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Abstract 

Strong fields generated by big electric currents are examined within the framework of the Yang-Mills nonli-
near generalization of the Maxwell electrodynamics proposed in our earlier papers. First we consider the 
case of stationary currents and find a new exact solution to the Yang-Mills equations. Then we study a 
Yang-Mills field inside a thin circular cylinder with nonstationary plasma and find expressions for field 
strengths in it. Obtained results are applied to interpret several puzzling natural phenomena. 

Keywords: Yang-Mills Equations, Su(2) Symmetry, Source Currents, Field Strengths, Lightning, Exploding 
Wires 

1. Introduction 
 
As is well known, the Yang-Mills field theory proposed 
in 1954 is one of the greatest achievements of the XX 
century, which plays a leading role in modern quantum 
physics [1-3]. At the same time, the whole area of its 
applications can concern not only quantum physics but 
also classical physics [4-7]. To explain this point of view, 
let us examine powerful fields generated by sources with 
very big electric charges and currents. Then the follow-
ing question should be raised. Are the classical Maxwell 
equations always applicable to such fields? 

It is beyond doubt that the Maxwell equations ade-
quately describe a great diversity of electromagnetic 
fields for which photons are their carriers. At the same 
time, powerful sources with very big charges and cur-

rents may generate not only photons but also 0Z and  

W  bosons. In such cases, the Maxwell equations may 
be incorrect since they are applicable to fields for which 
only photons are the carriers. On the other hand, there 
are the well-known Yang-Mills equations with SU(2) 
symmetry which are a nonlinear generalization of the 
linear Maxwell equations playing a leading role in vari-
ous models of electroweak interactions caused by pho-

tons and 0  and  Z W   bosons. For this reason, in [4-7] 
the classical Yang-Mills equations with SU(2) symmetry 
are applied in the case of powerful field sources with 

very big electric charges and currents when 0Z Wand    
bosons may be generated, along with photons. These 

equations can be represented in the form [1-3] 
, , , ,(4 / )k k l m k

klmD F F g F A c j      
    ,   (1) 

, , , , ,k k k l m
klmF A A g A A           ,      (2) 

where , ,, 0,  1,  2,  3;   , , 1,  2,  3,    and  k kk l m A F      

are potentials and strengths of a Yang-Mills field, re-
spectively, ,kj   are three 4-vectors of source current 

densities, klm  is the antisymmetric tensor, 123 1  , 
D  is the Yang-Mills covariant derivative, g  is the 

constant of electroweak interaction, and / x    


, 

where x  are orthogonal space-time coordinates of the 
Minkowski geometry. 

It is worth noting that Equations (1),(2) have the fol-
lowing well-known consequences [1-3]: 

, 0kD D F 
   ,                (3) 

, , , 0k k l m
klmD j j g j A  

       .       (4) 

Further we will consider the field sources ,kj  of 

the form 
1, 2, 3,,     0j j j j      ,          (5) 

where j  is a classical 4-vector of current densities. 

Then when the potentials 2, 3, 0A A   , the Yang- 
Mills Equations (1),(2) become coinciding with the 

Maxwell equations for the potentials 1,A  . Moreover, 
from (4) with k 1  and from (5) we obtain the differ-
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ential charge conservation equation 
1, 0j 

 .               (6) 

That is why Equations (1),(2) with field sources of 
Formula (5) can be regarded as a reasonable nonlinear 
generalization of the classical Maxwell equations. This 
nonlinear generalization was studied in [4-7], where new 
classes of spherically symmetric and wave solutions to 
the considered Yang-Mills equations were obtained. 
These solutions were applied to interpret puzzling prop-
erties of atmospheric electricity, the phenomenon of ball 
lightning, and some other natural phenomena unex-
plained within the framework of the linear Maxwell the-
ory [4-7].  

It should be noted that from (1)-(6) we come to the 
identity 

, ,[ (4 / ) ] 0   for  1k kD D F c j k   
        (7) 

This identity shows that there is a differential relation 
for the Yang-Mills Equation (1) with the classical 
sources of Formula (5). 

Consider now the classical Yang-Mills Equations (1), 

(2) with cylindrical sources k,νj of the following form: 
1,0 0 1,3

1,1 1,2 2, 3,

    ( , , ),    ( , , ),

      0,     0,

j j z j j z

j j j j

 

    

   
      (8) 

where 

0 2 2 1 2 3,    ,  ,   ,   x x y x x y x z x       .  (9) 

Then let us seek the potentials ,kA   in the form 
,0 ,1

,2

,3

( , , ),   

( , , ),   

( , , ),   

( , , )

k k k

k k

k k

k

A z A

x z A

y z A

z









  

  

  

  

,          (10) 

where , ,k k k    are some functions. 

Substituting expressions (10) into Formula (2) for the 

strengths k,F  and taking into account the antisymmetry 

of klm , we find 

,01 ,02 ,03

,12 ,13 ,23

,   ,   ,

0,   ,   ,

( , , ),   ( , , ),   ( , , ),

k k k k k k

k k k k k

k k k k k k

F xu F yu F p

F F xh F yh

u u z p p z h h z

  

  

       

 (11) 

where the functions , ,  and k k ku p h  are as follows: 

/ ,    

,

 / .

k k k l m
klm

k k k l m
z klm

k k k l m
z klm

u g

p g

h g

 





     

    

     

  

  

  

        (12) 

Here / ,    / ,    /k k k k k k
z z                 . 

After substituting expressions (8)-(11) for k, k,j , A ,   
k,and F   into the Yang-Mills Equation (1), we obtain 

2

0

2 ( )

(4 / ) 

k k k l m l m
z klm

k

u u p g u p

c s j

    



   

 
,    (13) 

( ) 0k k l m l m
z klmu h g u h       ,       (14) 

22 ( ) (4 / )k k k l m l m k
klmp h h g p h c s j           , 

(15) 
where 

1 2 31,     0s s s   .            (16) 

In the considered case (8), from the three Equations (4) 
we obtain 

0 0zj j  ,                 (17) 

0 2 2 0 3 30,     0j j j j       .       (18) 

From (8) we have 2, 3, 0j j   . That is why we can 

choose the following gauge by some rotation about the 
first axis in the gauge space: 

0 1 1 0j j   .             (19) 

Then using (18), we obtain 
0 ,    1,  2,  3k kj j k             (20) 

In the second section we study Yang-Mills fields gen-
erated by stationary currents flowing in the direction of 
the axis z  and find a particular exact solution to the 
Yang-Mills Equations (12)-(16). In the third section we 
examine these equations in the case of no stationary 
plasma flowing through a thin circular cylinder and study 
the Yang-Mills field inside the cylinder. In the fourth 
section we discuss obtained results and their applications 
to some puzzling phenomena appearing in lightning and 
exploding wires. 
 
2. A Particular Exact Solution to the  

Yang-Mills Equations in the Case of  
a Cylindrical Source with Stationary  
Current 

 
Let us turn to the considered Yang-Mills Equations 
(12)-(16) in the following stationary case: 

0
0 0( ),    ( ),    constj j j j      ,     (21) 

where ( )j   is some function of  . 

Let us seek the functions , , and k k k    in (10) in the 

form 

00,    ( ) ( ) ( )k k k k kz             ,  (22) 

where k  and k  are some functions of  . 

Then from Formulas (12) and (22) we find 
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0 ( ),    ( ),    0k k k k ku h p        .   (23) 

Substituting Formulas (21)-(23) into Equations (13-15) 
and using the antisymmetry of klm  and hence the iden-

tity 0l m
klm    , we come to the following system of 

equations: 
2( ) 2 (4 / ) ,   1,  2,  3k k l m k

klmg c s j k            . 

  (24) 

Therefore, we have got three equations for the six 

functions ( ) and  ( )k k    . 

Taking into account (16), from Equation (24) we find 

1 1 2 3 2 2 3( ) 2 ( ) (4 / ) ,g c j               (25) 

3 3 2 2 1
2

2 1

2 2 2 3 1
3

2 1

( ) 2
,    

( ) 2
  .

g

g

g

g

     
 

     
 

  


  
 

       (26) 

From (26) we derive 
2 3 2 2 3

1 1 2 2 3 3 2 2 3 2

( )

( ) { [ ( ) ( )  ] 2[( ) ( ) ]}.

g    

       



    
  (27) 

Substituting (27) into Equation (25), we readily obtain 
1( 2 ) (4 / )c j       ,         (28) 

where 

2 1 2 2 2 3 2( ) ( ) ( ) ( )      .       (29) 

Since in the case (8) under consideration the axes with 
2,  3k  in the gauge space are equivalent, let us choose 

the relativistic-invariant gauge condition 

2, 2 3, 3F F F F 
  .          (30) 

Then we can take the following form for the compo-

nents k : 

1 2 3 1/2cos ,     2 sin         ,    (31) 

which satisfies (29) and (30), where ( )    and 

( )   . 

From (28) and (31) we find 

2 (4 / ) cosc j      .         (32) 

Equation (32) is the only equation for the two un-
known functions ( )  and  ( )    . Therefore, in the 

case under consideration the Yang-Mills equations can-
not allow us to uniquely determine the field strengths 

,kF  . To interpret this, let us turn to identity (7). It 
shows that the considered Yang-Mills Equation (1) with 
the classical sources of Formula (5) are not independent 

and there is a differential relation for them. 
Therefore, in order to uniquely determine the field 

strengths ,kF  , we should find an additional equation. 
For this purpose, let us represent the Yang-Mills Equa-
tion (1) in the form 

, ,(4 / )k kF c J  
  ,          (33) 

where 
, , ,( / 4 )k k l m

klmJ j cg F A   
  .        (34) 

Taking into account (33) and the evident identity 
, 0kF  

  , we find that the components ,kJ  satisfy 

the three differential equations of charge conservation 
, 0kJ 

 .                (35) 

In these equations the values ,kJ   can be interpreted 
as components of full current densities. As is seen from 

(34), they are the sum of the source components ,kj  and 

the second addendum which can correspond to charged 
field quanta. 

Using the components ,kJ   of full current densities 

and the source current densities ,kj  , the following  

additional relativistic-invariant equation was proposed  
in [4-6] to uniquely determine the field strengths  

,kF  : 
3 3

, ,
 

1 1

k k k k

k k

J J j j
 

  
  .          (36) 

The expressions on the left and right of this equation 
are proportional to the interaction energy of the full cur-
rents and source currents, respectively, in a small part of 
a field source. That is why Equation (36) implies the 
conservation of this energy when charged field quanta 
are created inside the source [5,6]. 

Using (33), we can represent Equation (36) in the form 
3 3

, , 2 ,
      

1 1

(4 / )  k k k k

k k

F F c j j
 

     
    .   (37) 

Substituting expressions (8) and (11) into Equation 
(37), we find 

2 2 2
3

2 2 0 2 2
1

[( 2 ) ( )

( 2 ) ] (4 / ) [( ) ( ) ]

k k k k k
z z

k k k
k

u u p u h

h h p c j j

   

    
  

 

 

 
. (38) 

Using (21) and (23), from Equation (38) we obtain 
3

2 2 2

1

[ ( ) 2 ] (4 / )k k

k

c j


       .       (39) 

Taking into account Formulas (31), Equation (39) can 
be represented as 

2 2 2 2( 2 ) (  ) (4 / )c j       .   (40) 

From Equations (32) and (40) we obtain 
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(4 / ) sinc j     .         (41) 

Equations (32) and (41) give 

2 cot       .         (42) 

Dividing this equation by   and then integrating it, 

we find 

2
cot  d d

 
   

 
 
   
 

.        (43) 

Equation (43) gives 

2ln ln sin const     .        (44) 

In order to have the function ( )  nonsingular, let us 

choose the sign ‘+’ in Equation (41) and hence in Equa-
tion (44). Then from Equation (44) we find 

2
0 0sin / ,     constD D    .       (45) 

Since we have chosen the sign ‘+’ in Equation. (41), 
from it and Formula (45) we obtain 

0(4 / ) /c j D    .             (46) 

From (45) and (46) we have the following nonsingular 
solution: 

0 2
0 0

sin 4
,      ,    ( )D j d j j

cD
  

     


.  (47) 

Formulas (31) and (47) give 

1 0
2

2 3
2

2 1
sin ,      ,

4

2 1
1 cos ,     

cDD I
D

c D

D I

c D

   
 

         




 


   (48) 

0

2  I j d 


   ,             (49) 

where ( )I I   is the source current in the cylindrical 

region of radius  . 

From Equations (11), (23), and (48) we find the non-
zero strength components  

,13 ,23,  k kF F  
and  

,01 ,13 ,02 ,23
0 0,    k k k kF F F F     . 

For the components ,13 ,23 and  k kF F we have 

1,13 1,23eff eff
2 2

eff

2 2
 ,     ,   

  sin ,     ( ),    

I Ix y
F F

c c

I
I D I I

D

 



 

   
 

 

2,13 3,13
2

2,23 3,23
2

2
1 cos ,    

2
1 cos ,

D I x
F F

c D

D I y
F F

c D





         

         

    (50) 

where D  is some constant. 
Below we use the terms ‘actual’ and ‘effective’ for the 

currents I  and eff sin( / )I D I D , respectively. 

It should be noted that when I D , the effective 

current effI  practically coincides with the actual current 

I  and we have the Maxwell field expressions for the 

strength components 1,13 1,23 and  F F . The value D  

should be a sufficiently large constant. Then Formula (50) 
can be regarded as a nonlinear generalization of the cor-
responding Maxwell field expressions for the strengths 

components 1,13 1,23 and  F F  when the actual current I  
is sufficiently large. 

Formula (50) describe a nonlinear effect of field satu-
ration. Namely, let the absolute value of the actual cur-
rent I  be increasing from zero. Then when it reaches 

the value D , the strengths components 1,13F  and 
1,23F become equal to zero and after that they change 

theirs signs.  
This property could be applied to give a new interpre-

tation for the unusual phenomenon of bipolar lightning 
that actually changes its polarity (positive becoming 
negative or vice versa) [8]. 

It is also interesting to note that puzzling data for 
lightning were recently obtained by the Fermi Gamma- 
ray Space Telescope which could be explained by For-
mula (50). Namely, some of lightning storms had the 
surprising sign of positrons, and the conclusion was 
made that the normal orientation for an electromagnetic 
field associated with a lightning storm somehow reversed 
[9]. 

To explain these data, let us note that as follows from 
(50), the sign of the effective current effI  can differ 

from the sign of the actual current I  when the latter is 
sufficiently large. 

 
3. Yang-Mills Fields inside Thin Circular  

Cylinders with Nonstationary Plasma 
 

Consider now a nonstationary thin cylindrical source of 
Formula (8) and let us assume that the matter inside it is 
in the plasma state. 

Besides, let the functions 0  and j j  in (8) have the 

following form inside the thin source: 

0 0
0( , ),     ( , ),     0j j z j j z          (51) 
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where 0  is its radius. 

Our objective is to describe the Yang-Mills field inside 
the source and for this purpose let us apply Equations 
(12)-(16). In the considered case we seek the functions 

,  ,  and k k k   , describing the field potentials ,kA , in 

the following special form: 

00,  ( , ),  ( , ),  0k k k k kz z               (52) 

Then substituting (52) into Formula (12) and using (20) 

and the identity 0l m
klm    , since klm  are anti-

symmetric, we find 

0,    0k ku h  ,             (53) 

0,     k k k k k
zp j j               (54) 

It should be noted that in the examined case, as fol-

lows from (11) and (53), the values ,03 ,30k kF F   are 
the only nonzero field strengths. That is why the chosen 
Formula (52) for the field potentials (10) provides the 
absence of currents in the directions orthogonal to the 
axis z  of the considered cylindrical source in the 
plasma state, in accordance with the used Formula (8) for 
the source. 

Substituting now expressions (52) and (53) into Eqs. 
(13)-(15), we obtain 

0(4 / )k l m k
z klmp g p c s j     ,       (55) 

(4 / )k l m k
klmp g p c s j              (56) 

where, as indicated in (16), 1 2 31,    0s s s   . 

Let us multiply Equations (55) and (56) by 0and j j , 

respectively, and add the products. Then using (20): 
0 0m mj j   , we obtain  

0 0k k
zj p jp   .               (57) 

To find solutions ),( zpk   to Equation (57), let us 

introduce the function 

0

0 0

( , ) (0, )
z

q j z d j z dz


    .        (58) 

Consider its partial derivatives. Using expression (58) 

and Equation (17): 0
zj j  , we obtain 

( , )q j z  ,                (59) 

0

0

( , ) (0, )z zq j z d j z


   . 

0 0 0

0

( , ) (0, ) ( , )j z d j z j z


              (60) 

From Formulas (59) and (60) we find 
0  0zj q jq   .               (61) 

Taking this into account, we come to the following 
solutions to the partial differential Equation (57) of the 

first order for ( , )kp z : 

)(qpp kk  ,              (62) 

where ( )kp q are arbitrary differentiable functions. 

Indeed, substituting (62) into Equation (57) and taking 
into account equality (61), we find 

0 0( / )( ) 0k k k
z zj p jp dp dq j q jq     ,    (63) 

and hence, Equation (57) are satisfied. 
Thus, as follows from (11), (62), and the first term in 

(58), the nonzero field strengths ,03kF  inside the cylin-
drical source under consideration depend on all charge 
passing through unit area of a cross section of the cylin-
drical source from beginning of the current flow. 

Let us turn to Equation (54) and seek the functions 

and  k k  , satisfying them, in the form 

    
0[ ( ) ( , ) ( )],

[ ( ) ( , ) ( )],

k k k

k k k

j b q z p q

j b q z p q

  

  

 

 
        (64) 

where ( )kb q are arbitrary differentiable function and 

( , )z   is some differentiable function. 

Then substituting expressions (64) into Equation (54) 

and taking into account equality (17): 0 0zj j   , we 

come to the equations 
0

0

[ / / ](

) ( )

k k k

k
z z

p db dq dp dq j q

jq j j p







 

 

  
.       (65) 

Using Formula (61), from (65) we find 
0 1zj j                  (66) 

When 0 0j  , from (17) and (66) we have 

0( )  and  / ( ) ( )j j z j       , where 0 ( )   is an 

arbitrary function. 

Consider the case 0 0j  . Then in order to solve Eq. 

(66), it is convenient to choose the variable q  instead 

of the variable z  and put 

( , ),     ( , )q q q z     .           (67) 

Indeed, using (67) and Formulas (59) and (60), we 
find 

0,     q z qj j         ,         (68) 

and substituting (68) into Equation (66), we derive 
0 1j   .                (69) 

Therefore, we obtain 
0( , ) / ( , )q d j q     ,        (70) 

where 0j is represented as a function of q and  . 

Let us now substitute Formulas (62) and (64) into Eq-
uations (55) and (56). Then using Formulas (59) and (60) 
and the evident identity, we find that Equations (55) and 
(56) give the same equations of the following form: 
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1 2 3

      / (4 / ) ,    1,  2,  3,

     ( ),    ( ),    1,    0.

k l m k
klm

k k k k

dp dq g p b c s k

p p q b b q s s s

   

    
  (71) 

Multiplying Equation (71) by kp2  and summing the 

products over, taking into account the antisymmetry of, 
we obtain 

3
2 1

1

( ) (8 / )k

k

d
p c p

dq




 .            (72) 

Besides this equation, from the second and third equa-
tions in (71) we also find relations of the functions 

2 3( ) and ( )b q b q  to the functions 1( ) and ( )kb q p q . 

Let us put 
1

2 3 1/2

(4 / ) ( ) cos ( ),  

 (4 / )2 ( )sin ( ),

p c q q

p p c q q

  

  



 
    (73) 

where condition (30) is taken into account, and 
( ) and ( )q q   are some functions. 

Then substituting expressions (73) into Equation (72), 
we find 

cos   .               (74) 

Let us now turn to Equation (38). From it and (53) we 
have 

3
2 2 2 0 2 2

1

[( ) ( ) ] (4 / ) [( ) ( ) ]k k
z

k

p p c j j 


   .  (75) 

Using Formulas (59), (60), and (62), from Equtaion 
(75) we find 

3
2 2

1

( / ) (4 / )k

k

dp dq c


 .        (76) 

Substituting Formula (73) into Equation (76), we ob-
tain 

2 2( ) ( ) 1    ,           (77) 

where ( ) and ( )q q     . 

Substituting now expression (74) for    into Equa-

tion (77), we find 

sin    .              (78) 

Equations (74) and (78) give 

/ cot        .             (79) 

Let us integrate Equation (79) and choose the sign ‘+’ 
in it and hence in (78), in order to have its nonsingular 
solution. Then we obtain 

0 sinB  ,                (80) 

where 0B  is some constant. 

Substituting expression (80) into Equation (78) and 
taking into account that the sign ‘+’ has been chosen in it, 
we find 

0 0 01/ ,     /B q B      ,        (81) 

where 0  is some constant. 

From Formulas (80) and (81) we obtain 

0 0 0sin( / )B q B   ,           (82) 

where q  is defined by Formula (58). 

Using Formulas (11), (58), (73), and (82), we find 
1,03

0 0 0

2,03 3,03
0 0 0

0
0 0

0 0

(2 / ) sin(2 / ),  

( 2 / ) [1 cos(2 / )],

2 ,     ( , ) (0, ) .
z

F c B q B

F F c B q B

q j z d j z dz


 

 

   

 

   

   

 (83) 

As follows from (83), when the value 0 02 (q B    

)n , where n  is an integer, the strength component 
1,03F  is zero and when n  is an even integer, ,03 0,kF   

1,  2,  3k  . 
Let us apply obtained results to the puzzling phe-

nomenon of current pause which takes place in explod-
ing wires [10]. The phenomenon proceeds in three stages. 
At the instant of closure of the circuit, sufficiently large 
current flows through the wire and causes its explosion. 
Then in some time the current flow ceases and the period 
of current pause begins. After a certain period of time the 
current pause can end and the current flow can continue. 

The origin of the current pause is not well understood 
within the framework of the Maxwell electrodynamics 
[10,11]. That is why let us apply its nonlinear generaliza-
tion based on the Yang-Mills equations which we have 
studied. For this purpose, let us turn to Formula (83) and 
apply them to an exploding wire. As follows from For-
mula (83), after some period of time the strength com-
ponent 1,03F  becomes zero. At this moment the current 
in the wire should cease. Therefore, Formula (83) allow 
one to interpret the origin of current pause in exploding 
wires. The pause could end and the current flow could 
continue after some redistribution of charges in explod-
ing wires. 

 
4. Conclusions 
 
We have studied classical Yang-Mills fields with SU(2) 
symmetry generated by charged circular cylinders with 
currents. Our objective was to find solutions to the non-
linear Yang-Mills equations that could generalize the 
corresponding solutions to the linear Maxwell equations 
for sufficiently powerful sources. 

We considered two cases. In the first of them we stud-
ied a Yang-Mills field generated by a stationary current 
flowing through a circular cylinder. In this case we found 
a particular exact solution to the Yang-Mills equations. 
In the obtained solution the strength components 1,13F  

1,23and  F have the form 1,13 2
eff(2 / ) /F I c x  , 
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1,23F  2
eff(2 / ) /I c y  , eff sin( / )I D I D , where 

( ) and I I   eff eff ( )I I   are the actual and effective 

currents in the cylindrical region of radius  , respec-

tively, and D  is a sufficiently large constant. When the 
actual current I  is not large and / 1I D  , the effec-

tive current effI  is very close to the actual current I  and 

the found expressions for 1,13 1,23 and  F F  are practically 
coinciding with the corresponding Maxwell field expres-
sions. At the same time, when the actual current I  is 
sufficiently large, the effective current effI can substan-

tially differ from the actual current I  and, moreover, 
the values eff and  I I  can have different signs. Using 

this result, we gave a new interpretation for the phe-
nomenon of bipolar lightning and explained the puzzling 
inversion of the normal orientation for electromagnetic 
fields associated with some lightning storms which was 
recently detected by the Fermi Gamma-ray Space Tele-
scope. 

In the second case we considered a Yang-Mills field 
inside a thin circular cylinder with nonstationary plasma.  
We sought field potentials in Formula (52) and came to 
the partial differential Equations (54-56). Solving these 
equations, we found expressions for the field strengths 
inside the cylindrical source under consideration. It was 
shown that the strengths could depend on all charge 
passing through unit area of a cross section of the cylin-
drical source from beginning of the current flow. The 
obtained Formula (83) shows that the field strengths in-
side the cylindrical source can become zero after some 
period of time. This property of the found solution was 

above used to explain the puzzling phenomenon of cur-
rent pause in exploding wires. 
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Abstract 

In this paper, a modified variation of the Limited SQP method is presented for constrained optimization. This 
method possesses not only the information of gradient but also the information of function value. Moreover, 
the proposed method requires no more function or derivative evaluations and hardly more storage or arith-
metic operations. Under suitable conditions, the global convergence is established. 

Keywords: Constrained Optimization, Limited Method, SQP Method, Global Convergence 

1. Introduction 
 
Consider the constrained optimization problem  

Ijxg

Eixhts

xf

j

i




,0)(

,0)(..

)(min
          (1) 

where RRghf n
ji :,,  are twice continuously differ-

entiable, },,,2,1{ mE   0},,,2,1{  llmmmI   is 

an integer. Let the Lagrangian function be defined by  

)()()(),,( xhxgxfxL TT          (2) 

where  and   are multipliers. Obviously, the La-

grangian function L  is a twice continuously differenti-
able function. Let S  be the feasible point set of the 

problem (1). We define I  to be the set of all the sub-
scripts of those inequality constraints which are active 

at x , i.e., }.0)(|{  xgandIiiI i  

It is well known that the SQP methods for solving 
twice continuously differentiable nonlinear programming 
problems, are essentially Newton-type methods for find-
ing Kuhn-Tucher points of nonlinear programming 
problems. These years, the SQP methods have been in 
vogue [1-8]: Powell [5] gave the BFGS-Newton-SQP 
method for the nonlinearly constrained optimization. He 
gave some sufficient conditions, under which SQP me-
thod would yield 2-step Q-superlinear convergence rate 
(assuming convergence) but did not show that his modi-

fied BFGS method satisfied these conditions. Coleman 
and Conn [2] gave a new local convergence qua-
si-Newton-SQP method for the equality constrained non-
linear programming problems. The local 2-step Q-super- 
linear convergence was established. Sun [6] proposed 
quasi-Newton-SQP method for general 1LC  constrain- 
ed problems. He presented the locally convergent suffi-
cient conditions and superlinear convergent sufficient 
conditions. But he did not prove whether the modified 
BFGS-quasi-Newton-SQP method satisfies the sufficient 
conditions or not. We know that, the BFGS update ex-
ploits only the gradient information, while the informa-
tion of function values of the Lagrangian function (2) 
available is neglected. 

If nRx  holds, then the problem (1) is called un-
constrained optimization problem (UNP). There are ma- 
ny methods [9-13] for the UNP, where the BFGS method 
is one of the most effective quasi-Newton method. The 
normal BFGS update exploits only the gradient informa-
tion, while the information of function values available is 
neglected for UNP too. These years, lots of modified 
BFGS methods [14-19] have been proposed for UNP. 
Especially, many efficient attempts have been made to 
modify the usual quasi-Newton methods using both the 
gradient and function values information (e.g. [19,20]). 
Lately, in order to get a higher order accuracy in ap-
proximating the second curvature of the objective func-
tion, Wei, Yu, Yuan, and Lian [18] proposed a new 
BFGS-type method for UNP, and the reported numerical 
results show that the average performance is better than 
that of the standard BFGS method. The superlinear con-
vergence of this modified has been established for uni-
formly convex function. Its global convergence is estab-

*This work is supported by the Chinese NSF grants 10761001 and the 
Scientific Research Foundation of Guangxi University (Grant No. 
X081082), and Guangxi SF grants 0991028. 
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lished by Wei, Li, and Qi [20]. Motivated by their ideas, 
Yuan and Wei [21] presented a modified BFGS method 
which can ensure that the update matrix are positive de-
finite for the general convex functions. Moreover, the 
global convergence is proved for the general convex 
functions. 

The limited memory BFGS (L-BFGS) method [22] is 
an adaptation of the BFGS method for large- scale prob-
lems. The implementation is almost identical to that of 
the standard BFGS method, the only difference is that 
the inverse Hessian approximation is not formed explic-
itly, but defined by a small number of BFGS updates. It 
is often provided a fast rate of linear convergence, and 
requires minimal storage. 

Inspired by the modified method of [21], we combine 
this technique and the limited memory technique, and 
give a limited SQP method for constrained optimization. 
The global convergence of the proposed method will be 
established for generally convex function. The major 
contribution of this paper is an extension of, based on the 
basic of the method in [21], the method for the UNP to 
constrained optimization problems. Unlike the standard 
SQP method, a distinguishing feature of our proposed 
method is that a triple },,{ 

iii Ays  being stored, where 

1i i is x x  , ,)()( 1 iiixixi sAzLzLy 
   1iz    

1 1 1( , , )i i ix     , ),,( iiii xz  , i  and i  are the 

multipliers which are according to the Lagrangian objec-
tive function at ix , while 1i  and 1i  are the multi-

pliers which are according to the Lagrangian objective 
function at 1ix , and 

iA  is a scalar related to Lagran-

gian function value. Moreover, a limited memory SQP 
method is proposed. Compared with the standard SQP 
method, the presented method requires no more function 
or derivative evaluations, and hardly more storage or 
arithmetic operations. 

This paper is organized as follows. In the next section, 
we briefly review some modified method and the L-BFGS 
method for UNP. In Section 3, we describe the modified 
limited memory SQP algorithm for (2). The global con-
vergence will be established in Section 4. In the last sec-
tion, we give a conclusion. Throughout this paper, ||||   

denotes the Euclidean norm of vectors or matrix. 
 

2. Modified BFGS Update and the L-BFGS 
Update for UNP 
 

We will state the modified BFGS update and the 
L-BFGS update for UNP in the following subsections, 
respectively. 
 
2.1. Modified BFGS Update 
 
Quasi-Newton methods for solving UNP often need to 

update the iterate matrix kB . In tradition, }{ kB satisfies 

the following quasi-Newton equation:  

kkk SB 1                 (3) 

where kkk xxS  1 , )()( 1 kkk xfxf   .The very 

famous update kB is the BFGS formula  

k
T
k

T
kk

kk
T
k

k
T
kkk

kk
SSBS

BSSB
BB




1          (4) 

Let kH  be the inverse of kB , then the inverse up-

date formula of (4) method is represented as 
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    (5) 

which is the dual form of the DFP  update formula in 
the sense that kk BH  , 11   kk BH , and kk ys  . It 

has been shown that the BFGS method is the most effec-
tive in quasi-Newton methods from computation point of 
view. The authors have studied the convergence of f and 

its characterizations for convex minimization [23-27]. 
Our pioneers made great efforts in order to find a 
quasi-Newton method which not only possess global 
convergence but also is superior than the BFGS method 
from the computation point of view [15-17,20,28-31]. 
For general functions, it is now known that the BFGS 
method may fail for non-convex functions with inexact 
line search [32], Mascarenhas [33] showed that the non-
convergence of the standard BFGS method even with 
exact line search. In order to obtain a global convergence 
of BFGS method without convexity assumption on the 
objective function, Li and Fukushima [15,16] made a 
slight modification to the standard BFGS method. Now 
we state their work [15] simply. Li and Fukushima (see 
[15]) advised a new quasi-Newton equation with the fol-
lowing form 

  1
1 kkk SB  , where 1

k k k k kt g S    , 0kt  

is determined by }0,
||||

max{1
2

k

k
T
k

k
S

S
t


 . Under ap-

propriate conditions, these two methods [15,16] are 
globally and superlinearly convergent for nonconvex 
minimization problems. 

In order to get a better approximation of the objective 
function Hessian matrix, Wei, Yu, Yuan, and Lian (see 
[18]) also proposed a new quasi-Newton equation: 

,)3()2( 2
1 kkkkkk SASB  
  where  

2

2[ ( ) ( )] [ ( ) ( )]
(3)

|| ||

T
k k k k k k k k k

k
k

f x f x d f x d f x S
A

S

      
 . 

Then the new BFGS update formula is  



                                       G. L. YUAN  ET  AL. 
 

Copyright © 2010 SciRes.                                                                               AM 

10 

.
)2(

)2()2(
)2()2( 2

22

1 



 
k
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kkk

kk SSBS
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  (6) 

Note that this quasi-Newton Formula (6) contains both 
gradient and function value information at the current 
and the previous step. This modified BFGS update for-
mula differs from the standard BFGS update, and a 

higher order approximation of )(2 xf can be obtained [18, 

20]. 
It is well known that the matrix kB  are very impor-

tant for convergence if they are positive definite [24,25]. 

