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Abstract

Over the past few years there has been a relative explosion of data in the biological
sciences. At the heart of this data explosion is the budding yeast Saccharomyces
cerevisiae (S. cerevisiae) which is one of the most widely studied eukaryotes due to
“its value as a model organism in biological research; it has a fully sequenced genome
that is well annotated and a variety of publicly available functional genomic data
sets. Analysis of this vast amount of data is a key challenge and computers in
conjunction with effective software tools are an essential part of this process. There
has been a rapid increase in the number of software tools available for the
visualisation and analysis of individual types of functional genomic data sets.
However, there are relatively few tools available that are capable of bringing together
a number of different types of data sets for integrated visualisation and analysis. As
many new biological insights are likely to emerge from the combined use of data
from different functional genomic strategies, there is a need for a new generation of
software tools that are capable of effectively utilising the wealth of data available for

S. cerevisiae enabling users to perform integrative analyses.

The Yeast Exploration Tool Integrator (YETTI) is a novel bioinformatics tool for the
integrated visualisation and analysis of S. cerevisiae functional genomic data sets.
The YETI system consists of a database for the storage and management of data and
a Java program for the integrated visualisation and analysis of data. YETI utilises
publicly available data sets from a number of different functional genomic strategies,

such as gene expression microarrays and yeast two-hybrid screens, and provides an
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effective means for their integrated visualisation and analysis. YETI consists of a
number of individual sections for the visualisation and analysis of functional
genomic data sets which are closely inter-linked enabling users to swiftly move
between them and investigate all aspects of any genes or proteins of interest as well
as providing access to textual information, including Gene Ontology (GO)
annotations, at any point. YETI enables users to easily explore the data in an
integrated modular fashion, investigate the intricacies of broad biological processes

and test specific hypotheses.

In this thesis, we detail the design and development of YETI and also report a
number of case studies which clearly demonstrate its potential and utility as an
analysis and exploration tool. Furthermore, the results of a number of correlation
analyses performed between the stored functional genomic data sets are also

reported.
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Chapter 1

Background



1.1: The Budding Yeast Saccharomyces cerevisiae

Yeasts are fungi that grow as single cells. They are simple unicellular eukaryotes that
multiply by budding or direct division (fission). They typically grow in moist
environments where there is a plentiful supply of simple, soluble nutrients such as
sugars and amino acids. For this reason "thejt are commonly found on fruits, leéves;
flowers, roots and in various types of food. The precise classification of yeasts is
accomplished using the characteristics of the céll, ascospores and colonies.
Physiological characteristics are also used to identify species, with one of the more
well known characteristics being the ability to ferment sugars for the production of
ethanol. Budding yeasts are true fungi of the phylum Ascomycetes, class
Hemiascomycetes and the true yeasts are separated into one main order,

Saccharomycetales.

The best known and commercially significant yeasts are the related species and
strains of the budding yeast Saccharomyces cerevisiae (S. cerevisiae; Figure 1.1),
also known as baker’s or brewer’s yeast. S. cerevisiae has played an important part in
human history for a long time through the production food, beverages and a variety
of fermentation products for industry. It also has a great scientific importance
through its use in biological research where it has been the subject of extensive study

for the past few decades.
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Figure 1.1: Saccharomyces cerevisiae

This is an image of the budding yeast S. cerevisiae in the process of budding. This image
was taken from the Munich Information Centre for Protein Sequences (MIPS)
Comprehensive  Yeast Genome Database (CYGD; Mewes et al, 1998;

http://mips.gsf.de/genre/proj/yeast/index.jsp).

1.2: The S. cerevisiae Genome

The genome contains all the biological information needed to build and maintain a
living organism and can be defined as the complete set of genes of an organism or its
organelles (Oliver, 2000). The biological information contained in a genome is
encoded in its deoxyribonucleic acid (DNA) base pair (bp) sequence which is
typically determined by systematic DNA sequencing techniques. S. cerevisiae was
the first eukaryotic organism to have its genome sequenced and it was chosen to be
so for a number of reasons: (1) S. cerevisiae is one of the most widely studied
eukaryotic organisms due to its value as a model organism in biological research; (2)
S. cerevisiae is a powerful eukaryotic model system because the basic cellular
mechanics of replication, recombination, cell division and metabolism are generally
conserved between the yeasts and higher eukaryotes such as Homo sapiens; (3) S.
cerevisiae is cheap, easy to cultivate, has short generation times and has a relatively
small genome which can be manipulated and analysed readily. It can be grown on

defined media giving the experimenter complete control over its chemical and
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physical environment; and (4) S. cerevisiae is easy to manipulate by molecular
techniques and its genetics and biochemistry have been well characterised. It is a
unicellular eukaryote and an ideal organism for geneticists as it allows genes to be

replaced, mutated or deleted by homologous recombination.

S. cerevisiae has 16 nuclear chromosomes of varying lengths and a circular
mitochondrial chromosome of 86 kilo bases (kb). The mitochondrial chromosome
was initially sequenced in segments during the 1980s but was subsequently re-
sequenced in the 1990s (Foury et al., 1998). The S. cerevisiae genome sequencing
project began in January 1989 when a consortium of 35 European laboratories began
the sequencing of S. cerevisiae chromosome III (Vassarotti et al., 1992). In 1992 this
project resulted in the release of the complete DNA sequence of chromosome III
which was presented to be 315 kb in length (Oliver et al., 1992). This was a scientific
landmark because it was the first eukaryotic chromosome to be sequenced. However,
it also revealed the extent of what remained to be understood in the genome of an

otherwise extensively studied organism.

A total of 182 open reading frames (ORFs) encoding putative proteins longer than or
equal to 100 codons were identified from the DNA sequence of chromosome III
(Oliver et al., 1992). The size limit of 100 codons was chosen because ORFs of this
length have less than 0.2 % probability of occurring by chance (Sharp ez al., 1991), it
was however recognised that a few shorter genes were likely to exist. Of the 182
genes identified, only 34 appeared on the existing S. cerevisiae genetic map

(Mortimer et al., 1989; Oliver et al., 1992). This showed that even in the genome of
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an organism as small and intensively studied as S. cerevisiae, only a minor
proportion of the genes had been identified by classical means. Analyses of the
newly discovered ORFs revealed how much was still left to learn about this
organism. Only 10 % of ORFs showed significant sequence similarity to other genes
from S. cerevisiae, 10 % were similar to genes from other organisms and 80 %
showed no significant sequence similarity to any previously sequenced genes in any
organism (Oliver et al., 1992). The majority of genes on chromosome III were

completely novel and to many, completely unexpected.

In April 1996, S. cerevisiae became the first eukaryotic organism for which a
complete genome sequence was publicly available (Goffeau et al., 1996); S.
cerevisiae was shown to have a relatively small and compact genome of 12,068 kb
(Goffeau et al., 1996). At the beginning of the sequencing project ~ 1,000 genes
encoding either protein products or ribonucleic acids (RNA) had been identified on
the S. cerevisiae genome by genetic analyses (Mortimer et al., 1992; Goffeau et al.,
1996). However, initial analysis of the S. cerevisiae genome sequence revealed the
presence of 6,275 ORFs, 5,885 of which were believed to represent protein encoding
genes (Goffeau et al., 1996). The presence of an ORF in a genome sequence does not
necessarily imply the existence of a functional gene and despite advances in
bioinformatics it is still difficult to predict genes, especially small ones, accurately
from genomic data (Eisenberg et al., 2000; Mathe er al., 2002). For example, due to
discrepancies in gene numbers indicated by previous analyses, the S. cerevisiae
genome underwent a complete re-annotation in 2001 (Wood et al., 2001). In this

analysis, 3 new ORFs were identified, 46 ORF coordinates were altered, 370 ORFs
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were defined as totally spurious and a further 193 ORFs were defined as very
hypothetical. Overall, the S. cerevisiae gene number estimate was revised to a new
upper limit of 5,570. Although this number is likely to be closer to the true upper
limit, it is still predicted to be an overestimate of the real gene number (Wood et al.,

2001).

The longest known ORF is YLR106C located on chromosome XII with a length of
14,733 bp (4,910 codons). However, very few ORFs are longer than 1,500 codons.
The lower size limit is less clear cut because without direct information on function,
real short genes cannot be easily distinguished from random occurrences of apparent
short ORFs. Short genes can be identified from the genome by the presence of
introns, biased codon usage or the existence of corresponding transcripts. On average
a protein encoding gene is found every 2 kb of the S. cerevisiae genome with the
typical S. cerevisiae gene being 1,450 bp (483 codons) in length preceded by an
upstream region of 309 bp and followed by a downstream region of 163 bp making a
total of only 1,922 bp (Dujon, 1996). ORFs occupy approximately 70 % of the S.
cerevisiae genome (Dujon, 1996) which leaves little space for all other structural and

functional elements as well as non-coding DNA.

One of the major findings of the initial genome sequence analysis was the presence
of ‘orphan’ genes (Dujon, 1996). The orphan genes are a large set of previously
undiscovered genes of unknown function with no sequence homologues of known
function. Although gene numbers are undergoing continuous revision by the yeast

community, it is currently reasonable to estimate that ~ 30 % of S. cerevisiae genes
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are orphans. It is widely believed that these genes do make a contribution to the
upkeep of the organism and there is little doubt that the majority of the sequenced
ORFs are actual genes that are expressed under certain conditions. S. cerevisiae
deletion mutants have been generated by homologous recombination for ~96% of the
predicted ORFs (Winzeler et al., 1999) and ~1500 genes were identified as essential
for viability (Giaever ef al., 2002); numerous nonessential genes have been found to
be required for various biological processes (Ooi et al., 2001; Begley et al., 2002;
Deutschbauer et al., 2002). Ultimately, the validity and function of each ORF can
only be proven by experiments in the laboratory but given the number of orphans in
the S. cerevisiae genome this could take some time. Therefore, there is a clear need
for new experimental and computational methods to aid in the assignment of

biochemical functionality.

Analysis of sequences also revealed that many genes were part of families with two
or more members whose predicted protein products were at least 50 % identical
(Mewes et al., 1997). This apparent genetic redundancy can be partly explained by
the presence of gene sets with overlapping functions (Goffeau et al., 1996); most of
‘the duplicated genes are members of families with just two or three members but
some gene families are significantly larger. In addition, blocks of duplicated ORFs
called cluster homology regions (CHR) were found in both the telomeric regions and
at internal sites within chromosome arms (Goffeau et al., 1996). Genetic redundancy
appears to be common at chromosome ends and many duplicate genes seem to be
phenotypically redundant. However, single gene duplication mechanisms are

insufficient to account for the full extent of redundancy in the S. cerevisiae genome.
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An alternative explanation is that the S. cerevisiae genome underwent a complete
duplication at some stage in its evolutionary history and has subsequently been
reduced to its present size via a series of deletions (Wolfe et al., 1997). A recent
study demonstrated that the S. cerevisiae genome could indeed have arisen from an
ancient whole genome duplication (Kellis ez al., 2004). In this study, the genome of a
“related yeast species called Kluyveromyces waltii (K. waltii), which diverged from S.
cerevisiae before the duplication event, was sequenced and analysed. The two
genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to

two regions of S. cerevisiae, as expected for a whole genome duplication.

1.3: Gene Ontology

The  Gene  Ontology (GO) project (Ashburner et al., 2000;

http://www.geneontology.org/) is a collaborative effort to address the need for

consistent descriptions of gene products in different genomic databases. The project
began in 1998 as a collaboration between three model organism databases: FlyBase

(Gelbart et al., 1996; http://flybase.org/), the Saccharomyces Genome Database

(Cherry et al., 1998; http://www.yeastgenome.org/) and the Mouse Genome

Database (Blake et al., 2000; http://www.informatics.jax.org/). Since then, the GO
Consortium (Ashburner et al., 2001) has grown to include many databases including
several of the world’s major repositories for plant, animal and microbial genomes.
The GO annotation system is split into three structured, controlled vocabularies

(ontologies) that describe gene products in terms of their associated molecular
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functions, biological processes and cellular components in a species-independent

manner. The three ontologies are defined by the GO Consortium as follows:

1))

2)

3)

Molecular Function: “A molecular function describes activities, such as
catalytic or binding activities, at the molecular level. GO molecular function
terms représent activities rather than the entities (molecules or complexes)
that perform the actions, and do not specify where or when, or in what
context, the action takes place. Molecular functions generally correspond to
activities that can be performed by individual gene products, but some
activities are performed by assembled complexes of gene products. Examples
of broad functional terms are catalytic activity, transporter activity or
binding; examples of narrower functional terms are adenylate cyclase activity

or Toll receptor binding”, (http://www.geneontology.org/).

Biological Process: “A biological process is accomplished by one or more
ordered assemblies of molecular functions. Examples of broad biological
process terms are cell growth and maintenance or signal transduction;
examples of more specific terms are pyrimidine metabolism or alpha-
glucoside transport. It can be difficult to distinguish between a biological
process and a molecular function, but the general rule is that a process must

have more than one distinct steps”, (http://www.geneontology.org/).

Cellular Component: “A cellular component is simply a component of a cell
but with the proviso that it is part of some larger object, which may be an

anatomical structure (e.g. rough endoplasmic reticulum or nucleus) or a gene
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product group (e.g. ribosome, proteasome or a protein dimer)”,

(http://www.geneontology.org/).

The ontologies are organised into structures called ‘directed acyclic graphs’ which
differ from hierarchies in that a ‘child’ can have many ‘parents’. This structure also
enables queries to be performed at different levels: for example, one can use the GO
system‘to find all the gene products in the S. cerevisiae genome that are involved in
signal transduction, or you can zoom in on all the receptor tyrosine kinases.
Furthermore, annotators are able to assign properties to gene products at different
levels, depending on how much is known about a gene product. It is also important to
note that a gene product can have multiple GO annotations; a gene has one or more
molecular functions, is used in one or more biological processes and can be

associated with one or more cellular components.

GO slims (http://www.geneontology.org/) are cut-down versions of the GO

ontologies that contain a subset of the terms from the complete GO. They give a
broad overview of the ontology content without the detail of the specific fine grained
terms. GO slims are particularly useful for giving a summary of the results of GO
annotations of a genome when broad classifications of gene product function are
required. The GO Consortium provides a generic GO slim which, like the GO itself,
is not species specific. However, many organism specific databases such as the
Saccharomyces  Genome  Database (SGD; Cherry et al, 1998;

http://www.yeastgenome.org/) have created their own specie specific GO slim.
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1.4: Functional Genomics

The sequencing project has essentially provided biologists with a complete catalogue
of all the genes present in S. cerevisiae. The goal now is to understand the
interactions of all gene products and ultimately their function in creating this simple
eukaryotic organism. However, a large proportion of the genes in S. cerevisiae are
still classified as proteins of unknown function and additional information is needed
to place them within a biological context. Functional genomics strategies are
becoming increasingly important in characterising novel proteins discovered by
genome sequencing projects. Many such strategies use the principle of ‘guilt by
association’ (Oliver, 2000) as the means of elucidating function, i.e. genes that are
coexpressed or proteins that interact with one another are likely to be involved in the

same or related cellular process.

1.5: The S. cerevisiae Transcriptome

The transcriptome can be defined as the complete set of RNA molecules present in a
cell, tissue or organ at a certain point in time (Oliver, 2000). Unlike the genome, the
transcriptome is highly dynamic and changes rapidly and dramatically in response to
changes in the environment and during cellular events. In terms of understanding the
function of a gene, knowing when and to what extent it is expressed can be crucial to
understanding the activity and biological role of its encoded protein. Gene expression
studies have previously relied on techniques such as northern blot analysis which

measure the expression of only a single or small set of genes at one time. Newer
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technologies including Serial Analysis of Gene Expression (SAGE; Velculescu et al.,
1997), high throughput northern analysis (Planta er al., 1999) and gene expression
microarrays (Schena et al., 1995; Lockhart et al., 1996) enable thousands of genes to

be analysed at once.

1.5.1: Microarrays

Microarrays are microscopic arrays of large sets of nucleic acids immobilised on
solid substrates such as glass, they are used for a wide range of analytical methods
based around the detection of sequence specific nucleic acid hybridisation.
Microarrays can monitor, rapidly and efficiently, the messenger RNA (mRNA)
abundance of all an organism’s genes, allowing massive parallel data acquisition and
analysis; they provide a sensitive, global readout of the physiological state of the cell.
It is important to note that the relationship between the quantity of mRNA and the
abundance of the corresponding protein in the cell is not trivial due to the fact that
the speed of production varies for different proteins as does the half-life of both the
protein and mRNA. However, it is widely accepted that measuring the level of
mRNA gives us a reasonable insight into the abundance of the corresponding protein

and it is this that can be measured on a genomic scale using microarrays.

Currently, there are two general types of microarrays widely used in biological
research, spotted microarrays (Schena et al., 1995) and Affymetrix chips (Lockhart
et al., 1996), both of which rely on the same binding property of DNA. DNA and

RNA are examples of nucleic acids, one characteristic of which is their tendency to
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form double stranded molecules through complementary base pairing. This tendency
of nucleic acids to form double stranded molecules is known as hybridisation and
plays an important role in the measurement of mRNA abundance. For example,
consider a speéiﬁc gene and its mRNA product; given a sample of this mRNA, it is
possible to reverse transcribe it to single stranded complimentary DNA (cDNA)
which will hybridise to a single strand of the gene’s original DNA. It is this

hybridisation that underlies the operation of microarrays.

