
Hierarchical Architectural Design and Simulation
Environment

Alexander Ronnfeldt Robertson

Ph.D.

University of Edinburgh
1995

June 4, 1995

Abstract

The Hierarchical Architectural design and Simulation Environment (HASE)is
intended as a flexible tool for computer architects who wish to experiment with
alternative architectural configurations and design parameters. HASE is both
a design environment and a simulator. Architecture components are described

by a hierarchical library of objects defined in terms of an object oriented simu¬
lation language. HASE instantiates these objects to simulate and animate the
execution of a computer architecture. An event trace generated by the simulator
therefore describes the interaction between architecture components, for example,
fetch stages, address and data buses, sequencers, instruction buffers and register
files. The objects can model physical components at different abstraction levels,

eg. PMS (processor memory switch), ISP (instruction set processor) and RTL
(register transfer level). HASE applies the concepts of inheritance, encapsulation
and polymorphism associated with object orientation, to simplify the design and

implementation of an architecture simulation that models component operations
at different abstraction levels. For example, HASE can probe the performance
of a processor's floating point unit, executing a multiplication operation, at a

lower level of abstraction, i.e. the RTL, whilst simulating remaining architecture

components at a PMS level of abstraction. By adopting this approach, HASE
returns a more meaningful and relevant event trace from an architecture simula¬
tion. Furthermore, an animator visualises the simulation's event trace to clarify

the collaborations and interactions between architecture components. The proto¬

type version of HASE is based on GSS (Graphical Support System), and DEMOS

(Discrete Event Modelling On Simula).

Table of Contents

1. Architectural Issues and the Design Problem 1

1.1 Introduction 1

1.2 Defining Computer Architecture 3

1.2.1 The PMS Level 4

1.2.2 ISP Level 4

1.2.3 RT Level 5

1.3 Architecture Experiments 6

1.3.1 Memory Latency Issues 6

1.3.2 Pipeline Issues 11

1.3.3 Internal Parallelism 16

1.3.4 Code density Experiments 20

1.3.5 Overlapping Register Windows 21

1.3.6 Impact of Compiler Optimisation 22

1.4 The Architecture Design Problem 23

1.4.1 Analytical Approach 23

1.4.2 Simulation Approach 24

1.4.3 Motivation for HASE 32

i

Table of Contents ii

2. Fundamental Concepts of Simulation 35

2.1 Concept of a System 35

2.1.1 Definitions 36

2.1.2 Classifying Systems 36

2.2 Discrete System Simulation 39

2.3 Simulation Languages 41

2.3.1 Programming Representation 41

2.3.2 Object Oriented Programming 42

2.3.3 SIMULA 45

2.3.4 Sim++ and Virtual Time 46

2.4 Diagrammatic Representation 47

2.4.1 Attraction of Diagrams 47

2.4.2 Software Graphics 47

2.4.3 Comments 49

3. The HASE Design Environment 50

3.1 Overview 50

3.2 Programming Environment 52

3.2.1 Prototyping in DEMOS 52

3.2.2 Hardware Resources 53

3.3 Design Environment 53

3.3.1 Component and Abstraction Hierarchy 54

3.3.2 Object Creation 55

Table of Contents iii

3.3.3 Architecture Creation 59

3.3.4 Code Generation 61

3.4 Simulation Phase 62

3.4.1 Input/Output 62

3.4.2 Operation 63

3.5 Evaluation Phase 64

3.5.1 Statistics and Graphic Visualisation 64

3.5.2 Animation 65

3.5.3 Comment 68

4. Design and Implementation 69

4.1 Hierarchical Approach 69

4.1.1 Classifying Abstraction Levels 69

4.1.2 Implementing the Abstraction Level Hierarchy 70

4.1.3 Implementing Resources 72

4.2 Implementing the Design Environment 73

4.2.1 Object Editor 75

4.2.2 Architecture Editor 83

4.3 Simulation Phase 88

4.3.1 Simulation Input Parameters 88

4.3.2 Simulation Execution 91

4.4 Evaluation Phase 94

4.4.1 Overview 95

Table of Contents iv

4.4.2 Trace Animator 97

4.4.3 Architecture Animation 97

4.4.4 Graph Displayer 100

5. Results and Discussion 101

5.1 Investigating Internal Architecture 102

5.1.1 Brief Description 102

5.1.2 Flow of Events 103

5.1.3 Add a History Buffer to an Existing Architecture 104

5.2 Investigating External Architecture 112

5.2.1 Brief Description • 112

5.2.2 Flow of Events 112

5.2.3 Adding a New Addressing Mode to an Operation 113

5.3 Optimising Hardware / Software Interactions 118

5.3.1 Brief Description 118

5.3.2 Flow of Events 118

5.3.3 Delayed Branching Code Optimisation 119

5.3.4 Register Colouring Code Optimisation 120

5.4 Investigating Network Traffic 124

5.4.1 Brief Description 124

5.4.2 Flow of Events 124

5.4.3 Simulating Network Influence on a Processor 125

Table of Contents v

6. Conclusion 132

6.1 Architecture Requirements 133

6.2 Object Oriented Design 134

6.3 Architecture Experiments 135

6.4 HASE Prototype Performance Evaluation 135

6.4.1 Advantages of the HASE Prototype 135

6.4.2 Disadvantages of the HASE Prototype 136

6.5 Future Work 137

6.5.1 Create Architecture Components . . 138

6.5.2 Develop a Component Object Repository 139

6.5.3 Develop a Frontend 139

6.5.4 Develop a Distributed Simulation Environment 139

A. Instruction Set 141

B. Assembly Test Programs 147

B.l Convolution Program: Optimised using Delayed Branching 147

B.2 Convolution Program: Optimised using Register Colouring 149

Bibliography 151

List of Figures

1-1 A Superscalar Architecture 18

1-2 The Context of HASE 34

2-1 Deterministic versus Stochastic System 38

3-1 HASE Environment 51

3-2 Object Hierarchy 56

3-3 Process Interaction Tool for Component Creation 58

3-4 Link Creation 62

3-5 An Architecture Edit 63

3-6 An Example of the Trace Animator 66

3-7 Example of an Animated Architecture 67

4-1 Abstraction Level Taxonomy 71

4-2 Discrete Event Modelling on Simula 74

4-3 Use of Object Inheritance 77

4-4 Inherited Object Communication 79

4-5 GDL Submodels Implementing Resources 83

4-6 Recording Node and Link Connections 87

vi

List of Figures vii

4-7 Animator Structure 96

5-1 Graph Displayer: Poor Throughput of Execution Unit 105

5-2 Architecture Animator: Identifying Control Transfer Latency106

5-3 Object Editor: Creating a History Buffer 107

5-4 Architecture Editor: Linking a History Buffer 108

5-5 Graph Displayer: Improved Function Unit Throughput 109

5-6 Graph Displayer: Flushing History Buffer 109

5-7 Graph Displayer: Performance Increase Against Percentage of Load

Operations 116

5-8 Graph Displayer: CPI Trace for Non-Addressing and Addressing
ADD operation 116

5-9 Graph Displayer: Repeated Utilisation Glitches 120

5-10 Architecture Animator: Control Transfer Instruction 121

5-11 Graph Displayer: Executing Delayed Branch Instructions 122

5-12 Architecture Animator: Viewing Contents of the Register File . . . 123

5-13 Architecture Editor: Setting a Component's Abstraction Level . . . 127

5-14 Graph Displayer: Crossbar Switch Throughput againsy History
Buffer Length f 28

5-15 Architecture Editor: Display State of History Buffer 129

5-16 Multi Abstraction Level Simulation: Software Structure 130

List of Tables

4-1 External Parameters: Setting Opcode Abstraction Level 90

A-l Logical Instructions 142

A-2 Integer Arithmetic Instructions 143

A-3 Load/Store Instructions 144

A-4 Control Transfer Instructions 145

A-5 Floating-Point Arithmetic Instructions 146

viii

Chapter 1

Architectural Issues and the

Design Problem

1.1 Introduction

Beizer [69] describes an architect's job as " the design of a hardware/software com¬
plex, subject to realistic technical, economic, operational and social constraints
such that it 1) works, 2) is optimum and 3) survives." Amdahl [2] on the other
hand uses the term "Architecture" "to describe the attributes of a system as seen

by the programmer, i.e., the conceptual structure and functional behaviour, as
distinct from the organisation of the data flow and controls, the logical design,
and the physical implementation."

The earliest architectures were limited in their instruction sets by hardware

technology. As soon as hardware technology permitted, architects began looking
for ways to support emerging high-level languages. In the 1960s, stack architec¬
tures became popular. They were a good match for high-level languages, given
the compiler technology available. To support the 1970's trend towards high level
languages and structured programming, architects aimed at hiding hardware im¬
plementation details from programmers and compiler writers. The results were
both the High-Level-Language Computer Architecture (HLLCA) [32] and power¬
ful architectures like the VAX which had a large number of addressing modes,
multiple data types, and a highly orthogonal instruction set.

1

Chapter 1. Architectural Issues and the Design Problem 2

The last decade has seen a renewed emphasis on machine performance and
a return to simpler architectures. Sophisticated compiler technology is bridging

Gargliardi's "semantic gap" [27], previously narrowed by HLLCAs which ulti¬

mately lead to a semantic clash. Rapid progress in hardware technology has given
architects an opportunity to design more sophisticated microprocessor architec¬
tures. Silicon real estate, for example, can currently support up to 3 million
transistors on a single chip. The microprocessor industry is dominated by fast Re¬
duced Instruction Set Computers (RISC), such as Motorola's new family of 88000s
and Intel's i860 and i960 [32], that support superscalar architectures and large on-

chip instruction and data caches. RISC methodology increases the semantic gap,

because less frequently used instructions are compiled into a sequence of simple

instructions, instead of being executed directly by hardware. Performance gains
associated with a fast architecture are lost if the high-level language compilation
is not optimised efficiently. Performance of the MC88000, for example, improved
from 4 Million Instructions Per Second (MIPS) to 20 MIPS after optimisation of
code written in assembler [61]. As microprocessor tradeoffs become more complex,
a knowledge of hardware and software interaction is essential to understanding
how a compiler can extract performance from an architecture. There are cases in
which compiler strategies cease to be optimisations and actually slow down code

execution e.g., when a temporary variable used in a global common subexpression
elimination cannot be allocated to a register and requires a memory reference.

Research is required to explore how to avoid situations in which performance is

degraded by optimisation techniques. To study optimisation methods requires an

instrument to probe aspects of an architecture that may be exploited by a compiler.
The proposal presented here involves the design and development of an interactive

general, purpose architecture simulator which supports an experimental platform
to investigate hardware and software interaction critical to compiler optimisation

techniques. This chapter identifies a number of issues where a visualising simulator
could offer significant support to designers.

Chapter 1. Architectural Issues and the Design Problem 3

1.2 Defining Computer Architecture

Stone [69] defines the study of Computer Architecture as " the study of the organ¬

isation and interconnection of components of computer systems. Computer archi¬
tects construct computers from basic building blocks such as memories, arithmetic

units, and buses". The complexity of computer systems is better understood when
the architecture is organised into different levels of abstraction. Analysis of each
individual level can provide an orderly understanding of the system's functions.

Progression from the most primitive level of the hierarchy to higher levels is ac¬

complished by creating a series of abstractions [6]. By suppressing unnecessary

details, each abstraction contains only the information relevant at the higher level.
At the lowest level an architecture is described by a set of electronic circuit dia¬

grams, the Circuit Level. These circuits represent an implemention in hardware of
the logic circuits at the next level up in the hierarchy, the Logic Level. Above the

Logic Level is the RTL (Register Transfer Level at which a floating-point arith¬
metic unit, for example, is represented as an interconnected set of registers and

primitive ALUs. Above this is the ISP Level (Instruction Set Processor Level) at
which a processor is described as an interconnected set of functional units (floating¬

point units, caches, etc). At the highest, PMS Level (Processor, Memory, Switch

Level), multiprocessor systems can be represented as ensembles of interconnected

processors and memories. The current version of HASE is concerned only with
the three upper levels of this hierarchy; extension to the lower levels is inherent
to the HASE concept but is not currently implemented.

Chapter J. Architectural Issues and the Design Problem 4

1.2.1 The PMS Level

The PMS Processor Memory Switch level defines components that interact to

exchange information. They are distinguished by the kinds of operations they
perform:

Memory M: a component that holds or stores information over time. Its opera¬

tions are reading and writing instructions and data out of and into memory.

The memory may be considered as a number of submemories.

Link L: transfers information from one component to another. The operation is
that of transmitting an instruction or data from the component at one port

to the component at the other.

Control K: a component that evokes the operation of other components in the

system. With the exception of the processor P, all other components are

essentially passive and require an active agent to set them into episodes of
activity.

Switch S: each switch has associated with it a set of possible links, and its op¬

eration consists of setting some of these links and breaking others.

Processor P: a component capable of interpreting a program in order to execute

a sequence of operations. It consists of a set of operations of the classes listed
above (M, L, K, S) to obtain instructions from memory and interpret them
as operations to be carried out.

1.2.2 ISP Level

At the Instruction Set Processing Level each instruction specifies its operation

(or operations) and the data structures that it is to act upon. Superimposed on

this is a control structure that specifies which instruction is to be executed next.

Chapter 1. Architectural Issues and the Design Problem 5

Normally this is done in the order in which the instructions are given, with a jump
out of sequence specified by a branch instruction.

At the logic level the computer system is composed of parallel devices, with all

components active simultaneously. At the ISP level, computers are represented

essentially as serial devices, executing one instruction after another (or 2 or 4

depending on whether the machine is superscalar). The ISP is essentially linguistic
in nature, the logic level is not. At the ISP level objects can be labelled, decisions
made and instructions interpreted. The ISP level does not implement decision or

interpretation mechanisms, only their functional characteristics are of importance
to ISP simulation.

1.2.3 RT Level

The components of an RT (Register Transfer) level system are registers and func¬
tional units which operate on data as it is transferred between registers. The

system undergoes discrete operations, whereby the values in various registers are

combined according to the appropriate function and are then stored into some

other register. The laws of combination may be anything from the simple un¬

modified transfer (A=B) through logic combinations (A = B OR C) to arithmetic
functions (A = B+C). Thus a specification of the behaviour, equivalent to the
boolean equations of sequential circuits or the differential equations of electronic

circuits, is a set of expressions which give the conditions under which such trans¬

fers will be made. Register transfer level systems are usually visualized as having
two components: Control and Data. The data part is composed of registers, op¬

erators and data paths. The control part provides the sequence of timing signals
that evoke activities in the data path. This may be implemented as a hardwired
state machine or a microprogrammed sequencer.

Chapter 1. Architectural Issues and the Design Problem 6

1.3 Architecture Experiments

This section identifies some architectural issues that are critical to a micropro¬

cessor's performance and that are addressed in chapter 6 to demonstrate the

design, simulation and performance evaluation phases of HASE. The architec¬
tural issues discussed here include memory and cache design, pipeline interlocking
tradeoffs and onchip parallelism including the design of multiprocessors. A study
of these particular architectural issues can suggest improved methods for extract¬

ing performance through more effective hardware/software interaction. One of
the main aims of HASE is to focus on visualising these issues in order to gain
further insight into achieving performance. The nature of HASE allows rapid
modifications to the design of hardware to experiment with a variety of, for ex¬

ample, pipeline configurations, instruction and data fetch buffer sizes, or likewise
examine how rescheduling a sequence of instructions can increase the utilisation
of parallel function units. HASE can return the exact number of clock cycles it
takes to process a given sequence of instructions.

1.3.1 Memory Latency Issues

A computer's external cache memory is critical to its throughput, but the cache's

performance varies with the operating system and with the applications being run.

The use of multi-tasking, and LANs to allow multiple users access to a common

data bus, affects the temporal and spatial locality of data in a cache. A small cache
is therefore less likely to hold the instruction set window, and cache misses, for

example, are more likely to occur. One of the questions facing architects is what
cache size is enough to achieve a reasonable (85 % to 95 %) cache hit rate.

Chapter 1. Architectural Issues and the Design Problem

Cache Associativity

There are three types of cache organisation that must be considered when carrying
out realistic computer architecture simulations: direct mapped, n-way associat-

9

ive and fully associative [35]. Although cache design techniques have not reached
the point where it is possible to predict cache performance as a function of cache

organisation and external machine architecture, simulation experiments of cache
environments can provide the foundation for proposed designs of on- and off-chip
caches. Each memory location of a direct mapped cache is mapped to one cache
location. The disadvantage of this design becomes apparent when a cache miss
occurs and the missing address must be loaded into the cache. Because of a one

to one correspondence between cache and memory locations, the desired location
will automatically replace the cache location to which it is mapped, instead of, for

example, the least recently used cache entry [66]. If the next instruction immedi¬

ately accesses the replaced data, the memory and cache must swap locations for
a second time; this 'thrashing' process is defined to be the worst case behaviour
of a direct mapped cache. However, the advantage of this placement policy is
the fast hit-time associated with the simple address tag relationship between the

processor and memory. Hill's simulation experiments [34] suggest that if the cache
is large then the fast hit-time advantage outweighs the small probability of worst
case behaviour.

The fully associative cache is the extreme opposite to the direct mapped cache.
The least recently used replacement policy can be applied because each location
can contain any memory address. When a cache miss occurs, the missed in¬
struction or data can be written anywhere in the cache, preferably replacing the
instruction or data item that has the lowest probability of being fetched by the

processor during the next instruction cycle. Its major disadvantage is that it is

complex to design, especially for large cache sizes, because a sophisticated tag¬

ging mechanism is required, involving as many comparators as there are cache

Chapter 1. Architectural Issues and the Design Problem 8

locations. On a restricted piece of silicon real estate, the percentage increase in
hit-rate does not justify the extra space and design cost. Furthermore, because of
its complex circuitry, a fully associative cache has a poor access time compared to

direct mapped caches.

An n-way set associative cache is a tradeoff between the direct mapped and

fully associative cache. Instead of each memory location being mapped to only
one cache location, it is mapped to one of 2" locations. Hence the designer may
decide to use a 2-way set associative cache, or a 4-way or 8-way, depending on

the behaviour of the targeted computer system and its application. Although
it does not have the freedom of a fully associative cache, an n-way associative

cache can execute a restricted version of a least recently used replacement policy,
which compares n cache locations and replaces the location which has the lowest

thrashing probability. The set associative cache is organised into sets and blocks;
an n-way set associative cache will have n blocks in each set. Simulation exper¬

iments [67] have been used to determine the most efficient block size for a given

processor type (i.e. RISC or CISC) and application. During the last decade, com¬

puters have supported many different types of caches and cache hierarchies. Until
now a direct-mapped cache could support virtually all the microprocessors used
in PCs. However, the next generation of microprocessors, such as Intel's new Pen¬

tium, will contain multiple processor units that can operate independently of each
other. With one or more processors making memory calls at clock rates approach¬

ing 100MHz, a direct-mapped cache of any practical size simply cannot sustain an

acceptable hit rate. As a result, set-associative cache will be used increasingly in
future PC designs.

Design analysts use simulation studies to search for a cache placement com¬

promise because the problem cannot be described mathematically. Hardware and
software simulators are both used, the software simulator provides the bulk of the

simulation results, while the hardware simulator verifies the software simulator's

results. Researchers at Digital [33] have derived a few equations for estimating the

Chapter 1. Architectural Issues and the Design Problem 9

effectiveness of hierarchical memories by studying how parameter changes affect
the overall system's performance [1] [76]. These general relationships do not ap¬

pear to depend on operating system, compiler, architecture or workload. Digital

emphasises however, that these equations, derived empirically from VAX hit-rate

data, cannot replace thorough simulation. These rules of thumb are particularly
useful to designers who have no time for extensive simulation studies. The equa¬

tions include relationships such as: miss rate as a function of size, miss rate as a

function of associativity, optimal block lengths, and refill bandwidths.

Cache design goals are generally to reduce processor bus activity, in the case

of the 68000, for example, to between 70% and 90%, and to increase the CPU's

throughput by reducing the average memory access time.

Cache Consistency Methods

HASE can provide a framework in which to consider cache consistency mech¬
anisms. The hardware/software interaction associated with cache consistency is
difficult to visualise, and contemporary high level functional behavioural tools are

inadequate at capturing and visualising its mechanisms and providing a means to

obtain performance evaluation of a variety of different schemes.

If a multiprocessing system is required, for example, adding another FIFO
to the main memory controller FIFOs allows reflective reads without providing

separate reflective read circuitry in each cache controller. Reflective reads help to

reduce bus traffic in a multiprocessing system whenever a snooping cache supplies
data to another processor that has experienced a cache miss. The cache controller
for another processor in the system, which has been snooping the bus, observes
that it has a valid copy of the requested data and inhibits the first processor's

read to the main memory and supplies the requested line. In a reflective read

the cache for the second processor updates main memory at the same time that
it is supplying the data to the first processor and its cache. The challenge in

Chapter 1. Architectural Issues and the Design Problem 10

reflective reads is that data must be buffered to accommodate the speed of the

main memory.

Caching on Decoupled Architectures

One of the experiments reported in Chapter 6 attempts to examine the effect
of decoupling the address and data bus from the cache and processor. The aim
of the experiment is to reduce memory latency and increase processor tolerance
to memory latency by decoupling its memory address and data busses. Various
current trends in computer architecture involve one or the other technique, and
in some cases it has been suggested that both be used [24].

The primary time where the latency of main memory will contribute to ex¬

ecution times on a decoupled architecture is when the Address Processor (AP)
and Data Processor (DP) must synchronise; so-called "loss of decoupling" events.
Trace simulation has shown that caching can reduce memory latency caused by
AP and DP synchronisation. In a multiprocessing environment, cache coherency
must be considered, and this introduces further overheads. Detailed simulation
studies can identify the successfulness of hardware and software based coherency
schemes. The future version of HASE will provide a useful framework in which to

carry out similar kinds of experiments.

The PIPE architecture [20] improved memory tolerance by incorporating short

queues, of the order of 64 bytes long, between the instruction cache and the in¬
struction unit and between the data cache and the load and store units. SPICE

simulation runs indicated that the PIPE approach was 2 to 3 times faster than
the MIPS and RISC-II architecture, achieving an estimated 18 MIPS. However,
to achieve this performance, the PIPE'S data queues must remain filled and this is

only possible when data accesses can operate in advance of arithmetic operations.

Chapter 1. Architectural Issues and the Design Problem 11

1.3.2 Pipeline Issues

Pipelining is one form of embedding parallelism or concurrency in a computer

system. Operations are broken up into short stages connected by interstage re¬

gisters. If a pipeline has N stages, then up to N different instructions may be

operated upon in parallel in an assembly-line fashion. Pipelining techniques are

especially applicable to the design of very high speed systems in which interchip

delays are so large relative to the clock period that the entire system must be

pipelined. A pipeline architecture involves specifying control structures for data

buffers, bus transfer, branching and interrupt handling. This involves defining pre¬

cisely which control signals are enabled and disabled to execute the reponsibilities
of a pipeline [59].

Appropriate bounds are provided which reflect the fact that sometimes the
interval between pipeline completions is close to the pipeline segment time and at

other times it is close to the flush time.

Definitions

Pipeline throughput is defined as the number of outputs per unit time. It directly
reflects the processing power of a processor system. Pipeline utilisation reflects

directly how effective a processing scheme is and is used to suggest possible im¬

provements for removing pipeline bottlenecks.

For example, a pipeline's Clock rate limits the speed of data and control flows
between pipeline segments. The propagation delay through each segment and

possible signal skews must be carefully balanced to avoid improper gating in high

performance systems [37].