It is not difficult to see that the condition 02 
k

T
kS   

can ensure that the update matrix )2(1kB  from (6) in-

herits the positive definiteness of )2(kB . However this 

condition can be obtained only under the objective func-
tion is uniformly convex. If f  is a general convex 

function, then 2
k

T
kS   and k

T
kS   may equal to 0. In 

this case, the positive definiteness of the update matrix 

kB  can not be sure. Then we conclude that, for the gen-

eral convex functions, the positive definiteness of the 
update matrix kB  generated by (4) and (6) can not be 

satisfied. 
In order to get the positive definiteness of )2(kB  

based on the definition of 2
k and k  for the general 

convex functions, Yuan and Wei [21] give a modified 
BFGS update, i. e., the modified update formula is de-
fined by 

,
)3(

)3()3(
)3()3(

3

33

1

k
T

k

T
kk

kk
T
k

k
T
kkk

kk
SSBS

BSSB
BB





 

     (7) 

where }0),3(max{,3
kkkkkk AASA   . Then the 

corresponding quasi-Newton equation is  


  3
1 )3( kkk SB              (8) 

which can ensure that the condition 03 
k

T
kS   holds 

for the general convex function f (see [21] in detail). 

Therefore, the update matrix 1kB  from (8) inherits the 

positive definiteness of kB  for the general convex 

function. 
 
2.2. Limited Memory BFGS-Type Method 
 
The limited memory BFGS (L-BFGS) method (see [22]) 
is an adaptation of the BFGS method for large-scale 
problems. In the L-BFGS method, matrix 

kH  is ob-

tained by updating the basic matrix )0~(0 mH  times 
using BFGS formula with the previous m~  iterations. 
The standard BFGS correction (5) has the following 

form  
T
kkkkk

T
kk SSVHVH 1            (9) 

where 
k

T
k

k
S 

 1
 , T

kkkk SIV  , I is the unit ma-

trix. Thus, 1kH  in the L-BFGS method has the fol-

lowing form: 

.
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(10) 
 
3. Modified SQP Method 
 
In this section, we will state the normal SQP method and 
the modified limited memory SQP method, respectively. 
 
3.1. Normal SQP Method 
 
The first-order Kuhn-Tucker condition of (2) is  




















.0)(

,,0)(,0,0)(

,0)()()(

xh

Ijforxgxg

xhxgxf

jjj

TT




 (11) 

The system (11) can be represented by the following 
system: 

,0)( zH                 (12) 

where Szz  ),,(   and lmnlmn RRH  :  is 

defined by 

.

)(

}),(min{

)()()(

)(
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xhxgxf
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TT




     (13) 

Since ,, gf   and h  are continuously differenti-

able functions, it is obviously that )(zH  is continu-

ously differentiable function. Then, for all lmnRd  , 
the directional derivative ):( dzH   of the function 

)(zH  exists. Denote the index sets by 

)}(|{)( xgiz ii               (14) 

and )}.(|{)( xgiz ii              (15) 



G. L. YUAN  ET  AL.                                     
 

Copyright © 2010 SciRes.                                                                               AM 

11

Under the complementary condition, it is clearly that 
)(z  is an index set of strongly active inequality con-

straints, and )(z  is an index set of weakly active and 

inactive inequality constraints. In terms of these sets, the 
directional derivative along the direction ),,(  dddd x   

is given as follows  

,
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)}(,min{
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    (16) 

where G is a matrix which elements are the partial de-
rivatives of )(zLx  to ,xd ,d ,d respectively. If 

ii
ddgd zix

T
i    )()}(,min{  holds, then the set 
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By (33) in [6], we know than the system  

),( kkk zHdW               (18) 

where ),,(
kkk

dddd xk   and )( kk zWW  , define 

the Kuhn-Tucker condition of problem (2), which also 
defines the Kuhn-Tucker condition of the following qua-
dratic programming :),( kk VzQP  

,0)()(

,0)()(
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1
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where ).(, 2
kxxkk zLVxxs   

Generally, suppose that )1(kB  is an estimate of kV  

and )1(kB  can be updated by BFGS method of qua-

si-Newton formula 

,
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)1()1(
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where kkk xxs  1 , )()( 1 kxkxk zLzLy   , 1kz    

1 1 1( , , ),k k kx     ),,,( kkkk xz  k and k  are the 

multipliers which are according to the Lagrangian objec-
tive function at kx , while 1k  and 1k  are the mul-

tipliers which are according to the Lagrangian objective 
function at 1kx . Particularly, when we use the update 

Formula (20) to (19), the above quadratic programming 
problem can be written as :),( kk BzQP  
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Suppose that ),,( s  is a Kuhn-Tucker triple of the 

sub problem ),( kk BzQP , therefore, it is obviously 

that 0s  if ),,( kkx  is a Kuhn-Tucker triple of (2). 

 
3.2. Modified Limited Memory SQP Method  
 
The normal limited memory BFGS formula of qua-
si-Newton-SQP method with kH  for constrained opti-

mization (2) is defined by 
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where ,
1

k
T
k

k
ys

  ,T
kkkk syIV   I  is the unit 

matrix. To maintain the positive definiteness of the lim-
ited memory BFGS matrix, some researchers suggested 

to discard correction },{ kk ys  if 0k
T
k ys  does not 

hold (e.g. [34]). Another technique was proposed by 
Powell [35] in which ky  is defined by  
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  kk HB 1  of (22). How-

ever, if the Lagrangian objective function ),,( xL  is 

a general convex function, then k
T
k ys  may equal to 0. 

In this case, the positive definiteness of the update matrix 

kH  of (22) can not be sure. 

Whether there exists a limited memory SQP method 
which can ensure that the update matrix are positive de-
finite for general convex Lagrangian objective func-
tion ),,( xL . This paper gives a positive answer. Let 

2
11

||||

)]()([)]()([2~

k

k
T

kxkxkk
k

s
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A


  . Con-

sidering the discussion of the above section, we discuss 

kA
~

 for general convex Lagrangian objective function 

),,( xL  in the following cases to state our motivation. 
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Case 1: If ,0
~

kA  we have  
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which means that 0k
T
k ys  holds. Then we present our 

modified limited memory SQP formula  
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where ,
1
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  ,T
kkkk syIV     and 

kkkk sAyy }0,
~

max{ . It is not difficult to see that the 

modified limited memory SQP Formula (25) contains 
both the gradient and function value information of La-
grangian function at the current and the previous step if 

0
~

kA  holds. 

Let 
kB  be the inverse of 

kH . More generally, sup-

pose that 
kB  is an estimate of kV . Then the above 

quadratic programming problem (19) can be written as 

:),( 
kk BzQP  
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Suppose that ),,( s  is a Kuhn-Tucker triple of the 

subproblem ),( 
kk BzQP , therefore, it is obviously that 

0s  if ),,( kkx  is a Kuhn-Tucker triple of (2). 

Now we state our algorithm as follows. 
Modified limited memory SQP algorithm 1 for (2) 

(M-L-SQP-A1) 
Step 0: Star with an initial point ),,( 0000 xz   

and an estimate 
0H  of )( 0

2
0 zLV xx , 

0H  is a 

symmetric and positive definite matrix, positive con-
stants 10   , 00 m  is a positive constant. Set 

0k ; 

Step 1: For given kz  and 
kH , solve the subproblem 

,0)()(

,0)()(

,0)()(..

,
2

1
)(min 1





 

sxhxh

sxgxg

sxgxgts

sHssxf

T
kk

T
kk

T
kk

k
TT

k



        (27) 

and obtain the unique optimal solution kd ;  

Step 2: k  is chosen by the modified weak 

Wolfe-Powell (MWWP) step-size rule 

,)()()( k
T

kxkkkkk dzLzLdzL     (28) 

and  

,)()( k
T

kxk
T

kkkx dzLddzL       (29) 

then let .1 kkkk dxx   

Step 3: If 1kz  satisfies a prescribed termination cri-

terion (18), stop. Otherwise, go to step 4;  

Step 4: Let },1min{~
0mkm  . Update 

0H  for m~  

times to get 
1kH  by Formula (25). 

Step 5: Set 1 kk  and go to step 1. 
Clearly, we note that the above algorithm is as simple 

as the limited memory SQP method, form storage and 
cost point of a view at each iteration. 

In the following, we assume that the algorithm updates 

kB -the inverse of 

kH . The M-L-SQP-A1 with Hessian 

approximation 
kB  can be stated as follows. 

Modified limited memory SQP algorithm 2 for (2) 
(M-L-SQP-A2) 

Step 0: Star with an initial point ),,( 0000 xz   

and an estimate 
0B  of )( 0

2
0 zLV xx , 

0B  is a sym-

metric and positive definite matrix, positive constants 
10   , 00 m  is a positive constant. Set 

0k ; 

Step 1: For given kz  and 
kB , solve the subproblem 

),( 
kk BzQP and obtain the unique optimal solution kd ; 

Step 2:  Let },1min{~
0mkm  . Update 

kB  with 

the triples k
mkiiii Ays 1~},,{ 

 , i.e., for kmkl ,,1~  , 

compute 

,1

l
T

l

T
ll

k
l
k

T
l

l
k

T
ll

l
kl

k
l
k sy

yy

sBs

BssB
BB 






        (30) 
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where lll xxs  1 , llll sAyy    and 
 1~mk

kB  for 

all k. 
Note that M-L-SQP-A1 and M-L-SQP-A2 are mathe-

matically equivalent. In the next section, we will estab-
lish the global convergence of M-L-SQP-A2. 
 
4. Convergence analysis of M-L-SQP-A2 
 
Let x be a local optimal solution and ),,(   xz  

be the corresponding Kuhn-Tucker triple of problem (1). 
In order to get the global convergence of M-L-SQP-A2, 
the following assumptions are needed. 

Assumption A. 1) ihf ,  and ig  are twice continu-

ously differentiable functions for all Sx  and S  is 
bounded. 

2) }),({}),({   IjxgEixh ii  are positive li-

near independence. 

3) (Strict complementarity) For 0,  
jIj  . 

4) 0VssT for all 0s with sxh T
i )(  Ei ,0  

and   Ijsxg T
i ,0)( , where )(2  zLV xx . 

5) }{ kz converges to z where 0)(  zLx . 

6) The Lagrangian function )(zL  is convex for all 

Sz . 
Assumption A(6) implies that there exists a constant 

0H  such that 
.,|||| SzHV            (31) 

Due to the strict complementary Assumption A(3), at a 
neighborhood of z , the method (26) is equivalent to 
the following equality constrained quadratic program-
ming:  

.0)()(

,0)()(..

,
2

1
)(min




 

sxhxh

sxgxgts

sBssxf

T
kk

T
kk

k
TT

k


      (32) 

Without loss of generality for the locally convergent 
analysis, we may discuss that there are only active con-
straints in (2). Then (18) becomes the following system 
with 

kB  instead of kV :  

)(

)(

)(

)(

00)(

00)(

)()(

k

k

k

kxx

T

T zH

xh

xg

zL

d

d

d

xh

xg

xhxgB

k

k

k
































































 

(33) 
In the case of only considering active constraints, we 

can suppose that 























00)(

00)(

)()(

T

T
k

k

xh

xg

xhxgV

W 



       (34) 

and 

,

00)(

00)(

)()(

,

























T

T
k

KH

xh

xg

xhxgB

D 



      (35) 

when 
kB  is close to kV , KHD ,  is close to kW . 

Lemma 4.1 Let Assumption A hold. Then there exists 
a positive number 1M  such that  

.,2,1,0,
||||

1

2





kM
ys

y

k
T
k

k  

Proof. By Assumption A, then there exists a positive 
number 0M  such that (see [36])  

.0,
||||

0

2

 kM
ys

y

k
T
k

k            (36) 

Since the function )(xL  is convex, then we have 

k
T

kxkk szLzLzL )()()( 1  and 1( ) ( )k kL z L z    

1( ) ,T
x k kL z s  the above two inequalities together with 

the definition of kA
~

 imply that  

2||||

||
|

~
|

k

k
T
k

k
s

ys
A  .              (37) 

Using the definition of 
ky , we get  

k
T
kkk

T
kk

T
k ysAysys  }0,

~
max{      (38) 

and  

||,||2||||||||||}0,
~

max{|||||||||| kkkkkkk yyysAyy   

(39) 

where the second inequality of (39) follows (37). Com-
bining (38), (39), and (36), we obtain: 

.4
||||4||||

0

22

M
ys

y

ys

y

k
T
k

k

k
T
k

k 



 

Let 01 4MM  , we get the conclusion of this lemma. 

The proof is complete.  
Lemma 4.2 Let kB is generated by (30). Then we have  

,)det()det(
1~

1~

1 







 
k

mkl ll
T
l

l
T
lmk

kk
sBs

ys
BB      (40) 

where )det( 
kB  denotes the determinant of 

kB . 

Proof. To begin with, we take the determinant in both 
sides of (20)  

1

1

1

1

(1) (1)
( (1)) ( (1)( ))

(1)

(1) (1)
( (1)) ( )

(1)

(1)
( (1))[(1 )(1 ( (1) ) )

(1)

( (1
( )(

T T
k k k k k k

k k T T
k k k k k

T T
k k k k k k

k T T
k k k k k

T Tk k k
k k k kT T

k k k k k

T k k
k T

k k

s s B B y y
Det B Det B I

s B s s y

s s B B y y
Det B Det I

s B s s y

B s y
Det B s B y

s B s y s

y B
s

y s









  

  

  

  1) )
(1) )]

(1)

T
k

k kT
k k k

s
B y

s B s
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( (1)) ,
(1)

T
k k

k T
k k k

y s
Det B

s B s
  

where the third equality follows from the formula (see, 
e.g., [37] Lemma 7.6) 

).)(()1)(1()det( 324143214321 uuuuuuuuuuuuI TTTTTT   

Therefore, there is also a simple expression for the de-
terminant of (30)  

.)det()det(
1~

1~

1 







 
k

mkl ll
T
l

l
T
lmk

kk
sBs

ys
BB  

Then we complete the proof. 
Lemma 4.3 Let Assumption A hold. Then there exists 

a positive constant 1  such that  

,|||| 1 kks   where 
||||

)(

k

k
T

kx
k d

dzL
 . 

Proof. By Assumption A, we have 

).1(||||)(

))()((

21

0

1








HddtddtzVd

dzLzL

kkkkkk
T
kk

k
T

kxkx


 

On the other hand, using (29), we get  

.)()1())()(( 1 k
T

kxk
T

kxkx dzLdzLzL     

Therefore, ,
1

1
|||| kk H

s 



 let 
1

1
1 




H

 . The 

proof is complete. 
Using Assumption A, it is not difficult to get the fol-

lowing lemma. 
Lemma 4.4 Let Assumption A hold. Then the se-

quence )}({ kzL  monotonically decreases, and Szk   

for all 0k . Moreover, 

.))((
0






k

k
T

kxk dzL  

Similar to Lemma 2.6 in [38], it is not difficult to get 
the following lemma. Here we also give the proof proc-
ess. 

Lemma 4.5 If the sequence of nonnegative numbers 

),1,0( kmk satisfy 





k

j

k
j kccm

0
11 ,,2,1,0,         (41) 

then 0suplim kk m . 

Proof. We will get this result by contradiction. As-
sume that 0suplim kk m , then, for 110 c  , there 

exists 01 k , such that 1km  for all 1kk  . Hence, 

for all 1kk  , 

 


 


1

0
11

1

1

k

j

k

kj
j

k mc 


















 




 1

1
1
1

1

01

1suplim k
k

j
j

k

k m
c




, 

which is a contradiction, thus, 0suplim kk m . 

Lemma 4.6 Let }{ kx  be generated by M-L-SQP-A2 

and Assumption A hold. If 0||)(||inflim 
 kx

k
zL , then, 

there exists a constant 00   such that  

  .0,1
0

0

 


 kallfork

k

j
j   

Proof. Assume that 0||)(||inflim 
 kx

k
zL , i.e., there 

exists a constant 02 c such that 

,2,1,0,||)(|| 2  kczL kx .    (42) 

Now we prove that the update matrix 
1kB  will al-

ways be generated by the update Formula (30), i.e., 

1kB inherits the positive definiteness of 

kB  

or 0
k

T
k ys  always holds. For 0k , this conclusion 

holds at hand. For all 1k , assume that 
kB  is positive 

definite. We will deduce that 0
k

T
k ys  always holds 

from the following three cases. 

Case 1. If 0
~

kA . By the definition of 
ky  and As-

sumption A, we have 

0}0,
~

max{ 
k

T
kkk

T
kk

T
k ysAysys . 

Case 2. If 0
~

kA . By the definition of 
ky , (24), and 

Assumption A, we get 0
k

T
kk

T
k ysys . 

Case 3. If 0
~

kA . By the definition of 
ky , (29), As-

sumption A, )(1
kxkk zLBd   , and the positive defi-

niteness of 
kB , we obtain 

0)1()()1(  
kk

T
kkkx

T
kkk

T
kk

T
k dBdzLdysys  ,

So, we have 0
k

T
k ys , and 

1kB  will be generated by the 

update Formula (30). Thus, the update matrix 
1kB  will 

always be generated by the update Formula (30).  
Taking the trace operation in both sides of (30), we get  

,
||||||||

)(

)(
2

1~

2

1~

1~

1

















 



l
T
l

l
k

mklll
T
l

ll
k

mkl

mk
k

k
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y

sBs

sB
BTr

BTr

  (43) 

where )( 
kBTr  denotes the trace of 

kB . Repeating this 

trace operation, we have 

.
||||||||

)(

||||||||
)()(

0

2

0

2

0

2

1~

2

1~

1~

1
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y

sBs

sB
BTrBTr

  

(44) 
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Combining (42), (44), )(1
kxkk zLBd   , and 

Lemma 4.1, we obtain  

.)1(
)()(

)()( 1
0

2
2

01 Mk
zLHzL

c
BTrBTr

k

l jxj
T

jx
k 


 







(45) 

Using 
1kB is positive definite, we have 0)( 1 

kBTr . 

By (45), we obtain 

2
2

10

0

2
2 )1()(

)()( c

MkBTr

zLHzL

ck

l jxj
T

jx









  (46) 

and  

.)1()()( 101 MkBTrBTr k  
       (47) 

By the geometric-arithmetic mean value formula we 
get  

.
)1()(

)1(
)()(

1

10

2
2

0




















k

k

j
jxj

T
jx

MkBTr

ck
zLHzL  (48) 

Using Lemma 4.2, (30), and (38), we have 
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1
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1
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This implies 

.
1)det(

)det(

01

0 










k

j

j

kB

B




         (49) 

By using the geometric-arithmetic mean value formula 
again, we get 

.
)(

)det( 1
1

n

k
k n

BTr
B 













          (50) 

Using (47), (49) and (50), we obtain  

0

0 0 1

0

0 1

1

0

0 1

det( )

1 [ ( ) ( 1) ]

det( )1

1 [ ( ) ]

det( )1
min{ , 1}

exp( ) [ ( ) ]
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j

n
j

n

n

k n
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B n

Tr B k M

B n

k Tr B M
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0 1

1
3

det( )
min , 1

[ ( ) ]

n

n

k

B n

Tr B M

C







    
  



        (51) 

where }1,
])([

)det(
min{

)exp(

1

10

0
3 n

n

MBTr

nB

n
c









 



. Let 

.
||||)(||

)(
cos

jjx

j
T

jx
j dzL

dzL




  

Multiplying (48) with (51), for all 0k , we get 

1

10

2
21

3
0

]
)1()(

)1(
[cos||)(|||||| 




 


 kk
k

j
jjxk

MkBTr

ck
czLs   

.]
)(

[ 1

10

2
23 

 
 k

MBTr

cc
          (52) 

According to Lemma 4.4 and Assumption A we know 
that there exists a constant 02 M  

such that 

211 2|||||||||||||||| Mxxxxs kkkkk   .  (53) 

Combining the definition of 
k  and (53), and noting 

that jjjx zL   cos||)(|| , we get for all 0k , 

.]
2))((

[ 1
0

1

210

2
23

0









 kk
k

j
j

MMBTr

cc
  

The proof is complete. 
Now we establish the global convergence theorem for 

M-L-SQP-A2. 
Theorem 4.1 Let Assumption (i) hold and let the se-

quence }{ kz  be generated by M-L-SQP-A2. Then we 

have 

0||)(||inflim 
 kx

k
zL .         (54) 

Proof.  By Lemma 4.3 and (28), we get 

.)(

||||)()(
2

1

1

kk

kkkk

zL

szLzL







        (55) 

By (55), we have 


 0

2

k
k , this implies that 

0lim 
 k

k
 .            (56) 

Therefore, relation (54) can be obtained from (56) and 
Lemma 4.6 directly.  
 
5. Conclusions 
 
For further research, we should study the properties of 
the modified limited memory SQP method under weak 
conditions. Moreover, numerical experiments for practi-
cally constrained problems should be done in the future. 
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2. Formulation and Solution 
 
The Bessel differential equation of order zero is well 
known as [1, 4]: 

0)()()( 2
2

2

 rrfrf
dr

d
rf

dr

d
r        (1) 

  and r  R and a  r  b. 
The general solution to Equation (1) for real values of 

 is known to be [2, 3]: 







0

00 )()()(
n

nn rYBrJArf          (2) 

As in Equation (1), the assumed boundary conditions 
at r = a and r = b are of Dirichlet type as f(a) = 0 and f(b) 
= 0 respectively. Both An and Bn are then related as: 

nn B
aJ

aY
A
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0

0




             (3) 
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             (4) 

Going after the elimination method, the transcendental 
equation can be obtained as: 

0)()()()( 0000  aYbJbYaJ          (5) 

In order for Equation (5) to be satisfied, there exist 
many zeros or values of  to be calculated. Thus, in all 
former and coming equations  can be replaced by n 
which are the zeros obtained from the transcendental 
equation  n  I. That is: 

0)()()()( 0000  aYbJbYaJ nnnn       (6) 

The orthogonality feature of Bessel functions can be 
applied to Equation (2) by multiplying both sides by 
 )()( 00 rYBrJAr mmmm   and integrating it over all 

possible values of r from a to b as: 
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where, 

)()()( 00 rYBrJArC mmmmm         (8) 

)()()( 00 rYBrJArC nnnnn          (9) 

The terms under the summation in the left side of Eq-
uation (7) are zeros for all values of m  n [5, 6, 7]. 
Hence, Equation (7) can be simplified to: 

  
b

a

nn drrfrCrrC 0)()()(         (10) 

Either Equation (3) or (4) can help. Using Equation (3) 
we can obtain the Bn coefficients as: 
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where, S0( nr) is given by: 
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      (12) 

By Equation (3) or (4), the An coefficients can also be 
found. Once the coefficients An and Bn are calculated, the 
function f(r) can be expanded as in Equation (2). 
 
3. Numerical Examples 
 
The transcendental expression in Equation (6) shows a 
gradual decay as  increases which mean small magni-
tudes between high zeros. This leads to the convergence 
of the series in Equation (2) above as n increases. As a 
consequence, a finite number of terms in Equation (2) 
can be sufficient for numerical approximations. 

The zeros are first evaluated using the transcendental 
cross product Bessel functions equation for the interval 
[a, b]. A graph of Equation (6) is shown in Figure 3 for 
the solution regions [0.65, 2.5] and [0.65, 5]. Table 1 
shows the first 50 zeros of Equation (6) for a = 0.65 and 
b = 2.5. Zeros obtained from the transcendental equation 
changes according to the values of a and b assumed for 
the solution region. The data presented in Table 1 indi-
cates that the calculated zeros are not periodic and should 
be calculated using a proper numerical technique. 

Let’s assume that the function f(r) to be expanded as 
in Equation (2) is sin(r) with a radial solution region in 
[0.65, 2.5]. The coefficients Bn can be evaluated from 
Equation (11) and the An coefficients are then obtained 
by Equation (3). Both coefficients are shown in Tables 2 
and 3 respectively for n = 0 to 49. 

 

Figure 3. Equation (6), ▬▬ [0.65, 2.5], ▬ ▬ [0.65, 5]. 
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Many variations can be noticed for the numerical val-
ues of An and Bn with a general absolute scale of < 1 ex-
cept for B0 = 2.328. Some coefficients are in the order of 
10-3 meaning that their associated terms are very small 
such as B4 and A31 in Tables 2 and 3 respectively. 
  The function sin(r) and its approximate expansions are  
plotted in Figure 4. Summation over the first 10 terms 
produced an acceptable estimation in the interval [0.65, 
2.5] with some apparent oscillations around the exact 
function. An improved approximate expansion is also 

plotted for n = 0 to 49 with less fluctuations in the same 
radial domain. 

In addition, f(r) = cos(r) is expanded as in Equation (2) 
and the first fifty coefficients are listed in Tables 4 and 5 
for the Bn and An respectively. Similar to the sin(r), the 
cos(r) coefficients go through several variations with a 
general absolute scale of < 1 except A1 = −1.550. Also, 
only four coefficients are in the order of 10-3 implying 
that their related terms in the series are extremely small 
such as B4 and A41 in Tables 4 and 5 respectively.

 
Table 1. First fifty zeros of Equation (6) in [0.65, 2.5]. 

n n n n n n n n n n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1.663 
3.376 
5.08 
6.782 

8.4815 
10.182 
11.881 
13.579 
15.279 
16.977 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

18.676 
20.374 
22.073 
23.771 
25.47 

27.168 
28.866 
30.564 
32.263 
33.961 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

35.659 
37.358 
39.056 
40.754 
42.452 
44.151 
45.849 
47.547 
49.245 
50.943 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

52.642 
54.34 

56.038 
57.736 
59.434 
61.133 
62.831 
64.529 
66.227 
67.925 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

69.624 
71.322 
73.02 

74.718 
76.416 
78.115 
79.813 
81.511 
83.209 
84.907 

 
Table 2. First fifty Bn for f(r) = sin(r) in [0.65, 2.5]. 

n Bn n Bn n Bn n Bn n Bn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

2.328 
–0.101 
–0.703 
0.234 

–4.8E-3 
–0.181 
0.455 
0.030 
–0.478 
0.105 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.154 
–0.138 
0.228 
0.064 

–0.385 
0.048 
0.231 

–0.110 
0.082 
0.081 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

–0.300 
7.1E-3 
0.267 

–0.082 
–0.030 
0.087 

–0.212 
–0.024 
0.272 

–0.054 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–0.114 
0.084 

–0.123 
–0.047 
0.250 

–0.025 
–0.173 
0.074 

–0.036 
–0.061 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

0.206 
1.3E-3 
–0.205 
0.057 
0.042 

–0.068 
0.148 
0.024 

–0.212 
0.037 

Table 3. First fifty An for f(r) = sin(r) in [0.65, 2.5]. 

n An n An n An n An n An 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–0.475 
0.462 

–0.547 
–0.114 
0.675 

–0.092 
–0.338 
0.170 

–0.143 
–0.111 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.424 
–0.016 
–0.346 
0.111 
0.021 
–0.110 
0.279 
0.025 
–0.333 
0.070 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

0.126 
–0.102 
0.159 
0.052 
–0.297 
0.034 
0.193 
–0.087 
0.054 
0.069 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–0.242 
2.1E-3 
0.229 
–0.067 
–0.036 
0.075 
–0.174 
–0.024 
0.236 
–0.044 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

–0.109 
0.074 
–0.099 
–0.044 
0.218 
–0.019 
–0.160 
0.064 
–0.023 
–0.057 

 
Table 4. First fifty Bn for f(r) = cos(r) in [0.65, 2.5]. 

n Bn n Bn n Bn n Bn n Bn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–0.129 
0.338 
0.286 

–0.919 
2.0E-3 
0.732 

–0.196 
–0.122 
0.207 

–0.433 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

–0.067 
0.571 

–0.099 
–0.264 
0.167 

–0.199 
–0.100 
0.457 

–0.036 
–0.338 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

0.131 
–0.030 
–0.116 
0.342 
0.013 

–0.364 
0.092 
0.100 

–0.118 
0.223 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

0.050 
–0.351 
0.053 
0.195 
–0.109 
0.105 
0.075 
–0.306 
0.016 
0.256 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

–0.090 
–5.5E-3 
0.089 
–0.237 
–0.018 
0.281 
–0.064 
–0.100 
0.092 
–0.153 
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Table 5. First fifty An for f(r) = cos(r) in [0.65, 2.5]. 

n An n An n An n An n An 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.026 
–1.550 
0.222 
0.448 
–0.287 
0.371 
0.145 
–0.696 
0.062 
0.458 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

–0.184 
0.068 
0.150 

–0.461 
–9.1E-3 
0.455 

–0.121 
–0.105 
0.145 

–0.289 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

–0.055 
0.422 
–0.069 
–0.218 
0.129 
–0.139 
–0.084 
0.362 
–0.023 
–0.286 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

0.105 
–8.9E-3 
–0.100 
0.279 
0.016 

–0.314 
0.076 
0.100 

–0.103 
0.182 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

0.047 
–0.306 
0.043 
0.182 
–0.095 
0.080 
0.070 
–0.268 
0.010 
0.235 

 

 

Figure 4. ▬▬ sin(r), ••• Equation (2) with n = 0 to 10, 
▬ ▬ Equation (2) with n = 0 to 49. 
 

 

Figure 5. ▬▬ cos(r), ••• Equation (2) with n = 0 to 10, 
▬ ▬ Equation (2) with n = 0 to 49. 
 

The function cos(r) and its estimated expansions are 
shown plotted in Figure 5. Finite summation over the 
first 10 terms generated a satisfactory estimation in the 
interval [0.65, 2.5] with several obvious oscillations 
close to the exact function. A better approximate expan-
sion is also plotted for n = 0 to 49 with less fluctuations 
in the same solution region. 

The calculated coefficients for the function er are also 
shown in Tables 6 and 7 for Bn and An respectively. Ap-
parently, the coefficients swing around the exact values 

with an absolute level of > 1 or < 1. 
The greatest values in Tables 6 and 7 are found as B0 

= 13.852 and A1 = 11.499. In addition, no coefficients are 
calculated in the order of  10-3 implying that all coeffi-
cients are to be included in the series expansion. 

The function exp(r) and its estimated expansions are 
shown plotted in Figure 6 in [0.65, 2.5]. A satisfactory 
estimation of a finite summation over the first 10 terms 
are generated with several oscillations close to the exact 
function. A good approximated expansion is also plotted 
for n = 0 to 49 with fewer variations in the same solution 
region. 

