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Abstract 
 

Glucocorticoids (GC) are powerful metabolic hormones with anti-inflammatory 

actions. Despite major side effects they remain widely prescribed therapies. GC 

regulates gene expression through an intracellular receptor (GR), which is a ligand 

activated transcription factor. Macrophages are innate immune cells and major 

targets of GC. Traditionally repression of pro-inflammatory genes in the context of 

an inflammatory stimulus has been considered the primary mode of action of GC in 

macrophages.  

The work described in this thesis has demonstrated that GC act primarily as inducers 

of gene expression in primary macrophages from both mouse and man, but the set of 

induced genes is very different between the two species.  Chromatin 

immunoprecipitation and sequencing (ChIP-seq) in each species using anti-GR 

antibodies revealed candidate enhancers in the vicinity of inducible genes that were 

generally not shared between mouse and man.   The differences in binding were 

correlated with DNA sequence changes at the enhancer sites between the two 

species, that caused gain or loss of predicted GR receptor-binding motifs.   

The mechanism of action of GC was investigated by imaging several different target 

loci using fluorescence in situ hybridisation in macrophage nuclei.  Chromatin at 

specific GC responsive loci was found to decondense within minutes of exposure of 

macrophages to the ligand.  The apparent decondensation was effect was maintained 

for at least 24 hours and was not prevented by inhibitors of transcription.  

The general principles of the GC response were shared between species. However 

the divergence found underlines the caution that must be used when translating 

specific findings from mouse to man. Additionally, the data support a role for GR 

driven changes to chromatin structure in gene regulation in macrophages. 
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Introduction 1 

Chapter 1: Introduction 
 

1.1 Glucocorticoids 
 

1.1.1 Discovery, use and problems 
 

Glucocorticoids (GC) are powerful metabolic hormones with anti-inflammatory 

actions. First isolated and brought to clinical use over 60 years ago (Hench PS, 

Slocumb CH, Polley HF, 1950), they produce dramatic alleviation of inflammation 

in the majority of cases. Their therapeutic impact combined with the efficiency with 

which they can be produced ensures that they remain the most widely prescribed 

anti-inflammatory therapies (Fardet et al., 2011; van Staa et al., 2000).  

GC are synthesised in, and secreted from, the zona fasciculata of the adrenal 

gland from a cholesterol precursor (Figure 1.1). Plasma GC levels fluctuate in a 

diurnal rhythm and are integrated with the autonomic nervous system such that 

release from the adrenals also occurs in response to stress. GC form the efferent limb 

of the hypothalamic-pituitary-adrenal (HPA) axis, a classical hormone feedback loop 

(Figure 1.2) (Nicolaides et al., 2015). Pro-inflammatory cytokines stimulate the HPA 

(Silverman and Sternberg, 2012) and dysregulation of this axis is linked to increased 

morbidity and mortality in humans with severe illness (Annane et al., 2000, 2009; 

Boonen et al., 2013).  

 

 

 



Effects of glucocorticoids in macrophages 

Introduction 2 

 

Figure 1.1 Steroidogenesis 

An overview of steroidogenesis showing the steps in production of GC from 

cholesterol. Also shown are the pathways that produce the related mineralocorticoids, 

estrogens and androgens. White highlights indicate changed moieties after each 

reaction. Image is in the public domain (Häggström, 2014). 
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Figure 1.2 The hypothalamic-pituitary-adrenal axis 

Schematic diagram illustrating pathways resulting in secretion and feedback control 

of GC through the HPA axis. CRH = corticotrophin releasing hormone, ACTH = 

adrenocorticotrophic hormone, GC = glucocorticoids, predominantly cortisol in man. 

Pro-inflammatory cytokines include for example Tumour Necrosis Factor alpha 

(TNFα), Interleukin 6 (IL6). 

 

Physiological GC have wide ranging effects, which act to maintain 

homeostasis, for example in intermediary metabolism, fluid balance, bone 

metabolism, psychology, development and the cell cycle (Nicolaides et al., 

2015).When exogenous GC are given as therapy it necessarily follows that they can 

GC
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produce a litany of side effects (Table 1.1) making their longevity in the clinic all the 

more remarkable. The corollary of their many functions is that they have clinical 

efficacy in many situations that are not primarily inflammatory, from analgesia and 

anti-emesis to anti-cancer chemotherapy. Despite extensive investigation of the 

actions of GC, it remains the case that an alternative with equivalent efficacy but 

reduced side effects has not yet been developed. It may be argued that this is in part 

because our knowledge of the mechanisms by which GC act remains incomplete. 
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Table 1.1 Side effects of glucocorticoid therapy 

Eye increased risk of cataracts 
 increased risk of glaucoma 
Central nervous system mood disorders 
 psychosis 
 memory impairment 
 increased risk of stroke 
Cardiovascular atherosclerosis 
 hypertension 
 heart failure 
 ischaemic heart disease 
Gastrointestinal gastritis 
 ulcers 
Immune immunosuppression 
 neutrophilia 
Metabolic fat redistribution (truncal obesity) 
 insulin resistance 
 raised fasting glucose 
Renal fluid retention 
Genito-urinary menstrual irregularity 
Musculoskeletal osteoporosis 
 avascular necrosis 
 growth impairment in children 
 muscle weakness 
Skin thinning 
 purpura 
 raised incidence of skin cancers 
 striae 
 hypertrichosis 
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1.1.2 Towards a mechanism for glucocorticoid action 
 

Highly lipid soluble (Figure 1.1,Figure 1.4) GC diffuse freely into cells. Intracellular 

levels of active GC are regulated by 11β-hydroxysteroid dehydrogenase enzymes and 

these can modulate inflammation (Chapman et al., 2006; Hadoke et al., 2013). Inside 

the cell GC act via an intracellular receptor (GR), which has the general structure 

common to receptors for other steroidal hormones such as androgens and 

progesterone (Oakley and Cidlowski, 2011) (Figure 1.3). GR is produced from a 

single gene in all species examined (Lu and Cidlowski, 2004) and has two main two 

isoforms GRα and GRβ produced by alternate splicing (Hollenberg et al., 1985; 

Oakley and Cidlowski, 2011), the major difference being that GRα binds ligand and 

induces expression of GC sensitive reporter genes whilst GRβ does neither (Lu and 

Cidlowski, 2004). It has become clear that GRβ is likely to have a role in regulating 

GC sensitivity (Gross and Cidlowski, 2008), but it does not respond directly to GC, 

rather it acts indirectly in balance with GRα. This thesis is focused on relatively 

acute responses to GC therefore the abbreviation GR is used to mean GRα unless 

stated otherwise. 
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Figure 1.3 Schematic diagram of the glucocorticoid receptor 

The main domains of the glucocorticoid receptor are shown in grey. Red bars 

indicate regions with identified roles. The position of the mutant A458T is given, 

(see text). NTD = N-terminal domain, DBD = DNA binding domain, H = hinge 

region, LBD = ligand binding domain. AF-1 and AF-2 = Activator Function 1 & 2 

involved in interactions with other factors. Dim = dimerization. Chaperone = domain 

interacts with GR chaperone proteins such as HSP90. Small figures represent the 

amino acid position. 

 

In the non-stimulated state GR is held in the cytoplasm bound to a chaperone 

complex, which is involved in receptor maturation and modulates ligand affinity. 

Components of the chaperone complex include heat shock proteins (40, 70 and 90), 

p23 and the immunophilins FKBP5 or FKBP4 (Oakley and Cidlowski, 2011; 

Vandevyver et al., 2012). Ligand binding results in conformational changes in GR 

and a switch from FKBP5 to FKBP4 binding. FKBP4 interacts actively with the 

cytoskeleton, via the ATP utilising motor protein dynein, increases the affinity of GR 

for GC and is necessary for efficient GR signalling (Wochnik et al., 2005). 

Conversely, high levels of FKBP5 reduce the binding affinity of GR for GC and have 

been associated with the glucocorticoid resistance observed in some new world 

primates (Denny et al., 2000). Binding of GC also exposes nuclear localisation 

signals and the receptor, assisted by the chaperone complex, translocates rapidly to 

NTD DBD H LBD

AF-1

Dim Dim

Chaperone

AF-2

A458T

1 421 486 528 777
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the nucleus (Vandevyver et al., 2012). FKBP4 and FKBP5 can modulate the 

interaction of GR with both ligand, other chaperones and active transport along the 

cytoskeleton and thus can regulate GC sensitivity at several levels (Jääskeläinen et 

al., 2011; Vandevyver et al., 2012). 

Many modifications of natural GC have produced molecules with differing 

pharmacology. For example, the widely-studied synthetic glucocorticoid,  

dexamethasone is modified at 3 positions and has higher binding affinity for GR and 

minimal affinity for mineralocorticoid receptor (Figure 1.4). 

 

 

Figure 1.4 Structures of cortisol and dexamethasone 

Comparison of the 2D structures of cortisol, the major GC in humans and the 

commonly used synthetic GC dexamethasone. Differences are highlighted in blue, 

these lead to higher affinity for GR but minimal affinity for mineralocorticoid 

receptor (MR). 

 

 Nuclear GR can bind directly to DNA, classically as a homo-dimer (Nixon et 

al., 2013) recognising a Glucocorticoid Responsive Element (GRE). The GRE was 

identified initially from study of the promoter region of the tyrosine amino 

transferase gene and forms an inverted repeat of 6 base pairs, separated by a 3 base 

pair spacer (AGAACAnnnTGTTCT) (Strahle et al., 1987). Studies of genome wide 
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GR binding have shown that the consensus GRE motif is not always strictly required 

and substantial degeneracy may be tolerated (John et al., 2011; Reddy et al., 2009).  

GR also acts indirectly by binding other transcription factors such as NFκB 

and AP-1 (Ratman et al., 2013; Uhlenhaut et al., 2013) as well as by recruiting 

coregulators, for example GRIP1 (Lonard and O’Malley, 2012; Rogatsky et al., 

2002). Direct GR-DNA binding has been reported to occur at distal regulatory 

elements (enhancers), closer to induced than to repressed genes (Reddy et al., 2009). 

Binding is dynamic, with visualized occupancy times in the order of seconds 

(McNally et al., 2000; Voss et al., 2011) with equally dynamic effects on 

downstream transcription (Stavreva et al., 2009). Ligand and DNA binding events 

allosterically modulate the action of GR (Meijsing et al., 2009; Watson et al., 2013). 

The favoured model of gene repression by GR is interaction with other factors as 

described above – termed ‘transrepression’. An alternative mode of gene repression 

by GR has also been described via negative GR response elements (nGRE). The 

nGRE has the form CTCC(n)0-2GGAGA, where (n)0-2 indicates flexibility in 

spacing (Hudson et al., 2013; Surjit et al., 2011) and is thus distinct from the 

consensus GR binding elements (GRE). Binding at nGRE is monomeric on opposite 

DNA strands(Hudson et al., 2013). Repression is mediated by recruitment of co-

repressors nuclear receptor compressor (NCoR) and silencing mediator of retinoic 

acid and thyroid hormone receptor (SMRT) and histone deacetylases (Surjit et al., 

2011). 

 Non genomic mechanisms such as non specific membrane interactions and 

cytosolic or membrane GR may have a role in the response to GC (Stahn and 

Buttgereit, 2008). This thesis is concerned with the genomic effects therefore the 

non-genomic actions will not be explored further here. 
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1.1.3 The role of GR dimerization and the ‘dissociated’ 
glucocorticoid 

 

The ideal anti-inflammatory agent acting via GR would dissociate the anti-

inflammatory and metabolic effects and thereby eliminate the side effects listed in 

Table 1.1. In theory, some effects of GR could be retained in a receptor that did not 

bind directly to DNA, but bound instead to other transcription factors (Ratman et al., 

2013).  A GR mutant thought to be dimerization incompetent and hence unable to 

bind canonical GRE, A458T (human, equivalent to A465T mouse, A477T rat) 

(GRdim) (Figure 1.3) has been identified, in which gene induction was ablated, but 

restraint of a pro-inflammatory stimulus was retained (Reichardt et al., 2001).  This 

opened the possibility of achieving the desired dissociation of GC’s beneficial and 

deleterious effects by activating GR without inducing dimer formation. However, 

subsequent studies indicated that dimerization deficient mutants retain the ability to 

induce gene expression (Frijters et al., 2010) and demonstrated homo and hetero 

dimer formation between GRdim and GRwt (Frijters et al., 2010; Presman et al., 2014).  

Possible explanations for the residual stimulatory activity include monomer driven 

induction, atypical hetero- or head to head dimerization (Nixon et al., 2013; Schiller 

et al., 2014).  

The equivalent rat GR dimerization mutation, A477T, led to altered DNA 

binding kinetics and transcriptional output when expressed in human U2OS 

osteosarcoma cells (Watson et al., 2013). The A477T mutant GR bound with lower 

affinity than wild type, which was attributed to reduced co-operativity since 

monomer affinities were comparable between mutant and wild type. The response to 

GC in cells expressing the mutant receptor was altered, with some genes more 

responsive, some less and some unchanged (Schiller et al., 2014; Watson et al., 

2013). Genes that were less responsive to the mutant receptor were enriched for local 

GR binding in wild type whilst those that were more responsive to the mutant 

receptor were more likely to have local GR bound in the mutant condition (Schiller 

et al., 2014). A double mutant of GRdim and a substitution in the ligand binding 
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domain, I634A, did appear to significantly reduce dimerization, but both gene 

induction and repression were still possible (Presman et al., 2014). 

Based upon these published findings, it appears unlikely that a therapy that 

activates GR but prevents dimerization will be able to cleanly dissociate the anti-

inflammatory and metabolic effects of GC. Greater understanding of the modes by 

which GR acts in a native context may allow fine-tuning of ligands to produce the 

same outcome. 

 

1.2 Chromatin and the control of gene expression 
 

1.2.1 Chromatin 
 

Chromatin is the name given to the complex of DNA and protein that is 

present in eukaryotic nuclei.   It is formed from units, called nucleosomes, of 

approximately 146 base pairs of DNA sequence wrapped around an octamer of 

histone proteins, H2A, H2B, H3 and H4 (Luger et al., 1997). Lower abundance 

variants of core histones are present such as H2A.Z, which is enriched in 

nucleosomes flanking the transcription start site and at other sites involved in gene 

regulation (Talbert and Henikoff, 2010). Histone proteins undergo many post-

translational modifications, which are associated with gene regulation and chromatin 

structure. For example acetylation of histone N-terminal tails by histone acetyl 

transferases (HATs) is associated with transcriptional activation, via charge 

neutralisation and by providing docking sites for bromodomain containing 

transcriptional regulators factors (Lee et al., 2010). Similarly trimethylation of 

histone 3 at lysine 4 (H3K4me3) by histone methyl transferases (HMTs) of the 

COMPASS (complex of proteins associated with Set1) family, is associated with 

active gene promoters (Shilatifard, 2006). These marks are dynamic; acetylation can 

be removed by histone deacetylases (HDACs) and lysine histone methylation can be 

removed by demethylases. Combinations of modifications occur within a given locus 
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providing an additional layer of regulatory information on top of the underlying 

sequence (Lee et al., 2010; Smith and Shilatifard, 2010).  

Nucleosomes are linked by spans of DNA with the linker histone H1 

associated, which has a role in both nucleosome positioning and higher order 

chromatin structure. In turn this higher order structure has a regulatory effect on 

DNA-protein, hence transcription factor, interactions (Li and Reinberg, 2011). 

Although gene dense regions are enriched in open chromatin, there is not a simple 

relationship between density of folding and activity; many inactive genes are found 

in open regions and active genes from gene poor regions may be found in condensed 

chromatin (Gilbert et al., 2004).  

Remodelling of chromatin occurs via the action of ATP-dependent 

remodelling complexes.  In eukaryotes there are 4 classes; switching 

defective/sucrose non fermenting (SWI/SNF), imitation switch (ISWI), 

chromodomain helicase DNA binding (CHD) and inositol requiring 80 (INO80) 

(Clapier and Cairns, 2009). Remodellers use the energy of ATP hydrolysis to change 

the state of chromatin by moving, ejecting or restructuring the nucleosome and thus 

enable DNA replication, translation and repair (Clapier and Cairns, 2009).  

 

1.2.2 Long range control of gene regulation 
 

1.2.2.1 Distal elements regulate transcription and have characteristic 
features 

 

Transcriptional output for a given gene is the result of integration of all 

regulatory influences and begins from promoter regions that overlap the transcription 

start site (TSS) for each gene (Lenhard et al., 2012). The pre initiation complex (PIC) 

docks at promoters; this contains general transcription factors and DNA dependent 

RNA polymerase II (RNAPII) which then transcribes the sequence. Elements distant 

from this core promoter region play an essential role in providing the complexity and 
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specificity in gene regulation that is required to form complex organisms (Levine, 

2010). Control of transcription by a specific DNA sequence from a distal site was 

was first demonstrated using a part of an animal virus, SV40, to drive β-globin 

transcription (Banerji et al., 1981). The sequence of the distal site, the SV40 

enhancer, consisting of two 72bp repeats, enhanced expression when placed up or 

downstream of the gene in either orientation (Banerji et al., 1981). It was described 

as an enhancer due to its positive effect on transcription and was later shown to bind 

multiple transcription factors such as AP-1 (Lee et al., 1987). Combinatorial binding 

of transcription factors is now know to be a general property of enhancers (Glass and 

Ogawa, 2006; Levine, 2010; Métivier et al., 2003; Villar et al., 2014).  

Other features of enhancers have also now been described. These include 

sequence conservation (Frazer et al., 2003), binding of co-activators, conserved 

patterns of histone modifications, nuclease sensitivity, and bi-directional 

transcription.  

Co-activators bind to transcription factors, but do not bind DNA or regulate 

transcription directly. The co-activator p300 and its paralogue CREB-binding protein 

(CBP) were initially identified as a binding partner for cAMP-response element 

binding (CREB) (Chrivia et al., 1993) but are now known to interact widely with 

other transcription factors, including steroid receptors(Holmqvist and Mannervik, 

2013).  They have acetyl-transferase activity and can acetylate histones, but also 

have several other domains that facilitate interactions. A combination of p300 and 

histone 3 lysine 4 monomethylation (H3K4me1) marks enhancers (Heintzman et al., 

2007; Visel et al., 2009; Wang et al., 2005). Loss of  MLL3/ MLL4 subtypes of 

mammalian COMPASS leads to loss of H3K4me1 predominantly at enhancers(Hu et 

al., 2013). The location of enhancer marks is cell type specific, reflecting 

transcriptional diversity between tissues (Andersson et al., 2014; Heintzman et al., 

2009). Acetylation of histone 3 lysine 27 (H3K27ac) is reported to mark a proportion 

of active enhancers, and is a modification that can be made by p300 (Heintzman et 

al., 2009; Holmqvist and Mannervik, 2013), whilst acetylation of histone 4 lysine 16 

(H4K16ac) is also found at enhancers in embryonic stem cells (Taylor et al., 2013).  
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Transcription factors that can bind DNA at sites not permissive to other 

transcription factor binding are described as pioneer factors. Recruitment of 

chromatin remodellers by pioneer factor can then result in nucleosome repositioning 

such that the site can bind other factors. For a given cell type the position of these 

sites is determined by a small repertoire of lineage specific transcription factors, for 

example in innate immune cells macrophages the ETS factor PU.1 is dominant 

(below, section 1.3) (Ghisletti and Natoli, 2013; Ghisletti et al., 2010; Heinz et al., 

2010).  

Enrichment for transcription factor binding and depletion of nucleosomes at 

regulatory sites leads to sensitivity to digestion by nucleases (Felsenfeld et al., 1996). 

Enhancer associated histone modifications intersect with areas of increased 

chromatin accessibility (Thurman et al., 2012), have RNAPII bound(De Santa et al., 

2010) and display a signature of bi-directional transcription (Andersson et al., 2014). 

Genome wide maps of DNA elements likely to have regulatory function have now 

been produced across several cell types (Andersson et al., 2014; Bernstein et al., 

2012; Yue et al., 2014). These maps confirm earlier genetic evidence, for example in 

study of the Shh locus (Lettice et al., 2003), that enhancers can lie upstream or 

downstream of their target TSS and many tens or hundreds of kb distant. 

Mediator is a large (30 subunit, >1MDa) co-activator complex(Tsai et al., 

2014). It interacts with RNAPII and multiple transcription factors, including GR, and 

is involved in the expression of a large proportion of genes (Malik and Roeder, 

2010). Mediator binding can be detected at both promoters and enhancers (Kagey et 

al., 2010; Malik and Roeder, 2010). Clusters of enhancers, referred to as super 

enhancers by their descriptors, have been defined in some settings on the basis of the 

intensity of binding of Mediator subunits (Pott and Lieb, 2014).  
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1.2.2.2 Models of long range regulation 
 

There is debate about how distant regulatory sites, such as those bound by 

GR, cause changes in target gene transcription (Pennacchio et al., 2013). One model, 

currently the most prevalent, proposes that the distant element binds activating 

factors and co-activators, such as Mediator (Kagey et al., 2010; Malik and Roeder, 

2010). This then forms a loop to come close to its target promoter, delivering the 

regulatory input required (Figure 1.5A) (Bulger and Groudine, 1999; Krivega and 

Dean, 2012). 
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Figure 1.5 Models of long range control of gene expression 

Simplified diagrams of proposed models of enhancer activity. A Transcription 

factors and the transcription machinery (yellow oval) bind to an enhancer (green 

rectangle). A loop may then form to the target promoter (right), bringing the factors 

required for gene activation to the promoter. Alternatively the transcription 
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machinery may run along the genome to reach the promoter and then activate the 

gene (left). B Recruitment of chromatin modifiers to an enhancer (blue oval) may 

induce a change to the chromatin state from repressive (left) to permissive (right) for 

transcription of a target gene.  
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The presence of loops has been inferred from results from the chromosome 

conformation capture (3C) family of assays. These methods are all based on 

formaldehyde cross-linking of cells, digestion of chromatin and re-ligation of DNA 

followed by reversal of cross-links to leave ligation products that enrich for genomic 

regions that were cross linked (Figure 1.6). These products can be analysed in 

various ways, from PCR to next generation sequencing, but for all interactions are 

inferred from an increase in detectable cross-link formation over background after 

formaldehyde treatment (Dekker et al., 2002; Dixon et al., 2012; Dostie et al., 2006; 

Lieberman-Aiden et al., 2009; Rao et al., 2014). An estimate of background can be 

made by digestion of a bacterial artificial chromosome (BAC) covering the region of 

interest, which is assumed to adopt a conformation lacking higher order structure. 

Interactions that are separated by non-interacting regions are then described as loops 

of chromatin. The critical step in these assays was thought to be proximity ligation 

under conditions of dilute DNA, where intra- rather than inter- molecular ligation 

should be favoured. However, the majority of 3C products actually come from the 

insoluble portion of cross-linked material that is present within intact nuclei 

(Gavrilov et al., 2013). Formaldehyde treatment fixes the global nuclear architecture, 

as measured using fluorescence microscopy, sufficiently to resist the harsh detergent 

treatments in 3C protocols, although there is a more homogenous structure when 

examined by electron microscopy (Gavrilov et al., 2013). A 3C contact reflects a 

combination of the tendency of two regions to cross link, their spatial proximity at 

the point of re-ligation and the mobility of the digested DNA ends. Hence for highly 

formaldehyde cross-linkable loci, such as those containing multiple lysine, 

tryptophan and cysteine residues in the associated proteins, a contact may be 

identified where the physical distance is high (Williamson et al., 2014). 