Spotted microarrays (Schena et al., 1995; Figure 1.2) typically consist of a small
glass slide onto which the DNA sequences of the genes to be analysed are printed at
pre-defined locations to create an array of tiny spots; each spot contains many copies
of the sequence of one gene. A basic spotted microarray experiment proceeds as
follows (Figure 1.3), mRNA is extracted from the cell sample of interest and also
from a separate control cell sample; the two samples are kept separate at this point.
Reverse transcription is used to transform all the mRNA molecules into cDNA
molecules labelled with distinct fluorescent dyes; typically CyS (red) for the
experimental sample and Cy3 (green) for the control sample. The two samples are
then pooled and washed over the slide and left to hybridise for a set period of time.
Once this time has elapsed, the slides are rinsed and are ready to be analysed. The
microérray is then scanned using a laser to excite the dyes and independent images
for the green (control) and red (experimental) channels are generated. These images
must then be analysed to identify all the arrayed spots and to measure their
fluorescence intensities. Currently, image analysis requires significant human

intervention to ensure that grids are properly aligned and artefacts are flagged and
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excluded from subsequent analysis. After image processing, it is necessary to
normalise the relative fluorescence intensities in each of the two scanned channels.
Normalisation adjusts for differences in labelling and detection efficiencies for the
fluorescent labels and for differences in the quantity of initial RNA from the two
samples examined in the assay. There are three widely used techniques that can be
used to normalise gene expression data (Quackenbush, 2001): (1) Total intensity
normalisation; (2) Normalisation using regression analysis; and (3) Normalisation

using ratio statistics.

Figure 1.2: S. cerevisiae spotted microarray

This is an image of a spotted microarray with all the ~ 6,000 S. cerevisiae ORFs spotted
onto it. Each spot on the microarray represents a separate ORF that has been individually
synthesised and mechanically spotted onto the microarray. The colour and intensity of each
spot can be used to calculate the relative expression level of the corresponding ORF in the
S. cerevisiae genome under the experimental conditions used. This image was taken from
the Stanford Microarray Database (SMD; Sherlock et al, 2001; http:/genome-
www5.stanford.edu/).
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Figure 1.3: Spotted microarray experimental procedure

This image displays the experimental procedure for a typical microarray experiment from
RNA extraction to image analysis: (1) Extract the RNA from both the control and
experimental cell samples; (2) Prepare cDNA probes by incorporating either Cy3 (green;
control) or Cy5 (red; experimental) using a single round of reverse transcription; (3) Pool the
two cDNA samples; (4) Hybridise the pooled sample to a single microarray slide; (5) Scan
the microarray slide in the green and red channels to create a green and red image,
respectively; (6) Combine the two images to create a single image of the microarray, identify
the spots and measure the fluorescence intensities in each channel for each spot.
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Ultimately, the result of a spotted microarray experiment is two fluorescence values
(experimental and control) for each gene spot on the microarray. The ratio of these
readings provides us with a relative level of expression for the experimental sample
with respect to the control. For example, if for a particular gene there is much more
mRNA in the experimental sample relative to the control, the dye corresponding to
the experimental sample (typically red Cy5) will fluoresce much more than the dyé
for the control (typically green Cy3) and we will have a high ratio. These ratios are
normally logged (base 2) to preserve the symmetry between over and under

expression (Eisen et al., 1999).

Affymetrix chips (Lockhart et al., 1996) are high density arrays of oligonucleotides
synthesised in situ using light directed chemistry. They combine photolithography
technology with DNA synthetic chemistry to enable high density oligonucleotide
manufacture (Schena et al., 1998). Affymetrix chips use a slightly more complicated
procedure when compared to spotted microarrays, but do not need a separate control
sample and hence provide absolute rather than relative expression values. For each
gene that is being analysed, a number of small sections of the gene’s DNA are
printed at various locations around the array; these are referred to as perfect match
(PM) probes. Next to each of these, the same sequence is printed but with the middle
base switched; these are referred to as mismatch (MM) probes. The mRNA from an
experimental sample is reverse transcribed to cDNA, labelled with a fluorescent dye,
washed over the array and then excited with a laser to generate an image. Various

algorithms exist to combine all these probe values into one expression value (e.g.
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http://www.affymetrix.com/support/technical/technotes/statistical _reference guide.pdf) for

each gene analysed.

1.5.2: Cluster Analysis

One of the biggest ché]lengés in appl'ying‘ gene expressrion microérraf Vtechnolo-gy liés
in data analysis. Currently, there are a wide variety of methods referred to as ‘Cluster
Analysis’ that attempt to organi.se genes with similar expression patterns into related
groups or clusters; a gene’s expression pattern over a number of microarray
experiments is also known as it’s expression profile. The basic assumption
underlying these approaches is that genes with similar expression patterns are likely
to be related functionally. In this way, genes without functional assignments can be
given tentative assignments based on the functions of known genes in the same
expression cluster; the concept of ‘guilt by association’. However, a tentative
functional assignment may not be much more than a vague description or general

classification.

1.5.3: Hierarchical Clustering

Hierarchical clustering has the advantage that it is simple and that the result can be
easily visualised. As a result it has become one of the most widely used techniques
for the analysis of gene expression data; a seminal paper in the use of hierarchical
‘clustering' for gene expression analysis was published by Eisen et al. (1998).

Hierarchical clustering is an agglomerative approach in which single gene expression
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profiles are joined together to form clusters of genes which are further joined
together until the process is completed; thus forming a single hierarchical tree with a

corresponding clustered gene expression data table.

The hierarchical clustering process through a number of distinct steps (Table 1.1;
Quackenbush, 2001). The first step is to create a pairwise gene expression matrix.
The matrix is generated by mathematically comparing every gene expression profile
to every other gene expression profile in a pairwise fashion to create a distance (or
similarity) score; the matrix is therefore comprised of all the pairwise distance scores
between all the profiles. It is important to note that the way in which distance is
measured between gene expression profiles can have a profound effect on the
clusters that are produced and there are a number of different distance metrics that
can be used. Perhaps the simplest method used to do this is the Euclidean distance
metric which is a generalisation of the Pythagorean Theorem. However, the Pearson
correlation coefficient is perhaps the most widely used measurement of distance
between two expression profiles and the averaged dot (or inner) product is also

commonly used; a good review of distance measures is presented in Sturn, 2001.
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Step Description

1 The pairwise distance matrix is calculated for all genes to be clustered.

2 The pairwise distance matrix is searched for the two most similar clusters (initially
all clusters consist of a single gene). If more than one pair of clusters has the same
similarity measure, a predetermined rule is used to decide between them.

3 The two selected clusters are merged to produce a single new cluster.

4 The distances are calculated between the new cluster and all the other clusters in
| the matrix. There is no need to_calculate .all the distances in the. -matrix as only |
those involving the new cluster have changed.

5 Steps 2-4 are repeated until all the clusters have been joined to form a single
hierarchical tree. :

Table 1.1: Steps of the hierarchical clustering processing
This table contains a step wise description of the hierarchical clustering process.

Pairwise linkage is a form of hierarchical clustering that has been successfully
applied to sequence and phylogenetic analysis and has now been applied to
clustering gene expression data. There are several variations of pairwise linkage
clustering that differ in the way distances are measured between clusters as they are
constructed (Table 1.2; Quackenbush, 2001), each of which will produce slightly
different results. Typically for gene expression data ‘pairwise average linkage’
clustering gives acceptable results (Quackenbush, 2001). However, one potential
problem with many hierarchical clustering methods is that as clusters grow in size
the expression profile that represents the cluster might no longer represent any of the
genes in the cluster. Consequently, as clustering progresses the actual expression
patterns of the genes themselves become less relevant. Furthermore, if a poor

-assignment is made early in the process it cannot be corrected.
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Method Description

Pairwise single linkage The distance between two clusters is calculated as the
minimum distance between a member of the first cluster and
a member of the second cluster.

Pairwise complete linkage | The distance between two clusters is calculated as the
maximum distance between a member of the first cluster and
a member of the second cluster.

Pairwise average linkage | The distance between two clusters is calculated as the
average distance between all members of the._first.cluster
and all members of the second cluster.

Table 1.2: Pairwise linkage clustering techniques
This table contains the names and descriptions of the three main types of pairwise linkage
hierarchical clustering techniques.

Hierarchical clustering methods group genes with similar expression profiles
together. The computed hierarchical tree can then be used to reorder the genes in the
original expression data table so that genes with similar expression profiles are
juxtaposed. However, the resulting ordered but still massive collection of numbers
can remain difficult to visualise and comprehend. Therefore, it is essential to include
a graphical representation of the data table by representing each gene expression data
point with a colour that reflects its value; the hierarchical tree is then typically
displayed alongside this table. The most commonly used method colours each data
point on the basis of its log, ratio, with those close to zero coloured black, those
greater than zero coloured red and those with negative values coloured green. The
end product is a graphical representation of complex gene expression data that,
through statistical organisation and graphical display, allows biologists to understand

and explore the data in a natural intuitive manner (Figure 1.4).
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Figure 1.4: Hierarchically clustered gene expression data table

This figure shows the main steps involved in the hierarchical clustering of a microarray gene
expression data set. The first step involves hierarchically clustering the gene expression data
table to produce a hierarchical tree and a corresponding ordered data table. The second
step involves visually representing each gene expression data point with a coiour that
represents its value, thus creating a clustered graphical representation of the gene
expression data set. The extension of this example to include many more genes and
microarray experiments is simple.

Although cluster analysis techniques are extremely powerful, great care must be
taken in applying this family of techniques. The algorithms used are well defined and
reproducible but selecting different algorithms, normalisations or distance metrics
will place different genes into different clusters; thus giving different results
depending on the route taken. Furthermore, clustering unrelated data will still
produce clusters although they might not be biologically meaningful. It is therefore
essential to select relevant data and apply algorithms appropriately so that data is

clustered sensibly.
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1.5.4: Other Clustering Methods

There are a variety of other statistical methods that can be used to analyse gene

expression data and cluster genes into similar groups. Three of the major

unsupervised methods for clustering gene expression data are (Quackenbush, 2001;

" Sturn, 2001):

1)

2)

3)

k-means clustering (Tavazoie et al., 1999) can be used as an alternative to
hierarchical methods if there is advanced knowledge about the numbers of
clusters that should be represented in the data. In k-means clustering, objects
are partitioned into a fixed number (k) of clusters such that the clusters are
internally similar but externally dissimilar; no dendrograms are produced.
Self Organising Maps (SOM; Tamayo et al., 1999) are an unsupervised
neural network based divisive clustering approach. A SOM assigns genes
into a series of partitions on the basis of the similarity of their expression
vectors to reference vectors that are defined for each partition. It is the
process of defining these reference vectors that distinguishes SOMs from &-
mean clustering.

Principal Component Analysis (PCA; Raychaudhuri et al., 2000), also
known as Singular Value Decorﬁposition (SVD) is a mathematical technique
that reduces the effective dimensionality of gene expression space without
significant loss of information. PCA provides a ‘projection’ of complex data

sets onto a reduced, easily visualised space.
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In addition to the unsupervised methods discussed above, there are a variety of
supervised methods that can be used in the analysis of gene expression data.
Supervised methods represent a powerful alternative that can be applied if one has
previous information about which genes are expected to cluster together. One widely
used supervised approach is the Support Vector Machine (SVM; Brown et al., 2000).

1.5.5: S. cerevisiae Microarray Experiments

Over recent years, microarrays have been used widely in biological research to
effectively measure the relative mRNA abundance of all the genes in S. cerevisiae
under a variety of experimental conditions. For example, the Stanford Microarray

Database (SMD; Sherlock et al., 2001; http://genome-wwwS3.stanford.edu/) alone

currently contains 40 S. cerevisiae microarray studies. Contained within the mass of
numbers produced by this technology is an immense amount of biological
information. Furthermore, microarray results can represent the first indication to the
function of many S. cerevisiae genes and with each new microarray experiment

additional information is added.

Microarrays are well suited for the analysis of temporal changes in gene expression
during cellular events such as the cell cycle. Cell populations are synchronised by
arresting them at a homogeneous cell cycle state then released from the arrested state
and sampled at subsequent time intervals. Cho et al. (1998) were the first to analyse
ce]]'cycle periodic transcription patterns using microarrays. This study was quickly

followed by additional studies of the mitotic (Spellman et al., 1998) and meiotic
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(Chu et al., 1998) cell cycles in the budding yeast. Cho et al. (1998) used visual
examination of time series plots to identify a set of 416 periodic transcripts.
Spellman et al. (1998) used Fourier analysis of both their own data and the data from
Cho et al. (1998) to compute a periodicity score for each gene in the array. Using this
approach they scored 800 yeast genes as cell cycle periodic. Chu et al. (1998)
evaluated the transcript profile of synchronously sporulating yeast cells in
comparison with an asynchronous vegetative culture. They distinguished seven
temporal classes of sporulation specific genes using cluster analysis and other
methods. Other studies revealed that in rich medium, 87 % of all putative S.
cerevisiae genes had a detectable level of expression, approximately 7 % of which

were shown to have cell cycle dependent periodicity (Zweiger et al., 1999).

It is well known that yeast cells change their patterns of gene expression in response
to environmental stresses and microarrays can be used to measure these changes. To
this end, Gasch et al. (2000) measured the genomic expression patterns of S.
cerevisiae in response to environmental changes such as heat and cold shock, amino
acid starvation, nitrogen depletion and steady state growth on alternative carbon
sources. Microarrays have also been used to evaluate transcripts differentially
expressed in yeast cells treated with DNA damaging agents (Jelinsky et al., 1999;
Gasch et al., 2001) and for evolutionary studies of S. cerevisiae (Ferea et al., 1999).
.Combining the data from several unrelated expression profiling experiments can
result in more detailed and informative clustering; this was first demonstrated in S.
cerevisiae when ~300 different experimental and genetic conditions were combined

to create a so-called transcriptome compendium (Hughes et al., 2000).
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1.6: The S. cerevisiae Proteome

The proteome can be defined as the complete set of protein molecules present in a
cell, tissue or organ at a certain point in time (Oliver, 2000). Messenger RNA
transcripts are the transmitters of genetic information; they are not functional cellular
entities. Proteins by contrast are the main catalysts, structural elements, Jsigna‘lling
messengers and molecular machines of living cells. Proteomics is the large scale
study of proteins usually by experimental biochemical means. The main methods
used in proteomic research are large.’scale identification and localisation studies

(Burns et al., 1994) and protein-protein interaction studies (Fields et al., 1989).

The study of protein-protein interactions is currently an important area of functional
genomics. It is well recognised that protein-protein interactions play a key role in the
structural and functional organisation of the cell; most proteins require physical
interaction with other proteins to fulfil their biological goal. If two proteins interact
with one another they often participate in the same or related cellular functions; the
concept of ‘guilt by association’. A detected protein-protein interaction has the
potential to yield a wide array of information which can generally be classified into
one of four categories (Oliver, 2000): (1) An interaction between a protein of known
and a protein of unknown function may allow the role of the latter to be inferred;
placing functionally unclassified proteins into a biological context; (2) An interaction
between proteins involved in the same biological process can provide information on
how functionally related proteins are working together in order to fulfil biological

goals; (3) An interaction between proteins involved in different biological processes
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can provide clues as to how processes are combining together to create larger cellular
processes; and (4) An interaction between two S. cerevisiae proteins can imply an

interaction between the orthologous proteins in another organism.

1.6.1: The Yeast Two-Hybrid System

The yeast two-hybrid system (Fields et al., 1989) can be used to identify pairs of
proteins that physically interact with one another (Figure 1.5). It works by separating
the coding sequences of the DNA binding and activation domains of a transcriptional
activator, which are then cloned into different vector molecules. The coding
sequence of the protein whose partners are sought (the ‘bait’) is fused with the DNA
binding domain. Typically, a library of coding sequences for proteins that might
interact with the bait (the ‘prey’) is fused with the activation domain. As S.
cerevisiae has two sexes (a and o) baits and preys can easily be introduced into the
same §. cerevisiae cell by mating. If the two proteins physically interact, the DNA
binding and activation domains are closely juxtaposed and the reconstituted
transcriptional activator can mediate the switching on of a reporter gene that
typically brings about a colour change to the host S. cerevisiae cell. As a result, the
yeast two-hybrid system is simple, sensitive and amenable to high throughput

methods.

One disadvantage of this approach is that it typically uses the entire protein sequence

derived from the DNA sequence and so does not account for the different splice

variants or post-translational modifications of the protein which could interact
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differently. In addition, the two-hybrid system reveals potential protein interactions
but not the biological context in which they happen. Some may occur only when S.
cerevisiae is in a particular physiological state (i.e. when both proteins are expressed
and translated from their corresponding genes), whereas others may never occur

because in real life the proteins are located in separate cellular compartments.
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Figure 1.5: The yeast two-hybrid system

This is an image depicting the main steps of the yeast two-hybrid system. The DNA binding
and activation domains of a transcription activator are split (1) and fused to a bait and prey
protein, respectively (2). The DNA binding domain fused to the bait protein is still able to bind
the reporter genes’ promoter (3). If the two proteins interact together, the two domains are
juxtaposed and the transcriptional activator is reconstituted, thus switching on the reporter
gene which brings about a colour change to the hosting yeast cell (4).

