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Abstract

A vast amount of usable electronic data is in the form of unstructured text. The re-

lation extraction task aims to identify useful information in text (e.g., PersonW works

for OrganisationX, GeneY encodes ProteinZ) and recode it in a format such as a re-

lational database that can be more effectively used for querying and automated rea-

soning. However, adapting conventional relation extraction systems to new domains

or tasks requires significant effort from annotators and developers. Furthermore, pre-

vious adaptation approaches based on bootstrapping start from example instances of

the target relations, thus requiring that the correct relation type schema be known in

advance. Generic relation extraction (GRE) addresses the adaptation problem by ap-

plying generic techniques that achieve comparable accuracy when transferred, without

modification of model parameters, across domains and tasks.

Previous work on GRE has relied extensively on various lexical and shallow syntac-

tic indicators. I present new state-of-the-art models for GRE that incorporate governor-

dependency information. I also introduce a dimensionality reduction step into the GRE

relation characterisation sub-task, which serves to capture latent semantic information

and leads to significant improvements over an unreduced model. Comparison of di-

mensionality reduction techniques suggests that latent Dirichlet allocation (LDA) – a

probabilistic generative approach – successfully incorporates a larger and more inter-

dependent feature set than a model based on singular value decomposition (SVD) and

performs as well as or better than SVD on all experimental settings. Finally, I will

introduce multi-document summarisation as an extrinsic test bed for GRE and present

results which demonstrate that the relative performance of GRE models is consistent

across tasks and that the GRE-based representation leads to significant improvements

over a standard baseline from the literature.

Taken together, the experimental results 1) show that GRE can be improved using

dependency parsing and dimensionality reduction, 2) demonstrate the utility of GRE

for the content selection step of extractive summarisation and 3) validate the GRE

claim of modification-free adaptation for the first time with respect to both domain and

task. This thesis also introduces data sets derived from publicly available corpora for

the purpose of rigorous intrinsic evaluation in the news and biomedical domains.
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Chapter 1

Introduction

“In Ersilia, to establish the relationships that sustain the city’s life, the
inhabitants stretch strings from the corners of the houses, white or black
or gray or black-and-white according to whether they mark a relationship
of blood, of trade, authority, agency.”

Italo Calvino, Invisible Cities

1.1 What is a Relation?

A vast amount of usable electronic data is in the form of unstructured text. The in-

formation extraction task aims to identify useful information in text and recode it in a

format such as a relational database that can be more effectively used for querying and

automated reasoning (e.g., Turmo et al., 2006). Typically, this extraction task includes

the sub-tasks of identifying named objects (e.g., persons, organisations, dates), identi-

fying relationships between named objects (e.g., PersonX works for OrganisationY ),

and identifying events (e.g., PersonX was hired by OrganisationY on DateZ). The

current work addresses the second task which is referred to as relation extraction (RE).

The RE task aims to identify mentions of relations in text,1 where a relation mention

is defined as a predicate ranging over two arguments, where an argument represents

concepts, objects or people in the real world and the relation predicate describes the

type of stative association or interaction that holds between the things represented by

the arguments.

Figure 1.1 contains example relation mentions from the news and biomedical data

sets used in the experimental chapters of this thesis. The left side of the figure con-

1Other modalities such as speech can also be considered, but the work here focuses on text (including
newswire, broadcast news transcripts and scientific papers in the biomedical domain).

1



Chapter 1. Introduction 2

Natural 
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Knowledge 
Base

(Relation 
Triples)

Relation 
Extraction

...

American saxophonist David Murray recruited Amidu Berry.
...

...

Cdc3+ encodes profilin, an actin-monomer-binding protein.
...

Entity1            Entity2           Relation Type         
“David Murray”     “American”        CITIZEN-OR-RESIDENT
“David Murray”     “Amidu Berry”     BUSINESS

Entity1        Entity2             Relation Type         
“Cdc3+”        “profilin”          ENCODE
“profilin”     “actin-monomer”     BIND

Example Documents

Example Relation Triples

Figure 1.1: Overview of relation extraction task with example input and out-

put.

tains a pipeline representation of the RE task. The input consists of natural language

documents containing e.g. unstructured text or speech. These documents are fed to

the RE system, which identifies and characterises the relations described in the text or

speech data. The output of the RE system consists of relation mention triples which

include the two entity mentions that take part in the relation and the relation type.

The right side of Figure 1.1 contains two example input documents on the top and the

relation mention triples from those sentences on the bottom. The first document con-

tains the sentence “American saxophonist David Murray recruited Amidu Berry”. This

contains two relation mentions: 1) a reference to a CITIZEN-OR-RESIDENT relation

between “David Murray” and “American” and 2) a reference to a BUSINESS relation

between “David Murray” and “Amidu Berry”. Likewise the sentence in the second

document contains two relation mentions: 1) a reference to an ENCODE relation be-

tween “Cdc3+” and “profilin” and 2) a reference to a BIND relation between “profilin”

and “actin-monomer”.
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1.2 Relation Extraction and Adaptation

A majority of the systems developed to address the relation extraction task are based

on either rule engineering or supervised machine learning, both of which are expen-

sive to port to new domains. In the case of rule engineering, writing extraction rules

requires extensive effort from a rule engineering expert who is familiar with the target

domain. In the case of supervised learning, annotation of training data and tuning fea-

tures/model parameters require extensive effort from at least one annotator (expert in

the target domain) and from a natural language processing expert.

The expense of conventional supervised approaches has motivated another vein of

work on bootstrapping and transfer learning. One prominent approach is initialised

with only a small seed set of example relation-forming entity pairs for a particular re-

lation type. A wide-coverage system is then bootstrapped through an iterative process

of inducing extraction rules given entity pairs and subsequently identifying new entity

pairs given extraction rules (e.g., Brin, 1998; Agichtein and Gravano, 2000). Other

partially supervised approaches include active learning where a conventional relation

extraction system is trained on a small seed corpus, after which it chooses examples

that are difficult to classify to be presented to a human annotator (e.g., Zelenko et al.,

2005). The expense of conventional supervised approaches has also motivated recent

work in other areas of natural language processing on transfer learning (e.g., Blitzer

et al., 2006; Daumé III, 2007) and domain adaptation (e.g., Nivre et al., 2007).

Transfer learning and partially supervised approaches, however, still require the

relation type schema to be known in advance for each new domain. Conrad and Utt

(1994) and Hasegawa et al. (2004) present pioneering studies using generic approaches

for two relation extraction sub-tasks: entity association mining and discovery of typed

relations. These approaches make the leap from simply instantiating databases (or on-

tologies) based on predetermined schema to automatically learning the relation type

schema for a new domain and provide domain adaptation for free through the use

of generic techniques that can be transferred without modification of model parame-

ters (i.e., with no annotation in the new domain). However, while it is a key motiva-

tion, previous work on these tasks has largely failed to explicitly evaluate the claim

of modification-free adaptation to new domains or tasks. This thesis synthesises the

previously disjoint bodies of literature on relation mining and relation discovery into

the combined generic relation extraction (GRE) framework, introduces new state-of-

the-art approaches and explicitly demonstrates portability across domains and tasks.
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1.3 Utility of Generic Relation Extraction

Despite two decades of work on the task, the utility of relation extraction remains

largely theoretical. This is not to say that the task is not well motivated but rather that

there have only recently been scientific studies explicitly testing the contribution of

relation extraction in a controlled environment (e.g., Alex et al., 2008a). Given that a

primary motivation for early work was extracting structured information for database

curation and information analysis, a first evaluation of the utility of RE should perhaps

look at whether it helps human analysts in information gathering tasks.2 However,

this is an expensive undertaking as it involves access to analysts as well as IE sys-

tems. Furthermore, there is an intricate interplay between the user interface and the

IE technology that makes it difficult to isolate the effect of IE (Karamanis, 2007). For

this reason, it is difficult to directly measure the effect of IE on database curation and

the community has been slow to publish such studies. However, there are several other

applications that could serve as frameworks for evaluating the utility of RE technology.

One way to view the result of information extraction is as a social network, i.e. a

graph of relationships that indicate the important entities in a domain and can be used

to study or summarise interactions. The extracted social networks could be used to

create biographical sketches for entities which can then be exploited for summarisation

and question answering (e.g., Jing et al., 2007). The networks could also provide an

alternative to standard presentation of information retrieval results when interacting

with a document collection, e.g. by providing browsable representation of entities and

relationships that link to documents where they are described. For example, Sekine

(2006) suggests creating table based summaries of relations in query results. In a

similar vein, social networks could be extracted from a document collection offline

and then used for search. For example, Agichtein et al. (2005) suggest pre-collecting

commonly queried relations for factoid question answering. Similar information could

also be used to provide search functionality where a user enters two entities and the

social network is used to identify the shortest or most likely paths connecting the two

(or more) entities.

Finally, the results of RE can also be used as input to other NLP tasks. For example,

Hasegawa et al. (2005) use GRE for paraphrase acquisition, automatically discovering

different ways to express the same relation. A related application of RE is as a rep-

2Work summarised by Smalheiser and Swanson (1998) does prove the utility of relation extraction,
by reporting cases where it is successful in predicting useful relations. However, this falls short of
quantifying the accuracy and utility of relation extraction.
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resentation for automatic summarisation. Here, relation information can be used to

represent the underlying semantics of a document. This representation can be used

in conjunction with existing extractive summarisation techniques to identify sentences

expressing salient relations that should be part of the summary. In addition to evalu-

ating the portability of relation extraction models with respect to domain, this thesis

also explicitly demonstrates the utility of GRE for extractive summarisation, using the

relation models developed in this thesis as a conceptual representation for modelling

sentence semantics.

1.4 Contributions and Thesis Outline

In Chapter 2, the GRE task is situated within the broader literature on information

extraction. First, the relation extraction task is presented in its historical context and

defined. Deployment and engineering requirements of various approaches from the

literature are discussed which motivate generic and bootstrapping approaches. Next,

previous approaches to generic relation extraction are discussed, covering the litera-

tures on named entity association mining and relation discovery. A summary discus-

sion serves to identify several shortcomings of previous evaluations and areas where

models can be improved.

In Chapter 3, the task is formalised in a generalised framework that unifies the pre-

viously disjoint literatures on named entity association mining and discovery of typed

relations. Data sets that are derived from publicly available corpora are described

for evaluation in the news and biomedical domains. This allows the GRE claim of

modification-free adaptation with respect to domain to be explicitly evaluated for the

first time by applying news-optimised models directly to the biomedical domain. Dou-

ble annotation in part of the news corpus also allows for comparison to an upper bound

based on inter-annotator agreement.

In Chapter 4, relation identification is explicitly evaluated for the first time in the

context of GRE, comparing window-based models defined in terms of intervening to-

kens to a novel model defined in terms of syntactic governor-dependency paths. Re-

sults suggest that a combined approach should be preferred as it is better in terms of

recall and accuracy is shown to be comparable across domains. Importantly for ap-

plications of GRE, analysis demonstrates that at least 75% of false positive relations

are actually implicit relationships that are not part of the gold standard relation type

schemas.
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In Chapter 5, relation characterisation experiments compare a number of similar-

ity models, parametrised by feature set and dimensionality reduction technique. A

novel feature set is introduced for the task based on syntactic features from governor-

dependency parses. Comparison of dimensionality reduction techniques shows that

a similarity model based on latent Dirichlet analysis (LDA) – a probabilistic genera-

tive approach – successfully incorporates a larger and more interdependent feature set

than an unreduced model and a model based on singular value decomposition (SVD).

LDA offers as much as a 34.5% reduction in the error rate when compared to SVD.

And, while not always significant, it achieves higher f-scores than other approaches on

five out of six evaluation settings. Taken together with the superior interpretability of

the probabilistic generative approach, this motivates the use of LDA in the application

here.

Finally, in Chapter 6, this thesis explicitly demonstrates the utility of relation dis-

covery by incorporating GRE models as a conceptual representation for extractive text

summarisation. This is evaluated with respect to a standard representation from the

literature that uses weighted word tokens to represent sentence semantics. Results

demonstrate that the GRE-based representation leads to improvements over the word

token baseline. Analysis suggests that different representations do well on different

types of summaries and that system combination will thus lead to improved perfor-

mance.



Chapter 2

Literature Review

A vast amount of usable electronic data is in the form of unstructured text.
The relation extraction task aims to identify useful information in text and
recode it in a structured format that understood by machines. However,
adapting conventional relation extraction systems to new domains or tasks
requires significant effort from annotators and developers. This motivates
an approach based on generic techniques that achieve comparable accu-
racy when transferred, without modification, across domains and tasks. A
detailed comparison of previous generic approaches and evaluation frame-
works highlights shortcomings with respect to task formalisation, mod-
elling and extrinsic evaluation.

2.1 Introduction

Relation extraction (RE) can be addressed using supervised, bootstrapping or generic

approaches. These have advantages and disadvantages which will be discussed in de-

tail in the next section. One way to characterise them is in terms of adaptation cost, i.e.

the amount of work necessary to adapt them to a new domain or task. In these terms,

supervised approaches (including rule engineering and supervised machine learning)

incur the highest cost as systems need to be built largely from scratch for each new

domain. Bootstrapping approaches incur less cost as they require only a small amount

of seed data. And generic approaches provide domain adaptation for free as param-

eters do not need to be modified for new domains or tasks. Another way to charac-

terise these approaches is in terms of the ontology creation problems they address, i.e.

whether they address the instantiation task where instances are added to an ontology

in a new domain given a relation schema (the taxonomy of relation types to be iden-

tified) or whether they also address the task of learning the relation schema for the

7
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new domain. In these terms, supervised approaches and bootstrapping approaches ad-

dress only the ontology instantiation problem while generic approaches also address

the problem of learning relation schemas from data. The tradeoff is in terms of accu-

racy, where generic approaches suffer when compared to supervised and bootstrapping

approaches. However, as discussed in the applications and future work sections of this

thesis (e.g., Chapters 6 and 7), generic approaches have high utility in terms of develop-

ing cheap components for applications, initialisation of semi-supervised bootstrapping

and automated data exploration and visualisation.

This thesis develops generic approaches for RE. The task is referred to as generic

relation extraction (GRE) because it is labour and cost effective and because it makes

no assumptions about the data (i.e., the relation schema is learnt rather than being

specified as part of the problem formulation). Previous approaches to GRE come from

two distinct literatures, both of which are reviewed in this chapter. The first addresses

the generic relation identification task (also known as relation mining), which aims to

identify pairs of associated entities from text. And the second addresses the generic

relation characterisation task (also known as relation discovery), which aims to charac-

terise pairs of associated entities (i.e., annotate them with a label that describes the type

of association). A detailed comparison of these approaches motivates the work in the

rest of this thesis, which introduces 1) a rigorous intrinsic evaluation, 2) an assessment

of utility with respect to a concrete application and 3) novel state-of-the-art models for

GRE.

The remainder of this chapter contains a review of RE and adaptation. First, Sec-

tion 2.2 contains a discussion of the origins of the RE task within the context of the

history of information extraction. Next, Section 2.3 contains a discussion of differ-

ent RE approaches which are characterised in terms of domain adaptation costs and

whether they address ontology instantiation or learning. This is based on the basic

division between supervised, bootstrapping, and generic approaches.

2.2 The Relation Extraction Task

2.2.1 The Information Extraction Framework

There are a number of aspects of the literature on natural language that address re-

lations such as syntactic, semantic and pragmatic relations in theories of syntax and

semantics (e.g., van Valin, 2006). Within the NLP literature, these correspond to tasks
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such as phrase structure parsing (e.g., Jurafsky and Martin, 2000, chapters 9-12), de-

pendency parsing (e.g., Nivre et al., 2007), semantic role labelling (e.g., Carreras and

Màrquez, 2005), semantic interpretation (e.g., Bos, 2005), and discourse parsing (e.g.,

Marcu, 2006). There is also a literature on relations within philosophy, which focuses

on the semiotic aspects of relationships (e.g., Peirce, 1870).

The current work is driven by the information extraction (IE) framework which

has the practical goal of extracting structured information from natural language (e.g.,

Turmo et al., 2006). IE as a task was formalised largely in the context of the Message

Understanding Conference (MUC) shared tasks (e.g., MUC-5, 1993; MUC-6, 1995;

MUC-7, 1998) and more recently the ACE and BioCreAtIvE shared tasks (e.g., Dod-

dington et al., 2004; Hirschman et al., 2004). IE is actually a collection of different

sub-problems, whose core tasks include named entity recognition (NER), relation ex-

traction (RE), and event extraction (EE). NER is the task of identifying and labelling

named objects in text such as people, organisations, and locations. RE is the task

of identifying associations between two entities, e.g. partner, subsidiary. EE is the

task of identifying activities or occurrences such as mergers and acquisitions, airline

crashes, and terrorist activities. The sub-problems of IE are generally considered to

be incremental in nature, where event extraction builds on relation extraction and rela-

tion extraction builds on named entity recognition. Other IE tasks include coreference

resolution and temporal analysis. In coreference resolution, entity mentions that re-

fer to the same underlying entities are linked. Coreference resolution can be seen as

a sub-task of NER or as a bridge between NER and subsequent IE tasks (Chinchor,

1998). In temporal analysis, event expressions are linked to related time expressions

(e.g. Verhagen et al., 2007). This thesis focuses on RE.

2.2.2 Relation Identification and Characterisation

RE is often motivated by targeted intelligence needs such as keeping up-to-date infor-

mation on companies as reported in the news (e.g., PersonX works for OrganisationY ,

OrganisationY owns OrganisationZ) or keeping up-to-date information on protein and

gene interactions reported in the scientific literature (e.g., GeneX encodes ProteinY ,

ProteinY bind ProteinZ).1 Here, the goal is to identify mentions of relations in text,

1A closely related task is labelling of semantic relations between nominals (e.g., Girju et al., 2007),
which has the aim of identifying more general ontological relations between nominals such as those
found in WordNet (Fellbaum, 1998) or Cyc (Matuszek et al., 2006). These relations include e.g. the
cause-and-effect relation in the phrase “smile lines”, the product-producer relation in the phrase “honey
bee”, and the content-container relation in “the apples in the basket”. By contrast, relations in the
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where a relation mention is defined as follows:2

A relation mention is a predicate ranging over two arguments, where an
argument represents concepts, objects or people in the real world and the
relation predicate describes the type of stative association or interaction
that holds between the things represented by the arguments.

