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Abstract 

Hardy's inequality is a basic inequality of the theory of the Hardy spaces. In 

this thesis, we outline the development of the Hardy spaces from their complex 

analytic roots to their real variable interpretation of the 1960's and 1970's and we 

then prove a generalisation of the classical Hardy's inequality in the context of R' 
under polynomial changes of variables. Central to our proof of this generalisation, 

is a weighted restriction theorem on polynomial curves, which is global in a certain 

sense. We also give a simpler proof which only works in 2 dimensions. 
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Chapter 1 

Introduction 

1.1 The classical Hardy spaces H 

The starting point of the theory for Hardy spaces HP is the following theorem of 

Hardy [H], established in 1915. 

Theorem 1.1.1 If f is an analytic function in the interior of the unit disc and 

p is a positive number, then 

1 r2  
=f(re° )dO,  

27r 

0 

defined for 0 < r < 1, is an increasing function of r. 

Later in 1922, F. Riesz [Ri] proved Theorem 1.1.1 using subharmonic functions. 

Proofs of Theorem 1.1.1,using subharmonic functions, can be found in [GR] or in 

[Ru]. To this result can also be added the result, due to the maximum modulus 

theorem, that 

= sup I f(re ° ) 1 	 (1.2) 
O<O<2ir 

is an increasing function of r, for r E [0, 1). In view of Theorem 1.1.1 and that 

jt (f; r) is an increasing function of r, we can make the following definition of 

Hardy spaces as they were introduced by F. Riesz in [Ri]. 

Definition 1.1.2 For 0 < p < oo we define HP to be the space of functions f, 
analytic in the interior of the unit disc, such that 

MfHP 	sup a(f;r) <00. 
O<r<1 

We note that HI is the space of bounded analytic functions on the unit disc. Two 

obvious considerations are that for 0 < p' < p < 00, we have HOO C H" C H"' 

and that due to Theorem 1.1.1 and the corresponding statement for (f; r), the 

supremums in Definition 1.1.2 can be replaced by limits as r - 1. For 1 < p < oo, 
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it can also be seen that HP is a Banach space under the H - I JHP norm. The triangle 

inequality is not satisfied by H I1HI, for p < 1. 

A natural question that was posed and answered by F. Riesz [R2] in 1923, con-

cerns the existence of a limit function on the boundary of the unit disc, associated 

to each function in HP, To be more precise we have the following theorem. 

Theorem 1.1.3 For f e H, 0 <p < oo: 

1. f(z) has a non-tangential limit almost everywhere on the boundary of the 

unit disc. In addition, if we denote by f(e 9 ) that limit, the function 0 i -+ 

f(e ° ) belongs to I?([0,2ir]). 

. The functions fr(&) = f(re ° ) converge in the LP([0, 27r]) norm to the func-

tion f(e ° ) as r -* 1. 

3. Hf HHP = lirn, 11  p(f;  r) = 

The way this theorem was proved, is the following. First of all, it is observed that 

Theorem 1.1.3 holds for p = 2. This is because if f e H2  has the power series 

expansion 
00 

f(z) = 

then it follows from the Parseval formula that 

00 

bL2(f;r) = 

and from the boundedness of 2 (f; r) follows the convergence of the series E I a. 

Therefore, due to the Riesz-Fischer theorem, there is an L 2 ([0, 27r]) function f(e ° ), 

whose Fourier series is >>0ae°.  Thus, due to a theorem by Fatou [Fa], the 

Poisson integral 

a3 re 9  = f(re ° ) 
j>O 

converges to f(e ° ) almost everywhere as (r, 0) -+ (1, 0) non-tangentially. This 

proves the first assertion of Theorem 1.1.3 for p = 2. For the second assertion, 

still for p = 2, we have from the Parseval formula that 

00  1f2 	
- f(re ° ) 2d0 	aj(1 - ri) 2 .  

27r j=1 

This sum and hence also the integral tend to zero as r -+ 1, proving the second 

assertion of Theorem 1.1.3 for p = 2. We already see from this proof that in 

fact the H2  functions are the Poisson integrals of their boundary values (which 
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are precisely the functions in L 2 , whose Fourier coefficients a 3  vanish for j < 0). 

This method of proof could have also been generalised to all 1 <p < oo (see e.g. 

[GR]): F. Riesz was able to prove Theorem 1.1.3 for 0 < p < oo after he had 

proved the following factorisation theorem. 

Theorem 1.1.4 For each function f(z) in H" there is a factorisation in two 

factors: f(z) = g(z)h(z), such that for IzI < 1, h(z) is analytic and bounded, 

while g(z) belongs to H" and is nowhere zero in IzI < 1. 

In fact h(z) is given by 

00 

	

h(z) = m JJ Iak I 	ak 

1— a k=1 	kz  

where a1 , a2 ,... are the nonzero zeros of f(z) listed with multiplicity and m is the 

order of the zero of f(z) at 0. This is called the Blaschke product (the analogous 

factorisation theorem for H00  functions is contained in Blaschke [Bl]) and h(z) is 

analytic and satisfies 

	

h(z)l < 1. 	 (1.3) 

We omit the proof of Theorem 1.1.4 here, we just mention that it makes use of 

Theorem 1.1.1 together with properties of the Blaschke product, which rely on 

the distribution of the zeros of H" functions. A proof of Theorem 1.1.4 can be 

found in [112]. 

From the factorisation theorem it follows that we can write f(z) = g(z)h(z) = 

['y(z)] 2/"h(z), where 'y  is analytic, since g(z) is nowhere zero. Both y(z) and h(z) 

belong to H2 , so It immediately follows that f(z) has a non-tangential limit, say 

f (e ° ), almost everywhere on the boundary of the unit disc. The way to prove 

f 2 If (e"') - f(re ° )"d9 	0 	 (1.4) 

as r -+ 1, is to first prove that, as r -+ 1, 

f f(re°)"dO 	f f(e ° )"dO 	 (1.5) 
M 	 M 

for any measurable set M in T. To see (1.5) we have 

f
f

f(re°)" - f(e)I"d 

	

	
= 	

h(re°)I"(re°)12 — 
M  

Ih(re9)I" - h(e ° ) I"I -y(e ° ) I 2 dO 
M  

+ 	f Ih(re°)I" lfr(re°)I2 - y(e ° ) 2 I dO. 



Because of (1.3), the integrand of the first integral on the right side of the in-

equality is bounded above by 21-y(e 9 ) 2 , and so it tends to zero because of the 

Lebesgue dominated convergence theorem. Also the second integral is less than 

fM lV'(re°)I2 - I'y(e°) 2 I d9 which in turn is less than fm I(re°)2 - -y(e ° ) 2  1 dO = 

IM I(re9) - y(e ° )fty(re 9 ) + -y(e°)dO. Using the Cauchy-Schwarz inequality we 

see that this last integral is 

1/2 	 1/2 

(I  M 
I(re°) - (ei9)2dO) 	

fm 
 re ° ) + (ei9)I2dO) 

1/2 
< 21 	

(LA 
 (re°) - (ei9 )I 2 dO) 

Finally, to show (1.4) from (1.5), a theorem of Egoroff (see [E]) is used, according 

to which since f(re 9 ) tends to f(e°) a.e., we can choose a set 1  of arbitrarily 

small measure such that on the complement of this set the convergence is uniform. 

We can thus choose ,i such that 

fo If(e°) - f(re ° )dO < € 

and because the convergence on p' is uniform, 

L If WO) - f(re 9 )I"dO < € 

for r sufficiently near to 1, thus showing (1.4). The third assertion of Theorem 

1.1.3 follows from (1.5) and so the proof of Theorem 1.1.3 is complete. 

An immediate and important corollary of Theorem 1.1.3 is the following. 

Corollary 1.1.5 Every function f E H", 1 < p < oo, is the Poisson and the 

Cauchy integral of its boundary function f( e29 ). 

The proof of this corollary can be found in [112], [GR] or [Ru]. 

In 1929 Fichtenholz [Fi] obtained the following characterisation of H' 

Theorem 1.1.6 A function f(z) analytic in the unit disc D, is represented by 

its Poisson and its Cauchy integral if and only if it satisfies 

sup 10) 
f(re°)IdO M. 

O<r<1 

By f(z) being represented by its Poisson and its Cauchy integral, we mean that 

f(z) has a limit function on the unit circle and f(z) is equal to the Poisson and 

the Cauchy integral of that limit function. Furthermore, similarly to Theorem 

1.1.6 we have the characterisation of the H' spaces for 1 < p < 00, that an 
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analytic function f is in HP in the sense of Definition 1.1.2 if and only if it is 

the Poisson and the Cauchy integral of an L(T) function. Because of Theorem 

1.1.3 we can associate each H" with a subset of P'(T). In this way we can 

define HP(T), as the limit functions of functions in H", which we will denote as 

HP(D) where needed to avoid confusion. So, because of the a.e. convergence 

and the Poisson integral representation of functions in HP(D), we see that to 

each function in HP(D) corresponds a unique function in HP(T) and vice versa. 

Another characterisation of HP(T) for 1 < p < oo, that one could easily derive 

at this stage, is that a function is in HP(T) if and only if it is in LP(T) and its 

negative Fourier coefficents vanish. We can also equip HP(T) for 1 < p < 00 

with a norm, that will just be the LP(T) norm, which is incidently equal to the 

HP(D) norm of the corresponding function in HP(D). The considerations in this 

paragraph, follow from what we have already proved and some other results on 

Poisson integrals. For further details on these one can see [CR], chapters 1.1 and 

1.3. We only talked about these various characterisations for 1 < p < oo, because 

for p < 1 neither the Poisson integral nor the Fourier transform make sense in 

general. 

In the 1930's various authors considered spaces of functions on the upper half-

plane, similar to the H" spaces on the unit disc introduced by F. Riesz, mainly 

using a conformal mapping from the unit disc to the upper half-plane. The first to 

consider such spaces were Hille and Tamarkin, [HT1] and [HT2], for 1 <p < 00. 

In [HT2], they defined the class H" (R) in the following way. 

Definition 1.1.7 A function f(z), analytic in the half-plane y > 0, is said to be 

in HP(R) if 

f 
 CIO 

-00 

f(x + iy)J"dx < M", 

where M only depends on f and p. 

They then went on to prove the analogue of Theorem 1.1.3 for functions in 

H"(1l), 1 <p < oo. 

Theorem 1.1.8 (i) A function f(z) E H"(R), 1 < p < oo, has a limit function 

f(x) e LP(R) to which it tends to almost everywhere non-tangentially. 

Any f(z) E H"(R), 1 <p < oo, is represented by its Cauchy and Poisson 

integrals. 

Any f(z) E H"(TR), 1 < p < oo, tends to its limit function f(x) in the 

L" norm, 

f 
 00  

+iy) - f(x)I"dx 0 as y O. 



Moreover, as y 4. 0, 
00 

FOO 

f(x + iy)dx t f 00 

If (x) I'dx. 

(iv) If f(x) E I)' and f(z) is the Poisson integral of f and f(z) is analytic 

for y > 0, then f(z) e HP(R) and therefore is represented by its Poisson and 

Cauchy integrals. 

The proof of this theorem relies on a conformal mapping from the unit disc 

in order to prove the a.e. convergence and additionally the Poisson integral 

representation for the norm convergence. This is the reason why the restriction 

1 < p < 00 is required. Also, due to the unbounded nature of the underlying 

space TR, a decay result as z tends to infinity is needed, which is also proved using 

the Cauchy representation of f (z). For a proof of Theorem 1.1.8, see [HT2]. 

The same authors, in [HT1], also showed the following, analogous to H"(D), 

characterisation of HP(R). 

Theorem 1. 1.9 Let f(x) E LP(R), 1 < p < oo, be such that its Fourier trans-

form f is in some L(R),  1 < q < oo. A necessary and sufficient condition 

that f(x) is a limit-function of a function f(z) which is analytic in the half-plane 

Im(z) > 0 and which is represented by its Cauchy and Poisson integral, is that 

f(u) vanish for u < 0. 

The following characterisation of HP(R) in terms of the conjugate function 

of g given by 

(x) = P.V. f-00 

g

7r 	 t 

is also contained in [HT2I. First let us define the Poisson and conjugate Poisson 

integrals of g on the upper half-plane R, by 

1 	__________ 
P(z;g) = - J g(t) 	_dt 

(t—x) 2 +y2  

and 
1 P°° 	t—x 

P(z;g)= - 	(t — x J g(t) 	)2+y2dt 

respectively. 

Theorem 1.1.10 Let g(x) and (x) e 11(R), 1 < p < oo. The function f(z) = 

P(z; g) + iP(z; g) is analytic in the half-plane y > 0 and is representable by its 

Cauchy and Poisson integrals. Furthermore its limit function f(x) .is such that 

f  =g(x)+i(x). 

Conversely if f(z) is analytic in the half-plane y > 0 and is representable by its 

Cauchy and Poisson integrals with the limit function f(x) E 11(R), 1 < p < oc, 

then Imf(x) = Ref (x). 
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Of course the result in M. Riesz [RM] guarantees that (x) E L" if g E L, if 

1<p<Do. 

The proofs of Theorems 1.1.9 and 1.1.10 both rely on the Cauchy and Poisson 

integral representations and their invariance under conformal mappings from the 

unit disc. 

Thus from Theorems 1.1.6 to 1.1.10, we see that from very early on, different 

ways were considered to characterise HP spaces on the unit disc or half-plane, 

mainly for 1 < p < oo. The alternative characterisations of HP spaces do not 

have equivalents for p < 1. For all these reasons, the reasoning of Hille and 

Tamarkin does not extend to p < 1. The analogous properties in Theorem 1.1.3 

for functions in HP(R) for 0 < p < oo, were derived in one stroke in Kryloff 

[K]. In [K] are contained the exact an of Theorems 1.1.1, 1.1.3 and 1.1.4 

for f E H1'(R), 0 <p < oo. The method of proof follows the same lines as the 

proof of Theorem 1.1.3 and uses conformal mapping from the unit disc and some 

properties of subharmonic functions. 

In the meantime Hardy and Littlewood in [HL2] introduced and proved the 

boundedness of the Hardy-Littlewood maximal function, which they used for 

proving a L-boundedness result, for 0 <p < oo, for the non-tangential maximal 

function of an Hr-function of the unit disc. Their method of proof, reducing the 

problem by majorising a certain subharmonic function by a harmonic function 

and then proving the equivalent result for the harmonic function using the Hardy-

Littlewood maximal function, would in time be used in more general settings. 

Initially the attempt was to generalise Hr-spaces in the context of functions of 

several complex variables. In this setting no decomposition exists of the type of 

Theorem 1.1.4. Nevertheless, using the procedure of [HL2], Theorem 1.1.3 was 

generalised by Rauch [Raj to functions analytic in the solid unit hypersphere 

B 2  : T 	IziI 2  +... + 	< 1. 

That is writing an analytic function of n complex variables, f(z i ,... , z,) as 

f(r,P) where 

P 	o 	. 	2 	 2 	i £ E 	. Z1 + ... + Z 	= 1 

we have the following theorems. 

Theorem 1.1.11 If  is an analytic function in B2 n  and for some p> 0 satisfies 

fs2n- I 

f(r,P)IdVp C, r < 1, (1.6) 

where dVp is the ixlume element on S2n_1  at P, then 

fs2n
(sup f(r,P))PdVp 

_1 O<r<1 



Theorem 1.1.12 Under the same hypothesis as Theorem 1.1.11, there exists an 

LP(S 2 - 1 ) function f(P) such that 

urn f 	f(r,P) - f(P)PdVp = 0. 
r-+1 J 

Theorem 1.1.12 follows from Theorem 1.1.11 by a remark in Zygmund [Z2], that 

under the same hypothesis, f(r, P) has a pointwise limit, f(P), almost every-

where. Then, convergence can be majorised according to Theorem 1.1.11 and 

hence imply mean convergence. In Zygmund [Zi] there is an equivalent theorem 

for the polycylinder 

Z1  < 1,z2I <1,... 	<1. 

Theorem 1.1.13 If for 0 <p < oo, the analytic function f(z i ,. . . , z,) satisfies 

p2ir 	c2 
f(rieixl,.. . ,re)"dxi . . . dx, < M" 	(1.7) 

0 	0 

for r1 ,.. . , r, < 1, then there is a function (eiX 	.. , e), such that 

urn f

2,r 2,r 

. . . f If(rie
ixj 

,... ,rn ezxn -  f(e 1 ,... ,e)dx i  . . . dX n  = 0. 

Theorem 1.1.13 follows from the following theorem, also in [Zi], on the a.e. ex-

istence of a limit function f(e .... , e) and an L, 0 < p < 00, boundedness 

result for the non-tangential maximal function of f(z 1 ,. . . z,). 

Theorem 1.1.14 Let f(z i ,.. . , z,) be analytic in 

I Z11 <1, 1z21 <1, .. . , IZnI <1 

and let 

f0 

27r ... f27r 
log+ If(rie1, 

 
flog' log' If(rie 1 ,... ,re ixn )II 1 dx 1  . . . dx, 	< M (1.8) 

for r1 ,.. . , r, < 1. Then, a. e. in 

0x 1 <27, 0x2<27r, ..., 0<x<27r, 

the limit f(e 1 , . . . , ei2) of f(z i , . . . , z) exists, as (z i , . . . , z) tends to 

(e 1 ,. .. , e') non-tangentially. 

Of course if f satisfies (1.7), then it also satisfies (1.8). Theorem 1.1.13 was 

already known in the cases 1 < p, see Bergman and Marcinkiewicz [BM] and 

Bers [Be], where also a Poisson integral representation is obtained for functions 
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satisfying (1.7) for 1 < p. In the case 1 < p, the result is valid for functions 

harmonic in each complex variable separately. Theorem 1.1.14 is proved by first 

proving a weaker form of it where the convergence of f along non-tangential paths 

is replaced by the boundedness of f along such paths. 

The theory of H" spaces on R'1  began in Stein and Weiss [SW1]. To define 

the H" spaces in this context, they used the vector-valued function F(X, y) = 

(u(X, y), V(X, y)), with X = (x 1 ,x2 ,...,x) and V = (v 1 ,v 2 ,...,v), the u, v i , 

V2, ... , Vn being real-valued harmonic functions on R 1  satisfying the generalised 

Cauchy-Riemann equations: 

ay 	axi  

	

Du 	Dvi  
(1.9) 

Dvi 	Dvi  
i 3, 1 _<i,3<n. Dx i 	Dx i  

These were introduced by Horváth [Ho]. The functions v 1 , . .. , Vn are called the 

conjugates of u. The H" spaces, p> 0, were then defined as the classes of systems 

of conjugate harmonic functions, F(X, y), satisfying 

fR-

\l/P  
9J1(y;F) 	

( 	
F(XY)V'dX) 	A <00, 	(1.10) 

for 0 < y < oo, where F(X,y) = (u2  + v + v + ... + v) 1 / 2 . Stein and Weiss 

were able to prove a.e. non-tangential convergence and norm convergence to the 

boundary of TR' for p ~: (n - 1)/n and p> (n - 1)/n respectively. This, they 

were able to do because they proved that I FIP is subharmonic for p> (n - 1)/n. 

Then using the 17 boundedness of the Hardy-Littlewood maximal function, they 

proved the following L" boundedness of the non-tangential maximal function of a 

harmonic function. From now on we denote by F(X) C R, the conical region 

with vertex X, of all points (Z, y) satisfying IX - Z I <ay. 

Theorem 1.1.15 Suppose that m(X,y) is harmonic in TR' and, for q ~! 1, 

f Y) lq 	< 00  

unifomly for y > 0. Let 

m(X)= sup 	m(Z,y). 
(Z,y)EI' a (X) 

Then, 
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if q> 1, m(X) E L(1R) and mj q  AC, where A depends only on c, 

q and n; 

if q 1, m * (X) < oo almost everywhere. 
01 

Analogous results, for other contexts in which H' spaces had been considered, can 

be found in [HL2], [Ra] and [Zi]. In all the contexts though, the proof relies on 

the use of the Poisson integral representation for a harmonic function satisfying 

(1.11) and the majorisation of the non-tangential maximal function by the Hardy-

Littlewood maximal function. An analogous result could have been proven for 

our F instead of a harmonic function and for q ~! (n— 1)/n. This could be derived 

from Theorem 1.1.15 by majorising I FI('')"  by a harmonic function. 