Formation of a loop requires either an active or energetically favourable 

process, along with a mechanism for specificity. At the beta globin locus it has been 

shown that a loop forms from the locus control region (LCR) and is required for 

normal transcription. In this case it is mediated by a specific transcription factor, 

LDB1, forming a homo-dimer (Deng et al., 2012; Krivega et al., 2014). Dynamic 

higher order structures nucleated on Mediator have been proposed, via its ability to 
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interact with activating factors as well as other factors with roles in chromatin 

organisation like the cohesin complex (Kagey et al., 2010; Malik and Roeder, 2010; 

Phillips-Cremins et al., 2013).  
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Figure 1.6 Principles of chromosome conformation capture 

In chromosome conformation capture formaldehyde is used to cross link DNA and 

protein. This cross-linked material is then digested using a restriction enzyme. 

Ligation of this material prior to reversing cross-links favours formation of intra-

molecular ligation products. When cross-links are reversed interactions between 

pieces of DNA are inferred from the frequency of their ligation products, indicated 

above as ‘Captured interaction’. Red and green lines represent strands of DNA that 

are close together in the condition under study, Black lines = restriction sites that are 

cut by a specific restriction enzyme, Yellow = site of DNA-protein-DNA 

crosslinking. Blue highlights the captured interaction of interest. 
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Transcription factors and the transcription machinery bind to enhancers(De 

Santa et al., 2010). Scanning of RNAPII along the genome from enhancers to 

promoters is an alternative to loop formation (Figure 1.5A). Evidence of increased 

RNAPII in the region between the enhancer and promoter has been observed in a 

study of an androgen receptor responsive enhancer (Wang et al., 2005). There was no 

enrichment for the activating factors recruited to the enhancer and promoter in the 

intervening region. Hence, the observation was consistent with RNAPII scanning 

from enhancer to promoter rather than formation of a large chromatin conglomerate 

including all measured sites. How RNAPII could scan over long distances past other, 

non-regulated, genes is not clear. 

The RNA polymerase machinery is inherently unidirectional (Duttke et al., 

2015) however bidirectional transcription may often be observed (Seila et al., 2008), 

even at promoters. The antisense transcripts initiate from distinct sites on the reverse 

strand with similar sequence content to the main promoter (Duttke et al., 2015). Anti-

sense transcripts are short due to an enrichment for poly-A sequence and are rapidly 

degraded (Ntini et al., 2013). As described above RNAPII binds to enhancers (De 

Santa et al., 2010) and there is bi-directional transcription (Andersson et al., 2014). 

Short RNA molecules, enhancer RNAs (eRNAs), that appear to be functional can be 

produced by enhancer transcription (Gosselin and Glass, 2014; Li et al., 2013). In 

macrophages targeted degradation of eRNAs from the enhancers of Mmp9 and 

Cx3cr1, which are normally repressed by Rev-Erbs nuclear receptors, caused specific 

repression of the target genes (Lam et al., 2013). Expression of eRNAs adjacent to 

responsive genes in oestrogen sensitive cells increases after treatment with 

oestradiol. Interfering with eRNA expression reduces the response of the associated 

gene (Li et al., 2013). In the same study reduced cross-linked interactions were noted 

between enhancers and promoters when the eRNA was knocked down for 2 loci, 

NRIP1 and GREB1. Mediator can interact with eRNAs that are responsive to the 

androgen receptor (AR) (Hsieh et al., 2014) so this may be one mechanism by which 

these structural effects occur. Transcription can precede and facilitate the deposition 

of the histone marks that are used to define enhancers (Kaikkonen et al., 2013). 

Conversely, enhancers can provide a locus from which domains of transcriptionally 
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permissive chromatin expand (Figure 1.5B) (Bulger and Groudine, 2011; Fromm et 

al., 2011). 

 

1.2.2.3 Visualizing chromatin changes during gene regulation 
 

The proximity relationship between genomic loci at the 100kb-1.5Mb scale can 

be assessed by DNA Fluorescence In Situ Hybridisation (DNA FISH) (Yokota et al., 

1995). By this method it is possible to visualise specific sites in the genome by 

fluorescence microscopy, which can then be used to assess chromatin compaction 

(Chambeyron and Bickmore, 2004; Eskeland et al., 2010; Williamson et al., 2012; 

Yokota et al., 1997). Fosmid pairs flanking the locus of interest are selected and 

labelled. These can then be hybridized to paraformaldehyde fixed cells and their 

positions visualized by microscopy. The physical distance between two fosmid 

probes is then measured (Figure 1.7). Less compact chromatin is inferred from larger 

distances for the same genomic length in base pairs. For adherent cells this procedure 

can be done in 3 dimensions (3D) through capture and reconstruction of image stacks 

from cells grown on slides.  
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Figure 1.7 Schematic overview of DNA FISH 

In DNA FISH a probe (Fosmid) with sequence specificity to the genomic site of 

interest is labelled using random cutting and infill with labelled dUTPs (purple filled 

circles). These may be directly linked to fluorochromes or to easily detectable 

haptens e.g. Biotin-dUTP (Label). After fixing the cells of interest on slides the 

labelled probe and nuclear DNA are denatured (Denature) then hybridised at 37° 

(Hybridise). The probes are visualised directly (for directly labelled probes), or 

detected, e.g. for biotin with avidin conjugated to a fluorophore, then visualized 

using fluorescence microscopy (Detect). Combining different labels allows two sites 

to be marked and detected simultaneously with fluorophores that have different 

emission spectra. 

Image adapted from that at 

(http://commons.wikimedia.org/wiki/File:FISH_(Fluorescent_In_Situ_Hybridization.jpg) under the 

under the Creative Commons Attribution-Share Alike 3.0 Unported license. 
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It appears that in 3D FISH key aspects of chromatin conformation are 

preserved (Markaki et al., 2012), but findings between 3C based and FISH based 

assays are not always consistent (Dostie and Bickmore, 2012; Williamson et al., 

2014). For example, the Hox genes are important in patterning during mammalian 

development and have been studied by both FISH and 3C based techniques. When 

inactive, Hox loci adopt a compact state by FISH (Chambeyron and Bickmore, 2004; 

Eskeland et al., 2010; Morey et al., 2007) and have multiple local interactions by 3C 

based methods (Montavon et al., 2011; Williamson et al., 2014). Activation of Hox 

genes is linked to decompaction and looping out of chromosome territories 

(Chambeyron and Bickmore, 2004; Chambeyron et al., 2005; Morey et al., 2007; 

Williamson et al., 2012). Direct comparison of activation of the Hoxd cluster 

demonstrated compatible findings between the two techniques: decompaction by 

FISH and loss of interactions by 5C (Williamson et al., 2014). Absence of part of one 

repressive complex (Polycomb repressive Complex 2, PRC2) showed unfolding by 

FISH across Hoxd and was mirrored by loss of 5C interactions. By contrast loss of 

another repressive complex (Polycomb Repressive complex 1, PRC1) showed 

unfolding by FISH but the 5C contacts were maintained. This may be due to the 

chromatin environment and the ability of the looped out regions to form cross links 

on formaldehyde treatment: the mutant models have different amounts of the amino 

acid residues that are most readily cross linked by formaldehyde (lysine, tryptophan 

and cysteine) at the Hoxd locus (Williamson et al., 2014). As discussed above, all 

ligation products from 3C based assays come from insoluble cross-linked aggregates 

from intact nuclei that have been treated with strong detergent, therefore it is difficult 

to infer chromatin structure from this data (Gavrilov et al., 2013).  

Interestingly, in contrast to the findings and interpretation of Williamson et al. 

(above), a high frequency of detected local interactions at active Hox loci captured 

by 5C in fibroblasts (Wang et al., 2011) and by 4C in mouse embryos (Noordermeer 

et al., 2011, 2014) was interpreted in a different way: they suggest that the active 

locus is more compact.  
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1.2.2.4 Topology associated domains 
 

 High throughput ‘C’ techniques have led to the identification of higher order 

structures termed topology associated domains (TADs) (Dixon et al., 2012). These 

are self-interacting genomic regions of approximately 900kb in size and are reported 

to be largely invariant between cell types and even species, hence they are perhaps 

less likely to change in response to stimulus. Recent work suggests that dynamic 

changes within TADs can be quantitatively linked to regulation of transcription, at 

least at loci involved in X inactivation (Giorgetti et al., 2014).  

Another feature of genome organisation is DNA supercoiling. DNA 

supercoiling occurs when twist is induced in the helix by the passage of RNAPII 

(Villeponteau et al., 1984) resulting in domains of under and over wound DNA 

(Naughton et al., 2013). Domains of under wound DNA correlate to more open 

chromatin and active genes (Naughton et al., 2013) and are also remodelled by the 

activity of RNAPII and topoisomerase I. 

 

1.2.3 GC effects on chromatin 
 

Active chromatin remodelling complexes are involved in gene regulation by GR 

(Engel and Yamamoto, 2011; John et al., 2011; Trotter and Archer, 2007). Much of 

this work has derived from pioneering studies using murine cell lines that have the 

GC responsive Mouse Mammary Tumour Virus (MMTV) integrated in a tandem 

arrays containing 800-1200 GRE (Richard-Foy and Hager, 1987; Zaret and 

Yamamoto, 1984). The ATPase subunit of the SWI/SNF remodelling complex, Brg1, 

has been studied in the context of the GC response. Loading of Brg1 to the MMTV 

array in vitro rapidly follows GR binding (Nagaich et al., 2004) and Brg1 been 

shown to interact dynamically with MMTV in live cells (Johnson et al., 2008). 

Further, in the presence of a dominant negative form of Brg1 a subset of genes had 

reduced, although not ablated, response (John et al., 2011). 
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GR binding is largely constrained by, but also able to remodel the pattern of 

open chromatin measured by nuclease sensitivity (Biddie et al., 2011; Burd and 

Archer, 2013; John et al., 2008, 2011), if only at a minority of GR bound sites. Large 

scale re-organisation of chromatin was not observed in response to GC (Hakim et al., 

2011). Rather, GC acts locally on the background of pre-existing nuclear architecture 

by increasing the frequency of pre-existing regulatory contacts (Hakim et al., 2011). 

At present no studies visualising the dynamics of higher order chromatin responding 

to GC in a primary cell context have been reported. 

 

1.3 Macrophages 
 

1.3.1 Overview and relevance 
 

Macrophages are cells of the innate immune system involved in inflammation and 

tissue repair, as well as normal cell growth and development (Hume, 2008; Wynn et 

al., 2013). They differentiate from precursors under the influence of colony 

stimulating factors CSF1 and GMCSF.   The traditional view is that macrophages 

derive from circulating monocytes and this is certainly the case in large measure 

within inflammatory lesions.  However, in mice at least, there is also a role for local 

self-renewal of tissue macrophages seeded early in development and for proliferation 

of populations of tissue macrophages in response to inflammatory stimuli (Jenkins 

and Hume, 2014; Wynn et al., 2013).  Macrophages are a substantive cell population 

in all tissue, and are particularly focused in areas potentially exposed to injurious 

stimuli and pathogens. Reflecting the pervasive nature of inflammatory processes, a 

role for macrophages has been posited in virtually all medical conditions (Gosselin 

and Glass, 2014; Wynn et al., 2013). 
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1.3.2 Macrophage response to GC 
 

A feature of macrophages is their ability to detect and respond dynamically to 

stimuli. The most intensively studied response is that following exposure to bacterial 

lipopolysaccharide (LPS), a Toll-like receptor 4 agonist which generates a rapid and 

dramatic transcriptional response, producing a cascade of regulated genes both 

induced and repressed (Hume, 2012; Hume and Freeman, 2014). An initial cohort of 

induced genes, including for example TNF-alpha, are regulated at the level of 

elongation by pausing RNAPII (Hargreaves et al., 2009). Later genes are regulated 

by transcriptional regulation directly downstream of the TLR4 signalling cascade, 

through autocrine responses to cytokines produced by the initial response and in a 

cascade of induction or repression by induced transcription factors (Hume, 2012). 

  There is a growing realization that gene regulation from enhancers is critical 

to both specify cell type and define responses to stimuli (Andersson et al., 2014; 

Bernstein et al., 2012; Gosselin et al., 2014; Lavin et al., 2014; Yue et al., 2014). The 

enhancers involved in the LPS response have been mapped in mouse macrophages 

using a combination of H3K4me1 and binding p300 (section 1.2.2) (Ghisletti et al., 

2010). These sites are important for directing the binding of other transcription 

factors(Heinz et al., 2010) and are highly enriched for binding of the lineage defining 

ETS transcription factor PU.1 (Barozzi et al., 2014; Natoli, 2010). A subset of 

inducible enhancers, sites that gain H3K4me1 after a stimulus, has also been shown 

for several stimuli including LPS (Ostuni et al., 2013).  

Macrophages are major targets of GC. They express GR at high levels; in the 

mouse at relatively higher levels than in several other immune cell types (Lattin et 

al., 2008; Wu et al., 2009). Much of the research on therapeutic GC actions has 

focused on gene repression in the context of pro-inflammatory stimuli such as LPS 

(Chinenov et al., 2014; Ogawa et al., 2005; Uhlenhaut et al., 2013). However, 

immune cells such as macrophages also respond directly to GC in the absence of any 

other stimulus with changes in cell survival, proliferation, morphology and 

phagocytosis (Ehrchen et al., 2007; Galon et al., 2002; van de Garde et al., 2014; 
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Varga et al., 2008). GC oppose the actions of the major macrophage growth factor, 

CSF1 (Hume and Gordon, 1984) and can cause monocytopenia (Steer et al., 1997). 

Hence, there are good reasons to understand the direct actions of GC alone as a 

regulator of macrophage function.   

Data for a single time point have been published for mouse bone marrow 

derived macrophages (mBMDM) responding to a high dose of dexamethasone (1uM, 

16h) – a specific ligand for GR (Uhlenhaut et al., 2013). This model serum starved 

and removed CSF1 before treatment and showed a limited number of genes 

responding (32 reaching log2 fold change >1.5). Binding data for GR from chromatin 

immunoprecipitation followed by sequencing was also presented in this study, 

although the stated aim was to capture indirect interactions rather than direct GR-

DNA binding. Dual cross-linking with both formaldehyde and glutaraldehyde 

disuccimide found ~10,000 putative GR interaction sites (Uhlenhaut et al., 2013). 

The interactions detected included many that contained known partner motifs, but 

relatively few that contain a GRE (5% at the peak centre) and hence would be likely 

to directly bind GR. The large number of sites and small number of genes also makes 

regulatory relationships difficult to discern. More recently an early responding gene 

set has been reported in mBMDM where they retained serum and CSF1 (100nM, 1h) 

(Chinenov et al., 2014). Similar to the LPS response (Hume, 2012; Raza et al., 2014), 

a predominance of transcription factors was observed in the early responding genes 

(Chinenov et al., 2014). Single time point data from human monocyte derived 

macrophages (hMDM) differentiated with GMCSF has been reported as part of a 

wider screen of the response to multiple stimuli, but no GR binding data is available 

(Xue et al., 2014). The characterisation of the response to GC in macrophages 

therefore is not yet comprehensive. 
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1.4 Models, conservation and divergence 
 

Model systems necessarily underlie much scientific research. The primary model 

system for mammalian biology is the mouse and a great deal of understanding has 

been gained from its use. This success reflects the experimental tractability of the 

species along with moderate physiological and DNA sequence conservation with 

humans. However it is also clear that there are significant differences between mice 

and men when one examines specific details, quite apart from the obviously 

divergent physiological challenges.  

A comparison of mouse models of inflammatory illness with the corresponding 

human conditions found very limited overlap in the transcriptional response (Seok et 

al., 2013). The are some similarities and parallels if strictly orthologous genes are 

considered, but these are in the minority (Takao and Miyakawa, 2014). The 

differences between mice and men are less surprising when one considers the 

divergence between macrophages of inbred mouse strains responding to 

inflammatory stimuli (Raza et al., 2014; Wells et al., 2003) attributable to turnover of 

binding sites for lineage specific and stimulus specific transcription factors between 

strains (Heinz et al., 2013). The differences may also contribute to costly failures in 

translating therapy for sepsis, severe systemic inflammation, from animal models to 

man (Annane et al., 2013; Kerschen et al., 2007). 

As discussed above (sections 1.2.2, 1.3.2) regulatory sites that lie distant in the 

genome from their target promoters are now recognized as crucial in controlling gene 

transcription (Andersson et al., 2014; Stergachis et al., 2014; Vierstra et al., 2014; 

Yue et al., 2014). Variability of factor binding at these sites can be a source of 

phenotype diversity between species (Villar et al., 2014). This variation can accrue 

rapidly within species and has been fixed in the different inbred mouse strains 

(Stefflova et al., 2013). The pattern of use of these sites is defined by the 

environment in macrophages (Gosselin et al., 2014), with differentiated resident 

macrophages’ enhancer landscapes being reprogrammed when transplanted (Lavin et 

al., 2014). 
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The cis-regulatory landscapes are quite different between mouse and man 

(Stergachis et al., 2014; Vierstra et al., 2014; Yue et al., 2014) and this difference is 

particularly concentrated in sites associated with the immune response (Vierstra et 

al., 2014; Yue et al., 2014). Consistent with this, comparative analysis of 

macrophage gene expression after an inflammatory stimulus has shown that, as 

described above between inbred mouse strains, innate immune responses are very 

different between mouse and man (Schroder et al., 2012). This inter-species 

divergence is likely driven by the evolutionary pressure of host pathogen interactions 

and is due in part to promoter sequence variation (Fairbairn et al., 2011; Schroder et 

al., 2012). 

 Given the roles of GC and macrophages in immunity, as well as the role 

emerging for enhancers in the response to GC, it is plausible that this response may 

also be divergent and that either local (Schroder et al., 2012) or distal (Heinz et al., 

2013) DNA sequence changes may be involved. 
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1.5 Summary 
 

The physiology and pharmacology of GC are important in human and animal health. 

A large body of research has begun to map the pathways by which they have their 

many effects. Predominantly GC act via a nuclear receptor to regulate gene 

expression in a complex way, which may, as our understanding develops further, 

provide therapeutic opportunities. Gene regulation occurs within a complex dynamic 

chromatin environment, which is itself responsive to GC, and involves control by 

distant elements.  

Intimately involved in normal development, health and disease, macrophages 

are major targets for GC, but investigation of the response is less comprehensive than 

that for other stimuli such as LPS. Chromatin organisation at GC responsive loci in 

macrophages has not yet been examined. Study of dynamic responses to other stimuli 

in macrophages has shown evolutionary divergence between species and strains. If 

replicated in the response to GC this may be of clinical relevance. 

 

1.6 Thesis aims 
 

• To describe the response to GC in the most commonly used models of 

macrophage biology, hMDM and mBMDM using global gene expression 

profiling and receptor binding assays. 

• To assess similarity and differences between the two systems and explore the 

possible origins of any differences  

• To determine if there is local chromatin remodelling in response to GC in the 

context of primary macrophages at candidate loci and explore the mechanism. 
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Chapter 2: Methods 
 

2.1 Laboratory procedures 
 

2.1.1 Ethics 
Procedures involving human volunteers were approved by the South East Scotland 

NHS Research Ethics Committee. All volunteers gave informed consent. Animals 

were cared for and managed within the Roslin Institute’s guidelines for animal safety 

and welfare. 

2.1.2 Cell culture  
8-10 week male wild type C57BL/6 mice were culled by cervical dislocation. Bone 

marrow wash flushed from hind limbs and then cultured in RPMI supplemented with 

Penicillin/Streptomycin, Glutamax (Invitrogen), and 10% Foetal Calf Serum for 7 

days in the presence of rhCSF-1 at 104U/ml. Cells were then replated at 1x106 cells 

per ml and treated as indicated.  

 Human peripheral blood monocytes were isolated from blood samples by Ficoll 

gradient separation of buffy coats followed by MACS CD14+ve selection (Milteny). 

The full protocols are available on www.macrophages.com. They were then cultured 

as above for 7 days before being treated as indicated with dexamethasone (Sigma) 

100nM or ethanol vehicle. 

For DNA FISH mBMDM were differentiated as above then replated onto ethanol 

sterilised Superfrost (ThermoFisher) slides. Cells were left overnight to adhere 

before treatment as described. Where indicated transcriptional block was induced by 

4 hours pre-treatment of differentiated mBMDM with 2.5mg/ml α-amanitin (Sigma). 

Slides were washed  briefly in Phosphate Buffered Saline (160mM NaCl, 3mM KCl, 

8mM Na2HPO4, 1mM KH2PO4, from tablets prepared by MRC HGU technical 

services (Thermo), PBS) and fixed for 10 minutes in 4% paraformaldehyde.  Slides 

were then washed 3 times 3 minutes in PBS. Cells were permeabilised by washing in 
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PBS/0.5% TritonX for 5 minutes. After 2 further washes in PBS slides were air dried 

and stored at -80°C. 

2.1.3 RNA extraction and processing 
RNA was prepared using RNeasy column based extraction with on column DNase 

treatment (Qiagen). RNA quality was checked using a 2100 Bioanalyzer (Agilent). 

For RT-qPCR cDNA was prepared using SuperscriptIII (Invitrogen). Relative 

expression was determined using SYBR green on a LightCycler480 (Roche) 

compared with GAPDH as a reference. Primer sequences are given in (Table 2.1). 

For microarrays RNA was prepared using standard Affymetrix protocols and applied 

to the HT-MG430PM (mouse), or HT-U33plusPM (human) chip by Edinburgh 

Genomics.  

For expression analysis BMDM were prepared from 3 mice, treated, extracted and 

applied to the arrays separately (3 x 6 arrays). Four individuals provided donations 

for the hMDM , which were prepared, treated and applied to the arrays separately 

(4x6 arrays). 

2.1.4 Chromatin Immunoprecipitation  
 

Antibodies used for chromatin immunoprecipitation of mouse GR were BuGR2 

(raised against partially purified rat GR) 1µg/106 cells (ThermoFisher / Pierce), and 

normal rabbit IgG sc-2025 (Santa Cruz). For human GR ChIP we used Sigma 

Imprint™ anti-GR (raised against amino acids 304-428 of human GR), 1µg/106 cells 

and mouse IgG (Santa Cruz). 

20ul of Protein A Dynabeads (Invitrogen) per immunoprecipitation (IP) were washed 

once then diluted to 200ul in block solution (1xPBS, 0.5% BSA, +2ul 0.1M PMSF). 

Antibody was added and rotated for 3h at 4°C.  

Cells were washed gently once with PBS then cross-linked in tissue culture plates 

with 1% formaldehyde/RPMI at room temperature for 10 min (mouse) or 7.5min 

(human) and then quenched with 0.125M glycine. Cells were detached by scraping in 



Effects of glucocorticoids in macrophages 

Methods 35 

PBS then spun down at 400g for 5 minutes, resuspended and counted. For mBMDM 

10 million cells per IP were then taken on and lysed for 15 minutes on ice in 1%SDS, 

10mM EDTA, 50mMTris-HCL pH8.1 supplemented with Protease Inhibitors 

(Calbiochem), 1mM DTT and 0.2mM PMSF (Sigma). The solution was diluted in IP 

dilution buffer (0.1% Triton-X100, 2mM EDTA, 150mM NaCl, 20mM Tris-Hcl 

pH8.1) and sonicated using a Soniprep 150 to produce average fragment size 300-

500bp. Chromatin was spun for 10min at 10,000g 4°C then supplemented with 20% 

Triton-X100 to 1% and Bovine Serum Albumin (BSA) (Sigma) to 50µg/ml. Input 

aliquots were removed and stored at -20°. Chromatin was then added to the antibody-

bound Protein A Dynabeads (Life technologies) and rotated overnight at 4°C. Beads 

were washed 3 times for 10 minutes each in 1 - 1% IP dilution buffer, 2 - 1%Triton-

X100/0.1%Na-deoxycholate/0.1%SDS, 50mM Hepes pH7.9, 500mM NaCl, 1mM 

EDTA and 3 - 0.5%Na-deoxycholate/0.5%NP-40, 20mM Tris-HCl pH 8, 1mM 

EDTA, 250mMLiCl. Chromatin was extracted at 37°c for 15min on a vibrating 

platform in 100ul extraction buffer (0.1M NaHCO3, 1%SDS). To reverse crosslinks, 

samples were supplemented to 300mM NaCl, treated with RNaseA (Roche) then 

incubated for ~8h at 65°C. Proteinase K (Genaxxon) was added and samples 

incubated at 55°C for 1h. DNA was purified using the MiniElute PCR purification 

kit (Qiagen). Real-time qPCR analysis to determined percent input bound at known 

GR target loci was carried out on a LightCycler 480 System using SYBR Green 

Master Mix (Roche). Primers used are presented in (Table 2.1). For sequencing ChIP 

DNA was prepared and amplified using Illumina adapters and Tru-Seq multiplex 

primers then sequenced using a HiSeq-2500 by Edinburgh Genomics.  