In the news data used in the experimental chapters here, for example, there is a BUSI-

NESS relation between “David Murray” and “Amidu Berry” in the text snippet “David

Murray hired Amidu Berry.” Saying that a relation is stative means that it describes

a state of association or interaction that persists through time (though it may have a

beginning and end point). This is in contrast to events which are generally more dis-

crete in nature, describing things that happen or occur (e.g., Pustejovsky et al., 2003).

In the example sentence above, for instance, a hiring event is described where David

Murray is the one doing the hiring and Amidu Berry is the one being hired. The BUSI-

NESS relation (that has a beginning point in time marked by the hiring act), by contrast,

is an association between David Murray and Amidu Berry that persists through time

(most likely until some other event like termination of the project or contract occurs).

While relation may actually be argued to be a subclass of event, it is nevertheless ad-

vantageous to address relation extraction as an atomic task that is both tractable and

useful.

While full definition of terminology is left for Chapter 3 (where the specific task

addressed by this thesis is described), it is useful to include some basic terminology

before going into the detailed review of GRE-related literature. First, instances of

textual references to a relation are referred to here as relation mentions. Likewise,

instances of textual references to an entity are referred to as entity mentions. Finally,

labels used to describe the taxonomic class of relations and entities are referred to as

relation types (e.g., “family” in the example above) and entity types (e.g., “person” in

the example above).

Figure 2.1 contains a pipeline representation of the two main sub-tasks of RE: re-

lation identification and relation characterisation. Input consists of natural language

documents containing e.g. unstructured text or speech transcripts. These documents

are first fed to the relation identification system, which identifies pairs of relation-

forming entity mentions (e.g., “David Murray” and “Amidu Berry” in the example

information extraction task are generally defined as predicates over entity mentions in text that can be
grounded to specific entities in the world.

2The specific notions of what constitutes a relation mention are derived from the data sets used
for evaluation. These are described in Section 3.3. For more details, it is also useful to consult the
annotation guidelines (LDC, 2004c, 2005b; Ginter et al., 2007).
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Figure 2.1: Overview of main relation extraction sub-tasks.

above). Next, the relation characterisation system annotates the entity mention pairs

with a label describing the relation type (e.g., the BUSINESS label describing the re-

lation between “David Murray” and “Amidu Berry” in the example above). Not all

approaches to RE consist of separate modules for relation identification and character-

isation, however it is a useful distinction for evaluation and for synthesising previous

approaches to GRE. In the next Chapter, these sub-tasks are described in detail in the

context of GRE.

2.3 Relation Extraction and Adaptation

2.3.1 Supervised Approaches

Conventional approaches to RE are generally based on either rule engineering or super-

vised machine learning, both of which are incur substantial development costs. Rule

engineering requires extensive effort from a language engineer, who must be expert

in the target domain and also be trained to develop an extraction grammar. For ex-

ample, a rule that captures the relation between “David Murray” and “Amidu Berry”

in the sentence “David Murray hired Amidu Berry” might say that two PERSON en-

tity mentions with an intervening verb denoting a business transaction (e.g., “hire”)

constitute a BUSINESS relation. In supervised machine learning, an annotated corpus

is used to train a new system. For example, the news corpus used here contains the

example sentence above where the entity and relation mentions have been marked by

a human annotator. A supervised machine learning system would extract features of

the entity mentions (e.g., word tokens, type) and the surrounding context (e.g., word

tokens, grammatical information) and learn a mapping from features to relation types.

While approaches to RE based on supervised machine learning were motivated by the
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expense of adapting rule-based systems to new domains or tasks, they require substan-

tial effort from annotators, who must be expert in the target domain. In addition, the

reality is that they still generally require effort from a language engineer for feature

engineering and tuning of algorithm parameters.

In terms of adaptation, rule-based systems always require re-writing the extraction

grammar, though the actual amount of effort varies depending on how much a new re-

lation schema differs from that of an existing system. For supervised machine learning,

domain adaptation may be achieved by transfer learning, where existing annotation is

used to inform an extraction task in a new domain. Chu et al. (2002) and Daumé III

(2007) describe approaches to transfer learning where models are adapted to the new

domain using a small amount of annotated data. And, Blitzer et al. (2006) describe

an approach that identifies correspondences between features in the source and target

domains (Blitzer et al., 2006). Another approach to adaptation that does not require

similar schemas is active learning, where a supervised classifier is trained on a small

seed set of labelled data for a new domain after which classification uncertainty is ex-

ploited to select examples for annotation that are most useful for the learning algorithm

(e.g., Seung et al., 1992; Cohn et al., 1996; Hachey et al., 2005; Zelenko et al., 2005).

However, supervised adaptation approaches always require some amount of rule en-

gineering or annotation. Relation extraction suffers particularly in this respect as it is

a complex task, which means e.g. less annotation output per hour of labour. Further-

more, supervised adaptation approaches require that the relation schema be known in

advance. Therefore, they are not appropriate e.g. for exploratory relation extraction on

new domains or sub-domains where the schema is not known.

2.3.2 Bootstrapping Approaches

The expense of conventional supervised approaches for natural language processing

has also motivated recent work on partially supervised methods for bootstrapping RE

in new domains. These typically exploit large amounts of unlabelled data to bootstrap

a wide-coverage system and can be divided into three main types of approaches, which

are characterised below by what type of gold standard data they require for initialisa-

tion.

The first type of approach requires labelled training data for a new domain like

the supervised machine learning approaches, but uses a relatively small amount. A

wide-coverage system is then bootstrapped through an iterative process of learning and
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automatic annotation of new training data. Co-training is an instance of this type of

approach where two relation extraction systems are trained based on distinct views of

each example (Blum and Mitchell, 1998). Zhang (2004) present co-training approach

to the relation characterisation sub-task of RE, where multiple views are automatically

created by random projection from the original feature space. Hassan et al. (2006)

present another instance of this type of approach sometimes referred to as self-training,

where a trained classifier is used to annotate unlabelled data followed by a ranking

process that identifies data points to add to the training data.

The second type of approach requires a small amount of example entity pairs for

a specific type of relation. A wide-coverage system is then bootstrapped through an

iterative process of 1) identifying texts where the example entities occur together and

using these texts to induce extraction patterns and 2) using the induced extraction pat-

terns to identify new entity pairs between which the target relation holds (e.g., Brin,

1998; Riloff and Jones, 1999; Agichtein and Gravano, 2000; Agichtein, 2006; Tomita

et al., 2006). For example, Brin (1998) bootstrap an extraction system for identifying

AUTHOROF relations between book titles and people starting from a seed set of five

book-people pairs such as “The Robots of Dawn” and “Isaac Asimov”.

The third type of approach requires only a group of documents classified as rele-

vant or non-relevant to a particular extraction task, though these can be derived from

an information retrieval system given a query (e.g., Sudo et al., 2003). The distinc-

tion between relevant and non-relevant is used to assign a weight that balances pattern

frequency in relevant documents against frequency across relevant and non-relevant

documents. Greenwood and Stevenson (2007) apply this approach to ranking extrac-

tion patterns for a relation identification task, where the goal of the system is to identify

pairs of entity mentions that are part of the same event.

These bootstrapping approaches are designed to learn with minimal engineering,

requiring only small sets of seed data and are appropriate for situations in which re-

sources are minimal. However, like the supervised approaches, they require that the

relation schema be known in advance and are therefore not appropriate e.g. for ex-

ploratory relation extraction on new domains where the schema is not known.

2.3.3 Generic Approaches

Another way to address adaptation is by moving from fully supervised approaches

(e.g., machine learning techniques that require annotated data for each new domain)
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to generic approaches that do not require any annotation or parameter tuning when

moving to new domains. This addresses the shortcomings discussed in the previous

two sections with respect to both cost and assumptions about the data. As regards

cost, generic approaches can be developed with reference to one domain and achieve

comparable accuracy when transferred, without modification of model parameters, to

other domains. This will be demonstrated in this thesis for the GRE task. As regards

assumptions, generic approaches do not require the relation schema to be specified as

part of the problem formulation and can thus be used for exploratory relation extraction

in new domains where the schema is not known. In other words, they can be used

for learning the structure of ontologies as well as learning how to instantiate them.

Generic approaches have been explored recently for a number of NLP tasks including

coreference resolution (e.g., Haghighi and Klein, 2007), part-of-speech tagging (e.g.,

Johnson, 2007; Goldwater and Griffiths, 2007) and parsing (e.g., Smith, 2006; Bod

et al., 2003; Klein, 2005).

Generic approaches have also been applied to RE. Conrad and Utt (1994) describe

an approach to identifying associated pairs of named entities from a large corpus using

statistical measures of co-occurrence. This task will be referred to as generic relation

identification in this thesis, but is also known as relation mining in the literature. In

more recent work, Hasegawa et al. (2004) describe an approach to characterising co-

occurring named entity pairs by relation type. This task will be referred to as generic

relation characterisation in this thesis, but is also known as relation discovery in the lit-

erature. This uses automatic clustering to induce a partition over the relation-forming

entity pairs and cluster labelling techniques to annotate clusters with a relation type.

In other related work, Filatova and Hatzivassiloglou (2003) and Filatova et al. (2006)

describe generic approach that is oriented more towards event extraction. The fol-

lowing section contains a detailed review of the GRE literature, focusing on previous

approaches to modelling and evaluation.

2.4 Review of the GRE Literature

This section contains a detailed survey of related work in terms of modelling and eval-

uation for the two main sub-tasks of GRE: relation identification and characterisation.

For both tasks, models from previous approaches are characterised in terms of a set

of common parameters. This characterisation is summarised in overview tables that

allow easy comparison of the different approaches. Details of each approach are pre-
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sented in dedicated sub-sections in chronological order of publication. The evaluation

performed for previous approaches is also characterised in terms of a set of common

parameters. Again, this is summarised in overview tables to allow easy comparison

while reading through the detailed sections addressing individual approaches.

Previous work has focused on intrinsic evaluation, where GRE is evaluated as a

task on its own. Most of these evaluations use a common definition of accuracy such

as precision (percent of system answers that are correct), recall (percent of possible

correct answers among the system results) or f-score (harmonic mean of precision and

recall). For formal definitions and further discussion of intrinsic evaluation measures,

refer to Section 3.4. Another way to evaluate is by embedding a system in another

application or task and quantifying its impact on the the application or task. This is

referred to as extrinsic evaluation (e.g., Sparck Jones and Galliers, 1996). Extrinsic

evaluation will be discussed further at the end of this chapter and is the primary focus

of Chapter 6 of this thesis.

2.4.1 Generic Relation Identification

The seminal work on discovery of novel entity associations is due to Swanson (1986),

who introduced a system that allows a user to state a hypothesis about two items A

and C being related. The system searches MEDLINE for papers describing A and for

papers describing C, using these two construct a list of words and phrases common

to both sets of papers. The system was used to propose fish oil as a novel treatment

for Raynaud’s disease (a circulatory disorder restricting blood-flow to the extremities),

a hypothesis which was later confirmed through wet lab experiments. Recent work,

by contrast, has focused on more general solutions that do not necessarily require a

hypothesis or query as input. Here, the generic relation identification (GRI) task aims

to identify pairs of associated entities from text.

Table 2.1 contains an overview of modelling approaches from the GRI literature.

The first column (Citation) contains the reference to the authors of the approach. The

first four rows in the table correspond to approaches that focus on the GRI task while

the last four rows correspond to approaches that focus on the GRC task which is ad-

dressed below in Section 2.4.2. The second column (Co-occur Window) describes the

window for identifying entity mention pairs. The third column (Constraints) describes

any additional constraints placed on entity mention pairs. And the fourth column

(Weighting) contains the weighting scheme(s) used for ranking entity pairs. Where the
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Citation Co-occur Window Constraints Weighting

Conrad and Utt (1994) W/in 25, 100 words NA PMI, φ2

Jenssen et al. (2001) Document NA C

Smith (2002) Sentence NA PMI, φ2, χ2, G2, C

Filatova and Hatz. (2003) Sentence Verbal connector Pr

Hasegawa et al. (2004) W/in 5 words NA NA

Chen et al. (2005) Gold, W/in 10 NA NA

Zhang et al. (2005) Same sentence Spanning parse NA

Chen et al. (2006) Gold NA NA

Table 2.1: Overview of modelling approaches from the generic relation iden-

tification literature. Columns correspond to the author (Citation), the window

for identifying entity mention pairs (Co-occur Window), constraints on entity

mention pairs (Constraints) and weighting schemes for entity mention pairs

(Weighting).

word “Gold” is present in the Co-occur Window column, the authors use gold standard

entity mention pairs from annotated RE data. Weighting schemes include frequency

(C), probability (Pr), chi-squared (χ2), phi-squared (φ2), pointwise mutual informa-

tion (PMI) and log-likelihood ratio (G2). The discussion in the rest of this section will

provide further details.

Table 2.2 contains an overview of evaluation frameworks from the GRI literature.

The first column (Citation) contains the reference to the authors of the approach. The

GRC systems (Hasegawa et al., 2004; Chen et al., 2005; Zhang et al., 2005; Chen et al.,

2006) are not included here because they only perform evaluations of relation charac-

terisation performance, which are discussed below in Section 2.4.2. The second col-

umn (Data) contains the name of the data set used. The third (NER) and fourth (Coref)

columns describe the named entity recognition that was used and the approach to coref-

erence. In the Data, NER and Coref columns, “Internal” indicates that the authors use

internal, non-public resources. In the NER and Coref columns, “Index” indicates that

NER and coreference are performed using a term matching procedure (described in

Section 2.4.1.2 below) and “Overlap” indicates that coreference is based on the over-

lap between verbal connector words of two entity pairs (described in Section 2.4.1.4

below). The fifth column (Gold) describes what was used as a gold standard reference

for evaluation. The sixth column (Sub-Doms) lists the entity pair sub-domains used

for evaluation. These include pairs consisting of two COMPANY entities (C-C), pairs
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Citation Data NER Coref Gold Sub-Doms Eval

Conrad and Utt (1994) WSJ Internal None Manual C-C, C-P, P-P P, R

Jenssen et al. (2001) PubMed Index Index Curation G-G R

Smith (2002) Internal Internal Internal Curation L-D MRR

Filatova and Hatz. (2003) TDT2 IdentiFind Overlap Manual Combined P

Table 2.2: Overview of evaluation frameworks from the generic relation iden-

tification literature. Columns correspond to the author (Citation), the data

set (Data), the named entity recognition used (NER), the approach to coref-

erence resolution (Coref), the type of gold standard reference information

(Gold), the entity pair sub-domains evaluated (Sub-Doms) and the evalua-

tion measure (Eval).

consisting of one COMPANY entity and one PERSON entity (C-P), pairs consisting of

two PERSON entities (P-P), pairs consisting of two GENE entities (G-G) and pairs con-

sisting of one LOCATION entity and one DATE entity (L-D). “Combined” indicates

that the evaluation does not consider entity pair sub-domains individually. Finally, the

seventh column (Eval) contains the evaluation measure, which can include precision

(P), recall (R) and or mean reciprocal rank (MRR). The discussion in the rest of this

section will provide further details.

2.4.1.1 GRI: Conrad and Utt (1994)

Conrad and Utt (1994) present seminal work on mining pairs of entities from large text

collections. The system uses statistical measures of association to rank named entity

pairs by presumed importance based on co-occurrence. Conrad and Utt propose win-

dows of size 25 and 100, which means that any other entity mention within 25 or 100

tokens to the right or left of a given entity mention is considered to co-occur. These

window sizes are chosen as they roughly approximate mean sizes of paragraphs and

documents in their data. The authors do not specify which window size they use for

their evaluation. They do specify a minimum co-occurrence threshold of 2. Conrad and

Utt use two statistical association measures for ranking entity pairs: pointwise mutual

information (PMI) and phi-squared (φ2). PMI compares the probability of observing

two words together with the probability of observing them independently. φ2 is a sta-

tistical test for analysing deviance from expectation in enumeration data. The authors

choose φ2 for their experiments as it tends to favour high-frequency associations.
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Conrad and Utt (1994) perform a manual evaluation using Wall Street Journal

(WSJ) data (Harman, 1992), using articles from 1987 and 1991 respectively for de-

velopment and testing. NER is performed automatically using an internal tool. No

coreference resolution is performed. Accuracy is calculated using precision and recall

(see Section 3.4.1). The authors use three entity pair sub-domains for evaluation: 1)

pairs consisting of a COMPANY entity and a PERSON entity (C-P), 2) pairs consisting

of two COMPANY entities (C-C) and 3) pairs consisting of two PERSON entities (P-

P). To calculate precision, fifteen COMPANY and fifteen PERSON entities were chosen.

Next, the system was used to generate entity associations from the test data for the cho-

sen entities and the associations were then manually classified as true or not true. To

calculate recall, two PERSON entities and two COMPANY entities were chosen. Next,

a retrieval engine was used to collect all documents in the collection containing the

chosen entities and the documents were then manually annotated for entity associa-

tions. Combining precision and recall gives balanced f-scores of 79.4, 77.7 and 86.3

respectively for the C-C, C-P and P-P entity pair sub-domains. This is not compared

to any lower or upper performance bounds. Also, no criteria are given for the choice

of entities for evaluation so it is not clear whether these are random (i.e. representative

of the distribution in the input data) or not (i.e. skewed towards high or low frequency

entities). Furthermore, because the evaluation is performed manually and is based on

the output of their system, it cannot be re-created for the sake of comparison.

2.4.1.2 GRI: Jenssen et al. (2001)

Jenssen et al. (2001) describe a similar methodology that uses co-occurrence in the

biomedical literature to create a weighted network of gene relations. This builds on

previous biomedical text mining work aimed at building systems that can automati-

cally discover relationships that can be formulated as meaningful research hypotheses,

which can subsequently be tested in biological wet lab experiments (e.g., Swanson,

1986; Smalheiser and Swanson, 1998; Blaschke et al., 1999; Stapley and Benoit, 2000;

Rindflesch et al., 2000). Jenssen et al. use documents (i.e., titles and abstracts) to cal-

culate raw co-occurrence counts, which are used to weight gene entity pairs. They

do not consider the use of statistical measures of association to account for chance

co-occurrence.