• In order to prove the non-tangential convergence and hence, using Theorem 

1.1.15, also the norm convergence, Stein and Weiss used the following theorem of 

Calderón [Cal]. 

Theorem 1.1.16 Let w(X, y) be harmonic in 111.  Suppose that for a measur-

able set S C TR 

w(X,y)I < M <oc 

for (Z, y) E IF ,,, (X), X in S. Then, for almost every X in 5, limw(Z,y) exists, 

as (Z, y) tends to (X, 0) non-tangentially. 

For a more detailed discussion of this theorem, one can see Zygmund [Z3] Chapters 

XIV and XVII or Stein [Si] Chapter VII. So in this context the analogue to 

Theorem 1.1.3 can be stated as follows: 

Theorem 1.1.17 Suppose F(X, y) is in Hi', p > (n - 1)/n, then 

limF(Z,y) = F(X,0), 

where (Z, y) tends to (X, 0) non-tangentially, exists for almost every X in R'. In 

case p> (n - 1)/n, F(X,0) is also the limit in the I? norm of F(X,y). 

Stein and Weiss also proved that for p > (n - 1)/n, 9A(y; F) increases as 

y -+ 0. Thus, we can define the HP norm as 

FIP = sup93t(y;F) = lim9Xt(y;F). 
y>o 	 y-*o 

In case p> (n - 1)/n, a consequence of Theorem 1.1.17 is that 

FJJp 
= (f IF(X0)IPdX) 
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Since it can be seen that for p ~: (n - 1)/n the set of equations (1.9) uniquely 

determine v 1 , v2 ,.. . , Vn given u (see [SW11), we can identify our F with the bound-

ary value of u, thus identifying H'3  with a subset of ReI?(Tft'), p > (n - 1)/n. 

In defining the H'3  spaces using (1.9) and (1.10) it is not essential to have the 

requirement that the u, v 1 , v2 ,. . . , un  are real-valued. Thus, we can simply extend 

the definition to complex-valued u and indeed this is what we will call HP(R) 
from now on. When we just consider real-valued 'a, we will refer to ReH'3 (W 1 ). 

Going from real-valued u to complex-valued u of course does not change matters 

much when we are considering norms. Comparing the definition of H'3  of Stein 

and Weiss [SW1] in the case n = 1, with that of Hille and Tamarkin [HT2] or 

Kryloff [K], we see that in the sense of [SW1] the functions in ReH' 3 (R) are the 

real parts of the functions of HP(R) taken in the sense of [HT2] or [K]. Again, 

one could derive the various results for H'3  in the sense of [HT2] or [K], knowing 

the same results for H'3  in the sense of [SW1], and vice versa. 

It is a result of Horváth [Ho], for 1 < p < oo, that if 'a, v 1 , V2... . , v satisfy 

(1.9) and (1.10), and given that 'a is the Poisson integral of f E LP(R')and each 

of the v3  is the Poisson integral of an f3 E L'3 (R), then f3 = R3 (f), where R3  are 

the M. Riesz transforms defined by convolution with the kernel cx/x. 1  and 

Cn is a certain function of n only. The converse also holds. That is using the same 

notation, if f and all the R3 (f) are in LP(Tft), then their Poisson integrals satisfy 

(1.9) and (1.10). The Riesz transforms are bounded on LP(11), for 1 <p < 00, 

so HP(Wl)  is actually identical to L'(R') and similarly ReH"(R) is identical to 

ReLP(R). In addition the L' 3-norm of f is equivalent to the H' 3-norm of F. For 

p = 1 this no longer holds and H' is a proper subset of L' and many times it is 

used as a substitute for L 1 , in the sense that various results that do not hold for L', 

still hold for H'. A way of describing H1  (R') in terms of the Riesz transforms was 

given in Stein [51] p.  221. That is, the space H1  (R) is naturally isomorphic with 

the space of L'(R) functions f which have the property that R3 (f) E L(R2), 

j = 1,... ,n. The H'-norm is then equivalent with IfIk + En 
1  R(f)M,. This 

is a consequence of Theorem 1.1.17. 

1.2 The space of functions of bounded mean os- 
cillation (BMO) and its relation to H' 

One of the results that played a significant role in the development of the theory 

of H'3  spaces, was the identification of the dual of H1  with the space of functions 

of bounded mean oscillation (BMO). The space BMO was introduced first by 

John and Nirenberg [JN] in the context of partial differential equations. We have 
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the following definition. 

Definition 1.2.1 Let f be in Lj,,(Rn).  Then f is of bounded mean oscillation 

(1 e BMO) if 

sup if f(x)—fQldx = 	<oo, 	 (1.12) 
Q IQ 

where the supremum is over all finite cubes in R, I .  denotes the Lebesgue 

measure and fQ  = ( 1/IQI) fQ  f(x)dx (the mean value of f over  Q). 

We define Ilf 11,. to be the BMO norm of f. This is not quite a norm since 

an a.e. constant function would have norm equal to zero, but we think of two 

functions that differ by a constant to coincide as functions in BMO. Under this 

convention, BMO is a Banach space under the norm . As far as examples 

of BMO functions are concerned, we have that LOO C BMO and the typical 

example of an unbounded BMO(T1) function is log IxI. In fact we will obtain, 

as a consequence of a generalisation of Hardy's inequality that we will prove in 

Chapter 2, further examples of BMO functions. 

Both H' and BMO serve as substitute spaces for L l  and L°° respectively. For 

example, we have that classical Calderón-Zygmund singular integral operators are 

bounded from H' to L 1  and from L to BMO. The identification of the dual of 

H 1  with BMO ties these facts together. This identification was announced in C. 

Fefferman [F2] and proved in Fefferman and Stein [FS]. They use an appropriate 

dense subspace HOP of H' (see [Si] p.  225). If f E H, then in particular, f is 

bounded and rapidly decreasing at infinity. 

Theorem 1.2.2 The dual of H' is BMO, in the following sense. 

Suppose 0 E BMO. Then the linear functional f -+ f f(x)çb(x)dx, ini-

tially defined for f E H, has a bounded extension to H'. 

Conversely, every continuous linear functional on H' arises as in 1. with 

a unique element 0 of BMO. 

1.3 Real Hardy spaces 

There were two ignificant steps that started the development of the theory of 

Hardy spaces using only real variable techniques. The first one was the identifi-

cation of the dual of H' as BMO, which we discussed in Section 1.2. The second 

significant step was the theorem of Burkholder, Gundy and Silverstein in [BGS], 

that in the classical situation of an analytic function F = f + ig, the property 

F e H, 0 <p < oc, is equivalent with the non-tangential maximal function of 
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f belonging to L". This was proved in one dimension in [BGS] using Brownian 

motion. The direction that if F E H" then the non-tangential maximal function 

of f is in L1" was already known for H" in various settings, starting with the 

result of Hardy and Littlewood [HL21. So the procedure used in [HL2], [Ra], [Z1] 

and [SW1], already went some way in freeing the theory of H" spaces from its 

complex analytic roots by succeeding in obtaining the a.e. and norm convergence 

results by using the L"-boundedness of the non-tangential maximal function in-

stead of using Blaschke products and conformal maps. After [BGS] though, the 

question that arose was whether the role of the Poisson kernel was essential or 

just incidental. 

The answer to this question was given in Fefferman and Stein [FS], where 

they proved the equivalence of the following four properties. Let u(x, t) be a 

(complex-valued) harmonic function on R'. 

f = lim, u(•, t) in the sense of tempered distributions, for some u e H". 

supt>o If *q5t (x)I E L", where q5(x) = t(t'x), for each function 0 in the 

Schwartz class S. 

SUJ>o If * qt(x)I e L" for one such 0 E S. 

sup 1 _,, <  Iu(y,t)I EL". 

The way Fefferman and Stein defined H" is the same as in [SW1] (see (1.9) 

and (1.10)) for (n - 1)/n < p < oo and, after Calderón and Zygmund [CZ] 

and Stein and Weiss [5W2], they were able to extend this definition for any 

p > 0, by considering more general systems of conjugate harmonic functions. 

It is appropriate to talk about H" spaces as spaces of distributions for p < 1. 

For p > 1 it does not make any difference. The equivalence of 1. and 4. is an 

n-dimensional extention of the theorem of Burkholder, Gundy and Silverstein, 

which shows that H" arises naturally as a space of harmonic functions, free from 

notions of conjugacy. They proved the equivalence of 1. and 4. using the Lusin 

S-function, defined by 
1 
2 

(Su) (x) 
= (l .(X) 

I Vu(x/,t)12t1_ndxldt)  

In fact they used the following theorem. Let us recall the non-tangential maximal 

function u*  defined by 

U* (X) = 	sup 	Iu(x',t)I. 
(x',t)EI' (x) 

Theorem 1.3.1 u E LP(R) if and only if 8(u) e LP(R) and u(x, t) -+ 0, as 

t -+ oc. Moreover, II u * lI 	118(tt)lIp, 0 <p < 00. 
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The direction that 1. implies 4. was already partially known and the generali-

sation follows the existing method of harmonic majorisation of a certain subhar-

monic function. For the opposite direction, they construct the system of conjugate 

harmonic functions and use Theorem 1.3.1. A consequence of the proof is also 

that '-' IkAIHP. The equivalence between 1. and 4. and Theorem 1.3.1, 

imply the following equivalent characterisations of H, 0 <p < oo (see also Stein 

[Si]). 

Corollary 1. 3.2 Let u(x,t) be harmonic in R 1 . Then tt e H, 0 <p < oo, if 

and only if S(u) E L7'(R), and u(x, t) -+ 0, as t —+ 00. 

An alternative characterisation, in terms of the function u+  defined by u+  (x) = 

supt>ou(x, t) 1, is the following. 

Corollary 1.3.3 Let u(x, t) be harmonic in T11.  Then u E H, 0 <p < 00, if 

and only if u E L"(R'). Moreover JJuJJ H ,, 

Finally, there is a characterisation of H" in terms of the radial analogue of the 

Lusin S function, the g function defined by 

 2 

g(u)(x) = 
( 	

Vu(x,t)2tdt) 

Corollary 1. 3.4 Let u(x,t) be harmonic in 1R'. Then u E H", 0 <p < oo, if 

and only if g(u) E L"(R), and u(x,t) -40, as t 	00. 

These characterisations were considered prior to Fefferman and Stein [FS], by 

Calderón [Ca2]. 

The equivalence of 1. and 4. with 2. and 3. brings out the real-variable char-

acter of H". These properties show that the Poisson integral plays no special role 

in the definition of H" spaces, but H" spaces arise from regularising distributions 

with approximate identities. 

The real-variable nature of H" is also evident from the atomic decomposition 

characterisation of H", 0 < p < 1. Let us first explain what we mean by the 

atomic decomposition characterisation of H". We shall first define a p-atom. 

Definition 1.3.5 A p-atom, 0 <p < 1, associated to a cube Q is a measurable 

function a on ]l' satisfying the following three properties: 

supp(a) c Q, 

IIaI 	' 
IQI1 where . denotes the Lebesgue measure, 
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(P3) fR,, a(x ) xadx  = 0, for all multi-indices a of order jal < [ri(l/p - 1)], the 

integer part of n(1/p - 1). 

We can now define the atomic Hardy space H.Pt  and the H-norm on TR. 

Definition 1.3.6 A distribution f is in H t (R 71 ), 0 < p < 1, if it can be repre-

sented in the form f = E00 1  A jaj  (the atomic decomposition), where each a2  is a 

p-atom, the convergence is taken in the sense of distributions and A i  I P <oo• 

The H(IR')-norm is defined by 

/00 	 \1/p 	00 

fllH:Rn =inf{ () 
	

:f=)al, 
i=1 

where the infimum is taken over all possible atomic decompositions. 

In the 1970's after the very important paper of Fefferman and Stein [FS], it 

was realised that the Hr-spaces admit an atomic decomposition, that is 

HP(R) = H(R), 

and the HP and HPt  norms are equivalent. For p = 1, C. Fefferman showed that 

this is equivalent to the duality of H1  and BMO (Theorem 1.2.2). This can be 

seen by showing that (H(Rn))* = BMO and using the Hahn-Banach theorem. 

For general 0 < p < 1, the atomic decomposition representation was obtained 

constructively by Coifman [Co] for n = 1 and Latter [L] for general n (see also 

[LU]). 

The atomic decomposition characterisation of HP allows us to define Hardy 

spaces in more general settings; for instance, on spaces of homogeneous type. 

These are topological spaces endowed with a Borel measure p and a quasi-metric 

d. Then Definitions 1.3.5 and 1.3.6 can be used to define the HP spaces, with the 

Lebesgue measure I substituted by ,a and the Euclidean metric substituted by 

d. An extensive list of spaces of homogeneous type together with definitions of 

Hardy spaces in these settings can be found in Coifman and Weiss [CW]. 
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Chapter 2 

Generalisation of Hardy's 
inequality under polynomial 

changes of variables 

2.1 Statement of the main result 

The classical Hardy's inequality first appeared in 1927 in Hardy and Littlewood 

[HL2] in the context of the theory of Fourier series. It states that. 

<CMIII L1(T), 

r=O 	

(2.1) 
+r - 

for f e H'(T, where H1 (T) is the classical Hardy space, discussed in Section 

1.1. Inequality (2.1) has an analogue for f e H'(W); 

f !L(x)
dx  <Cfl lfI H1(). 	 (2.2) 

JR 	IxI 
This has an easy proof using the atomic decomposition characterisation of H' (Rn) 

and Plancherel's theorem. As mentioned in Chapter 1, the Hardy space H' (Rn) 

often serves as a substitute (for L'(W)) endpoint space. For example (2.2) can 

be regarded as an endpoint inequality for the family of inequalities 

f
II(xW 

Ix 	
dx < CplIfMLP(n), 1 <p < 2, 	 (2.3) 

(2-p)n 	- 

and it was actually in this context that (2.1) was first proved. Note that (2.2) 

(and also (2.1)) is clearly false for general L'(R) functions f since 1(x) may 

decay very slowly to zero as 1XI -+ °• 

In this chapter we investigate the behaviour of inequality (2.2) under polyno-

mial changes of variables. To be precise we prove the following theorem. 
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Theorem 2.1.1 Let P: RI —+ Rn be an arbitrary polynomial mapping of degree 

d=(di ,...,d), with P(0)=0. Then 

I f 	f (P (x)) I dx 	Cm,n,dfIIH1(), 	 (2.4) 
JRm 	IxIm 

where Cm , n ,d only depends on m, n and d, and not on the coefficients of P. Here 

P = (P1 , . . . , P7 ) where the components P, are real-valued polynomials on ]R" of 

degree d. 

Due to the duality of H1  and BMO (see Section 1.2), Theorem 2.1.1 implies that 

b(y) 	f eiP!11f_ 

is in BMO(R) with a uniformly bounded (independent of the coefficients of P) 

BMO norm. To be more precise, one should insert an L°° normalised a(x) in the 

definition of b so that the integral converges. 

In 1990 Stein and Wainger [SWa] proved using analytic number theory that 

for a polynomial P: Z —+ Z 

00 

< 	 (2.5) 
1+ 	- 

r= -00 	 ft 
 

In fact they proved the equivalent statement that 

00 	iP(r)9 

EBMO(T). 

Furthermore they proved similar results for certain polynomials on Z leading 

to functions being in BMO(T'). Our Theorem 2.1.1 considers more general 

polynomial mappings but in the much easier setting of Euclidean spaces. Due to 

the continuous nature of our theorem, our method of proof is not related to the 

method Of proof in the discreet case. 

Inequality (2.4) can be regarded as a restriction inequality for the Fourier 

transform of H' functions. As an example, consider the mapping P(t) = (t, t2 ). 

Then (2.4) takes the form 

L00 tI

00  
dt < CIIfIIH1(R2), (2.6) 

which can be regarded as a global restriction theorem to the parabola for functions 

in H'(R2 ). In fact to prove (2.4), we use a sharp "global" L 2-restriction theo-

rem for polynomial curves, which is proved in Section 2.8. Sharp L 2 -restriction 

estimates will play the role of Plancherel's theorem in the standard proof of (2.2) 



via the atomic decomposition. To illustrate this we give a quick proof of the 

easier analogue of (2.6) where H 1  (T1 2 
) is replaced by the parabolic Hardy space 

Hp'ar  (R2 ), defined with respect to parabolic dilations, 

80x = (Sx i ,82 x 2 ). 

Using the atomic decomposition of Hr  (R2 ), it suffices to prove the bound 

f oo 

aQ(t,t2)l 
 dt<C, 
00 	Iti 

(2.7) 

uniformly for all atoms aQ which are defined with respect to a "parabolic cube" 

Q with dimensions r x r2 , say. That is 

supp (aQ) c Q, 	aQ  = 0 and aQI 	
1 

 < 	
(2.8) fR2 

 

By translation-invariance we may assume that Q is centred at the origin. To 

prove (2.7), we first split the integration by 

( oo 

 -  

IaQ(t,t2 )I dt 
= 	fI ~ 1/r Iti  

aQ (t, t2)I _______ It , 

aQ(t, t2 ) 

 

dt+ 
fij>iIr 

_______ dt 

Using (2.8) we have the pointwise estimate 

aQ(t,t2)t = 
IJR I aQ (x, y) (e t+yt2) 

- 1)dxdy 

If laQ(x,y)I(lxt + yt 2 I)dxdy 
 

< 

and hence 

I =  flt l :51/r 
IaQ(t,t2)d 

< 
f 	[rt + 	 ) 2 ]

dt

<C. 
 Itl 	I< 1 /r 	Iti 

For II, using the Cauchy-Schwarz inequality we see that 

aQ  t2) 
dt 	f (aQ(t,t 2 ) 2 dt) l/2 
	

dt) 
1/2 

 (fitl ~!'/r t 
 

CMaQlL6/5(R2)r "2  

< C 
1 	

< C, 

concluding the proof of (2.7). The second inequality uses the well-known sharp 

L2-restriction theorem for the parabola due to C. Fefferman and Stein (see [Fl]), 

and the penultimate inequality uses (2.8). 
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Of course Theorem 2.1.1 shows that (2.6) holds for isotropic H'(R2 ) where 

the cubes which arise in the atomic decomposition are standard dilates (r x r) of 

the unit cube. Again matters are reduced to proving (2.7), uniformly for isotropic 

atoms. The proof is slightly more involved because of the mixed homogeneities; 

isotropic, 5 o x = (Sx,, 8x 2 ), versus parabolic, 5 o x = (Sx,, 82 x 2 ). In general an 

arbitrary polynomial map P : Rm —+ R will have many competing homogeneities 

and the main difficulty will be to separate the various homogeneities. In this sense 

Theorem 2.1.1 is reminiscent of Stein's result that log I P(x)l is in BMO(TR?) for 

any real-valued polynomial P on R", see [S2]. 

In Section 2.2 we will outline the strategy for the proof of Theorem 2.1.1, 

establishing the basic reductions. In Section 2.3 we prove a few lemmas on the 

behaviour of polynomials of a single variable. In Section 2.4 we prove the one 

dimensional version of (2.4) which we will need for the induction argument of 

Section 2.6. Section 2.6 contains the main body of the proof of Theorem 2.1.1 

which will depend on two further estimates. The first of these is proved in Section 

2.7 and the second is the restriction inequality alluded to above and is proved in 

Section 2.8. 

Notation: For the rest of this thesis we denote by /3 < 'y or /3 = O('y) that there 

exists a constant C = Cm,n,d only depending on the degree d and the dimensions 

m, n, such that 101 CI-y. Let 0 mean that /3 /3. Also, when we 

say that A is sufficiently large, we mean that there exists a constant K(d) only 

depending on the degree such that A> K(d). 

2.2 Preliminary reductions 

We shall be using the atomic decomposition characterisation of H'(R'), see Sec-

tion 1.3. Let us recall the definition of a 1-atom. 

Definition 2.2.1 A 1-atom (or atom) associated to a cube Q is a function a on 

Rn satisfying the following three properties: 

supp(a) ç Q, 

11 all. < 	where 	denotes the Lebesgue measure, 

f11Th 
a = 0. 

Let us also recall 'the definition of the atomic space H', according to Definition 

1.3.6. 
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Definition 2.2.2 
00 	 00 

= {f e L'(r) f = 	.Aa2 , 	Ai  I <oo} 
i=1 	i=1 

and 
00 

If 	= inf{ 	LAI f = 

where the infimum is taken over all possible atomic decompositions of f. 

In Section 1.3, we observed that H 1 (R) H(1R?). 