The two-hybrid system combined with the complete genome sequence of S.
cerevisiae has given biologists the opportunity to identify all possible pairwise

interactions between the ~ 6,000 proteins of S. cerevisiae. A collaborative group
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from the University of Washington and the biotechnology company CuraGen used
the two-hybrid system on a large scale to identify 957 putati\'le interactions involving
1,004 proteins (Uetz et al., 2000); this group subsequently reported an additional 553
interactions, available at http://depts.washington.edu/sfields/yplm/data/index.html. A
different collaborative group from Japan also used the two-hybrid system to begin
the construction of a comprehensive protein-protein interaction map of S. cerevisiae.
This group followed up their initial pilot study (Ito et al., 2000) with a
comprehensive two-hybrid analysis of the yeast interactome (Ito ez al., 2001). This
study resulted in the identification of 4,549 interactions among 3,728 proteins; a core
data set from within the main data set was also identified consisting of 841
interactions that were reported more than three times and involved 797 proteins.
Surprisingly, there was only a small overlap between the data generated from the
Uetz et al. (2000) and Ito et al. (2000 & 2001) studies (Hazbun et al., 2001).
Furthermore, neither of the two studies reproduced more than ~ 13 % of the
published interactions previously detected by the scientific community using
conventional interaction analyses (Hazbun et al., 2001). Smaller scale yeast two-
hybrid screens have also been performed in S. cerevisiae to investigate the specific
interactions of splicing factors, RNA polymerase IIl and Sm-like proteins (Fromont-
Racine et al., 1997; Flores et al., 1999; Fromont-Racine et al., 2000). Furthermore,
large scale yeast two-hybrid screens have also been performed in other organisms
such as Drosphilia melanogaster (D. melanogaster; Stanyon et al., 2004; Giot et al.,
2003), Caenorhabditis elegans (C. elegans; Li et al., 2004), bacteria and phage (Rain

et al., 2001; Bartel et al., 1996) and viruses (Uetz et al., 2004).
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The simplest way to display a data set of protein-protein interactions is in a simple
linear list or table containing the names of all the interacting protein pairs. However,
this is impractical when the data sets are large due to the sheer amount of interactions
being displayed. A much more intuitive way of representing protein-protein
interactions is to use a visual graphical format (Figure 1.6). Although graphical
representations do in essence just repeat the information shown in textual lists and
tables, the graphical representation has fundamental advantages with respect to
human perception (Uetz et al., 2002). Firstly, humans are better able to understand
and remember a graphical representation. Secondly, in a textual representation the
interactions involving a particular protein are usually spread out over different
positions in the list; this requires an exhaustive search through the whole list to find
all the relevant interactions. However, in a graphical layout each protein only occurs
once and its interacting partners and their relationships can be easily identified and

examined.
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List of Interactions Graphical display of interactions
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Figure 1.6: Visualisation of protein-protein interactions

This is an image of the two main ways of displaying a set of protein-protein interactions. The
first way (shown on the left) is to display the interactions as a simple table where each row
contains the names of the two interacting proteins. However, this method requires the user
to search through the whole table to find interactions involving a protein of interest. As can
be seen, a much more intuitive method of displaying interactions is by using a graphical
representation (shown on the right). The user is easily able to see all the interactions, pick
out proteins of interest and also get an impression of the overall connectivity between the
proteins.

Protein-protein interactions can be effectively visualised using a range of
computational approaches known as ‘graph drawing’ (Battista et al., 1999). A graph
consists of nodes (proteins) and edges (interactions) linking pairs of nodes together.
In order to draw the graph, coordinates in either two or three dimensional space need
to be associated with each node. One of the most important factors in drawing a
graph is minimising the number of edge intersections and evenly spacing out nodes
in the drawing space. Currently, one of the most widely used algorithms for protein-
protein interaction graphs is the ‘spring embedder’ or ‘springs and rings’ algorithm
(Eades, 1984). This algorithm is relatively simple and works by representing edges
as springs and nodes as rings. The springs create an attracting force between the rings

when they are far apart and a repulsive force when they are close together. The
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algorithm searches for a placement of rings that minimises the total energy present in
the system; this is commonly achieved by simulating the behaviour of the system
over a certain period of time. However, these algorithms struggle to cope when the
number of nodes reaches the hundreds and when there is a high connectivity between
the nodes. This is because current computer technology struggles to cope with the
processor time required to calculate the minimum energy in the system and
sometimes to even draw an aesthetically pleasing and understandable graph. An
additional problem when viewing graphs displaying a large number of nodes is the
sheer size; it becomes virtually impossible to display the graph at a readable size on
an object such as a computer screen. Other strategies for visualising protein-protein
interaction networks include zoom and pan, focus and context (also known as fish-

eye or the magnifying glass), and collapsing protein classes (Uetz et al, 2002).

1.6.2: Protein Interaction Complexes

Most proteins function within cellular pathways where they interact with other
proteins either in pairs or as components of larger complexes. Two groups (Gavin et
al., 2002; Ho et al., 2002) have characterised hundreds of distinct multi-protein
complexes in S. cerevisiae using approaches in which individual bait proteins are
tagged and used to catch associated proteins which are then analysed by mass
spectroscopy. The approaches used by Gavin et al. (2002) and Ho et al. (2002) are
similar and proceed through a number of distinct steps (Kumar & Snyder, 2002): (1)
A tag is attached to the DNA coding sequence of a bait protein; (2) The DNA

encoding the tagged bait protein is introduced into a yeast cell. The host cell
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expresses the tagged protein allowing it to form complexes with other proteins which
are naturally present in the cell at that time; (3) The bait protein is extracted using the
tag which often results in the entire protein complex involving the bait protein being
extracted as well; and (4) The proteins extracted with the tagged bait are identified

using standard mass spectrometry methods.

Gavin et al. (2002) used tandem-affinity purification (TAP) and mass spectrometry
in a large scale approach to characterise multi-protein complexes in S. cerevisiae. In
this study 1,739 genes were processed and 589 protein assemblies were purified.
Subsequent analysis of these assemblies identified 1,440 distinct proteins within 232
multi-protein complexes. More importantly, it proposed new cellular roles for 344
proteins including 231 with no previous functional annotation. Their analysis showed
the S. cerevisiae proteome as a network of protein complexes at a level of

organisation above pairwise interactions.

Ho et al., (2002) used a technique termed high throughput mass spectrometric
protein complex identification (HMS-PCI) to identify protein complexes. Numerous
protein complexes were identified from the initial construction of 725 bait proteins;
3,617 associated proteins were detected involving 1,578 different proteins. The bait
proteins were representative of a number of different functional classes including
protein kinases, phosphatases, regulatory subunits and proteins involved in DNA

damage response.
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One interesting issue is how to represent the potential protein-protein interactions
reported from this type of technique. Technically, these techniques only provide the
identities of all the proteins in a particular complex, they do not tell use which
proteins interact with which other proteins. Therefore, there are two general ways to
represent the potential protein-protein interactions from these techniques: (1) The
Spoke model represents a complex as a set of interactions where every protein only
interacts with the tagged bait protein; and (2) The Matrix model represents a complex
as a set of interactions where every protein interacts with every other protein.
Furthermore, the potential protein-protein interactions detected from this technique
are not really physical interactions; they are technically functional interactions as
they detect groups of proteins in stable complexes, implying that they function
together (Uetz et al., 2005). However, functional interactions could be characterised
as physical interactions in the future if additional data becomes available. It is also
important to note that this type of technique has an additional difference to the yeast
two-hybrid system: only proteins that are naturally present in the cell at the time of

experimentation can interact with the bait protein.

Another example of a functional interaction is a genetic interaction. Genetic
interactions are where the combination of alleles of two different genes has specific
phenotypic consequences which is often taken to suggest that the two genes function
in the same or parallel pathways affecting a particular biological process. Ongoing
large-scale screens in S. cerevisiae have mapped thousands of genetic interactions
derived from synthetic lethal mutations (Tong et al., 2004). Other related functional

genomic data sets include protein-DNA interaction data sets (Ren et al., 2000), large
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scale yeast protein localization data using GFP tagged yeast proteins (Huh er al.,
2003; Kumar et al., 2002) and the quantification of the expression levels of
approximately 4500 affinity tagged yeast proteins through western blot analysis

(Ghaemmaghami et al., 2003).

1.6.3: False Positives and False Negatives

The occurrence of both ‘false positive’ and ‘false negative’ interactions is perhaps
the major disadvantage of the high throughput protein-protein interaction detection
techniques described above. False positives wrongly indicate that two proteins
interact with one another; they are generally caused by experimental errors and can
be commonplace in large scale screens. On the other hand, false negative interactions
wrongly indicate that two proteins do not interact with one another. Various studies
have estimated that the ~6,000 S. cerevisiae proteins are connected by ~ 12,000 -
40,000 interactions (Wallhout ez al., 2000; Tucker et al., 2001; Grigoriev et al.,
2003; Uetz et al., 2005). However, the high throughput protein-protein interaction
data sets described above have only detected a fraction of these. Furthermore, there is
a lack of overlap between the different datasets themselves and also with published
low-throughput studies which are generally considered to be less prone to false
positives and false negatives (Ito et al., 2001; Grunenfelder et al., 2002; Cornell et
al., 2004; Uetz et al., 2005). Taken together, this not only suggests that new or
improved technologies are needed (especially for interactions involving membrane

proteins) but also that more interactions could be detected by more exhaustive
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application of these current techniques and that confidence scores for all detected

interactions are of great importance.

There are now a number of differ;-':nt strategies for evaluating the reliability of large-
scale protein interaction data sets (Bork et al., 2004). In a recent study, various
interaction data sets were tested for accuracy on confident sets of interactions and the
rate of false positives for the various large-scale experimental approaches was found
to vary widely, but was always larger than that for confident small scale experiments
(von Mering et al., 2002). However, high quality subsets could often be selected on
the basis of additional criteria such as the degree to which mRNAs of interacting
proteins are co-expressed in microarray experiments (Ge et al., 2001; Deane et al.,
2002; Kemmeren et al., 2002), topological properties of the resulting network
(Goldberg et al., 2003; Saito et al., 2003), shared pathways or sub-cellular
localisation (Date et al., 2003; Sprinzak et al., 2003) or combinations of these
approaches (Bader et al., 2004; Bork et al. 2004). Furthermore, several studies have
suggested that interactions detected in multiple data sets and by different techniques
or in different species are more likely to be true positives than those only found once
(von Mering et al., 2002; Uetz et al., 2005). However, due to the high rates of false
negatives in high throughput screens, there has been very little overlap between
different datasets, thus limiting the opportunities for such experimental cross-
validation (Uetz et al., 2005). Therefore, computational tools that are able to
effectively integrate the different interaction data sets together and then integrate
them further with other functional genomic data sets would be extremely useful

developments.
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Since the first large scale data sets were published, the topological properties of
protein interaction networks themselves have also been intensively studied. These
networks have been shown to be both small world and scale free (Barabasi et al.,
2004). Interaction networks contain highly connected hub proteins which have been
shown to correlate with evolutionary conserved proteins and in S. cerevisiae with
proteins encoded by essential genes (Jeong et al., 2001; Han et al., 2004; Said et al.,
'2004); therefore, a proteins relative position in a network can have implications for
its function and importance. Analysis of topology also reveals clusters of highly
interconnected proteins that correlate with conserved functional modules (Spirin et
al., 2003; von Mering, Zdobnov et al., 2003; Poyatos et al., 2004). This highlights
the fact that even the current error prone networks can still be used to explore the
hierarchical organisation of biological networks and to reveal interconnected
modules that control specific biological properties (Uetz et al., 2005). In addition to
the study of the global topology of interacting networks, the existence of recurring
local topological features, known as network motifs, has also been shown in protein-

protein interaction networks (Wutchy et al., 2003).

Over recent years computational methods have been increasingly used to predict
protein-protein interactions; some prediction tools are now conveniently available as
online services (e.g. von Mering, Huynen et al., 2003). Gene expression profiles
have been used to infer functional interactions among gene products based on the
assumption that proteins that function together should be frequently expressed
together (Jansen et al., 2002; Jansen et al., 2003). Genetic interactions have been

predicted based on physical interactions, gene expression, protein localisation and

Chapter 1: Background 36



other experimental data (Marcotte et al., 1999; Wong et al., 2004). In addition,
numerous methods for predicting physical protein-protein interaction have also been
developed (Enright et al., 1999; Aloy et al., 2002; Jansen et al., 2003; Lu et al.,
2003; Aloy et al., 2004; Reiss et al., 2004; Zhang et al., 2004). One commonly used
approach predicts that two proteins will interact if their orthologs have been shown to
interact; such conserved interactions have been referred to as interlogs (Matthews et
al., 2001; Lehner et al., 2004). Interactions have also been predicted between pairs of
proteins with domains that are often observed in interacting proteins (Ng et al.,

2003).

1.7: Computational Resources

Currently, there is a wide variety of functional genomic data sets publicly available
for the budding yeast S. cerevisiae which are described above; additional data sets
are constantly being produced by existing and new high-throughput technologies.
These data sets are often both large and complex and the analysis of this vast amount
of data is now the key problem and computers in conjunction with effective software
tools are an essential part of this process. Over the past few years there has been a
rapid increase in the number of software tools available for the storage, visualisation
and analysis of these data sets; a selection of the major resources available are

described below.
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1.7.1: Genome Resources

There is now a large amount of genome related data associated with S. cerevisiae that
is being continuously generated by laboratories across the globe. This data ranges
from the genome sequence and gene coordinates to descriptions and functional
annotations of protein products. This vast amount of data requires efficient database
systems to store and manage it as well as effective web interfaces to make it readily
available to the scientific community. Currently, there are three main S. cerevisiae

database resources available over the World Wide Web (Table 1.3).
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Saccharomyces Genome Database (SGD)
Cherry et al., 1998

http://www.yeastgenome.org/

The SGD was established to provide a fast, easy and reliable method for yeast researchers
to obtain information about the S. cerevisiae genome, the genes it contains and their
possible interactions. The genome information in the SGD is organised around a ‘locus’ page
for each ORF containing a summary of the gene, its protein product and any mutant
phenotypes. The SGD contains an enormous amount of data on every ORF in S. cerevisiae
and also provides a vast array of links to a number of relevant scientific web sites. In
addition, the SGD makes a large proportion of its data publicly available for download and
use.

Munich Information Centre for Protein Sequences (MIPS)
Comprehensive Yeast Genome Database (CYGD)
Mewes et al., 1998

http://mips.gsf.de/genre/proj/yeast/index.isp

MIPS coordinated the collaborative effort of European groups during the S. cerevisiae
genome sequencing project and now manages a web site that provides the yeast community
with access to several genome databases. The information in MIPS is also organised around
a web page for each ORF which contains a brief summary of the gene and a number of links
to relevant data sources and web sites. In addition, MIPS makes a proportion of its data
publicly available for download and use.

Yeast Proteome Database (YPD)
Garrels et al., 1996

http://www.incyte.com/control/researchproducts/insilico/proteome

YPD began as a protein database rather than a genome database as emphasis was placed
on providing detailed information about the S. cerevisiae proteins. Although much of YPDs
data is included in MIPS and SGD, YPD excels at presenting its information in a very
readable, compact form. it is important to note that the YPD recently became a commercial
database that charges users a fee for access and use.

Table 1.3: S. cerevisiae online databases
This table contains the names and descriptions of the three main S. cerevisiae specific
online database resources available to the yeast researcher.

These resources are primarily data warehouses, the main function of which is the
dissemination of as much information as possible. Although, these resources do
contain large amounts of information on all the genes in S. cerevisiae they have
limited search and navigation mechanisms, basic visualisation tools and generally
centre around displaying information on a single gene at a time as opposed to
displaying information on entire groups of related genes at once to enable rapid

comparison and analysis.
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In addition to the S. cerevisiae specific resources described above there are also a
number of more general resources that provide access to the fully sequenced
genomes of other organisms, for example Schuler ez al. (1996), Kyrpides (1999) and
Peterson et al. (2001). Perhaps the most comprehensive of these resources is the
National Centre for Biotechnology Information (NCBI) Entrez Genome database

(Schuler et al., 1996; http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome).

The Entrez Genome database is publicly available and contains the whole genomes
of a large number of viruses and over 100 other organisms. However, these resources
are primarily focussed on providing information on the genome of specific organisms
and do not utilise the wealth of functional genomic data available such as gene

expression and protein-protein interaction data.

1.7.2: Gene Ontology Resources

Over the past few years, the Gene Ontology (GO) annotation system has been
adopted by the majority of the world’s major database repositories for plant, animal
and microbial genomes. Furthermore, a wide variety of computational tools have
now been developed that enable users to browse and search the GO annotation

system itself as well as searching for the annotations of specific genes (Table 1.4).
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AmiGO
Developed and maintained within the GO Consortium (Ashburner et al., 2001)

http://www.godatabase.org/

AmIGO is an HTML based application that allows the user to browse, query and visualize
data from the Gene Ontology. It allows the user to search for a GO term and view all gene
products annotated to it, or search for a gene product and view all its associations. Users
can also browse the ontologies to view relationships between terms as well as the number of
gene products annotated to a given term.

GenelnfoViz
Zhou et al., 2004
http://genenet.org/geneinfoviz/search.php

GenelnfoViz is a web based tool for batch retrieval of gene function information, visualization
of GO structure and construction of gene relation networks. It takes an input list of genes and
returns their functional annotation information. Based on the GO annotations of the given
genes, GenelnfoViz allows users to visualize these genes in the DAG structure of GO, and
construct a gene relation network at a selected level of the DAG.

GoFish
Berriz et al., 2003
http://llama.med.harvard.edu/~berriz/GoFishWelcome.htmi

GoFish is a Java application that allows users to search for gene products with particular
gene ontology (GO) attributes, or combinations of attributes. GoFish ranks gene products by
the degree to which they satisfy the search query.

GoMiner
Zeeberg et al., 2003
http://discover.nci.nih.gov/gominer/

GoMiner is a Java-based program package that displays groups of ‘interesting' genes within
the framework of the GO hierarchy, both as a DAG and as the equivalent tree structure.

Onto-Express
Khatri et al., 2002

http://vortex.cs.wayne.edu/projects.htm#Onto-Express

Onto-Express (OE) is a novel tool to automatically translate lists of differentially regulated
genes from microarray experiments into functional profiles characterizing the impact of the
condition studied. OE constructs functional profiles (using GO terms) for the following
categories: biochemical function, biological process, cellular role, cellular component,
molecular function and chromosome location. Statistical significance values are calculated
for each category.

Table 1.4: Gene ontology related computational resources
This table contains the names and descriptions of a few of the major Gene Ontology (GO)
related computational resources. A full list of GO related computational tools is available at

http://www.geneontology.org/GO.tools.shtml.

