
Shared Memory with Hidden
Latency on a Family of Mesh-like

Networks

Tim J. Harris

Doctor of Philosophy
University of Edinburgh

Abstract

In this thesis we consider the general problem of how to provide a shared memory

model on a network of processors where memory is physically distributed among

the processors. In particular, we consider the simulation of an EREW PRAM

model on a family of mesh and ring like networks, and we are interested in latency

hiding simulations. Our goal is first to provide a simulation which has delay

proportional to the diameter of the network, and second to hide the simulation

delay entirely though use of multithreading techniques.

We begin with a general introduction to the problem of PRAM simulation,

and a brief survey of the state of the art in such simulations. We then highlight

the importance of processor efficient simulations, where the latency of access to

shared memory is hidden. We consider the use of multithreading for latency hiding

in PRAM simulations in a general context, addressing the relationship between

the number of threads run on each processor and diameter of the network. We

provide evidence that in the general case bounded degree networks will not have

enough bandwidth to support such processor efficient simulations, and we define a

class of networks, known as fat rings and fat meshes, which provide the necessary

bandwidth. We then implement the ideas we have discussed by providing a pro-

cessor efficient EREW PRAM simulation on a family of networks consisting of fat

meshes of arbitrary dimension. The simulation focuses on memory management

and routing techniques for the networks. We provide evidence that concurrent

access models are inherently poorly suited for multithreaded architectures. Given

these difficulties we go on to describe a satisfactory CRCW PRAM simulation

for the fat mesh, which by necessity has delay which is greater then the diameter

of the network. We then reinforce our theoretical conclusions with experimental

results generated from a trace driven simulation of our architecture. We conclude

with an assessment of some performance characteristics of fat mesh machines, as

well as a review of the main points of the thesis.

Acknowledgments

My time in Edinburgh has been both challenging and entertaining, and for that

I have many to thank. Lennart Johnsson provided me with alot of the inspiration

to go on to graduate school, and David Wallace gave me the funding and exciting

project that led me to Edinburgh. My advisor, Murray Cole, provided me with

the ideal combination of both time to dream about changing the world and time

to get things done. My being able to finish in a timely manner is primarily due to

him. Nigel Topham reminded me of the excitement in actually building parallel

machines, after inviting me to join one of the most interesting European projects I

know of. I'm thankful to all those at the Edinburgh Parallel Computing Centre, for

their direct involvement in my first two years of research, and for their subsequent

friendship after I moved on. And I'm thankful to Alison Monteith, who tried to

not be too embarrassed that her boyfriend was "just a student", and put up with

my wandering travels with work.

Beyond that there are many others that made smaller yet still substantial

contributions to my work, whether they are aware of it or not. Graham Jones,

Todd Heywood, Mikee Norman, Greg Wilson, Jop Sibeyn, and Leslie Goldberg all

played important roles in my development as a researcher. I'm thankful for the

mentorship and funding provided by Fabrizio Luccio, Gianfranco Bilardi, Wolfgang

Paul, David Skillicorn, and Franco Preparata as we1l as all of their bright graduate

students. And finally, thanks to all my former Thinking Machines colleagues,

especially Alan Edelman, Mike McKenna, Kapil Mathur, and Anne Trefethen,

who helped give me the ambitious dreams for parallel computing that I'm still

chasing today.

Declaration

I declare that the following thesis was composed by me, and that all work in

it is my own unless otherwise attributed. Some of the following has appeared

previously in [Harris 1994].

Table of Contents

1. PRAM Simulation 1

1.1 Thesis Contributions 2

1.2 Problem Definition

1.3 Concurrent Access
11

1.4 Deterministic Simulations 13

1.4.1 	Memory Management 13

1.4.2 	Routing and Interconnection 17

1.4.3 	Composition of Subproblems 19

1.5 Randomized Simulations 21

1.5.1 	Memory Management 21

1.5.2 	Routing and Interconnection 24

1.5.3 	Composition of Subproblems 26

1.6 Summary of Existing Results 26

2. Efficient Simulations 	 29

2.1 	MPC Based Simulations 31

2.2 Simulations for Generalized Networks3 4

1

Table of Contents 	 11

Optimal Efficiency and Bounded Degree Networks 	 37

3.1 	Processor Counts and Slackness37

3.2 	Bandwidth Requirements 40

3.2.1 	Ring Contention Factors 41

3.2.2 	Mesh Contention Factors4 2

Fat Rings 	 44

4.1 The Ring Model 44

4.2 Memory Management 46

4.3 The Interconnection Network51

4.4 Fat Ring Node Architecture52

4.4.1 	Selection and Forwarding53

Fat Meshes 	 60

5.1 	The Mesh Model 60

5.2 Memory Management 62

5.3 	Routing 64

5.3.1 	Greedy Routing 64

5.3.2 Routing and Memory Management68

Concurrent Access 	 72

	

6.1 	Lower Bounds 72

	

6.2 	Cole's Merge Sort75

6.3 Eliminating Concurrent Requests76

6.4 Efficient Concurrent Access 79

Table of Contents 	 111

Experimental Results 	 82

7.1 	Simulator Architecture 84

7.2 	Memory Management 86

7.2.1 	Hashing with Multithreading87

7.2.2 	Hash Function Degree89

7.2.3 	Random Traces 89

7.3 	Routing 90

7.3.1 	Fat Rings 91

7.3.2 	Fat Meshes 	93

7.3.3 Memory Module Service Rates94

7.4 	Processor Count 96

Conclusions 	 103

8.1 	Multithreaded Performance 1 03

8.2 	Sustainable Performance 1 06

8.3 	Concurrent Access 1 08

8.4 Theory versus Practice in Architecture11.1

8.5 	Future Work113

List of Figures

1-1 The PRAM model of computation 	 . 4

1-2 The Module Parallel Computer 8

1-3 The Bounded Degree Network Model9

1-4 PRAM Simulation problem decomposition10

1-5 Majority Scheme for Deterministic Memory Management 27

1-6 Upper bounds of Deterministic Simulations 28

1-7 Upper bounds of Randomized Simulations 28

2-1 A Multithreaded Architecture . 30

4-1 	A six processor ring 45

4-2 A six processor fat ring . 52

4-3 Node architecture for selection and forwarding 54

4-4 Fat Ring Node Matching Circuit . 56

5-1 A nine processor fat mesh with multithreading nodes 62

5-2 Example of source and destination count functions 68

7-1 Node architecture being simulated 84

iv

List of Figures
	 V

7-2 Matmul trace with no multithreading 	
97

7-3 Matmul trace with 32 threads per processor 	 98

7-4 Matmul trace with 128 threads per processor 	 98

7-5 Matmul trace with degree two hash function 	 98

7-6 Matmul trace with degree four hash function 	 98

7-7 Random Trace with Linear Hashing 	
99

7-8 Random Trace with No Hashing 	 99

7-9 Two Dimensional mesh with links of width 32............. 99

7-10 Two Dimensional mesh with links of width 1............. 99

7-11 128 Processor Fat Ring Routing Time 	100

7-12 256 Processor Fat Ring Routing Time 100

7-13 Average Routing Times for Fat Ring 100

7-14 Routing Time for 64 x 64 Fat Mesh 	100

7-15 Routing Time for 16 x 16 x 16 Fat Mesh 	100

7-16 Average Routing Times for Fat Meshes 100

7-17 Memory Arrivals for p=128 Fat Ring 	101

7-18 Memory Arrivals for p=256 Fat Ring 	101

7-19 Queue Sizes for p=128 Fat Ring 	101

7-20 Queue Sizes for p=256 Fat Ring 	101

7-21 Processor Count with 1K Threads on Ring 	102

7-22 Processor Count on Two Dimensional Fat Mesh 	102

7-23 Processor Count on Three Dimensional Fat Mesh 	102

List of Figures
	 VI

8-1 Multithreading Speedup as function of mesh dimension 106

8-2 Two Dimensional Mesh Performance as Function of ii.........107

8-3 Two Dimensional Mesh Performance as Function of p.........109

8-4 Simulation Complexity Classes . 110

Chapter 1

PRAM Simulation

Parallel computers have long been acknowledged to have tremendous potential to

outperform their serial counterparts. However, two fundamental problems have

always existed with parallel machines: they are difficult to program, and the per-

formance of the average program is often far below what is expected. The first

problem can be addressed in a small part by the use of a shared memory model for

programming, where users need not consider the details of an underlying intercon-

nection network, but only assume a high level abstraction of a parallel machine.

A partial solution to the second problem may result from the development of an

architecture with dependable performance characteristics.

In the following we suggest a way to provide a parallel machine with these

two attributes; a powerful shared memory model and dependable performance.

More specifically, we suggest a way to support an n processor Exclusive Read, Ex-

clusive Write PRAM on a family of mesh-like networks with physically distributed

memory, such that the entire latency of memory access is hidden. The effect of this

latency hiding is that processors should have very little idle time; a program run-

ning on p processors should run 0(p) times faster than that same program running

on one processor. Though other work has addressed such latency hiding PRAM

simulations, the novelty of our approach is in the use of mesh-like interconnection

networks which have been augmented to serve our purposes. This introductory

1

Chapter 1. PRAM Simulation
	 2

chapter provides a thorough definition of the general problem of PRAM simula-

tion, and will familiarize the reader with some of the techniques which we will

exploit in later stages of the thesis. Chapter 2 continues the introduction, but

by focusing on the specific problem of efficient PRAM simulations. Much of this

introduction has been previously published in [Harris 19941.

1.1 Thesis Contributions

We now describe briefly the focus of the thesis, and where specific contributions

have been made above and beyond the previous results in this area. We leave until

later any statement of specific theorems, and instead identify the general topics

which are being addressed in a new or novel way. These topics are:

The relationship between network diameter and slackness in multithreaded

simulations.

The bandwidth requirements of multithreaded simulations running on bounded

degree networks.

The performance benefits of multithreading techniques on networks of high

diameter.

The complexity of supporting concurrent access models in multithreaded

simulations.

The role of PRAM simulations in providing predictable multiprocessor per-

formance.

We now provide a description of the context of the thesis, i.e. a concise problem

definition as well as an explanation of related existing results.

Chapter 1. PRAM Simulation 	 3

1.2 Problem Definition

When setting out to design a parallel algorithm one must ask two questions of the

problem at hand:

Can enough parallelism in the problem be identified to allow a good solution?

Can the processors share the data necessary in the problem fast enough

(given their organization) to allow a good solution?

The first question is the most fundamental, in that problems with little inherent

parallelism will never have good parallel solutions. Furthermore the answer to this

question is largely independent of what parallel computational model one chooses

to use. On the other hand, the answer to the second question depends intimately

on the model used. Questions of synchronization are also implicit in this question

of communications.

Models of parallel computation can roughly be broken into two groups [Mc-

Coil 19921. Special purpose models are those where the processors communicate

through a completely specified network of links, and where attempts are made

to exploit the locality of the processor organization as much as possible. These

models require that the algorithm designer solve both problems 1 and 2 explicitly.

The term special purpose refers to the fact that an algorithm designed for one

such model will seldom be portable to other such models, i.e. its applicability is

specialized. Examples of such models are hypercube, tree, and mesh models.

The other type of models, general purpose models, are those where powerful

and general communications are assumed, typically in the form of a large syn-

chronized shared memory accessible by all processors. Such assumptions allow

researchers to focus on the fundamental characteristics of a parallel computation,

and ignore the issues which arise through particular choices in architecture and

Chapter 1. PRAM Simulation 	 'I

interconnection networks. More specifically, general purpose models allow one to

consider problem 1 above, while not being distracted by the compounded diffi-

culty of solving problem 2 simultaneously. In addition to its simplicity, the use

of such an abstraction is further justified by the rate at which parallel architec-

tures change in practise, which causes results regarding special purpose models to

have limited relevance over time. The most common general purpose model is the

Parallel Random Access Machine, or PRAM, as shown in figure 1-1.

An (n, m)-PRAM consists of n processors and m memory locations, where

each processor is a random access machine. All processors share the memory, and

hence communicate via that memory. During a given cycle each processor may

read an element from the shared memory into its local memory, write an element

from its local memory to the shared memory, or perform any RAM operation on

the data which it already has in its local memory (e.g. addition, multiplication, or

boolean operations). It is a synchronous model, in that no processor will proceed

with instruction Z' + I until all have finished instruction i. Within this synchronous

restriction a PRAM may execute in SIMD mode or in MIMD mode, though the

complexity of analyzing a MIMD algorithm means that in practice few MIMD

PRAM algorithms have been designed. The original definition of the PRAM can

be found in Fortune and Wyllie [Fortune and Wyllie 19781, though related early

models are described in [Schwartz 1980, Coldschlager 19821.

Figure 1-1: The PRAM model of computation

Chapter 1. PRAM Simulation
	 Id

The above description still leaves some ambiguity regarding the behaviour of

the PRAM. In particular, it is not specified whether various processors may access

the same memory location on a given cycle or not. There is a family of PRAM

models, each of which differs in its characteristics on this point. The members of

this family are:

The Exclusive Read, Exclusive Write (EREW) PRAM, where at most one

processor may read or write to a particular memory location.

The Concurrent Read, Exclusive Write (CREW) PRAM, where multiple

processors may read from a particular memory location, but at most one

processor may write to a particular memory location.

The Concurrent Read, Concurrent Write (CRCW) PRAM, where multiple

processors may read or write to any memory location.

ERCW PRAMs are not considered, as a machine with enough power to support

concurrent writes should also be able to support concurrent reads.

We also need to specify a conflict resolution strategy for CRCW PRAMs, i.e.

what is written when more than one processor writes to a particular memory

location on a given cycle? These additional variants are classified as:

The COMMON CRCW PRAM, where all values written concurrently must

be identical. If the values written are not identical then an error is flagged

and computation halts.

The ARBITRARY CRCW PRAM, where the processor that succeeds in its

concurrent write is chosen arbitrarily from the writing processors.

The PRIORITY CRCW PRAM, where the processor that succeeds in its

concurrent write is the processor with the highest priority, e.g., the smallest

processor index.

Chapter 1. PRAM Simulation

(iv) The COMBINING CRCW PRAM, where the value written is a linear com-

bination of all values which were concurrently written, e.g., a sum of the

values. Values may be combined with any associative and commutative op-

eration which is computable in constant time on a serial RAM.

The above are listed roughly in increasing order of power [Kucera 19821. For a

more thorough definition of the above see [Akl 1989b].

The simplicity and generality of the PRAM model has led to its wide accept-

ance as a research tool, and there are a large number of PRAM algorithms and res-

ults in the literature (see for example [Cook 1984, Gibbons 1988, Akl 1989b, Karp

and Ramachandran 1990 1 McColl 1992]). However, there are still questions about

the applicability of this work to realistic machines. The PRAM cannot be con-

structed with current technology beyond a few processors, and it appears unlikely

that this will change in the future. In particular, a multi-ported memory which

is shared by a large number of processors is infeasible. Instead, a realistic and

scalable parallel computer typically consists of a set of processor /memory module

pairs which are connected by a sparse network of links. Each memory module

will be able to service one memory request per cycle and one message may each

travel across one link per cycle. If more than one request arrives at a module in

a cycle then they will be serviced sequentially. This architecture may be scaled

to many thousands of processors, particularly if the interconnection network is of

fixed degree, i.e. has a constant number of links leaving or entering each node.

Given the fact that the PRAM is not physically realizable, one may attempt

to make use of the large body of PRAM results by modifying them, one by one, to

apply to a particular parallel machine which is currently of interest. However, this

promises to be an arduous task, and one which can be entirely subsumed within

the task of developing a general simulation of a PRAM on more realistic parallel

machines. The problem of simulating a PRAM therefore consists of designing

algorithms that allow instructions of the PRAM to be executed on a feasible

Chapter]. PRAM Simulation
	 7

parallel computer with minimum slowdown. A successful PRAM simulation will

allow a large body of theoretical results to be of practical use. For a non-technical

discussion of simulations and other PRAM issues see [Sanz 19881.

Definition 1 A simulation of machine M 1 on machine M2 is an algorithm that

allows any instruction from M 1 to be executed on M 2 .

When we refer to the problem of PRAM simulation we mean the simulation

of a CRCW PRAM on a realistic parallel machine, namely one with distributed

memory and an interconnection network of fixed degree. This is the central prob-

lem we consider. However, for the purpose of this survey of current work we will

break the problem into three disjoint phases, each of which is a simulation in itself.

The reason for treating these problems separately is that they are all fundamental

problems in theoretical computer science, and the solutions which are identified

for these subproblems may be reused in other contexts. In some cases combining

the solutions of the subproblems to solve the entire simulation problem results

in a PRAM simulation that is as good as a direct solution of the problem can

produce. In other cases, it is necessary to address the larger problem all at once in

order to achieve good performance, rather than combining solutions to the smal-

ler sub-problems. In either case, addressing the subproblems independently plays

an important role in providing intuition about the utility of various techniques.

Other papers have suggested such a separation, notably [Mehihorn and Vishkin

1984].

The three subproblems are:

• The Concurrent Access Problem:

Assume that on each cycle the processors of an (n,m)-PRAM may request

concurrent access to any of the m memory locations, using one of the CRCW

variants outlined above. The problem is to service these requests correctly

on hardware that disallows concurrent access, namely an EREW PRAM.

Chapter 1. PRAM Simulation

Fully Connected Network

P2 	P3 	P4 	P51 	P6

M2 M3 	M4 M] M6

	 LPn

Mn

Figure 1-2: The Module Parallel Computer

This problem has a well known optimal solution which described later in

this chapter.

• The Memory Management Problem:

Consider an (n, m)-PRAM which is to be simulated on a machine with M

memory modules, and assuming that m > n 2 so that each memory module

will hold m/M > n memory locations. Also assume that the processors

are fully connected, so any processor can communicate with any other in

constant time. If each processor issues a request to memory, then in the

best case each request will go to a different memory module, and the set of

requests may be serviced in 0(1) time. However, if an adversary chooses the

requests such that all n are directed to the same memory module, then this

step will require 1(n) time. The problem of memory management is how

to layout memory such that the amount of module contention is minimized

given any set of n requests which are to be serviced. This problem is called

the granularity problem in [Mehlhorn and Vishkin 19841.

• The Routing/ Interconnection Problem:

Assume that each of the n PRAM processors holds a request for a memory

element which specifies the module and location desired. The routing/interconnection

Chapter 1. PRAM Simulation

problem is to specify a fixed degree (and hence sparse) interconnection net-

work and a routing algorithm that will allow servicing of all of these requests

with the minimum slowdown. It will be assumed in our specifications that

the memory management scheme may have already manipulated the memory

requests before the router takes control.

Bounded Degree Network

P1 	2 	P3 	I P4J I_P5 I I P6 I • •

HM2 H. M4 I 1M51 L1 	Fmn
Figure 1-3: The Bounded Degree Network Model

The problems can be made disjoint by considering three independent simulation

problems. To deal with concurrent access we need to simulate a CRCW PRAM

on an EREW PRAM. To solve the memory management problem we consider

simulation of an EREW PRAM on a fully connected parallel computer (called a

Module Parallel Computer or MPC). The MPC consists of n RAM processors,

each of which has an associated memory module, where a memory module is a

collection of memory locations, each of which stores one data value (see figure 1-

2). All requests that arrive at a memory module in a given cycle will be processed

sequentially, thereby causing a slowdown, and each RAM in the MPC is connected

via a communications link to all other processors. This type of interconnection

network is infeasible to build, but allows one to address memory management

issues without considering routing, since routing is trivial on a fully connected

graph. The key is to specify the arrangement of PRAM memory locations among

the modules of the MPC such that contention for memory modules is reduced.

Chapter 1. PRAM Simulation 	 10

The routing problem can be addressed by simulating an MPC on a bounded

degree network, or BDN. A BDN is a similar set of n RAM/Memory module

pairs, but they are connected to each other via a sparse interconnection network

which has a fixed degree (i.e. a-constant number of links) at each node, as shown

in figure 1-3. The solution to the routing problem is given by a pair (G, R),

where G is a graph denoting the interconnection of our n processors and R is a

routing algorithm. The series of subproblems which compose the general problem

of PRAM simulation may be seen in figure 1-4.

MODULE 	BOUNDED CRCW ____ EREW 	PARALLEL 0 DEGREE PRAM 	PRAM 	COMPUTER 	NETWORK

Figure 1-4: PRAM Simulation problem decomposition

The quality of a simulation is determined primarily by the slowdown of the

simulation.

Definition 2 If a program requires T steps on an n processor PRAM, and when

the program is run on top of a PRAM simulation it executes in time O(Tf(n)),

then the slowdown of that simulation is 0(1(n)).

In our formulation of the problem all three subproblems will have a slowdown

and therefore may contribute to the slowdown of the overall problem of simulating

a CRCW PRAM on a BDN. Various simulation techniques also require an increase

in the amount of memory utilized, referred to as memory-blowup, and this will also

be a factor in assessing the quality of a simulation.

Definition 3 If a PRAM requires memory M to execute a program, and when

the program is run on top of a PRAM simulation it requires memory 0(Mg(n)),

then the memory blowup of that simulation is 0(g(ri)).

Chapter 1. PRAM Simulation 	 11

One additional metric of the quality of a simulation is the efficiency. A simu-

lation's efficiency is the ratio of tim-processor products for different levels of the

simulation.

Definition 4 If a program takes time T on an n processor PRAM, and a simula-

tion executes in time T' on p processors, then the efficiency, E, of the simulation

is

E = Tn/T'p

Simulations where E is a constant independent of n and p are often referred

to as constant time-processor product or simply efficient simulations, and will be

discussed in the next chapter. Except where we consider efficiency, we will as-

sume that the simulating and simulated machines both have the same number of

processors.

In the first part of this chapter we explain techniques for simulating any variant

of the CRCW PRAM on an EREW PRAM. This will then allow us to focus on

the two primary problems, firstly of simulating an EREW PRAM on an MPC,

and subsequently of simulating an MPC on a BDN. We then summarize known

deterministic solutions to these two problems, and consider the goal of reducing

the amount of replicated memory necessary while reducing contention for memory

modules. We will then outline the analogous known randomized solutions, namely

uniform hashing and two-phase routing.