It is straightforward to see that the proof of (2.4) reduces to proving 

J1a(P
(x))  I 

M 	IxIm 
dx < Cd, 	 (2.9) 

for an arbitrary atom a with Cd depending only on the degree of P. 

Now let P : Rm —+ T1.'be a polynomial of degree d = (d1 ,.. . , d), and such 

that P(0) = 0. Then, by using polar coordinates x = xlx' = rx', we write 

P(x) =  
( 1<1al:~ di 	

) x U ,..  , 	 Ax 
1 <IcI<dn 

fdi 	 dn  

r k  E A(1)x/a,= (
.. 

krl 	IcI=k 	 k=1 	IaI=k 

Then, writing 

b(x') - 

IcI=k 

we have 

fR m  

a(P(x))Idx 
f00 

 

- 

= fSM - 1  
I 

b(x I) rk ,...  
d 

, bi(x F)rk drdx'. = kI  

This implies that if we knew (2.9) for P Tft —* R with C not depending on 

the coefficients, then (2.9) holds for general P Rm —+ R'. Thus proving (2.9) 

reduces to proving 

fOO 

Ia(P(t))Id 	Cd, 	 (2.10) 

uniformly for all atoms a, with Cd only depending on d. 

For the rest of the thesis we concentrate on proving (2.10). By using Lemmas 

2.3.1 and 2.3.3 below, we will be able to restrict the integration in (2.10) to 

an interval on which each polynomial "looks" like a monomial. We then use a 

procedure, similar to the one in the introduction, of splitting the integration near 
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and away from the origin 0. For the part near the origin we use an induction 

argument which is carried out in Section 2.4. For the part away from the origin 

we use the Cauchy-Schwarz inequality together with an L 2-restriction theorem 

for polynomial curves. In order to use the restriction theorem though we must 

have that all the monomials that the polynomials look like are distinct. To 

make sure that we are in this situation, we use the fact that the integral in 

(2.10) stays invariant under rotations. That is, we may replace P(t) with RP(t) 

where R is a rotation. Actually considering only rotations is sufficient only in 

2 dimensions. For higher dimensions we will need to consider a more general 

class of transformations which we will call "almost" rotations. In Section 2.5, 

a procedure will be described, using "almost" rotations, which will allow us to 

reduce ourselves to the situation where P behaves like various distinct monomials, 

putting us in a position to employ our restribtion theorem for polynomial curves. 

The proof of the restriction result will be carried out in Section 2.8. 

2.3 Analysis of polynomials of a single variable 

In this section we concentrate on the analysis of the behaviour of polynomials of a 

single variable. To prove (2.10) we require a lemma which describes the splitting 

of the domain of integration into a number of intervals, some of which we call 

gaps and others dyadic intervals. This will be explained later in this section. We 

start by quoting Lemma 2.5 of [CRW] and give its proof for completeness. We 

then prove a generalisation. After we have established this we will proceed to a 

number of results that will be needed in Section 2.7. 

Lemma 2.3.1. Let t 15 ... ,td be the complex roots of a polynomial 

R(t)= >rmtm = Td.  ll(t_tm ) 
m=O 	 m=1 

of degree d, ordered so that It, I < jt21:5 . . . 	
IdI Then there exist positive 

constants K(d) and e(d) such that if A > K(d) and t satisfies AItkI < t < 

A'tk+lI, for some 0 < k <d (let t o  = 0 and td+1 = oo), then 

R(t) '- rk tk , 

for k> 1, 

R(t)  I is strictly increasing on [Altk I,A't k+1 I]. 

REMARK. Strictly speaking the lemma in [CRW] only shows that R(t) 

where Ck = rdtk+1 ... td. However it was shown in [FW] that rk 	rdtk+1 . . . td if 

K(d) is large enough. 
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PROOF. To prove part a) we write R(t) = rdfJrn....i(t - tm). Since Aitki < t < 

A ' itk+lI, 

(i_t <it - tm < (i+ ) iti Aj - 

for 1 <m < k, and 

(i_ ) tm <it - tml < (1+ ) ItMI 

for k + 1 < m < d. In short, we have the following two relations that are going 

to be used extensively, 

ttm t for 1<m<k 	 (2.11) 

and 

ttm "tm  for k+1<m<d. 	 (2.12) 

Substituting these inequalities in the expansion for R(t) in terms of its roots 

shows that on the interval [Aitki, A'itk+li],  R(t) c,tk where Ck = rdtk+1 . .. t. 

This together with the remark after the statement of Lemma 2.3.1 proves part 

a). 

For part b), first observe that 

R'(t) 	1 
 =  R(t) 	

(2.13) 

9*91 

1 	 I 	 1 	k 	 I 

R'(t)I> 
k 	

1 I 	1 	 1 	n — k I 	______ 	_____ - 	 ( 2.14) 
R(t) 	m=lt_tm 	m=k+1 ttm 	m=1 ttm 1 (A1)t' 

since itmi > At if m > k + 1 and Aitki  <t < A11tk+lI. For m < k, consider 

Re_ 	
.t —Retm 	(i —)t 	(i - i) 1 

t 	m 	lb 	b 
14 - 4 7fl 12 > (

i + )
2 
t2  = ( 1 + )

2 ' 

since t > Atm . Therefore 

k I 	I' 	) R'(t)I > / 
	

A — i t 
_k) 1 

R(t)l 	(i+ 	

n 

 

If A is sufficiently large, the coefficient of l/t is positive, which implies that 

itR'(t)/R(t)I is bounded below by an absolute constant. That proves part b). 

To prove part c) we notice that we have in fact shown that 

R'(t) 	R'(t) 
=Re 	>0. 

R(t) 	R(t) 
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That is log R(t) I is increasing on [AIt k I,A 1 tk+l ], which implies that R(t) I is 

increasing on [AtkI, A11tk+lI]. This completes the proof of Lemma 2.3.1. 

We shall pause now and consider some of the consequences of Lemma 2.3.1. 

For a polynomial whose roots are ordered by ltd < Jt21 :~ ltil we consider 

a dyadic interval [A'ltkl, AItkl]  associated to each root tk, whose logarithmic 

measure is bounded above by 2 log A. These intervals are harmless for our problem 

since on them we can just use the trivial bound Iall... < 1lalli < 1, giving a 

contribution to (2.10) which is < 1. In what follows we denote these dyadic 

intervals by Dk, 1 < k < d. The complement of the union of the dyadic intervals 

is a disjoint union of possibly very long intervals which we call gaps. It is on the 

gaps that we focus our attention. According to Lemma 2.3.1, on the gaps the 

polynomial "looks" like a monomial and in particular if there is a gap between 

I t i l and J t2l  it looks like t, if there is a gap between It2l and  1 61  it looks like t2  

and so on. Of course some roots might not be seperated enough to guarantee the 

existence of a gap "between" the roots. The significance of a polynomial looking 

like a monomial is that if we can prove something for a monomial, we can hope 

we can mimic the proof on a gap and prove the same for a polynomial. In what 

follows we denote the gaps, [AIt k , A't k+l I] by Gk, 0 < k < d. The number of 

gaps is bounded by a number which only depends on the degree of the polynomial. 

Part b) of Lemma 2.3.1 says that on the interval [AItk , A't k+i ], the first 

derivative of the polynomial behaves like that of a monomial (it is one power 

lower). We extend this to certain higher derivatives. To accomplish this we will 

need the following formula. 

Lemma 2.3.2 Let R(t) be a polynomial of degree d and let t 1 ,... ,td be its com-

plex roots. Then for any r > 1, 

R(r) 	 r 

	

H• 	
(2.15) 

t — t l   
1<11...1<d i1 

PROOF. The proof of Lemma 2.3.2 is by induction on r. The statement for r = 1 

is equation (2.13). We now assume that (2.15) holds for r = m - 1 and we turn 

to showing (2.15) for r = m. We have 

(R(m_ 1 )'\' 	RR(m) - R(m-l)R/ 

kR) 	 R2  
- R(m) R(m-l) R' 

- 

 

	

R 	R R 

which implies that 

R(m) 	(R(m_ 1 )\ 	R(m-l) R' 

R 

	

	R  
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We now use the induction hypothesis to obtain 

 R(m) 	 1  
(t) 

= L 	nt - ti I R E /  
ml 

 1 	
d n + 

( 	_) 
1~1i ~ ...r1m_i ~d i=1 

/ 	 rn—i 

= ( 	fl 	)I 
\1<1i...~L m _i<d 

t 
 

m-1 q-1 

- i<1i0 ~1m_id 	 G 	T 	( -1) 
rn—i 

= 	 n t  -  t  
1 <Zi ~ ...~ lm_i ~ d 1=1 

t - t 
j1 

rni q-1 	 rn—i 

- 
— 

q ( _1) (t _ti q ) 2  .i ( -1D) 

= 
1<1i0 ... 1m<d ii 

which concludes the proof of Lemma 2.3.2. 

We are now in a position to extend part b) of Lemma 2.3.1 to higher deriva-

tives. 

Lemma 2.3.3 Using the notation of Lemma 2.3.1, there exist constants E 1 (d) 

and E2  (d) such that if t satisfies Atk I  <t < Altk+ll, for  sufficiently large and 

some 0 < k <d, then for any  < r < k, 

6 1  (d) > R(r)(t) > 
tr - R(t) - tr 

PROOF. The upper bound follows immediately from (2.15), (2.11) and (2.12), in 

fact for 0 < r < d. Thus we concentrate on the lower bound. We use (2.15) from 

Lemma 2.3.2 to write 
R  

i<1i54 ... i r <d ji 

By the triangle inequality we have 

	

R(r) 	I 	I 	 r 	
1 > I 	 ___ 

	

R 	- 	i 	Ht-tli  
I i<1i0...1r<k j1 

I 

- 	
>

1 

- Iiq=  

r 

- 	 IIq . 
q=i 
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For the II q 's we use the same argument as in (2.14) to bound each term from 

above by 0(A -'t), since for each q the corresponding 1q  satisfies k+ 1 < lq < d. 

For I we have 

nt -t 1<1i$ ... ir <k i1 

	

> Re(
1<11— 

2 	h 
054 

) 
i r <k i1 

tr ± Re( 1  )t 1 	Re Hr i1i 

n:1 I t - t1i  12 

We note that unless r < k the sum in I is empty. Hence 

R(r) 	I 
--(t) ~ 	

tr ±Re ( 1 )tr_l ± 
... ±Refl 	

- O(A 1t') 
fJ1 t - t1J2 

1 >— 

since for each i 	k, It,, I < A't. This ends the proof of Lemma 2.3.3. 

We formally record the estimate derived near the end of the above proof in 

the following lemma. 

Lemma 2.3.4 Let c E N, c = 0(1) and L any index set such that (L) = 0(1). 

Consider any arbitrary set of complex numbers {t1,}1<< satisfying I tj,jI <A't 
1EL 

for some t > 0. Then, for sufficiently large A, 

i 

1EL i=1 

PROOF. The bounds from above are trivial and so we concentrate on the lower 

bounds. 

	

a 	 a 	1 	 a ii  1 

	

H 	Re 	 t1 I 	I > 	 ~ i: Re 	
- - 	n t 

___ 

	

1€L i=1 	 leL i=1 	
j 	

IEL 	i=1 

	

a 	- 

— ReH 
It - ti,i1 2  LEL 	i=1 

> CRe[ta_ (Et1
a 

t2ce
IEL 	L 	

z) 	
j1 

with C an absolute constant, since I t - t 1 ,4 < 2t for sufficiently large A and all 

i,l. Finally, again since each It j ,j I :~ A't, the last expression is greater than 

> 
2ct c'-' 1: ta 

	

IEL 	
(t 
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where D is an absolute constant, thus completing the proof of Lemma 2.3.4. 

The last lemma of this section is about the difference of two a-fold products 

as considered in Lemma 2.3.4. 

Lemma 2.3.5 Let {tj, j }i<i<a and t > 0 be as in Lemma 	but with L = 
IEL 

11, 21. Then, for A sufficiently large, 

- 	, 	
= 

() 

PROOF. 
a 	 a 

11 11  t — tli - 	t—t2i 
i=1 	 j=1 

fI a i 	 a f 
- 	j=ltst - t2,j)  - 	

I-Ia 
1 	i \ a 

i=1 f - t2,i 
4 \ 4a-1 I 	 / 1 \a I1-T 	4 	1-Ia 4 

L.i=i b1,j - Li=i b2,i) & 	-1-  . . . - 	 U Ii=i &2,i - I Ii=i &1,j 
- 	 (1_1\+2a 

k 	Al 
ta 

- (1_)t2a - Ata' 

for C an absolute constant and for sufficiently large A. This completes the proof 

of Lemma 2.3.5. 

2.4 An inductive step 

In this section we prove (2.10) for n = 1 and an inductive step which is needed 

in the induction argument described in Section 2.6. 

Theorem 2.4.1 Let P 	—* R be a polynomial of degree d, with P(0) = 0. 

Then 	

<Cd, 	 (2.16) 
fo r  

uniformly for all atoms a on R. 

PROOF. We apply Lemma 2.3.1 to the polynomial P. According to the discussion 

after the proof of Lemma 2.3.1, can be decomposed into 0(1) gaps {G k } and 

dyadic intervals {Dk } with respect to P and so 

fdr+ dr.  
kJDk 

Ia(P(r))  

J0 	r 	
dr= 	

r 	 r 

On the dyadic intervals Dk we use 	OO 1 to obtain 

bk  1 f 	dr < I —dr logA(d). 	 (2.17) 
k 	r 	Jak r 
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By part c) of Lemma 2.3.1 we can make the change of variables u = P(r) on the 

gaps Gk to obtain 

f 
a(P())    

dr 
k 	r 	= fp(Gk) 

ã(u)j du 	

fP(Gk) 

a(u)I P(r) du 
Jul 	rP'(r) r 

< e(d) f adu < C€(d), 	 (2.18) 

	

Jo 	U 

where we have used part b) of Lemma 2.3.1, together with the one-dimensional 

classical Hardy's inequality (2.2). So combining (2.17) and (2.18) we obtain 

(2.16). 

We now show how inequality (2.10) for P(t) = (P1 (t),. . . ,P(t)) implies in-

equality (2.10) for P(t) = (P1 (t),... , P(t), 0) in one higher dimension. This 

observation will be needed for the induction argument in the main proof of (2.10). 

Lemma 2.4.2 Let P(t) = (P1 (t), ... , P,(t)) be a polynomial curve in R with 

degree d = (d1 ,. . . d). Suppose that 

I Ia(P1(t),. . . ,Pfl(t))Idt 	1 
0 

holds uniformly for all atoms a on R. Then 

J°° a(P1(t),. . . ,Pfl(t),O)Idt 	1 
0 	 t 

holds uniformly for all atoms a on 

PROOF. Let a be an atom on R. With x = (x 1 ,. .. , x), we write 

r a(P1(t) , ... , Pfl(t) ,0)Id 

0 	 t 

= L fRfl 	

dt 
-- +1 

= flf(fR a(x  x+1)dx+1) 

dt 

= 	C lb(Pl(f),... 

where b(x) = fR  a(x, x+1)dx+i. Hence it suffices to show that b(x) is an atom 

on R'. That is b has to satisfy properties (P1), (P2) and (P3) of Definition 

2.2.1 with respect to some cube in R. Suppose the cube associated to a is 

Q = x [C, D], where Q and  Q' are n + 1 and n-dimensional cubes respectively. 

Then b(x) is supported on the projection of the (n+ 1)-dimensional cube Q which 



is the n-dimensional cube Q'. For the L°° norm property we have 

= fR a(*, Xn+l)dXn+l L  = 5Up€ fR a(x,Xn+l)dXn+l 

< 5Up 	fR I  a(x,x+i)jdx+i 

f —dx1 
c 
1 

IQ'I 
Also the cancellation property for b is satisfied since 

fR 
b(x)dx = f

R- 11 	 R f a(x,x+i)dxn+idx 
= f 1 

 a(x,x+i)dxdx+i = 0. 

So b(x) is indeed an n-dimensional atom and the lemma is proved. 

2.5 Reduction to distinct monomials 

Let the mapping P : R -+ Rn in (2.10) be given by P(t) = (P1 (t),... 

Then for each P we have a corresponding splitting of 	into gaps and dyadic 

intervals (following the discussion after Lemma 2.3.1). We then take S to be the 

union of the n-fold intersections of the various gaps corresponding to the P i 's, 

which is a union of disjoint intervals and whose complement SC  is an 0(1) union 

of dyadic intera1s. We then split the domain of integration in (2.10) into S and 

Sc . On Sc we use the fact that lliill. < 11all, < 1 to obtain 

L a(P(t))d < f dt 

For S we have 	
a(p(t)) I 

= 
where the number of intervals I, is bounded by a constant Cd,  only depending 

on d. Hence it suffices to obtain a bound 

JIc 	t 	
dt.1 
	

(2.19) 

for each c where on I, the components of P(t) = (P1 (t),... , P(t)) look like 

various monomials according to Lemma 2.3.1. Specifically if Pi  (t)= Pz ,mtm , 

then on 

P2 (t) 

for some j2 . The main ingredient in the proof of (2.19) is to employ a sharp 

restriction theorem for polynomial curves on an interval where the components 
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behave like monomials; however this theorem requires the monomials to be dis-

tinct. This is resolved in this section by using a sequence of "almost" rotations 

which will transform the polynomials in such a way as to guarantee that the 

are distinct. Furthermore, when an atom is transformed under an "almost" 

rotation, the properties (P1), (P2), (P3) defining an atom are still essentially 

satisfied. 

Definition 2.5.1 A linear transformation on 1ftn  given by an n x n matrix A = 

(a,3 ) is called an almost rotation if det A [max 

For an almost rotation A and an arbitrary atom a, we set aA(x) = det A a(AT X ) 

and observe that properties (P 1), (P2), (P3) are essentially. satisfied by aA. 

For the cancellation property (P3), clearly fR'. aA = 0. Let Q be the cube 

associated to a (by translation-invariance we may assume that Q is centred at 

the origin) and Q' be the smallest cube containing (A - ')'Q. We note that 

supp aA c (A_l)TQ c Q'. 

Furthermore we claim that 

IaAl 

which is essentially the L property (P2). This follows from 

IaA I loo < detAMal I < detA < 

lQ 

which holds if 

Q'I det A ;5 IQI. 	 (2.20) 

The sidelength of Q' is essentially equal to the sidelength of Q times IIA -1 11 since 

L' 	sup I (A 1  )TvI 	IIA'L 
vEQ 

where L' is the sidelength of Q' and L is the sidelength of Q. Hence (2.20) will 

be satisfied if 

detAIA'I 	1 	 (2.21) 

holds for any almost rotation A. Let m = max laij  I where A = (as ,,) and note 

that (2.21) can be rewritten as 

IA 1 I $ m'. 

However 

A-' 
= detA' 
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where the classical adjoint matrix Adj(A) = ((_ i)Hi det(A 3 , 2 )) is defined with 

respect to the cofactors of A, (_i)Hi  det(A, 3 ), where A 2 ,, is the (n - 1) x (n - 1) 

matrix formed by deleting the ith row and the jth column of A. For instance 

det(A i , i ) = 	
\sgnir a2,(2) .. . a. 

ir 

where the sum is taken over all permutations ir of 12, 3,.. . , ri}. Hence det(A i , i ) 

M 1  and similarly det(A,,) < m 	for all entries in Adj(A) and so 

max 
1 
 det 	< m1 = m 1  

	

IdetA 	I" Mn  

whenever A is an almost rotation, establishing (2.21) and hence (2.20). Thus for 

any almost rotation A, since 

a(P(t)) = a(A-1 AP(t)) 

= aA(AP(t)) 	 (2.22) 

and aA satisfies the -properties (P1), (P2) and (P3) (essentially), we may replace 

P(t) in (2.19) with AP(t). 

The idea is that we will proceed in several steps, each involving an almost 

rotation, so that in the end we will have substituted the polynomial P in (2.19) 

by another polynomial P = (P1 ,. . . , P) and reduced ourselves to a subinterval 

of 'a  on which the A's look like distinct monomials. At each step we shall be 

using the following consequence of part a) of Lemma 2.3.1: if a polynomial does 

not contain a ta  term in its expansion, then it can never look like ta  on any of 

its gaps, unless the polynomial identically vanishes. Since the proof of (2.19) will 

be carried out in Section 2.6 by induction in n, Lemma 2.4.2 shows that we may 

suppose that no component P2  of P is identically zero. 