Pipeline Design Optimisation is defined by the cost-time product. The speed-
cost product represents a simple analytical model for comparing the relative ef¬
fectiveness of different pipeline configurations. A pipeline's speed is defined in

Chapter 1. Architectural Issues and the Design Problem 12

terms of the minimum time required for a pipeline to produce a result, given the
total time to execute an operation without pipelining, the number of stages in the

pipeline and the propagation delay for each pipeline stage (equation 1.1). The
cost of the pipeline is given in terms of the initial cost to implement the operation

plus the extra hardware cost for each stage of the pipeline (equation 1.2).

segment time = T/k-\-t (1.1)

cost = a.k + f) (1.2)

where

T = time for non-pipelined case

r = latch time '

a = extra cost of each segment

/3 = initial cost

k = number of pipeline stages

The cost-time product is given by:

{T/k + r) * (a.K + /3) (1.3)

This analytical model is acceptable for simple pipelines but for complex prob¬
lems involving hazards and penalties it cannot express a bound for execution time
and efficiency. Experimenting with the relative efficiencies of various pipelines is
therefore a useful target for architecture simulation.

Pipeline Configurations

A variety of pipeline classes may be studied using different memory configura¬
tions [47]. One configuration may involve an off-chip on-package instruction cache

Chapter 1. Architectural Issues and the Design Problem 13

and an off-chip on-package data cache, another may consist of an off-chip on-

package instruction cache and an off-package data cache. Each configuration can

be characterised by a ratio of data access delay to datapath delay. Experiments
involve pipelining the memory to handle a particular memory latency. Some of the
candidate pipelines may be obviously better than others but an important question
for designers is how much better they are and if so, whether the performance im¬

provement is sufficient to justify the increased implementation cost. Furthermore,

performance evaluation can measure the utilisation of different pipeline configur¬
ations and estimate the impact of compiler optimisation mechanisms. If there is

considerable improvement then it may be useful to invest in more optimisation

strategies.

Interlocks and Interleaved Pipelines

Dependency conflicts between successive instructions can be classified [41] into
three types: first order, second order and third order.

A first order conflict occurs whenever an instruction which is about to be issued

requires the use of an arithmetic unit or a result register which is already in use

or has been reserved by a previously issued, but as yet uncompleted instruction.
Each instruction in the following pair, for example, requires the use of the Floating
Add Unit

R6 = R1 + R2

R5 = R3 + R4

while in the next example each instruction requires R6 as its result register

R6 = R1 * R2

R6 = R4 + R5

Although this latter example is unlikely to arise in normal programming practice,
it must nevertheless give the correct result. Without proper interlocks the add

Chapter 1. Architectural Issues and the Design Problem 14

operation would complete first and the result in R6 would then be overwritten by
that of the multiplication.

A second order conflict occurs whenever an instruction which is about to be

issued requires the result of a previously issued but as yet uncompleted instruction.
An example of such a conflict is the following

R6 = R1 + R2

R7 = R5 / R6

Here the second instruction can be issued, but must not be allowed to start until

the result of the first instruction has been entered into R6.

A third order conflict occurs when an instruction which has just completed
its operation wishes to store its result in a register which is waiting to supply an

input operand for a previously issued, but as yet unstarted instruction. Such a

conflict occurs in the following sequence

R3 = R1 / R2

R5 = R4 * R3

R4 = RO + R6

Because of the length of a pipeline, an operation like RO = R\ + R2 will not

update RO until N clock cycles after it is issued, assuming that there are N stages
and that each stage completes in one clock cycle [37]. Thus the sequence:

RO = R1 + R2

R3 = RO + R4

will produce an erroneous answer if the two instructions are dispatched in consec¬

utive cycles. There are two basic solutions to this dependency problem: 1) detect
data dependecies and stall the execution of instructions as required or 2) rearrange
and pad instructions by "software pipelining" at compile time to eliminate the de¬
pendency problem.

Chapter 1. Architectural Issues and the Design Problem 15

With both pipeline interlocks and instruction resequencing, the effect of data

dependencies is to reduce the throughput of the processor by introducing gaps in
the pipeline execution. With interlocks, these gaps are generated by a hardware

mechanism; with resequencing, they are generated by inserting NOOP instruc¬
tions. These gaps may represent a significant loss of throughput.

A related problem arises from the presence of jump instructions in an instruc¬

tion stream. In highly pipelined processors, the next instruction fetch may begin

long before the current instruction has been fully decoded and executed. Thus
it may be impossible to update the machine's program counter correctly before
the next few instructions are fetched. If one instruction is issued per clock, for

example, and a jump instruction takes N cycles to fetch and execute, then N — 1

instructions following the jump will always be processed, since they will have been

fetched before the program counter was updated. Thus straightforward program

coding could yield incorrect results.

The traditional solution to this problem is to implement in hardware a pipeline

flushing mechanism to discard unwanted instructions after the jumps. Flushing
these instructions represents a considerable performance penalty since flushing
wastes the time spent processing the unwanted instructions and the extra main

memory accesses used to fetch the unwanted instructions are wasted. Chapter 6

demonstrates how HASE visualises the pipeline flushing penalty. Research at the

Institute of Technology in Chicago is currently developing a processor architecture
DEMUS (Delay Enforced MUltiStreaming) [37] to eliminate both pipeline inter¬
locks and the jump problem. DEMUS adopts a novel dynamic stream interleaving

technique to fill gaps in execution required for the correct operation of one stream

with useful work for another. This technique is similar to that proposed in the

Context Flow architecture [52]. An example of this technique is demonstrated us¬

ing HASE in Chapter 6, where a number of independent instructions are inserted
into a correlation program containing a large number of data and control hazards.

Chapter 1. Architectural Issues and the Design Problem IS

1.3.3 Internal Parallelism

In addition to exploiting parallelism at the instruction level through pipelining
and superpipelining, further performance improvement can be achieved through
VLIW (Very Long Instruction Word) and superscalar architectures.

Definitions

For a conventional scalar pipeline processor the total time required for a program

to execute, (E), is given by:

E = N*C*T (1.4)

where:

N = number of instructions in the test program

C = average number of processor cycles per instruction
T = time period of one clock cycle

One method of reducing the total program execution time is to issue more

than one instruction per clock cycle [21], Machines that issue multiple independent
instructions per clock cycle are called superscalars. The Single Instruction Multiple
Pipeline (SIMP) [47] is a superscalar processor that supports reordering and data

forwarding methods similar to the IBM 360/91. For example, to allow out-of-
order execution the E-stage of all four identical instruction pipelines contains
a Wait Reorder Buffer corresponding to the IBM 360/91 's reservation stations.
The SIMP supports a Dependency Handling Register File which receives register
identifiers and operation types from each instruction unit pipeline, updates its
data and control dependency tables and issues instructions waiting execution to
the Wait Reorder Buffer. On every clock cycle the Wait Reorder buffer is checked
and if there are no flow or data dependencies, the instruction is executed by one

of the five pipelined functional units. The total program execution time for a

Chapter 1. Architectural Issues and the Design Problem 17

superscalar without data dependencies is given by:

„ N*C
*T (1.5)

where P = number of pipelines

Rather than untangling data dependencies using hardware, the Very Large
Instruction Word (VLIW) processor relies on the compiler to create a package of
n instructions that can be issued simultaneously. The compiler is programmed
with the knowledge of the internal architecture and is responsible for scheduling
the order of operations strictly in order to prevent any hazards from incorrect
results at runtime. The VLIW, for example, may include two integer operations,
two floating point operations and a branch. The instruction would have a set field
for each functional unit yielding an instruction length of up to 168 bits. The total
execution time now becomes:

E = j*C*T (1.6)
where F = number of operations included in one instruction

The VLIW approach is limited by the amount of instruction-level parallelism
available. For example, to keep a VLIW architecture with 7 functional units busy,
the compiler would have to package 15 to 20 independent operations. This is
because it is necessary to find a number of independent operations roughly equal
to the average pipeline depth times the number of functional units. The behaviour
of such a superscalar architecture is clearly visible during a HASE animation.

When the parallelism comes from unrolling simple loops, the original loop
could probably have been run more efficiently on a vector machine. It is not clear
whether a VLIW is preferred over a vector machine for such applications [32].
An open question is whether there are large classes of applications that are not

suitable for vector machines, but still offer enough parallelism to justify the VLIW

approach.

Chapter 1. Architectural Issues and the Design Problem IS

A general superscalar architecture is shown in Figure 1-1. In a superscalar

machine, the hardware can issue a small number (i.e. 2 or 4) of independent
instructions in a single clock. A general superscalar architecture is shown in Fig¬
ure 1-1. The general superscalar architecture shown in Figure 1-1 shows n execu¬

tion pipelines, comprising Dn decode stages and En function units. In addition,
there are two new stages: the instruction window and the result window.

The instruction window acts as a buffer between the decoder and the functional

units to minimise stalling. The result window buffers the result values to make sure

they are placed into the register file in program order, even if they are completed
out of order by the functional units. For each stage of the superscalar processor it
is possible to identify a number of advantages that are available and disadvantages
that must be overcome.

Key:
Dn = nth Decode unit
En = nth Function unit

Figure 1-1: A Superscalar Architecture

For example, since the goal of a superscalar processor is to execute multiple
instructions per cycle, the decoder stage must also be able to decode several in¬

structions per clock. The number of instructions that it can decode per cycle is
referred to as the decoder width. However, due to branches, not all the instructions

fetched by the decoder may be valid for execution on that cycle, so mechanisms
must be developed, tried and tested using simulation models to align and merge

instructions to keep the decoder busy.

Chapter 1. Architectural Issues and the Design Problem 19

Similarly, an instruction cannot always be issued immediately, due to resource

conflicts or dependencies. To avoid stalling the decoder an instruction window is

placed between the decoder, and the functional units. This buffer can be imple¬
mented either as one central window as in the MC88110, or as a set of reservation

stations, one for each functional unit.

Comparison of Superscalar Processors

Although there are several commercially successful supercalar microprocessors, for

example, Digital's ALPHA, MetaFlow Lightening Sparc, Intel i960, IBM RS/6000
and Motorola MC88110 RISC family, computer architects still search for the most

cost effective configuration [44].

Computer architects have experimented with varying the number of instruc¬
tions fetched per cycle. For example, the Metaflow and IBM designs can decode
four instructions per cycle, whereas the Intel chip decodes 3 and the MC88110
and ALPHA currently only decode 2 instructions per cycle.

The Metaflow and 88110 instruction window is a "central design" rather than
"reservation stations" system, whereas the RS/6000 could be classified as either.
This is because the RS/6000 has only one functional unit of any particular type,
while the Metaflow and MC88110 have multiple units.

The Metaflow and MC88110 predict branches based on a branch history table,
whereas the ALPHA and i960 allow the compiler to perform the prediction. The

ALPHA has few deeply piplined function units, in contrast to the Intel i960 which
has more relatively slow, functional units than the Metaflow.

The RS/6000 has 4 highly optimised function units to allow a new instruction
to be issued on each cycle in most cases. The Metaflow architecture is the most

scalable of the five because of the generic design of its DCAF (Dataflow Content-
Addressable FIFO) unit. The DCAF is a scheduler; adding more functional units

Chapter 1. Architectural Issues and the Design Problem 20

to the Metaflow design will only require improving features that already exist, for

example, adding more control logic to the scheduler.

The RS/6000 and the ALPHA, on the other hand, will have to be redesigned

significantly to allow multiple function units of the same type and provide the ne¬

cessary synchronisations between them. As the microprocessor industry improves
the speed of its functional units and/or adds more of them, the task of evenly

assigning instructions to function unit becomes a complex design issue.

A goal of HASE is to provide a large library of software objects to simulate the
execution of superscalar architectures, for the purpose of investigating the per¬

formance of superscalar configurations under a variety of runtime scenarios. For

example, the technique of "delayed branching" can sometimes degrade the per¬

formance of a superscalar processor because the compiler must seek N independent

pairs of instructions to feed the execution pipeline.

1.3.4 Code density Experiments

RISC processors offload more complex and/or frequently used instructions onto a

high level compiler for emulation by simpler instructions. CISC (Complex Instruc¬
tion Set Computers), on the other hand gain performance by building into the pro¬

cessor high semantic content instructions executed by microcode. CISC processors

try to reduce the number of external instructions that the microprocessor must

fetch, in an attempt to avoid the common von Neumann bottleneck. RISC pro¬

cessors have lower density instruction sets and demand a higher memory/processor
bandwidth, which is one reason why there has been extensive research evaluating
cache performance. Because RISC instruction set formats are simple to decode it is

possible to achieve, with caching and pipelining, an average of one instruction exe¬

cution per clock cycle or even more with superscalar architectures [68]. CISC pro¬

cessors have higher density instruction sets and require a lower memory/processor
bandwidth, but may sometimes require up to 20 clock cycles to execute one in-

Chapter 1. Architectural Issues and the Design Problem 21

struction. The RISC processor has a simple architecture, however it relies on a

clever optimising compiler to achieve its performance. The CISC architecture is

very complex but it requires less sophisticated compiler optimisation to attain
maximum instruction throughput.

One compromise between the RISC and CISC methodology is the enhanced
instruction set processor. The MC68030 adopts CISC type addressing modes
and microcoded variable length instructions, but only the most frequently issued
instructions are microcoded. The 68030 is defined as an enhanced instruction

set processor for which the compiler reconstructs more complex instructions. By

reducing the number of microcoded instructions the memory to processor traffic is
increased. To increase memory to processor bandwidth the MC68030 for example,

adopts a RISC approach, and includes two 256-byte instruction and data caches.

At the University of Stanford simulation experiments have attempted to meas¬

ure the effect of code density on cache miss performance [39]. Intuitively, if the
code is very dense then a larger proportion of the executed code is likely to be
in the cache and therefore the miss rate will be lower than in a less dense, more

reduced instruction set.

HASE will support the software objects infrastructure for a computer architect
to investigate tradeoffs between increasing the code density to decrease the number
of instruction cache misses, and decreasing code density to reduce the complexity
and cost of a microprocessor's implementation.

1.3.5 Overlapping Register Windows

RISC architectures generally have a large number of registers, to reduce the num¬

ber of possible 1st, 2nd and 3rd order conflicts. The size of the register set is an

issue for simulation study because it is another tradeoff between the amount of
storage space available on the processor's chip, the memory/processor bus traffic
and compiler complexity. Clearly, the more storage there is on a microprocessor

Chapter 1. Architectural Issues and the Design Problem 22

chip the less traffic there is between memory and processor traffic. The RISC-1

designed at U.C. Berkeley, for example, has 138 32-bit registers and uses (over¬

lapping) register windows for parameter passing [48] [32]. To invoke a procedure,
it is normally only necessary to update the window pointer and change the pro¬

gram counter. Other RISC processors restrict the instruction set to only 32 32-bit

registers, and consequently require fewer CPU cycles for instruction decode.

1.3.6 Impact of Compiler Optimisation

High level optimisation has made compiler technology a major feature of micro¬

processor system design. Gompilers take a high-level language and translate it
into a universal code.

A code optimiser is written specifically for a particular architecture. A code

optimiser rearranges an application's source code to take advantage of the hard¬
ware's architectural features and improve the runtime performance.

For example, current C optimising compilers use methods such as strength
reduction, constant folding, least common subexpression and peephole improve¬
ment. Strength reduction [32] replaces time expensive operations, for example
power operations, with cheaper operations, in this case multiplication. Constant

folding optimisation reduces constant expressions into constants to save repeating
the calculation. Least common subexpression [27] assigns variables to evaluated
expressions that are likely to be used again in the same routine. Peephole improve¬
ment [3] takes a sequence of target instructions and replaces them by a shorter,
faster set of instructions [39].

Another common optimisation method known Register Colouring reduces the
number of variables and temporary variables, where usage scopes do not overlap.
This means that less register context saving/restoring is required for function
invocation. The simple example below demonstrates that because the scope of i
and j do not overlap, they can re-use the same register.

Chapter 1. Architectural Issues and the Design Problem 23

C Source:

for (i=0;i<n;i++)

{ code }

for (j =0;j<n;j++)
{ code }

Result:

"i" and "j" will require only one register for both variables.

A compiler writer can test the effectiveness of a new optimisation strategy by

running handcrafted optimised sequences of instructions on the target architecture
simulated in HASE. A required feature of HASE is to provide visual feedback on

how efficiently an optimisation technique utilises an architecture's resources.

1.4 The Architecture Design Problem

Although there is considerable discussion about top-down design, most tools avail¬
able today start from the middle, at the Register Transfer Level. Designers are left
to their own devices at higher levels of abstraction, especially when building hard¬

ware/software systems [72]. This section identifies how existing simulation tools
are used to visualise the architecture issues described in the previous section. It

attempts to distinguish the main design, conceptual and presentation difficulties.

1.4.1 Analytical Approach

Trace driven simulation and hardware measurement are techniques most often
used to obtain accurate performance figures for caches. The former takes a large

Chapter 1. Architectural Issues and the Design Problem 21

amount of simulation time and the latter is restricted to measurements of existing
caches. By representing the factors that affect cache performance, an analytical
model that gives miss rate for a given trace as a function of cache size, degree of

associativity, block size, subblock size, multiprogramming level, and task switch
can be produced. The model involves a judicious combination of measurement
and analytical techniques. However for more complex systems an anaytical model
lacks accuracy. It can be useful to identify aspects of a program's behaviour where
effort would be justified to improve cache performance. Multiprogramming traces

are difficult to obtain, and to analyse the relative performance of different coher¬

ency models discussed earlier, the event possibilities extend beyond the bounds
of an analytical approach. Similarly, queueing theory analysis can be useful for

describing scalar and superscalar execution pipelines, but mathematics can only
return quantitative figures for Cycles Per Instruction (CPI); it does not describe
the nature of interactions between hardware components and software.

1.4.2 Simulation Approach

Scope of Hardware Description languages

Hardware Description Languages, for example Verilog and more recently VHDL,
are similar in principle to BLMs except rather than programming in C they express

the functionality of components as "hardware descriptions". HDLs can provide
feist function level simulations of custom devices, and the last 2 years have seen a

move towards standardising design tools to VHDL, so logic designers can exchange
and add compatible hardware modules.

Systems based on VHDL and Verilog cannot be stretched to specify complex
systems at the highest level. HDLs are useful for specifying RTL descriptions and
providing an environment in which to experiment at the logic or gate level. HDLs
can simulate signals on the input and output pins of devices and they provide
libraries of components, for example latches, buffers, registers and D-flipflops that

Chapter 1. Architectural Issues and the Design Problem 25

are useful for testing a variety of logic designs. A timing diagram verifies that the
logic is generating signals at precisely the correct time. HDLs provide elaborate
multi-level logic hierarchies, to hide the detail of a component in a black box, for
the purpose of simplifying the overall design. The black box effectively acts as a

truth table; for every sequence of input signals it returns a corresponding set of
output signals.

There are hardware description languages available for designing micropro¬
cessors. COSMOS [36], for example is a logic level symbolic simulator that con¬

verts transistor nodes into a symbolic language file which in turn is converted
into a fast executable C program. MENTOR [38], offers a more usable input
and output graphical interface, but runs more slowly, especially when a complete
system simulation is required. MENTOR Graphics design tool is a logic level dis¬
crete event driven simulator which maintains a library of off-the-shelf devices that
a designer may block together and check for correct timing characteristics. The
MENTOR system provides Behavioural Language Models (BLMs) written in C to

support the facility to simulate custom devices, for example, a BLM was written
to simulate a static and a pseudo static RAM.

A microprocessor architect cannot use a logic simulator, because it merely
simulates the basic signal logic of a design and does not provide a platform for

running architectural simulation experiments. With increasing research interest
in hardware and software interaction and compiler optimisation, an equivalent
simulator for computer architects is necessary to derive tradeoff equations between
the aspects of internal and external microprocessor and memory system design.
Existing simulators are very fast but lack usability or have an extensive graphical
interface and are too slow to simulate large models realistically. An Esprit project
developed at the University of Edinburgh aimed to create a consistent set of tools
for general system performance modelling [56] [57] [58].

Chapter 1. Architectural Issues and the Design Problem 26

Architect's Workbench Requirements

Most of current generation functional/behavioural modeling systems are exten¬

sions of hardware description languages described earlier. HDLs are essentially

procedural, high level programming languages. These languages are structure

oriented and require an early selection of components with behaviour embedded

procedurally in a definite structure. Both the early binding to specific components
and the nature of these languages restrict top-down development of designs. An

architect would expect a functional/behavioural workbench to include the follow¬

ing features:

• A no-programming simulation environment.

• A Component Hierarchy used to create new architecture components and to

extend the object library.

• A mechanism for inserting a component into an existing architecture, in¬

cluding linking between neighbouring components.

• An abstraction level hierarchy that prevents illegal connects between com¬

ponents.

• Consistency checking to ensure that objects have been instantiated with
consistent parameters.

• A General Class Order- implementing a conceptual framework for computer
architecture.

• A mechanism for each component class to cope with changes to internal and
external parameters

• A Front Panel- to provide: the facility to enter input parameters and meas¬

ure their effect on performance; a means of navigating through different
levels of abstraction; the apparatus for architecture experiments.

Chapter 1. Architectural Issues and the Design Problem 27

• A component checking mechanism to ensure valid simulation runs.

• Output simulation trace and an optional animator that describes the internal
behaviour of an architecture.

• Support for Performance Statistics

Commercial High-level Simulation Tools

An architecture's behaviour can be described as a reactive system [18] [19]. Re¬

active systems are characterised as owing much of their complexity to the intricate
nature of reactions to discrete occurrences. Examples of reactive systems include
most kinds of real-time computer embedded systems, control systems, communic¬
ation systems, interactive software of varying nature and VLSI circuits. Common
to all of these is the notion of reactive behaviour, whereby the system is not ad¬

equately described by specifying the output that results from a set of inputs, a

description approach associated with common HDLs. Typically, such descriptions
involve complex sequences of events, actions, conditions and information flow, of¬
ten with explicit timing constraints, that combine to form the system's overall
behaviour.

For example, STATEMATE, designed by i-logix [31], Inc. provides a working
environment for the development of complex reactive systems. The computa¬
tional parts of such a system are assumed to be dealt with using other means,

but it is their reactive control-driven parts that attract the focus of STATEM¬
ATE. STATEMATE provides views of the structural, functional and behavioural
models of a SUD (System Under Development) through module-charts, activity-
charts, and state-charts respectively. All three representations are based on a set
of simple graphical conventions. Its analysis capabilities include being able to

step one unit through dynamic behaviour at the beginning and end of which the
SUD is in some legal state. STATEMATE is a good general purpose tool to test

Chapter 1. Architectural Issues and the Design Problem 28

prototype systems. Unfortunately it is too general purpose and has not caught
on as a popular architect's workbench. Its language primitives are not specific to

architecture components, and visualising hardware interaction on such a general
environment would lose the simulation experiment focus.

SES/Workbench [65] has dataflow/control semantics that are natural to beha¬
vioural design. It is naturally hierarchical because any node in the graph can be
a subgraph node. The aliasing capability of SES/Workbench allows assignments
of any number of logical nodes at one level of the hierarchy to a single node at
a lower level of the hierarchy. Thus multiple logical communication links can be

mapped to busses, or several logical operators can be mapped to a single functional
physical unit.

The idea of the SES/Workbench is to enable designers to execute system-
architecture designs at the behavioural level without being encumbered by the
detail of structural representations. Architectural/behavioural designs can be ex¬

ecuted independent of technology. Design evaluation can take place at each step
of the resolution of the design in a true top-down process. Unfortunately due to
its implementation, the SES/Workbench restricts the architect with its language.
Again the semantics of SES force the architect to think of the implementation
of the simulation and not simply the implementation of the architecture. The
design becomes confused with the graphical details of the simulation language.

Adding new components to an architecture involves programming a C description
of the components' input/output characteristics. The system lacks a definition
of abstraction levels, it is therefore difficult to identify the focus and the purpose

of an experiment. A more recent version the SES/Objectbench tries to apply a

more responsibility/collaboration approach, although it has not yet been released.
SES is a good example of general purpose high level simulation techniques try¬

ing to help architects and compiler writers but it does not provide a transparent

modelling environment. The architect should only be aware that he is building a

behavioural architecture model and not be concerned with implementation details

Chapter 1. Architectural Issues and the Design Problem 29

of its simulation. The simulation environment should have a clear specification of

existing component, an abstraction level hierarchy and a means to add and modify
new architecture components and statistical monitors.

