YET! displays a genome-proteome 

correlation map where the PID for each square in the two-dimensional interaction 
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PIDs. This visual representation of the genome-proteome correlation map enables 

users to easily and rapidly compare the PIDs for all intracluster squares with 

intercluster squares to investigate a potential correlation between genome location 
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the squares in the map individually to investigate if there are any specific intracluster 

or interciuster squares that have substantially higher PIDs than the other squares in 

the map. 
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Figure 6.2: Screenshot of the Genome vs Proteome Section of YETI 
This is a screenshot of the Genome vs Proteome Section of YETI. This section displays a 
genome-proteome correlation map where the PID for each square in the two-dimensional 
matrix is calculated and represented by a colour gradient. Furthermore, a variety of textual 
information and a data table is displayed along with the map (see text below for more 
details). 

The Genome vs Proteome Section also has eight filters that can be used to filter the 

proteome dataset to remove specific types of interactions and therefore give a higher 

quality dataset; any combinations of the following eight filters can be used: 
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Two-Way Interactions: this filter can be used to remove two-way 

interactions from the proteome dataset. Two-way interactions are where two 

interactions are not technically duplicates but are essentially the same 

interaction. For example, consider the two reactions: A-B & B-A. Although, 

they are essentially the same interaction they are different because in the first 

interaction protein A was used as the 'bait' whilst in the second interaction 

protein B was used as the 'bait'. It was decided to leave these duplicate 

interactions in the YETI database as some researchers are interested in the 

'direction' of interactions. This filter removes one of each two-way 

interaction as they are duplicated from an analytical viewpoint and therefore 

would bias the genome-proteome correlation results. 891 of the 14,430 

protein-protein interactions stored in the YETI database are removed by this 

filter. 

Self Interactions: this filter can be used to remove self-interactions from the 

proteome data set. Self-interactions are where an interaction is comprised of a 

protein interacting with another molecule of itself (it is both the 'bait' and 

'prey' protein). This filter removes all the self-interactions as they would bias 

the genome-proteome correlation results. 152 of the 14,430 protein-protein 

interactions stored in the YETI database are removed by this filter. 

Single Study Interactions: this filter can be used to remove all interactions 

that have only been reported in a single experimental study. Interactions that 

have been reported in more than one experimental study can more confidently 

be assumed to be true interactions than those reported from only a single 

study (von Mering et al., 2002; Uetz et al., 2005). 8,605 of the 14,430 
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protein-protein interactions stored in the YETI database are removed by this 

filter. 

GO Component: this filter can be used to remove all interactions where the 

interacting proteins are not located in the same cellular compartment as 

defined by their GO component annotations (all the GO component 

annotations of the interacting proteins are compared not just the primary 

annotations). Interactions where the interacting proteins are not located in the 

same cellular compartment are less likely to be true interactions as in real life 

the proteins may never actually meet to interact. Furthermore, this filter also 

removes all protein-protein interactions involving any protein whose GO 

component annotation is currently unknown. 9,961 of the 14,430 protein-

protein interactions stored in the YETI database are removed by this filter. 

GO Slim Component: this filter can be used to remove all interactions where 

the interacting proteins are not located in the same cellular compartment as 

defined by their GO Slim component annotations and also interactions 

involving proteins whose GO Slim component annotation is currently 

unknown. GO Slim annotations are a cut-down version of the standard GO 

annotations meaning that proteins are assigned to broader high level terms 

rather than specific fine grained terms. 8,643 of the 14,430 protein-protein 

interactions stored in the YETI database are removed by this filter. 

Pearson Correlation Coefficient: this filter can be used to remove all 

interactions where the corresponding ORFs of the interacting proteins are not 

coexpressed. Proteins that interact with one-another will not physically be 

able to do so if they are not both present in the cell at the same time. In this 

Chapter 6: Genome vs Proteome Correlation Analysis 	 162 



filter, whether or not two proteins are coexpressed is defined by the Pearson 

correlation coefficient of the two corresponding ORFs as calculated from 

their corresponding expression data from the Gasch et al. (2000) study. For 

this filter, the user enters a minimum Pearson correlation coefficient value 

and all interactions below this cutoff value are removed. A standard cutoff 

used in microarray experiments is a Pearson correlation coefficient of 0.7 and 

13,581 of the 14,430 protein-protein interactions stored in the YETI database 

are removed by this filter at this cutoff value. 

Dubious ORFs: this filter can be used to remove all interactions involving 

proteins whose corresponding ORFs are 'dubious' and are therefore unlikely 

to be real ORFs. All ORFs are now defined by the Saccharomyces Genome 

Database (SOD; Cherry et al., 1998) as dubious, uncharacterised or verified. 

563 of the 14,430 protein-protein interactions stored in the YETI database are 

removed by this filter. 

Uncharacterised ORFs: this filter can be used to remove all interactions 

involving proteins whose corresponding ORFs are 'uncharacterised', as 

defined by the SGD. 2,405 of the 14,430 protein-protein interactions stored in 

the YETI database are removed by this filter. 

In addition to the actual genome-proteome correlation map, YETI also calculates and 

displays the average intracluster and intercluster Pifi, the total number of interactions 

analysed, the number of interactions removed by each filter, the number of expected 

and observed interactions where the corresponding ORFs of the interacting proteins 

are located on the same chromosome as well as the average distance in both base 
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pairs and genes between these ORFs. This YET! section also displays a data table 

containing information about all the protein-protein interactions found where the 

corresponding ORFs of the interacting proteins are located on the same chromosome 

(after filtering) is displayed and linked to the Analysis Section. This table enables all 

the identified interactions to be rapidly examined and also enables any interactions of 

interest to be selected and investigated in further detail in the other sections of YETI 

Furthermore, any of the squares in the matrix can be individually selected to view 

information on all the interactions currently assigned to that square in the Analysis 

Section. This enables users to investigate any specific square that may be of interest 

in the matrix such as an intracluster or intercluster square that has a very high PID 

value when compared to the rest of the matrix. 

6.4: Correlation Analysis Results 

The genome dataset used in this analysis consisted of the 6,563 ORFs stored in the 

YETI database that are located on the 16 nuclear chromosomes of S. cerevisiae; 809 

of these ORFs are characterised by the SGD as dubious and 1,468 as uncharacterised. 

The real proteome dataset consisted of the 14,430 protein-protein interactions stored 

in the YETI database that the above 6,563 ORFs are involved in. As a negative 

control, a random proteome dataset was generated through the creation of 14,430 

random protein-protein interactions between the 6,563 ORFs of the genome dataset. 

The Genome vs Proteome Section of YETI was used to analyse both the real and 

random proteome datasets described above against the genome dataset. The genome- 
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proteome correlation map for the unfiltered real proteome dataset is shown in Figure 

6.3A. As can clearly be seen, there is a high-density region along the diagonal 

intracluster squares illustrated by the large number of bright green squares indicating 

high PIDs; although, there are also a few bright green non-diagonal squares in the 

map. Furthermore, the average intracluster PD is substantially above the average 

interciuster PD (79.92 vs 62.62). Taken together, this could lead one to suggest a 

possible global correlation between genome location and protein interaction. 

However, as mentioned above this is the unfiltered dataset which therefore still has 

self and two-way interactions which bias the correlation results. Applying the filters 

to remove these interactions gives completely different results as shown in Figure 

6.313. After filtering, the high density region along the diagonal is no longer apparent 

and the average intracluster PD is now only very slightly above the average 

intercluster PD (59.02 vs 58.76). Therefore, these initial results suggest that there is 

no global correlation between genome location and protein interaction. 
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Figure 6.3: Genome-Proteome Correlation Maps 
This figure contains the YETI generated genome-proteome correlation maps for the 
unfiltered real proteome dataset (A) and the real proteome dataset filtered for self and two-
way interactions (B). 

In addition to the genome-proteome correlation maps described above, YETI can be 

used to examine a potential correlation between the genome and proteome in more 

detail. YETI displays the expected and observed numbers of protein-protein 

interactions where both interacting proteins are located on the same chromosome. 

The expected number of interactions is calculated by multiplying the number of 

analysed interactions (after filtering) by the probability that two interacting proteins 

will be located on the same chromosome (Figure 6.4). Furthermore, YETI calculates 

the average distance between all interacting proteins located on the same 

chromosome in both base pairs and genes. 



P = 	 = 0.075306604 

Figure 6.4: Probability that any two interacting proteins are located on the same 
chromosome 
This figure shows the equation used to calculate the probability that any two interacting 
proteins will be located on the same nuclear chromosome of S. cerevisiae; c = the total 
number of chromosome clusters; n c  = the number of ORFs in chromosome cluster c; t = the 
total number of ORFs in all chromosome clusters. In this case: C = 16; n 1  = 117, n2  = 454, n3  
= 182 ... n 16  = 509; t = 6563. It is important to note that the probability changes depending 
on what proteome filters are selected. For example, if the self interactions filter is not 
selected then the '-1' components are removed from the above equation or if the dubious 
filter is selected all the nc  and t values are modified accordingly. 

Both the real and random proteome datasets were analysed with various 

combinations of the YETI filters and a comprehensive account of the results is 

presented in Table 6.1 for the real dataset and Table 6.2 for the random dataset. 

Amongst others, this table contains the total number of interactions analysed after 

any filtering and the number of observed interactions where the interacting proteins 

are located on the same chromosome. To test whether the observed number of 

interactions located on the same chromosome is statistically significant the 

probability for obtaining at least the observed number of interactions by chance was 

calculated using the standard cumulative binomial distribution 

(http://mathworld.wolfram.comlBinomialDistribution.html  Figure 6.5). 

I 	 I! 
P(i >= i) = 

l-1 

Figure 6.5: Cumulative binomial distribution 
This figure shows the cumulative binomial distribution equation used to calculate the 
probability of obtaining at least the observed number of interactions where both interacting 
proteins are located on the same chromosome by chance. In this case: I = the total number 
of interactions analysed; i 0  = the observed number of interactions where both interacting 
proteins are located on the same chromosome; and p = the probability of two interacting 
proteins being located on the same chromosome (Figure 6.4). 
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Real Data Set  

Filters Ints Exp Obs P-Value Intra Inter 
Dist 
(bp) 

StDev 
(bp) 

Dist 
(genes) 

StDev 
(genes) 

None 14430 1086 1289 2.77E-10 79.92 62.62 312034 290927 161 148 
Two-Way & Self 13387 1006 1060 0.041 233 59.02 58.75 352835 283883 182 144 
Two-Way, Self & Dubious 12866 1 972 1016 1 0.076722 73.89 74.53 349156 1 	282982 180 144 
Two-Way, Self, Dubious & Single Study 5055 382 394 0.270717 23.85 28.24 359508 285594 185 145 
Two-Way, Self, Dubious & GO Slim Component 5238 395 405 0.325266 26.78 29.69 356750 288773 183 147 
Two-Way, Self, Dubious & GO Component 3917 296 298 0.462671 21.58 22.72 342358 280195 176 142 

Two-Way, Self, Dubious & Pearson = 0.7 651 49 36 0.982538 4.16 4.22 263676 218901 137 113 
Two-Way, Self, Dubious & Uncharacterised 10621 1 	813 834 1 0.229779 112.20 113.58 349636 283199 180 144 

Two-Way, Self & Dubious 12866 972 1016 0.076722 73.89 74.53 349156 282982 180 144 
(+) Single Study 5055 382 394 0.270717 23.85 28.24 359508 285594 185 145 

(+) GO Slim Component 1646 124 127 0.418258 6.51 8.85 372197 299269 191 1 	151 
(+)GO Component 1124 84 96 0.118409 1 	5.19 6.16 369432 299681 189 152 
(+) Pearson Correlation Coefficient = 0.7 85 6 4 0.892333 1 	0.32 0.42 130058 92759 71 51 

Table 6.1: Genome vs Proteome Correlation Analysis Results for the Real Proteome Dataset 
This table contains the results of the Genome vs Proteome correlation analysis for the real proteome dataset performed using YETI. Ints represents the 
total number of protein-protein interactions analysed after any filtering; Exp and Obs represent the number of expected and observed protein-protein 
interactions where the interacting proteins corresponding ORFs are located on the same chromosome, respectively; P-Value represents the probability 
of getting at least the observed number of interactions by chance calculated using the cumulative binomial distribution; Intra represents the average 
intracluster PID; Inter represents the average intercluster PID; Dist (bp) represents the average distance in base pairs between interacting proteins 
located on the same chromosome; StDev (bp) represents the standard deviation of the average distances in base pairs; Dis (genes) represents the 
average distance in genes between interacting proteins located on the same chromosome; and StDev (genes) represents the standard deviation of the 
average distances in genes. Details on the calculation of the P-Value and a discussion of the results can be found in the text above. 
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Random Data Set 

Filters Ints Exp Obs P-Value Intra Inter 
Dist 
(bp) 

StDev 
(bp) 

Dist 
(genes) 

StDev 
(genes) 

None 14430 1086 1114 0.198348 66.55 67.59 348957 283078 180 144 
Two-Way& Self 14428 1084 1113 0.187967 66.91 67.58 349271 283011 181 144 
Two-Way, Self & Dubious 11097 838 870 0.135613 67.93 67.88 341504 280364 177 143 
Two-Way, Self, Dubious & GO Slim Component 1932 146 168 0.034415 12.42 11.06 309168 296562 160 151 
Two-Way, Self, Dubious & GO Component 1151 87 93 0.266798 7.17 6.54 315580 290812 164 148 
Two-Way, Self, Dubious & Pearson = 0.7 76 5 7 0.351082 0.46 0.43 334887 326838 171 163 
Two-Way, Self, Dubious & Uncharacterised 6238 477 492 0.253905 65.81 69.34 1 343606 287904 178 147 

Two-Way, Self& Dubious 11097 838 870 0.135613 67.93 67.88 341504 280364 177 143 
(+)GO Slim Component 1932 146 168 0.034415 12.42 11.06 309168 296562 160 151 
(+) GO Component 1133 85 92 0.252358 7.09 6.45 316371 1 	292288 1 165 148 
(+) Pearson Correlation Coefficient = 0.7 13 0 3 0.06969 0.12 0.05 1 561569 1 	384804 1 282 1 194 

Table 6.2: Genome vs Proteome Correlation Analysis Results for the Random Proteome Dataset 
This table contains the results of the Genome vs Proteome correlation analysis for the random proteome dataset performed using YETI. Ints represents 
the total number of protein-protein interactions analysed after any filtering; Exp and Obs represent the number of expected and observed protein-protein 
interactions where the interacting proteins corresponding ORFs are located on the same chromosome, respectively; P-Value represents the probability 
of getting at least the observed number of interactions by chance calculated using the cumulative binomial distribution; Intra represents the average 
intracluster PID; Inter represents the average intercluster PID; Dist (bp) represents the average distance in base pairs between interacting proteins 
located on the same chromosome; StDev (bp) represents the standard deviation of the average distances in base pairs; Dis (genes) represents the 
average distance in genes between interacting proteins located on the same chromosome; and StDev (genes) represents the standard deviation of the 
average distances in genes. Details on the calculation of the P-Value and a discussion of the results can be found in the text above. The random 
dataset could not be subjected to the Single Study filter because it was randomly not experimentally generated. 
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The results of the analysis of the real proteome dataset are contained in Table 6.1; the 

unfiltered dataset should be discounted as it contains two-way and self interactions 

which bias the results and datasets containing dubious ORFs should also be 

discounted as these ORFs and therefore their interactions are very unlikely to be real. 