The r'th step in the procedure will be as follows. By the previous r - 1 steps 

we will have reduced ourselves to the following situation. We have a polynomial 

P(t) = (P1 (t),.. . , PL, (t), PL r_ 1 +1(t) .. , P(t)), on a gap I, so that on I, 

P2(t) .' Pi,ji 1 for 1 <i <n, (2.23) 

with all the j, for 1 < i < Lr_i, distinct and none of the P2 , with L r_i+1 < i <fl, 

containing any t" , tj ,.  . . , t"-" - ' term. Assume L r_i < n. For the first step we 

simply have L 0  = 0 and no condition on the P2 , 1 <i <n. We then, using (2.22), 

replace P by P = AP, where A is an almost rotation given by an n x n matrix 

of the form 

(2.24) 
0 	B ) - 
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Here 'Lr_j  is the Lr_i X L_1 identity matrix and B is an (n - L r_i) x (n - 

Lr_i) matrix. Note that under A, the first Lr_i polynomials P1 ,... PL,- , remain 

unchanged, so 

F=P for 1j<L r_ 1 , 

and none of the PLr_1+1 	, P contain any t , tj,... , tiLr-I terms. In addition 

to this we will choose B in (2.24) in such a way that an additional M > 1 

polynomials, say Pu ,...Pim,, out of the PLr_1+1  .... P, will remain unchanged. 

Recall that on I, 

	

Pi. (t)'tj 	for 1 <m < Mr . Pim')m 

The polynomials F21 ,... , PMr  will be chosen so that all the ji., 1 <m < Mr , are 

distinct from each other and are of course also distinct from all the j2  with 1 < 

j <Lr_ i , because of Lemma 2.3.1, as discussed above. Moreover, the remaining 

components of P which will be linear combinations of the PLr_1+1 I P,, will not 

contain a t term for any 1 < m < Mr . We can then reorder the P so that the 

first Lr_i + Mr  of the F, are the ones that were left unchanged by A and on I 

satisfy 

(t) 	pj , 7 t' for 1 < 'i < Lr_i + Mr , 	 ( 2.25) 

with all the j2 , for 1 < j < Lr_i+Mr , distinct, and none of the P,, withL r_ i +Mr+ 

1 < i < n, containing a t", tj 2 ,... , t3r_1+Mr term. We now subdivide I further 

into gaps and dyadic intervals with respect to the last n - Lr_i - Mr  polynomials 

in P, the new dyadic intervals being harmless and the first Lr_i + Mr  polynomials 

still satisfying (2.25) on the new gaps. Hence concentrating on one of the new gaps 

I' C I and setting L r  = Lr_i + Mr , we have for P = (161).. P, 'L+1, , 

P2 (t) 	 1 < j < Lr  

on I' where as before the j2  are distinct. Furthermore for Lr  < i < TI, 

	

Pi M 	Vi  

on I' and Pjj, = 0 for 1 < k < L, putting us in the right position to go onto the 

(r + 1)'th step. 

It now remains to explicitly construct the almost rotation A in (2.24) with 

the desired properties described above. It suffices to explicitly determine the 

(n - L) x (n - L) matrix B (in what follows L = Lr_i < m). Recall that on I, 

each 

P(t) --  

	

Vi, 	 Ti 

	

J/i,j ' 	1 <i <, 
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where Pi  (t) = IJ pj , m tm. In order to construct the matrix B, we will use the 

following (n - L) x (ri - L) array: 

PL+1,jL+l I IPL+2,jL+1 I IPL+3,jL+l I 	IPn,jL+1  

PL+1,jL+2  IPL+2,jL+2 I IPL+3,3L +2 	IPn,j 2  

PL+1,jk , I IPL+2,jk1  I IPL+3,jk1 	IPn,j,c  

I PL+i,j 2  IPL+2,jk2  I IPL+3,jk2  I 	IPn,jk 2  I 

IPL+1,j 	IPL+2,j I 	IPL+3,j 	 IPn,jn  I 
Using the exponents {jk}i,  which are going to be chosen appropriately later, 

we have the following claim. 

Claim. There exists a sequence (k m ) c N of length M < n - L, where the {k m } 

are distinct and L + 1 <km  < ri, such that 

IPkm+l ,jkm l = Max flPiJkm  1}1 1< m < M —1, 	(2.26) 
L-4-1<i<n 

and 

	

IPkljk I 	
1 
- max {IPi,jkMI} 	 (2.27) 

	

M 	K L+1<i<n 

for K = 2(n - L)n_L .  In the case M = 1, only (2.27) holds. 

In fact we will construct a sequence that, instead of (2.27), satisfies the stronger 

condition 

IPkljk I = max U 

	

M 	L+1<i<n Pi,jkMI} 

However once we have established the existence of a sequence satisfying (2.26) 

and (2.27), we will consider the shortest possible sequence and the constant in 

(2.27) will be convenient as will become clear later. We can visualise the proof 

of our claim in terms of picking out a certain sequence of entries from the above 

array. To construct the alleged sequence, we first pick any k 1  between L + 1 and 

n. We then look at the k 1  'th row of the array and we pick an element of that 

row, IPk2 ,jk , I say, satisfying IPk2,jk 1  I = max1<<fl{Ip,k l  I} for some L + 1 < k2 	n 

(if there are many possible values for k2  pick the smallest one). We then look at 

the k2 'th row of the array and pick an element of that row, Pk3 ,jk2  I say, satisfying 

IPk3 ,jk2  I = maxl<Z<fl{lpZ,3k 2  I} for some L + 1 < k3  n. Continuing this procedure, 

we form a sequence J N2Jk j  I, IPk3,jk 2  I IPk4,jk 3 I5 . .. whose elements satisfy (2.26). 

Since there are only n - L possible maximal elements in the array to choose 

from, there will be some m0  and rn'0  with 1 <rn0  <rn'0  n - L + 1, such that 

{ k+j} 	fl201 are distinct and kmo  = km . We can then form the sequence 

which has length 1 < M = m - m0  n - L. If we 
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rename m0  = 1, m + 1 = 2,.. . ,rn'0  - 1 = M, we form a sequence {k 1 , .. . , kM} 

that satisfies (2.26) and (2.27), consequently establishing the claim. 

Having established the existence of a sequence satisfying (2.26) and (2.27), we 

can consider a shortest such sequence. The length M of that shortest sequence is 

equal to Mr  in the above discussion. A property of this shortest sequence is that 

3km 1  3k,2 for 1 m1 <m2 M. 	 (2.28) 

This is because in the array above, any two rows kmi  and km2  with 3k. 1  = 3k. 2  

are identical. 

We use this shortest sequence to form the following M vectors: 

Pik, = (PL+1 ,jk 1 ) . .. , PnJkj  

Pjk2  = (PL+1,jk2 ). .. , Pn,j 2 ) 

PjkM = (PL+1,jkM ) ... , Pn,ikM) .  

We can now find n - L - M vectors 

a1 = (aL+1,1, aL+2,1, ... , a,i) 

a2 = (aL+1,2, aL+2,2, . . . , afl ,2) 

a_L_M = (aL+1,flL_M, aL+2,_L_M) ... , 

so that each a1  is perpendicular to all of the 1Pjk 1  I Pik, '• . . , PikM  }. In addition we 

require that for each row vector a1 , all the components except for the k 1  'th, k2 'th, 

kM'th plus one more component, equal to zero. In fact we require that the 

additional component have value equal to 1. The extra nonzero component, has 

to be chosen so that it is in a different position for each a1, 1 <1 < n - L - M. 

We note that there are enough positions left for this, since out of the n - L 

total positions, M are taken by the km 's and hence there are exactly n - L - M 

positions left, same as the number of al 's. To see that we can choose the vectors 

a1 , 1 < 1 < n - L - M, with these additional restrictions and so that they remain 

perpendicular to all of the 1Pjk 1  I Pk 2 • .. , P M  }, we consider a generic a1 which 

has the form 

a1 = (... , ak1,1,. .. , 	 ... ) 
1,... , ak3,1,.. . , akm ,1, . . .), 	( 2.29) 
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the remaining entries being 0. The statement that a 1  is perpendicular to all the 

Pjicm, 1 <m < M, is equivalent to the matrix equation 

Pkj,jk 1 	Pk2,jk 1 	Pk,j 1 	ak1 l 

Pkj,jk 2 	Pk2,jk 2 Pkm,jk 2 ak2 ,1 	= - 	P1',jk2 	
, 	(2.30) 

Pkl,jk M  Pk2,jk M 	PkM,jkM 	akM,1 

where 1' is some number between L + 1 and n, not equal to any of the km  for 

1<m<M. 

We can find the required vector a 1  if we can solve (2.30) for (ak1,1, ak2,1,. 

akM ,l). In particular, this is possible if the determinant of the matrix in (2.30) 

does not vanish. This is actually guaranteed by the fact that we are considering 

the shortest sequence (km ) satisfying the claim above. In fact the determinant of 

the matrix 
Pkl ,jk1 	Pk2 ,jk1 	Pk,j 1  

C = 
	Pkl,jk 2 	Pk2,jk 2 	Pk,j 2  

Pkj,jk M  Pk2,jk M 	PkM,jk M  

satisfies 

Pk2,jk 1 Pk3,jk 2 	 det C 	IPk 2 ,jk1 Pk3 ,jk2 	 () 

which in turn is a consequence of the fact that for each row of C 

Pkm +l,jk I >K max {IPk i ,jicm  } for 1 < m M - 1 	(2.32) 
- 1<i<m 

and 

	

KIpkl,jk M  I >  Max {Pi,jk M  } > K max {IPkj,jk M  1 	(2.33) 
L+1<i<n 	 - 2<i<M 

with K = 2(n - L)'. This can be seen by expanding 

M 

detC = 	
(_

1)sgno fJPk(j),jk 

	

aESM 	 i=1 

and observing that because of (2.32) and (2.33), the dominant term of the sum 

is the product corresponding to the permutation or = (123. . . M). The truth of 

(2.32) and (2.33) is a result of (km ) being the shortest sequence satisfying the 

claim above. This is because if for some m in the range 1 < m < M - 1, there 

was an i <m such that 

max {IPj,j k  I } = 	I< K1pk 13  
L+1<i<n 
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then a strictly shorter sequence satisfying the claim would be the sequence k, 

..., km . Also if there is an i in 2 < i < M such that 

max {Pi,jk M  } < L+1<i<n 

then a strictly shorter sequence satisfying the claim would be the sequence k2 , 

k+1, ..., k. 

Having now established what the al 's are, and denoting by e m  the row vector 

with the value 1 at the km 'th position and 0's in all the other positions, we form 

the (n - L) x (n - L) matrix 

e 1  

B = 
	em 	 (2.34) 

a1  

a_L_ M 

This is the desired matrix B in (2.24). By the form of B it is easy to see that under 

the transformation A, the polynomials Pk,,... , Pkm  are left unaltered whereas the 

Pi  in the range L + 1 < i <n with i km  for any 1 < m < M, do not contain a 

tikm term for any 1 < m < M. 

Finally, we have to make sure that the matrix A is an almost rotation. By 

direct computation we see that det A = 1. Therefore we need to show that the 

maximum entry of B and hence also of A is 1. In other words it suffices to 

show that all the components appearing in a1 , a2 ,. .. , aL_M are < 1. For every 

lin1<1<n—L—M and every min the range 1mMwehave 

a1 P3k = 0. 

For any fixed 1 we first look at 

a1 P3kM = 0. 

This equation written out explicitly is 

ak1,1pk1,k M  + 	+ : i: akm,zpkm,jkM = 0. 
2<m<M 

(2.35) 
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Therefore, using (2.27) and (2.33) appropriately, we have 

o = Iakl,lpkl,jkM  + P1',jkM + E  akm,zpkm,jkM I 
2<m<M 

~ ak,1pk,j 	- IPI',jkM  I - 	 Iakm,lpkm,jkM 
2<m<M 

	

ak 1  ,i I  Pk1 kM I - '< IPki , kM I  - Pki , kM I 	akm  ,1 

2<m<M 

= 

 

(Iak 1 ,Ij - K - 	akm ,1I) IPkl,jk M  I. 
2<m<M 

This implies that 

	

Iak1 ,lI :!~ lttmax{Iak2,lIjak3,1I,... ,IakM,1I,K}. 	 (2.36) 

We then look at 

a1 P3k, = 0. 

This equation written out explicitly is 

ak2,1pk2,k 1  + P1',jk1  + Y
,

akm ,lpk m ,jki  = 0. 
1< m< M 

m:j2 

Therefore, using (2.26) and (2.32) appropriately, we have 

	

0 = ak2,zpk2,jkl + 	+ 	 I 
1 <m < M 

mii2 

	

• lak2,lPk2, jk l  I - 	 I - 	 akm ,zpkm ,jk i  I 
I <m < M 

m?i2 

	

• I ak2,1Ipk2,, I - lPk,j 1  I 
- 

kIPk2,j kl  IIak1,zl - 	 i 
3<m<M 

= 

 

	

(lak2,1 I - 1 
- 	

j klakl,1I - 	 l0k,Ll) lPk2k 1  I. 
3<m<M 

This implies that 

1 
I ak2,1I 	1W rnax{ - lak1,1I, Iak3,1I, .. .  ' lakM ,1I, 11. 

Similarly, by looking at 

a1  Pjk2 = 0 

and performing the same argument, we obtain 

1 	1 
I ak3 ,1I < [VI rnax{kIakl,1I ,  - lak2,1I, Iak4 ,1I, . . . , IakM ,zI, 11. 
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In general, using the an appropriate equation from (2.35), we obtain 

akm ,lI 	Mmax{Iak1,zI, k ak2,1 I ,. 	, 	 Iakm+i,d,... 	11 

(2.37) 

for any rn in the rahge 2 < m < M. The substitute equation for m = 1 is 

(2.36). We can now deduce that Iakm ,1 :~ MM+1K 5 1 for all 1 < m < M and 

l<l<n— L — M. 

Let us suppose that for some rn1 , ak., '11 > MM+1 K > MK. By (2.36) and 

(2.37), this implies that there is an rn2 m1 such that 

akmi,z 	Mkakm2,1I if M2 < m1 , 	 (2.38) 

or 

akm1 ,1I :5  Makm21 1I if m2 > m1. 	 (2.39) 

The second inequality is clearly weaker than the first and even in the case of 

(2.39), we see that 

• 
akm211I ~! 1 1akm1 ,1I > MMK > MK. 

This in turn implies, because of (2.36) and (2.37), that there is an m3 M2 such 

that 
M 

ak m2 ,1 :!~ -jj - Iakm 3 I
II 

or 

I ak 2 ,1 	It/IIakm3 ,11 if m3 > m2. 	 (2.41) 

Again the second inequality is weaker than the first and even in the case of (2.41), 

we can see that 

akm3, ii > — I akm2, iI > MMK> MK. 
- 1'vt 	 - 

Now rn3 could be equal to m1 in which case we stop and consider the sequence 

M1, m2, m3. If m m1, then we just continue the same procedure and form a 

sequence (m q ), until we arrive at an m q0  equal to m1 where we stop. First we 

note that this is guaranteed since the rnq 's can only take a finite number of values 

between 1 and M and secondly we note that for all rnq  in the sequence, 

I akmq ,1I > MK, 

since for every extra element we pick up an extra constant , but we have at most 

M + 1 elements in the sequence. The crucial point is that no element is equal to 

the previous one and the last element is equal to the first, and so there must be 

if m3 <m2, 	 (2.40) 



at least two consequtive elements, say mqi and mql+1, that satisfy mql+1 < mgi. 

For these elements we then have 

M 
Iakm II < 7Iakmq,1,1I. q1 I - 

This implies that 

MM 	MM 
akmi  ii < - K. Iakmq0 ,d = 

which is a contradiction since K = 2(n - L),—L. In this way, we have shown that 

akm,1 < 1 for all 1 < 1 < n - L - M and 1 < m < M. Hence the maximum entry 

of A is ' 1, which implies that A is an almost rotation. 

This completes the description of how the r'th step in the procedure is per-

formed. Since 0 = Lo < L < ..., there is an Lk = n, k <n, and so after k steps, 

the above procedure reduces the proof of (2.19) to establishing 

I Ia(P(t))d 	1 	 (2.42) 
I 

for an "atom" a supported in a cube Q, centred at the origin, such that f a = 0 

and I I a 	IQL1. Furthermore, each component of P(t) = (Pi  (t), . . ,P(t)) 

satisfies 

P2 (t) 	pj7,t 	 (2.43) 

on I where the exponents {j 2 } are distinct and nonzero. In fact 

I c n[At2,  I, A - ' t, +1  ] 

and so the conclusions of Lemmas 2.3.1, 2.3.3, 2.3.4 and 2.3.5 hold for each P on 

I if A is chosen large enough. In the following sections we will make use of the 

following functions, for 1 < M < n, 

= det(P' (t),P" (t), .... P(a)(t)), 	 (2.44) 

where P(t) = (Pi (t),. . . 

2.6 The main line of the proof 

We prove (2.42) by induction on n, the number of components of P(t). First of 

all we split the integration interval I = [B, D] in (2.42) at ) = ( j Qj FL IpjI) 
and write 

fBdt 
A
la(P(t))Id

+ fD 
d(2.45) = 

 t t  

Wei 



Now for the part of the above integral near the origin we have for any 1 < k < n, 

+
fB

fA 	

(t) a(P,.. .,Pn(t))dt 
 

< [
a(P(t), . . . ,P(t)) -. .Pk_l(t),O,Pk+l(t), . . . 
 t 

A 

a(P1 (t) ,...,  Pk-  1 ( t ) , O ,Pk+1 ( t ) ,...,Pfl( t))d 
 t 

The last integral is 0(1) by Lemma 2.4.2 and the induction hypothesis. For the 

first term of the right hand side we have 

Ia(P1(t), . . . , P,(t)) - 	. . . , Pk_l(t), 0, Pk±l(t), . . . , P,-(t)) 

= f a(x) (e2'" 
(t),...,P(t)) - e_2 	•p1 (t),...,Pk_j (t),O,Pk+1 (t)...Pn(t))) dx 

<2fa(x)Hx k Pk (t)Idx < 2Pk (t)IIQ"fa(x)ldx 

Now we use the fact that on I, Pk(t) r' pk,j k t k , and so 

P(t)) - a(P1  (t),.. . , Pk-i(t), 0, Pk+1  (t),... , P(t)) 	Pk,jk tik IQ 
1/n 

Therefore 

f A a(P1 (t), ... , P,(t)) -. . . , Pk_l(t), 0, Pk+l(t), . . . , P(t))I 
 t 

	

A 	 1 
Pk,jQ' fB 

tjkdt 	 :=Ak, 
 (IQ Hi IP I) 

and this is valid for any 1 < k < n. We can choose k so that the final expression 

above is bounded above by 1. In fact 

n 1 	
=1  rl fT lA k I = 	Q11"iPk,jkl (QI 

Il IPi,i 

	

D 	- k=1 

and so if all the terms in this product were strictly greater than 1 then the product 

would be strictly greater than 1. Hence there is a k such that 

1 

	

jAkj 
	

1 = lQlll'lPk,j,l 	
J-J 	

< 
) 	- 

and this completes the proof for the part of the integral near the origin. 

For the part of (2.45) away from the origin we make use of one of the functions 

defined in (2.44), 

Lp1 ,..p(t) = det(P' (t), P"(t), . . . , p(n) (t))  

Rol 



where P(t) = (Pi  (t), . . . , P,(t)). If each Pi  (t) = p2,t', then 

n 
n 	n(n+1) 

Lp1p(t) '-. JJPi,jtY=12t 	2 	 (2.46) 

However only (2.43) holds but Proposition 2.7.1 below will show that (2.46) still 

holds on I = [B, D]. Then by the Cauchy-Schwarz inequality 

Ia(P(t))l 	D 

	

fA 	t dt 
= L 	dt 

J 	
t2(LP1...Pfl(t))2/fl(fl+1)dt) (JD Ia(P(t))

2 (LP1  ... P(t))2/n(1)dt) . 