Jenssen et al. (2001) perform an evaluation using PubMed3 data. NER is performed

3http://www.ncbi.nlm.nih.gov/PubMed/
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by a simple indexing procedure that searches texts for gene names contained in a large

gazetteer, which is also used to perform coreference resolution by mapping gene men-

tions to the primary symbol associated with the underlying real-world entity. Accuracy

is calculated by computing recall (see Section 3.4.2) with respect to manually curated

entity pairs from two databases, where system pairs are considered true if they are

present in the databases. The authors consider one entity pair sub-domain for evalua-

tion: pairs consisting of two GENE entities (G-G). The system achieves recall scores

of 0.51 and 0.45 respectively for the DIP and OMIM databases. With respect to per-

fect performance (recall of 1.00), this represents reductions in the error rates over the

baseline (random generation of interacting protein pairs) of 46.8% and 44.5%. While

Jenssen et al. (2001) formulate a sound experimental procedure using publicly avail-

able resources, they do not consider precision, meaning that a trivially optimal solution

could be achieved by a system that proposes all possible pairs of entities. Also, they

do not compare to an upper bound on accuracy.

2.4.1.3 GRI: Smith (2002)

Other statistical measures of association can also be used. Smith (2002) looks at chi-

squared (χ2) and log-likelihood ratio (G2) in addition to the PMI and φ2. χ2 is the

unnormalised version of φ2 and is included for completeness. The introduction of G2

is motivated by Dunning (1993), who argues that measures like PMI and z score are

unreliable where counts are low. Smith (2002) performs an evaluation using an internal

corpus of nineteenth century historical documents focusing on British and American

history. NER and coreference are performed using internal tools. Accuracy is com-

puted with respect to a curated resource, which contains expert assessments of the

severity of battles in the American civil war (Dyer, 1960). The accuracy measure used

is the mean reciprocal rank (MRR), i.e. the inverse of the rank of the first correct an-

swer. The authors consider one entity pair sub-domain for evaluation: pairs consisting

of a LOCATION entity and a DATE entity (L-D). G2 was compared to the next best

system which simply uses raw frequency counts to rank entity pairs. Results show

no statistically significant difference for pairs with frequency greater than or equal to

five. However, G2 was found to perform significantly better when low-frequency pairs

were included. Smith (2002) does not compare to lower or upper bounds. And, be-

cause his methodology relies on an internal tools and an internal corpus, the evaluation

framework cannot be re-created for the sake of comparison.
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2.4.1.4 GRI: Filatova and Hatzivassiloglou (2003)

Filatova and Hatzivassiloglou (2003) describe related work that aims to extract entity

pair associations that constitute what they term atomic events. They consider any pair

of entity mentions co-occurring within a sentence to be possible atomic parts of event

descriptions and they add a constraint requiring that a verbal ‘connector’ (i.e., a verb

or a noun that is a WordNet hyponym of event or activity) be present in the intervening

token context between the entity mentions. The authors present a limited evaluation

based on manual analysis of the system output that uses the IdentiFinder system for

NER.4 They use string matching for automatic coreference and also adopt a secondary

approach to that considers two entities B and C to be equivalent for the purpose of their

relationship to a third entity A if the connectors that occur between A and B have at

least 75% overlap with the connectors that occur between A and C. Results suggest that

the system achieves reasonable precision. The evaluation does not, however, address

recall and it does not compare the system to any lower or upper bounds on accuracy.

Follow up work (see Chapter 6) describes a more rigorous extrinsic evaluation based

on extractive text summarisation.

2.4.2 Generic Relation Characterisation

The generic relation characterisation (GRC) task aims to characterise pairs of associ-

ated objects, annotating them with a relation type extracted from the textual context.

The GRC literature approaches the relation characterisation task as a clustering prob-

lem, where the goal is to induce a partition over entity pairs that groups them by relation

type. Then, cluster labelling techniques are applied to annotate clusters with a relation

type label.

Table 2.3 contains an overview of modelling approaches from the GRC literature.

The first column (Citation) contains the reference to the authors of the approach. The

second column (Features) describes the features used to represent entity pair instances.

Here, CC refers to constituent chains derived from a phrase structure parser (see Sec-

tion 2.4.2.4). The third column (Similarity) contains the similarity measure used to

compare entity pair instances. The fourth column (Mod Order Sel) refers to the ap-

proach to model order selection, i.e. identifying the number of clusters. And the fifth

column (Clustering) describes the clustering algorithm used. The discussion in the rest

of this section will provide further details.

4http://www.bbn.com/technology/data indexing and mining/identifinder
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Citation Features Similarity Mod Order Sel Clustering

Hasegawa

et al. (2004)

Intervening words Cosine Hier clust w/

sim thresh

Agglomerative

(complete-link)

Chen et al.

(2005)

Intervening words Cosine Stability-based

resampling

k-means

Zhang et al.

(2005)

Smallest parse frag-

ment spanning ents

Tree

kernel

Hier clust w/

sim thresh

Agglomerative

(group ave)

Chen et al.

(2006)

Words; POS, Ent &

Chunk types; CC

Cosine Spectral order

detection

Spectral

Table 2.3: Overview of modelling approaches from the GRC literature.

Columns correspond to the author (Citation), the feature set (Features), the

similarity measure (Similarity), the approach to model order selection (Mod

Order Sel) and clustering approach (Clustering).

Table 2.4 contains an overview of evaluation frameworks from the GRC literature.

The first column (Citation) contains the reference to the authors of the approach. The

second column (Data) contains the name of the data set used. The third (NER) and

fourth (Coref) columns describes the named entity recognition that was used and the

approach to coreference. “Gold” indicates that the authors used gold standard relation-

forming entity mention pairs as input to the GRC evaluation. “Str Eq” indicates that

coreference resolution is based on string equality. The fifth column (Instance) de-

scribes the instance level for clustering. “Types” indicates that clustering instances

include the concatenated contexts of all entity mention pairs for two given entities and

“Tokens” indicates that every individual mention of an entity pair is considered a sep-

arate clustering instance. “UNK” indicates that the authors do not specify the instance

level. The sixth column (Gold) describes what was used as a gold standard reference

for evaluation. “Manual” indicates a manual evaluation of the system output and “An-

notation” indicates an evaluation with respect to an annotated gold standard corpus.

The seventh column (Sub-Doms) lists the entity pair sub-domains used for evaluation.

These include pairs consisting of a PERSON entity and a GEO-POLITICAL entity (P-G),

pairs consisting of two ORGANISATION entities (O-O), pairs consisting of a PERSON

entity and an ORGANISATION entity (P-O) and pairs consisting of an ORGANISATION

entity and a GEO-POLTICAL entity (O-G). “Combined” indicates that the evaluation

does not consider entity pair sub-domains individually. Finally, the eighth column

(Eval) contains the evaluation measure. This is either the many-to-one f-score (Fn:1)
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Citation Data NER Coref Instance Gold Sub-Doms Eval

Hasegawa et al. (2004) NYT OAK Str Eq Types Manual P-G, O-O Fn:1

Chen et al. (2005) ACE Gold None UNK Annotation P-O, O-G, O-O F1:1

Zhang et al. (2005) NYT OAK None Tokens Manual P-G, O-O Fn:1

Chen et al. (2006) ACE Gold None UNK Annotation Combined F1:1

Table 2.4: Overview of evaluation frameworks from the generic relation char-

acterisation literature. Columns correspond to the author (Citation), the

data set (Data), the named entity recognition used (NER), the approach to

coreference resolution (Coref), the instance level for clustering (Instance),

the type of gold standard reference information (Gold), the entity pair sub-

domains evaluated (Sub-Doms) and the evaluation measure (Eval).

or the one-to-one f-score (F1:1), which are defined in Chapter 3. The discussion in the

rest of this section will provide further details.

2.4.2.1 GRC: Hasegawa et al. (2004)

Hasegawa et al. (2004) introduce the task of GRC (which they refer to as relation

discovery) and describe it in terms of the high-level algorithm in Figure 2.2. The

first and second steps perform pre-processing. The first step is NER, where entity

mentions are identified. Hasegawa et al. use an off-the-shelf tagger called OAK with

an extended hierarchy of 150 entity types (Sekine, 2001). The second step corresponds

directly to the GRI task from the previous section (2.4.1), where relation-forming entity

pairs are extracted. Hasegawa et al. (2004) use a simple approach where all pairs of

entity mentions within 5 tokens of each other are considered to be co-occurring. No

motivation is given for choosing 5 as the threshold. Furthermore, they do not say e.g.

whether stop words in the intervening context are considered or whether other entity

mentions are allowed. Hasegawa et al. also do not explicitly evaluate the accuracy of

their approach to relation identification. The third through fifth steps constitute the

core GRC task. Hasegawa et al. (2004) set the trend for the literature in focusing on

Steps 3 and 4, which constitute the fundamental modelling problems of any clustering

task. The following description of their framework serves to introduce the GRC task.

The third step is concerned with building a similarity matrix to be input to the clus-

tering algorithm. Hasegawa et al. (2004) save the intervening tokens from each pair

of entity mentions to be used as features for the clustering algorithm. Pre-processing
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1 Identify named entity mentions

2 Extract pairs of co-occurring named entities

3 Build similarity matrix

4 Cluster named entity pairs

5 Label clusters

Figure 2.2: Overview of Hasegawa et al. (2004) approach to relation charac-

terisation.

includes the removal of stop words from intervening contexts.5 Hasegawa et al. also

ignore what they term parallel expressions in intervening context, which consist of

tokens used to punctuate lists (i.e., “,.*,”, “and” and “or”). They also strip datelines

(e.g., “WASHINGTON (AP) –” at the beginning of a document) from their corpus

to avoid erroneous relations involving entity mentions found here. Next, they match

entity mentions based on string equality (i.e., entity mentions with the same surface

string are considered to refer to the same underlying entity) and combine interven-

ing token contexts of all matching pairs. For example, “OrganisationA offered to buy

OrganisationB” and “OrganisationA’s proposed purchase of OrganisationB” would

produce a combined context for the <OrganisationA,OrganisationB> tuple consist-

ing of the following stemmed versions of the intervening tokens: “offer”, “to”, “buy”,

“’s”, “propose” and “purchase”. The authors then derive weights for word tokens

and compute similarity between the resulting feature vectors for entity pair contexts.

Hasegawa et al. use a tf*idf weighting scheme. This aims to balance a term’s frequency

(tf ) in a given context with how common it is across contexts (idf ) (Spärck Jones, 1972;

Salton and McGill, 1986). Sparse vectors are removed based on a minimum threshold

for vector norm values, which the authors set to 10. Then, similarity between weighted

feature factors is computed using cosine (defined in Section 5.2.1.2).

In the fourth step, the actual clustering is performed, resulting in a partition that

is intended to group entity pairs by their relation type. Hasegawa et al. (2004) adopt

hierarchical clustering as it is not known in advance how many clusters there should

be and they adopt the complete-link criterion function because it is conservative in

making clusters. Complete-link (e.g., Tan et al., 2005, p517) measures the similarity

of two clusters by the minimum similarity between feature vectors from each cluster.

5Hasegawa et al. (2004) define stop words as tokens with corpus frequency less than 3 or greater
than 100000.
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This is used in agglomerative (i.e., bottom-up) hierarchical clustering to determine

which two clusters are the most similar and thus should be merged next. Hasegawa

et al. (2004) control the number of clusters in the final solution by setting a minimum

threshold on the similarity required to merge two clusters. For their final evaluation,

the authors set the threshold to what they describe as a value just above zero.

Hasegawa et al. (2004) perform an evaluation of the first four steps of their sys-

tem using one year of newswire data from the New York Times (NYT). Accuracy is

computed based on a manual human classification of the entity pairs extracted by the

system in the second step, which is subsequently used to compute a balanced f-score

(Fn:1) based on a many-to-one mapping between clusters and gold standard classes (see

Section 3.4.3.3). They chose two entity pair sub-domains for evaluation: 1) pairs con-

sisting of a PERSON entity and a GEO-POLITICAL entity (P-G)) and 2) pairs consisting

of two COMPANY entities (C-C). For both of these sub-domains, the authors take the

output of the automatically extracted pairs of co-occurring entities and classify them

manually, serving to create a gold standard partition over the data. Hasegawa et al.

report f-scores of 80 and 75 respectively for the P-G and C-C entity pair sub-domains.

They do not compare this to any performance bounds. Furthermore, because their

methodology relies on the output of their relation identification, the evaluation cannot

be re-created for the sake of comparison.

Finally, in the fifth step, labels are chosen for the clusters to serve as relation type

annotation. Hasegawa et al. (2004) simply select the context word tokens with the

highest frequency. Specifically, they weight the descriptiveness of a word token wi by

calculating the number of times two entity pairs in the cluster both have wi in their

context. This is normalised by the total number of pairwise contacts between entity

pairs in the cluster to give a value between 0 and 1. The authors do not explicitly

evaluate the automatically derived labels.

2.4.2.2 GRC: Chen et al. (2005)

Chen et al. (2005) identify two limitations of the Hasegawa et al. (2004) approach to

the GRC task. First, they note that the similarity threshold method for identifying the

number of clusters is not a very good solution as it is not guaranteed to generalise. Sec-

ond, the authors suggest that it is not sufficient for cluster labels to be descriptive; they

should be discriminative as well. That is, cluster labels should differentiate between

clusters as well as being indicative of cluster content. This is described in detail below.
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The first contribution of the Chen et al. (2005) approach is to demonstrate the use

of partitional (k-means) clustering with automatic model order selection (i.e., automat-

ically determining the number of clusters). They employ a criterion function using

resampling-based stability analysis (Lange et al., 2003), which had been used previ-

ously for document clustering (Niu et al., 2004). The authors describe an approach

that evaluates all possible numbers of clusters k over a prespecified range and chooses

the k that maximises the criterion function. The criterion function is computed by 1)

randomly permuting the clustering instances, 2) clustering a subset (90% of full data

set) of the permuted instances, and 3) measuring consistency of the resulting clustering

with result to the clustering over the full data set. Chen et al. (2005) measure consis-

tency by computing the purity (see Section 3.4.3.3) of the clustering solution over the

resampled data with respect to the clustering solution over the original data set and

repeat the process an unspecified number of times.

Chen et al. also move towards formalisation of the task by introducing the use of a

gold standard information extraction corpus for evaluation. They adopt the data from

the Automated Content Extraction (ACE) shared tasks sponsored by the US National

Institute of Standards and Technology.6 This allows them to isolate the performance

of the clustering component by using gold standard relations, filtered by the number of

intervening word tokens. This also suggests the possibility of comparative evaluation

with other approaches given a more detailed specification of the edition of the data used

and any pre-processing. Accuracy is computed with respect to the partition defined by

the gold standard relation type annotation. The authors use a balanced f-score (F1:1)

based on a one-to-one mapping between clusters and gold standard classes (see Section

3.4.3.4).

Chen et al. (2005) evaluate on three entity pair sub-domains: 1) pairs consisting

of a PERSON entity and an ORGANISATION entity (P-O), 2) pairs consisting of an

ORGANISATION entity and a GEO-POLITICAL entity (O-G), and 3) pairs consisting of

two ORGANISATION entities (O-O). For gold standard entity mention pairs occurring

within ten word tokens of each other, the authors report f-scores of 39.3, 50.9 and 37.2

respectively for the P-O, O-G and O-O sub-domains. Taking the mean (macro average)

across entity pair sub-domains, the approach achieves a 7.3 point increase over Chen

et al.’s reimplementation of the Hasegawa et al. (2004) approach. With respect to

perfect performance (f-score of 1.0), this represents a reduction in the error rate of

11.3%. Chen et al. do not evaluate on held out data and do not report whether their

6http://www.nist.gov/speech/tests/ace/
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results are statistically significant. Also, they do not compare to any upper bound.

The second contribution of the Chen et al. (2005) approach is to suggest that la-

bels chosen to annotate clusters in the GRC task should differentiate between clusters

as well as being descriptive. To achieve this, they propose the use of discriminative

category matching techniques from the document classification literature (Fung et al.,

2002). The motivation is the same as that for the tf*idf term weighting scheme and it

is calculated in a similar way by combining a measure of how common a term is across

clusters with the simple within-cluster term frequency used by Hasegawa et al. (2004).

The authors select the two highest ranked labels to describe a cluster.

The authors also propose a method for automatic evaluation of the labelling task

against gold standard relation labels. This relies in information content calculated

using distributional information from a large corpus (Resnik, 1995) and the WordNet

lexical ontology (Fellbaum, 1998). Information content (IC) of a term ti is calculated

as − log p(ti). Thus, IC is high when the probability of encountering ti is low, from

which it follows that lower nodes in a concept taxonomy should have IC greater than

higher nodes. Chen et al. apply an IC-based measure derived by Lin (1997), which is

defined as:

Relatedness(li, l j) =
2× IC

(
lcs

(
li, l j

))
IC (li)+ IC

(
l j
) (2.1)

where li and l j are the labels that are being compared and lcs(li, l j) is the lowest

common hypernym of li and l j in a concept taxonomy (i.e., WordNet). The mean

Relatedness scores for Chen et al. work out to 0.520, 0.571 and 0.581 respectively for

the P-O, O-G and O-O sub-domains. While the authors do not report statistical signif-

icance tests, the discriminative labelling approach achieves a substantial improvement

over a reimplementation of the Hasegawa et al. (2004) approach. The discrimina-

tive system achieves a mean increase of 0.215 points, or a 32.7% reduction in error

rate with respect to perfect performance (Relatedness score of 1.0). However, relying

on lexical resources like WordNet means that the technique does not port to domains

where similar resources are not available.

2.4.2.3 GRC: Zhang et al. (2005)

Zhang et al. (2005) discuss one main contention with the earlier work of Hasegawa

et al., namely that flat feature vectors based on intervening words are not sufficient

for the GRC task. The authors propose a representation based on the smallest parse

tree fragments spanning both entity mentions in a pair (spanning parse). The resulting
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similarity function is based on the output of an automatic parser (Collins, 1999) and

incorporates structural information about word tokens, parts-of-speech, phrase types,

phrase heads, entity types and directionality in phrase structure trees. Like Hasegawa

et al., the authors use hierarchical agglomerative clustering7 and the number of clusters

in the solution is controlled by a minimum threshold on the similarity required to merge

two clusters. The Zhang et al. approach to relation identification also differs from

Hasegawa et al. in that all pairs of entities in the same sentence are considered to be

co-occurring given that there is a spanning parse, as opposed to only those that occur

within five word tokens of each other.

Zhang et al. use the same evaluation framework as Hasegawa et al. (2004) apart

from one significant change with respect to the instance level for clustering and eval-

uation. They argue against the simplifying assumption that pairs of relation mentions

with coreferring entities always have the same relation and thus can be combined to

create a single feature vector. Instead, they create a clustering instance from every men-

tion of a entity pair. This can also be described in the language of semiotics (Peirce,

1933, Paragraph 537) as using entity pair tokens instead of entity pair types.