As can be seen in Table 6.1, the observed number of interactions where both 

interacting proteins are located on the same chromosome is nearly always above the 

expected number for all the filters. However, in each case the observed number is 

only slight above the expected number and the P-value is always above the standard 

cut-off of 0.05 suggesting that the observed numbers are not statistically significant. 

Furthermore, in each case the average intracluster and intercluster PIDs are always 

similar and there is no apparent trend for one being consistently higher than the 

other. It is important to note that although the average intracluster and intercluster 

PID values from the same filter can be readily compared to each other, the average 

PIDs obtained from different filters can not really be compared to one another. This 

is because the PD is calculated as the observed number of interactions for a cluster 

divided by the total number of possible interactions for a cluster. However, the self, 

dubious and uncharacterised filters change the number of possible interactions for a 

cluster which therefore means that the average PIDs can only really be compared 

within as opposed to across filters. 

Identifying the interactions where both interacting proteins are located on the same 

chromosome is only the first step in this analysis. The fact that two interacting 

proteins are located on the same chromosome could mean little if they are at opposite 

ends. As can be seen in Table 6.1, the average distance between interacting proteins 
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located on the same chromosome in both base pairs and genes is very large in every 

case; the average distances are typically above 300,000 bp and 175 genes. Generally, 

the random dataset (Table 6.2) gave similar results to the real dataset with similar 

intracluster vs intercluster PID values, large average distances and statistically 

insignificant numbers of observed interactions. Therefore, altogether, these results 

suggest that there is no global correlation between genome location and protein 

interaction in S. cerevisiae. 

However, there are still a number of interesting observations that can be made from 

the analysis results. Firstly, the GO component filter removes approximately 90 % of 

the interactions from the random dataset whereas this filter only removes 

approximately 70 % of the interactions from the real data set. The fact that 

approximately 30 % of the real protein-protein interactions share the same known 

GO Component annotation compared with only 10 % of the random interactions 

suggests that these interactions have a higher confidence of being true interactions. 

Furthermore, this also suggests that the GO component filter is a good filter to 

achieve a higher quality dataset; this level of filtration has also been suggested in 

Sprinzak et al. (2003), for example. Secondly, although overall there does not appear 

to be a correlation, the observed number of interactions were nearly always above the 

expected number for the real dataset which could suggest that there are a small 

number of relevant individual cases of interacting proteins being colocated. 
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6.5: Closest Interacting Proteins 

As described above, the Genome vs Proteome Section of YETI includes a data table 

containing information on all the protein-protein interactions found where the 

corresponding genes of interacting proteins are located on the same chromosome 

(after any filtering). Furthermore, the interactions are ordered by the distance 

between interacting proteins and the table is directly linked to the Analysis Section. 

Therefore, this table enables users to rapidly examine and compare all of the 

interactions found and select any interactions of interest to investigate further in the 

other sections of YETI. The closest interactions found are presented in Table 6.3 

which contains information on all the protein-protein interactions whose 

corresponding genes are located on the same chromosome and within 10,000 bp of 

each other. 

Chapter 6: Genome vs Proteome Correlation Analysis 	 172 



BAIT PREY DISTANCE  

No ORF GENE CHR ORF GENE CHR BP GENES PCC 

1 YNR068C  14 YNR069C BSC5 14 238 1 0.65 

2 YGR119C NUP57 7 YGR120C COG2 7 362 1 0.67 

3 YNL333W SNZ2 14 YNL334C SN02 14 391 1 0.37 

4 YFL060C SN03 6 YFL059W SNZ3 6 394 1 0.70 

5 YMR095C SNO1 13 YMR096W SNZ1 13 449 1 0.64 

6 YOR341W RPA190 15 YOR340C RPA43 15 805 1 0.58 

7 YDR225W HTA1 4 YDR224C HTB1 4 818 1 0.89 

8 Y0R229W WTM2 15 YOR23OW WTM1 15 988 1 0.01 

9 YPL026C SKS1 16 YPL028W ERG10 1 16 1383 2 -0.43 

10 YIL035C CKA1 9 YIL033C BCY1 9 1511 1 	2 -0.16 

11 YLR288C MEC3 12 YLR290C  12 2241 2 0.35 

12 YCR088W ABP1 3 YCR084C TUP1 3 2616 4 -0.21 

13 YMR308C PSE1 13 YMR310C  13 3495 2 0.60 

14 YMR106C YKU80 13 YMR108W ILV2 13 3894 2 -0.14 

15 YER081W SER3 5 YER078C  5 4344 3 -0.04 

16 YLR328W NMA1 12 YLR332W MID2 12 4558 4 0.23 

17 YER022W SRB4 5 YER019W ISC1 5 4582 3 -0.24 

18 YGR177C ATF2 7 YGR172C YIP1 7 5238 5 0.39 

19 YNR046W TRM112 14 YNR050C LYS9 14 5853 4 0.12 

20 YPR182W SMX3 16 YPR178W PRP4 16 6465 4 0.20 

21 YLR319C BUD6 12 YLR313C SPill 12 6976 6 0.14 

22 YDR386W MUS81 4 YDR381W YRA1 4 8080 5 0.00 

23 YMR308C PSE1 13 YMR314W PRE5 13 9488 6 0.05 

24 Y0R239W ABP140 15 Y0R232W MGE1 15 9598 7 0.50 

25 YGRO95C RRP46 7 YGRO90W UTP22 7 9600 5 0.26 

26 YLR453C RIF2 12 YLR449W FPR4 12 9789 4 -0.37 

27 YNL090W 1 RH02 14 YNL085W MKT1 14 1 5 0.45 

Table 6.3: The Closest Interacting Proteins 
This table contains information on all the protein-protein interactions where the interacting 
proteins corresponding ORFs are located on the same chromosome and within 10,000 bp; 
the interactions have been filtered for two-way interactions, self interactions and dubious 
ORFs. The ORF name (ORF), gene name (GENE) and chromosome (CHR) is displayed for 
both the BAIT and PREY proteins of the interaction and the distance between them is shown 
in both base pairs (BP) and genes (GENES); in this analysis, two neighbouring genes have a 
gene distance of 1 not 0. Furthermore, the Pearson correlation coefficient (PCC) of the two 
interacting protein's corresponding genes is also displayed. 

As discussed above, no overall correlation was observed between genome location 

and protein interaction. However, as can be seen in Table 6.3 there are a small 

number of cases of interacting proteins being located right next to each other on their 

corresponding chromosome; neighbouring genes have a gene distance of 1 in Table 

6.3. Furthermore, these neighbouring genes are typically involved in the same 
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specific biological process suggesting that there is a functional reason for their 

colocation such as co-regulation through shared promoter regions. For example, 

interaction 8 involves WTM2 and WTM1 which are both involved in the GO 

biological process of 'regulation of meiosis', interaction 7 involves HTA1 and HTB1 

which are both histones involved in 'chromatin assembly or disassembly', and 

interaction 6 involves RPA190 and RPA43 which are both RNA polymerase I 

subunits. In addition, there are three interactions (3, 4 and 5) involving neighbouring 

genes of the SNZ and SNO gene families which are all involved in 'thiamin 

biosynthesis; these interactions and proteins are discussed in further detail below in 

section 6.6: Thiamin Biosynthesis. 

There are also a number of cases of interacting proteins located near each other on a 

chromosome and also involved in the same specific biological process. For example, 

interaction 20 involves SMX3 and PRP4 which are both involved in the GO 

biological process of 'nuclear mRNA splicing, via spliceosome', interaction 21 

involves BUD6 and SPH1 which are both involved in 'actin filament organization', 

and interaction 25 involves RRP46 and UTP22 which are both involved in '35S 

primary transcript processing'. However, this does lead to the inevitable question of 

how 'near' do two interacting genes have to be for their colocation to be significant. 

Although there is no clear answer to this question, one consideration would be what 

the functions and expressions of the separating genes are. For example, if a pair of 

genes whose products interact with one another are separated by three other genes 

and all five genes are involved in the same or related biological processes and were 

coexpressed, then this would suggest that this colocation is relevant. In the each of 
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the three examples described above the separating genes were involved in a range of 

biological processes and the interacting genes themselves were not significantly 

coexpressed which suggests that these observed interactions could just be random 

occurrences of close genes whose products interacts. 

6.6: Thiamin Biosynthesis 

As can be seen in Table 6.3, three of the closest interactions involve members of the 

SNZ and SNO gene families; specifically, interactions (3) SNZ2-SNO2, (4) SN03-

SNZ3 and (5) SNO1-SNZ1. As the members of these two families appear to be 

colocated across the genome and directly interact with one another, they were 

investigated in further detail using YETI. YETI shows that there are three members 

of the SNZ gene family (SNZ1, SNZ2 and SNZ3) each of which has an SNO gene 

(SNO1, SN02 and SN03, respectively) next to it (Figure 6.6). In each case, the SNO 

gene is located directly upstream on the opposite strand of DNA to the SNZ gene; 

therefore, each SNZ/SNO gene pair is divergent which suggests they could well 

share the same promoter region and could be regulated by the same factors. 

Furthermore, given the conserved colocation of the members of these two gene 

families, all the SNZ/SNO gene pairs could well be collectively regulated by the 

same factors. 
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Figure 6.6: Screenshot of the Genome Section highlighting the genomic location of 
the SNZ/SNO gene pairs 
This is a screenshot of the Genome Section of YETI with the genomic location of the three 
SNZ/SNO gene pairs highlighted on the genome schematic. The three SNZ genes are 
highlighted on the genome schematic with red lines and the three SNO genes with green 
lines. As can clearly be seen each SNZ gene is colocated on the genome with an SNO gene. 
This example highlights the potential of the genome schematic to investigate possible 
evolutionary relationships between two groups of genes. 
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duplication implies that the SNZ2/SNO2 and SNZ3/SNO3 gene pairs are coregulated 

and that they encode the same protein products. However, the chromosomal region 

of the SNZI/SNOI gene pair does not show any similarity to the other two 

SNZ/SNO regions; it is located in the middle of the right arm of chromosome 13 and 

does not contain any members of the THI, AAD or COS gene families. Furthermore, 

the SNZI/SNO1 genes are slightly different in length to the SNZ2/SNO2 and 

SNZ3/SNO3 genes. Therefore, whether or not the SNZI/SNO1 genes are 

coregulated with the SNZ2/SNO2 and SNZ3/SNO3 genes and also encode the same 

protein products is unclear (at this point). 
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Figure 6.7: Chromosomal regions of the three SNZISNO gene pairs 
This figure shows the chromosomal regions of the three SNZ/SNO gene pairs generated 
from the Chromosome Window of YETI. In each case, the SNZ and SNO genes are 
highlighted in red. As can clearly be seen, the chromosomal regions surrounding 
SNZ2/SN02 and SNZ3/SNO3 are strikingly similar. 
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The three SNZ and SNO genes are all characterised as being involved in the GO 

biological processes of 'pyridoxine metabolism' and 'thiamin biosynthesis', 

therefore, YETI was used to collectively investigate all of the proteins involved in 

these biological processes further; pyridoxine (vitamin B 6) is a coenzyme for 

enzymes involved in amino acid metabolism whereas thiamin (vitamin B 1 ) functions 

as the co-enzyme thiamin pyrophosphate (TPP) in the metabolism of carbohydrates 

and branched-chain amino acids. YETI shows that there is an additional SNO gene in 

the S. cerevisiae genome, namely SN04 located in the right arm telomere on 

chromosome 13, which is also involved in pyridoxine metabolism; however, this 

gene is not a true SNO gene as it is not located upstream of an SNZ gene. YETI 

shows that a number of other genes are characterised as being involved in thiamin 

biosynthesis; specifically: THI2, THI3, T1 II4, THI5, TH1I6, THI1 1, THI12, THI13, 

THI20, T11I21, TH122, PDC2 and RPI1. Interestingly, TH15 and THI12 are also 

colocated with SNZ3 and SNZ2, respectively, as shown previously in Figure 6.7. 

Highlighting the genomic location of all the thiamin biosynthesis genes on the 

genome schematic of YETI reveals that two additional THI genes (namely, THI13 

and THu 1) are also located in telomenc regions. Analysing these two regions further 

in the Chromosome Window reveals that they also appear to be duplicated with each 

region consisting of a COS (unknown function), MPH (a-glucoside permease), SOR 

(sorbitol dehydrogenase), HXT (hexose transporter), THu (thiamin biosynthesis) and 

an AAD (aryl-alcohol dehydrogenase) gene (Figure 6.8). Furthermore, these two 

regions are also similar to the SNZ2/SNO2 and SNZ3/SNO3 telomeric regions 

discussed above which also span from a COS gene to a THT and AAD gene. 
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Figure 6.8: Chromosomal regions of THI13 and TH111 
This figure shows the chromosomal regions of the THI13 and THI11 genes generated from 
the Chromosome Window of YETI; in each case, the THI gene is highlighted in red. As can 
clearly be seen, the two regions are strikingly similar as both consist of a COS, MPH, SOR, 
HXT, THI and AAD genes. One slight difference is that THI13 is located at a left arm 
telomere whereas TH11 1 is located at a right arm telomere; this is why the TH11 1 region is 
upside down' when compared to the THI13 region. 