Procedural Simulation Tools

Engineers at Stanford University have designed a high-level simulator CARA
(Compiler-Aided Research on Architectures) [23] that supports a top-down ar¬

chitectural analysis of embedded, custom applications. The tool characterises
more than 50 instruction-set variants and allows data cache performance, register
set size, and register allocation policy to be simultaneously evaluated for all the
architectures. Designers have more flexibility because thay can tradeoff among

high-level design constructs. Thus it was developed so that relative architecture

performance could be evaluated before having to complete the machine specifica¬
tion at the lower level. CARA is a good example of an Architect's Workbench. In
CARA an application is compiled to a standard intermediate form and then simu¬
lated using an architecture/cache simulator. The simulation input is the high-level

description of the proposed architecture.

CARA estimates performance, for example, by calculating the number of ma¬
chine cycles a given implementation would take to execute a basic block. A block
is defined as a group of instructions that have a single entry and exit. Only the first
instruction is a potential branch target instruction, so no instruction can cause a

branch except the last. CARA was specifically useful for estimating the expected
cache miss rates for a particular size and organisation of a cache. CARA comple¬
ments the previous ISPS [4] and multi- level simulator Adlib-Sable [35] in that it
simulates at the ISP level and yet allows specialised alterations to the executing
architecture. Due to its implementation approach however, it lacks the agility for
rapid architecture alterations through graphical interfacing and does not support
a clear abstraction level hierarchy for the components.

Chapter J. Architectural Issues and the Design Problem 30

Work at the University of Florida is currently developing a processor library
for multiprocessor simulation [26]. Due to the level of complexity in simulating
microprocessor behaviour they are seeking a method to simulate microprocessor
based (DSP) multiprocessor systems accurately. They believe the sophistication
of microprocessor devices has made it impractical to simulate their behaviour ac¬

curately with such traditional methods as Markov modelling and discrete event

simulation. A library of DSP96002 processors enable uniprocessor and multipro¬
cessor simulations, for example, to take place with single clock granularity. The
simulation can keep an accurate count of clock cycles executed. The real-time
execution rates can be calculated by scaling the number of clock cycles used to

complete the simulation. The simulated processors update all the internal and
external operations of the DSP96002 microprocessor such as register and memory

updates associated with program execution.

Object Oriented CAD Tools

Clearly computer aided design tools intended to help create complete hardware/softwaii
systems, are themselves large complex software systems. Just as hardware systems
must be designed using software design of CAD systems, CAD systems must take
advantage of advances in software engineering to be successful and competitive.
CAD tools and systems long ago stopped being adjuncts or spin-offs of hardware
design efforts. They are a major investment whose capabilities determine the
success of a hardware project and which require substantial engineering in them¬
selves. Object Oriented Programming (OOP) technology offers substantial help in
simplifying the design and implementation of CAD systems [78]. OOP has been
discussed for decades, but has come into common use only within the last several
years.

The notion of component entities has been used in ADA dynamic multi-level
logic simulations [28]. These simulations focussed on Input/Output pin states

Chapter 1. Architectural Issues and the Design Problem 31

and hiding detail behind black boxes rather than using the entities to contain
component detail in a hierarchy of abstraction levels.

Ptolemy, under development at Berkeley, clearly identifies some of the ad¬
vantages of using an object oriented approach [9]. Ptolemy is a heterogeneous
framework for the design and simulation of digital signal processors, communic¬
ation systems, algorithms and communication strategies. Although the user has
to do a lot of work in terms of connecting domains, because of the generality of
the tool, it nevertheless demonstrates the agility, heterogenity and extensibiliy
of using an object oriented language for the purpose of structuring a CAD en¬

vironment. The tool is written in C++. The system is not complete in that it
does not describe a graphical mapping that allows new components to be created
and included into the component hierarchy. Furthermore, it does not define an

abstraction level hierarchy that classifies the format of the abstraction level, for

example, the detail of the items of data that are being exchanged during com¬

ponent cooperations. Ptolemy has suggested a framework for DSP and network
simulation and has demonstrated some of the advantages of using OOP.

A similar object oriented framework is currently being developed at UM-
IST [19]. It shares the same focus as Ptolemy in that it attempts to create a library
of useful objects that describe DSP and communication networks and algorithms.
It defines how object orientation can decompose a system of interconnected pro¬

cesses expressed as a hierarchy of diagrams. In 00 terminology, processes are

defined as agents that encapsulate detail concerned with meeting responsibilities
allocated to them. A job is done through collaborating with others. This work

emphasises the use of inheritance and encapsulation to abstract data structures to

express the responsibilities and interactions of architecture components described
at different abstraction levels.

Both projects have still to develop simulated animation for their environments.
Recent work at Chicago University [51] has shown the usefulness of visual RTL
description. Although it was a simple model and was not supported by simulation

Chapter 1. Architectural Issues and the Design Problem 32

it demonstrated that there is a necessity to picture hardware data flow to explain

the source of bottlenecks and poor use of architecture resources. This system

describes the RTL abstraction level only and it has been suggested that the project

may develop the animator to include OOP simulation.

1.4.3 Motivation for HASE

HASE started as a project [61] to investigate the feasibility of building a general

purpose architecture simulator-on an MIMD transputer network. In the course

of this study, an 0ccam2 simulation of the 88100 Reduced Instruction Set micro¬

processor was developed on an MIMD T800 transputer Surface. A T414 graphics

processor with gfx.library functions was configured to produce a visual presenta¬
tion of the architecture's internal data flows, indicating, for example, the occur¬

rence of read-after-write conflicts and providing useful information for performance

analysis.

The simulation program was distributed over a grid of transputers using the
software harness tiny in an attempt to reduce the simulation runtime. Simulated
performance was verified by a direct comparison with the VAX accelerator, an

88000 system (courtesy of SUPERCOSMOS, Edinburgh Royal Observatory), that
could run a sampling algorithm 10 times faster than a VAX machine, with an

estimated performance of 8 to 9 MIPs. The inherent flexibility supported by
Occam2 and the transputer environment was evaluated by attempting to alter the
88000 system architecture. Further performance improvement was achieved by

developing a Front Panel Display to visualise internal data flow bottlenecks that
were eliminated by optimising test program code.

Research carried out for this thesis adds a number of useful properties to the
architect's workbench requirements. HASE aims to:

Chapter I. Architectural Issues and the Design Problem 33

• support a library of useful objects to model components at different abstrac¬
tion levels;

• provide a route for creating, linking, and inserting new objects into an ex¬

isting architecture;

• provide a method to enforce architecture component parameter and linking
rules;

• develop a multi-abstraction level simulation for the generation of a focussed
event trace;

• visualise trace behaviour of a discrete event simulation model for the purpose

of validating a model and guarding against an inefficient implementation;

• supply objects to monitor the statistics of component objects, for example

throughput and utilisation for comparing architecture performance;

• support facilities to visualize the output state of interacting component ob¬

jects at different abstraction levels. For example, animate the effect an

instruction has on interacting components, and the effect these interacting

components have on the instruction.

• provide support to follow a particular type of instruction through the system
at different abstraction levels.

Figure 1-2 identifies the main services provided by HASE. The inputs to HASE
are given by inward bound arrows, the outputs are denoted by outgoing arrows.

The nodes represent a common collection of tools, programs and metrics.

Chapter 1. Architectural Issues and the Design Problem

Figure 1-2: The Context of HASE

Chapter 2

Fundamental Concepts of
Simulation

Overview

This Chapter addresses the basic concepts of a System, Discrete Event Process
Based Simulation, and the Object Oriented Programming paradigm and provides
a background to Graphical Interface programming environments.

2.1 Concept of a System

Central to any simulation study is the idea of a system [25] [14]. The term system
can be defined generally as an orderly collection of logically related principles,
facts or objects. When used in the context of simulation study, the term system

generally refers to a collection of objects with a well-defined set of interactions

among them. A classical example is the solar system. The planets and the sun

form the collection of objects; gravitational force is one of the interactions among

the objects in the system.

35

Chapter 2. Fundamental Concepts of Simulation »

2.1.1 Definitions

Systems [29] [18] can be defined more broadly than as a collection of objects and

interactions. For example, a system could involve all external factors capable of

causing a change in the system. These external factors form the system environ¬

ment. The state of a system is the minimal collection of information from which

its future behaviour can be uniquely predicted in the absence of chance events,

Since the inclusion of time implies that the state of a system changes, there must

be some process or event that prompts this change. Such a process or event is

called an activity. Activities external to the system are defined as exogenous,

while activities internal to the system are referred as endogenous. Although it
is convenient to distinguish between exogenous and endogenous activities, it is
not always possible to do so. When defining a system it is not always apparent
which factors are internal to the system and which are external. Therefore it is
the change in system state induced by any activity that is of interest.

2.1.2 Classifying Systems

There are a number of ways to classify systems. An obvious classification dis¬

tinguishes between systems that are natural and those that are man-made. For
example, the solar system is a natural system, while a computer architecture sys¬

tem is man-made. Other classifications that can be used include continuous versus

discrete, deterministic versus stochastic, and open versus closed.

Continuous versus Discrete Systems

The terms continuous and discrete applied to a system refer to the nature or beha¬
viour of changes with respect to time in the system state. Systems whose change!
in state occur continuously over time are continuous systems. For example, a

continuous system may describe an analogue circuit, e.g. an amplifier, feedback

Chapter 2. Fundamental Concepts of Simulation 37

loop or phase lock loop, in which the rate of change is determined by a set of
differential equations. Systems whose changes occur in finite intervals, or jumps,
are discrete systems, while in some hybrid systems some state variables may vary

continuously in response to events while others may vary discretely. A computer
architecture can be described by a set of interacting discrete subsystems. Changes

to the system occur at finite intervals defined by its clock period.

Stochastic versus Deterministic Systems

A deterministic system is a system in which the new state of the system is com¬

pletely determined by the previous state and by the activity. Considered in another

way, a given system evolves in a completely deterministic manner from one state
to another in response to a given activity. This type of system is depicted in Fig¬
ure 2-la, where S0 refers to the state of the system before activity A and Sn refers
to the state after the occurrence of the activity. A stochastic system contains a

certain amount of randomness in its transitions from one state to another. In some

cases it might not be possible to assign a probability to the state that the system
will assume after a given state and activity. In other cases these probabilities are

known or can be determined. A stochastic system is shown in Figure 2—lb, where
Sn and Sn are two possible states that the system can enter after the state So in
response to activity A. Thus a stochastic system is nondeterministic in the sense

that the next state cannot be unequivocally predicted even if the present state
and the stimulus (activity) is known.

A computer architecture is described by both deterministic and stochastic
systems. For example, high level architecture components may be described
stochastically, while lower level components can be described deterministically.

Chapter 2. Fundamental Concepts of Simulation 38

b) A Stochastic System

Figure 2—1: Deterministic versus Stochastic System

Chapter 2. Fundamental Concepts of Simulation 39

Open versus Closed Systems

A closed system is a system in which all state changes are prompted by endon-

genous activities. In contrast open systems are systems whose states change in

response to both exogenous and endogenous activities. As it is difficult to distin¬

guish between endogeous and exogenous activities it is likewise difficult to clarify
whether a system is open or closed. A computer architecture involves exogeneous

activities, for example external interrupts from I/O, and endogenous activities,

e.g. fetching, decoding and executing a program. A computer architecture is

therefore defined as an open system.

2.2 Discrete System Simulation

Discrete event simulation was originally designed to solve complex queueing theory

problems, which arise when a system is interpreted as a system of interacting

queues. The development of simulation is most useful when applied to systems

where resource utilisation is at a premium, hence the usefulness of its application
for VLSI design [45]. Statistical representation of a system's behaviour is limited to
considerations of gross throughout; the details of, for example, requests for services

through a queue, are not amenable to close description by queueing theory.

Originally the statisticians' view of simulation as an elaborate Monte Carlo
method predominated, but it has now been recognised that discrete-event sim¬
ulation can reflect more closely specific details of a designed system, besides its
statistical properties. This ability becomes more important as the design be¬
comes more complex. The modern, structural view of discrete-event simulation
is therefore concerned with issues outside purely statistical interest, for example,

algorithms, methodology, and control structures.

Chapter 2. Fundamental Concepts of Simulation 40

Terminology

The characteristics of an entity are referred to as attributes. The collection of
entities and attributes for a given system is referred to as the system state, and is

generally expressed with reference to time. Any process that changes the system
state is referred to as an activity. The occurrence of such a change at time t is

referred to as an event. An event may for example, be the change of value of
some attribute, the creation or destruction of an entity, or the initialisation or

termination of an activity.

Zeigler [79] laid down the first abstract specification of a Discrete Event Sys¬
tem (DEVS). In discrete event simulation the value of the time increment is not

stipulated in advance; it is determined individually for each time step, based on

the component actions in the model. Events are determined by the sequence of
each entity's starting and finishing activities: the global actions of the simulation
are the persuance of these sequences for several concurrent entity flows. Discret¬
isation of time is thus implicit in the system itself, rather than being explicitly
imposed by the simulator. The simulation program concentrates on the events
interleaved between activities, and is relatively unconcerned about the periods of
active work, leading to a distinctive inversion of concern. An "activity" does not

necessarily imply that an entity is performing in any particular way: being gain¬
fully employed or simply waiting for an opportunity for such an employment both
qualify as activities since they extend over time.

A discrete-event simulation consists of a parallel flow of entities interacting
with resources during activities. For the paradigm to be successful, every event-
notice must have a predictable occurrence time when being inserted into the FES
(future-event set). Not all events are directly predictable however, some depend
on predictable events of other entities, or maybe some configuration of the model,
but the first discrete-event paradigm is valid as long as each activation can be
assumed to occur at some event.

Chapter 2. Fundamental Concepts of Simulation 41

2.3 Simulation Languages

Given the sophistication of available general-purpose languages, it can be argued
that simulation languages are unnecessary. A discrete event simulation can be

easily written using a procedural language, for example, a Monte Carlo simulation
in C or object-oriented C++ [70]. The main difference is that the simulationist

provides his/her own ES (Event set) strategy which would typically consist of an
FES (future-event set) executive program to drive the simulation along. Conveni¬
ence alone demands that the executive program should be part of the simulation

language.

2.3.1 Programming Representation

In conventional procedural languages, a calculation program is written in a general

sense, in terms of variables whose values will be actualised at run-time, through
a read statement. In this way a program represents a mathematical formula like

f{x), with x the unknown variable. The program thus describes the active pro¬

cedure, f, which defines the way in which the eventual x will be operated upon,

while the data consists of passive x instances. The function f(x) produces a

value, whatever x is. This approach to modularising programs enables libraries of
functions like / to be built up and invoked when required.

A mathematical description of system concepts is too limited for practical use,
in that simulation requires more than mere substitution in a prescribed formula;
for example, the structures of the real system must be mirrored in the simulation

language. In a simulation program the executive is applicable to the total set of
discrete-event simulations. However in simulation the model must be capable of

change. The "data" which instantiates a specific model of interest consists not of

Chapter 2. Fundamental Concepts of Simulation 42

passive values, but program modules of different "classes" that require activation.
In addition it may be required to specify data-structures and subprograms.

Simulations require a different kind of relationship between general and specific

parts; the specifics are invoked by the general, which is the opposite case to con¬

ventional, algorithmic programs, where general library routines are invoked with

special parameter values. A general-purpose language with sufficient flexibility for
simulation is SIMULA [55], which initially started as a simulation language, but
is now used as a language for writing packages, for example, DEMOS (Discrete
Event Modelling on Simula) [7]. Other object-oriented languages inspired by
Simula are capable of supporting simulation.

2.3.2 Object Oriented Programming

Simula is not only important as a simulation language, it is also the first object
orented programming language. It was developed in Norway in the 1960's by Dahl,

Nygaard, and their colleagues. The fact that Simula's main application area was

simulation gave rise to the emphasis on the "linguistic anthropomorphism" that
is often regarded as an essential part of the object-oriented style.

Object-oriented Software

Many modern statically typed languages include object-oriented features. Some
of the better known are:

• Trellis/OWL, an early statically typed object-oriented language, building
on ideas from CLU [54].

• Modula-3, a variant of Wirth's Modula-2 (descended, in turn, from Pascal)
with automatic storage management, objects and concurrency [49],

Chapter 2. Fundamental Concepts of Simulation 43

• C++, an object-oriented variant of C, probably the most widely used

object-oriented language [70].

• Eiffel, a commercial object-oriented language [54].

In addition to literature on object-oriented design and the specifics of various

object-oriented languages, object-oriented programming has spawned a growing
field of theoretical study, much of it concentrating on the problem of providing
sound static type systems that are flexible enough to capture the full range of

idioms offered by untyped object-oriented languages.

Characteristics

The HASE prototype takes advantage of three main characteristics of the object-
oriented programming paradigm: encapsulation, inheritance and polymorphism [75].

K

These three characteristics are given below:

• Encapsulation refers to the practice of drawing "abstraction barriers"
around collections of code and data. The encapsulated entities cooperate

freely among themselves , but they interact with the outside world through
a narrow and explicitly specified interface. Advantages include clean sep¬

aration of concerns and mechanisms between various parts of a large pro¬

gram; hiding of private or irrelevent information; explicitly visible interfaces
between components; and support for the notion of "programming by con¬

tract". In conventional programming languages large scale encapsulation is
achieved through the use of abstract data types and module systems. Object-
oriented programming languages go one step further by requiring that every

piece of state is encapsulated in some object.

• Inheritance provides a convenient way of factorising the implementation
of a data type using a class hierarchy. At each level of the hierarchy, the

Chapter 2. Fundamental Concepts of Simulation 44

behaviour associated with the attributes introduced at that level is described.

The behaviour of an element of some type in the hierarchy is then obtained

by composing all of the descriptions for the behaviour of the types above it.

• Polymorphism describes the relationship between two or more objects that
respond differently to the same stimulus. For example, in HASE a cache and
a memory object will respond differently when asked to read a byte of data.
Similarly, a cache object at the RTL abstraction level will behave differently
to a cache object modeled at the ISP, when asked to write a byte of data.

Although each of these is coherent and useful in isolation, the term "object-
oriented programming" is normally reserved for situations where all three are

in play.

Terminology

An object is represented by some private memory and a set of operations that
describes some behaviour [8]. Objects that share the same behaviour are said
to belong to the same class. A class is a generic specification for an arbitrary
number of similar objects. A class can be used to build a taxonomy of objects
at an abstract, conceptual level. A message consists of the name of an operation
and any required arguments. When an object receives a message, it performs
the requested operation by executing a method. A method is the step-by-step

algorithm executed in response to receiving a message whose name matches the
name of one of its methods. While the message consists of the name of a method
and its required arguments, a signature is the name of a method, the types of its

parameters, and the type of the object that the method returns.

An object that behaves in a manner specified by a class is called an instance
of that class. All objects are instances of some class. Once an instance of a class

is created, it behaves like all other instances of its class, able upon receiving a

Chapter 2. Fundamental Concepts of Simulation 45

message to perform any operation for which it has methods. It may also call upon
other operations on its behalf. A program can have as many or as few instances

of a particular class as required. Inheritance is a useful mechanism for factoring
out common useful behaviour. Classes that are not intended to produce instances

of themselves are called abstract classes. They exist merely so that behaviour

common to a variety of classes can be factored out into one common location,

where it can be defined once and reused again and again. A concrete class inherits

the behaviour of its abstract superclass, and adds other abilities unique to its

purpose. It may need to redefine the default implementations of its abstract
superclass. Concrete classes are fully implemented classes which create instances
of themselves to do the useful work in a system.

2.3.3 SIMULA

Simula started life as a preprocessor to Algol 60 for simulation programming, then
branched out as a package-writing language [7], and currently sets the standards
for a new batch of languages embodying object-oriented concepts. Simula added
the class concept, coroutines, references and record structures to the Algol 60 base.

Objects come into existence by a call of NEW followed by the class name,

followed by an optional list of parameter values by which the attributes may be
initialised. The activity sequence of the object is entered, until the sequence

comes to an end, when the object is regarded as terminated. Besides having

many objects of the same class existing simultaneously, many simulations demand

objects which partially resemble one another. Two classes may share some but not
all of their features. Simula provides a mechanism for defining subclasses of a class
where specific differences between subclasses can be defined without repeating the
features which they share in a common declaration. In this way Simula implements
the characteristic of subtyping through the mechanism of object inheritance.

Chapter 2. Fundamental Concepts of Simulation 46

2.3.4 Sim++ and Virtual Time

It is anticipated that a future version of HASE will be implemented in Sim++ [40)
because it is fast and supports distributed capabilities. Sim++ was derived from
DEMOS and C++ and facilitates an implementation of virtual time [43]. Virtual
time reduces the amount of waiting necessary between synchronising and collab¬

orating entities.

Sim++ is a superset of C++. It is a process based, discrete event driven, high
performance simulation language and implements virtual time, so that it can be
distributed over a large MIMD system as a network of Workstations. The last
consideration is very important because this application will potentally need large
amounts of memory and many computations in order to obtain useful results.
Virtual time is analogous to virtual memory; it is completely transparent to the

programmer. The major application of virtual time is as a synchronisation mech¬
anism for distributed simulation. Rather than waiting to synchronise with other
activated processes, each process excecutes without regard to whether there are

synchronisation conflicts with other processes. Whenever a conflict is discovered,
the offending processes are rolled back to the time just before the conflict. A roll¬
back is similar to the philosophy of page faulting; because a message is received
by a process with a low timestamp, the receive time of the message is very likely
to be in the recent past and so it is assumed that the amount of rollback will cause

a tolerable amount of unnecessary computation.

From the programmer's view the global clock always progresses forward at an

unpredictable rate with respect to real time. However from the implementer's
point of view, there are many loosely synchonised virtual clocks, one per process,

occasionally jumping backwards. The advantage of virtual time is that every

process is free at any time to send a message to any other process. In comparison
to Lamport's clock condition [45] it is void of starvation and deadlock. It is faster
and more scalable than Schneider's algorithm [64] because it does not have as

Chapter 2. Fundamental Concepts of Simulation 47

many synchronisation overheads when, for example, distributed over thousands of

processes.

2.4 Diagrammatic Representation

The old adage "a picture saves a thousand words" seems to hold true for simulation
as in other technical disciplines. This section considers the diagrammatic approach
to system representation.

2.4.1 Attraction of Diagrams

It is from their two-dimensionality that diagrams gain over programs for expressing

system phenomena. A diagram serves as a helpful bridge between vague external
*

ideas and rigorous interna! programs. A diagram may be more readily assimilated

by non-technical members of a project team, for example, who may not grasp

the intricacies of a program; a diagram thus helps in the dissemination of ideas
about the model, enabling some consensus about the degree of detail and realism
to be attained. A diagram is also a convenient way of publishing the broad outline
of a simulation without the interference of syntactic peculiarities of a particular

language.

2.4.2 Software Graphics

There is a variety of graphic programming environments [42] that allow a user

to manipulate graphics functions, for example, SRGP (Simple Raster Display),
Athena Widgets, and more recently Motif. The HASE prototype uses the Athena
and Motif environment to implement its model and architecture animation facilit¬
ies. To be as widely distributed as possible Motif was based on X Window System

Chapter 2. Fundamental Concepts of Simulation 48

Version 11 and designed to be used on XI1 systems. X is a network-based, graph¬
ical windowing system developed at Massachusetts Institute of Technology [77],

The X server contains all the display specific code. It keeps track of all input
from such devices as the keyboard and the mouse and deals with all requests from

any X clients that are running. At the lowest level, X's client side includes the Xlib

interface library. This library, which is part of the standard X release, provides a

set of device-independent procedures for performing graphics and other window-
related maintenance. Xlib passes these device dependent calls to the X-server,
where they are translated into appropriate machine-specific graphics commands.

The procedures in Xlib are low-level; developers typically construct high level

libraries, called tool kits, to make programming easier. The tool kit includes XT

intrinsics and a set of graphical user-interface components. The XT intrinsics
are built from the Xlib procedures, but at a higher level. Motif user-interface

components were built upon XT intrinsics.

In X the user interface components are called "widgets" and "gadgets". A

widget is a graphical user-interface component that has its own window. There is
a variety of widget classes, for example command widgets that call user defined
functions when selected, dialog widgets that display boxes for data collection and
bulletin board widget classes that allow icons to be placed and managed within
the widget's window. A gadget is similar to a widget except it does not possess a

window of its own. and must be located in some other widget's window. A typical
application program, or X client, will use several Motif widgets or gadgets as its
user interface.