1.3 Concurrent Access

The ability to access a memory location concurrently is a powerful one, and can

lead to algorithms that have significantly smaller time complexity than those de-

signed for models that forbid concurrent access. For example, the multiplication of

two N x N matrices on N3 processors requires 1l(log N) time on a EREW PRAM,

Chapter 1. PRAM Simulation 	 12

where COMBINING CRCW PRAMs may solve this problem in 0(1) time [Aggar-

wal et al. 1990]. Algorithms have been designed for a variety of conflict resolution

strategies in concurrent access models, eg. [Shiloach and Vishkin 1981, Kucera

1982, Akl 1989a]. In order to isolate our simulation from this variety, we now

show that a simple strategy can allow simulation of all C.RCW PRAMs on an

EREW model with optimal slowdown. This allows us to focus on more difficult

simulation problems in later sections. Such CRCW simulations have also been

used to imply the equivalence of all CRCW variants [Akl 1989a, Kucera 1982].

This simulation requires 0(n) extra memory, and is based on that found in

[Karp and Ramachandran 1990], though simulations appearing in [Vishkin 1982]

are similar. We assume at the beginning of a cycle that each processor holds a

memory request of the form (j, i) where j is the address of the requested memory

location 1 < m and 1 < i < n is the index of the requesting processor.

The pairs (j, i) are then sorted, first on j and then on i. This sort will require

1l(log n) time, and if it is running on an n processor EREW PRAM we may use

Cole's Merge sort algorithm [Cole 1988]. The algorithm uses a binary tree, and

pipelining among the levels of the tree to achieve such optimality.

After the sort the processors will eliminate duplicate requests by cooperating

as if they were arranged in a binary tree. At every level of the tree the participat-

ing processors compare two sorted CRCW requests, and combine them if they are

destined for the same address, thereby eliminating up to half of the existing con-

current requests. Requests are combined as per the appropriate conflict resolution

strategy. After 0(log n) such steps all concurrent requests have been eliminated,

and we now have a set of EREW requests to be dealt with in the normal way. If

the operation is a read, then a multi-broadcast will need to be executed after the

location is fetched from memory, and this can also be done in 0(log n) steps by

having the EREW processors combine to build spanning trees [Aki 1989b]. We

provide more detail to CRCW combining in later chapters, but for now we simply

state the following result:

Chapter 1. PRAM Simulation 	 13

Theorem 1 [Karp and Ramachandran 1990] Any variant of the CRCW PRAM

may be simulated on a EREW PRAM with slowdown e(log n).

1.4 Deterministic Simulations

Deterministic PRAM simulations are in some sense more desirable than random-

ized simulations, as their behaviour is more consistent. However, the performance

of deterministic algorithms is adversely effected by undesirable worst case beha-

viour. This is unlike the case of randomized algorithms, where we consider only

cases that occur with high probability as relevant.

1.4.1 Memory Management

As mentioned above, the trivial solution to the simulation of an EREW PRAM

on an MPC results in a worst case slowdown of 1(n). This initially discouraged

consideration of deterministic solutions. Mehlhorn and Vishkin first proposed the

use of multiple copies of each memory location to solve the memory management

problem [Mehlhorn and Vishkin 19841. However, while their algorithm used copies

to reduce the cost of a memory read, it did not improve the performance of memory

writes beyond the trivial 0(n). The paper advocates that reads can be made to the

copy which is easiest to access, and ii read requests can be serviced in 0(cn1_1k)

time, where c is the number of copies of each memory location.

The next substantial improvement in deterministic solutions of this problem

came from Upfal and Wigderson in [Upfal and Wigderson 1987]. They proposed

that the copies could reduce the time necessary for a write, as well as a read, despite

the added coherence problems introduced by multiple copies on write operations.

This technique has since been used in most deterministic solutions. It is referred

to as the majority method, and comes originally from the field of database theory

Chapter 1. PRAM Simulation 	 14

[Thomas 1979]. The general idea is that it is not necessary to update every copy

of a particular memory location on a write, but only to update a majority of them

if each location is augmented with a time stamp. In particular if there are 2c - 1

copies, then at least c must be updated and timestamped on each write. This

guarantees that if each read accesses at least c copies also, then the intersection of

the set of memory locations read and the set of those that are current is size one

or greater. The reading processors will then check the time stamp to verify that

they accept only the most recent value. During the simulation of a PRAM step

the 2c - 1 copies of each variable all begin as live, but are then designated dead

if c or more copies of the variable have been accessed while fulfilling the current

memory request.

The scheme is made feasible through the following lemma:

Lemma 1 [Upfal and Wigderson 1987] Given n sufficiently large and b> 4, there

is a c = O(log m/ log b) such that there is a way to distribute the 2c - 1 copies of

each variable among the processors and ensure that, for any set of q n/(2c— 1)

live variables, the live copies reside in at least (2c - 1)q/b processors.

This lemma ensures that copies of a variable will be spread out among processors

sufficiently to allow relatively quick access. We now give an informal explanation

of the techniques for accessing memory within this scheme. The processors are

arranged in k = n/(2c— 1) clusters, each with 2c— 1 processors (see figure 1-5). In

order to fulfill the ri memory requests for a given cycle, the memory management

algorithm will proceed in two phases. The memory map is distributed in the

machine, such that the i-th processor of each cluster will know the location of

the i-th copy of each variable in memory. In the first phase each cluster will try

to satisfy as many of the requests of its members as it can. In each step the

clusters will choose one of their 2c - 1 memory requests to fulfill, and then every

processor in the cluster will try to access a unique copy of that variable, i.e. the

i-th copy will be accessed by P2 . Some of these access attempts will be successful,

Chapter 1. PRAM Simulation
	 15

2c-1 	 2c-.1 	 2c-1 	 2c-1

Procs 	 Procs 	 Procs 	Procs

nI(2c-1) Clusters

Figure 1-5: Majority Scheme for Deterministic Memory Management

but others will find contention at the memory module which holds that copy, and

will therefore be aborted. The copies that have been accessed will be routed back

to the leader processor for that memory request, which will count the accessed

copies. If c or more copies have been returned to the leader, then the request has

been fulfilled and the variable is dead. Otherwise, the variable is still alive and

the request still pending. 2c - 1 such steps will be executed in the first phase,

each one attempting to satisfy one of the requests of a processor in its cluster. It

can be shown that after the entire phase 1 that at most n/(2c - 1) requests will

remain unsatisfied. This upper bound is a result of the initial mapping described

in the lemma [Upfal and Wigderson 19871.

In phase 2 the outstanding requests will be remapped so that each cluster has

at most one to satisfy. The requests then will be fulfilled in a similar manner

to phase 1, but if there is contention for a memory module then the request will

queue there and be processed serially. This process will continue until the leaders

for these requests declares that at least c copies have been returned to it, and the

up-to-date copy can be determined by use of the time stamps.

Another contribution of the Upfal and Wigderson paper is a lower bound on

Chapter 1. PRAM Simulation
	 16

the slowdown in terms of the redundancy (i.e. number of copies) necessary in

the scheme. They showed that the slowdown will be f m/m)h/2r) for a scheme

requiring r copies. Therefore to get a slowdown of O(log ii) one will need at least

1(log(m/n)/ log log n) copies. The Upfal and wigderson scheme uses ®(logm)

copies, and allows simulation of an EREW PRAM on a MPC with slowdown of

O(log n(log log n) 2)

One penalty of this scheme is the additional memory that the use of copies

will require. Another memory cost is the time stamps. The amount of memory

used by the time stamps may be reduced slightly if time is counted modulo m.

This is possible if after every m steps each memory location is cleaned, i.e. time

is set back to 1 for valid copies, and 0 for invalid copies [Alt et al. 19871. Cleaning

of one location may be done in O(log n) time, and so may be done with only a

constant slowdown during a typical read or write cycle.

Alt, Hagerup, Mehihorn and Preparata showed how the time of simulating

an EREW cycle on a MPC can be reduced to O(log rn) while using a similar

degree of redundancy, or O(log n) if we assume m is polynomial in n [Alt et al.

1987]. However, both this simulation and the Upfal and Wigderson simulation

described above are non-constructive, i.e. it is proved that memory organization

schemes supporting such simulations exist, but it is not shown how to construct

one. Building such a scheme would, in fact, be more difficult than constructing a

general expander graph, which is itself a well known open problem. Therefore the

practical merits of these memory management techniques is questionable.

Herley and Bilardi achieved slightly better results, summarized in the following

theorem, which applies if rn is polynomial in n.

Theorem 2 [Herley and Bilardi 1988] An EREW PRAM may be simulated on

a Module Parallel Computer with redundancy O(log m/ log log m) and slowdown

0(log n/ log log n).

Chapter]. PRAM Simulation 	 17

They also provide further discussion of the use of expander graphs in determ-

inistic simulations.

In a recent paper an attempt is made to reduce the amount of memory blowup

to a constant [Aumann and Schuster 19911, though the slowdown of the simulation

is as much as O(log n(log log n) 2). A reduction in blowup is achieved through use of

a information dispersal and recovery technique suggested by Rabin [Rabin 1989].

In the scheme a memory of size m is divided up into b chunks of size b = m/d, and

with any d of the pieces the entire memory can be reconstructed. Therefore the

memory blowup of the scheme is b/d, but both b and d may be chosen as O(log n),

and hence b/d 1. A variable is stored in a block, and to access it one needs to

access (d + b)/2 locations in its block. The scheme also allows the elimination of

time stamps.

Constant memory blowup was also achieved in the paper [Hornick and Pre-

parata 1991] through different techniques, though time stamps were still required

in that simulation. The simulation was based on a different model from the MPC,

one where there are more memory modules than processors, and hence where each

module has fewer locations. This model is called the Distributed Memory Module

Parallel Computer, or DMMPC, and the lower bounds mentioned above do not

apply to it. The paper showed that with this model one can simulate an arbitrary

step of a PRAM in O(log 2 n/ log log n) time with effectively constant redundancy,

if the number of memory modules, M = n, and E> 0. Such an assumption will

clearly reduce the contention to well below what one would expect in a normal

MPC. Hornick and Preparata used the mesh of trees network to solve the rout-

ing and interconnection problem, as originally proposed by Luccio et al. [Luccio

et al. 1990]. Such a network provides a physically realistic implementation of

a bounded degree network, but requires an additional 0(n2) simple switches for

routing. A paper from Herley provides an effective solution to the deterministic

memory management problem for the special case where m = n [Herley 1989],

though this case will rarely be seen in practice.

Chapter 1. PRAM Simulation
	 IM

1.4.2 Routing and Interconnection

Naive deterministic solutions to the problem of simulating an MPC on a BDN will

typically have good average case behaviour, but poor worst case behaviour. This

is due to the problem of "hot spots", where particular memory access patterns

may lead to many packets needing to traverse the same link. A more fundamental

result, in the form of a lower bound for worst case routing time with an oblivious

routing algorithm, was initially discovered by Borodin and Hoperoft [Borodin and

Hoperoft 19821. A routing strategy is oblivious if routing decisions for a packet are

based solely on the source and destination of the packet, i.e. there is no information

available about the global state of the machine. This is a realistic assumption in

the most general case, though we will see later that sorting networks do not strictly

conform to this oblivious restriction. Greedy methods are typical examples of such

oblivious routing algorithms.

Borodin and Hoperoft's result was tightened slightly by Kakiamanis into the

following:

Theorem 3 [Kakiamanis et al. 1990] Any oblivious deterministic routing method

on a degree d graph with n processors will do no better in the worst case than

1(n'12 /d) time for routing a permutation.

A permutation occurs when each of n processors holds a request for a distinct

memory location. This worst case behaviour will be seen in practice in various

applications which depend on the execution of permutations that cause particu-

larly bad hot spots. Typical examples are the bit-reversal phase of an FFT, or

matrix transpose, which is a common subroutine in numerical applications. A

good explanation of this problem of "Hot Spots" from the practical perspective

may be found in the results of the RP3 project [Pfister and Norton 19851.

The problem we are concerned with is simulating a fully connected graph (an

MPC) on a more realistic bounded degree graph, and in this section we would like

Chapter]. PRAM Simulation 	 19

to find a deterministic solution to this problem which matches the lower bound of

1(log n) time. This lower bound is a simple consequence of the fact that a bounded

degree network will have diameter of 1(log n), and hence even in the best case,

with none of the contention problems discussed above, we will need O(log n) time

to move from one end of the network to the other. We will assume that memory

management has already been performed as described in the previous section, and

therefore that any module will receive at most O(log n) requests.

A common alternative to the oblivious deterministic techniques already dis-

cussed is to use sorting networks. Routing on a sorting network is not oblivious,

since it will depend on comparisons between packets in the system and hence

upon some limited degree of global information. However, routing on a bounded

degree sorting network is considered a relatively practical technique, though some

sorting networks have constants hidden by the "big-O" notation that render them

unrealistic to build.

One of the most practical sorting network for this application is the Batcher

network [Batcher 19681. It requires 0(log 2 n) time, which is not optimal, but it

has been shown that the circuit has quite small constants. The first O(log n)

depth and hence optimal circuit for this problem was derived by Ajtai et al., and

further improved by Leighton [Ajtai et al. 1983, Leighton 1985]. However, this

circuit is specified in terms of expander graphs and the only explicit algorithms

for the construction of such graphs results in graphs of very high degree and with

large constants. Other related results are those of Upfal, who proposes that a

butterfly graph with some degree of randomness in its wiring will result in an

expander graph with high probability, and hence can be shown to also support

routing in the optimal O(log n) time [Upfal 1989]. It is difficult to verify the

expander characteristics of such a randomly wired butterfly, and the constants

in such a network may be quite large [Leighton 1989]. This technique is entirely

deterministic once the multibutterfly has been constructed. Optimal time routing

Chapter 1. PRAM Simulation 	 20

has also been shown within the context of non-blocking networks on the related

"multi-Benes" network of [Arora et al. 19901.

The O(log n) circuits described here are assumed by most to provide an op-

timal solution to the deterministic problem of routing and interconnection, but

until simple and verifiably good constructions of such circuits are found, an open

problem still exists here; whether or not optimal time routing can be done with

a non-expander based graph. Questions as to the practicality of expanders also

apply to the many of the randomized memory management schemes considered in

later sections. For more background on expanders see [Alon 1986, Paterson 1987].

1.4.3 Composition of Subproblems

After considering the three subproblems of a deterministic PRAM simulation we

now consider the larger question of how to simulate a CRCW PRAM on a Bounded

Degree Network. Firstly, we point out that a set of n CRCW memory requests

may be converted to corresponding EREW requests deterministically in optimal

O(log n) time as described earlier, as long as our BDN is suitably powerful to

allow sorting in O(log n) time. This is the case if our BDN has the expander

characteristics we described in the routing and interconnection discussion above;

those originally proposed in [Ajtai et al. 19831. Again, a preprocessing phase with

sorting is used to eliminate concurrent requests, while a postprocessing phase

is used to ensure concurrent reads are multicast back to the original requesting

processors.

To solve the remaining problem of simulating an EREW PRAM on a BDN

it is necessary to combine the techniques we've discussed earlier as solution of

the subproblems. In randomized simulations, as we will see, the larger simulation

problem of EREW PRAM on a BDN can be solved considerably faster than if

we were to simply combine the solutions of subproblems we've described above.

However, in the deterministic case this is not so. This is due to the high demands

Chapter]. PRAM Simulation 	 21

made on the bounded degree network through the use of multiple copies, and

requires a balance between having either fast reads or fast writes. If many copies

of each variable are maintained, then writes will be slow, but if few copies are kept

then reads may be slow. Consider the writing of a variable with redundancy r.

The network will need tl(r log n) cycles to service n such writes if on average each

variable is O(log n) distance away in the network from the requesting processor.

It can also be shown [Alt et al. 19871 that reading will require 1((m/4n2)h/4T)

cycles, and hence that the best one can do in such a simulation is

log2
1(rnin((m) '/" , rlogn)) =

4n 2) log log n

This important lower bound was established independently in both [Karlin and

Upfal 1986] and [Alt et al. 19871. The lower bound makes the assumption that

all communications are Point to Point, i.e. that a separate message must be

sent to update each variable, despite the numerous copies in the network during

deterministic simulations. More efficient techniques, such as embedding spanning

trees in the network and copying messages as they proceed down the tree, are used

in various simulations [Alt et al. 19871. No one has yet determined a more general

lower bound, or established a better upper bound while using communications

which are not point to point.

We earlier described how the paper [Herley and Bilardi 19881 provides a de-

terministic simulation of an EREW PRAM on an MPC with O(log n/ log log n)

slowdown. This result has been extended to provide a solution to the larger prob-

lem of a CRCW PRAM on a BDN and thereby achieve the above lower bound

of O (log 2 n/ log log n) for m polynomial in n. Their scheme assumes expander

graphs in both the memory map used and in the BND interconnection network,

and hence the main problem is again the difficulty in constructing these graphs.

Theorem 4 [Herley and Bilardi 1988] A CRCW PRAM may be simulated on

a Bounded Degree Network with redundancy O(log m/ log log m) and slowdown

O(log 2 n/ log log n).

Chapter 1. PRAM Simulation 	
22

1.5 Randomized Simulations

As mentioned previously, many of the problems involved in PRAM simulation

have straightforward deterministic solutions that seem to have good average case

performance, but have poor worst case performance. The role of randomization is

to reduce the probability of this worst case taking place.

1.5.1 Memory Management

The worst case scenario in memory management is where each processor will re-

quest access to the same memory module on the same cycle. To make this case

unlikely one may hash memory locations, i.e. map their locations from a logical

space of consecutive addresses to a physical space where memory locations are

randomly distributed over the n memory modules. After the memory locations

have been initially hashed each processor is provided with appropriate hash func-

tions such that it may quickly perform an address translation between the logical

and physical spaces. When assessing the quality of a hashing scheme we will be

considering the expected queue length, i.e. the largest number of memory requests

that will need access to one module in a given cycle, as well as the time needed to

evaluate the hash function and the amount of space required to store and compute

the hash function. The slowdown from using randomized memory management

techniques is the sum of the time to evaluate the hash functions and the memory

contention time, i.e. the time to serve the expected queue length of serialized

requests.

To hash memory we first select a hash function h at random from a class

of such functions H. Ideally, elements of this class will be small and easy to

derive, allowing the memory and the computing requirements of this initialization

step to be small. Then, this hash function will be stored in each processor of

Chapter 1. PRAM Simulation 	
23

the MPC. During the simulation of the PRAM by the MPC we require that any

PRAM memory location (or "key") with logical address a where 1 < a < m

will be stored in physical address h(a), where 1 < h(a) < m. In this thesis we

are concerned with the degree of memory module contention which results from a

chosen hash function. As this module contention is independent of the distribution

of addresses within a module, we will focus nly on a hash function's ability to

distribute addresses across modules, and neglect the question of how to distribute

addresses within a module, as it is unimportant in terms of the time bounds of a

simulation.

The goal of hashing is to reduce the set of hash functions H to one that is

effective, i.e. one where with high probability the expected queue size will be

small, meanwhile ensuring that all h E H may be computed quickly and require

few random bits to construct. If we are unlucky and choose an h which is poorly

suited for our memory access pattern, then once we determine this (e.g. by noting

the particularly poor performance of an application) we may choose another such

h and rehash memory. This is a potentially expensive process, but will occur

rarely [Valiant 1990b].

Most hashing results have been based on the notion of "universal" hash func-

tions, which were introduced in [Carter and Wegman 19791.

Definition 5 Let A and B be two sets of memory addresses and H be a family of

functions that map A onto B. H is a universal family of hash functions if for every

A and y E B we have that Probh eH[h(xl) = y A h(x2) = y] = 1/1B12

Intuitively a universal hash function is one where the chances of mapping two

addresses of A into the same location in B is inversely proportional to the square

of the size of B. Several constructions of such hash functions exist and they have

been used widely. In the case of PRAM simulation we are concerned primarily

with those hash functions that will result in expected queue lengths of O(log n),

Chapter 1. PRAM Simulation
	 24

such that the associated slowdown may be subsumed in the 1l(Iog n) time which

routing on a BDN requires. The notion of such a hash function has been formalized

by [Mehlhorn and Vishkin 1984] in the following definition:

Definition 6 A family of hash functions H which maps A onto B is s, - wise

independent ifVy i ,..., y8 E B,and x i , ...,x 8 E A with x i =A x 3 for 1< i < j < s

jjhcH:h(xj)=yj,Z=1,---,s <IL
IHI
jj

This is a generalization of the definition 2 above, and similarly implies that

the chances that s memory locations from the logical space will all be mapped

onto the same memory module is it/n8 . The hash functions most of interest in

PRAM simulation are then log n-wise independent, where i may be any constant.

A well known class of such functions are those consisting of polynomials of degree

O(logm), which we refer to as H1 .

klogm

H1 = { hlh(x) = 	ax')mod p)mod n}

for a prime number p > m, randomly selected values of ai < p, and some

constant k > 1. The use of H1 was shown to allow simulation of a PRAM on a

MPC in O(log n) time [Karlin and Upfal 1986]. H1 requires O(log 2 m) random bits

to compute, in contrast to the O(rn log n) bits that the construction of a entirely

random hash table would require.

In [Mehihorn and Vishkin 19841 tradeoffs between the complexity of the hash

function and the expected maximum queue length were derived, and the following

result was proven:

Theorem 5 [Mehihorn and Vish/cin 198] An EREW PRAM may be simulated

on a Module Parallel Computer with slowdown O(log n/ log log n) with high prob-

ability.

Chapter 1. PRAM Simulation 	 25

In summary, randomized memory management in the form of hashing has

proven an efficient and simple technique for simulating an EREW PRAM on an

MPC. Additionally, the time to evaluate hash functions and to resolve the module

contention which still exists can be subsumed in the time for routing in simulations

which are mapped to BDNs, as we see in the next section. Practical work has

suggested that in the average case even simple linear hash functions of the form

h(x) = (aix + b)mod p can give reasonable performance [Ranade et al. 19881.

Further hashing results in the context of optimally efficient simulations will be

discussed later. Also see [Mansour et al. 1990, Luccio et al. 1991, Matias and

Vishkin 1991] for recent work on the subject.

1.5.2 Routing and Interconnection

We have seen that worst case behaviour for deterministic oblivious routing of

permutations may require Q(n 2) time. However, we also know that random

permutations may be routed with a simple greedy algorithm in O(log n) time

on interconnection networks such as the hypercube and butterfly [Valiant 19831.

Therefore finding an efficient random solution to the routing and interconnection

problem is akin to making all permutations behave like random permutations.

The common way of doing this while making no assumptions about the memory

mapping is called two-phase random routing. In the two phase approach a per-

mutation is realized by first sending each packet to a random destination, and

then sending them from the random destination to the final destinations specified

by the original packet. This technique was originally suggested by Valiant, and

was shown to perform as if each phase was totally random, independent of the

permutation specified by the user [Valiant 1982, Valiant and Brebner 19811, and

therefore achieves the e(log n) bound desired. Initially this technique may seem

counterintuitive, as it appears to double the distance any packet needs to travel.