The authors evaluate on the same entity pair sub-domains as Hasegawa et al.: 1)

pairs consisting of a PERSON entity mention and GEO-POLITICAL entity mention (P-

G) and 2) pairs consisting of two COMPANY entity mentions (C-C). On high frequency

entity pairs (co-occurring 30 or more times), they report many-to-one f-scores (Fn:1)

of 87 and 80 respectively for P-G and C-C. Taking the mean across the entity pair

sub-domains, the approach achieves a 4 point increase over a reimplementation of the

Hasegawa et al. approach. With respect to perfect performance (f-score of 1.0), this

represents a reduction in the error rate of 19.5%. Performance is substantially lower

on less frequent pairs which is likely due in part to the fact that the tree-based simi-

larity model is highly specified and does not include a simpler back-off representation

to cope with sparsity or noise error propagation from the parser. Zhang et al. do not

evaluate on held-out data and do not report whether their results are statistically signif-

icant.

The authors also propose a new approach to labelling clusters based on parse in-

formation. They argue that head words from the root nodes of the minimum spanning

parse fragments are the best source for cluster labels. This is based on the notion of

headedness in syntactic grammars, where a head is the word or category that gets prop-
7Zhang et al. (2005) use the group average criterion function instead of complete-link, based on

performance. Group average measures the similarity between clusters as the average similarity between
their members.
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agated up a phrase structure tree. Another way of describing this notion is that a head

is the main word associated with the root of a phrase or sentence and as such is the

word that is described or specified by the non-head branches in a parse tree. Cluster

labelling is not evaluated or compared to related work.

2.4.2.4 GRC: Chen et al. (2006)

Chen et al. (2006) propose another approach to the GRC clustering task. They incor-

porate a richer feature set than they used in their previous work on the task (Chen et al.,

2005), which includes word tokens from the intervening context, from the context just

before the first entity mention and just after the second entity mention, and from the

entity mentions themselves. The feature set also includes type information for entity

mentions and part-of-speech (POS) tags corresponding to all entity mention and con-

text word tokens. Finally, they incorporate a number of grammatical features based on

parse trees from the Charniak Parser (Charniak, 1999), including chunk phrase types

and grammatical function information for all entity mention and context word tokens,

and constituent chains. Constituent chains capture phrase embedding information in-

formation on the path from the root node of a phrase structure parse tree to the target

leaf node (i.e., an entity mention).8

The authors suggest that previous approaches suffer from an inability to identify

complex structures in the feature space. They apply spectral clustering to the problem,

which performs an elongated k-means clustering9 on the q eigenvectors with the high-

est eigenvalues computed from the Laplacian of the similarity matrix (e.g., Ng et al.,

2002; Sanguinetti et al., 2005; von Luxburg, 2006). This spectral decomposition is es-

sentially a dimensionality reduction technique for similarity matrices where the eigen

decomposition provides a way to create a reduced representation based on the eigen-

vectors that explain the largest amount of similarity (Sanguinetti et al., 2005) and the

Laplacian takes into account the different variance within the various clusters.10

The spectral clustering paradigm of Sanguinetti et al. (2005) also provides a sim-

ple incremental approach to model order selection (spectral order detection). This

starts with q = 2 eigenvectors and continues performing k-means clustering initialis-

8See e.g. Zhang (2005) for details.
9Elongated k-means clustering down-weights distances along radial directions and penalises dis-

tances along transversal directions to account for the elongated nature of the clusters resulting from
orthogonality of the reduced eigenvector space (Sanguinetti et al., 2005).

10In parallel work that forms part of Chapter 5 of this thesis, I also introduced dimensionality reduc-
tion to the GRC task (Hachey, 2006).
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ing q clusters on the centres on the q eigenvectors and initialising an additional cluster

on the origin. It iterates, incrementing q, until the additional cluster after performing

elongated k-means is empty. Results suggest that this performs well on the GRC clus-

tering task. The algorithm creates 21 clusters with the best feature set, where the gold

standard number is 24.

The authors assess the clustering accuracy using the one-to-one f-score (F1:1) from

Chen et al. (2005) (see Section 3.4.3.4). However, they evaluate a single clustering

task over all of the gold standard relations in ACE, i.e. they do not decompose the data

into sub-domains based on entity types like previous approaches but rather evaluate on

the full data with all entity pair sub-domains combined. The approach has one free

feature weight scaling parameter that is tuned on a development test set. The authors

report an f-score of 46.3, achieving a 12.6 point increase over a reimplementation of

the Hasegawa et al. (2004). This represents a reduction in the error rate of 19.0% with

respect to perfect performance and a reduction of 59.7% with respect to a supervised

classifier using the same feature set. The authors do not report whether their results are

statistically significant.

Chen et al. (2006) apply a very interesting technique to the clustering task, how-

ever their definition of the task does not take full account of the original motivation

for the GRC task. Specifically, using entity mention word tokens and entity types as

features may improve scores on the isolated clustering task, but placing two relations

in the same cluster because they have the same entity types is not very interesting and

does not help to create relation type clusters or labels that are descriptive in a way that

is particularly useful e.g. for creating entity sketches. Furthermore, they compute ex-

ternal context based on surface order when the parse tree is available and grammatical

relations could be used instead. They also use a phrase structure parser instead of a

dependency parser, relying on constituency structure instead of taking advantage of

grammatical dependencies such as deep subjects.

2.5 Summary

This chapter began by presenting the background to the relation extraction task. This

was situated within the information extraction framework, which has the practical goal

of extracting structured information from natural language text. This chapter also for-

mulated a definition of a relation mention for the work in this thesis as a predicate

ranging over two arguments, where an argument represents concepts, objects or peo-
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ple in the real world and the relation predicate describes the type of stative association

or interaction that holds between the things represented by the arguments.

Next, various approaches to domain adaptation were discussed. Generic techniques

were motivated by two primary factors. First is the expense of supervised and partially

supervised approaches. In the best case, they require only a small seed set of annotated

data or a handful of examples of a given relation to move to a new domain. In the

worst case, however, they require complete re-engineering including, for supervised

machine learning, large-scale annotation and tuning of algorithm parameters. Second,

supervised and partially supervised approaches require that the relation schema be

known in advance. In reality, this is often not the case when moving to a new domain

and certainly is not the case for ad-hoc applications like on-demand construction of

relation tables from document collections. For example, Sekine (2006) describe such a

system that summarises web search results. These limitations motivate generic relation

extraction, which aims to devise models that learn the relation schema (the taxonomy

of relation types to be identified) for a new domain as well instantiating an ontology

with relation instances.

Various approaches to GRI and GRC were presented and several main shortcom-

ings in the existing literature were identified:

• First, while previous approaches all focus on similarity modelling and clustering

for GRE, there is a lack of standardised task definitions and evaluation frame-

works. Differences in task definition are evident in the named entity recognition

(NER) and coreference resolution (Coref) columns of Tables 2.2 and 2.4. With

respect to GRC, differences are also evident in the instance level (Instance) col-

umn in Table 2.4. Differences in evaluation frameworks are evident in the data

set (Data), gold standard reference information (Gold), entity pair sub-domain

(Sub-Doms) and evaluation measure (Eval) columns in Tables 2.2 and 2.4. These

differences make meaningful comparison across approaches impossible.

• Second, while some recent models from the literature incorporate constituent in-

formation from phrase structure parsers, they do not exploit governor-dependency

information from dependency parsers. Additionally, previous models rely on di-

rect matching of features for computing similarity, which fails to identify simi-

larities between features with different surface strings but similar underlying (or

latent) semantics. For example, the word tokens “hire” and “recruit” can both

be used to describe a BUSINESS relation where a person works for an organisa-
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tion, but this similarity would not be captured by the models from the existing

literature.

• Third, while the claim that adaptation can be achieved without modification of

model parameters is an important motivating factor, it has not been explicitly

tested for GRE by evaluating model performance across different domains. Fur-

thermore, the task has largely been developed and assessed without a concrete

application in mind and, as a consequence, no real evaluation exists of the fully

automatic end-to-end GRE task.

This thesis addresses these shortcomings by formalising the definition and evaluation

of the generic relation extraction task, introducing state-of-the-art models based on

dependency parsing and dimensionality reduction, explicitly evaluating the claim of

modification-free domain adaptation and formalising an extrinsic evaluation based on

extractive summarisation that serves as a test bed for end-to-end GRE.



Chapter 3

Task, Data and Evaluation

The generic relation extraction task is presented, which unifies the previ-
ously disjoint but closely related literatures on generic relation identifica-
tion and generic relation characterisation. Data sets are described that are
derived from publicly available corpora in the news and biomedical do-
mains, allowing the claim of modification-free adaptation to be evaluated.
Finally, evaluation measures are defined for the relation identification and
characterisation tasks. The result is a rigorous and thorough framework
for the evaluation of GRE across domains, including the introduction of
statistical significance testing across entity pair sub-domains.

3.1 Introduction

As discussed in the previous chapter, the work in this thesis is motivated by a num-

ber of shortcomings in the literature including the lack of standardised task definitions

and evaluation frameworks, which would allow meaningful comparison. This chap-

ter moves towards the formalisation of the generic relation extraction (GRE) task. It

proposes: 1) a combined framework for generic relation identification and characteri-

sation, 2) standard data sets based on publicly available relation extraction data which

allow evaluation of both generic relation identification and characterisation and 3) stan-

dard evaluation measures for generic relation identification and characterisation with

respect to gold standard annotation. Section 3.2 contains a description of the combined

framework for GRE. Section 3.3 contains a description of the data used here. Finally,

Section 3.4 contains a description of evaluation measures, including a novel approach

for the GRC task that is useful for error analysis.

32
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Figure 3.1: Overview of main generic relation extraction sub-tasks. Rela-

tion identification comprises the sub-task of identifying relation-forming entity

pairs. Relation characterisation comprises the sub-tasks of clustering entity

pairs by relation type and choosing labels for clusters.

3.2 The Generic Relation Extraction Task

Figure 3.1 gives an overview of the GRE task. Given input with pre-processing that

includes entity mention markup and various linguistic annotations described below,

the first step is generic relation identification (GRI), which identifies relation-forming

entity pairs (defined here as relation mentions, consisting of pairs of entity mentions).

The second step is generic relation characterisation (GRC), which is split into two

sub-tasks. First, the GRC module induces a partition (or clustering) over the relation-

forming entity mention pairs that groups them by relation type. Second, depending on

the application, the GRC module annotates the identified clusters with automatically

chosen labels that are descriptive of the relation type represented by the cluster.

Before proceeding here, it is useful to formalise some of the terminology that will

be used in the rest of the thesis. Definitions for primary terminology can be found in

Table 3.1. In addition, it is worth making a few usage notes for derivative terminology.

The term entity mention pair can refer to any pair of entity mentions (whether they

form a relation or not will depend on the context). The term relation-forming entity

mention pair (also co-occurring entity mention pair) only refers to pairs that do form a

relation. Finally, a relation mention can be untyped or typed depending on the context

(generally untyped in the context of GRI where it is equivalent to a relation-forming

entity mention pair and typed in the context of GRC).

In the rest of this section, the interfaces between each task or sub-task are described

with reference to Figure 3.2, which contains example input and output derived from

the gold standard data sets (described in Section 3.3).



Chapter 3. Task, Data and Evaluation 34

Entity A concept, object or person in the real world

Entity mention An instance of a textual reference to an entity

Entity type A label used to describe the taxonomic class of an entity

Entity schema A taxonomy of possible entity types

Relation A stative association that holds between two entities

Relation mention An instance of a textual reference to a relation

Relation type A label used to describe the taxonomic class of a relation

Relation schema A taxonomy of possible relation types

Table 3.1: Summary of terminology

3.2.1 Example GRE System Input

The input to the GRE task consists of source documents with entity mention markup.

Figure 3.2(a) contains several example sentences from the news and biomedical do-

mains. The first column (S) contains the sentence identifier and the second column

(Sentence Text) contains the text of the sentence (Note: Sentence 1 is from a broadcast

news transcript that does not contain capitalisation). Entity mention boundaries are

marked by square brackets with the type as a superscript on the opening bracket. In the

third row, for example, the sentence ID is 3, the sentence text is “American saxophon-

ist David Murray recruited Amidu Berry”, and there are three entity mentions (i.e., the

PLACE entity mention “American”, the PERSON entity mention “David Murray” and

the PERSON entity mention “Amidu Berry”).

In addition to entity mention markup, the input documents contain linguistic in-

formation identified during pre-processing. Linguistic pre-processing includes sen-

tence boundary identification, word tokenisation, part-of-speech tagging, identifica-

tion of noninflected base word forms (lemmatisation), and dependency parsing. Pre-

processing is described in detail in Section 3.3.

3.2.2 GRE Step 1: Generic Relation Identification

The first step in GRE is generic relation identification (GRI), where the goal is to iden-

tify relation-forming entity mention pairs. The input to the GRI sub-task is described

above in Section 3.2.1 above and consists of sentences from source documents with en-

tity mention markup. For the purpose of the intrinsic evaluation, gold standard entity

mention annotation is used. While this does not reflect the accuracy of an end-to-end
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a) Input to the generic relation extraction (GRE) task

S Sentence Text

1 [PERSON martha stewart]’s company is registered as [ORGANISATION m.s. living omnimedia].

2 [PERSON Toefting] transferred to [ORGANISATION Bolton] from [ORGANISATION Hamburg].

3 [PLACE American] saxophonist [PERSON David Murray] recruited [PERSON Amidu Berry].

4 [protein Smooth muscle talin] prepared from chicken gizzard binds [protein skeletal muscle actin].

5 [protein Profilin] is believed to be an essential regulator of the [source actin cytoskeleton].

6 [gene Cdc3+] encodes [protein profilin], an [protein actin-monomer]-binding protein.

b) Output from the generic relation identification (GRI) module

R S Entity 1 Entity 2

1 1 “martha stewart” “m.s. living omnimedia”

2 2 “Toefting” “Bolton”

3 2 “Toefting” “Hamburg”

4 3 “David Murry” “American”

5 3 “David Murry” “Amidu Berry”

6 4 “Smooth muscle talin” “skeletal muscle actin”

7 5 “Profilin” “actin cytoskeleton”

8 6 “Cdc3+” “profilin”

9 6 “profilin” “actin-monomer”

c) Output from the generic relation characterisation (GRC) module

R S Entity 1 Entity 2 C Cluster Label

1 1 “martha stewart” “m.s. living omnimedia” 1 EMPLOY-EXECUTIVE

2 2 “Toefting” “Bolton” 2 SPORTS-AFFILIATION

3 2 “Toefting” “Hamburg” 2 SPORTS-AFFILIATION

4 3 “David Murry” “American” 3 CITIZEN-OR-RESIDENT

5 3 “David Murry” “Amidu Berry” 4 BUSINESS

6 4 “Smooth muscle talin” “skeletal muscle actin” 5 BIND

7 5 “Profilin” “actin cytoskeleton” 6 CONTROL

8 6 “Cdc3+” “profilin” 7 ENCODE

9 6 “profilin” “actin-monomer” 5 BIND

Figure 3.2: Example input and output for GRE modules.
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system, it isolates the errors that are due to the GRI module. The accuracy of the fully

automatic system is measured in the extrinsic evaluation in Chapter 6 and demonstrated

in the example GRE output in Section 3.2.4 below.1 Here, all pairs of entity mentions

that occur in the same sentence are considered to be candidate relation mentions. Only

considering intra-sentential relation mentions is a simplifying assumption. However,

in the three data sets used for the current work (which all contain at least 900 gold stan-

dard relation mentions), there is only a one instance of a gold standard relation mention

where the entity mentions are in different sentences (see Section 3.3 for details).

The GRI task, therefore, is to consider each pair of entity mentions within a sen-

tence and determine whether the pair constitutes a relation mention or not. The out-

put from GRI is illustrated in Figure 3.2(b). The first column (R) contains a relation

mention identifier. The second column (S) is the sentence identifier, which links the

relation-forming pairs back to the source sentences in Figure 3.2(a). And, the third (En-

tity 1) and fourth (Entity 2) columns contain the individual entity mentions that make

up the relation-forming pair. The fifth row, for example, states that there is a relation

mention (with identifier 5) in Sentence 3 between the two PERSON entity mentions

“David Murray” and “Amidu Berry”. At this point, there is no information about the

type of relation, only about the existence of some relation mention between two entity

mentions with unspecified type.

3.2.3 GRE Step 2: Generic Relation Characterisation

The second step in GRE is generic relation characterisation (GRC), where the goal is to

annotate each relation mention with a label that describes the relation type. The input

to the GRC sub-task is the output from the GRI sub-task described above in Section

3.2.2 and consists of sentences from the source document with entity mentions and

relation-forming pairs identified. For the purpose of the intrinsic evaluation here, gold

standard entity and relation-forming entity pair annotations are used. While this does

not reflect the accuracy of an end-to-end system, it isolates the errors that are due to

1The choice to focus on the relation extraction problem is also justified by the fact that NER is a
relatively well understood task. F-scores on the newswire and broadcast news data from ACE 2005
range from 0.72 to 0.77 for the top systems (NIST, 2006). On other newswire data sets, f-scores are
near 0.90 (e.g., Sang and Meulder, 2003). On biomedical data sets, results are similar to ACE 2005, with
Alex et al. (2007) reporting results of 0.71 on a protein-protein interaction data set. There are various
free and commercial off-the-shelf systems for NER (e.g., Bikel et al., 1999; Curran and Clark, 2003;
Alias-i, 2007). Furthermore, a number of authors have demonstrated effective bootstrapping in various
domains (e.g., Collins and Singer, 1999; Thompson et al., 1999; Jones et al., 2003; Hachey et al., 2005;
Vlachos and Gasperin, 2006), suggesting that adaptation approaches for NER are reasonably mature.
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the GRC module. As mentioned above, the accuracy of the fully automatic system

is measured in the extrinsic evaluation in Chapter 6 and demonstrated in the example

GRE output in Section 3.2.4 below. The GRC sub-task proceeds in two main steps

corresponding to the fifth (C) and sixth (Cluster Label) columns of Figure 3.2(c).