However, these tools tend to only be concerned with investigating the GO annotation

system itself. They provide good mechanisms to visualise and browse the GO system
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and search for specific terms and some tools permit the input of a group of gene
names (such as the names of all genes within an expression cluster of interest) which
can then collectively visualised and analysed. However, the user has to manually
input gene names as these tools are not themselves integrated with other functional

genomic data sources such as gene expression data.

1.7.3: Transcriptome Resources

The use of microarray technologies for the analysis of gene expression has increased
dramatically over the past few years. As a result, there has been a relative explosion
in the number of computational tools and resources available for the storage,
visualisation and analysis of the data generated; a few of the major resources are
described in Table 1.5. However, these resources tend to be solely aimed at the
analysis of gene expression data, only a few have features to integrate other forms of
data such as chromosome maps in Genesis (Sturn et al., 2002), protein-protein
interaction data in Expression Profiler (Brazma et al., 2003) and cellular pathways in
GeneSpring. In addition, only a few resources such as the yeast microarray global
viewer (YMGV; Marc et al., 2001) are aimed specifically at S. cerevisiae, which
means that most resources are not utilising the vast array of additional information

available on the genes being analysed such as GO annotations.
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Cluster and TreeView
Eisen et al., 1998

http://rana.lbl.gov/EisenSoftware.htm

Cluster and TreeView are an integrated pair of computer programs for visualising and
analysing the results of complex microarray experiments. Cluster is a freely available
Windows based computer program that is widely used for the analysis of gene expression
data from microarray experiments; it performs a variety of data normalisation and cluster
analysis techniques including hierarchical clustering, k-means clustering, Self-Organising
Maps (SOMs) and Principal Component Analysis (PCA). TreeView is a freely available
Windows based computer program that can be used to graphically browse the results of a
hierarchical cluster analysis performed by Cluster; it supports tree and image based
browsing of hierarchical trees and provides a number of output options for the generation of
images.

GeneSpring
Silicon Genetics
http://www.silicongenetics.com/cqi/SiG.cqi/Products/GeneSpring/index.smf

GeneSpring is a commercial standalone program that is widely regarded as one of the
leading tools for gene expression data analysis. It has a number of advanced features
including: scripting, data normalisation, data clustering, 3D data visualisation, pathway
views, expression profile comparison and statistical toois.

yeast Microarray Global Viewer (yMGV)
Marc et al., 2001
http://www.transcriptome.ens.fr/lymqv/

yMGV is an online database providing a synthetic view of the transcriptional expression
profiles of S. cerevisiae genes in a number of published expression data sets. yMGV
displays a one-screen graphical representation of gene expression variations for each
published genome-wide experiment, allowing a quick retrieval of experimental conditions
having an effect upon expression of a selected gene. yMGV also provides tools to isolate
groups of genes sharing similar transcription profiles in a defined subset of experiments.

Stanford Microarray Database (SMD)
Sherlock et al., 2001

http://qenome-wwwS5.stanford.edu/

SMD stores raw and normalised data from microarray experiments from ongoing research
projects at Stanford University and provides a web interface for the public to retrieve,
analyse and visualise the data.

Genesis
Sturn et al., 2002

http://genome.tugraz.at/Software/Genesis/Description.html

Genesis is a versatile, platform independent and easy to use Java suite for large-scale gene
expression analysis. Genesis integrates various tools for microarray data analysis such as
filters, normalization and visualization tools, distance measures as well as common
clustering algorithms including hierarchical clustering, self-organizing maps, k-means,
principal component analysis, and support vector machines. The results of the clustering are
transparent across all implemented methods and enable the analysis of the outcome of
different algorithms and parameters. Additionally, mapping of gene expression data onto
chromosomal sequences has been implemented to enhance promoter analysis and
investigation of transcriptional control mechanisms.

Table 1.5: Continued overleaf
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Array Express
Brazma et al., 2003

http://www.ebi.ac.uk/arrayexpress/

ArrayExpress is a public database of microarray gene expression data at the European
Bioinformatics Institute (EBI), it is a generic gene expression database designed to hold data
from all microarray platforms. ArrayExpress uses the annotation standard Minimum
Information About a Microarray Experiment (MIAME) and the associated XML data
exchange format Microarray Gene Expression Markup Language (MAGE-ML) and it is
designed to store well annotated data in a structured way. The ArrayExpress infrastructure
consists of the database itself, data submissions in MAGE-ML format or via an online
submission tool MIAMExpress, an online database query interface and the Expression
Profiler online analysis tool.

Table 1.5: Microarray related computational resources

This table contains the names and descriptions of a few of the major computational tools and
resources available for the analysis and interpretation of gene expression data generated
from microarray experiments.

The establishment of standards for microarray data annotation and exchange is a key
issue currently being addressed by the Microarray Gene Expression Data society

(MGED; http://www.mged.org). MGED is an international organisation of

biologists, computer scientists and data analysts that aims to facilitate the sharing of
microarray data. The current focus of MGED is on establishing standards for
microarray data annotation and exchange, facilitating the creation of microarray
databases and related software implementing these standards and promoting the
sharing of high quality, well annotated data. The Minimum Information About a
Microarray  Experiment  initiative @ (MIAME; Brazma et al., 2001;

http://www.mged.org/Workgroups/MIAME/miame.html) aims to outline the

minimum information required to unambiguously interpret microarray data and to
subsequently allow independent verification of this data at a later stage if required.
MIAME is a set of guidelines that will assist with the development of microarray

repositories and data analysis tools.
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1.7.4: Proteome Resources

The use of high-throughput techniques in the detection of protein-protein interactions
has increased rapidly over the past few years. As a result, there has also been an
explosion in the number of computational tools and resources available for the
storage, visualisation and analysis of protein-protein interactions. The majority of
these resources are online database repositories for interaction data which have a
simple graphical display tool (typically using a ‘springs and rings’ type algorithm);
the major resources available are described in Table 1.6. However, most these
resources are only concerned with protein-protein interactions and therefore do not
incorporate other data such as the genomic location, GO annotations or gene
expression profiles of the interacting proteins. In addition, relatively few are
specifically aimed at the budding yeast S. cerevisiae and so do not utilise the wealth

of functional genomic data available for this organism.
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A Java applet for visualizing protein—-protein interactions
Mrowka, 2001

http://www.charite.de/bioinformatics/

This is a web applet for browsing protein—protein interactions’ It enables the display of
interaction relationships, based upon neighbouring distance and biological function. This
applet was one of the first protein-protein interaction visualisation tools to use a ‘springs and
rings’ type algorithm.

Biomolecular Interaction Network Database (BIND)
Bader et al., 2001

http://www.bind.ca/

BIND is an expanding database of biomolecular interaction, pathway and complex
information. All information stored in BIND is freely available through a web interface that
allows users to query, view and submit records. The interactions come from scientific
literature, public submitters and other interaction databases.

Database of Interacting Proteins (DIP)
Xenarios et al., 2000

http://dip.doe-mbi.ucla.edu/

DIP catalogues experimentally determined interactions between proteins. It combines
information from a variety of sources to create a single, consistent set of protein-protein
interactions. The data stored within the DIP database were curated manually and also
automatically using computational approaches. The database is publicly available on the
web and is intended to aid those studying protein-protein interactions, signalling pathways,
multiple interactions and complex systems.

General Repository for Interaction Datasets (GRID)
Breitkreutz et al., 2003

http://biodata.mshri.on.ca/grid/serviet/index

GRID is a database of genetic and physical interactions. It contains interaction data from
many sources, including several proteome wide studies and other interaction databases.
GRID also has a software platform for the visualization of complex interaction networks
called Osprey. Recently, the GRID database split into three organism specific databases
called YeastGRID, FIlyGRID and WormGRID. The YeastGRID database is now strongly
linked to the SGD and incorporates the GO annotations of interacting proteins.

IntAct
Hermjakob et al., (2004)
http://www.ebi.ac.uk/intact

IntAct provides an open source database and toolkit for the storage, presentation and
analysis of protein interactions. It has a web interface that provides both textual and
graphical representations of protein interactions and allows the exploration of interaction
networks in the context of the GO annotations of the interacting proteins. A web service
allows direct computational access to retrieve interaction networks in XML format.

Table 1.6: Continued overleaf
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Molecular Interactions Database (MINT)
Zanzoni et al., 2002
http://cbm.bio.uniroma2.it/mint/

MINT is a database designed to store functional interactions between biological molecules
(proteins, RNA, DNA). Beyond cataloguing the formation of binary complexes, MINT was
conceived to store other types of functional interactions namely enzymatic modifications of
one of the partners. The interaction data can be easily extracted and viewed graphically with
‘MINT Viewer'.

PathCalling Yeast Interaction Database
Uetz et al., 2000
http://portal.curagen.com/cgi-bin/com.curagen.portal.serviet.PortalYeastList

PathCalling is a yeast specific interaction database that was initially designed to store the
data generated from the Uetz et al. (2000) yeast two-hybrid study. It allows users to search
for information on putative protein interactions, perform sequence analyses and view the
results, extend interactions to construct pathways and to view homologues of the yeast
genes. PathCalling has a basic visualisation tool that displays a static diagram of a protein
and all the interactions it is involved in.

PIMRider
Hybrigenics
http://pim.hybrigenics.com/pimrider/pimrideriobby/PimRiderLobby.jsp

PIMRider is a commercial functional proteomics software platform for the exploration of
reliable protein-protein interaction data and protein pathways.

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)
Von Mering et al., 2003
http://www.bork.embi-heidelberqg.de/STRING/

STRING is a database of known and predicted protein-protein interactions. The interactions
include direct (physical) and indirect (functional) associations; they are derived from four
sources: (1) Genomic Context; (2) High-throughput Experiments; (3) Co-expression; and (4)
Previous Knowiedge. STRING quantitatively integrates interaction data from these sources
for a large number of organisms, and transfers information between these organisms where
applicable.

Table 1.6: Protein-Protein interaction related computational resources
This table contains the names and descriptions of some of the major computational
resources available for the visualisation and analysis of protein-protein interaction data.

Currently, there are several well established databases for protein-protein interaction
data. However, these databases provide their data in many different formats and are
not synchronised with each other. Therefore, the task of combining interaction data
from different sources is a common and tedious problem. The Proteomics Standards

Initiative (PSI; Hermjakob et al., 2004; http://psidev.sourceforge.net/) aims to define
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community standards for data representation in proteomics to facilitate data
comparison, exchange and verification. PSI is developing a common data standard
for protein-protein interactions that will allow users to retrieve all relevant data from
different sites and perform comparative analyses of different data sets much more
easily than is currently possible. This standard will allow a synchronisation of the

core data between public protein interaction database providers.

1.8: Integrated Analysis

The availability of complete genome sequences along with gene predictions has
resulted in the development of new technologies such as microarrays and the yeast
two-hybrid system enabling the analysis of gene expression and protein interactions
on a genomic scale. These techniques have been used to sort genes and proteins into
related groups based on shared expression profiles or interactions; the concept of
guilt by association. However, these high—throughput techniques all have their own
disadvantages and therefore the data obtained from any single approach should be
interpreted cautiously. Furthermore, as the data from any single approach can only
provide a tentative indication of a gene or protein function, it has been proposed that
these limitations can be overcome by integrating data obtained from two or more
distinct approaches (Walhout et al., 1998; Vidal, 2001; Ge et al., 2003). For
example, a cluster of interacting proteins whose corresponding genes are similarly
expressed under various experimental conditions and have similar GO annotations is
likely to be more relevant than any other cluster for which additional information is

not available. In addition, the expression profiles and GO annotations might indicate
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dynamic and functional aspects of the cluster. Therefore, new biological insights are
likely to emerge from the integration of data from different functional analyses and
computers in conjunction with effective software tools are an essential part of this

process.

Several groups have investigated the potential relationship between gene expression
and protein interaction data sets (Ge et al., 2001; Grigoriev, 2001; Mrowka et al.,
2001; Jansen et al., 2002; Kemmeren et al., 2002). Ge et al. (2001) combined a
variety of high throughput and low throughput interaction data sets with expression
data from cell cycle, sporulation and environmental stress experiments. A Protein
Interaction Density (PID) value was calculated as the ratio of the number of observed
interactions over the total number of possible interactions for a given set of proteins.
PIDs were then compared between sets of protein pairs encoded by genes belonging
to the same expression cluster (or intracluster pairs) and sets of protein pairs encoded
by genes belonging to different clusters (or intercluster pairs). In general, average
intracluster PIDs were found to be significantly greater than intercluster PIDs for
interactome data sets, whereas the average intracluster and intercluster PIDs were
similar for random data sets. Furthermore, low throughput data sets gave larger PIDs
than high throughput data sets. This was interpreted as evidence that genes with
similar expression profiles are more likely to encode interacting proteins and
indicated that there was a global correlation between gene expression and protein
interaction data. However, although the actual approach used seems to be sound
(Mrowka et al., 2003; Ge, Liu et al., 2003), self-interacting protein interactions were

not filtered out of the experimental data sets which would obviously bias the results.
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Removal of these self-interactions was found to give similar results for the

experimental and random data sets (Mrowka et al., 2003).

Grigoriev (2001) investigated the relationship between the similarity of expression
patterns for a pair of genes and interaction of the proteins they encoded for both §.
cerevisiae and the bacteriophage T7. Grigoriev (2001) found that, on average, the
Pearson correlation coefficients of transcript abundance corresponding to interacting
protein pairs were significantly higher (indicating a better correlation) for
interactome data sets than for sets of random protein pairs. This led to the suggestion
that protein pairs encoded by co-expressed genes interact with each other more
frequently than with random pairs. Mrowka et al. (2001) compared a number of high
and low throughput interaction data sets and found that interacting proteins from the
low throughput data sets were much more closely related to each other with respect
to transcription profiles when compared to the high throughput data sets. One
explanation for this difference was the high false positives rates in the high
throughput data sets. Jansen et al. (2002) integrated a variety of data sources for
yeast to investigate the relationship of protein-protein interactions with mRNA
expression levels. By focusing on known protein complexes with high confidence
interactions they found that subunits of the same protein complex show significant
coexpression. However, they also investigated the interactions in genome-wide data
sets and found them to have only a weak relationship with gene expression.
Kemmeren et al. (2002) showed how integration improves the utility of different
types of functional genomic data by using collections of microarray expression data

to assess the quality of different high-throughput protein interaction data sets and
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provide functional annotation for a large number of previously uncharacterised
genes. They found that, on average, the cosine correlation distances of transcript
abundance corresponding to proteins pairs are significantly lower (indicating a better
correlation) for interactome data sets than for random protein pairs. Wemer-
Washburne et al. (2002) created a novel tool for the visualisation and comparison of
S. cerevisiae gene expression and protein-protein interaction data sets; visual analysis
of the data using this tool showed no clear overall correlation between co-expression
of genes and protein interactions. However, interesting insights were generated by

focusing in on ribosomal proteins as opposed to analysing whole data sets.

Global relationships have also been examined for other pairwise combinations of
functional genomic data sets. Cohen et al. (2000) investigated correlations between
the expression patterns of genes on the same chromosome and found that in mény
cases adjacent pairs of genes, as well as nearby non-adjacent pairs of genes, showed
correlated expression. Furtherrriore, they showed that genes with similar functions
tended to occur in adjacent positions along the chromosome. Drawid et al. (2000)
investigated the relationship between protein subcellular localisation and gene
expression for a variety of S. cerevisiae whole genome expression data sets. They
found high expression levels for cytoplasmic proteins, low levels for nuclear and
membrane proteins and large fluctuating levels for excreted proteins. Fellenberg et
al. (2000) developed a method for the integrative analysis of protein-protein
interaction and functional classification data from S. cerevisiae to deduce hypotheses
about the functional role of uncharacterised proteins. Ogata et al. (2000)

investigated, for a number of different organisms, if enzymes located near each other
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in the KEGG metabolic pathways (http://www.genome.jp/kegg/kegg2 html) were

located near each other on the genome, forming Functionally Related Enzyme
Clusters (FRECs). They found that the relative number of enzymes in FRECs was
close to 50 % for Bacillus subtilis and Escherichia coli but was less than 10 % for S.
cerevisiae. Ideker et al. (2001) developed an approach to integrate gene expression,
protein expression and protein interaction data sets and assimilate them into
biological models to predict cellular behaviour; they used this approach to investigate
the properties and behaviour of the galactose-utilisation pathway. Jeong et al. (2001)
and Oltvai et al. (2002) investigated correlations between high throughput protein-
protein interaction and phenotype data sets in S. cerevisiae and found that proteins
with large numbers of potential interaction partners (hubs) were often found to be

essential.

As discussed above, there have now been a number of studies that have combined
different functional genomic data sets together for integrated analysis which have led
to some interesting insights; these studies most commonly integrate two different
types of data sets in a pairwise fashion. However, there are currently very few
computational resources available that enable users to perform analyses on the
functional genomic data sets in an integrated fashion themselves (Table 1.7); in
addition, these resources are only recent developments. Therefore, there is a now a
clear need for a new generation of software tools that are capable of effectively
integrating the wealth of data available for S. cerevisiae enabling users to readily

utilise all of this data in their analyses and investigations.
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Cytoscape
Shannon et al., 2003
http://www.cytoscape.org/

Cytoscape is an open source software project for integrating biomolecular interaction
networks with high-throughput expression data and other molecular states into a unified
conceptual framework. Although applicable to any system of molecular components and
interactions, Cytoscape is most powerful when used in conjunction with large databases of
protein—protein, protein—-DNA, and genetic interactions that are increasingly available for
humans and model organisms. Cytoscape’s software Core provides basic functionality to
layout and query the network; to visually integrate the network with expression profiles,
phenotypes, and other molecular states; and to link the network to databases of functional
annotations. The Core is extensible through a straightforward plug-in architecture, allowing
rapid development of additional computational analyses and features.