However, Valiant has further shown that packets must travel at least twice the

Chapter 1. PRAM Simulation 	 26

diameter in such oblivious routing algorithms, and hence this scheme is optimal

[Valiant 19831.

Valiant originally described these techniques in terms of interconnection net-

works with logarithmic degree, such as the hypercube, making them not directly

applicable for a network with fixed degree. Furthermore, he assumed that the

nodes of the hypercube could send data out on each link at each cycle. Upfal

then adapted the techniques to the more standard model of a BDN, where only

a constant number of messages can leave or enter a node in a given cycle [Up-

fal 1984b]. Such randomized routing techniques have since been routinely used

[Aleliunas 1982, Pippenger 1984, Karlin and Upfal 19861.

Once such techniques were established to allow ®(log n) expected routing times

on bounded degree networks, researchers attempted to reduce the queue size, i.e.,

the number of memory locations at each processor required to hold messages which

are in transit. In [Pippenger 1984] a randomized strategy which requires only con-

stant length queues was established, though the scheme allowed a small probability

of deadlock occurring. More recently, Ranade gave a straightforward algorithm

with similar characteristics; O(log m) time and 0(1) length buffers, which had no

such deadlock problems [Ranade 19911. This paper has been particular influential

due to the simplicity of its approach, and the practical use of combining to support

CRCW operations. Ranade's routing scheme, strictly speaking, is deterministic,

but depends on randomized memory mappings to achieve its time bounds, and so

is included here. Lower bounds related to queue size may also be seen in [Krizanc

1991].

1.5.3 Composition of Subproblems

In order to simulate a CRCW PRAM on a BDN we may first use the same determ-

inistic preprocessing suggested previously to eliminate concurrent access, again

assuming our BDN is connected as to allow sorting in 0(log n) time. Since this

Chapter 1. PRAM Simulation 	 27

optimal deterministic solution exists there is clearly no need for a randomized

solution.

In the case of randomized simulation the direct simulation of an EREW PRAM

on a BDN has a substantially smaller slowdown than would be seen by simply

combining the solutions of the subproblems described above. With the reduced

bandwidth requirements of a randomized simulation, a direct simulation of an

EREW PRAM on a BDN can execute with only optimal e(log n) slowdown. This

direct simulation allows the O(log n) network routing time to be followed by the

O(log n) module contention delay, such that the costs of the two phases are added

together rather than multiplied together. Such an optimal simulation was first

shown by [Karlin and Upfal 1986].

Theorem 6 [Karlin and Upfal 1986] A CRCW PRAM may be simulated on a

Bounded Degree Network with slowdown O(log n) with high probability.

1.6 Summary of Existing Results

I_Simulation Slowdown

CRCW—EREW e (log n)

EREW -* MPC O(log n/ log log n)

CRCW -p MPG ø(log n)

MPC—BDN e (log n)

EREW - BDN O(log2 n/ log log n)

CRCW - BDN B(log2 n/ log log n)

Figure 1-6: Upper bounds of Deterministic Simulations

To summarize we now provide tables containing the upper bounds for known

solutions to PRAM simulation problems. Some of the solutions will be incor-

Chapter 1. PRAM Simulation

porated into our own simulations, which are developed in later chapters. Table

1-6 gives deterministic results, while table 1-7 summarizes randomized simulation

results

[

Simulation Slowdown

CRCW — EREW -

EREW - MPC O(log log ri log* n)

CRCW - MPC e (log n)

MPC—BDN e (log n)

EREW - BDN e (log n)

CRCW - BDN ® (log ri)

Figure 1-7: Upper bounds of Randomized Simulations

Chapter 2

Efficient Simulations

In the previous chapter we determined the quality of a simulation by the slowdown

it incurred. We now consider the efficiency of a simulation. In particular, if an n

processor PRAM requires time T to execute a program, then we are interested in

simulations where the program may be simulated in time T' on p processors such

that:

E T1 P
==O(1)

Such simulations are typically referred to as either constant time-processor product

or simply as efficient simulations. One trivial efficient technique is to simulate a

PRAM on one serial processor by simply executing the n PRAM instructions of

each cycle in round-robin fashion. Efficient simulations are those that require no

more steps than does this trivial solution, despite the fact that memory access

in parallel solutions generally require 1(log n) time. To produce such simulations

we need to mitigate the effect which the slowdown of our simulation has on the

utilization of our processors. In this section we first try to build an intuition about

such simulations, and then describe existing results.

We will refer to the number n as the number of processes or threads in the

PRAM, while p is the number of processors used in the machine upon which

the simulation is taking place. The ratio s = n/p is called the degree of parallel

29

Chapter 2. Efficient Simulations 	 30

slackness of the simulation, and as it increases beyond one we may begin to pipeline

memory accesses and thereby attempt to hide the slowdown of memory accesses.

More specifically if one thread of the PRAM requests a memory access, and n/p>

1, then instead of the simulating processor remaining idle from the time the request

is initiated until it is fulfilled, it may context switch to another thread of the

PRAM in order to maintain high utilization (see figure 2-1). If each processor uses

a simple round-robin scheduling strategy and if our simulation has slowdown L,

then using L threads on each processor may allow an efficient simulation. However,

pipelinable solutions to routing and memory management issues still need to be

solved to allow efficiency. Such techniques are now also common in practical

research of parallel computing, and are frequently referred to as multithreading

techniques [Weber and Gupta 1989, Boothe and Ranade 1992].

Processor 1 	I 	I 	Processor n'

Active 	 Active
Thread 2 	 Thread 2

Thread n/n' 	 Thread n/n'

Fully Connected or Bounded Degree Network

Figure 2-1: A Multithreaded Architecture.

Chapter 2. Efficient Simulations 	 31

2.1 MPC Based Simulations

As the slowdown caused by the latency of the simulating network increases, then

a larger degree of parallel slackness may allow an efficient simulation. However, if

the bandwidth of a network is too small, then such techniques are insufficient, and

any simulation will be necessarily inefficient. There are two types of delay which

may be incurred in a network. Communications delay which is attributable to the

sheer distance a message needs to travel may be amortized through pipelining.

However, delay which is caused by contention inside an overloaded network may

not be hidden in this way. More specifically, if 'a network has no contention

and has latency L, and memory requests are initiated at times 0 and 1, then

the requests will be fulfilled at times L and L + 1 respectively. If, however, a

network has a delay L which is solely attributable to contention for resources,

and memory requests are initiated at times 0 and 1, then they will be fulfilled

at times L and 2L respectively. For these reasons efficient simulations can not

take place on traditional fixed degree networks, as these networks do not have

the bandwidth necessary to ensure that no contention will take place [Kruskal et

al. 19901. Therefore efficient simulation are generally targeted at fully connected

Module Parallel Computers, which implies that only the memory management

problem is relevant (clearly routing on a fully connected graph is trivial).

Probabilistic solutions to the memory management problem (in the form of

hashing) are often faster than deterministic solutions, and therefore are commonly

used for efficient simulations. In chapter 1, finding randomized solutions to the

memory management problem which had slowdowns of less than O(log n) was not

a priority because they were typically used in conjunction with routing techniques

which had slowdowns of 1(log n). However, since in efficient simulations we will

be working only with MPCs, we will want the smallest possible slowdown, and

we may be willing to pay a higher price in terms of memory blowup or amount of

Chapter 2. Efficient Simulations
	 32

random bits required. The class of hash functions, H1 , as introduced in the last

chapter, will not be useful for our purposes here, as polynomials of degree log n

will require (log n) time for evaluation, and this delay is unpipelinable (i.e. log n

such evaluations will require 1(log2 n) time). Fr efficient simulations, we need

different classes of hash functions, where the evaluation time is 0(1).

One of the most obvious hash functions with constant evaluation time are those

that are similar to H1 , but have constant degree, referred to here as H2 .

H2 = { hlh(x) =

where p> m is a prime number and d is a constant.

Hashing functions of the class H2 were used in the efficient simulation of

[Kruskal et al. 19901. In the paper they show that a PRAM with O(n) threads,

where e > 0, may be simulated efficiently on an MPC with n processors and O(n)

parallel slackness.

Tradeoffs were established between the time necessary to compute a hash func-

tion and the number of random bits needed for the computation in [Siegel 1989].

This resulted in classes of hash functions which are log n-wise independent (and

therefore better than H2 above) but that can be computed in 0(1) time. The hash.

functions took the form of bipartite graphs mapping address space A to B, but

these graphs were by necessity weak concentrators. Weak concentrators are in the

family of expander graphs, and hence again limited by the lack of explicit construc-

tions. The Siegel paper also showed straightforward techniques for extending the

O(log ii) slowdown simulation of [Ranade 19911 to an efficient simulation through

the addition of parallel slackness.

The hash functions of [Siegel 19891 were then used by Valiant to derive an

efficient simulation with expected delay O(log n) time [Valiant 1990b]. The sim-

ulation is based on a hypercube model, where data may be passed across each of

the log n links of each node at every cycle, so does not strictly qualify as either

Chapter 2. Efficient Simulations 	 33

a fully connected graph or a fixed degree network, but still is more realistic than

many of the networks assumed in efficient simulations.

Similarly, an efficient simulation was shown on a fully connected network in

[Dietzfelbinger and Meyer auf der Heide 19901 with O(log n) delay. They used a

new class of hash functions, which are composed of r + 1 different polynomials.

from H2 , where r > 1 is a constant. One of the functions is used to split the set

of keys into r buckets, and the other then determines the offset of the key within

the computed bucket. We call this new class H3 .

H3 = { h(f,g i , ...,gr)h(x) = gf() (x)}

where f E H and g, ..., g,. E H, and we have designated the range of the

polynomials by superscripts.

[Karp et al. 19921 developed hash functions that were log n-wise independent

using an approach similar to 113 , but where the constituent functions are made up

of weak concentrators from [Siegel 19891, instead of the polynomials of constant

degree as in H2 . The authors then used double hashing, where each memory

location of the PRAM is hashed into two or more locations of the MPC using

two or more unique functions from the class H3 . The resulting simulation has a

slowdown of only O(log log n log*n), and therefore requires only modest parallel

slackness to be efficient. The algorithm also benefits from the technique of delaying

writes when memory contention prevents a write from being executed in a single

cycle. The result is summarized below:

Theorem 7 [Karp et al. 1992] An EREW PRAM may be simulated on an MPC

efficiently with slowdown O(log log n log*n) with high probability.

The authors also showed that this simulation may support CRCW operations

if we target the simulation at a Distributed Memory Machine (DMM) instead

Chapter 2. Efficient Simulations 	 34

of the MPC. Each processor of the DMM has access to a communications win-

dow, which serves as a single cell of a CRCW ARBITRARY shared memory, and

thereby provides CRCW operations. Other related DMM results appeared in

[Dietzfelbinger and Meyer auf der Heide 19931.

2.2 Simulations for Generalized Networks

In this thesis we are primarily interested in efficient simulations which are targeted

at networks which are as close to Bounded Degree Networks as possible. Here we

describe other work that has previously considered the ramifications of attempt-

ing to use multithreading for efficiency on networks other than Module Parallel

Computers.

By far the most influential such consideration is the Bulk Synchronous Parallel

(BSP) Computer, as described in [Valiant 1990b]. Valiant had previously provided

an efficient simulation targeted at a powerful variant of a hypercube, which was

similar to the work of [Upfal 1984a].

BSP is an attempt to generalize such simulations to arbitrary networks. The

approach is to firstly provide parameters which specify some of the salient features

of a network regarding the bandwidth and routing capabilities for a network. BSP

can be considered a framework for providing a simulation which is as efficient as

possible given these network capabilities.

BSP simulations use multithreading techniques to hide latency when sufficient

bandwidth exists to service the multiple memory requests being issued by each

processor during simulation of a PRAM step. However, in the case of a lower

bandwidth network, the BSP programming model will be altered such that non-

local communications events are only able to be issued periodically. In [McColl

19921 this reduction in non-local communications is refereed to as communications

slackness. Concisely stated, the BSP solution to providing efficiency on bounded

Chapter 2. Efficient Simulations 	
35

degree networks is to not support a full PRAM model, but instead to provide

a more restrictive model which makes less demands on the bandwidth of the

network. Work which quantifies the bandwidth demands of particular algorithms

can be seen in [Gerbessiotis and Valiant 19921, and related BSP work also appears

in [Bisseling and McColl 19941.

Another related model is the Logp model [Culler et al. 1993]. The Logp model

extends the parameterized scheme of the BSP model to include a total of 4 network

performance characteristics. The emphasis of the model is to provide an accurate

correlation between the complexity of an algorithm designed for the model, and

its subsequent performance for a given architecture, once the parameters of that

architecture have been determined. Though the emphasis is not on multithreading

and efficiency, Logp results are ideally general enough to apply to both networks

that allow efficient support of the model and those that do not. With respect to

multithreading, the authors also point out the significance in context switch over-

head in practical usage of such techniques. Another attempt at a parameterized

modeling of PRAM performance can be seen in [Harris and Cole 19931.

Two more recent works provide insight into the specific problem which we con-

sider in this thesis, though through utilization of different techniques. A practical

project in the commercial sector is attempting to build a Tera machine [Alverson

et al. 19901, a 3-D mesh based multiprocessor system that uses multithreading to

hide latency. A precursor of this machine which was designed by the same primary

architect was the Denelcor Hep [Smith 19781, which also used multithreading, but

not a mesh type interconnection network.

A recent PhD thesis also addresses the issue efficient PRAM simulation on a

mesh of processors [Leppanen 1993]. Similarly to the Tera machine, this work

exploits the fact that a mesh where some nodes are simple switches, rather than

full processors, can provide the bandwidth and switching capacity necessary for

full latency hiding. The work also focuses on use of combining queues to support

CRCW simulations, similar to [Ranade 19911.

Chapter 2. Efficient Simulations 	 - 	
36

The results of the following chapters differs substantially from this previous

work in the area. One may compare the work to that regarding the BSP model

by pointing out the following: BSP chooses to deal with the high communications

requirements of multithreaded simulations by weakening the target PRAM model,

such that the user no longer has the power to request shared memory access suf-

ficiently to cause network contention. Our technique may be seen as dealing with

the same pressure of high communications requirements by augmenting our net-

work with additional bandwidth, and therefore preserving the full PRAM model.

This direction is suggested by the fact that traditional bounded degree networks,

such as a mesh, will only support variants of the BSP model that are quite obtrus-

ive; e.g. a model where access to shared memory may only occur every 0(n 1/2)

steps on a n processor mesh. Our choice of relatively simple topologies such as the

mesh is reinforced by work presented in [Bilardi and Preparata 19921, where it is

suggested that as clock speeds increase in the future, the long wires of networks

such as hypercubes will render them inappropriate for multithreaded simulations.

The work of [Leppanen 1993] and [Alverson et al. 1990] are similar to this

thesis in the sense that they strive to support PRAM style models, but they

diverge primarily in their use of resources. As we will now show, the reduction of

the number of processors in a high diameter network has substantial performance

benefits for a network, and these benefits are unavailable if we use switching nodes

to augment our network bandwidth. We contract the diameter and hence routing

time of the network, as well as preserving resources by reducing the number of

nodes in the graph. Additionally, the use of simple non-combining nodes allows

us to establish a hierarchy of PRAM simulation complexity by providing lower

bounds on the use of general sorting routines to support CRCW access. Some

ideas related to our discussion of concurrent access are presented in [Kruskal et

al. 1990].

Chapter 3

Optimal Efficiency and Bounded

Degree Networks

Though the majority of processor efficient PRAM simulations have been targeted

for Module Parallel Computers, we intend to focus on a more practical platform;

that of variants of traditional Bounded Degree Networks. In this chapter we

firstly consider general issues regarding the degree of parallel slackness necessary

to hide the latency of a simulation on a bounded degree network of arbitrary

diameter. Then we discuss the relationship between this slackness and the amount

of bandwidth available in such networks.

3.1 Processor Counts and Slackness

Assume that we have a simulation of a chosen PRAM model running on an ar-

bitrary (and ideally realistic) interconnection network, such that the delay of the

simulation is L(n) for an n processor machine with no multithreading. The ques-

tion we address now is how to convert this into an optimally efficient simulation,

running on a network with an equivalent topology. We will need memory man-

agement and routing techniques that are fully pipelinable, but for the moment we

37

Chapter 3. Optimal Efficiency and Bounded Degree Networks 	 38

assume these will be provided, and consider only the necessary processor counts.

We expect the optimally efficient simulation to run on p < ii processors, and we

define .s as the degree of parallel slackness, i.e. the number of threads being run

concurrently on each processor. We define an optimally efficient simulation as

following:

Definition 7 An optimally efficient simulation is a PRAM simulation that has

the following three characteristics: Firstly, that the delay of the simulation is on

the order of the diameter of the network, i.e.

L(p) = 0(d)
	

(3.1)

Secondly, that the time processor product is of the same order as that of the PRAM

model being simulated, i.e.
Tn

E==O(1)T1
p

And lastly, we require that the simulation use only as much slackness as is required

to hide the delay of the simulation, i.e.

5 = L(p)
	

(3.3)

In our terminology we require all three attributes for a simulation to be con-

sidered optimally efficient. Previous authors have assumed that condition 3.2 is

alone sufficient to warrant "optimal efficiency" [Valiant 1990b]. However, we con-

sider simulations which hide delays which are larger than the diameter of the

network to be inherently non-optimal, and this leeds naturally to the more de-

manding definition.

The efficient simulations surveyed in previous chapters generally assumed an

underlying network with p processors which will have a diameter of 0(log p). They

typically assume slack s = log n, and p = n/ log n. Therefore, they are neglecting

the fact that the diameter of the network decreases as the number of processors is

(3.2)

decreased to allow multithreading. Though the difference is negligible on such low

Chapter 3. Optimal Efficiency and Bounded Degree Networks 	
39

diameter networks, a truly optimal simulation as defined above would be described

as having p = n/ log p processors, and s = log p slack. Providing enough slack to

hide the latency of a n rather than p processor simulation is hardly a substantial

over-estimate for such log p diameter networks, but in the general case of higher

diameter networks it is quite significant. Restating with more formality we note

that previous efficient simulations have tried to maintain the following conditions:

n = P5 	 (3.4)

L(n) = s 	 (3.5)

Equation 3.4 provides that every thread of the original PRAM algorithm is in

fact simulated, where 3.5 ensures that the entire delay is hidden. However, note

that the slackness of the simulation is dependent upon the delay of the n processor

non-multithreaded simulation, rather than on the delay of the simulation based on

the reduced p processors of our multithreàded simulation. The correct equations

which will use in the following are:

n = ps 	 (3.6)

L(p) = S 	 (3.7)

where the delay of the simulation in equation 3.7 is a function of the number of

physical processors in our smaller multithreaded machine. This modification will

be particularly meaningful given the high diameter of the ring, as well as that of

networks we consider in following chapters.

As an example consider we have a simulation running on a ring. Clearly the

diameter of a ring with p processors is 0(p). Substituting into equations 3.6 and

3.7 we get:

n = pL(p)

2
=P

Chapter 3. Optimal Efficiency and Bounded Degree Networks 	 40

therefore
1 p=n /2

and

=n 1/2
.3

So any ring based simulation that is potentially optimally efficient will use p
= 1/2

physical processors, and s = 1/2 threads per processor.

We will also be considering meshes of arbitrary dimension. For the case of a

two dimensional mesh an optimally efficient simulation will have L(p) =

and hence
2 p=n /3

which corresponds to a n 1/3 x n 1/3 mesh. If we consider the most general case of

an r dimensional mesh, assuming L(p) = ç(1/r) we see:

(l+r)/r

or
r/(1+r)

So an r dimensional mesh capable of supporting an optimally efficient simulation

will have dimensions 1/('+r) x 1/(1-t-r) x 1/(1+r) 	 -

3.2 Bandwidth Requirements

We now provide some detail to our claim that a traditional bounded degree net-

work will not provide enough bandwidth to allow an optimally efficient simula-

tion. We then determine how much bandwidth is necessary in the worst case. We

consider optimally efficient simulations so we may assume that the delay of the

simulation is O(diameter) of our network.

Chapter 3. Optimal Efficiency and Bounded Degree Networks 	 41

We consider an attribute of a simulation which we call the contention factor,

which we define as the bandwidth required by the simulation in a given PRAM

step, divided by the available bandwidth in the underlying network. I.e.

contention —factor =
bandwidth - required
bandwidth - available

We consider bandwidth in units of link-cycles, defined as the amount of bandwidth

used by one request when traversing a single cycle. Furthermore we assume that

each link of a network is made up of multiple wires, where each wire has enough

bandwidth to move exactly one request per cycle across the link. Most networks

have, by default, one wire per link, though this is not the case for the networks

considered in most of this thesis.

Optimally efficient simulations require that all requests are pipelined in the

network such that each request arrives at its destination in O(diameter) time,

and that the processor is able to inject O(diameter) requests into the network

during that time. Clearly any contention for network resources during routing

will disallow this form of pipelining, and hence only a simulation with contention-

factor = 0(1) is potentially optimally efficient. Note that now we are considering

only the capability of a network to support an efficient simulation, whereas in late

chapters we will discuss specific algorithms that provide routing and memory man-

agement for an optimal simulation which may be run on networks with contention-

factor = 1.

3.2.1 Ring Contention Factors

As a simple example we consider the contention factor for a typical ring. Given

the processor number suggested above, an optimal ring based simulation will have

= processors, s = n12 slackness per processor, and have delay of 0(p) time.

During simulation of a PRAM step the p processors will each inject s requests into

the network, each of which will travel up to p distance, and therefore occupy

Chapter 3. Optimal Efficiency and Bounded Degree Networks 	 42

wires, each for one cycle. Therefore the bandwidth requirements for that step are:

3 p.s.p=p

wire-cycles. Available bandwidth for a simulation step of 0(p) time is p links for

Q(p) cycles each, or a total of:

2
p . p=p

link-cycles. Therefore the contention factor for a ring is:

3
contention—f act 	- - p = p

Here we are interested in augmenting the bandwidth of traditional BDN type

networks to allow them to support optimally efficient simulations. In particular,

we are interested in maintaining the general topology of networks, but increasing

the bandwidth per link to allow the communication of more than one request per

cycle across them. The above result suggests that any such multithreaded ring

network which has a contention factor of 0(1) will require Q(p) wires per cycle.

This corresponds to the fat ring network discussed in following chapters.