1 

If (2.46) holds, then the first term of the product is bounded above by 

	

D 	 1 	
1/2 

(Iri Ip,jIQI) 	(fl1=i 	

+1 dt) 	~ IQ''• (2.47) 
1 	 2 	2 

For the second term we use a weighted restriction theorem mentioned in the 

introduction (and proved as Theorem 2.8.1 below) to bound this from above by 

	

jall n(n+1) 	
1 
	 (2.48) 

	

n(n+1)-1 	1Q11/n(n+1) 

where in the last inequality we have used the fact that 1 1a ll, < Q1-111' which 

follows from Ia QL'. Finally combining (2.47) and (2.48) we get the 

desirable bound which is independent of the coefficients of P and only depends 

on the degree d. It remains to establish (2.46) and the weighted restriction 

theorem for polynomial curves. 

2.7 Bounding Lp1  ... p(t) 

Proposition 2.7.1 Let Lp 1 ...p(t) be defined as above and I = [B, D] the interval 

in (2.). Recall that for t e I, F(t) p,31 t' and 0 <ii <32 < ... <j. Then 

for tEl 
I 	 n 	n(n+1) 

Lp1  ... p(t) 	JI[Pii) 
t2=- 	2 

PROOF. First, let us denote by d2  the degree of the polynomial P2 , by a a 

permutation of {1,. .. , n}, by tj,k the (complex) roots of P1  ordered so that It i ,ki I 

ItiA21 if k 1 	k2  Then by expanding the determinant L, ..p 

p, a(n)) 
(t) - 

p1 7 (l)) 

(t) 
P1  . . . P P1  . . . P 

oeven a odd 
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We then use Lemma 2.3.2 to express the derivatives of polynomials in terms of 

the roots ti,k.  Thus 

P1 ...Pn  
n 	 t7(i) 

= 	I II 	I2 	ri t 	k a even i=1 1<kI 54 	1=1 	' 

n 	 a(i) 

=H 	Ht11t 
aeven i=1 1<k l ~...~k () <j 1=1 	i,kj 

( At

1
+0 	_ 

 2 

a(i) 
1 

	

- U 	t - 
aodd j1 1<kl54 ... i4k()<d 1=1 

a(i) 
1 

	

I 111 	II 	fT t -  
oodd i1 1<kl54...54k a ( j) <jj 1=1 

When a(i) > j, the sum over k 1  54 ... 	 is empty and interpreted as zero. 

We then proceed to interchange the order of the middle product and sum. That 

is we can express L 1  ... p(t)/P1 (t). . .  P(t) as a difference, 

where 

1 ... 	n 

11 ri 
a(i) 

E+ j=1 1=1 

a(i) 

-: H Ht2k. 
E_ i=1 1=1 	' +0 (

1  
n(n4-1) 

\ 
) 

, (2.49) 
At 2 / 

E = {(k, 1 ,... , ki ,ai)) : 1 < k, 1 	 ... 	 j, 1 < i < n, or even} 

and 

E_ = {(k, 1 ,... ,k j , a( j)) :1 < k2 , 1 	 ... 	 j2 , 1 < i < n, a odd}. 

We observe that both sums in (2.49) are sums of 	1 -fold products. This allows 

us to use Lemma 2.3.5 to compare a term from E+ with a term from E_, creating 
1 	n(n+1) 

an error 0(A 	2 ). Hence if E+ $ E_, we have 

n a(i) 
n(n-f-1) 

(t) = + i H II 
- 	

+ 0(A 't 2 ) P1 ...P' 

	

n 	 S i=1 1=1 

where either S is a nonempty subset of E (if 	> OE- ) or a nonempty subset 

of E_ (if E_ > fE). Now Lemma 2.3.4 can be employed to obtain the desired 

bounds for Lp1  . . . p(t). So it only remains to verify 	E_. This is done by 

counting. We recall the fact that the inverse of an even permutation is an even 



permutation and likewise for odd permutations. So 

- OE- 

= 	ftr! ii
)( Leven 

( 3 	
) 	

(fl 

) a(1) a(2) ..• a(n) 
r=1 

( 	
ii ) ) 	

(jfl \1 
- (1 

odd j 

jor 

Leven ) ( 	
ja(2) 	

) 
( 

or(ioa,-- u('(1)) .. 
r=1 

( 	3a(i) 	" 

( 	
3c(n) 

) 

 

- u(a1(1)) ... 
or odd 

= 	fir! F 	(a(1) (a(2)) 	((n) 

r=1 Laeven 	
1 2 ) 

(i')) 	((n) - \1 
odd 	

1 )j 

= F 	j(1)j(2)(3(2) - 1)j(3)(ja(3) - 1)(a(3) - 2) 
even 

ja(n)(3(n) 	1)... (j(n) 	+ 1) 

- 	3c7(1)Jcr(2)(3a(2) - 1)j(3)(jcT(3) - 1)(j(3 ) - 2) 
a odd 

Ja(n)(Ja(n) - 1) ... (ja(n) - fl + 1)] 

31 32 in 

ji(ji —1) j2(32 —1) j(j 	—1) 

j1  ... (j1 —n+1) j2...(32fl+1) ... j...(j—n+1) 

Then by expanding the products and performing row operations the determinant 

above is equal to 

3132 Jn 1 	•.. 1 
2 

Ji 
•2 

J2 
2 n 

31 In 
= 	3i 

. 
31 

.1 

32 In 
i 	1 

Ii 
n -1  

In 

The last determinant is a Vandermonde determinant and so the last expression 

is equal to 

flit [J (ik—il). 
i=1 1<1(k<n 



This is nonzero since jk 7~ ii for all 1 < I < k < n and j2 > 0 for all 1 < i < n. 

This completes the proof of Proposition 2.7.1. 

REMARK. It is easy to see that Proposition 2.7.1 still holds with P1 ,. . . P re- 

placed by any P( i),.. . , 	 with 1 < z < n and a one-to-one function from 

2.8 A weighted restriction theorem 

According to the discussion in Section 2.6, in order to establish (2.42), it now only 

remains to prove the following restriction theorem. Let us recall that we have 

reduced ourselves to an interval I which is inside the j2 'th gap of each polynomial 

P2  for 1 < i < n so that P(t) on I and ji <32 < ... <in- 

Theorem 2.8.1 Let P(t) = (Pi  (t), . , P,, (t)) and let 'us write L(t) = Lp1 .p(t). 

Then for all  E P'(R71 ), 

(L J(P(t))IL(t)2/n1)dt)q < (2.50) 

with I =  n(n+i) 1 and p < n(2±n) 
q 	2 	p' 	 n(2+n)-2 

Similar restriction theorems have been established in [Ch], [DM1], [DM2] and [D]. 

We note that the condition that all the j2 's are distinct is crucial for the proof 

of Theorem 2.8.1. Reducing ourselves to exactly this situation was the matter of 

Section 2.5. We will first state and prove some results that are required for the 

proof of Theorem 2.8.1 (this will be carried out in Section 2.8.1) and subsequently 

we will give the proof of Theorem 2.8.1 in Section 2.8.2. 

2.8.1 Preliminary results 

Proposition 2.8.2 With 

,t) = 

P(t) 

P.,  (ti) ... P.,  (t. ) 

the Jacobian of the mapping t '—* x(t) = (xi (t),... , x(t)), where 

Xk(t) = 



I < k < n and t = (t 1 ,. . . t7 ), the following lower bound holds for 0 < t1 < t2 < 

:!~ tn and for [t i ,tn ] ç I: 

In 	\ 

. ,t) 	(Ijp,j) t[1tr2. . . t' 	fl (t1 - tk) 

\i=1 	/ 	 1<k<1<n 
n 

[ILpi...pti 1 	[I (t—t). 
i=1 	 1<k(1<n 

The proof will be carried out in several steps. We start by establishing the second 

inequality first. In view of Proposition 2.7.1, it suffices to show the inequality 

t 1_l t 2_2  . . . q1 -  > 
	

(2.51) 

Using the fact that 0 < ti t2 ...  tn and j <2 < ... <in, we have 

t3 
. 
1--1ti2- 2 

n 

jk) 	1 [(n-1 )j1 - 2jk]+ -1 4j2_2  = 
	

k= 1 	 2til tin  

> 	ik) 	
_En 	n+ 1  ikJ+14j2_2 

t2 	 b2 
tin_n 

- n 
= 	_ 	2 t 

-1-[(n-1) 	3kk.3 jk]+4__(1+2) 333 	tin  —n t3 	...n 
2 

H *( 	1 3k 1 [(n_2) 	lik_23jk1+2(-')_(1+2) - 
t3 tin' 

- 

j=1 

2 
3k )_!1±i ![(n_2)1jk_23jk]+2(1)_(l+2)tj3_3 

t3— ~ 
i=1 

2 

= Ht1 ik)_2 t n  
11±1 ![(n_2) 	_lik_2_3ik]+2(*-i)_(1+2+3) t 	" t'' 

j=1 

3 

= Ht=1 3k)_2 t fl  
Z1±1 	1[(n_3) 1 jk _3 	3 jk]+3()_(1+2+3) 

t 

i=1 
3 

3k) 
~ Ht' 

n+1 ui(n_3)=1ik_3E=3ik]+3(+i)_(1+2+3)tj4_4 2 tinn n 

j=1 
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Thus by repeating the argument we obtain 

	

tu1_ t32_2 	3nfl 
1 	2 

n—i 

> fJ t=' jk) 1 [L_,k=l j(n_ 1 )j8]+(n_1)(±)_Yk l  k4jn _n  

	

i 	 n 
i=1 

n—i 

= fJ ik)_ 	ik)+(n-1)-I =i  k 

i=1 
n 

QI 1ik)! 
2  . 

n(n
2

+l) En  k n - - 	ti 	= 	 n 
i=1 

n 
= fl=1P t 	 , 

thus establishing (2.51) and hence the second inequality of Proposition 2.8.2. 

For the first inequality of Proposition 2.8.2, we will express Jp1 (t 1 , . . . , t,) in 

terms of the Lpj  ..... pm'S  1 < m < n, for t 1  ... < tn and [t1 , t] C I. This will 

be accomplished by the following two lemmas. 

	

Lemma 2.8.3 Let fi = 	1 < i < n, and assume that gj and f2 are differen- 

tiable functions in [t 1 , t] for all i. Then 

g(t 1 ) 

g(t 1 ) 	g(t) 

fl 	 t2 I f(xi) 
= 911 

	

dx i ...fdx_ i  
i=1 f(xi) 	... 

PROOF. By factoring g (t) out of every column we write 

Ii 	... 	1 
g (t i ) 	... 	g,1 (t) 	n 	

f2 (t1) ... 	f2  (t) 

9 (t 1 ) ... 9. (tn) I 	 f(t 1 ) •.. 	fn (tn) 

(2.52) 

Then by conducting column operations the determinant involving the f2 's is equal 

to 
1 	0 	... 	0 

f2  (t 1 ) f2 (t2 ) - f2 (t 1 ) 	f2 (t) — f2 (t 1 ) 

f(t 1 ) f(t 2 ) — f(t1) ... f(t) — f(t1) 



t2 	 I f(x) 	 I 

= J dx1 ... / dx_ 1 	 : 
t1 	 it1 	 I 

	

f711 (xi) 	fn (x_) 

	

For fixed x 1 ,x 2 ,... 	except x 1  and Xm with 1<1< m < n — i, consider 

ft,tk+l 	I tk+1 	
f(x i ) 	f(x_1)

:= 	 dx 1  
	

dX m 
	k I 

	

.f(xi) 	fn' 

By interchanging the lth with the mth column we have 

Ik 

k+1 k+1 t 	I
t 	

f(x) 	f(x) 	f(Xm) 	f(x) 

J dx i 	dX m I 
k 	 k f(xi) 	f(xi) 	f(x m ) 	fn(x-) 

ftk 	P 	f

k+1 	

(x i ) 	f(x m ) 	f(xj) •

t dxlJ 

tk+1 

dXm 
 tk A (Xi) 	fn (Xm) 	fn (XI) f?'(xfl_1) 

f t 

	

f l 	
f 

k+1 	

k+1 	(xi ) 	f(x) 	f(x m ) 	f(x) 

	

dX m  
	

dx1
k 	 k (x i ) 	fn (x) 	f(x f m ) 	f(x_ i ) 

the last equality follows by changing the variables of integration. Thus 'k = 

and 50 Ik = 0. So finally 

t2 	 I f(xi) 	.. . 

911 (4) dxl ... J dx_j 
i1 	 ti 	 t 	f(xi) ... 	f(x) 

f(xi) ... 	f(x-) I 
= flg(t) f dx ... 	dx_ 1  I 

	

j1 	t  	 f(xi) ... 	f(xi) 

concluding the proof of Lemma 2.8.3. 

We aim to use Lemma 2.8.3 inductively to obtain an expression of JP1  ... P  in 

terms of the L1 ..Pm  's with 1 <m < n. We shall do this by the following lemma. 

Lemma 2.8.4 
(LP1 PQ' '  = LPIPRQLP1P 	 (2.53) 

LP1  ... PR) 	 Pm  R  

PROOF. The proof will be by induction on m. The statement is true for m = 0 

because 

(

L Q )' = L'QLR -L'RLQ Q"R' - R"Q' = LRQ  

LR LR LR 
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Now suppose the statement is true for m = k - 1. Then for m = k we have, 

... PkQ \'  = LPk QLPI...PkR - LPkRLPl...PkQ 

(

LPI 

LP1 ...Pk R) L l pk R 

•. p(k) 	p(k+2) 
( 

1 

L2  P1...PkR p, 	•.. 
k H p(k) 	(k+2) 

L Pl ... PkR 

Q I 	. . 
k . 	Q(k) 	Q(k+2) 

I 
I pi' 	... p(k) p(k+2) 

- 
pkl   •.. p(k) p(k+2) LP1...PkQJ 

R' 	R(k) R( 2  

This equation can be written in terms of the L's by expanding the determinants 

using the last column: 

(

LP1  ... Pk Q) '  - 	1 	
[(Lpl 

.. . 
pk Q(2) Lpl  ... pk R 

L 	 L 2  P1...PkR 	 P1...PkR 

-LP1 
... 
PkD

IQA(!2) T

k 

k-i LPI ... PkR 

(_1)kLp2pQJ 1 
	LPI ... PkR) 

- (Lpl  ... pk R ( ' 2) Lpl ...pk Q 

- LPI ... Pk_IRA (k+2)k 	LPI...PkQ 

D('+2 ) 
k-i LP1  ... Pk Q 

(_1) lc Lp2...pk QP
(k+2)  
i 	LPI  ... Pk Q)I, 

so grouping the terms appropriately we obtain 

(

LP1  ... PkQ)' 

= L2 

1
(Lpl 

... pk Q(2) Lpl ...pkR —Lp l  ... pk R 2 Lpl  ... pk Q 
LPI ... PkR 	 Pl... -Pk R 

+ Lpl ... pk_lRP+2)Lp ... pkQ 

(k+2) 	 1J(k+2) 
k-i LPI...PkR - LPI...Pk_2PkR k-i Lp 1  ... pj2.54) 

D(k+2) 
- (_1)kLp2..pkQJ 1 	LPI  ... Pk Q). 

All the terms in (2.54), except the first two, can be combined in pairs. We make 

the claim, 

-LP1  ... Pk _ 1 QLPI ...Pk R + LPI  ... Pk  1 RLPI...Pk Q = LPI...PkLPI ... Pk_1RQ, 	(2.55) 
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with similar claims for the rest of the pairs in (2.54). If the claim is true then by 

substituting (2.55) in (2.54) we obtain an expansion for LPI  ... Pk RQ using the last 

column. This would then complete the proof of Lemma 2.8.4. To show (2.55) we 

use the induction hypothesis to obtain 

r 	 r 	 r2 	r 	 (Lpl  ... pk _ I Q 

= 	
L 

- 	2 	 (LPI  ...  Pk _ l QLPl  ... Pkl R '  
- LP1Pk LPI...PklR ( r 	 r 

	

\'P1...Pk_1R 	-'P1 ... Pk 

	

2 	 (Lpl...pk_IQ 
= LP1 ...Pk _1RLP1...Pk I T 

2 	

(

Lp, ...pk_IR 

	

Pk+ L P1... L P1...Pk_IQ 	 r 
 "P...P,,, 

= LP1 ... PkLP1 ... Pk1RQ + LP1 ... Pk_IQLPI ... PkR. 

This proves the claim in (2.55) and consequently Lemma 2.8.4. 

	

We are now in a position to express 	 , t) in terms of the Lpi  ... pm 'S 

with 1 < m n, fort 1  < ... < t and [t1 , t] c I. Let us define inductively in k, 

1 < k < n, 

	

p' 	F' z,k-1 

	

= 	ri,k = 

	

.1 1 l 	 k,k-1 

for i in k < i < ii. Then by repeated applications of Lemma 2.8.3 we obtain 

P(t1 ) ... 	P(t) 

P(t1 ) ... P(t) 

= II P(t) ff tn -1

x2 

	

dx 1 , 1 . . 	 dx_1,1 fi F ,1 (x, 1 ) 
f 1

dx i ,2 
 x1,1 

1 	
n-2 	 X2,2 

JX   

	J 	Xn_2 2 

dx_ 3 , 3  fJ F 2 (x, 2 ) 
	

dx 1 , 3  ... JX n_2,1 	 1,2 	 n_3,2 

 

2 	

f l

X2n-2 

fl F_1 ,_2 (x,_2) 
	

dx_ 1 F , _ 1 (x 1 ,_ 1 ), 	( 2.56) 
j=1 	 1,n_2 

where in the applications of Lemma 2.8.3 we make sure that the F,k are differ-

entiable. In fact, using Lemma 2.8.4, one can show that 

	

- (Lpl...pklp 	- LPI ... Pk 2 ILPI ... PkP, 

	

r 	 - 
\ 1 'Pl...Pk / 	

r 
 

for k < i < n. This would then imply that the F2 ,k are differentiable on [t1 , tn] 

by Proposition 2.7.1. We prove (2.57) by induction on k. For k = 1 

	

/ 
	

(Lp,'\' 
F,1= 	- r2 Lp, Lip 1  
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If (2.57) is true for k = m - 1 then for k = m we have 

(

Fi,m 

 )' 

-1   

, 	

( PIPi/LP\' 

= 	 P 2  = F' 	 LP1P2L P1  P/LP 	
/ m,m- 1 

(LpIpIpi' 

= LP1P1LP1PP. 

Lpi  ... pm 
 ,' 	

Lpp 

where the last inequality follows by Lemma 2.8.4. This completes the proof 

of (2.57). We are now in a position to substitute (2.57) into (2.56) to express 

,tn ) in terms of LP1  ... Pm 'S with 1 < m < n. Precisely 

,t) 	 (2.58) 

= 	

t2 

	

n-i 

 

  PX2,I 

fi Lp1  (ti ) 	 dx1,1 ... 	 dx_1,1 H (x1)  dx 1 , 2  

j=1 	f l 	ftn-1 	 L 	 J P1 	i,i 

fxn-1,l 
dx,_,2 n-2L L123 

	X2,2 	 Xn_2,l

n_2,I 	
L 	

(x2 ,2) 
	

dx 1 ,3  ... 
f_PiP2 	 1,2 	 , 

X2,n-3 
dx i ,_ 

fX3,n-3
dX2, n 2 H

2 
 

	

 L2f I,n-3 	 2,n-3 
 

 P1 ... Pn2 

fX 1,n-2
X2,n-2dXi ni 	

L2
(2.59) 

 

To complete the proof of Proposition 2.8.2, we will need to make use of the 

consequence of the remark after Proposition 2.7.1, that on the interval I each of 

the Lpi  ... pm  is e*her positive or negative. Hence on I we have 

n-i 
IL 1212  

	

,t)I = flL 1 (t)f dx1,1 .. 
. itn-1 

dx,1 fl L 	
(x,1) 

i=1 	j=1 I 	Pi 

fn-2X

f Xn_I,I 	 LLp1p2p3 2,I 	

ddx 1, ... 
	

x_2,2 
	L2 	

(x,2)

1,1 	 n-2,I 	 i=i 	P1 P2 

X2n_2 	I 	 I 
dx 1 ,_ 1  

1,n_2 	
(Xi,ni), 	(2.60) I 

so we can substitute the estimate from Proposition 2.7.1 to obtain 

	

I
t2 	 n-i 

	

Jp1 ...p(t 1 ,. . . , tn) 	[I Pi,j  fJ 	-1 	dx 1 , 1 
 . .. ftn-1 

dXni,i H 
x2311 

zi 
i 	j=1 

n-2 

f
X2,1 

	

	

fxn-2,1

Xn_1,I 

X1,1 
dx 1 , 2  ... 

	
dX n_2,2 fl x i,2  

  
X2,n_2 

dXi,n_iX3 
in-i 	 (2.61)_3_I ... 

fX1,n-2 

We finally need to bound from below the multiple integral in (2.61). This will be 

done through the following two lemmas. 
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Lemma 2.8.5 With s, 82 < ... <- Sm, 

f
I

32 	I.-I

Sm 	 fy21 	 fYM-I ' I 

 

... dymi,i 
	

dy1,2.. . 
	

dym_2,2 
i 	 111,1 	 Ym-2,i 

Y2,m-2 

 dyi,m_i 
i,m -2 

= 	[J ((q - 1)!)' fJ (Si - Sk). 	 (2.62) 
1<q<m 	 1<k<l<m 

PROOF. We will prove Lemma 2.8.5 by induction on m. For m = 2 we just 

have 8 2  - 81 = f, dy 1 , 1 . Assuming then (2.62) for m = p - 1, we can use the 

Vandermonde determinant to write 

JJ (i-s)= 
1<k<l<p 

1 1 ... 
81 8 2 Sp 

S S 2 P  

1 

Then subtracting the first column from the second column, the second from the 

third and so on, we have 

JJ (Si - Sk) = 

1<k<1<p 

1 0 ... 0 
S1 S2 l SpSp_l 

2 S i  2 S2 2 
- S 1  p 

2_2 
8p-1 

p- i S1 
p-i 
2 

- p- i S1 p-i Sp - 
SP-1 
p1 

S2 S1 Sp Sp_l 
2 2 2 

Sp Sp_1 
2 

p- i 	p-i 	5p_l - 5P-1  
2 	S1 	 p 	p-1 

	

f32dyi,i 	... 	 f7 1 dy_ 1 , 1  

2 f32 y1idyii 	• .. 	2 i:,"_ y_i,idy_i,i 
"Si 

p-2 
(p - 1) fs2 y2dy1,1 

... (p - 1) 	y_ 1 , 1 dy_i,i 
Si 	1, 



leading to 

	

H (81 - Sk) = (p - 1)! 
fS2 

 dy 1 , 1  . . . 
 4- 1 

dy_1, 	
' 

::: Yp-1,i 

i<k<1<p 	 Si  
- - 
	 p-2 p-2 

y1,1 	- 	 y_1,1 

(p - 1)! 
 