The last numerical example to be discussed is the 
square function expressed as: 









otherwise

r
rf

1

88.126.11
)(           (13) 

The calculated Bn and An coefficients for this function are 
shown in Tables 8 and 9 respectively. Similar to former 
expansions, both coefficients vary about the exact values 
of Equation (13). The Bn coefficients have a general ab-
solute level of < 1 except B2, B8, B14, B20 and B26 that 
have an absolute scale of > 1. Furthermore, the An coef-
ficients show an absolute level of < 1 except the absolute 
values of A2, A32, A38 and A44 that are > 1. Some Bn and An  
coefficients are calculated in the order of  10-3 like A0 or  
 

Figure 6. ▬▬ exp(r), ••• Equation (2) with n = 0 to 10, ▬ 
▬ Equation (2) with n = 0 to 49. 
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Table 6. First fifty Bn for f(r) = exp(r) in [0.65, 2.5]. 

n Bn N Bn n Bn n Bn n Bn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

13.852 
–2.506 
–9.361 
8.069 
–0.068 
–6.632 
6.506 
1.113 
–6.867 
3.985 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

2.217 
–5.266 
3.298 
2.443 

–5.566 
1.841 
3.343 

–4.227 
1.182 
3.127 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

–4.350 
0.274 
3.873 

–3.169 
–0.433 
3.372 

–3.078 
–0.931 
3.937 

–2.069 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–1.660 
3.254 

–1.780 
–1.813 
3.618 

–0.971 
–2.505 
2.841 

–0.525 
–2.371 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

2.987 
0.051 
–2.971 
2.202 
0.602 
–2.611 
2.140 
0.932 
–3.072 
1.419 

 
Table 7. First fifty An for f(r) = exp(r) in [0.65, 2.5]. 

n An n An n An n An n An 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–2.828 
11.499 
–7.286 
–3.934 
9.496 
–3.360 
–4.824 
6.376 
–2.059 
–4.216 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

6.108 
–0.625 
–4.992 
4.263 
0.304 

–4.213 
4.033 
0.969 

–4.814 
2.675 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

1.821 
–3.915 
2.304 
2.019 

–4.301 
1.292 
2.799 

–3.353 
0.782 
2.650 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–3.511 
0.083 
3.317 

–2.586 
–0.526 
2.912 

–2.523 
–0.925 
3.423 

–1.690 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

–1.575 
2.841 
–1.431 
–1.691 
3.168 
–0.747 
–2.318 
2.490 
–0.336 
–2.185 

 
Table 8. First fifty Bn for Equation (13) in [0.65, 2.5]. 

n Bn n Bn n Bn n Bn n Bn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.026 
0.1 

3.515 
–0.516 
–3E-4 
0.105 
0.048 
–0.076 
2.447 
–0.17 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1.64E-3 
0.081 
0.031 
–0.205 
1.968 
–0.053 
–9.1E-3 
0.061 
0.013 
–0.305 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

1.527 
–5E-3 
–0.025 
0.042 
–5E-3 
–0.37 
1.072 
6E-3 

–0.037 
0.025 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–0.021 
–0.404 
0.614 
–9E-3 
–0.05 
8E-3 

–0.033 
–0.388 
0.179 

–0.039 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

–0.051 
–3E-4 
–0.037 
–0.329 
–0.201 
–0.07 

–0.048 
–3E-3 
–0.037 
–0.228 

 
Table 9. First fifty An for Equation (13) in [0.65, 2.5]. 

n An n An n An n An n An 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–5E-3 
–0.457 
2.735 
0.252 
0.039 
0.053 
–0.035 
–0.433 
0.734 
0.18 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

4.5E-3 
9.6E-3 
–0.047 
–0.375 
–0.108 
0.121 

–0.011 
–0.014 
–0.053 
–0.261 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

–0.639 
0.069 

–0.015 
–0.027 
–0.052 
–0.142 
–0.975 

0.02 
–7.3E-3 
–0.032 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–0.045 
–0.01 

–1.144 
–0.013 
7.2E-3 
–0.024 
–0.033 
0.126 

–1.168 
–0.027 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

0.027 
–0.016 
–0.018 
0.253 

–1.056 
–0.02 
0.052 

–6.8E-3 
–4E-3 
0.352 

 
in the order of 10-4 such as B41 indicating that their as-
sociated terms in the series are very small.  

The function expressed by Equation (13) and its ap-
proximate expansions are plotted in Figure 7. Summa-
tion over the first 10 terms produced an acceptable esti-
mation in the interval [0.65, 2.5] with some noticeable 
oscillations around the exact function. A better approx-
imate expansion is also plotted for n = 0 to 49 with less 
fluctuations in the same radial domain. 

In all graphical plots previously shown, the curves re-

turn to zero at the assumed boundaries a = 0.65 and b = 
2.5. In addition, accuracy of the expanded curves may 
appear better as n increases due to larger number of 
terms involved in the series and less fluctuations seen 
around the exact values. 
 
4. Conclusions 

Functions were expanded as a Fourier-Bessel series 
summation in both J0(r) and Y0(r). A finite series expan- 
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Figure 7. ▬▬ Equation (13), ••• Equation (2) with n = 0 to 
10, ▬ ▬ Equation (2) with n = 0 to 49. 
 
sion was obtained for arbitrary radial boundaries in [a, b]. 
Coefficients were found by calculating the zeros of the 
transcendental equation and by employing the relation-
ship of orthogonality. A number of examples were nu-
merically and graphically discussed. 
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Abstract 
 
In this paper we study a continuous time random walk in the line with two boundaries [a,b], a < b. The par-
ticle can move in any of two directions with different velocities v1 and v2. We consider a special type of 
boundary which can trap the particle for a random time. We found closed-form expressions for the stationary 
distribution of the position of the particle not only for the alternating Markov process but also for a broad 
class of semi-Markov processes. 
 
Keywords: Random Motion, Reflecting Boundaries, Semi-Markov, Random Walk 

1. Introduction 
 
In this paper we study the stationary distribution of a 
one-dimensional random motion performed with two 
velocities, where the random times separating consecu-
tive velocity changes perform an alternating Markov 
process. The sojourn times of this process are exponen-
tially distributed random variables. There are many pa-
pers on random motion devoted to analysis of models in 
which motions are driven by a homogeneous Poisson 
process [1-4], however we have not found any paper 
investigating the stationary distribution of these proc-
esses. 

We assume that the particle moves on the line   in 
the following manner: At each instant it moves according 
to one of two velocities, namely 1 0v   or 2 0v   
Starting at the position 0x   the particle continues its 
motion with velocity 1 0v   during random time 1τ , 
where 1τ  is an exponential random variable with pa-
rameter 1λ ,then the particle moves with velocity 2 0v   
during random time 2τ , where 2τ  is an exponential 
distributed random variable with parameter 2λ . Fur-
thermore, the particle moves with velocity 1 0v   and 
so on. When the particle reaches boundary a or b it will 
stay at that boundary a random time given by the time 
the particle remains in the same direction up to the time 
such a particle changes direction. Similar partly reflect-
ing (or trapping) boundaries have been considered in [5], 
and they may be found in optical photon propagation in 

turbid medium or chemical processes with sticky layers 
or boundaries. 

We also consider a generalization of these results for 
semi-Markov processes, i.e., when the random variables 

1τ  and 2τ  are different from exponential. This paper is 
divided in two main parts, namely the Markov case and 
the generalization to the semi-Markov modeling. Our 
main result, in the first part of this paper, consists on 
finding the stationary distribution of the well-known 
telegrapher process on the line with delays in reflecting 
boundaries. In the second part, we find the stationary 
distribution of a more general continuous time random 
walk when the sojourn times are generally distributed. 
 
2. Markov Case 
 
2.1. Mathematical Modeling 
 
Let us set the probability space (Ω,  , P). On the phase 
space E = {1,2} consider an alternating Markov process 
{ (t); t   0} having the sojourn time iτ  correspond-

ing to the state iE , and transition probability matrix 
of the embedded 

Markov chain 

0 1

1 0
P .

 
  
 

                 (1) 

Denote by {x(t); t ≥ 0} the position of the particle at 
time t. Consider the function ( )C x  on the space E 
which is defined as *We thank ITESM through the Research Chair in Telecommunications.
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  1

2

if 1

if 2

v x
C x

v x .


  

            (2) 

The position of the particle at any time t can be ex-
pressed as 

    0 0
,

t
x t x C ξ s ds              (3) 

where the starting point 0 [ , ].x a b   

Equation (3) determines the random evolution of the 
particle in the alternating Markov medium {  ξ t ; t   

0} [6,7]. So, x(t) is the well-known one-dimensional 
telegraph process [1,2]. We assume that a < b are two 
delaying or adhesive boundaries on the line such that if a 
particle reaches boundary a or b then it is delayed until 
the instant that the process changes velocity. 

Now, consider the two-component stochastic process 

     { ( , }ζ t x t ξ t  on the phase space   = [a,b] 

 {1,2}. The process  ζ t  is a homogeneous Markov 

process with the following generating operator [6,7]: 

         , , , , , , 1, 2,i

d
A x i C x i x i λ P x i x i i

dx
          

(4) 

where    ,1 ,2P x x  and    , 2 ,1P x x .    

 
2.2. Stationary Distribution 
 
Denote by ( )π  the stationary distribution of ( )ζ t . The 

analysis of the properties of the process ( )ζ t leads up to 

the conclusion that the stationary distribution π  has 
atoms at points (a, 2) and (b, 1), and we denote them as 

[ , 2]π a and [ ,1]π b respectively. The continuous part of 

 π  is denoted as  , ,π x i iE .  

Since  π  is the stationary distribution of ( )ζ t then 

for any function ( )  from the domain of the operator A 

we have 

    0A z dπ z 


               (5) 

Now, let *A  be the conjugate or adjoint operator of 
A. Then by changing the order of integration in (5) (inte-
grating by parts), we can obtain the following expres-

sions for the continuous part of 0*A π   

     

     

1 1 2

2 2 1

,1 ,1 , 2 0

, 2 , 2 ,1 0

   

   


d
v π x λ π x λ π x

dx
d

v π x λ π x λ π x .
dx

    (6) 

Similarly, from (5) we obtain  

   
   
   
   

1 1

1 2

2 2

2 1

,1 ,1 0

,1 , 2 0

, 2 ,2 0

, 2 ,1 0

λ π b v π b

λ π b v π b

λ π a v π a

λ π a v π a .









  

  


 


 

             (7) 

where    , : lim ,x bπ b i π x i
 and  , :π a i  lim x a↓  

 ,π x i  for i=1,2.  

It follows from the set (6) that 

   1 2,1 , 2 0,
d d

v π x v π x
dx dx

   

or equivalently    1 2,1 ,2 constantv π x v π x k .    

By using (7), we get  1 ,1v π b   2 ,2 0,v π b 
 

consequently 0 andk   

   1 2,1 ,2 0v π x v π x             (8) 

for all  ,x a b . 

By obtaining  , 2π x  from (8) and substituting such 

a result into the first equation in the set (6) we have 

     1
1 1 2

2

,1 ,1 ,1 0  
vd

v π x λ π x λ π x .
dx v

    (9) 

Solving (9) we obtain for the continuous part of π  

 ,1 μxπ x Ce              (10) 

And 

  1

2

, 2 ,μxv
π x C e

v
             (11) 

where 1 2

1 2

λ λ
μ .

v v
    

Now, from (7) we obtain for atoms 

1

2

[ ,2]  μav
π a Ce

λ
            (12) 

and 

1

1

[ ,1]  μbv
π b Ce .

λ
          (13) 

The factor C  can be calculated from the normaliza-
tion equation 

  1,π z dz 


           (14) 

or equivalently 

     ,1 , 2 , 2 [ ,1] 1
b b

a a

π x dx π x dx π a π b .         (15) 

It follows from (15) that 
1

1 2 1 1 1 2

1 2 2 2

1 1


      
       
     

μb μav v v v v v
C e e .

λ μ v λ μ v
 

(16) 
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We should notice that the stationary distribution ( )x  

of the process ( )x t  over the interval ( , )a b  is  x  

   ,1 ,2π x π x .   

 
2.3. Balanced and One-Boundary Cases 

 
2.3.1. Balanced Case 

Let us call the balanced case when 1 2

1 2

0
λ λ

μ .
v v

    In 

this case we can observe that  ,1π x  and  , 2π x  do 

not depend on x. Hence, the continuous part of the sta-
tionary distribution of the process ( )x t  is uniform over 

the open interval ( , )a b . Now, the factor C , say BC , 

reduces to 

2

2 1

,
( )( )B

v
C

v v b a δ


  
           (17) 

where 1 2

1 2

v v
δ .

λ λ
     

Therefore, the stationary distribution can be expressed 
as 

    1

2

,1 and ,2B B

v
π x C π x C .

v
           (18) 

Thus,  

      1
,1 , 2 ,x π x π x

b a δ
  

 
       (19) 

and the atoms are given by 

  1

2

,2 and [ ,1] B B

v
π a δ C π b δC .

v
           (20) 

 
2.3.2. One-Boundary Case 
Now, suppose that there is just the left boundary a, and 
the starting position of the process ( )x t  is 

 0 ,x a .   Then for 0μ   we have the factor C , 

say OC , given by 

2

1 2 1 2

2

( )

μa

O

v e
C .

v v v v

λ μ





           (21) 

Hence, 

    1

2

 ,1 and , 2 ,μx μx
O O

v
π x C e π x C e

v
       (22) 

with the atom 

  1 2

2 1 2
1 2

, 2
( )






v v
π a .

λ v v
v v

μ

         (23) 

3. Semi-Markov Case 
 
3.1. Mathematical Model 
 
The particle movement is given by the equation  

  0
0

( ( ))
t

x t x C ψ s ds.               (24) 

where 0 [ , ]x a b  is the particle starting point inside the 

two reflecting boundaries a b , and ( )ψ s  is an alter-

nating semi-Markov process with phase space E = {1,2} 
and embedded transition probability matrix P given in 

(1). The sojourn time at state  is a random variable 
with a common cumulative distribution function (cdf) 

  ,iG t iE . We assume that  1G t  and  2G t  are 

not degenerated, and that their probability density func-
tion (pdf) and first moment, say  

( )
( ) i

i

dG t
g t

dt
  and 

0

( )i im tg t dt


   respectively, exist. 

Now, the hazard rates are given by 
 

( )
( )

1
i

i
i

g t
r t

G t



, and 

assume   11 0C v   and   22 0C v  .  

Define   sup{0 : ( ) ( )}τ t := t u t ψ u ψ t    and con-

sider the three-component process      ( , ,χ t τ t x t
 

 )ψ t  on the phase space    0, , {1,2}a b   W . It 

is well-known that  χ t  is a Markov process with the 

following infinitesimal operator [8,9] 

   

       

, , , ,

0, , , , ( , ) , ,i

Aφ τ x i φ τ x i
τ

r τ Pφ x i φ τ b i C x i φ τ x i
x


 



    

  (25) 

with boundary conditions say 
( , , 2)φ τ b

τ





( , ,1)φ τ a

τ


  

0 and  , ,τ x i W . The function  , ,φ τ x i  is con-

tinuously differentiable on τ  and x . We also have that 

   0, ,1 0, ,2Pφ x φ x  and  0, , 2Pφ x   0, ,1φ x .  

 
3.2. Stationary Distribution 
 
Denote by  ρ   the stationary distribution of the sto-

chastic process  x t .  This stationary distribution has 

atoms at points  , , 2τ a  and  , ,1τ b , and we denote 

them as [ , ,2]ρ τ a  and [ , ,1]ρ τ b , respectively. The con-

tinuous part of ρ  is denoted as  , ,ρ τ x i , i .E  

For any function  φ   belonging to the domain of the 

operator A  we have  
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w

0Aφ z ρ dz .             (26) 

By changing the order of integration (integration by 

parts), we obtain expressions for *A  , where *A  is the 

adjoint operator of A , namely 

     , , , , , , 0, 1,2,i iρ τ x i r ρ τ x i v ρ τ x i i
τ x

 
   

 
 

(27) 
and 

     
0

, , 0, , ; , , 1, 2,ir τ ρ τ x i dτ ρ x j i j i j


      (28) 

with the limiting behavior  , , 0,ρ x i  for all 

 ,x a b . 

For the atoms we have 

       2 2, , 2 , , 2 , , 2 0ρ τ a r τ ρ τ a v ρ τ a
τ


  


  (29) 

       1 1, ,1 , ,1 , ,1 0ρ τ b r τ ρ τ b v ρ τ b
τ


  


   (30) 

where  

   , , : lim , ,
x b

ρ τ b i ρ τ x i


  and 

   , , : lim , , ,
x a

ρ τ a i ρ τ x i


 for 1, 2i .  We also have 

     , , 2 0, ,2 , ,1ρ a ρ a ρ b      0, ,1 0ρ b    

Now, by taking into account boundary conditions we 
have 

   1 20 0
, ,1 ( , ,, 2)r τ ρ τ b dτ v ρ τ b dτ

          (31) 

and 

   2 10 0
, , 2 ( , ,1)r τ ρ τ a dτ v ρ τ a dτ.

          (32) 

By solving (27) we obtain 

    0
( , , ) exp , 1, 2,

τ

i i iρ τ x i f x v τ r t dt i       (33) 

where 1
if  .  

By substituting (33) into (28) and by noting that  

    
0

exp 1
τ

i ir t dt G τ    

we obtain 

     
0

, , , 1, 2i i i jf x v τ g τ dτ f x i j i j .


       (34) 

It follows from (34) that 

       1 2 1 20 0 i if x v τ v t g τ g t dτdt f x .
 

       (35) 

From (34) and (35) we can assume that the functions 

 if x  are of the form 

  λ , 1,2x
i if x c e i .              (36) 

Now, by substituting (36) into (35), we obtain 

   1 1 2 2ˆ ˆ 1g λv g λv             (37) 

where    
0

ˆ st
i ig s g t e dt

   is the Laplace transform of 

  , 1,2ig t i . The set of pdf’s for which (37) exists is 

similar to the set of functions which satisfies the Cramér 
condition. 

Lemma 3.2.1 If 1 1 2 2 0,v m v m   where 1m   

 
0

,itg t dt


  and there exist 1 2 1 2 1, , 0p p σ     and 

2 0σ   such that      1 1 1 2 2, , ,g t σ t g t     2 ,σ
 

 1 2,t p p and  1 1 2 2 1 1 2 10 ,0v v p v v p      . 

Then, there exists 0 0λ   which satisfies (37). 

Proof Let us define      1 1 2 2ˆ ˆ ,p λ g λv g λv  so 

   1 1 2 20 0p v m v m .      

Now, suppose    1 1 2 20 0p v m v m .      then  

     2 21 2

1 1
1 2 ,

pv λt v λt

p
p λ e g t dt e g t dt   




 

hence 

    1 1 1 2 2 1 2 21 2

1 2

asλ .

v λ v λ v λp v λpσ σ
p λ e e e e

v v
     

   

 

 

The case    1 1 2 20 0p v m v m .      can be reduced 

to the previous one by assuming s t   and using 

1 2 2 20 v v p  . 

Theorem 3.2.1 
A) If 1 1 2 2 0v m v m   and 0 0λ   is the solution for 

(37), and   0 1
10

1λ v τe G τ dτ
     , then there exists a 

stationary distribution of  x t  with the following con-

tinuous part: 

      0 1
1 1, ,1 1 ,λ x v τρ τ x c e G τ         (38) 

        0 2
1 1 0 1 2ˆ, , 2 1 λ x v τρ τ x c g λ v e G τ     (39) 

and atoms 

  
0 1

0
1 1 1

0 1

1
[ , ,1] 1 ,

λ v τ
λ b e

ρ τ b c v e G τ
λ v


        (40) 

      
0 2

0
1 2 1 0 1 2

0 2

1
ˆ, , 2 1


 

λ v τ
λ a e

ρ τ x c v g λ v e G τ .
λ v

  (41) 

The normalization factor c1 can be calculated from 

 
w

1ρ dz .  

B) If 1 1 2 2 0v m v m   and there exists the second 

moment  2

0 it g t dt


 , iE , then the stationary measure 

of  x t  is as follows 
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         2 1 2 2, ,1 1 , , , 2 1ρ τ x c G τ ρ τ x c G τ     (42) 

with atoms 

         2 1 1 2 2 2, ,1 1 , , , 2 1ρ τ b c v τ G τ ρ τ a c v τ G τ     

(43) 

where 

 
1(2) (2)

1 2
2 1 2 1 2( )

2 2

m m
c m m b a v v .


 

     
 

 

Proof It is easy to see that   0λ
1 1

xf x c e  and 

    0
2 1 1 0 1ˆ λ xf x c g λ v e  satisfy (34). Substituting these 

functions fi into (33) we obtain (38) and (39). Therefore 
we substitute (38) and (39) into (29) and (30), then by 
solving these equations we obtain (40) and (41). 

It can be easily verified that if 1 1 2 2 0v m v m   then 

the value 0 0,λ   such that    1 0 1 2 0 2ˆ ˆ 1,g λ v g λ v  also 

satisfies (31) and (32). 
Similarly, for 1 1 2 2 0v m v m   we obtain (42) and (43) 

in the same manner as for the case 1 1 2 2 0v m v m   

when it is considered that 0 0λ .  

We should notice that the stationary measure of the 
particle position  x t  is determined by the following 

relations  

        
0

, ,1 , , 2 , for , ,ρ x ρ τ x ρ τ x dτ x a b


  
 

(44) 

       
0 0

, 2 , , 2 , ,1 , ,1ρ a ρ τ a dτ ρ b ρ τ b dτ.
 

      (45) 

Example  Markov Case 

Suppose   , 0, 1,2; 0iλ t
i i ig t λ e λ i t .     Then, 

    1 2
1 0 1 2 0 2

1 0 1 2 0 2

ˆ ˆ 1
λ λ

g λ v g λ v .
λ λ v λ λ v

  
        

Therefore, 1 2
0

1 2

,
λ λ

λ
v v

   and this case is the same as 

the one in the first part of this paper. 
Example Erlang Case 

Let    1 2
1 1 2 1, , 0, 0,λ t ptg t λ e g t p te λ p      and 

0t .  Then,  

   
2

1
1 0 1 2 0 2

1 0 1 0 2

ˆ ˆ 1,
  

      

λ p
g λ v g λ v

λ λ v p λ v
  (46) 

where we have the conditions 1 0 1 0 2an d λ λ v p λ v .   

Now, by solving (46) and taking into account the previ-
ous conditions, we obtain a unique solution for (46) 

   2

1 2 1 1 2 1 1
0

1 2

2 4

2

λ v pv v v pλ pλ
λ

v v

    



 

Since    
2

2 1 10, , ,
1

p t
r t p as t and r t λ

pt
     


 

then the Theorem 3.2.1 is applicable. 
 
4. Conclusions 
 
The two-state continuous time random walk has been 
studied by many researchers for the Markov case and 
only a few have studied for non-Markovian processes 
[10]. This basic model has many applications in physics, 
biology, chemistry, and engineering. Most of the former 
models were oriented to solve the boundary-free particle 
motion. Recently this basic model has been extended in 
several directions, such as two and three dimensions, 
with reflecting and absorbing boundaries. Only a few of 
these works consider partly reflecting boundaries [5,10], 
and references therein. However, in none of these previ-
ous works a stationary distribution for the particle posi-
tion is presented, as we did in this paper. We have in-
cluded the Markov case since it is illustrative and it mo-
tivates our analysis of the semi-Markov process.   
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Abstract 

The propagation of TM-polarized electromagnetic waves in a dielectric layer filled with lossless, nonmag-
netic, and isotropic medium is considered. The permittivity in the layer defines by Kerr law. We look for ei-
genvalues of the problem and reduce the issue to the analysis of the corresponding dispersion equation. The 
equivalence of the boundary eigenvalue problem and the dispersion equation is proved. We show that the 
solution of the problem exists and from dispersion equation it can be numerically obtained. Using this solu-
tion the components of electromagnetic field in the layer can be numerically obtained as well. Transition to 
the limit in the case of a linear medium in the layer is proved. Some numerical results are presented also. 

Keywords: Maxwell Equations, Nonlinear Boundary Eigenvalue Problem, Dispersion Equation, Nonlinear Slab (Film) 

1. Introduction 
 
Problems of electromagnetic waves propagation in a 
nonlinear media are actually important so as these phe-
nomena are widely used in plasma physics, in modern 
microelectronics, in optics, in laser technology. Mathe-
matical models for some of these problems and certain 
results are presented in [1-4]. These models yield bound-
ary eigenvalue problems for systems of differential equa-
tions. These boundary eigenvalue problems depend on a 
spectral parameter nonlinearly. Analysis of these prob-
lems is very difficult for the reason that it is not possible 
to apply well-known methods of investigation of spectral 
problems. 

It is necessary to note that such problems are exactly 
boundary eigenvalue problems. This is due to the fact 
that the main interest in the problems is finding that val-
ues of spectral parameter (eigenvalues) when the wave is 
propagating in the waveguide. Thus, in such problems it 
is necessary to pay attention on finding dispersion equa-
tions. When we have eigenvalues, the solutions of dif-
ferential equations can be numerically obtained. With a 
mathematical view, a dispersion equation is an equation 
with respect to a spectral parameter, analyzing the equa-
tion we can deduce conclusion about existence of solu-
tions of these boundary eigenvalue problems. 

The phenomena of propagation of TE-waves were 
studied rather completely. Results of propagation TE 
waves in a nonlinear dielectric layer were presented in 
articles of H.-W. Shurmann, V. S. Serov and Yu. V.  

Shestopalov [5,6]. Propagation of TE-waves in a nonlin-
ear dielectric waveguide was considered in [7,8] by Yu. 
G. Smirnov, H.-W. Shurmann and Yu. V. Shestopalov. 
In both latter articles the problem is considered exactly 
like boundary eigenvalue problem (nonlinear, of course). 
Some numerical results are shown in [7]. The article [8] 
is devoted to strict mathematical results about the prob-
lem (solvability, existence of the solution, etc.). 

Results about propagation of TM waves in a nonlinear 
dielectric semi-infinite layer were published in [2,3]. The 
first integral of the problem under consideration in Sec-
tion 2 has been found in [4]. This integral represents the 
conservation law. However, the complete solution of the 
problem has not been found. The dispersion equation for 
the problem has not been obtained. 

The equations of the TM waves propagation problem 
in nonlinear layer with Kerr nonlinearity were published 
for the first time in 1971-1972 in articles of P. N. Eleon-
skii and V. P. Silin (see, for example, [1]). 

 
2. Statement of the Problem 
 
Given a Cartesian system Oxyz , consider electromag-
netic waves propagating through a homogeneous iso-
tropic nonmagnetic dielectric layer with Kerr nonlinear-
ity located between two semi-infinite half-spaces 0x   
and x h . The half spaces are filled with isotropic 
nonmagnetic media without sources that have constant 
permittivities 1 0  , 3 0  , respectively, where 



30                                       Y. G. SMIRNOV  ET  AL. 
 

Copyright © 2010 SciRes.                                                                               AM 

0 0   is the permittivity of vacuum. We suppose that 

in the whole space 0  ; where 0  is the permeabil-

ity of vacuum. 
The electric and magnetic fields are harmonic func-

tions of time t: 

     , , , , , cos , , sinx y z t x y z t x y z t   E E E


 

     , , , , , cos , , sinx y z t x y z t x y z t   H H H


 

and satisfy Maxwell equations 

rot , rot ,i i   H E E H         (1) 

where 

     , , , , , ,x y z x y z i x y z  E E E

     , , , , , ,x y z x y z i x y z  H H H  

are complex amplitudes. 
The permittivity inside the layer is described by the 

Kerr law 
2

2 a   E , where  2 1 3max ,    and 

a  are positive constants. Here,  , ,
T

x y zE E EE , 
22 2 2

x y zE E E  E  and   is modulus of com-

plex function. A solution to the Maxwell equations is 
sought in the entire space. Hereafter, the time multiplier 
is omitted. 

The electromagnetic fields E  and H  satisfy Max-
well Equation (1), the condition that their tangential 
components at 0x   and x h  are continuous, and 
the radiation condition at infinity; i.e., the electromag-
netic field decays exponentially as x   in the re-

gions 0x   and x h . 

Consider the TM waves  , 0,
T

x zE EE  and 

 0, , 0
T

yHH . As a result, Equation (1) become 

0; ; 0;

; .

x xz z
y

y y
x z

E EE E
i H

y z x y

H H
i E i E

z x



 

          

      

    (2) 

It follows from (2) that  ,z zE E x z  and 

 ,x xE E x z  are independent of y. Since yH  is ex-

pressed in terms of 
xE  and 

zE , we conclude that yH  

is also independent of y. 

Let  ...
x

 


. Assuming that the field components 

depend harmonically on z, i.e.,  ,y yH H x z  

  i z
yH x e  ,    , i z

x x xE E x z E x e   , and zE   

   , i z
z zE x z E x e  , we obtain the system of equations 

     
   
   

;

;

,

x z y

y z

y x

i E x E x i H x

H x i E x

i H x i E x

 



 

  
   
 

        (3) 

which implies that 

      1
y x zH x i E x E x

i



  .      (4) 

Here   is unknown spectral parameter, i.e., the pro- 
pagation constant. 

Differentiating (4) and using (3) yields 

      
       

2

2 2

;

.

x z z

x z x

iE x E x E x

iE x E x iE x

  

   

   


  

     (5) 

Introducing 2 2
0k    with 0   and normal-

izing the equations according to the formulas x kx , 

d d
k

dx dx



, 

k

  , 
0

j
j





  (j = 1, 2, 3), 

0

a
a


 . 

We introduce the new notation  zE Z x   and 

 xiE X x  . 

By omitting the tilde, (5) is written in the normalized 
form as 

2

;

.

Z X Z

Z X X

 

  

   
   

             (6) 

The real solution  X x  and  Z x  of (6) are sought 

assuming that   is real (so that 
2

E  is independent of 

z), where 

 
1

2 2
2

3

, 0;

, 0 ;

, .

x

a X Z x h

x h



 






    
 

      (7) 

It is also assumed that  X x  and  Z x  are differ-
entiable in the layer: 

       
     1 1 1

; 0 0; ;

; 0 0; ; ;

X x C C h h

C C h C h

     

    
 

   
     
     

1 1 1

2 2 2

;

; 0 0; ;

; 0 0; ; .

Z x C

C C h C h

C C h C h

   

     

    

 

These smoothness conditions follow from continuous 
conditions of tangential components at 0x  and x h . 
We search for γ such that   2

1 3 2max ,     .  
The statement of the problem is shown in the Figure 1. 
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  2

2 a    E  
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1    

3    

 
Figure 1. The geometry of the problem. 

 
3. Solution to the System of Differential  

Equations 
 
For 1   in the half-space 0x  , the general solution 

of (6) is 

   
   

2
1

2
1 2

1

exp ,

exp ,

X x A x

Z x A x

 

 
 



  
   


     (8) 

where we took into account the condition at infinity. 
For 3   in the half-space x h , we have 

    
    

2
3

2
3 2

3

exp ,

exp ,

X x B x h

Z x B x h

 

 
 



    
      


   (9) 

according to the condition at infinity. The constants A 
and B in (8) and (9) are determined by the boundary 
conditions. 

Inside the layer 0 x h  , (6) becomes 

  
  

2
2 2

22

2 2
2

;

1
.

d Z dX
a X Z Z

dxdx
dZ

X a X Z X
dx

 

 



    

    


    (10) 

We can reduce (10) to the form: 

 

 

  

2 2 2
2 2

2 2
2

2 2
2

2 2
2

2 2 2
2

2

3

;
3

1
.

a X ZdX a
X Z

dx aX aZ

a X Z
Z

aX aZ

dZ
a X Z X

dx

 

 





 


   
  

 


 
 


    




   (11) 

From (11) we have an ordinary differential equation: 

 2 2
2 3

dX
aX aZ

dZ
     

 
 

2 2
22

2 2 2
2

2
a X Z Z

aXZ
Xa X Z




 

 
 

  
     (12) 

Multiplying (12) by   2 2 2
2 a X Z X     we 

obtain a total ordinary differential equation. Its solution 
is easy to write in the form: 

     
      

2 3
6 2 2 2 2 2

1 2 2

2 2 2 2 2
2 2

3 2

2 2

C a X Z a X Z

a X Z a X Z

   

  

     


    
 

2
2aZ   ,                (13) 

from item 2 it is known that 2
0   and 0a  . Equa-

tion (13) is true under these conditions. 
Define the new variables 

 
    2 2

2

2

a X x Z x
x






 
 ,    

   
X x

x x
Z x

   .(14) 

Let 2
0 2





 , then 

 22
02

2 2 2
X

a

  
  





, 

 24
02

2 2 2
Z

a

  
  





. In these variables, (11) and (13) 

become 

  
   

 

2
02

2 2 2 2
0

2 2 2

2
2 ,

2

1
;

d

dx

d

dx

     
      

   


  


  

  




    (15) 

 
 

2 2 2
12

2 3
1 03 2 2 2

C

C

  


    




   
.      (16) 

Here, (16) is a fourth-degree algebraic equation in τ. 
Its solution      can be explicitly written using the 

Cardano-Ferrari formulas [9]. 
 
4. Boundary Conditions and Dispersion  

Equation 
 
To derive dispersion equations for the propagation con-
stants, we have to find  0  and  h . 

Since the tangential components of E  and H  are 
continuous, we obtain 

     0 h
z zZ h E h E   ,      00 0 0z zZ E E    (17) 

       0 h
y yX h Z h i H h H     , 
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       00 0 0y yX Z i H H    , where  h
zE  is a 

known constant. Then 

    3

2
3

h h
y zH E



 
 


,    0 0 1

2
1

y zH E


 



.  (18) 

According to (7) in the layer, we have 

           2 2
2

1
Z x X x a X x Z x X x 


     .(19) 

Combining (14), (16), (17), and (19) yields 

 
  

 
        

2 2
1

2 2 3
1 03 2 2 2h

z

X h h C

C h h h hE


    




   
;(20) 

         2
2

2

1 h h
z ya X h E X h H


    
 

,    (21) 

where 

 
 

 

h
yH

X h
h

 .               (22) 

Solving (21) for  X h , we obtain 

 
  

 
 

2

23 0

h h
z y

a E H
X h X h

a a

 
   .   (23) 

Since the value of    2

2
h

za E a   is nonnegative, 

(23) has at least one real root (which we consider). 