3.2.2 Mesh Contention Factors

Similarly to our ring discussion, and recalling the processor count considerations,

we observe that the bandwidth requirements for an optimally efficient simulation

on a r dimensional mesh, will be as follows. We will have P = n'/r+l processors,

each of which will inject plT requests per PRAM step, and each request will travel

f(pl/T) links before arriving at its destination. Available bandwidth will be the

I(p) links of any bounded degree mesh, multiplied by the 1(p') time of the

optimally efficient simulation. This results in:

- 	 ____ 	1/r
contention —factormesh - p(r+l)/r = P

Chapter 3. Optimal Efficiency and Bounded Degree Networks 	 43

This suggests that in order to augment a traditional mesh to allow it to support

an optimally efficient simulation we will require that each link may service up to

1/r requests in a given cycle, and hence will have 1(p 1) wires.

Chapter 4

Fat Rings

In this chapter we describe an efficient simulation of an EREW PRAM on inter-

connection network which we refer to as a Fat Ring. As the name implies the

network is very similar to a traditional ring, except for the fact that it has a

capacity per link that is higher than one packet per cycle. We choose the term

fat to imply increased bandwidth as in the Fat Tree of [Leiserson 19851. We will

show how the fat ring network may be combined with memory management, and

routing techniques to achieve an optimally efficient EREW PRAM model. In a

later chapter we show. that through the use of simple preprocessing and postpro-

cessing phases the model can also accommodate CRCW requests, though with less

efficiency.

4.1 The Ring Model

Rings are one of the first interconnection networks considered for parallel com-

puting, and have recently begun regaining some of their previous popularity.

A ring consists of p nodes connected with a set of links, L, such that a link

exists between any two nodes whose node IDs differ by one. More precisely,

L={(p1,p)Ip,pE 1 ... p -1 ,j=i±1 Modp}.

44

Chapter 4. Fat Rings
	 45

Figure 4-1: A six processor ring.

The obvious disadvantage of ring networks is their large diameter, which grows

linearly with the number of processors, i.e. d = 0(p). However, the simplicity

of both constructing rings and of performing basic operations such as routing

and sorting on rings has contributed much to their attractiveness. The Kendal

Square Research machine is one recent example of their practical use [Kendal

Square Research 1991]. The networks structure serves to simplify the hardware

cache coherency scheme of the KSR, as a message routed around the ring can be

guaranteed to be seen by every node. Similarly, workstation clusters are commonly

connected as rings.

Given its longevity and simplicity it seems appropriate to ask if the ring can be

extended to serve as the interconnection network underlying an optimally efficient

PRAM simulation. In the next section we define more clearly our target model of

shared memory.

Here we are concerned primarily with EREW shared memory. Our general goal

is to support shared memory such that we can make specific claims on the latency

Chapter 4. Fat Flings 	
46

of any memory access, and then try our best to hide these latencies as best as we

can. To succeed in hiding the latency of memory accesses we must ensure that a

processor is never idle for more that a constant number of cycles after issuing a

memory request, despite the potentially high latency of such a request.

As outlined in the previous chapter, an optimally efficient simulation on a ring

will have p = n processors, and each processor will be running s = p threads.

We firstly address the issue of memory management for such a machine. Then we

go on to suggest a way that the necessary bandwidth may be included in a ring.

Finally we discuss fat ring routing, which then leads us to our EREW simulation

on the fat ring.

4.2 Memory Management

An effective memory management scheme is a vital component of any simulation,

but efficient simulations make even more difficult demands on such schemes. One

attribute we have already described in Chapter 2 is the pipelinability of memory

management; i.e. any phase of an algorithm can not require more than 0(1) time

from a processor if that phase is to be repeated. Another attribute of efficient

simulations which makes demands on the memory management scheme is that we

are issuing more requests than there are processors, as we execute multiple threads

per processor and each thread will potentially want to make a memory request on

any given cycle.

The requirements of our memory management scheme for the fat ring are

implicit from the above information regarding the number of physical processors

to be used. We are trying to provide an 0(d) = 0(n"2) = 0(p) time simulation,

and we will be issuing up to a total of p2 memory requests to be serviced in any one

PRAM step. As each processor can service at most one request per cycle, and a

processor will need to service all its request within the delay of the simulation 0(p),

Chapter 4. Fat Rings 	 47

at most O(p) out of the 0(p2) requests can be directed towards any one module.

It can be argued that this is a perfect mapping, in the sense that the requests need

to be distributed evenly, with 0(p) requests arriving at each processor. Remember

that we are concerned with EREW requests in this chapter, so each request will

be destined for a unique address.

Unfortunately there is no obvious deterministic scheme that can provide such

a good distribution. To use a majority scheme we would need a scheme which uses

only a constant number of copies, as updating a non-constant number of copies

would require more than constant time, and therefore violate the pipelinability

premise of our simulation. Very few such schemes exist, with the most likely

example being [Pietracaprina et al. 19941. This work is particularly laudable in

that it provides explicit constructions for the expander type graphs it exploits.

However, the power of these graphs is less than that of graphs which do not have

explicit constructions. Correspondingly, it appears unlikely that such explicit

schemes can result in deterministic memory management that is powerful enough

to ensure that no one node is overloaded enough to slow the simulation to below

the performance required for optimal efficiency. However, further consideration of

deterministic efficient simulations is an interesting topic for further work.

Alternatively, we now show that a quite simple randomized scheme can serve

our needs. It is a class of hashing functions which we call H, closely related to

one we defined defined earlier:

d

H = {hlh(x) = ((axt))mod m}

where m is a prime number and d is a constant. If m is not a prime, we may

substitute in this equation the first prime m' which is larger than m. The fact

that the degree of the polynomial, d, is a constant means that we may evaluate

the function in constant time, thereby fulfilling our pipelining constraints. Some

research has even suggested that such hash functions of low degree behave better

than those of 0(log n) degree [Engelman and Keller 1993].

IN

Chapter 4. Fat Rings

We assume each virtual shared memory address is a single value such as x,

such that 1 < x < rn. To access x the processor must first determine the physical

address, represented by a tuple of the form (i,j), where 1 < i < p is the module

ID and 1 < j < rn/p is the memory element within that module. Both these

values are incorporated in the result of the hashing equation, h(x). The module

ID can be determined simply as

h(x)
i =

(m/p)

for an p processor network, whereas the address within the module, j, is computed

as

J = h(x) mod (m/p)

We are concerned with the effect module contention has on the delay of our simula-

tion, and hence we will now focus on the ability of our hash functions to effectively

distribute requests among modules. Distribution of requests within the module

has little effect on performance given our assumption of no memory hierarchy

within a module.

We now provide details as to the suitability of this hash function H. But

first we need the use of the following lemma from [Mehihorn and Vishkin 1984].

In the following notation R is used as the maximum queue size, which for clarity

we often refer to as the maximum number of requests arriving at any one module

while simulating a PRAM step.

Lemma 2 [Mehihorn and Vishkin 1984] If in is prime, then the probability of

having more than k requests arrive at any one module given a total of v requests

being issued is:

(

IC)

\ 1-kkp/m
Pr{R > lclhEH*} ~ 	 e

Chapter 4. Fat Rings 	 49

Proof: This proof follows the lines of that presented in fVaLiant 1990a1. Consider

a polynomial of the form:

d
h(x) 	ajx'))mod m}

and some set of k addresses ji, .••,Jk and destination memory locations 11, ..., l.

There will be at most one polynomial of this form such that all these /c addresses

are mapped to these memory locations, i.e. h(jr) = 1, for all r = 1, ..., k. If

we now consider only the destination module instead of destination address, i.e.

11, ..., ik e< p >, then there will be at most (rn/p + 1)k such functions h' E H', as

there are up to (rn/p + 1) memory locations in each module.

Now if we consider a fixed set of k out of the total of v accesses, the chances

they are mapped under a randomly chosen h to the same module in <p> is the

number of such functions that map them to the same module, divided by the total

number of hash functions:

Pr(R>k)=
(rn/p+1)k

Hi

If we assume d = k for H above, then the total number of unique hash functions,

IHI is:

IHI=(rn/p)
k
p

k

Leading to:

Pr(R > k) = (rn/p + (rn/p)kpc

=(l+p/m)
k p-k

< e kp/m - k

Hence the chance that some set of k of the v requests are all mapped under a

chosen h to the same memory module in p is less than:

(p1 _kkP/m

k)

Chapter 4. Fat Rings
	 50

If the size of our memory m is not prime, then we instead compute our hash

functions using an appropriate m', such that m' is the smallest prime that is larger

than m.

Before we consider the behaviour of H, we firstly prove the following useful

lemma.

Lemma 3 For any 0 <y <x,

I 1< -
(Xe)"

Y '\y)

For a proof of this lemma we refer the reader to [Leighton 19921.

The following theorem shows that the class of hash functions H serves our

purposes with high probability. The following is formulated in terms of the number

of physical processors, which is of course p = n1l'2.

Theorem 8 Consider any set of n = p2 EREW memory requests which address

any of mmemory locations spread out in p modules, such that m > n 2 .If the

memory is hashed with a function h selected from the class H, then with high

probability no more than O(p) requests will be destined for any one memory module.

Proof: We will be using lemma 2 by plugging in the relevant values from our

application. But first we simplify the equation through use of lemma 3 and by

bringing the p 1-k term inside the exponential, such that lemma 2 becomes:

(V) 1_kkP/m 	
(Ve)k

') pllm Pr{R > kIhEH}< 	p
k 	 kpJ

In this particular case v = p2 and k = 0(p). We will choose k = 4p to simplify

2 	
1'2 later calculations. Additionally, as m > n and n = p, we know m > p4.

Chapter 4. Fat Rings
	 51

Plugging in relevant parameters:

4p

Pr{R> klh e H} < Pe
4p2/p4

- (4P2)

f)

4p 4/p2 pe

We may then bring all terms inside the exponential.

Prob(R > 4p) < Q 1/4p
i143 4P)

Both the functions p
1/4P and 	are small, and may be bounded by a small

constant. E.g. if we consider reasonably large values of p, then their product is

very close to one. Therefore we may rewrite the entire expression as simply:

Prob(R> 4p) <a4"

for some value of 0 <a < 1. With our chosen value of k = 4p we expect a e/4

for reasonable values of p. 0

4.3 The Interconnection Network

Routing on a ring is a simple task; in our case we choose to route all messages in

the same direction, e.g. clockwise. This simplifies routing decisions, and allows us

to quantify the maximum degree of contention better than if messages moved in

both directions, and the savings in time with bidirectional routing would be small.

Earlier we pointed out that a traditional ring does not provide sufficient band-

width to support an optimally efficient simulation, and we suggested that each

link should instead be made to allow p requests to travel across it in a given cycle.

We suggested that each link of a fat ring must have at least p wires. In this case

the entire network has a capacity of 0(p2) requests per cycle, and results in a

'<irn,

Chapter 4. Fat Rings
	 52

contention factor of:

-- contention - factor fat_ring
- p3 -

which is a necessity to allow an optimally efficient simulation. Figure 4-2 is a

schematic of such a network, shown with six multithreaded processors, six threads

per processor and six wires per link. Clearly each processor will also have a

memory module and routing hardware, which is not shown.

Figure 4-2: A six processor fat ring.

Despite the fact that our fat ring has increased bandwidth, the basic assump-

tions of BDN processors still largely apply to each processor. Namely, the memory

module can service only one request per cycle, and the processor can only inject

up to one request per cycle into the network. One additional job for a processor

in a fat ring is to handle the arrival and forwarding of up to p requests in a given

cycle.

Chapter 4. Fat Rings
	 53

4.4 Fat Ring Node Architecture

The primary goal of our efficient fat ring simulation is to eliminate virtually all

processor idle time which is attributable to memory access latency. This will then

result in a p processor machine which will run programs O(p) times faster than

the same program would run on an equivalent one processor machine. In the case

of fat rings, an optimal simulation would have
p = 1/2• Though the basic work

done by a fat mesh processor in a cycle is similar to that of a traditional BDN, we

do need some additional functionality to be able to support the larger quantity of

network traffic.

The basic attributes, of any BDN node are that the processor may inject up

to one memory request into the network each cycle, and the memory module may

service up to one request per cycle. The fat ring links will have a capacity of

1 = n1 ' 2 requests per cycle, and we must not allow contention in the network to

threaten the pipelined nature of the simulation if we are to hide memory latency.

Injecting memory requests into the network is relatively easy in our case where

link width 1 is equal to the number of threads per processor s. The goal is to

reduce the chance of contention, i.e. if a processor is injecting a request on wire

1< i < p, then it is important to ensure that no other request will be coming

in on wire i. We do this by simple round robin scheduling. At the beginning

of a PRAM step simulation, each processor injects its first request onto wire 1

of its outgoing link. At subsequent cycle i each processor injects its i-th request

onto wire i, continuing until after p cycles it will have injected all its outstanding

requests for that PRAM step. At any given cycle we can guarantee that the link

about to be used is free, as it has never been used by any processor yet.

Chapter 4. Fat Rings
	 54

4.4.1 Selection and Forwarding

One important task for each fat ring processor is that of selection and forwarding.

Selection is the job of choosing those requests which are arriving on the incoming

link of the node and are destined for the local processor, and directing them

to the memory module queue. Forwarding consists of determining which arriving

requests are not destined for the local processor and directing them to the outgoing

link of the node. Additionally, the processor may need to inject another request

into the network at the same time. Most importantly, both these operations need

to be pipelinable; any operation that will potentially take place during every cycle

needs to be constant-time, and those that take place a constant number of times

needs to be at most 0(p) time.

We depend on the fact that the memory management scheme described earlier

is in use. This ensures that with high probability no more than 4p requests will

be destined for any one node during the simulation of a PRAM step. However,

we have proved nothing about the distribution of these arrivals; they may arrive

one per cycle for 4p cycles, or all 4p may arrive in one cycle. It is clear that

with the injection scheme above, after p cycles each processor will have injected

up to p requests into the fat ring. Since each of these requests may travel up to

p links before reaching its destination, there may be times at which virtually the

entire link is active, i.e. up to p requests may arrive on the incoming link of any

node in one cycle of the simulation. To maintain pipelinability it is clear that

efficient selection will require a degree of on-chip parallelism. A block diagram of

the relevant components of the node architecture are shown in figure 4-3.

The first task is to determine what incoming requests are destined for the

local memory module. This will require a separate circuit for each incoming wire

which is of constant depth, which we call a matching circuit. This circuit will

compare the destination address of incoming requests, A, with the IDs of the local

threads on that node, {pi, ..., p3 }. We assume that the threads which are resident

F Processor = Inject

.n
0 3
0
0 3
(0 __

(IC

'1
0

CD

a.

(A

0

CD
(I,

0
z
CD

0

Chapter 4. Fat Rings
	 55

Memory Module

j

Figure 4-3: Node architecture for selection and forwarding.

on a processor are numbered contiguously. Hence the task is to determine if the

address falls between two address limits which are determined based on the number

of PRAM processors n we are simulating, as well as on the number of physical

processors in our machine p. For each incoming request A on processor i we are

trying to determine the boolean Local, (where Local = (lower A < upperi),

where lower 2 and upperi are determined simply:

lower2 = [p/nji

upper2 = ([p/nj + 1)i

The matching circuit is composed of simple subtraction circuits as shown in

figure 4-4, which are of constant depth. Each request will pass through two such

circuits, at which time it will be determined if the request is destined locally or

remotely. Such circuits are crucial in any model of a parallel node, though they

are often not described. In particular, the hypercube model assumed by Valiant

in the BSP work described earlier, will also need a constant time matching circuit

Chapter 4. Fat Rings
	 56

Incoming Request

Local Memory Module

Figure 4-4: Fat Ring Node Matching Circuit.

on each of the log n incoming links [Valiant 1990a]. Additionally, if we were to

compare the hardware of our p processor fat ring with that of a n processor normal

ring, we would observe that both require n matching circuits of similar complexity.

After passing through the matching circuit all requests which have been de-

termined to be destined for the local processor are placed in a memory module

queue. We now show that, though up to p requests may arrive in any given cycle,

the number of requests that will be destined for the local processor will be, with

a high probability, small.

Theorem 9 Given any set of p EREW requests which is arriving at a node in a

given cycle, and with m > n 2 . With high probability there will be no more than

O(log p) destined for the local processor from this set.

Chapter 4. Fat Rings
	 57

Proof: Again we use the lemma 2 in a similar way, but now we use the parameter

V = p and choosing k = 4 log p. For simplicity we neglect the term as it

very close to one for any reasonable value of p, as we explained in the previous

hashing proof.

Therefore we have:

\

PC

/ PC 	
4logp

1
Prob(R > 4 log p)

< 4logpj

= (

—4logp

4 log p

4p log p 1

(e
\4logp

= 4 log p) 	P

We then separate terms, and change the sign of the exponential of the e term:

'e 4iogp
Prob(R > 4logp)

< 	(lop)

41ogp

 4logp —4logp
(4)

	('°) 	
P

We know that the term 1 1
\41ogp

will always be substantially less than 1, SO we
log P

will now neglect this term. We use the relationship a log b = log to obtain:

Prob(R > 4 log p) <_4lo4/e

and as —4 log < —2 we may write:

Prob(R > 4 log p) <o(p')

FEW

We do not provide details as to how a non-constant number of requests may

be entered into the memory module queue in constant time, but we point out

that just such an assumption is also fundamental to the efficient hypercube simu-

lations presented in both [Upfal 1984b] and [Valiant 1990b]. We will also provide

experimental evidence in later chapters to support the claim that both the number

Chapter 4. Fat Rings 	 58

of arrivals during any given cycle and the maximum memory module queue size

during simulation of a PRAM step are both small constants for a given machine

size (see chapter 7).

After queuing the first requests, the memory module will then begin to dequeue

and service one request per cycle from the queue. Any elements which are not

destined for the local processor will be forwarded to the outgoing links of the

node. At the same time, if all p outstanding requests from the local processor

have not been injected into the network, then one more request will be placed

on the outgoing link as previously described (request i placed on wire i). The

simplicity of the ring allows us to prove routing results deterministically.

Theorem 10 Any set of n = p2 EREW memory requests which are initially dis-

tributed p per processor may be routed to their destinations on a p processor fat

ring in O(p) time.

Proof: Each processor is the source of at most p requests, and can issue one per

cycle, so will have injected all p requests into the network after p cycles. No link

will have more than p requests injected into it, and each link has p wires, so there

will be no contention in the network. The farthest any request will need to travel

is to the counter-clockwise neighbour of its source, assuming messages travel only

clockwise, and this is p - 1 nodes away. Upon arrival at a node, a request will

simply pass through the matching circuit we have described, and then be placed

on the outgoing link by the next cycle if it is still in need of forwarding. This

will require 0(1) time, as described. Therefore, in the worst case, a request will

require p cycles to get injected into the network, and then travel p - 1 nodes,

each of which requires 0(1) time to traverse, and so the entire routing process will

require O(p) time. 0

Given the above routing theorem we may now prove our final result for the fat

ring

Chapter 4. Fat Rings 	 59

Theorem 11 With high probability an n processor EREW PRAM may be sim-

ulated on a p
= 1/2 processor fat ring with optimal efficiency and slowdown of

o(p).

Proof: PRAM instructions will be either local operations, which by definition will

execute in constant time, or communications events. Without loss of generality we

assume all n PRAM instructions are reads, as they are the most time consuming.

Theorem 10 has shown us that all n requests may be routed to their destinations

in 0(p) time. Theorem 8 ensures that no more than p requests will arrive at

any one node with high probability. However, we do not know if the p requests

arriving at a node will arrive all in the first cycle, all in the pth cycle, or be evenly

distributed.

Assume the worst case, that all p requests arriving at a node arrive on the

last cycle of the routing time, 0(p) cycles after the beginning of routing. Now

the memory module removing them from their queue and servicing them one per

cycle will begin servicing them. After p time they will all be serviced. At this

point we have the same routing problem in reverse, in order to get the requested

data back to the reading processors. This route will also take 0(p) time. So the

three stages of our simulation of read operations are: route, access memory, and

route again. The times of the three phases in the worst case will be 0(p), p, and

0(p) respectively, or a total of 0(p) time. 0

Chapter 5

Fat Meshes

We now generalize the results of the previous chapter to refer to a class of in-

terconnection networks which we refer to as Fat Meshes. Again we are primarily

interested in simulation of an EREW PRAM, though we consider concurrent ac-

cess in a following chapter. Note that the fat ring of the previous chapter does not

strictly fall within the class of fat meshes defined here, due to the fact that our

fat meshes do not have toroidal connections. This reflects the fact that in practice

rings appear to be a more common network than linear arrays, whereas toroidal

meshes more difficult to build and hence less common than their non-toroidal

counterparts.

5.1 The Mesh Model

We are interested in both the two dimensional mesh and in meshes of any arbit-

rary higher dimension, r. An r-dimensional mesh is a set of nodes, P, and links,

L. A node ID for an r-dimensional mesh is an r-tuple, i.e. p 2 = wi, w2, ..., Wr.

Any two nodes share a link if their IDs are the same except for one element

of the r-tuple and if that one element only differs by one. E.g. if the ID of

node i is Pi = w1, w2 ... w r , and of node j is p, = w'1 , then p2 , p3 L if

ZU

Chapter 5. Fat Meshes 	
61

Wl ... Wk_l,Wk+1 ... Wr 	 and Wk w + 1 for some 1 < k r.

Nodes that share a link are also referred to as near neighbours. For simplicity

we will assume that the extent of each dimension is the same for all the meshes

we consider, i.e. our meshes are square, rather than rectangular. Therefore for

an r-dimensional mesh the extent of all dimensions is p11' and the diameter of

the mesh is d = r(Pr - 1), which for simplicity we approximate as d r pl/r.

Hence the diameter can be quite small compared to the ring, but is still reasonably

large compared to hypercubic networks for small values of r. Again, the meshes

we consider do not have toroidal connections, but the basic nature of our results

would be largely unchanged if they were included.

Recall from chapter 3 that for an optimally efficient simulation to be possible

we need a multithreaded r dimensional mesh with p = n' 1 processors, with

each processor having s = phhl threads. With a two dimensional mesh this results

in a x n h /3processor mesh', with n"3 threads per processor. Recall also that

each link will need at least
(ph/1) wires to provide the necessary bandwidth, e.g.

a two dimensional mesh will have link width 1 = p' 12 . We assume that the node

architecture is equivalent to that of the fat ring described earlier, i.e. each wire

of a link will have its own selection and forwarding mechanism, but the processor

can only issue and service one request per cycle. A schematic of a 9 processor two

dimensional fat mesh may be seen in figure 5-1, where each node is shown to have

a memory module and set of threads from which instructions are fetched. We now

describe the unspecified components of the simulation, memory management and

routing.