Overall, ILL! has highlighted lour Siflii lar telomerie regloils Iii the S. cereii.uw 

genome containing genes involved in thiamin biosynthesis; each region consists of 

se' en icnes. starting with a COS gene, ending with a THI and AAD gene with three 

gelics in between. These four regions can be split into two equal groups: (1) The two 

members of the first group have a gene of unknown function followed by an SNO 

and SNZ gene located in between the COS and THI genes; and (2) The two members 

()1 the second roup ha e an \lPl 1. SOR and HXT ienc located in bct ecu the COS 

,11 -1 d TI II cene. llo c\ cr. ii is not \ C  clear how I hese duplicated legions drose and 

hat the functional relevance of these duplicated regions is: for example. a whole 

( /n/pii (): (iiiii 	//()i('('/11 	( or,Iiiiii ;l/i(iI\O 	 179 



genome duplication event could account for the duplication of each group 

individually but would not account for the similarity between the two groups. 

The Transcriptome Section of YETI shows that a number of the genes involved in 

thiamin biosynthesis are colocated in the hierarchical tree (Figure 6.9). Seven of the 

thiamin biosynthesis genes are located right next to each other in the tree forming a 

tight cluster with three additional thiamin biosynthesis genes located in the vicinity. 

The seven genes in the tight cluster are THI12, TH15, THI3, THI11, SN03, SNZ2 

and SNZ3 and the three additional genes are RPI1, SN02 and THI6. Interestingly, all 

of the thiamin biosynthesis genes that are located in the duplicated chromosomal 

regions discussed above are located in this region of the gene expression hierarchical 

tree suggesting they are all coregulated; specifically: SNZ3, SN03 and THI5 from 

chromosome 6; SNZ2, SN02 and THI12 from chromosome 14; THII13 from 

chromosome 4; and TFH1 1 from chromosome 10. The other thiamin biosynthesis 

genes, including SNZ1 and SNO1 are dispersed through the hierarchical tree. These 

observations suggest that the SNZ2/SNO2 and SNZ3/SNO3 gene pairs are indeed 

coregulated with each other, along with a number of other genes involved in thiamin 

biosynthesis, but not with the SNZ1/SNO1 gene pair. This could suggest that the 

SNZ1/SNO1 gene pair is not actually involved in thiamin biosynthesis or that this 

gene pair is regulated by different factors to the other two SNZ/SNO regions. 
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Figure 6.9: Gene expression cluster of thiamin biosynthesis genes 
This is a screenshot of the Transcriptome Section with the location of all the genes involved 
in the GO biological process of thiamin biosynthesis highlighted on the gene expression 
hierarchical tree. As can be seen, a number of genes involved in thiamin biosynthesis are 
colocated forming q tight expression cluster. 
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directly with one another. This is slightly surprising given their colocation, 

coexpression and the fact that they are all involved in the same biological process. 

However, this observation could be explained by an incomplete protein interaction 

data set or by the fact that some proteins do not need to interact with other proteins in 

order to fulfil their biological goal. 

RZI2 

Figure 6.10: Protein interactions involving thiamin biosynthesis proteins 
This is an image of all the protein interactions involving any of the proteins involved in 
thiamin biosynthesis created through the Proteome Section of YETI. All of the proteins 
involved in thiamin biosynthesis are highlighted in red; as can be seen, all of the SNO and 
SNZ proteins interact highly with one another. The non-thiamin biosynthesis proteins whose 
corresponding genes are located in the duplicated chromosomal regions discussed above 
are highlighted in green; as can be seen, practically all of these proteins interact directly with 
SRP1. An additional related gene called PDX3 which interacts with SRP1 is also highlighted 
in green. 

Interestingly, both SNZ2 and SNZ3 interact with a protein called SRPI which is 

involved in the import of nuclear proteins. SRPI interacts with a large number of 

proteins including: YFL061W which is colocated on chromosome 6 with 
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SNZ3/SN03; YNL335W which is colocated on chromosome 14 with SNZ2/SN02; 

PDX3 which is a pyridoxine phosphate oxidase; THT4 and THI6 which are both 

involved in thiamin biosynthesis, AAD14 which is colocated on chromosome 14 

with THI12; SOR1 which is colocated on chromosome 10 with THu 1; and SOR2 

which is colocated on chromosome 4 with THI13. It is interesting that a number of 

the proteins involved in thiamin biosynthesis, along with a number of proteins whose 

corresponding genes are located in the duplicated chromosomal regions discussed 

above, interact directly with SRP1. Although this does represent a common link 

between all of these proteins it does not necessarily imply that they are all involved 

in the same or related biological processes, especially as few of them interact directly 

with one another. However, as SRP1 is involved in the import of nuclear proteins, 

this could suggest possible cellular locations for these proteins i.e. the nucleus; 

interestingly, the majority of the cellular locations of the thiamin biosynthesis 

proteins are currently unknown. Furthermore, it is also interesting that whilst SNZ2 

and SNZ3 do interact with SRP1, SNZ1 does not. This is interesting as it again 

suggests a distinction between the SNZ1/SNO1 gene pair and the SNZ2/SNO2 and 

SNZ3/SNO3 gene pairs; in the case by suggesting that SNZ1 may have a different 

cellular location to SNZ2 and SNZ3. 

As described above, located directly upstream of the SNZ2/SNO2 and SNZ3/SNO3 

gene pairs are two genes of unknown function (YFL061W and YNL335W); as these 

two genes are located in apparently duplicated blocks of DNA they should encode 

the same product and also be regulated by the same factors. Each of these genes has 

been duplicated along with an SNO, SNZ and a THI gene, all of which are involved 
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in thiamin biosynthesis. Therefore, this in itself strongly suggests that these two 

genes are also involved in thiamin biosynthesis or a related biological process. 

Furthermore, YETI shows that these two genes are coexpressed (pearson > 0.7) with 

SNZ2, SNZ3 and SN04; in addition, both their corresponding proteins interact with 

SRP1 along with many of the proteins involved in thiamin biosynthesis and 

pyridoxine metabolism. However, whether or not these two genes of unknown 

function are directly involved in thiamin biosynthesis or pyridoxine metabolism can 

only be proven by experiments in the laboratory but the observations presented here 

suggest that they could well be. 

At this point it is worth comparing the information found using YETI alone to what 

is currently known about the SNZ/SNO genes. SNZ1 was originally identified 

through studies of proteins synthesised in stationary phase S. cerevisiae cells, (Braun 

et al., 1996). SNZ1 was found to be the most highly conserved protein present in all 

three domains, exhibiting 60 % identity with SNZ proteins in archea and bacteria 

(Braun et al., 1996). Padilla et al. (1998) first identified the highly conserved SNZ 

gene family in S. cerevisiae and subsequently studied their sequence similarity, 

expression and phenotypes. Sequence analysis showed that SNZ2 was - 99 % 

identical to that of SNZ3 and 80 % identical to that of SNZ1. Sequence analysis 

also showed that SNZ2 and SNZ3 were located within 7 kb telomeric regions that 

were nearly identical. Analysis of the sequence adjacent to the SNZ genes revealed 

an additional conserved, duplicated gene upstream of each SNZ gene which was 

subsequently called SNO (SNZ proximal ORF). Like their SNZ counterparts, SN02 

and 5NO3 were found to be almost 100 % identical to each other and - 72 % 

Chapter 6: Genome vs Proteome Correlation Analysis 	 184 



identical to SNO1. Using expression analysis Padilla et al. (1998) showed that 

adjacent SNZISNO genes were coregulated and that the SNZ1/SNO1 gene pair was 

induced at alternate times to the SNZ2/SNO2 and SNZ3/SNO3 gene pairs. 

Phenotypic analyses showed that SNZ1 was induced in an SNZ2/SNZ3 mutant at the 

times when SNZ2 and SNZ3 were normally induced which suggested that SNZ1 was 

repressed by expression of SNZ2 and SNZ3. 

In order to clarify their physiological functions, Rodriguez-Navarro et al. (2002) 

further characterised the SNZ and SNO gene families. In this study, they 

demonstrated that SNZ1 and SNO1 were required for growth of S. cerevisiae in the 

presence of low levels of pyridoxine but that SNZ2, SN02, SNZ3 and SN03 were 

not. However, overexpression of SNZ2 or SNZ3 in SNZ1 mutants compensated for 

the observed growth defects suggesting that all the SNZ genes encode proteins with 

similar activities. Rodriguez-Navarro et al. (2002) also showed that the transcripts of 

SNZ2, SN02, SNZ3 and SN03 (but not SNZ1 and SNO1) accumulated in the 

absence of thiamin, along with THI5 and THI1 1 transcripts, which were known to be 

involved in thiamin biosynthesis. Furthermore, using the two-hybrid technique, 

SNZ2 and SNZ3 were found to directly interact with TRill 1 further associating them 

to thiamin biosynthesis. Overall, these results suggested that although all three SNZ 

genes encoded proteins with similar activities involved in the biosynthesis of 

pyridoxine, SNZ2 and SNZ3 were regulated by the same factors as thiamin 

biosynthesis genes directly linking them to this biological process as well. 
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The four duplicated telomeric regions containing the two SNZ/SNO gene pairs and 

the four THI genes (THII5, THII1 1, THI12 and THT13) highlighted through YETI 

were also highlighted by Wightman et al. (2003) who studied the function and 

redundancy of the TH15 gene family. The THI5 gene family of S. cerevisiae 

comprises four highly conserved members named THI5, THII 1, THII12 and THI13 

which are all homologues of the Schizosaccharomyces pombe nmtl gene which 

functions in the biosynthesis of hydroxymethylpyrimi dine (HIvIIP). Interestingly, 

WvIP is itself derived from pyridoxine which directly links the SNZISNO genes 

involved in pyridoxine metabolism to the Till genes involved in the biosynthesis of 

HIvIP; overall, this means that all the SNZ, SNO and THT genes are involved in the 

biosynthesis of thiamin. Phenotypic analyses of mutant strains showed that the four 

genes were functionally redundant in terms of I-IMP formation for thiamin 

biosynthesis; each gene product was found to be involved in the production of HMP 

from pyridoxine. However, comparative analysis of mRNA levels revealed subtle 

differences in the regulation of the four genes, suggesting that they respond 

differently to nutrient limitation. Wightman et al. (2003) proposed that the 

duplication of the SNZ and SNO genes may have been caused by a need to increase 

the production of pyridoxine for HI'vlP production. Furthermore, the co-duplication of 

a member of the THIE5 gene family with the SNZ/SNO genes and their coregulation 

ensured that this extra pyridoxine was channelled into thiamin biosyhthesis. 

However, the precise molecular functions of the SNZ and SNO genes is still not 

known but both Wightman et al. (2003) and Padilla et al. (1998) proposed that the 

SNZ and SNO are possible glutamine amidotransferases that produce 

phosphoribosylamine for pyridoxine and thiamin biosyntheis. 
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In addition, the SNZ/SNO gene pairs have previously been highlighted in other 

analyses investigating correlations between different functional genomic data sets 

(Cohen et al., 2000; Ge et al., 2001; Cornell et al., 2001). By integrating 

transcriptome and interactome data, Ge et al. (2001) showed that although the SNZ 

and SNO proteins all interact highly with one another, their expression patterns 

suggested that they function in two distinct groups. By relating regulatory sequences 

to protein-protein interactions, Cornell et al. (2001) also identified the three 

SNZ/SNO pairs as neighbouring genes regulated by the same transcription factor 

whose corresponding proteins interact. However, neither of these analyses 

investigated the chromosomal locations and functions of the SNZ and SNO gene 

families in further detail. By correlating gene expression with gene location, Cohen 

et al. (2000) identified a large group of correlated adjacent genes on chromosome 6 

which included SN03, SNZ3 and THI5. However, although Cohen et al. (2000) 

searched for common promoter elements and upstream activating sequences (UAS) 

they did not investigate the functions and properties of the genes contained within 

this region in further detail. 

The observations of the SNZ and SNO gene families made through using YETI alone 

conform well to what it currently known about them. Initially, the Genome vs 

Proteome Section of YETI highlighted that there were three cases of SNZ and SNO 

genes that were located next to each other in the genome and whose corresponding 

proteins interacted; YETI found these automatically based only on the gene location 

and protein interaction data and subsequently highlighted them enabling them to be 
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easily selected and collectively investigated in the other sections. As well as showing 

the similarity between all three SNZ/SNO gene pairs, all the sections of YETI 

consistently suggested a possible division within the SNZ and SNO gene families. 

The SNZ2/SNO2 and SNZ3/SNO3 gene pairs were consistently associated with one 

another along with many other genes involved in thiamin biosynthesis whereas the 

SNZ1/SNO1 gene pair, despite being related, was shown to be distinct from the other 

two pairs and not directly involved in thiamin biosynthesis. 

Although much of what YETI highlighted about the SNZ and SNO genes was 

previously known before, the fact that YETI did highlight these facts based on the 

available data alone could be seen as a confirmation that the system and strategy 

works well. This case study is also a good illustration of how YETI can easily and 

rapidly be used to collectively investigate all the properties of a group of genes to 

investigate if and how they are working together to achieve their biological goals and 

to also examine what other genes and proteins they may be working with. 

Furthermore, YETI itself can also highlight potential features of interest to 

investigate further; in this case, neighbouring genes whose corresponding proteins 

interact with each other. In addition to highlighting some of the main advantages of 

YETI, such as the group approach and inter-linked sections, this case study also 

highlights the usefulness of specific features of YETI, such as the Genome Section 

for investigating possible evolutionary relationships between groups of genes and the 

Chromosome Window for providing good clear visual representations of gene 

locations. 
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However, this case study also highlights some of the disadvantages of YETI, namely 

the lack of sequence data and an incomplete protein interaction data set. Sequence 

data would enable users to directly examine the similarity of specific genes or 

chromosomal regions and to also examine if specific genes share similar regulatory 

regions. The incomplete protein interaction data is highlighted by the fact that 

Rodriguez-Navarro et al. (2002) reported interactions that are not currently present in 

the YETI database; specifically SNZ2-TI{I1 1 and SNZ3-THT1 1. This highlights one 

of the disadvantages with many protein-protein interaction resources as they tend to 

be populated with data mainly from high-throughput studies. The majority of 

scientific studies investigate the properties of a small number of specific proteins and 

subsequently report a small number of interactions between them; therefore 

contained within the scientific literature is a mass of important interaction data. 

However, to manually examine all of the published scientific literature for 

interactions is a major undertaking. Therefore, good text mining techniques that can 

automatically find and extract interactions from the literature would be extremely 

useful developments. Indeed, one successful protein interaction resource that 

currently includes text mining techniques is the STRING database (Von Mering et 

al., 2003). 