Thus,       h
yh H X h  . Using (18) and (22), we 

find 

 
 

 
3

2
3

h
zE

X h
h


  

 


.          (24) 

Combining (20) with (24) gives 

 
       

   

2
3 02

1 2 2 2 2
3 3

2 2h h h
C h

h

    


    

 
 

 
.    (25) 

If 1 0C  , then (16) which is regarded as an equation 

in  h  has a positive root. It is easy to show that 1C  

is strictly positive. Indeed, (25) implies that 1 0C   for 

  2h  , since   0 1  h  and  2
3 0   . Con-

sider the case of   0 , 2h   . Converting the terms in 

(25) to a common denominator and, if necessary, making 
the substitution   0h      0 1  , we obtain 

 
       

   

2 2 3 2
3 3 0

1 2 2 2 2
3 3

2 1h h
C h

h

        


    

    


 
 

with a positive right-hand side. 

It is well known that the field components  X x  

and  Z x  are continuous at the interface of the media. 

Then, the function    
 

x X x

Z x


  is also continuous at 

the interface of the media at points x  such that 

  0Z x  . Since      
 

x X x
x

Z x


  , we use (8) and 

(9) to obtain 

  1

2
1

0 0



 

 


;   3

2
3

0h



 

  


.  (26) 

Since the right-hand side of the second equation in (15) 
is positive,  x  is an increasing function on the inter-

val  0; h . Taking into account the signs in (26), we 

conclude that  x  is not differentiable on the entire 

interval  0; h  but has a point of discontinuity. Assume 

that this point is  0;x h  . It follows from (16) that 

x  is such that  x    is a root of the equation 

     2 3* * * *
1 03 2 2 2 0C          .  Moreover, 

 * 0x     and  * 0x    . Let 

   2 2 2 1
f f


   

 
 

, 

where      is expressed from (16). In the general 

case, there are several points 0 1, , ..., Nx x x  on the inter-

val  0, h  at which  x  becomes infinite, so that 

     0 10 0 ... 0Nx x x          , 

     0 10 0 ... 0Nx x x          .  (27) 

Below, it will be proved that the number of such 
points is finite for any h. 

Solutions are sought on each of the intervals  00, x , 

 0 1,x x , ...,  ,Nx h : 

 

 0

0

x

x

fd x c




   , 00 x x  ; 

 

 

1

i

x

i

x

fd x c




   , 1i ix x x   , 0, 1i N  ; 

 

 

1

N

x

N

x

fd x c




   , Nx x h  .      (28) 

Taking into account (27) and substituting 0x  , 

1ix x  , Nx x  into the first, second, and third equa-

tions in (28), respectively, we find the required constants 

1 2 1, , ..., Nc c c  : 
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0

0

c fd





   ; 

1 1i ic fd x


 


  , 0, 1i N  ; 

 

1

h

Nc fd h





  .           (29) 

In view of (29) Equation (28) become 

 

 

 

0

0

x

x

fd x fd


 

 


    , 00 x x  ; 

 

 

1

i

x

i

x

fd x fd x




 





    , 1i ix x x   , 0, 1i N  ; 

 

   

N

x h

x

fd x fd h
 



 


    , Nx x h  .     (30) 

Let fd T




 . It follows from (30) that 1i ix x    

0T  , where 0, 1i N  . Therefore, the number of 

points at which   x  becomes infinite on the interval 

 0; h  is finite. Now, setting 0x x , ix x , Nx x  

in the first, second, and third equations in (30), respec-
tively, so that all the integrals on the left-hand sides van-
ish, we add all the equations in (30) to obtain 

 
0 0 1 1

0

0 ... Nx fd x T x x





            

 h

N NT x x fd h





                     (31) 

Finally, (31) yields 

 

1

2
1

3

2
3

1fd N T h



 



 







    ,                 (32) 

where 0N   is an integer. 
Formula (32) is a dispersion equation that holds for 

any h. It should be noted that, if 0N  , we have several 
equations for various values of N . Each of these equa-
tions must be solved for  . All the resulting   form a 

set of the propagation constants for which and only for 
which waves in the layer propagate for given h . 

It should be also noted that fd


  converges since 

f  can be majorized by the function 
  21

M

m 
, where 

 
 

0,
max
x h

M x


 , and 
 

 
0,

min 1
x h

m x


  . Since  X x  

and  Z x  are bounded,  x  has a finite minimum 

and maximum. 
If we consider first equation of (15) combined with 

first integral, then the equation can be integrated. The 
obtained integral is so called hyperelliptic integral (it is 
one of the simplest type of Abelian integrals). If we ex-
tend definitional domain of independent variable x  on 
the whole complex plane, then we can consider the in-
verse function for these integrals. These functions will be 
solutions of the system (15). These functions are hyper-
elliptic functions which belong to set Abelian functions. 
Abelian functions are meromorphic periodical functions. 
So as function   algebraically depends on   there-

fore   is a meromorphic periodical function. Thus, the 

break point x  is a one of the poles of function  . The 

integral in (32) is a more general Abelian integral [10, 
11]. 
 
5. Boundary Value Problem and Existence 

Theorems 
 
The continuity conditions for components of field E  
imply 

  0
0

x
X


 ,   0

x h
X


 ,   0

0
x

Z

 ,   0

x h
Z


 .(33) 

We suppose that the functions  X x  and  Z x  al-

so satisfy the conditions 

  1
X x O

x

 
   

 
 and   1

Z x O
x

 
   

 
 as x  . (34) 

Introduce the notation 
0

0

d dx

d dx

 
  
 

D , 

      
 

,
X x

X x Z x
Z x

 
  
 

F ,    
 

1

2

,
,

,

G F
F

G F





 

  
 

G , 

where  X x  and  Z x  are unknown functions, 1G  

and 2G  are left-hand sides of system (11). The   is a 

spectral parameter. Also we will be considered col-

umn-vector    
 

X x
x

Z x

 
  
 

N . Rewrite the problem 

using introduced notation. 
In the half-space 0x   and 1  , we have 

1 X

Z

 
  
 

N  and 

2

2
1

0
0

0




 
 

  
 

DF F .                  (35) 

Inside the layer 0 x h   and 
2

2 a   E , we 
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have 
  2 2

2 a X Z X

Z

  
 
 
 

N , and the system has 

the form 

   , , 0F F   L DF G .       (36) 

In the half-space x h  and 3  , we have 

3 X

Z

 
  
 

N  and 

2

2
3

0
0

0




 
 

  
 

DF F .          (37) 

The continuity conditions (33) imply the following 
conditions 

 
0

0
x

x

  N ,   0

x h
x


  N ,       (38) 

where      
0 0 00 0

lim lim
x x x x x x

f x f x f x
    

    , for vector 

it means transition to the limit for every components of 
the vector. 

Let us formulate boundary problem (conjugation 
problem). We will search for non-vanishing vector F  
and corresponding eigenvalues   so that F  satisfies 

(35)-(37) and conjugation conditions (38). In addition the 
components of the vector F  must obey the condition 
(34). 

The function  ,F L  from (36) is a nonlinear op-

erator-function, which nonlinearly depends on the spec-
tral parameter. Spectral theory of linear opera-
tor-functions, which nonlinearly depend on spectral pa-
rameter was built in [12]. As yet there is not a common 
spectral theory of nonlinear operator-functions which 
nonlinearly depend on spectral parameter. Therefore, 
commonly boundary value problems with these opera-
tor-functions can not be solved by known methods. 

Definition 1. The value 0   we call eigenvalue of 

the problem if the problem (35)-(37) with conditions (34) 
and (38) has unique nonzero solution F . The solution 

,F  which corresponds to eigenvalues 0  we call ei-

genvector of the problem, and the components  X x  

and  Z x  of the eigenvector F  we call eigenfunc-

tions. 
There is a well-known definition of eigenvalue of lin-

ear operator-function which nonlinear depends from 
spectral parameter [12]. Definition 1 is a non-classical 
analog of that well-known definition. Definition under 
consideration, on the one hand, is a distribution of clas-
sical definition for a case of nonlinear operator-function 
nonlinearly depending on spectral parameter. On the 
other hand, definition 1 corresponds to physical state-
ment of the problem. 

Theorem 1. Boundary value problems (35)-(37) with 

conditions (34) and (38) has a solution (eigenvalue) then 
and only then, when the eigenvalue is a solution of dis-
persion Equation (32). 

Proof. Sufficiency. It is obviously, that, if we have a 
solution   of dispersion Equation (32), we can find 

functions  x  and  x  from system (15) and first 

integral (16). Using Formula (14), we obtain 

  0
2 2 2

X x
a

 
  


 


  

 
2

0
2 2 2

Z x
a

  
  


 


.         (39) 

The question of sign’s choosing is very important. We 

know the behavior of function 
X

Z
  : the function 

  is monotone increasing, if x x  is such that 

  0x   , then  0 0x    ,  0 0x    , and if 

x x  is such that  x    , then  0 0x    , 

 0 0x    . Function   has not other points of sign 

reversal. The boundary conditions result in 

   h
zZ h E (>0). We know, if 0  , then functions X  

and Z  have the same signs, but if 0  , then X  and 

Z  have opposite signs, and keep in mind that X  and 
Z  are continuously differentiable functions (in corre-
sponding domains), we chose suitable signs in expres-
sions (39). 

Necessity. The way of obtaining dispersion Equation 
(32) from (15) implies that the eigenvalue of the problem 
is a solution of dispersion equation. 

It is necessary to note that the eigenfunctions corre-
spond to eigenvalue 0  can easily find from (11) by 

using, for example, Runge-Kutta method. 
Let us formulate existence and localization theorem is 

founded on the obtained results. Introduce the notation 

 , ,J J a N  which denotes the right-hand side of 

dispersion Equation (32). It is clear that for each integer 
nonnegative finite N   

  
 

2
1 3 2max , ,

inf , , 0J a N
   




 , 

  
 

2
1 3 2max , ,

sup , ,J a N
   




  . 

Moreover, decreasing of N  implies decreasing of the 
infimum and supremum, and increasing of N  implies 
increasing of the infimum and supremum. It is obviously 
from the form of dispersion equation. 

Theorem 2. Let 
 

  
 

2
1 3 2

1
max , ,

inf , ,kh J a k
   




 , 
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2
1 3 2

2
max , ,

sup , ,kh J a k
   




 , 

and h  is such that there are i  and j , that  
2

ih h  

and  1
2
ih h  ;  

1
jh h  and  1

1
jh h  . 

Then, there are at least j i  eigenvalues of the 

problem (35)-(37) with conditions (34) and (38). 
Theorem 2 requires some explanations. If for some j  

infimum is greater than h  then for all greater numbers 
j  infimum is all the more greater than h  and disper-

sion equation has not solutions. Similarly, if for some i  
supremum is smaller than h , then for all smaller num-
bers i  supremum is all the more smaller than h . In 
this case dispersion equation also has not solutions. 
These explanations follow from the fact that the infimum 
and supremum of left-hand of dispersion Equation (32) 
are finite. 
 
6. Transition to the Limit in the Case of a 

Linear Medium in the Layer 
 
Consider formal transition to the limit as 0a   in the 
case of a linear medium in the layer. The dispersion equ-
ation in the linear case is ([13]): 

   
 

2 2 2
2 2 1 3 3 1

2
2 2 2 2 2

1 3 2 2 3 1

tg h
        

 
        

   
 

   
. (40) 

Consider the functions 

 2 2 2 1
f


   


 

 and 2
1 2 2

22 2
2

2

1
f


   

 







. 

The function 1f  is derived from f  by formal tran-

sition to the limit as 0a   with respect to τ. Since we 

search for real solutions  X x  and  Z x , the de-

nominator of 1f  cannot vanish. Moreover, as 0a  , 

the function f  tends to 1f  uniformly with respect to 

 0,x h . Under this condition, since f  is continuous, 

we can use classical calculus result to transit to the limit 
as 0a   under the integral sign in (32): 

 

1

2
1

3

2
3

2 2
2 22 2

2 2
2 2

1 1
1d N d



 



 

 
  

   

 




 
 
    
 

    

   

2
2

2

h
 



 .               (41) 

The integrals in (41) are analytically evaluated. Finally, 
(41) yields 

 
 

2 2 2
2 2 1 3 3 1

2
2 2 2 2 2

1 3 2 2 3 1

arctgh
        

 
        

   
  

   

 1  N .                (42) 

Taking the tangent of (42) gives (40). 
Results of this paragraph show us that we obtain regu-

lar case when we transit to the limit as 0a  . The limit 
of dispersion Equation (32) for nonlinear medium leads 
to dispersion Equation (40) for linear medium. The dis-
persion Equation (40) is well-known classical result in 
electrodynamics. 

Note that the method of finding dispersion equation 
considered in this section can be applied to more general 
problem. Namely, to the problem of propagation TM  
wave in an anisotropic nonlinear layer with Kerr nonlin-
earity (we studied a case of isotropic nonlinear layer). The 
statement of the problem differs only one detail. In a  
case of anisotropic nonlinear layer the permittivity is      

described by diagonal tensor 

0 0

0 0

0 0

xx

yy

zz


 



 
   
 
 


, where 

2 2

12xx x zb E a E    , 
2 2

21zz x za E b E    , a, 

b are nonlinearity coefficients and  12 1 3max ,    

and  21 1 3max ,   . Here, after writing the system of 

equation in terms of functions  X x  and  Z x  we 

have to chose new variables  x  and  x  in form 

 
2 2

12
2

bX aZ
x





 

  and   X
x

Z
  , where 

 X X x  and  Z Z x . 

Anisotropic case with additional condition 12   

21 2   was completely investigated in [14]. 

The first approximation for the propagation constants 
was presented in [15]. 
 
7. Numerical Results 
 
In this section some numerical results are presented. The 
calculations are illustrated by the plots.  

In Figure 2, the solid lines show the solutions to the 
dispersion equation for the case of a linear medium in the 
layer, and the dashed lines correspond to the nonlinear 
dispersion equation.  

Figure 2 illustrates the dependence of squared pro- 
pagation constant 2 on layer’s thickness h . The    
following parameters are used: 1 3 1   , 2 9  , 
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Figure 2. Dispersion curves of the problem. 
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Figure 3. Eigenfunctions for the second eigenvalue of the 
problem. 

  2

1h
zE  . In the case of nonlinear dispersion equation, 

the value 0.1a   is employed.  
For the next case the following initial data are chosen: 

1 1  , 2 4  , 3 2  ,   2

1h
zE  , 0.01a   and 

5.91h  . In this case there are three eigenvalues 1 , 2   

and 3 : 2
1 3.9  , 2

2 3.108   and 2
3 2.1711  . 

In Figure 3 eigenfunctions  X x  and  Z x  cor-

responding to the second eigenvalue 2  are depicted. 

The dash-dotted line corresponds to the eigenfunction 

 X x  and the solid line corresponds to the eigenfunc-

tion  Z x . 

It is necessary to note that the component  X x  is 

not continuous at the points 0x   and x h  (at the 
interfaces) and it has finite jumps at these points. The 
component  Z x  is continuous but not differentiable at 

the points 0x   and x h . 
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Abstract 

In this paper we expand the Box Method of Sorwar et al. (2007) to value both default free bonds and interest 
rate contingent claims based on one factor non-linear interest rate models. Further we propose a one-factor 
non-linear interest rate model that incorporates features suggested by recent research. An example shows the 
extended Box Method works well in practice. 

Keywords: Stochastic, Interest Rates, Derivatives, Box Method 

1. Introduction 
 
Stochastic differential equations are the foundations on 
which modern option pricing methodology is based. 
However, non-linear stochastic differential equations for 
interest rate models have been proposed that captures the 
non-linear dynamics of the spot interest rates. There are 
two aspects to the modeling of interest rate term structure 
models and interest rate contingent claims. The first 
concerns the econometric aspects (see for example, [1]) 
and the second the numerical implementation of the re-
sulting models. With regard to the numerical aspects of 
interest rate modeling, there exist three different ap-
proaches. The first is the lattice approach introduced by 
Cox-Ross-Rubinstein (1979) [2]. However, as Bar-
one-Adesi, Dinenis and Sorwar (1997) [3] have demon-
strated the lattice approach does not always lead to mea-
ningful bond and hence contingent claim prices. The  
second approach is the Monte-Carlo simulation approach 
introduced by Boyle (1977) is mainly used to value path 
dependent European type contingent claims. To date no 
single accepted Monte-Carlo simulation scheme has been 
put forward for the valuation of American type contin-
gent claims. The third approach is the partial differential 
equation (PDE) approach.  With this approach, the par-
tial first and second order derivatives are discretized to 
produce a system of equations which are then solved 
iteratively to obtain the bond and contingent claim prices. 
However, Sorwar et al. (2007) have shown that the usual 
finite difference approach used to discretize the PDE 
does not always lead to bond and contingent claim prices 

that correspond with analytical prices where these prices 
are available.  

Sorwar et al. (2007) introduced the Box Method from 
engineering to improve on the standard finite difference 
approach. Sorwar et al. (2007) focused on the CKLS 
(1992) model. Sorwar et al. (2007) did not attempt to 
value bonds and contingent claims based on non-linear 
interest rate models. Ait-Sahalia (1996) [4] non-and 
Conley et al. (1997) [5] propose parametric linear one- 
factor which allows non-linear parameterisation. Our 
main objective in this paper is to expand the Box Method 
of Sorwar et al. (1997) to price bonds and contingent 
claims based on both linear and non-linear interest rate 
models. 

The outline of the paper is as follows: Section 2 the 
general non-linear parametric model and the resulting 
partial differential equation for default free bonds and 
contingent claims is outlined. We then derive the Ex-
panded Box Method (EBM) for the valuation of default 
free bonds and contingent claims. Using US estimates we 
compute implied bond and contingent claims prices in 
Section 3. Section 4 contains a summary and conclusion. 

 
2. Expanded Box Method (EBM) 
 
In this section we discuss the valuation of the bond and 
contingent claim prices based on the extended Ait-Sa-
halia (1996) [4] and Conley et al. (1997) [5] framework. 
Following Sorwar et al. (2007) we let: 

 *
tB r ,t ,T : price of a discount bond at time t which  
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Table 1. lternative Parametric Specifications of the Spot Interest Rate Process    2
t t t tdr r dt r dW   . 

Drift function 

 r  
Diffusion function 

 2 r  

Reference 

0 1r   0  Vasicek (1977) [6] 
 

   

0 1r   1 r  Cox-Ingersoll-Ross(1985) [7] 
Brown-Dybvig(1986) [8] 

Gibbons-Ramaswamy(1993) [9] 
   

0 1r   2
2 r  Courtadon (1982) [10] 

   

0 1r   3
2 r  Chen et al. (1992) 

   

2 3
0 1 2r r

r

      
3

0 1 2r r     Ait-Sahalia (1996) [4] 

   

3

5

4
0 1 2r r

r



      

3
0 1 2r r      

   

 

matures at time *T  with the generated spot rate tr  . 

 *P t ,T ,T : price of a contingent claim at time t  

which expires at time T  based on a discount bond 

which matures at time *T  subject to suitable boundary 
conditions. 

In a risk-neutral world, the drift rate is adjusted by the 
market price of risk r 1 so that the short-term interest 
process becomes: 

  3 5

3

0 1 2 4

0 1 2                

t

t

dr r r r dt

r r dW

 



    

  

     

 
      (1) 

The resulting partial differential equation is: 

 

3

3 5

2

0 1 2 2

0 1 2 4

1

2

0

U
r r

r

U U
r r r rU

r t



 

  


     
 



   

         

 

 (2) 

In Equation (2)  tU r ,t  may represent either 

 *
tB r ,t ,T or  *P t ,T ,T  subject to the appropriate 

boundary conditions (see [10] for more details). Follow-
ing Sorwar et al. (2007) we transform the above pricing 
equation such that either the bond or the contingent 
claims evolves from the options expiration date or the 
bonds maturity date to the present, i.e., we let T t   . 

The above equation then becomes: 

  3 5

3

2
0 1 2 4

2
0 1 2

2
r r rU U

rr r r

 



     
   

    
  

   
 

3 3
0 1 2 0 1 2

2 2r U
U

r r r r 


     


   

    (3) 

We now choose a general function  R r, ,   such 

that: 

  3 5

3

2

2

0 1 2 4

0 1 2

1

2

U U
R

R r r r

r r r U

rr r

 



  
  

     
  



     
    
 

   

     (4) 

The above expression simplifies to yield: 

  3 5

3

0 1 2 4

0 1 2

1
2

r r rR

R r r r

 



    
   

    
  

   
    (5) 

We now integrate from the general value r  

 1 1n nr r r    to the lower limit of integration 0r   

to obtain: 

 
  3 5

3
1

0 1 2 4

0 1 2

2
n

r

r

R r, ,

r r r
exp dr

r r

 



 

    


  






         
     


 

where  0ln R , ,   .  We further note that: 

1 1U U
R Q

R r r Q r r

   
   

         
 

where:  

1Risk premium is treated differently by researchers. Vasicek (1977) [6]

takes  r  , Chan et al. (1992) [1] take   0r  , ox et al. (1985), 

we take  r r  . 
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0 0 1 2
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r r r
exp dr

r r

 



 

    
  





      
  

     


 

So Equation (3) becomes: 

3
0 1 2

1 2U r
Q U

Q r r r r 

 
    

       

     

We now transform the interest rate as: 

3
0 1 2

2 U

r r 


   

       

(6)

 

cr

cr
s




1
 where c is a constant.       (7) 

This leads to the transformation of Equation (6) as: 

 

 

   
 

   
 

   

3 33 22

1 1
0 2 0 2

1 2 2 1

1 1

1 1 1 1

U s U U
s

Q s s s c s c ss ss s

c s c s c s c s
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where: 

     

 
 

 
     

   

3 5

3

2

1
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2
0

1
0 2

1

1 1 12

1

1 1

s

s c s Q s
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c s c s c s
Q s exp dr
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c s c s

 



 
  

 



  

                        
     

           


 

 
Following the set-up of Sorwar et al. (2007) a grid of 

size M N  is constructed for values of m
nU   

 U n r,m t  —the value of U  at time increment mt  

and interest rate increment ns , for each method, where: 

0mt t m t    0 1m , ,....,M  

2
1n ns s a       1n ,....,N  

where a is an arbitrary constant. 
Using the Euler backward difference for  the time de- 

rivative gives: 0U UU

t








, 

where 0U  and U refers to bond or contingent claims 

prices at time step m-1 and m respectively.  
Integrating Equation (8) from the point  

1
1

2 2
n n

n

s s
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  to point 

1
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2 2
n n
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s s
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have:
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         (9) 

 
Discretizing each of the above integrals, and rearrang-

ing gives us the following matrix equation: 

1
1 1

m m m m
n n n n n n n nU U U U   

         (10) 

where: 

 
1

2

1

2

n

n

s

s

U
t s ds

s s





         

 
   

1

2

1

2

32
2

1

n

n

s

s

s
t Q s f s Uds

c s





 


  

2Where a and 0s are arbitrary constants. A derivation of this expres-

sion can be found in Settari and Aziz (1972) [11]. 
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Discretizing each of the above integrals, and rearrang-
ing gives us the following matrix equation: 
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The matrix equation linking all bond prices or contingent 
claim prices between two successive time steps m-1 and 
m is: 

1
0 1

1
0 1

1

1 1 0 1

2 2 2 0 1

3 3 3
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0 0 0

0

0

0

0 0 0

m

m

m
N N

m

m

N N N

N N N

m
N N N N

U

U

U

U

U

U






  
   

  

  
  

  







  

  

  

 
 
 
 
 

 
 
 
 
 
 

  
  
  
  
  
  
  
  
  
  

  








 

       
   
   

 

 

  Sorwar et al. [12] used the following SOR iteration 
process to determine bond and contingent claims prices: 

 1 1
1 1

1m m m m
n n n n n n n

n

z U U U  


 
          (11) 

In particular they evaluated bond using the following 
expression: 

  11m m m
n n nU z U              (12) 

Contingent claims were calculated using: 

  11m m m
n n nU max Z , z U             (13) 

where Z is the intrinsic value of the contingent claim 
and for n=1,......,N-1, and  1 2, 3 . 

 
3. Analysis of Results 
 
In this section we apply the EBM using recent estimates 
of the non-linear model of Ait-Sahalia (1996) [4] on 
7-day Eurodollar deposit spot rate over 1973-1995 to 
demonstrate the method. Ait-Sahalia (1996, Table 4) [4] 
obtained the following estimates: 

3
0 1

2 1
2 3

4 643 10

4 333 10 1 143 10 2

. ,

. , . , ,

 

 



 

   

    
 

4
4 51 304 10 1. ,    .

4
0 1

3 3
2 3

1 108 10

1 883 10 9 681 10 2 073

. ,

. , . , .

 

 



 

  

    
. 

Table 2 reports the bond prices for maturities ranging 
from 6 months to 30 years and across interest rates of 2% 
to 16%. Table 3 reports both the value of call and put 
options across a wide range of interest rates. We consider 
both short and long dated call and put options. The short 
dated call and put options are based on a 5-year bond 
with an expiry date of 1 year and is during the last year 
before the bond matures. Similarly long dated options are 
based on 10-year bond with an expiry date of 5 years 
during the last 5 years of the bond. Finally both call and 
put option prices are calculated across a wide range of 
exercise prices. The exercise prices are chosen so as to 
highlight variation of prices for both in-the-money and 
out-of-the-money options. We assume , the market 
price of risk is zero. 

Turning to Table 2, we find that at lower interest rate 
bond prices decay slowly as the term to maturity in-
creases. For example, at 2% interest rate a 1 year matur-
ity bond is valued at 98.1119, whilst a 30 year bond is 
valued at 74.8290. At high interest rates, the bond price 
decay is more rapid for example at 16% interest rate, a 1 
year maturity bond is valued at 85.2915, whist a 30 year 
maturity bond is valued at 1.1770. Turning to Table 3, 
we observe the following features. Short expiry call op 

3 is determined by numerical experimentation.  For all our calcula-
tions we took 1 85.   
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Table 2. All options written on zero coupon bonds with a face value of $100.00. 

 Interest Rate 

Maturity 
of Bond 

2% 4%  6% 8% 10% 12% 14% 16% 

0.5 99.0286 98.0370 96.9855 96.0885 95.1315 94.1844 93.2506 92.3403
         

1 98.1119 96.1434 94.0805 92.3406 90.5050 88.7059 86.9566 85.2915
         

5 92.2400 83.3035 74.3413 67.4685 60.8623 54.9010 49.7324 45.6212

         
10 87.0431 71.9535 56.7017 46.1717 37.2750 30.1193 24.7834 21.3038

         
15 83.1089 64.1538 44.6651 32.1800 22.9491 16.5267 12.3933 10.1317

         
20 79.9228 58.6473 36.4723 22.9644 14.3178 9.0809 6.2237 4.8889 

         
25 77.2156 54.6338 30.8731 16.8832 9.0110 5.0032 3.1400 2.3870 

         
30 74.8290 51.6021 27.0075 12.8582 5.7491 2.7679 1.5921 1.1770 

 
Table 3. All options written on zero coupon bonds with a face value of $100.00. 

 
r (%)  

 
Exercise-

Price 

5 year  
maturity 

1 year  
expiry 

5 year  
maturity 

1 year  
expiry 

  
Exercise-

Price 

10 year 
maturity 

5 year  
expiry 

10 year 
maturity 

5 year  
expiry 

 (83.3035) call put  (71.9535) call put 

4 70 16.0031 0.0000  60 21.9713 0.0007 

 75 11.1959 0.0000  65 17.8062 0.0493 
 80 6.3895 0.0050  70 13.6418 0.6489 
 85 1.9369 1.6966  75 9.5270 3.1894 
 90 0.1421 6.6966  80 5.7979 8.0466 
 (67.4685)    (46.1717)   
8 55 16.6811 0.0000  35 22.5578 0.0000 
 60 12.0641 0.0000  40 19.1843 0.0000 
 65 7.4471 0.0000  45 15.8109 0.0058 
 70 2.8302 2.5315  50 12.4375 3.8283 
 75 0.0203 7.5315  55 9.0641 8.8283 

12 (54.9010)    (30.1193)   
 45 14.9341 0.0000  20 19.1395 0.0000 
 50 10.4996 0.0000  25 16.3942 0.0000 
 55 6.0652 0.1561  30 13.6492 0.0183 
 60 1.6310 5.1561  35 10.9042 4.8804 
 65 0.0000 10.1561  40 8.1591 9.8804 

16 (45.6212)    (21.3038)   
 35 15.7692 0.0000  10 16.7416 0.0000 
 40 11.5046 0.0000  15 14.4606 0.0000 
 45 7.2400 0.0005  20 12.1795 0.0001 
 50 2.9755 4.3788  25 9.8985 3.6962 
 55 0.0129 9.3782  30 7.6174 8.6962 

 
tions decay faster than longer expiry call options; for 
example at r = 4%; the price of a call option decreases 
from 16.0031 to 11.1959 when the exercise price in 
creases from 70 to 75. For a similar 5 year call option the 
price decreases from 21.9713 to 17.8062, when the exer-
cise price increases from 60 to 65. Furthermore, the call 
option prices decrease at a slower rate at high interests. 
This feature becomes more pronounced for longer expiry 
call options. With regard to put options we find, the 
prices are very close to zero, when the options are at-the- 
money or out-of-the-money. Finally, we find that the 
value of in-the-money put options is dominated by the 

intrinsic-value. 
 
4. Conclusions 
 
The  introduction of non-linear stochastic interest rate 
models has led to the possibility of valuing interest con-
tingent claims that reflects the characteristics of the yield 
curve more accurately. In this paper we have expanded 
the Box Method to value both bond and American type 
interest rate contingent claims based on single factor 
non-linear interest rate models. We have found that the 



                                       G. SORWAR  ET  AL. 
 

Copyright © 2010 SciRes.                                                                               AM 

42 

Expanded Box Method works well with the example 
considered. 
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Similar approximation yields: 
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body to explore the characteristics of the generated 
waves. They studied the body motion in terms of Froude 
number, wave pattern, wave amplitude and wave energy, 
see also [6-13]. 

Since the general features of the waves obtained by 
these authors for both the near and far fields are based on 
a linear theory, their applicability is limited to bed de-
formations and the range of propagation for which non-
linear effects remain small.  

Several works done are taken into account the nonli-
near effect in the wave motion for modeling the tsunami 
waves. Kervella et al. [14] perform a comparison be-
tween three-dimensional linear and nonlinear tsunami 
generation models. They observed very good agreement 
from the superposition of the wave profiles computed 
with the linear and fully nonlinear models. Second, they 
found that the nonlinear shallow water model was not 
sufficient to model some of the waves generated by a 
moving bottom because of the presence of frequency 
dispersion, hence the suggested that for most events the 
linear theory is sufficient. Villeneuve [15] derived model 
equations which combine the linear effect of frequency 
dispersion and the nonlinear effect of amplitude disper-
sion including the effects of a moving bed. Liu and Lig-
gett [16] performed comparisons between linear and 
nonlinear water waves where their study was restricted to 
simple bottom deformations, namely the generation of 
transient waves by an upthrust of a rectangular block. 
Bona et al. [17] assessed how well a model equation with 
weak nonlinearity and dispersion describes the propaga-
tion of surface water waves generated at one end of a 
long channel. In their experiments, they found that the 
inclusion of a dissipative term was more important than 
the inclusion of nonlinearity, although the inclusion of 
nonlinearity was undoubtedly beneficial in describing the 
observations. Abo Dina et al. [18] have adopted a nonli-
near theory and constructed a numerical model of tsuna-
mi generation and propagation which permits a variable 
bed displacement with an arbitrary water depth to be 
included in the model. In this model, he considered non-
linearities and omitted the linear effects of frequency 
dispersion; hence, no insight into the possible importance 
of the interaction of nonlinear and linear effects in the far 
field was possible, see also [19,20]. All the previous stu-
dies mention above neglected the details of wave genera-
tion in fluid during the source time. One of the reasons is 
that it is commonly assumed that the source details are 
not important.  