Genome Information Management System (GIMS)
Cornell et al., 2003

http://www.cs.man.ac.uk/img/gqims/

GIMS is an object database that integrates genomic data with data on the transcriptome,
protein-protein interactions, metabolic pathways and annotations, such as gene ontology
terms and identifiers. GIMS supports the running of integrated analyses over database and
provides comprehensive facilities for handling and inter-relating the results of these
analyses.

Database for Annotation, Visualisation and Integrated Discovery (David)
Dennis et al., 2003

http://www.david.niaid.nih.qov

DAVID is a web-based tool that provides integrated solutions for the annotation and analysis
of genome-scale datasets derived from high-throughput technologies such as microarray
and proteomic platforms. Analysis results and graphical displays remain dynamically linked
to primary data and external data repositories, thereby furnishing in-depth as well as broad-
based data coverage. The functionality provided by DAVID accelerates the analysis of
genome-scale datasets by facilitating the transition from data collection to biological
meaning.

Genostar
http://www.genostar.org/

Genostar is a bioinformatics platform for exploratory genomics offering a unified way of
representing and managing data of various types and origins (high throughput sequencing,
micro-arrays, proteomics, etc) through a set of software modules which can exchange
information. The first version of Genostar consisted of three modules: (1) GenoAnnot
provides an innovative solution to the annotation of genomic sequences; (2) GenoLink
enables the exploration of relationships between data sets; and (3) GenoBool helps to
identify correlations between data sets.

Table 1.7: Integrated computational resources
This table contains the names and descriptions of some of the major integrated
computational resources.
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1.9: Thesis Outline

This chapter has essentially given a broad overview of the subject areas relating to
this PhD project. In Chapter 2, the specific aims and motivations behind this project
are detailed and discussed. In Chapters 3 and 4, the features and functionality of the
software tool developed through this project are described along with an overview of
the functional genomic data sets used. In Chapter 5, a number of case studies are
presented that demonstrate the utility of the developed tool to investigate the function
of unknown genes. In Chapters 6 and 7, the utility of the tool in the analysis of
correlations between functional genomic data sets is detailed and discussed along
with the results from a number of correlation analyses; in addition, a number of case
studies‘, are presented that investigate specific genes and biological processes
highlighted through the correlation analysis results. In Chapter 8, an overall
discussion of the tool and the analysis results is presented along with concluding

remarks and future directions.
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Chapter 2

Aims



2.1: Concept

Although the budding yeast Saccharomyces cerevisiae (S. cerevisiae) is one of the
most intensively studied eukaryotic organisms (due to its value as a model organism
in biological research) there is still a great deal left to learn about this organism and
the biological processes that maintain it. The genome sequencing project has
essentially provided a complete catalogue of all the genes present in S. cerevisiae and
the goal now is to understand the function of all the gene products and ultimately
how they interact to create this simple eukaryotic organism. However, a large
proportion of the genes in S. cerevisiae are still classified as genes of unknown
function and additional information is needed to place them within a biological
context. Ultimately, the validity and function of each gene can only be proven by
experiments in the laboratory but given the number of unknown genes in the S.
cerevisiae genome this could take some time. Therefore, there is a clear need for new
experimental and computational methods to aid in the assignment of biochemical
functionality; these methods could suggest possible biological roles for genes of

unknown function which could then be validated by experiments in the laboratory.

Functional genomic strategies have become increasingly valuable in characterising
novel genes discovered by genome sequencing projects. Many such strategies use the
principle of ‘guilt by association’ as the means of elucidating function, i.e. genes that
are coexpressed or proteins that interact with one another are likely to be involved in
the same or related biological processes. Over recent years there has been a relative
explosion of functional genomic data available for S. cerevisiae such as gene

expression and protein-protein interaction data sets. As these data sets can be both
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large and complex, the intelligent exploitation of them is dependent upon the
provision of effective software tools. Software tools facilitate the exploration and
analysis of these data sets by providing effective search, visualisation and analysis
mechanisms. The overall aim of such tools is to aid in improving our biological
understanding of S. cerevisiae by helping to functionally characterise individual
genes and proteins, and to decipher how they work together to fulfil broader

biological goals.

Over recent years, there has been a rapid increase in the number of software tools
available for the visualisation and analysis of individual types of functional genomic
data sets; for example, there are now many tools for the visualisation of protein-
protein interactions (e.g. Mrowka, 2001) and many tools for the analysis of gene
expression data (e.g. Eisen et al., 1998). However, the majority of functional
genomic strategies have weaknesses and disadvantages that can make the data sets
produced incomplete and error prone. Combining data sets from the same strategy
can reduce these disadvantages and therefore give greater confidence in any
biological interpretations made from analyses of them. More importantly, many new
biological insights are likely to emerge from the combined use of data from different
functional genomic strategies. For example, there have now been a number of
individual scientific studies that have integrated functional genomic data sets
together for analysis which have led to some interesting biological insights (see
section 1.8 of this thesis for more details). However, there are still relatively few
software tools available that can effectively combine functional genomic data sets

together and present them to the user for integrated visualisation and analysis.
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Therefore, there is a clear need for a new generation of software tools that are
capable of effectively integrating the wealth of functional genomic data available for
S. cerevisiae enabling users to readily utilise all of this data in their analyses and

investigations of specific genes and broader biological processes.

To this end, the first aim of this project was to design and develop a novel
bioinformatics tool for the integrated visualisation and analysis of functional
genomic data sets from the budding yeast S. cerevisiae. The initial data sets
considered were gene expression data from microarrays, protein-protein interaction
data from yeast two-hybrid screens as well as functional annotation data on the genes
and proteins of S. cerevisiae; these data sets were selected as they were generated
from exciting modern technologies and the combination of them had the potential to
yield interesting associations. This tool was planned to be a user friendly workbench
that would enable both wet and dry laboratory scientists to easily explore any and all
aspects of the data in an integrated modular fashion. The second aim of this project
was to use the developed tool to try and assign biochemical functionality to genes of
unknown function, investigate specific biological processes, analyse the stored
functional genomic data sets individually and investigate possible correlations

between them.

2.2: Software Life Cycle

As one of the primary aims of this project involves the design and development of a

software product, it is important to give an overview of the software life cycle at this
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point. The software life cycle can be defined as the period of time beginning when a
software product is conceived and ending when the product is no longer available for
use. The software life cycle is typically broken into phases denoting activities such as
requirements, design, programming, testing, installation, and operation and
maintenance. There are many different software life cycle models such as the
waterfall, prototyping, incremental, rapid application development, transformation
and spiral models; for more information on the different software life cycles models
see, for example, Jacobson et al., 1999. The software life cycle model that best
describes the design and development of the software product in this project is shown
in Figure 2.1. Briefly, after the initial concept for the project was devised, potential
users were consulted and an initial system design was drawn up. The development of
the system then went through a number of cycles of coding and testing with a new
version of the system released at the end of each development cycle, ultimately
resulting in the release of the final version of the system at the end of the project.
Overall, the system went through four broad cycles of development which are

described in detail in section 2.6, “System Development”, below.
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Figure 2.1: The Software Life Cycle
This is a diagram of the software life cycle model that best describes the design and
development of the software product in this project.

2.3: User Requirements

A ‘user requirement’ can be defined as a condition or capability needed by a user to
solve a problem, achieve an objective or increase productivity and the ‘requirements
gathering phase’ can be defined as the period of time in the software life cycle during
which the user requirements, such as functional and performance capabilities, are
identified and documented. The requirements gathering phase is therefore one of the
most important phases as it forms the basis for the design and implementation phases
that follow. In this project, the initial target users were members of Professor Jean

Beggs’s laboratory (http://homepages.ed.ac.uk/jeanb/) in the Institute of Cell and

Molecular Biology, University of Edinburgh. However, it is important to note that

the other primary user in this project was also myself as I would be using the
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developed software product to explore the stored functional genomic data sets and

investigate possible correlations between them.

As described above, the initial concept of the project was to develop a bioinformatics
tool for the integrated visualisation and analysis of functional genomic data sets from
the budding yeast S. cerevisiae. Therefore, preliminary meetings were organised with
the initial target users to discuss the potential usefulness of such a tool, what essential
features would be needed and what novel features would be useful; essentially, this
was the requirements gathering phase of the project. The concept for the tool
received good feedback from the target users and was further backed up by
observations of their current working practices. The target users would typically use
multiple computational resources to find information on a specific gene of interest.
For example, the Saccharomyces Genome Database (SGD; Cherry et al., 1998)
would be used to view textual information such as descriptions and annotations on a
specific gene but an alternative resource would need to be used to view the gene’s
corresponding protein-protein interactions (e.g. PathCalling; Uetz et al., 2000);
furthermore, another resource would need to be used to view the expression data on
the gene (e.g. Cluster; Eisen et al., 1998). This lack of integration between these
resources and their corresponding data sets was evidently a problem as if any genes
were found to be of interest in one resource their names would have to be manually
noted and subsequently entered into the other resources to be investigated further.
Therefore, this would often result in users manually noting down gene names and
constantly shifting between different resources to examine relevant data in the

process of their investigation. In addition, users were often interested in investigating
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the properties of multiple genes of interest. However, as the existing resources
revolved around a single gene approach, users would have to investigate each of the
genes individually, as opposed to collectively, making comparisons of their
properties tedious. Whereas a group approach in conjunction with integrated
functional genomic data sets would enable all the genes involved in an entire
biological process to be collectively examined as a whole to investigate the dynamics
of how they are working together to achieve their biological goal and to also examine
what other genes they may be working with. Furthermore, this approach would
enable any features of interest from one functional genomic data set to be selected
and collectively investigated in further detail in the other data sets; for example,
investigating if all the genes located in a specific expression cluster share similar

functions and encode proteins that interact with one another.

After meeting with the target users, the essential features for the planned software
tool were identified as easy to use navigation, search and display mechanisms
combined with clear graphical representations of the data. While the novel features
for the tool were identified as: (1) A modular or group approach enabling the
collective investigation of all the properties of an entire group of genes at once; and
(2) Effective integration of the data enabling users to select a feature of interest from
one data set to collectively investigate further as a whole in the other data sets. In
conclusion, the target users were in favour of the development of an easy to use but
advanced tool for the visualisation and analysis of S. cerevisiae functional genomic

data sets in an integrated modular fashion.
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2.4: Existing Tools

This project began in October 2000 and at this time there were relatively few
computational tools available for the visualisation and analysis of S. cerevisiae
functional genomic data sets compared to the large variety available today. The
available tools tended to be either data warehouses centred on displaying a large
amount of textual information on a single gene of interest or tools for the
visualisation and analysis of only a specific type of functional genomic data set.
There were no established tools available that could effectively integrate the wealth
of functional genomic data available for S. cerevisiae and none that could utilise a

group approach in the analysis of the data.

The major computational resources available to S. cerevisiae researchers were the
SGD, the Munich Information Centre for Protein Sequence (MIPS; Mewes et al.,
1998) and the Yeast Proteome Database (YPD; Garrels et al., 1996). However, these
resources were primarily data warehouses, the main function of which was the
dissemination of as much information as possible on the genes of S. cerevisiae.
These resources revolved around a single gene approach and were essentially
designed to search for and subsequently display a datasheet on a single gene of
interest. They had fairly limited and rigid search and navigation systems to find
information where the main and sometimes only way of searching for information
was by entering a single gene name which typically led to a datasheet on that gene.
Although this is an essential feature, more flexible search mechanisms allowing

keyword searches of descriptions were seldom provided; those that were would
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simply lead to a list of all the genes associated with the keyword, each of which
would have to be examined individually to see what they were and what their
function was. Whereas, more flexible search mechanisms combined with a group
approach for analysis would allow the data on an entire group of genes to be easily
searched for and then collectively displayed enabling users to investigate entire
biological processes as a whole. Furthermore, the above resources generally
displayed data in a textual format; although some graphical representations of data
were provided, such as an image of the chromosomal region surrounding a gene of
interest, these displays tended to be relatively basic. Whereas more intuitive and
dynamic graphical representations of the data would enable users to easily and
rapidly explore the data and then select any features of interest to investigate further

collectively.

There were also a number of computational tools available for the visualisation and
analysis of specific types of functional genomic data sets. However, these tools
tended to be focussed on a single data type and none of these were specifically aimed
at S. cerevisiae and so did not utilise the wealth of other functional genomic data
available. For example, Cluster (Eisen et al., 1998) was a widely used computational
tool for the analysis of gene expression data from microarray experiments. It could
perform a variety of data normalisation and cluster analysis techniques including
hierarchical clustering, the results of which could be graphically viewed and browsed
in its associated computational tool Treeview (Eisen et al., 1998). However, although
Cluster and Treeview were good tools for the analysis and subsequent visualisation

of gene expression data, they were only concerned with gene expression data and
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therefore did not utilise the wealth of other functional genomic data available for S.
cerevisiae. Furthermore, although annotations of the genes analysed could be
incorporated into the input files, this data needed to be incorporated manually by the

users themselves.

There were also a number of computational tools available for the visualisation and
analysis of protein-protein interaction data. For example, PathCalling (Uetz et al.,
2000) was a computational tool specifically designed for the protein-protein
interaction data generated from the Uetz et al. (2000) yeast two-hybrid study.
However, this tool had limited search mechanisms, basic graphical displays and
although it did include brief descriptions of the interacting proteins it did not utilise
the wealth of other functional genomic data available for S. cerevisiae. The Database
of Interacting Proteins (DIP; Xenarios et al., 2000) contained interactions manually
curated from the scientific literature. Although it provided a number of effective
search mechanisms, these searches would simply return textual lists of interactions,
as opposed to graphical displays, each of which would need to be examined
individually. Furthermore, although it did contain a brief amount of information on
the interacting proteins, it too did not utilise the wealth of other functional genomic

data available for S. cerevisiae.

Therefore, there was a clear need to design and develop a new tool that would
combine the advantages of the existing data warehouses, by containing a large
variety of information on every gene in S. cerevisiae, with the advantages of the

existing visualisation and analysis tools, by enabling users to explore the stored
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functional genomic data sets. However, the tool would also need to utilise the wealth
of functional genomic data available for S. cerevisiae and be able to effectively
integrate the different types of data sets together as well as utilising a group approach
that would enable users to collectively investigate all the properties of an entire

group of genes at once

2.5: System Design

After the initial discussions with the target users, the next step in the development
process was to sketch out an initial system design of the planned software tool
(Figure 2.2). The: initial design split the system into two parts: (1) A database for the
storage and management of the data; and (2) An associated software tool for the
integrated visualisation and analysis of the data. The database was planned to store a
variety of information on all the genes of S. cerevisiae in conjunction with a variety
of functional genomic data sets. The source of the information on the genes of S.
cerevisiae was initially identified as the SGD and the initial functional genomic data
sets that were considered were protein-protein interactions from large scale yeast
two-hybrid screens (Uetz et al., 2000 & Ito et al., 2000) and genome scale gene
expression microarray experiments (e.g. Eisen et al., 1999 & Gasch et al., 2000). The
initial system design split the software tool itself into a number of inter-linked
sections, namely: (1) A Genome Section for the visualisation and analysis of the S.
cerevisiae genome; (2) A Transcriptome Section for the visualisation and analysis of

gene expression data; (3) A Proteome Section for the visualisation and analysis of

protein-protein interactions; (4) A Cell Section for the visualisation and analysis of a
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typical S. cerevisiae cell; and (5) An Analysis Section for searching for information

and collectively visualising data on all the search results.

Data Data ' | Data ’ Data Data
L L -

N\

:

Software Tool | =

Gene Datasheet

L

Genome Transcriptome Proteoime Analysis Cell

Figure 2.2: Initial system design of the software tool

This is a schema of the initial system design of the planned software tool. Briefly, the system
is comprised of a database for the storage and management of the data and a software tool
for the visualisation and analysis of the data. The software tool is split into a number of inter-
linked sections and utilises a group approach enabling all the properties of an entire group to
be analysed collectively. For example, data on the 5 genes highlighted in red on the Genome
Section can be collectively viewed in the Transcriptome, Proteome, Analysis and Cell
Sections, and vice versa.
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The software tool was planned to utilise a group approach that, combined with the
inter-linked sections, would enable users to easily select a feature of interest from
one section and then swiftly move to any of the other sections where the
corresponding data related to their selection would be automatically displayed and
highlighted. Therefore, the tool would enable all the properties of an entire group of
genes to be collectively investigated. For example, the chromosomal region
surrounding a gene of interest could be selected in the Genome Section and then all
the genes in this region could be collectively investigated in the other sections to
examine if they are coexpressed, if their encoded products interact, if they share
similar functions and if they are located in the same cellular location. Furthermore,
the tool was planned to be easy to use with simple navigation and functional features,
have flexible search mechanisms and provide clear graphical representations of the
data enabling users to easily and rapidly find the data they want, investigate the
intricacies of broad biological processes and test specific hypotheses. In addition to
the initial target users, the software tool was also aimed at both wet and dry
laboratory scientists with an interest in S. cerevisiae who would use the tool as a
workbench to investigate specific genes and biological processes and to easily
explore any and all aspects of the functional genomic data in an integrated modular
fashion. The typical questions that this software tool aimed to help users answer are
detailed in Table 2.1 below; these questions were identified through discussions with
the target users. Furthermore, although the tool was specifically aimed at the budding
yeast S. cerevisiae, it was designed with flexibility in mind so that it could be applied

to other organisms with relative ease in the future.
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| am interested in a particular gene of unknown function; What can this tool tell me about it
and can it help me to assign biochemical functionality to it?

| am interested in a particular gene of known function; What can this tool tell me about it and
what other genes it is working with to achieve its biological goals?

| am interested in a particular gene which | believe is involved in a particular biological
process; Can this tool help me to investigate this?

| am interested in a specific biological process; What can this tool tell me about it, what
proteins are involved and how are they working together? Can this tool help identify any new
proteins of unknown or known function involved in this process?

| am interested in a specific chromosomal region; What can this tool tell me about it, what
genes are located within it, what are their functions and do they work together to achieve
common biological goals? Can this tool help characterise any proteins of unknown function
in this region?

| am interested in a particular hierarchically clustered gene expression data set; How can this
tool help me explore this data set?