This case study also illustrates the benefits of filtering the protein-protein interactions 

as although all the SNO and SNZ proteins can interact highly with one another they 

are expressed at different times and could well be located in different cellular 

locations making some of these interactions irrelevant. Furthermore, it would also be 

of use to know if two proteins have been tested for an interaction and failed; for 
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example, knowing categorically whether SNZ1 does not interact with SRP1 would 

further suggest different cellular compartments for the SNZ proteins. 

6.7: Discussion 

As described above, the Genome vs Proteome Section of YETI provides a number of 

filters to filter the proteome dataset and remove certain types of interactions. These 

include filters that remove interactions that would bias the correlation results (such as 

self and two-way interactions), filters that remove possible false positives (such as 

interactions only reported once and interactions involving proteins not contained 

within the same cellular component) and filters that can also improve the quality of 

both the proteome and the genome dataset (such as removing interactions involving 

dubious ORFs). These filters are an essential feature as analysing the datasets 

without them can lead to incorrect conclusions. For example, the unfiltered proteome 

datasets showed a statistically significant number of observed interactions where 

both interacting proteins were located on the same chromosome and the average 

intracluster PID was substantially higher than the average intercluster PD. However, 

this correlation was caused by self and two-way interactions biasing the correlation 

results and the apparent correlation disappeared when the appropriate filters were 

applied. This was a problem that a recent study by Ge et al. (2001) experienced 

where a strong correlation between gene expression and protein interaction was 

observed. However, this study was recently discredited by Mrowka et al. (2003) who 

showed that the apparent correlation was in fact caused by the presence of self-

interactions which were not removed in the original study. Furthermore, there is no 
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mention in either study of filtering the interactions for true duplicates and two-way 

interactions which could further bias the correlation results. 

Overall, the results presented above suggest that there is no global correlation 

between genome location and protein interaction. There does not appear to be a 

tendency for proteins that interact with each other to be located near each other in the 

genome or for genes located near each other in the genome to interact with one 

another; although, there are a number of isolated cases. For two proteins to be 

located near each other in the genome they first have to be located on the same 

chromosome. Therefore, the first indication of a correlation would be significantly 

more observed protein-protein interactions where both proteins are located on the 

same chromosome than would be expected if it is assumed the genomic location of 

interacting proteins is random. However, the observed number of interactions was 

never found to be significant no matter what filters were applied to the datasets. The 

second indication of a correlation would be a low average distance between 

interacting proteins located on the same chromosome, especially when compared to 

the random dataset. However, the average distances observed were very large and 

similar to the average distances from the random dataset. Even though no overall 

correlation was observed there were a few isolated cases of interacting proteins being 

located next to each other on a chromosome; these were often involved in the same 

specific biological process suggesting that there is a functional reason for this co-

location, such as co-regulation. 
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It could be argued that the above results are expected when one considers that the 

genes of eukaryotes are generally considered to be monocistronic, each with its own 

promoter at the 5' end and a transcription terminator at the 3' end (Blumentahl, 

2004); however, it has recently become clear that not all eukaryotic genes are 

transcribed monocistronically (Blumenthal, 2004). To the best of our knowledge, this 

is the first analysis to investigate a potential correlation between protein interaction 

and genome location in S. cerevisiae. There is one related study by Ogata et al. 

(2000) who investigated, for a number of different organisms, if enzymes located 

near each other in the KEGG metabolic pathways were located near each other on 

the genome, forming Functionally Related Enzyme Clusters (FRECs). They found 

that the relative number of enzymes in FRECs was close to 50 % for Bacillus subtilis 

and Escherichia coli but was less than 10 % for S. cerevisiae. This ties in with the 

results presented here which suggest relatively few interacting, and therefore 

possibly functionally related, proteins are located near each other in the genome. 

One improvement that could be made to the genome vs proteome analysis presented 

above would be higher quality datasets. Our biological understanding of S. cerevisiae 

is constantly improving and evolving with more genes being functionally 

characterised and more erroneous ORFs ruled out; therefore the quality of the 

genome dataset used in YETI is constantly improving with time. Although the 

protein-protein interaction dataset used in YETI is one of the largest available it is 

still incomplete (Walihout et al., 2000; Tucker et al., 2001; Gngoriev et al., 2003; 

Uetz et al., 2005) and can be error-prone due to false-positives and false-negatives 

generated through techniques such as the yeast two-hybrid approach. However, new 

Chapter 6: Genome vs Proteome Correlation Analysis 	 192 



datasets are constantly being produced, new and improved technologies are 

constantly being developed and filters can be applied to improve the quality of the 

existing dataset (Bader et al., 2004; Bork et al. 2004). Therefore, over time the 

proteome data should also increase in both size and quality. 
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Chapter 7 

Genome vs Transcriptome Correlation Analysis 



7.1: Introduction 

A Genome vs Transcriptome correlation analysis was performed using YETI to 

investigate if there was a tendency for genes located next to each other in the genome 

to be coexpressed. Genes that are coexpressed are likely to be related functionally 

(the concept of guilt by association). Therefore, it could be argued that genes that are 

coexpressed and colocated are even more likely to be related functionally. To 

examine a possible global correlation between gene location and gene expression the 

first step is to identify the number of physically adjacent genes in the genome that are 

coexpressed and test if this number is statistically significant by comparing it to the 

expected number derived from a control set. In addition, whether there is an overall 

correlation or not, the chromosomal regions displaying coexpression can be 

investigated in more detail using YETI. 

7.2: Chromosome Correlation Maps 

To investigate a potential correlation between gene location and gene expression the 

approach developed by Cohen et al. (2000) was applied. Cohen et al. (2000) 

developed a visualisation technique called chromosome correlation maps to display 

correlations between the expression patterns of genes on the same chromosome. A 

chromosome correlation map is essentially a two dimensional matrix generated by 

organising all the OR-Fs on a specific chromosome into two identical axes; ORFs are 

arranged by the sequential order they appear on the chromosome. If the number of 

ORFs on a chromosome is equal to N, then the number of squares in the matrix 

equals N2. Each square in the matrix represents the Pearson correlation coefficient of 
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the two ORFs the square corresponds to. The Pearson correlation coefficient for each 

square in the matrix is represented with a colour gradient to give a visual 

representation of the coexpression of genes along the chromosome; bright greens 

represent high Pearson correlation coefficients (positive correlation) whereas bright 

reds represent low Pearson correlation coefficients (anti-correlation). An example 

chromosome correlation map for a small hypothetical chromosomal region is 

displayed in Figure 7.1. The bright green diagonal line from the top left corner of the 

map to the bottom right corner corresponds to the Pearson correlation coefficients of 

each ORF with itsel I: cach ORF has an identical pattern of expression with itself 

the Pearson correlation coetlicieni is al\\ uvs  equal to I in these cases. ORFs that 

have correlated expression and are physically close together form green regions 

around the diagonal: an example region is highlighted in blue in Figure 7.1. 

ORF No 

Figure 7.1: Chromosome Correlation Map 
This is a figure of an example chromosome correlation map for a small hypothetical 
chromosomal region containing 5 ORFs. The map is essentially a two-dimensional matrix 
:hat displays the Pearson correlation coefficient of every ORF with every other ORF. The 
bright green diagonal from the top left corner to the bottom right corresponds to Pearson 
correlation coefficient of each ORE with itself which is always equal to 1. ORFs that have 
correlated expression and are physically close together form green regions around the 
diagonal as highlighted by the blue box. 
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7.3: YETI Genome vs Transcriptome Section 

The Genome vs Transcriptome Section of YETI was used to perform the genome vs 

transcriptome correlation analysis, to find and investigate chromosomal regions 

exhibiting coexpression and to investigate if there was an overall tendency for genes 

located next to each other in the genome to be coexpressed. In this section, YETI 

displays the chromosome correlation map for a selected chromosome (Figure 7.2); 

the expression data used in every chromosome correlation map is currently from the 

Gasch et al. (2000) data set. All the genomic features on the selected chromosome 

(i.e. ORFs as well as [amongst others] tRNAs and rRNAs) are represented on the 

map to give a realistic impression of whether ORFs are physically adjacent or not; 

however, dubious ORFs are not displayed on the map as these are highly unlikely to 

be real genes. Any genomic feature that does not have expression data available is 

still represented on the map with the missing expression data displayed with black 

squares. The correlation maps YETI displays enable regions of coexpression on the 

chromosome to be rapidly found. These regions could involve ORFs that are 

physically close forming bright green regions around the diagonal or involve ORFs 

that are physically distant forming bright green regions elsewhere in the map. Any 

region of interest on the map can easily be selected enabling all the ORFs contained 

within this region to be collectively investigated in further detail in the other sections 

of YETI. In addition, there is also a Find function to highlight the location of any 

specific ORF of interest on the map. 
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Figure 7.2: Screenshot of the Genome vs Transcriptome Section of YETI 
This is a screenshot of the Genome vs Transcriptome Section of YETI which displays the 
chromosome correlation map of a selected chromosome. Furthermore, a data table 
containing information on all the adjacent ORFs that are significantly coexpressed is also 
displayed. In this figure, the correlation map for chromosome 6 is displayed. 

In addition to the actual chromosomal correlation map, this section of YET! also 

includes a data table containing information on all the adjacent ORFs on the selected 

chromosome that are coexpressed; this table therefore gives an immediate overview 

of all the regions of coexpression on the chromosome which can then be investigated 

further. In YET!, adjacent ORFs are defined as two ORFs located on the same 

chromosome with no other genomic features between them and the default definition 

of coexpressed is two adjacent ORFs with a Pearson correlation coefficient equal to 

or above the standard cutoff of 0.7. In the data table, coexpressed adjacent ORFs are 

sorted by the order they appear on the chromosome enabling the user to easily and 

rapidly find chromosomal regions exhibiting coexpression. For example, in addition 
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to clearly showing all the coexpressed adjacent ORFs, the table could show that 

multiple coexpressed adjacent ORFs form larger coexpressed regions such as triplets 

or quadruplets. Furthermore, the data table contains the primary GO annotations of 

every ORF enabling the user to rapidly see if the ORFs in coexpressed regions share 

the same or similar functions. Additional features of the data table include: (1) A 

Cutoff function to change the Pearson correlation coefficient cutoff of coexpressed 

adjacent ORFs displayed in the data table; (2) A Highlight function to highlight the 

location of any of the coexpressed adjacent ORFs displayed in the data table on the 

chromosome correlation map; and (3) A direct link from the data table to the 

Analysis Section enabling any of the coexpressed adjacent ORFs displayed in the 

table to be investigated in further detail in the other sections of YETI. 

7.4: Chromosomal Regions of Coexpression 

The correlation map for each of the 16 nuclear chromosomes of S. cerevisiae was 

analysed in the Genome vs Transcriptome Section of YETI to find regions of 

coexpression. A number of interesting regions were found and subsequently selected 

and investigated further using the other sections of YETI; a comprehensive account 

of the findings is presented in the case studies below. 

7.4.1: Galactose Metabolism 

Using YETI to analyse the correlation map of chromosome 2 reveals a triplet of 

adjacent ORFs that are all highly coexpressed with one another (Figure 7.3). These 
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three ORFs are YBROI8C/GAL7, YBRO19C/GAL1O and YBR020W/GAL1 and are 

all characterised with the 'galactose metabolism' GO biological process annotation. 

As these three ORFs are colocated, coexpressed and share the same GO annotation it 

was decided to investigate them in further detail in YETI. 

Figure 7.3: Chromosomal correlation map of the galactose genes on chromosome 2 
This is an image of the chromosomal region surrounding the three genes involved in 
galactose metabolism on chromosome 2. The location of the three genes (GAL7, GAL10, 
GALl) is highlighted with the blue box. As can be seen the adjacent ORFs are highly 
coexpressed with one another. 

The Transcriptome Section of YETI shows that these three genes (now assigned to 

the red YETI group) are located right next to each other in the gene expression 

hierarchical 11cc (Figure 7.4). As these genes are involved in the same biological 

process and their expression appears to he tightly coregulated, other genes located in 

this legion ol the tree could cit he in \ olved in galactosc metahol i sni as ell (or a 

related biological process): this could enable functional roles for any unknown genes 

in this region to be inferred. To this end, the surrounding genes in the tree were also 

selectedassigned to the green YETI group) and investigated further. YETI shows 

diat there are indeed three additional cenes involved in galactose metabolism located 

in the,  lecion ol the lice. naniek (i:\L2 , GAL3 and GAL80. There are also three 

other genes located within this galactose cluster and they are F1.JR4, MRF1 and 

\TA1,I2 which are involved in 'uracil transport'. 'protein biosynthesis' and 'maltose 
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catabolism', respectively. However, no genes of unknown function were found in 

this region so no functional roles could be investigated or inferred in this instance. 

Figure 7.4: The galactose cluster region of the gene expression hierarchical tree 
This is a figure of the gene expression hierarchical tree with the location of the three 
adjacent genes involved in galactose metabolism located on chromosome 2 highlighted in 
red. The surrounding genes in the tree have subsequently been selected for further 
investigation and highlighted in green. 

The Pi'oieome Section of YET! can he used to in'. estiate ". hethei' the Identified 

llroteins invoked in galactose metabolism are interacting with one another to achieve 

their biological goals and to also investigate what other proteins they are interacting 

ith; if any proteins of unknown function interact with a number of galactose 

proteins this could alio'.valunctional role to he inferred. YET! sho'.'. s that mans (hut 

not aH) ot the idenlilied cnes in\ol\ed in LalLlctosc metaholisni interact directly 

\'. it  one another forming a large cluster of interactions (Figure 7.5); this cluster also 

reveals the presence of yet another protein involved in galactose metabolism, namely 

(i,\L4 which interacts directly with GAL80. Another interesting observation is that 

the three oiwinal eaiactoc eenc colocatcd on chl noome 2 G,\l.7. (,\LIC) and 

(:\l.l do not appear to I ntcraci dlrcctl\ '.'.ith one an >thcr. I lo'.'. c cr. (i\l .7 and 

GAL1 both interact with SER3 which is involved in 'serine family amino acid 

hiosynthesis'. These two interactions could well be false positives given that SER3 is 

I n \ '. cd in uc h clll in ic .itcd hi 1 i cal process; furthermore, these interactions have 

onI\ hcen ieported once and come from tile No ci ul. (20)1 ) study \\ 111k:11  i reno". ned 
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for false-positives. The additional genes that were colocated in the gene expression 

hierarchical tree (FUR4, IvIIRF1 and MAL12) were not found to interact directly with 

any of the galactose proteins or clusters which suggests that, despite their colocation 

in the hierarchical tree, they are not directly involved in the process of galactose 

metabolism. Indeed, investigating these genes individually shows that none of them 

are directly coexpressed (Pearson >= 0.7) with any of the galactose metabolism 

genes. On the other hand, although GAL2 (which was also identified from the 

hierarchical tree) does not interact with the other galactose proteins, it is significantly 

coexpressed with GALl further linking it to the process of galactose metabolism. 