The transient wave generation due to the coupling 
between the seafloor motion and the free surface has 
been considered by a few authors only. There are some 
specific cases where the time scale of the bottom defor-
mation and the horizontal extent of the bottom deforma-
tion may become an important factor. Some studies have 
already been performed to understand wave formation 
due to different prescribed bottom motions by introduc-

ing either some type of rise time or some type of rupture  
velocity. For example, Todorovska et al. [21] studied the 
generation of waves by a slowly spreading uplift of the 
bottom in linearized shallow-water wave theory and 
where able to explain some observations. They studied 
the tsunami amplitude amplification as a function of the 
model parameters. They found the effects of the spread-
ing of the ocean floor deformation (faulting, submarine 
slides or slumps) on the amplitudes and periods of the 
generated tsunamis are largest when the spreading veloc-
ity of uplift and the tsunami velocity are comparable. 
Trifunac et al. [22] mentioned the source parameters for 
submarine slides and earthquakes including source dura-
tion, displacement amplitude, areas and volumes of se-
lected past earthquakes that have or may have generated 
a tsunami. They contributed the nature of tsunami 
sources to create tsunami waveforms in the near field and 
provided a starting point for their elementary mathemat-
ical model. Todorovska et al. [23] investigated tsunami 
generation by a slowly spreading uplift of the sea floor in 
the near field considering the effects of the source fi-
niteness and directivity. They described mathematically 
various two-dimensional kinematic models of submarine 
slumps and slides as combinations of spreading constant 
or slopping uplift functions. There results show that for 
given constant water depth, the peak amplitude depends 
on the ratio of the spreading velocity of the sea floor to 
the long wavelength tsunami velocity, see also their 
works [24,25]. Hammack [26] generated waves experi-
mentally by raising or lowering a box at one end of a 
channel. He considered two types of time histories: an 
exponential and a half-sine bed movement. Dutykh and 
Dias [27] generated waves theoretically by multiplying 
the static deformations caused by slip along a fault by 
various time laws: instantaneous, exponential, trigono-
metric and linear. Haskell [28] was one of the first au-
thors, who take into account the rupture velocity. In fact 
he considered both rise time T and rupture velocity V.  

All the previous approaches done in [21-28] computed 
tsunami waveforms using linearized shallow water theory 
and transform methods of solution. We follow the same 
approach but with a more realistic and more complex 
source models. This approach is restricted to the water 
region where the incompressible Euler equations for po-
tential flow can be linearized. In this paper we investigate 
the tsunami wave in the near and far field using the 
transform methods (Laplace in time and Fourier in space). 
We construct mathematically a reasonable curvilinear 
tsunami source based on available geological, seismolog-
ical, and tsunami elevation. This model resembles the 
initial source predicted according to the initial disturbance 
recorded in [29,30]. We discuss aspects of tsunami gen-
eration that should be considered in developing these 
models, as well as the propagation wave after the forma-
tion of the source models have been completed. 
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We study the fluid wave motion above finite sources, 
with irregular fault shapes and with variable distribution 
of the ocean floor uplift, for variable spreading velocities. 
Here we aim to demonstrate the large scale tsunami gen-
eration features computed during the formation of the 
tsunami source for different ratios between the velocity 
of the source propagation and the tsunami speed, as well 
as the overall propagation following the source. Com-
parison between our results and others obtained for the 
tsunami model in the near—field is done. According to 
the results and the numerical estimation, we analyze the 
normalized peak amplitude as a function of the characte-
ristics size of the source model and the water depth. 
 
2. Mathematical Formulation of the  

Problem  
 

Consider a three dimensional fluid domain Ω as shown 
in Figure 1. It is supposed to represent the ocean above 
the fault area. It bounded above by the free surface of the 
ocean z = η(x, y, t) and below by the rigid ocean floor z 
= −h(x, y) + ζ(x, y, t), where η(x, y, t) is the free surface 
elevation, h(x, y) is the water depth and ζ(x, y, t) is the 
sea floor displacement function. The domain Ω is un-
bounded in the horizontal directions x and y, and can be 
written as Ω = R2 × [−h(x, y) + ζ(x, y, t), η(x, y, t)]. For 
simplicity, h(x, y) is assumed to be a constant. Before the 
earthquake, the fluid is assumed to be at rest, thus the 
free surface and the solid boundary are defined by z = 0 
and z = −h, respectively. Mathematically, these condi-
tions can be written in the form of initial conditions: η(x, 
y, 0) = ζ(x, y, 0) = 0. At time t > 0 the bottom boundary 
moves in a prescribed manner which is given by z = −h + 
ζ(x, y, t). The deformation of the sea bottom is assumed 
to have all the necessary properties needed to compute its 
Fourier transform in x,y and its Laplace transform in t. 
The resulting deformation of the free surface z = η(x,y,t ) 
is to be found as part of the solution. It is assumed that 
the fluid is incompressible and the flow is irrotational. 
The former implies the existence of a velocity potential 

(x, y, z, t) which fully describes the flow and the phys-
ical process. By definition of , the fluid velocity vector 
can be expressed as q  


. Thus, the potential 

 

Figure 1. Definition of the fluid domain and coordinate 
system for a very rapid movement of the assumed source 
model. 

flow  (x, y, z,t )must satisfy the Laplace’s equation  
2 (x, y, z, t) = 0 where (x, y, z)       (1) 

The potential  (x, y, z, t) must satisfy the following 
kinematic and dynamic boundary conditions on the free 
surface and the solid boundary, respectively:  

 z t x x y y= + + on z = x, y, t ,           (2) 

 z t x x y y= + + on z = h x, y, t ,            (3) 

and  

 2
t

1
+ ( ) + 0 on z = x, y, t ,

2
g          (4) 

where g is the acceleration due to gravity. As described 
above, the initial conditions are given by  

(x, y, z,0) (x, y,0) (x, y,0) 0.           (5) 

 
2.1. Linear Shallow Water Theory  
 
Various approximations can be considered for the full 
water-wave equations. One is the system of Boussinesq 
equations that retains nonlinearity and dispersion up to a 
certain order. Boussinesq model is used to study transient 
varying bottom problems. Fuhrman et al. [31] and Zhao 
et al. [32] presented a developed numerical model based 
on the highly accurate Boussinesq-type formulation sub-
jected to exact expressions for the kinematic and dynam-
ic free surface conditions. Their results show that the 
model was capable of treating the full life cycle of tsu-
nami evolution, from the initial generation of bottom 
movements, to the subsequent propagation, and through 
the final the run-up process. Reasonable computational 
efficiency has been demonstrated in their work, which 
made the model attractive for practical coastal engineer-
ing studies, where high dispersive and nonlinear accura-
cy is sought. Another one is the system of nonlinear 
shallow-water equations that retains nonlinearity but no 
dispersion. Solving this problem is a difficult task due to 
the nonlinearities and the a priori unknown free surface. 
The simplest one is the system of linear shallow-water 
equations. The concept of shallow water is based on the 
smallness of the ratio between water depth and wave 
length. In the case of tsunamis propagating on the sur-
face of deep oceans, one can consider that shallow-water 
theory is appropriate because the water depth (typically 
several kilometers) is much smaller than the wave length 
(typically several hundred kilometers), which is reasona-
ble and usually true for most tsunamis triggered by sub-
marine earthquakes, slumps and slides [26,27]. Hence, 
the problem can be linearized by neglecting the nonlinear 
terms in the boundary conditions (2)-(4) and if the 
boundary conditions are applied on the nondeformed 
instead of the deformed boundary surfaces (i.e., on z = −h 
and z = 0 instead of z = −h + ζ (x, y, t) and z = η(x, y, t)). 

The linearized problem in dimensional variables can 
be written as 
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2 (x, y, z, t) = 0 where (x, y, z)  2R × [−h, 0 ],  (6) 
subjected to the following boundary conditions 

z t= on z   0              (7) 

z t= on z h                (8) 

t g 0 on z 0               . (9) 

The linearized shallow water solution can be obtained 
by the Fourier-Laplace transform. 

2.2. Solution of the Problem 

Our interest is the resulting uplift of the free surface ele-
vation η(x, y, t). An analytical analyses is examine to 
illustrate the generation and propagation of a tsunami for 
a given bed profile ζ(x, y, t). Mathematical modeling of 
waves generated by vertical and lateral displacements of 
ocean bottom using the combined Fourier-Laplace trans- 
form of the Laplace equation analytically is the simplest 
way of studying tsunami development. All our studies 
were taken into account constant depths for which the 
Laplace and Fast Fourier Transform (FFT) methods 
could be applied. Equations (6)-(9) can be solved by us-
ing the method of integral transforms. We apply the 
Fourier transform in (x, y). 

[ f ] = 1 2

2

i(k x k y)
1 2 R

(k , k ) f (x, y)e dx dyf   


 

with its inverse transform 

−1 [ f


] = (x,y)f = 1 2

22

i(k x k y)
1 2 1 2R

1
(k , k )e dk dk

(2 )
f





 

and the Laplace transform in time t, 

£[g] = G(s) = 
st

0
g(t)e dt



  

For the combined Fourier and Laplace transforms, the 
following notation is introduced: 

( £ ( f(x, y, t) )= 
st

1 2

2

-i(k x k y)
1 2 R 0

F(k ,k ,s) = e dx dy f (x, y, t)e dt
   

Combining (7) and (9) yields the single free-surface con-
dition 

tt z(x, y,0, t) (x, y,0, t) 0.g       (10) 

After applying the transforms and using the property   
n[ ] (ik) F(k)

n

n

d f

dx
  and the initial conditions (5), Equ-

ations (6), (8) and (10) become 
2 2

zz 1 2 1 2 1 2(k , k , z, s) (k k k , k , z, s =0   ）（ ）    (11) 

z 1 2 1 2(k , k , -h, s) s (k , k , s)        (12) 

2
z1 2 1 2s (k , k ,0, s) + g (k , k , 0, s) 0         (13) 

The transformed free-surface elevation can be ob-

tained from (9) as 

1 2 1 2

s
(k , k ,s) = (k , k ,0,s)

g
        (14) 

A general solution of (11) will be given by 

1 2 1 2 1 2(k , k , z, s) A(k , k , s)cosh(kz) + B(k , k , s) sinh(kz)   

(15) 

where 2 2
1 2k k k  .The functions A(k1, k2, s) and  

B(k1, k2, s) can be easily found from the boundary condi-
tions (12) and (13), 

1 2
1 2 2

gs (k , k ,s)
A(k , k ,s)

cosh(kh)[s gk tanh(kh)]


 


 

3
1 2

1 2 2

s (k , k ,s)
B(k , k ,s)

kcosh(kh)[s gk tanh(kh)]





 

Substituting the expressions for the functions A and B 
in the general solution (15) yields 

2
1 2

1 2 2 2

gs (k ,k ,s) s
(k ,k ,z,s) cosh(kz) - sinh(kz)

gkcosh(kh)[s ]





 

     
 (16) 

where gk tanh(kh)   is the circular frequency of 

the wave motion. The free surface elevation 1 2(k , k , s)  

can be obtained from (14) as 
2

1 2
1 2 2 2

s (k , k ,s)
(k , k ,s) =

cosh(kh)(s )





      (17) 

A solution for η(x, y, t) can be evaluated for specified 
ζ(x, y, t) by computing approximately its transform 

1 2(k , k , s)  then substituting it into (17) and inverting 

1 2(k , k , s)  to obtain 1 2(k , k , t) . We concern to eva-

luate η(x, y, t) by transforming analytically the assumed 
source model then inverting the Laplace transform of 

1 2(k , k , s)  to obtain 1 2(k , k , t)  which is further con-

verted to  (x, y, t) by using double inverse Fourier 

Transform. 
The circular frequency ω describes the dispersion rela-

tion of tsunamis and implies phase velocity c
k


  and 

group velocity 
d

U
dk


 . Hence, g tanh(kh)

c
k

 ,and 

1 2kh
U c(1+ )

2 sinh(2kz)
 . 

Since, 2
k




 , hence as kh → 0, both c→ gh  and 

U→ gh , which implies that the tsunami velocity vt= 

gh  for wavelengths λ long compared to the water 

depth h. The above linearized solution is known as the 
shallow water solution. We considered two models for  
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the sea floor displacement, namely, a slowly curvilinear 
vertical faulting with rise time 0 ≤ t ≤ t1 and a variable 
single slip-fault, propagating unilaterally in the positive 
x-direction with time t1 ≤ t ≤ t , both with finite velocity 
v. In the y-direction, the models propagate instanta-

neously. The set of physical parameters used in the 
problem are given in Table 1. 

The two models are shown in Figures 2 and 3, respec-
tively, and given by:  
  a) Slowly curvilinear uplift faulting 

 
Table 1. Parameters used in the analytical solution of the problem. 

Parameters Value for the uplift faulting Value for the slip-fault 

Source width, W, km 100 100 

Propagate length, L, km 100 150 

Water depth (uniform), h, km 2 2 

Acceleration due to gravity, g,km/sec2 0.0098 0.0098 

Tsunami velocity, vt= gh , km/sec 0.14 0.14 

Rupture velocity, v,km/sec, 
to obtain maximum surface amplitude 

0.14 0.14 

Duration of the source process, t, min 1

50
t 5.95

v
   200

t* 23.8
v

   

 

 
       (a)                                     (b) 

 

 
(c) 

Figure 2. Normalized bed deformation representing by a slowly curvilinear uplift faulting at 1

50
t =

v
 (a) Side view along the 

axis of the symmetry at x = 50; (b) Side view along the axis of the symmetry at y = 0 ; (c) Three- dimensional view. 
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(a)                                       (b) 

 

 
(c) 

Figure 3. Normalized Bed deformation model representing by a single-fault slip at t = t  = 200/v. (a) Side view along the axis 

of the symmetry at x = 100; (b) Side view along the axis of the symmetry at y = 0; (c) Three-dimensional view. 

 

0

0

0

vt
(1 cos x)[1 cos (y 150)], 0 x 100, 150 y 50

2L 50 100
vt

( , , ) (1 cos x), 0 x 100, 50 y 50
L 50
vt

(1 cos x)[1 cos (y 150)], 0 x 100, 50 y 150
2L 50 100

x y t

 

 

 

         

      



      

            (18) 

 
For this displacement, the bed rises during 0 ≤ t ≤ t1 to 

a maximum displacement ζ0 in an asymptotic manner. 
b) Curvilinear slip-fault  

ζ (x,y,t) =ζ1(x,y,t) +ζ2(x,y,t) +ζ3 (x,y,t),    (19) 

where 

ζ1(x,y,t)= 

0

0
1

0
1 1 1

(1 cos x)[1 cos (y 150)], 0 x 50, 150 y 50
4 50 100

[1 cos (y 150)], 50 x 50 v(t - t ), 150 y 50
2 100

[1 cos (x (50 v(t - t )))][1 cos (y 150)], 50 v(t - t ) x 100 v(t - t )
4 50 100

150 y 50

  

 

  



         

         



        


   

 

ζ2(x,y,t) = 

0

0 1

0
1 1 1

(1 cos x), 0 x 50 50 y 50
2 50

50 x 50 v(t - t ), 50 y 50

[1 cos (x (50 v(t - t )))], 50 v(t - t ) x 100 v(t - t ) 50 y 50
2 50
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ζ3(x,y,t )= 

0

0
1

0
1 1 1

(1 cos x)[1 cos (y -50)], 0 x 50, 50 y 150
4 50 100

[1 cos (y - 50)], 50 x 50 v(t - t ), 50 y 150
2 100

[1 cos (x (50 v(t - t )))][1 cos (y -50)], 50 v(t - t ) x 100 v(t - t ),
4 50 100

50 y 150

  

 

  



      

      



       


 

 

 
For this source model, the free surface elevation takes 
initially the deformation of the bed shown in Figure 2 
which remain at this elevation ζ  for t ≥ t1 and further 
propagate unilaterally in the positive x- direction with 
velocity v till it reaches t . 

Laplace and Fourier transform can now be applied to  
the bed motion described by (18) and (19). First, begin-
ning with the uplift faulting (18) for 0 ≤ t ≤ t1 where 

1

50
t

v
  and 

( £ (ζ(x,y,t))= 1 2

st
i(k x k y)

1 2 0
(k , k ,s) e dx dy (x, y, t)e dt 

  


                    (20) 

 
The limits of the above integration are apparent from 
(18).  

Substituting the results of the integration (20) into (17), 
yields 

 

1 1

1

2 2

2 2

2 2

1 2

i100 k i 100 k
i100 k2

12 2
21

1

i150 k i50 k
i50 k i150 k2 2

2
22 2

2

i50 k i150 k

2

(k , k ,s)=

s v 1 (1-e ) e 50
[ [ik ( ) (e 1)]]

50L 2s ikcosh(kh)(s ) 1 ( k )

4sin(50 k )(e e ) 1 100
ik ( ) (e e )

100ik k1 ( k )

(e e ) 1
100ik 1 (











 



 

  
 

       






2 2i 50 k i150 k2
2

2
2

100
ik ( ) (e e )

k ) 


 
 
 
 
                

              (21) 

 
The free surface elevation 1 2(k , k , t)  can be eva-

luated by using inverse Laplace transform of 1 2(k , k , s)  

as follows:  

First, recall that £−1

2 2

s
( ) cos t
s







 and £−1 1
( )=1

s
, 

and the inverse of a product of transforms of two func-
tions is their convolution in time. Hence, 

0

t
cosωτ dτ =

sinωt

ω
 and 1 2(k , k , t)  becomes 

1 1

1

i100 k i 100 k
i100 k2

1 2 1
21

1

vsin t (1 e ) e 50
(k , k , t)= ik ( ) (e 1]

50cosh(kh) 2L ik 1 ( k )


 



 


 
         
         

 

2 2

2 2

2 2

2 2

i150 k i50 k
i50 k i150 k2 2

2
22 2

2

i 50 k i150 k
i150 k i 50 k2

2
22

2

4sin(50 k )e e 1 100
ik ( ) (e e )

100ik k1 ( k )

(e e ) 1 100
ik ( ) (e e )

100ik 1 ( k )







 
 

          
 
                 

             (22) 
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In case for t ≥ t1, 1 2(k , k , t)  will have the same ex-

pression except in the convolution step, the integral be-

come 
1

1sin (t - t )sin t
cos d

t

t t
=

 
 

   

Finally, η(x,y,t) is evaluated using the double inverse 

Fourier transform of 1 2(k , k , t)   

  2 1ik y ik x
1 2 1 22

1
x, y, t [ (k ,k , t)dk ]dk

(2 )
e e 


 

 
    (23)  

This inversion is computed by using the FFT. The in-
verse FFT is a fast algorithm for efficient implementa-
tion of the Inverse Discrete Fourier Transform (IDFT) 
given by  

22M 1N 1 i( )qni( )pm
NM

p 0 q 0

p 0,1,......,M 11
f(m,n) F(p,q)e e ,

q 0,1,......,N 1MN

 

 

 


 
 

where f(m,n) is the resulted function of the two spatial 
variables m and n,corresponding x and y, from the fre-
quency domain function F(p, q) with frequency variables 
p and q, corresponding k1 and k2. This inversion is done 
efficiently by using the Matlab FFT algorithm.  

In order to implement the algorithm efficiently, singu-
larities should be removed by finite limits as follows:  

1) As k → 0, implies k1→0, k2→0 and ω→0 then 

1 2(k , k , t)  has the following limit  

0 1
1 2 1k 0

0 1 1

200 vt t t 50
lim (k , k , t) , where t

200 vt t t v







  

 

2) As k2→0, then the singular terms of 1 2(k , k , t)  
have the following limits  

2 2

2

i 150 k i 50 k

2
k 0

2 2

e e
lim k ( ) 100

i k i k
   

2

2

k 0
2

4sin(50k )
lim ( ) 200

k
  

2 2

2

i 50 k i 150 k

k 0
2 2

e e
lim ( ) 100

i k i k

 


   

3) As k1→0, then the singular term of 1 2(k , k , t)  has 

the following limit  

1

1

i 100 k

k 0
2 1

1 e
lim( ) 100

i k i k




   

Using the same steps, 1 2(k , k , t) is evaluated by ap-

plying the Laplace and Fourier transform to the bed mo-
tion described by (19), then substituting into (17) and 

then inverting the Laplace transform on 1 2(k , k , s) to 

obtain 1 2(k , k , t) . This is verified for t1 ≤ t ≤ t  where 

200
t

v
   as follows:  

1 2 1 2 2 1 2 3 1 2(k , k , ) (k , k , ) (k , k , ) (k , k , )     t t t t (24) 

where, 1 2(k , k , t) , 2 1 2(k , k , t)  and 3 1 2(k , k , t)  can 

be written respectively as:

1 2(k ,k , t) 
 

                      

2 2

2 2

i 150 k i 50 k
i 50 k i 150 k20

2
22

2

e e 1 100
ik ( ) (e e )

1004cosh(kh) i k 1 ( k )






 
               
 

 

1 1

1

1

1 1

1 1 1 1

i 50 k i 50 k
i 50 k2

1 1
21

1

i50k
ik v(t t )

1 1 1 12 2
1

ik (50 v(t t )) ik (100 v(t t ))

1

2
1

2
1

1 e e 50
ik ( ) (1 e ) cos (t t )

50i k 1 ( k )

2ve
( sin (t t ) ik vcos (t t ) ik ve )

(k v)

e e

ik

1 50
ik ( )

50
1 ( k )






  





 


 

     

 
          
 

    







1 1 1 1
1ik (100 v(t t )) ik (50 v(t t ))

cos (t t )
(e e
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0 2
1 2

2

sin(50k )
(k , k , t)

cosh(kh) k




  
   
   

 

1 1

1

1

1 1

1 1 1 1

i 50 k i 50 k
i 50 k2

1 1
21

1

i50k
ik v(t t )

1 1 1 12 2
1

ik (50 v(t t )) ik (100 v(t t ))

1

2
1

2
1

1 e e 50
ik ( ) (1 e ) cos (t t )

50i k 1 ( k )

2ve
( sin (t t ) ik vcos (t t ) ik ve )

(k v)

e e

ik

1 50
ik ( )

50
1 ( k )






  





 


 

     

 
          
 

    







1 1 1 1
1ik (100 v(t t )) ik (50 v(t t ))

cos (t t )
(e e


     

 
 
 
 
 
 
 
 
 
 
 
  
  
  

         
    

 

and 

2 2

2 2

i 50 k i 150 k
i 150 k i 50 k20

3 1 2 2
22

2

e e 1 100
(k ,k , t) ik ( ) (e e

1004cosh(kh) i k 1 ( k )







 
 

 
                
 

 

1 1

1

1

1 1

1 1 1 1

i 50 k i 50 k
i 50 k2

1 1
21

1

i50k
ik v(t t )

1 1 1 12 2
1

ik (50 v(t t )) ik (100 v(t t ))

1

2
1

2
1

1 e e 50
ik ( ) (1 e ) cos (t t )

50i k 1 ( k )

2ve
( sin (t t ) ik vcos (t t ) ik ve )

(k v)

e e

ik

1 50
ik ( )

50
1 ( k )






  





 


 

     

 
          
 

    







1 1 1 1
1ik (100 v(t t )) ik (50 v(t t ))

cos (t t )
(e e


     

 
 
 
 
 
 
 
 
 
 
 
  
  
  

         
    

 

 

Substituting 1 1 2 2 1 2(k ,k , t), (k ,k , t)   and 3 1 2(k ,k , t)  

into (24) gives 1 2(k ,k , t)   for t1 ≤ t ≤ t   

In case for t   t , 1 2(k ,k , t)  will have the expression 

(24) except the term resulting from the convolution 
theorem, i.e. 

 
1 1

11

t 1 1 1ik v( t t )
ik vt*2 2( t t ) t*

1 1 1 1

sin (t t ) ik v cos (t t )1
cos e d ,

(k v) e sin ((t t ) t*) ik v cos ((t t ) t*)


  
 

   
  

 

   
  

        
  

instead of 

1 1 1

1

t ik v(t ) ik v(t t )
1 1 1 12 2(t t ) t*

1

1
cos e d ( sin (t t ) ik vcos (t t ) ik ve )

(k v)
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Finally, (x, y, t) is computed using inverse Fast Fouri-
er transform of 1 2(k ,k , t) . Again, the singular points 
should be removed to compute (x, y, t) efficiently  

1) As k→0, then 
1 2(k , k , t)  has the following limit 

*
0 1 1

k 0 1 2 *
0 1

2 (5000 100v(t t ) (t t ) t
lim (k ,k , t)

2 (5000 100vt*) (t t ) t






     
  

where 
200

t
v

  . 

2) As k2→0, then the singular terms of 1 2(k ,k , t)  
have the following limits 

2 2

2

i 150 k i 50 k

k 0
2 2

e e
lim( ) 100

i k i k
   

2

2

k 0
2

sin(50k )
lim ( ) 50

k
  

2 2

2

i 50 k i 150 k

k 0
2 2

e e
lim( ) 100

i k i k

 


   

3) As k1→0, then the singular terms of 1 2(k ,k , t)   
have the following limits 

1

1

i 50 k

k 0
1 1

1 e
lim( ) 50

i k i k




   

1 1 1 1

1

i k (50 v(t t )) i k (100 v(t t ))

k 0
1 1

e e
lim( ) 50

i k i k

     


   

We investigated the water wave motion in the near and 
far-field by considering two kinematic in sequence re-
presentation of the sea floor faulting, one with vertical 
uplift motion with time followed by unilateral spreading 
in x-direction, both with constant velocity v. Clearly, 
from the mathematical derivation done above, η(x, y, t) 
depends continuously on the source ζ (x, y, t). Hence, 
from the mathematical point of view, this problem is said 
to be well-posed for modeling the physical processes of 
the tsunami wave.  
 
3. Results and Discussion  
 
We are interest in illustrating the nature of the tsunami 
build up and propagation during and after the uplift 
process. In addition, searching for explanations for ab-
normally large tsunami amplitudes, we demonstrate the 
waveform amplification resulting from source spreading 
and wave focusing in the near-field. We first examine the 
significance of the spreading velocity of the ocean floor 
uplift by comparing displacement waveforms along the 
x-axis and in 3-dimendional frame of work for various 
values of the ratio 

t

v

v
.  

 

3.1. Effect of 
t

v

v  on Tsunami Waveform  

 
In this section, we study the focusing and the amplifica-

tion of the tsunami amplitude, determined by the velocity 
of spreading. The results in Figure 4 show that, at the 
time when the source process is completed and for rapid 

lateral spreading (
t

v

v
 
≥ 10), the displacement of the free 

surface above the source resembles the displacement of 
the ocean floor. For velocities of spreading smaller than vt 

(
t

v

v  
< 1), the tsunami amplitudes in the direction of the 

source propagation become small with high frequencies. 
As the velocity of the spreading approaches vt, the tsuna-
mi waveform has progressively larger amplitude, with 
high frequency content, in the direction of the slip spread-
ing, Figure 5. These large amplitudes are caused by wave 
focusing (i.e. during slow earthquakes). It was observed 
from past tsunami, that slow earthquakes (0.1 < v < 1 
km/sec ) may consist of one or several high velocity rup-
ture events, which thus produce the usual train of high 
frequency waves, with long delays between the successive 
events, accompanied by the source, which can contribute 
large amplitude and low-frequency excitation, see [33]. 
Examples of such slow earthquakes are the June 6, 1960, 
Chile earthquakes which ruptured as a series of earth-
quakes for about an hour, [34], and the February 21, 1978, 
Banda Sea earthquake, [35]. In our case, we concern about 
studying the amplification of the tsunami amplitude, de-
termined by the velocity of spreading of a single-fault 
source and it will explain in details later on.  

It is difficult to estimate, at present, how often this 
type of amplification may occur during actual slow sub-
marine process, because of the lack of detailed know-
ledge about the ground deformations in the source area 
of past tsunamis. Therefore, we presented here only the 
basic ideas and illustrate the possible range of amplifica-
tion factors by means of a realistic curvilinear slip-fault. 

The amplification shown in Figure 4 and 5 depends on 
the spreading velocity v and the time t taken to spread 
the motion over the entire source region. This observa-
tion can be verified by comparing these results with the 
tsunami waveforms obtained by using a simple kinematic 
source model represented by a sliding Heaviside step 
function. This case was studied by Todorovska and Tri-
funac [21]. They considered a square source model cha-
racterized by W = L = 50 km, with uniform final eleva-
tion ζ0, and the velocity of lateral spreading of the ocean 
floor uplift was constant. We expand the propagation 
length L to 150 km and W to 100 km for the Heaviside 
step function in order to make comparison with the re-
sults we obtained. We assumed the beginning of the 
spreading from x = 0 to x = 150 km for both cases. 

0

x w w
(x, y, t) H(t ), (x, y) (0,L) ( , )

v 2 2
           

(25) 

Applying the Laplace-Fourier transform on ζ (x, y, t), 
then substituting it in (17) and using the inverse Lap- 
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(a)                                                        (b) 

 
Figure 4. Dimensionless free-surface deformation η(x, y, t )/ζ0 for v/vt > 1 at h = 2 km, L = 150 km, W = 100 km, vt =0.14 
km/sec and t  = 200/v sec. (a) Side view along the axis of the symmetry at y = 0; (b) Three dimensional view. 
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(a)                                                        (b) 

Figure 5. Dimensionless free-surface deformation η(x, y, t )/ζ0 for v/vt ≤ 1 at h = 2 km, L = 150 km, W = 100 km, vt = 0.14 
km/sec and t  = 200/v sec. (a) Side view along the axis of the symmetry at y = 0; (b) Three dimensional view.
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lace transform of 1 2(k , k , s)  yields for t t . 

1ik vt02
1 2 1 12 2

2 1

v2sin(50k ) 1
(k , k , t) ( sin t ik v cos t ik ve

k cosh(kh) (k v)


   


   

           
        (26) 

 
Hence, η(x, y, t) can be computed using inverse FFT 

of 1 2(k , k , t) .  

The removable singularities in this case are given by 
the following limits as 

1) As k→0, then 1 2(k , k , t)  has the following limit 

*
0

k 0 1 2 * *,
0

100vt t t
lim (k ,k , t)

100vt t t






  


 

where 
150

t
v

   

2) As k2→0, then the singular term of 1 2(k , k , t) has 

the following limit 

2

2
k 0

2

2sin(50k )
lim ( ) 100

k   

No singular terms needed to remove as k1→0.  

Table 2 shows the comparison for the peak tsunami 
amplitude ηmax/ζ0 at certain values of the spreading ve-
locity, for the curvilinear slip-fault source and the simple 
rectangular-slide with L = 150 km and W = 100 km. 

Figure 6 illustrates the tsunami waveforms generated 
by the slip-fault model and the rectangular-slide model 
with L = 150 km and W = 100 km when the maximum 
amplitude amplification occurs at v = vt. 

It can be observed from Table 2 that, at certain value of 
v, the waveform generated by the slip-fault model and the 
rectangular-slide has little different peak amplitudes. This 
happens as a result of wave focusing covers a wider area 
(curvilinear region) above the source which needed more 
time for amplification. For example, at v = vt, where the 
time for the slip-fault takes 23.8 min to complete the entire 
source region with peak amplitude equal to 7.906 m, while 
for the rectangular-slide the time duration takes 17.8 min 
to reach a maximum amplitude equal to 7.524 m. 

 
Table 2. Peak tsunami amplification for the curvilinear slip-fault model and the rectangular-slide at different        
values of the spreading velocity v. 

spreading velocity  ( km/sec)  η /ζ0  
(slip-fault)  

η /ζ0  
(rectangular-slide)  

v = 200vt = 28  1  1  
v = 20vt =2.8  1.481  1.003  

v = 10vt = 1.4  1.575  1.010  

v = 5vt = 0.7  1.615  1.042  

v = 2vt = 0.28  1.880  1.333  

v = 1.2vt = 0.168  3.145  3.204  

v = vt = 0.14  7.906  7.524  

v = 0.8vt = 0.112  3.014  1.958  

v = 0.6vt = 0.084  1.498  0.569  

 

 
(a)                                                        (b) 

Figure 6. Maximum tsunami amplitude at spreading velocity v = vt, generated by: (a) Slip-fault source; (b) Rectangular-slide 
source. 
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For v > vt, the maximum amplitudes calculated are small 
comparable to the peak amplitude at v = vt as shown in 
Figure 4 and Table 2. These values are logic due to rap-
id movements of the bed (v = 10vt and v = 200vt), which 
progressively approximated the shape of the bed defor-
mation. This phenomenon agrees with the physical 
process of tsunami wave produced by earthquakes. For v 
= 0.6vt and v = 0.8vt where the tsunami is faster than the 
uplift, the initial wave escapes ahead of the currently 
uplifted water and the amplitudes of the tsunami waves 
above the source become smaller with higher frequency 
content continues and hence no amplification will occur 
as shown in Figure 5(a). At the instant the source motion 
has been stopped, it may cover larger area than the area 
of the source due to dispersion as demonstrated in Figure 
5(b). 
 