In addition to the X server, Xlib, and the tool kit, most X installations have a

window manager. The window manager is a client program to manipulate client
windows. For example, it handles actions like moving a window, resizing windows,

changing the stacking order of overlapping windows, and representing a window
by an icon.

Chapter 2. Fundamental Concepts of Simulation 49

2.4.3 Comments

This chapter has introduced the concept of a system, the principles of discrete
event simulation, the terminology of object oriented programming and has provided
a background on the simulation languages and graphic environment of HASE. As¬

suming an understanding of the fundamental concepts underlying HASE, Chapter
3 proceeds to explain the operation of the HASE prototype environment.

Chapter 3

The HASE Design Environment

3.1 Overview

HASE is both a design environment and a simulator. In the design phase the user

creates a design through a graphical interfacejjy composing together architectural

objects (arithmetic units, caches, etc). During this phase the system checks the
interfaces between objects to ensure that only compatible objects are being joined

together. Subsequently the user may wish to define a collection of objects which
constitute a processor, for example, as a higher level object to be used in a multi¬
processor system. Therefore, each object is abstracted to model the behaviour of
a submodel containing lower level components. To develop, manage and visualise
the functional behaviour of the component object hierarchy, HASE uses four main
components: an Object Editor, an Architecture Editor, a Code Generator and an

Animator.

The Object Editor is responsible for creating and storing objects to describe
the functional behaviour of physical hardware and software components. The
Architecture Editor manages a hierarchical menu of software components that
model the hardware and software components of an architecture. The Architecture
Editor facilitates the selection, setting of parameters and integration of software
components. An architecture model is saved as a graph of connected nodes, where
the nodes represent software components and the arcs represent messages between

50

Chapter 3. The HASE Design Environment 51

objects. The Code Generator is responsible for parsing the connected graph of
nodes, collecting parameters for each component object, and building the source

code for the simulation program. The Animator provides graphical presentation of

an architecture's performance data and a means to visualise the simulation event

trace and the architecture's behaviour during benchmark executions.

Figure 3-1 summaries the five main phases of HASE: Object Creation, Ar¬
chitecture Creation, Simulation and Animation and Performance Analysis. Each

iteration of an object and architecture creation phase uses feedback from the Per¬

formance Analysis phase. This section describes the first four phases and shows
how HASE provides monitors to capture a simulated architecture's performance
characteristics.

OBJECT CREATION 11
f

ARCHITECTURE CREATION |
1

y
SIMULATION AND ANIMATION

}T
1

PERFORMANCE ANALYSIS 1

Figure 3—1: HASE Environment

Chapter 3. The HASE Design Environment 52

3.2 Programming Environment

The factors affecting the choice of simulation language include the simulation

algorithm, its programming paradigm, its syntax and its portability. Sim++, de¬
scribed in Chapter 2 supports a distributed simulation language, is based on C++,
its syntax is popular and portable, and therefore it is considered appropriate for a

future implementation of HASE. Although a number of Sim++ simulations have

been carried out to demonstrate its use on a network of Spares, the environment of

HASE has been demonstrated in DEMOS. The objective of the project described

in this thesis was not to implement a full working version of HASE but to examine
the feasibility of designing such a tool and to demonstrate its use on a number of
architecture experiments.

3.2.1 Prototyping in DEMOS

DEMOS is established and recognised as a standard language for implementing

high level simulations. The advantages of prototyping HASE in DEMOS include:

• It provides a clear demonstration of object oriented principles.

• A DEMOS front-end (PIT) exists to demonstrate the visualisation of object
inheritance.

• A DEMOS trace animator is available.

• Familiarity in the public domain, so it was not necessary to spend time on

support problems, which were initially present with Sim++.

The disadvantage of using DEMOS is that it lacks C type bit-wise operations
to express lower level (RTL) simulations. Furthermore, DEMOS does not imple¬
ment a distributed simulation algorithm [11], Previous experience indicates that

Chapter 3. The HASE Design Environment 53

DEMOS is incapable of running large architecture simulations without becom¬
ing intolerably slow and memory intensive. Nevertheless for the purposes of a
prototype it was not necessary to run large RT level simulations, but rather to
demonstrate design issues and useful aspects of the operations of I1ASE.

3.2.2 Hardware Resources

Workstations

DEMOS and Sim+-f simulations are currently running on Sun4 Workstations, on

which Athena, SRGP and Motif are supported by Xll. The GSS environment

currently works on Openwin3 to allow the simultaneous execution of Xwindows
and Suntools. The Graphics Editor which manipulates GSS functions is also
written in C. Currently Sim++ benchmarks are being run on a network of 8

Sun4s and a cluster of 12 transputers for performance comparison. Future work
will include running large architecture simulation programs and rewriting them to
take advantage of Sim++'s implementation of time warp.

3.3 Design Environment

A library of reusable component objects has been designed to be configured to¬

gether to support a framework into which new component objects can be inserted
and connected into an architecture using standard synchronisation procedures.
By specifying a set of link refusals and a component icon hierarchy, HASE en¬

sures that architectural constraints between this library of component objects are

not violated. This section discusses the four issues central to the operation of
HASE: Component Hierarchy, Object Creation and Architecture Editing, Code
Generation.

Chapter 3. The HASE Design Environment

3.3.1 Component and Abstraction Hierarchy

Objects can be created ab initio, by composition of lower level objects, or by
inheritance from generic objects already in existence in the hierarachy.

Component

If a number of classes share similar data and function members their properties
can be factored out and made into an abstract class (Figure 3—2(a)). For ex¬

ample, the function units of an architecture have many properties in common, e.g.

pipelines, functions to read operands and write results to register files, and these
can therefore be encapsulated into an abstract class component. The functionality
and data associated with class component are inherited by the integer and jloalinj

point and data units of the architecture.

Composition

A component class has an associated abstraction level. HASE currently includes
three main abstraction levels, PMS, ISP and RTL as defined in Chapter 1. A
submodel represents a number of interacting objects. For example, the processor

class (Figure 3-2b) is composed of fetch, decode, execute and writeback objects,
The processor class is not abstract, although the subclasses of processor inherit its
data and function members. If it is instantiated it executes function members that

simulate the functional behaviour of its subclasses at a higher level of abstraction.

Raising a component's abstraction level reduces the level of detail of the in¬

formation that is exchanged between interacting component objects. This is a

useful facility when focussing a simulation experiment on a particular aspect of an
architecture. For example, at the PMS level HASE exchanges a random sequence

of memory references. The detail concerning the actual address or the data re¬
turned from a read or write is omitted from the simulation. At the ISP level,

Chapter 3. The HASE Design Environment 55

addresses and data are represented by decimal values, and results of arithmetic
operations are computed and written to a register class. At the RTL level HASE
exchanges actual binary numbers, and manipulates bits using shift instructions to
perform arithmetic and logic operations.

Multi-level Simulation

HASE achieves multi-level component simulation by assigning each submodel to an

abstraction level number corresponding to the PMS, ISP and RTL. The choice of

abstraction level for a selected architecture component will depend on the purpose

of the simulation experiment.

In addition to simulating components at varying levels of architectural detail,
an architecture experiment can support multi-level instruction simulation. A com¬

ponent class is instantiated at abstraction level Aj for opcode p,- and instantiated
at abstraction level A/+i for opcode pj. For example, if the purpose of a simula¬
tion experiment is to examine the RTL implementation of an "immediate" floating

point multiplication instruction, the floating point function unit class instantiates
its multiplication pipeline class at an RTL level and executes the remaining oper¬

ation types at the higher ISP level. All binary data exchanges occurring during
the simulation experiment correspond to immediate floating point multiplication
instructions.

3.3.2 Object Creation

A class is a template for the functional behaviour of a hardware or software com¬

ponent modelled by HASE. An Object is the instantiated class. A description
of the hierarchy associated with objects has been discussed in the previous sec¬

tion. This section lists the general attributes associated with a component object,
and explains how a graphical front-end for object creation was prototyped in PIT
(Process Interation Tool).

Chapter 3. The HASE Design Environment St

/"""

B) Compositor

Figure 3-2: Object Hierarchy

Object Facets

Designs are created by composition of icons. At each level of the hierarchy there is
a set of menus from which components can be selected and inserted into the design.
Each component is represented in software by a multi-faceted object. For each
object the following can exist, each represented in a unix file with the appropriate
extension:

An icon: (.icon) each object in the system is represented by an icon. The icon is

created using an X-windows icon editor which produces a postscript file.

A textual definition: (.txt) the textual definition of an object describes its it-
haviour (in terms of entity entity collaborations, computations), and inherited
data and function characteristics of the object's class.

Simulation code: (.sim) written in Sim++ and/or DEMOS.

Chapter 3. The HASE Design Environment 57

An interface definition: (.gdl) the interface definition allows the system to check
that objects which the user wishes to link together are compatible. Com¬
patibility may be affected by parameterisation of objects instantiated into
the design from the menus. A generic cache object, for example, may need
the word length, block size and degree of set associativity to be specified.

A formal definition: (.def) a planned future of extension of the HASE is the
incorporation of formal definitions of objects to allow formal verification
techniques to be used.

VHDL code: (.vhd) a second planned extension to HASE is the incorporation of
VHDL descriptions of objects to provide a possible route to implementation
of designs.

Process Interaction Tool

The Process Interaction Tool was developed by Eric Barber of BNR, as a graphical
interface to DEMOS [5]. The purpose of PIT is to allow a designer to create or

edit a component object from a menu of predefined icons that represent DEMOS
simulation primitives. Icons symbolising nodes and links of an activity diagram,
as defined by Birtwhistle [7], are selected from the PIT menu and inserted, linked
and parameterised to define a DEMOS entity to model the interactive behaviour
of an architecture component at a given abstraction level. The activity diagram
is then saved under the physical component's name and inserted into a submodel
which belongs to the appropriate abstraction level.

PIT includes the definition of abstract object procedures that are inherited by
the concrete component classes. These inherited procedures for data exchange
in a pipeline are read and write, and caches and busses for memory data and
address exchange. Figure 3-3 shows a processor entity and its associated tree
of abstraction levels. The processor class is described by three separate entity

Chapter 3. The HASE Design Environment

Figure 3-3: Process Interaction Tool for Component Creation

control paths defined between a start and terminate node. The PMS level models
a processor res a server entity which is held in the event queue for a computation

period and randomly generates read and write operations to an external bus class
hierarchy. Within the ISP processor submodel further submodel trees of activity
diagrams are defined, e.g., fetch and decode entities. The submodel tree for all
components available in the architecture editor is defined in a Graphics Description

Language (GDL) file. Only non-parent entities are defined as class nodes in GDL,
because they are concrete and can be instantiated and linked. The example m

Figure 3-3 shows a selection of instrumentation objects, for example the counter
which counts the number of instantiations of a particular entity class during»
simulation run.

Chapter 3. The HASE Design Environment

3.3.3 Architecture Creation

59

The Architecture Editor provides a facility to browse the GDL object menu at the
appropriate abstraction level and to select and insert new objects into an existing
architecture without reprogramming the simulation source code. The Architecture
Editor is prototyped in the GSS environment [5]. The purpose of the Architecture
Editor is to raise the level of detail above entity activity diagrams defined in PIT
and label each DEMOS or Sim++ object with a meaningful architecture name and
icon. The language defining architecture nodes and links was prototyped in GDL,
further details of which are provided in Chapter 4. In GDL a component object
is represented by a node, with parameters, icons and submodels, ports and link
refusal definitions. Each node is defined within a submodel graph. The submodel

graphs are represented by a menu of icons, where each icon represents a node.
Each submodel of a node defines an abstraction level.

Managing the Abstraction Level Hierarchy

HASE defines in GDL a unique menu of icons to display objects that can be in¬

stantiated for each submodel. A set of submodels defines an abstraction level. For

example, the PMS abstraction level is defined by the set of submodels: [processor,
memory, link, switch, control]. The processor submodel can be further defined at a
lower ISP abstraction level, for example by a set of submodels: [cache, bus, fetch,
decode, sequencer, execute, writeback]. The cache could be decomposed into a lower
RTL level of abstraction in the same manner. Therefore each submodel has a set

of icons that can be inserted, linked, parameterised and instantiated. The GDL

description of the hierarchy enforces architecture coherency through the notion of
link refusals. For example, at the PMS level a processormust not be connected to
a memory subclass, unless via a link.

A node A, defined within a submodel Si can link with a node Nj in submodel
5'+i. 'n a submodel menu there exists an entry and an exit node. The entry

Chapter 3. The HASE Design Environment JO

node ensures that the abstraction level of the transmitting node is lower than that
of the receiving node. The token exchanged between the cooperating entities is

translated to the higher abstraction level. If they are the same, then no translation
is necessary; if the receiver is lower, then the exit node converts the format of the
token to a lower abstraction level.

Edit Operations

This section describes the main operations available to setup a simulation experi¬
ment using the HASE prototype Architecture Editor.

• Inserting and linking objects: Figure 3-4 illustrates an architecture edit

linking a pair of cooperating objects. The diagram shows 3 individual icons
to represent: a cache, fetch and decode stage object. The cache icon is selec¬
ted and linked to the fetch stage object. In this example, the cache object
can make three different types of links: Address, Control and Data. Select¬

ing a Data Link will attach the connection to a data bus object. Further

details of how a link is created are provided in Chapter 4.

• Parameterising objects: Figure 3-4 shows an example of selecting and

setting the decode object's parameters. In this example, the MC88100 is
selected and the decode object will take a clock cycle to decode each in¬
struction.

• Creating a submodel: Each icon has an option in its pull-down menu to
Edit Submodel. A submodel can be edited to display its object components
instantiated at the next lowest level of abstraction. Figure 3-5 shows an

example of the ISP Instruction unit, expanded to display a submodel of its
RTL pipeline stages. Each submodel has its own menu of icons. If two
icons are to be connected between different submodels, then it is necessary

to connect them with exit and entry icons. Each submodel therefore has a

Chapter 3. The HASE Design Environment 61

number of external ports it uses to exchange input and output data to arid
from the submodel.

• Loading and storing architectures: After a component object, or version
of an architecture is edited, the main menu provides a option to save or cancel
the changes.

• Instrumentation: In order to assess the performance of a system it is ne¬

cessary to collect data about the type and frequency of selected events during
program execution. Monitor icons can identify, for example, wasteful stalls
in the architecture, caused either by poor sequencing of code or by poor

distribution of hardware resources. A menu of counters and various types

of component monitors can be selected from the icon menu at each abstrac¬
tion level to generate useful statistics on, for example, processor utilisation,

throughput, frequency of data dependencies and number of pipeline stalls.

3.3.4 Code Generation

The HASE prototype, provides a main menu option to Generate DEMOS, simula¬
tion source code. The class declarations are retrieved from the component library
and written to the simulation's source file. The HASE prototype's code gener¬

ator was designed to prove the concept that a class declaration and its object
parameter can be automatically linked and instantiated into a single source file.

Therefore, the HASE prototype does not provide a functionally complete DEMOS
code generator. The prototyped code generator only generates a DEMOS shell
of the simulation's source code. The user is expected to edit the DEMOS main

program of this shell, and instantiate each component object that is required by
the simulation.

Chapter 3. The HASE Design Environment 62

©
CACHE

I
0
FETCH

1

Set Node Attributes
Make Link
Edit submodel
Delete Submodel
Attach comment

Flip Node
Set visibility
Delete Node

Address
Control

■Data |

IEES5 'I

©
DECODE

Make 1
Edit su

. . l!
Decode Attributes

_ Set sul
Attach
Set vis
Delete
Gener;

Instruction Set - <88100>

Stage Delay -1

Figure 3-4: Link Creation

3.4 Simulation Phase

3.4.1 Input/Output

The Architecture Editor is responsible for writing an object's architectural para¬
meters to a Datafile. It does this during its code generation phase. Before the
code generation phase, objects for examination are selected. During the simulation

phase the event trace and output states of selected objects are written to output
files. Each object is responsible for the management of its own state and perform-

Chapter 3. The HASE Design Environment 63

Figure 3-5: An Architecture Edit

ance data collection. In addition to display state files, performance statistics are

collected and later presented as performance graphs.

3.4.2 Operation

The simulator is intended to be used in two modes: (a) with visualisation, (b)
without visualisation. In mode (a) the graphical image of the currently selected
part of the design is animated by the output from the simulator and the rate at

which the simulation proceeds is determined by the user, in order that s/he can

follow the animation on the screen. In (b) the simulation proceeds at maximum
rate in order to allow performance measurement results to be gathered during the
execution of complete (and potentially very large) programs. Thus the user can

run the simulator slowly in visualisation mode using short test code sequences, in
order to check that his/her architecture is performing correctly, and then run the

Chapter 3. The HASE Design Environment 64

simulator in fast mode using complete programs in order to determine the effect
on overall performance of detailed design decisions.

3.5 Evaluation Phase

When processors were implemented in SSI/MSI technology it was possible to at¬

tach hardware monitoring probes to appropriate points in a system in order to col¬

lect performance and debugging information. HASE recreates this facility for VLSI
devices by allowing the user to attach simulated hardware monitoring devices, to
alert the architect to certain patterns of behaviour that occur during a simulation

experiment. For example, a monitor object may alert the architect to 1st 2nd and

3rd order conflicts, or may simpty estimate the throughput and utilisation of a
function unit pipeline.

3.5.1 Statistics and Graphic Visualisation

DEMOS provides classes to measure the average %CPU utilisation of an entity or

the average time an entity waits in slave and master queues during cooperation.
HASE includes simulator and architecture classes responsible for measuring the

efficacy of the simulation model and an architecture's performance. The former
class includes a set of objects (available in the hierarchical menu) for returning
available stack space, number of page faults and total virtual memory required
for simulation. Finally the simulator class is responsible for updating the total
number of simulated instructions executed per second.

The responsibilities of the architecture class include recording statistics for the

purpose of summarising architectural efficiency. For example, counting the number
of stalls in a pipeline or the total utilisation and throughput of a function unit or
the average (CP1) Cycles Per Instruction figure for the simulated processor. The

Chapter 3. The HASE Design Environment 65

event trace identifies different patterns of instruction dependencies, for example,
the occurrence of an exception before a control transfer instruction or the number

of data dependencies that delay the instruction execution pipeline for more than

a given number of clock cycles.

3.5.2 Animation

A current problem with contemporary high performance simulation tools, for ex¬

ample, the SES Workbench [19], is that the design and animation of an architec¬
ture experiment is obscured by the implementation of the simulation model. In

HASE a separate trace animator visualises the implementation of the simulation

model. An independent process is run to parse the simulation trace and animate
the mechanics of the simulation model, in terms of entity scheduling, resource

blocking, and entity synchronisation.

TVace Animation

The trace animator identifies which entities are interacting, or competing for com¬
mon resources. A standard event trace can be toggled on or off at defined break

points in the simulation source. A trace parser is responsible for reading a DEMOS
trace and calling the appropriate window management functions. The animator's
frontend includes options to load the trace, play, rewind, step forward and step

backwards. The trace animator determines the workload of an entity during a

simulation, in terms of scheduling, blocking and synchronisation. The trace an¬

imation example in Figure 3-6 shows two "FETCH" entities competing for a read
and write port, modelled as a DEMOS resource class. FETCHI is blocked in the
event ready queue, waiting for FETCH 1. Such an implementation could model
an architecture's writeback sequencer.

HASE can provide information for the user to improve the efficiency of the
model. It can show if an entity is blocked unnecessarily, waiting in the synchron-

Chapter 3. The HASE Design Environment 66

(r^l Ff

r -)(lUrk Sfmmd ^ Quii J
c .kipu.k -t*m)(i»» >kipf«d J
i 0.000 mhos BDUfirofiatoc

men i seizes 1 or ura
srpjs ^

,ote 36.000
ibts

1 LO rt rO <0>
r u rrri(o>
I LB rt rd <l>

>

l.ooo mm i sane 1 or m\
iooo mail

HDLD6 for 14,001
moti Kw

4.000 rslikss 2 tow

iwtil 2.000
tots

L®TE
vote 16.000
*ote 4.000
MITTS

i ld rl rt <0>
I LO r5 rO <0>
' LB rt rl <t>

*00 rt rl rt
LB rt rJ a>
ML r2 rt rt
MOrS rlrS

Figure 3-6: An Example of the Trace Animator

isation or resource queues, rather than computing at the head of the ready queue.

If detail of these entity interactions is irrelevant a user can reduce the memory

requirements of the simulation by abstracting the responsibilities of the entity

higher up the component hierarchy.

When developing a distributed simulation interacting entities are clustered onto
the same workstation. The trace animator can identify which entity pairs queue

for the most synchronisations. Communication/computation costs of this nature

were encountered with the MC88000 transputer simulation on a Meiko transputer
network [61].

Architecture Animation

Architecture animation involves three interactive displays: the processor archi¬
tecture, the front panel of the trace animator, and the display of the animated
simulation trace. The trace animator front panel updates the current trace line

Chapter 3. The HASE Design Environment 67

Figure 3-7: Example of an Animated Architecture

and identifies the new position of the program counter as the simulated processor

steps through its program execution. Figure 3-7 shows an example of an anim¬
ated architecture and trace display. The purpose of the architecture animator is
to manage the simulator's output, visualise architecture performance data, and
display the internal state of a selected architecture component. The trace and ar¬

chitecture animator have been piped together. As the architecture animator steps

through the next instruction sequence, the trace animator is instructed to select
relevent events, entities and resource interactions implementing the mode! of the
animated component. An important feature of the architecture animator is its
ability to zoom into a component's lower level of detail. A set of Motif callback
functions ensures that the appropriate submodel is displayed. A linked list of cli¬
ent data referring to a component's internal state is maintained and updated on

each step of the animated clock.

Chapter 3. The HASE Design Environment 68

3.5.3 Comment

This chapter outlines the HASE prototype's front-end interface for editing ob¬

jects and setting up architecture experiments. The prototype's front-end was de¬

veloped as a proof of concept, to demonstrate the sort of services that HASE can

provide. The PIT and GSS environments were suitable for this purpose because

they provided an infrastructure for setting up menus and standard operations for

selecting, moving and removing icons. Futhermore, this environment supported a

framework for saving objects and parameters to output files.

Chapter 4

Design and Implementation

4.1 Hierarchical Approach

The HASE prototype implements the abstraction layers of a computer architecture

using an object-oriented programming paradigm. This chapter explains how class
inheritance and the DEMOS (Discrete Event Modelling On Simula) programming
environment is integrated into HASE to support a framework for multi-abstraction
level simulation. Furthermore, it describes how HASE was designed to specify

component objects, edit architectures and evaluate and visualise an architecture's

performance.

4.1.1 Classifying Abstraction Levels

The design of an architecture can be explored at different levels in the HASE hier¬

archy, likewise it is possible in the simulation phase to choose the level at which
different parts of the design are simulated. HASE supports an hierarchy of com¬
ponent objects that can be instantiated to model the behaviour of an architecture
at the PMS, ISP or RTL abstraction level. This hierarchical framework of HASE
is based on Flynn's classification of abstraction levels of a processor [22]:

Let P be a program. A program is defined simply as a request for
a service by a structured set of resources. P specifies a sequence of

69

Chapter 4. Design and Implementation 70

other (sub)requests, Rt, R2, •••• fin called tasks. While the tasks
appear here as a strictly ordered set, in general tasks will have a more

complex control structure associated with them.

Each request, again, consists of sub-requests (the process terminating

only at the combinational logic circuit level). Regardless of level, any
request R, is a bifurcated function having two roles:

«, = {/',/n (4.i)

the logical role of the requestor fj and the combined logical and phys¬
ical role of the resource server f".

Flynn defined a resource server v to have two types: operation or storage.

A storage resource is a device capable of retaining a representation of a datum
after a result has occurred. An operational resource performs a binary mapping

(e.g. add, sub, and, nor, xor, shift). Storage resources may also have operational
characteristics if accessing mechanisms are included. A program is executed by
means of a hierarchy of request transitions between initiating level P and the next
level of tasks Ri-R„. An actual service is provided through a combination of a
tree of lower level logical requests and the physical services at the leaves of the
request tree.