 For hMDM the same protocol was followed with the following differences. 

Material was prepared from 4 volunteers, treated, fixed for 7.5 minutes and lysed as 

above. It was sonicated to a fragment size of 400-600bp and the chromatin pooled, 

25 million cells in total. This was split into 3 for the IP step and recombined at 

extraction. DNA was then isolated as above, split into 3 aliquots and blunt ended 

with Klenow (Roche), PNK (NEB) and T4 DNA polymerase (Roche). An 

overhanging A base was added using Klenow (-exo) (NEB) and Illumina adapters 

ligated overnight at 16o C with T4 DNA ligase (NEB). The IP samples were 
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recombined after ligation and then split again into 7 aliquots. Libraries were 

amplified from each of these aliquots using Illumina Tru-seq multiplex primers and 

Phusion high-fidelity DNA polymerase (NEB) and the resulting material pooled and 

sequenced by Edinburgh Genomics on a HiSeq-2500.  

Table 2.1 Primer sequences used for expression and ChIP RT-qPCR 

Expression forward reverse 
mouse 

 
  

Fkbp5 GGACCACGCTATGGTTTTGG CTCTTTCACGATGGCAGCCT 
Klf4 CGTTGACTTTGGGGCTCAGG ACGCGAACGTGGAGAAGGAC 
Wee1 CCTCGGATCCCACAAGTGCT TGCTTCACCAGCTCCATTGC 
Ypel5 GGCGCCACTGGTAGAGCATT CCAGTGAGCATGACCCGATCT 
Irf2 GCCGGTGGAACGGATGCGAA CCGCATGCATCCAGGGGATCT 
Dio2 GGGCTGCGCTGTGTCTGGAA GGCCCCATCAGCGGTCTTCT 
Ccl2 CGGCTGGAGCATCCACGTGTT GAGTAGCAGCAGGTGAGTGGGG 
Cdc42ep3 CCTCCGGGCAGAAGCTAGGA GGGTCTTTCCGGAGAGCCAGTTA 
Tlr7 TCCTCCACCAGACCTCTTGATTCCA TCTTCCGTGTCCACATCGAAAACAC 
Cdkn1c ACTGCTGCGGCCAATGCGAA CAGACGTTTGCGCGGGGTCT 
Ednrb AGTGCATGCGCAATGGTCCC GGCCAGTCCTCTGCGAGCAA 
F13a1 AGAGCACCCTCTCAGGAGCACA TTATTGGGCGGGACTGCTCGC 
      
human     
PDK4 TGCCTGTGAGACTCGCCAACA TCCACCAAATCCATCAGGCTCTGT 
CEBPD GACAGCCTCGCTTGGACGCA TCGTAGAAGGGCGCAGGCTC 
MDM2 GGCGTGCCAAGCTTCTCTGTG ACCTGAGTCCGATGATTCCTGCTG 
BCL11A CGCGCGACGGTGTGAAGTTA TGGAGCTCCCAACGGGCCAT 
MXD1 GGATCCGGATGGACAGCATC GTCCGTGCTCTCCACGTCAA 
EHD1 CGTTTGGCAACGCTTTCCTC GGGGGTGTCGATGATGCTG 
ADORA3 TCGCTGTGGACCGATACTTGCG TAGAATGCACCCAGGGAGCCCA 
HMGN4 CCTCGGACGGCCACGAGAC TTCGCAGGTGGCTTGAGCAGT 
CCL4 GCTGCCTTCTGCTCTCCAGC AAAAGCAGCAGGCGGTGGGA 
TLR7 GCTCTGCTCTCTTCAACCAGACCT AGGAAACCATCTAGCCCCAAGGA 
HIF1A GCGGCGCGAACGACAAGAAA TCGCCGAGATCTGGCTGCAT 
DOCK10 GACAACGTTCCCTTGGAGCA CCACCTCCACTGTGGGTTCTGT 
      
DNA - ChIP forward reverse 
mouse 

 
  

Fkbp5 +65kb GCCAAGTTCAGCTGTGCAAT TGCCAGCCACATTCAGAACA 
Dusp1 -27kb GGCTTTGAGCTCACTTCCTG CTGGGTCCACTTTCCCACTA 
Actb promoter CTAGCCACGAGAGAGCGAAG CGCGAGCACAGCTTCTTT 
human     
FKBP5 +88kb TAACCACATCAAGCGAGCTG GCATGGTTTAGGGGTTCTTG 
PER1 +500bp CCAGGGGAAAAGGGAAGGTT TCAGCCCACTTCGGACTAGA 
ACTB 
promoter AGGGCAGTTGCTCTGAAGTC CTGCAGAAGGAGCTCTTGGA 
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2.1.5 Single cell RT-qPCR 
 

This protocol uses the Cells Direct One-Step RT-PCR Kit (Invitrogen). 

Cells were harvested, resuspended in PBS and sorted into wells of a 96 well plate 

using a FACSAria (BD Biosciences) by Roslin Institute imaging services. Three 

wells received 1000 cells, three 100 cells and three 10 cells for reference. The rest of 

the wells received a single cell. Plates were immediately snap frozen on dry ice and 

stored at -80.  

To generate cDNA each well received: 5ul 2x reaction mix, 0.2ul Superscript III 

RT/Platinum Taq mix (with RNaseOUT Ribonuclease inhibitor), 2.5ul primer mix 

containing 20nM of each gene specific primer to be used in the downstream qRT-

PCR assays, 1.3ul nuclease free water (Ambion). The plate was then placed in a G-

Storm PCR machine and amplified using the following conditions: 50°C for 15 

minutes  (cell lysis  and reverse transcription), 95°C for 5 minutes (inactivates 

superscript and activates platinum Taq), followed by 22 amplification cycles of 95°C 

for 15 seconds , 60°C for 4 minutes. The resultant cDNA was stored at -20. 

 

2.1.6 3D DNA FISH 
 

2.1.6.1 Bacterial culture 
Genomic clones were supplied by BacPac Resources Centre at the Children’s 

Hospital Oakland Research Institute (http://bacpac.chori.org) . Fosmid clones are 

listed in Table 2.2. 

Bacteria from stab cultures or frozen glycerol stocks were streaked out onto LB agar 

to form single colonies and grown overnight at 37°C; cooled melted agar was 

supplemented with chloramphenicol 25ug/ml prior to being poured.  
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To prepare DNA a single colony was picked from an LB plate and used to inoculate 

5ml LB broth supplemented with chloramphenicol 12.5ug/ml. Cultures were then 

incubated with shaking at ~300rpm (InnOva 4230 incubator, New Brunswick 

Scientific) at 37°C overnight with a 5:1 air to liquid ratio. 

Table 2.2 Fosmid clones used for DNA FISH (co-ordinates from mm9 genome 

assembly). 

Locus Clone Chromosome Start End 
Fkbp5 WI1-1951C9 17 28621896 28660104 

 WI1-980F19 17 28504480 28545426 
Tmod1 WI1-2441L4 4 46121795 46162130 

 WI1-552C3 4 45995494 46038724 
Ms4xxx WI1-1714F1 19 11344410 11380699 

 WI1-2794B24 19 11607184 11647412 
 

 

2.1.6.2 Glycerol stocks  
Glycerol stocks of bacteria were prepared by adding glycerol to a concentration of 

40% v/v to 1ml of an overnight culture and stored frozen at -80°C 

2.1.6.3 Preparation of fosmid DNA from overnight culture 
Fosmid DNA was extracted using an alkaline-lysis miniprep. Approximately 3mL of 

cultures were pelleted at 16,000g for 30s then resuspended in GTE buffer (50mM 

glucose, 25mM Tris pH8, 10mM EDTA +10mg/ml lysozyme) for 5 minutes before 

addition of 400ul of ice cold lysis buffer (0.2M NaOH, 1% Sodium Dodecyl 

Sulphate) and incubation on ice for 5 minutes. 300ul of acetate buffer (3M potassium 

acetate, 11.5% glacial acetic acid (v/v)) was added, and the preparation incubated on 

ice for a further 5 minutes. The flocculent precipitate was centrifuged at 16,000g for 

5 minutes at 4°C and the clear supernatant was removed to a fresh eppendorf. 

Phenol:chloroform extraction was then performed by adding an equal volume of 

phenol-chloroform to the sample, centrifuging at 16,000g for 3 minutes, and 

removing the top layer. The DNA was precipitated with an equal volume of 

isopropanol and pelleted by centrifugation for 15 minutes at 4°C at 16,000g. The 
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DNA was washed with 70% ethanol, repelleted, resuspened in TE and stored at -

20°C. 

2.1.6.4 Labelling of fosmids 
Fosmids were labelled using biotinylated dTTP or digoygenin dUTP by nick 

translation. 500ng to 1ug of fosmid DNA was prepared as in section 2.1.6.3 and then 

incubated with 2ul Nick Translation Salts( 0.5M Tris pH 7.5, 0.1M MgSO4, 1mM 

DTT, 0.5mg/ml BSA fraction V (Sigma)), 1ul 1:20 DNaseI in ice cold dH20 

(Roche), 1ul T4 DNA Polymerase (Roche) 2.5ul each of dATP, dCTP, dGTP 

(0.5mM) and either 2.5ul biotin-16-dUTP (Roche) or 1.5ul digoxygenin-dUTP 

(Roche) and 1ul dTTP for biotin or digoxygenin labelling repsectively. The 

incubation was for 90 minutes in a 16°C waterbath. The reaction was stopped by 

adding 2ul 20% SDS and 3ul 0.5M EDTA and made up to 90ul with TE. It was then 

processed through a QuickSpin G50 sephadex column (Roche) as per manufacturers 

instructions.  

Effective labelling was detected using streptavidin-alkaline phosphatase or 

anti-digoxygenin alkaline phosphatase on nitrocellulose filters prepared by soaking 

in 20x Saline Sodium Citrate (per litre for 20x solution, NaCl 175.3g, Na3C6H5O7 

88.2g, prepared by MRC HGU technical services,  SSC) and then dried. Standard 

concentrations of biotin and dig labelled DNA were spotted onto filters alongside 4 

dilutions (1:500-1:10,000) of the prepared labelled DNA. This was then cross-linked 

onto the filter using 1500mJ UV irradiation in a UV500 cross-linker (Hoefer). The 

filter was washed briefly in 0.1M Tris pH7.5 0.15M NaCl then incubated for 

30minutes at 60°C in the same with Bovine Serum Albumin (Sigma) 3% (w/v). The 

filter was transferred to fresh buffer without BSA with the addition of 1% of the 

listed detectants above and incubated for 15minutes at room temperature. The filter 

was then washed twice in the same buffer then briefly in 0.1M Tris pH 9.5. The 

labelled DNA was detected using Vector Labs BCIP/NBT kit according to 

manufacturers instructions. Concentrations were assessed by comparison with the 

standards. 
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2.1.6.5 FISH procedure 
Slides prepared as described in section 2.1.2 were treated with RNaseA at 100mg/ml 

for 1hour at 37°C then washed in 2xSSC and dehydrated thorugh 70%, 90% and 

100% ethanol for 2 minutes each and air dried. Slides were then incubated for 5 

minutes at 70°C and denatured in 70% formamide in 2xSSC, pH 7.5, for 30 minutes 

at 85°C. Slides were then transferred to ice cold 70% ethanol, dehydrated as 

previously then air dried. 

80ng of labelled probe was used per slide, with 12µg Cot1 DNA (Invitrogen) and 

10µg sonicated salmon sperm, resuspended in hybridization mix (50% deionised 

formamide(v/v), 10% dextran sulphate (v/v), 1% Tween 20(v/v) in 2xSSC) and 

denatured at >70°C for 5 minutes. The probes were then pre-annealed at 37°C for 15 

minutes and hybridised to the prepared slides at 37°C in a humid chamber overnight. 

Slides were washed for 4x3 minutes in 2xSSC at 45°C, then 0.1xSSC at 60°C, then 

transferred to 4xSSC/1% Tween 20. Slides were incubatd for 5 minuted in 4xSSC, 

1% Marvel. Digoxygenin labelled probes were detected using FITC anti-dig Fab 

fragments raised in sheep(Roche) followed by FITC-conjugated anti-sheep(Vector). 

Biotin labelled probes were detected by Texas Red conjugated avidin(Vector), 

biotinylated avidin(Vector), then again  by Texas Red conjugated avidin. Each 

incubation was for 30 minutes. Slides were washed between each incubation for 3x2 

minutes in 4xSSC/1% Tween 20 at 37°C. A final wash was performed in 4xSSC/1% 

Tween 20 with DAPI 0.5µg/ml and slides were mounted in Vectashield. 

2.1.6.6 Image capture 
Images were captured using a Zeiss Axioplan 2 upright microscope with a PIFOC® 

collar for capture of z stacks. Acquisition and deconvolution of images was carried 

out using Volocity software (PerkinElmer). 

 

2.2 Data Analysis 
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Microarray and sequencing data have been deposited in GEO, series GSE61881 to be 

made publically available on publication of the associated research manuscript. 

2.2.1 Expression data 
Analysis was performed using R/Bioconductor packages ‘arrayQualityMetrics’, 

‘affy’ and ‘limma’ (Gautier et al., 2004; Kauffmann et al., 2009; Smyth, 2005). 

Expression values were generated using rma. Further exploratory expression analysis 

used unlogged expression values prefiltered for low expressed probesets as input for 

the graphical correlation based tool Biolayout Express3D  (Theocharidis et al., 2009). 

A range of correlation coefficients and MCL values was used to determine an 

optimal graph structure from which clusters of genes were then read. Clusters were 

then manually curated to remove artefacts. Genes from these lists were selected 

across a range of fold-changes for analysis by RT-qPCR as described above and a 

threshold drawn at log2 fold change where all tested genes were confirmed. To limit 

loss of genes with extreme profiles – and hence less likely to cluster - genes reaching 

log2 fold change >1.5 using a conventional analysis were also retained if the 

corresponding expression profile was consistent with a response across all replicates. 

Orthologues were identified using the HGNC Comparison of Orthology Predictions 

(HCOP) tool (Gray et al., 2013). 

2.2.2 Single cell PCR 
For each gene (Fkbp5, target; Gapdh, reference) the quantity of material present in 

each well of the cDNA plate was then assessed in triplicate across 3 different plates 

(e.g. for 2 genes and one 96 well cDNA plate this is therefore 6 x 96 well plates) 

using the Lightcycler 480 System and SYBR Green master mix (Roche). Wells from 

the cDNA plate that returned an inconsistent amplicon melting temperature or 

concentration. Analysis then correlated the relative amount of target vs reference for 

each well, normalising to the value given by material generated from 10 cells. 

2.2.3 Promoter Analysis 
Promoters were defined as -300, +100bp of the transcription start sites (TSS) 

recently described by the FANTOM5 consortium(Forrest et al., 2014). Where 

multiple TSSs are known, any overlaps were concatenated. Average sequence 



Effects of glucocorticoids in macrophages 

Methods 42 

conservation scores (phastCons) for promoter regions were extracted and enriched 

motifs identified using HOMER (Heinz et al., 2010).  

2.2.4 Comparison to GWAS results and inflammatory genes 
The GWAS catalogue (Hindorff et al., 2009) was accessed via 

http://www.genome.gov/gwastudies/ and manually edited to retain only hits with 

association to inflammatory / immune conditions ( including type II diabetes, 153 

unique SNPs) associations (1408 unique SNPs). The intersection of reported genes 

was assessed by fold change above a background distribution generated using 

permutation (100,000) of random gene sets. Significance of the difference was 

assessed using Pearson’s chi-squared test. The intersection of risk SNPs and 

promoters was ascertained using BEDtools (Quinlan and Hall, 2010).  

2.2.5 Functional Annotation 
Lists of functional terms from multiple publically available databases were generated 

using HOMER (Heinz et al., 2010), filtered using a threshold of –log p-value 6.5, 

then manually curated to remove duplicate terms.  

2.2.6 ChIP-sequencing  
Sequencing quality was assessed with FastQC(Andrews, 2010) and sequence from 

adapters removed using trimmomatic (Bolger et al., 2014). Paired end reads were 

aligned to mm9 or hg19 by Bowtie2 (Langmead and Salzberg, 2012) using default 

options (-D 15 -R 2 -L 22 -i S,1,1.15). Downstream analysis was performed using 

HOMER(Heinz et al., 2010), including creation of bedGraph files for visualization, 

peak calling and annotation. Peaks were celled by comparison with the sequenced 

input sample for each experiment as a measure of background. For the mBMDM 

data after confirming congruence (86% peak overlap), data from two independent 

replicates were combined. Publically available sequencing data for comparisons was 

accessed via NCBI GEO for Uhlenlaut et al (GSE31796) and Ostuni et al. 

(GSE38379).  

 The number of observed intersections of our GR bound sites with reported 

sites of PU.1 binding in unstimulated mBMDM from Ostuni et al. was compared to 
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to the median intersection that occurred in 1,000 genome permuted GR peak 

locations. Significance was assessed using Pearson’s chi squared test. 

To compare the locations of regulated genes with GR peaks the proportion of 

peaks within a given genomic interval of the TSS of a regulated gene was calculated. 

The enrichment of regulated genes with a GR peak was calculated as the ratio of the 

proportion of regulated genes that contained a GR peak within a given genomic 

interval to the proportion of regulated genes that did not contain a GR peak within 

the same interval. The significance of these results was estimated by comparing them 

to the 95% confidence interval of 1,000 replicates of genome permuted GR peak 

locations. These two analyses were performed with assistance from Robert Young, 

MRC HGU. 

2.2.7 Interspecies and evolutionary analysis 
The role of species-specific GR binding was assessed by counting the number 

of species-specific regulated genes with a bound peak within a 1Mb window of the 

TSS and comparing this to the number of genes with a bound peak within 1 Mb 

where only the orthologues in the alternate species was regulated in our data. Where 

multiple orthologues were present this analysis was run ‘all to all’. 

 Peaks were compared between species using liftOver provided by UCSC to 

get the coordinates of those peaks falling within syntenic blocks. Peaks with a greater 

than 25bp overlap were assigned as shared. To compare the enrichment of motifs in 

shared vs. aligned non-bound peaks we performed motif finding using HOMER as 

above, using the non-bound as background.  

 Insertions and deletions were called by comparison with dog (CanFam2), 

horse (EquCab2), cow (BosTau6) and pig (SuScr3) genomes If the sequence 

underlying a peak could be aligned to at least one of this species the peak was 

defined as being deleted, if not then it was called as a insertion. Human GR sites 

were assigned as deletions in mouse. 

  GERP scores for the locations of bound GR motifs in both human and mouse 

were extracted from the UCSC genome browser (Kent et al., 2002). These scores 
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have been calculated by running the GERP++ algorithm on the 36-way mammalian 

genome alignments (Davydov et al., 2010). 

Analyses in this section (2.2.7) were performed following discussion with and with 

assistance from Robert Young, MRC HGU. 

 

2.2.8 Analysis of 3D FISH data 
Deconvolved images (section 2.1.6.6) were analysed using Volocity software 

(PerkinElmer). For each image stack paired-probes within nuclei were manually 

identified by scrolling through the layers. The software then measured the distance 

between the probes. Nuclei with more than two pairs of probes or poorly resolved 

probes were excluded. The distance distributions were then compared using an 

unpaired Wilcoxon rank sum test in R. 
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Chapter 3: The transcriptional response of 
macrophages to glucocorticoids 
 

3.1 Introduction 
 

As discussed in the introduction (Section 1.3.2), by contrast to other immune 

cells in the mouse, including B and T cells and classical dendritic cells, macrophages 

express high level of glucocortocoid receptors and are very sensitive to 

glucocorticoids (GC).  They are a major target for the anti-inflammatory actions of 

GC, accordingly, there have been previous studies of the transcriptional response to 

GC in a number of different cellular systems. However the data generated is not 

sufficient to draw integrated conclusions.  

In one study of mBMDM high dose (1uM) dexamethasone was used, the cells 

were starved of both serum and growth factor (CSF1) and the response was measured 

only at a single late time point (16 hours) (Uhlenhaut et al., 2013). A more recent 

study of mBMDM retained both serum and CSF1, but investigated only a single 

early time point (Chinenov et al., 2014). In humans single time point genome wide 

expression data for peripheral blood derived monocytes (PBMC) (Ehrchen et al., 

2007), PBMC differentiated with GM-CSF  and treated with high dose 

dexamethasone (Xue et al., 2014) or from PBMC treated with GC during 

differentiation (van de Garde et al., 2014) is available.  

The aim of the present study was to compare and contrast the responses of 

mouse and human macrophages to GC under comparable conditions. Inter species 

comparison of macrophages is not straightforward. The most common cell culture 

models of primary human and mouse macrophages are peripheral blood and bone 

marrow respectively, but they are not directly comparable. For example there are 

known species differences in the response to CSF1, which produces a proatherogenic 

signal in human macrophages (Irvine et al., 2009). Comparison between ostensibly 

more similar types does not necessarily provide the solution. Mouse monocyte 
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derived macrophages are only available in very small numbers, severely limiting the 

assays possible. They may also differ from human monocyte subsets in maturation 

and differentiation (Ingersoll et al., 2010). Human bone marrow derived myeloid 

cells can be obtained but do not behave as their mouse counterparts (Hume, 

Stephens, Warren, & Curtin, 1985). A previous report compared the responses of 

hMDM and mouse BMDM to LPS (Schroder et al., 2012) . The differences in LPS-

induced gene expression were clearly associated with promoter sequence variation, 

and the species-specific differences were confirmed in pigs, where both BMDM and 

MDM can be obtained readily.  In this respect, pigs are more similar to man at both 

the genomic sequence level and in their innate immune responses (Kapetanovic et 

al., 2012; Schroder et al., 2012).  Hence, the limitations of the cellular systems can 

partly be overcome if differences in transcription can be linked to differences in 

regulatory elements.  

  This chapter describes a comprehensive assessment of the response in both 

species using well-described and widely-used cell culture models, mBMDM and 

hMDM, as in the above previous comparative analysis (Schroder et al., 2012). 

Dexamethasone was chosen as the agonist for its high affinity for GR and relatively 

low affinity for the mineralocorticoid receptor (Lan et al., 1982).  Global gene 

expression was measured using microarrays at 6 time points over 24hours after 

treatment with dexamethasone 100nM, to identify both initial direct targets of GC 

and the downstream secondary consequences.   