3.2. Tsunami Generation and Propagation- 

Evolution in Time  
 
We study the effects of variations of the uplift as a func-
tion of time in the slowly uplift faulting and the spread-
ing slip fault sources in generating and propagating of 
tsunamis above and away from the sources. The genera-
tion of tsunamis by vertical displacements of the ocean 
floor depends on the characteristic size (length L and 

width W) of the displaced area and on the time t, taken to 
spread the motion over the entire source region. The ratio 
L/t then defines the average spreading (or fault rupture) 
velocity v, assuming unilateral spreading of the slip-fault 
along length L. We choose the velocity of the sea floor 
spreads similar to the long wave tsunami velocity vt (i.e. 
maximum amplification).We illustrate the final uplifted 
area for the slowly uplift faulting by L = 100 km and W 
= 100 km, and for the slip-fault by length of propagation 
L = 150 km and W = 100 km with constant spreading 
velocity v. Figures 7 and 9(a) show the tsunami gener-
ated waveforms at times t = 0.4t*, 0.6t*, 0.8t*, t*. It is 
seen how the amplitude of the wave builds up progres-
sively as t increases. Figures 8 and 9(b) illustrate the 
propagation process of the tsunami wave away from the 
source for times between t = 2t* and t = 3.5t*. Table 3 
represents the determined values ηmax/ζ0 by the slip-fault 
source during the times t = 0.2t*, 0.4t*, 0.6t*, 0.8t*, t*. 
At v = vt, the wave will be focusing and the amplification 
may occurs above the spreading edge of the slip as 
shown in Figure 9(a). This amplification occurs above 
the source progressively, as the source evolves, by add-
ing uplifted fluid to the fluid displaced previously by 
uplifts of preceding source segments. This explains why 
the amplification is larger for wider area of uplift source, 
than for small source area. 

 

 

Figure 7. Tsunami generated waveforms by a curvilinear uplift source with characteristic size L = 100 km and W = 100 km at 

different uplift times t at v = vt and 1

50
t* t

v
  sec. 

Table 3.Values of ηmax (x, y, t) /ζ0 at different rise time t and at v = vt. 

Rise time t  η /ζ   

t = 0.2 t   3.065  

t = 0.4 t   4.385  

t = 0.6 t   5.637  

t = 0.8 t   6.800  

t = t   7.906  
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  (a)                                                                (b) 

 
Figure 8. Tsunami propagated waveforms following the curvilinear uplift source with characteristic size L = 100 km and W = 

100 km at different rise times t and 
50

t*
v

 sec. (a) Top view; (b) Bottom view. 
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(a)                                                        (b) 

 
Figure 9. Tsunami waveform by the slip-fault source with v = vt , L = 150 km and W = 100 km at different rise time t where 


200

t*
v

. (a) Side view of the tsunami generated wave at y = 0; (b) Three dimensional view of the tsunami propagation. 
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  For very rapid movements of the bed, the water sur-
face displacement initially approximated the shape of the 
bed deformation and then divided into two wave trains 
propagating in opposite directions. The maximum am-
plitude of the largest wave leaving the generation region 
for these bed motions was found never to exceed one 
half of the maximum bed displacement. For slower mo-
tions of the bed like the case we study, the maximum 
wave amplitudes decreased [31]. Similar features relating 
to the maximum amplitudes of waves propagating from 
the generation region in a three-dimensional fluid do-
main were discussed by Nakamura [10], Momoi [11] and 
Kajiura [12]. The results shown in Figure 7 demonstrat-
ed the water surface displacement generated by slow 
motions of the bed. The waveforms approximated the 
shape of the bed deformation with smaller amplitude 
than the sea bed which then divided into two wave trains 
propagating in opposite directions as shown in Figure 8. 
The maximum amplitude of the largest wave leaving the 
generation region for this bed motions was one half of 
the maximum initial wave displacement. This agrees 
with the typical phenomena of past tsunami wave gener-
ated by slowly earthquakes. 

In case of the curvilinear slip-fault, we assume the 
waveform was initiated by end stage of the uplift source, 
and then propagated in the x-direction with constant ve-
locity v. It is seen from Figure 9(a), how the amplitude 
of the wave builds up as progressively more water is 
lifted below the leading wave depending on its variation 
in time and the space in the source area. The parameter 
that governs the amplification of the near-field water 
waves by focusing is the ratio of the spreading length L 
over the water depth, L/h, as shown in Figure 9(a) and 
Table 4. As the spreading length in the slip-fault in-
creases, the amplitude of the tsunami wave becomes 
higher. As the wave propagates, the wave height de-
creases and the slope of the front of the wave becomes 
smaller, causing a train of small waves forms behind the 
main wave, as shown in Figure 9b. The maximum wave 
amplitude decreases with time, due to the geometric 
spreading and also due to the dispersion. At t = 3.5t*, the 
wave front is at about x = 567 km and η/ζ0 decreases to 
3.313. This happens because the amplification of the 
waveforms in the far-field does not depend on the source 

velocity, but only on the volume of the displaced water 
by the source process which become an important factor 
in modeling the generation of tsunami. This was clear 
from the singular points removed for the two source 
models, where the finite limits of the free surface de-
pends on the characteristic volume of the source models. 

Table 3 shows the variation in the amplification factor 
ηmax/ζ0 for various values of the rise time t at h = 2 km 
and t = t* = L/v. It can observe that, the peak amplitude 
increases as the rise time increases. This is due to the 
amplification mainly depends on the length of propaga-
tion L. 

Table 4 shows the variation in the amplification factor 
ηmax/ζ0 for various values of the propagated uplift length 
L and width W at h = 2 km and t = t1 + L/v. Note that at 
L = 0, no propagation occurs and the waveform takes 
initially the shape and amplitude of the curvilinear uplift 
fault (i.e. ηmax/ζ0 = 1). It is seen from Table 4 that for L/h 
between 0 and 500, ηmax/ζ0 varies from 1 to 27.82. It can 
be observed that the amplification increases with the 
increase in L/h (0-500) and with the increase in W/L 
(0.25-5). The increase in the propagation length produces 
larger amplification than the increase in the width. This 
happens from the assumption that the source model prop-
agated instantaneously in the y-direction. This leaves us to 
study the generation of tsunami by spreading curvilinear 
slides and slumps in two directions in Future work. 

Figure 10 represents the values of the normalized 
peak wave amplitude ηmax/ζ0 at v = vt and h = 2 km for 
different values for W/L obtained from Table 4. 

Table 5 presents the effect of the water depth h on the 
amplification factor ηmax/ζ0 for various values of the ra-
tios W/L and at constant propagation L = 150 km. It is 
seen that for h between 0.5 and 6 km, ηmax/ζ0 is varies 
from 19.77 to 3.565. The values determined in Table 5 
shows that the maximum amplitude amplification in-
creases with the decrease in h. This phenomenon hap-
pens because the speed of the tsunami is related to the 
water depth which produces small wavelength as the 
velocity decreases and hence the height of the wave 
grows as the change of total energy of the tsunami re-
mains constant. Mathematically, wave energy is propor-
tional to both the length of the wave and the height 
squared. Therefore, if the energy remains constant and 

 
Table 4. Values of ηmax/ζ0 at v = vt and h = 2 km with various values of L and W and t = t1 + L/v.  

L/h 
( h = 2 km )        0.25             0.5        

W/L 
1.0               2                5  

0  1.0000  1.0000  1.0000  1.0000  1.0000  
5  1.9190  1.9230  1.9290  1.9320  1.9330  
10  2.5410  2.5550  2.5720  2.5840  2.5840  
25  3.7820  3.8250  3.8780  3.9260  3.9270  
50  5.9160  5.9920  6.0330  6.1210  6.1220  
100  9.3310  9.5360  9.5390  9.5610  9.5940  
250  16.940  17.500  17.530  17.540  17.540  

500 27.360 27.780 27.790 27.820 27.820 
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Table 5. Values of ηmax /ζ0 at v = gh, L = 150 km and t* = 200/v for various values of the W/L. 

h ( km )  
0.25             0.5     

W/L  
1.0               2                5 

0.5  19.690  19.730  19.730  19.770  19.770  
1  12.410  12.510  12.510  12.560  12.560  
2  7.7610  7.8990  7.9100  7.9730  7.9740  
3  5.8600  6.0190  6.0430  6.1160  6.1180  
4  4.7800  4.9490  4.9880  5.0680  5.0710  
5  4.0670  4.2400  4.2920  4.3790  4.3820  
6  3.5650  3.7290  3.7920  3.8840  3.8880  

 

 

Figure 10. The normalized peak wave amplitude ηmax/ζ0 versus the dimensionless parameter L/h for v = vt, W/L ≥ 0.25 and h 
= 2 km. 
 

 

Figure 11. The normalized peak wave amplitude ηmax /ζ0 versus the water depth h for v = vt, W/L ≥ 0.25 and propagation 
length L = 150 km. 
 
the wavelength decreases, then the height must increase. 
These results agree with the aspect obtained by Hayir [36] 
who determined the effects of ocean depth on tsunami 
amplitudes for simple kinematic source models. 

Figure 11 represents the values of the normalized 
peak wave amplitude ηmax /ζ0 for different values of wa-
ter depth h and the ratios W/L at constant propagation L 
= 150 km. 
 
4. Conclusions  
 
In this paper, we presented a review of the main physical 
characteristics of a realistic tsunami sources. We consi- 

dered two curvilinear source models represented by a 
slowly uplift faulting followed by a slip-fault model. We 
studied the effect of the source propagation and wave fo-
cusing on the amplitudes of the tsunami generated and 
propagated by the dynamic source models conside- 
red.The results showed that the amplitude amplification of 
up to 8 order of magnitude occurs in the direction of 
source propagation when the velocity of the source is 
close to the long period tsunami velocity. This means that 
amplification occurs above the source, progressively, as 
the source evolves, by adding uplifted fluid to the fluid 
displaced previously by uplifts of preceding source seg-
ments. This amplification depends on the characteristic 
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size of the displaced area and the time it takes to spread 
the motion over the entire source region. It is observed 
that near the source, the wave has large amplitude with 
short wavelength pulse, while as the tsunami further de-
parted away from the source the amplitude of this pulse 
decreased due to dispersion. This happens because in the 
far-field the peak tsunami amplitude does not depend on 
the source velocity, but only on the volume of the dis-
placed water by the source process. The results show that, 
the largest peak of the tsunami amplitude at time t* oc-
curs when v = vt due to wave focusing. It is seen that for 
source model we considered that spread rapidly 

(
t

v
10

v
 ), the displacement of the free surface resembles 

the displacement of the ocean floor at time t* (i.e.,

0

1



 ). For (
t

v

v
< 1), the peak amplitude decreases due 

to dispersion with the present of high frequency contents 
in the wave. These results are in complete agreement 
with the aspect of the tsunami generated by a slowly 
spreading uplift of the ocean bottom presented by Todo-
rovsk & Trifunac [21] who considered a very simple 
kinematic source model. From this observation, we nu-
merically analyzed the dependence of the peak amplifi-
cation of the tsunami waveforms by changing the length 
of propagation, the width of the source and the water 
depth. It was found that the maximum amplitude ampli-
fication is proportion to the propagation length and the 
width of the source model and inversely proportional 
with the water depth. The presented analysis suggests 
that some abnormally large tsunamis could be explained 
in part by a slowly spreading uplift of the sea floor. Our 
results should help to enable quantitative tsunami fore-
casts and warnings based on recoverable seismic data 
and to increase the possibilities for the use of tsunami 
data to study earthquakes, particularly historical events 
for which adequate seismic data do not exist. The esti-
mated near-field tsunami generated under the effect of 
variable velocity of curvilinear slides and slumps 
spreading in two directions are underway. 
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APPENDIX  
 
The equations for conservation of mass and momentum 
for an inviscid, incompressible fluid are 

Mass:      . 0 u              (A.1) 

Momentum:  . gz
t 

 
       

u P
u u    (A.2) 

where ( , t)u x is the velocity vector (u, v, w) of the fluid, 

( , t)P x is the pressure vector,   the density, g the gra-

vitational acceleration, and (x, y, t)x with the z axis 

pointing vertically upward.  
  By assuming that the flow is irrotational, hence the 
velocity field u  can be written as the gradiant of the 
potential function  u  , where   is the velocity 

potential. Then the continuity equation becomes the Lap-
lace’s equation  

2 0  .             (A.3) 

  Mathematically, a general solution does not exist for 
gravity waves and approximations must be made for even 
simple waves. One of the important problems in water 
wave theory is to establish the limits of validity of the 
various solutions that are due to the simplifying assump-
tions. The mathematical treatments of water wave motion 
use all the mathematical physics dealing with linear and 
nonlinear problems. The main difficulty in the study of 
water motion is that the free surface boundary is un-
known. The coordinate axis that will be used to describe 
wave motion will be located at the vertical displacement
z (x, y, t) . The bottom of the water body will be at

z h (x, t)   .  

  If the velocity potential is known, then the pressure 
field can be found from (A.2). By using the vector iden-
tity 

2u
. ( )

2
      u u u u .     (A.4) 

  From irrotationality (i.e. = 0u ), (A.2) may be 
rewritten as 

21
( gz)

t 2

 


        

P
.   (A.5) 

  Upon integration with respect to the space variables, 
we obtain 

2P 1
gz C(t)

t 2

 



     


 ,   (A.6) 

where C(t) is an arbitrary function of  and can usually 
be omitted by redefining   without affecting the veloc-
ity field. Equation (A.6) is called the Bernoulli equation. 
The first term gz, on the right-hand side of (A.6) is the 
hydrostatic contribution, whereas the hydrodynamic con-
tribution to the total pressure P.  

  Two types of boundaries interest us: the air-water in-
terface which will also be called the free surface and the 
wetted surface of an impenetrable solid (bottom surface). 
Along these two boundaries the fluid is assumed to move 
only tangentially. Let the instantaneous equation of the 
boundary be  

F(x, t) z (x, y, t)   ,       (A.7) 

where   is the height measured from z = 0, and let the 

velocity of a geometrical point x of the moving free sur-
face be q. 
  After short time dt, the free surface is described by  

 

  2

F x qdt, t dt 0

F
F x, t q F dt O(dt)

t

   

      

     (A.8) 

 

  In view of (A.7), it follows that  
F

q. F 0
t


  


.              (A.9) 

  For small but arbitrary dt. The assumption of tangential 
motion requires u. F q. F   .   

  This in turn implies that  
F

u. F 0
t


  


 on z (x, y, t)  ,  (A.10) 

or equivalently 

t x x y y z

          
  

     
  on  z (x, y, t)   (A.11)  

On the sea bottom (x, y, t)  at depth h, (A.7) becomes 

z h (x, y, t) 0    and (A.9) may be written by the 

same way as:  

t x x y y z

          
  

     
   on  z h (x, y, t)   . 

 (A.12) 
  Equations (A.11) and (A.12) are referred to the kine-
matic boundary conditions. 
  On the air-water interface, both   and   are un-
known and it is necessary to add a dynamic boundary 
condition concerning forces. 
  The wavelength is so long that surface tension is un-
important, and hence the pressure at the beneath the free 
surface must equal to the atmospheric pressure Pa above. 
It can be taken P 0  using the simple transformation

aP P P   which does not change the basic Euler equa-

tions which depend upon P . Hence Bernoulli Equation 
(A.6) at the free surface gives the boundary condition  

21
g 0

t 2

  
   


   on   z (x, y, t) .  (A.13) 

  This is known as the dynamic boundary condition at 
the free surface.
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Abstract 

The numerical algorithms for finding the lines of branching and branching-off solutions of nonlinear prob-
lem on mean-square approximation of a real finite nonnegative function with respect to two variables by the 
modulus of double discrete Fourier transform dependent on two parameters, are constructed and justified. 
 
Keywords: Mean-Square Approximation, Discrete Fourier Transform, Two-Dimensional Nonlinear Integral 

Equation, Nonuniqueness And Branching of Solutions. 

1. Introduction 
 
The mean-square approximation of real finite nonnega-
tive function with respect to two variables by the mod-
ulus of double discrete Fourier transform dependent on 
physical parameters, is widely used, in particular, at 
modeling and solution of the synthesis problems of dif-
ferent types of antenna arrays, signal processing etc. 
[1-3]. Nonuniqueness and branching of solutions are 
essential features of nonlinear approximation problem 
which remains unexplored. The problem on finding the 
set of branching points, in turn, is not adequately ex-
plored nonlinear spectral two-parametric problem. The 
methods of investigation and numerical finding the solu-
tions of one-parametric spectral problems at presence of 
discrete spectrum [4-8] are most well-developed. The 
existence of coherent components of spectrum, which are 
spectral lines for the case of real parameters [9], is essen-
tial difference of nonlinear two-parametric spectral 
problems. 

In the work a variational problem on the best mean- 
square approximation of a real finite nonnegative func-
tion by the module of double discrete Fourier transform 
is reduced to finding the solutions of Hammerstein type 
nonlinear two-dimensional integral equation. Using the 
Schauder principle the existence of solutions is proved. 
The existence theorem of coherent components of spec-
trum of holomorphic matrix functions dependent on two 
spectral parameters is proved. It justifies the application 
of implicit functions methods to multiparametric spectral 
problems [9]. The applicability of this theorem to the  

analysis of spectrum of two-dimensional integral homo-
geneous equation to which is reduced the problem on 
finding the lines of possible branching of solutions of the 
Hammerstein equation, is shown. Algorithms for nu-
merical finding the optimum solutions of an approxima-
tion problem are constructed and justified. Numerical 
examples are presented. 
 
2. Problem Formulation, Basic Equations  
  and Relations 
 
Consider the special case of double discrete Fourier 
transform  

 
2 2

1 1

( )

1 2 1 1 2 2
( )

( , ) exp
N M n

nm nm nm
n N m M n

f s s I i c x s c y s
 

        

setting here nm xx n   ( )n N N   , nm yy m   

( )m M M   ; 1 1 xc c  , 2 2 yc c  . If it is necessary 

for the accepted assumptions we shall consider the for-
mula  

 1 2 1 1 2 2( , ) exp
N M

nm
n N m M

f s s A I i c ns c ms
 

     I  (1) 

as a linear operator, acting from complex finite-dimensional 
space 2 2N M

IH    ( 2 2 1N N  , 2 2 1M M  ) into 

the space of complex-valued continuous functions with 
respect to two real variables determined in the domain 

  1 2 1 1 2 2, : ,s s s c s c      . 
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Here 1c , 2c  are any real non-dimensional numerical 

parameters belonging to 

  1 2 1 2, : 0 , 0c c c c a c b      . 

The function 1 2( , )f s s  is 12 c  - periodic function 

on argument 1s  and 22 c  - periodic on 2s . 

In considered spaces we introduce scalar products and 
generable by them norms 

 
2

1 2
1 2

4
,

I

N M

nm nmH
n N m M

I I
c c  


  I I , 

 1/2
,

IH
I I I ,               (2) 

 
 

   (2)1 2 1 1 2 2 1 2 1 2, , ,
C

f f f s s f s s ds ds
 

  , 

 
 
(2)

1/ 2
,

C
f f f


 .             (3) 

Denote an augmented space of continuous functions 

with entered scalar product and norm (3) as (2)
( )C   and 

notice that its augmentation coincides with the Hilbert 
space 2 ( )L   [10]. 

By direct check we are sure that such equality 

 
22 22

1 2 1 2
,

, nm
n m

A f s s ds ds II I


      (4) 

is valid. From here follows, that A  is isometric opera-
tor in sense (4). 

Using the entered scalar products (2) and (3) we find 
the conjugate operator required later on 

   1 2
1 2 1 1 2 2 1 22
, exp

4

c c
A f f s s i c ns c ms ds ds



       

 ,n N N m M M      .          (5) 

Let such function be given 

1 2 1 2
1 2

1 2

( , ), ( , ) ,
( , )

0, ( , ) \ ,

F s s s s G
F s s

s s G

    


      (6) 

where 1 2( , )F s s  is a real continuous and nonnegative in 

the domain G  function. 
Consider a problem on the best mean-square approxi-

mation of the function 1 2( , )F s s  in the domain   by 

the module of double discrete Fourier transform (1) ow-
ing to select of coefficients of the vector I . We shall 
formulate it as a minimization problem of the functional  

   
(2) (2)

2 2
( ) F A F f

C C

I I
 

            (7) 

in the Hilbertian space IH . Taking into account (4) and 

(5), we write the functional ( )I  in a simplified form 

 

 
 

(2) (2)

22 2
( ) 2 ,

IH
F F A

C C

I I I
 

    .      (8) 

On the basis of necessary condition of functional 
minimum we obtain a nonlinear system of equations re-
lating to the components of vector I  in the space IH  

that are represented in the vector and expanded forms, 
respectively: 

  exp argA F i AI I    ,           (9) 

 1 2
1 22
, exp arg

4

N M

nm nm
k N l M

c c
I F s s i I

 

       
 

     1 1 2 2 1 1 2 2 1 2exp i c ks c ls c ns c ms ds ds        

 ,n N N m M M      .          (9) 

Acting on both parts of (9) by operator A  we obtain 
equivalent to (9) the Hammerstein type nonlinear integral 
equation relating to f : 

   ( ) , , ( )exp arg ( )f Q f K Q Q F Q i f Q dQB c


      , (10) 

where 1 2( , )Q s s   , 1 2dQ ds ds   ,  1 2,c cc  ; 

     1 1 1 1 2 2 2 2, , , , , ,K Q Q K s s c K s s cc    ,    (11) 
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. 

Note, that the kernel (11) of Equation (10) is degener-
ate and real. 

We shall consider one of the properties of function 

 exp arg ( )i f Q  entering into (10) at ( ) 0f Q  . Ob-

viously that the function  

 
 1 22 2

( ) ( ) ( )
exp arg ( )

( ) ( ) ( )

f Q u Q iv Q
i f Q

f Q u Q v Q

    
  

 

is continuous if ( ) Re ( )u Q f Q   and ( )v Q   

Im ( )f Q  are continuous functions, where exp arg (i f  

) 1Q   for any ( )f Q . If ( ) 0u Q   and ( ) 0v Q   

simultaneously then ( ) 0f Q   is a complex zero. Its 

argument is undetermined accordingly to definition of 
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complex zero [11, p. 20]. On this basis we redefine 

 exp arg ( )i f Q  at ( ) 0u Q   and ( ) 0v Q   as a 

function which has module equal to unit and undeter-
mined argument. 

The equivalence of (9) and (10) follows from the fol-
lowing lemma. 

Lemma 1. Between solutions of Equations (9) and (10) 
there exists bijection, i.e., if I  is a solution of (9) then 

f AI   is the solution of (10); on the contrary, if f  

is the solution of (10) then 

  exp arg( )A F i fI 
            (12) 

is the solution of (9). 

Proof. Let I  be a solution of (9). Then A
 I  

  exp arg 0F i A    I . Acting on this identity by the 

linear operator A , we have  exp argA AA F iI 
    

  0AI  . Since the operator A  acts from the space 

2 2N M
IH    into the space (2)

( )C   and accordingly into 

the space 2 ( )fH L  , and the set of its nulls consists 

of only null element from the last identity follows, what 

fA f HI     is a solution of (10). 

On the contrary, let ff H    solves the Equation (10). 

The operator A  acts from the space 2 ( )fH L    

into the space 2 2N M
IH    [10] and the Hilbertian 

space 2L  coincides with the space 2L  [10]. From here 

follows, that A  acts from the space 2 ( )fH L   into 

the space 2 2N M
IH   . Taking into account that F  is 

a finite function determined by (6), and f  is continu-

ous, the function  exp arg( )F i f  is quadratic inte-

grability in the domain  , i.e.  exp arg( ) fF i f H  . 

Thus   exp arg( ) IA F i f H
  I  and the right part 

of (10) is the result of action of operator A  on an ele-

ment I , i.e.   exp arg( )A AA F i f fI 
    . Writ-

ing this equality as    exp arg( ) 0A A F i AI I
    

and taking into account that a set of operator nulls con-
sists of only a null element we obtain 

  exp arg( )A F i AI I
  . So,  exp argA F iI 

   

( )f  solves the Equation (9). Lemma is proved. 

Thus owing to the equivalence of (9) and (10) we con-
sider simpler of them, namely (10). The Equation (9) is a 
more complicated equation in sense that in its right part 
the operator A  is in an index of the power of exponent. 

Besides taking into account that a set of values of opera-
tor A  is a set of continuous functions in the domain 
  belonging to the space  2L   and this set is a 

compact in the space 2 ( )L   [12], we shall investigate 

solutions of (10) in the space ( )C  . 

Formulate the important properties of (10), which are 
checked directly. 

1) If function ( )f Q  is a solution of (10) then the 

conjugate complex function ( )f Q  is also the solution 

of (10). 
2) If function ( )f Q  is a solution of (10), then 

 exp ( )i f Q  is also the solution of (10) (  is any real 

constant). 
3) For even on two arguments (or on one argument) 

functions 1 2( , )F s s  the nonlinear operator B  that is in 

the right part of (10), is an invariant concerning the type 
of parity of the function 1 2arg ( , )f s s  on two arguments 

(or on that argument on which 1 2( , )F s s  is an even 

function). 
Below taking into account the property 2) for unique-

ness of solutions we set the parameter 0  .  

Consider the operator 

 , , ( )Df K Q Q f Q dQc


           (13) 

and corresponding to it quadratic form  

 , ( , , ) ( ) ( )Df f K Q Q f Q dQ f Q dQc
 

      

 
2

1 1 2 2 1 2 1 2exp ( , )
N M

n N m M

i c ns c ms f s s ds ds
  

        

2

1 2

2 2
0

c c

   
   
  

I . 

Obviously that this inequality modifies into equality 
only as 0I  . From here follows that the kernel 

 , ,K Q Q c  is positively defined [13]. Accordingly op-

erator D  is positive on nonnegative functions cone K  
of the space ( )C   [14]. According to it D  leaves 

invariant the cone K , i.e. D K K . 
Complex decomplexified space ( )C   [10] we con-

sider as a direct sum of two real spaces of continuous 
functions ( ) ( ) ( )C CC       in the domain  . The 

elements of this space are written as ( , ) ( )Tf u v C   , 

( )u C  , ( )v C  . Norms in these spaces have the 

form: 

( )
max ( )

C Q
u u Q

 
 , 

( )
max ( )

C Q
v v Q

 
 , 
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 ( ) ( ) ( )
max ,

C C
f u v

C   
 . 

The Equation (10) in the decomplexified space ( )C   

we reduce to equivalent to it system of the nonlinear eq-
uations 

 1 2 2

( )
( ) ( , ) , , ( )

( ) ( )

u Q
u Q B u v K Q Q F Q dQ

u Q v Q
c




   

 
 , 

 2 2 2

( )
( ) ( , ) , , ( )

( ) ( )

v Q
v Q B u v K Q Q F Q dQ

u Q v Q
c




   

 
 . 

 (14) 

Denote the closed convex set of continuous functions 
as ( )RS C   supposing that 

u vR R RS S S  ,  ( )
:

uR C
S u u R


  , 

 ( )
:

vR C
S v v R


  , 

max ( , , ) ( )
Q

R K Q Q F Q dQc




    . 

Theorem 1. The operator 1 2( , )TB BB   determined 

by the Formula (14) maps a closed convex set RS  of the 

Banach space ( )C   in itself and it is completely con-

tinuous. 
Proof. At first we show that : ( ) ( )B C C   . Let 

( , )Tf u v  be any function belonging to ( )C  . At 

 1 2, cc c   the kernel  , ,K Q Q c  is a continuous 

function with respect to its arguments in the closed do-
main  . Then accordingly to the Cantor theorem 
[15]  , ,K Q Q c  is a uniformly continuous function in 

 . From here follows: for any points 1 1( , )Q Q , 

2 2( , )Q Q  such that whenever    1 1 2 2, ,Q Q Q Q    , 

then    1 1 2 2, , , ,K Q Q K Q Q
a

  c c , where a   

( )F Q dQ


  . On this basis we obtain 

   1 2 1 2( ) ( ) ( ) , , , ,u Q u Q F Q K Q Q K Q Qc c


         

2 2

( )
( )

( ) ( ) G

u Q
dQ F Q dQ

au Q v Q

      
 

 ,    (15) 

since 
2 2

( )
max 1

( ) ( )Q

u Q

u Q v Q




 
. 

Analogously we have that 1 2( ) ( )v Q v Q    when-

ever    1 1 2 2, ,Q Q Q Q    , i.e. ( , ) ( )Tu v C   and 

: ( ) ( )B C C   . 

To prove the property of a complete continuity of the 

operator 1 2( , )TB BB   it is necessary to prove its com-

pactness and continuity [12]. Show a continuity 

1 2( , )TB BB  . Let 1 1 1( , )T
Rf u v S   be any fixed 

function and 2 2 2( , )Tf u v  be any function belonging 

to RS . It is necessary to show that 1 2 ( )
0f f

C
B B


   

as 1 2 ( )
0f f

C 
  . Set 2 1u u u   , 2 1v v v   . 

Taking into account these equalities we obtain 

2 1

2 2 2 2
2 22 2 1 1
1 1 2 2

1 1

2 2
1

u u u

u v u u v v u v
u v

u v

 


       
 



. 

At 
( )

0
C

u


  , 
( )

0
C

v


   we have 

1 2

2 2 2 20,
1 1 2 20 ( )

( ) ( )
lim

( ) ( ) ( ) ( )u
v

u Q u Q

u Q v Q u Q v Q
C

 
  

 
 

 

 
1

2 20,
1 11 10

( ) 1
lim max 1

( ), ( )( ) ( )u Q
v

u Q

P u Q v Qu Q v Q  
 

         

 

 2 2
1 1 1 1

( )
0

( ) ( ) ( ), ( )

u Q

u Q v Q P u Q v Q

  
 

,    (16) 

where 

 1 1( ), ( )P u Q v Q   

2 2
1 1

2 2
1 1

2 ( ) ( ) 2 ( ) ( ) ( ) ( )
1

( ) ( )

u Q u Q v Q v Q u Q v Q

u Q v Q

      
 


, 

since 

 1 1
0,
0

lim max ( ), ( ) 1
u Q
v

P u Q v Q
  
 

 . 

Similarly we obtain 

1 2

2 2 2 20,
1 1 2 20

( ) ( )
lim max 0

( ) ( ) ( ) ( )u Q
v

v Q v Q

u Q v Q u Q v Q  
 

 
 

. (17) 

Thus, from (16) and (17) follows  

1 1 1 1 2 2 ( )0,
0

lim ( , ) ( , )
u
v

B u v B u v
 

 

 
C

 

 
0,
0

lim max ( ) , ,
u Q
v

F Q K Q Q
  

 

   c  

1 2

2 2 2 2
1 1 2 2

( ) ( )
0

( ) ( ) ( ) ( )

u Q u Q
dQ

u Q v Q u Q v dQ Q

      
       

. 

Analogously 
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( )

( )

2 1 1 2 2 2 ( )0,

0

lim ( , ) ( , ) 0
C

C

u

v

B u v B u v
C





 
 

  . 

So, 1 2( , )TB BB   is continuous operator from ( )C   

into ( )C  . 

We show that a set of functions g RS SB  satisfies 

conditions of the Arzela theorem [12], i.e. we show that 
functions of the set gS  are uniformly bounded and 

equipotentially continuous. Furthermore R RS SB  . Let 

   1 2, ( , ), ( , )
T T

g w f B u v B u v   B , where f   

( , )Tu v  is any function of the set RS . Then as 

   1 2, ,Q Q Q Q     analogously with (15) we have 

1 2

1 2

( )
( ) ( )

( ) ( ) ( )

F Q dQ
aw Q w Q

Q Q F Q dQ
a





                        
 




. 

Thus functions of the set g RS SB  are equipoten-

tially continuous. 
The uniform boundedness of the set g RS SB  fol-

lows from an inequality 

  ( )
max max ( ) , ,

Q
g F Q K Q Q

 


  C
c  

2 2

( )

( ) ( )

u Q
dQ

u Q v Q


 

 
 

 
2 2

( )
max ( ) , ,

( ) ( )Q

v Q
F Q K Q Q dQ R

u Q v Q
c




    
  

 , 

where ( , )Tf u v  is any function of the set RS  and 

 1 2( , ), ( , )
T

g f B u v B u vB  . From the last inequality 

we have also R RS SB  . So, the operator 1 2( , )TB BB   

is completely continuous mapping a closed convex set 

 RS C   into itself. 