4.1.2 Implementing the Abstraction Level Hierarchy

An abstraction level will include a set of submodels Sn handling the same type of
request R;. R, at abstraction level I requires a unique requestor fj format that
will include less detail than requestor /j+1 of request Rj. HASE was prototyped
to include three abstraction levels, PMS, ISP and RTL. A request type has been
specified for each level. A multi-level simulation not only involves hiding the details
of a physical component, which is normally the case with logical simulators e.g.

VHDL, but in HASE a multi-level simulation also involves abstracting the type of

Chapter 4. Design and Implementation 71

Flynn'a Abstraction Levels

P = Program

RrT-
Sub Tasks

R=(F, . F |)

p ' = Role of Requester
. (Sequencer)

p = Role of Server
I (Entltes)

Figure 4—1: Abstraction Level Taxonomy

the requestor fj • The next three sections outline the main properties of RTL,
ISP and PMS requests.

RTL Requests

At the lowest level, RTL register transfer requests involve numbers to the base 2.
The responsibilities of DEMOS entities, for example, involve binary operations,

e.g. shift left, shift right, invert and so on. An entity may summarise the combin¬
ational logic of an architecture component by a truth table, in a similar fashion to
the functional logic simulators described in section 1.4.2.

ISP Requests

ISP level requests focus on the flow of data between operands and results and
the corresponding utilisation of function unit pipelines. Tasks handled by logical
requestors at the ISP level, manipulate numbers to the base 10, translated from

Chapter 4. Design and Implementation 72

base 2. For example, at the ISP abstraction level, a processor's ALU uses float¬

ing point and integer types to represent operands and results, depending on the
pipeline employed to process its operations. Operations such as add, subtract, mul¬
tiply or divide are implemented as expressions written in the Simula programming
environment.

At the ISP level only the details of an architecture's functional properties are

considered. A processor's instruction set is represented as a Simula array, where
each element defines an encoded instruction. An operation refers to register source

and destination identifiers using integer values.

PMS Requests

At the PMS level, a processor's internal architecture, memory or context switch
behaviour is driven by a set of performance figures that have been collected from
RTL and ISP level simulations. The PMS level processor entity is responsible for

fetching a dependency graph of tasks, instead of requesting a sequence of encoded
instructions. Each type of task corresponds to a delay incurred by the processor

and holds onto simulated resources for an estimated interval of simulation time.

The PMS processor's instruction set is classified into a set of different in¬
struction types; for example, arithmetic, logic, control, data, exception handling
routines. Each dependency graph task is composed of a combination of different
instruction types. The dependencies specified in the graph are configured from
statistics retrieved from running real application programs.

4.1.3 Implementing Resources

The hierarchy of storage and operation resources are simulated in HASE by in¬

stantiating an hierarchy of DEMOS entities. An entity encapsulates data and
operations to describe the behaviour of a resource server /" at abstraction level /.

Chapter 4. Design and Implementation 73

A task request will select the resource server, required to execute the task at its

specified abstraction level. If the submodel responsible for executing this task is

not instantiated in the event queue HASE's simulation framework will instantiate

all the co-existing entities contained within submodel that are required to execute

the task request. All ports going in and out of the submodel will convert incom¬

ing and outgoing formats to the abstraction level of the selected submodel, via

entry and exit entities. Exit and entry entities are instance variables of the HASE

simulation framework.

The PMS level represents the resource as a DEMOS RES. A RES is a user

defined number of elements that may be acquired or released by competing en¬

tities. If an entity fails to acquire such a resource it is temporarily blocked in
a RESOURCE queue; the Figure 4-2 shows entity /'. 19 waiting in the resource

queue at simulation time <4. Another way of implementing a resource is through
the notion of a DEMOS BIN. A BIN is a DEMOS class similar to a DEMOS RES,

except it is shared by a user defined number of entities and can therefore act as a

high level server; for example, it can model a memory queue or a processor.

4.2 Implementing the Design Environment

An important feature of HASE is to provide the computer architect with a re¬

usable set of software components. The HASE environment is designed to hide
the implementation details of communication and synchronisation associated with
the simulation executive program; to support a simple one to one relationship
between the architect's set of reusable software components and the physical ar¬
chitecture components under investigation.

This section explains how the GSS environment and inheritance associated
with abstract and concrete component classes are designed to support a framework

Chapter 4. Design and Implementation 74

BIN

o

Figure 4-2: Discrete Event Modelling on Simula

Chapter 4. Design and Implementation 75

for creating and editing architecture simulators using the Object and Architecture
Editors.

4.2.1 Object Editor

The purpose of the Object Editor is to provide a front-end to the DEMOS program¬

ming environment by supporting a menu of icons to represent standard DEMOS
simulation primitives. A component entity is therefore constructed from selecting
simulation primitives from the icon editor and saving it as an Activity Diagram,
as outlined in Chapter 3. This section describes the features of three types of

DEMOS simulation primitives used by the Object Editor and explains how they
are adopted to provide a framework for establishing connections between interact¬

ing entity components.

Features of DEMOS

A DEMOS entity is similar to a class defined in Simula; in HASE, an entity is
used as a template of behaviour describing some architecture component. Also, a
DEMOS entity can have multiple instances. However, unlike a Simula class, an
entity inherits a library of superclasses to manage discrete event simulation.

DEMOS supports the mechanisms to instantiate the activation of an entity
at simulation time t. For example, the Fetch entity given below is scheduled to

instantiate at simulation time 0.0 and is inserted into the head of the a DEMOS

event queue.

F new Fetch("Fetch", F.stage, 1, p(fetchsize), p(fetchinputs),

pCfetchfields),p(faddsize), p(faddinputs), p(faddfields),
p(fetchdelay));

F.Schedule(O.O);

ChapteT 4. Design and Implementation 76

Otherwise it can be scheduled to instantiate at 'the current time + t', where (is

some delay in simulation time units. In the above example, the parameter p() refers
to elements in a datafile containing parameters set for the Fetch component. It is

possible to instantiate multiple instances of the same entity component. Actions
of the Fetch entity include acquiring and competing for architecture resources e.g.

the Address and Data bus, computing results and exchanging data between entity

components.

All component entities execute a DEMOS HOLD procedure for a number of

simulated time units, to model the duration of an activity. Seen from inside the

calling DEMOS entity, the HOLD procedure represents a period of time when the

entity component remains in the same state, locking its acquired resources until
it is scheduled to release. DEMOS also provides resource and synchronisation

queues for entities that compete for common resources or attempt to synchronise
with the same instance of an entity simultaneously. When an entity attempts to

acquire a resource and fails, it is inserted into an entity blocked queue. Similarly
if an entity is waiting for a condition to be satisfied, an entity instance identifier
is inserted into the CONDQ DEMOS class queue.

Entity cooperations are supported through a DEMOS COOPT procedure. Ex¬

ecuting a COOPT procedure in DEMOS is equivalent to sending a message to
an object and retrieving the result returned from the receiving object's method
call. In DEMOS, the sending entity synchronises with the receiving entity at some
defined stage in the receiver's code. The sender takes program control of the re¬

ceiver's code, executes it. If the receiver is synchronised to some competing entity
component, the sending entity is inserted into a DEMOS COOPT queue.

Component Inheritance

The hierarchy depicted in Figure 4-3 illustrates HASE's use of class inheritance.
The Abstract entities defined at the top of the class hierarchy (shown with filled

Chapter 4. Design and Implementation 77

^Componanl j

FT 1 1̂ Mamory j
T v.

C
Abolraa Class

Concrata Class

Inharitanoa

Figure 4-3: Use of Object Inheritance

triangle in figure) factor out common component behaviour. They provide useful
functions inherited by instantiated child entities. For example, the Component

entity is a parent which is inherited by all activated entities in the simulation.
The class Component defines a standard set of procedures for entity cooperations.

The class pipeline defines the unit of data transfer between cooperating entities.
The class pipeline is responsible for initialising, exchanging and shuffling data
through each pipeline stage and includes standard function members to report
on pipeline utilisation and throughput. When a pipeline exchange occurs between
two entities, its dimensions, including its number of ports and fields, are compared
in order to prevent illegal data transfers. An entity can manage an array of class
pipelines. Each element of the array stores internal states of the component, for
example it may define a single word control register at the RT level or it may
represent a superscalar pipeline at the ISP level, depending on how the class has
been initialised.

Chapter 4. Design and Implementation 78

Component Cooperations

For the purpose of standardising communication between cooperating entities, two
inherited procedures are defined in class Component: producer and consumer.

By specifying an entity type, unique entity identifier, link type, purpose, and

source, two entities are associated with a unique link. A cooperation between
two entities is invoked by inserting a consumer entity into its producer entity's
DEMOS WAITQ queue. If a consumer entity satisfies an entry condition for a

specific cooperation, it is inserted into its producer's DEMOS CONDQ queue.

Synchronisation is achieved by adopting master and slave roles for the con¬

sumer and producer entities. The producer entity waits in a slave queue, until it
is serviced by a consuming entity. The producer entity waits on the simulation
event queue until it is rescheduled by the consumer. The consumer selects the ap¬

propriate WAITQ identifier which is defined by a tuple T{LClass, Linkid), where
LClass is the link type and Linkid is the link identifier. Linkid is referenced by

indexing a destination array, with (EClass, Eid, LClass, purpose) fields. EClass
and Eid are the class name and instance variable of the consumer object. LClass
is the class name of the Link object and purpose is the mode the link is currently

operating in. For example, Figure 4-4 shows a Fetch object and a Decode ob¬
ject linked by a Data Transfer link class object. In the case shown, Fetch is the

producer object and Decode is the consumer. Data Transfer is the name of the
link class, and the purpose of this exchange is to transfer data between the Fetch
object and the Decode object. If the Fetch stage was producing instructions, the
purpose field would have been defined as instruction instead of data.

All component objects inherit source and destination arrays. The values of the
source and destination arrays are initialised by the Code Generator. By assigning
the same Linkid to both Source and Destination arrays, the producing Fetch
object and consuming Decode object exchange data messages on a unique WAITQ
channel.

Chapter 4. Design and Implementation 79

Example ol a Collaboration

Branch — Control

Fetch 0ata_Tran8ler Decode

| Producer j 1 Consumer J
Oata

Producer(Edas«. Eid. dalatransfar, data) Consumer(Edass, Eid. datatranafar, data)

Scr_Link_td

Link_id -

| i | | Destjnk.id | | | j
1 M I Link-w-1 1 M

WAITQ Array [Link_Typa, LinkJ« l r

□□ n □
Method of Indirection

Figure 4-4: Inherited Object Communication

When cyclic entity interactions that are preemptively acquiring and releasing

mutually exclusive resources are involved, deadlock can occur. Each component

entity inherits a procedure to index a simple semaphore to test the state of its des¬
tination entity and to identify whether it is ready to synchronise and transfer data.
If the semaphore is set, the entity will not attempt to cooperate with the blocked

entity; instead it continues to process the next available entity collaboration.

Class decode entity is also defined as an abstract class. In addition to loading
opcode tables, class decode is responsible for abstracting hazard management, spe¬

cifically data, control and structural [32]. Class decode manages synchronisations
between fetch, function and register file classes to sequence instructions and pre¬

vent out-of-order execution. For example, the data hazard function is responsible
for holding an instruction until a function unit can bypass its result to a waiting

operand. If however register feedforwarding is not supported by the architecture
class, decode will disable bypassing. Class decode entity inherits the behaviour
of the Component class so that all synchronisations between other stage entities
execute standard producer/consumer procedures. In the same way, HASE defines

Chapter 4. Design and Implementation

a memory class hierarchy to abstract common behaviour of storage resources as

defined by Flynn's classification of abstraction levels. The hierarchy expands from

modelling the behaviour of a simple register or instruction buffers, to modelling a

cache or large main memory unit.

Specifying a Component Node

The leaves of the inheritance tree are referred to as concrete classes, they are

scheduled to activate at simulation time t and are time stamped in a DEMOS

event queue. Class Component is a parent class to a number of function units,

for example integer, floating point and data transfers. Further abstraction can be
achieved by defining a subclass of different function unit types. Class decode has
a tree of subentities, each responsible for executing a different instruction set.

GDL is used to summarise the properties of a concrete entity. A concrete

object has an associated GDL node that specifies its facets, including an attribute

list, referenced by the graphical front-end and used to parameterise the object.
The GDL file defines the number of input and output links a concrete entity can

make with co-existing object components. For each link, the GDL file specifies the
types of entities that it is allowed to connect. Each Link has an associated GDL
link node that is parameterised to define its purpose, whether it is intended to be
used for data transfer, control or issuing. An example of a class node defined in
GDL code for ISP fetch entity is given below:

NODECLASS Fetch

INFO [Iunit\

\

This node class represents the fetch stage of an

88100 microprocesor\
]

Chapter 4. Design and Implementation 81

ATTRIB

abstraction_level : long_int

super_scalar_factor : long.int

ISP_pipe_size : long_int

ISP.stage.delay : long_int

PORTS in <- * plain AT north END

out -> plain AT south END

side <>* tangle AT east west END

DISPLAY ICON("icons/fetch.icon") AT 1 0

SUBGRAPH ? ELLIPSE(74 74 thin double) : AT 0 0

LINKED.SGTYPE rtlgraph

END

The attribute section denoted by ATTRIB, defines the parameters for the ob¬

ject component fetch. The section PORT identifies which sides of the fetch icon

can be connected to co-existing object components and each connection's associ¬
ated direction. For example, a component object can be connected to the fetch
icon's north side, and the connection is directed toward the fetch icon. The DIS¬
PLAY identifies the icon that will represent the fetch object component. LINKED
SGTYPE denotes that the fetch object component has an associated subgraph to

describe its behaviour at the register transfer level of abstraction.

HASE also uses GDL to describe the link classes that connect object compon¬
ents. An example of a link class specified in GDL is given below:

Control link- for synchronisation

Chapter 4. Design and Implementation 82

LINKCLASS control

STYLE dash double.arrov

PORTS out <> * control END

in <> * control END

ATTRIB purpose: <sync ack trans enable>

REFUSE processor * -> processor *

END

LINKCLASS is the name of the link, i.e. control. The STYLE attribute defines

the appearance of the link. PORTS defines the connections of the link class, for

example, in-going and out-going control links. ATTRIB defines the purpose of

the link, for example, whether or not the link transfers data, instruction words or

signals that synchronise architecture components. REFUSE defines illegal links
between object components. In this simple example, the control link cannot con¬

nect a processor component object directly to another processor component object.

Linking the Submodel Hierarchy

An entity's submodel is specified in a GDL file. Each submodel defines a list of
nodes that will appear in the subgraph icon menu and a list of Link type options.
Each subgraph defines an abstraction level and a set of concrete entities that can
be instantiated. As shown in Figure 4-5 the GDL Hierarchy is similar to Flynn's
resource tree.

A submodel Si containing a set of interacting entity members E, which de¬
scribes a component's behaviour at abstraction level /,-, can send a message to a

submodel S2 at abstraction level U+i • An entity En contained within submodel
S2 sends a message to another entity Em belonging to submodel Si, by sending
its message via an Exit object. Em will receive a message from E„ via an Entry
object. Entry and exit objects are subclasses of the Component class and are re¬

sponsible for translating data exchanged between two different abstraction levels;

Chapter 4. Design and Implementation 83

R#gist»f Transfer level NODES and LINKS

Figure 4-5: GDL Submodels Implementing Resources

for example, between decimal notation described at the ISP layer and low level

binary notation described at the RTL.

4.2.2 Architecture Editor

The Architecture Editor is a front-end prototyped in GSS to provide a means

to insert, link, parameterise and instantiate software components from HASE's

entity hierarchy. The architecture is also described by a GDL graph which is

parsed to generate the datafiles and simulation source code. This section explains
the functionality of GSS, front-end implementation, graph management and the
mechanism developed to generate simulation code.

Functionality of GSS

GSS was developed to support the IMSE (Integrated Modelling Support Environ¬
ment) project which was a collaborative research project supported by the CEC
as ESPRIT project no. 2143. It was carried out by a number of organisations

including the University of Edinburgh and STC Technology Ltd.

Chapter 4. Design and Implementation 84

GSS was appropriate for prototyping HASE because it provided a consistent

means of representing, inspecting and modifying architecture parameters. GSS

structured architecture data through hierarchical levels of "graphs" and "data".

A GSS graph is an undirected, directed or a cyclic attributed graph consisting of

hierarchically related sets of node and link collections. The data that describes the

nodes and links of a GSS graph representing an architecture can involve complex,

possibly nested, aggregations of data.

GSS can be thought of as a collection of models (activity diagrams, internal
architectures and networks) which may be subject to various operations (edit¬

ing, code generation, etc.). The GSS strategy lies in the recognition that all the

proposed modelling paradigms use graphs (i.e. a collection of nodes and links) to
represent the structure of its model. The graphs are attributed, that is, the objects
in them have associated data, and so there is a requirement for a uniform way of

defining and handling complex data types. To implement these requirements, GSS

provides:

• A library of functions for handling graphs and data, known as the GSS
library. GSS function library components fall into two categories: those
that use the graphical facilities of the workstation (i.e. Sunwindows in the
prototype) to provide an interactive tool, and those that do not require
graphics.

• A Graphical Description Language, defining the types of graphs and data
for specifying an architecture component.

• A file format for storing instances of graph data types.

Managing Architecture Graphs

When invoked, the Graph Manager reads a list of subgraphs from the command
line and calls gssjnake^graph.window to initialise the Suntool's window envir-

Chapter 4. Design and Implementation 85

onment. GSS functions are called to add options to the Architecture Editor's

front-end menu bars. For example the "Generate DEMOS" menu option was in¬

cluded by calling gss.addjmenu and passing the graph code generation function

graph-analyser as one of its parameters. It will save the Graphs and Data in the
OMS (Object Management System).

The OMS is the Graph Manager program responsible for mapping data to

nodes and links defined in GDL. When the user selects a makelink, load, set-attributes

or an icon.rotate, for example, the Graph Manager program is responsible for ex¬

ecuting the appropriate callback function. This may involve loading and storing

files, parsing graphs, or executing low level Suntool window functions.

Traversing an Architecture Graph

The Graph Manager saves an undirected graph G(V,E), where V is the number
of vertices, and E is defined as the number of edges. A simple scoreboard is
maintained in the form of a linked list to update the number of instances of each

type of Node and Link class visited. The graph-analyser visits each node or link
class exactly once. The graph-analyser calls gss-forall-instances recursively for
each class defined in the top level submodel, for example, the PMS submodel,
so that eventually all nodes are visited in each submodel. The gss-get-values
function is called to return the values of the attributes set for the simulation.

For example, one of the attributes identifies whether or not a visited node has a

submodel. If a submodel exists the function gss-getsubgraph is called, to extract
the attributes and node link identifiers for each associated entities. The entities'

attributes are written to a datafile file and read later during the simulation and
animation phases.

For the purpose of setting synchronisation links, gss-foralljinked is called
to visit all outward bound links. A function is called on the destination node to

Chapter 4. Design and Implementation 86

return the essential link information that is stored in the Link scoreboard and

later written to the simulation code file.

Simulation Code Generation

The graph traversal phase generates simulation source files to declare entity class

names, instance numbers, link types, link purposes, and parameter identifiers. The

graph traversal phase writes to declaration source files that, for example, initialise
the source and destination link arrays referred to by producer and consumer pro¬

cedures during an entity cooperation. It is responsible for producing the source

code to schedule entities chosen from the abstraction level hierarchy. Simulation

source code is a concatenation of 5 main source files:

• Entity class names, instance numbers, Link Types, Link purposes, parameter
names.

• Global variable declarations, including source and destination arrays, that
define entity-entity collaborations.

• Entity class declarations that are included in the submodels selected for a

simulation experiment.

• Main program assignments, including WAITQ initialisation, Link identifier
assignments for source and destination entities; later referenced by producer
and consumer procedures inherited from the Component superclass.

• Motif code file to set-up diagrams of the architecture, corresponding to the
abstraction levels that have been included for each component object.

Figure 4-6, shows how the parser process maintains a log of the nodes and
links at each abstraction level. In this example the PMS level has three classes
associated with it. The PMS data structure maintains a list of objects instantiated

Chapter 4. Design and Implementation 87

for each class. For example, Class 3 is a cache class modelled at the PMS level,

and two instances of this class are instantiated into the simulation. Each entry in

this list contains connection details, for example, its in-going and out-going links
to other objects in the simulation. Figure 4-6 also shows a list of the Link objects

that must be instantiated into the simulation. For each link object entry there is a

pair of instance identifiers to for referencing the source and destination component

objects. The parser program traverses this data structure for each abstraction

level, to define the DEMOS synchronisation links, for example, WAITQs and

CONDQs, between the instantiated component objects.

^ Class 3 Details:

Link! Unk2 Link 3

Figure 4-6: Recording Node and Link Connections

The algorithm is as follows: Node N is visited, the object component's at¬

tribute values are retrieved, and the node's class details are updated. There are

two arrays that contain the unique WAITQ linkid for each entity-entity cooper¬

ation, srcJinkJd[linkclass,linkid\ and destJinkJd[linkclass, linkid]. When an

Chapter 4. Design and Implementation 88

outward bound link is found at node N, its type and purpose have to be re¬

gistered. A string is written to the main file of the simulation source code that

assigns the srcJinkJd array to a unique Link class instance number. A string is

similarly created for the dest-linkJd assignment with the same linkid. The in¬

dices of the srcJink-id and destJink-id arrays reference the unique CONDQ and

WAITQ queues for communication between pairs of instantiated entities during
the lifecycleof a simulation's execution.

The declarations for entities and classes are read from file path names and

concatenated into a Class/ Entity File. The Class/Entity file forms the skeleton
of the simulation's source file.

4.3 Simulation Phase -

The previous section detailed the design and implementation of the process to

generate simulation code from a graph of connected and parameterised nodes.
This section identifies the input to an architecture simulation in terms of the
external and internal architecture parameters, and the output of a simulation in
terms of component state data and architecture performance. It also explains how

component objects are initialised with input parameters and identifies the main
constraints of the HASE prototype.

4.3.1 Simulation Input Parameters

This section describes the three main types of data required to initialise a HASE
simulation:

• External A rchitecture parameters

• Internal Architecture parameters

Chapter 4. Design and Implementation 89

• Simulation Setup parameters

External Architecture

The term External Architecture refers to the components of a computer that are
visible to its user, i.e. its instruction set. In HASE, the decode object is initialised

by reading a decode table which represents the instruction set. The decode table
defines the operation codes and the operand methods that are supported by the
simulated architecture. An example of an instruction set opcode table is given
in Table 4-1. The table shows a subset of the 88100's external architecture. For

each instruction type, e.g. data, arithmetic and control, there is an assembly
instruction with a corresponding opcode, addressing mode and abstraction level.
Notice that for a bend instruction, for example, the abstraction level is set to ISP,
whereas for an addui instruction, the abstraction level is set to RTL.

*

The decode object contains a state machine object. This state machine object
is an ordered set of state transition objects. The decode object creates this state

machine by reading each row of the instruction set table and creating an instance
of a state transition object.

The decode object uses a State Machine object to identify the function unit
to which an opcode and its set of operands is to be sent; i.e. an integer, data,
or floating point unit. Each function unit object is instantiated to describe its

operation at one of three RTL, ISP or PMS abstraction levels. The decode object's
state machine is sent a message which contains the most recently fetched opcode
as its parameter. On receiving this message the state machine searches for a match

amongst its ordered set of state transtions. The matching state transition object
will identify the function unit and the abstraction level responsible for executing
the opcode within it. The decode object sends the message to an instance of
the function unit responsible for executing the operation at the specified level of
abstraction.