 

3.2 The response of mouse bone marrow derived 
macrophages to dexamethasone 

 

Primary mBMDM were treated with 100nM dexamethasone and harvested after 0, 

1h, 2h, 4h, 10h, and 24h. RNA was extracted and analysed using industry standard 

Affymetrix expression arrays. From the raw expression data, after filtering for low-

expressed and low variance probes, lists of regulated transcripts were confirmed by 
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RT-qPCR to produce a high confidence set of regulated transcripts (Figure 3.1 and 

methods). 264 induced and 102 repressed genes were identified and filtered to 160 

high confidence and validated induced and 50 repressed over the full 24h time series 

(Figure 3.2, full list in Appendix 1). Induced genes responded with faster kinetics: 

10%, 32% and 62% within 1, 2 and 4 hours respectively, compared to the repressed 

gene set (0%, 4% and 14% and the same time points). The robust induced gene set 

included several known GR targets Dusp1 (Tchen et al., 2010), Tsc22d3, Fkbp5 and 

Per1 (Reddy et al., 2009)). As expected from earlier studies of mBMDM (Hume and 

Gordon, 1984) the repressed gene list contains urokinase plasminogen activator 

(Plau) (Stacey et al., 1995). Since Plau is a target of sustained MAP kinase 

signalling (D’Alessio and Blasi, 2009), the repression may be an indirect 

consequence of the induction of the MAPK inhibitor Dusp1. Eight annotated 

transcription factors were amongst the induced gene set, including four (Fos, Hivep2, 

Klf4, Ncoa5) that were induced within 2 hours and that could contribute to the 

downstream regulatory cascade (Table 3.1). Functional annotation was not highly-

informative, with enrichment for nuclear processes, apoptosis and development in 

the early-induced set and cell surface immune response, phagocytosis, migration and 

cytoskeleton amongst the late responders. This is addressed further in section 3.4. In 

overview, a greater number of genes increase the amount of stable mRNA in 

response to GC than decrease, when measured in steady state mouse macrophages. A 

subset of these induced genes change rapidly (before 1h). 
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Figure 3.1 Validation and thresholding of microarray data. 

From the expression arrays genes were selected to represent a range of expression 

levels and time points to be tested using RT-qPCR. For early, mid and late time 

points examples of strong (>2 log fold change in the  expression microarray data) 

medium (~1 log fold change) and weak (~0.75 log fold change) responding genes 

were selected. Light red box represents the threshold value from the microarray data 

chosen for exclusion from downstream analysis. Error bars represent 2 x standard 

error of the mean for n=3 biological replicates. Lfc = log2 fold change.  
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Figure 3.2 Expression response over 24h of mBMDM to 100nM 

dexamethasone  

A Pearson correlation matrix was generated from the raw mBMDM microarray 

expression data, measured at 0, 1h, 2h, 4h, 10h, 24h. A graph was drawn using 

only those node-node relationships r>=0.89. Each node represents a probe set 

from the array and each edge represents a correlation. The graph was clustered 

using a MCL inflation value of 2.3 and each cluster assigned a different colour. 

Inset graphs show average expression profiles for the indicated clusters with 

representative gene symbols given. Light orange = induced, light blue = 

repressed.   

 

   

Table 3.1 Transcription factors regulated by 100nM dexamethasone in 

mBMDM 

*=Regulated by 2h 

Induced 
Fos* 
Hivep2* 
Klf4* 
Ncoa5* 
Jdp2 
Klf9 
Tcf7l2  
Zbtb16 
  
Repressed  
Egr2* 
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3.3 The response of human monocyte derived 
macrophages to dexamethasone 

 

Microarray analysis of the response of hMDM to GC identified 225 induced 

and 125 repressed genes meeting the filtration threshold (Figure 3.3 and Appendix 

2). As for mBMDM, the induced genes responded faster: 11, 30 and 70% changing 

within 1, 2 and 4 hours respectively (2, 14, and 47% for the repressed set at the same 

time points). Known glucocorticoid targets DUSP1, FKBP5, PER1 & TSC22D3 were 

induced by GC in the human cells, alongside the expected repression of PLAU. There 

were multiple transcription factors represented, ten induced and 4 repressed within 

2h (Table 3.2). 
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Figure 3.3 Expression response of hMDM to 100nM dexamethasone. 

A Pearson correlation matrix was generated from the raw mBMDM 

microarray expression data, measured at 0, 1h, 2h, 4h, 10h, 24h. A graph 

was drawn using only those node-node relationships r>=0.91. Each node 

represents a probe set from the array and each edge represents a correlation. 

The graph was clustered using a MCL inflation value of 2.0 and each cluster 

assigned a different colour. Inset graphs show average expression profiles 

for the indicated clusters with representative gene symbols given. Light 

orange = induced, light blue = repressed 

 

 

Table 3.2 Transcription factors regulated by 100nM dexamethasone in 

hMDM. 

*=Regulated by 2h 

Induced Repressed 
FOS* CIITA* 

FOXO3* MXD1* 
JDP2* IRF1* 
KLF4* BCL3* 
KLF7* ATF5 
KLF9* RELB 
NFIL3*  TCF7L2 

CEBPD* TEF 
MYC* HIVEP1 

GADD45A*  ELK1  FOXO1  HMGB2  THRB  ZBTB16  OLIG1  RUNX2   
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3.4  The expression response is different and is not 
linked to promoter variation  

 

Based upon the HGNC Comparison of Orthology Predictions tool (Gray et al., 

2013) there were 228 mouse orthologues for 225 GC-induced hMDM genes and 131 

orthologues for 125 repressed genes. The reciprocal analysis produced 157 human 

orthologues of 150 mBMDM induced and 55 orthologues of 50 mBMDM repressed 

genes.   From amongst this set of robustly-regulated genes, only 33 induced and 3 

repressed genes were shared by the two species (Figure 3.4A and Table 3.3). Genes 

regulated in the same way in both species genes were not regulated more strongly 

than the complete set for hMDM (median specific 1.8 vs. shared 2.0, p=0.07, 

Wilcoxon rank sum) although there was a slight difference in the case of mice 

(median 1.54 specific vs. 2.12 shared, p = 0.0009, Wilcoxon rank sum). There was 

also no difference in the time course of response for conserved genes; for hMDM 

15/51 (29%) genes induced early are shared compared to 38/226 (17%) of all 

induced genes (p=0.07, Pearson’s chi squared), the mBMDM equivalent figures are 

9/45 (20%) and 38/160 (24%) (p=0.74, Pearson’s chi squared).  

Comparison of the functional categories enriched in each species showed some 

differences. As stated above in mBMDM functional annotation of the induced genes 

showed enrichment for nuclear processes, apoptosis and development in the early-

induced set and cell surface immune response, phagocytosis, migration and 

cytoskeleton amongst the late responders. In hMDM there was substantial overlap in 

the terms. However, terms that were not found in mouse included adipogenesis, 

FOXO and insulin signalling, MAPK cascade, transcriptional misregulation in cancer 

and development. The immune pathways IL-10 production, NFκB, TNF, NOD-like 

receptor and rheumatoid arthritis were enriched in the hMDM-repressed set. Shared 

and differential terms are shown in Figure 3.5. 
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Figure 3.4 The expression response to dexamethasone is divergent despite promoter 

sequence conservation. 

A Intersections between regulated orthologues in mBMDM and hMDM. B Average 

promoter (-300,+100bp of TSS) sequence conservation scores (phastCons) for all 

shared genes and subsets of increasing GC responsiveness. All human promoters 

are shown as background (all hs). C&D promoter sequence conservation for all 

genes regulated in mBMDM and hMDM respectively, categorised by response and 

kinetics. All Refseq promoters shown as background. Conservation scores from 

phastCons. *** = p-value <1x10-10, ** = p-value <1x10-4, * = p-value <0.05, 

Wilcoxon rank sum. 
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Figure 3.5 Enriched functional annotation terms for the response of 

macrophages to dexamethasone. 

Multiple public databases of functional annotation were interrogated and 

significantly enriched terms are shown for induced (top), and repressed (bottom) 

gene sets. Data from mBMDM data are in yellow and hMDM in blue. Duplicate 

terms have been removed. All value terms shown are significant to at least -log p-

value > 6.5. * = Enriched in genes regulated 0-2h. Abbreviations: KEGG = Kyoto 

Encyclopedia of Genes and Genomes, GO = Gene Ontology, BP = Biological 

Process, MF = Molecular Function 

 

 

Table 3.3 Gene regulated in the same way in mBMDM and hMDM by 

dexamethasone 

Up     Down 
B3GNT5 FILIP1L MERTK PLAU 
CYTIP FKBP5 MMP19 IFIT1 
DDIT4 GLUL MS4A6A NR1D2 
DUSP1 TSC22D3 P2RY12   
FOS FPR1 PIK3IP1   
KLF4 GPR126 ZBTB16   
PER1 JDP2 MS4A4A   
SLA KLF9 P2RY13   
SSH2 LDLRAD3 THBS1   
CD163 MAP3K6 PSTPIP2   
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Many species-specific differences in LPS responsiveness of individual genes 

could be attributed to highly divergent promoters between mice and man (Schroder 

et al., 2012).  In GC regulated genes there was higher average promoter conservation 

when the GC target genes were regulated in both species (p-value = 1.32x10-5, 

Wilcoxon rank sum)  (Figure 3.4B) and for the genes in each species that responded 

most rapidly to GC (3.4C&D). However overall, despite their discordant regulation 

between the species, the promoter regions of all GC-inducible genes had relatively 

high sequence conservation (Figure 3.4C&D).   

Global conservation of sequence may not capture more subtle changes to 

information content within a given sequence. Specific motifs or regulatory elements 

may be gained or lost with only a marginal effect on the global conservation score 

but a substantial potential regulatory effect. To seek evidence of regulatory elements 

shared by GC-responsive genes in each species, the promoters (-300bp, +100bp of 

the TSS defined previously by CAGE analysis) (Forrest et al., 2014)  were scanned 

for motifs associated with transcription factor (Heinz et al., 2010).  Amongst the 

promoters of LPS-induced genes in both mouse and human there was clear 

enrichment for binding sites of many known inducible transcription factors, 

including NFkB and AP1 (Schroder et al., 2012).  These sites were not enriched at 

the promoters of GC-induced genes. Comparing to all RefSeq promoters matched for 

GC content there was also no evidence of any motif, such as the GRE, that might be 

implicated in direct GR binding at the promoters of the GC responsive genes.  

Considering all induced genes in mBMDM only the Cebpd motif met stringent 

identification criteria for enrichment (q<0.05, Benjamini-Hochberg). No motifs 

reached significant enrichment in the promoters of early-repressed genes whilst late 

repression was marginally associated with TATA-box (q = 0.052) and p300 

(q=0.057).  In hMDM, promoters of rapidly induced genes showed no motif 

enrichments, but there was an overrepresentation of E-Box and TATA-Box motifs 

(q=0.0469) in the promoters of genes with delayed induction in response to GC. 

Early repression was associated with NFkB-p65 (q=0.0006), NF1 half-site 

(q=0.0049) and TATA box (q=0.0337) whilst late returned FOXO1 (q=0.0065), 

SREBP1 (q=0.0123), and multiple ETS motifs, including PU.1 (q=0.0172) (Figure 
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3.6A&B). Promoters may be divided by presence or absence of increased density of 

CG dinucloetides (CpG islands), with CpG island promoters tending to be broader 

with more than one possible initiation site whilst sharp, non CpG island promoters 

tend to be more lineage specific (Illingworth and Bird, 2009). Looking for motif 

enrichment in GC regulated CpG island and non CpG island promoters separately for 

mBMDM showed no motifs reaching significance in the CpG set but enrichment for 

ETS motifs including PU.1 in the non-CpG set  (q=0.021 Benjamini-Hochberg, 2.1 

fold enrichment). In hMDM GC regulated genes with CpG island promoters also 

showed no significant motif signature, whilst the non-CpG promoters had enrichment 

for ETS motifs (q=0.0219 Benjamini-Hochberg, 2.7 fold enrichment). In summary, 

there was no evidence of a consistent promoter-binding factor at GC-responsive 

genes in either species although non-CpG island promoters may have more reliance 

on the lineage defining ETS factor PU.1, consistent with their role in more tissue 

specific genes (Illingworth and Bird, 2009).  



Effects of glucocorticoids in macrophages 

The transcriptional response of macrophages to glucocorticoids 60 

 

Figure 3.6 Motifs over-represented in the promoters of dexamethasone 

regulated genes. 

The promoters (-300bp to +100bp) of the high confidence sets of GC-regulated 

genes in A hMDM and B  mBMDM were scanned for matches to known 

motifs. Motifs reaching a significance threshold of q < 0.05 were included 

(Benjamini-Hochberg). 

 

 

 

Promoter subset q-value Motif

Up mid-late 0.0469 Atoh1

Up mid-late 0.0469 Ebox factor

Up mid-late 0.0469 TATA Box

Down early 0.0006 NFkB-p65

Down early 0.0049 NF1-halfsite

Down early 0.0337 TATA Box

Down mid-late 0.0065 Foxo1

Down mid-late 0.0123 Srebp1a

Down mid-late 0.0172 PU.1(ETS)

Down mid-late 0.0372 SPDEF(ETS)

Down mid-late 0.0372 Smad3

Down mid-late 0.0372 PU.1-IRF(ETS:IRF)

Down mid-late 0.0372 PAX5

Down mid-late 0.0372 STAT6

Down mid-late 0.0372 MafA

Up (all) 0.046

Promoter subset q-value Motif

Motifs enriched in promoters of genes regulated in hMDM by dexamethasone

Motifs enriched in promoters of genes regulated in mBMDM by dexamethasone 

A

B

G

C
ATTT

A

G
G

A

T
C

C

T
A
G

A
T
CAAA

G
T
CCepb

Down mid-late 0.051 TATA-box

Down mid-late 0.057 p300

A

T

G
C

T
C

A
C
T

C

TA
T

A
T

C

AG
A
T

G
A
T

A

C
G

T
A
G
C

T

A
G
C

T
A
C
G

A

T

C
G

A

T
C

T
C
A

C

T
G
A

A
T

G

A
T

T

A
C

G

A
G

C
T
A



Effects of glucocorticoids in macrophages 

The transcriptional response of macrophages to glucocorticoids 61 

3.5 Targets of glucocorticoids in human 
macrophages enrich for risk variants for 
inflammatory disease 

 

Genes regulated by GC in human macrophages are candidates for involvement in 

inflammatory and metabolic disease and might therefore be implicated in genetic 

susceptibility. From the GWAS catalogue (www.ebi.ac.uk/gwas) I selected all loci 

with inflammatory or metabolic disease associations (1408 SNPs), including those 

defined as suggestive rather than fully genome wide significant in the original study.  

There was a significant enrichment: 48/350 GC regulated genes in hMDM have been 

reported to have an association with an inflammatory condition (3.7 fold over 

background, p=1.1x10-5, Pearson’s chi-squared, Table 3.4).  

Table 3.4 Intersection between dexamethasone regulated genes in hMDM and 

reported GWAS hits for inflammatory disease 

FOS$ SDC4$ TFCP2L1$ CXCL2$ TNF$
ITPKC$ SLAMF1$ SLC25A15$ ICAM1$ ZBTB46$
NFIL3$ SLC11A1$ MYC$ IL8$ TAGAP$

PAPOLG$ SLC15A2$ TNFAIP3$ NFKBIE$ SLAMF7$
GAB1$ TBC1D1$ MET$ NOD2$ CD48$
GRB10$ TMEM39A$ TMEM17$ ASRGL1$ ITGAL$
IL1R1$ C5$ SOCS1$ P2RX7$ IRF1$
MERTK$ IL1R2$ BCL11A$ SLC29A3$

!PPM1L$ RGS1$ CD83$ TLR7$
$PRKCH$ CXCL1$ CIITA$ TNFSF15$
$

 

 

Of the SNPs associated with GC-regulated genes 14 did not reach full genome wide 

significance in the original study and 9 were not reported in main article (Table 3.5). 

A similar analysis considering the specific genomic loci demonstrated enrichment for 

SNPs with reported associations to inflammatory conditions in the region of induced 

genes (Figure 3.7). Only 3% (43/1387) of this subset of GWAS catalogue SNPs map 

to promoters and only one SNP maps to the promoter of a GC regulated gene 

(rs1738074, Coeliac disease, TAGAP, repressed).   



Effects of glucocorticoids in macrophages 

The transcriptional response of macrophages to glucocorticoids 62 

Table 3.5 Weak GWAS hits regulated by GC in hMDM 

Abbreviations: N=Not in main text, Y=Yes, SUP = in supplementary materials 

 
D

at
e 

20
10

 

20
08

 

20
11

 

20
08

 

20
11

 

20
12

 

20
10

 

20
12

 

20
12

 

20
11

 

20
10

 

20
11

 

20
10

 

20
12

 

Fi
rs

t A
ut

ho
r 

St
ua

rt 
PE

 

B
ar

an
zi

ni
 S

E 

G
or

lo
va

 O
 

H
un

t K
A

 

Pa
ts

op
ou

lo
s N

A
 

O
ka

da
 Y

 

K
oc

hi
 Y

 

Y
an

g 
W

 

K
im

 D
K

 

H
iro

ta
 T

 

M
cG

ov
er

n 
D

P 

Sa
w

ce
r S

 

St
ra

ng
e 

A
 

Le
e 

Y
C

 

PU
B

M
ED

ID
 

20
95

31
89

 

19
01

07
93

 

21
77

91
81

 

18
31

11
40

 

22
19

03
64

 

22
44

69
63

 

20
45

38
41

 

23
27

35
68

 

23
14

43
26

 

21
80

45
48

 

20
22

87
99

 

21
83

30
88

 

20
95

31
90

 

22
44

69
61

 

R
ep

or
te

d 

N
 

N
 

Y
 

Y
 

Y
 

Y
 

N
 

Y
 

SU
P 

N
 

N
 

N
 

N
 

SU
P 

D
is

ea
se

 

Ps
or

ia
si

s 

M
ul

tip
le

 sc
le

ro
si

s (
se

ve
rit

y)
 

Sy
st

em
ic

 sc
le

ro
si

s 

C
el

ia
c 

di
se

as
e 

M
ul

tip
le

 sc
le

ro
si

s 

R
he

um
at

oi
d 

ar
th

rit
is

 

R
he

um
at

oi
d 

ar
th

rit
is

 

Sy
st

em
ic

 lu
pu

s e
ry

th
em

at
os

us
 

C
O

PD
-r

el
at

ed
 b

io
m

ar
ke

rs
 

A
st

hm
a 

U
lc

er
at

iv
e 

co
lit

is
 

M
ul

tip
le

 sc
le

ro
si

s 

Ps
or

ia
si

s 

K
aw

as
ak

i d
is

ea
se

 

Sy
m

bo
l 

SD
C

4 

M
ET

 

G
R

B
10

 

TA
G

A
P 

TA
G

A
P 

PR
K

C
H

 

TN
FA

IP
3 

SL
C

29
A

3 

P2
R

X
7 

G
A

B
1 

C
II

TA
 

ZB
TB

46
 

TN
FA

IP
3 

PP
M

1L
 

SN
P 

rs
10

08
95

3 

rs
10

24
30

24
 

rs
12

54
08

74
 

rs
17

38
07

4 

rs
17

38
07

4 

rs
19

57
89

5 

rs
22

30
92

6 

rs
22

52
99

6 

rs
37

51
14

3 

rs
38

05
23

6 

rs
47

81
01

1 

rs
60

62
31

4 

rs
61

06
04

 

rs
92

90
06

5 



Effects of glucocorticoids in macrophages 

The transcriptional response of macrophages to glucocorticoids 63 

 

Figure 3.7. Enrichment for SNPs with GWAS link to inflammatory disease near 

dexamethasone regulated genes. 

The incidence of SNPs that intersect with gene loci responsive to 

dexamethasone in hMDM for a range of windows surrounding the gene (red 

line). The 95% confidence limits for windows surrounding 10,000 permuted 

gene sets is plotted in grey. 

 

 

 

3.6 Discussion 
 

In both mouse and human macrophages there was a sequential cascade of gene 

regulation over 24h.  Although much of the literature on GC has focussed on 

transcriptional repression of inflammatory genes, the results highlight the fact that 

GC acts as a classical transcriptional activator.  The dominant response in both 

species was gene induction as measured at the level of steady state mRNA, and this 

response occurred more rapidly than repression.  The faster kinetics for induction is 
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consistent with previous work in A549 cells (derived from human lung epithelial 

cells) (Reddy et al., 2009).   In some cases, for example PLAU, the transcriptional 

repression may be a downstream consequence of gene induction (DUSP1). Whilst 

this was a non-stimulated setting rather than an inflammatory context, the 

reorganisation of the transcriptome measured here highlights the role of GC in 

macrophages beyond restraint of pro-inflammatory gene transcription. The approach 

taken here does not assess either loading of RNA polymerase or generation nascent 

transcripts so cannot capture a full picture regarding the initiation of transcription. It 

is inherent in this that for all but the least stable mRNAs repression will lag behind 

induction due to the lifespan of the mRNA already present. Given the translational 

output depends in some degree on the abundance of a mRNA this remains a 

reasonable comparison. A further limitation is I did not measure protein levels for 

these regulated genes so an additional layer of complexity lies above this response 

when considering cell function. 

A core set of known glucocorticoid targets was shared between the two 

models, but the vast majority were not.  The difference between the two species is 

even greater than that found in the inflammatory response to LPS, where the majority 

of target genes were regulated in a similar manner (Schroder et al., 2012). This is not 

necessarily surprising given the many differences between mice and man, but 

analysis of the local regulatory sequence does not provide an explanation as the 

promoters of these divergently responding genes are relatively conserved. Motif 

analysis did not find a common factor that binds to the promoters. There were some 

functional terms that are consistent with known human-mouse differences, for 

example roles in adipogenesis and insulin signalling enriched in the human data 

(Irvine et al., 2009; Stylianou et al., 2012). However given the limitations inherent in 

comparing these models discussed above there remains the possibility that some of 

this is cell type, not species difference. 

Human genes identified in this response have an association with inflammatory 

risk variants. Genome wide association studies identify candidate loci with a role in 

disease(The Wellcome Trust Case Control Consortium, 2007). In order to avoid 

emphasising false positives from this genome wide data stringent thresholds are used 
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that therefore discard many sites that may have a true biological link. The role of 

reported genes is often not clear in the context of disease and they are often simply 

the nearest to the SNP with the strongest association. The over-representation of 

reported genes in the hMDM GC responders reflects the intersecting roles of this cell 

type and stimulus and gives confidence that I have identified relevant targets using 

this model system. Conversely the data provide biological support to the previously 

identified targets, including some not reported as true hits initially due to relatively 

low significance (Table 3.5).   

3.7 Summary 
 

Transcriptional activation is the hallmark of the macrophage response to GC in both 

hMDM and mBMDM, however beyond a small core set the genes induced are not 

shared. This divergence is greater than that seen for classical pro-inflammatory 

stimuli and cannot be linked to promoter sequence changes. It is possible therefore 

that the differences between the culture models could be a contributor to this effect, 

rather than it being primarily species driven. 
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Chapter 4: Glucocorticoid receptor binding in 
macrophages 
 

4.1 Introduction 
 

The primary mechanism by which glucocorticoids (GC) have their 

transcriptional effects is through binding to the glucocorticoid receptor (GR, gene 

symbol NR3C1). As discussed in section 1.1.2, GR is a nuclear hormone receptor 

that shares common domain structures with the androgen, estrogen, progesterone and 

mineralocorticoid (Figure 1.3) receptors. In the absence of GC, GR is held in the 

cytoplasm bound to chaperones including HSP70 and HSP90 and p23 (Oakley and 

Cidlowski, 2011). Ligand binding causes a dissociation of these and exposes a 

nuclear localisation signal thus allowing GR to enter the nucleus. Other factors such 

as the immunophilins FKBP51 and FKBP52 also bind GR at rest (Vandevyver et al., 

2012), these have a role in modulating the interaction of GR with both ligand and the 

major chaperones. By this mechanism these partners can regulate GC sensitivity 

(Jääskeläinen et al., 2011). 