Overall, the proteins known to be involved in galactose metabolism interact with a 

number of other proteins involved in a wide variety of biological processes but there 

does not appear to be any common biological processes among them. Furthermore, 

there are no proteins of unknown function that interact with any of the galactose 

proteins so no functional roles could be investigated or inferred in this instance. 
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Figure 7.5: Protein interaction map of the identified galactose metabolism proteins 
This is a figure of all the protein-protein interactions involving the original three adjacent 
galactose metabolism genes identified on chromosome 2 (highlighted in red) and the 
additional genes selected from the gene expression hierarchical tree (highlighted in green). 
As can be seen many of the galactose (GAL) genes interact directly and indirectly with each 
other forming a large cluster of interacting proteins. 

At thi s  ' point, it is \\ ()Fth coinpaflflg the ObSeF\ atiofl iYiade thli)ugh Lii ng YETI to 

what is alread y kno 11 about the galactose nietabo! i sm pathway. The galactose 

metabolism pathway has been extensively studied with the majority of components 

already identified and characterised (for example, see Lohr et al., 1995). It is a 

classic e\ample of a genetic regulatory switch, in which enzymes required for the 

tran'port and catabolism ot ga!aCtse are e\pressed only when galactose is present 

and UCJiICssIflC sucars such us I UCOSC LIb'cnt ( ldeker et al., 2001). An overview of 

the pathway is presented in Figure 7.6. The first component of the pathway is GAL2 

which encodes a galactose permease that transports galactose into the cell. Next are 
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the enzymatic proteins of the pathway consisting of GAL10 (galactose mutarotase & 

UDP-glucose 4-epimerase), GAL 1 (galactokinase), GAL7 (galactose- 1-phosphate 

undyl transferase), and PGM2 and PGM1 (both phosphoglucomutases). GAL4, 

GAL3 and GAL80 are all involved in the regulation of the enzymatic proteins and 

transporter. GALA is a DNA-binding factor that can strongly activate their 

transcription, but in the absence of galactose GAL80 binds to the activation domain 

of GAL4 and inhibits its activity. When galactose is present in the cell, it causes the 

activation of GAL3 which can bind to GAL80 and alter the GAL4/GAL80 complex; 

this causes the GALA activation domain to become available and results in the high 

expression of the enzymatic and transporter genes (Larschan et al., 2001; Ideker et 

al., 2001). It is important to note that the transporter gene GAL2 has a higher basal 

level of expression than the enzymatic genes because there needs to be an initial 

amount of transporters on the cell membrane to transport the galactose into the cell to 

begin with. 
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Figure 7.6: Overview of the S. cerevisiae galactose metabolism pathway 
This figure presents an overview of the galactose metabolism pathway from the transport of 
galactose into the cell by GAL2 to the production of glucose-6-phosphate by PGM2 and 
PGM1. Proteins highlighted in red are the galactose proteins colocated on chromosome 2 
and proteins highlighted in blue are galactose proteins located on other chromosomes. This 
figure is based on the galactose metabolism pathway picture from the Saccharomyces 
Genome Database (SGD: Cherry et al., 1998). 
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Although YETI does not necessarily reveal anything new about the process of 

galactose metabolism, this case study does demonstrate the potential of YETI as it 

was able to easily and rapidly identify the majority of this pathway based on the 

experimental data. Firstly, the Genome vs Transcriptome Section highlighted that 

three adjacent genes on chromosome 2 (GAL7, GALl, GAL1O) were highly 

coexpressed. Secondly, the Transcnptome Section showed that these three genes 

were located in the same region of the hierarchical tree as GAL2; this is now 

expected as these four genes are the core components of the galactose metabolism 

pathway and are regulated by the same factors. Thirdly, the Transcriptome Section 

also showed that GAL80 and GAL3 were located in the same region of the 

hierarchical tree as the above four genes. Furthermore, the Proteome Section showed 

that GAL80 interacts directly with both GAL3 and GALA (as well as GALl); this is 

now expected as the interaction of GAL80 with GAL3 and GAL4 is the main 

regulatory mechanism of the galactose metabolism pathway. YETI could not assign 

any new genes of unknown function to this biological process but this is probably to 

be expected as this pathway is so well studied. However, it is important to note that 

had the function of any of the GAL genes been unknown then YETI would have 

successfully highlighted their potential involvement in galactose metabolism based 

on their chromosomal location, gene expression and/or protein interactions. 

However, YETI did not manage to associate PGM1 or PGM2 with the other 

galactose metabolism genes. This can be explained by the fact that none of the 

enzymatic proteins of the pathway appear to interact with each other or with the 

transporter protein; this could be due to poor coverage and false-negatives resulting 
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in an incomplete protein-protein interaction data set or could be expected as these 

enzymes may not need to interact with other proteins to fulfil their biological 

functions. Furthermore, PGM1 and PGM2 do not share similar patterns of expression 

with the GAL genes because PGM1 and PGM2 are involved in many metabolic 

pathways (e.g. galactose metabolism, glycogen catabolism, lactose degradation and 

sucrose biosynthesis) which means the expression of PGM1 and PGM2 differs from 

the expression of the other GAL genes in the presence of other sugars. 

In general, this case study highlights a number of the advantages of YETI. One of the 

main aims of YETI was to provide clear graphical representations that enable users 

to easily and rapidly explore the stored data sets and find interesting features. This is 

exemplified by the chromosome correlation maps which enable users to rapidly 

explore possible correlations between gene location and expression and easily select 

any regions of interest to investigate further. Furthermore, the group approach 

combined with the inter-linked sections of YETI enables users to collectively 

investigate if and how a group of potentially related genes are working together in 

order to achieve their biological goal and to also investigate what other 

genes/proteins they may be working with. This is demonstrated quite well in this 

case study as starting from a triplet of coexpressed genes involved in galactose 

metabolism, which YETI automatically highlighted, YETI was able to associate 

them with the majority of the other galactose genes through the collective 

investigation of their expression and interaction partners. Although in this instance, 

nothing new was highlighted about the process of galactose metabolism, it does show 
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the potential for such an approach in a less well studied biological process or 

organism. 

7.4.2: Allantoin Degradation 

Using YETI to analyse the correlation map of chromosome 9 reveals a group of six 

adjacent ORFs that are all highly coexpressed with one another (Figure 7.7). These 

six ORFs are YIIR027CTDAL1, YIR028WIDAL4, YIIR029W/DAL2, 

YIR030CIDCG1, YIR03 1CIDAL7, YIR032C/DAL3 which are all characterised with 

allantoin degradation related GO biological process annotations; allantoin is a 

nitrogen source that can be degraded to form urea. As all six genes in this cluster 

were involved in the same biological process and also highly coexpressed together, 

the genes themselves as well as the overall biological process were investigated in 

further detail using YETI. 
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Figure 7.7: Chromosome correlation map of the DAL cluster on chromosome 9 
This is an image of the chromosomal region surrounding the six coexpressed adjacent 
genes involved in allantoin degradation on chromosome 9 (the DAL cluster); the location of 
the DAL cluster is highlighted with the blue arrow. Upstream is a triplet of genes that are 
coexpressed with the DAL cluster. This triplet also contains another DAL gene (DAL81) 
which is highlighted with the red arrow; the dotted red arrow indicates the region displaying 
the coexpression between the triplet and the DAL cluster. Downstream is a single gene of 
unknown function called YIR042C (highlighted with the pink arrow) that is also coexpressed 
with the DAL cluster; the dotted pink line indicates the region displaying the coexpression 
between YIR042C and the DAL cluster. 
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genes located in this region of the tree could well be involved in the same or related 

biological processes; this could enable possible functions for any unknown genes in 

this region to be inferred (the concept of guilt by association). Indeed, YETI shows 

that this region of the tree contains an additional three genes characterised as being 

involved in the allantoin degradation pathway; specifically: DAL80, DAL5 and 

DUR3. Furthermore, there are a number of other genes involved in the metabolism of 

nitrogen compounds; for example: MEP1 and MIEP2 (ammonium permeases); ASP3-

1, APS3-2, ASP3-3 and ASP3-4 (asparaginases); and GAT1 and GLN3 

(transcriptional activators of genes involved in nitrogen catabolite repression). 

However, there are also a large number of proteins involved in the metabolism of 

sulphur compounds located in this region of the tree as well; for example: SUL1 and 

SUL2 (sulphate transport); MET4, MET28 and MET32 (sulphur amino acid 

metabolism); MET1O (sulphate assimilation); and MET1, MIET2, MET3 and MET16 

(methionine metabolism). Furthermore, there are also a number of genes of unknown 

function located in this region of the tree; specifically: YBR147W, YDL183C, 

YGR125W, YIL165C, YIR042C (which was also identified from the chromosome 

correlation map), YLR053C and YLR364W. Possible functional roles for these 

unknown genes are discussed later. 
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Figure 7.8: The DAL cluster region of the gene expression hierarchical tree 
This is a figure of the gene expression hierarchical tree with the location of the six members 
of the DAL cluster located on chromosome 9 highlighted in green. The other genes in this 
cluster of the tree have subsequently been selected for further investigation and highlighted 
in red. 
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pathway-specific induction by allantoin or the intermediate allophanate. These 

regulatory effects are mediated by cis-acting DNA elements and the trans-acting 

factors GLN3, GAT1, DAL80, DAL81, and DAL82 (Cherry et al., 1998; Rai et al., 

1999; Scott et al., 2000; Magasanik et al., 2002). A recent study (Wong et al., 2005) 

showed that the DAL cluster was assembled quite recently in evolutionary terms 

through a set of genomic rearrangements that happened almost simultaneously. This 

study showed that six genes involved in allantoin degradation, which were 

previously scattered around the genome, became relocated to a single subtelomeric 

site in an ancestor of S. cerevisiae (thus forming the DAL cluster). This genomic 

rearrangement coincided with a biochemical reorganisation of the purine degradation 

pathway which switched to importing allantoin instead of urate. 
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Figure 7.9: Overview of the S. cerevisiae allantoin degradation pathway 
This figure presents an overview of the allantoin degradation pathway from the transport of 
allantoin and allantoate into the cell by DAL4 and DAL5, respectively, to the production of 
urea and malate by DUAl ,2 and DAL7, respectively. Proteins highlighted in red are the 
members of the DAL gene cluster located on chromosome 9 and proteins highlighted in blue 
are located on other chromosomes. This figure is based on Figure 1 from Wong et al. (2005). 
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with each other; this is now expected as these six proteins are the core components of 

the allantoin degradation pathway. This section also highlighted a triplet of genes 

which included DAL8 1 upstream that were coexpressed with the DAL cluster; this 

observation is now expected as DAL8 1 is a positive regulator of genes in multiple 

nitrogen degradation pathways. The Transcnptome Section showed that the six genes 

of the DAL cluster were located in the same region of the gene expression 

hierarchical tree as DAL80, DAL5, DUR3, GLN3 and GAT1 as well as numerous 

other genes involved in nitrogen compound metabolism; this is now expected as 

DAL5 is an allantoate permease and DUR3 is a urea transporter induced by 

allophanate, while DAL80, GLN3 and GAT1 are all involved in the regulation of the 

allantoin degradation pathway. Although the above findings are now expected, it is 

again important to note that had the function of any of the above genes been 

unknown then YETI would have successfully highlighted their potential involvement 

in allantoin degradation, or the broader nitrogen compound metabolism process, 

based on their chromosomal location and gene expression patterns. 

However, YETI did not manage to associate DAL82 or DUR1,2 with the rest of the 

allantoin pathway. As DAL82 is a positive regulator of allophanate inducible genes it 

is quite surprising that it is not located with the DAL cluster in the gene expression 

hierarchical tree. However, by examining DAL82 individually (via its Datasheet 

Window) YETI shows that the genes it is most highly coexpressed with are DAM (R 

= 0.782) and DTJR3 (R = 0.769) linking it to the allantoin degradation pathway. The 

lack of association of DAL82 with the other allantoin genes in the gene expression 

hierarchical tree could be explained by the way the (pairwise average linkage) 
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hierarchical clustering process proceeds; i.e. the distance between two clusters is 

calculated as the average distance between all members of the first cluster and all 

members of the second cluster. The non-association of DUR1,2 could be explained 

by the fact the degradation of urea is a generic reaction which is involved in many 

pathways not just allantoin degradation. Therefore, DUR1,2 could have a high basal 

level of transcription which does not change drastically; this theory seems to be 

supported by the expression data of DUR1,2 which shows its relative level of 

expression does not change dramatically in virtually all microarray experiments of 

the Gasch et al. (2000) data set. 

Interestingly, the Proteome Section shows that none of the proteins involved in the 

allantoin degradation pathway interact with one another; in fact, they interact with 

very few proteins. This is similar to the observation that none of the core proteins 

involved in galactose metabolism interact directly with one another and again could 

be explained by an incomplete protein-protein interaction data set or by the fact that 

the enzymes involved do not need to interact with each other to achieve the 

biological functions. 