First, the system induces a partition (or clustering) over the relation-forming pairs,

where the goal of the clustering is to group them by relation type. For the current

work, each relation mention (i.e., pair of co-occurring entity mentions) from the out-

put of the GRI sub-task is an instance for clustering. In other words, the clustering

instance level is entity pair tokens instead of entity pair types (see Section 2.4.2.3 for

further discussion). This choice is based on the argument from Zhang et al. (2005)

that different types of relations can exist between different mentions of the same two

underlying entities and is also motivated by the fact that this allows direct linking from

GRC output back to individual relation mentions, which is useful for error analysis

and data exploration. The clustering is based on features of the sentential context of

the relation mention, e.g. the underlined words in the following text snippets:

“[protein Smooth muscle talin] prepared from chicken gizzard binds [protein

skeletal muscle actin]”

“[protein profilin], an [protein actin-monomer]-binding protein”

The output of the clustering task is illustrated in the fifth column (C) of Figure 3.2(c),

where the number corresponds to the cluster identifier to which the relation-forming

pair has been assigned. So, for example, Relation Mentions 6 and 9 are deemed to

have the same relation type and therefore they are placed together in Cluster 5.

Finally, the system identifies a label for each cluster that is descriptive of the rela-

tion type represented by the cluster. In the example above, the label for Cluster 5 is

BIND. It is also the only word that shows up in the context of both Relation Mention

6 and Relation Mention 9 as indicated by the double underline in the example text

snippets above.

3.2.4 Example GRE System Output: Entity Sketches

One possible application of GRE is as a general purpose tool for creating entity sketches

for any document set where entities can be identified. Figure 3.3 contains example

entity sketches for three entities in the news domain2 using fully automatic GRE (in-

2The system is run over the DUC development data, which is described in detail in Chapter 6. This
consists of small document collections on specific topics, which is the reason for the thematic similarity
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cluding NER, relation identification, model order selection, clustering and cluster la-

belling). Model order selection and cluster labelling use the approaches from Chen

et al. (2005) (see Section 2.4.2.2 of the previous chapter). Figure 3.3(a) contains a

sketch for the PERSON entity “Neil Bush”; Figure 3.3(b) for the ORGANISATION en-

tity “NRA”; Figure 3.3(c) for the PERSON entity “Boesky”. The first column (R) of

each sketch contains an identifier for the entity pair. For each pair, the second entity

(ENTITY) and the cluster labels (LABELS) are listed. Labels are presented in rank

order and a manually assigned cluster name is given in parentheses at the end of the

label list. Example text snippets (TEXT1, TEXT2) containing individual mentions of

the given relation are also given to illustrate the source data. These are chosen based

on how representative the pair is of the cluster to which it belongs.3

In Figure 3.3(b), for example, Relation 1 for the ORGANISATION entity “NRA”

(i.e., the National Rifle Association, a personal firearm advocacy group) is related to

the LOCATION entity “Washington”. The pair is grouped into a cluster that can be

interpreted as representing LOCATED relations. The first label for this cluster is “r in”,

where “r” indicates that the label is from the dependency path and “in” indicates that

the dependency type is the preposition in. The labels also include “w office”, where

“w” indicates that the label is from the words in the context of the entity pair and

“office” is the word. The first example text snippet (TEXT1) is “he had an aide call

[ORGANISATION NRA] officials in [LOCATION Washington]” and the second example text

snippet (TEXT EX2) is “[ORGANISATION NRA] headquarters in [LOCATION Washington]”.

The intuition behind this approach to creating entity sketches is that an entity can be

described by the relations that it takes part in. The three relations for “NRA” indicate

that 1) the NRA has headquarters located in Washington, 2) the NRA has a business or

membership relationship with Dennis DeConcini (a U.S. Senator from Arizona), and

3) James Jay Baker is employed as a lobbyist for the NRA.

between the relations (e.g., both relations for “Neil Bush” in Figure 3.3(a) are from a topic that is
concerned with involvement in the financial scandals at the American Savings and Loan institutions in
the 1980s and 1990s).

3This is done by selecting sentences containing pairs with the minimum distance from the mean
(centroid) feature vector for the cluster to which the pair belongs. Distance is measured over LDA
topic vectors using Kullback-Leibler divergence. LDA and Kullback-Leibler divergence are described
in Chapter 5.
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a) Entity sketch for PERSON entity “Neil Bush”

R Relation Description

1 ENTITY: “Denver” (LOCATION)

LABELS: r nn, r subj, r of, r conj, r person, r lex-mod, r appo, r obj, r gen, r inside,

w said, . . . (LOCATED)

TEXT1: “[PERSON Neil Bush], a [LOCATION Denver] oilman”

TEXT2: “in [LOCATION Denver], [PERSON Neil Bush] became”

2 ENTITY: “Amoco” (ORGANISATION)

LABELS: r in, r conj, r gen, r appo, r at, r mod, w office, r for, r lex-mod, r fc, r to,

. . . (EMPLOYMENT)

TEXT1: “[PERSON Neil Bush] worked as a negotiator for [ORGANISATION Amoco]”

TEXT2: “[PERSON Neil Bush] was hired as a landman by [ORGANISATION Amoco]”

b) Entity sketch for ORGANISATION entity “NRA”

R Relation Description

1 ENTITY: “Washington” (LOCATION)

LABELS: r in, r conj, r gen, r appo, r at, r mod, w office, r for, r subj, r nn, r lex-

mod, . . . (LOCATED)

TEXT1: “he had an aide call [ORGANISATIONNRA] officials in [LOCATION Washington]”

TEXT2: “[ORGANISATIONNRA] headquarters in [LOCATION Washington]”

2 ENTITY: “DeConcini” (PERSON)

LABELS: r conj, w secretary, r fc, r of, r gen, r appo, w president, w said, r subj,

w chairman, r obj, . . . (MEMBERSHIP)

TEXT1: “[PERSON DeConcini] accused the [ORGANISATION NRA] of lies”

TEXT2: “[PERSON DeConcini], an [ORGANISATION NRA] ‘Person of the Month”’

3 ENTITY: “James Jay Baker” (PERSON)

LABELS: r conj, r of, r gen, w secretary, r appo, w chairman, r obj, r lex-mod,

r subj, r person, r in, . . . (EMPLOYMENT)

TEXT1: “[PERSON James Jay Baker], the [ORGANISATION NRA]’s top lobbyist”

TEXT2: “[PERSON James Jay Baker], the [ORGANISATION NRA]’s chief lobbyist.”

c) Entity sketch for PERSON entity “Boesky”

R Relation Description

1 ENTITY: “Milken” (PERSON)

LABELS: r conj, r person, r nn, r appo, r lex-mod, r of, w president, r subclass,

r mod, r subj, w judge, . . . (BUSINESS)

TEXT1: “[PERSON Milken] and [PERSON Boesky] ended up striking deals”

TEXT2: “[PERSON Milken] used [PERSON Boesky]’s firm to hide illegal stock trading”

Figure 3.3: Example output: GRE for entity sketches.
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3.3 Data

Two corpora are adapted for tuning and evaluation of systems addressing the GRE task,

allowing for comparative evaluation across the news and biomedical domains. For the

news domain, we use the data from the Automated Content Extraction shared tasks.4

For the biomedical domain, we use the BioInfer data.5

In order to compare results on these two corpora, they are converted to a standard

format following the three basic steps in Figure 3.4. Step 1 takes the raw corpora as

input and outputs a standard XML format for RE data. Core output is an XML doc-

ument containing sentence and word token markup with entity and relation mentions

specified using token standoff (see Appendix A). In Step 2, linguistic information is

added into the XML format. This pre-processing includes part-of-speech tagging and

lemmatisation using the LT-TTT tools (Grover et al., 2000). LT-TTT is a general pur-

pose text tokenisation tool. It is implemented using LT-XML2, a collection of generic

XML text processing tools (Grover et al., 2006). The version used here is an early

version of the upcoming LT-TTT2 release. Lemmatisation in LT-TTT is performed

using the Morpha tool (Minnen et al., 2000). Step 2 also includes dependency parsing

using Minipar (Lin, 1998). (See Chapter 4 for further details of Minipar output and

Appendix A for details of the dependency markup in the XML documents.) Finally,

in Step 3, the data is normalised such that relation mentions are between named entity

mentions where possible. For the ACE data, this consists primarily of a mapping of a

number of nominal entity mentions (e.g., “one half of PBS”) to named entity mentions

(e.g., “Amidu Berry”). For the BioInfer data, this consists primarily of a mapping from

n-ary to binary relation mentions. Details of the respective transformations are given

in the following sections (3.3.1 and 3.3.2).6

Furthermore, for the GRE evaluation here, relation mentions are required to be

between exactly two entity mentions that are in the same sentence7 and are distinct

siblings. First, the requirement that the entity mentions be distinct removes reflexives,

which are relation mentions where either both entity mentions are identical or the type

4http://www.nist.gov/speech/tests/ace/
5http://mars.cs.utu.fi/BioInfer/
6I am waiting to hear from the Linguistic Data Consortium about re-distribution of the modified ACE

data. The modified version of the BioInfer data will be made available free of charge under the same
license terms as the original BioInfer data set.

7There are seven relation mentions in ACE 2004 that cross sentence boundaries. However, all of
them are due to errors in the automatic boundary identification. In ACE 2005, there are six cross-
sentence relation mentions, five of which are due to sentence boundary errors. In the BioInfer data,
there are no relation mentions that cross sentence boundaries because annotation is at the sentence level.
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1 Re-factoring: Convert data to REXML format

2 Pre-processing: Add linguistic markup

3 Re-annotation: Normalise annotation for GRE

Figure 3.4: Basic steps for standardising RE corpora to allow comparative

evaluation.

and normalised surface strings for both entity mentions are identical. Reflexive re-

lation mentions are sometimes introduced erroneously from the annotation, e.g. the

SUBSIDIARY(“afghanistan”,“afghanistan”) relation mention in “Afghanistan’s post-

Taliban government”. The original relation mention in ACE is

SUBSIDIARY(“government”,“afghanistan”). However, because “afghanistan” and

“government” are annotated, rather strangely, as being coreferent, Mapping Rule 4 (de-

scribed in Section 3.3.1) fires and the relation mention ends up being

SUBSIDIARY(“afghanistan”,“afghanistan”). Second, the requirement that the entity

mentions be siblings removes relation mentions where the entity mentions are not im-

mediately contained within the same embedding entity mention or sentence. The pri-

mary effect here is that pairs where one entity mention is embedded within the other

(i.e., one is a parent or grandparent of the other) are not considered. This also means

that other long distance relationships within the entity mention constituent tree (e.g.,

cousins) are not considered. For example, in the text snippet “E-cadherin/plakoglobin

complexes”, the CHANGE/PHYSICAL(“E-cadherin”, “plakoglobin”) relation mention

is kept, but the following two relation mentions are ignored:

OBJECT-COMPONENT(“E-cadherin/plakoglobin complexes”, “E-cadherin”)
OBJECT-COMPONENT(“E-cadherin/plakoglobin complexes”, “plakoglobin”)

Finally, seven entity pair subsets are chosen for each data set based on several

criteria. Relation types are considered to be outliers and filtered if they have less than

3 total mentions. Also, entity pair domains are only used for GRC if they have 30 or

more total mentions and 2 or more distinct relation types. Table 3.2 contains overview

information about the resulting data sets for generic relation identification (GRI) and

characterisation (GRC). For the GRI data, the Total Instances row contains the count of

all possible pairs of entity mentions occurring in the same sentence. And the Proportion

True Instances rows contain the percentage of true relation mentions according to the

gold standard with respect to the total number of possible entity mention pairs. For the

GRC data, the Total Instances row contains the total number of true relation mentions
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Development News Test Biomedical

(ACE 2004) (ACE 2005) (BioInfer)

GRI DATA

Number Ent Pair Subsets 7 7 7

Total Instances 9253 3012 5843

Proportion True Instances (Micro Ave) 11.4% 9.1% 27.2%

Proportion True Instances (Macro Ave) 13.1% 11.0% 26.8%

GRC DATA

Number Ent Pair Subsets 7 7 7

Total Instances 1400 877 1301

Total Relation Types 14 15 4

Types Per Ent Pair Subset (Macro Ave) 3.9 3.3 2.9

Table 3.2: Summary information for GRE data sets.

according to the gold standard. The Total Relation Types row contains the number of

relation types in the full data set (i.e., including all entity pair subsets). And the Types

Per Ent Pair Subset row contains the mean number of relation types across entity pair

subsets.

3.3.1 News IE Data: ACE

3.3.1.1 Overview

The data for the news domain is derived from the IE corpora that were prepared for the

Automatic Content Extraction (ACE) shared tasks.8 For the experiments in this thesis,

the data from the 2004 evaluation is used for development and the data from the 2005

evaluation is used as a held-out test set. Only newswire and broadcast news materials

are used. The 2004 (development) and 2005 (news test) data are non-overlapping. Data

from the ACE evaluations was also used by Chen et al. (2005, 2006). Using data with

unbiased gold standard relation annotation allows rapid, automatic evaluation schemes,

which means results can be reimplemented and compared.

8The US National Institute for Standards and Technology (NIST) sponsors ACE and releases the
training data through the Linguistic Data Consortium (LDC). The NIST project page for ACE is at http:
//www.nist.gov/speech/tests/ace/. The LDC project page for ACE is at http://projects.
ldc.upenn.edu/ace/.
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Source Type Epoch Num Docs

DEVELOPMENT (ACE 2004)

Associated Press Newswire 2000/10-12 73 (21.0%)

Cable News Network Broadcast News 2000/10-12 63 (18.1%)

Voice of America Broadcast News 2000/10-12 57 (16.5%)

New York Times Newswire 2000/10-12 55 (15.8%)

Public Radio International Broadcast News 2000/10-12 38 (10.9%)

American Broadcasting Company Broadcast News 2000/10-12 25 (7.2%)

MSNBC Broadcast News 2000/10-12 19 (5.5%)

National Broadcasting Company Broadcast News 2000/10-12 18 (5.2%)

NEWS TEST (ACE 2005)

Cable News Network Broadcast 2003/03-06 177 (59.4%)

CNN Headline News Broadcast 2003/03-06 40 (13.4%)

Associated Press Newswire 2003/03-06 38 (12.8%)

Agence France Presse Newswire 2003/03-06 27 (9.1%)

Xinhua News Agency Newswire 2003/03-06 13 (4.4%)

New York Times Newswire 2003/03-06 3 (1.0%)

Table 3.3: Sources for ACE 2004 and 2005 news data.

The final set of documents used here is summarised in Table 3.3. The first col-

umn (Source) corresponds to the name of the organisation from which the data was

obtained. The second column (Type) corresponds to the media type of the data source.

Newswire indicates that the data was obtained from a printed news feed. Broadcast

News indicates that the data is obtained from the transcript of a spoken news pro-

gramme. The data from broadcast news sources is generally well edited, though does

not contain capitalisation. For the purposes of evaluating relation identification and

characterisation given gold standard entities, the newswire and broadcast news data

are similar enough to be combined. The third and fourth columns correspond to the

range of months during which the sources were published (Epoch) and the number

and distribution of documents from each source organisation (Num Docs). The total

number of documents is 348 and 298 respectively for the development and news test

data. The overall newswire-broadcast news splits are approximately 36.8%-63.2% and

27.2%-72.8%.
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3.3.1.2 Re-Annotation

After converting the ACE data to the REXML format and performing pre-processing,

the annotation is normalised for the GRE task. This is motivated primarily by the com-

plex, nested nature of the deep linguistic entity annotation in ACE (see description of

mapping rules below). This is also motivated by the desire to create a simplified entity

scheme that allows statistical significance testing across entity pair sub-domains (as

described in Section 3.4.4). Re-annotation proceeds in three steps: 1) mapping nomi-

nal entity mentions to named entity mentions, 2) filtering relation and entity mentions

that are not relevant to the evaluation of the GRE task, and 3) converting entity and

relation types to the final schema.

The mapping performed in the first step is motivated by the prevalence of nominal

entity mentions in ACE, where entities can be referenced by their name (i.e., named

mention), by a common noun or noun phrase (i.e., nominal mention) or by a pronoun

(i.e., pronominal mention). The mapping is also facilitated by the presence of detailed

linguistic annotation which makes it possible to automatically map many nominal en-

tity mentions to named entity mentions. Several aspects of the detailed ACE annotation

are used in the mapping rules: entity extent, entity type and entity mention type. In the

following description of the mapping rules, this information is represented by typeset-

ting conventions illustrated in the following text snippet:

“[per
nam Amidu Barry], [per

nom one half of [org
nam PBS]]”.

where the boundaries of the full entity mention extent are indicated by square brackets,

entity type is a superscript on the opening square bracket, and entity mention type is

a subscript on the opening square bracket. There are three entity mentions, including

one nominal mention and two named mentions:

1. “Amidu Barry” with type PERSON and mention type named (NAM)

2. “one half of PBS” with type PERSON (PER) and mention type nominal (NOM)

3. “PBS” with type ORGANISATION (ORG) and mention type named

Table 3.4 contains a list of possible entity mention types (Label) with a short descrip-

tion (Description), an example (Example) and the number and proportion of occur-

rences in the ACE 2004 and the ACE 2005 data sets.9 ACE 2004 entity types include

9The rules used here only consider nominal and prenominal entity mentions for possible mapping.
It may also be possible to map from the other, less frequent nominal mention types. However, the
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Label Description Example ACE 2004 ACE 2005

NAM Named entity reference “John”, “Fargo” 6903 (30.4%) 4586 (25.4%)

PRO Pronominal reference “they”, “her” 5119 (22.5%) 4684 (25.9%)

NOM Nominal reference “the lawyer” 4853 (21.3%) 4001 (22.1%)

PRE Prenominal reference “[Labour] nominee” 2992 (13.2%) 2489 (13.8%)

BAR Unquantified nominals “lawyers” 1990 (8.8%) 1673 (9.3%)

WHQ WH words and specifiers “UK, [where] . . . ” 511 (2.2%) 367 (2.0%)

HLS Headless mentions “the biggest” 194 (0.9%) 152 (0.8%)

PTV Partitive constructions “some of us” 111 (0.5%) 134 (0.7%)

MWH Multiple-word heads “20 men and women” 63 (0.3%) 0 (0.0%)

Table 3.4: Entity mention types in the ACE source data. Columns contain

the mention type label (Label), a description (Description), an example (Ex-

ample) and the count and percentage of occurrences for ACE 2004 and ACE

2005.

PERSON (PER), ORGANISATION (ORG), FACILITY (FAC), LOCATION (LOC), GEO-

GRAPHICAL/POLITICAL (GPE), VEHICLE (VEH) (LDC, 2004b). ACE 2005 entity

types include PERSON (PER), ORGANISATION (ORG), GEOGRAPHICAL/SOCIAL/

POLITICAL (GPE), LOCATION (LOC), FACILITY (FAC), VEHICLE (VEH) and WEA-

PON (WEA) (LDC, 2005a).