Chapter 4. Design and Implementation go

Table 4—1: External Parameters: Setting Opcode Abstraction Level

Code Class Assembler Opcode Addressing Mode Abstraction Level

Arithmetic addu 00011 triadic ISP

addui 00012 immed RTL

subu 00013 triadic ISP

mul 00009 immed ISP

Control bra 00007 immed ISP

bend 00009 immed ISP

Data Idi 00001 immed ISP

sti 00008 immed ISP

The behaviour of the decode object is logically dependent on a processor's
internal architecture. For example, the decode must be updated to accommodate

any changes to the behaviour of a particular function unit; otherwise its decoding
and dispatching messages will not be recognised. In HASE, a Decode class is

specialised using the object oriented principle of inheritance. The class name for
a subclass of class Decode will reflect the version number of the processor that
is being designed. For example, there are two separate decode subclasses for the
MC88100 and MC88110 microprocessors.

In the HASE prototype a decode subclass can be represented by an activity

diagram. An icon menu provides a selection of different types of instructions that
can be simulated by an architecture model. For each instruction type, there is a

separate menu to select different assembly instructions. Each assembly instruction
can be selected to simulate at a chosen abstraction level. The array of selected
and parameterised icons is converted to a table, like the example table shown in
Table 4-1.

Internal Architecture Parameters

The internal architecture of a processor refers to the hardware components that
are invisible to the user; for example, the associativity of its cache, the pipelining

Chapter 4. Design and Implementation 91

of its function units and the arbitration mechanisms which control the return of

results to an architecture's register file.

In HASE the parameters for each internal architecture component are defined

during the architecture edit phase. After an architecture edit session, the para¬

meters for each object component are stored in a datafile. At the start of the sim¬

ulation phase, the internal architecture object components are instantiated with

the parameters defined in this datafile. It is the responsibility of each component

object to select its own parameters from the datafile.

Simulation Setup Parameters

Simulation setup parameters refer to global data the user enters to control the
life cycle of the simulation. For example, the user may wish to specify the total
duration of the simulation in terms of the number of simulated clock cycles. The
user can parameterise the performance monitor objects, for example, to define a

time interval for measuring utilisation and throughput, or setting up a monitor

object to count the number of instruction stalls that match a defined pattern of
behaviour.

Furthermore, a simulation run may involve executing a test program more

than once. The user can specify the number of simulation runs required. The
user can specify which internal architecture paramaters he/she wishes to change
on each new run of the simulation. For example, a user can specify 10 simulation
runs executing the same test program, but can specify that after each successful
execution, a new stage is added to the floating point unit.

4.3.2 Simulation Execution

This section describes the principal types of output generated by a HASE simu¬
lation. These are:

Chapter 4. Design and Implementation 92

• Trace Events: an event trace reporting all simulation events up to and in¬

cluding the current simulation time

• Object Component State Data: the state of a component object's attributes

for the current simulated clock cycle

• Performance Statistics: the performance statistics, specifically: utilisation
and throughput of an object component.

All component objects involved in a simulation provide services to report their
own state during a simulation and, when requested, return statistics to objects
that are dedicated to monitoring the performance of the processor. An object

component inherits these services from the abstract superclass Component. The
next three subheadings detail each type of simulation output.

The Event Trace

A Standard DEMOS output trace can be toggled on or off at defined break points
in the simulation source.

Trace information includes:

• Initialisation of entities; i.e. the simulated start time of an instantiated
entity.

• Entity cooperations; including how often producer/consumer entity pairs
are inserted into DEMOS CONDQ and WAITQ queues and the time (in
simulation units) that a slave entity waits for its master to consume its data
and resume execution.

• Blocking entities; how long an entity waits for the release of a resource.

• The termination time of an entity.

Chapter 4. Design and Implementation 93

This data is parsed on a "line by line" basis by the Trace Animator. The

details of the Trace Animator are described in Section 4.4.2.

Object Component State Data

The class Component provides a service to output state information during the
course of a simulation to a state display file. This method is inherited by all
internal architecture component objects instantiated in a simulation. The object

component time stamps its state before being written to an output file. The
HASE prototype reads the state display files for the purpose of animating an

object component's behaviour. Further details of the Architecture Animator are
described in Section 4.4.3.

Performance Statistics

The services that return statistics about the performance of all the object compon¬
ents in the simulation are provided by the superclass Component. These services
are inherited by all component subclasses and can be overwritten if the user wishes
to redefine the service, e.g. to examine more specialised activity about the com¬

ponent's behaviour.

The monitor objects are responsible for sending messages to the object com¬
ponents to ask for statistics during a simulation. When a monitor object receives
a reply it timestamps the statistics returned by the object component and writes
it to an output file.

There are two main types of monitor object defined in the prototype version
of HASE:

• Component Probes: these measure architecture performance

• Simulation Probes: these monitor the efficacy of the simulation.

Chapter 4. Design and Implementation 94

A Component Probe monitors the performance of selected component objects
instantiated in an architecture simulation. Typically the types of services they

provide are to:

• count of the number of stalls that occur in a pipeline

• calculate the total utilisation of a function unit

• count the number of occupied stages in a pipeline

• calculate the total number of control, data and structural hazards during
the simulated execution of a test program.

A Simulation Probe monitors the efficiency of the simulation program. Spe¬

cifically, a simulation probe provide services to:

• calculate the average number of clock cycles simulated per second

• report the CPU utilisation during simulation, identifying the percentage of
idle CPU time

• report on the memory usage during a simulation run.

4.4 Evaluation Phase

This section outlines the communication pattern between HASE's front-end com¬

ponents: the Trace Animator, the Architecture Animator and the Graph Dis¬

played It explains how each component is designed to manage the data collected
during the architecture editing and simulation phase, and when requested, display
it to the HASE user.

Chapter 4. Design and implementation 95

4.4.1 Overview

The HASE front-end is designed and implemented to visualise the behaviour of

a component or collection of components during and after an architecture simu¬

lation experiment. As described in Chapter 3 the HASE front-end is composed

of five main tools: an Object Editor, an Architecture Editor, a Trace Animator,

an Architecture Animator and a Graph Displayer. Although each component is

prototyped here as a separate process, ultimately HASE will encapsulate all five

processes as one seamless application. The purpose of this implementation is
to demonstrate the concepts for evaluating the performance and visualising the
behaviour of selected architecture components during a simulation experiment.

Figure 4-7 illustrates the framework that controls the front-end processes. The
HASE animator process is the central process to the front-end. It may be executed

during or after an architecture simulation experiment. The simulator's output files
can be piped directly to the front-end during a simulation run or read separately
after the simulation has successfully completed.

The HASE Animator process is responsible for reading and displaying the
contents of the test program and spawning the Trace and Architecture Animator

processes. The Trace Animator is responsible for fetching and displaying the Event
Trace file generated during the simulation phase. The Architecture Animator is

responsible for retrieving and displaying the architecture configuration file that

specify the components the user has selected for animation. The Architecture
Animator is also responsible for retrieving and displaying state, parameter and

component code files. When the user wishes to animate a simulated clock cycle
the Architecture animator is responsible for broadcasting the updated clock cycle
and updated simulation time to the Trace Animator. The Graph Displayer is

responsible for retrieving and displaying the graph data files when requested by
the HASE user.

Chapter 4. Design and Implementation

Figure 4-7: Animator Structure

Chapter 4. Design and Implementation 97

The next three sections detail the design of the Trace Animator, the Architec¬

ture Animator and the Graph Displayer.

4.4.2 Trace Animator

The purpose of the Trace Animator is to identify the interactions of DEMOS entit¬
ies competing for resources, during a simulation. The Trace Animator is designed
to give the HASE user an indication of how efficiently the object model is behav¬
ing during a simulation run. For example, describing a 88110 microprocessor's

floating point unit pipeline at the RTL level will require a considerable number of
entities. The management of the interaction between these pipeline and control
entities will slow the performance of the simulation. If the user does not require
the detail given at RTL, the user can model the entire floating point pipeline as

one entity. The model will therefore not waste valuable CPU time to produce
redundant performance information.

The Trace Animator is spawned by the HASE Animator process. It receives,
as an argument, an Event Trace File, produced by a successfully completed simu¬
lation. The Trace Animator provides functions to load an event trace, play, rewind

step forward and step backwards through an event trace. The Trace Animator calls
a parser function to read a single line of the output DEMOS trace file. It then
calls functions to translate the word description of the trace file into a moving

picture of boxes and lines activated by SRGP(Simple Raster Graphics Program)
routines.

4.4.3 Architecture Animation

The Architecture Animator is designed to capture the behaviour of an architec¬
ture's components during a simulation experiment. The Architecture Animator is
spawned by the HASE animator process. The Architeure Animator is supported

Chapter 4. Design and Implementation 98

by the Motif environment. Motif is a superset of Athena widgets, also written in

C. It is possible to call Xt functions inside a Motif application program.

Motif Support Environment

The main reason for implementing the Architecture animator in Motif is because
of its high level functions for supporting icon widgets. For example, it provides

a bulletinboardwidget which allows an icon to be positioned anywhere on a

widget, just by simply specifying a set of x — y coordinates. Motif also provides a

simple interface for managing scrollbars and other high level interface facilities.

Functions of the Architecture Aniitiator

Initialising the Architecture Animator process involves calling a function to read
the architecture configuration files saved during the Architecture Edit phase. The
configuration file contains a list of component objects and their subcomponents to
be included in the animation. The Architecture Animator iconises the component

objects and displays them to the HASE user.

The process of iconising a component object involves referring a set of callback
function, that are presented to the user in the form of a pull down menu. The
prototype version demonstrated the use of five main callback functions specified
for each class of object component: animate, display state, display parameters,

display code, zoom, and quit. Each instance of a component object has its own

version of this set of callback fuctions. For example, zoom will display a different
set of lower level objects in a new popup shell, depending on the component icon
that has been selected. The section below describes the main callback functions

in further detail.

Chapter 4. Design and Implementation 99

Animate Callback Function

The Animate Callback function is executed when the Animate item on an icon's

pulldown menu is selected. This event triggers an increment of the current simu¬
lated clock cycle number and simulation time. The new clock state is updated for

both the abstraction levels above and below the abstraction level of the selected

component. The Animate Callback function is designed to update the current

state of all listed object components the HASE user is viewing. Furthermore, a

message, containing the address of the currently decoded instruction, the clock

cycle executed and simulation time, is sent to the HASE Animator process. The
HASE Animator broadcastes this message to its Event Trace Animator process if
it is running. Based on the value of the current simulation time, the Event Trace
Animator updates itself.

In addition to updating component object displays, the Animate Callback
function requests the Graph Displayer process to refresh itself.

Zoom Callback Function

The Zoom Callback function is executed when a mouse down event is received on

the Zoom item of an object component pulldown menu. The function refers to a

configuration file produced during the Edit Architecture phase, to identify the list
of object components that must be iconised. The configuration file is indexed via
the object component's class name and instance identifier.

Display Callback Function

The Display Callback function responds to a mouse down event by retrieving the
state file for the selected iconised component, produced during the Simulation
Phase. If the simulation and animation processes are running concurrently, then

Chapter 4. Design and Implementation

the data is piped directly to the component's display window, every simulated

clock cycle.

Parameter and Code Callback Functions

The Parameter Callback function retrieves the parameter file for the iconised ob¬

ject component selected. This file is produced by the Architecture Edit phase.

Similarly, a callback function retrieves the file containing the class description for

the iconised object component.

4.4.4 Graph Displayer

The Graph Displayer process is provided by the X Window application gnuplot,
This application is spawned by the Architecture Animator process. Once the

application is running the Animate Callback function will ensure that the gnuplot

display is refreshed to cover the next set of simulated clock cycles. The HASE
user can invoke further callback functions from the user interface to zoom into a

gnuplot to investigate, for example, an unusual pattern ocurring on the pipeline
utilisation graph.

Chapter 5

Results and Discussion

Overview

The purpose of this chapter is to demonstrate the use of the HASE prototype to

experiment with internal and external architectures. The technical background
for the architecture experiments presented here is explained in Chapters 1 and 2.
The description of each architecture experiment includes:

• A brief description, to explain the purpose of the experiment.

• A flow of events, to describe how to carry out the experiment.

Each architecture experiment is illustrated by one or more scenarios. A scen¬

ario consists of:

• A brief explanation of the specific aspects of an architecture that require

investigation.

• a step by step description of the scenario, supported by references to screen

snapshots taken from the HASE prototype.

• a comment on the results of the experiment and a critical assessment on the

usability of the HASE prototype.

101

Chapter 5. Results and Discussion 102

This chapter demonstrates the use of HASE through the four different types
of architecture experiment listed below:

• Section 5.1, Experiment 1: Investigating Internal Architecture - enhancing
the performance of a microprocessors's internal architecture

• Section 5.2, Experiment 2: Investigating External Architecture - enhancing
the performance of a microprocessor's external architecture

• Section 5.3, Experiment 3: Investigating Hardware/Software Interaction -

optimising the usage of a microprocessor's internal and external architecture

• Section 5.4, Experiment 4'- Investigating Network Traffic - determining the

relationship between a processor's architecture and its external network
traffic.

5.1 Investigating Internal Architecture

This section describes how to use HASE to investigate the impact of adding a new

component to an internal architecture.

5.1.1 Brief Description

The investigation begins when an architect wishes to integrate a new component
into an existing internal architecture. The architect uses HASE to identify whether
the new component will improve the performance of the microprocessor's internal
architecture.

If the architect observes a significant performance improvement, the expected
cost of including this new component to the architecture, will be determined.

Chapter 5. Results and Discussion 103

If there is no significant performance improvement, the architect will save the
latest version of the new component into the HASE component library for future
reference.

5.1.2 Flow of Events

To investigate the effect of adding a new component to an existing internal archi¬

tecture, the architect performs the following steps:

1. The Object Editor is used to create an object to model the behaviour of
the new component. This involves identifying the attributes of the new

component, the services the new component supports and the protocols for

interacting with components belonging to the existing architecture.

2. The Architecture Editor is used to insert the new object into the existing

architecture. This involves parameterising the new component and linking
it to its neighbouring components.

3. The Simulation and Architecture Ijrobes are used to measure the performance
of the enhanced architecture.

4. The Architecture Editor is used to link and compile the generated simulation
code.

5. A set of test programs is prepared for the enhanced microprocessor. It is as¬

sumed that for this experiment, the modification to the internal architecture
does not effect the external architecture.

6. The simulation is run to collect trace and architecture events and perform¬

ance statistics.

7. The Graph Displayer is used to provide an overall view of the new compon¬

ent's performance, in terms of utilisation and throughput.

Chapter 5. Results and Discussion 104

8. The Architecture Animator is used to observe the new component's state

during the simulated execution of a test program. Simulation runs are re¬

peated for the remaining set of test programs.

9. The architect modifies the parameters of the new component and reruns the
set of test programs.

10. The set of parameters for the new component are optimised until the per¬

formance improvement of the new component is maximised, or until the
architect decides the new component will not add value to the existing in¬
ternal architecture.

5.1.3 Add a History Buffer to an Existing Architecture

The purpose of this section is to demonstrate a specific example of the type of
experiment described above.

Scenario Description

The scenario begins when the architect observes that there is a data dependency
between the fetch stage and the decode stage. The fetch stage is waiting for
the decode stage to accept the next word of data. The architect animates the
execution of a convolution test program and notices that instruction pre-fetching
cannot continue until the target address of the previously fetched instruction is
calculated by the execution unit.

The architect decides to insert an Instruction History Buffer between the pre¬
fetch stage and the execution unit, which can be filled while the execution unit
calculates a branch instruction's target address.

The architect searches for an Instruction History Buffer in the HASE com¬

ponent library, but does not find one. The architect defines the attributes and

Chapter 5. Results and Discussion 105

services for a history buffer and adds it to the component library. The architect

incorporates the history buffer into the existing internal architecture and attaches
a probe to the fetch and execute pipelines to measure the architecture's simulated
instruction throughput.

Step Description

This section describes the steps taken to add a history buffer using the HASE

prototype.

1. View the Graph Displayer and observe a low throughput associated with the
fetch and execution unit. Figure 5-1 shows the average number of instruc¬
tions processed per clock cycle for the Decode, Integer, Floating Point and
Data unit pipelines. At the beginning of the simulation the Decode pipeline

peaks at approximately 2 instructions per cycle, and then steadly decreases
to an average of 0.75 instructions per cycle. This is because the Decode

pipeline is blocked waiting for the execution unit pipline to resolve data
dependencies between both arithmetic and control transfer instructions.

(Av*raga Initruction* par Clock)

2.

Simulation Tim* (simulatad dock periods)

Figure 5—1: Graph Displayer: Poor Throughput of Execution Unit

2. View the Architecture Animator over the period immediately after the De¬
code pipeline peaks at 2 instructions per cycle. Figure 5-2 shows a typical
display of the Architecture Animator's Assembly Code window (bottom right

Chapter 5. Results and Discussion 106

window) which helps to identify the instructions that are blocked due to data
and control dependencies.

Figure 5-2: Architecture Animator: Identifying Control Transfer Latency

3. Access the HASE Object Repository for a History Buffer component that
models its behaviour at the ISP level of abstraction.

4. If a History Buffer does not already exist in the Object Repository, define a

set of attributes and services that describe its component behaviour. Define
the History Buffer class so that an instruction and its state data remains in
the history buffer, until all previously issued instructions have successfully
completed. If an issued instruction fails to execute; for example, due to a

floating point exception, the History Buffer class will flush all of its out-of-
order instructions and associated state data. Similarly, the History Buffer
class will flush all pre-fetched instructions after a control transfer instruction,
if the branch is not taken.

Chapter 5. Results and Discussion 107

5. An Icon is created to represent the History Buffer component. Link Refusals
are defined for the history buffer icon in GDL, as explained in Chapter 4.

Figure 5-3 shows an example of the Object Editor's typical display layout
for inserting the History Buffer component into the Decode component's

activity diagram. In addition, Monitor Probes are attached to measure the
utilisation and throughput of the decode, fetch and execution unit pipelines.

Figure 5-3: Object Editor: Creating a History Buffer

6. The existing architecture is edited at the ISP level of abstraction using the
Architecture Editor. Figure 5-4 shows the History Buffer component being
linked between the Decode Stage's instruction pipeline and the instruction's
data bus. The history buffer length is initially set to 2 and each element in
the buffer is initialised to contain two instructions and associated state data.

7. A set of test programs, including a dot product and a convolution program

are selected to test the enhanced architecture. (An example of the simulated

Chapter 5. Results and Discussion 108

CiI -...i.,..I'-i.u.i-anir.ri u«.m .hI/.W I I kMMI 111W 111I I I If" "" 1 1! MI |teuy)u>: HNW*i«||nm»«liminmi^,|»

Figure 5-4: Architecture Editor: Linking a History Buffer

processor's instruction set and the convolution test program used for this
demonstration are given in Appendix A and Appendix B respectively.)

8. The simulation is executed.

9. The throughput of the fetch and execution unit pipelines is compared against
the old performance measurements of the architecture. Figure 5-5 shows
that during the execution of the convolution test program, the average

throughput of the fetch and execution unit pipelines improved by approx¬

imately 10%.

10. The performance graph for throughput shows that when the branch is wrongly
predicted, for example the first time a control transfer instruction is en¬

countered, there is a delay while the flushed history buffer is refilled. (Fig¬
ure 5-6) shows the Decode unit pipeline filling its history buffer between

Chapter 5. Results and Discussion 109

(Average Instructions per Clock)

Figure 5-5: Graph Displayer: Improved Function Unit Throughput

clock cycles 10 and 20. After clock cycle 20 the execution pipeline contains
a fresh set of issued instructions.

Function Unit Parallelism

Figure 5-6: Graph Displayer: Flushing History Buffer

11. From simulation and animation results the history buffer appears to improve
the average throughput of the execution unit pipeline.

Chapter 5. Results and Discussion 110

Comments

In the Step Description section above a reference is made to searching for a History
Buffer component in an Object Library. The HASE prototype does not provide
access to a component object repository. Retrieving a reusable object component

requires the manual task of using standard UNIX grep functions. An important

requirement for the real version of HASE is to support an object repository to

contain the latest tested versions of each architecture component and its associ¬
ated documentation. The architect will browse through the object repository for
components that resemble the desired object component behaviour. Once a new

object is designed, implemented, tested and documented, the architect inserts the
new component into the object repository.

In this architecture experiment, the History Buffer class was subclassed from
the Component superclass. The class specification given below describes the His¬
tory Buffer's main attributes and services:

ClassName: History Buffer

SuperClassName: Component
Attributes: The attributes provided by the history buffer include:

• Number of instructions.

• Delay to return the next instruction.

Services: The services provided by the history buffer include:

• Clear contents of History Buffer.

• Insert a pre-fetched instruction.

• Dispatch an instruction to function unit.

• Save the result of a completed (out of order) instruction.

• Flush all instruction and their associated state information that

are not committed for completion.

Chapter 5. Results and Discussion 111

The Object Editor performed well as a documenting tool. The activity dia¬

grams were useful for representing the History Buffer's behaviour graphically and

provided a means for conveniently loading and storing an object component.

However, the GDL language, used to specify the History Buffer's icon symbol,

parameters and linking characteristics, is not conveniently integrated into the Ob¬

ject Editor application.

The Code generator provided by the Object Editor was poor at linking instance
variables into the component object's source code. The turnaround time for cre¬

ating a new tested History Buffer object took approximately 8 hours, 10% of this
time was spent recompiling the code generated by the Object Editor.

On the HASE prototype, the Object and Architecture Editors are linked to
the Trace and Architecture Animator applications via standard UNIX pipes and
file descriptors. This means that after editing an architecture, the Architecture
Animator needs to be updated with the new layout. The real version of HASE
will be designed to integrate both editing and animation.

When animation was turned off the simulation ran at an average of 34 sim¬
ulated clock cycles per second. This figure was calculated running the DEMOS
HASE prototype on a single SUN 3/80 workstation. Poor simulation performance
will become more apparent if the HASE prototype is used to simulate large ap¬

plication specific test programs, instead of small handcrafted test programs; like
the convolution program used for this simulation experiment.

Chapter 5. Results and Discussion 112

5.2 Investigating External Architecture

This section describes using HASE to investigate how the density of an instruction
set effects the performance of a processor's architecture.

5.2.1 Brief Description

This experiment begins when an architect wishes to add a new operation or ad¬

dressing mode to a microprocessor's instruction set.

5.2.2 Flow of Events

To perform this type of architecture experiment the following procedure is carried
out:

1. The Object Editor is used to edit the decode object and add a new entry to
its opcode table.

2. The Architector Editor is used to parameterise the new opcode to a PMS,
ISP or RTL abstraction level.

3. The Architecture Editor is used to link the decode object to the execution
and memory units.

4. A test program is prepared to test the enhanced external architecture. It is
assumed in this experiment that the architect runs the simulation on a small
set of handcrafted set of test programs.

5. The A rchitecture Editor is used to add monitor probes to appropriate memory,
execution and bus objects.

Chapter 5. Results and Discussion 113

6. A framework of the simulation code is generated using the Architecture Ed¬
itor. The source code is compiled, linked and executed against a set of test

programs. During execution, the event traces, state data and performance
metrics for the architecture simulation are collected.

7. The performance of the enhanced architecture, in terms of function unit

throughput and utilisation is viewed using the Graph Displayer.

8. The states of the execution pipeline are diplayed using the Architecture
Animator to identify potential bus contention, execution and memory unit
stalls.

9. The architect decides whether or not the instruction set enhancement adds

value to the performance of the architecture.

5.2.3 Adding a New Addressing Mode to an Operation

This scenario uses HASE to investigate how adding a new addressing mode to an

operation, impacts a microprocessor's performance.

Scenario Description

The architect wishes to increase the code density of an external architecture by
adding a register-memory addressing mode to an ADD operation. For example,
instead of writing:

LOAD Rl, #xxxx

ADD R2, R2, Rl (or stores)

The code becomes:

ADD R2, #xxxx

Chapter 5. Results and Discussion 114

Where xxxx is some defined memory address. This new addressing mode

gains the advantage of reducing the number of instructions required to write a

program and therefore reducing the number of possible instruction cache misses.
Due to the extra access time required to retrieve data from memory, the architect
assumes that this enhanced addressing mode will cause the clock cycle to increase

by approximately 10%.

The architect wishes to test the modified architecture on a set of test programs

to investigate how it effects processor / memory traffic and the average throughput
of the execution pipeline.