 GR binds to an inverted repeat motif (AGAACAnnnTGTTCT)(discussed in 

section 1.1.2).  The absence of a consensus GRE motif at the promoters of GC-

inducible genes, and previous data in other systems placing GR binding away from 

promoters (John et al., 2008, 2011; Reddy et al., 2009; Uhlenhaut et al., 

2013),suggested that GR might induce transcription by binding to distal regulatory 

elements.  To determine the location of these elements, chromatin 

immunoprecipitation and sequencing (ChIP-seq) was performed using antibodies 

against GR, in mouse and human macrophages stimulated with dexamethasone. 
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4.2 GR binding in Mouse Bone Marrow Derived 
Macrophages 

 

One previous set of GR ChIP-seq data has been produced for glucocorticoid 

treated bone marrow macrophages (Uhlenhaut et al., 2013). However, the system 

used was not comparable. In the previous study the authors removed both serum and 

the macrophage growth factor CSF1 for 12 hours before the addition of 

dexamethasone.  They also used a substantially higher (1uM) concentration of 

dexamethasone and only very limited expression data was generated to pair with the 

receptor binding. Receptor binding in this study was assessed by ChIP-seq using 

M20 a polyclonal anti-GR antibody from Santa Cruz (sc-1004). It is known that the 

enhancer landscape of macrophages is defined by the conditions it experiences both 

at steady state (Gosselin et al., 2014; Lavin et al., 2014) and in response to stimuli 

(Ostuni et al., 2013). Therefore data on GR binding in response to GC in the same 

culture system used to generate the expression data presented in chapter 3 was 

required.  

Optimisation of this assay was challenging. Many ChIP-seq datasets for GR 

have used a cocktail of antibodies and a large amount of input material to gain good 

quality results (John et al., 2011). Figure 4.1 shows an example in which multiple 

antibodies and combinations of antibodies were screened for their ability to 

precipitate a known GRE  -4.6kb from the TSS of Dusp1 in standard ChIP-qPCR 

assays. GR ChIP-seq data was generated using a stringent protocol and the best 

performing antibody, which was a monoclonal (see methods). Here best performance 

was defined as the maximum signal at a positive locus (Dusp1 -4.6kb) compared to 

untreated for the same locus as well as a control site (ActB promoter) (Figure 4.1). 
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Figure 4.1 Optimisation of ChIP, example of antibody screening.  

ChIP-qPCR at a known GR bound ( Dusp1, -4.6kb from Dusp1 TSS) and a 

control (Actb, Actb promoter) locus. From left to right results from normal 

IgG, 2 different batches of a highly cited commercial antibody (M20, Santa 

Cruz), a mix of M20 and BuGR2 monoclonal (John et al., 2011) and the 

monoclonal BuGR2 alone. Results shown are from a single representative 

biological replicate; error bars are 2x standard error of the mean for 3 technical 

replicates. 

 

Figure 4.2 (A-D) shows representative UCSC browser tracks for measured 

GR binding in mBMDM.  Binding was observed in the vicinity of many inducible 

genes, regardless of their time course of responsiveness.  Examples are shown for 

genes induced by 1h (Fos), 2-4h (Jdp2), 2-10h (Fkbp5, Klf9), and at 24h (F13a1). 
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dexamethasone. These peaks lie away from promoters in intergenic regions and 

introns (Figure 4.3A).  

In the previous study noted above (Uhlenhaut et al., 2013), obtained by ChIP-

seq after cross-linking with both disuccinimidyl glutarate and formaldehyde, only 5% 

of the ~10,000 called ChIP-peaks had a consensus GR response element (GRE). 

Previous ChIP-seq data from cell lines have reported 50-62% of GR bound sites 

having a motif matching the GRE (John et al., 2008; Reddy et al., 2009). To assess 

the association between GR binding and motifs, a region of +/-25bp surrounding the 

peak maxima was examined.    Based upon de novo motif finding, the majority 

(78%) of our GR peaks contain a motif or motifs closely resembling the GRE at their 

centre (Figure 4.3B&C). The proportion of peaks with GRE rises further to 86% 

when considering a region +/-100bp from the peak centre (Figure 4.3D).  
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Figure 4.2 GR binding in dexamethasone treated mBMDM 

(A-D) Representative genome browser tracks for 3 induced loci, showing two 

early responders (0-2h, Fos, 2-4h Jdp2), two slower (2-10h, Fkbp5, Klf9) and 

one late responder (24h, F13a1). Data are for 100nM dexamethasone treated 

IP, vehicle IP and input. Genome co-ordinates are from mm9 assembly.  
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There is intersection with the previous data (Uhlenhaut et al., 2013) but 36% 

of the peaks in the current dataset, the vast majority of which contain a canonical 

GRE, are not present in their data. Peak score comparison between datasets is not 

straightforward. However, well-characterised GR peaks are present in both datasets 

with similar peak scores (e.g. Per1 -600bp 73.5 vs 58.7 Uhlenhaut et al. , Dusp1 -

27kb 200.9 vs 146.9 Uhlenhaut et al), the slightly higher values in our data are most 

likely due to different relative sequence depth and library complexity. Considering 

the unique peaks for each dataset those from my data are again, likely for the same 

reasons, slightly higher (median 11.4 vs 8.1, p-value = 1.33x10-15 Wilcoxon rank 

sum). Taken together this suggests that the differences between the datasets are not 

simply due to sensitivity.  

Gene repression driven from negative GRE (nGRE) has been reported to be a 

widespread phenomenon (Surjit et al., 2011). Although induction was the 

predominant response there were also many genes repressed therefore putative 

targets for nGRE mediated repression. However, de-novo motif analysis did not 

reveal any matches for the described nGRE (CTCC(n)0-2GGAGA, where (n)0-2 

indicates flexibility in spacing) (Hudson et al., 2013; Surjit et al., 2011). Scanning 

permissively specifically for motifs similar to this selects 59/488 peaks. Of these 

only 4 have a repressed gene within 1Mb (Plau, Egr2, Rgs2, Cy2s1), one of which 

has a prominent canonical GRE-containing peak at 74kb(Rgs2).  
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Figure 4.3 Characterisation of GR bound sites in mBMDM 

A Classification of regions bound by GR. B Enrichment for GRE in peaks 

found by ChIP-seq. C Motifs found de-novo +/- 25bp of the peak centre, D 

Motifs found de novo in region +/-100bp of the peak centre. 
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GR is known to act in concert with other factors (Altonsy et al., 2014; Rao et 

al., 2011; Ratman et al., 2013) and combinatorial binding is a feature of nuclear 

receptor and other transcription factor function at distal regulatory sites in 

macrophages (Glass and Ogawa, 2006; Heinz et al., 2010). Enhancers average ~200-

250bp in size (Andersson et al., 2014) and contain clusters of recognition sites for 

transcription factors. Other enriched motifs in the vicinity of mBMDM GR binding 

sites in this data include AP-1, Hif1b, Cepb and PU.1, (Figure 4.3D).  

 The ETS factor PU.1 is a master regulator of macrophage transcription 

(DeKoter and Singh, 2000; Natoli, 2010; Nerlov and Graf, 1998) and other stimulus 

induced transcription factors have been shown to bind at enhancers marked by PU.1 

in activated macrophages (Ghisletti et al., 2010; Heinz et al., 2010). Profiles of PU.1-

chromatin binding as well as active enhancer associated histone marks (H3K27ac, 

H3K4me1) and open chromatin have been published for non-stimulated mBMDM 

(Ostuni et al., 2013).  In the data presented here 94% of GR bound sites overlapped 

with at least one of the other baseline datasets, particularly PU.1 (72%). The majority 

overlapped more than 2 of these features (Figure 4.4). The sequence required for 

binding by PU.1, originally defined as 5’-GAGGAA-3’ (Klemsz et al., 1990),  is 

variable around a core now reported as GGAAGT embedded in a 12bp motif  (Heinz 

et al., 2013). The most specific consensus site may not be required for binding 

(Natoli et al., 2011), likely due to co-operation with other factors. PU.1 may require 

interaction with an alternate ETS factor (Ross et al., 1998) and in some cases can be 

substituted (Hoogenkamp et al., 2007).  Based upon a more permissive ETS motif, 

76% peaks of the GR bound sites were coincident with a potential PU.1 binding 

motif.  Amongst the 65% of GR bound sites with a consensus GRE, there was an 

average separation of 40bp between the two motifs.  Only 1.4% of peaks had neither 

GRE nor ETS motifs present. 
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Figure 4.4 GR bound sites in mBMDM overlap sites previously reported to bear 

marks associated with enhancers 

Comparison to published (Ostuni et al., 2013) data for marks found at 

enhancers (PU.1 binding, H3K4me1, H3K27ac, FAIRE-seq and H3K4me3). A 

Percentage of GR sites that overlap with the given features. Red bars indicate a 

GC matched genome permuted background set. B GR bound sites that overlap 

with the given number of listed features. 
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4.3 GR binding in Human Monocyte Derived 
Macrophages 

 

Due to the constraints on cell number when using subpopulations of human 

primary cells, as well as the virtual absence of binding in untreated mouse 

macrophages, ChIP-seq for GR was focused solely on dexamethasone treated 

hMDM. It is known that GR primarily resides in the cytoplasm in the non-stimulated 

state (Miranda et al., 2013), as confirmed above by the mouse data. Therefore the 

majority of GR bound sites identified here are likely to be acutely induced.  

Optimisation of the assay was again challenging. None of the antibodies that 

gave signal in mouse provided useful results in man for ChIP-qPCR, including the 

very efficient monoclonal used for ChIP-seq in mBMDM. However, after further 

antibody screening and alteration of assay conditions (see methods section 2.1.4) a 

ChIP-seq dataset comparable to that from mBMDM was obtained for hMDM. 

As in the mouse, there was evidence of GR binding in the vicinity of inducible 

genes, regardless of the time course of induction.  Representative browser images for 

the data are shown for peaks near genes regulated by 1h (PER1, DUSP1), 2-10h 

(FKBP5, PDK4), 10-24h (ADORA3, IL1R1, IL1R2) (Figure 4.5A-F). Using a 

stringent protocol in total there were 484 high confidence GR-binding peaks in 

dexamethasone stimulated hMDM. As in mBMDM, they lie away from promoters in 

non-coding regions of the genome (Figure 4.6A) and were highly enriched for a 

motif that closely matches the consensus GRE (52% within +/-25bp, 62% within +/-

100bp, Figure 4.6B). Other motifs present in the 200bp region surrounding each GR 

peak include PU.1 (34%), IRF4 and RXR (both 5%) (Figure 4.6C&D).  Using 

permissive criteria, as used for the mouse data above, the 34% with a strict PU.1 site 

increased to 62% of peaks containing any enriched ETS factor binding motif, 

including 70% of peaks with a GRE. The average separation was 43bp between ETS 

and GRE motifs where they were coincident (40bp in mouse), 18% of peaks did not 

contain either (1.4% in mouse).  
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GR binding sites are possible targets for disease-associated polymorphisms in 

inflammatory disease. None of the inflammatory SNPs identified in chapter 3 

(section 3.5) directly overlapped with GR bound peaks, although 2 lie within 350bp 

(rs10499197, near TNFAIP3 and linked to SLE and systemic sclerosis and 

rs12466022, linked to multiple sclerosis). The analysis was extended to include SNPs 

that are in significant linkage disequilibirum with reported risk SNPs, but this did not 

reveal any direct overlaps. Two  additional disease associated variants were located 

in the region of GR bound sites: rs403439 and rs 2743403. The first lies 264bp from 

a GR peak and is in LD with rs12984174, which is linked to asthma. The second lies 

468bp from a GR peak and is in LD with rs1008953 linked to psoriasis and lying 

adjacent to SDC4. Both of these alternative variants are common (allele frequencies 

~25%) so the regulatory significance of this is uncertain. 

Interestingly the GR bound peak adjacent to SDC4 is conserved from hMDM 

to mBMDM (Table 4.1). Sdc4 was weakly induced by dexamethasone in mBMDM 

although it did not meet the fold change threshold set to be included in the full 

analysis. 

 

!
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Figure 4.5 Genome wide binding of glucocorticoid receptor in hMDM 

Representative browser tracks for loci regulated within 1h A PER1, B 

DUSP1, 2-10h C FKBP5, D PDK4, and 10-24h E ADORA3, F IL1R2 & 

IL1R1 (IL1R1 responds 4-10h). Gene names in light grey are non-

regulated.  
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Figure 4.6 Characterisation of GR bound sites in hMDM 

A Classification of regions bound by GR. B Enrichment for GRE in peaks 

found by ChIP-seq. C Motifs found de-novo +/- 25bp of the peak centre, D 

Motifs found de novo in region +/-100bp of the peak centre. 
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4.4 Glucocorticoid receptor binding is associated 
with induced, not repressed genes 

 

There was a clear association between GR binding peaks and GC-induced 

genes in both species, greatest at 10kb from the TSS, but still marginally detectable 

at 1Mb.  Conversely, there was no detectable relationship between GR-binding peaks 

and repressed genes (Figure 4.7A-D). Considered from a gene-centric view 77/160 

induced transcripts in mBMDM showed evidence of GR binding within 200kb of the 

TSS (105/160 within 1Mb), compared to only 1/50 that were repressed. The hMDM 

equivalent figures were 78/225 induced, 8/125 repressed within 200kb (159/225 

induced within 1Mb). There was no difference in the range of motifs found in peaks 

near early or late genes. From a peak-centric view 33% lay within 1Mb of an induced 

gene in mBMDM (32% in hMDM) and this subset of peaks had higher signal for GR 

binding than those more distant (mBMDM GR peaks <1Mb median peak score 18.8 

vs. 12.6 for > 1Mb, p=1.37x10-5; hMDM GR peaks <1Mb median peak score 28.5 

vs. 22.1 for >1Mb, p=0.0078, Wilcoxon rank sum). 

The expression response to GC was stronger where there were multiple GR 

peaks within 200kb of the TSS of an induced gene than if there was only a single GR 

bound site (mBMDM median log2 fold change 2.43 vs 1.43, p=0.0018, hMDM 

median log2 fold change 2.53 vs 1.76, p=0.031, Wilcoxon rank sum). Early (<2h) 

induction was not associated with greater peak proximity (mBMDM median distance 

22kb vs 46kb, p=0.199, hMDM median distance 46kb vs 88kb, p=0.162, Wilcoxon 

rank sum) nor was there a difference in peak strength. 
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Figure 4.7  Induced genes are associated with GR binding 

The proportion of peaks with induced (green) or repressed (red) genes 

within a given genomic interval for A mBMDM and B hMDM. The 95% 

confidence intervals from matched permuted distributions of GR peaks are 

shown in grey. The enrichment of the proportion of induced (green) genes 

with a GR peak within a given interval versus the proportion of induced 

genes without a GR peak within that interval for C mBMDM and D 

hMDM. No enrichment is seen for repressed genes (shown in red) The 

95% CI from a permuted distribution of GR peaks is shown in grey. This 

analysis was performed with assistance from Rob Young, MRC HGU. 
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4.5 Inter-species differences of glucocorticoid 
receptor binding are associated with sequence 
changes that lead to motif loss 

 

As noted in the introduction (section 1.4), turnover of enhancers has been linked to 

response divergence (Heinz et al., 2013; Stefflova et al., 2013). The landscape of 

enhancers is also different from mouse to man, particularly for immune genes 

(Stergachis et al., 2014; Yue et al., 2014). 

The GR bound sites from hMDM were intersected with those bound in 

mBMDM, limiting to regions of conserved synteny (using liftOver from UCSC 

(Kent et al., 2002)). Amongst the human dataset there were only 22 bound sites that 

were both conserved and within 1Mb of a regulated gene (Table 4.1).  Most of the 

GR bound sites could however be aligned between species (Figure 4.8). There was 

no difference between the rate of turnover between species (aligned sites vs. 

inserted/deleted sites) and as observed previously there was a minor deletion bias 

observed in mouse (Laurie et al., 2012). 
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Figure 4.8 Evolutionary outcomes for GR peaks in human. 

Aligned sites where the orthologous region is bound by GR in mouse are 

shown in green and in orange if the site is not bound by GR in mouse. Sites 

that could not be aligned are defined as either insertions (cya) or deletions 

(purple) by comparison with dog (CanFam2), horse (EquCab2), cow 

(BosTau6) and pig (SuScr3) genomes (see methods), Human GR sites were 

assigned as deletions in the mouse lineage. 

 

Of the shared sites (16) were adjacent to genes induced in both species and are 

known regulators of the inflammatory response (e.g. DUSP1, FKBP5 (Figure 

4.9A&B), MAP3K6, TSC22D3, FOS, KLF4,). Three of the others are adjacent to 

genes that are strongly regulated in hMDM but much less so in mBMDM, thus were 

filtered from the robust gene set used for comparisons (C1qb, Sdc4 and Mt2,Table 

4.1).  Even at the conserved loci GR binding differed: the previously described 

proximal peaks at the DUSP1/Dusp1 locus were retained (Tchen et al., 2010) but the 

strongest binding site was not shared (Figure 4.9A). Overall, genes which were 

upregulated in both species were enriched for having GR bound within 1 Mb in both 

species (4.0-fold enrichment, chi-squared p = 2.9x10-7 ; Figure 4.9A). 

The more common pattern was for GR binding to be divergent between the 

species; for example the GR peak upstream of F13a1, a component of the 

coagulation cascade, is mouse-specific (Figure 4.8C,). Mouse-specific GR binding 
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was more frequent in the region of genes that responded to GC only in mouse (2.0-

fold enrichment over human, chi-squared p = 0.0011; Figure 4.8D). Similarly, human 

specific GR binding was enriched adjacent to human specific GC responders, for 

example ADORA3, which has a known role in driving the human macrophage 

phenotype (Barczyk et al., 2010) has an intronic GR peak that is not present in the 

mouse data. As for the mouse data, there was an overall 1.7-fold enrichment for a 

human-only GR peak within 1Mb of genes that were specifically upregulated in 

human macrophages (chi-squared, p = 0.034; Figure 4.9E&F). 

 

 



Effects of glucocorticoids in macrophages 

Glucocorticoid receptor binding in macrophages 85 

 

Figure 4.9  GR binding sites are minimally conserved between mouse and man 

and this is linked to the divergent transcriptional response to GC.  

(A) GR ChIP-seq data from mBMDM (orange) and hMDM (cyan) showing 

conserved GR binding (green highlight) at a locus (DUSP1/Dusp1) whose 

expression is rapidly induced by GC in both mouse and human macrophages. 

GR bound sites aligned between species are linked by light green highlight: the 
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most prominent sites are bound in only one species. (B) Enrichment / depletion 

for mouse/human shared GR binding within 1Mb for GC-responsive genes that 

are; shared between mouse and human (green), mouse-specific (cyan), human-

specific (orange). Numbers give raw counts for each category. (C) As in (A) 

but showing mouse-specific GR binding at F13a1/F13A1 which is induced in 

mBMDM but not hMDM. (D) As for B, but for mouse-specific GR binding 

sites. The chi squared p value for the difference between mouse and human 

specific sites is given.  (E) As in (A) but showing human-specific GR binding 

at ADORA3/Adora3 which is induced in hMDM but not mBMDM. (F) As for 

(D) but for human-specific GR-binding sites. 
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As discussed in the introduction the enhancer landscape is highly dynamic 

and is a function of the conditions studied (Gosselin et al., 2014; Lavin et al., 2014; 

Ostuni et al., 2013). Thus, since mBMDM and hMDM are not perfectly equivalent 

the differences found may be due to differences between the models. However if the 

Table 4.1 Conserved GR bound sites 

Human     Mouse     
Symbol Distance(bp) Peak Score Symbol Distance (bp) Peak Score 
MAP3K6 243 59.1 Map3k6 173 18.2 
DDIT4 18650 81.1 Ddit4 18152 15.4 
DDIT4 24921 166.4 Ddit4 22499 64.1 
ZBTB16 100510 33.5 Zbtb16 95679 16.1 
ZBTB16 119711 59.5 Zbtb16 112199 43.1 
MMP19 5101 18.9 Mmp19 11362 22.7 
FOS 62389 117.8 Fos 58829 65.7 
PER1 506 114 Per1 460 73.5 
PER1 2025 56.1 Per1 1885 47.4 
PIK3IP1 6071 37.7 Pik3ip1 5257 13.9 
DUSP1 4523 21.6 Dusp1 4261 18.8 
FKBP5 86865 37.9 Fkbp5 65828 79.9 
KLF9 66248 76.3 Klf9 84208 37.4 
KLF9 5346 24.9 Klf9 6120 13.3 
KLF4 271410 46.6 Klf4 209189 14.1 
TSC22D3 42816 49.9 Tsc22d3 37204 33.2 
Mouse orthologues are weakly regulated:   

 
  

C1QB 197 229.4 Map3k6 3645543 25.6 
- - - C1qb 174 25.6 
MT2A 1223 16.3 Ndrg4 1531461 6.2 
- - - Mt2 942 6.2 
SDC4 10723 75.8 Ncoa5 578851 33.8 
- - - Sdc4 13152 33.8 
Gene - peak relationships uncertain       
TIFAB 985838 15 Pdlim4 2152809 61 
TNFAIP3 159446 20 Sgk1 2695702 12.1 
ARG2 648524 27 Rab15 2811132 6.4 
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differences are linked to sequence divergence then we can be more confident that this 

is a species difference 

Shared GR bound sites that aligned across species showed significant 

enrichment for the GRE motif when compared to those sites that could be aligned but 

did not have measureable GR binding in the other species (Figure 4.10A&B). This 

was also true for PU.1, although less strongly, reflecting the lower prevalence in the 

baseline dataset (Figure 4.10A&B). In the same way the frequency of the GRE was 

higher in the aligned sites that retained GR binding in both species compared to the 

aligned but unbound sites (human origin fold enrichment 3.4, p = 4.45x10-12, mouse 

origin fold enrichment 3.2, p= 2.44x10-12, Pearson’s chi-squared).  

Species-specific GR bound sites were strongly enriched for GRE compared to 

the sites that could be aligned from the other species but were not bound (Figure 

4.11A&B), with stronger enrichment for PU.1 in the mouse specific sites (Figure 

4.11A&B). Consistent with some retention of PU.1 at the mouse specific sites, there 

was a weak but detectable relationship between the non-bound mouse sites that could 

be aligned in human and human specific induced genes (Figure 4.11C-F).  Since 

most of the species-specific sites could be aligned (Figure 4.8) the changes that cause 

the motif loss are likely to be at the sequence level, such as nucleotide substitutions, 

rather than insertion or deletion of sequence. Overall this supports the hypothesis that 

these differences are due to species specific sequence changes, rather than being an 

artefact of the systems studied. 

If the differences outlined above were driven by host pathogen interactions, as 

suggested for LPS (Schroder et al., 2012), there would be an active loss of 

conservation, indicative of positive selection, beyond that seen for background. 

Conversely increased conservation is seen at sites of purifying selection; the loss of 

such sites is deleterious. Using per base evolutionary constraint (Davydov et al., 

2010) the shared sites in each species have increased constraint of the GRE (Figure 

4.10C&D), consistent with a conserved biology. However there was not a signature 

consistent with substantial purifying or positive selection across the motif at the 

species-specific sites (Figure 4.10C&D). 
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Figure 4.10 Conserved GR binding is linked to conservation of the GRE  

 

 (A) Motif enrichment for the sites bound by GR in mBMDM that aligned and 

were also bound in hMDM, using as background the sites that could be aligned 

but were not bound in hMDM (q values shown, Benjamini-Hochberg). (B) 

Analogous to (A) but for hMDM sites bound in mBMDM vs sites that could be 

aligned but were not bound in mBMDM. (C) Mean per base constraint scores 

calculated using GERP (Davydov et al., 2010) across the GRE in shared 

(green) and species-specific (red) peaks found in hMDM, where the grey bars 

represents the standard error of the mean. Vertical dashed lines delineate the 

centre NNN for the GRE, as derived de novo from our hMDM data. (D) 

Analogous to (C) for GR bound peaks and GRE motif found in mBMDM.  

Analysis performed with assistance from Rob Young, MRC HGU. 
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Figure 4.11 Loss of GRE motif is associated with species specific binding. 