As described above, there were a number of genes of unknown function located in 

the same region of the hierarchical tree as the DAL cluster; specifically: YBR147W, 

YDL183C, YGR125W, YIL165C, YIR042C, YLR053C and YLR364W. As these 

unknown genes are located in the same region of the hierarchical tree as many genes 

involved in sulphur and nitrogen compound metabolism they could well be involved 

in similar biological processes; although this is quite a broad functional assignment it 
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is a starting point for further investigation and experimentation. Interestingly, these 

results are supported to some degree by a recent study which used microarrays to 

characterise the transcriptional response of S. cerevisiae to growth limitation by 

carbon, nitrogen, phosphorus or sulphur (Boer et al., 2003). In this study, both 

YIR042C and YLR364W were reported to be part of a group of genes that had 

'specifically higher expression under sulphur limitation' along with many other 

genes involved in the metabolism of sulphur compounds; while YLR053C was 

reported to be part of a group of genes that had 'specifically higher expression under 

nitrogen limitation' along with many other genes involved in the metabolism of 

nitrogen compounds. However, YETI shows that YIR042C is highly coexpressed 

with mostly nitrogen not sulphur compound metabolism genes; furthermore, the five 

genes YIR042C is most highly coexpressed with are DUR3 (0.904), DAL5 (0.884), 

DAL7 (0.866), DAIA (0.836) and DCG1 (0.813) all of which are involved in the 

allantoin degradation pathway. In addition, YIR042C was also highlighted on the 

initial correlation map of chromosome 9 as a gene displaying correlated expression 

with the DAL cluster. Therefore, the observations presented here suggest that 

YIR042C is more likely to be involved in nitrogen rather than sulphur compound 

metabolism and could well be involved in the allantion degradation pathway. 

However, these observations can only be proven by experiments in the laboratory; 

possible experiments include gene knockouts combined with growth on various 

nitrogen or sulphur compound limited mediums to examine any growth defects, and 

also microarray experiments monitoring gene expression under these mediums. 
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Overall, this case study is similar to the galactose metabolism case study presented 

above and highlights the same advantages of YETI; the group approach combined 

with the inter-linked sections of YETI enables users to collectively investigate if and 

how a group of potentially related genes are working together in order to achieve 

their biological goal and to also investigate what other genes/proteins they may be 

working with. However, in this case study all the associations came from 

observations of chromosomal location and gene expression while the protein 

interactions did not yield any useful information. In particular, a large cluster of 

genes was found in the gene expression hierarchical tree that contained many genes 

involved in the metabolism of nitrogen and sulphur compounds; this enabled possible 

(broad) functional roles for a number of unknown genes located in the cluster to be 

inferred. Therefore, if the protein-protein interaction data set is indeed incomplete, 

perhaps more information about if and how the allantoin degradation proteins are 

working together could be yielded from the Proteome Section in the future. 

7.4.3: Helicases 

Using YETI to analyse the correlation map of chromosome 2 reveals a triplet of 

adjacent ORFs (YBL113C, YBL112C and YBL111C) located in the left arm 

telomere that are all highly coexpressed with one another (Figure 7.10). YBL112C 

and YBL111C are both ORFs of unknown function whereas YBL113C is an ORF for 

which little is known but has been characterised with the 'helicase activity' GO 

molecular function annotation. As these three ORFs are all highly coexpressed with 

one another they could all be involved in similar biological process and perhaps have 
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similar functions (the concept of guilt by association). Therefore, the two ORFs of 

unknown function in this region could also have helicase activity and YET! was used 

to investigate this hypothesis further. 

Figure 7.10: Chromosome correlation map of left arm telomere of chromosome 2 
This is a screenshot of the chromosome correlation map of the left arm telomere of 
chromosome 2. There is a triplet of adjacent ORFs (YBL1 130, YBL1 12C, YBL1 11 C) that are 
all highly coexpressed with one another, located at the end of the chromosome arm 
(highlighted with the blue box). 

The Transeriptome Section of YETI shows that the three adjacent ORFs are all 

!ocated in the same region of the gene expression hierarchical tree (Figure 7.11). 

Using YET! to select all the other genes from this region of the tree shows that 
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the ORFs in this region of the hierarchical tree are located in the telomeric regions of 

the nuclear chromosomes (Figure 7.12). Therefore, given that all the genes in this 

e"ion of the tree are similarly coexpressed and similarly colocated in the genome, 

and that haft o the icnc in this region are already characterised with a helicase 
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experiments to validate this observation would be gene knockouts to observe any 

growth defects. However, given the shear number of genes with potential 'helicase 

activity' they could well have redundant functions so multiple gene knockouts may 

well be needed to observe any growth defects. 

In particular, this case study highlights the utility of the Genome Section of YETI for 

investigating whether a group of genes are related through similar genomic locations. 

Furthermore, it also demonstrates how the expression data set can be analysed in 

conjunction with other data sets. For example, in this case study a specific cluster of 

interest was identified in the gene expression hierarchical tree; YETI enabled all the 

genes within this cluster to be selected and collectively investigated in further detail 

to examine if they shared similar annotations, if they were located in similar 

chromosomal regions or if they encoded proteins that interact with one another. 

However, in this case study (as with the previous case studies) the protein-protein 

interaction data did not yield any useful information; the corresponding proteins of 

the genes located in this region of the tree interact with few proteins and none of 

them interact with each other or with any common proteins. 
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Figure 7.11: The helicase region of the gene expression hierarchical tree 
This is a figure of the gene expression hierarchical tree with the location of the three 
adjacent coexpressed OAFs from the telomeric region of the left arm of chromosome 2 
(YBL113C, YBL112C and YBL11C) highlighted in green. The surrounding genes in the tree 
have subsequently been selected for further investigation and highlighted in red. 
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Figure 7.12: The genomic location of the helicase gene expression cluster genes 
This is a screenshot of the Genome Section of YETI where the location of all the genes 
located in the same region of the gene expression hierarchical tree as YBL1 13C, YBL1 12C 
and YBL111C are highlighted on the genome schematic. YBL113C, YBL112C and YBL11C 
are highlighted in green and all other genes are highlighted in red. As can be seen, all the 
genes are located in the telomeric regions of the chromosomes. 
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7.5: All Coexpressed Adjacent ORFs 

In addition to displaying the chromosome correlation map for a selected nuclear 

chromosome of S. cerevisiae, this section of YETI can also display a single data 

table containing information on all the coexpressed adjacent ORFs in the entire S. 

cerevisiae genome (Figure 7.13); the are a total of 158 coexpressed adjacent ORFs in 

the genome and a statistical analysis of whether this observed number is significant is 

presented below in section 7.6 of this chapter. This table contains the names and 

primary GO annotations for each pair of adjacent coexpressed ORFs along with the 

Pearson correlation coefficient of the pair; the ORF pairs displayed in the table are 

sorted by chromosome number followed by ORF order. Therefore, this table enables 

users to rapidly examine all the coexpressed adjacent ORFs in the genome, find 

larger coexpressed regions on the chromosomes and examine if there are any 

common GO annotations for coexpressed adjacent ORFs across the genome. The 

table also has a number of data filters to control which coexpressed adjacent ORFs 

are displayed which can help users find interesting regions exhibiting coexpression; 

they can be used, for example, to find all the coexpressed adjacent ORFs whose 

corresponding proteins also interact with one-another or all the coexpressed adjacent 

ORFs that are involved in the same biological process. Users are also able to lower 

the Pearson correlation coefficient cutoff value for coexpressed adjacent ORFs to be 

displayed in the table; the default cutoff value is 0.7. In addition, the table is linked to 

the Analysis Section enabling any ORF pairs of interest to be selected and 

investigated further in the other sections of YETI. 
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Figure 7.13: Screenshot of the Genome vs Transcriptome correlation table 
This is a screenshot of the Genome vs Transcriptome correlation table which contains 
iriiorrriation on ali the coexpressed adjacent OAFs in the S cerevisiaegenome. 
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7.5.1: Structural Constituent of Ribosome 

The most common GO molecular function annotation represented in the table 

containing all the coexpressed adjacent OR-Fs in the S. cerevisiae genome was the 

'structural constituent of ribosome' annotation; this annotation is typically 

accompanied with the 'protein biosynthesis' biological process annotation. Out of a 

total of 158 coexpressed adjacent ORFs found in the genome, there were 24 cases 

where at least one of the two adjacent ORFs were characterised with the 'structural 

constituent of ribosome' annotation; furthermore, there were 9 cases where both 

coexpressed adjacent ORFs were characterised with this annotation and five cases of 

triplets of coexpressed adjacent ORFs involving this annotation. 

There were three cases where an ORF of unknown function was coexpressed with an 

adjacent 'structural constituent of ribosome' ORF; specifically: YBL028C, 

YKL137W and YLR063W. As these ORFs are colocated and coexpressed with a 

'structural constituent of ribosome' gene, they could well be involved in a related 

biological process. Indeed, YETI shows that YBL028C is located in the nucleolus 

and is highly coexpressed with many genes characterised with the 'ribosomal large 

subunit biogenesis' biological process annotation; furthermore, all of these genes are 

also characterised as being located in the nucleolus which further suggests that 

YBL028C could well be involved in this biological process. In addition, YETI shows 

that YKL137W is coexpressed with just three genes all of which are 'structural 
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constituent of ribosome' genes while YLR063W is coexpressed with many genes 

involved in various tRNA and rRNA biological processes. 

Due to the frequency of the 'structural constituent of ribosome' annotation 

appearing, this annotation was investigated in further detail using YETI. The 

'structural constituent of ribosome' molecular function annotation alone does not 

reveal the whole story, as within this group are two sub-groups defined by the 

accompanying cellular component annotations: (1) Cytosolic Group: consisting of 

the 'cytosolic small ribosomal subunit (sensu Eukaryota)' [63 ORFs] and the 

'cytosolic large ribosomal subunit (sensu Eukaryota)' [93 ORFs]; and (2) 

Mitochondrial Group: consisting of the 'mitochondrial small ribosomal subunit 

(sensu Eukaryota)' [35 ORF5] and the 'mitochondrial large ribosomal subunit (sensu 

Eukaryota)' [44 ORFs]. YETI can effectively be used to collectively investigate and 

compare the properties of these two groups by assigning the components of the 

cytosolic subunits to the red group and the components of the mitochondrial subunits 

to the green group. Interestingly, only 1 out of the 24 cases of coexpressed adjacent 

ORFs involved a component of a mitochondrial ribosomal subunit; the other 23 cases 

involved components of both the large and small cytosolic ribosomal subunits. 

Further examination of this observation in YETI reveals that very few components of 

the mitochondrial subunits are located next to each other compared to a number of 

neighbouring cytosolic subunit components. 

The Transcriptome Section, displaying the Gasch et al. (2000) data set, shows that a 

large number of the cytosolic subunit components are located in the same region of 
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the hierarchical tree forming a tight gene expression cluster (Figure 7.14); this cluster 

contains components of both the large and small cytosolic ribosomal subunits. A 

similar observation was also made by Gasch et al. (2000) who reported a large 

cluster of genes whose expression was repressed in the majority of environment 

stress conditions studied; this cluster was found to consist almost entirely of genes 

encoding ribosomal proteins, however, there was no mention of the fact that they 

were all components of the cytosolic ribosomal subunits in this study. In this 

instance, YETI can be used to investigate what other genes are located in this cluster 

which could allow a biological role for any genes of unknown function to be 

inferred. YETI shows that the other known genes in the cluster are characterised with 

molecular function annotations related to the ribosome such as 'translation initiation 

factor activity', 'RNA binding' and 'uracil phosphoribosyltransferase activity'. There 

are also three genes of unknown function in this region, namely YKL056C, 

YMR1 16C and YNL1 19W; therefore, these genes could well be components of the 

cytosolic ribosomal subunits or involved in a related biological process. Indeed, 

although YMR1 16C is characterised with a set of unknown GO annotations, it is 

described as a core component of the ribosome. In contrast to components of the 

cytosolic subunits, the mitochondrial subunit components form a number of much 

smaller clusters dispersed fairly evenly throughout the hierarchical tree; however, 

there is no cluster any where near the size of that observed for the cytosolic subunits. 
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Figure 7.14: The cytosolic ribosomal subunit region of the gene expression 
hierarchical tree 
This is a figure of the region of the gene expression hierarchical tree where a large cluster of 
cytosolic ribosomal subunit genes (highlighted in red) is observed. 

Interestingly, the Proteome Section appears to give contrasting observations to those 

made in the Transcriptome Section. The Proteome Section shows that the 

components of the mitochondrial subunits interact highly with one another forming 

two large connected interaction clusters whereas the components of the cytosolic 

subunits form a number of much smaller clusters. The interactions of the 

mitochondrial subunit components were examined further in YETI by assigning 

genes characterised with the 'mitochondrial large ribosomal subunit' and 

'mitochondrial small ribosomal subunit' annotations to the red and green groups, 

respectively. As can be seen in Figure 7.15, two distinct but connected clusters of 

proteins are formed. The first cluster is formed by the components of the large 
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subunit interacting highly with one another and the second cluster is formed by the 

components of the small subunit also interacting highly with one another. The two 

clusters are connected by a number of common (non-subunit) proteins such as 

T1F4631 (translation initiation factor activity) and PRP31 (RNA splicing factor 

activity) both of which are located in the mitochondrion. There are a number of 

proteins of unknown function in the two clusters but these tend to interact with just a 

single ribosomal subunit component; if an unknown protein interacted with many (as 

opposed to one) ribosomal subunit components this would increase the likelihood 

that it was involved a related biological process. 
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Figure 7.15: Protein-Protein interactions of the small and large mitochondrial 
ribosomal subunits 
This is a figure of all the protein-protein interactions involving all of the small and large 
mitochondrial ribosomal subunit proteins. Proteins of the large and small ribosomal subunits 
are highlighted in red and green, respectively. As can be seen the small and large subunits 
form two distinct but connected interaction cluster. 
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This case study highlights one of the main advantages of YETI in that it enables the 

properties of an entire group of functionally related genes to be analysed collectively 

This enables user to investigate the dynamics of how they are working together in 

order to achieve their biological goal and to also examine what other genes or 

proteins they may working with. As shown above, this can lead to potential 

biological roles being inferred for genes of unknown function through association 

with the functional group. Furthermore, this case study demonstrates how YETI can 

be used to compare the properties of multiple groups; for example, subunits of the 

same overall complex. In this case study, YETI shows that the cytosolic and 

mitochondrial ribosomal subunit components appear to have different properties. The 

majority of cytosolic subunit components are highly coexpressed but do not interact 

highly with one another. In contrast, the mitochondrial subunit components interact 

highly with one another but are coexpressed in a number of small clusters. However, 

the reasons for these differing observations for the cytosolic and mitochondrial 

subunits is not clear as it would seem likely that subunit components would need to 

be both coexpressed and be able to interact with one another in order to achieve their 

biological goals. The observations presented here could be explained by poor 

interaction data (with false-negatives and poor coverage concerning the cytosolic 

subunits) or poor expression data (where the conditions studied were not suitable to 

bring out the potential expression relationships between the mitochondrial subunit 

components). Alternatively, perhaps the mitochondrial subunit components are only 

needed in certain combinations for certain conditions. 
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7.6: Correlation Analysis Results 

The Genome vs Transcriptome Section of YETI showed that there are a total of 158 

coexpressed adjacent ORFs in the S. cerevisiae genome, using the Gasch et al. 