Furthermore, entity heads (see Section 2.4.2.3 for a description of what a head

is) are annotated in ACE and indicated here by an underscore such as “one” in “one

half of PBS”. Finally, entity mention coreference markup in ACE is central to the re-

annotation as mappings are only allowed between two mentions that refer to the same

underlying entity (e.g., “one half of PBS” and “Amidu Barry” above). In the following

description, coreference will either be noted or obvious from the context. In addition,

some of the mapping rules described below make use of aspects of the linguistic pre-

processing introduced at the beginning of Section 3.3 above.

Figure 3.5 contains three example mappings from different rules. The first map-

ping is possible because the entity mention “Michael Martin” is coreferent with and

embedded within the entity mention “Commons speaker Michael Martin” and be-

cause the latter is annotated as having a prenominal mention type, indicating that it

occurs in a modifying position before another noun. Thus, the embedded EXEC-

feasibility would have to be carefully investigated to ensure the mappings are sensible. Some mention
types (e.g., unquantified nominals) would probably be safe, but others (e.g., headless mentions) would
require more careful consideration.
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a) Mapping Rule 1: Prenominal 7→ Embedded Coreferent

< n e g i d = ' 7 ' > < n e > C o m m o n s < / n e > s p e a k e r < n e g i d = ' 7 ' > M i c h a e l M a r t i n < / n e > < / n e >e 2
e 1

e 1
e 2

b) Mapping Rule 5: Nominal 7→ Left Adjacent Coreferent

< n e g i d = ' 3 8 ' > A m i d u B a r r y < / n e > , < n e g i d = ' 3 8 ' > o n e h a l f o f < n e > P B S < / n e > < / n e >e 2
e 1

e 1
e 2

c) Mapping Rule 6: Nominal 7→ Right Adjacent Coreferent

< n e g i d = ' 3 ' > < n e g i d = ' 3 ' > E c u a d o r < / n e > ' s c a p i t a l < / n e > , < n e > Q u i t o < / n e >e 2
e 1

e 1
e 2

Figure 3.5: Example ACE mappings from nominal to named entity mentions.
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UTIVE(“Commons”, “Commons speaker Michael Martin”) relation mention is con-

verted to EXECUTIVE(“Commons”, “Michael Martin”).

Mapping Rule 5 is possible because the entity mention “Amidu Barry” is coref-

erent with and immediately to the left of the entity mention “one half of PBS” and

because the latter is annotated as having a nominal mention type. Thus, the embed-

ded relation mention MEMBERSHIP(“one half of PBS”,“PBS”) with nominal entity

mention “one half of PBS” is converted to the non-embedded, fully named relation

mention MEMBERSHIP(“Amidu Barry”,“PBS”). Mapping Rule 6 is analogous except

that it maps to a named entity mention to the right, converting the embedded relation

mention PART-WHOLE(“Ecuador”,“Ecuador’s capital”) with nominal entity mention

“Ecuador’s capital” to the entity mention PART-WHOLE(“Ecuador”,“Quito”).

The full list of mapping rules is found in Table 3.5. The first column (#) lists

the rule number. The second column (Description of Mapping Rule) contains a brief

textual description of the mapping rule, where the mention type of the original entity

mention is on the left, followed by the 7→ symbol, followed by a specification of how

the target entity mention for the mapping rule is identified. Finally, the third (ACE

2004) and fourth (ACE 2005) columns contain a count of how many times each rule

fired and the percentage of total firings accounted for by each rule for the respective

data sets. Rules are ordered from those that are the most constrained to those that are

the least constrained. In developing these rules, no errors were identified in the mapped

relation mentions from Rules 1 through 12. Mapping errors resulting from Rules 13

and 14 are discussed below.

Rule 1 is illustrated in Figure 3.5 and described above. It is the only rule that maps

from a prenominal entity mention. The remaining rules all map from a nominal entity

mentions to a named or pronominal entity mention.

Rule 2 maps to a coreferent and embedded entity mention occurring immediately

to the left of the head of the original entity mention, e.g.:

“[gpl
nom [gpl

nam Indonesia]’s war-torn [gpl
nam Aceh] province]”

PART-WHOLE(“Indonesia’s war-torn Aceh province”, “Indonesia”)
PART-WHOLE(“Aceh”, “Indonesia”).

Rule 3 maps to any coreferent and embedded entity mention, e.g.:

“[gpl
nom [per

nam gore]’s home state of [gpl
nam tennessee]]”

CITIZEN-OR-RESIDENT(“gore”, “gore’s home state of tennessee”)
CITIZEN-OR-RESIDENT(“gore”, “tennessee”).
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# Description of Mapping Rule ACE 2004 ACE 2005

1 Prenom. 7→ Embedding Coreferent 191 (26.6%) 104 (20.6%)

2 Nominal 7→ Embedded Left Adjacent Prenom. 30 (4.2%) 34 (6.7%)

3 Nominal 7→ Embedded Coreferent 41 (5.7%) 73 (14.5%)

4 Nominal 7→ Embedding Coreferent 11 (1.5%) 3 (0.6%)

5 Nominal 7→ Left Adjacent Coreferent 178 (24.8%) 69 (13.7%)

6 Nominal 7→ Right Adjacent Coreferent 133 (18.5%) 106 (21.0%)

7 Nominal 7→ Left Adjacent Coreferent,

Skip Copula

35 (4.9%) 31 (6.2%)

8 Nominal 7→ Right Adjacent Coreferent,

Skip Copula

3 (0.4%) 1 (0.2%)

9 Nominal 7→ Left Adjacent Coreferent,

Skip Verb+TO BE

1 (0.1%) 1 (0.2%)

10 Nominal 7→ Right Adjacent Coreferent,

Skip Verb+TO BE

0 (0.0%) 0 (0.0%)

11 Nominal 7→ Left Adjacent Coreferent,

Skip Cop and Coreferring Ents

3 (0.4%) 1 (0.2%)

12 Nominal 7→ Right Adjacent Coreferent,

Skip Cop and Coreferring Ents

1 (0.1%) 0 (0.0%)

13 Nominal 7→ Left Coreferent 89 (12.4%) 73 (14.5%)

14 Nominal 7→ Right Coreferent 3 (0.4%) 8 (1.6%)

Table 3.5: Full list of rules for mapping from nominal to named entity men-

tions in ACE. Columns contain the rule identifier (#), the rule description

(Description), and the number and percent of firings for ACE 2004 and ACE

2005.
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Rule 4 maps to any coreferent and embedding entity mention, e.g.:

“[gpl
nam [gpl

nom the [gpl
nom West African] nation] of Senegal]”

PART-WHOLE(“the West African nation”, “West African”)
PART-WHOLE(“Senegal”, “West African”)

The mapping from the nominal entity mention “the West African nation” to the named

entity mention “Senegal” is possible because the full extent of the target entity mention

is “the West African nation of Senegal”, which is subsequently shortened to “Senegal”

by keeping only the string annotated as the entity mention head.

Rules 5 and 6 map to immediately adjacent coreferent entity mentions. These rules

are illustrated in Figure 3.5 and described above. Rules 7 and 8 map to coreferent

entity mentions found respectively to the left or to the right, that have only a copular

verb phrase (i.e., a verb phrase where the lemma of the main verb is “be”) and any

number of adverbs intervening, e.g.:

“[per
nom The last [gpl

nam U.S.] president to visit [gpl
nam Vietnam]] was [per

nam Nixon]”

EMPLOY-EXECUTIVE(“The last U.S. president to visit Vietnam”, “U.S.”)
EMPLOY-EXECUTIVE(“Nixon”, “U.S.”).

Rules 9 and 10 map again to coreferent entity mentions found respectively to the left

or to the right. However, they allow two intervening verb phrases so long as the second

is the infinitival copular (i.e., “to be”) and any number of adverbs, e.g.:

“[per
nam Bush] is probably going to be [per

nom the next [gpl
nam U.S.] president]”

EMPLOY-EXECUTIVE(“the next U.S. president”, “U.S.”)
EMPLOY-EXECUTIVE(“Bush”, “U.S.”).

Rules 11 and 12 map once again to coreferent entity mentions found respectively to

the left or to the right. In this instance, however, they allow any number of coreferent

entity mentions to intervene between the original nominal entity mention and the target

named or pronominal entity mention, e.g.:

“[per
nam Card] is [per

nom a [gpl
nam Washington] insider] and [per

nom a lobbyist for [org
nam

General Motors]]”

EMPLOY-STAFF(“a lobbyist for General Motors”, “General Motors”)
EMPLOY-STAFF(“Card”, “General Motors”)

where both nominal entity mentions (i.e., “a Washington insider” and “a corporate

lobbyist for the automobile industry and General Motors”) are coreferent with the

named entity mention “Card”.
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Finally, Rules 13 and 14 are general rules that map to any coreferent entity men-

tions found respectively to the left or to the right, e.g.:

“[org
nom [per

nam martha stewart]’s company], officially known as [org
nam m. s. liv-

ing omnimedia]”

EMPLOY-EXECUTIVE(“martha stewart”, “martha stewart’s company”)
EMPLOY-EXECUTIVE(“martha stewart”, “m. s. living omnimedia”).

The extremely general nature of Rules 13 and 14 results in some questionable map-

pings. For the most part, the questionable relation mentions resulting from this map-

ping were not clearly erroneous but rather unrealistic in the sense that any tractable

GRE system would be unlikely to be able to recover some of the resulting long dis-

tance relation mentions. For example, Rule 14 triggers the following mapping:

“[per
nam Chapman]’s pursuit of publicity occupied much of the discussion,

despite [per
pro his] professed wish to return to the anonymity that had plagued

[per
pro him], as [per

nom a security guard in [gpl
nam Hawaii]”

CITIZEN-OR-RESIDENT(“security guard in Hawaii”, “Hawaii”)
CITIZEN-OR-RESIDENT(“Chapman”, “Hawaii”).

However, it would be more unrealistic to keep the embedded annotations, which are

not representative of the relation mentions that would be discovered by the GRE task.

To get a sense for the accuracy of Rules 13 and 14, a random sample of twenty

firings were inspected. Among these, four (20.0%) create relation mentions that are

questionable or that could arguably have been mapped to a more suitable target entity

mention. E.g., Rule 13 triggers the following mapping:

“[per
nam Ehud Barak] won the endorsement of [org

nom [per
pro his] Labor party] as

[per
nom [org

pro it]’s candidate for Prime Minister]”

MEMBER-OF-GROUP(“it’s candidate for Prime Minister”, “it”)
MEMBER-OF-GROUP(“Ehud Barak”, “it”)

Here, the pronominal entity mention “it” could arguably be mapped to the named entity

mention “Labor”. This could be addressed by extending the current rules to map from

pronominal to named entity mentions where this is possible. However, the knock-

on effects would have to be carefully investigated. Furthermore, in this instance, the

annotators actually failed to mark Labor as a named entity mention. In the current

work, the mapping is allowed to fire and the resulting relation mentions are kept in the

final data.

A similar problem is encountered when a nominal entity mention is mapped out of

an embedded entity mention, but the other entity mention is a possessive prenominal

pronoun that is not mapped, e.g.:
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“[per
nom [per

nam Gore]’s press secretary], [per
nam Chris Lehane], made it clear in an

interview that [per
nom [per

nam Gore] aides] do not feel bound by [per
nom [per

pro their]
candidate]’s pledge.”

BUSINESS(“their”, “their candidate”)
BUSINESS(“their”, “Gore”)

This could be addressed by not using relation mentions with possessive pronominal

entity mentions or only using them when the possessive pronoun immediately precedes

the second entity mention in the relation and the second entity mention is a named

reference. Again, the knock-on effects would have to be carefully investigated. This

questionable mapping occurred 2 times in the sample. In the current work, the mapping

is allowed to fire and the resulting relation mentions are kept in the final data.

The fourth problem with Rules 13 and 14 from the sample is due to oddities in the

annotation guidelines or execution, e.g.:

“The summit , which is being sponsored by [gpl
nam the European Union], is

meant to show [gpl
nom the [gpl

nam Balkan] states] that [gpl
nam the EU] is preparing

to welcome [gpl
pro them] into [gpl

nom the [gpl
pre European] family].”

GPE-AFF-OTHER(“the European family”, “European”)
GPE-AFF-OTHER(“the European Union”, “European”)

Here, the difficulty is in the complex semantics of the entity mention “the European

family”. This can be understood to refer to the member countries of the European

Union at the time. This suggests that it should actually be annotated as being coreferent

with the other entity mentions referring to the European Union, which it is not. In the

current work, the mapping is allowed to fire and the resulting relation mentions are

kept in the final data.

In the next step in the re-annotation process, certain entity and relation mentions are

filtered. The motivation here is again to simplify the deep, linguistic level of annotation

in the ACE data. First, all entity mentions that do not have a mention type of named

(NAM), pronominal (PRO) or prenominal (PRE) are filtered. (The full list of entity

mention types can be viewed by referring back to Table 3.4.) This serves to remove

all nominal mentions, which are not recognised by most NER systems. Prenominal

mentions are kept because they are often names (e.g., “Labour” in “[per
nom [org

pre Labour]

nominee]”), though not always (e.g., “British prime minister” in “[per
nam [per

pre [gpl
pre British]

prime minister] Tony Blair]”). The ACE 2005 data actually distinguishes between

named and non-named prenominal mentions. However, the ACE 2004 (development)

data does not, so the distinction is ignored for the evaluation here.
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Label Description Example ACE 2004 ACE 2005

SPC Specific referential “a drop”, “Perth” 18356 (80.7%) 14624 (80.9%)

USP Under-specified referential “many people” 2446 (10.8%) 1998 (11.0%)

GEN Generic referential “extremist groups” 1893 (6.2%) 1407 (7.8%)

NEG Negatively quantified “no one” 41 (0.2%) 57 (0.3%)

Table 3.6: Entity mention classes in the ACE source data.

Entity mentions are also filtered based on mention class. Table 3.6 contains a list of

possible entity mention classes (Label) with a short description (Description), an ex-

ample (Example) and the number and proportion of occurrences in the ACE 2004 and

ACE 2005 data sets. The filtering here removes all entity mentions that are not specific

referential, i.e. all mentions that do not refer to a particular, unique object or set of

objects in the real world. Next, relation mentions are removed where one of the entity

mentions is no longer part of the annotation due to the entity filtering rules. Finally re-

lation mentions in ACE 2004 with relation type DISCOURSE are removed. According

to the ACE 2004 Annotation Guidelines for Relation Detection and Characterization

(LDC, 2004c): A DISCOURSE relation is one where a semantic part-whole or member-

ship relation is established only for the purposes of the discourse. Examples include

“Many of these people” and “each of whom”. In ACE 2004, 279 discourse relation

mentions were filtered. In ACE 2005, discourse relation mentions were discontinued.

After filtering, the ACE 2004 data has 13358 entity mentions and 1511 relation men-

tions (down from 22736 and 4374 respectively in the original source). And the ACE

2005 data has 10345 entity mentions and 975 relation mentions (down from 18086 and

3658).

In the final step in the re-annotation process, entity and relation types are changed

to the final schema. This is a simple automatic mapping from the original schema,

which serves to simplify the schemas and make them more similar across the devel-

opment and test sets. Table 3.7 lists the mapping rules, with the first column (#) con-

taining the numeric rule identifier, the second column (Source) containing the types

as they are found in the original source data, the third column (Target) containing the

types after mapping and the last four columns containing the number and proportion

of occurrences in the ACE 2004 and ACE 2005 data sets. In the Source and Target

columns, entity and relation type labels prefixed with “T:” are types and labels prefixed

with “S:” are sub-types. Rows 1 through 4 of Table 3.7(b), for example, specify that



Chapter 3. Task, Data and Evaluation 53

a) Entity type changes

# Source Target ACE 2004 ACE 2005

1 T:GPE (Geo-Political) T:GPL 3262 (87.5%) 3330 (85.3%)

2 T:LOC (Location) 259 (6.9%) 230 (5.9%)

3 T:FAC (Facility) T:FVW 162 (4.3%) 174 (4.5%)

4 T:VEH (Vehicle) 37 (1.0%) 144 (3.7%)

5 T:WEA (Weapon) 7 (0.2%) 28 (7.2%)

b) Relation type changes

# Source Target ACE 2004 ACE 2005

1 S:Located, T:GEN-AFF & 275 (35.1%) 210 (36.3%)

2 S:Near, S:Located 18 (2.3%) 24 (4.2%)

3 S:Based-In, 106 (13.5%) NA NA

4 S:Org-Locationa NA NA 49 (8.5%)

5 S:Cit-Res,b T:GEN-AFF & 70 (8.9%) NA NA

6 T:OTHER-AFF, S:Cit-Res-Rel-Eth 19 (2.4%) NA NA

7 T:GPE-AFF & 15 (1.9%) NA NA

S:Other,

9 S:Cit-Res-Rel-Ethc NA NA 42 (7.3%)

10 T:ART T:AGT-ART & 14 (1.8%) 35 (6.1%)

S:Use-Own-Inv-Mnfd

12 S:Subsidiary T:PRT-WHL & 80 (10.2%) 81 (14.0%)

S:Subsidiary

13 S:Part-Whole, T:PRT-WHL 187 (23.9%) NA NA

14 T:PART-WHOLE NA NA 137 (23.7%)

aLocated, based, headquartered, operates, etc.
bCitizen or resident affiliation
cCitizen, resident, religious or ethnic affiliation
dUser, owner, inventor, manufacturer, etc.

Table 3.7: Changes in ACE entity and relation type schemas. Columns con-

tain the rule identifier (#), the source types (Source), the target types (Target)

and counts and percentages for ACE 2004 and ACE 2005. ‘T:’ and ‘S:’ indi-

cate relation types and sub-types respectively.
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all relation mentions with sub-type LOCATED, NEAR, BASED-IN or ORG-LOCATION

are changed to have type GEN-AFF and sub-type LOCATED. Details of the relation

type schema for the original ACE data sets can be found in Appendix B.

Tables 3.8 and 3.9 contain the GRI and GRC type distributions for the final ACE

2004 and ACE 2005 data sets after the full re-annotation process. The first column

lists the gold standard type. For GRI, this is a binary distinction between an entity

mention pair being in a relation or not being in a relation. For GRC the first col-

umn lists the relation type (with super-types typeset in small capital letters). The next

seven columns list the entity pair sub-domains. These data subsets are constructed

based on four entity types: FACILITY/VEHICLE/WEAPON (FVW or F), GEOGRAPH-

ICAL/POLITICAL/LOCATION (GPL or G), ORGANISATION (ORG or O) and PERSON

(PER or P).