A motifs enriched in the human specific peaks compared to the aligned mouse 

sites that are not bound by GR in hMDM. B motifs enriched in the mouse 

specific peaks compared to the aligned human sites that are not bound by GR 

in mBMDM. The proportion of peaks with induced (green) or repressed (red) 

genes within a given genomic interval for C mBMDM and D hMDM. Dashed 

lines represent peaks from mouse, which align in human, but are not bound in 
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hMDM. The 95% confidence intervals from matched permuted distributions of 

GR peaks are shown in grey. The enrichment of the proportion of induced 

(green) genes with a GR peak within a given interval versus the proportion of 

induced genes without a GR peak within that interval for E mBMDM and F 

hMDM. No enrichment is seen for repressed genes (shown in red). Dashed 

lines represent the same test performed using the peaks from mouse that align 

in human but are not bound by GR in hMDM. The 95% CI from a permuted 

distribution of GR peaks is shown in grey. Analysis performed with assistance 

from Rob Young, MRC HGU. 

 

Gene regulation occurs within a complex chromatin environment. A relatively 

stable higher order structure is proposed for the genome (Dixon et al., 2012) where 

interactions are relatively more likely within domains (topology associated domains, 

TAD). Regulatory interactions would then be enriched within these proposed 

topological domains. Comparison of the intervals between GR bound peaks and 

closest induced genes for each species shows no enrichment for the number of 

intervals contained within a single TAD vs randomly permuted intervals of the same 

size (hMDM 100/227 vs 109/227 p value = 0.45 Pearson’s chi-squared). As expected 

from the location analysis above (Figure 4.7), the peaks are significantly more likely 

to be in the same TAD as the nearest induced gene when compared to a random set 

(hMDM 6.6 fold enrichment, p value <2.2x10-16, Pearson’s chi squared).  

 

4.6 Discussion 
 

The data have revealed GR bound enhancers in the region of genes induced by 

GC, but promoters are not bound. Many modes of binding have been proposed for 

GR (Nixon et al., 2013). However, in both human and mouse macrophages GR 

bound sites, as assayed by ChIP, were strongly enriched for DNA sequence motifs 

matching the canonical inverted-repeat GR dimer binding site (GRE).  
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Conservation has been suggested to be a predictor of GR binding at sites 

adjacent to regulated genes (So et al., 2008) and there was a small subset of sites that 

fit this pattern. However, the large majority of the GR bound enhancers and GR 

motifs were not conserved between mouse and man. This confirms the prediction 

from the recently published mouse ENCODE data (Yue et al., 2014) that distal 

regulatory divergence is strongest  for immunity. It is also consistent with previous 

work that shows variability of factor binding at distal sites can be a source of 

phenotype diversity between species (Villar et al., 2014) and this variation can 

accrue rapidly, even over the relatively short evolutionary distances between mouse 

strains (Stefflova et al., 2013).  

The gain or loss of GR bound sites was linked to sequence changes that cause 

gain or loss of the canonical GRE and partner motifs such as PU.1. This correlates 

closely with the species differences in transcriptional regulation described in the 

previous chapter. As discussed above, the cell models are not directly comparable. 

However, the fact that GR binding can be linked to DNA sequence changes between 

species suggests that the divergent expression response is not just an artefact of 

different culture models. Given the immune roles of macrophages and 

glucocorticoids relating to the immune response it is perhaps surprising that there 

was not evidence of pathogen driven positive selection underlying the divergence. 

The lack of apparent adaptive selection amongst lineage specific enhancers that drive 

gene expression is consistent with recent work in Drosophila (Arnold et al., 2014), 

although in that setting enhancer function more generally appeared to be relatively 

well conserved. 

Combinatorial binding of lineage determining and phenotype specific factors 

is known to play a critical role in macrophage biology (Glass and Ogawa, 2006; 

Heinz et al., 2010, 2013). For the GR response there was a role for PU.1 as there was 

a strong signal for both stringent and more lenient DNA motifs for this factor in the 

GR bound sites, along with majority overlap from previously reported PU.1 occupied 

sites (Ostuni et al., 2013). However the major motif that is gained or lost between 

species at species-specific GR bound sites is the GRE itself, with a weaker signal for 

PU.1. This indicates that whilst partner factors are important for GR binding, the 
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dominant effect remains within the GRE. This is in contrast to a study of human 

variants which lead to allelic imbalance where only a minority of differential 

transcription factor binding events found were associated with changes in the 

dominant motif. The majority were linked to subtler changes to motifs that were 

already more degenerate (Reddy et al., 2012). 

The exact mechanism by which distal elements regulate transcription remains 

to be determined (Pennacchio et al., 2013). Interaction, redundancy and co-

operativity for enhancers in a given locus have been proposed. For GR multiple 

bound sites have been associated with stronger gene regulation (Reddy et al., 2009). 

Macrophage GC targets also show this dose response relationship for GR binding, 

albeit weakly, which is supportive of an additive effect of multiple active distal 

regulatory elements (Section 4.4). 

GC have commonly been studied as repressors of inflammatory gene 

expression. In the context studied here GC act on macrophages primarily as inducers 

of gene expression, when measured at the level of stable mRNA.  As discussed 

above, the methodology does not address loading of RNA Polymerase, or initiation 

and elongation, which might be address by ChIP-seq and ‘global run on’ followed by 

sequencing respectively. The level of stable mRNA does however represent the 

complement of genes with detectable mRNA available for translation at any given 

time point, which remains a useful readout of gene regulation. The time series data 

revealed a cascade of gene regulation. Some of the later changes are likely to be 

secondary responses to the initial stimulus as explored recently for Klf4 (Chinenov et 

al., 2014). However, the late-induced genes were equally likely to have a GR bound 

peak in the region. These peaks were of the same strength and had the same range of 

associated transcription factor binding motifs. One explanation for the lack of 

correlation between binding and temporal profile is that GR binding is permissive in 

some locations, producing activation only in combination with other transcription 

factors that are induced earlier in the temporal cascade. 

Gene repression by GC was not associated with direct GR-DNA binding in 

either species. This is consistent with a report from candidate loci in cell lines (So et 
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al., 2008) and the finding of higher median distance between GR peaks and the 

nearest repressed vs. induced genes in the lung epithelial A549 cancer cell line 

(Reddy et al., 2009). Repression has been attributed by others to interaction with 

other chromatin-binding transcription factors rather than direct DNA binding DNA 

(Ratman et al., 2013). The difference in expression response between species was 

just as large for repressed as for induced genes. This is consistent with GR exerting 

its repressive effects by interacting with other factors bound at regulatory sites that 

are distant from promoters and evolving between the species.  There was no signal 

from secondary crosslinking between GR and other factors bound to such sites in the 

vicinity of repressed genes. The previous study by Uhlenhaut et al (Uhlenhaut et al., 

2013) used dual cross-linking with formaldehyde and disuccinimidyl glutaraldehdye 

in an explicit attempt to capture indirect interactions. This approach enabled them to 

report enrichment for motifs of known GR partners, but the large number and wide 

distribution of reported peaks prevented the assignment of any quantitative 

relationship with specific genes either induced or repressed by GC.   

Previous studies in other systems reported negative GR binding elements 

(Hudson et al., 2013; Surjit et al., 2011), but they were not present in either our 

mouse or human data. Lower binding affinity and faster turnover time could 

compromise their detection under the conditions employed here. Alternatively, there 

may be context dependent use of different types of regulatory element.  For example, 

the nGRE may only be relevant in macrophages when GR acts to suppress 

inflammatory gene induction, rather than in the basal CSF1-dependent state we 

examined (Uhlenhaut et al., 2013). An alternative mechanism that may underlie 

some of the repressive effects is secondary repression driven by the early-induced 

genes such as DUSP1 and NFKBIE. 
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4.7 Summary 
 

In keeping with more generalised mouse-human comparisons by the mouse 

ENCODE consortium (Cheng et al., 2014; Stergachis et al., 2014) the principles of 

the macrophage response to GC are strongly conserved between mouse and man. 

There are also a small number of loci where conservation can be found in both the 

regulatory architecture and expression response. At these sites it may be more likely 

that specific findings will translate well from mouse to man (and vice-versa).  

However, the extensive expression divergence that is attributable to sequence 

changes at distal regulatory sites, in combination with the profound differences in 

macrophage responses to LPS between mouse and human (Schroder et al., 2012), 

underline the caution that must be employed when attempting to directly translate 

many locus or pathway specific findings from mouse models to human medicine. 
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Chapter 5: Dynamic regulation of chromatin 
structure in macrophages by glucocorticoids 
 

5.1 Introduction 
 

The data presented in chapters 3&4 confirm that in macrophages the majority of 

genomic sites bound by glucocorticoid receptor (GR) after treatment with 

dexamethasone lie away from promoters of regulated genes. It is also clear that GR 

binding is enriched in the vicinity of induced genes.  

The mechanisms of gene regulation from a distance remain uncertain  (section 

1.2.2) (Pennacchio et al., 2013). The data presented here and that by others (Reddy et 

al., 2009)  indicates that GR acts in this way, at least for gene activation, leaving 

open the question of how the effect is mediated.  

 Chromatin remodelling complexes are implicated in the regulation of a subset 

of genes by GR. Further, the pattern in which GR binds to DNA is defined by and 

then influences chromatin organisation (section 1.2.3) (Burd and Archer, 2013; John 

et al., 2011).  However, Hakim et al. did not observe large scale re-organisation of 

chromatin in response to GC (Hakim et al., 2011). Instead an increased frequency of 

pre-existing regulatory contacts is suggested (Hakim et al., 2011). A model 

consistent with this was presented for the GC responsive FKBP5 locus using 3C 

based techniques in A549 cells (Klengel et al., 2013; Paakinaho et al., 2010). In that 

study an increase in contacts between distal enhancers and the promoter was found 

on stimulation with GC. If GR works by increasing the frequency of dynamic loop 

formation between enhancer and promoter then it may be possible to identify this 

using 3D DNA FISH across responsive loci.  

Work on the kinetics of GR binding and loading of remodelling complexes 

suggests that conformational changes may be rapid, within minutes (Johnson et al., 

2008; Nagaich et al., 2004; Voss et al., 2011). More generally, local chromatin 
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dynamics have not been visualised after GC stimulation at native loci. It is not 

known to what extent measurable remodelling occurs at this scale and what role GR 

might play. The studies presented here begin to address this in the context of primary 

mouse macrophages. 

 

5.2 GR binding is associated with rapid and 
prolonged chromatin decompaction  
 

The genome wide expression and binding data outlined in chapters 3&4 identified 

regions of the genome that were both responsive to GC and bound by GR. From 

these loci, sites with strong binding and regulation were chosen for further 

investigation using 3D DNA FISH. The initial focus was a locus in which GR 

binding and inducible expression was highly conserved between mouse and man: 

Fkbp5. This gene produces a co-chaperone of GR in the cytoplasm and has known 

roles in feedback control and sensitivity to GC (section 1.1.2) (Jääskeläinen et al., 

2011), thus is also potentially of clinical interest.The gene locus and fosmid probes 

used to span the mouse Fkbp5 are shown in Figure 5.1. For comparison Tmod1, 

which was in the same expression profile cluster (Chapter 3, Figure 1.), but lacks the 

strong local GR binding peaks (Figure 5.2).. 

A detailed time series demonstrated by 3D DNA FISH that decompaction occurred 

across the Fkbp5 locus within 5 minutes of exposure of mBMDM to dexamethasone 

and was sustained to 24h (Figure 5.3A&B) By contrast, the distance across 

Tmod1increased with the same kinetics as transcription, reaching significance only at 

4h and then reducing towards baseline by 24h (Figure 5.3C&D). Since there was no 

apparent decline in the apparent decompaction after 24 hrs, the experiment was 

repeated with even longer treatment (Figure 5.4A).  In this experiment, across the 

Fkbp5, locus decompaction remained statistically significant after 5 days following a 

single dexamethasone treatment (Figure 5.4A). The prolonged change in 3D 

chromatin conformation was not dependent upon ongoing transcription. Expression 
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of Fkbp5 after 2h treatment followed by 22h in fresh culture media returns to close to 

baseline (Figure 5.4B)  

 

Figure 5.1 Location of fosmids used for 3D DNA FISH at Fkbp5 locus 

A Wide view of murine Fkbp5 locus. The position of the fosmid probes is shown as 

red and green boxes. ChIP-seq for GR is shown as tags/base pair. B Analogous to A 

but zoomed in on the gene to show finer detail. 
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Figure 5.2 Location of fosmid probes used for 3D DNA FISH at Tmod1  locus 
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Figure 5.2 Location of fosmid probes used for 3D DNA FISH at  Tmod1 locus 

A Wide view of murine Tmod1 locus. The position of the fosmid probes is shown as 

red and green boxes. ChIP-seq for GR is shown as tags/base pair. B Analogous to A 

but zoomed in on the gene to show finer detail. C Very wide view to show no GR 

bound within either of the two sets of TADs reported in (Dixon et al., 2012) using 

HindIII and NcolI restriction enzymes, TADs shown in black above locus. 
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Figure 5.3 Chromatin decompaction in response to glucocorticoids 
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Figure 5.3 Chromatin decompaction in response to glucocorticoids 

A Inter-probe distance measured across Fkbp5 locus after treatment  of mouse 

BMDM with 100nM dexamethasone for the indicated times as described in Methods 

(section). B Representative images of nuclei measured in A. Note the clear separation 

of the two probes on both loci in the treated cells , probes indicated by arrows. C&D 

Analogous to A&B but measured across Tmod1 locus for comparison. n = 80 for 

each dataset. Horizontal line = median; grey circles = data points; whiskers = 1.5x 

interquartile range; n= ~80 for each dataset;* = p<0.05, ** =p<0.005, ***=p<0.0005 

Wilcoxon rank sum;Dex = dexamethasone 100nM. Data was taken blinded to the 

treatment condition. 
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Figure 5.4 Prolonged chromatin decompaction at Fkbp5 locus 

AInter-probe distance across the Fkbp5 locus in mBMDM stimulated with 

dexamethasone 100nM for the given times. Comparison is also shown with a vehicle 

treated sample that had been in culture for the same length of time. n=80 for each 

dataset. Dex = dexamethasone 100nM; -  = vehicle treated 48h; Median = horizontal 

black line; p values = Wilcoxon rank sum; whiskers are 1.5x interquartile range.B 

raw expression values for Fkbp5 over a 24h timeseries measured by microarray. 2w 

= treated for 2h with dexamethasone 100nM followed by replacing the media and 

leaving in culture for a further 22h;w = media change only, no dexamethasone. 
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5.3 Rapid chromatin decompaction of Fkbp5 locus 
does not depend on transcription 

 

The rapid change in the structure of the Fkbp5locus precedes transcriptional output 

by an hour and it was therefore unlikely that active transcription was pre-requisite for 

the effect. The toxin α-amanitin causes a transcriptional block by irreversibly binding 

to the Rpb1 (Polr2a gene) subunit of RNA Polymerase II. Consistent with a 

transcription independent mechanism, pre-treatment of mBMDM with α-amanitin 

2.5ug/ml for 4 hours did not block the decompaction at Fkbp5, although it was 

marginally slowed, reaching statistical significance between 5 and 15 minutes 

treatment rather than by 5 minutes (Figure 5.5A&B). By contrast and as predicted, α-

amanitin ablated the chromatin changes across the Tmod1 locus (Figure 5.5C&D), 

consistent with a transcription dependent mechanism at this locus. This suggests that 

there may be a different, transcription independent, mechanism underlying the 

changes at Fkbp5. 
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Figure 5.5 Alpha-amanitin does not block rapid decompaction at Fkbp5 
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Figure 5.5Alpha-amanitin does not block rapid decompaction at Fkbp5 

A  Inter-probe distance measured across Fkbp5 locus after treatment with 

dexamethasone 100nM for the indicated times. B Representative images of nuclei 

measured in A. C&D Analogous to A&B but measured across Tmod1 locus for 

comparison. Horizontal line = median; grey circles = data points; whiskers = 1.5x 

interquartile range, n= 80 for each dataset; * = p<0.05, Wilcoxon rank sum; Dex = 

dexamethasone 100nM; Ama = pre-treated with 2.5ug/ml alpha amanitin for 4h. 
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5.4 GR binds rapidly at enhancers in the Fkbp5 locus 
 

The marked difference between the changes to chromatin architecture between the 

two loci discussed above suggested that the strong local GR peaks at Fkbp5, absent 

at Tmod1, may be involved. The ChIP-seq data was measured at 2h treatment. To 

confirm that GR bound on a timescale that would be consistent with a genomic role 

in the rapid effect, binding was measured at the upstream (-28kb), downstream (+65) 

and promoter by ChIP-qPCR for shorter time points.  Consistent with a direct role of 

binding, GR binding to the -28kb element was detectable within 5 minutes, and 

binding to the +65 element by 15 minutes (Figure 5.6). 
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Figure 5.6 Glucocorticoid receptor binding at Fkbp5 locus 

Glucocorticoid receptor binding measured by ChIP-qPCR for the downstream 

enhancer (+65kb), promoter and upstream enhancer (-28kb) of Fkbp5. Data is shown 

for a 4 point time series (baseline, 5min, 15min,1h) of treatment with 100nM 

dexamethasone. Normal IgG and a control site in the promoter of Actb (actb) is also 

shown. Error bars are 2xSEM for technical replicates, data is shown is one of two 

biological replicates and is representative of both. 
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The data presented above show the distal regulatory elements and promoters 

moving apart on activation, albeit that the resolution of DNA FISH is not sufficient 

to resolve the 28kb distance to the upstream element. This does not immediately fit 

with prevailing models that requires increased interaction of enhancers with 

promoters to induce transcription (Krivega and Dean, 2012). The models might be 

reconciled if a decompact state reflects greater freedom of movement, so that on 

average the decompact state is permissive to transient, activating, enhancer-promoter 

contacts. If this were the case, and the enhancer promoter interactions were of 

sufficient duration, one might see two populations of apparent inter-marker distance 

within the data, a smaller one with shorter distances, the other larger with longer. The 

smaller set may be insufficient to show in a single data set the relatively low 

throughput techniques employed here (n=80 for each time point). 

Pooling the total DNA FISH data for Fkbp5 in mBMDM yielded 245 

measurements for vehicle treated and 929 for dexamethasone treated cells. There was 

no detectable shift in the distribution to a bimodal pattern on treatment (Figure 5.7A), 

indeed the pattern of the distribution remained very similar (Pearson’s product 

moment correlation =0.93). Furthermore, analysis by single cell RT-qPCR did not 

show a subpopulation of responding cells (Figure 5.7B).  
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Figure 5.7 Characteristics of the response to dexamethasone at Fkbp5 

A Pooled measurements across the Fkbp5 locus for vehicle (blue, n=245) and 

dexamethasone treated (red, all time points included, n=929) mBMDM. B Relative 

expression level of Fkbp5 and Gapdh in single mBMDM cells. Values are 

normalized to measurements taken from 10 cells for each gene. If a specific sub-

population of cells respond to dexamethasone by disproportionately increasing 

Fkbp5 then the distribution would divert (down) from the diagonal, (n=69). 
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5.5 Rapid decompaction may be a feature of GR 
bound loci 

 

The locus studied above, Fkbp5, has a role in GC biology (section 1.1.2).  To 

determine whether the decompaction was a generalizable feature of GC-responsive 

loci, the same time series analysis was repeated at an alternate GR bound GC 

responsive locus. A site on chromosome 19 (chr19:11,551,990-11,673,273)had five 

regulated genes from a family of transmembrane proteins, with one major and one 

minor GR bound peak in the vicinity(Figure 5.8A). The expression response was 

slower than Fkbp5, sustained at 24h and two of the genes have significant activity at 

baseline (Figure 5.8B). 

Rapid decompaction was detectable across the locus after dexamethasone 

treatment (Figure 5.9A&B). As in the case of Fkbp5, decompaction clearly preceded 

gene induction (Figure 5.8B) despite the baseline activity and more decompact initial 

structure. As in the case of Fkbp5, and despite the baseline transcription, the effect of 

dexamethasone treatment was marginally slowed but not ablated by pre-treatment 

with α-amanitin (Figure 5.9C&D). 
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Figure 5.8 The site and response of a dexamethasone sensitive locus on 

chromosome 19 

A  UCSC browser image showing the locus. Shown are the genomic site, GR 

binding, regulated genes (highlighted, colours match to panel B) and the position of 

fosmid probes used for 3D DNA FISH (red and green boxes above track). B  Raw 

expression values for each of the regulated genes within the locus from the 

microarray time series reported in chapter 3. Colours match highlights in panel A. 
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Figure 5.9 Chromatin decompaction at a GR bound locus on mouse 

chromosome 19 
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Figure 5.9 Chromatin decompaction at a GR bound locus on mouse 

chromosome 19 

A  Inter-probe distance measured across chr19 locus illustrated in (Figure 5.8) after 

treatment of mBMDM with dexamethasone for the indicated times. B Representative 

images of nuclei measured in A showing the position of labelled fosmid probes 

flanking the locus detected using red and green fluorophores. C Inter-probe distance 

measured across chr19 locus after treatment with dexamethasone following pre-

treatment with alpha amanitin. D representative images of nuclei measured in C. 

Horizontal line = median; grey circles = data points; whiskers = 1.5x interquartile 

range, n=60 for each dataset; p-values as given, Wilcoxon rank sum; Dex = 

dexamethasone 100nM; Ama = pre-treated with 2.5ug/ml alpha amanitin for 4h. 

 

5.6 Discussion 
 

The data show that there are rapid changes to local chromatin structure around 

induced genes in response to GC in primary macrophages. This correlates with 

binding of GR and precedes the induction of transcription. The effect was not 

blocked by inhibiting transcription, therefore it is unlikely this effect is dependent on 

a transcribed eRNA (section 1.2.2.2). 

Dynamic exchange of transcription factors at regulatory sites has been 

proposed to be directly linked to chromatin remodelling (John et al., 2008). Nuclear 

hormone receptors bind rapidly and in a combinatorial fashion (Glass and Ogawa, 

2006; Métivier et al., 2003). Binding and turnover has been shown to be ATP 

dependent for GR (Stavreva et al., 2009). There is rapid recruitment of ATP utilising 

chromatin remodellers Brm and Brg1 to GREs (subunits of the SWI/SNF complex) 

within the GR responsive MMTV array (Johnson et al., 2008; Nagaich et al., 2004). 

The murine Fkbp5 locus specifically was one of many reported to be less responsive 

(reduced to 0.64x wild type) in a cell line engineered to have a dominant negative 

version of the ATP requiring remodeller Brg1 (John et al., 2011). 
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Directly linking the binding of GR to rapid decompaction is difficult. Absence 

of Brg1 did not ablate the transcriptional response, only restrained it to two thirds of 

wild type levels (John et al., 2011), so it is not specifically required. Unfortunately an 

attempt to assess Brg1 loading at the sites shown in (Figure 5.6) by ChIP-qPCR was 

uninformative, with very low and invariant signal at all sites and treatments (data not 

shown). The other loci studied here were not GC responsive in that system. 

The FKBP5 locus in humans has been examined specifically in two studies and 

is well conserved in mouse. The first used ChIP-qPCR in A549 cells and identified 

GR binding similar to that presented here and in chapter 4 (Paakinaho et al., 2010). 

They suggest that the Brm subunit of the SWI/SNF complex is required to achieve a 

full response (24 fold reduced to 12 fold induction by Brm knockdown). However 

they were not able to demonstrate recruitment of this complex to the enhancers on 

GC treatment. They suggest a role for CTCF and cohesin in formation of a putative 

loop containing the gene, consistent with growing literature implicating these factors 

in the regulatory organisation of the genome (Ong and Corces, 2014). In their model 

the loop then compacts further on activation; the opposite of what has been 

demonstrated directly here by 3D DNA FISH.  

Other studies in human cell lines have linked GR and BRM (Engel and 

Yamamoto, 2011). They showed that a subset of genes require BRM for full 

response and that GR binding may be reduced by BRM knockdown at the 

downstream FKBP5 enhancer. For other loci they find that there was reduced 

nuclease accessibility on GC treatment in BRM knockdown, but they do not study 

FKBP5. 