(2000) gene expression data set (Table 7.1). To test whether this observed number 

was statistically significant it was compared to the number expected derived from a 

control set of non-adjacent ORFs using the standard cumulative binomial distribution 

(http://mathworld.wolfram.comlBinomialDistribution.html ; Figure 7.16). The P-

value obtained for the 158 observed coexpressed adjacent ORFs using the cumulative 

binomial distribution was 2.95E-46 which suggests that these results are statistically 

significant. This statistically significant number of observed coexpressed adjacent 

ORFs is probably to be expected given that Cohen et al. (2000) performed their 

correlation analysis with three different gene expression data sets (cell cycle: Cho et 

at., 1998; sporulation: Chu et al., 1998; pheromone: Roberts et al., 2000) and 

reported statistically significant observed numbers in each case. Therefore, the 

results presented here further suggest that adjacent ORFs in the S. cerevisiae genome 

are more likely to be coexpressed with one another than non-adjacent ORFs. 

Furthermore, other studies that have combined DNA sequence and expression data 

have also revealed the existence of chromosomal domains of similarly expressed 

genes in several other organisms such as Drosophila melanogaster (Spellman et at., 

2002), Caenohabditis elegans (Lercher et al., 2003) and Arabidopsis thaliana (Ren 

et at., 2005). 
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Category Number 

Total 6,919 
Total Pairs 6,903 
Total Pairs with Expression Data 4,926 
Total Coexpressed Pairs 158 
P-Value 2.95E-46 

Table 7.1: Genome vs Transcriptome correlation analysis results 
This table contains an overview of the Genome vs Transcriptome correlation analysis 
results. 'Total' corresponds to the total number of genomic features (e.g. ORFs as well as 
[amongst others] tRNAs, rRNAs and centromeres) currently on the 16 nuclear chromosomes 
of S. cerevisiae; this number excludes dubious OAFs which are highly unlikely to be real 
genes. 'Total Pairs' corresponds to the total number of pairs of adjacent genomic features. 
'Total Pairs with Expression Data' corresponds to the total number of pairs with expression 
data available in the Gasch et al. (2000) study. 'Total Coexpressed Pairs' corresponds to the 
total number of pairs with expression data that have a Pearson correlation coefficient equal 
to or above 0.7. 'P-Value' corresponds to the probability of obtaining at least the observed 
number of coexpressed pairs calculated using the cumulative binomial distribution (Figure 
7.16). 
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Figure 7.16: Cumulative binomial distribution 
This figure shows the cumulative binomial distribution equation used to calculate the 
probability of obtaining at least the observed number of coexpressed adjacent OREs by 
chance. In this case: I = the total number of adjacent ORFs with expression data available 
analysed; i 0  = the observed number of coexpressed adjacent OREs; and p = the observed 
probability of two randomly picked non-adjacent genes having a Pearson correlation 
coefficient equal to or above 0.7. The observed probability was calculated by generating a 
control set of 4,926 pairs of non-adjacent ORF5 (with expression data) and counting the 
number of pairs with a Pearson correlation coefficient equal to or above 0.7. A total of ten 
control sets of 4,926 pairs of non-adjacent OREs were generated and the number of 
coexpressed pairs was found to range from 30 to 46 with an average of 39.6 which gives an 
observed probability of 39.6/4926 = 0.00804. 

7.7: Discussion 

Chromosome correlation maps (Cohen et al., 2000) enable the visualisation of 

coexpressed genes along the chromosomes of S. cerevisiae and enable users to find 

chromosomal regions exhibiting coexpression. Although the concept of chromosome 

correlation maps is by no means new, the main advantage that YETI offers is that 
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these maps are fully integrated with the rest of the system. This means that if a region 

of interest is found on a specific chromosomal correlation map it can easily be 

selected enabling all of the genes within this region to be collectively investigated in 

further detail in the other sections of YETI; this enables users to examine if and how 

the selected genes are working together to in order to achieve their biological goals 

and to also examine what other genes/proteins they may be working with. 

The case studies presented in this chapter not only demonstrate the usefulness of 

chromosome correlation maps in identifying chromosomal regions exhibiting 

coexpression but also highlight the utility of YETI as a tool to investigate the 

functions of the genes located within these regions. Although the galactose 

metabolism case study does not necessarily reveal anything new about this biological 

process, the fact that YETI was able to easily and rapidly identify the majority of this 

pathway based on the experimental data could be seen as confirmation that the 

system strategy works; with the strategy being the ability to select an initial feature 

of interest and then move through the data sets to see what else can be associated 

with it. Furthermore, in both the galactose and allantoin case studies YETI was able 

to identify the majority of the actual pathway components and their associated 

transcriptional regulators; this could suggest that YETI has a potential use in 

identifying gene regulatory networks. Furthermore, S. cerevisiae is one of the most 

well studied organisms, therefore if YETI could be applied to a less well studied 

organism will a fully sequenced genome, expression data and perhaps interaction 

data it has the potential to yield many interesting observations. 
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The case studies and analyses presented above were all based on observations made 

using a specific gene expression data set (Gasch et al., 2000); different gene 

expression data sets could well highlight different chromosomal regions of 

coexpression. Indeed, Cohen et al. (2000) analysed three different gene expression 

data sets and reported that the coexpression of an adjacent pair of genes in one data 

set was not predictive of its coexpression in the other data sets. Therefore, YETI has 

the potential to highlight many more chromosomal regions of coexpression through 

the analysis of additional gene expression data sets; any interesting regions that are 

found can then be investigated in further detail in YETI as demonstrated in the case 

studies. To the best of our knowledge, Genesis (Sturn et al., 2002) is the only other 

software tool capable of integrating gene location and gene expression data to 

generate chromosome correlation maps. However, although Genesis is an effective 

tool for the visualisation and analysis of gene expression data it does not currently 

consider protein-protein interaction data. Therefore, as the chromosome correlation 

maps are effectively integrated into the entire YETI system, any interesting regions 

that are found can be thoroughly investigated in all the other sections of YETI. 
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Chapter 8 

Discussion 



8.1: The Yeast Exploration Tool Integrator 

Over the past few years there has been a relative explosion of data in the biological 

sciences. At the heart of this data explosion is the budding yeast Saccharomyces 

cerevisiae (S. cerevisiae) which is one of the most widely studied eukaryotes due to 

its value as a model organism in biological research; it has a fully sequenced genome 

that is well annotated and a variety of publicly available functional genomic data 

sets. Analysis of this vast amount of data is a key challenge and computers in 

conjunction with effective software tools are an essential part of this process. There 

has been a rapid increase in the number of software tools available for the 

visualisation and analysis of individual types of functional genomic data sets. 

However, there are relatively few tools available that are capable of bringing together 

a number of different types of data sets for integrated visualisation and analysis. As 

many new biological insights are likely to emerge from the combined use of data 

from different functional genomic strategies, there is a need for a new generation of 

software tools that are capable of effectively utilising the wealth of data available for 

S. cerevisiae enabling users to perform integrative analyses. 

The Yeast Exploration Tool Integrator (YETI) is a novel bioinformatics tool for the 

integrated visualisation and analysis of S. cerevisiae functional genomic data sets. 

The YETI system consists of a database for the storage and management of data and 

a Java program for the integrated visualisation and analysis of data. YETI utilises 

publicly available data sets from a number of different functional genomic strategies, 

such as gene expression microarrays and yeast two-hybrid screens, and provides an 
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effective means for their integrated visualisation and analysis. YETI consists of a 

number of individual sections for the visualisation and analysis of functional 

genomic data sets which are closely inter-linked enabling users to swiftly move 

between them and investigate all aspects of any genes or proteins of interest as well 

as providing access to textual information, including Gene Ontology (GO) 

annotations, at any point. YETI enables users to easily explore the data in an 

integrated modular fashion, investigate the intricacies of broad biological processes 

and test specific hypotheses. 

The main advantages of YETI are its ease of use and its group approach for analysis 

combined with its inter-linked sections. YETI was designed with simplicity in mind 

with simple navigation mechanisms to move through the program, flexible search 

mechanisms and clear graphical representations of the data in unison with a number 

of advanced features and functionality. The inter-linked sections effectively integrate 

a number of functional genomic data sets together enabling users to swiftly move 

between data sets and investigate all aspects of any features of interest. The group 

approach enables all the proteins involved in an entire biological process to be 

collectively examined as a whole to investigate the dynamics of how they are 

working together to achieve their biological goal and to also examine what other 

proteins they may be working with. 
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8.2: Case Studies and Analyses 

A number of case studies were presented throughout this thesis which demonstrated 

the potential and utility of YETI in both single gene and group investigations. Firstly, 

a number of single gene case studies were presented which demonstrated how YETI 

could be used to investigate a potential function for a gene of unknown function. In 

actual fact, an associated computer program originally suggested a potential 

biological process for all the unknown genes and YETI was subsequently used to test 

these hypotheses and to try and associate the gene with the suggested biological 

process. Secondly, a number of much broader case studies were presented which 

investigated the properties of groups of genes highlighted from the correlation 

analyses. In addition to demonstrating the utility of YETI, these case studies also 

resulted in the prediction of potential functions for a number of genes of unknown 

function; an overview of all the functional predictions of all these case studies is 

presented in Table 8.1. These functional predictions are fairly tentative and, as 

always, need thorough validation through experiments in the laboratory. 
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Case Study Predictions 

5.2 MOM 
'negative regulation of gluconeogenesis' 

5.3 YKL056C, YMR116C, YMR321C, YJR124C, YJL193W and YBR025C 
'structural constituent of ribosome' 
'protein biosynthesis' 
'cytosolic small 	ribosomal subunit (sensu 	Eukaryota)' or 'cytosolic large 
ribosomal subunit (sensu Eukaryota)' 

5.4 'YMR148W' 
'aerobic respiration' or 'mitochondrial electron transport chain' 

5.5 'YLR364W' 
'sulphur metabolism' 

5.6 'lESS' 
'chromatin remodelling' 
'lN080 Complex'. 

6.6 SNZ2 and SNZ3 
'nucleus' 

7.4.2 YBR147W, YDL183C, YGR125W, YIL165C, YLR053C and YLR364W 
'nitrogen compound metabolism' or 'sulphur metabolism' 

YIRO42C 
'allantoin degradation' 

7.4.3 YBL1 13C, YBL1 12C and YBL1 11 C 
'helicase activity' or 'DNA helicase activity' 

7.5.1 YBL028C 
'ribosomal large subunit biogenesis' 

YKL056C, YMR1 16C and YNL1 19W 
'structural constituent of ribosome' 
'protein biosynthesis' 
'cytosolic small 	ribosomal subunit (sensu 	Eukaryota)' or 'cytosolic large 
ribosomal subunit (sensu Eukaryota)' 

Table 8.1: Functional predictions of all case studies 
This table contains all of the functional predictions made through all of the case studies. The 
case study number corresponds to the section number of this thesis that the case study is 
presented in. 
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The broader case studies all highlight how the group approach combined with the 

inter-linked sections of YETI enables users to collectively investigate if and how a 

group of potentially related genes are working together in order to achieve their 

biological goal and to also investigate what other genes/proteins they may be 

working with. Perhaps the best illustration of this is case study '7.4.1: Galactose 

Metabolism'. In this case study, YETI was able to easily and rapidly identify the 

majority of this pathway, including transcriptional regulators, starting from just a 

triplet of coexpressed genes and simply based on qualitative exploration of the data. 

Furthermore, this case study is a good illustration of how all the sections of YETI 

can be used in conjunction with one another and how an investigation can be 

expanded out through them. A 'workflow' diagram of how YETI was used in this 

case study is presented in Figure 8.1; this diagram shows how the investigation 

progressed through the various sections of YETI and what additional genes were 

identified at each point and selected for further investigation. 

These case studies also highlight the utility of some of the specific features and 

functions of YETI such as the genome schematic for investigating possible 

evolutionary relationships between two groups of genes and the chromosome 

window for investigating the similarity between chromosomal regions; a thorough 

discussion of the advantages and disadvantages highlighted is presented at the end of 

each case study. Overall, the case studies clearly show how YETI can easily and 

rapidly be used to investigate specific genes as well as groups of genes and that the 

effective integration of functional genomic data sets enabled many interesting 
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observations to be made. Furthermore, these case studies provide direct examples of 

the 'typical user questions' that YETI aims to address as detailed in Chapter 2. 
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Figure 8.1: Workflow diagram for galactose metabolism case study 
This is a workflow diagram which details how YETI was used in the galactose metabolism 
case study; boxes highlighted in red and green represent what genes were assigned to the 
red and green groups, respectively, at each stage. Initially, YETI highlighted a triplet of 
coexpressed genes on the correlation map of chromosome 2; further examination revealed 
these three genes were all involved in galactose metabolism. The Transcriptome Section 
showed that these three genes were located in the same region of the hierarchical tree; 
selecting and investigating the surrounding genes revealed the presence of more genes 
involved in galactose metabolism. The Proteome Section then showed that a number of the 
proteins involved in galactose metabolism interacted with one another and also revealed the 
presence of yet another protein involved in galactose metabolism. Examination of individual 
Pearson correlation coefficients and interaction confidence scores enabled some associated 
proteins to be ruled out leaving the core galactose metabolism proteins. A thorough 
description of this case study can be found in section 7.4.1 of this thesis. 
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One interesting and important observation is that there appears to be a conflict 

between the results of the Genome vs Transcriptome correlation analysis and the 

Genome vs Proteome correlation analysis. The Genome vs Transcriptome correlation 

analysis indicated that adjacent genes are more likely to be coexpressed with one 

another than non-adjacent genes. This analysis indicated that there was a statistically 

significant number of cases in the S. cerevisiae genome where adjacent genes are 

coexpressed. This colocation and coexpression suggests that these adjacent genes are 

likely to be involved in the same or a related biological process (the concept of guilt 

by association); indeed, numerous cases of adjacent genes involved in the same 

overall biological process were highlighted in the case studies above. However, the 

Genome vs Proteome correlation analysis indicated that there was no tendency for 

the genes of interacting proteins to be located near each on the genome. In this 

analysis, only eight neighbouring genes were found to encode protein products that 

interact with one another. In summary, the Genome vs Transcriptome correlation 

analysis indicated (through coexpression) that there was a tendency for neighbouring 

genes to be functionally related while the Genome vs Proteome correlation analysis 

indicated (through interaction) that there was no tendency for neighbouring to be 

functionally related. 