'Throughout this work we will assume the total processor count in any mesh will be

p, e.g. ,/j5 x fp processors in the case of a two-dimensional mesh. Some authors choose

instead to describe a two-dimensional mesh as an p x p processor array, which makes

comparison with other networks of the same number of processors more difficult.

Chapter 5. Fat Meshes
	 62

Figure 5-1: A nine processor fat mesh with multithreading nodes.

5.2 Memory Management

For meshes of all dimensions we will again use the hash function H, though the

specific requirements for the scheme change as a function of the diameter of the

network. E.g. for a two dimensional mesh, we will issue n = p3"2 requests in

order to simulate each PRAM step, and we need to ensure that no more than
p12

requests arrive at any one node during our simulation. In general we will have n

requests for each PRAM step we are trying to simulate, and on a r-dimensional

mesh of p = no more than p1'' requests may arrive at any one processor

during a step.

Theorem 12 Consider any set of n EREW memory requests which address any of

the m > n2 memory locations which are distributed amongst the memory modules

Of an r-dimensional mesh containing n ' " 1 processors. If the memory is hashed

Chapter 5. Fat Meshes 	 63

with a function h selected from the class H, then no more than O(n 'T) requests

will be directed towards any one node with high probability.

Proof: The proof depends upon the lemma 2, and is a generalization of the proof

for Theorem 8, and hence we use similar techniques here. In the general case of

any r-dimensional mesh, the number of processors is p, the number of requests

needing to be serviced for a given PRAM step is n = and the maximum

number of requests that may arrive at any one node is Ic = s = 0(i/r) We choose

to use k = 4p'/'to simplify our calculations.

Substituting into the lemma as before we get:

k

Prob(R> k) :5-(
ye

) Pe
kp/m

kp
/r 	/ (r+1)/r\

f pfr+l)/ 	((i±i)2)

= 4p(r+i)/r)

	
Pe p

4 ' 	
(4\

 p

(4e)
Pe

Similarly to our earlier proof, we know that for interesting values of p the term

r 	1, and hence we now neglect it. We also deal with the lone p outside the ep

exponential as in previous proofs, i.e. if we bring it inside the exponential, then

we obtain:

= (ep(4pIr))4r

where the term p7r may be bounded from above by a small constant. Therefore

the entire expression reduces to the form:

1/i' 	4l/r
Prob(R>4p)a

where 0 < a < 1 for reasonable values of p. Recall also that in practice r will be

a small integer. Therefore the probability of a failure of H for a fat mesh is very

small, and is similar to the case for the fat ring presented in Theorem 8. 0

Chapter 5. Fat Meshes

5.3 Routing

When routing on a fat mesh we maintain the invariant that a request injected into

the network on step i will always stay on wire i. I.e. requests will not migrate

between wires as they move through the network, but will stay on the wire upon

which they were first injected. This allows us to treat the fat mesh as a set of .s

separate meshes, each of which is similar to a traditional mesh network. The main

exception to this similarity is the requirement that only one request will be issued

by any one processor in a given cycle, so the s requests issued by a processor on

its s links will each be injected at separate times.

We now show that worst case bounds on routing in a fat mesh are quite bad for

simple greedy routing schemes. However, if we consider routing in the context of

the memory management scheme we have already suggested, then routing becomes

quite simple. We initially focus on the problem of permutation routing, where each

of the n PRAM threads will send and receive exactly one request. Equivalently,

permutation routing in the context of a multithreaded fat mesh may be defined

as s requests being sent and received by each of the p processors. We focus on

permutation routing as an interesting special case; if we are unable to guarantee

good performance for permutations then it is unlikely other routing patterns will

perform well. Greedy routing of arbitrary patterns will clearly have daunting

worst case bounds, particularly in the case that all requests are destined for one

processor, which will require 1(n) time.

5.3.1 Greedy Routing

Greedy routing is simply any scheme that routes requests along their shortest

path through the network, without any particular behaviour to avoid contention.

On a two-dimensional mesh, an algorithm that first routes all requests to the

Chapter 5. Fat Meshes 	
65

correct column, and then routes them to the correct row within that column,

is a greedy algorithm. More generally, in an r-dimensional mesh, requests will

be routed along each of the r dimensions, one by one, until finally arriving at

the destination. We assume that requests in the machine will only travel within

one dimension at a time, i.e. we assume a degree of synchronization takes place

between routing in some dimension i E 1...r and routing in dimension Z' + 1, such

that requests traveling in different dimensions will not interact. For simplicity we

assume that requests are stored into memory after reaching their destination node

within each of the r routing stages. In practice, performance benefits might be

available by providing some fast buffering of messages instead, but our arguments

below suggest that memory storage time will rarely be a bottleneck due to the

even distributions of request arrivals. Since the farthest any requests can travel is

the diameter of the network, greedy routing will always complete in O(diameter)

time if there is no contention. However, worst case contention can result in routing

that is substantially slower than this optimal bound.

We now focus on the case of r dimensional greedy routing, where we first route

all requests to the correct column in dimension 1, then within that column to the

correct column dimension 2, etc. Our primary concern is with quantifying node

contention, i.e. how many requests may need to arrive or depart from a given fat

mesh node during routing. However, we must first show that link contention is

not a serious problem for a greedy routing scheme on a fat mesh.

Lemma 4 Greedy routing for any set of p requests within any column of
p1

processors which are aligned along one dimension of an r dimensional fat mesh,

will not result in link contention.

'Here, as elsewhere, we use the term column to signify the more general idea of a set

of p" processors which are aligned in any one of the r dimensions of a r dimensional

fat mesh.

Chapter 5. Fat Meshes 	 66

Proof: To prove this we need to show that no one link will ever have more than

1/r requests passing through it in a given cycle of our r dimensional fat mesh

simulation, since each link has no more than
0(1/r) wires. Given that there are

only p11 '
processors in any fat mesh column, for there to be more than that number

of requests arriving at a particular link, there will need to be more than one request

from at least one of the processors arriving at that node. However, recall our

simple greedy routing scheme, coupled with our multithreading scheme, disallows

this. A processor can only inject one request per cycle into the network, and

each request will travel exactly one link per cycle until it arrives at its destination

within that column, at which point it will leave the network links and be written

to memory before beginning the next routing stage. Therefore, the requests from

a particular processor will never meet up again on any link once they leave their

source. Therefore there will never be more than requests needing to cross any

one link during a given cycle. 0

Node contention, though, is not as easy to deal with. In a given column of

a two-dimensional fat mesh there are p1'2 processors, each of which will be the

destination for O(ph/2) requests. So a total of 0(p) requests in the machine will

be destined for a given row. If in the worst case all these requests originated in a

particular column (each column will also have p requests sent from it), then in the

first step of the algorithm they will all be sent to the same processor. Therefore it

will require p steps to receive all the requests, and p steps to send them out to their

destinations within that row, as our fat mesh nodes can only write one request

to memory per cycle, or inject one request per cycle into the network. So worst

case routing within a two-dimensional fat mesh is a 1(p) time operation, instead

of the optimal 0(p"2) we would like. We generalize this result to r-dimensions in

the following theorem, where once again p = nn hIr4l :

Theorem 13 The greedy routing of any set of n requests routed in a r-dimensional

Chapter 5. Fat Meshes 	 67

fat mesh such that any processor will be both the source and destination of p'

requests will require f(T+21'2r) cycles in the worst case.

Proof: Worst case node contention takes place at the stage of the algorithm

when the largest number of requests needs to pass through a given node. We

therefore consider the maximum number of source and destination nodes which

may route through a given node during a particular stage. Clearly the number of

requests which may be routed through a node in a given stage is no more than

either the number of possible sources for requests from all previous stages which

would potentially need to route through that node, or the number of all future

destinations for the requests in subsequent routing stages. Recall too, that each

node can be the source and destination for up to pl/r requests.

If we consider the first of the r routing stages, only one column of
p 1/r pro-

cessors may be a source, and each source can send a maximum of
p 1/r requests,

making a total of p2 ' possible requests being sent. However, since these messages

may be destined for any node in the machine, the number of eventually possible

destinations is large, namely p'' nodes, or a total of p requests received (as each

node may receive up to p1'? requests. The maximum number of requests being

routed through a node in stage 1 is the minimum of those two quantities, or

requests. Conversely in the last (r-th) stage, anywhere up to p1 processors may

be valid sources for requests passing through a column, or a total of p requests.

However, we know there are only up to p2" possible destinations in a column on

the last stage, so the most requests arriving at any one node in the last stage of

routing is also

On the i-th routing stage, there are t+1'r possible source requests, and r+hi

possible request receipts. Given that the number of sources is an increasing func-

tion of i, and the number of destinations is a decreasing function of i, we know the

maximum contention takes place when the number of sources and destinations is

equal (an example of these functions for the case of p = 64 and r = 2 is shown in

Chapter 5. Fat Meshes 	 68

figure 5-2). This happens in stage p/2 of the r stages. At this point there are a

total of possible sources and possible destinations for requests. Hence the

worst case time for any one routing stage is
p212). Note that the increased

bandwidth of our fat mesh links does not alleviate this problem, as the nodes still

can only inject a maximum of one request per cycle into the network once it has

received them. 0

140
U)
C

120
CZ
C
4-

U) 100 ci)
0
Cn
CD 80

60

40

0 	20

Contention in Greedy Routing

ible Sources fr Stage i -
Destinations pr Stage i

	

01 	I 	 I 	 I 	 I 	 I 	 I

	

0 	0.2 0.4 0.6 0.8 	1 	1.2 1.4 1.6 1.8 	2
Stage Number

Figure 5-2: Example of source and destination count functions.

5.3.2 Routing and Memory Management

Given the worst case bounds above, a traditional option might be to introduce

randomness to the routing algorithm, such as the two-phase random routing we've

discussed earlier [Valiant and Brebner 1981]. However, an alternative approach

is to exploit the pseudo-randomness we have already instilled in another phase

of our simulation through the use of randomized memory management. We now

consider the potential of greedy routing to provide optimal upper bounds once we

Chapter 5. Fat Meshes 	 69

assume that all memory has previously been hashed. Though our earlier consider -

ation focused on permutations within the multithreaded context, we now consider

routing any set of n EREW requests. The addition of memory -management into

our routing strategy ensures that with a high probability requests will be reas-

onably well distributed, and hence we need not restrict our routing patterns to

permutations.

As in other sections of this chapter, we will first consider the two-dimensional

case, and then consider the more general r-dimensional case. Again, in the two-

dimensional greedy algorithm, when first routing all requests to the correct column

within their initial rows, there are up to p requests potentially converging on one

node. However, if we remember that the destination addresses of the memory

requests are all hashed in accordance to H, then we can assess the likelihood

that these request are destined for the same column. More specifically, we need to

ensure that, given any set of p requests which are located in a common row, the

chances are small that more than p1'2 of them are destined for the same column.

Given this result, in addition to the bounds on the number of requests which will

finally arrive at each node provided earlier, we can ensure that our routing will

not be hampered by contention, and will therefore complete in O(ph/ 2) time.

Rather than provide a proof for the special case of r = 2, we now show the

corresponding generalized result for the r dimensional fat mesh. We are now con-

sidering any of the r stages of greedy routing, where each stage consists of moving

all packets along the rth dimension until the destination address matches the loc-

ation along that dimension. This corresponds to a group of
p 1/r processors, each

with requests, routing amongst themselves. Again we assume synchronization

in our greedy routing, such that routing for stage i + 1 does not begin before stage

i is completed. If no more than O(p) requests will be routed to any one node

with high probability, then routing will be contention free and take 0(p1) time.

Lemma 5 In greedy routing on a r-dimensional mesh, any of the r stages consist

Chapter 5. Fat Meshes
	 70

of routing p2/r requests to any one 0fpl/r nodes. For each stage, there will be no

more than 0(p1 ") requests routed through any one node with high probability.

Proof:(Sketch) Again we use the lemma. However, in the lemma it is assume

that there are p nodes, where in our case there are p, so we must scale our input

parameters by this p" term. Now v = p2 and k = 4p. The lemma then looks

like
k

f
Prob(R> k) < I ve\ - I pe

kp/m

\ kp)
/
p 2 	4P

I
p

(e)4p
 p

Which again results in a probability of:

Prob(R> 4p) <a4 '

for some 0 < c < 1. For more details of a similar proof see Theorem 8. 0

Given this result, we are able to prove the overall routing result we desire.

Theorem 14 Any set of n = 	EREW memory requests which are initially

distributed p'T per processor and which are hashed with H,, may be routed by a

r-dimensional p-processor fat mesh in O(p) time with high probability.

Proof:(Sketch) Follows directly from the above lemma. 0

Given this ability to route in diameter time for any degree fat-mesh, we may

now easily prove the main result from this chapter; that an EREW PRAM may

be simulated in a fat mesh efficiently and with O(diameter) delay.

Theorem 15 Ann processor EREW PRAM may be simulated on a r-dimensional

fat mesh (for any constant r) with p = n'" processors with optimal efficiency

and slowdown of Q(phi) with high probability.

Chapter 5. Fat Meshes 	 71

Proof: From Theorem 15 above we know that we may route any set of n EREW

memory requests in Q(pVr) time with high probability. Additionally, from The-

orem 12 we know that with high probability there will be no more than
Q(pl/r)

requests destined for any one processor. Therefore this theorem follows easily. 0

Chapter 6

Concurrent Access

The goal of this thesis so far has been to provide an efficient EREW PRAM

simulation on fat meshes and rings. We now address the question of support for

concurrent access on such machines. The results serve to underline the point that

the CRCW model is not well suited to optimally efficient simulations.

As we have mentioned in introductory chapters, the standard technique for

supporting CRCW simulations is to first sort all requests, and then begin elimin-

ating all requests with common destinations. We therefore begin by considering

sorting on fat meshes. We provide lower bounds to the effect that general sorting

can not be done in diameter time, on this or any other multithreaded machine.

We then provide a sort which achieves the lower bound, and provide more detail

on how the sort is used to allow concurrent access.

6.1 Lower Bounds

Though sorting can take place in O(diameter) time on any r-dimensional mesh

without multithreading [Kunde 1987], the multithreaded fat mesh will not be

able to achieve such bounds. We are concerned here with the general problem of

72

Chapter 6. Concurrent Access
	 73

sorting, rather than any special case such as integer sorting or sorting when the

range of the keys is known beforehand.

Theorem 16 Sorting any set of n items on an r dimensional fat mesh with p =

r/r+l processors requires (p
1

/T log P) time.

Proof: The general sorting of any set of n items will require 1l(n log n) compar-

isons. A fat mesh will have p = 	processors, so sorting will require

1 n log n
r/r+l

time. Recalling that n = r+l/r we may simplify this as:

n log n 1/r+1 =n 	log

= (r+l/r) 1/r+1
log n

1/t =p log

Given that log n 	log p and r is a small constant, we may rewrite this as:

((-b 	1/
(p

h r log n) = (p log p)

FMI

The basic premise of a multithreaded simulation targeted at a realistic network

is to hide latency which is O(diameter), by running O(diameter) threads on each

physical processor. Therefore we provide a more general result which applies to

any Bounded Degree Network.

Theorem 17 Sorting n items on any Bounded Degree Network with p = O(n/diameter)

processors will require 1(log2 p) time.

Proof: This follows from the fact that any p processor Bounded Degree Network

has diameter 1l(log p), and that sorting requires 1l(n log n) comparisons. Therefore

sorting will require
(n log n) =

1(log2 n)
n/ logn

Chapter 6. Concurrent Access 	 74

time. Given that r is a constant, and n = pr+1/r, we may rewrite this as:

(log 2 p)

One approach to avoiding the problem of large sorting times is to use a special

purpose network that does combining to eliminate concurrent requests as they are

being routed. This type of architecture is considered in [Ranade 1991]. However,

for CRCW simulations which run on networks without the additional hardware ex-

penses of combining, such as a Bounded Degree Network, we provide the following

additional lower bound.

Theorem 18 Any CRCW Simulation based on a Bounded Degree Network which

depends on general sorting to support concurrent access will not be optimally effi-

cient.

Proof: (Sketch) Recall that by definition any optimally efficient simulation will

have delay on the order of the diameter of the network. Any such multithreaded

machine can perform 0(n) operations in diameter time, on P = diameter
processors.

Since general sorting requires 0(n log n) comparisons, and this is greater then

the 0(n) that can be done in diameter time, it will clearly require greater than

diameter time to sort, and hence to support CRCW. Therefore no such CRCW

simulation will be optimally efficient. 0

The above results assume that a general sort will be used as part of the pre

processing phase for concurrent access. However, in theory one may avoid these

bounds by providing a faster sort which takes advantage of the fact that we know

the range of requests will be between 0.. .m, and that they are all integers. To

allow an optimally efficient CRCW simulation on a fat mesh this special purpose

sort runs in 0(n) time. We know of no such sorting algorithm which is practical,

and we consider the likelyhood of a practical solution to the problem within the

Chapter 6. Concurrent Access
	 75

0(n) time bounds as low. This open problem is acknowledged in [Kruskal et al.

1990].

6.2 Cole's Merge Sort

Now that we have provided an EREW simulation on any r dimensional fat mesh

we may run any EREW sorting algorithm on top of that simulation. In this way

one sorting algorithm can be run on any of the fat mesh networks.

Sorting on parallel computers is one of the best studied problems in computer

science. However, it wasn't until the early 1980's that a optimal depth sorting

circuit was .discovered, that of [Ajtai et al. 1983], which sorts n numbers in 0(log n)

time. However, as we have alluded to earlier, the solution is not particularly

practical, primarily due to its dependence on expander graphs, which cause it

to have very large constants despite its optimal asymptotic performance terms.

Sorting techniques for some other computational models are discussed in [Harris

1992, Chin and McColl 19941.

Cole described the first known 0(log n) time algorithm for sorting on a CREW

and EREW PRAM [Cole 19881. Cole's solution is not a sorting circuit, but is

particularly appropriate for our purposes, where we would like a sorting algorithm

which is portable to all our fat mesh variants. We hereby describe the general

techniques used in Cole's algorithm. For a complete proof of the algorithm time

complexity we refer the reader to [Cole 1988].

As in any merge sort, we begin by considering the PRAM processors as leaves

of a log n depth binary tree, and with each processor initially holding one element

of the array to be sorted. At each of the log n steps two sorted sublists are merged

into a larger list, with each merger corresponding to a level of the binary tree.

The mergers are done by constructing a selected sample of each list, and using

comparisons among the samples to determine where to insert elements of the two

Chapter 6. Concurrent Access 	 76

sublists into the resulting larger list such that the larger list is sorted. The merging

procedure at each level of the tree takes log n time, and as there are log n levels,

the trivial solution requires O(Iog 2 n) time. However, the primary observation that

allows a O(log n) time solution is that the merges which take place at different

levels of the tree may be pipelined. In particular, by beginning with the sample

lists for level i, the sample list for level i + 1 may be constructed in constant time.

Theorem 19 [Cole 1988] A list of n items may be sorted on an EREW PRAM

in O(log n) time.

Combining this result with the EREW simulation we have earlier shown for

the fat mesh and fat ring networks, we obtain the following corollary.

Corollary 1 Sorting on a fat mesh may be done through use of Cole's merge sort

in e(p" log p) time.

Note that this achieves the sorting lower bound we provided earlier in this

chapter.

6.3 Eliminating Concurrent Requests

In this section we describe how concurrent requests are eliminated given the ability

to sort, and how this allows the support of CRCW access on fat meshes and the

fat ring. As we discussed in introductory chapters of this thesis, it is sometimes

the case that for reasons of efficiency one must solve the problem of concurrent

access at the same time as addressing issues of routing and memory management.

However, in this case we are able to provide support for concurrent access with

optimal time complexity (but not with optimal efficiency) as an additional phase of

processing on top of the EREW simulation with no degradation in..performance.

Chapter 6. Concurrent Access 	 77

All the following operations are assumed to take place on top of the memory

management and routing schemes we discussed earlier. Therefore we are now

describing a PRAM algorithm, rather than a fat mesh algorithm.

To process CRCW memory requests we simply add a pre and post processing

phase onto the processing for each PRAM step. The role of preprocessing is to

combine all duplicate (concurrent) requests for the current PRAM step, such that

we may then process the existing EREW requests as normal. We do this by

first sorting the set of n requests on their destination memory address by using

the merge sort described above. After the sort we have
pl/r sorted requests in

each processor, such that any duplicate requests resulting from concurrent reads

or writes will be consecutively located in the list. Additionally, the lists held

by each processor will be globally ordered according to the processor IDs of the

PRAM processors. Each processor then steps through the elements of the list

it contains locally, eliminating duplicate requests which correspond to concurrent

accesses. Concurrent writes are combined as prescribed by the conflict resolution

rule of the CRCW model. Concurrent reads are combined by simply eliminating

one while at the same time storing book-keeping information at each node as to

which concurrent reads have been eliminated. This book-keeping information is

then used to "uncombined" or duplicate the results of concurrent reads during the

postprocessing phase.

Given that we have now eliminated all duplicate requests local to each pro-

cessor, we must now combine globally across the set of EREW nodes in our sim-

ulation. We do this also by viewing the machine as a binary tree. Each processor

will have at most two requests that may be further combined globally; those at

the beginning and end of each sorted local list. Then we designate processors with

odd IDs as senders and processors with even IDs as receivers. The sender with

processor ID i sends its largest request to processor 1 + 1, and sends its smallest to

processor i - 1. The receiver receives a large and a small request to be combined

with the large and small requests of its local list they have identical destinations.

Chapter 6. Concurrent Access 	 78

If they do not share the same destinations, then the new requests are placed at

the end or beginning of the list to become the new largest or smallest requests,

respectively. The sender from this step is then done with the preprocessing phase

and holds only EREW requests. The receiver will continue to iterate in a similar

way, but now communicating with a processor who's ID differs by 2, rather than

1. In the phase following that all senders communicate with processors who's IDs

differ by 4, and then 8, etc. In total the preprocessing phase is a set of log n

such steps, where on step j, processors {1 . 2, 2 . 2, 3 . 2j,..., 	. 2'} are receivers,

and { 1 2 + 1,2 . 2j+ 1,3 . 2' + 1, ..., . 	- 1) are senders. The number of

processors participating in each step is therefore reduced by a factor of two from

the previous phase. Once all processors have completed this global operation all

duplicate requests will have been eliminated and that any remaining requests will

be EREW

Theorem 20 A set of n CRCW requests may be reduced to a set of 0(n) EREW

requests in 0(log n) steps on an EREW PRAM.