I am interested in a particular gene expression cluster from this data set; What can this tool
tell me about it, what genes are located within it, what are their functions and do they work
together to achieve common biological goals? Can this tool help characterise any genes of
unknown function in this cluster?

| am interested in a particular protein-protein interaction data set; How can this tool help me
explore this data set?

I am interested in a particular protein interaction cluster from this data set; What can this tool
tell me about it, what proteins are located within it, what are their functions and do they work
together to achieve common biological goals? Can this tool help characterise any proteins of
unknown function in this cluster?

I am interested in two groups of proteins that | believe are evolutionary or functionally
related; Can this too! help me investigate this?

Table 2.1: Typical user questions the software tool aims to address
This table contains the typical questions the software tool aims to help users answer.

The initial system design also identified the computational technologies that would
be used to actually build the system itself; the database and software tool would be

built using MySQL (http://www.mysgl.com) and Java (http://java.sun.com/),

respectively. MySQL is an open source database management system that is fast,
compact, stable and is available for most of the major computer platforms. The Java
programming language is a state-of-the-art, object-oriented language with a syntax

similar to the C++ programming language and is also available for most of the major
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computer platforms. Furthermore, Java has a rich set of routines to support Graphical
User Interface (GUI) creation, communication with databases and web based
applications. Taken together, MySQL and Java would therefore enable the creation
of a fast, stable, user-friendly, platform independent and web-enabled system. Before
construction of the system began, the initial system design was discussed with and

approved by the initial users.

2.6: System Development

The planned system was fairly large but could be effectively split up into two parts,
namely the database and the software tool; furthermore, the software tool itself could
be effectively split up into a number of inter-linked sections. Therefore, the system
was developed in a number of stages starting from the development of the database
and the core architecture of the software tool followed by the development and
subsequent integration into the system of each individual section of the software tool.
Each stage resulted in the release of a new version of the system which was delivered

to the users for testing and feedback.

The first stage of development involved identifying and obtaining data on all the
genes in the S. cerevisiae genome, building the database to effectively store this data
and building the Genome and Analysis Sections of the software tool which could
utilise this data. The SGD was identified as the initial source of this data as it
contains a large amount of information on all the genes of S. cerevisiae and makes a

large proportion of this publicly available. The initial data obtained and processed

Chapter 2: Aims 70



included the name, size, location, description, GO annotations and phenotype of
every gene in the genome. The MySQL database to store this data was then designed,
built and subsequently loaded with the data obtained from the SGD. The core section
of the software tool concerned with initialisation and communicating with the
database was then developed. This was quickly followed by the development and
integration of the Genome and Analysis Section. The result of this stage was the
internal release of a software tool called the Virtual Yeast Cell (Version 1) which
was a standalone system that could be used to visualise and analyse the S. cerevisiae
genome as well as for searching for information and collectively visualising data on
all the search results. This version highlighted the main principles underlying the
whole system as it utilised a group approach for analysis, had two inter-linked
sections and offered clear graphical representations of the data. As a result, this
version received good feedback from the initial target users and the further

development of the system was approved.

The second stage of development involved expanding the system to incorporate the
Proteome Section and its associated data. The initial data identified for the Proteome
Section were the two large scale yeast two-hybrid screens of the time (Uetz et al.,
2000; Ito et al., 2001). This data was processed and subsequently integrated into the
database. The Proteome Section itself was then developed and inter-linked with the
other sections of the software tool. During this stage of development, the entire
system was also made available for use over the World Wide Web enabling users to
use the system without having to install the database or program locally. As

described above, the initial name given to the system was the Virtual Yeast Cell.
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However, this name frequently gave the impression that the main aim of the system
was to recreate a living S. cerevisiae cell in silico as opposed to being a workbench
for the integrated visualisation and analysis of S. cerevisiae functional genomic data
sets. Therefore, the name of the system was changed to the Yeast Exploration Tool
Integrator (YETI) during this stage. The result of this stage was the public release of
YETI Version 1 (Orton et al., 2004) which could be used as a standalone or web
based system. YETI Version 1 had all the features and functionality of the Virtual
Yeast Cell Version 1 but also included the Proteome Section for the visualisation and
analysis of protein-protein interactions. This Proteome Section was effectively inter-
linked with both the Genome and Analysis Sections and could also utilise a group
approach for analysis enabling users to explore the stored data sets in an integrated

modular fashion.

The third stage of development involved expanding the system to incorporate the
Transcriptome Section and its associated data. The initial data identified for the
Transcriptome Section were two large microarray studies that monitored the
expression of all the genes in S. cerevisiae under a number of environmental
conditions (Gasch et al., 2000; Gasch et al., 2001). This data was processed and
subsequently integrated into the database. The Transcriptome Section itself was then
developed and inter-linked with the other sections of the software tool. During this
stage, additional features were also added to the existing sections that enabled them
to utilise the recently incorporated gene expression data. The result of this stage was
the public release of YETI Version 2 which had all the features and functionality of

YETI Version 1 but also included the Transcriptome Section for the visualisation and
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analysis of gene expression data. This Transcriptome Section was effectively inter-
linked with the Genome, Analysis and Proteome Sections and could also utilise a
group approach for analysis enabling users to further explore the stored data sets in

an integrated modular fashion.

As mentioned previously, at the end of each stage of development the latest version
of the system was delivered to the users for testing and feedback. The latest version
of the system would be installed on the user’s computer and the user would be given
a demonstration of how the system works and how to use all of the features and
functions. After a few weeks, the users would be met with to discuss any problems,
bugs and suggestions for improvement. At this point, it is important to note that the
user base was always expanding, especially after the system was made publicly
available for use over the World Wide Web, and feedback from these additional

users was always invited via email.

In addition, there was also an a final stage of development which involved expanding
the system further to incorporate a number of additional sections that enable users to
directly investigate possible global correlations between the stored functional
genomic data sets, specifically: (1) A Genome vs Transcriptome Section to
investigate possible correlations between gene location and gene expression; (2) A
Genome vs Proteome Section to investigate possible correlations between gene
location and protein interaction; and (3) A Proteome vs Transcriptome Section to
investigate possible correlations between protein interaction and gene expression.

During this stage of development no new data needed to be incorporated into the
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database, however, some new data was generated through analysis of the existing
data sets. Furthermore, these additional correlation sections were effectively inter-
linked in YETI through the Analysis Section. The result of this stage was Version 3
of YETI which had all the features and functionality of YETI Version 2 but with the

additional correlation analysis sections integrated into the system.

Further details on the features and functionality of the YETI system are now

discussed in the forthcoming chapters of this thesis along with a number of case

studies and analyses which demonstrate the utility of the tool.
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Chapter 3

YETI Data & Database



3.1: Introduction

The Yeast Exploration Tool Integrator (YETI) is a novel bioinformatics tool for the
integrated visualisation and analysis of Saccharomyces cerevisiae (S. cerevisiae)
functional genomic data sets. Essentially, YETI consists of two parts: (1) A database
for the storage and management of data; and (2) A Java program for the integrated
visualisation and analysis of data. The YETI database is populated with publicly
available data from both online databases and published scientific studies. However,
this data needs to be checked and processed into the necessary formats before it can
be imported into the YETI database. Therefore, a number of computer programs
were written to extract the relevant data, check and process it into the necessary
formats and then automatically update the YETI database. The data used to populate

the YETI database can be split into three categories:

1) Genome: genomic data from the Saccharomyces Genome Database (SGD;

Cherry et al., 1998; http://www.yeastgenome.org).

2) Transcriptome: gene expression data from the Stanford Microarray

Database (SMD; Sherlock et al., 2001; http://genome-wwwS5.stanford.edu/).

3) Proteome: protein-protein interaction data from the General Repository for
Interaction Datasets (GRID; Breitkreutz et al., 2003;

http://biodata.mshri.on.ca/grid/servlet/Index).

Each of these three categories of data has had a separate computer program written

for data processing. These programs have been designed for use by advanced users
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only as they involve modifying large amounts of essential data in the YETI database
and have limited error handing capabilities. However, the average user does not need
to use these programs as updated versions of the YETI database itself are regularly

available from the YETI website (http://www.bru.ed.ac.uk/~orton/yeti.html). In

addition, the web based version of YETI (Web YETI) automatically connects to the
latest database at the University of Edinburgh and the standalone version of YETI

(Standalone YETTI) also has an option to connect to this database.

3.2: Genome Data

The SGD is perhaps the largest information resource available for S. cerevisiae; it
contains a wealth of genomic and biological information on the genes of .
cerevisiae, is constantly updated by a number of database curators and is a central
resource for the yeast community. Therefore, the SGD is widely used and respected
by yeast researchers. A large amount of its data is publicly available from the SGD

data download site (ftp://genome-ftp.stanford.edu/pub/yeast/) in the form of text

files. YETI currently uses six of these files to populate its own database (Table 3.1)
with the extracted data ranging from gene names and chromosomal locations to

descriptions of gene products and GO annotations.
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File Name & Location

Description

data_download/
chromosomal_feature/
SGD_features.tab

This file contains information on all the current chromosomal
features in the SGD. It also contains the coordinates of
introns, exons and other subfeatures that are located within a
chromosomal feature.

data_download/
literature_curation/
orf_geneontology.tab

This file contains the primary set of GO annotations for every
ORF in the S. cerevisiae genome.

data_download/
literature_curation/
gene_association.sgd.gz

This file contains all the GO annotations for all S. cerevisiae
gene products (protein and RNA).

data_download/
literature_curation/
go_slim_mapping.tab

This file contains the mapping of all S. cerevisiae gene
products (protein and RNA) to a GO Slim annotation term.

data_download/
literature_curation/
go_terms.tab

This file contains detailed definitions of all the GO
annotations used to characterise all the S. cerevisiae gene
products.

-data_download/
literature_curation/
phenotypes.tab

This file contains phenotype data for S. cerevisiae gene
products; the majority of this data is from the systematic
deletion project (Winzeler et al., 1999).

Table 3.1: SGD data files used to populate the YETI database
This table contains the names, locations and descriptions of the six files available from the
SGD data download site that are currently used to populate the YET| database.

Essentially, the data from the SGD is the core data of the YETI database because it

defines the number of ORFs in the S. cerevisiae genome along with the name, type

and location of each ORF. Recently, the SGD began characterising all ORFs as either

verified, uncharacterised or dubious; these categories are defined by the SGD as

follows:

1) Verified: ORFs for which experimental evidence exists that a gene product is

produced in S. cerevisiae. Generally these have obvious orthologs in one or

more other Saccharomyces species. Most named genes are in this class.
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2) Uncharacterized: ORFs that are likely to be real due to the existence of
orthologs in one or more other species, but which are not supported with
specific experimental data demonstrating that a gene product is produced in
S. cerevisiae. A few named genes may be in this class if there is no
experimental evidence that they are produced. Evidence from large-scale
analyses that indicates an ORF may be biologically relevant is sometimes but
not always enough to upgrade an ORF from "Uncharacterized" to "Verified",
depending on the individual case.

3) Dubious: ORFs which are not conserved in other Saccharomyces species and
for which there is no experimental evidence that a gene product is produced
in S. cerevisiae. Many ORFs classified as "Dubious" are small and overlap a
larger ORF of the class "Verified" or "Uncharacterized"; however, overlap

with another ORF does not mandate that an ORF be classified as "Dubious."

This new characterisation system can be used to eliminate ORFs that are highly
unlikely to be real genes from analyses and investigations as well as highlighting
those that may not be real. However, knowing the name and location of each ORF in
the S. cerevisiae genome means little in the absence of what the function of each
ORF is. Therefore, the SGD data is even more important because it describes the
function of each ORF through textual descriptions of gene products and GO
annotations. GO annotations provide a standard for characterising gene products and
can readily be used to examine all the genes located in a specific cellular component
or involved in a specific biological process. Furthermore, as standard GO annotations

can be very specific, the SGD also characterises each ORF with a set of GO Slim
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annotations. GO Slims are a cut-down version of the complete GO ontology and give
a broad overview of the ontology content without the detail of the specific fine
grained terms. Both the standard and slim GO annotations for each ORF in the S.

cerevisiae genome are utilised in YETL

A single combined Java program called YETI_SGD was written to collectively
process all the required data from the six SGD data files described in Table 3.1. This
program extracts all the required data from each of the files, checks the data,
combines portions of it, assigns the appropriate ID numbers and then automatically
updates the YETI database. The YETI_SGD program plays an essential role in
keeping YETI an up-to-date resource as it updates the database with all the relevant
data from the SGD; it can be run manually at any time or set up to run at regular
intervals by the host operating system. However, it is important to note that if the
data files available from the SGD change format, which has happened numerous
times over the past few years, the YETI_SGD program will have to be modified in
order to cope with the changes and still perform its function; in extreme cases of
change, the YETI database and program will also have to be modified. This
highlights one of the problems with using third party data sources in that you do not

have control over the format or assurances on its continued availability.

A brief overview of the SGD data set currently stored in the YETI database is
presented in Table 3.2; as can be seen a large proportion of the ORFs in the S.
cerevisiae genome are still classified as genes of unknown function highlighting how

much is still left to learn about this organism. It is important to note that the function
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of a verified ORF is not necessarily known (899 verified ORFs are characterised as
unknown GO molecular function) and the function of an uncharacterised ORF is not
necessarily unknown (197 uncharacterised ORFs are classified as known GO

molecular function).

Category Total Number
Genomic Features 7783
ORFs 6591
Verified ORFs 4303
Uncharacterised ORFs 1470
Dubious ORFs 818
Unknown GO Function 2172
Unknown GO Process 1562
Unknown GO Component 868

Table 3.2: Overview of the current SGD data set

This table contains an overview of the SGD data set currently stored in the YET| database
which was used for all the analyses and case studies presented in this thesis. Genomic
Features represents the total number of genomic features in the S. cerevisiae genome;
ORFs represents the total number of ORFs in the S. cerevisiae genome; Verified ORFs,
Uncharacterised ORFs and Dubious ORFs represents the total number of verified,
uncharacterised and dubious ORFs in the S. cerevisiae genome, respectively; Unknown GO
Function, Unknown GO Process and Unknown GO Component represents the total number
of non-dubious ORFs characterised with unknown GO molecular function, biological process
and cellular component annotations, respectively.

3.3: Transcriptome Data

The SMD stores a large amount of raw and normalised data from microarray
experiments from ongoing research projects at Stanford University. This data is
available in a variety of formats ranging from raw microarray image files to
normalised and clustered gene expression ratio tables. At present, the data from two
large S. cerevisiae genome wide microarray studies available from the SMD are used

to populate the YETI database:
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1) Genomic expression programs in the response of yeast cells to
environmental changes (Gasch et al., 2000): In this study, spotted (two-
colour) DNA microarrays were used to measure changes in transcript levels
over time for almost every S. cerevisiae gene as cells responded to
temperature shocks, hydrogen peroxide, the superoxide generating drug
menadione, the sulfydryl-oxidising agent diamide, the disulfide reducing
agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation,
nitrogen source depletion and progression into stationary phase. A total of 93
individual microarray experiments, grouped into 13 related categories, were
used to monitor how S. cerevisiae cells responded (via gene expression) to
changes in a number of environmental conditions.

2) Genomic expression responses to DNA damaging agents and the
regulatory role of the yeast ATR homolog Meclp (Gasch et al., 2001): In
this study, spotted (two-colour) DNA microarrays were used to observe
genomic expression of wild-type and mutant S. cerevisiae cells responding to
the methylating agent methylmethane sulfonate (MMS) and ionising
radiation. A total of 40 individual microarray experiments, grouped into 7
related categories, were used to monitor how different S. cerevisiae cell types

responded (via gene expression) to a number of DNA damaging agents.

These two studies were chosen as the initial microarray data sets to populate the
YETI database with; they are large genome wide data sets that complement each
other well, monitoring how S. cerevisiae cells respond to a wide variety of

environmental conditions and DNA damaging agents. The Gasch et al. (2000) study
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is especially well respected and as a result is commonly used as a test data set for
gene expression analysis programs; for example, the Gasch er al. (2000) data set was
selected at the Yeast 2003 Conference
(http://www.yeastgenome.org/community/meetings/yeast03/) as a test data set to
enable biologists to easily compare the functions and performance of microarray
analysis programs. The data generated from these two studies are publicly available
for downloaci from the SMD in the a variety of formats including output files
generated by the Cluster program (Eisen et al., 1998) after a hierarchical cluster

analysis has been performed.

Cluster is a freely available Windows based computer program that is widely used
for the analysis of gene expression data from microarray experiments; it performs a
variety of data normalisation and cluster analysis techniques including hierarchical
clustering, k-means clustering, Self-Organising Maps (SOMs) and Principal
Component Analysis (PCA). Cluster is perhaps most commonly used for hierarchical
clustering which is a conceptually simple yet very effective method of clustering
gene expression data. The results of such an analysis can be represented in a visual
manner that is easily comprehensible to the human mind even when hundreds of

experiments are analysed on a genomic scale.

After a hierarchical cluster analysis has been performed, Cluster generates three
output files containing the clustering results (Table 3.3). The clustering results can
then be visualised using an associated program called TreeView (Eisen et al., 1998)

by importing the three Cluster output files. TreeView is a freely available Windows
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based computer program that can be used to graphically browse the results of a
hierarchical cluster analysis performed by Cluster; it supports tree and image based
browsing of hierarchical trees and provides a number of output options for the

generation of images.