The architect observes that if there is a proportion of load instructions in the
application of less than 11%, the extra latency caused by the ADD address mode
decreases the throughput of the execution pipeline.

Step Description

This section describes the steps taken in HASE to add a new type of addressing
mode to an existing external architecture.

1. An initial search is carried out to check if the required addressing mode is

defined for the ADD instruction.

2. The instruction set opcode table is updated with the new ADD instruction s

addressing mode. This table is later used by the decode object to generate
a state machine for the external architecture.

3. The Object Editor is used to select and modify the decode object. This
involves adding an additional service to the decode object. When an ADD
operation with a memory reference is retrieved from the fetch stage, the
decode object sends a message to the data pipeline object to fetch the ADD
instruction's operand and forwards it to the integer unit for execution.

Chapter 5. Results and Discussion 115

4. The test programs are rewritten to include the ADD instruction with its

enhanced addressing mode.

5. The new version of the decode object is inserted into the existing architecture

using the Architecture Editor.

6. The Decode object is parameterised to execute ADD instructions at the ISP
level of abstraction.

7. The clock period delay is increased by 0.1 (i.e. 10% of the original clock

period), to simulate the extra latency caused by the new instruction. This

parameter is set using the Architecture Editor.

8. The Monitor Probes are set to return statistics on the throughput and util¬
isation of the data and address bus between the cache object and the fetch

stage object. State information is collected for the Integer and Execution
unit pipelines. In particular, the architect connects a probe to the decode
stage to count the simulated execution of Load and Store instructions, and
calculate the total percentage of load operations the test program executed.

9. The Graph Displayer is viewed to determine the average CPI for the Exe¬
cution Unit pipeline for the simulated test program with and without the
ADD instruction's enhanced addressing mode. (Figure 5-7 shows there is a

4.5% performance improvement when the proportion of load instructions in
the test program that require ADDing is 20%.

10. The Graph Displayer indicates that there are fewer CPI stalls generated dur¬

ing the simulation run for the enhanced instruction set. This is illustrated

in (Figure 5-8), which shows the performance of the enhanced external ar¬
chitecture as a continuous line.

This experiment ran the architecture simulation against test programs with a

33% mix of Load/Store instructions. The introduction of the ADD memory

Chapter 5. Results and Discussion 116

(Avsrags % Performance Improvement)

0 200 400 600 800 1000 1200
Simulation Time (Simulated Clocka)

Figure 5-7: Graph Displayer: Performance Increase Against Percentage of Load

Operations

addressing mode reduced the number of Load instructions required by 10%.
A higher percentage of the test program was stored in the simulated instruc¬
tion cache and therefore the the total number of instruction cache misses,

(shown as spikes on CPI graph) decreased.
(Average Cycfea per Instruction)

Figure 5-8: Graph Displayer: CPI Trace for Non-Addressing and Addressing
ADD operation

Comments

In the simulation experiment, the set of test programs were written specifically
to test a new addressing mode. Currently, simulation experiments that modify
the instruction set of an external architecture restrict the HASE prototype to
running small sequences of instructions. Running a large commercial benchmark

Chapter 5. Results and Discussion 117

on HASE requires a flexible assembler to translate the high level grammar of the

application into the new version of the assembly language program, required for
the each external architecture experiment.

The external architecture experiment described here demonstrates the advant¬

age of HASE's object oriented design. Specifically, HASE defines an architecture's
instruction set as a collection of instruction objects. Each instruction object is a

subclass of a particular class of instruction; for example control, load/store and
arithmetic instructions. The ADD instruction described here was defined as a

subclass of the arithmetic instruction. To add new behaviour to the ADD class

instruction, a subclass is created which overrides the inherited behaviour of its
decode method. Therefore, when the new ADD object receives the decode mes¬

sage from its Decode object, it performs the extra services required to handle the
operand's memory address and retrieve the ADD instruction's operands.

The following attributes and services were added to the subsclass of the ADD
instruction class:

SuperClassName: Addlnstruction
Classname: Add(WithMemoryAddress)
Attributes:

The instance variables added to the ADD instruction object are:

• Abstraction Level

• Effective address

• Opcode value.

Services: >

The services added to the ADD instruction object are:

• Calculate the effective memory address of the ADD instruction's
operand

Chapter 5. Results and Discussion

• Dispatch the operand address to the data unit object

• Dispatch the ADD opcode to the integer unit object.

118

5.3 OptimisingHardware/Software Interactions

This architecture experiment demonstrates how to use HASE to visualise the soft¬

ware/hardware interactions associated with a microprocessor architecture. Two
types of optimisation techiques are investigated: Delayed Branching and Register
Colouring.

5.3.1 Brief Description

The investigation begins when an architect wishes to determine how a specific
sequence of assembly code executes on an architecture. An optimisation technique
is examined to eliminate redundant code operations and maximise the processor's
use of its resources.

5.3.2 Flow of Events

To perform this case study, the following activities are carried out:

1. The architect uses the Arcitectvre Animator and Graph Displayer to identify
poor uses of %CPU time.

2. The test program is rewritten to incorporate the code optimisations.

3. If a performance improvement is observed; the architect extends the imple¬
mentation of the microprocessor's compiler to incorporate the code enhance¬
ment as a new optimisation technique.

Chapter 5. Results and Discussion 119

5.3.3 Delayed Branching Code Optimisation

This scenario demonstrates the use of HASE to investigate a Delayed Branch

optimisation technique.

Scenario Description

This scenario begins when a compiler writer views the performance of an archi¬
tecture executing a test program, it appears that control transfer instructions are

immediately followed by a drop in execution unit utilisation. The architecture
under test does not have an instruction buffer, so pre fetching cannot occur while
the execution unit is calculating the control transfer instruction's target address.
The compiler writer decides to insert an instruction that is independent of target
address immediately after the control transfer instruction.

The compiler writer rewrites the test program and views the performance of the
architecture. He writes an algorithm to seek and place independent instructions

immediately after all control transfers. If an independent instruction cannot be
found the compiler will insert a no-operation instruction.

Step Description

1. The Graph Displayer is viewed and a glitch in execution unit pipeline util¬
isation is observed at repeated intervals (Figure 5-9).

2. The Architecture Animator is used to display the state of the Decode stage
and it is observed that the issuing of a control transfer instruction immedi¬
ately precedes a glitch on the utilisation graph, shown in the Graph Displayer
(Figure 5-10), inside the window entitled Function Unit Parallelism.

3. An independent instruction is inserted immediately after the control transfer
instruction.

Chapter 5. Results and Discussion J20

(Average Cycles per Instruction)

8

6

4

2

1

0
0 200 400 600 800 1000 1200

Simulation Time (simulated clock periods)

Figure 5-9: Graph Displayer: Repeated Utilisation Glitches

4. The architect re-runs the execution on the optimised code and observes that
40% of the utilisation glitches are eliminated (Figure 5-11).

5. The compiler is incorporated to include the delayed branch optimisation.

5.3.4 Register Colouring Code Optimisation

Scenario Description

During the animated execution of a convolution test program the architect ob¬
serves that the program uses different registers for temporary variables when one
can suffice. The architect applies a simple register colouring algorithm to optimise
the use of the register file for temporary variables. For example, two temporary
variables can share the same register if they are declared outside the scope of each
other. Optimising the use of the register file during program execution reduces
the memory load and store operations and therefore reduces the average number
of cycles per second.

Chapter 5. Results and Discussion 121

Figure 5-10: Architecture Animator: Control Transfer Instruction

Step Description

1. The Architecture Animator is used to view the current state of the Register
File object. Figure 5-12 shows an example of using the assembler code

window, shown in the bottom right hand corner of the screen, in conjunction
with the register file.

2. Each step of the test program's execution is animated and the storage of
each program variable is traced to its register, to determine if the allocation
algorithm is making effective use of the processor's register file.

3. The simulation is rerun with an enhanced register allocation algorithm to

identify whether or not the number of data cache accesses decreases during
the animated execution of the test program.

Chapter 5. Results and Discussion 122

(Average Cycles per Instruction)

8

6

4

2

1

0

Figure 5—11: Graph Displayer: Executing Delayed Branch Instructions

Comments

During the hardware/software interaction experiments described above, the HASE
prototype's Architecture Animator provided useful features to:

• Select a specific simulation time on the Graph Displayer for a low period of
throughput and use the Architecture Animator's assember code window to
search for data dependencies in the instruction flow. For example, the first
scenario used the assembler window to identify control transfer instructions
creating spikes on the CPI graph, because of wrong branch predictions.

• Step through a sequence of instructions, and use the assembler code window
to trace the allocation of temporary variables to registers in the register file.

• Pan across object components and display their state information during the
animated execution of a test program. For example, in the second scenario
the internal state of the code cache was displayed to check for load / store
accesses of temporary variables that could have been saved in the register
file, had the register allocation algorithm been more efficient.

! r I - , , I
i

1
» L- | I | —1 Jl

1 _L. I_l
1
1
1
o 200 400 600 800 1000 1200

Simulation Time (simulated clock periods)

Chapter 5. Results and Discussion 123

Figure 5-12: Architecture Animator: Viewing Contents of the Register File

Usage of the HASE prototype would have been more effective if:

• The Architecture Editor and the Architecture Animator were supported by
the same application. Piping between the two processes made the environ¬
ment slow and the Architecture Animator had to be updated manually after

every architecture edit.

• The abstraction level of an object component was parameterised during
runtime and not during the architecture edit phase. The HASE prototype

requires the architect to specify the abstraction levels of each object com¬
ponent before compiling and linking the simulation's source code.

Chapter 5. Results and Discussion 124

5.4 Investigating Network Traffic

This section describes an architecture experiment which uses a multiple abstrac¬
tion level simulation, to examine the network traffic between a shared set of code
and data caches and two simulated processors.

5.4.1 Brief Description

This type of simulation experiment begins when an architect wishes to investigate
the impact an architectural change of a processor has on its surrounding network
traffic. The architect can use HASE to carry out this investigation by simulating
one processor at a low abstraction level, whilst simulating the rest of the network
at a more abstract level.

5.4.2 Flow of Events

To perform this architecture experiment the following procedures are followed:

1. An aspect of a processor's architecture is selected for investigation.

2. The Architecture Editor is used to raise the abstraction level of component

objects which do not add value to the experiment's results. The Trace An¬
imator is used to distinguish the role of each entity during the simulation,
suggesting which component objects should be simulated at a higher level
of abstraction.

3. The Monitor objects are attached to component objects for collecting per
formance data.

4. The simulation is executed.

Chapter 5. Results and Discussion 125

5. The Architecture Animator is used to help clarify the relationship between
an architecture's internal behaviour and its surrounding Network.

5.4.3 Simulating Network Influence on a Processor

This section describes a scenario in which an architect wishes to run a HASE

simulation involving component objects instantiated at different abstraction levels.

Brief Description

The scenario begins when the architect wishes to simulate two MC88110 CPUs
connected to an external bus and an instruction and data cache. The architect

wishes to investigate the interactions between two MC88110 microprocessors, shar¬
ing a set of data and instruction caches and a bus network controlled by a memory

router component. The architect decides to simulate one of the MC88110 micro¬

processors at the PMS abstraction level and the second microprocessor at the ISP
abstraction level.

At the ISP level, the MC88110 is simulated as six execution units operating

independently and concurrently. The integer, floating-point, multiply and divide
execution units perform computation operations. The data unit performs data
memory accesses, while the instruction unit performs instruction fetches, sequen¬
cing and control functions.

The instruction unit fetches instruction pairs from the instruction cache, and
issues instructions to their appropriate execution units. The instruction unit also
executes control flow instructions, for example, branch operations. An important
feature of the architecture is a history buffer, a (First In First Out) FIFO queue

which records the relevant machine state at the time of an instruction issue.

Chapter 5. Results and Discussion 126

The architect wishes to simulate the memory router as a simple 2x2 cross¬

bar switch, which includes two input and output queues for processing incoming
addresses and data.

Step Description -r-

1. This scenario begins when the architect wishes to investigate the relation¬

ship between the history buffer size and the corresponding throughput of
the crossbar switch in terms of messages per second; where each message

represents either a memory address, an instruction or an operand.

2. The Trace Animatoris used to filter out superfluous component objects from
the model. The entities visible in the Trace Animator, will only include those
that add value to the results of the simulation experiment.

3. The Architecture Editor is used to parameterise one of the MC88110 mi¬
croprocessors to simulate at the PMS level. The second MC88110 and the
crossbar switch are parameterised to simulate at the ISP level. Figure 5-13
shows an example in which two MC88110 processors are connected to their
shared code and data caches. In this example, the outgoing and ingoing
queue lengths for the crossbar switch are both initialised to 4 elements. The
right hand window on the screen displays the icons that represent the ob¬
ject components simulating the MC88110 processor's behaviour at the ISP
level of abstraction. The MC88110 processor's history buffer length is varied
from 1 to 10 elements; where each element saves the current state of 2 issued
instructions.

4. A Measurement Probe is attached to the bus and crossbar switch to measure

the frequency of instruction fetches between the two MC88110s and their
shared Instruction and Data cache components.

Chapter 5. Results and Discussion 127

Figure 5-13: Architecture Editor: Setting a Component's Abstraction Level

5. The simulation is repeated for each history buffer size ranging between 1 and
10, and the corresponding average crossbar switch throughput is measured
for each simulation run.

6. Figure 5-14 shows how the crossbar switch throughput increases from 31
simulated messages per second to 39 messages per second, as the history
buffer size increases between 1 and 10 elements.

7. After the history buffer size exceeds 6 elements the throughput of the cross¬

bar switch peaks at approximately 39 messages per second. The ArcAifecfure
Animator is used to inspect the contents of the ISP processor's history buf¬
fer to determine any data dependencies that prevent the history buffer from

progressing. Figure 5-15 displays an example of the ISP processor's history
buffer receiving 2 instruction words from the fetch stage on each simulated
clock cycle. The Graph Displayer, in the bottom right hand corner, displays

Chapter 5. Results and Discussion

Av*rag* Crossbar Throughput

(mpa)

60

40

30

20

10 .

128

W0 2 4 6 8 10 12
Simulation Tims (simulated dock periods)

Figure 5-14: Graph Displayer: Crossbar Switch Throughput againsy History
Buffer Length

the repeated CPI spikes, throughout the simulation run. The CPI spikes are

due to control transfer instructions that are wrongly predicted. The failed
target address predictions caused the history buffer to stall, flush its contents
and refill itself, with the correct branch of instructions.

Comments

This scenario demonstrates how HASE uses polymorphism to support multiple
abstraction level simulations [62] [63]. The software structure for the HASE im¬
plementation of the MC88110 network is illustrated in (Figure 5-16). This figure
shows the main communications between the PMS and ISP processors, busses and
crossbar switch object components.

This diagram distinguishes three types of objects: control, problem domain and
interface. The interface object is responsible for returning results to the front-end
animator, for example, event traces, state data, and statistics about the number
of stalls in each pipeline etc. The control object shown here is responsible for
coordinating all component objects to respond to the simulated DEMOS clock. A
problem domain object refers to any type of object component which is relevant
to the behaviour of the architecture.

Chapter 5. Results and Discussion 129

Figure 5—15: Architecture Editor: Display State of History Buffer

The control object is inherited by all the problem domain objects, but its
methods are overwritten by each subclass. When the main control program of the
DEMOS simulation broadcasts a start message, each component object will assign
itself to an abstraction level entered from the Architecture Editor and behave

accordingly. For example, when the ISP processor receives a start message, it
instantiates all the lower level ISP component objects required to simulate its
instruction execution. When the ISP processor receives the next clock message

from the DEMOS simulator, it responds by attempting to fetch the next ISP
instruction object from the bus object.

The PMS processor, responds to the same start and clock messages, but be¬
haves at a higher level of abstraction. For example, it only instantiates a random

Chapter 5. Results and Discussion

CodeCache

Decode

PMS
Mcaeno

KO
O
cD

Interlace Object

Problem DomainObject

Control

Communicates

Inheritance

Figure 5-16: Multi Abstraction Level Simulation: Software Structure

Chapter 5. Results and Discussion 131

CPI generator object to model a computation each time a new instruction word

pair is received from the crossbar switch.

Entry and exit objects (described in Chapter 4) are used in this experiment
to match instruction objects to component objects at an appropriate abstraction
level. For example, if an entry object receives an ISP instruction object for the
fetch stage, it first checks an ISP fetch component exists; if it does, it sends
a nextlnstruction message to the fetch component with the ISP instruction as

an argument. If not, the entry object searches for a PMS version of the fetch

component, abstracts the instruction object to the PMS level and sends the same

nextlnstruction message to a PMS version of the processor's fetch stage. If a
PMS version does not exist then an error message is logged, indicating that the
execution is not valid.

The abstraction levels for instruction and component objects are defined stat¬

ically during the Architecture Edit phase in HASE. However, by extending the
polymorphic approach described above and using a language such as Smalltalk or
Objective C, which supports dynamic binding, a future version of HASE can be
designed to change a component's abstraction level at runtime.

This would provide the architect with the flexibility to zoom into the detail
of an animated architecture component during runtime, rather than having to
specify each component object's abstraction level before compiling and linking
the simulation code.

Chapter 6

Conclusion

The computer architect must continue to invent new architectural techniques if
he wishes to take full advantage of the recent progress in hardware technology.
Specifically, the architect not only requires a thorough technical understanding of
the hardware's physical limitations, he must also understand how an architecture
can perform against different types of software applications. Furthermore, he must
know whether his simulation is realistic and whether he can set up controlled
experiments and make valid comparisons between new and existing architecture
designs. Before suggesting an architecture enhancement, the architect must decide
whether or not a performance improvement can justify the impact of its hardware
and software cost.

This thesis contributes toward the development of a simulation environment
directed specifically towards computer architects for the purpose of setting up
architecture experiments and investigating hardware/software interaction.

This chapter concludes the work of this thesis and is divided into the five
following sections:

• Section 6.1, Architect Requirements - concludes the essential features of a
hardware/software simulation environment.

132

Chapter 6. Conclusion 133

• Section 6.2, Object Oriented Design - summarises the advantages of using

object oriented design for the simulation and animation of a computer ar¬

chitecture.

• Section 6.4, Architecture Experiments - summarises the set of architecture

experiments used to demonstrate the operation of HASE.

• Section 6.3, HASE Prototype Performance Evaluation - its role as a proto¬

type and discusses some of the advantages and disadvantages of its develop¬
ment environment.

• Section 6.5, Future Work - describes how the HASE prototype will be im¬

plemented as a production version.

6.1 Architecture Requirements

A survey of existing academic and commercial simulation was carried out. From
this survey, described in section 1.4, it is clear that logic simulators are well estab¬
lished. Such tools, including Mentor Graphics and more recently VHDL, support
a well defined environment for detailed logic design. At the logic level these tools
support a logic level component library, for example providing adders, multiplex¬
ers and standard off the shelf microprocessors. However, for this survey it appears
that logic design environments do not provide similar sorts of libraries for archi¬
tecture components, for example, pipelines, history buffers, and general purpose
function units.

The survey investigated existing academic and commercial simulators that did
specialise in architecture simulation. Amongst simulation environments such as

STATEMENT and i-logix, the most popular commercial architecture simulator is
the SES/Workbench. The deficiency with the SES/Workbench is that the details

Chapter 6. Conclusion 134

of an architecture's behaviour and its associated hardware/software interaction
are hidden by the mechanics of the simulation. This deficiency was confirmed by
the ARM microprocessor simulation demonstrated at UMIST.

In HASE, although common attributes and services are inherited from parent

classes; each internal and external architecture component is directly associated

with a line of code and is symbolised by an icon. This simplifies the task of

establishing an object repository to store architecture components and enables
the architect to identify, observe and if necessary, control the interactions between

components during an architecture simulation.

6.2 Object Oriented Design

There are three main advantages of using an object oriented simulation approach
rather than a procedural approach:

• For some defined abstraction level, if an architect can clearly define the
attributes and services of a physical internal or external component in the
architecture, then it can be mapped directly to a software object.

• If a set of component objects have common attributes and services, then
these facets can be factored out and abstracted into a superclass. The
superclass can be specialised to create a new set of subclasses, that dir¬
ectly model physical architecture components. This maintains consistency
between component objects and saves the architect unnecessary effort.

• An object component's behaviour, i.e. its attributes and services, can be
specialised further to model its physical component at a lower level of detail.
This notion maps conveniently onto Flynn's classifying of abstraction levels,
described in section 4.1.1.

Chapter 6. Conclusion 135

The main disadvantage of using an object oriented approach is that objects
are expensive on computer resources, and this sometimes impairs a simulation's
runtime performance.

6.3 Architecture Experiments

The HASE prototype functionality was demonstrated on a variety of internal and
external architecture, software/hardware interaction and multiple abstraction level
simulation experiments. Each type of architecture experiment was illustrated by
scenarios which provided a step description of how to use the HASE prototype.

6.4 HASE Prototype Performance Evaluation

The purpose of developing a prototype was to demonstrate how to apply an object
oriented approach to computer architecture simulation and animation. The HASE

prototype implemented an object oriented design using the DEMOS programming
environment. DEMOS proved to be a suitable prototyping language because it was
well established and was already supported by various graphical frontend tools;
for example, PIT and GSS.

6.4.1 Advantages of the HASE Prototype

The HASE prototype has demonstrated how:

• The behaviour of an architecture can be factored out into superclasses; for ex¬

ample, the Component class encapsulates the synchronous and asynchronous
communication protocols between architectures, inherited by all instantiated
pipeline function units.

Chapter 6. Conclusion 136

• Polymorphism can be used to design multiple abstraction level simulations.
For example, a component's class can be subclassed to respond to the same

message inherited from its parent but behave at a lower abstraction level.

• To use an Architecture Editor to symbolise component objects as a menu

of icons. Each icon represents a software class which maps directly to a

specific physical architecture component. This simple one to one mapping
between software and hardware makes it easier to validate the correctness

of an architecture simulation.

• A GDL is used to specify the behaviour of new component objects that an

architect requires for a simulation.

• A class's behaviour can be described graphically in terms of an activity
diagram. The activity diagram prbvides a convenient means of documenting
a library of component objects.

• An Architecture Animator is useful for investigating a processor's hard¬
ware/software interaction; for example, studying the merits of a particular
program's register allocation algorithm.

6.4.2 Disadvantages of the HASE Prototype

The HASE prototype programming environment is unsuitable for the following
reasons:

• The support environment is fragmented. This is because the HASE proto¬
type used and modified existing applications to prove a concept. For ex
ample, the Object Editor and the Architecture Editor are developed from the
GSS programming environment and the Architecture Animator and Tract
Animator are developed using Motif and SRGP respectively.

Chapter 6. Conclusion 137

• Adding a new architecture component to the Architecture's menu required
the use of a GDL to specify the link refusals between co-existing components
in the architecture library.

• The Architecture EditorCode generation service only supported a framework
and does not produce a compilable and linkable simulation source code.

• The Architecture Editor communicated with the Architecture Animator via

a standard UNIX pipe. This added complexity is not necessary if the both
tools are part of the same application.

• The DEMOS simulation code is compatible with the GSS support tool,
but DEMOS is derived from SIMULA, which is characteristically slow and

memory demanding, compared to more recently developed object oriented
languages, such as C+-1- and Objective C.

6.5 Future Work

As explained in the previous section, the implementation of the HASE prototype
version was fragmented into various technologies and software environments, be¬
cause its purpose was primarily to prove design concepts, and illustrate an object
oriented approach to simulating and animating hardware/software interaction.
This section describes the main future tasks that will develop HASE from a pro¬

totype into a working environment. These tasks can be divided into four main
sections:

• Section 6.5.1, Create Architecture Components, this involves converting the
architecture class hierarchy from DEMOS to Sim+-f.

Chapter 6. Conclusion 138

• Section 6.5.2, Develop a Component Object Repository, this involves develop¬
ing a component class browser and a database to store and provide efficient
access to a library of architecture object components.

• Section 6.5.3, Develop a Frontend, this involves developing a single GUI
interface to incorporate the tools that were designed and built for the HASE

prototype.