	

is" 

 
dy1,1 ...

IP-1  
dy1,1 	fl 	(yi',i - yk',l) 

  1<k'<1'<p-1 

IS2 	 tSp 	 P1 

= (P_i)!] dyi , i  ... 
J'P— 
 dypi,i[J(q-1)! 

Si 	 1 	 q=1 

	

fy21 	

fyp-2,1

Yp_1,1 	

fyl,p-2

Y2,p_.2  
 dy1,2...dy2,2 	

...1,1   

proving (2.62) for p = m and completing the proof of Lemma 2.8.5. 

To estimate the integral in (2.61) it will be useful to have in mind the following 

diagram of the ranges of the various variables in (2.61): 

t 	t2 	t3 
	

... 	 t n_i 	 t n  

X1 ' 1 	x2 , 1 	x3 , 1 	. . . 	 xn_1,1 

X1 , 2 	X2,2 	 . . . 	 Xn_2,2 

x1,n-1 

First we have the following lemma. 

	

Lemma 2.8.6 With t 1  :5 t2 	 ...  tn and aij E N, 1 < j < .n and 1 < i < 

n 
- 
j + 1, we have 

ft~

t2 	

ft.-i

tn 	 fX2 , 1 	 fXn — 1,l  iTi TT 	i2
.1 	dx 1 , 1  . . 

.
dx_ 1 , 1  11x 21' 
	

dx 1 , 2  ... 
	

dx_ 2 , 2  
i=1  	i=1 	i,1 	 n_2,1 

n-2 	 T2 n-2
Qj3 	 di  dx 1,_ 1 x 1 , 1  

i=1 	 ,n_2 

fJt" H (t1 - tk), 	 (2.63) 
i=1 	1<k.(1<n 

where Ai = 11 	ajr+1,r and the constant involved in the > sign only depends 

on the aij  and n. 

PROOF. In the proof of this lemma, it is worth having in mind the following dia- 

gram, similar to the one above, which shows not only the ranges of the variables, 
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but also the powers that they are raised to in the integrands in (2.63). 

t' 

	

	ta2,l 	 Q3,j 	 an - 1,1 

	

2 	
4 	

. . . 	 t 1 	 tfl  
l,2 	 2,2 	 a3,2 	 al ,2 

x 1 , 1 	 x3 , 1 	 . . . 	 x n_ 1,1  
al 3 	 '2,3 	 'n-2,3 

	

x 1, 	x 2,2 	 . . . 	 x n_ 2,2  

al, 11  x l'n- 1  

We prove Lemma 2.8.6 by induction on n. For n = 2, (2.63) becomes 

t2 
i 2 	> all a2,l±al,2 

t'1t2'l 	
U / x 1,  dx 1 , 1 	t1  t2 	(t2  - t 1 ), 

it1 

which is equivalent to 

t2 
12 	> 	/

t2  - ti). f x1 a, 	
a 

dx i , i 	t2 	 (2.64) 

In the case that t2  <At1 for a sufficiently large A, we have 

I
t2

x 1 , dx2 	 .. 

i , i 	t1 	J dx i , i 	t'2 (t2  - t1al 	 a1,2 

 ti 

Also, in the opposite case t2  > At,, 

t2 

	

a1,2 	 t12 	- 	 > ta1,2± ~ t'2 (t2  -  ti f x 1 , 1  ax 1 , 1  1 	 2 

establishing (2.64) and hence proving (2.63) for n = 2. Now assuming (2.63) for 

n = p - 1, we have 

	

t2 	 I'tp 	 P 1 	 X2,1 	 Xp_ 1 ,1 

1._I a,3 ri  t'1  	dx i , i  . . itp- I 

dx_ 1 , 1 x ,1  [ 	dx 1 ,2. 	dx_2,2 

	

 1 	 i=1 

X2p-2 

fi x3 	
... fxl,p-2 

dxi_1x1,_1 
 

P 	t2 	 ttp 

JJ tl  I dxi,i 
.. .J 	dx_ 1 , 1  fJxj 	fl 	(xi,i - Xk,1), 	(2.65) 

i1 	jt1 	 i1 	1<k<1<p-1 

where B2 = E'r=1Lj.r+1,r+1. Lemma 2.8.6 would then be proved if we showed 

that 

	

It2 	

ftp-
tp 	P' 

 dx 1 , 1 
 .. . dx_ 1 , 1  fJx 	fJ 	(x,, - Xk,1) 

l 	 l 	 i=1 	1<k<1<p-1 

t2 	

4_1

tp 

	

J[t 
	

dx 1 , 1  ... 	 dx_ 1 , 1 fl 	(x1,1 - Xk,1), 	(2.66) 

	

ir2 	1<k<1<p-1 
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because of Lemma 2.8.5 and because 

	

B_ 1  + a,1 
=

ajr,r+1 + Ozij 
= 	

= A. 
r=1 

Inequality (2.66) essentially asserts that we can take the product of the monomials 

out of all the integrals evaluating them each time at the highest endpoint. We 

show (2.66) using an iterative procedure of which we describe the q'th step. After 

q - 1 steps we will have shown that 

I
t2 	 tp 	 P 1  

, 

dx i , 1  . . . 
4_1 

dx_ 1 , 1  fJx 	
fJ 	

(x1,1 - 

i1 	1<k<1<p-1 

q 

> fJt 8' 	dxi,i.. 
. 

fP  dx_ 1 , 1  flxj 	fl 	(x1,1 - Xk,1).

tj  

i=2 1 	 i=q 	1<k<1<p-1 

Concentrating now on the dx q,i integration, we have 

Itq+1 

Jt 	

dxq,i fl 
	

[J 
(xi,i - Xk,1) 

	

q 	 i=q 	1<k<1<p-1 

p-i  
x 	[J (x1,1 - Xk1) I

tq+1 

dx q,ix
Bq[f 	j 	 qi  

i 	1 

 

 1<k<1<p-1 	 Jtq 

k,1q 

JJ (xq,i - Xk,1) JJ (xi,i - xq,i). 

1<k<q 	 q<1<p-1 

In the case where tq+1 Atq  for A sufficiently large, we only have 

p- i 	 tq+1 

fJ 
x 	JJ (x1,1 - Xk,i) I 	dxq,ix Bq  

i=q+1 	1<k<1<p-1  
k,1q 

ri (xg,i - Xk,1) rj (Xi,i - xq ,i) 

1<k<q 	 q<1<p-1 

Itq+1 	P 1  
> Bq / 	dxq,i JJ xj 	[f 	(x1,1 - Xk,1), r'. 	q+1 

Jtq 	 i=q+1 	1<k<1<p-1 
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putting us in the right position for the (q + 1)'th step. In the opposite case 

tq+1 > At q  we have 

p-i 	 tq--1 

H xj H (x1,1 - Xk,1) f 	dxq,ixBq 

i=q+1 	1<k<1<p-1 	 tq 

k,1q 

}J (Xq,i - Xk,1) j[J (xi,i - x q,i) 
1<k<q 	 q<l<p-1 

P 1 	 tq+i/V'A 
Ti B TT 	 I 	 Bq  

11 	(x1,1 - Xk,1) j dxq,iXq i 

i=q+1 	1<k<1<p-1 	 /At, 

k,1q 

fJ (Xq,i - Xk,1) II (x1,i - x q ,i) 
1<k<q 	 q<1<p-1 

P-1 	 itq+i /./TA 
UT B 	VT 	 I 	 Bq+q1 VT 
11 x 	(x1,1 - Xk,1) j 
	

dxq,ixqi 	H 
i=q+1 	1<k<t<p-1 	 q<1<p-1 

k,154q 

p-i 

fJ xj 	fJ (x1,1 - Xk,1) fi 	1,1 
i=q+1 	1<k<1<p-1 	 q<1<p-1 

k,1q 

ti  f
q+1 

dXq,i [J xjtiq+1 	fl 	(x1,i - Xk,1) [f x1,1 

q 	 i=q+1 	• 1<k<1<p-1 	 q<1<p-1 
k,1q 

f
tq+1

Bq  	 VT B 	Ti
tq i 
	

dxq, i 	Z1 (x1,1 - Xk,1), 
q 	 i=q+1 	1<k<1<p-1 

again putting us in the right position for the (q + 1)'th step. This iterative 

procedure will finish after p - 1 steps, proving (2.66) and hence completing the 

proof of Lemma 2.8.6. 

For the integral in (2.61) that we want to estimate, we have ak,1 = ji — ji-i —1. 

Thus 

= = 	
- dr-i - 1 = - 

So from (2.61) and Lemma 2.8.6, we have 

• ,t) 	[f p,ij  ftti 	H (t1 - tk), 
i=1 	i=1 	1<k(1<n 

completing the proof of Proposition 2.8.2. 

REMARK. An analogous estimate to Proposition 2.8.2 holds for P,... . P re-

placed by any P, . . . , P with 1 < p < n and a one-to-one function from 

to 1, . . . , n. 
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In the proof of Theorem 2.8.1 we will perform the change of variables t F-* 

t = (ti, . . . ta), where Xk(t) = 	P,(t), 1 < k < ii. The following lemma will 

allow us to perform this change of variables. 

Lemma 2.8.7 If s,s' e I with I as above and P = (P1 ,.. . , Pa), s'1  < ... < .S ' , 

P 	 , 	 (2.67) 

then s=s' for all l<i<n. 

PROOF. The proof of this lemma makes use of Proposition 2.8.2 which is also used 

directly in the proof of Theorem 2.8.1.Let us assume first that for any 1 < i,j < n, 

s s'. The equation 

P(s) = 	p(5'), 

can be rewritten as 

EkP(sk)0, 

where each Sk is one of the s or the s' such that s 1  < ... < S2n and k = 1 if 

Sk e is , ,... , S ' } and k = —1 if 5 k e {s,... , s'}. We observe that 	= 0. 

Let a1 = 	€. Then a has at most n - 1 changes of sign. Thus 

2n 	 2n-1 	 82n 
0 = 	fkP(Sk) = 	a(P(s) - P(sk+1)) 

= f 	(s)P'(s)ds 
k=1 	 k=1 	 Si 

with (s) a step function. Let U1111  be a partition of [si , s 2 ] into intervals on 

which 0 is single-signed. Note that u < ii and 

Hence we have 

o = 	f  0(s)P'(s)ds. 
1=1 

(2.68) 

f, q(s)P(s)ds 

f q(s)P(s)ds 

This in turn implies 

LE Ii ... f 

111 fr/(s)P,(s)ds 

=0. 

fI 	(s)lP,(s)ds 

P(uj ) 

pi, U,, ) 
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P ('iii) 

du1  ... du=0. 

P~11  
(2.69) 



But by the remark after Proposition 2.8.2 we have that 

P1, (U P(ui) 

flp2 [f 	[J (uj - Uk), 	(2.70) 

	

P1, (U P,(U) 	j=1 	i=1 	1<k<1<jz 

which implies that 

P1,  (U1) •.. 
P" 

(U1) 

	

P1,  ( U,, ) ... 	P(U,) 

is single signed and because of (2.69) 

0. 

This then contradicts (2.70). If we have that at least some 	sf,' for some 

1 < i,j < n, but there are some s = s,', we can still obtain a contradiction by 

cancelling the corresponding P(s)'s and P(s)'s from either side of (2.67) and 

then considering a smaller number of equations. This leaves us with the case that 

for each s there is a s' such that s = sf,'. Recalling though that s'1  < ... < s 

and s''< ... < s, one can realise that the only way this can happen is if i = j 

for all 1 <i < n. This completes the proof of Lemma 2.8.7. 

2.8.2 Proof of the restriction theorem 

We now conclude with the proof of Theorem 2.8.1, by making use of the results 

of the previous section. 

To prove Theorem 2.8.1 we see by duality that it suffices to show 

'p' < 	, 	 (2.71) 

where 

do,  (0) = f(P(s))L(s)ds 

and 

dw() = j çb(s)L(s)ds, 

with a 
n(n+1) 

Now with gda * . . . * gda denoting the n-fold convolution of gda 

with itself we have 

Il 
= 	

gdcr * ... * gdaIi 	gda * ... * gda r , 	( 2.72) 

where i-ir' = p' by the Hausdorff-Young inequality. Note that because p < 
n(n+2)  

n(n+2)-2 
, we have 1 <r < 2. Now 

- - 

gda * ... * gda() = f 	
( 	

P(t))  T g(t)L(t)dt, 
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where t = (t1,.. . , ta ). For ir E Sn  a permutation of 11, . . . , n} and writing 

gda * ... * gda() = 	f 	
( 	

P(t)) ft  g(ti)L(ti) Udt 
ires 	

it 

	j=1 	 i=1 

= 	f (x) II 	(t) 
g(t)L(tj)a 

 J 	
dx, 

7rESn 	 i=1 

where in the second inequality we perform the change of variables 

Xk = 	Pk (ti) 

separately on each region t,(i) < ... t,, and which is well defined in each region 

t(i) < ... < t,,) by Lemma 2.8.7 (note the slight abuse of notation). D, is 

the image of the region {t,,(i) <... < t,)} fl in under this transformation and 

J(t) = J 1 (t) is the Jacobian of the transformation. Hence 

gda* ... * gda = 	ftg(ti)L(ti)Q1J)xD 

irES i=1 

Therefore 

n 	
1 

gdcr * ... *gdo 	< 	fJ9(t i )L(t i )° 1jj1 XD ir M r  
irES 	i=1 

1 

= 	 flI9tiL(ti)'aIJ(tr_ldt) 
(/ irES 	t(l)< ... <t()}flI j=1 

by changing variables back. From the estimate for the Jacobian in Proposition 

2.8.2 it follows that 

1 

(ff l)<...<t)}flI 	

fl 
k<1 

 (t1 - t k ) 1  rdt) 
r 

irES 

Finally we will need to use a result of M. Christ which is Proposition 2.2 in [Ch]. 

Let us state the result as it appears in [Ch]. 

Proposition 2.8.8 If 0 	y  then 

f ftf(xi) fl lxi - xldxi . . .dx 
i=1 	i<j<n 

for all f, if and only if -y <2/n, 1 < p < n and p-1  +y(n — 1)/2 = 1. 



We need to use this proposition with 'y = r - 1. One can easily check that 

r - 1 < 2/n since nr' = p' and P < 
n(n+2) 

 n(n+2)-2 Using Proposition 2.8.8, we obtain 

It 

'yr 

	

gdu * ... * 	(f(g(t)L(t)_dt) 

where 

- + (r - 1),
2 
 = 1. 	 (2.73) 

By (2.71) and (2.72) we see that the required relations for (2.71) to hold are 

	

j5r=q' and 	+r( 	
2 	i\ 	2 

n 	\n(n+ 1) n) = n(n+1) = 

This can be verified by algebraic calculations, using (2.73), nr' = p' and 1  = 
n(n+i) 1 

2 	p' •  
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Chapter 3 

An alternative method for the 
two-dimensional case 

In this chapter we provide an alternative method of proving Theorem 2.1.1, which 

only works for polynomials P: JR 	J 2  

3.1 Preliminary reductions 

By following the same arguments as in Section 2.2 and the beginning of Section 

2.5, we reduce ourselves to proving (2.19) for P ft+  Rn for each a where 

on I,  the components of P(t) = (P1 (t),... , P(t)) look like various monomials 

according to Lemma 2.3.1. The method we use in this chapter though only works 

for n = 2 and this is the case that we concentrate on. Therefore, (2.19) becomes 

J  a(P1(t),P2(t))d < 1. 	 (3.1) 
t 

In particular f Pi(t) = Ii Pi,mtm , then on I, 

P2  (t) 	p 7 t 1', 

for some 1 < ji < d2 , i = 1, 2. We still wish to reduce ourselves to the case where 

j  32. This of course can be done as in Section 2.5 by using almost rotations, 

but in this section we show that it can be done by using actual rotations. Let us 

recall that a rotation is represented by a matrix of the form 

1(D—c 
C2 D2 C D 

and that atoms are invariant under rotations (see Section 2.5). If we already have 

that ji 54 32, then we have nothing to do. If j'  = j2 = 1, then we are in the 

situation where, on I, 

P, (t) '' p1 , 1t' and P2  (t) -' p2 , 1 t'. 
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We are trying to create two new polynomials P1  and P2  given by 

(P 	1 	(D —C(P1  
P2)/C2+D2C D

), 

so that P1  will not contain a t1  term and hence will not look like t 1  in any of its 

gaps by the remark after Lemma 2.3.1 and IQ  will be inside the t 1 'th gap of P2 . 