Theorem is proved. 
From the Theorem 1 follows satisfaction of conditions 

of the Schauder principle [16] according to which the 

operator 1 2( , )TB BB   has a fixed point ( , )Tf u v    

belonging to the set RS . This point is a solution of a 

system of Equation (14) and Equation (10), respectively. 

Substituting ( , )Tf u v    into (12), we obtain a solu-

tion of (9) being a stationary point of the functional (7). 
The solutions of a system of equations analogous with 

(14) in a case of one-dimensional domains   were 

investigated for the synthesis problem of linear antenna 
array in particular in [17]. The obtained there results 
show that for equations of the type (10) and (14) 
non-uniqueness and branching of solutions dependent on 
the size of physical parameter are characteristic. Directly 
the results [17] cannot be transferred on the 
two-dimensional two-parametric problem (8) and (14). 
Here, as unlike the points of branching [17], the branch-
ing lines of solutions exist and a problem on finding the 
lines of branching is a nonlinear two-parametrical spec-
tral problem. 

Easily to be convinced that function 

 0 ( , ) ( ) , ,
G

f Q F Q K Q Q dQc c           (18) 

is one of solutions of (10) in the class of real functions. 
Since, as shown before, the operator D  determined by 
(13), is positive on the nonnegative functions cone 

C( ) K , D K K  and F  K , then 0f DF  also 

is a nonnegative function in the domain  . 
To find the lines of branching and complex solutions 

of (10), branching-off from real solution 0 ( , )f Q c , we 

consider a problem on finding such set of values of pa-

rameters  (0) (0) (0)
1 2,c cc   and all distinct from 

0 ( , )f Q c  solutions of the system (14) which for 
(0) 0c c   (where (0)

1 1c c , (0)
2 2c c ) satisfy con-

ditions 

   (0)max , , 0
Q G

u Q f Qc c


  ,  max , 0
Q G

v Q c


 . (19) 

These conditions indicate the need to find small con-
tinuous in G  solutions  

     (0)
0, , ,w Q u Q f Q c c c ,    , ,Q v Q c c , 

which converge uniformly to zero as (0)c c . 
Set 

(0)
1 1c c   , (0)

2 2c c            (20) 

and desired solutions we find in the form 

     (0)
0, , , ,u Q f Q w Q   c c ,    , , ,v Q Q   c . 

    (21) 
Further we omit dependence of the functions 

 , ,w Q    and  , ,Q    on parameters   and  . 

Notice the properties of integrand in the system (14). 
They are continuous functions with respect to the argu-
ments. After substitution (20) and (21) into (14) the inte-
grand develop in equiconvergent power series by func-
tional arguments w  and  , numerical parameters   

and   in the vicinity of a point   (0) (0)
0, , ,0f Qc c : 

 
2 2

( )
( ) , ,

( ) ( )

u Q
F Q K Q Q

u Q v Q


  

 
c  
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 (0)

0

, , ( ) ( )m n p q
mnpq

m n p q

A Q Q w Q Q
   

      c , 

 
2 2

( )
( ) , ,

( ) ( )

v Q
F Q K Q Q

u Q v Q


  

 
c  

 (0)

1

, , ( ) ( )m n p q
mnpq

m n p q

B Q Q w Q Q
   

      c . (22) 

Here  (0), ,mnpqA Q Q c ,  (0), ,mnpqB Q Q c  are coeffi-

cients of expansion continuously dependent on the ar-
guments. Substituting (20) and (22) into (14) and taking 

into account that  (0)
0 ,f Q c  solves the system (14) we 

obtain a system of nonlinear equations with respect to 
small solutions w ,  : 

   (0) (0)
10 01( ) , ,u Q a Q a Q    c c  

 (0)

2

, , ( ) ( )p q m n
mnpq

m n p q

A Q Q w Q Q dQ
    

        c , 

 (23) 

   
(0)

(0)
0

( )
( ) ( ) , ,

,

Q
Q F Q K Q Q dQ

f Q

   
 c

c
 

 (0)

2

, , ( ) ( )p q m n
mnpq

m n p q

B Q Q w Q Q dQ
    

        c , 

      (24) 
where 

   (0) (0)
10 0010, , ,

G

a Q A Q Q dQc c   , 

   (0) (0)
01 0001, , ,

G

a Q A Q Q dQc c   . 

 
3. Nonlinear Two-Parametric Spectral  

Problem 
 
For further application of methods of the branching the-
ory of solutions of nonlinear equations [18] to a system 
(23) and (24) it is necessary to find solutions of distinct 
from trivial of the linear homogeneous integral equation 
obtained equating to zero the left part of (24) 

 1 2 1 2
0 1 2

( )
( ) ( , ) , , , ( )

( , , )
G

F Q
Q T c c K Q Q c c Q dQ

f Q c c


     

  

(25) 
under condition 

0 ( , ) 0f Q c  . Indicate that the operator 

( ) : ( ) ( )T c C C    is completely continuous. Proof of 
this property is similar to the proof of a complete conti-
nuity of the operator 

1 1( , )TB BB   in the Theorem 1. 
According to [18] such values of parameters 
(0) (0) 2
1 2( , )c c   at which linear homogeneous Equation 

(25) has distinct from identical zero solutions are points 

of possible branching of solutions of a system of nonlin-
ear Equations (23) and (24). The eigenfunctions of (25) 
are used at construction branching-off solutions of (23) 
and (24). 

The spectral parameters 1c and 2c are included non- li-

nearly into the kernel of the integral operator. Therefore 
a problem on finding the distinct from 0 1 2( , , )f Q c c  

solutions of (25) is a nonlinear two-parametric spectral 
problem. It consists in finding such values of real pa-
rameters  1 2, cc c   at which (25) has distinct from 

identical zero solutions. 
In operational form a nonlinear two-parametric prob-

lem is presented as 

 1 2 1 2( , ) ( , ) 0c c x E T c c x  A .     (26) 

Here E  is an identical operator and 1 2( , )T c c  is a 

linear integrated operator acting in the Banach space 
( )C  . It is necessary to find eigenvalue c  

 (0) (0)
1 2, cc c   and corresponding eigenvectors 

 (0)x C   ( (0) 0x  ) such that (0) (0) (0)
1 2( , ) 0c c x A . 

By direct check we ascertain that for any values of 
parameters  1 2, cc c   the function 

 0ˆ ( , ) ( ) , ,Q F Q K Q Q dQ


    c c       (27) 

is one of eigenfunctions.  
Write a conjugate to (25) equation required in later 

 
0

( )
( ) ( ) , , ( )

( , )

F Q
Q T K Q Q Q dQ

f Q




      c c
c

. (28) 

At arbitrary  1 2, cc c   the function  

0ˆ ( ) ( )Q F Q              (29) 

is one of eigenfunctions of (28)  
The existence of distinct from identical zero solutions 

of (25) at arbitrary  1 2, cc c   testifies to the exis-
tence of coherent components of a spectrum contermi-
nous with the domain c .  

For finding the distinct from 0ˆ ( , )Q c  solutions we 

exclude from the kernel of integral Equation (25) the 
eigen function (27), namely: consider the equation  

 ( , ) ( ) , , ( )Q T Q Q Q dQc c c


       K ,     (30) 

where 

       0 0
0

( )
, , , , ( ) ,

,

F Q
Q Q K Q Q Q Q

f Q
c c c

c


    


K , 

                                       (31) 

2

0
0

0

ˆ ( )
( )

ˆ
L

Q
Q


 


,    

2

0
0

0

ˆ ,
,

ˆ
L

Q
Q


 


c

c .         (32) 
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From Schmidt Lemma [18] follows that 0 ( , )Q c  

will not be an eigenfunction of this equation for any val-
ues  1 2, cc c  . Thus from a spectrum of operator 

there is excluded coherent component coinciding with 
the domain c  and corresponding to the function 

0 ( , )Q c . 

Using the property of degeneration of the kernel 

 1 2, , ,Q Q c cK , we reduce (25) to equivalent system of 

linear algebraic equations having coefficients analyti-
cally dependent on parameters 1c , 2c . We write (25) as  

 1 2 1 1 2 2( , ) exp
N M

nm
n N m M

s s x i c ns c ms
 

        

0 0 1 2( , )x s s  ,             (33) 

where nmx , 0x  are constants determined by the formu-

las 

 1 2 1 2
1 1 2 2

0 1 2 1 2

( , )
exp

2 2 ( , , , )nm

c c F s s
x i c ns c ms

f s s c c

 
           

1 2 1 2( , )s s ds ds     ,n N N m M M      , 

0 0 1 2 1 2 1 2 1 2( , , , ) ( , )x s s c c s s ds ds


        . 

From the Formula (33) follows, that the function 

1 2( , )s s  will become known, if will be found nmx , 

0x . 

Multiplication of both parts of (33) by 

 1 2
1 1 2 2

0 1 2 1 2

( , )
exp

( , , , )

F s s
i c ks c ls

f s s c c

 
     

 at k N N   , 

l M M    and by 0 1 2( , )s s  , and integration over 

  gives a homogeneous system of the linear algebraic 
equations for finding nmx , 0x  

 ( )
1 2,

N M
kl

kl nm nm
n N m M

x a c c x
 

    
,k N N

l M M

   
    

.  (34) 

Here  

   
   

   1 2( ) ( )
1 2 1 2 1 2

0 1 2

,
, , ,

1 ,

kl
kl kl

nm nm nm

b c c
a c c t c c d c c

d c c

    
  

, 

    1 2 1 2
1 2 2

0 1 2 1 2

( , )
,

( , , , )4
kl

nm

c c F s s
t c c

f s s c c

 
   

    1 1 2 2 1 2exp i c n k s c m l s ds ds      , 

 ( ) 1 2 1 2
1 2 0 1 22

0 1 2 1 2

( , )
, ( , )

( , , , )4
kl c c F s s

b c c s s
f s s c c

  
  , 

 1 1 2 2 1 2exp i c ks c ls ds ds     , 

   1 2 0 1 2 1 1 2 2 1 2, ( , ) expnmd c c s s i c ns c ms ds ds


     , 

 0 1 2 0 1 2 0 1 2 1 2 1 2, ( , ) ( , , , )d c c s s s s c c ds ds


   . 

For coefficients of the matrix  

 1 1,M c cA   ( )
1 1 ,

,

,kl
nm k n N N

m l M M

a c c  
 

 the equality 

 ( )
1 1,lk

mna c c   ( )
1 1,kl

nma c c  is valid, i.e. MA  is the Her-

mitian or self-adjoint matrix.  
Write the equivalent to (26) nonlinear two-paramet— 

rical spectral problem, corresponding to a system of Eq-
uation (34), as 

 1 2 1 2( , ) ( , ) 0M M Mc c c cx E A x  A ,    (35) 

where ME  is a unit matrix of dimension 2 2N M . 

In order that the system (34) should have distinct from 
zero solutions, it is necessary  

 1 2 1 2( , ) det ( , ) 0M Mc c c cE A    .     (36) 

It is easy to be convinced, that 1 2( , )c c is a real 

function. Really as 1 2( , )M c cT  is the Hermitian matrix 

then it is obvious that  1 2( , )M c cE A  is also the 

Hermitian matrix. It is known [19] that the determinant 
of the Hermitian matrix is a real number. So, 1 2( , )c c  

is a real function with respect to the real arguments 1c  

and 2c . 
Therefore, the problem on finding the set of eigenval-

ues of (25) or equivalent linear algebraic system (34) is 
reduced to finding the nulls of the function 1 2( , )c c . 

Consider a necessary later on auxiliary one-dimen- 
sional spectral problem (as a special case of the problem 
(35)) on the ray 2 1c c   (   is a real coefficient, 

 1 2, cc c  ). Introduce into consideration the matrix- 

function  1 1 1( ) ,M Mc c c A A  and connected with it 

the one-dimensional spectral problem  

   1 1 1 1, ( , ) 0M M Mc c c c    x E A xA .    (37) 

It is easy to be convinced, that from the properties of 
coefficients of matrix 1 2( , )M c cA  follows, that the ma-

trix function 1 2( , )M c cA  is continuous and differenti-

able on the variables in any open and limited domain 
2

c     . In other words 1 2( , )M c cA  is a holo-

morphic matrix-function, if 1 2,c c  to continue into the 

domain of complex variables. 
Corresponding to (37), Equation (36) has the form 

 1 1 1 1( , ) det ( , ) 0M Mc c c c     E A .     (38) 

We denote the spectrums of the problems (35) and (37) 
as ( )s A  and ( )s A , respectively, and the parameter 

domain 1c  as  
1 1 1: 0c c c a    . Then for proper-

ties of the spectrum of (35) the Theorem 1 from [9] is 
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applied which relatively to (35) is formulated thus: 
Theorem 2. Let at each 1 2( , ) cc cc    the matrix 

2 2 2 2
1 2( , ) ( , )N M N M

M c c    A L  be the Fredholm op-

erator with a zero index, the matrix-function ( , ) : A  

 2 2 2 2,N M N M
c

    L  be holomorphic in the do-

main c  and 
1

( ) cs  A . Moreover, let function 

 1 2,c c  be continuously differentiable in c . Then: 

1) Each point of a spectrum (0)
1 ( )c s A  is isolated 

and it is eigenvalue of the matrix-function 1( )c A A 

 1 1,c cA , to it is corresponding the finite-dimensional 

eigensubspace   (0)
1N cA  and finite-dimensional root 

subspace; 

2) Each point  (0) (0) (0)
1 1, cc c  c  is a point of 

spectrum of the matrix-function 1 2( , ) A ; 

3) If  2

(0) (0)
1 2, 0c c c   then in some vicinity of the 

point (0)
1c  there is a unique continuous differentiable 

function  2 2 1c c c  solving the Equation (36), i.e. in 

some bicircular domain   (0)
0 1 2 1 1 1, : ,c c c c      

(0)
2 2 2c c    there exists a connected component of 

spectrum of the matrix-function 1 2( , )c cA ( where 1 , 

2  are small real constants). 

Proof of this theorem concerning the nonlinear 
two-parametrical spectral problem of the type (35) for 
more general case (when the operators E  and 1( ,T c  

2 )c  act in the infinite dimensional Banach space) is 

presented in [9]. For satisfaction of conditions of Theo-
rem 1 from [9] it is necessary to show that the matrix- 
function  1 2,c cA  is the Fredholm matrix at 

1 2( , ) cc c  . This property follows from the known 

equality [19]    dim ker dim ker A A . 

The existence of connected components of spectrum 
of the matrix-function  1 2,c cA , under condition of 

 
2

(0) (0)
1 2, 0c c c  , follows from the existence theorem 

of implicitly given function [20, 21]. 
Let ( )

1
ic  be a root of (38). Then  ( ) ( ) ( )

1 2 1,i i i
cc c c    

is eigenvalue of the problem (33). Consider the equation 

1 2( , ) 0c c   as a problem on finding the implicitly 

given function 2 2 1( )c c c  in the vicinity of a point ( )
1

ic  

for which the conditions of existence theorem [21] are 
satisfied. Hence we have the Cauchy problem  

1

2

1 22

1 1 2

( , )

( , )
c

c

c cdc

dc c c


 


,             (39) 

 ( ) ( ) ( )
2 1 1
i i ic c c  .               (40) 

Solving numerically (39) and (40) in some vicinity of 
a point ( )

1
ic , we find the i -th connected component of 

spectrum (spectral line) of the matrix-function 

1 2( , )M c cA . 

By found solutions of the Cauchy problem at the fixed 

values  ( ) ( )
1 2,i ic c  the eigenfunctions of (25) are deter-

mined through the eigenvectors of the matrix 

 ( ) ( )
1 2,i i

M c cA  obtained by the known methods. Thus 

four-dimensional matrix MA  is reduced to two-dimen-

sional one by means of corresponding renumbering of 
elements. 
 
4. Numerical Algorithm of Finding the  

Solutions of a Nonlinear Equation 
 
Show one of iterative processes for numerical finding the 
solutions of the system (14) based on the successive ap-
proximations method [2]: 

1 1( ) ( , ) ( , , ) ( )n n nu Q B u v K Q Q F Q


    c  

2 2

( )

( ) ( )
n

n n

u Q
dQ

u Q v Q




 
, 

1 2( ) ( , ) ( , , ) ( )n n nv Q B u v K Q Q F Q


    c  

2 2

( )

( ) ( )
n

n n

v Q
dQ

u Q v Q




 
  ( 0, 1, ...n  ).   (41) 

After substituting the function arg ( ) arctg ( )n nf Q v Q (  

( )nu Q )/  (obtained on the basis of successive approxima-

tions (41)) into (12), we denote the obtained sequence of 
function values as nI{ } . For the sequence nI{ }  the 

Theorem 4.2.1 from [3] is fulfilled. From here follows, 
that the sequence nI{ }  is a relaxation one for the func-

tional (7) and numerical sequence ( )n I{ }  is conver-

gent. 
At realization of the iterative process (41) in the case 

of even on both arguments function 1 2( , )F s s  and 

symmetric domains G  and   it is expedient to use 
the property of invariance of integral operators 

1( , )B u v , 

2 ( , )B u v  in the system (14) concerning the type of parity 

of functions 1 2( , )u s s , 1 2( , )v s s . The functions u , v  

having certain type of evenness on corresponding argu-
ments belong to the appropriate invariant sets ijU , kV   

of the space ( )C . Here the indices , , ,i j k   have 
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values 0 or 1. In particular, if 1 2 01( , )u s s U  then 

1 2 1 2( , ) ( , )u s s u s s   and 1 2 1 2( , ) ( , )u s s u s s   . By 

direct check we are convinced that such inclusions take 
place: 

1 2,        ij k ij ij k kB U V U B U V V  ( ) ( )   , 

ij k ij kU V U VB  ( )  . 

The possibility of existence of fixed points of the op-
erator B  belonging to appropriate invariant set (i.e. 
solutions of system (14) and, respectively, Equation (10)) 
follows from these relations. 
 
5. Numerical Example 
 
Consider an example of approximation of the function 

   1 2 1 2( , ) cos 2 sinF s s s s    (Figure 1), given in 
the domain   1 2 1 2, : 1, 1G s s s s    , for 2N  

2 11 11M    and values of parameters 1 1.6c   and 

2 1.2c   belonging to the ray 2 10.75c c . The possible 

branching lines of solutions of the system (14) and ac-
cordingly the Equation (10), as solutions of 
two-dimensional spectral problem (25), are shown in 
Figure 2. Here the first branching lines are denoted by 
numbers 1 and 2. To the solutions branching-off at the 
points of these lines there correspond the odd on 2s  

functions 1 2arg ( , )f s s  and the coefficients of transfor-

mation ,n mI  ( ,n N N m M M      ) are real, but 
nonsymmetrical concerning to the plane XOZ . 

In Figure 3 in logarithmic scale are presented values 
of the functional   obtained on the solutions of two 
types at values of parameter 2 10.75c c : the curve 1  

 

 

Figure 1. The function    ( )1 2 1 2, cos 2 sinF s s s s    

given in the domain   : 1 2 1 2, 1, 1G s s s s    . 

 

Figure 2. The branching lines of solutions 
 
corresponds to solutions in a class of real functions 

0 ( )f Q , curve 2 – to the branching-off solution with odd 

on 2s  argument  1 2arg ,f s s . From analysis of Figure 

3 follows that at the point 1 0.77c   from real solution 

branch-off more effective complex-conjugate between 
themselves solutions, on which the functional   ac-
cepts smaller values, than on the real solution. If to in-
troduce into consideration parameter 2 2C Mc  charac-

terizing the quantity of basic functions in transformation 
(1), the identical efficiency of approximation (identical 
values of the functional   on real and branching-off 
solutions) is reached with use of the branching-off solu-
tion at decrease of the quantity of basic functions on the 
value 2 10.75C c   . 

  An amplitude (а) and argument (b) of approximate 
function are given in Figure 4 for 1 1.6c   and 

2 1.2c  . The amplitude values of the Fourier Transform 

coefficients corresponding to this solution are shown in 
Figure 5. As we see in figure, the values of amplitudes 
of coefficients are nonsymmetrical concerning the plane  
 

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5 1 1.5 2

c 1

log10

c

c 1
(1) c 1

(*) c 1
(**)





 

Figure 3. The values of functional on initial and branch-
ing-off solutions. 
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(a) 

 
(b) 

Figure 4. The modulus (а) and argument (b) of approxima-
tion function. 
 

 
Figure 5. The optimum amplitude of Fouier transform co-
efficients. 

YOZ , but the amplitude of approximate function (Figure 
4(а)) is symmetric. 

For comparison of approximate functions, corre-
sponding to different solutions of (10), the curves corre-
sponding to different types of the presented solutions in 
the section 1 0s   are given in Figure 6. The curve 1 

corresponds to the given function 2(0, )F s , the curve 2 
– to branching-off solution, the curve 3 − to real solution 

0 2(0, )f s . Obviously that the branching-off solution bet-

ter (in meaning of the functional  ) approaches the 
prescribed function by the module. 
 
6. Conclusions 
 
Mark the basic features and problems arising at investi-
gation of the considered class of tasks: 

The basic difficulty to solve this class of problems is 
study of nonuniqueness and branching of existing solu-
tions dependent on the parameters 1 2,c c  entering into 

the discrete Fourier Transform. 
As follows from investigations, presented, in particu-

lar, in [3,17] (for a special case, when 1 2( , )F s s   

1 1 2 2( ) ( )F s F s ), the quantity of the existing solutions 

grows considerably with increase of the parameters 

1 2,c c . Let us indicate, that in many practical applica-

tions, in particular, in the synthesis problems of radiating 
systems, it is important to obtain the best approximation 
to the given function 1 2( , )F s s  at rather small values of 

parameters 1 2,c c . This allows limiting by investigation 
of several first points (lines) of branching. 
To find the branching points (lines) of solutions of (8), 

it is necessary, as opposed to [3, 17], to solve not enough 
studied multiparametric spectral problem. The offered in 
this work approaches allow to find the solutions of a 
nonlinear two-parametric spectral problem for homoge-
neous integral equations with degenerate kernels ana-
lytically dependent on two spectral parameters. 

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

1
2

3

| f |

  s 2
 

Figure 6. The given (curve 1) and approximation functions 
in the section 2 0s   corresponding to branching-off 
(curve 2) and real (curve 3) solutions. 
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When finding the solutions to a system of Equation 
(14) by successive approximations method, to obtain the 
solutions of a certain type of parity of the function 

 1 2arg ,f s s it is necessary to choose an initial approxi-

mation  0 1 2arg ,f s s  of the same type of parity ac-

cording to (42).  
To obtain the irrefragable answer concerning the 

branching-off solutions for certain values of parameters 

1 2,c c  it is necessary to use the branching theory of so-
lutions [18]. It is the object of special investigations. 
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Abstract 

In this article, we discuss the structure of reflective function of the higher dimensional differential systems 
and apply the results to study the existence of periodic solutions of these systems. 

Keywords: Reflecting Function, Periodic Solution, Higher Dimensional System 

1. Introduction 
 
As we know, to study the property of the solutions of 
differential system 

' ( , )x X t x               (1) 

is very important not only for the theory of ordinary 
differential equation but also for practical reasons. If 

( 2 , ) ( , )X t x X t x   (  is a positive constant), to 

study the solutions’ behavior of (1), we could use, as 
introduced in [1], the Poincare mapping. But it is very 
difficult to find the Poincare mapping for many sys-
tems which cannot be integrated in quadratures. In the 
1980’s the Russian mathematician Mironenko [2] first 
established the theory of reflective functions (RF). 
Since then a quite new method to study (1) has been 
found. 

In the present section, we introduce the concept of the 
reflective function, which will be used throughout the 
rest of this article. 

Now consider the system (1) with a continuously 
differentiable right-hand side and with a general solu-
tion 0 0( ; , )t t x . For each such system, the reflective 

function (RF) of (1) is defined as ( , ( )) ( ; , )F t x t t t x  . 

Then for any solution ( )x t  of (1), we have ( , ( ))F t x t  

( )x t  . If system (1) is 2  periodic with respect to t , 

and ( , )F t x  is its RF, then ( , ) ( ; , )F x x       is 

the Poincare [1-2] mapping of (1) over the period 
[ , ]  . So, for any solution ( )x t of (1) defined on 

[ , ]  , it will be 2 --periodic if and only if ( )x   is 

a fixed point of the Poincare mapping ( ) ( , )T x F x  . 
A function ( , )F t x  is a reflective function of system (1) 
if and only if it is a solution of the partial differential 

equation (called a basic relation, BR) 
' ' ( , ) ( , ) 0t xF F X t x X t x            (2) 

with the initial condition (0, )F x x . It implies that for 

non-integrable periodic systems we also can find out its 
Poincare mapping. If, for example,  
 ( , ) ( , ) 0X t x X t x   , then ( )T x x . 

If ( , )F t x is the RF of (1), then it is also the RF of the 

system 
1' ( , ) ( , ) ( , ( , ))xx X t x F R t x R t F t x    , 

where ( , )R t x is an arbitrary vector function such that the 

solutions of the above systems are uniquely determined 
by their initial conditions. Therefore, all these 
2 −periodic systems have a common Poincare mapping 
over the period [− , ], and the behavior of the peri-
odic solutions of these systems are the same.  

To find out the reflective function is very important 
for studying the qualitative behavior of solutions of dif-
ferential systems. The literatures [5-8] have discussed the 
structure of the reflective function of some second order 
quadric systems and linear systems and obtained many 
good results. 

Now, we consider the higher dimensional polynomial 
differential system 

1 2 3
2 2

1 2 3 4 5 6
2 2

1 2 3 4 5 6

' ( , , , )

' ( , , , )

' ( , , , )

x p p y p z P t x y z

y q q y q z q y q yz q z Q t x y z

z r r y r z r y r yz r z R t x y z

   
       
       

(3) 

where  
( , ), ( , ), ( , )

( 1, 2,3; 1, 2,...,6)

i i j j j jp p t x q q t x r r t x

i j

  

 
 

are continuously differentiable functions in R2, and 
2 2
2 3 0p p  （in some deleted neighborhood of 0t   
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and | t | being small enough, 2 2
2 3 0p p   is different 

from zero）, and there exists a unique solution for the 
initial value problem of (3). And suppose that  

1 2 3( , , , ) ( ( , , , ), ( , , , ), ( , , , ))TF t x y z F t x y z F t x y z F t x y z  is 

the RF of (3). 
In this paper, we will discuss the structure of ( , ,iF t x  

, ) ( 2,3)y z i   when 1( , , , ) ( , )F t x y z f t x . At the same 

time, we obtain the good results that ( , , ,iF t x y  

1 2 3) ( , ) ( , ) ( , ) ( 2,3)i i iz f t x f t x y f t x z i    . The obtain- 

ed results are used for research of problems of existence 
of periodic solution of the system (3) and establish the 
sufficient conditions under which the first component of 
the solution of (3) is even function. 

In the following, we will denote  
( , ); ( , ); ( , ); ( , , , )i i j j j j i ip p t x q q t x r r t x F F t x y z      , 

1, 2,3, 1, 2,...,6i j  . The notation ( , ) 0ip t x   means 

that, in some deleted neighborhood of 0t  and | t | being 
small enough, ( , )ip t x  is different from zero,  

( , , , ) ( , , , ) ( , , , ).
A A A A

DA P t x y z Q t x y z R t x y z
t x y z

   
   
   

 

 
2. Main Results 
 
Without loss of generality, we suppose that ( , )f t x x . 

Otherwise, we take the transformation ( , ),f t x   
,y z   . 

Now, let’s consider the system (3). 
Lemma 1. For the system (3), suppose that 1F x . 

Then 

( , ) 0, 1,2,3.ip t x i             (4) 

Proof. Using the relation (2), we get 

2 3( , , , ) ( , , , ) 0P t x y z P t x F F   , 

i.e. 

1 1 2 3 2 2 3 3 0p p p y p z p F p F      .     (5) 

Putting 0t  , we get 

1 2 3(0, ) (0, ) (0, ) 0, , ,p x p x y p x z x y z    . 

It implies that the relation (4) is valid. 
In the following discussion, we always assume (4) 

holds without further mention. 
Case 1. 3 0p  . 

From (5), we get 

3 1 2 2F F   ,              (6) 

where  
31 1 2

1 11 12 13
3 3 3

2
2

3

,

.

pp p p
y z y z

p p p

p

p

   




      

 

 

Differentiating relation (6) respect to t  implies 

2
0 1 2 2 2 0A A F A F   ,            (7) 

where 
2

0 1 2 1 1 1 3 2 3 1 6 2 6

2 2
01 02 03 04 05 06

( ) ( )

;

A D q r r q r q

a a y a z a y a yz a z

           

     
 

1 2 2 2 2 2 3 2 3 1 5 2 5

1 2 6 2 6 11 12 13

( ) ( )

2 ( ) ;

A D q r r q r q

r q a a y a z

     
  
      

    
 ; 

2
2 2 2 4 4 2 5 2 5 2 6 2 6( , ) ( ) ( ),A A t x q r r q r q             

In which 
' '

01 11 11 1 12 1 13 1 1 2 1

2
11 3 2 3 6 2 6 11( ) ( ) ;

t xa p q r r q

r q r q

    

   

      

   
 

' ' '
02 12 12 2 12 1 12 2 13 2

12 3 2 3 6 2 6 11 12( ) 2( ) ;
t x xa p p q r

r q r q

    
    

     
   

 

' ' '
03 13 11 3 13 3 12 3 13 3

13 3 2 3 6 2 6 11 13( ) 2( ) ;
t x xa p p q r

r q r q

    
    

     
   

 

' 2
04 12 2 12 4 13 4 6 2 6 12( ) ;xa p q r r q          

' '
05 12 3 13 2 12 5 13 5 6 2 6 12 132( ) ;x xa p p q r r q             

' 2
06 13 3 12 6 13 6 6 2 6 13( ) ;xa p q r r q          

' '
11 2 2 1 2 2 2 2 3 2 3

11 5 2 5 6 2 6 2 11

( )

( ) 2( ) ;
t xa p r q r q

r q r q

    
    

      
   

 

'
12 2 2 12 5 2 5 6 2 6 2 12( ) 2( ) ;xa p r q r q           

'
13 2 3 13 5 2 5 6 2 6 2 13( ) 2( ) ;xa p r q r q           

31 1 2
11 12 13

3 3 3

, , .
pp p p

p p p
  


       

Lemma 2. Let 1 2, 0F x A   and 0

0
2

lim ( 1,2,...,6)i

t

a
i

A
  

exist. Then 0

0
2

lim 0 ( 1,3,6),j

t

a
j

A
   02 11

0
2

lim 0,
t

a a

A


  

04 12 05 13

0 0
2 2

lim 1, lim 0.
t t

a a a a

A A 

 
     

Proof. Using the relation (7), we have 
2 2

01 02 03 04 05 06

0
2

lim
t

a a y a z a y a yz a z

A

    
  

211 12 13
2 20 0

2

lim lim 0,
t t

a a y a z
F F

A 

 
   

As 2 (0, , , )F x y z y , it follows that the results of 

Lemma 2 are true. 

Theorem 1. Let the conditions of Lemma 1 and  

Lemma 2 satisfy and 12

0
2

lim 2 0
t

a

A
  . Then 

1 2 3( , ) ( , ) ( , ) ( 2,3).i i i iF f t x f t x y f t x z i     
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Proof. As 2 0A  . From (7), it follows 

2
2 30 1 2 1 0 1 0 2

2 2 22 2
2 2 2

,
A A F A A A A A

F F F
A A A

 
         (8) 

Differentiating relation (7) respect to t  implies 
2

0 1 2 2 2 1 2 3

2 2 3 2

( , , , )

2 ( , , , ) 0.

DA DA F DA F A Q t x F F

A Q t x F F F

   

  
 

Substituting (6) into the above, we get 
2 3

0 1 2 3 2 4 2 0,B B F B F B F                     (9) 

where 

0 0 1 1 1 1 1 2 2 1, 2 ,B DA A B DA A A        

2 2 1 3 2 2 4 2 32 , 2 ,B DA A A B A        

in which 

2
1 1 3 1 6 1 2 2 3 2 5 1 6 2 1

2
3 4 5 2 6 2

, 2 ,

.

q q q q q q q

q q q

       

  

      

  
 

Substituting (8) into (9), we have 

0 1 2 0C C F  ,                             (10) 

where 

0 1 0
0 0 2 3 2

2 2

2
1 0 21

1 1 2 3 2
2 2

,

.