The Genome vs Transcriptome correlation analysis is unlikely to be incorrect given 

that it uses good quality data sets and that similar findings are reported elsewhere. 

The most likely cause of this conflict is an incomplete protein-protein interaction 
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data used in the Genome vs Proteome correlation analysis and a number of 

observations support this hypothesis: 

There are specific interactions missing from the data set that have been 

reported in scientific studies, for example, Rodriguez-Navarro et al. (2002) 

reported that SNZ2 and SNZ3 could interact directly with THu 11, as 

discussed previously in Chapter 6. This shows that the interaction data set is 

indeed incomplete from the sense that there are known interactions missing. 

The 'galactose metabolism' and 'allantoin degradation' case studies showed 

that none of the core components of these pathways interacted with one 

another despite their colocation and coexpression. Although this observation 

could be real, it could also indicate an incomplete interaction data set. 

The 'structural constituent of ribosome' case study showed that very few of 

the cytosolic subunit components interacted with one another while the 

mitochondrial subunit components interacted highly with one another. 

Although this observation could also be real, it again suggests and incomplete 

data set. 

As discussed in Chapter 7, four pairs of coexpressed adjacent histone genes 

were identified in the genome. However, given that histones almost certainly 

have to interact with one another in order to form nucleosomes and higher 

order chromosomal structures, only one of these four pairs are reported to 

interact with one another. Again, this suggests the possibility of an 

incomplete data set. 
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5) Out of the 158 coexpressed adjacent ORFs found in the genome, only one of 

these pairs encode proteins reported to interact with one another (the histones 

HTA1-HTB1); intuition suggests that there should be more. 

Therefore, the above observations strongly suggest that the protein-protein 

interaction data set is incomplete. Indeed, various studies have estimated that the 

—6,000 S. cerevisiae proteins are connected by as many as 40,000 interactions 

(Walihout et al., 2000; Tucker et al., 2001; Gngoriev et al., 2003; Uetz et al., 2005). 

However, the YETI database currently only stores 12,866 unique interactions. 

Furthermore, this represents the unfiltered data set which is therefore likely to 

contain many false-positives; the source of this data set is the (GRID; Breitkreutz et 

al., 2003) database which contains the interactions from many high and low-

throughput interaction studies. The incomplete protein-protein interactions is also 

highlighted by that fact that there is a lack of overlap between the different high-

throughput data sets themselves and also with published low-throughput studies 

which are generally considered to be less prone to false positives and false negatives 

(Ito et al., 2001; Grunenfelder et al., 2002; Cornell et al., 2004; Uetz et al., 2005). 

Taken together, this not only suggests that new or improved technologies are needed 

but also that more interactions could be detected by more exhaustive application of 

current techniques. Therefore, a more complete protein-protein interaction data set 

could well give better results for the Genome vs Proteome correlation analysis and 

eliminate the observed conflict with the Genome vs Transcriptome; this more 

complete data set will hopefully come with time. 
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8.3: Improvements to YETI 

The obvious improvement that can be made to YETI is higher quality data sets as 

well as more data sets. The protein-protein interaction data set used in YETI 

(Breitkreutz et al., 2003) was shown to be incomplete in the case studies and many of 

the interactions are derived from the yeast two-hybrid technique which is renowned 

for false-positive errors. Therefore, more protein-protein interaction data sets are 

needed in conjunction with effective confidence scores to assess their reliability; 

currently, YETI does apply a number of confidence scores to interactions on 

importation (such as times reported, cellular location and expression) and more data 

sets should hopefully come in time. The gene expression data currently utilised in 

YETI comes from two gene expression microarray studies (Gasch et al., 2000; Gasch 

et al., 2001) which monitor how S. cerevisiae cells respond to a wide variety of 

environmental conditions and DNA damaging agents. As different data sets are 

likely to highlight different relationships among the genes of S. cerevisiae it would 

now be useful to incorporate more data sets into the system giving users a choice of 

which expression data is considered in their investigations. The genome data set 

currently utilised in YETI comes from the Saccharomyces Genome Database (SGD; 

Cherry et al., 1998) which contains descriptions and annotations on all the genes in 

S. cerevisiae. However, additional information can often be obtained from the other 

major yeast databases such as MIPS (Mewes et al., 1998) and this additional 

information could be integrated into the YETI system in the future. Furthermore, the 

scientific literature contains a wealth of useful information such as reported protein 

interactions and functional predictions of unknown genes; therefore, the integration 
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of text mining technologies that can automatically identify and extract this 

information could be a useful development. 

One major addition that could be made to YETI is the introduction of sequence data 

and sequence analysis techniques into the system. This would be particularly useful 

when investigating the function of an unknown gene as it would enable users to 

examine what other genes in S. cerevisiae (and potentially other organisms) the 

unknown gene is related to in sequence and also enable them to examine what 

functional domains the gene's encoded protein contains. Furthermore, sequence data 

would enable users to investigate if specific regions of DNA are duplicated and if 

specific genes share similar promoter regions. In addition, groups of genes related by 

sequence could be constructed and then be collectively investigated in further detail 

in YETI. 

Another improvement that could be made to YETI is in the way it handles and using 

GO annotations. Firstly, the FPC Section of YETI simply displays an alphabetical 

list of all the GO annotations used to characterise the genes of S. cerevisiae enabling 

users to find and subsequently select annotations of interest. However, a graphical 

representation (for example, see AmiGO; http://www.godatabase.org/)  would enable 

users to browse the GO annotation system and examine the relationship between 

terms. Furthermore, this would enable users to construct much broader groups of 

functionally related genes through the selection of high level terms which would also 

result in the selection of all lower (or child) terms stemming from it. Secondly, when 

comparing the annotations of genes YETI simply checks if they share the same GO 
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annotations. For example, the Datasheet Window of YETI provides links to the 

Analysis Section that enable users to view all the other genes characterised with the 

same GO annotations. Although this is an essential feature it would also be useful to 

enable users to examine genes characterised with similar or related annotations and 

there a number of techniques that can measure the distance in nodes or semantic 

similarity between annotations (for example: see Lord et at., 2003). 

8.4: Extensions to YETI 

As discussed in this thesis, we have so far performed 'Genome vs Transcriptome' 

and 'Genome vs Proteome' correlation analyses and specific correlation sections of 

YETI were developed to facilitate these investigations. Therefore, the one remaining 

pair-wise correlation analysis to be performed is between the Proteome and 

Transcriptome to investigate if there is a tendency for proteins that interact with one 

another to be encoded by genes that are coexpressed. Currently, there is a relatively 

simple Proteome vs Transcriptome correlation section in YETI (Figure 8.2). This 

section simply displays a data table containing information on all the protein-protein 

interactions whose corresponding genes are coexpressed. The data table contains a 

number of filters to control what types of protein-protein interactions are displayed 

and is also linked to the Analysis Section enabling any interactions of interest to be 

selected and investigated in further detail in the other YETI sections. However, this 

section is relatively simple and needs further development; for example, an 

additional visualisation layer on top of the data table could enable correlations 

between the data sets to be investigated more easily. A number of analyses 
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investigating correlations between protein interaction and gene expression have 

already been performed (for example: Ge et al., 2001; Grigoriev et al., 2001; 

Mrowka et al., 2001; Jansen et al., 2002; Kemmeren et al., 2002). However, the 

advantage that YETI would offer is that any features highlighted through the analysis 

could be immediately be investigated in further detail in the other sections. 
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Figure 8.2: Screenshot of the Proteome vs Transcriptome Section 
This is a screenshot of the Proteome vs Transcriptorne section which currently displays a 
simple data table containing information on all the protein-protein interactions whose 
corresponding genes are coexpressed. The table contains a range of information on the 
interacting proteins such as descriptions and GO annotations as well as the Pearson 
correlation coefficient between the two corresponding genes. 

\Ithough YE -1 -1 was initially designed for the budding yeast S. cereri.riue, it was 

designed to be a flexible system that could be applied to other organisms with 

csc, Ho' k4\ to this application is the availability of an equivalent genome 
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data set which is the core data set of the YETI system as it contains the names, 

locations and descriptions of all the genes present in an organism and it is this data 

set that links all the other data sets in the system together. If an equivalent genome 

data set is available, the YETI system could be ported to virtually any other organism 

with only slight modifications to the program code and the underlying database 

structure. The Entrez Genome database (Schuler et al., 1996) contains data files for a 

large number of organisms that can be used as an ideal basic genome data set in 

YETI. To demonstrate this, a new version of YETI called YETI-0 was created which 

is concerned with the visualisation and analysis of the bacterial genomes available 

from the Entrez Genome database. To date, YETI-O has been successfully applied to 

four bacteria (Bacillus subtilis, Escherichia coli, Haemophilus influenzae and 

SI,c'wanella oneidensis) but could be applied to many more with relative ease. 

Currently, the YETI-O program only has the Analysis and Genome Sections 

available to the user (Figure 8.3). However, the Transcriptonic and Proteome 

Sections ol the original YETI progam can also be ported across to YETI-0 with 

relative case. Only slight modifications to the YETI program code and the underlying 

database structure would be needed to do this as long as similar gene expression and 

protein-protein interaction data sets were publicly available. Therefore, YETI has the 

potential to be a useful tool for many other researchers interested in exploring the 

lunclional cn)III ic data cts of othcr oranknm. 
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Figure 8.3: Screenshots of YETI-O 
These are screenshots of the Analysis (left) and Genome (right) Sections of YETI-O. In this 
case, the Analysis Section was used to perform a 'cytochrome' keyword search on gene 
descriptions and the Genome Section was subsequently used to highlight their locations on 
the chromosomal display. 

8.5: Comparison with Other Tools 

Essentially, each of the sections of YETI can be viewed as a distinct software tool. 

The Genome Section can be viewed as a genome and chromosome browser, the 

Transcriptome Section as a program for the visualisation of gene expression data, 

and the Proteome Section as a program for the visualisation of protein-protein 

interactions. There are a number of more advanced tools available to users when the 

specific sections of YETI are considered individually; for example: Genesis (Sturn et 

al., 2002) is a more advanced tool for the visualisation and analysis of gene 

expression data when compared to the Transcriptome Section; Cytoscape (Shannon 

et al., 2003) is a more advanced tool for the visualisation and analysis of protein-

protein interactions when compared to the Proteome Section; and Ensembi (Hubbard 

et al., 2002) is a more advanced genome browser than the Genome Section. 

However, the real advantage that YETI offers is that all of these tools (or sections) 
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are effectively inter-linked together enabling users to seamlessly move between them 

and investigate all aspects of any features of interest. 

Perhaps the most similar tool to YETI is the Genome Information Management 

System (GIMS; Cornell et al., 2003) which is an object database that integrates 

genomic data with data on the transcriptome, protein-protein interactions, metabolic 

pathways and GO annotations. GIMS is a much more powerful analysis tool than 

YETI as it enables users to perform complex queries over multiple data types; for 

example, users can retrieve all the mRNAs with a given cellular location that were 

upregulated by at least a given amount in a given experiment. Although YETI has a 

number of effective search mechanisms, this type of complex query is currently 

beyond YETI as it can not utilise the microarray data, for example, in such a 

quantitative sense. However, YETI is a much more powerful exploration tool than 

GIMS as it enables users to easily and rapidly explore the data visually, or 

qualitatively, and select features of interest to investigate further. 

Probably the most valuable resource available to S. cerevisiae researchers is the 

Saccharomyces Genome Database (SGD; Cherry et al., 1998); indeed, this is where 

YETI currently gets its core genome data from. The SGD contains a vast amount of 

data on all the genes in S. cerevisiae and contains many useful links to various other 

scientific websites. However, the SGD still centres around a single gene approach 

and is primarily concerned with the dissemination of data as opposed to the 

integrated visualisation and exploration of functional genomic data sets. Essentially, 

there is nothing that can be done in YETI that can not be done with the existing 
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computational resources. However, what can be done in YETI almost 

instantaneously is often cumbersome to do using existing resources. For example, 

YETI can rapidly show the user if a particular group of genes are located at similar 

chromosomal locations; however, with existing resources each gene would have to 

be examined individually and their chromosomal locations investigated textually. 

Furthermore, YETI eliminates the need for users to visit multiple resources as 

everything is integrated together in one place. Therefore, we believe that YETI is a 

useful resource for researchers of S. cerevisiae which can take its place alongside the 

many other resources available; in other words, YETI is not intended as a 

replacement for any of the existing resources, rather it offers a novel way of 

exploring the existing data which can yield new interesting observations and 

hypotheses. 

8.6: Conclusion 

YETI, like all similar resources, is only as good as the data it uses. Therefore, the 

future of YETI very much depends on the data it uses. If new protein-protein 

interaction and gene expression data sets are not continually developed then we will 

probably fast approach a situation where nothing really new can be gained from the 

existing data no matter what novel visualisation and analysis techniques are 

developed. However, in the short term YETI has a solid future ahead of it as new 

protein interaction data sets will inevitably be produced owing to the fact that the 

existing interaction data set appears to be so incomplete; new gene expression data 

sets are also continually produced at present. Furthermore, YETI is a fairly flexible 
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system which can be expanded with relative ease; therefore, if any new functional 

genomic strategies are developed in the future YETI could be expanded to integrate 

this data as well. 

Over the past one or two years the focus of research has shifted from bioinformatics 

to systems biology. Systems biology is concerned with the study of biological 

systems in terms of their underlying network structure rather than simply their 

individual molecular components. At first sight, YETI appears to fit in quite nicely as 

a systems biology tool as its group approach enables the properties of an entire 

system to be collectively investigated; as opposed to the standard single gene 

approach. However, the real power of systems biology comes with quantitative 

modelling techniques that are capable of predicting biological behaviour. Therefore, 

one could envisage YETI being expanded in the future to become a Systems Biology 

Markup Language (SBML; www.sbml.org ) compatible tool that enables users to 

import SBML models to collectively investigate the properties of the model 

components in core sections of YETI and to also enable users to construct SBML 

models based on observations of biological processes made through using YETI. 

In summary, this thesis has detailed the design and development of the Yeast 

Exploration Tool Integrator and has effectively demonstrated its use in a number of 

case studies. 
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