The GRI data sets have fewer instances because relation mentions are removed

where one or both of the entity mentions are prenominal. This is to make the GRI

task consistent with the output from the named entity recognisers used for the extrinsic

evaluation in Chapter 6, which does not mark prenominal entity mentions (e.g., “Scot-

tish” in “Scottish National Health Service”). These instances are not filtered for the

GRC data in order to maximise the number of data points for evaluation.

3.3.2 Biomedical IE Data: BioInfer

3.3.2.1 Overview

The data for the biomedical domain is derived from the IE corpora that have been

prepared and freely distributed as the Bio Information Extraction Resource (BioInfer)

corpus by researchers at the University of Turku (Pyysalo et al., 2007).10 This consists

of 1100 sentences that were selected from the PubMed database of biomedical litera-

ture11. The corpus data was collected by entering known pairs of interacting proteins12

as PubMed search terms. Resulting abstracts (including titles) were searched for sen-

tences containing mentions of two proteins that are known to interact. The epoch of

the resulting corpus includes publication dates up to December 2001, which is when

the sentence selection process was carried out.

10http://mars.cs.utu.fi/BioInfer/
11http://www.ncbi.nlm.nih.gov/pubmed/
12Known pairs of interacting proteins were taken from the Database of Interacting Proteins (DIP).

See http://dip.doe-mbi.ucla.edu/.
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GRI Y/N F-G G-G G-O G-P O-O O-P P-P

Gold Relation-Forming Pair: Yes 26 159 92 266 42 308 56

Gold Relation-Forming Pair: No 65 1041 749 1805 756 1480 2408

Total 91 1200 841 2071 798 1788 2464

GRC Type F-G G-G G-O G-P O-O O-P P-P

EMPLOYEE-MEMBERSHIP-SUBSIDIARY

EMPLOYEE-STAFF 28 275

EMPLOYEE-EXECUTIVE 88 132

MEMBER-OF-GROUP 10 70

OTHER 10 15

EMPLOY-UNDETERMINED 4 9

PARTNER 3

GENERAL-AFFILIATION

LOCATED 26 9 114 200 3

CITIZEN-RESIDENT-RELIGION-ETHNIC 6 6 81 5

PART-WHOLE

PART-WHOLE 174

SUBSIDIARY 44 28 28

PERSONAL-SOCIAL

BUSINESS 35

FAMILY 15

OTHER 4

AGENT-ARTIFICAT

USER-OWNER-INVENTOR-MANUFACT 6

Total 32 189 164 401 51 509 54

Table 3.8: Relation distributions for GRE news development data (ACE

2004). The first column specifies the relation type and the following columns

specify the entity pair sub-domains.
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GRI Y/N F-G F-P G-G G-O G-P O-P P-P

Gold Relation-Forming Pair: Yes 20 36 87 34 201 119 61

Gold Relation-Forming Pair: No 97 148 1216 658 1405 914 1149

Total 117 59 1303 692 1606 1033 1210

GRC Type F-G F-P G-G G-O G-P O-P P-P

GENERAL-AFFILIATION

LOCATED 9 29 9 51 182

CITIZEN-RESIDENT-RELIGION-ETHNIC 36 3

ORGANISATION-AFFILIATION

EMPLOYMENT 104 124

MEMBERSHIP 36

SPORTS-AFFILIATION 14

FOUNDER 8

INVESTOR-SHAREHOLDER 7

OWNERSHIP 3

STUDENT-ALUMNUS 3

PART-WHOLE

GEOGRAPHICAL 19 100

SUBSIDIARY 47

PERSONAL-SOCIAL

FAMILY 42

BUSINESS 16

LASTING-PERSONAL 10

AGENT-ARTIFACT

USER-OWNER-INVENTOR-MANUFACT 13 12

Total 41 41 109 98 322 195 71

Table 3.9: Relation distributions for GRE news test data (ACE 2005). The

first column specifies the relation type and the following columns specify the

entity pair sub-domains.
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It should be noted that the targeted selection process means that sentences always

have relations, which is not representative of a random sample. However, while the

sentences tend to be densely annotated with entity mentions, it is certainly not the case

that there is a relation between all pairs of entity mentions. This is illustrated by the

figures in Table 3.2 above. While the proportion of the total entity mention pairs in

the BioInfer data that are true relation mentions according to the annotation (27.2%)13

is high compared to ACE 2004 (11.4%) and ACE 2005 (9.1%), it is still quite low,

meaning that the relation identification task is still comparatively difficult.

3.3.2.2 Re-Annotation

After converting the BioInfer data to the REXML format (see Appendix A) and per-

forming pre-processing (see the beginning of Section 3.3 above), the annotation is

normalised for the GRE task. While the BioInfer data does include some arguably

nominal entity mentions (e.g., “complex of birch profilin and skeletal muscle actin),

entity mentions are not marked with mention type (let alone full coreference informa-

tion, entity mention types and entity mention classes as described for the ACE data

above) so it is not possible to identify or map nominal entity mentions. As a con-

sequence, the normalisation process for the BioInfer data is simpler than for the ACE

data. Nevertheless, it proceeds broadly in the same three steps: 1) mapping entity men-

tions, 2) filtering relation and entity mentions that are not relevant to the evaluation of

the GRE task, and 3) converting entity and relation types to the final schema.

The first step is necessary because of two aspects of the BioInfer annotation that

are inconsistent with the GRE task as defined here. First, BioInfer allows n-ary rela-

tions over more than two entity mention arguments while the GRE as defined here task

only addresses binary relation mentions. Second, the BioInfer annotation sometimes

marks part-whole and part-part relation mentions differently depending on their syn-

tactic context. The mapping rules are listed in Table 3.10. The first column (#) lists the

rule number. The second column contains a brief rule description on the line where the

rule number is given (e.g., N-ary 7→ Binary). Below this, the second column contains

a list of relation types that are affected in the original BioInfer source data. The third

column (Source) contains a count of how many relation mentions in the original data

were identified for mapping and the corresponding percentage of total mappable rela-

13The total entity mention pairs for this calculation is the total number of pairs of distinct entity
mentions that are siblings and occur within the same sentence after the pre-processing described in this
section.
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# Description / Relation Type Source Target

1 N-ary 7→ Binary
COLOCALIZE 11 (1.9%) 66 (12.9%)

MUTUALCOMPLEX 9 (1.5%) 39 (7.6%)

INTERACT 7 (1.2%) 45 (8.8%)

ATTACH 2 (0.3%) 20 (3.9%)

BIND 2 (0.3%) 6 (1.2%)

COEXPRESS 1 (0.2%) 3 (0.6%)

COPRECIPITATE 1 (0.2%) 3 (0.6%)

SQSIMILAR 1 (0.2%) 10 (2.0%)

2 Part-Whole 7→ Part-Part
MEMBER 258 (44.4%) 84 (16.4%)

CONTAIN 252 (43.4%) 208 (40.7%)

SUBSTRUCTURE 14 (2.4%) 17 (3.3%)

F-CONTAIN 13 (2.2%) 6 (1.2%)

HUMANMADE 10 (1.7%) 4 (0.8%)

Table 3.10: List of rules for mapping entity mentions in BioInfer. Columns

contain the rule identifier (#), the rule description and affected relation types

(Description / Relation Type) and the number and percent of relation men-

tions of the given type in the source (Source) and the mapped (Target) data.

tion mentions. The fourth column (Target) contains a count of how many new relation

mentions are created by the mapping rules and the corresponding percentage of total

new relation mentions.

Rule 1 addresses n-ary relation mentions. The solution here is simply to map to

binary relation mentions. In the following, for example, the top relation mention with

four arguments is replaced by the six distinct binary relation mentions that follow it:

“Four yeast spliceosomal proteins ([AAC/PT N PRP5], [AAC/PT N PRP9], [AAC/PT N

PRP11], and [AAC/PT N PRP21]) interact to promote [AAC/PT N U2 snRNP]
binding to [NAC pre-mRNA].”

CHANGE/INTERACT(“PRP5”, “PRP9”, “PRP11”, “PRP21”)

CHANGE/INTERACT(“PRP5”, “PRP9”)
CHANGE/INTERACT(“PRP5”, “PRP11”)
CHANGE/INTERACT(“PRP5”, “PRP21”)
CHANGE/INTERACT(“PRP9”, “PRP11”)
CHANGE/INTERACT(“PRP9”, “PRP21”)
CHANGE/INTERACT(“PRP11”, “PRP21”)

The resulting binary relation mentions may be argued to be incomplete in that they
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don’t capture the simultaneous interaction between the four proteins.14 However, they

are compatible with the GRE task and the full context of the n-ary relation can still be

inferred by looking at the full list of binary relation mentions for a sentence.

Rule 2 addresses relation mentions that are marked differently depending on their

syntactic context.15 Consider the following two sentences:

“[PT N Smooth muscle talin] prepared from chicken gizzard binds to [PT N

skeletal muscle actin]”

“A binary [CPX complex of [PT N birch [PT N profilin]] and [PT N skeletal
muscle actin]] could be isolated by gel chromatography.”

The first sentence is annotated with one BIND(“Smooth muscle talin”, “skeletal mus-

cle actin”) relation mention. The second sentence, however, is annotated with two

CONTAIN relation mentions where the entity mention “complex of birch profilin and

skeletal muscle actin” is the whole and the entity mentions “birch profilin” and “skele-

tal muscle actin” are the respective parts. In the BioInfer relation type schema, BIND

and CONTAIN are defined as follows:

BIND Non-covalent binding (i.e., formation of a complex, association)
between the arguments.

CONTAIN A component is part of a complex.

For the annotation to be consistent across the two sentences, the second sentence

should also have a relation mention between between “birch profilin” and “skeletal

muscle actin”. Therefore, a CO-X relation mention is added between each entity men-

tion that is annotated as being part of the same whole, e.g. CO-CONTAIN(“birch pro-

filin”, “skeletal muscle actin”).16

The next step in the re-annotation process filters certain entity and relation men-

tions. First, entity mentions are filtered based on top-level entity type. Table 3.11

contains a list of possible types (Label) with a short description (Description), an ex-

ample (Example) and the number and proportion of occurrences in the BioInfer source

data. The examples are with respect to the following sentence:
14It is also the case that for some n-ary relation mentions, such as BIND, all pairwise contacts between

arguments are not necessarily present. This means that some of the binary relation mentions resulting
from the mapping may not be valid. However, the potential noise is considered a reasonable sacrifice in
the context of the GRE evaluation here.

15Relation mentions sometimes being marked differently depending on their syntactic context may
be due to the fact that, as evidenced by early publications (e.g., Pyysalo et al., 2004, 2006), BioInfer
was conceived as a corpus for investigating the effects of parsing on the IE task.

16As discussed in Footnote 14 above, it may not be strictly true that there are pairwise relations
between all entity mentions that are part of the same whole. However, the potential noise is considered
a reasonable sacrifice in the context of the GRE evaluation here.
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Label Description Example N %

PHYSICAL References to real-world objects “acanthamoeba profilin”,

“acanthamoeba actin”

5703 (73.1%)

TEXTBINDING Minimum text span necessary to

resolve entity or relation identity

“inhibits” 1469 (18.8%)

PROCESS Same as CHANGE sub-tree in re-

lation type schema

“Acanthamoeba actin

polymerization”

411 (5.3%)

PROPERTY Properties associated with entity

state (e.g., amount, function)

“rate of Acanthamoeba

actin polymerization”

223 (2.9%)

Table 3.11: Top-level entity types in the full BioInfer entity type schema.

“[phys Acanthamoeba [phys profilin]] [text inhibits] the [prop rate of [proc

[phys Acanthamoeba [phys actin]] polymerization]] in 50 mM KCl”

Here, all entity mentions that do not have the PHYSICAL super-type according to the

entity type schema are removed. This filters entity mentions that do not refer to actual

physical objects (i.e., those with entity type PROPERTY, TEXTBINDING or PROCESS).

This is compatible with the ontological notion of entity in the context of the GRE task,

where an entity mention is assumed to refer to a specific object in the real world.

BioInfer also allows multiple annotations of the same entity mention. This can

happen, for example, when a plural pronominal entity mention refers to more than one

specific entity mention in the same sentence:

“[gene 4a] and [gene 4b] are two genes, one of [gene [gene which]] codes for
the proposed [ptn phosphoprotein] [ptn P]”

where “which” refers back to “4a” and to “4b”. Here, mentions that do not take part

in a relation are removed until there is only one left. As the last step of filtering based

on entity types, relation mentions are removed where one of the entity mentions is no

longer part of the annotation due to the entity filtering rules.

Relation mentions are also filtered based on type. First, relation mentions with type

REL-ENT are removed. These are BioInfer relations where an unnamed entity mention

refers to a named entity mention, e.g.:

“PRP incubated with [ptn IL-6] showed a [amount dose] dependent increase
in [protein TXB2]”

where the REL-ENT(“dose”, “IL-6”) relation mention indicates that dose refers to dose

of IL-6. The original BioInfer data contains 50 REL-ENT relation mentions. After
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PHYSICAL→



SOURCE (R)

SUBSTANCE (B)→



NUCLEIC-ACID (N)

AMINO-ACID (A)→


INDIVIDUAL-PROTEIN (P)

PROTEIN-COMPLEX (C)

PROTEIN-FAMILY (F)

PROTEIN-SUBSTRUCTURE (S)

Figure 3.6: Simplified entity type schema for BioInfer.

filtering, the BioInfer data has 5800 entity mentions and 2116 relation mentions (down

from 7818 and 3020 respectively in the original source).

In the final step of the re-annotation process, entity and relation types are changed

to the final schema. This is a matter of choosing a level in the full relation type schema

from the source BioInfer data that gives several entity pair sub-domains with a suffi-

cient number of relation types and instances for evaluation of the GRC task. Figure

3.6 contains a simplified version of the entity type schema (see Pyysalo et al. (2007)

for details of full entity type schema). The entity pair subset for each relation mention

is determined by choosing the lowest level in this schema where the types of the entity

mentions are siblings. For example, the sub-domain for a relation-forming pair con-

sisting of an INDIVIDUAL-PROTEIN (P) entity mention and a PROTEIN-COMPLEX (C)

entity mention would be P-C. For a pair consisting of a SOURCE entity mention and

an INDIVIDUAL-PROTEIN entity mention – with parent type SUBSTANCE (B), how-

ever, the sub-domain would be R-B. The relation type for the GRC task is simply the

second-level type from the full relation schema (see Appendix B), i.e. one of CAUSAL,

PART-OF, OBSERVATION or IS-A.

Table 3.12 contains the GRI and GRE type distributions for the final BioInfer data

set after the full re-annotation process.17 The first column lists the gold standard type.

For GRI, this is a binary distinction between an entity mention pair being in a relation

or not being in a relation. For GRC, the first column lists the relation type (with

super-types typeset in small capital letters). The next seven columns list the entity pair

sub-domains. These data subsets are constructed as described above based on the eight

entity types under PHYSICAL in Figure 3.6.

The GRC data subsets have fewer instances because a number of relation mentions
17Including the removal of relation mentions that are not between distinct siblings (discussed at the

beginning of Section 3.3).
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GRI Y/N A-N P-P P-C P-F P-S N-N R-B

Gold Relation-Forming Pair: Yes 43 942 130 193 130 49 104

Gold Relation-Forming Pair: No 182 2450 183 521 229 362 325

Total 225 3392 313 714 359 411 429

TYPE A-N P-P P-C P-F P-S N-N R-B

CAUSAL 12 469 27 13 100 9 69

PART-OF 3 43 103 174 12 10 4

OBSERVATION 134 16

IS-A 27 48 14 14

Total 42 694 130 187 126 33 89

Table 3.12: Relation distributions for GRE biomedical test data (BioInfer).

The first column specifies the relation type and the following columns specify

the entity pair sub-domains.

that have vague or undetermined types are ignored for the relation characterisation ex-

periments (but not the relation identification experiments). These include the following

(with their BioInfer definitions):

CORELATE A general, unspecified co-relation between the arguments.

HUMANMADE A relationship that is forced or caused by human inter-
vention. The actual type of the relationship is not stated but is one of
the types in the schema.

RELATE A general, unspecified, non-directional relationship used when
no details of the relationship are known.

CO-* The relations created by Rule 2 for mapping entity mentions (see
Table 3.10 above).

3.4 Intrinsic Evaluation

In the current work, the intrinsic evaluation focuses on the GRI task (Chapter 4) and

on the GRC clustering sub-task (Chapter 5). The evaluation of end-to-end GRE is

addressed in the extrinsic evaluation (see Chapter 6). Existing evaluation scripts for

supervised RE (e.g., the scripts written for the ACE data) are not applicable here as

they assume an output where relations are labelled according to a predetermined rela-

tion type schema. The output of GRE is simply a partition over the data (clustering),
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optionally including cluster labels. In the remainder of this section, an intrinsic eval-

uation for GRE is described. First, Section 3.4.1 defines some standard evaluation

measures. Next, Sections 3.4.2 and 3.4.2 respectively describe the evaluations for GRI

and GRC.

3.4.1 Standard Evaluation Measures

A number of the approaches that are discussed in the following sections rely on some

commonly used evaluation formulae from the IR and NLP literature (e.g., Manning

and Schütze, 1999; Tan et al., 2005; Manning et al., 2008), namely precision, recall

and f-score. Precision and recall are commonly defined in terms of a contingency table

like the following:

Gold

System Yes No

Yes tp fp

No fn tn

where tp consists of true positives (instances correctly classified as belonging to the

target class), fp consists of false positives (instances incorrectly classified as belonging

to the target class), fn consists of false negatives (instances incorrectly classified as

not belonging to the target class), and tn consists of true negatives (instances correctly

classified as not belonging to the target class).

Given the values from the contingency table above, precision P and recall R for

given class are defined as:

Precision = P =
t p

t p+ f p
Recall = R =

t p
t p+ f n

(3.1)

P is the proportion of correct instances among all of the instances that the system

assigned to the target class. R is the proportion of correct instances among all of the

instances that the system should have assigned to the target class.

F-score is a measure that combines precision and recall using the harmonic mean

(Manning et al., 2008):

F(P,R,β) =
(β2 +1)PR

β2P+R
(3.2)

where β is a factor that determines the relative weighting of precision and recall. Con-

vention is to equally weight P and R by using β = 1, which allows the definition to be

simplified to:

F(P,R) =
2PR

P+R
(3.3)
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System Ent Pairs

ID Entity 1 Entity 2

s1 “Toefting” “Bolton”

s2 “Toefting” “Hamburg”

s3 “Hamburg” “Bolton”

Gold Ent Pairs

ID Entity 1 Entity 2

g1 “Toefting” “Bolton”

g2 “Toefting” “Hamburg”

Table 3.13: Example input to GRI evaluation.