Proof: Sorting requires e(log n) EREW steps, and the procedure above will en-

sure that after O(log n) further steps any duplicate requests are combined, leaving

at most n EREW requests. D

From this theorem we easily obtain the following corollary:

Corollary 2 An n processor CRCW PRAM may be simulated on a r-dimensional

fat mesh (for any constant r) with ri/r+l processors with a slowdown of

6(p
1/r log p).

Proof: (Sketch) From Theorem 20 we know that reducing a set of n CRCW

requests will require 1(log ii) steps on an EREW PRAM. Since each EREW step

on a r dimensional fat mesh requires 0(p1) time to simulate, a CRCW step will

require Q(p 1/r log n) time. Given that r is a constant, and due to the sorting lower

bounds of Theorem 16, we may write this as 0(p1 log P) 0

Chapter 6. Concurrent Access 	 79

Note that, somewhat disappointingly, this does not qualify as a processor effi-

cient simulation, given the ratio of log p between the slowdown of the simulation

and the number of processors used. In particular, we have violated equation 3.1 of

our definition of optimal efficiency, as the delay of the simulation is greater than

the diameter of the network.

6.4 Efficient Concurrent Access

Though optimal efficiency is impossible for a multithreaded machine, we can ob-

tain a non-optimal processor efficient CRCW simulation if we increase the slack-

ness of the simulation to cover the added overhead of sorting. From Corollary 2

we know that the latency of a CRCW access will be:

L(p) = ç(1/ log P)

for any r dimensional fat mesh. Therefore to hide this latency we will need .s

l/r log p, and therefore
rfr+l

log p

Naturally we will again need the bandwidth of each link to correspond to this

increased slackness, i.e. 1 = s = pl/r log p. Now we once again consider memory

management and routing for these new parameters. Due to its similarity to pre-

vious results we keep our explanation brief here.

The memory management scheme must provide the following guarantee; that

any set of n = log p requests will be distributed amongst the p processors

such that no more than O(p" log p) arrive at any one processor with high prob-

ability. For the lemma we use v = Pr+1jr log and k = 4p" log P, giving:

Prob(R> k) <
(/C

kp)

Chapter 6. Concurrent Access 	
80

(pr+1jr e log~p.)
4p1 /r log P

	

 rplogp 	p

)
e 4plIrIogp

	

=& 	p

= a
01/r Iogp)

where 0 < a < 1.

Routing depends on the assumption that addresses have been previously hashed

with H, as in earlier chapters. We note again that on any of the r stages in routing

for a r dimensional fat mesh with our new parameters, with high probability we

will not have contention in the network with simple greedy routing. In particular,

we now show that among the p
21/T log2 p requests whose origin is a given row or

column of an r dimensional structure, there is a high probability that no more

that hr log will arrive at any one node.

We use the hashing lemma precisely as we have in chapter 4, where we have

scaled the variable p of the lemma to correspond to the number of destinations in

the routing stage we are concerned with. As the number of sources is the square of

the number of destinations, we use v = p2 and /c = p for the lemma, and observe:

Prob(R> k) <
(Ve

 kp

(p2 e

=) p
(e) 4p

 p

4p =a

where 0 < a < 1.

These two smaller results lead to our CRCW simulation result:

Theorem 21 An n processor CRCW PRAM may be simulated on a r-dimensional

fat mesh (for any constant r) with p =
rfr and efficiently with slowdown of log n

Q(ph/r log p) with high probability.

Chapter 6. Concurrent Access
	 3I

Proof: (Sketch) This follows clearly from the routing and memory management

results above, given that each fat mesh processor now has sufficient slackness to

hide the delay of the CRCW simulation. 0

Note, however, that to provide this non-optimally efficient simulation we have

had to not only increase the number of threads per processor, but also correspond-

ingly increase the number of wires per link.

Chapter 7

Experimental Results

An obvious problem with basing an architecture on theoretical results is that,

while the performance bounds may be proven asymptotically, there may still be

questions about the practical characteristics of the performance which have not

been made clear through the theoretical analysis. In this chapter we will provide

experimental results regarding the performance of various aspects of fat meshes

and rings, in an attempt to reaffirm the theoretical decisions we made earlier. We

have generated these experimental results through simulation of the hardware,

in order to substitute measurements in units of machine cycles for the "big-O"

notation used earlier. One would expect that complexity bounds on performance

would be particularly relevant in machines with very large numbers of processors,

i.e. p > 1010, but with more realistic numbers of processors the non-asymptotic

terms may become more important. Hence we focus our study on smaller machines

with hundreds to thousands of processors. Additionally, we would expect such

smaller machines to be used more frequently in practice.

The program we have constructed is designed to simulate salient features of our

architecture, such as hashing, routing, and memory module servicing. It does this

at a reasonably high level, neglecting chip technology and other low level details,

but it attempts to implement the algorithms we have described as accurately as

possible.

Chapter 7. Experimental Results 	 83

The primary input for the simulator is a trace of addresses which are generated

during the execution of a program and then stored in a file. This program is serial,

but the set of addresses generated for the trace file are clearly the same addresses

that would be accessed by any parallel solution to the problem. The simulator is

also a serial program, which simulates each processor in turn. When appropriate

the simulator fetches addresses from the trace file, which become the memory

request to be issued by the processor which is currently being simulated. Given

the global shared memory of the PRAM model, it is unimportant what order the

processors are simulated in, or what order the addresses are in, as long as we

simulate only one n-thread PRAM step at a time. Similarly, we make no attempt

to exploit locality through clever mapping of data to processors, but instead use

the full generality of the shared memory model by allowing an arbitrary mapping.

However, because we are simulating an EREW PRAM, we do need to be

careful to ensure that the serial programs used in generating the trace do so in an

EREW manner, i.e., all the addresses accessed within one n thread PRAM step

are unique. This is ensured through careful choice of problem size and looping

constructs within the serial programs which generate trace files. The main goal of

the simulator is to monitor the passage of time as processors of the system fetch

addresses from the trace file, hash those addresses, and then inject those addresses

into the network in the form of memory requests. We then monitor the progress of

these requests through the network, as well as their service rate at the destination

memory modules. One of the main goals of our experimental work is therefore

to determine the time in machine cycles required for a given fat mesh or ring to

execute one PRAM step. As we are focused on a synchronous model, we do not

begin simulation of any PRAM step until the previous one has completed entirely.

We attempt to provide results which are comparable to our previous complex-

ity results, and hence we make powerful assumptions about what takes place in

a given cycle of our machine. We acknowledge that a more detailed simulator,

e.g. one which provided times for operations down to the gate level and provided

Chapter 7. Experimental Results 	 84

results in units of micro or nano seconds, would also be interesting. However,

such results would be dependent on many specific technological assumptions, and

therefore would have very limited applicability. Instead we attempt to maintain

the generality of our original theoretical results. Examples of more detailed simu-

lations for a different approach to latency hiding in shared memory architectures

can be seen in [Harris and Topham 1994a, Harris and Topham 1994b, Harris and

Topham 1994c].

7.1 Simulator Architecture

Departure
Queuee

Instruction 	Inject

11111 _

Arrival
11111
: i_Queue

Matchbig
Circuits

To I—
I-

Me H mory

Network 	

NetworNetwork

I From ieue

I To
Local
Memory

Figure 7-1: Node architecture being simulated.

A schematic of the node architecture being simulated can be seen in figure 7.1.

This architecture corresponds to an abstraction of that detailed in the thesis; it

is an architecture that is easy to simulate and will have the same performance

characteristics as the theoretical architectures we have considered. For example,

fat meshes and the fat ring will likely have a small buffer for each wire of a

link, and will not need the potentially large queues suggested shown in figure 7.1.

However, these queues allow easy monitoring of memory request routing through

the network, particularly since our simulator is serial, and will need to step through

all outstanding requests one by one. Conversely, the fact that true fat mesh

Chapter 7. Experimental Results 	 85

nodes assume a degree of on-chip parallelism makes a more distributed buffering

of requests more logical and efficient in that model. This queuing mechanism also

makes it easy to consider performance as a function of the number of wires of each

link of a network, which is one of our focuses of the simulation.

The first phase of processing is referred to as "on node routing" , and begins

after the set of requests which has arrived from the network is entered into the

arrival queue. The requests in this queue are then evaluated to determine if they

are local, in which case they are forwarded to the local memory queue. If not, then

it is determined upon which outgoing link they will need to be routed, and they

are entered into the corresponding departure queue. There will be one departure

queue for each link of a fat mesh node. Additionally, if there are still outstanding

requests to be injected for that PRAM step, then one is read from the trace file,

hashed, and placed in the departure queue which corresponds to the appropriate

outgoing link. Again, we are interested in simulation results for an EREW PRAM,

so we use trace files which consist solely of EREW requests.

"Off node routing" consists of the communications events which takes place

between neighbouring processors. Each processor will move a number of outgoing

requests from its departure queues to the arrival queue of its neighbours. The

number of requests moved out of each departure queue is equal to the number of

wires in each link, 1. Any requests which are not moved during off node routing

will remain in their departure queues. All queues are FIFO ordered. However, as

our routing results made no assumptions about queueing disciplines, we expect

this to make little difference in practice.

In earlier chapters we have shown how both on and off node routing requires

only a constant number of cycles. Therefore, to facilitate comparison of our simu-

lator results we charge 1 cycle for each such two phase operation. The larger goal

of experimental analysis is then to determine how many such cycles are required

to implement a single PRAM step on a fat mesh.

Chapter 7. Experimental Results 	 86

7.2 Memory Management

Given a set of memory addresses which correspond to one PRAM step, it is the

role of the memory management scheme to ensure that with high probability they

will be well distributed amongst the memory modules. Our experimental results

emphasize that the use of multithreading has an additional benefit over latency

hiding; that hashing functions generally behave better when more than one request

is destined for each processor.

Recall the class of hash functions we use, H, defined as:

H = {hlh(x) =

where m is a prime number, d is a constant, and where the as are randomly

chosen parameters.

We primarily consider two trace files in this chapter. One is from a simple

matrix multiply routine, which has extensive spatial locality and strides regularly

through memory, and the other is a synthetic address trace of randomly distributed

addresses. Matrix multiply provides a trace representative of the class of matrix

operations, where successive memory references are often ordered s * i + o for all

0. .i. .n, where s is the stride determined by a dimension of the matrix, and o is

an initial offset. We will be focusing on using the set of requests from the matrix

multiply trace, as it represents an access pattern with inherent locality, and hence

a potentially difficult case for a memory management scheme. We also use a trace

where each address is random, though generally only to verify that our scheme

has done no harm in the sense of regrouping requests which were initially well

distributed.

Chapter 7. Experimental Results
	 RM

7.2.1 Hashing with Multithreading

Our initial goal is to provide an intuition as to the use of hashing in multithreaded

architectures in an effort to ground the theoretical results presented earlier. As

stated, we expect very good performance from our hash functions, in the sense

that we expect our requests to be very evenly distributed amongst our processors.

In particular, we were able to prove that for a set of n requests distributed among

= r/r+1 processors for an r dimensional fat mesh, we can expect with high

probability to have 0(p 1') arrive at each node. It is significant that our use of

multithreading simplifies considerably achieving these demanding goals.

Consider the popular analogy for hashing of memory requests; the throwing of

balls into randomly determined buckets. If we have the same number of balls and

buckets, then it will be difficult to get one ball to arrive in each bucket by randomly

throwing them. However, if we have many more balls than buckets, then it will

be relatively easily to throw the balls randomly such that each bucket gets full to

roughly the same level. Multithreading, where we have many requests destined

for each processor, is clearly analogous to this latter situation. We now analyze

experimentally the maximum number of requests destined for a particular node

given an arbitrary set of addresses to be hashed. This number is often referred to

as the maximum queue size for the processor's memory module.

We begin through use of a particularly simple linear hash function, i.e. we

choose an h(x) E H such that d = 1 and h(x) = (ai * x + ao)mod m, where

values for a0 and a1 are random integers. Firstly we consider the case of no

multithreading. We consider 16,384 (or 16K) requests to be distributed amongst

16K processors, and assess the resulting maximum queue size. The results are

shown in figure 7-2, where we show the number of requests destined for each

processor from a set of requests from the matrix multiply trace. For simplicity

we show only the requests destined for the first 100 processors. In this case the

optimal is clearly to have one request destined for each processor. We see that for

Chapter 7. Experimental Results

Arrival Distribution for Matmul
I 	 I 	 I 	 I

16K Processors, 16K Requests - -

[[1 nnn n hn liii I1 liii B it
0 	20 	40 	60 	80 	100

Processor Number

Figure 7-2: Matmul trace with no multithreading.

many processors are only the destinination for one request. In other cases there

are zero, and in a few cases, there are substantially more than one, roughly 16 to

18 requests, destined for a particular processor. This is the type of distribution

one expects from hashing without multithreading. A well known folk theorem of

hashing states that with p requests distributed amongst p processors, the most

heavily loaded nodes will receive at most O(log n)requests, with high probability 1 .

This corresponds well to our observed results, as log 16k = 14, which is close to

the maximum queue sizes shown.

As we introduce multithreading one might fear that we would compound our

difficulty, i.e. with .s threads per processor, we may have a maximum queue size

of O(s log n). However, as evidence from our earlier theorems suggest, this is not

the case. In fact, as we increase s relative to n, we see the heavily loaded threads

'We do not offer an explicit proof of this theorem, but the proof is very similar to

that provided for theorem 9 in chapter 4. A complete version of the proof can be found

in [Mehihorn and Vishkin 19841.

U)

U) a,

Cr
a,
Ii

0

a,
-o
E

Z

18

16

14

12

10

8

6

4

2

A

Arrival Distribution for Matmul

20 	40 	60 	80 	100
Processor Number

Arrival Distribution for Matmul
300

250
Cl)

U, a,
Cr 	200
Cr
0

150
E
z

100

50 .
0 	20 	40 	60 	80 	100

Processor Number

a,
Cr

a)
cc
0

a,
.0
E
z

70

60

50

40

30

20

10
0

Chapter 7. Experimental Results

Figure 7-3: Matmul trace with 32

threads per processor.

Figure 7-4: Matmul trace with 128

threads per processor.

being well distributed among the p processors, and the resulting distribution being

nearer optimal than for the s = 1 case that we have just described. This is shown

in figures 7-3 and 7-4. In figure 7-3 we again have 16k requests, but now s = 32

and p = 512. Therefore we would expect that 32 request arrivals per processor

would be the average. We note that the more heavily loaded nodes, though there

are more of them than in figure 7-2, are only overloaded by about a factor of two

over the optimal of 32 requests per processor. In figure 7-4 we have 128 processors

with 16k requests and 128 threads per processor, and we see that the maximally

loaded nodes have only about 25 percent more requests than the optimal of 128

requests per processor. Hence the hash function behaviour gets better as we

increase multithreading. The Y-axis in figure 7-4 has been fixed to allow easy

comparison with the figures of the next section.

7.2.2 Hash Function Degree

One concession which is necessary to be able to use hashing in the context of an

efficient simulation is to use a hash function of constant degree, rather than the

logarithmic degree hash functions that might be used in inefficient simulations.

In practice it is best if the constant degree is in fact 1, as it reduces the amount

Chapter 7. Experimental Results 	 90

of computations needed to hash or unhash any address. We now provide exper-

imental evidence suggesting that a degree 1 hash function is a reasonable choice

from the perspective of performance.

Matmul with Degree Two Hash Function
300

250
0)

U, a)
Cr 	200
Cr
0

- 	150
E
Z

100

50 	 •IIlIII,,.,,,.,,,,,.

0 	20 	40 	60 	80 	100
Processor Number

Figure 7-5: Matmul trace with de-

gree two hash function.

Matmul with Degree Four Hash Function
300

250
U,

CD

g- 	 200
a
0

• 	150
E
Z

100

50 IIIlIuIIIIlIlIItIII•111111111111111H1

0 	20 	40 	60 	80 	100
Processor Number

Figure 7-6: Matmul trace with de-

gree four hash function.

In figures 7-5 and 7-6 we see the distribution of requests from the same matrix

multiply trace, but using an h(x) with with degree two and four respectively.

Comparing to 7-4 we see that the worst case loading on nodes is worse in both

the second degree and forth degree hash functions. This is consistent with other

experimental results considering hash functions in context of non-multithreaded

architectures. In particularly, [Engelman and Keller 19931 found that linear hash

functions consistently outperformed their higher degree counterparts. In [Ranade

19911 linear hash functions also prove to be adequate in practical work regarding

PRAM simulations.

7.2.3 Random Traces

The usual role played by a hash function is to randomize a set of requests which

may initially have a degree of locality. If we consider a trace which consists

of randomly generated traces, then we can assume that there is already a good

distribution of memory module references. However, hashing random addresses is

Chapter 7. Experimental Results 	 91

useful in its ability to verify that a well distributed trace does not become poorly

distributed after hashing.

Random Trace with Linear Hash Function 	 Random Trace with No Hashing
200

180

42 	160

Cr

U,
0,

g 	140
a:
'6 	120
0,

E 	100
Z

80

60

200

180

160
C,

g 	140
a:
'6 	120
0,
-D
E 	100
Z

80

60

0 	20 	40 	60 	80 	100
Processor Number

0 	20 	40 	60 	80 	100
Processor Number

Figure 7-7: Random Trace with Lin- Figure 7-8: Random Trace with No

ear Hashing. 	 Hashing.

We therefore compare the following two'graphs, one where no hashing has been

done, and one where the linear hash function described above is used. In the case

of no hashing we use h(x) = x (mod p) to ensure that the addresses are not out

of range of our p processor machine. From observation of figures 7-7 and 7-8 it

appears that there is little change in the distribution after the random trace is

hashed. This suggests that little randomness is being removed by hashing.

7.3 Routing

Earlier we proved that simple greedy routing in conjunction our randomized

memory management scheme allowed us to route within a fat mesh in 0(p1i)

time. However, these results are also dependent on the bandwidth provided in our

fat meshes, namely the fact that the width of each link, 1, is equal to the degree

of parallel slackness on each node, s. In this section we consider these two results

in greater detail, and from a more practical perspective.

Chapter 7. Experimental Results
	 92

We are particularly interested in the behaviour of the queues in each node; the

rate at which they empty and fill relative to the width of the links in our fat mesh or

fat ring. An example of this behaviour is shown in figures 7-9 and 7-10. It shows

the maximum number of requests in the arrival queue and departure queues of

our simulated two dimensional fat mesh during the routing process for one PRAM

step. Recall that in our simulations we-have only one arrival queue, while we have a

separate departure queue for each possible near neighbour destination. Therefore

the maximum number of requests in the arrival queue at any cycle will be 4s

on a two dimensional mesh. Departure queues, on the other hand, will begin to

accumulate requests if there is contention in the network resulting from the width

of the links being too small. Hence their size is quite large in the case where 1 < s.

a,
a)

0
C

a)

E
Z
E

8
'C a

2-0 Mesh with 32 Threads/Processor and 32 Wires per Urtk
90

80

70

60

50

40

30

20

10

n
0 10 20 30 40 50 60 70 80 90

Time in Machine Cycles

2-0 Mesh with 32 Threads/Processor and 1 Wire per Link
100
90 L 	Arrival Queue -

a
80

o 	70
C

60

E 	50

I :
CO 	 20
T.

10J1
I 	 I

0 	100 	200 	300 	400 	500 	600
Time in Machine Cydes

Figure 7-9: Two Dimensional mesh

with links of width 32.

Figure 7-10: Two Dimensional mesh

with links of width 1.

Figure 7-9 shows the routing process on a fat mesh with 1 = s. We see that

both the arrival queues and departure queues begin filling up in a near linear way

initially, as requests are injected into the network, one per cycle, by each processor.

In particular, we would expect the maximum departure queue size to rise with a

slope close to one, until requests begin to reach their destinations, in which case

both slopes will begin to drop off. After s cycles all new requests will have been

injected into the network (as we inject one per cycle, and have a total of n). Hence

the peak of both curves will come near this point. However, keep in mind that we

Chapter 7. Experimental Results 	 93

are looking at the maximum size of each queue throughout the network, and small

degrees of contention can take place at any node, causing the jaggedness which

is especially visible in the line corresponding to the arrivals queue. When both

the arrival and departure queues have emptied for each processor, then we have

completed routing for that set of n requests. Therefore the time to finish routing

the set shown in figure 7-9 is about 87 cycles.

Figure 7-10, on the other hand, shows the routing behaviour where the number

of links is much less than the number of threads in each node, as we have s = 32

and 1 = 1. Therefore the arrival queue never has more than 4 requests (as there

are only four incoming links, each just one wire wide). As the links are not wide

enough to empty the departure queues, they will naturally fill up. Significantly,

not only do they fill up for the first s cycles while new requests are injected into

the network, but the maximum queue size also increases significantly beyond that

point, as hot spots develop in the network. In this example we see that the

maximum departure size is almost 100 requests, over three times the number each

processor injects, and this hot spot takes place about 300 cycles after routing has

begun. Eventually requests begin to reach their destinations in rapid succession

after 400 cycles, and routing completes at about 500 cycles.

Our goal is to use similar graphical techniques for a variety of fat mesh networks

to determine two important attributes: the minimum average routing time, and

the minimum link width which allows routing to take place in this minimum time.

7.3.1 Fat Rings

In the figure 7-11 below, we display the maximum departure queue size of a fat

ring as a function of the link width for a 128 processor machine. Recall that a

fat ring uses multithreading such that s = p. One feature of the fat ring can be

seen initially, that the simple routing scheme eliminates contention and related

hot spots, unlike the results we presented above. This is evident from the fact

Chapter 7. Experimental Results 	 94

that after the first 128 cycles during which new requests are being injected all

departure queues start to empty, even in the case of rings with very small links,

e.g. 1 = 1. If hot spots were arising we would expect at least some of these lines to

continue rising after the first 128 cycles. However, there is a substantial difference

in the time to complete routing the n requests based on the link width.