File Name Description

.cdt (clustered data table) This file contains the original or normalised (depending on
the selection) gene expression ratio data table with the
rows and columns reordered based on the hierarchical
clustering result. It also contains unique identifiers for each
gene and microarray experiment that relate to the .gtr and

.atr files.
.gtr (gene tree) These two files contain the history of node joining events
from the gene (.gtr) and array (.atr) clustering processes;
.atr (array tree) the history of node joining events is used to recreate the

resultant hierarchical tree. When clustering begins each
item to be clustered is assigned a unique identifier and it is
these identifiers that relate to the .cdt file. As each node is
generated it is also assigned a unique identifier and each
joining event is stored as a row with the node identifier, the
identifier of the two joined elements and a similarity score
between the two joined elements.

Table 3.3: Output files generated by the Cluster program
This table contains the names and descriptions of the three output files generated by Cluster
after a hierarchical cluster analysis has been performed.

Cluster is a fairly advanced program for gene expression analysis but TreeView is a
fairly basic visualisation program. TreeView was designed for the sole purpose of
visualising the results of a hierarchical cluster analysis performed by Cluster. It has
limited search functions to find and subsequently view relevant data, it does not
utilise the underlying gene expression data tables and it is not integrated with any
other data sources or resources. In addition, both Cluster and TreeView can only be

used on the Windows platform which limits their usability.
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A Java program called YETI Cluster was written to process the output files
generated by Cluster after a hierarchical cluster analysis has been performed and then
import the results into the YETI database. The YETI_Cluster program checks all
gene names, assigns the appropriate ID numbers to link the data into the YETI
database, calculates precise coordinates for drawing the resultant hierarchical tree
and then updates the YETI database. The YETI_Cluster program was used to process
and subsequently import the Gasch ez al. (2000) and Gasch et al. (2001) Cluster

output files downloaded from the SMD.

Essentially, this means that the original Cluster program can be used to normalise
and hierarchically cluster any S. cerevisiae spotted (two-colour) gene expression
microarray data set and then the associated output files can be processed and
imported into the YETI database using the YETI_Cluster program. YETI is then able
to access the database to retrieve the expression data for visualisation and analysis
via the YETI Transcriptome Section. In essence, the Transcriptome Section is a
much more sophisticated version of TreeView that is fully integrated with all the
other YETI Sections, has advanced search and display features and is not limited to

the Windows platform.

The YETI_Cluster program described above enables hierarchically clustered gene
expression data to be incorporated and integrated into the YETI system. Hierarchical
clustering is a simple but effective technique for clustering gene expression data into
related groups (or clusters); for example, it enables one to easily examine if a pair of

genes of interest are located in the same expression cluster of the hierarchical tree.
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However, hierarchical clustering lacks a true quantitative measurement of how
similar two gene expression profiles are to each other. A good quantitative
measurement of the similarity of two gene expression profiles is needed for
correlation analyses comparing the expression profiles of, for example, neighbouring
genes or interacting proteins. Therefore, an additional Java program called
YETI_Pearson was written to calculate the Pearson correlation coefficient between
all genes with expression profiles in the Gasch et al. (2000) data set. The Pearson

correlation coefficient (http://mathworld.wolfram.com/CorrelationCoefficient.html;

Figure 3.1) is perhaps the most widely used measure of the similarity between two
expression profiles in gene expression analyses. The Pearson correlation coefficient
(R) lies between —1 and 1 (inclusive) with 1 meaning that the two profiles are
identical, 0 meaning they are completely independent, and -1 meaning they are

perfect opposites.

N =D %Dy
JOY =0 Yy =)

Figure 3.1: The Pearson correlation coefficient equation
This figure shows the Pearson correlation coefficient equation used to calculate the similarity
between the two gene expression profiles x and y with N data points.

3.4: Proteome Data

Many protein-protein interaction data sets are available as a simple list of
interactions where each interaction is represented by the names of the two interacting

proteins; for example, ‘LSM1-LSM2’ represents an interaction between the LSM1
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protein and the LSM2 protein. A Java program called YETI_PPINTS was written to
process this type of protein-protein interaction data set and integrate it into the YETI
database. The YETI_PPINTS program assigns the relevant ID numbers to the
interactions and the proteins themselves, checks protein names and adds a source
field. It also checks for and merges any duplicate entries, counts the total number of
unique interactions each protein is involved in and also identifies interactions that
consist of a protein interacting with itself. Identifying self-interacting proteins is
important because these interactions can bias correlation analyses investigating
trends in the function, location and expression of interacting proteins. Identifying and
merging duplicate protein-protein interactions serves an additional purpose as
protein-protein interactions that are reported in multiple data sets are more likely to
be real protein-protein interactions. Keeping track of the source of each protein-
protein interaction enables users to judge for themselves if they trust the source.
After the processing is complete, the program automatically updates the YETI

database.

One of the largest protein-protein interaction data sets available for S. cerevisiae can
be downloaded from the GRID database. GRID is a database of genetic and physical
interactions covering many organisms including S. cerevisiae, it contains a large
number of protein-protein interactions from a variety of sources including Mewes et
al. (1998), Uetz et al. (2000), Bader et al. (2001), Ito et al. (2001), Gavin et al.
(2002) and Ho et al. (2002). The GRID database currently contains ~ 20,000 S.
cerevisiae protein-protein interactions; these interactions were processed by the

YETI_PPINTS program and are currently used to populate the YETI database.
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The YETI_PPINTS program described above essentially ensures that the YETI
database contains a set of unique protein-protein interactions and also highlights the
interactions that were reported multiple times as these interactions have a higher
confidence of being real. However, there are also a number of other confidence
measures that can be applied to protein-protein interactions. Therefore, an additional
Java program called YETI_PPCON was written to apply confidence scores to all the
protein-protein interactions stored in the YETI database. The YETI_PPCON
program first checks whether interacting proteins are located in the same cellular
component as defined by their GO annotations and additionally their GO Slim
annotations; this is because two proteins can not physically interact with each other if
they are not located in the same cellular compartment. The program then checks
whether interacting proteins are coexpressed, as defined by the Pearson correlation
coefficient of the their corresponding genes; this is because two proteins can not
physically interact with each other if they are not present in the cell at the same time.
The program also identifies interactions involving dubious ORFs and also highlights
interactions involving uncharacterised ORFs; this is because dubious ORFs and
therefore the interactions involving its encoded protein product are highly unlikely to
be real. Additionally, the program also identifies the protein-protein interactions
where both interacting partners share the same GO Molecular Function, Biological
Process or Cellular Compartment annotation and also identifies the interactions
where both the interacting protein’s corresponding genes are located on the same
chromosome; these checks facilitate additional analyses comparing the properties of

interacting proteins.
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3.5: YETI Database

Essentially, the YETI database has two main functions: (1) To store and manage all
of the data outputted from the YETI data processing programs described above; and
(2) To communicate with the YETI Java program by receiving and running search
queries and passing back the search results. The YETI database was designed with
the YETI Java program specifically in mind and the architecture of the database
reflects the architecture of the program. The database itself is a relational database
consisting of a number of data tables linked together through key fields (Figure 3.2);
a brief description of each database table and the data it contains is presented in
Table 3.4. The ORF_DATA table is the core table of the YETI database as it
contains a wide variety of information on all the features in the S. cerevisiae genome
and therefore also defines the number of current features in the genome. Each
genomic feature in the ORF_DATA table is assigned a unique YETIID number and
it is this number that is the main way of linking the database tables (and therefore the
data within them) together. Briefly, each ORF in the ORF_DATA table can be
involved in multiple protein-protein interactions in the HYBRID table, can have
multiple GO annotations in the ONT_DATA table, can have multiple GO Slim
annotations in the GO_SLIM table, can have an expression profile in _DATA table
of each microarray study and can be involved in multiple Pearson correlation

coefficients in the PEARSON table.
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Figure 3.2: Schematic of the YETI database
This is a schematic of the YETI database showing the names of all the database tables as
well as the relationships between tables; brief descriptions of each table and the data it

contains can be found in Table 3.4.
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Table Name Description
ORF_DATA This is the core table of the YETI database as it contains a wide
range of information on all the features in the S. cerevisiae genome;
this information includes the name and location of each genomic
feature as well as textual descriptions and phenotypic data.
ONT_DATA This table contains all the GO annotations of all the features in the
S. cerevisiae genome.
GO_SLIM This table contains all the GO Slim annotations of all the features in
the S. cerevisiae genome.
GO_TERMS This table contains detailed definitions of all the GO annotations
used to characterise all the features in the S. cerevisiae genome.
HYBRID This table contains all of the protein-protein interactions.
FILTERS This table contains a number of different confidence scores for all of
the protein-protein interactions stored in the HYBRID table.
ARRAYS This table contains information on all the gene expression

microarray data sets currently stored in the database.

GASCH2000_DATA

This table contains the hierarchically clustered gene expression ratio
data from the Gasch et al. (2000) study.

GASCH2000_TREE

This table contains the node joining history and information for
drawing the hierarchical tree for the Gasch et al. (2000) study.

GASCH2001_DATA

This table contains the hierarchically clustered gene expression ratio
data from the Gasch et al. (2001) study.

GASCH2001_TREE

This table contains the node joining history and information for
drawing the hierarchical tree for the Gasch et al. (2001) study.

PEARSON

This table contains all of the Pearson correlation coefficients
between all of the ORFs with expression data in the Gasch et al.
(2000) study.

Table 3.4: YETI database tables
This table contains the names of the tables in the YET| database and general descriptions of

the data they contain.

The YETI database stores and manages all of the data that is generated from the

YETI data processing programs in the format required by the YETI program for

visualisation and analysis. The database was developed in tandem with the YETI

program and as new sections and features were added to the program, new data and

tables were incorporated in the database. The database does have some data
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duplicatioﬁ but this duplication allows the YETI Java program to perform at faster
speeds whilst having relatively little effect on the performance of the database.
Furthermore, this duplication enables specific sections of the YETI program to be
detached and used as standalone applications with their corresponding sections of the

YETI database.

The YETI database is primarily available in MySQL format which is an open source
database management system that is fast, compact, stable and is available for most of
the major computer platforms. One disadvantage of MySQL is that it is fairly
complicated to install from the point of view of the standard wet laboratory scientist.
However, users can avoid downloading and installing the database by either using
Web YETI or by connecting to the YETI database housed at the University of
Edinburgh from Standalone YETI. In addition, the YETI database has also been
ported across to Microsoft Access format which is much simpler to install; however,

this version of the database can only be used on the Windows platform.

The YETI database has always been relatively small in size but steadily increasing as
more protein-protein interactions and microarray data sets were added; this steady
increase in the size of the database has not significantly affected the speed or
performance of the YETI program. However, the addition of the Pearson correlation
coefficients between all the ORFs with expression data in the Gasch er al. (2000)
study increased the size of the database from ~30 MB to ~800 MB. This is because
there are ~18,000,000 unique Pearson correlation coefficients stored along with the

two YETIID numbers of the ORFs that each coefficient corresponds to as well as
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data indexes to enable efficient database searching. This does affect the usability of
YETI from the point of view of disk space and longer download and installation
times. However, disk space is not the major problem it once was as modemn
computers currently come with extremely large hard disks and download time can be
improved by compression and high speed networks. Furthermore, YETT can be used
over the internet avoiding tﬁe need to download and install the da;abase locally;
however, this option will also need a high speed network to be effective as large
amounts of data often need to be transferred between the YETI database and

program.

3.6: Discussion

The core data in the YETI database consists of the name, location and function of
every feature in the S. cerevisiae genome; the source of this data is the SGD which is
a well respected resource of the yeast community. The SGD recently began defining
each ORF as either verified, uncharacterised or dubious which can essentially be
used as a confidence measure as to the validity of each ORF with verified ORFs
having very high confidence, dubious ORFs having very low confidence, and
uncharacterised ORFs having medium confidence of being real genes. The source of
the gene expression data in the YETI database are the Gasch et al. (2000) and Gasch
et al. (2001) studies which are well respected and often used as a test data set for
gene expression analysis programs; these expression data sets have already been
normalised and hierarchically clustered by the Cluster program. Furthermore, the

Gasch et al. (2000) is also used to directly calculate the Pearson correlation
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coefficient between all gene expression profiles. The source of the protein-protein
interaction data in the YETI database is the GRID database which is a large and
widely used resource. However, this protein-protein interaction data contains many
interactions detected from techniques such as the yeast two-hybrid system which can
be error-prone. Therefore, the protein-protein interactions in this data set are
thoroughly evaluated with a number of confidence scores assigned to each

interaction.

The YETI database effectively stores and links all of the data described above in a
relational way. The YETI database was specifically designed for use by the YETI
Java program as both were developed in tandem. The features and functions of the
YETI program itself and now discussed in further detail in the next chapter of this

thesis.
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4.1: Introduction

The Yeast Exploration Tool Integrator (YETI) is a novel bioinformatics tool for the
integrated visualisation and analysis of Saccharomyces cerevisiae (S. cerevisiae)
functional genomic data sets. Essentially, YETI consists of two parts: (1) A database
for the storage and management of data; and (2) A Java program for the integrated
visualisation and analysis of data. The YETI Java program itself consists of a
MainFrame and a number of core inter-linked sections. The YETI MainFrame is
concerned with establishing a connection with the YETI database, handling database
searches as well as launching and monitoring all the other YETI sections. All the
core YETI sections are closely inter-linked enabling users to swiftly move between
them and investigate all aspects of any genes or proteins of interest as well as
providing access to textual information, including Gene Ontology (GO) annotations,
at any point. Furthermore, there are also a number of additional YETI correlation
sections that enable users to investigate possible correlations between the stored
functional genomic data sets. An overview of the structure of the YETI program is
presented in Figure 4.1 and an overview of the main function of each of the YETI

sections is presented in Table 4.1.
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Figure 4.1: Schematic of the YETI program

This is a schematic of the overall structure of YETI. Essentially, YETI consists of two parts:
(1) A database for the storage and management of data; and (2) A Java program for the
integrated visualisation and analysis of data. The YETI Java program consists of a
MainFrame which communicates with the database and a number of closely inter-linked core
sections where data can be visualised and analysed. Sections highlighted in blue are the
core sections of the YETI| program whereas sections highlighted in red are additional
correlation analysis sections. An overview of the main function of each section is presented
in Table 4.1.
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Name

Description

Genome Section

The Genome Section is concerned with the informative display
of the S. cerevisiae genome, its chromosomes, and known and
predicted genes.

Transcriptome Section

The Transcriptome Section is concerned with the visualisation
and integration of gene expression data from microarray
experiments.

Proteome Section

The Proteome Section is concerned with the effective
visualisation of protein-protein interactions on a dynamic
graphical display panel.

Analysis Section

The Analysis Section is concerned with providing a graphical
interface to the YETI database and has a number of easy to use
search mechanisms for both simple and complex queries.

FPC Section

The Function, Process and Component (FPC) Section is
concerned with enabling users to browse GO annotations and
define specific groups of genes which can then be investigated
in further detail in the other YETI sections.

Datasheet Window

The Datasheet Window is concerned with displaying a wide
range of information on a specific gene of interest and contains
a number of direct links to the YETI Sections.

G vs T Section

The Genome vs Transcriptome (G vs T) Section is concerned
with enabling users to find and investigate chromosomal regions
of coexpression.

G vs P Section

The Genome vs Proteome (G vs P) Section is concerned with
enabling users to find and investigate chromosomal regions
containing genes whose corresponding proteins interact with
one-another.

P vs T Section

The Proteome vs Transcriptome (P vs T) Section is concerned
with enabling users to find and investigate interacting proteins
whose corresponding genes are coexpressed.

Table 4.1: Overview of the main functions of the YETI Sections
This table contains the names and descriptions of the sections of the YETI Java program.

YETI is written in the Java programming language which is a state-of-the-art, object-

oriented language with a syntax similar to the C++ programming language.

Furthermore, the Java programming language is platform independent with Java

Virtual Machines (JVM) available for all of the major operating systems. Therefore,

this means that YETI can work on any operating system that has access to a JVM of
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version 1.4 or above making it highly portable. YETI has been thoroughly tested and
performs very well on the Windows operating system and also performs well on the
Linux and Mac OS-X operating systems. YETI can be used online via a simple Java
applet (Web YETI) or can be downloaded and installed locally onto the users own

computer (Standalone YETI).

4.2: Analysis Section

Current computational resources tend to utilise a single gene approach where users
simply view a datasheet on a single gene of interest at once. Although this approach
is an essential feature, it does not enable users to collectively view and compare the
data on a number of genes to investigate possible shared functionality, for example.
In addition, current computational resources tend to have limited search capabilities
where the main and sometimes only way of searching for data is by entering a single
gene name. In contrast, the Analysis Section of YETI provides a sophisticated
graphical interface to the YETI database with a number of different search functions
to find data and an interactive data table to collectively visualise and analyse all the

search results together.

At the heart of the Analysis Section is the interactive data table which displays all the
results from a database search (Figure 4.2). This table can collectively display a wide
range of data on a large number of genes at once enabling easy visual examination
and comparison of all the properties of all the genes; each row in the table

corresponds to a distinct gene and contains a wide range of information on that gene.
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By collectively displaying all the results of a search together in one table users are
easily able to scroll along the table to view all the data on an individual gene of
interest. But more importantly, users can also scroll up and down the table to
compare the properties of all the genes found in the search; this feature is extremely
useful when investigating possible shared functionality among a group of genes.

Furthermore, any of the genes displayed in the data table can be individually selected

and investigated in further detail individually in YETIL.