We then subdivide I further into gaps and dyadic intervals according to P1  and 

on these new gaps 151  and P2  look like distinct monomials. In order for P1  not to 

have a t 1  term, we need to set 

D = P2,1 and C = Pi,i• 

Therefore, it remains to prove that I, will be inside the t 1 'th gap of P2  = p1 , 1 P1  + 

p2 , 1 P2 ; that is, if tl,m, t2,m are the m'th roots of P1 , P2  respectively and W m  are 

the roots of P2  = P1,1 P1 + P2,1 P2 ordered so that IWm i  I —< IWm 2  for m 1  <rn2 , then 

we have 

Iwil < max(ti,iI, 1t2,1 I) 	 (3.2) 

and 	w1 1  I > min(Iti,j+i, t2,1+1D. 	 (3.3) 

So let us consider first the case where the degree of one of the P1 , P2  is strictly 

less than the degree of the other, that is w.l.o.g. d2  <d1 . Using the notation we 

have so far established, we have 

di 	 d2 

P1 = P1,d1 fJ (t - ti,m) and P2  = P2,d2 rl (t - t2,m ). 
m=1 	 m=1 

Let us suppose that we are in a gap where both P1  and P2  look like t 1 . Then 

P2 = p1,dl (_1) d 	( 	 . . . t1d l _ 1) P1 (t) 
il<..<id 1 _1 

+ P2,d2 (_l)d2_1

( 	

t2,il ... t2id2 _1) P2 (t) 	(3.4) 

and at the same time we can express P2  in terms of its roots W m  as 

di 
= P ,dl (_1) 1 	( 	tl ,il  .. t1idl_1) fi (t - W m ). 	(3.5) 

jl<...<jd1 -1 	 m=1 

Let us recall that being in the "t 1 " gap for both P1  and P2  means that for A 

sufficiently large, Alti,i < A'1t1,1+11, AIti,iI < A1It2,1+1, At 2 ,1  < A'Iti,j+iI 
and Alt2,1 < At 2 ,1+1 . We first show (3.3). 
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By comparing the t 1  coefficients from the right sides of (3.4) and (3.5), we 

obtain 

	

P,d1 ( 	 _ t1i 	
( 	

. . . W_1 

J \ii'z...<i1_: 

	

/ 	 / 

	

_21 	 1 	21 	 1 
- P1,d1 	 tl,jj  . . . t Lid, _ j + P2,d2 	 t2j1  . . . t2,j2_ J 

	

1:
J 	\i1< ... <id2_l 	 J 

which implies that 

W14 . . . Wdi  

W1 ... W idl 

il< ... <id1 _l 

= P,d1 (I:jl < ... <jdj—I ti,il ... t1,i1 _) + P,d2  j1< ... <jd2_j t2,j1  . . . t2,j2_ 
2 

P,d, 	i1< . .. <id1_l ti,31 	t1,i 1 _ 

Next we observe that there exists an integer k > I such that Iwi+ i "-i  Wk < 

A 2 wk+l (in the case that k = d1 , take Wk+i = oc). Then, comparing the tk 

coefficients from the right sides of (3.4) and (3.5), we have 

P,d1 

( 	

tl,il  .. tiid1_;) ( 

	

w, . . . wid l _k) 

	

j1<...<jd1 — 	 j1<...<3d1 —k 

= P,d1 

( 	

tl,il ... t1idl_) 

( 	

tl,il  .. . t1id1 _k) 

	

il<...<id1 -1 	 jl<...<jd1 —k 

2 4
j 	

4 	 4 
 j 	

4 + P2 d2 	 b2 i  . . t2,3d21 J 	 b21 

\i1< ... <id2—z 	 J \i< ... <i 2 _ 

(note that if k> d2  the last term in the above expresion vanishes). Thus 

Wk+1 . . . Wdi 

Wi T  .. . Wi, 1 _ 

jl<...<jd1 —k 

2 	 4 	 4 

	

Pi dl (F-il<...<id1_z 	bl,idl_1) (EjI<---<jdj—k b1,jj 

- 

 

Pi 
2, 
	i1< ... <id1—Z ti

,jl  . . . t1,idl _ 

2 	 4 	 4 	 4 	 4 

P2,d2 (Eil<... <jd,l 2ji& 	b2,jd2_) LJj1<...<jd2k 2,ji 	b2,jd2 k 

+ 	
P,d1 	j1< ... <jd1_Z tl ,jl  . . . t1,)l_j 
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Hence, 

k-I 
W 1+1 

WI+l . . . Wk 

	

( 	

tl ,i l  . . . tlid 1 —

II 

 ) 2 + P22 

 

	

( jl<...<jd2 _j 

	

[Pdi 

( 	

t1,j1 	t1idl_) ( 

jl<...<3d1 _Jc 

t2,j 1  . . . 2i2_) 2] / 

tl,jdl _k) 

+ P,d2 

( 	

t2,j 1  .. . t2id2_) (jl<- 

	

... t2id2_k

j1<.<jd2 _j 	 ..<jd2 -_k 

We now have two cases. For case (i) we have 

2 
P1,d1  

(

t1,j1  .. t1idl_) 

jl< ... <jd1_k 

(

t2, 1  .. . t2ia2 _) 

..<jd2 _k 

2 

jj <...<i1 	tl,jl  .. . 1,j1  

31< ... <jd1_k tl ,jl  . . . tl,i 1 _ 

> 

In this case 

> 

> 

> 

2 
Pi di 	1: 

2 
P2 d2 

jl< .. . <jd2 _1 

k-I 
wI+1 

tl ,il  . . . t1idl _t) 

t2,j 1  .. . t2 ,jd2  —1  

2 4 	4 
P1 ,d, (Ejl<---<jdl-t b1,ji . . . tl,jdl _t 

i1< ... <3d1—L tl ,j l  . . . tl 7i 1 _ 

i1< ... <id1_k tl ,jl  . . . tl,i 1 _ 

tl,I+l . . . tl,d 1  

tl,k+1 . . . tl,di 
4k—I 
bl,I+l, 

proving (3.3) for case (i). Case (ii) is the case where 

2 
P2 d2  

> P1,di( 	i 

t2,j 1  . . . t2,jd2 —1 

tl ,il  .. . tlJdl _L) 

( 	

t2, 1  . . . t2id2 _k) 

(

. . . t1idl_k) 

j1<...<jd1 k 

and it is easy to see that in this case, following the same argument we obtain 

wI+1 	t2,I+1, 
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proving (3.3) in case (ii). 

We turn now to showing (3.2). For this we observe that there exists an integer 

p with 0 <p < I - 1 such that A 2 1 WP I < 1w+11 Iwil. Then, by equating the 

"ti"  coefficients of both equivalent expressions for P2 , we have 

. . . Wj1 

W 1  ... Wj 1 _ 
31< ... <3d1 -p 

2 4 	 4 	 4 

P1  ,d, (Fil<...<jd1z bl,j, 	b1,idl_1) (X:jl< .<3dj-p  tl,jj 

 dl Pi 
Z ' 
	>..Jjl< ... <jd1j tl,j 1  . . . tl,j_j 

Pi  ,d1  (jl<...<jd,_, t2 ,il  . . . t2,idl_l) (I: jl<---<jdl-p t2,
1  .. . t2,jdl _) 

P1 ,d1 	j1<...<jd1_l t2,J 	. t2,i1_ 

This implies that 

W -p  

2 	 4 	 4 	 4 

Pi  dl  (Fil<...<id1-L bl,ji  . . t lid1 _1) (Eil< <3d1-p b1,ji  . . 

WI+l . . . WdlP,d 1  Eil< ... <id1 - 

+ 
Pi  ,d1 (jl<---<jdl-1 t2j i 2 t2,jd 1 _1) (Ej, < ... <jd,  _P t2j  .. . t2,j1 

W1+1 . . . Wd1P1,dj 	j1< ... <jd1_1 t2,j1  . . . t2,j1_ 

31< ... <3d1-p tl,1 	t1,i1_p 

i1< ... <id-1 tl ,jl  . . . 

+ 	
31<..<3d1 	t2,j1  . . . t2,j1_ 

j1< ... <jd1- t2,j1  .. . t2,3' 1  

tl,pl . . . tl,d1 + t2,p+l . . t2,d1 

tl,I+l . . . tl,d1 	t2,I+1 . . . t2,d 1  

I4,11 1-  + I t2,11 1- . 

It then follows that 

W1 	(ti , i I'" + It2 , 1 I 1_)T 

< max(t 1 ,1 , 1t2,1D, nJ 

completing the proof of (3.2). 

We still have to consider the case where d1  = d2  = d. In this case 

P2(t) = Pl,d(1) 	
tjl  . . t_ 1 P1 (t) 

+ p2,d(1) 	i 	tl,j l  . . . tl,jd _ 1 P2(t) 
	

(3.6) 
il< ... <id-1 
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and also in terms of the roots Wm of P2 , 

= (_l)d_1 
(P,d 	 tl,jl  . . . tl,i_j 

\ 	il<.•<id—1 

	

+ P,d 	 t2,il  . . . 	ft (t - Wm). 	 (3.7) 
jl< ... <jd—1 	 Tfl1 

Let us recall that we still have AIti,iI < A'Iti,i+i, Alti,iI < A 1 It2,1+1, A1t2,11 < 

A 1 t 1 ,1+1 I and A1t2,1I < A11t2,1±1I for sufficiently large A. Now by equating the 

44t1 " coefficients from the right sides of (3.6) and (3.7) we have 

2 	 - 	 4 

	

Pi,i 	 . . . t1i ; _ j  

il< . .. <id—1 

+ P,d 	t2ji ..  . t2,j_ 	 Wj .. . W1 

J jl<...<jd—1 

	

= P,d ( 

	

.. . t1id_Z) 2 + P,d ( 

	

t2,j 1  . . . t2id_) 2 

This implies that 

Wl+l ... Wd 

Wjl ... Wjdj 

jl< ... <id1  

22 

	

= P,d (Eil < ... < jd-I tl,j j 	tl,jd_Z) + P,d (Eil< ... <jd—I t2, 1  . . . t2,jd_I) 

22 
P1,d Eil< . .. <id-1 tl,jl  . . . t1,j_ j  + P2,d Eil <...<jd_j t2,j1  . . . t2,3' _ 

As before there exists an integer k > 1 such that w1 +i 	IWkI < A21wk+ll (again 

take Iwd+1 I = oc). Then equating the 	coefficients from the right sides of (3.6) 

and (3.7) we obtain 

Wk+1 . . . Wd 

Wjd_k 

id—k 

P,d (il<...<id_1 tl,il ... tl,id_I) (Eil< ... <jd—k tlii 	tl,jd_k) 

P,d 	J1< ... <3d—t ti, 31 	tl,3d_l + P,d 	j1< ... <jd_l t2,1 ... t2,_ 

PLd (jl<...<jd_, t2 , 1  . . . t2,jd1) (Eil< ... <jd-

k t2,j 1  . . . t2,jd_k) 

+ 
P,d 	 tl,jd_z + P,d Eil< 	<jd_l t2 , 1  . . . t2,j_ 

... j1< ... <jd_l 

65 



+P2,d( 
\il<...<id_z 

t2,j 1  . . . 2i_) 

21 

/ 

(

tl ,j1  . . :t1d_k) 

il<...<id_Jç  

( 	

... t2id)] 

Therefore, 

k—I 
wl+1 

WI+l . . .  Wk 
2 

(

tl,il  . . . tlid) 

jl< ... <jd—1 

[ 
 

tlil  ... tlid_Pd 
( 	

1)  

+ P,d 

( 	

.. . t2id) 
jl<...<jd_l 

We then have two cases. For case (i), we have 

Then, 

P1,d( 

~ P2,d( 

tl ,i l  . . . t1d_l) 

t2,j 1  . . . 

(. . . 

t1d_k) 

il<".<id_k 

(

t2, 1  . . . t2id) 

jl<...<jd—k 

	

k — I > 	j1< ... <jd_j t"il
t1,j_j 

wI+1 
jl< ... <jd_k 

tl,jl  . . . tl,jd_k 

	

> 	tl,I+l . . . tl,d 

t1,k1 . . . tl,d 

= tl,I+l . . . tl,k 

1,1+1' 

proving (3.3) for case (i). For the opposite case 

P? ,d( 

P2,d( 

tl ,i l  . . . t1id_I) 

t2,j 1  . . . t2id_) 

(

tl ,i l  . . . tldk) 

3dk 

(

t2j . . . t2id_k) , 

il<".<jd—k 

a completely identical argument shows that w11 t2 , 1+1 , hence completing the 

proof of (3.3). 

It now remains to show (3.2) for the case where d1  = d2  = d. There exists a 

Me 



A 0 < p < 1— 1 such that A2 IwI < 	- wil (take Iwo l = 0). Then 

W1 . . . W 

,-.. 	
Wi 1  . . . W_p 

31<.<3d—p 

= P1  
2
, (Ej1<---<jd-1 ti, 1  ... 	

( 

P1,d 	j1< ... <jdj 	tl ,jn _ I  + p2 
2 

' d (Ejl<- - - <jd l 
+ 	

. 

P1 d 	j1<...< 3d—i 	 + 

21< ... <3d_p tlfl 	tl3 fl _ p  

id—i 

:j1<•••<jd_p 	t2,in_p 

,d 	j1< ... <jd_i t2ji.. t2,jn_l 

Hence, 

W 1 -p  

P,d (I:jl< ... <jd—I t1 ,, . . . t,_1) (Ej1<---<jd—pt1'j1 . . . tl,in _ p '  

wi+i . . . w: (P1 
, d 
	jj< ... <jd I ti,j_ 1  + P 	j1< ... <jd—i t2 fl  . . . t2,in _ 1  

2 , 
	EJl<...<jd_, t2,il  . . . P2 t2,in_I 	(Eil< ... <jd—, t2,, . . . t2,jn—p) 

rM 
Wi+i ... W (p' 1 d 	j1< ... <jd ti,1  . . . ti,j_ 1  + P <jd-I. . . t2,jn-1) 

P,d (jl< ... <jd—I t1 ,, . . . t,_1) (Eil< ... <jd—, tl,i l  . . . tl ,jn_ p  

P1 2, (F-j1<---<jd-1 t1,, . . .t1Jn-1 )2 

+ 
P2 ,d (I:jl<...<id_I 	.. . t2,_1) (Eil<...<jd_p  t2,il 

P, j d (Eil<...<id_i t2 1  . . . t2,_1) 

- 	J1 ... 3d—p 1,j1 	tl,j_p 
+ 	

t2j1 ... t2,j_ 

- 	31 ... 2d—1 tl, j1 	tlj_j 	31...jd—i 2,j 1  •. . 

. . . tl,d + t2,pl 	t2,d 

ti,ii ... tl,d 	t2,11 	t2,d 

t1 ,1 1 '+ I t2,1 1 1  

and from this follows that 

wi 	(It1,1 1 	+ It2,l iP)i::; 	max(t i , j , It2,1), 

thus completing the proof of (3.2). 

By applying this rotation in the same manner as in Section 2.5, we reduce 

ourselves to establishing 

I a(P1(t),P2(t))ld $ 1 	 (3.8) 
I 
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for an atom a supported in a cube Q, centred at the origin, such that f a = 0 

and 	1Q1'. Furthermore, P1 , P2  satisfy 

P2 (t) 

for i = 1, 2, on I where the exponents il, i2 are distinct and nonzero. In fact 

I C [At,,, 1, A 	Iti, 1 +i I] n [AIt 2 , 2 I , A - ' t2,1 11 

and so the conclusions of Lemmas 2.3.1, 2.3.3, 2.3.4 and 2.3.5 hold for each P2  on 

I if A is chosen large enough. We will use these lemmas in what follows, since we 

do not have a special proof in two dimensions. For the same reasons we will also 

just make use of Proposition 2.7.1. We thus proceed as in Section 2.6, to split 

the integral in 3.8 near and away from the origin. For the part near the origin we 

again don't have a special proof. For the part away from the origin we do and 

that is what we concetrate on. We therefore have to establish 

f D 

a(p(t)p(t))I 1, 
 t r1_1 

(3.9) 

with ) = ( QIlpl,j1lp2,j2I)i2 (for the reason that we choose this value for A, 

see Section 2.6). By applying the Cauchy-Schwarz inequality, we have 

(fD 
 Ia(P1(t),P2(t))2dtDa(P,(t),P2(t))Idt: 

([D 
 dt 

2  

t 	 t2 	

A 

A 	 / 

The first term in the product is bounded above by 

1 D 

 idt) 	 2(jl (L 	
2 

t2  

Hence we would be finished if we proved the following theorem which is effectively 

a L 2-restriction theorem for atoms. 

Theorem 3.1.1 For an atom a and P,, P2 , I as above, 

( J Ia(P, (t), P2  (t)) I2dt) 	(IQ Ip1,1 P2,j2 ) 
"I 

The proof of this theorem is carried out in the next section. 

3.2 Proof of a restriction theorem for IF 2 -atoms 

The proof will be different for the case where one of the j,, i2 is equal to 1 to 

the case where both ji, i2 are strictly greater than 1. Of course in both cases we 

have that j, 54 j2 . In Section 3.2.1 we deal with the latter case whereas in Section 

3.2.2 we deal with the former case. 
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3.2.1 The case 2—< il  

We start by defining the measure a by 

= 
fI

0 ( Pl(t)  P2(t)

1
dt 	 (3.10) 

 P',31 	P2,32  

and the quasimetric p by 

p(x,y) = 	+ 1Y1 j2. 	 (3.11) 

We will require the following two preliminary results. 

Proposition 3.2.1 With 2 <ji  j2 and a, p, defined as in (3.10) and (3.11), 

we have 
I i(x i-I!.!+y ai!1 	1 

60" Y) = I e P1ii P2,j2)dt 5 p(x,y) 

REMARKS. 1. This proposition fails for j'  = 1 <j2 . For this case though we 

have been able to prove a similar proposition using Euclidean balls. This is done 

in Section 3.2.2. 

2. Proposition 3.2.1 fails more substantially in higher dimensions. 

PROOF. The statement is equivalent to proving that if, on I = [B, D], 

Pi  (t) 	t, i = 1, 2, 

then 
eu1(t)2(tdt 	

p(xy) 	
(3.12) /  

We recall from Lemma 2.3.1 that in this case we have 

A l t' < P(t) < At 31 , 

B i t32  < I P(t) I < Bt3 2 l ,  

where A 1 , A'1 , B 1 , B are constants only depending on the degree of P1 , P2 . Let 

us assume w.l.o.g. that j2 > j'  and consider first the range where IyIh/32 > IXV/31. 

We split the integral in (3.12) at C(A hi /Bi) h / (32_u 1) lyI_ h /32  for C > 1 to obtain 

IeP1 (t 2 (tdt 

B1 
32 - 31 

I 

D 

	

___i__._ 	eiP1(t)+1°2(tdt = fBC()IYI-1/32 ei 1(t)+2(t))dt + 
fc()32-3I1y1h/32 

=: 1+11. 

Integral I is clearly bounded above by C(A/B i ) h/(i2_i1)IyI_ h /32 	p(x, y)'. For II 

we want to use van der Corput's lemma (see e.g. [S2]) to bound the integral from 



above. In order to use van der Corput's lemma, we need to bound some derivative 

of the phase function xPi (t) + yP2(t) from below. Using Lemma 2.3.1, we have 

for the first derivative (we can use simple calculus to verify that the expression 

yIBi tJ2_l - IxA01_ 1  is monotonic and increasing in (C(A/B1)ii y11/2,  D)), 

lxP(t) + yP(t) ~! jyjBiti2_l - IxlAti1_l 
2 -1  

> yB 1  (c7 	
i 

- 	

(\) 	IYI2) 

x'A (C1)  

1  

/ 22L 	Li 	1 	 ,i2L ii. 
>  C-'A -'2—fl 

1 	B21 	- 
 C11-1 .12 	B 21  Y132 

1 
y32. 

Hence, II 	 $ p(x, y)'. This analysis takes care of the range y'/2 

IxIl/il. We now turn to the oposite range yI' 32  < lxl l ljl . For this range we split 

the integral in (3.12) as follows: 

J ei( 1 (t)+y'2 (t))dt 

I 
1 	

-L 
5(.L) 73Ti - 1 

= 
 

fB 

Bc 	
ei'1(t)'2(tdt + 

1 

I Bc lvi 	
eiP1(t)+yP2(tdt (* 	1 3231 IxL3T 

1 
CJJ!i) 1 	 D f B1y 

	

 eiP1(t2(tdt
32 31 

+ J/\ I 	eiP1(t2(tdt + 
.12 .11 	 f B, jyj (B'1lyl) 

=: I+II+ III +IV, 

where 5 < 1 and C > 1. Integral I is clearly bounded above by (A1 /B)/(3 2 u 1 ) 

5 p(x,y). For integral II we use van der Corput's lemma. For the 

phase function we have 

IxP(t) + yP(t) I > IxAitiI_l - yBti2  

The right side of this inequality is minimised at the two endpoints of II. At 

5(A 1  Ix/B y)1/(j2_i1) we have 

	

1 

(A1lxIfl )i2-jl 
	

Q jyj
Jxfly2-il 

	

IxIAit'' - lyIBt 32 _ l 	IxIAiou1_ 	
By 	

yIBP2_l 
	j 

- (ö1 - 52-1) 
((A i IxI)i2_l) .1231 

- 

 

(B'jy j )j 1 -1  

> IlT II ,  
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since we are in the range yl'/j2 < ixii/ii. At the other endpoint, 6(A1 /B)l/(32 h 1 ) 

I x 1', we have 

il—i 

	

IxIAitul_l - yIBti2 	= xIAi8u1 	 IxI 
(A i ) 3221 	- 

' 

A 1 \ i2 — il 	_ZLi 
- yIBö2 	

() 	

IxI ii 

/ Ai2 \ ::; 
>  (5i-1 - c5i2_1) 

(NB?'-') 	IxIi. 