(D
N

T
a)

0
a)

Ca
0
CD
0

140

120

100

80

60

40

20

Time for simulation of one PRAM step

256 wires per link -
128 wires per link
64 wires per link
'4ires per link
32 wftes.per link
16 wires p&Iink

250

.CD
	 200
(I)
ID

150

ca 	
100

CL

50

Time for simulation of one PRAM step
I 	 I 	 I 	 I

f\ ••'-.-'... 	256 wires per fink
'- 128 wires per link

H 	\ 	•'.. 	64 wires per link
32 wires per link

wires per link

\\

0
0
	

100 	200 	300 	400 	500 	600
Time in Cycles

Figure 7-11: 128 Processor Fat Ring

Routing Time.

n
0 	500 	1000 	1500 	2000 	2500

Time in Cydes

Figure 7-12: 256 Processor Fat Ring

Routing Time

The minimum time is 255 cycles, or just under 2s (though in the case of the

ring s = p). Recall that the last request will enter the network at time p, and the

farthest any requests will need to travel is across p nodes. More surprisingly, we

observe that this best case performance takes place with both 1 = 128 and 1 = 64,

with the 1 = 48 case lagging behind by just a few cycles. Our theoretical estimate

of the required bandwidth being 1 = s does not take into account significant

constants, as it appears from the figure that 1 = s12 is sufficient to achieve optimal

routing time; Note we have also included a curve corresponding to 1 = 256 or

1 = 2s, to emphasize that routing time will never improve further than the value

achieved with 1 = s.

Similar results are shown in figure 7-12, but with a larger machine of 256 pro-

cessors. Once again, the routing time is approximately 2p cycles, and architectures

with link width 1 > s12 all achieve this minimum routing time. If the link width is

Chapter 7. Experimental Results 	 95

p=128 	p=256J

255.4 cycles 511.4 cycles

Figure 7-13: Average Routing Times for Fat Ring

smaller we see substantially lower performance, such as the case for 1 = 16 where

the maximum departure queue size is almost 250 requests and routing does not

complete until after more than 2000 cycles.

The results shown in the graphs are the routing behaviour of one set of n EREW

requests, corresponding to one PRAM step. However, other sets of requests gave

very similar results, as one would expect given the randomizing nature of hashing.

We give average routing times for these two sizes of ring in the below table 7-13.

7.3.2 Fat Meshes

Similar results for two and three dimensional fat meshes are shown in figures 7-

14 and 7-15. Average values for fat mesh routing are shown in 7-16. From our

theoretical arguments we expect routing to complete in
0(1/r), but these graphs

provide an indication of how the constants involved in routing time depend on the

degree of the fat mesh. Recall that for a two dimensional mesh of 4K processors

p = 64, while in the three dimensional mesh with the same number of processors

1/r = 16. We see that as the dimension of the mesh increases, the constant c in

the equation routing - time = c 1/r also increases. For the one dimensional fat

ring we saw c 2, and now we observe that the 2-D fat mesh has c 3, whereas

the 3-D fat mesh has c 4. The worst case routing time, e.g. when the source

and destination are diametrically opposite on the mesh, is r p1 = diameter.

Furthermore, due to multithreading delays, the last request is injected into the

network s = p1& cycles after we begin processing, which results in:

routing - time = (r + 1) . p 1/r

Chapter 7. Experimental Results

CD
NJ

(I)
a)

a)

0
a)

a)
0. a)
0

60

50

40

30

20

10

I.'

Time for simulation of one PRAM step

J 	32 wires per link —
16 wires per link

1: 	 B wires per link -----
4 wires per link

-

a)
NJ

ci)
CD

a)

0
a)

Ca
0.
a)
0

16

14

12

10

8

6

4

2

n

Time for simulation of one PRAM step

16 wires perlink -
8 wires per link
4 wires per link ------
2 wires per link

1 wire per link

0 	50 	100 150 200 250 300 350
Time in Cycles

0 	20 	40 	60 	80 	100 	120
Time in Cycles

Figure 7-14: Routing Time for Figure 7-15: Routing Time for

64 x 64 Fat Mesh. 	 16 x 16 x 16 Fat Mesh.

where r is the degree or our mesh. This corresponds well to our practical obser-

vations.

This is the worst case time for a given request. We've used similar worst

case arguments in determining our bandwidth bounds for each link of 1 = s.

However, in practice we can expect to do fine in most cases with less bandwidth.

In figure 7-15 we observed near optimal routing times with as little as 4 wires

per link, despite somewhat higher maximum departure queue sizes for such low

bandwidth. This highlights the disparity between our earlier worst case estimates

and the average cases we typically see in practice. Note that in routing times

we are concerned with worst case behaviour, as it only requires one request to

take O(diameter) time for our entire routing stage to be delayed. However, in

the case of bandwidth considerations when we are considering the aggregate link

bandwidth of the entire machine, and average case behaviour is more indicative

of such bandwidth demands.

To obtain better average case requirements for bandwidth we take into account

that messages will typically travel only 4: links before reaching their destination.

Therefore the correct amount of wires per link becomes also becomes 4. It

is conceivable that a routing pattern may require the worst case p1" links per

Chapter 7. Experimental Results 	 97

64x64 	16x16x16

183.2 cycles 	56.2 cycles

Figure 7-16: Average Routing Times for Fat Meshes

cycle, but this appears unlikely to occur in practice given our randomized memory

management scheme.

73.3 Memory Module Service Rates

One of the basic assumptions of our multithreaded nodes is that their basic power

is unchanged over the RAM, i.e. each can only inject up to one request per cycle

into the network, and each memory module can only service one request per cycle.

Therefore the time required to simulate a PRAM instruction is not only the time

required to route the requests to their destinations, but also to have those requests

serviced (and possible returned to their source in the case of reads).

Our simulation also monitors closely the behaviour of the memory module. We

have provided theoretical evidence that, despite the fact that a reasonably large

number of requests will pass through a given node in any one cycle, the number

of requests that will be destined for the local module rather than be forwarded

on is relatively small. In Theorem 9 we show this number is likely to be less than

O(log p) for the case of a fat ring, which is likely to be the worst case given it has

the highest number of requests arriving in any one cycle.

We now augment this theoretical result by considering the experimental distri-

bution of arrivals for a given processor as a function of time during our trace-driven

simulations. Again we focus on what is likely the worst case, the fat ring. We

show these results in figures 7-17 and 7-18. Each represent the number of re-

quests destined for the local memory module of an arbitrary processor (processor

number 1 in this case) during the simulation of a PRAM step. We see that the

Memory Module Arrival Times

0,
'a
>

0

a,
.0

E
Z

50 	100 	150 	200 	250 	300
Time in Cycles

Memory Module Arrival Times

100 	200 	300 	400 	500 	600
Time in Cycles

0) ca
>

0

a,
.0
E
Z

8

7

6

5

4

3

2

0
0

8

7

6

5

4

3

2

0
0

Chapter 7. Experimental Results 	 98

distribution is quite even. As processing begins, few requests are destined locally.

Then during the middle section of the PRAM step simulation we consistently see

a small constant number of arrivals, rarely more than 3. And finally, towards the

end of the processing of that PRAM step locally destined request arrivals become

rare again, and virtually never do we see more than one arrival in a cycle.

Figure 7-17: Memory Arrivals for Figure 7-18: Memory Arrivals for

p=128 Fat Ring. 	 p=256 Fat Ring.

The corresponding rates of growth for the memory module queue for this pro-

cessor during execution of this same PRAM step are shown in figures 7-19 and

7-20. These curves correspond roughly to the integral of the arrival curves above,

but with the constant service rate of the memory module subtracted. We see that

during the early stages of the step the queue size is either one or zero, as few re-

quests have arrived at the memory module. During the middle section of the step

requests begin to arrive more frequently, but again, with no more than a small

constant number arriving in any given cycle. The queue therefore does begin to

slowly fill, but does not hold more than a small number of requests during any

one cycle. And the final less busy stage of routing for this step allows the memory

module to service any backlog which has developed during the middle stages, as

each cycle without a new arrival will allow the module to consume one outstanding

request from the queue. In practice, we rarely see more than one request queued

at the end of routing for any PRAM step. The size of the queues observed for the

8

7

6
CD

5
0
. 	4

E 	3

2

Memory Module Queue Size

I 	200 	300 	400 	500 	600
Time in Cycles

Memory Module Queue Size

50 	100 	150 	200 	250 	300
Time in Cycles

a)
w
0

a)
E
Z

8

7

6

5

4

3

2

0
0

Chapter 7. Experimental Results 	 99

fat meshes of arbitrary dimension are yet smaller than those for the fat ring, as

should be expected due to the smaller number of requests arriving in any given

cycle

Given this experimental evidence we believe that small memory module queues

should be sufficient for all our architectures, tiough this size is likely to be a slowly

growing function of the number of processors, as suggested by the theory. More

importantly, we rarely expect memory module processing to be a performance

bottleneck, despite our strict assumption that no more than one request will be

serviced in any given cycle.

Figure 7-19: Queue Sizes for p=128

Fat Ring.

Figure 7-20: Queue Sizes for p=256

Fat Ring.

7.4 Processor Count

One other fundamental attribute of our proposed architecture that remains to be

considered from the practical perspective is the relationship between the number

of physical processors and threads within each processor. We earlier provided

theoretical arguments for an r dimensional mesh having p = processors, and

each processor running s = 1/r threads. Now we try to reinforce these arguments

by providing routing times for networks for a range of processor/thread ratios.

Chapter 7. Experimental Results
	 100

Processor Count and Performance for 1024 Thread PRAM

CL

(I)

cr
0

a,
0

0

0

(a

E
C,)

0

a,
E
I.-

1100

1000

900

800

700

600

500

400

300

200

100
A

1 	4 	16 	64 	256 	1024
Number of physical processors (log(2) scale)

Figure 7-21: Processor Count with 1K Threads on Ring.

In figure 7-21 we see the results for the ring, with 1K PRAM threads, displayed

on a semi-1092 scale. Given the high diameter of a ring, we expect the speedup from

multithreading to be highest on such a network. We see that simulation of one

PRAM step takes over 1000 cycles with either 1 or 1024 processors, and only about

64 with the optimal 32 processors. We observe a speedup of roughly 500 when

comparing the multithreaded performance versus that of the non-multithreaded

machine. This corresponds well to the O(/) speedup we would expect, as we

describe in the next chapter. Most importantly, the prescribed processor number

appears to lead to a clear minima in routing times.

Results for the two dimensional and three dimensional fat meshes are presented

in figures 7-22 and 7-23 respectively, now on a log 10 x 1092 scale. Both show clearly

that the processor number determined theoretically as optimal does, in fact, result

in the best performance. However, also as predicted, we see the benefits from use

of multithreading being reduced as we consider higher dimensional meshes which

naturally have lower diameters. The number of data points is reduced in figure

7-23 due to the practical difficulties in finding processor numbers with both cube

Chapter 7. Experimental Results
	 101

10000
0

Cr

w 	1000
0

C
.9

100
In

E
1=

Processor Count and Performance for 4096 Thread PRAM

CL
10000

Cl

w 	1000

I
- 	100

E

	

10 	 I 	 I 	 I

1 	4 	16 	64 	256 	1024 4096
Number of physical processors (log scale)

Processor Count and Performance for 4096 Thread PRAM

	

10' 	•

	

1 	4 	16 	64 	256 	1024 4096
Number of physical processors (log scale)

Figure 7-22: Processor Count on Figure 7-23: Processor Count on

Two Dimensional Fat Mesh. 	 Three Dimensional Fat Mesh.

and forth roots which are integers. Both these figures assume a total of 4K PRAM

threads.

Chapter 8

Conclusions

We hope that one of the quantitative suggestions resulting from this thesis to

practical users of multiprocessors is to move away from the use of peak perfomance

figures for characterizing an architecture, and instead focus on the sustainable

performance of the architecture. The performance of multithreaded machines

such as fat rings and fat meshes will provide consistent performance which will

be lower than the peak performance of a similar architecture, but which will be

consistently sustainable. We now provide some details regarding this point, as

well as other main points of the thesis.

8.1 Multithreaded Performance

The initial idea behind using multithreading to hide latency is to increase the

utilization of processors, thereby reducing the number of processors necessary to

achieve roughly the same performance as a non-multithreaded machine supporting

the same number of threads. Reconsider one of the main points from chapter 3,

regarding the relationship between the delay of a simulation and the number of

physical processors needed to make such a simulation efficient. Earlier efficient

simulations maintained the following invariant:

102

Chapter 8. Conclusions
	 103

n = PS

L(n) = S

Therefore the number of processors of a traditionally multithreaded machine

would be p = and ideally each of these p processors would be working with

little or no idle time, thereby achieving nearly its peak performance. Therefore:

per formancemi = L(n) C

if we define G as the peak performance of one node. The performance of the equi-

valent non-multithreaded PRAM simulation would be n processors, each working

at times its peak performance. Hence the overall performance of that machine

would be the same:
n

per forrnancenon_ mt = 	. G
L(n)

So the traditional role of multithreading is to achieve the same performance for a

reduced number of processors, not to increase the performance.

One of the unique contributions of this thesis is to consider the relationship

between multithreaded and non-multithreaded performance for high diameter net-

works. In this case, we achieve a reduction in the diameter of the network as we

reduce the number of physical processors in the simulation. The multithreaded

performance now becomes:

n
per formancemi = 	 C

diameter

which is clear from the fact that p = 	and all p processors will have idle time diameter

hidden such that they each run at near C performance. If we can achieve an optim-

ally efficient simulation, as we defined earlier and showed exists for the fat ring and

fat meshes, then L(n) > L(p), and hence per formancemt > per formancenon_mt.

Chapter 8. Conclusions
	 104

Consider optimally efficient simulations on the class of fat meshes of degree r.

For non-multithreaded simulations on meshes of degree r L(n) = flhlfr, whereas

the equivalent ri thread fat mesh efficient simulation will have L(p) The

performance of the inefficient simulation will be:

Ti

	

per formancenon _mt 	. Cni/r

The performance of the optimally efficient simulation will instead be:

Ti

	

per formancem t = 	G 1/r+l

If we define the speedup from use of multithreading as the ratio of performance

of the m processor non-multithreaded mesh and the p processor multithreaded fat

mesh, where as usual p =

.speedup =
per forrnartCem t

per fOrmanCenon_m i

The speedup achieved with optimally efficient fat mesh simulations of degree r is:

1/r

SpeedUpfat_mesh = l/r+l

= Tit

Given in terms of p this becomes:

1

SpeedUpfat_mesh = (r+l/r)Tfl

=p 1/r2

These calculations also apply to the special case of the fat ring, where r = 1,

resulting in:

speedupjat_rjng = p = n 1/2

Clearly the magnitude of the reduction we would hope to achieve through optim-

ally efficient simulations decreases as the dimension of the network increases, as

shown in table 8-1. However, we see that asymptotically all fat mesh optimally

efficient simulations are faster than their non-multithreaded counterparts.

Chapter 8. Conclusions
	 105

dimension speedup

1 n 1/2

2 n116

3 n 1/12

4 n 1/24

Figure 8-1: Multithreading Speedup as function of mesh dimension.

8.2 Sustainable Performance

It is hoped that these performance gains will be considered within a wider context

than solely that of PRAM simulations. One of the most significant assumptions

in the consideration of PRAM simulations is that each PRAM processor is as-

sumed to communicate on each PRAM step. Therefore the consideration of peak

performance is avoided, as we are by definition only concerned with worst case

performance.

In the practice of parallel computing, machine vendors routinely quote peak

performance figures for their architecture. These typically relate to performance

likely to be seen only on "Embarrassingly Parallel" applications; those that do

little or no communications between computations. Users in practice often use

applications which follow closer to the worst-case PRAM simulations assump-

tions; that each processor will frequently communicate remotely. Hence a large

discrepancy often exists between what the purchaser of a multiprocessor expects

in terms of performance, and what is regularly achieved on typical applications.

We now consider how efficient fat mesh support for shared memory might help to

reduce this discrepancy.

Figures 8-2 and 8-3 represent hypothetical performance curves for multipro-

cessors in various situations. The upper line in figure 8-2 shows peak performance

Chapter 8. Conclusions
	 106

Performance of n-thread Machines
10000

Inefficient Peak -.--
Sustained Fat RinD-4--

Inefficient Worst Cafe -B--

1000

a,
C)
C
CO

CD 	100

(a
CD
cc

10

ii 	
10 	 100 	 1000 	 10000

Number of PRAM Threads

Figure 8-2: Two Dimensional Mesh Performance as Function of n.

for an n processor two-dimensional mesh. Again, this corresponds to fully local

computations, and performance is designated in units of multiples of uniprocessor

performance. Naturally this curve has a slope of one, as each processor is defined

as running at near peak performance. If, instead, we consider sustainable per-

formance of an inefficient multiprocessor by assuming that each processor will be

routing messages a distance of 0(diameter) away on each step, then this corres-

ponds to the lower inefficient worst case curve. In practice, the performance of

virtually any application will fall between or on these two lines, depending on

the type of communications patterns used. It is expected that performance will

typically fall well below the peak performance curve. However, arguably more

detrimental to the practical use of parallel computers, is the fact that it is rarely

known where between these two curves the performance of any one application

will lie, until that application has been actually run on the machine. This clearly

hinders any a priori analysis as to the suitability of parallel computing for a given

Chapter 8. Conclusions 	
107

set of applications, and is an impediment to the uptake of parallel computing on

the whole.

The middle line corresponds to the sustained performance expected from a

p processor fat mesh supporting the same number of threads of execution. The

fact that this line is above the line for worst case performance of the inefficient

machine is good news. However, even more important is the fact that virtually all

applications will see performance which lands on the curve shown, and this is true

whether they are embarrassingly parallel applications or make frequent accesses

to shared-memory. Users of an optimally efficient PRAM simulation, such as

those provided on the fat meshes and fat ring, can trivially estimate the practical

performance of their applications by simply counting the number of PRAM steps

to be simulated. Our focus on the PRAM model has benefitted us by its worst

case communications assumptions, and use of multithreading has allowed us to

improve our performance somewhat beyond the worst case, while still maintaining

an emphasis on sustainable performance.

Note that we are now comparing architectures in terms of the number of exe-

cution threads they support. If we instead compare them in terms of performance

as a function of processor number, then naturally the efficient simulations will

show the same characteristics as the peak performance curves; they will have a

slope of one, as the processors have little or no idle time. This situation is shown

in figure 8-3.

8.3 Concurrent Access

Most PRAM simulations that support EREW access are also extended to support

CRCW access. In fact, it has become common to extend simulations to allow

concurrent access by simply pointing out that, in a O(log n) time inefficient sim-

ulation, one simple needs an additional O(log n) cycle pre and post processing

Chapter 8. Conclusions

10000

1000

a)
0
C (a
E

100

(a
OD a:

10

Performance of p-processor Machines

Inefficient Peak e—
Sustained Fat Rin9e-+---

Inefficient Worst Cae -0--

.0

ii
10 	 100 	 1000

	
10000

Number of Physical Processors

Figure 8-3: Two Dimensional Mesh Performance as Function of p.

phase, and in this way all concurrent access may be reduced to EREW [Upfal and

Wigderson 1987, Karlin and Upfal 1986]. Additionally, many authors have argued

for some form of equivalence between the various conflict resolution strategies for

CRCW models, as all can be supported in O(log n) time on an MPC. On the

whole these results have served to down play the difference between concurrent

and exclusive access models, and to suggest that any hardware supporting one

will be able to support the other.

The results of this thesis contradict this suggestion. We have described the

difficulties in providing an optimally efficient CRCW simulation on a bounded de-

gree network without combining, despite the fact that such an EREW simulation

is relatively easy. In this sense the task of providing optimally efficient simulations

provides a form of separation of the two PRAM models. In [Kruskal et al. 19901

a hierarchy of complexity classes are suggested for use in parallel computing. In

particular, problems which may be solved efficiently, i.e. E = 0(1), are considered

as a different class from those that can only be solved with E < 1. While effi-

Chapter 8. Conclusions 	
109

cient EREW simulations fall clearly into the class of efficiently solvable problems,

solving the problem of CRCW simulation efficiently is a difficult task, particularly

without the use of a combining networks or special purpose sorting algorithms.

This situation is displayed in figure 8-4. Any problem which is in the class

of efficient parallel solutions will exist in the innermost class, but also will be

contained within the class of inefficient solutions, as an inefficient solution to any

such problem may be trivially found. The figure shows the problem of simulating

concurrent access through use of a general sorting routine as falling only into the

inefficient class of problems. We consider it an open problem whether or not there

exists a special purpose 0(n) steps sorting algorithm which would allow CRCW

simulations to be provided with optimal efficiency on bounded degree networks

without combining.

We hope that these ideas will serve to isolate the requirements for a CRCW

simulation, and similarly provide insight into the costs and benefits of the two

models. An interesting subject for further investigation would be an attempt to

define in a general sense just what can be expected from a simulation that depends

on hardware CRCW combining, though it is beyond the scope of this thesis.

8.4 Theory versus Practice in Architecture

It is hoped that the theoretical results of this thesis will have tangible implications

for the practical construction and use of parallel computers. However, it is an open

question just how faithful an implementation of theoretical ideas needs to be in

order to be useful. Though we desire to only make theoretical assumptions that

may be instituted in a practical sense, this desire is counterbalanced by the need

to provide a simple enough theoretical structure to allow progress to be made.

An example of this tradeoff can be seen in the area of synchronization. The

PRAM model is consistently assumed to be a synchronous model, whether it

Chapter 8. Conclusions
	 110

CRCW simulations that
use general sorting

EREW simi

Efficient Solutions

roblems with Inefficient Solutions

Figure 8-4: Simulation Complexity Classes.

is assumed to be a MIMD model, or strictly SIMD. Without this assumption,

much that is easy on the model becomes difficult, and progress slows considerably.

E.g., simply defining the meaning of one machine cycle in the context of a fully

asynchronous MIMD multiprocessor requires substantial work [Cole and Zajicek

19901. On the other hand, it is also clear that providing hardware support to ensure

that a MIMD multiprocessor executes its instruction in synchronous lock-step with

all other processors is a significant hardware overhead, which in practice would

likely have substantial performance penalties. Much practical work in shared

memory support now addresses the problem of just how much synchronization

needs to take place, and how to reduce that level as much as possible [Harris

and Topham 1994a, Gharachorloo et al. 1992]. Therefore we acknowledge that

synchronization is important for the utility of the PRAM model, but perhaps

Chapter 8. Conclusions 	 111

implementations are better off using restricted synchronization, as suggested by

the practical literature.

Another questionable assumption is that of context switch time for such a

multithreaded simulation. It is perhaps overly optimistic to assume that the flow of

control can move from one thread of execution to another in one, or even a constant

number, of cycles. Given the number of context switches we are assuming, even

a small degree of overhead may have substantial performance penalties. This fact

was also noted in [Bilardi and Preparata 1992]. Such penalties are considered from

a practical perspective in [Boothe and Ranade 1992], where it is suggested that

giving a thread control as long as possible, rather than switching each cycle, will

provide improved performance. However, again we note that from a theoretical

perspective, such program dependent scheduling techniques make generalizations

difficult to apply. We also note that various practical research efforts have carried

on with the fine grain scheduling approach we have considered, including that

discussed in [Alverson et al. 19901.