SELECT * FROM ORF_DATA WHERE ((PROCESS)=mRNA splicing))] X
saL | Names

_YETUD | ORF | GENE | AUAs | soDib | TYPE | CHR | LENGTH | START | STOP | STRAND | DESCRIPTION
11 YALD32C PRP4S FUN20 80000030 ORF 1 1140 84476 83337 C pre-mRNA splicing factor
226 YBLO26W  LSM2 SMX5|SNP3 §0000122 ORF 2 416 170585 171000 w snRNA-assoclated protein of thi ]
277 YBLO74C AAR2 50000170 ORF 2 1068 87784 B6717 (o] MATa1-mRNA splicing factor
391 YBROSSC PRPB RNAB[TSM.. 80000258 ORF 2 2700 347260 344561 C RNA splicing factor
460 YBR116W  MUD1 S0000323 ORF 2 986 479296 480281 w U1 snRNP A protein
493 YBR152W  SPP381 80000356 ORF 2 876 546334 547208 w U4/UB US-associated snRNP pl
530 YBR188C |NTC20 S0000392 ORF 2 423 604065 603643 C splicing factor
885 YDLO30W PRPS 80002188 ORF 4 1693 3087533 399125 w RNA splicing factor
898 YDLO43C PRP11 RNA11 80002201 ORF 4 801 376476 375676 C snRNA-assoclated protein
955 YDLOS8C SNU23 80002256 ORF 4 585 285164 284580 C Putative RNA binding zinc finger
1071 YDL209C CWC2 50002368 ORF 4 1020 87227 86208 c
1207 YDROBBC SLU7 SLT17 80002495 ORF 4 1148 619638 818480 C involved in mRNA splicing
1362 YDR235W PRP42 MUD1B[SN... S0002643 ORF 4 1835 833495 935129 w U1 snRNP protein that shares &
1367 YDR240C SNUSB MUD10 80002648 ORF 4 1478 945143 943865 C U1 snRNP protein
1516 YDR378C LSMB 50002786 ORF 4 372 1228708 1229338 C Sm-like protein |
1613 YDR473C PRP3 RNA3 50002881 ORF E 1410 1405843 1404434 c SNRNP from U4UB and US sni
1849 YERD28C SMB1 SMB 50000831 ORF 5 591 213176 2126886 C U1 snRNP protein i
1842 YER112W  LSM4 SDB23|US... S0000914 ORF 5 564 387228 387781 w UB snRNA associated protein |
1879 YER146W LSM5 80000948 ORF 5 282 462580 462861 w Sm-like protein I
2077 YFLO17W-A SMX2 SNP2[YFLD.. 80002965 ORF ] 234 103693 1039286 w snRNP G protein (the homologi s
2141 YFRODSC SAD1 50001801 ORF 6 1347 155867 154521 c Product of gene unknown
2488 YGROOBW PRP18 80003238 ORF 7 660 506065 506724 w RNA splicing factor associated
2495 YGRO13W  SNUT1 50003245 ORF 7 1863 514548 516410 w U1 snRNP protein
2561 YGRO74W  SMD1 SPP92 80003306 ORF 7 441 635706 636146 w UB snRNP protein
2562 YGRO75C PRP38 50003307 ORF 7 729 636869 B36141 C RNA splicing factor
2678 YGROSIW PRP31 80003323 ORF 7 1485 666335 667819 w pre-mRNA splicing protein
3058 YHR165C PRP8 DBF3|DNA... 80001208 ORF 8 7242 436848 429707 C U5 snRNP and spliceosome cd
3187 YILOB1C SNP1 S0001323 ORF g 203 245556 244854 C U1snRNP 70K protein homolog
3332 YIRO09W MSL1 50001448 ORF 9 336 374522 374857 w encodes YU2B, a component o
3345 YIRO21W MRS1 PET157 80001460 ORF ] 1082 387291 398382 w mitochondrial RNA splicing
3575 YJL203W PRP21 SPPS1 80003738 ORF 10 843 53341 54183 w RNA splicing factor
3637 YJRO22W  LSMm8 80003783 ORF 10 387 469419 469805 w Sm-like protein
3665 YJROS0W ISY1 NTC30|UT... 50003811 ORF 10 708 528389 529098 W Interacts with the spliceosome
3801 YKLO12W  PRP40 80001495 ORF 1" 1752 417948 410699 w U1 snRNP protain
3969 YKLI73W  SNU114 GIN1D 80001656 ORF 1 3027 122519 125545 w U5 snRNP-specific protein relal
4178 YLLD36C PRP1G PS04 80003958 ORF 12 1512 68265 66744 C RNA splicing factor |&l

Figure 4.2: Screenshot of the Analysis Section

This is a screenshot of the Analysis Section which displays all the results of a database
search collectively in an interactive data table. Each row of the table corresponds to a
specific gene and contains a large amount of data relating to that gene. Search queries can
be entered into the textfield at the top of the window or can be generated by using the
QueryBuilder function (see below).
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The Analysis Section has a flexible and powerful QueryBuilder function that enables
users to search on any aspect of the available data and perform both simple and
complex database searches. The QueryBuilder function enables users to easily
construct large and complex queries to search the database with by simply entering
their desired search criteria into a variety of labelled textfields. One of the main
reasons for constructing the QueryBuilder function was to enable users to perform
keyword searches on gene descriptions and GO annotations to rapidly find and then
collectively examine related genes. In this case, the user simply needs to enter their
desired keyword(s) into the appropriate textfield(s) and YETI will automatically
search the database and collectively display the search results in the interactive data
table. For example, searching for all the genes with the keyword ‘spliceosome’ in
their description or GO annotations would return all the spliceosome and
spliceosome related genes for examination and further investigation. However, the
QueryBuilder function can be used to perform a wide variety of other searches both
simple and complex; for example, users can search for all the genes with the text
‘LSM’ in their name, all the genes that contain introns, all the genes with an inviable
phenotype, all the genes located on chromosome 1 or any combinations of the above.
Alternatively, users can simply enter the names of multiple genes of interest and
YETI will collectively display information on all of them in the data table.
Furthermore, an advanced search option is also provided that enables users to
directly enter a Structured Query Language (SQL) statement which YETI then uses
to search the database with and collectively displays any results found in the data
table; however, although this powerful option gives the user complete control over

the search criteria and display settings it obviously requires knowledge of both SQL

Chapter 4: YETI Program 101



and the YETI database structure.

The Analysis Section is effectively inter-linked with the other YETI sections
enabling users to swiftly move directly into another YETT section where information
related to all the genes currently displayed in the data table will be automatically
displayed and highlighted. Alternatively, users can move swiftly into the Analysis
Section from the other YETI sections where a range of information on all their

selected genes would be automatically displayed in the data table.

4.3: Genome Section

Current computational resources such as the Saccharomyces Genome Database
(SGD; Cherry et al., 1998) tend to only have a basic graphical representation of the
chromosomal area surrounding a specific gene of interest; there are few resources
. available that enable users to view the location of genes from a genomic perspective
or enable users to easily and rapidly scroll along detailed visual representations of the
chromosomes. In contrast, the Genome Section of YETI is concerned with the
informative display of the S. cerevisiae genome, its chromosomes, and known and
predicted genes. The Genome Section enables users to examine and compare the
genomic location of multiple genes or multiple groups of genes on a schematic of the
entire S. cerevisiae genome. It also enables users to scroll along detailed visual
representations of the chromosomes themselves and select regions of interest to

investigate in further detail in the other YETI sections.
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At the heart of the Genome Section is the genome schematic which is a scaled
graphical representation of the 16 nuclear chromosomes of S. cerevisiae (Figure 4.3).
This schematic firstly provides a visual overview of the genome which enables users
to make quick comparisons of chromosome sizes and centromere positions. The
Genome Section does not currently take account of the mitochondrial chromosome
as it fits into a different model; it is circular whereas the nuclear chromosomes are
linear. In addition, there is generally less of a scientific interest in the mitochondrial
genes as they do not tend to be investigated in functional genomic analyses.
However, data on all the mitochondrial genes can still be accessed and examined

through the Analysis Section.

The genomic location of any genes of interest can be collectively displayed on the
genome schematic by simply entering their names and YETI will then highlight their
location on the genome schematic; genes are highlighted with a red line at their
corresponding start position on the scaled representation of their chromosome. This
feature provides a quick and simple means to examine and compare the genomic
location of multiple genes; a group of genes of interest could well be located near
each other on a particular chromosome or be located on different chromosomes but at
similar positions such as the centromere. Alternatively, as the YETI sections are
closely inter-linked, the Analysis Section could be used to search for a specific group
of genes to highlight on the genome schematic. For example, in Figure 4.3 YETI was
used to search for all genes with an inviable phenotype and to subsequently highlight
their location on the genome schematic enabling all their genomic locations to be

collectively examined and compared; as can clearly be seen, there a very few
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inviable and therefore essential genes located in the telomeric regions of the 16
nuclear chromosomes. This feature also enables the investigation of possible
functional hotspots in the S. cerevisiae genome, for example, examining if genes
characterised to the same or related GO biological process annotations are located in

the same genomic region.
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Figure 4.3: Screenshot of the Genome Section

This is a screenshot of the Genome Section displaying the genome schematic. The genome
schematic displays a scaled representation of all 16 nuclear chromosomes of S. cerevisiae;
chromosome 4 is the longest at 1,532,000 base pairs (bp) and chromosome 1 is the smallest
at 230,000 bp. In this case, the genomic location of all genes with an inviable phenotype
have been highlighted on the genome schematic with red lines enabling the genomic
location of the entire group to be collectively examined. As can be seen, very few inviable
and therefore essential genes are located in the telomeric regions of the chromosomes.
Furthermore, numerous high density red regions are observed which consist of a number of
inviable genes located next to each on the chromosome; these chromosomal regions could
be easily selected and investigated in further detail in YETI.
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The genomic location of multiple groups of genes can also be examined and
compared on the genome schematic. In YETI, two different groups of genes can be
defined, the so called Red and Green groups which are highlighted on the genome
schematic with red and green lines, respectively. A broad example is shown in Figure
4.4 where the genomic location of all genes whose protein products are located in the
cytoplasm and nucleus are highlighted with red and green lines, respectively; this
example shows that even the genomic location of very large groups of genes can still
be collectively examined and compared on the genome schematic. This feature is
useful for investigating possible evolutionary relationships between two groups of
genes through the collective comparison of their genomic locations; for example,

members of the two groups could be colocated across the genome.
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Figure 4.4: Screenshot of the Genome Section with multiple groups highlighted

This is a screenshot of the Genome Section with the location of multiple groups of genes
highlighted on the genome schematic. The Red group consists of all the gene’s whose
protein products are located in the cytoplasm and are highlighted with red lines on the
genome schematic. The Green group consists of all the gene’s whose protein products are
located in the nucleus and are highlighted with green lines on the genome schematic. As can
be seen, even the genomic locations of very large groups can still be collectively compared
and examined on the genome schematic with ease.

A unique feature of the Genome Section is the ability to overlay gene expression data
onto the genome schematic to display the relative expression of every gene in the
genome; every gene is highlighted on the genome schematic with a line that is
coloured to reflect its relative gene expression ratio value from the selected
microarray experiment. This fairly unique feature essentially enables users to view
the gene expression profile of the entire S. cerevisiae genome; it enables users to
examine the expression state of particular areas of the genome and find areas that

have similar relative changes in gene expression.
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4.3.1: Chromosome Window

The Chromosome Window of YETI displays a detailed visual representation of one
of the 16 nuclear chromosome of S. cerevisiae (Figure 4.5). The chromosome 1is
visually represented by two scaled black bars which correspond to the two strands of
chromosomal DNA (Watson strand at the top and Crick strand at the bottom). Genes
are represented by white rectangles within the chromosomal strands extending from
their corresponding start to stop positions along with the name of the gene. The
chromosome is contained within a scrollpane that enables users to easily scroll along
the chromosome to view the location and distribution of genes across the whole
chromosome and rapidly find areas of interest. As some genes can be located quite
close together making them hard to distinguish from one another, there is a zoom
function to magnify the chromosomal display and clarify the situation. By default
only verified and uncharacterised ORFs are displayed on the chromosome; however,
dubious ORFs and any other genomic feature types can also be selected and
subsequently displayed. In addition, there is also a simple Find function that can be
used to search for and subsequently highlight the location of a specific gene of

interest on the chromosome.

A single datasheet on any of the genes displayed on the chromosome can be viewed
simply by mouse clicking on them. The datasheet contains a wide range of
information on the selected gene and has a number of direct links to the other YETI
sections; more information on the features of the YETI Datasheet Window can be

found below in section 4.6 of this chapter. Furthermore, entire regions of the

Chapter 4: YETI Program 107



chromosome can be selected simply by dragging the mouse to create a selection box
(Figure 4.5); all the genes located within the selection box are automatically selected
and highlighted in red and can then be collectively investigated in further detail in
the other sections of YETI. The Chromosome Window is effectively linked to the
other YETI sections enabling users to swiftly move directly into another YETI
section where information related to all the genes currently selected on the
chromosome will be automatically displayed and highlighted. For example, the
Transcriptome Section would automatically display and highlight the gene
expression profiles of all the genes currently selected on the chromosome; this
enables users to investigate if all the genes located in a particular chromosomal
region, such as a telomeric region or the region surrounding a gene of interest, are

coexpressed with one another.
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Figure 4.5: Screenshot of the Chromosome Window

This is a screenshot of the Chromosome Window with chromosome 4 displayed and the
chromosomal region around the LSM6 gene selected. The top panel (above the horizontal
grey bar) displays a graphical overview of the whole chromosome with the area currently
being viewed in the bottom panel represented by the white box. The bottom panel displays a
detailed graphical representation of the selected chromosome in a scrollpane. Selected
genes are highlighted in red in the bottom panel and their location is also highlighted with red
lines in the top panel.

One of the unique features of the Chromosome Window is that gene expression data
from any of the microarray experiments stored in the YETI database can be overlaid
onto the chromosome to display the relative expression of every gene on the
chromosome; gene expression data is overlaid onto the chromosome by colouring
each gene with a colour that reflects its relative expression ratio value from the
selected microarray experiment. This essentially enables users to view the gene
expression profile of the entire chromosome and enables them to easily find

chromosomal regions with similar relative changes in expression. Furthermore, users
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are able to save an image of the entire chromosome that is currently displayed
complete with any gene selections or overlaid expression data (Figure 4.6). This
feature is useful because it creates a detailed image of the entire chromosome that
allows easy visual examination of gene locations and distributions as well as the

rapid examination of the relative expression of every gene on the chromosome.
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Figure 4.6: YETI generated image of chromosome 6

This is an image, created by YETI, of the whole of chromosome 6
with a microarray experiment overlaid. The image created is a large,
detailed view of the entire chromosome that enables users to view
gene locations and distributions along the entire length of the
chromosome. In this case, a gene expression microarray experiment
has been overlaid onto the chromosome which colours all the gene
boxes corresponding to their relative gene expression ratio values
from the selected experiment. This image allows the user to easily
and rapidly examine the expression of all the genes on the
chromosome and find regions of interest.
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4.4: Transcriptome Section

The Transcriptome Section of YETI provides an effective means for the visualisation
and analysis of gene expression data generated from microarray experiments. The
YETI database contains processed gene expression data sets that have already been
hierarchically clustered using the Cluster computer program (Eisen et al., 1998).
These hierarchically clustered gene expression data sets can be loaded into the
Transcriptome Section for visualisation and analysis as well as integration with the
other YETI sections and their corresponding functional genomic data sets. This
highlights one of the advantages of YETI as there are few computational resources
available that can effectively integrate gene expression data with other functional

genomic data sets for visualisation and analysis.

At the heart of the Transcriptome Section is the graphical panel which can display
any one of the hierarchically clustered gene expression microarray data sets stored in
the YETI database (Figure 4.7). The graphical panel displays the gene expression
data set visually by representing each relative gene expression ratio data point with a
colour that reflects its value; values greater than zero are coloured with progressively
brighter shades of red and values less than zero are coloured with progressively
brighter shades of green. Therefore, each gene’s expression profile in the data set is
represented on the graphical panel by a row of data points that are all individually
coloured to reflect their value. The gene rows are ordered with respect to the data
set’s hierarchical tree which is also displayed on the graphical panel so that the

relationship between genes can be easily examined. Furthermore, the graphical panel
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is contained within a scrollpane which enables users to easily scroll up and down to
examine the entire hierarchically clustered gene expression data set and rapidly find
regions of interest such as a particular cluster. Any regions of interest from the
displayed data set can be selected simply by dragging the mouse to create a white
selection box; all the genes contained within the selection box are then automatically
selected and highlighted with red lines to their left (Figure 4.7). Furthermore,
multiple regions of interest can simply be selected by creating multiple selection

boxes.
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Figure 4.7: Screenshot of the Transcriptome Section

This is a screenshot of the Transcriptome Section with a region of interest selected from the
hierarchically clustered gene expression data set. The graphical panel is shown in light blue
and displays a visual representation of the clustered gene expression data set with the
corresponding hierarchical tree. Each row in the data set corresponds to the gene
expression profile of a particular gene. In this case, a region has been selected by dragging
the mouse vertically to create a white selection box. All genes contained within the selection
box are then automatically selected and highlighted with red lines to their left.
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Once a region or regions of the gene expression data set have been selected they can
be examined in more detail in the Transcriptome Section itself. The Data option of
the Transcriptome Section can be used to display an expanded view of the selected
regions of the data set along with the name and description of all the genes within
these regions (Figure 4.8). This option enables users to rapidly examine what each
selected gene is as well as giving a much clearer view of all the selected gene’s
expression profiles allowing easy visual examination and comparison of possible

shared properties between the selected genes.
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Figure 4.8: Screenshot of the Transcriptome Section with the expanded data view

This is a screenshot of the Transcriptome Section displaying an expanded view of the region
of the data set selected in Figure 4.7. Each individual gene expression data point is
in