So no matter which endpoint the phase function is minimised, we obtain the 

same bound from below and hence from van der Corput's lemma we see that 

II 5 p(x,y). Let us now consider integral IV. Using simple calculus we see 

that the expression j yjBiti2  - xIA hi til_ l  is minimised at the endpoint 

C(A F xI/B i IyI) 1/i2 _u 1) . Hence 

xP(t) + yP(t)I ~! I yIBt32  - xIAit'' 
il—I 

>  jyjBiCi2 	
(AIxI) 3221 

- 

	(A'jjxj ) j2-j1
BlIyI 	

BiIyI 
3- 1 	 1L  

= C3 2 (A IxDi2 - I (B1 II) 3231 

- CuI_ l (AIxI)32i1 (Bl IyI)2-31 
I 

- 

((A'x)j2 

	j2 — il 

- 	 (BiIyI)i1) 	
(Ci2 

- C) 

-I- > 	IxIiI, 

where in the last inequality we have used the fact that we are in the range l xl llj l  > 
y'/32. Hence we can bound IV from above by p(x, y)'. So we are now left with 

estimating III in the range IxIu1 > IyIhiJ2. We define '(t) = xPi (t) + yP2(t). 

Using matrix notation we write 

(

'(t) \ 
- ( 

P(t) P(t) \ / x

2 	 Y "(t) 
) - 
	 P'(t) P'(t) 

) 

This implies 

( 	 = 	
1 	 ( P'(t) —P(t) 

) ( 

01  MM  
\ yj 	P(t)P'(t) - P(t)P'(t) 	—P'(t) P(t) 

By taking norms on both sides we have 

IP(t)P'(t) - P(t)P'(t)I 	—P'(t) 	P(t) / 	(I')I + j"()I)• IxI+IyI 	 I 1 	 '( P'(t) 	—P(t) 
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At this point we use Proposition 2.7.1 to obtain 

kb'(t)I + 011(t)l ;::: (lxi + lyDt_u 1_32+l  
1 

max(lP(t)l, iP(t)l, lP(t)I, lP'(t)I) 

If t < 1 we have from Lemma 2.3.3 that max(IP1'(t)l,  lP(t)l, iP(t)l, lP'(t)l) 
t2 2 . Hence 

'(t)l + l"(t)i 	> (lxi + iyI)t 2u12+3  
-2j1 	32+3 

3231 

> (Ixi
) 

 
\Jl 

(fl:2a' (_2i1 	32+ 3  

~ iIlXlk 	31 1 k 	3231 

3j1+32 -3  

= xl 	1 

Now split the interval of integration into a union of 0(1) intervals on which either 

	

3j1+j2-3 	 3j1+j2-3 

l"(t)l 	lxi 	31 	or 	I'i/j'(tI > lxi 	ji 
I, 	/l  

holds. This can be done since 1' is a polynomial and therefore we cansplit the 

interval of integration into a union of 0(1) intervals on which either I /I (t) I 
k"(t)i or kbt)l 	l"(t)i. In the first case we can then see that 	'(t)l > lxi h hul 

and in the second case we see that NI"(t)l > 1x1 21i1 , so in both cases, using van 

der Corput's lemma we obtain the desirable bound III < lxl'/'.  If t > 1 we 

have from Lemma 2.3.3 that max(lP(t)l,  1P211(t)l, 1p2' (t)l, iP'(t)l) 	Then 

I',b'(t)i + l'(t)l(IxI' + lyl)t_u 1 _ 232+2  rld  
- j1 -2j-4-2 

(ixi\ 	3231 

> xl'- \Jyl 
(nia ( -j,-2j,  -4-2 

~ lxiixl' 	1 	i2 - il 

2j1+2j2-2 

= lxi 	ii 

Like before, we split the interval of integration into a union of 0(1) intervals on 

which either 

	

2j1+2j2-2 	 2j, +2j2 

lxl 	31 	 or 	k"(t)l 	lxi 	31 

The first inequality implies IW(t)i " 1x11' and the second inequality implies 

10 "(t)l > lx1 21 1, so in either case, using van der Corput's lemma we obtain the 

desirable bound III $ This proves that 

I e i P1(t)FyP2 (tdt < 	1 
I 	 p(x,y) 

in the range lxil'u1 > y1'/2, concluding the proof of Proposition 3.2.1. 
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Proposition 3.2.2 With 2 < ji 7~ j2 and a, p, defined as in (3.10) and (3.11), 

if we let 

B9 (x,y) = {(u,v) : p((u,v) - (x, y)) < O}, 

then a (Bo  (x,y)) < 9. 

PROOF. With 	denoting Lebesgue measure, we have 

   Pa(Bo (x,y)) = Ifl {t: 	- P1(t)I* y 2 	<O}, 

where P1 (t) = P1 (t)1p 1 ,31  and P2 (t) = P2 (t)/p2 , 2 . Hence 

a(Bo (x,y)) 	I InIt: Ix_Pi (t)I* <O} 

~ InIt: IIxI - P1(t)H <6i1} 

= Iflit: I xI—o il  <  I P,(t)l < 

~ 

 

lit : Ix - Oil  <- IAMI < IXI+Ou1}, 

since by Lemma 2.3.1, Pi(t)l  is increasing on I. Without loss of generality, we 

may assume that Pi  (t) is positive and split the analysis in two cases. For the first 

case we assume IxI > 20i1. We then have. 

I{t: Ix — 9' <P < IXI+9u1 }1 =3_ 

where P, (a) = x Oil and P, (0) = IxI +931 . Then 

f P(t)dt = .P1 (0) - 	 = 

Also 
/3 

f P(t)dtf 

From Lemma 2.3.1 we have that c' 	= 	- 931, which implies a 

(Ix - 9i1)hIil. Putting this together we obtain 

031 > (Ix - Oii)'1 ( - 
a) > 9 31 ( - 

a). 

Hence (6 - a) <9.  For the second case we have Ixl < 29i1 Thus 

{t: Ix _Oil  <- IAWI < 1XI + 9 }I 	it 1P1 (t)l 	xl 9i1} 

{t : t-" ;:$ xi + 01 1 11 

t' < 39ii}1 

<0 

completing the proof of Proposition 3.2.2. 
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We now come back to the proof of Theorem 3.1.1. Let us define 	C°° such 

that supp c B, (0, 1) and 	1 near 0. We split our measure a on the Fourier 

transform side, in the following way: a = a 1  + cr2  where 

= &(x , y ) co  (oil  x ,922 y ) 

and 

62 (x,y) = (x,y)(1 - (011x,912y)), 

where 9 is a parameter to be chosen later. Then 

f I a(pj (t), 

= f 
(fR2a(u,v)e_i 1(t)+vP2(t))dudv) (

f  R 
a(x,y ) ei1(t)+YP2(tdx dy) dt 

' 2  

= 
fR1 a(u, v) (f a(x, y) fj e_i_1(t_ 2 (tdtdx dy ) dudv 

= fR2 
a(u,v) (a * 

(pl,jrP2,j2)) (u,v)dudv 

= 
fR2 a(u, v) (a * 	1(P1,j i P2,j2)) (u, v)dndv 

+  J a(u,v) (a* 2 (p1 , 1 .,p2 , 2 .)) (u,v)dudv 
R2  

IlaIkIl * 2 1(P1,j i P2,j2) 112 + Ilall, Ila * da2(P1, 1 , P2,j2 ) I 
< 	Ila 112 	

1 
- 	21p1j1p2j21 

ldai (p 1 .,p 2 .)lI 00  + 

= 	11a112 	
1 

2 
IP1,jiP2,j2 

Idai  l 	+ llalI 11th72(pi,j1 , P2,2 ) 1100. 	 (3.13) 

We look at the second term of the last expression and recall that Mall, = 1 and 

	

da 	j2(pi, 1 x, p22y)l = &(piji X, P2,j 2 Y) 1 - (p1,1  9u1 x, 	 )I.  

We note that the second term of the above product is nonzero when 

p(p119i1 2;, P232 9  Y) = OP(Pi,ji  2;,  P2,j2Y) > 1 

That is the above product is nonzero only for those (x, y)'s that satisfy 

1 
<9 

p(p1 , 1 x,p2 , 2 y) 

Using Proposition 3.2.1 we then have that 

da2 (pi , 1 x )  P2,j2Y)l = I6(p i , 1 x, P2,22Y) Ill - p(p1191x, P2j29i2Y) 
1 

p(P1,j1 X,P2,j 2 Y) 
9. 
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For the first term in (3.13) we need an estimate on a 1 (x, y). We have that 

ai (x,y) =a*ç 9 (x,y), where 9 (u,v) =co(Oulu,Oi2v).  So 

ai(x,y) 
= 	1 

J 
(x_n —v 

	

Ojl+j2 	2 	 ' 0i ) da(u, v) 

- 	 1 

	
[fP((U,V)—(x,y))<O

x_u u_v)
931+32 	

\ 
 oil 	9i2 	

da(u, v) 

.(x_u Y— 	
V) 

 

	

 9n 	
v)] 

 f2--1 0—<P((-,-)—(x,y)) < 2nO  

932 

Now since ç  e S,'we have p (x,y)N(x,y) I  < CN. Therefore 

	

ai(x,y) < 	1 
[a  (Bo  (xY)) '-••-' oil +i2 

+a(B2ne(x,y)) f
n_b 	

x 

CN 	
Nd] 

(—u 	
\ 

n> 1 	
J2Op((u,v)_(x,y))2nO P 	r, 0i2 / 

1 
 10+ 2O f 	CNON 	

dudv1 
0iii 

[ 	 n> 1 	
n_bO

<
p((u,v)_(x,y))2n9 p(x - u, y - v)N 	j 

	

< 	i (0 + 0 E 2n2(1_n)N) 

	

'-•'-' 	9ii+i2 

	

\ 	n>1 
< 0 

	

'S..' 	oil +i2 

for N large enough. Hence putting the estimates for the two terms in (3.13) 

together we obtain 

I a(P1 (t),P2 (t)) 2dt 0 	
0 

+ Q0i1+i2 IPl,jlP2,j2 

Thus choosing 0 = ( p1,j1p2,j2 Q)_h/(i1 2) we complete the proof of Theorem 

3.1.1 in the case 2 <j :~ 

3.2.2 The case 1 = j1  <j2 

To prove Theorem 3.1.1, for 1 = ji <j2 =: j, we first note that by performing 

a change of vaiables and using Lemma 2.3:1, it is enough to prove a rescaled 

analogue of it, that is with I = [B, 1]. As before, we define the measure 

fB
1 

 (P1(t) 

P2(t) dt 
	 (3.14)

) = Pi,i 	P2,3 ) 

and we denote by p(x, y) the 'Euclidean' metric 

p(x,y) = lxi + iyl• 	 (3.15) 
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We will need the following two propositions which are similar to Propositions 

3.2.1 and 3.2.2. 

Proposition 3.2.3 With 1 < j and a, p, defined as in (8.1) and (8.15), we 

have 
' 	 1 

(x, y) 
=

e 	P2,j )dt $ 
fB p(x,y)2 

PROOF. It is enough to show that if P1 (t) '-.' t and P2(t) r'  tj  on (B, 1), then 

I e—'(-Pl (tP2(tdt 	
1 	

. 	 (3.16) 

	

1 	

(lxi + Iy 7  
We recall from Lemma 2.3.1 that we have 

A 1  :~ lP(t)i < 
1 J 1

AF  
, 

B it' < P(t) < 

where A 1 , A'1 , B 1 , B1 are constants only depending on the degrees of P1 , P2 . We 

first consider the range AiIxi/B > 21yj. In this range, 

xP(t) + yP(t)i > A1x - BjyIt' 

lxi. 

So by van der Corput's lemma, 

	

fB 

 1 
e_i 1(t)+yP2(t))dt < 1 	1 	1 

- 	 , 

	

lxi 	xi 	(lxi + il)
i 

 

if j xj > 1. In case lxi < 1, we use the trivial estimate f e_i( 1 (t) nl2 ( t))dti < 1 

which implies the desired estimate since j xj, ll 1. For the range ll > lxV, we 
rl~

split the integral in (3.16), for suficiently large C, in the following way: 

	

fB

'iyL 	

fcl yl-3j e_iP1(tP2tdt 
= 	

e_iP1(t)+yP2(tdt + 	 e_iP1(t1F'2(tdt 

B   
= 1+11. 

Integral I is clearly bounded above by 14/i. For II we have 

lxP(t) + yP(t) > Bilyit' - Aixl 
1  > 

which by van der Corput's lemma implies that II < lyl11• Thus we have shown 

that 

	

f e _u1(t2(tdt 	(lxi + 

76 



for Jy j ~! j x1j, if j y j > 1. Note that if II < 1 we can use the trivial estimate 

I J e_i ( 1 ( t ) 1 '2 ( t))dtI < 1. Weare now left with the range IxI IiI 5 IXIk (note 

that this forces x, y 1). Here we split the integral in (3.16) as follows: 

fB  

=  

	

fB' 	çiyi 	e_i(xP1(t)2(t))dt + f  tBiIYl) 	
e_iP1(t)+YP2(tdt 

 (j!I 
ui) 

+  f ___ e_iP1(t?I'2(tdt 

(i 
Biivi) 

= 1+11+111, 

for sufficiently small 5 and sufficiently large C. For I we have 

IxP(t) +yP(t) I > A, I x I - B yt3l 

implying, by van der Corput's lemma, that J < IyL11 	p(x, y)1/i.  For III we 

have 

xP(t) + yP(t)I > BiIyI' - AxI ='x 

implying, by van der Corput's lemma, that JJJ < 	< 	)1/i To esti- 

mate II we first write t) = xPi (t) + yP2 (t), so 

(b' (t) 	
- ( P(t) P(t) 	(x 

0"(t)) - 	 P'(t) P'(t)) 	y 

This implies that 

	

( x 

) 	

1 	

( 

P'(t) 	P2 	0'  
) ( 

'(t) \ 
P(t)P'(t) - P(t)P'(t) 	—P'(t) P(t) 

and consequently that 

1 	1/ 

 - 	 —

't —P 
IxI+IyI :5 ' 	

P 	
( t't 	PtIPt 	 tPtPPP 	

('tI + "t I). 
 ) I 

Now using the upper bound for P1"(t) from Lemma 2.3.3 and the fact that t < 1, 

we have 

	

(

P'(t) 	—P21 (t) \ II 

	

—P'(t) 	P21(t) 
) 	

max(IP(t)I, P111  (t ) 1,  P(t)I, P21'(t)I) <rl  1 

Thus, using Proposition 2.7.1 we have 

1 
IxI+IyI IP(t)P'(t) - P(t)P(t)I (kb'(t)I + "(t)I)) 

t("(t)I + "(t)D, 
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implying that 

k' (t) I + 1011 (t)l 	t(Ix I + II) 	t3x. 

We now split the interval of integration into a union of 0(1) intervals on which 

either "(t) > tx or /i'(t) > tx holds. But, 

Ox  
( XY ) 

=x_y 	>y1)y 	y=1)y 

So in the case that '(t) > tx, we have that 

> t 3 x > v LU  i > 

giving the required estimate for II, using van der Corput's lemma, and in the case 

that 'jY'(t) > t'x, we have 

t'>t3xy  i 

again giving the required estimate for II using van der Corput's lemma. This 

completes the proof of Proposition 3.2.3. 

Proposition 3.2.4 With 1 <j and a, p, defined as in (3.14) and (3.15), if we 

let 

Be (x,y) = (u, v) : p((u,v) - (X, Y)) <9}, 

then a(B6 (x,y)) $ 0. 

PROOF. With I 
. I denoting Lebesgue measure, we have 

a(B9 (x,y)) = In {t: Ix - P1(t)l + ly - P2(t)I 

where P1 (t) = Pi (t)/pi , i  and P2 (t) = P2 (t)/p2 ,3 . Hence 

a(Bo (x,y)) < IIfl{t: x—Pi (t)l 	9 }l 

~ I'n {t: Uxl - P1(t)Il <°}l 
= I1fl{t: x-0< P1(t)l < xI+ 9}I 

I{t: 1XI -9 	P1(t)1 <- lxi +0}l, 

since by Lemma 2.3.1, Pi(t)l is increasing on I. Without loss of generality, we 

may assume that Pi (t) is positive and split the analysis in two cases. For the first 

case we have lxi > 29. We have 

{t: 1xl -9 Pi < 1xl+ 0 11 =3- 



where Pi (a) = xi - 9 and P1 (13) = lxi + 9. Then 

f
/3 

.P(t)dt = P1 (8) - P, (a) = 29. 

Also, from Lemma 2.3.1, 

I
3 	 /3 

.P(t)dt, [ 	/3—a, 
Jcx 

implying that 8 - 	8. For the second case we have lxi <29, so 

{t:ixI—O<P(t)lxI+8}l 
	

lit :P(t)<lxi+8}i 

i{t:t 	1xl+ 9 }1 
< i{t:t30}i 

< 9, 

completing the proof of Proposition 3.2.4. 

We now come back to the proof of Theorem 3.1.1. Let us define E C'° such 

that supp ç B 1  (0,0) and 1 near 0. We split our measure a on the Fourier 

transform side, in the following way: a = 91  + 92  where 

61 (x,y) = &(x,y)(Ox,9y) 

and 

62 (x,y) = 6(x,y)(1 - 

where 0 is a parameter to be chosen later. Then 

f I a(P(t), P2(t))l2 dt 

= f (fR1 
a(u, v ) e_i 1(t)±vP2(t))dUdv) (f a(x, y ) ei 1(t/P2(t))dXdY) dt 

\ R2   

= fR2 
a(u,v) 

(fR2 
a(x,y)  f 6_i((u_x)P1(t)+(v_Y)P2(t))dtdXdy) dudv 

= L a(u,v) (a * (P1,1,P2,j)) (u,v)dudv 

= fR2 
a(u,v) (a * 1(P1,1,P2,j)) (u,v)dudv 

+  I a(u,v) 	dO'2 	(u,v)ciudv 
R2  

	

Iiall2lla * 	1(p1,1,p2,j)ll2 + Ilalliila * da2(P1,1,P2,f)lioo 

<lIal 	 ,p 
2 	1 	

1 idai(p)iloo + iialiiI 2 2(p1,1,p2,)ii - 	i21p11p2j1 I 	 L  

Ii 2 	1 	
I ldai li 	+ llaiilida2 (pi , i .,p2,)li. 	 (3.17) =  
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We look at the second term of the last expression and recall that 11all , 
= 1 and 

2 (p1 , 1 x,p2 , 2y)I = I6(p1,1x,p2,y)H1 - ço(p1,10x,p2,Oy). 

We note that the second term of the above product is nonzero when 

p(p1,1 0x,p2, 3 0y) = 9p(p1,1x,p2,y) : 1. 

That is the above product is nonzero only for those (x, y) 's that satisfy 

1 
<9 

p(pl,lx,p2,jy) 

Using Proposition 3.2.3 we then have that 

2(pl,1x,p2,jy) 	= I6(p1,1x,p2,y)II1 - p(pl,lOx,p2,&y) 

< 	
1 

p(pl,lX,P2,jY) 

For the first term in (3.17) we need an estimate on o 1 (x, y). We have that 

ai (x,y) = a*(x,y), where o (u,v) = o(9u,Ov). So 

1 

 J 
/x—u 	'\ 

d ai (x,y) = 	
, 

y — v )a(uv) 
R2  

dcx('a,v) 
1 

 [fP((u,v)-(X,Y))<O

x_u y—v\ 

 
/x —u y—v\ 

+ 	f2n-IO<p((U,V)—(x ,y))<2nO 	9 	
da(u v)

n~1  

Now since E 8, we have p(x, y)vIc(x, )l < CN. Therefore 

a1(x,y) < (Bo  (x, y)) 
02 L 

CN 
+ 	a(B29 (x, y)) 

 f2n- I O<—P((U,V)— (X , Y))< 2n O p ( ,n> 1 

	

[o+2n9J
2n- 1O<p((U,V)-(x,y))<2 n O 
 - 
	CN9N 	

d 
02 	

n> 1 
	p(x - u, y - 

v)N udv] 

-_ (o +  0 E 2n2(1_n)N) 
r 	02 	

n>1 

< 1  

CO 



for N large enough. Hence putting the estimates for the two terms in (3.17) 

together we obtain 

J a(P1 (t), P2(t))I2 	
1 

dt 	+ 
QI9Ip1,1v2,j I 

Thus choosing 0 = (1p1,1p2,11Q  3/(1+3) we complete the proof of Theorem 3.1.1 

in the case 1 = j'  < 22 = j. 
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