A A A
C B B B

A A

A A AA
C B B B

A A

  


  

 

1) If 1 0C  , from (10) follows 0 0C  . By simple 

computation, we obtain 

0 0 0 11
1 2 3 2

2 2 2 2

2 ,
A A A AA

D
A A A A

                (11) 

2
01 1 1

1 2 3 2
2 2 22

2 ( 2 )
AA A A

D
A A AA

      .         (12) 

Let 2 01

2 2

( ) 4
AA

A A
   . Using (11) (12) we get 

1
3 2

2

2( )
A

D
A

     .                    (13) 

Since 

2 201
11 12 132

2 2 2

2 2
2 01 02 03 04 05 06

2 2
1 2 3 4 5 6

25 2
4

4 4

1
( ) 4 (( )

4 ( ))

( ) ,
2 2

AA
a a y a z

A A A

A a a y a z a y a yz a z

d d y d z d y d yz d z

d d
d y z W

d d

      

    

     

   

 

where 

2 2 2
4 6 5 3 4 2 5 1 4 2

4

1
[(4 ) 2(2 ) 4 ],

4
W d d d z d d d d z d d d

d
     

2
1 11 2 01 2 11 12 2 022 2

2 2

2
3 11 13 2 03 4 12 2 042 2

2 2

2
5 13 12 2 05 6 13 2 062 2

2 2

1 1
( 4 ), (2 4 ),

1 1
(2 4 ), ( 4 ),

1 1
(2 4 ), ( 4 ).

d a A a d a a A a
A A

d a a A a d a A a
A A

d a a A a d a A a
A A

   

   

   

 

By Lemma 2 we get 
2

4 6 5 3 4 2 50 0

2
4 1 20

lim(4 ) 0, lim(3 ) 0,

lim(4 ) 0,

t t

t

d d d d d d d

d d d

 



   

 
 

thus, 
0

lim ( , , ) 0.
t

W t x z


  In the identity (13) taking 

5 2

4 42 2

d d
y z

d d
    . We obtain 

' ' '

1
3 2

2

( , , ) ( , , , )

( , , , )
2 ( ( , ) ( , , , )).

( , )

t x zW W P t x W Q t x z

A t x z
W t x t x z

A t x

 


  

  


 

By the uniqueness of solution of initial problem of li-
near partial differential equation, we get ( , , ) 0W t x z  . 

Therefore 

25 2
4

4 4

( ) .
2 2

d d
d y z

d d
     

Using the relation (7), we obtain 

11 12 13 5 2
2 4

2 4 4

21 22 23

1
( )

2 2 2 2

( , ) ( , ) ( , ) .

a a y a z d d
F d y z

A d d

f t x f t x y f t x z

 
    

  
 

By the relation (6), we get 

3 1 2 2 31 32 33( , ) ( , ) ( , ) .F F f t x f t x y f t x z       

2) If 1 0C  . From (10) follows 0
2

1

.
C

F
C

   By the 

express of , ( 0,1,2, 0,1,2,3)i jA B i j  , we know that 

1C  is a quadratic  polynomial respect of ,y z , 0C  is a 

cubic polynomial respect to , .y z Substituting 2F   

0 1C C into relation (7), we get 1 0 1 1 0( )C C A C A   
2

2 0A C . It implies that 1C is divided by 0C  or 2A , 

and
3

2 2
0

( , ) ,i j
ij

i j

F f t x y z
 

   substituting it into (7) and 

equating the coefficients of like powers of y and z im-

plies 2 ( , ) 0, 1ijf t x i j   . Thus,  

1 2 3( , ) ( , ) ( , ) , 2,3.i i i iF f t x f t x y f t x z i     
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Summarizing the above, the proof is completed. 
Obviously, from the relation (7) implies 
Theorem 2. Let  

1 2 1, (0, ) 0 ( 1, 2,3), 0, 0iF x p x i A A     . 

Then 

1

2 2
0 01 02 03 04 05 06

2
1 11 12 13

3 2 2

,

.

A a a y a z a y a yz a z
F

A a a y a z

F F 

    
   

 
 

 

Case 2. 3 2( , ) 0, 0p t x p  .  

Applying identity (5) yields 

1 1 2
2 1 2

2 2

,
p p p

F y y
p p

 


      

where 1 1 2
1 2

2 2

, .
p p p

p p
 


       

Differentiating this identity respect to t  implies  
2

0 1 3 2 3 0M M F M F   , 

where 
2

0 1 2 1 2 2 4 3

2 2
01 02 03 04 05 06

( )

,

M D y q q F q F

m m y m z m y m yz m z

      

    
 

1 3 5 2 11 12 2 6, ,M q q F m m y M q      

' ' 2
01 1 1 1 2 1 1 2 1 4 1 ;t xm p q q q q           

' ' '
02 1 2 2 1 2 2 2 2 2 4 1 22 ;x x tm p p q q q             

' 2
04 2 2 2 4 4 2 ;xm p q q      

03 2 3 05 2 5 06 2 6

11 3 5 1 12 5 2

, , ,

, .

m q m q m q

m q q m q

  
 

  
  

 

Similarly, we obtain the following conclusion: 
Lemma 3. Let 3 2 6 10, 0, 0,p p q F x     and 

0

0
6

lim ( 1, 2,...,5)i

t

m
i

q
  and 1

0
2

lim
t

p

p
 exist. Then  

0 1 1 2

0 0 0
6 2 2

lim 0 ( 1,2,4), lim 0, lim 1j

t t t

m p p p
j

q p p  


       

03 11 05 12 6

0 0 0
6 6 6

lim 0, lim 0, lim 1.
t t t

m m m m q

q q q  

 
     

Theorem 3. Let the conditions of Lemma 1 and 
Lemma 3 satisfy. Then 

2 1 2

3 31 32 33

( , ) ( , ) ,

( , ) ( , ) ( , ) .

F t x t x y

F f t x f t x y f t x z

  
  

 

Theorem 4. Let  

3 6

2 2
11 12 1

(0, ) 0 ( 1, 2), ( , ) 0, ( , ) 0

0,

ip x i q t x q t x

m m F x

   

  
, Then 

2 1 2

2
01 02 03 04 05

3
11 12

( , ) ( , ) ,

.

F t x t x y

m m y m z m y m yz
F

m m y

  

   
 



 

Theorem 5. For the system (3), if the following con-
ditions satisfy 

1 1 2 21 3 31 2 22 22 3 320, 0,p p p f p f p p f p f        

3 2 23 3 33 21 310, (0, ) 0, (0, ) 0,p p f p f f x f x      

' '
22 23 21 3121 21

1 1 1' '
23 33 21 3131 31

( , , , )

( , , , )

0,

t x

t x

f f Q t x f ff f
p q r

f f R t x f ff f

         
                    


' ' ' ' ' '

22 23 22 23 21 2 21 3
1' ' ' ' ' '

32 33 32 33 31 2 32 3

' '
22 23 2 3

' '
32 33 2 3 ( , ,0,0)

0,

t t x x x x

t t x x x x

y z

y z t x

f f f f f p f p
p

f f f f f p f p

f f q q Q Q

f f r r R R

     
       

     
   

          
' '

22 23 4 622 2 23 3
' '

32 33 4 632 2 33 3

2 2
4 6 22 23 5 23 33 522 23

2 2
4 6 22 23 5 23 33 532 33

0,

x x

x x

f f q qf p f p

f f r rf p f p

q q f f q f f qf f

r r f f r f f rf f

    
     
   

    
     

    
' '

22 23 5322 23
' '

32 33 5232 33

4 22 23 5 22 33 23 32 6 32 33

4 22 23 5 22 33 23 32 6 32 33

2 ( ) 2
0,

2 ( ) 2

x x

x x

f f qpf f

f f rpf f

q f f q f f f f q f f

r f f r f f f f r f f

     
      

     
   

    

 

22 23 22 2322 23

32 33 32 3332 33

(0, ) (0, ) 1 0
.

(0, ) (0, ) 0 1

f f f x f xf f

f f f x f xf f

      
       

     
 

Then 21 22 22

31 32 33

x

F f f y f z

f f y f z

 
    
   

 is the RF of system (3). 

Besides this, if the system (3) is 2 --periodic with re-
spect to t , then its solution ( ( ), ( ), ( ))x t y t z t  defined on 

the interval [ , ]  with initial condition ( ( ),x   

( ), ( ))y z      is 2 --periodic if and only if 

( , )F   .  

Proof. By checkout of the BR it is proved that the 
function 21 22 23 31 32 33( , , )TF x f f y f z f f y f z      is 

the RF of system (3). At this moment, the Poincare map-
ping of periodic system (3) is ( , , )T x y z  ( , , ,F x y  

)z . By the previous introduction the assertions of the 

present theorem is hold. The proof is finished. 
Under the hypotheses of Theorem 5, the first compo-

nent of solution of system (3) is even function.  
Example: Differential system 
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sin 3 2

6 2 3 2 sin 3 21 1
2 2

2 2 5 2 sin 4 2

4 sin 3 2 3 6 21 1
2 2

2 6 2

' (1 (1 sin )) sin ,

' cos ( sin 1) cos (1 sin sin )

(3 sin sin ) ( sin 2 sin ),

' cos (1 sin sin ) cos (1 sin )

( sin

t

t

t

t

x e x t y x z t

y y t x t x zx te t x t

y x t x t yze x t x t

z yx te t x t z t x x t

y x t





   

     

   

     

 3 sin 2 5 24 sin ) (3 sin sin )tx t e yz x t x t








   

 

has RF 

sin 3 2

4 sin 3

( , , , ) (1 sin ) sin

sin (1 sin )

t

t

x

F t x y z e x t y x z t

x y t e x t z

 
    
    

. 

Since this system is a 2  --periodic system, and 

( , , , ) ( , , )TF x y z x y z  , by Theorem 5, all the solutions 

of the considered system defined[ , ]  are2 --periodic. 
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Abstract 

The existence of nonzero solutions for a class of generalized variational inequalities is studied by fixed point 
index approach for multivalued mappings in finite dimensional spaces and reflexive Banach spaces. Some 
new existence theorems of nonzero solutions for this class of generalized variational inequalities are estab-
lished. 

Keywords: Variational Inequality, Fixed Point Index of Multivalued Mappings, Nonzero Solution 

1. Introduction 
 
Variational inequality theory with applications are an 
important part of nonlinear analysis and have been ap-
plied intensively to mechanics, differential equation, 
cybernetics, quantitative economics, optimization theory 
and nonlinear programming etc, [1-4]. 

Variational inequalities, generalized variational ine-
qualities and generalized quasivariational inequalities 
were studied intensively in the last 30 years with topo-
logical method, variational method, semi-ordering me-
thod, fixed point method, minimax theorem of Ky Fan 
and KKM technique [1-4]. In 1998, motivated by the 
paper [5], Zhu [6] studied a system of variational ine-
qualities involving the linear operators in reflexive Ba-
nach spaces by using the coincidence degree theory due 
to Mawhin [7]. Some existence results of positive solu-
tions for this system of variational inequalities in 
reflexive Banach spaces were proved. 

Let X  be a real Banach space, *X  its dual and (·, ·) 

the pair between *X  and X . Suppose that K  is a 
nonempty closed convex subset of X . 

Find u K , 0u  , and ( )w g u  such that 

( , ) ( , ),Au v u w v u v K            (1) 

where mapping *:A K X  is nonlinear and 
*

: 2Xg K   is a multi-valued mapping. 

The existence of nonzero solutions for variational in-
equalities is an important topic of variational inequality 
theory. Y. Lai [8] discussed the variational inequality (1) 
when A is coercive or monotone and g is set-contractive 

or upper semi-continuous. K. Q. Wu et al., [9] consid-
ered the variational inequality (1) when A  is sin-
gle-valued continuous and g is set-contractive. 

On the other hand, recently, under some different con-
ditions, [10,11] obtained some existence theorems of 
nonzero solutions for a class of generalized variational 
inequalities by fixed point index approach for mul-
ti-valued mappings in reflexive Banach space. 

Based on the importance of studying the existence of 
nonzero solutions for variational inequalities, and motivated 
and inspired by recent research works in this field, in this 
paper, we discuss the existence of nonzero solutions for a 
class of generalized variational inequalities as follows: 

Find , 0u K u   such that 

( , ) ( ) ( )

( ( ), ) ( , ),

Au v u j v j u

g u v u f v u v K

  
     

     (2) 

where *, :A g K X  are two nonlinear mapping and 
*f X . 

A mapping *:A X X  is called hemicontinuous at 

0x X  if for each y X , 0 0( )nA t y Awx x   when 

0nt  . A multivalued mapping :T
*

( ) 2XD T X   
is said to be locally bounded in v if there exists a neigh-
bourhood V  of x  for each x X  such that the set 

( ( ))T V D T  is bounded in *X . Suppose that K  is a 

closed convex subset of X  with 0 K . For such K , 
the recession cone rcK  of K  is defined by rcK   
{ : , }w X v w K v K     . It is easily seen that the 
recession cone is indeed a cone and we have that 
rcK   . For a proper lower semicontinuous convex 
functional : { }j X R    with (0) 0j   and ( )j K  

[0, )R   , in the virtue of [12], the limit 
1

lim ( )
t

j tw
t

 
*This work was supported by The Zhejiang Provincial Natural Sci-
ence Foundation (No.Y7080068) and the Foundation of Department 
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( )j w  exists in { }R   for every w X  and j  
is also a lower semicontinuous convex functional with 

(0) 0j   and with the property that ( )j u v   

( ) ( ), ,j u j v u v X   . 

Suppose that K  is a closed convex subset of X  
and U  is an open subset of X  with 

KU U K    

 . The closure and boundary of KU  relative to K  

are denoted by KU  and ( )KU  respectively. Assume 

that : 2K
KT U   is an upper semicontinuous mapping 

with nonempty compact convex values and T  is also 
condensing, i.e., ( ( )) ( )T S S   where   is the 

Kuratowski measure of noncompactness on X . If 
( )x T x  for ( )Kx U , then the fixed point index, 

( , )Ki T U , is well defined(see[13]). 

Proposition 1 [13] Let K  be a nonempty closed 
convex subset of real Banach space X  and U  be an 

open subset of X . Suppose that : 2K
KT U   is an 

upper semicontinuous mapping with nonempty compact 
convex values and ( )x T x  for ( )Kx U . Then the 

index, ( , )Ki T U , has the following properties: 

1) If ( , ) 0Ki T U  , then T  has a fixed point; 

2) For mapping 
0X  with constant value 0{ }x , if 

0 Kx U , then 
0( , ) 1Ki X U  ; 

3) Let 1 2,U U  be two open subsets of X  with 

1 2U U  . 

If ( )x T x  when 1 2(( ) ) (( ) )K Kx U U  , then 

1 2 1 2( , ) ( , ) ( , )K K Ki T U U i T U i T U   ; 

4) Let : [0,1] 2K
KH U  be an upper semicontinu- 

ous mapping with nonempty compact convex values and 
( ([0,1] )) ( )H Q Q   whenever ( ) 0, KQ Q U   .  

If ( , )x H t x  for every [0,1], ( )Kt x U  , then 

 ( 1, , ) ( (0, ), )K Ki H U i H U   . 

For every *q X , let ( )U q  be the set of solutions 

in K  of the following variational inequality 
( , ) ( ) ( )

( , ) ( , ),

Au v u j v j u

q v u f v u v K

  
     

       (3) 

Define a mapping *: 2K
AK X  by 
*( ) : ( ), .AK q U q q X   

Obviously, ( )AK q    if and only if the variational 

inequality (3) has no solution in K . 
 
2. Nonzero Solutions in nR  
 
Lemma 1 Let X  be a separable reflexive Banach 

space. Suppose that *:A X X  is a bounded mono-
tone hemicontinuous mapping (i.e., for every bounded 
subset D  of X , ( )A D  is bounded) and 

: ( , ]j K     is a proper convex lower semicon-

tinuous functional. Assume that there exists 0v K sat-

isfying 

0 0,
inf [( ,lim ) ( ) ( )] 0

u u K
Au u v j u j v

 
   

‖‖
    (4) 

Then for any given *f X there exists u X such 

that 
( , ) ( ) ( )

( , ), .

Au v u j v j u

f v u v X

  
   

         (5) 

Proof. Without loss of generality, assume that 0f  , 

otherwise, set ( ) ( ) ( , )j v j v f v  . Let { :rK x X   

}x r‖‖ . Because X  is a separable reflexive Banach 

space, for given r , there exists a closed convex sets 
sequences , 1, 2, ,mK m    satisfying the following con-

ditions: 

)a  1 , 1,2, ;r
m mK K K m     

)b  ,m mK X  mX  is m -dimensional subspace of 

X ;  

)c  
1 mm
K



  is dense in rK . 

First, we shall verify that for each m , there exists 

m mu K  such that 

( , ) ( ) ( ) 0, .m m m mAu v u j v j u v K        (6) 

Because mX  is a finite dimensional subspace (deno- 

ted its inner product by [.,.] ), there exists a linear con-

tinuous mapping *: mX X   such that ( , )g    

[ , ]g   for all mK . Thus inequality (6) can be 

written 

[( ) , )]

( ) ( ), .m

Au u u v u

j v j u v K

   
   

          (7) 

Define a function ( ) : ( , ]m mJ v X     by 

( ),
( )

, \ .
m

m
m m

j v v K
J v

v X K


   

 

Then inequality (7) can be written 

[( ) , )]

( ) ( ),m m m

Au u u v u

J v J u v K

   
   

        (8) 

which is equivalent to the equality 

( )
mJu P Au u                 (9) 

by [2,3], where 
mJP  is an approximate mapping of mJ . 
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Obviously, ( ) :
mJ m mP A I K K    is continuous. 

According to Brouwer’s fixed point theorem [2,3], there 
exists m mu K  satisfying the equality (9), that is, mu  

is a solution of the variational inequality (6). 
Second, we shall verify that for each r , there exists 

r
ru K  such that 

( , ) ( ) ( ) 0, .r
r r rAu v u j v j u v K         (10) 

In fact, r
mK K  and A  is a bounded mapping, 

which implies that there constant C such that 

mAu C‖ ‖ for 1,2,m   . Since X  is a reflexive and 
rK  is weakly closed, there exists a subsequence 

{ } { }mu u   such that r
wu u  and r

ru K . Because 

1 mm
K



  is dense in rK , for any  given 0  , there 

exists 0 1 mm
u K




 such that 0 .ru u  ‖ ‖ It then 

follows from (6) that 

0 0( , ) ( ) ( ).Au u u j u j u            (11) 

when  is sufficiently large. Thus we have 

0 0

0

sup( ,

sup( , ) s

l

up( , )

s

im )

lim lim

up( ( ) ( ))lim .

r

r

Au u u

Au u u Au u u

j u j u C

 


  
 








   

   

 

Since j  is a lower semicontinuous function and   

is an arbitrary positive number, we have 

sup( , ) 0.lim rAu u u 


            (12) 

This together with A being a monotone hemicontinu-
ous mapping implies that 

inf ( , )

( , ), .

lim

r
r r

Au u v

Au u v v K

 


   
       (13) 

If 
1 mm

v K



 , it then follows from (6) that 

( , ) ( ) ( )Au u v j v j u            (14) 

when   is sufficiently large. It thus follows from (13) 

that 

1

lim

lim

( , ) inf ( , )

inf ( ( ) ( ))

( ) ( ), .

r r

r mm

Au u v Au u v

j v j u

j v j u v K

 






  

 

    

     (15) 

Because 
1 mm
K



 is dense in rK , the above ine-

quality holds for all rv K . therefore ru  is a solution 

of the variational inequality (10). 
New we shall verify that the variational inequality (5) 

has a solution. Taking 0v v  in (10), we have 

0 0( , ) ( ) ( ) 0r r rAu u v j u j v          (16) 

and so it then follows from condition (4) that there exists 
constant C > 0 such that ru C‖ ‖ . Taking r > C then 

ru r‖ ‖  and so ru  is an inner point of rB . Thus for 

any given X , we have (1 ) rt u   rt B by tak-

ing (0,1)t  small enough. Let (1 ) rv t u t    in 

(10), then we obtain 

( , ) ( ( ) ( )) 0r r rt Au u t j j u      

by j  being a convex lower semicontinuous function. 

Thus 

( , ) ( ) ( ) 0, .r r rAu u j j u X         

Therefore ru  is a solution of the variational inequality 

(5). 
Theorem 1 Let K  be a nonempty unbounded closed 

convex set in nX R  with 0 K . Suppose that 
*X X  is a bounded monotone hemicontinuous map-

pingwith ( , ) 0( )Au u u K   and :j K  ( , ]   is a 

bounded proper convex lowersemicontinuous functional 
with (0) 0j   (i.e., for every bounded subset D  of 

K , ( )j D  is bounded). Give a continuous mapping 
*:g K X and *f X . Assume 

a) 
0

( , ) ( )
lim
u

Au u j u

u


 

‖‖ ‖ ‖
;  

b) there exists constant 0   such that 

1

( , ) ( ) ( )
inf suplim li ( )m

u u

Au u j u g u
u K

u u  


 

‖‖ ‖‖

‖ ‖

‖ ‖ ‖ ‖
; 

c) there exists a point 0 \{0}u rcK  such that 

0( , ) 0f u   

Then (2) has a nonzero solution. 
Proof. It is easy to see from condition (b) and Lemma 

1 that the variational inequality (3) has a solution in K  

for every *q X . Define a mapping : 2K
AK g K   

by 
( )( ) : ( ( )),A AK g u K g u u K   

Then AK g  is an upper semi-continuous mapping 

with nonempty compact convex values by [10, Lemma 

1]. Let { : }RK x K x R  ‖‖ . We shall verify that 

( , ) 1R
K Ai K g K  for large enough R and ( , )r

K Ai K g K  

0  for small enough r . 
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Firstly, define a mapping by : [0,1] 2 ,R KH K   

( , ) ( ( ))AH t u tK g u . It is easily seen that ( , )H t u  is an 

upper semicontinuous mapping with nonempty compact 
convex values. We claim that there exists large enough 
R such that ( , )u H t u for all (0,1),t ( )Ru K . 

Otherwise, there exist two sequences { },{ }, [0,1],n n nt u t   
0,n nt u   ‖ ‖ such that 

nu  ( , ) ( ( ))n n n A nH t u t K g u  or ( ( ))n
A n

n

u
K g u

t
 .  

Thus 

( ( ), ) ( ) ( )

( ( ), ) ( , ),

n n n

n n n

n n
n

n n

u u u
A v j v j

t t t

u u
g u v f v u K

t t

  

     
    (17) 

Letting 0v   and denoting n
n

n

u
z

u

‖ ‖

in (17), we 

obtain from (17) that 

1 1( ) ( ( ), ) ( ) ( )

( )
( , ) ( ) ( , )

n n n n n

n n n n n

n n
n n n

nn

t u u t u
A j

u t t u t

g u t
t z f z

uu

 

 


 

 

‖ ‖ ‖ ‖

‖ ‖‖ ‖

     (18) 

Denote n
n

n

u
y K

t
  . Then ny  ‖ ‖ .We can ob-

tain from (18) that 

1

( , ) ( ) ( )

( )
.

n n n n
n

n n n

n

n n

Ay y j y g u f
t

y u y

g u f

u y


  

 




 

 

‖ ‖

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖

‖ ‖ ‖ ‖

‖ ‖

‖ ‖
   (19) 

Hence we have 

1

( , ) ( ) ( )
inf sulim l pim

u u

Au u j u g u

u u  




‖‖ ‖‖

‖ ‖

‖ ‖ ‖ ‖
 

which contradicts to condition (b). Therefore 

( , ) ( (1, ), )

( (0, ), )

ˆ(0, ) 1

R R
K A K

R
K

R
K

i K g K i H K

i H K

i K

 

 

 

        (20) 

by Proposition 1(4) and (2). 

Secondly, we shall verify that ( , ) 0r
K Ai K g K   for 

small enough r ( 1r  ). In fact, there exist constants 

1 2, , 0C C M   from the boundedness of j , locally 

boundedness of A  and condition (b) such that for all 
1u K , we have 

0 1 2| ( ) ( ) | ( ) ,j u u j u C g u C   ‖ ‖,  

0 2 0

0 0

( ( ), ) | ,

| ( , ) |

g u u C u Au M

Au u M u

 



‖ ‖‖, ‖

‖ ‖
      (21) 

Since 0( , ) 0f u  , let 0( , ) 0f u  . Take N  large 

enough such that 

0 1 2 0(1 )( , ) ( )N f u C C M u        (22) 

Define a mapping by [0,1] 2 ( ,, )r KH K H t u    

( ( ) )AK g u tNf . Then H  is an upper semi- continuous 

mapping with nonempty compact convex values. We 
claim that there exists a small enough r  such that 

( , )u H t u  for all ( ), [0,1]ru K t  . Otherwise, there 

exist sequences { },{ }, [0,1],n n nt u t   

( ), 0r
n nu K u ‖ ‖ such that ( , )n n nu H t u   

( ( ) )A n nK g u t Nf . Thus 

( , ) ( ) ( )

( ( ) , ) ( , ),
n n n

n n n n

Au v u j v j u

g u Nt f v u f v u v K

  
      

 

Taking 0, n
n

n

u
v z

u
 

‖ ‖
, we have 

( )1
( , )

( ( ), ) (1 )( , )

n
n n

n n

n n n n

j u
Au u

u u

g u z t N f z



  

‖ ‖ ‖ ‖  

Since 
( , ) ( )n n n

n

Au u j u

u


 

‖ ‖
 and 

2

( ( ), ) (1 )( , )

( ) (1 )

(1 ) ,

n n n n

n

g u z t N f z

g u N f

C N f

 

  

  

‖ ‖ ‖ ‖

‖ ‖

 

we obtain a contradiction. Therefore ( , )r
K Ai K g K   

( (0, ), ) ( (1, ), )r r
K Ki H K i H K   by Proposition 1 (4). If 

( (1, ), ) 0r
Ki H K  , then the mapping (1, ) : 2KH K   

has a fixed point u  in rK by Proposition 1(1), i.e., 
(1, ) ( ( ) )Au H u K g u Nf   . 

Thus 

( , ) ( ) ( )

( ( ) , ) ( , ),

Au v u j v j u

g u Nf v u f v u v K

  
      

 

Taking 0v u u  , we have 

0 0

0 0

( , ) ( ) ( )

( ( ), ) (1 )( , )

Au u j u u j u

g u u N f u

  

  
      (23) 

Hence 

0

0 0 0

0 1 2 0 2 0 1

(1 )( , )

( , ) ( ) ( ) ( ( ), )

( )

N f u

Au u j u u j u g u u

M u C C u C M u C


    

     ‖ ‖ ‖ ‖ ‖ ‖
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by (21) and (23). That contradicts to (22). Therefore, 

( (1, ), ) 0r
Ki H K   and then ( , ) 0r

K AK g Ki  . 

It follows from Proposition 1(3) that ( ,K Ai K g  

\ ) 1R rK K  . Therefore there exists a fixed point 

\R ru K K  which is a nonzero solution of (2). 

 
3. Nonzero Solutions in Reflexive Banach  
  Spaces 

 
Theorem 2 Let X  be a reflexive Banach space and 
K X a nonempty unbounded closed convex set with 

0 K . Suppose that *:A X X  is a bounded mono-
tone hemicontinuous mapping with ( , ) 0Au u   for 

u K  and : ( , ]j K     is a bounded convex 

lower semicontinuous functional with (0) 0j  . Assume 

that *:g K X  is continuous from the weak topology 

on X  to the strong topology on *X . Give *f X . 

The following conditions are assumed to 
be satisfied 
a) 0( , ) 0f u   for some 0 \{0}u rcK ; 

b) there constant 0   such that 

1

( , ) ( ) ( )
inf suplim li ( )m

u u

Au u j u g u
u K

u u  


 

‖‖ ‖‖

‖ ‖

‖ ‖ ‖ ‖
; 

c) 
0

infim ( ) 0l
w

s

s
u

j u


 . 

Then (2) has a nonzero solution. 

Proof. It is easily seen that
0

( , ) ( )
lim
u

A u u j u

u




‖‖ ‖‖
 

  by the condition (c). Let F X  be a finite di-
mensional subspace containing 0u . We shall show that 

all conditions in Theorem 1 are satisfied on space F . 

Denote FK K F   which is a nonempty un-

bounded closed convex set. Let :Fj F X  be an in-

jective mapping and * * *:Fj X F  its dual mapping. 

Denote * * *( | ) : , ( | ) :F F F F F FA j A F F F g j g K K    

*F . We know that * ,F F FA j Aj *
F F Fg j gj . Then, 

,F FA g  are hemicontinuous and continuous respective- 

ly. 

For 1 2, Fx x K , we have 

1 2 1 2

* *
1 2 1 2

1 2 1 2

1 2 1 2

( ( ) ( ), )

( ( ) ( ), )

( , ( ))

( , ) 0

F F

F F

F

A x A x x x

j A x j A x x x

Ax Ax j x x

Ax Ax x x

 

  
  
   

 

by the monotony of A . This means that FA  is mono-

tone. On the other hand, * *
Fj f F and *

0( , )Fj f u  

0 0( , ) ( , ) 0Ff j u f u  . Similarly, we have 

1

( , ) ( ) ( )
inf sup

(

lim lim

).

F F

u u

F

A u u j u g u

u u
u K

  






‖‖ ‖‖

‖ ‖

‖ ‖ ‖ ‖  

Therefore all conditions in Theorem 1 are satisfied on 
space F  and so there exists , 0F F Fu K u   such 

that 

*

( ( ), ) ( ) ( )

( ( ), ) ( , ),

F F F F

F F F F F F

A u v u j v j u

g u v u j f v u v K

  

     
 

It yields that 

( ( ), ) ( ) ( )

( ( ), ) ( , ),
F F F

F F F F

A u v u j v j u

g u v u f v u v K

  
     

 

Taking 0v  , we get 

( , ) ( ) ( ( ), ) ( , )F F F F F FAu u j u g u u f u   . Hence 

1

( , ) ( ) ( )
.F F F F

F F F

Au u j u g u f

u u u  


 
‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖
 

This together with condition (b) implies that there ex-
ists a constant M > 0 such that Fu M‖ ‖  for all finite 

dimensional subspace F containing 0u . Since X  is 

reflexive and K  is weakly closed, with a similar argu-
ment to that in the proof of Theorem 2 in [10] (also see 
[8]), we shall show that there exists u K  such that 
for every finite dimensional subspace F containing 

0u , u is in the weak closure of the set 
1

1

{ }F F
F F

V u


   

where 1F  is a finite dimensional subspace in X . 

In fact, since FV  is bounded, we know that ( )w
FV  

(the weak closure of the set FV ) is weakly compact. 

On the other hand, let 1 2, , , mF F F be finite dimen-

sional subspaces containing 0u . Define ( ) :mF   
1 2{ , , , }mspan F F F . Then ( )mF containing 0u is a finite 

dimensional subspace. Hence,  

1

i

m

F
i

V


 1 1
( )

1 11

( { }) { }
i m

m

F F
i F F F F

u u
  

     , then 

( )w
F

F

V   . That is to say, there exists u K  such 

that for every finite dimensional subspace F  contain-
ing 0u , u is in the weak closure of the set 

1 1
{ }F F F FV u  . 

Now let v K  and F  a finite dimensional subspace 
of X which contains 0u  and v . Since u  belongs to 
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the weak closure of the set 
1

1

{ }F F
F F

V u


  . We may 

find a sequence { }Fu


 in 
FV 

 such that 
w

Fu u

  . 

However, 
Fu


 satisfies the following inequality 

( , ) ( ) ( )

( ( ), ) ( , )

F F F

F F F

Au v u j v j u

g u v u f v u
  

  

  

   
    (24) 

The monotony of A implies that 

( , ) ( ) ( )

( ( ), ) ( , )

F F

F F F

Av v u j v j u

g u v u f v u
 

  

  

   
 

Letting 
w

Fu u


  yields that 

( , ) ( ) ( )

( ( ), ) ( , ),

Av v u j v j u

g u v u f v u v K

   
       

 

Thus 

( , ) ( ) ( )

( ( ), ) ( , ),

Au v u j v j u

g u v u f v u v K

    
       

 

by Minty’s Theorem [2,3]. We claim that 0u  . 

Otherwise, 0
w

Fu

 . Taking 0v   in (24) yields that 

( ) ( , ) ( ( ), ) ( , )

( ( ), ) ( , )

F F F F F F

F F F

j u Au u g u u f u

g u u f u
     

  

   

 
 

The right side of the above inequality tends to 0, 
which contradicts to the condition (c). Therefore u  is 
a nonzero solution of (2). 
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