The FKBP5 locus is of specific interest in human disease susceptibility. Links 

between SNPs within the FKBP5 locus and multiple psychiatric diagnoses have been 

described(Binder, 2009). Further, specific risk SNPs and altered DNA methylation 

and chromatin conformation across the locus have been linked to higher risk of post 

traumatic stress disorder (Klengel et al., 2013). The association again is with 

increased enhancer-promoter contacts by 3C for the risk phenotype, suggested to 

increase the level of FKBP5 and hence alter the feedback control of the stress 
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response. The mechanism described is not certain since the methylation change 

reported is at a different enhancer to the risk allele, but the association of the SNP 

identified and primarily anxiety and depressive disorders appears robust. In this 

context the prolonged effect found in the present study (Figure 5.4) is of interest, as it 

hints at a structural change that can persist beyond the initial stimulus. This plasticity 

in chromatin may therefore be a contributor to prolonged effects following GC 

exposure and could have relevance to many areas of physiology and pathology 

involving severe stress or high doses of exogenous GC.  

 

5.7 Summary 
 

For the loci studied there is an association between rapid decompaction of chromatin 

and GR binding. The mechanism of this is not clear but does not require 

transcription. Other studies have implicated ATP dependent chromatin remodellers 

in the response to GC, but without reference to the kinetics. The phenomenon occurs 

at but is not limited to a locus of clinical relevance in GC biology. Overall the 

findings are not easy to align with a model of increased enhancer-promoter 

interaction driving transcription, at least where these interactions are occurring in 

anything more than a tiny fraction of the cell population at a given moment. In fact 

the opposite, where GR binding appears to rapidly release constraint on a locus is 

more consistent with the data. 
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Chapter 6: Conclusions and future work 
 

6.1 Conclusions 
 

6.1.1 The genome wide response to GC in macrophages 
 

The work described in this thesis has demonstrated that GC act primarily as inducers 

of gene expression in primary macrophages from both mouse and man, but the set of 

induced genes is very different between the two species. GR bound to candidate 

enhancers in the vicinity of inducible genes that were generally not shared between 

mouse and man.   The differences in binding were correlated with DNA sequence 

changes at the enhancer sites between the two species, which caused gain or loss of 

predicted GR receptor-binding motifs within the enhancer.   

The inter-species divergence identified is striking, for both the GR binding 

and downstream expression response. However equally striking is the similarity in 

the pattern observed: both show binding at sites distant from promoters and enriched 

near induced genes. The data therefore argue strongly for the mouse as a model for 

understanding the principles of human, and specifically macrophage, biology. 

Concurrently it provides evidence for where (conserved loci) and where not 

(divergent loci) locus specific conclusions might be extrapolated more successfully 

between species.  

 

6.1.2 GC effects on chromatin organisation in macrophages 
 

The mechanism of action of GC was investigated by imaging several different target 

loci using labelled probes in macrophage nuclei.  The DNA at specific GC 

responsive loci increased the average spatial separation of probes flanking responsive 
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loci within minutes of exposure of macrophages to the ligand.  The apparent 

decondensation effect was maintained for at least 24 hours and was not prevented by 

inhibitors of transcription.  

6.2 Future work 
 

6.2.1 Enhancer turnover and variability 
 

The data indicate that the major change driving loss of GC response at induced genes 

between species is turnover of the GRE motif. Confirmation that the turnover of GR 

binding sites is the cause of the expression divergence could be achieved by re-

engineering a degenerate GRE, from a GR bound enhancer that aligns between 

species but is not bound. Improving the match to the GRE consensus motif in a 

stepwise base-by-base process should induce binding and cause induction of the 

target gene. If this re-engineering is not effective it may indicate that other elements 

such as PU.1 may also be required, albeit that GR appears dominant in the systems 

studied here.  Editing the genome in this manner could be achieved using, for 

example, the now widespread Clustered Regularly Interspaced Palindromic Repeats / 

Cas (CRISPR/Cas) system (Cong et al., 2013; Jinek et al., 2013). Transfection of 

primary mBMDM leads to activation (Stacey et al., 1996) and cell death (Roberts et 

al., 2009).  The murine macrophage like cell line RAW264.7 is GC responsive and 

can be transfected with less adverse effects (Stacey et al., 1996) thus could provide a 

model in which to attempt the recreation of a functional GRE. 

Studying an intermediate species would provide an alternate approach. Pig 

macrophages, both BMDM and MDM, can be grown using equivalent in vitro 

protocols to those used in this study and have been shown to be closer to human than 

mouse in response to LPS (Schroder et al., 2012). Expression and ChIP data from pig 

would be required to provide confirmation. Studying a conserved enhancer in human 

and pig that drives gene induction, that aligns but has lost the GRE and gene 

induction response in mouse, would support the hypothesis that it is the presence of a 
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consensus GRE that is causing the observed differences. The antibodies used for GR 

ChIP in mouse and man in this study did not work in the other species. It is possible 

therefore that GR ChIP in pigs may be challenging, although partly mitigated by the 

large numbers of cells readily available. 

This thesis has not attempted to address inter-individual variability between 

the human volunteers, as insufficient samples were included to draw valid 

conclusions. People differ in their response to GC and variability is present in the 

expression data, for example at CCL7 (Figure 6.1).  The data presented here predict 

that the difference will stem, at least in part, from genetic variation at regulatory sites 

(Heinz et al., 2013). The ideal study to address this would include a large number of 

individuals, as a meaningful effect size is difficult to estimate, and match expression 

and ChIP-seq data. There are practical limitations to this, in addition to the cost 

implications. The major issue is the challenge of generating ChIP-seq data for pure 

macrophages from a single individual within a reasonable donation of blood. To gain 

good data in this study, material from 4 volunteers was pooled. Therefore an average 

of the GR binding patterns for these individuals had been obtained. An alternative 

approach is that the identified sites could be used as candidate loci within which to 

search for variants using sequence capture technology and re-sequencing. Far less 

material is required for expression analysis therefore paired RNA samples from 

macrophages treated with GC could be obtained for comparison at loci where 

variants are identified. 

From a clinician’s perspective a key objective is to limit the side effects of 

glucocorticoid therapy (section 1.1.1,Table 1.1). Different GR ligands may cause 

altered GR binding by favouring a particular GR conformation. Exploring the GR 

binding pattern induced by novel ligands is an exciting avenue to increase 

understanding of how they may have differential effects on gene transcription. This 

is the focus of on-going work with collaborators (Dr. Ruth Andrew’s lab, BHF 

Centre for Cardiovascular Sciences, QMRI, University of Edinburgh). 
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Figure 6.1 Variability in expression of CCL7 in response to GC 

Expression values of CCL7 for, each individual volunteer’s monocyte derived 

macrophages, extracted from the microarray dataset presented in  section 3.3. Each 

colour represents a volunteer.  
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6.2.2  Kinetics of the macrophage response to GC and 
mechanisms of repression 
 

The data in chapter 4 show that late responding genes are equally likely to have a GR 

peak as early responding genes. Previous work has also shown that GR binding and 

transcription may not be simply correlated in time (John et al., 2009). GR dynamics 

are also critically affected by ligand choice. Dexamethasone has high affinity for GR, 

which has consequently prolonged association times compared to cortisol (in man) or 

corticosterone (in mice), which is likely to alter the dynamics of the global binding 

pattern. An ideal experiment to describe the response of macrophages to GC further 

would therefore have several time points with matched data from stimulation with 

multiple GR ligands; a non-trivial undertaking especially in the context of human 

primary cells.  

This study does not provide a mechanism for repression by GR, although 

some will be due to changes in the expressed transcription factor profile (Table 3.1, 

Table 3.2). Time series data for the histone modifications that are associated with 

poised and active enhancers (section 1.2.2.1) would provide additional insight into 

the nature of the regulatory landscape, as would a measure of chromatin accessibility 

such as DNaseI hypersensitivity. Transrepression by GR predicts that a set of 

regulatory sites associated with the repressed genes will exist that are not marked by 

direct GR binding, but have active histone marks such as H3K27ac and H3K4me1 

and are bound by other factors such as AP-1 (Ratman et al., 2013; Uhlenhaut et al., 

2013). Study of the position and sequence of these sites, if they exist, would shed 

light on the mechanisms by which GC repress.  

 

6.2.3 GC driven chromatin dynamics 
 

Rapid, transcription independent, decompaction is found at loci responding to GC 

that are bound by GR (section 5.2). Acetylation of histones can produce 
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decompaction (section 1.2.2). The histone acetyl-transferase p300 has been 

implicated in pulsatile association with GR at GRE (Conway-Campbell et al., 2011) 

and has been shown to co-immunoprecipitate with GR (Wang et al., 2012). High 

quality ChIP data for p300 across a candidate region such as Fkbp5, either by ChIP-

seq or ChIP followed by microarray (ChIP-chip), after dexamethasone treatment 

would determine whether p300 is dynamically recruited to the GR binding site, and 

whether the recruitment correlates with regulated histone aceylation in the vicinity of 

the bound GR.  Quality time series ChIP-seq or ChIP-chip data for Brg1 following 

dexamethasone treatment, would also be informative.  

 Knockout mice for both p300 / CBP and Brg1 exist but are embryonic lethal. 

The homozygotes also have substantial phenotypic abnormalities, particularly in the 

haematopoietic system, therefore are not ideal models for study (Blake et al., 2014). 

Small molecule inhibitors are available for both p300 and Brg1 but the effects would 

not be targeted to specific loci. The overall cell phenotype and chromatin 

environment would therefore be changed. 

To probe the mechanism further in a more specific manner it would be 

interesting to delete, individually and together, the enhancer elements and thereby 

establish whether they are required for both decompaction and the transcriptional 

response to GC. The decompaction detected in mBMDM at the Fkbp5 locus was 

recapitulated in the murine macrophage like cell line RAW264.7 treated with GC 

(Figure 6.2). Deletion of the enhancers in RAW264.7 cells, for example using the 

CRISPR/Cas system, could therefore serve as a model for this locus.  Another option 

would involve the use of CRISPRs to generate deletion of the control element in 

murine ES cells, followed by the production of macrophages in culture via the 

generation of embryoid bodies (Subramanian et al., 2009).  This approach is 

currently being tested in the Hume laboratory.  
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Figure 6.2 Rapid chromatin decompaction occurs in RAW264.7 cells 

Inter probe distance measured across Fkbp5 locus in RAW264.7 cells treated with 

dexamethasone 100nM for the indicated times.  

 

 

The role of GR at the enhancers could also be probed in the RAW264.7 cell 

model. Transcription Activator Like (TAL) effectors (Ding et al., 2013; Zhang et al., 

2011) fused to the activator VP64 can target and activate specific genes (Therizols et 

al., 2014). Recruiting domains of GR to the enhancers by fusing them to custom 

transcription factors which specifically target a single enhancer (Therizols et al., 

2014) would confirm that GR is required and might also identify the domains 
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involved at each site. Again, ChIP for potential partners such as p300 / CBP or 

Mediator subunits (section 1.2.2.1), under each different condition would begin to 

dissect the mechanism. 

Rapid decompaction can be produced by supercoiling, where twist is induced 

in the DNA helix by the passage of RNA polymerase II (Naughton et al., 2013; 

Villeponteau et al., 1984). Given the transcription independence of the GC response 

found in the present study supercoiling is an unlikely cause, but it could be tested. 

Bleomycin treatment induces DNA nicks thus relaxing the twisted formation 

(Naughton et al., 2013; Villeponteau and Martinson, 1987), which should then 

collapse any decompaction due to supercoiling.  

The results for Fkbp5 contradict previous findings by 3C in the human A549 

cell line, where the downstream element increased its interaction frequency with the 

gene promoter in response to GC (Paakinaho et al., 2010). A central question in long-

range control of gene expression is the nature of the interaction between regulatory 

sites and the genes they influence. Time series interaction data from mBMDM 

responding to GC using 3C may be highly informative and is a focus of current 

ongoing work. 

Prolonged changes in chromatin structure following a bolus of GC may be 

important (section 5.2). Dysregulation of the HPA axis in severe illness is linked to 

worse outcomes (Annane et al., 2009; Boonen et al., 2013). Severe illness is also 

linked to prolonged reductions in functional capacity (Lone and Walsh, 2012).  A 

stable change to the local organisation of GC responsive loci is therefore a candidate 

mechanism for involvement in the prolonged functional deficit. In the context of a 

prolonged response choice of ligand is important. This study used dexamethasone, 

which has a high affinity and long association time with GR (section  1.1.2). 

Comparison of the duration of effect after treatment with different GR ligands such 

as cortisol, which has a much shorter association time with GR, will be of interest. 

Further experiments might examine the compaction at Fkbp5 (a highly conserved 

locus) in various cell types for treated and untreated mice. Progress to human healthy 
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volunteer and patient studies would be feasible if mouse results were positive, given 

the number of cells required for these assays is relatively small.  

 

6.3 Summary 
 

 The data presented in this thesis describes the transcriptional response of 

macrophages to GC in mice and humans and demonstrates significant differences 

between the two species. The differences in the majority of induced genes were 

linked to changes in the DNA sequence at regulatory enhancers located at a distance 

from the genes that change. Rapid and prolonged local decondensation of chromatin 

was found at GC sensitive loci in macrophages. 

Bridging the gap between fundamental mechanisms and physiological effects 

is the ultimate goal of my research. The data provide multiple exciting avenues for 

further investigation, some of which in due course may have important clinical 

implications. 
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Appendix 1 
This contains one entry for each gene regulated by dexamethasone 100nM 
in mBMDM 
logFC = log2 fold change, adj.p.val =  adjusted p value (Benjamini-
Hochberg) 
Time represents the point where the gene has its maximal change from 
baseline by lfc. 

     Official Gene Symbol logFC adj.p.val Time 
 F13a1 5.435155836 1.87E-16 24 
 Hp 4.599651578 2.06E-12 24 
 Pik3ip1 4.371279103 1.41E-12 10 
 Sult1a1 4.129464854 4.59E-12 10 
 Fkbp5 4.002554804 8.07E-13 10 
 Ddit4 3.979811626 2.94E-10 4 
 NA 3.954736843 1.34E-14 4 
 Ms4a6b 3.909149922 2.15E-11 24 
 Ms4a4b 3.856029719 5.25E-11 24 
 Lifr 3.647042737 1.20E-10 24 
 Zbtb16 3.49437474 1.38E-09 4 
 6030422H21Rik 3.485671443 7.59E-10 2 
 Prss16 3.477071823 1.24E-11 10 
 Dusp1 3.363805076 5.11E-11 1 
 Saa3 3.281105596 1.63E-13 24 
 Lyve1 3.204087271 7.58E-11 10 
 Cd55 3.022962191 1.46E-07 24 
 Ms4a4c 3.010537516 1.26E-07 24 
 Abhd15 2.962026041 7.41E-10 4 
 Rab15 2.854500771 3.98E-09 10 
 Sla 2.794717076 5.19E-13 4 
 Klf9 2.666514357 5.25E-11 24 
 Serpine2 2.664846017 1.00E-06 24 
 Filip1l 2.639129969 2.06E-12 24 
 Cbr2 2.623414223 7.49E-10 24 
 Tsc22d3 2.577505081 4.29E-15 4 
 Cd163 2.545715246 8.78E-11 24 
 Per1 2.540304193 4.41E-13 2 
 Thbs1 2.516264494 4.67E-08 24 
 Map3k6 2.444695128 6.36E-12 10 
 Marco 2.351556829 1.18E-08 24 
 Il15ra 2.32209633 1.71E-07 2 
 Gda 2.259680848 8.57E-10 24 
 Apoc2 2.240905265 7.39E-12 24 
 



Effects of glucocorticoids in macrophages 

Appendix 150 

Jdp2 2.235236381 1.92E-12 24 
 Sell 2.224631268 2.96E-08 24 
 Klhl6 2.212938786 1.67E-12 4 
 Mertk 2.124716056 2.08E-11 10 
 Ms4a6c 2.117456202 3.08E-10 24 
 Fam40b 2.112916033 2.94E-09 10 
 Cytip 2.094188592 2.38E-12 4 
 Fpr2 2.083019014 4.37E-06 24 
 Chi3l3 2.05894013 1.21E-07 24 
 Thbd 2.039018148 3.61E-10 4 
 B3gnt5 2.032204922 2.51E-06 4 
 Jag1 1.975272171 2.57E-05 4 
 Klf4 1.965627121 1.37E-09 2 
 Tlr8 1.948153802 3.62E-08 10 
 Gpr126 1.942767667 2.53E-07 4 
 Pex13 1.935376652 2.93E-12 4 
 Pla2g7 1.929061629 4.59E-09 24 
 AA409587 1.868530059 7.94E-08 2 
 Rnf169 1.863025622 2.38E-12 4 
 Lcn2 1.79704023 0.00017732 24 
 Lama3 1.792991339 2.43E-06 10 
 Ankrd29 1.786062972 1.83E-07 10 
 Fmnl2 1.779092813 2.40E-07 4 
 Ttc39c 1.770587156 1.32E-11 10 
 Pyhin1 1.765530256 4.56E-05 24 
 Nrg4 1.763219155 4.45E-08 24 
 Frmd4b 1.761710281 9.43E-09 24 
 P2ry12 1.758403183 1.52E-05 24 
 Maf 1.737816627 0.002025068 2 
 AA467197 1.690083178 2.12E-10 10 
 Stk17b 1.675291862 2.86E-11 24 
 Tmem37 1.668657246 9.63E-09 10 
 Ttpal 1.654378982 2.08E-07 4 
 Rffl 1.650638261 1.73E-06 4 
 4930523C07Rik 1.650597073 2.60E-07 24 
 Tns1 1.615814627 1.21E-09 10 
 A130040M12Rik 1.599548188 9.68E-08 4 
 Gpx3 1.599393721 3.66E-08 24 
 N4bp1 1.598411372 1.17E-08 10 
 Mmp8 1.588032995 3.58E-06 24 
 Samhd1 1.580359967 2.25E-05 2 
 Fpr1 1.575637582 1.99E-08 24 
 Chka 1.569628632 9.07E-07 2 
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Pstpip2 1.567613225 2.12E-05 10 
 Fhit 1.558985961 3.95E-06 24 
 Id1 1.549897704 0.000248871 24 
 Frat2 1.529601207 4.57E-05 4 
 Mgst2 1.527710059 1.53E-07 10 
 A130012E19Rik 1.516499445 0.017609868 2 
 Ogfrl1 1.515574597 1.71E-09 24 
 Ssh2 1.507675005 3.97E-09 4 
 Sik1 1.503465608 5.89E-07 2 
 Ccny 1.502090911 0.00070203 1 
 Rhoj 1.500088766 1.41E-06 10 
 Fabp4 1.496777089 0.031978093 2 
 Ap1s2 1.452176988 4.12E-05 2 
 Tlr7 1.451090517 2.28E-09 24 
 Foxred2 1.441950879 2.16E-09 10 
 Tigd2 1.409222107 9.89E-12 4 
 Glul 1.408643445 1.06E-09 10 
 Clec10a 1.398280949 2.15E-05 10 
 Fos 1.394439826 4.71E-05 4 
 Eps8 1.386235464 3.12E-11 10 
 Tmod1 1.38463195 4.98E-11 10 
 Dyrk3 1.383148147 8.70E-06 4 
 Sh3kbp1 1.372681511 3.21E-08 10 
 Klhl24 1.367227231 0.000157838 2 
 Ncoa5 1.356570992 7.28E-07 4 
 Acvr2a 1.345260941 1.44E-05 4 
 Ldlrad3 1.344645041 7.12E-06 24 
 Trp53inp1 1.341104072 1.82E-10 4 
 Ang 1.326696645 4.93E-09 24 
 Tcp11l2 1.326217601 1.28E-07 10 
 Mmp19 1.323751093 2.06E-07 10 
 Ptger2 1.300083043 1.63E-06 4 
 Aoah 1.28636391 0.001261189 24 
 Mlxip 1.280511165 8.81E-07 2 
 D930015E06Rik 1.278204166 8.01E-10 4 
 Rcsd1 1.275227282 1.53E-08 4 
 Gpr65 1.272778101 1.02E-08 4 
 Hivep2 1.254292168 4.55E-06 4 
 Wee1 1.24729766 1.50E-07 4 
 Il18rap 1.244413916 1.78E-05 10 
 Wnk1 1.242159407 0.011964331 4 
 Serinc3 1.224856774 9.78E-07 24 
 Cxcr4 1.223466803 3.37E-08 24 
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Mxd4 1.208626211 1.15E-07 10 
 Acss1 1.199777961 4.37E-08 4 
 Lyzl4 1.193382929 1.89E-06 24 
 Smurf2 1.191627743 8.09E-06 4 
 Ms4a6d 1.182134359 7.14E-10 24 
 Sgms1 1.180922805 4.82E-07 4 
 2210406H18Rik 1.165669127 2.01E-06 24 
 Tcf7l2 1.163752257 2.69E-07 4 
 Stxbp5 1.153607813 6.01E-05 24 
 Gab3 1.152348717 1.33E-07 4 
 Nedd9 1.144872474 1.53E-07 4 
 Ly6a 1.139359276 0.00943417 24 
 Bst1 1.11917443 9.46E-08 24 
 Gprc5b 1.107162284 3.46E-08 10 
 Tnks 1.099065979 0.000183217 4 
 Sgk1 1.0980162 3.61E-10 4 
 Tgfbi 1.091692315 1.85E-05 10 
 Peli2 1.074942073 7.67E-05 10 
 Rin3 1.073034378 7.26E-06 10 
 Adrb2 1.069024412 1.95E-07 4 
 Sqrdl 1.068701137 1.72E-08 10 
 P2ry13 1.066512991 1.47E-05 24 
 Fcna 1.066467547 4.92E-07 24 
 B3galnt1 1.045185998 5.72E-08 24 
 Stab1 1.045067906 2.21E-06 24 
 Usp2 1.044129785 0.000137044 4 
 Rnase4 1.042613479 2.93E-08 24 
 Phf15 1.034347654 7.76E-09 4 
 Dock10 1.025276734 2.74E-08 10 
 St14 1.02370349 0.001419124 24 
 Elmo2 1.023666512 0.001786397 10 
 Ypel5 1.020942933 8.14E-10 4 
 Glrx 1.02045127 4.50E-07 10 
 Man2a1 1.009025741 9.70E-09 24 
 Gng2 1.009019709 9.48E-06 24 
 Zc3h12c 1.008496066 3.00E-06 2 
 Mbnl3 1.008263897 0.010913661 24 
 Ckap4 1.005866077 0.00097655 4 
 Myo10 1.002623811 3.06E-07 10 
 Slc24a3 1.000212899 0.000102883 10 
 Nr1d2 -1.000532259 4.62E-09 10 
 Atp6v0a1 -1.01119555 3.58E-05 10 
 Gpr162 -1.014609578 0.000341237 10 
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Cdkn1c -1.019055366 0.03008497 10 
 Tmem158 -1.019588632 0.014093005 24 
 Ckb -1.027224432 4.76E-09 24 
 Clec2i -1.034643358 2.11E-05 10 
 Dio2 -1.049316288 0.009913706 24 
 Fam46c -1.049442686 1.84E-06 10 
 Ednrb -1.056092767 0.000396377 4 
 Ndrg4 -1.056118654 3.33E-06 24 
 Plk2 -1.058527911 0.006192991 2 
 Ccr5 -1.060748452 0.004550396 4 
 Pdgfa -1.068793081 6.72E-06 10 
 Enc1 -1.093687562 3.53E-06 4 
 Dusp4 -1.095287466 1.89E-06 24 
 Rapgef3 -1.095604435 3.89E-05 4 
 Ptchd1 -1.09680213 0.002138765 24 
 Pdlim4 -1.103989253 5.19E-07 10 
 Rgs2 -1.122039369 2.75E-05 10 
 Slc15a3 -1.123357517 5.58E-08 10 
 Mamdc2 -1.133274664 3.08E-06 24 
 Akap2 -1.141301103 1.20E-05 10 
 Olfm1 -1.146380321 1.07E-07 24 
 Ifit2 -1.146391556 0.006600447 10 
 Afp -1.152571716 9.44E-06 24 
 Cyp2s1 -1.155119822 0.017933157 24 
 Gpr176 -1.155999008 2.11E-05 10 
 Zranb3 -1.208161284 1.62E-06 24 
 Lat -1.235195696 2.27E-05 24 
 Tox2 -1.235564976 4.76E-08 24 
 Procr -1.247325483 1.48E-08 24 
 Ifit3 -1.254771345 0.012863893 10 
 Cd72 -1.286467411 4.22E-07 24 
 Kit -1.319484026 1.95E-05 24 
 Mmp13 -1.320981799 4.89E-05 24 
 Il1rn -1.327997128 0.00181262 24 
 Rsad2 -1.338134934 0.000880947 10 
 Ifit1 -1.353409644 0.002107779 10 
 H2-Aa -1.354965441 6.93E-05 24 
 Irg1 -1.479734796 5.43E-07 24 
 Plau -1.500286492 9.81E-05 10 
 Itgb3 -1.524604535 8.08E-05 24 
 Fcrls -1.529191421 8.35E-08 24 
 Pcp4l1 -1.540628793 4.12E-07 24 
 Clec7a -1.620584758 7.90E-07 10 
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Tubb2b -1.704978219 2.66E-07 10 
 Egr2 -1.914428385 0.000423715 10 
 Serpinb9b -1.990919488 1.36E-07 24 
 Mmp12 -2.379516911 9.17E-10 24 
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Appendix 2 
This contains one entry for each gene regulated by dexamethasone 100nM 
in hMDM 
logFC = log2 fold change, adj.p.val =  adjusted p value (Benjamini-
Hochberg) 
Time represents the point where the gene has its maximal change from 
baseline by lfc. 