• Section 6.5.4, Develop a Distributed Simulation Environment, this involves
setting up a distributed simulation environment to improve the performance
of large, computation intensive, simulations.

6.5.1 Create Architecture Components

The HASE prototype established a class hierarchy to describe a selection of micro¬
processor architectures, namely the Motorola 88000 family. This class hierarchy
included abstract classes that modelled the generic behaviour of memory compon¬
ents, data busses, fetch and decode units, execution pipelines and sequencers and
register files.

The class hierarchy was implemented in DEMOS, and although SIMULA was
a good prototyping language (and was already established) and worked well with
the PIT and Trace Animator, the disadvantage of DEMOS is that its runtime
performance is impaired by its demanding memory requirements. Consequently,
the class hierarchy of the real version of HASE will be implemented in the Sim++
simulation language. Although Sim++ is less established, it is derived from the
C++ object oriented programming language and provides support for distributed
simulation.

Chapter 6. Conclusion

6.5.2 Develop a Component Object Repository

The component objects and their associated specification documents will be stored
in a component object repository. The component object repository will be de¬

veloped to include the following facilities:

• A Component Class Browser which features facilities to search for a com¬

ponent object at a specified abstraction level. It will support facilities to

filter out required facets of information about a selected component object.

• An object oriented database, which may be developed from a third party

product, for example, Object Store, and provides efficient access to all com¬
ponent objects in the repository.

• A query language to allow an architect to ask the database if a component

object already exists that matches a required class's interface and behaviour.
A component object will be returned that best fits the required component

characteristics.

6.5.3 Develop a Frontend

The HASE prototype is fragmented into 4 main tools; the Object Editor, the
Architecture Editor, the Trace Animator and the Architecture Animator, described
earlier in chapters 3 and 4. Future work is therefore required to integrate these
simulation and animation tools into one consistent, application, implemented using
'he standard Motif programming environment.

6.5.4 Develop a Distributed Simulation Environment

During the prototyping phase of HASE, a number of component objects were cre¬
ated and built in Sim-|--)- to investigate the potential performance improvement

Chapter 6. Conclusion 140

gained from running a distributed simulation. Initial distributed simulations in¬

volved a cluster of four Sparc Workstations. The entities involved in the simulation

had to be sufficiently busy before farming them to a different processor was jus¬
tified. Otherwise the extra communication cost between processors impeded the

possibility of performance gain.

Future work in this area may include developing a environment to distribute
the large Sim++ architecture simulations across a network of workstations, in
such a way that the inter-process communication cost between workstations is
minimised.

Appendix A

Instruction Set

Appendix A contains a cross section of the DLX instruction set [32]. The ikeitWH:-
tion set presented here was modified by simulation experiments to «fcsiMS«stoite
Decode object of the HASE prototype.

141

Appendix A. Instruction Set 142

Table A—1: Logical Instructions

Mnemonic Encoding

31 26 25 21 20 16 15 0

andi 0 0 110 0 rsl rd SIMM-16

orl 0 0 110 1 rsl rd SIMM-16

xori 0 0 1110 rsl
T

SIMM-16

31 26 25 21 20 16 15 11 10 0

and 0 0 0 0 0 0 rsl rs2 rd oooooiooioo

or 0 0 0 0 0 0 rsl rs2 rd 00000100101

xor 0 0 0 0 0 0 rsl rs2 rd 00000100110

rd: Destination Register (general purpose)

rsl: Source 1 Register (general purpose)

rs2: Source 2 Register (general purpose)

SIMM-16: 16-bit Signed Immediate Operand

Appendix A. Instruction Set 143

Table A-2: Integer Arithmetic Instructions

Mnemonic Encoding

31 29 28 26 25 21 20 16 15 0

addi 0 0 1 0 0 0 rsl rd SIMM-16

addui 0 0 1 0 0 1 rsl rd SIMM-16

subi 0 0 1 0 1 0 rsl rd SIMM-16

subui 0 0 1 0 1 1 rsl rd SIMM-16

s_i 0 1 1 COND rsl rd SIMM-16

s__ui 1 1 0 COND rsl rd SIMM-16

31 26 25 21 20 16 15 11 10 3 2 0

B—U 0 0 0 0 0 0 rsl rs2 rd 0 0 0 0 0 0 1 0 COND

multt 0 0 0 0 0 0 fsl fs2 fd 0 0 0 0 0 0 1 1 0 0 0

multut 0 0 0 0 0 0 fsl fs2 fd 0 0 0 0 0 0 1 1 0 0 1

divt 0 0 0 0 0 0 fsl fs2 fd 0 0 0 0 0 0 1 1 0 1 0

divut 0 0 0 0 0 0 fsl fs2 fd 0 0 0 0 0 0 1 1 0 1 1

add 0 0 0 0 0 0 rsl rs2 rd 0 0 0 0 0 1 0 0 0 0 0

addu 0 0 0 0 0 0 rsl rs2 rd 0 0 0 0 0 1 0 0 0 0 1

sub 0 0 0 0 0 0 rsl rs2 rd 0 0 0 0 0 1 0 0 0 1 0

subu 0 0 0 0 0 0 rsl rs2 rd 0 0 0 0 0 1 0 0 0 1 1

8 0 0 0 0 0 0 rsl rs2 rd 0 0 0 0 0 1 0 1 COND

Destination Register (general purpose)

Source 1 Register (general purpose)

Source 2 Register (general purpose)

Destination Register (floating point)

Source 1 Register (floatingpoint)

Source 2 Register (floating point)

16-bit Signed Immediate Operand

000-eq 001 - ne 010 - It 011 - gt 100 - le 101 - ge

Not implemented in hardware, vectored directly to software emulation code

rd:

wis

rs2:

fd:

fsl:

fs2:

SIMM-16:

C0ND:

t

Appendix A. Instruction Set 144

Table A-3: Load/Store Instructions

-r-

Mnemonic Encoding

31 26 25 21 20 16 15 0

lhi 0 0 1 1 1 1 0 0 0 0 0* rd SIMM-16

lb 1 0 0 0 0 0 rsl rd SIMM-16

lh 1 0 0 0 0 1 rsl rd SIMM-16

lw 1 0 0 0 1 1 rsl rd SIMM-16

Ibu 1 0 0 1 0 0 rsl rd SIMM-16

Ihu 1 0 0 1 0 1 rsl rd SIMM-16

1ft 1 0 0 1 1 0 rsl fd SIMM-16

Idt 1 0 0 1 1 1 rsl fd SIMM-16

sb 1 0 1 0 0 0 rsl rs2 SIMM-16

sh 1 0 1 0 0 1 rsl rs2 SIMM-16

RW 1 0 1 0 1 1 rsl rs2 SIMM-16

sft 1 0 1 1 1 0 rsl fs2 SIMM-16

sdt 1 0 1 1 1 1 rsl fs2 SIMM-16

rd: Destination Register (general purpose)

rsl: Source 1 Register (general purpose)

rs2: Source 2 Register (general purpose)

fd: Destination Register (floating point)

fs2: Source 2 Register (floating point)

SIMM-16: 16-bit Signed Immediate Operand

$ Not implemented in hardware, vectored directly to toftware emulation code

These bits are not decoded

Appendix A. Instruction Set 145

Table A—4: Control Transfer Instructions

Mnemonic Encoding

31 26 25 0

j 0 0 0 0 1 0 SIMM-26

jal 0 0 0 0 1 1 SIMM-26

31 26 25 21 20 16 15 0

beqz 0 0 0 1 0 0 rsl 00000* SIMM-16

bnez 0 0 0 1 0 1 rsl 00000* SIMM-16

bfptt 0 0 0 1 0 0 0 0 0 0 0* 0 0 0 0 0* SIMM-16

bfpft 0 0 0 1 0 1 0 0 0 0 0* 0 0 0 0 0* SIMM-16

31 26 25 21 20 16 15 9 8 0

rfe 0 1 0 0 0 0 0 0 0 0 0* 0 0 0 0 0* 0000000* 000000 0 0 0*

trap 0 1 0 0 0 0 0 0 0 0 0* 00000* 0 0 0 0 0 0 0* VEC-9

31 26 25 21 20 16 15 0

jr 0 10 0 10 rsl 0. 0 0 0 0* 0 0 0 0 0 0 0 0000 0000 0*

jalr 0 10 0 11 rsl 00000* 0 0 0 0 0 0 0 0000000 00*

r<*: Destination Register (general purpose)

re': Source 1 Register (general purpose)

rs^: Source 2 Register (general purpose)

SIMM-16: 16-bit Signed Immediate Operand

SIMM-26: 26-bit Signed Immediate Operand

VEC-9: Vector number from the start of the page address in the vector base register
^

Not implemented in hardware, vectored directly to software emulation code

These bits are not decoded

Appendix A. Instruction Set 146

Table A-5: Floating-Point Arithmetic Instructions

Mnemonic Encoding

31 26 25 21 20 16 15 11 10 3 2 0

addf 0 0 0 0 0 1 fsl fs2 fd 00000000 0 0 0

subf 0 0 0 0 0 1 fsl fs2 fd 00000000 0 0 1

multf 0 0 0 0 0 1 fsl fs2 fd 00000000 0 1 0

divf 0 0 0 0 0 1 fsl fs2 fd 00000000 0 1 1

addd 0 0 0 0 0 1 fsl* fs2* fd* oooooooo 1 0 0

subd 0 0 0 0 0 1 fsl* fs2* fd* oooooooo 1 0 1

multd 0 0 0 0 0 1 fsl* fs2* fd* oooooooo 1 1 o

divd 0 0 0 0 0 1 fsl* fs2* fd* oooooooo 1 1 1

0 0 0 0 0 1 fsl fs2 fd 0 0 0 0 0 0 1 0 COND

_d 0 0 0 0 0 1 fsl* fs2* fd* 0 0 0 0 0 0 1 1 COND

fd: Destination Register (floating point)

fs2: Source 2 Register (floating point)

COND: 000-eq 001 - ne 010 - It 011 - gt 100 - le 101 - ge

* Not implemented in hardware, vectored directly to software emulation code
* Double-precision floating point registers should be aligned to (even) floating point register pairs
* These bits are not decoded

Appendix B

Assembly Test Programs

Appendix B includes a listing of the optimised test programs that were run against
the HASE prototype whilst conducting hardware / software interaction experi¬
ments.

B.l Convolution Program: Optimised using Delayed

Branching

LD r9 0 0

LD r7 0 0

LD r6 0 1

LD r6 0 0

LD r2 1 2

ADD r3 rl 9

LD r4 r3 2

MUL r2 r2 r4

ADD r5 2 5

SUB rl 1 1

ADD rl2 6 1

147

Appendix B. Assembly Test Programs

ST r4 r9 r23

ST r5 r7 FF

SUB r7 r7 1

SUB r9 r9 1

ADD rl4 r6 r9

BCND 0 rl4 -16

ST r5 r6 FF

LD r7 0 0

LD r5 0 0

LD r2 1 2

ADD r3 rl 9

LD r4 r3 2

MUL r2 r2 r4

ADD r2 2 5

SUB rl 1 1

ADD rl2 6 1

BCND 0 rl2 -8

ST r4 r9 r23

SUB r7 r7 1

SUB r6 r9 1

ADD rl4 r6 r9

BCND 0 rl4 -16

MUL r2 r2 r4

ADD r5 r2 r5

SUB rl 1 rl rl

ADD rl2 r6 rl

Appendix B. Assembly Test Programs 149

B.2 Convolution Program: Optimised using Re¬

gister Colouring

LD r6 0 1

LD r6 0 0

LD r2 1 2

ADD r3 rl 9

LD r4 r3 2

MUL r2 r2 r4

ADD r5 2 5

SUB rl 1 1

ADD r6 6 1

ST r4 r9 r23

ST r2 r7 FF

SUB r7 r7 1

SUB r9 r9 1 •»

ADD r6 r6 r9

BOND 0 r6 -16

ST r5 r6 FF

LD r6 0 0

LD r5 0 0

LD r2 1 2

ADD r3 rl 9

LD r4 r3 2

MUL r2 r2 r4

ADD r5 2 5

SUB rl 1 1

ADD r6 6 1

Appendix B. Assembly Test Programs

BCND 0 r6 -8

ST r4 r9 r3

SUB r7 r7 1

SUB r9 r9 1

ADD r6 r6 r9

BCND 0 rl4 -16

MUL r2 r2 r4

ADD r5 r2 r5

SUB r2 rl rl

ADD r4 r6 rl

Bibliography

[1] A. Agarwal, M. Horowitz and J. Hennessy, "Analytical Cache Model", ACM
Transactions on Computer Systems, Vol. 7, No. 2, May 1989.

[2] G. H. Amdahl, "Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities", Spring Dt Comp Conference, AFIPS Confer¬

ence, Proc, vol 30, pp 483, 1967.

[3] N. Armitage, Optimisation Methods, Unisoft, 28 July, 1988.

[4] M. Barbacci, "Instruction Set Processor Specifications (ISPS): Notation and
its Applications", IEEE Transactions Computers, Jan. 1981, pp. 24-40.

[5] E. Barber & P. Hughes, "Evolution of the Process Interaction Tool - A Graph¬
ical Editor for DEMOS", Proc. 17th Simula Users' Conference, Association
of Simula Users, 1990.

[6] C. G. Bell, D. P. Siewiorek & A. Newell, "Computer Structures: Reading and

Examples", McGraw-Hill, 1971.

[?] J. Birtwistle, "DEMOS: Discrete Event Modelling On Simula", Prentice-Hall,
1985.

[8] G. Booch, "Object Oriented Development", IEEE Transactions on Software

Engineering, Vol 12, No. 2, 1986.

151

Bibliography 152

[9] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, "Ptolemy: A Framework {or

Simulating and Prototyping Heterogeneous Systems", International Journal

of Computer Simulation, August, 1992.

[10] CACI Simulation Tools, NETWORK 11.5, CACI Corporation, 1988

[11] R. D. Chamberlain & M.A. Franklin, "Hierarchical Discrete Event Simulation
on Hypercube Architectures", IEEE Micro, August 1990.

[12] T. C. Chen, "Parallelism, pipelining and Computer Efficiency", Computer

Design, vol 10, pp 69-74, 1971.

[13] R. J. Chevance, "An Evaluation Methodology for Microprocessor and System

Architecture", Computer Architecture News, Vol 20, No. 3, June 1992.

[14] A. T. Clementson, "Extended Control and Simulation Language-Computer
Aided Programming System", Lucas Institute for Engineering Production,

University of Birmingham.

[15] A. Cota & R. G. Sargent, "An Algorithm for Parallel Discrete Event Simu¬
lation Using Common Memory", 22nd Annual Simulation Symposium, 1989.

[16] B. S. Davie, Hardware Description Languages: Some Recent Developments
EUCSD Report, CSR-198-86, 1986.

[17] Davie B. S., "A Formal, Hierarchical Design and Validation Methodlogy for
VLSI", PhD thesis, Department of Computer Science, University of Edin¬
burgh, Oct 1988.

[18] J. B. Evans, "Structures of Discrete Event Simulation", Ellis Horwood Ltd.,
1988.

[19] D.G. Evans & D. Morris "Applying Modelling to Computer Systems", IFIP
'Codes Workshop' May 18th 1992.

Bibliography 153

[20] M.K.Farrens & A. R. Plezkun, Improving Performance of Small On-Chip
Instruction Caches, The 16th Annual International Symposium on Computer

Architecture, 1989.

[21] M. J. Flynn, "Detection and Parallel Execution of Independent Instructions",
IEEE Tranactions on Computing, vol C-19, pp 889-895, Oct. 1970.

[22] M. J. Flynn, "Some Computer Organisations and Their effectiveness", IEEE
Tranactions on Computing, Vol C-21 No. 9, Sept 1972

[23] M. J. Flynn & C. L. Mitchell, "A Workbench for Computer Architects", IEEE

Design and Test, Feb. 1988.

[24] K. Foster, "Uncoupling Central Processor and Storage Device Speeds" Com¬

puting Journal, vol 14, pp 45-48, Feb. 1971.

[25] W. R. Franta, "Process View of Simulation", North Holland, 1977.

[26] A.D. George, "Simulating Microprocessor-Based Parallel Computers Using
Processor Libraries", Simulation, February 1993.

[27] U. 0. Gargliardi, "Report of workshop 4~ Software Related Advances in Com¬
puter Hardware", Proc. Symposiaum on the High Cost of Software, Menlo
Park Calif., pp99-120, 1973.

[28] S. Ghosh, "Using Ada as a HDL", IEEE Design and Test of Computers, Feb
1988.

[29] W. J. Gray, "Simulation Principles and Methods", Winthrop Publishers, Inc.,
1980.

[30] W. Handler, "The Impact of Classification Schemes on Computer Architec¬
ture", Proc International Conference on Parallel Processing, Aug. pp7-15,
1977.

Bibliography 154

[31] D. Harel, H. Lachover, A. Naamad, A. Pnueli, & R. Sherman, "STATEMATE:
A Working Environment for the Development of Complex Reactive Systems",
IEEE Trans on Software Engineering, Vol. 16, No. 4, 1990.

[32] J. L. Hennessy and D. A. Patterson, "Computer Architecture: A Quantitative

Approach" Morgan Kaufmann, Inc. 1990.

[33] L. Higbrie, "Quick and Easy Cache Performance Analysis", Digital Equip¬
ment Corporation, 1989.

[34] M. D. Hill "A Case for Directed-Mapped Caches", IEEE Computer, Vol 21,
No. 12, pp 25-40, Dec 1988.

[35] M. D. Hill "Adlih: User Manual Technical Report", 177 Comp Sys Lab, Stan¬
ford University, 1970.

[36] Lawrence Huang, Kyeongsoon Cho, Lawrence Huang, Derek Beatty k Karl
Brace, "User's Guide to COSMOS", 20 April 1989.

[37] D. C. McCrackin, "Eliminating Interlocks in Deeply Pipelined Processors by
Delay Enforced Multistreaming", IEEE Trans on Comp VOL. 40, No. 10, Oct
1991.

[38] MENTOR Graphics, "An Introduction to Digital Simulation", April 1989

[39] W. W. Huwu and P. P. Chang, "Achieving High Instruction Cache Per¬
formance with an Optimised Compiler", The 16th Annual International Sym¬
posium on Computer Architecture, 1989.

[40] JADE, "Sim++: A Discrete Event Simulation Language", High Performance
Simulation Software, Release 2.3 (Beta), 1988.

[41] R. N. Ibbett, "The Architecture of High Performance Computers" Macmillan
Conputer Science Sieries, 1982.

Bibliography 155

[42] J. Su & P. R. Ritter, "Experience in Testing Motif Interface" IEEE Software,
March 1991.

[43] D. R. Jefferson "Virtual Time" ACM Transactions on Programming, Vol. 7,
No. 3, pp. 404-425, July 1985.

[44] M. Laird, "A Comparison of Three Current Superscalar Designs", Computer
Architecture News, Vol 20, No3, June 1992.

[45] L. Lamport, "Time, Clocks and the Ordering of Events on a Distributed Sys¬

tem", ACM 21, pp 558-556, 7 July 1978.

[46] K. Marakami, N. Iric, M. Kuga & S. Tormita, "SIMP- A Novel High Speed
Single Processor Architecture", The 16th Annual International Symposium
on Computer Architecture, 1989.

[47] C. L. Mitchell & M. J. Flynn, "A Workbench for Computer Architects",

Design and Test of Computers, February 1988.

[48] C. Mitchell, M. Flynn & H. Mulder, "And Now a Case for More Complex
Instruction Sets", IEEE Computer, Vol. 20, No. 9, pp. 71-83, September
1987.

[49] "Modula S: User Manual", Digital Equipment Corporation, Palo Alto, Cali¬
fornia.

[50] A. Mullarney & J. West, "Modsim: A Language for Distributed Simulation",
Distributed Simulation pp 155-157, 1988.

[51] J.A. Nestor, "Visual Register-Transfer Description of VLSI Microarchitec¬
tures", IEEE Transactions on Very Large Integrated (VLSI) Systems, VOL.
1, No. 1, March 1993.

Bibliography 156

[52] Nigel Topham & Douglas Rogers, "Implementing a Practical Context Flow

Machine", Internal Report, Computer Science Department, University of Ed¬

inburgh, 1989.

[53] C. A. Petri, "Kommunikation mit Automaten", Schriften des Institut fuer

Instrumentelle Mathematik, Bonn.

[54] B. J. Pierce, "Type-Theoretic Foundation for Object Oriented Programming",
Lecture Notes for LFCS Short Cources, Computer Science, Edinburgh Uni¬

versity, May 1992.

[55] R. J. Pooley, "An Introduction to Programming in Simula", Blackwell Sci¬
entific Publications, 1987.

[56] R.J. Pooley and M.W. Brown, "Improved Methods for Performance Engin¬
eering" January 1988, Department of Computer Science, University of Edin¬
burgh, January 1988.

[57] R.J. Pooley and M. W. Brown, "A Diagramming Paradigm for the Hierarch¬
ical Process Oriented Discrete Event Driven Simulation", Internal Report,
Department of Computer Science, University of Edinburgh, January 1988.

[58] R.J. Pooley, "An Experimental Tool for an Integrated Modelling Support En-
viroment, its Role and Design", Internal Report, Department of Computer
Science, University of Edinburgh, September 1988.

[59] C.V. Ramamoorthy, "Pipeline Architectures" Computing Surveys, Vol. 9, N°
1, March 1977.

[60] J. Reddi, "A Conceptual Framework for Computer Architecture", Computing
Surveys, Vol 7, 1976.

Bibliography 157

[61] A.R. Robertson & R. N. Ibbett, "Simulation of the MC88000 Microprocessor

System on a Transputer Network", Lecture Notes in Computer Science, ED-

MCC2, Springer-Verlag, April 1991.

[62] A.R. Robertson & R. N. Ibbett, "A Hierarchical Architectural Simulation

Environment", UKSS, A EUROSIM Conference, September 1993.

[63] A.R. Robertson & R. N. Ibbett, "MINITRACK: Fast Simulation of Computer

Architecures", Proceedings: 27th Hawaii International Conference on System

Sciences, January 3-5, 1994.

[64] F. B. Schneider "Synchronisation in Distributed Programs", ACM Transac¬

tion, pp 179-195, April 1982, pp 179-195.

[65] K. Sheehan & M. Esslinger, "The SES/sim Modelling Language,", The Soci¬
ety for Computer Simulation, San Diego, CA, July 1989.

[66] A. J. Smith, "Cache Memories" Computing Surveys, Vol. 14, No. 3, Septem¬
ber 1982.

[67] A. J. Smith, "Line (Block) Size Choice for CPU Caches", IEEE Transactions
on Computers, C-36-9, pp 1063-1075, Sept (1987).

[68] P. Steinkiste, "The Impact of Code Density on Instruction Cache Perform¬
ance", The 16th Annual Int. Symposium on Computer Architecture, 1989.

[69] H. S. Stone, "Introduction to Computer Architecture" SRA Computer Science

Series, 1975.

[70] B. Stroustrup, "The C++ Programming Language", Addison-Wesley, 1986.

[71] K. D. Tocher, "Some Techniques for Model Building", Proc. IBM Scientific

Computing Symposium on Simulation Models and Gaming, New York, 119-
155.

Bibliography 158

[72] B. Tuck, "Users Turn to Graphics for High Level System Specification", Com¬

puter Design, March 1993.

[73] B. Unger, D. Jefferson, "Distributed Simulation", Simulation Series, Vol. 19,

No. 3, July 1988..

[74] C. Uppal, "The Integrated Modelling Support Environment Project" R2.2 - 3
Version 4, 23 January 1991.

[75] B. Wilkerson As L. Wiener As R. Wirfs-Brock, "Designing Object-Oriented

Software", Prentice Hall, 1990.

[76] T. Williams, "Performance Analysis Spots Hardware/Software Bottlenecks",
Computer Design, October 1992.

[77] P. Wisskirchen, "Object Oriented Graphics", Springer-Verlag, 1990.

[78] W. Wolf, "Object Oriented Programming for CAD", IEEE Design and Test
of Computers, March 1991.

[79] B. P. Zeigler, "Theory of Modelling and Simulation", Wiley, New York.