In addition to performance issues, there are various other issues that are neg-

lected in our high level consideration of multithreading. In practice, each thread

has a substantial amount of state, which must be stored in the form of registers

and pointers, each of which takes up VLSI area, and hence adds cost. Additionally,

the added concurrency implicit in the use of multithreading depends on the lack

of data dependencies between threads which are running in parallel, particularly

if any asynchrony is presnt in the system. In such a working system the burden

of proof as to such a lack of dependencies would fall upon the compiler, and hence

present an added software cost to the designers and builders of such a compiler.

However, given these practical problems we consider theoretical tools worth-

while and productive, particularly given the lack of fundamentally sound alternat-

ives. Therefore we advocate a perspective based on compromise; that theoretical

assumptions should be made simple enough to allow swift progress within that

framework, but such assumptions should only be implemented in practice if they

Chapter 8. Conclusions 	 112

are not exorbitantly expensive. This, of course, allows for the possibility that

theoretical performance will be substantially higher than practical performance,

based on some hardware conflicts which appear once strict assumptions have been

relaxed. However, it appears this middle ground is a necessary evil when mixing

theory with practice.

8.5 Future Work

Many possible extensions to this work suggest themselves. The first of which is

addressing the issue of how easy it is in VLSI to layout a fat ring or fat mesh. In

the thesis we have focused on addressing the question of how a mesh and ring can

support an efficient simulation, rather than asking the question of whether the

VLSI area required for such an augmented network would be a justified expense.

Despite this oversight, we hope that one could show that the overall area would

be wisely spent on a fat mesh or fat ring. Intuitively we expect such networks

to be easily amenable to the two or three dimensional requirements of standard

VLSI models, however, to prove this for certain requires more work. Ideally if one

were to pursue this topic it would result in a comparison of the VLSI area required

for a p processor fat mesh with that required for a n processor non-multithreaded

mesh. We would like to show that the area requirements are similar, or perhaps

that, given the fact that p < n that such a fat mesh actually requires less silicon

area than the n processor mesh. It would likely be relatively easy to show that

the layout of a fat mesh is simpler than a hypercube, which is inherently difficult

to layout in two or three dimensions. Though we would not expect a fat mesh to

constitute a universal network, we would expect similar analysis as appeared in

[Leiserson 1985] for universal networks to bear interesting fruit.

More and more of the focus of the high performance computing industry is on

reducing the price of large scale multiprocessors. Ideally a consideration of VLSI

Chapter 8. Conclusions 	 113

layout issues would eventually lend itself to cost analysis, similar to that presented

in [Ranade et al. 19881. We consider our belief that multithreaded machines can

provide more performance per dollar than their non-multithreaded counterparts

as an important assumption that requires further consideration.

Along the lines of the context switching discussion above, we would also be in-

terested in providing a programming model such that users with a clear knowledge

of how often a context switch is necessary to hide latency, could receive benefits in

the form of improved performance or lower bandwidth requirements. This would

be moving towards the model of [Valiant 1990b], but would also provide an inter-

esting theoretical analogy to the problems of programming real multiprocessors

with weakly consistent memory models [Gharachorloo et al. 1992].

Bibliography

[Aggarwal et al. 1990] A. AGGARWAL, A. CHANDRA AND M. SNIR, 1990. Corn-

munication Complexity of PRAMs. Theoretical Computer Science,

No. 71, pp. 3-28.

[Ajtai et al. 19831 M. AJTAI, J. KOMLOS, AND E. SzEMEREDI. Sorting in C

log n parallel steps. Combinatorica, Vol. 6, No. 2, pp. 83-96.

[Akl 1989a] 	S.G. AKL, 1989. On The Power of Concurrent Memory Access.

Computing and Information, pp. 49-55. Elsevier Science Publishers,

R. Janickyi and W. W. Koczkodaj editors.

[Aki 1989b] 	S.G.AKL, 1989. The Design and Analysis of Parallel Algorithms.

Prentice-Hall Publishers.

[Aleliunas 19821 R. ALELIUNAS, 1982. Randomized parallel communication. 1st

Annual Symp. on Principles of Distributed Computing, pp. 60-72.

[Alt et al. 19871 H. ALT, T. HAGERUP, K. MEHLHORN, AND F. P. PRE-

PARATA, 1987. Deterministic Simulation of Idealized Parallel Com-

puters on More Realistic Ones. SIAM Journal of Computing, Vol.

16, No. 5, pp. 808-835.

[Alon 1986] 	N. AL0N, 1986. Eigenvalues and Expanders. Combinatorica, Vol.

6, No. 2, pp. 83-96.

114

Bibliography 	 115

[Alverson et al. 1990] R. ALvERSON, D. CALLAHAN, D. CUMMINGS, B.

K0BLENZ, A. PORTERFIELD, AND B. SMITH, 1990. The Tera

Computer System. Proc. International Conf. on Supercomputing,

IEEE Press, pp. 1-6.

[Arora et al. 1990] S. AR0RA, T. LEIGHTCN, AND B. MAGGS, 1990 On-line

Algorithms for Path Selection in a Nonbiocking Network. Proc.

22th ACM Symp. on Theory of Computing., pp. 149-158.

[Aumann and Schuster 19911 Y. AUMANN AND A. SHuSTER, 1991. Improved

Memory Utilization in Deterministic PRAM Simulation. Journal

of Parallel and Distributed Computing, Vol. 12, pp. 146-151.

[Batcher 1968] K. E. BATCHER, 1968. Sorting Networks and their Applications.

Proc. AFIPS Spring Joint Computer Conference, pp. 307-314.

[Bilardi and Preparata 1992] G. BILARDI AND F. PREPARATA, 1992. Hori-

zons of Parallel Computations.. Proc. of International Conference

for 25th Anniversary of INRIA, Bensoussan, Verjus, Eds., Paris,

France.

[Bisseling and McColl 19941 R. BISSELING AND W. McC0LL, 1994. Scientific

Computing on Bulk Synchronous Parallel Architectures. Proc. of

18th IFIP World Computer Congress, Elsevier Publishing.

[Boothe and Ranade 1992] B. BOOTHE AND A. RANADE, 1992. Improved Mul-

tithreading Techniques for Hiding Communications Latency in

Multiprocessors. Proc. of International Symp. on Computer Ar-

chitecture.

[Borodin and Hoperoft 19821 A.B0R0DIN AND J.E.HOPCROFT, 1982. Routing,

Merging and Sorting on Parallel Models of Computation. Proc. 14th

ACM Symp. on Theory of Computing.

116
Bibliography

[Carter and Wegman 19791 J. L. CARTER AND M. N. WEGMAN, 1979. Uni-

versal Classes of Hash Functions. Journal of Computer and System

Sciences, Vol. 18, PP. 143-154.

[Chin and McColl 19941 A. CHIN AND W. F. M000LL, 1994 Virtual Shared

Memory: Algorithms and Complexity. Information and Computa-

tion, V. 113, pp. 199-219.

[Cook 1984] STEPHEN A. COOK, 1984. A Taxonomy of Problems with Fast

Parallel Algorithms. Proc. 1983 International FCT Conference,

1983.

[Cole 1988] 	R. COLE, 1988 Parallel Merge Sort. SIAM Journal of Computing,

Vol. 17, No. 4, pp. 770-784.

[Cole and Zajicek 19901 R. COLE AND 0. ZAJICEK, 1990. The APRAM: Incor-

porating Asynchrony into the PRAM Model. Proc. of 1st Symp. on

Parallel Algorithms and Architectures.

[Culler et al. 19931 D. CULLER, R. KARP, D. PATTERSON, A. SAILAY, K.

SCHAUSER, E. SANTOS, R. SUBRAMONIAN AND T. VON EICKEN,

1993 LogP: Towards a Realistic Model of Parallel Computation.

Proc. 4th Symp. on Principles and Practice of Parallel Program-

ming, ACM Press.

[Dietzfelbinger and Meyer auf der Heide 1990] M.DIETZFELBINGER AND F.

MEYER AUF DER HEIDE, 1990. How to Distribute a Dictionary in

a Complete Network. Proc. 22nd Symp. on Theory of Computing.

[Dietzfelbinger and Meyer aiif der Heide 19931 M.DIETZFELBINGER

AND F. MEYER AUF DER HEIDE, 1993. Simple, Efficient Shared

Memory Simulations. Proc. 5th Symp. on Parallel Algorithms and

Architectures.

Bibliography 	 117

[Engelman and Keller 19931 C. ENGELMAN AND J. KELLER, 1993. Simulation-

based Comparison of Hash Functions for Emulated Shared Memory.

Proc. of Symp. on Parallel Architectures and Languages Europe,

Lecture Notes in Computer Science number 694.

[Fortune and Wyllie 19781 S. FORTUNE AND J. WYLLIE, 1978. Parallelism in

Random Access Machines. Proc. of 10th Symp. on Theory of Com-

puting, pp. 114-118.

[Gerbessiotis and Valiant 19921 A. GERBESSIOTIS AND L. VALIANT, 1992. Dir-

ect Bulk-Synchronous Parallel Algorithms. PROC. OF SCAND-

INAVIAN WORKSHOP ON ALGORITHM THEORY, LNCS Vol. 621,

Springer-Verlag Press.

[Gharachorloo et al. 1992] K. GHARACHORLOO, S. ADvE, A. GUPTA, J. HEN-

NESSY, AND M. HILL. Programming for Different Memory Con-

sistency Models. Journal of Parallel and Distributed Computing,

Vol. 15, 1992.

[Gibbons 19881 A. GIBBONS AND W. RYTTER, 1988. Efficient Parallel Al-

gorithms. Cambridge University Press, Cambridge, 1988.

[Goldschlager 19821 L. M. GOLDSCHLAGER, 1982 A Unified Approach to Models

of Synchronous Parallel Machines. Journal of the ACM, Vol. 29, pp.

1073-1086.

[Harris 1992] T.J. HARRIS. Sorting on Novel Interconnection Networks. Pro-

ceedings of Parallel Numerical Analysis Workshop '92, Edinburgh,

June 1992.

[Harris 19941 T. J. HARRIS, 1994. A Survey of PRAM Simulation Techniques.

ACM Computing Surveys, June 1994, Vol. 36, No. 2, pp. 187-206.

Bibliography
	 118

[Harris and Cole 1993] T.J. HARRIS AND M. I. COLE, 1993. The Parameter-

ized PRAM. Proceedings of the International Workshop on Parallel

and Distributed Processing '93, Sofia, Bulgaria, May 1993, Elsevier

publishing.

[Harris and Topham 1994a] T. J. HARRIS AND N.P.T0PHAM Performance of

Weak Consistency Schemes on the DEC Alpha. Advances in Par-

allel Computing 9: Trends and Applications, G.R. Joubert et al.

Eds, North-Holland publishers, 1994.

[Harris and Topham 1994b] T. J. HARRIS AND N.P.T0PHAM The Use of Cach-

ing in Decoupled Multiprocessors with Shared Memory. Proceedings

of International Workshop on Large Scale Shared Memory Systems,

Cancun, Mexico, April 1994, IEEE Press.

[Harris and Topham 1994c] T. J. HARRIS AND N.P.T0PHAM The Scalability

of Decoupled Multiprocessors. Proceedings of Scalable High Per-

formance Computing Conference, Knoxville, TN, May 1994, IEEE

Press.

[Herley 1989] K. T. HERLEY, 1989. Efficient Simulations of Small Shared

Memories on Bounded Degree Networks. Proc. 30th Symp. on

Foundations of Computer Science, pp. 390-395.

[Herley and Bilardi 1988] K.T. HERLEY AND G. BILARDI, 1988. Determinstic

Simulations of PRAMs on Bounded Degree Networks. Proc. of 26th

Allerton Conference on Commication, Control and Computation,

Monticello, IL.

[Hornick and Preparata 19911 S. W. HORNICK AND F. P. PREPARATA, 1991

Deterministic P-RAM Simulation with Constant Redundancy. In-

formation and Computation, No. 92, pp. 81-96.

Bibliography 	 119

[Kakiamanis et al. 1990] C. KAKLAMANIS, D. KRJZANC AND T. TsANTILAS,

1990. Tight Bounds for Oblivious Routing in the Hypercube. Proc.

of 2nd ACM Symp. on Parallel Algorithms and Architectures, pp.

31-36.

[Karlin and Upfal 19861 A. R. KARLIN AND E. UPFAL. Parallel Hashing - An Ef-

ficient Implementation of Shared Memory. Proc. of the 18th Symp.

on Theory of Computing, pp. 160-168.

[Karp and Ramachandran 1990] RICHARD 	 M.

KARP AND VIJAYA RAACHANDRAN, 1990. Parallel Algorithms

for Shared Memory Machines. Handbook of Theoretical Computer

Science. Elsevier Science Publishers.

[Karp et al. 19921 R. M. KARP, M. LUBY, AND F. MEYER AUF DER HEIDE. Ef-

ficient PRAM Simulation on a Distributed Memory Machine. Proc.

of the 24th Symp. on the Theory of Computing.

[Kendal Square Research 1991] KENDAL SQUARE RESEARCH. Architecture of

the KSR-1. KSR Tech. Report, 170 Tracer Lane, Waltham, MA.

[Krizanc 1991] D. KRIzANC, 1991. Oblivious Routing with Limited Buffer Ca-

pacity. Journal of Computer and System Sciences, Vol. 43, pp. 317-

327.

[Kruskal et al. 1990] C.P. KRUSKAL, L. RUDOLPH, AND M. SNIR, 1990. A

Complexity Theory of Efficient Parallel Algorithms. Theoretica

Computer Science, Vol. 71, pp. 95-132.

[Kucera 1982] L. KUCERA. Parallel Computation and Conflicts in Memory Ac-

cess. Information Processing Letters, Vol. 14, No. 2, pp. 93-96.

Bibliography 	 120

[Kunde 1987] M. KUNDE, 1987. Optimal Sorting on Multi-Dimensionally. Mesh-

Connected Computers. Proc. 4th Symp. on Theoretical Aspects of

Computer Sciences, pp. 408-4-19, Springer-Verlag Press.

[Leighton 1985] F.T.LEIGHTON, 1985. Tight Bounds on the Complexity of Par-

allel Sorting. IEEE Trans. on Computers, Vol. C-34, No. 4, pp.

344-353.

[Leighton 1989] F.T.LEIGHTON, 1989. Expanders might be practical: Fast al-

gorithms for routing around faults on multibutterflies. Proc. 30th

Symp. on Foundations of Computer Science, pp. 384-389.

[Leighton 1992] F.T.LEIGHT0N, 1992 Introduction to Parallel Algorithms and

Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Pub-

ushers, San Mateo, California.

[Leiserson 1985] C.E. LEISERSON, 1985. Fat-trees: Universal Networks for

Hardware- Efficient Supercomputing. IEEE Trans. on Computers,

Vol. C-34, No. 10, pp. 892-901.

[Leppanen 1993] V. LEPPANEN, 1993. PRAM Computation on Mesh Structures.

Research Report R-93-9, Computer Science Department, University

of Turku, Finland.

[Luccio et al. 1988] F. Luccio, A. PEITRACAPRINA, AND G. Pucci, 1988. A

Probabilistic simulation of PRAMs on a bounded Degree Network.

Information Processing Letters, Vol. 28, pp. 141-147.

[Luccio et al. 19901 F. Luccio, A. PEITRACAPRINA, AND G. Pucci, 1990. A

New Scheme for the Deterministic Simulation of PRAMs in VLSI.

Algorithmica, Vol. 5, pp. 529-536.

Bibliography 	 121

[Luccio et al. 1991] F. Luccio, A. PEITRACAPRINA, AND G. PuccI, 1991.

Analysis of Parallel Uniform Hashing. Information Processing Let-

ters, Vol. 37, pp. 67-69.

[Mano 1979] M MANO, 1979. Digital Logic and Computer Design. Prentice-Hall

publishing, Englewood Cliffs, New Jersey.

[Mansour et al. 19901 Y. MANSOUR, N. NISAN AND P. TIwARI, 1990. The

Computational Complexity of Universal Hashing. Proc. of 22nd

Symp. on Theory of Computing, pp. 160-168.

[Matias and Vishkin 19911 Y. MATIAS AND U. VIsHKIN, 1991. Converting High

Probability into Nearly-constant Time - with applications to Par-

allel Hashing. Proc. of 23rd Symp. on Theory of Computing, pp-

307-316.

[McColl 19921 W. F. McC0LL, 1992. General Purpose Parallel Computing.

Proc. 1991 ALCOM Spring School on Parallel Computation, Gib-

bons and Spirakis editors, Cambridge University Press.

[Mehlhorn and Vishkin 19841 K. MEHLHORN AND U. VIsHKIN, 1984. Random-

ized and Deterministic Simulations of PRAMs by Parallel Machines

with Restricted Granularity of Parallel Memories. Acta Informat-

ica, 21:339-374, 1984.

[Meyer auf der Heide and Wigderson] F. MEYER AUF DER HEIDE AND A. WIG-

DERSON, 1987. The Complexity of Parallel Sorting. SIAM Journal

of Computing, Vol. 16, No. 1, pp. 100-107.

[Natvig 19901 L. NATVIG, 1990 Investigating the Practical Valoue of Cole's

O(log n) time CREW PRAM Merge Sort Algorithm. Proc. of 5th

International Symp. on Computer and Information Sciences.

Bibliography
	 122

[Paterson 19871 M.S.PATERsON, 1987. Improved Sorting Networks with

O(log N) Depth. Tech. Report RR 89, University of Warwick.

[Pfister and Norton 1985] G. F. PFIsTER AND V. A. NORTON, 1985. "Hot

Spot" Contention and Combining in Multistage Interconnection

Networks. IEEE Trans. on Computers. Vol. C-34, No. 10.

[Pietracaprina et al. 19941 A. PIETRACAPRINA, G. PUCCI, AND J. SYBEYN,

1994. Constructive Deterministic PRAM Simulation on a Mesh-

Connected Computer. Proc. of 6th Symp. on Parallel Algorithms

and Architectures.

[Pippenger 1984] N. PIPPENGER, 1984 Parallel Communication with Limited

Buffers. 25nd Symp. on Foundations of Computer Science, pp. 127-

136.

[Rabin 19891 M. 0. RABIN, 1989 Efficient Dispersal of Information for Security,

Load Balancing and Fault Tolerance. Journal of the ACM, Vol. 36,

No. 2, pp. 335-348.

[Ranade et al. 19881 A.C.RANADE, S. N. BHATT, AND S. L. JOHNSSON, 1988.

The Fluent Abstract Machine. Fifth MIT Conference on Advanced

Research in VLSI, pp. 71-94.

[Ranade 19911 A.C.RANADE, 1991. How to Emulate Shared Memory. Journal of

Computer and System Sciences, Vol. 42, pp. 307-326.

[Sanz 1988] 	J. L. C. SANZ ED., 1988. Opportunities and Constraints of Par-

allel Computing, IBM workshop, Almaden Research Center, San

Jose, California.

[Schwartz 19801 J. T. SCHWARTZ, 1980. Ultracomputers. ACM Trans. on Pro-

gramming Languages and Systems, Vol. 2, pp. 484-521.

Bibliography 	 123

[Shiloach and Vishkin 19811 Y. SHILbACH AND U. VJsHK1N, 1981. Finding the

maximum, merging, and sorting in a parallel computation model.

Journal of the ACM, Vol. 2, pp. 88-102.

[Sibeyn and Harris 1994] J. SIBEYN AND T. J. HARRIS, 1994. Exploiting Local-

ity in LT-RAM Computations. Proceedings of Forth Scandinavian

Workshop on Algorithm Theory, Aarhus, Denmark, July 1994,

Springer-Verlag LNCS Series.

[Siegel 19891 A. SIEGEL, 1989. On universal classes of fast high performance

hash functions, their time-space tradeoff, and their application.

Proc. 30th Symp. on Foundations of Computer Science, pp. 20-24.

[Smith 19781 B.J. SMITH, 1978. A Pipelined, Shared Resource, MIMD Com-

puter. Proc. of International Conference on Parallel Processing.

[Thomas 1979] R. H. THOMAS, 1979. A majority consensus approach to concur-

rency control for multiple copy databases. ACM Trans. on Database

Systems, page 180.

[Upfal 1984a] E. UPFAL, 1984A. A Probabilistic Relation Between Desirable and

Feasible Models of Parallel Computation. Proc. of 16th Symp. on

the Theory of Computing, pp. 258-265.

[Upfal and Wigderson 1987] E. UPFAL AND A. WIGDERSON, 1987. How to

Share Memory in a Distributed System. Journal of the ACM, pp.

116-127.

[Upfal 1984b] E. UPFAL, 1984B. Efficient Schemes for Parallel Communication.

Journal of the ACM, Vol. 31, No. 3, pp. 507-517.

[Upfal 1989] E. UPFAL. An O(log n) deterministic packet routing scheme. Proc.

21st Symp. on Theory of Computing, pp. 241-250.

Bibliography
	 124

[Vishkin 19821 U. VIsHKIN, 1982. Implementation of Simultaneous Memory Ad-

dress Access in Models That Forbid it. Journal of Algorithms, Vol.

4, pp. 45-50.

[Vishkin 19841 U. VIsHKIN, 1984. A Parallel-Design Distributed-Implementation

(PDDI) General-Purpose Computer. Theoretical Computer Sci-

ence, Vol. 32, pp. 157-172.

[Valiant 1982] L.G. VALIANT, 1982. A scheme for fast parallel communication.

SIAM Journal on Computing, Vol. 11, No. 2, pp. 350-361.

[Valiant 1983] L.G. VALIANT, 1983. Optimality of a two-phase strategy for rout-

ing in interconnection networks. IEEE Trans. on Computers, Vol.

C-32, No. 9, pp. 861-863.

[Valiant 1990a] L.G. VALIANT, 1990A. General Purpose Parallel Architectures.

Handbook of Theoretical Computer Science. Elsevier Science Pub-

ushers.

[Valiant 1990b] L.G. VALIANT, 1990B. A Bridging Model for Parallel Computa-

tion. Communications of the ACM, 33:103-111.

[Valiant and Brebner 19811 L.G. VALIANT AND G. J. BREBNER, 1981. Uni-

versal Schemes for Parallel Communication. Symp. on Theory of

Computing, pp. 263-277

[Weber and Gupta 19891 W. WEBER AND A. GUPTA, 1989. Exploring the Be-

nefits of Multiple Hardware Contexts in a Multiprocessor Archi-

tecture: Preliminary Results. Proc. 16th International Symp. on

Computer Architecture.