! ! ! ! !Official!Gene!Symbol! logFC! adj.p.val! Time!
!THBS1! 6.011209305! 2.90EC10! 10!
!NA! 5.860788311! 2.47EC13! 4!
!PDK4! 5.576900738! 1.42EC05! 4!
!ZBTB16! 5.520246906! 7.97EC11! 4!
!ADAMTS2! 4.836201777! 4.52EC09! 24!
!ALOX15B! 4.487971798! 5.04EC08! 10!
!CSGALNACT1! 4.456692393! 2.21EC10! 10!
!PKP2! 4.25952153! 1.23EC09! 4!
!SPRY1! 3.876521772! 8.65EC08! 4!
!FBLN5! 3.865219421! 8.70EC07! 10!
!LHFP! 3.846029032! 3.92EC11! 10!
!FKBP5! 3.810817922! 2.99EC08! 4!
!SLC16A10! 3.618428074! 6.98EC05! 10!
!SRPX! 3.580319696! 0.002451263! 24!
!RGS1! 3.530196157! 0.000595165! 1!
!TPST1! 3.407762656! 2.65EC09! 10!
!TFCP2L1! 3.375479259! 1.54EC05! 10!
!CAMP! 3.33652724! 6.72EC07! 24!
!TFPI! 3.214769973! 1.35EC06! 10!
!DAAM2! 3.204361515! 2.25EC10! 24!
!TSC22D3! 3.170353709! 1.09EC11! 2!
!PER1! 3.15474706! 1.25EC13! 2!
!DUSP1! 3.137911717! 1.09EC11! 2!
!NHSL1! 3.097129116! 1.11EC10! 4!
!DDIT4! 2.999764261! 7.51EC13! 10!
!ST6GALNAC3! 2.964764017! 2.65EC09! 10!
!GRB10! 2.925126431! 7.30EC11! 10!
!PRKCH! 2.901474641! 2.68EC10! 4!
!RHOBTB3! 2.897045146! 1.51EC07! 4!
!TBC1D16! 2.869961149! 2.65EC09! 10!
!EBI3! 2.828475078! 6.67EC06! 24!
!IL1R2! 2.816837527! 2.62EC06! 24!
!FLT3! 2.812254981! 3.20EC07! 24!
!SAP30! 2.797419166! 4.08EC09! 10!
!
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SGMS2! 2.772752397! 1.16EC07! 4!
!TBC1D1! 2.761206378! 2.29EC10! 4!
!MT2A! 2.722036611! 0.000238207! 10!
!RBMS3! 2.708370442! 3.89EC08! 10!
!FRAT1! 2.627753621! 2.72EC10! 4!
!SH3PXD2B! 2.590721293! 4.70EC12! 4!
!NUDT16! 2.553557391! 4.03EC09! 10!
!USP53! 2.539109483! 5.01EC06! 4!
!KLF9! 2.537338629! 5.97EC11! 4!
!ADORA3! 2.53459692! 0.003175306! 24!
!GRAMD3! 2.50856061! 1.03EC07! 10!
!MDM2! 2.500403017! 3.76EC10! 4!
!PLEKHA7! 2.497428525! 3.20EC07! 4!
!CNIH4! 2.462674729! 3.02EC08! 4!
!CD163! 2.428398187! 3.48EC07! 10!
!CRISPLD2! 2.415055036! 0.004001197! 24!
!TMCC3! 2.399492446! 7.85EC05! 2!
!MTMR11! 2.38161627! 6.05EC06! 4!
!PKIB! 2.380442458! 3.03EC06! 10!
!FOS! 2.373397158! 2.42EC10! 4!
!PTX3! 2.369402551! 8.59EC05! 10!
!PHF17! 2.365408241! 1.09EC11! 2!
!LDLRAD3! 2.36402155! 3.34EC06! 10!
!PCYOX1L! 2.350852707! 0.000204655! 10!
!DUSP4! 2.337580771! 0.000628178! 4!
!SESN1! 2.329288415! 1.15EC11! 10!
!MAN1A1! 2.327313791! 9.19EC10! 24!
!FAM117B! 2.313578863! 4.47EC06! 4!
!FMN1! 2.289455077! 9.77EC06! 4!
!CYFIP2! 2.287260459! 0.000339764! 10!
!GADD45B! 2.22349637! 9.83EC08! 2!
!PRKCE! 2.195454054! 2.39EC10! 10!
!GLDN! 2.192955986! 0.008999155! 24!
!SLC16A6! 2.16605694! 0.001349284! 10!
!SRGAP1! 2.165082352! 8.70EC07! 4!
!RBP7! 2.165050126! 1.17EC05! 10!
!MEGF9! 2.143498887! 2.12EC07! 4!
!CPM! 2.137981203! 3.83EC10! 10!
!MT1X! 2.127942411! 0.001502375! 10!
!MERTK! 2.118218316! 3.42EC12! 4!
!C5orf62! 2.101832849! 6.11EC14! 4!
!MT1P2! 2.10148216! 0.004874976! 10!
!C19orf59! 2.096129218! 5.20EC07! 24!
!
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CCNA1! 2.063152723! 0.004439186! 4!
!GPR126! 2.061674601! 0.000416505! 10!
!ISG20! 2.060295238! 4.12EC05! 10!
!PAPOLG! 2.057912252! 7.94EC09! 4!
!ZCCHC6! 2.035393876! 3.15EC10! 10!
!THRB! 2.033081186! 0.000273633! 10!
!P2RY13! 2.022155736! 0.000702702! 4!
!BLM! 2.019030261! 0.000110565! 10!
!CYTIP! 2.014133687! 2.26EC08! 2!
!KCNE1! 2.013014064! 0.048004236! 10!
!GLUL! 1.990465351! 4.73EC05! 10!
!SHOX2! 1.970106234! 1.38EC05! 4!
!KLF4! 1.954949187! 1.05EC05! 4!
!SLAMF1! 1.925165676! 0.003449345! 4!
!SLITRK4! 1.924140704! 0.004077529! 4!
!APCDD1! 1.91586443! 7.96EC08! 10!
!PALD1! 1.908224705! 0.000784953! 10!
!MMP19! 1.907484294! 0.001507136! 10!
!NFIL3! 1.890152977! 2.50EC09! 2!
!IL1R1! 1.887164105! 7.01EC06! 10!
!KCNJ2! 1.886561006! 8.66EC06! 4!
!P2RY12! 1.868120995! 0.005509819! 24!
!KIAA0146! 1.865449078! 5.22EC07! 1!
!LONRF1! 1.855378347! 1.41EC07! 2!
!LOC285812! 1.846725377! 2.06EC05! 4!
!SLC25A15! 1.846167577! 0.000128556! 4!
!PGRMC2! 1.844929779! 8.88EC05! 10!
!LRRC16A! 1.844048532! 0.000172003! 10!
!FILIP1L! 1.841723799! 9.73EC05! 4!
!PPARGC1A! 1.829195341! 0.003071635! 24!
!RNF144B! 1.821808551! 4.26EC05! 2!
!NAV2! 1.820198826! 0.019163574! 10!
!VCAN! 1.816167791! 1.45EC06! 10!
!CEBPD! 1.805750432! 1.72EC05! 1!
!CTTNBP2! 1.803414835! 0.001972932! 10!
!GAB1! 1.798258614! 6.26EC08! 4!
!TSPAN2! 1.790855265! 0.037854712! 10!
!FAM59A! 1.788293916! 7.51EC06! 4!
!B3GNT5! 1.779217192! 5.80EC11! 4!
!SEMA3C! 1.772648955! 0.00033442! 10!
!FPR1! 1.771500198! 5.51EC05! 10!
!SLC22A16! 1.771090196! 0.030365095! 10!
!CLEC4E! 1.769994058! 0.001593079! 10!
!
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SHMT1! 1.753889709! 2.22EC07! 10!
!VSIG4! 1.752602984! 0.000310521! 24!
!C10orf54! 1.749834302! 1.48EC06! 10!
!LINC00341! 1.74795307! 1.02EC06! 4!
!FCAR! 1.734375837! 1.10EC05! 4!
!MYC! 1.727880154! 5.70EC10! 1!
!GPR82! 1.722568696! 3.20EC05! 10!
!ITPKC! 1.720594744! 9.83EC08! 2!
!SLC25A37! 1.71190505! 1.76EC05! 4!
!CDKN1C! 1.711525375! 0.000683609! 24!
!S100A8! 1.710557418! 0.005682313! 24!
!ATAD2! 1.705410863! 1.64EC06! 4!
!IRAK3! 1.699302777! 1.08EC08! 10!
!GADD45A! 1.686298253! 0.046881195! 2!
!SLC38A1! 1.683268886! 0.001249891! 10!
!TNFRSF21! 1.683089982! 4.37EC08! 10!
!TNFRSF11A! 1.676791939! 6.63EC05! 10!
!KIF13B! 1.675137688! 4.61EC11! 4!
!ZNF189! 1.666159052! 3.11EC05! 2!
!ADM! 1.664014379! 2.10EC06! 1!
!PIK3IP1! 1.663919989! 3.15EC08! 10!
!KLF7! 1.663855874! 1.56EC05! 2!
!SSH2! 1.652178798! 5.45EC09! 4!
!MT1F! 1.626635757! 0.001439376! 10!
!OLIG1! 1.625107843! 0.005615405! 24!
!LOC729680! 1.622592474! 0.000319066! 10!
!RCAN1! 1.618555922! 0.000690268! 10!
!TNFAIP3! 1.613243138! 1.17EC05! 1!
!GFOD1! 1.594779062! 3.84EC05! 4!
!MET! 1.590858534! 1.19EC06! 10!
!TMEM17! 1.590565717! 2.81EC06! 4!
!CALCRL! 1.5890609! 0.000126495! 10!
!WDR63! 1.587050056! 3.24EC05! 4!
!MS4A6A! 1.584745269! 0.002329683! 4!
!ORMDL1! 1.583163967! 1.21EC05! 10!
!TMEM198B! 1.57384955! 2.63EC07! 10!
!GCLC! 1.573170983! 9.62EC05! 4!
!RUNX2! 1.571783948! 0.030626315! 4!
!SLC15A2! 1.568017019! 0.005617312! 10!
!ERLIN1! 1.565093068! 0.000345688! 4!
!SRGAP2C! 1.563863929! 1.47EC07! 4!
!GNB5! 1.559097321! 1.64EC05! 10!
!ARRDC3! 1.55556886! 7.21EC08! 1!
!
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SOCS1! 1.549099457! 1.85EC05! 4!
!ALCAM! 1.549028576! 3.23EC05! 10!
!YPEL2! 1.548345991! 3.19EC05! 4!
!OGFRL1! 1.542016732! 8.45EC08! 4!
!PSTPIP2! 1.540792943! 1.57EC05! 4!
!PPM1L! 1.535734209! 0.000145678! 10!
!CD72! 1.530468303! 5.56EC05! 10!
!IRS2! 1.527573415! 9.42EC11! 10!
!TXNIP! 1.525897445! 0.000171486! 10!
!INSR! 1.521014859! 0.000186497! 10!
!ABLIM3! 1.51504739! 0.001582473! 10!
!SLC19A2! 1.514207595! 1.39EC05! 2!
!TBC1D8! 1.511054435! 4.08EC05! 10!
!ALDH1L2! 1.500985653! 2.99EC05! 10!
!PSME4! 1.500335467! 7.58EC05! 4!
!METTL7A! 1.48689094! 2.36EC07! 24!
!EZR! 1.46212862! 0.000454978! 10!
!SRGAP2! 1.43487271! 7.10EC08! 4!
!MS4A4A! 1.432577545! 9.00EC05! 10!
!ECHDC3! 1.42583698! 1.90EC08! 10!
!ELK1! 1.417121679! 6.07EC06! 4!
!SLC11A1! 1.401803322! 0.001963584! 10!
!ACSL1! 1.371622812! 1.28EC07! 4!
!MTMR4! 1.363521359! 3.46EC07! 4!
!C5! 1.352097478! 0.000501407! 24!
!FOXO1! 1.340757809! 6.67EC05! 4!
!IL13RA1! 1.331423726! 1.96EC07! 10!
!SLA! 1.329050898! 7.07EC09! 4!
!GRAMD1B! 1.327926444! 0.0001498! 10!
!C1QB! 1.312287499! 0.000138508! 24!
!SLC31A2! 1.307859569! 5.42EC09! 4!
!PTEN! 1.292599145! 4.21EC08! 10!
!FAM100B! 1.279235041! 1.15EC08! 4!
!HMGB2! 1.273309156! 6.18EC09! 10!
!SPTLC2! 1.26879127! 2.90EC08! 4!
!PHC2! 1.253422701! 7.43EC10! 4!
!PMS1! 1.252198464! 6.17EC07! 10!
!MAP3K6! 1.236628026! 0.00178247! 10!
!HIPK2! 1.225602838! 4.03EC07! 10!
!ZBTB8A! 1.215650994! 0.004564297! 10!
!MCL1! 1.210648563! 5.69EC07! 4!
!SH3BP5! 1.207415905! 0.000501368! 4!
!FRMD4A! 1.175251398! 0.002002282! 4!
!
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SMAP2! 1.165033849! 6.38EC08! 4!
!CLN8! 1.150329348! 0.002706623! 4!
!KLHL8! 1.14380126! 2.12EC07! 4!
!GPR34! 1.143705519! 5.97EC07! 10!
!ENOX2! 1.119867864! 0.000229518! 10!
!TMEM39A! 1.113677954! 0.000697014! 4!
!SDC4! 1.109329708! 2.25EC05! 10!
!FAR2! 1.108694009! 1.82EC06! 10!
!TP53BP2! 1.09455046! 9.73EC09! 2!
!MTSS1! 1.09037403! 0.003286841! 10!
!FGD4! 1.073698059! 1.93EC06! 4!
!TOP1! 1.060702469! 8.50EC08! 4!
!DISP1! 1.058189086! 0.002695905! 10!
!FOXN2! 1.057143584! 2.70EC06! 4!
!TLR2! 1.054146997! 6.21EC06! 4!
!SETMAR! 1.038860033! 1.59EC05! 4!
!FOXO3! 1.019263123! 3.07EC08! 4!
!JDP2! 1.014392814! 1.79EC08! 10!
!TCF4! C1.003287912! 1.38EC06! 4!
!FMNL3! C1.003908606! 0.008225375! 24!
!MYO9B! C1.005273326! 1.23EC07! 10!
!ICAM1! C1.007942338! 2.60EC06! 10!
!BLNK! C1.009990976! 8.15EC08! 4!
!KCTD7! C1.010382907! 3.12EC05! 4!
!TMC8! C1.010420379! 7.49EC05! 4!
!TRERF1! C1.011372912! 0.000122778! 10!
!IL16! C1.013127963! 7.19EC05! 4!
!ATF5! C1.013870994! 3.83EC05! 4!
!NMT2! C1.014215506! 0.001554975! 24!
!RTN4R! C1.017192114! 0.022422163! 24!
!FCGR1B! C1.01776657! 9.86EC05! 10!
!FAS! C1.017846845! 0.024787432! 10!
!NFKBIE! C1.017892315! 0.029224105! 24!
!TOR3A! C1.022607872! 0.003286262! 24!
!BTG2! C1.026655332! 0.016581842! 1!
!GBP1! C1.028267937! 0.027490786! 10!
!ZCCHC24! C1.030188956! 0.000104053! 10!
!RELB! C1.03157367! 3.19EC05! 4!
!RNF125! C1.032123363! 0.000301167! 4!
!ATP2B1! C1.03788801! 7.85EC06! 10!
!LOC344887! C1.044946425! 0.010789359! 4!
!ACVR2A! C1.047285611! 0.000103929! 10!
!ZFYVE16! C1.048569713! 1.76EC05! 10!
!
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NLN! C1.050774899! 0.017119733! 4!
!SAMD4A! C1.051568149! 0.034402011! 10!
!SGTB! C1.0517475! 1.93EC06! 10!
!ARHGAP25! C1.052237902! 2.56EC08! 10!
!JAKMIP2! C1.052761271! 0.027454672! 24!
!PDE4DIP! C1.054055285! 0.010477912! 10!
!TRAF3IP3! C1.062143523! 0.000653719! 10!
!DPCD! C1.068060663! 0.000175423! 10!
!TLE3! C1.070497058! 0.004627151! 10!
!CA2! C1.076757213! 0.009864512! 10!
!PAK1! C1.081943684! 0.000333389! 10!
!PEA15! C1.082703192! 1.15EC05! 24!
!HIVEP1! C1.086939011! 0.002246749! 2!
!PTGIR! C1.08992229! 0.042090685! 10!
!CD48! C1.094235707! 0.030002029! 24!
!SLC29A3! C1.094682184! 0.042617616! 4!
!MXD1! C1.116551626! 3.67EC05! 4!
!SLC7A11! C1.117384188! 0.014800316! 10!
!C16orf54! C1.118173159! 0.000322366! 24!
!P2RY6! C1.119387416! 0.020219996! 4!
!SLC46A3! C1.122498284! 5.05EC09! 10!
!TAGAP! C1.129273443! 0.001658482! 1!
!SPATA12! C1.129284362! 0.004178064! 10!
!PLAU! C1.130136268! 0.001348149! 24!
!HEG1! C1.131821171! 0.021987704! 4!
!PTGS1! C1.137497504! 2.89EC06! 24!
!RAB7B! C1.137743652! 0.038250294! 24!
!HPSE! C1.147787511! 0.001487404! 24!
!GNG2! C1.15435356! 0.002410116! 10!
!P2RX7! C1.172723665! 0.000770697! 24!
!CYTL1! C1.189717129! 0.004155805! 24!
!NQO1! C1.193597707! 2.10EC06! 10!
!NUMA1! C1.201777113! 0.002706623! 4!
!MRPS6! C1.219032494! 0.016432575! 4!
!TESC! C1.219914851! 6.63EC05! 10!
!EHD1! C1.22292058! 0.000621808! 4!
!LOC285628! C1.239516984! 0.029861865! 1!
!VASH1! C1.248801459! 0.000457018! 10!
!NOD2! C1.251705045! 0.000483132! 2!
!MFSD2A! C1.256450115! 0.006737917! 2!
!KLRG1! C1.260079361! 0.000341258! 10!
!GPR84! C1.262407904! 0.014653574! 24!
!ITGAL! C1.268328785! 0.01606464! 24!
!
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TNFSF15! C1.293479624! 0.046565506! 4!
!SLC2A6! C1.293754364! 0.004188819! 24!
!TJP2! C1.296670922! 0.000115947! 10!
!TNFSF10! C1.297876733! 0.04091709! 4!
!BIRC3! C1.319683571! 0.00779449! 24!
!TLR7! C1.342508265! 8.06EC06! 4!
!TMEM138! C1.348565008! 1.07EC05! 10!
!ZBTB46! C1.361634124! 0.000683609! 24!
!PIR! C1.368139348! 1.35EC08! 10!
!ME1! C1.371401015! 5.44EC07! 10!
!TNF! C1.374692547! 0.000640579! 24!
!CLEC4A! C1.377369856! 3.42EC06! 10!
!LXN! C1.399281292! 8.20EC07! 24!
!GPR68! C1.408268429! 0.004238373! 4!
!CXCL2! C1.44052364! 0.024392458! 24!
!SLC9A9! C1.460726595! 0.000612964! 10!
!BCL11A! C1.464786737! 0.009231081! 10!
!BCL3! C1.519292419! 1.37EC06! 4!
!NBPF1! C1.523916536! 0.001502375! 10!
!ASRGL1! C1.525060449! 2.28EC06! 10!
!TNFSF13B! C1.535665252! 1.92EC07! 24!
!SLC5A3! C1.535959823! 0.002751118! 4!
!CRHBP! C1.553849975! 0.000587068! 10!
!FBLIM1! C1.557861642! 0.007220932! 24!
!TMEM71! C1.569118286! 6.59EC06! 10!
!ARG2! C1.571531914! 0.002834606! 10!
!BCAR3! C1.607185286! 0.004912547! 24!
!TEF! C1.612090312! 2.36EC07! 24!
!CHST2! C1.63740843! 0.02910728! 10!
!MTHFD1L! C1.637651226! 1.30EC05! 24!
!SRGAP3! C1.644134234! 0.001061038! 10!
!CD200R1! C1.671368919! 0.001485256! 10!
!CD83! C1.682680879! 0.022906236! 2!
!RGS16! C1.692132553! 0.020132944! 10!
!KLHL13! C1.708937978! 0.009483796! 24!
!SLAMF7! C1.718616152! 0.023951314! 24!
!C1orf21! C1.72919737! 0.000937542! 10!
!CD274! C1.74042145! 0.004800619! 4!
!CD163L1! C1.777604388! 0.000181387! 24!
!KITLG! C1.815871583! 0.001017396! 4!
!HS3ST1! C1.843946079! 0.014803361! 2!
!PTGFRN! C1.861862967! 0.0004685! 10!
!PER3! C1.933565648! 2.78EC08! 24!
!
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SGPP2! C1.941393962! 0.014440102! 24!
!IRF1! C1.981440311! 2.94EC05! 2!
!HIVEP3! C1.996685266! 0.000571742! 24!
!LOC440934! C2.022652508! 0.045735038! 4!
!CIITA! C2.076825979! 1.08EC05! 24!
!GPRC5B! C2.109931988! 0.030962304! 10!
!C5orf20! C2.129351761! 0.011652281! 10!
!NR1D2! C2.14768144! 9.74EC13! 10!
!IFIT1! C2.192912361! 0.042143443! 10!
!CCL4! C2.299143199! 0.006910067! 10!
!TIFAB! C2.387018307! 0.007353268! 10!
!IL8! C2.442276848! 0.01981637! 4!
!PER2! C2.450384507! 4.37EC08! 24!
!MRC2! C2.589341666! 0.003636145! 24!
!CXCL1! C2.606922466! 0.03566627! 2!
!
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