This is sometimes referred to as the balanced f-score. F-score measures have the ad-

vantage of being widely used and well understood within the NLP community. Fur-

thermore, they are useful for analysis as it makes it possible to separate and study the

interaction between Type I (precision) and Type II (recall) errors.

3.4.2 Generic Relation Identification

3.4.2.1 GRI Evaluation: Input and Output

The output of the GRI system is a list of entity mention pairs that are considered to

form a relation. This is the primary input to the GRI evaluation. The secondary input

is the list of true relation-forming entity mention pairs from the gold standard data.

Take the following sentence:

“[per Toefting] transferred to [org Bolton] from [org Hamburg].”

As illustrated in Table 3.13, a system might predict three relation mentions while the

gold standard has only two relation mentions. This example will be used to illustrate

the following explanation of GRI evaluation.

3.4.2.2 GRI Evaluation: Precision and Recall

In the context of the GRI task, t pgri is the number of entity mention pairs identified by

the system that are true according to the gold standard annotation. Precision is defined

as:

Precisiongri = Pgri =
t pgri

t pgri + f pgri
(3.4)

where the denominator (t pgri + f pgri) is the total number of entity mention pairs iden-

tified by the system. Recall is defined as:

Recallgri = Rgri =
t pgri

t pgri + f ngri
(3.5)
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where the denominator (t pgri + f ngri) is the total number of entity mention pairs ac-

cording to the gold standard annotation. Taking the example GRI evaluation input in

Table 3.13, t pgri is equal to two as the system entity mention pairs s1 and s2 are the

same as gold standard entity mention pairs g1 and g2 respectively. The total num-

ber of system entity mention pairs is three so Pgri = 2/3 = 0.667 and the total num-

ber of gold standard entity mention pairs is two so Rgri = 2/2 = 1.000. Combined

precision and recall score is computed using the balanced f-score (Equation 3.3) as

F = 2∗0.667∗1
0.667+1 = 0.800.

3.4.2.3 GRI Evaluation: Discussion

The simple GRI evaluation scheme described is an improvement over previous eval-

uations of GRI, in that it defines a combined measure of precision and recall with

respect to an established gold standard. This evaluation is used here to develop and

evaluate approaches to the automatic identification of relation-forming entity mention

pairs with respect to an established RE gold standard. This evaluation does not address

ranking of entity pairs, which is not necessary for the GRC task in isolation. Ranking

approaches are considered in the analysis for the experiments in Chapter 4 and in the

extrinsic evaluation in Chapter 6.

3.4.3 Generic Relation Characterisation

3.4.3.1 GRC Evaluation: Input and Output

The output of a clustering system for GRC is an automatically induced partition that

groups entity mention pairs with respect to relation type.18 One option would be to use

internal measures of cluster quality from the clustering algorithm (e.g., the I2 criterion

function defined in Section 5.2.1.3). However, while these may be useful for compar-

isons among similar systems such as for optimisation, they do not validate the system

with respect to any external objective notion of what is correct. Therefore, they are not

necessarily a reliable measure for comparison of more heterogeneous systems and are

therefore not generally useful for reporting.

The evaluation here uses external measures of clustering accuracy which compare

system output to a gold standard. Thus, the primary input to the clustering evaluation

18While clustering output can also be a dendrogram in the case of hierarchical clustering, it is straight-
forward to use the dendrogram to define a flat partition by cutting the tree at the point that gives the
appropriate number of clusters. Section 5.2.1.3 describes this distinction in more detail and motivates
the use of hierarchical clustering.
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R S Entity 1 Entity 2 System Cluster Gold Relation Type

1 1 “martha stewart” “m.s. living omnimedia” c1 EMPLOY-EXECUTIVE

2 2 “Toefting” “Bolton” c2 SPORTS-AFFILIATION

3 2 “Toefting” “Hamburg” c2 SPORTS-AFFILIATION

5 3 “David Murray” “Amidu Berry” c1 BUSINESS

Table 3.14: Example input to GRC evaluation.

algorithm is the partition defined by the system output. And the secondary input is

a gold standard partition of the same data as defined by the relation type annotation.

Take the following three sentences for example:

1 “[per martha stewart]’s company is registered as [org m.s. living omnimedia]”

2 “[per Toefting] transferred to [org Bolton] from [org Hamburg].”

3 “[per David Murray] recruited [per Amidu Berry].”

These sentences contain four PERSON-ORGANISATION (per-org) entity mention pairs

listed in Table 3.14. The first column (R) contains the relation identifier. The second

column (S) contains the sentence identifier, which links the entity mention pairs back to

the source sentences above. The third (Entity 1) and fourth (Entity 2) columns contain

the entity mentions. The fifth column (System Cluster) contains the cluster identifier

from the system output. And the sixth column (Gold Relation Type) contains the true

relation type from the gold standard annotation.

In this example, the system posits two clusters: c1 (of which Relation Mentions

1 and 5 are instances) and c2 (of which Relation Mentions 2 and 3 are instances).

According to the gold standard annotation, however, there are three relation types:

EMPLOY-EXECUTIVE (of which Relation Mention 1 is the sole instance), SPORTS-

AFFILIATION (of which Relation Mentions 2 and 3 are instances) and BUSINESS (of

which Relation Mention 5 is an instance).

3.4.3.2 GRC Evaluation: Precision and Recall

In the context of the clustering task, an intuitive definition of precision and recall is

in terms of sets. Standard notation used for definition of GRC evaluation measures is

summarised in Table 3.15. For the purposes of these definitions, C and L represent par-

titions over the data D. C represents a partition defined by the output of the clustering

system and L represents a partition defined by the gold standard labelling. Indices on
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D Data points (i.e. clustering instances)

C Partition defined by clustering system output

Ci Output cluster indexed by i

|Ci| Number of data points in cluster Ci

L Partition defined by gold standard labelling

L j Gold standard class indexed by j

|L j| Number of data points in class L j

Table 3.15: Standard notation for GRC evaluation measures.

the partition variables, e.g. Ci and L j, indicate subsets of data points corresponding to

individual clusters (or classes).

In these terms, precision measures the proportion of instances in system cluster Ci

that are correct with respect to gold standard class L j:

Precision(Ci,L j) = P(Ci,L j) =
|Ci∩L j|
|Ci|

(3.6)

Recall measures the proportion of instances in gold standard class L j that the system

correctly grouped together in cluster Ci:

Recall(Ci,L j) = R(Ci,L j) =
|Ci∩L j|
|L j|

(3.7)

These equations require a mapping between system clusters and gold standard classes.

Possible mappings will be described in the following sections.

3.4.3.3 GRC Evaluation: Purity And Inverse Purity

Purity is a standard measure of cluster performance against a gold standard that is

analogous to precision and can be computed in reverse to obtain a measure analogous

to recall. Purity is calculated at the cluster level as:

Purity(X ,Y, i) = max
j

Precision(Xi,Yj) (3.8)

where X and Y define partitions over the data D. Overall purity (i.e. the purity of the

overall clustering) is defined as the weighted mean of the cluster-level purity scores:

Purity(X ,Y ) = ∑
i

|Xi|
|D|

Purity(X ,Y, i) (3.9)
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Standard purity Purity(C,L) measures the extent to which the clusters contain objects

of a single class (Tan et al., 2005).

Inverse purity Purity(L,C) is sometimes reported in conjunction with purity, e.g.

Artiles et al. (2007). This can then be combined using the harmonic mean to give a

balanced f-score for the overall clustering:

Fpur(C,L) = F(Purity(C,L),Purity(L,C)) (3.10)

It is not possible to calculate an f-score at the cluster level as there is no explicit map-

ping between clusters and classes.

Hasegawa et al. (2004) and Zhang et al. (2005) use a variation on purity-based ac-

curacy (Fn:1) to evaluate the relation discovery clustering task, which is defined in terms

of a many-to-one mapping from clusters to gold standard classes that is calculated us-

ing the cluster-level purity measure in Equation 3.8. To define the measure using the

precision and recall formulae from Section 3.4.1, the mapping can be formulated as:

Ω(i) = argmax
j
|Ci∩L j| (3.11)

which maps cluster Ci to the gold standard class LΩ(i) with the highest overlap. The

advantages of this measure are twofold. First, it possible to compute cluster-level

accuracy scores. Second, the mapping is simple and efficient to compute.

3.4.3.4 GRC Evaluation: Chen et al. (2005)

Chen et al. (2005) and Chen et al. (2006) use precision and recall measures for relation

discovery based on an optimal mapping Ω̂ from gold standard classes to clusters:

Ω̂(C,L) = argmax
Ω

∑
i

φ(C,L, i,Ω) (3.12)

where φ(C,L, i,Ω) = |Li∩CΩ(i)|. Chen et al. constrain their mapping to be one-to-one.

If there are more classes than clusters, then some classes are left unaligned (likewise

if there are more clusters). Therefore the measure penalises systems that propose too

many or too few clusters.

The one-to-one mapping constraint also allows the f-score to be calculated for in-

dividual cluster/class pairs. One-to-one precision P1:1 and recall R1:1 are defined at the

cluster level as:

P1:1(C,L, i,Ω) = Precision(CΩ(i),Li) (3.13)

R1:1(C,L, i,Ω) = Recall(CΩ(i),Li) (3.14)
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The cluster-level balanced f-score is computed as:

F1:1(C,L, i,Ω) = F(P1:1,R1:1) (3.15)

where the C, L, i and Ω parameters to precision and recall are omitted for readability.

Overall precision and recall can computed like overall purity,19 from which an overall

f-score is computed in the standard way.

Like the Fn:1 measure in the previous section, the F1:1 measure here has the advan-

tage of providing cluster-level accuracy scores. In contrast to Fn:1 measure, the F1:1

measure provides a stricter accuracy measure where classes cannot be aligned with

multiple clusters. The disadvantage of the F1:1 measure is that it can be prohibitively

expensive to perform an exhaustive search of one-to-one mappings. However, a simple

greedy search through possible alignments with a beam of width five has linear time

and space complexity and provides a reasonable approximation.20

Purity-based accuracy measures based on one-to-one mappings are well attributed

in the NLP and general clustering literatures, e.g. for evaluation of unsupervised part-

of-speech tagging (Haghighi and Klein, 2006; Johnson, 2007) and coreference resolu-

tion (Popescu-Belis and Robba, 1998; Trouilleux et al., 2000; Luo, 2005).

3.4.3.5 GRC Evaluation: Pairwise Precision and Recall

While the previous measures require an explicit mapping between the clustering output

and the gold standard labelling, there is another group of measures that does not. These

are collectively referred to as pairwise measures as they are based on the distribution

of pairs of data points and are computed by calculating the agreement between pairs

of data points, i.e. whether they are grouped together in both the system clustering and

the gold standard. These are often defined in terms of the following contingency table:

Classes

Clusters Same Diff.

Same a b

Diff. c d

where a corresponds to the number of pairs of data points in the same cluster and in

the same class, b corresponds to the number of pairs in the same cluster but in different

19Chen do not specify how they compute their overall measures. My implementation weights both
precision and recall by cluster size.

20Exact solutions are also possible, e.g. Luo (2005) describes an approach that uses the Kuhn-
Munkres algorithm and has polynomial time complexity.
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classes, c corresponds to the number of pairs in different clusters but in the same class,

and d corresponds to the number of pairs in different clusters and different classes.

Given the values of the contingency table above, pairwise precision Ppw and recall

Rpw for the overall clustering are calculated as:

Ppw(a,b) =
a

a+b
Rpw(a,c) =

a
a+ c

(3.16)

A balanced f-score for the overall clustering is calculated as:21

Fpw = F (Ppw,Rpw) (3.17)

where the a, b and c parameters are omitted for readability. This is very similar to

other pairwise index measures widely used in the clustering literature such as Rand,

Jaccard and Fowlkes-Mallows.22 Rand Index (a + d)/(a + b + c + d) is the same as

accuracy (sometimes used in the NLP literature (e.g., Manning and Schütze, 1999,

p269)). It is considered a bad measure because f n counts inflate scores and make it

difficult to distinguish between systems. The Jaccard Coefficient a/(a + b + c) and

Fowlkes-Mallows Index a/
√

(a+b)(a+ c) address this problem. However, they are

less familiar to the NLP research community and do not separate Type I and Type II

errors like Fpw.

A disadvantage of pairwise f-score (and other pairwise measures) is that it is not

possible to compute cluster-level scores. Nevertheless, pairwise f-score is commonly

used for document clustering tasks (e.g., Basu et al., 2004; Liu et al., 2007a). It has also

been used to evaluate automatic lexical acquisition tasks such as grouping adjectives

by meaning (Hatzivassiloglou and McKeown, 1993) and induction of verb frames and

classes (Schulte im Walde, 2003).

3.4.3.6 GRC Evaluation: Discussion

The n : 1 and 1 : 1 accuracy measures discussed here (Sections 3.4.3.3 and 3.4.3.4 re-

spectively) provide intuitive and efficient performance measures based on mappings to

gold standard relation type annotation. This makes it possible to perform rapid proto-

typing and evaluation with respect to an explicit mapping between system clusters and
21An alternative combined pairwise score is normalised mutual information (e.g., Strehl and Ghosh,

2003; Manning et al., 2008). Preference is given here to pairwise f-score based on its interpretability
and its familiarity in NLP. Exclusive use of either pairwise f-score or normalised mutual information is
also supported empirically by an evaluation of document clustering that shows identical results using
both measures (Basu et al., 2004).

22See e.g. Halkidi et al. (2001); Knowles and Kell (2005); Tan et al. (2005) for an overview of related
pairwise index measures for clustering evaluation.
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gold standard classes. The pairwise accuracy measure (Section 3.4.3.5), on the other

hand, does not require an explicit mapping between clusters and gold standard classes,

which eliminates the alignment procedure and associated parameters from the evalu-

ation algorithms. In addition, the pairwise measures are based on pairs of clustering

instances, which is a natural level for error analysis of clustering. The disadvantage of

the pairwise accuracy measures is that they do not define cluster-level scores.

In the current work, the one-to-one f-score (F1:1) and the pairwise f-score (Fpw)

are used together for development and evaluation. The F1:1 measure is used in Chen

et al.’s closely related work on relation discovery and it is also well attributed in the

literature for related NLP tasks like coreference resolution and unsupervised part-of-

speech tagging. The Fpw is also well attributed in the clustering literature, but has

not previously been used for evaluation of the GRC task. Furthermore, instance pairs

are used for error analysis of the clustering output and it is therefore useful to have a

related evaluation measure for consistency.

3.4.4 Statistical Significance Testing

Most of the experiments here use paired Wilcoxon signed ranks tests (e.g., Coolican,

2004) across entity pair sub-domains to check for significant differences between sys-

tems. This is non-parametric analogue of the paired t test. The t test is not used here

because it assumes that the underlying distribution is normal, which is not the case for

all of experimental results here. The null hypothesis is that the two populations from

which the scores are sampled are identical. Following convention, the null hypothesis

is rejected for values of p less than or equal 0.05.

3.5 Summary

This chapter addressed shortcomings in the literature with respect to standardised task

definitions and evaluation. In particular, previous approaches have adopted different

task definitions and evaluation approaches making meaningful comparison across ap-

proaches difficult. First, in Section 3.2, a combined framework for generic identifica-

tion and characterisation was presented. Second, in Section 3.3, two standard and pub-

licly available IE corpora were described along with a three-stage process (re-factoring,

pre-processing, re-annotation) for adapting these corpora to the GRE task. From these

corpora, three comparable data sets are derived: 1) the ACE 2004 data is used for de-
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velopment in the news domain; 2) the ACE 2005 data is used for testing in the news

domain; and 3) the BioInfer data is used for testing in the biomedical domain. This

allows evaluation across distinct epochs within the news domain and evaluation of the

claim of modification-free domain domain adaptation.

Finally, in Section 3.4, detailed frameworks were presented for evaluating generic

relation identification characterisation with respect to gold standard relation extraction

data. Unlike many of the previous evaluations, these frameworks are fully automatic

and do not require human judgements of system output. Furthermore, the multiple

entity pair sub-domains provide a natural level for statistical significance testing which

is completely absent from previous work on the GRI and GRC tasks. The result is a

rigorous experimental design with held-out evaluation data sets in multiple domains

and the use of paired Wilcoxon signed ranks tests to quantify significant differences

across entity pair sub-domains.



Chapter 4

Generic Relation Identification

Experiments are reported that address the generic relation identification
task, comparing window-based models (e.g., setting a threshold on the
number of intervening tokens) for establishing entity mention pair co-
occurrence. In related work, co-occurrence windows have been defined
in terms of sentence boundaries or intervening token counts. Here, a new
approach is introduced that defines windows based on syntactic governor-
dependency paths. Experimental results suggest that a combined model
based on intervening words and dependency paths is preferable as it is
better in terms of recall while being statistically indistinguishable in terms
of precision and f-score. Furthermore, the accuracy of optimised models is
shown to be comparable across domains. Importantly for applications of
GRE, analysis demonstrates that many false positive relations are actually
implicit relations that are not part of the gold standard relation schemas.
Analysis also suggests that the f-score of high-recall models could be im-
proved using false positive filters.

4.1 Introduction

Related approaches to generic relation identification (GRI) have previously been spread

across the distinct literatures of entity association mining and relation discovery (dis-

cussed in Chapter 2). This chapter contains a specification of the task in terms of model

parameters that incorporate aspects of these various approaches. Figure 4.1 contains

an overview of the GRI task, which is split into two main sub-tasks. The input is

a collection of natural language documents with entity mentions identified.1 The first

sub-task has the goal of identifying relation-forming entity mention pairs and outputs a

1For the evaluation here, the input includes gold standard entity annotation as discussed in Chapter
3. The ACE data input only includes entity mentions that are named or pronominal as discussed at the
end of Section 3.3.1.2.

73
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Figure 4.1: Overview of GRI sub-tasks.

list of co-occurring entity mention pairs. The second sub-task has the goal of applying

a ranking over co-occurring pairs that indicates e.g. the strength of association. The

primary experimental focus of this chapter is on the identification sub-task, which can

be evaluated with respect to gold standard data. The analysis in this chapter (Section

4.5.4) and the extrinsic evaluation (Chapter 6) address the ranking sub-task.

As discussed in Chapter 2, previous GRI work has largely failed to use standardised

data or evaluation measures and has provided little comparison across approaches.

This chapter employs a principled framework for evaluation (introduced in Chapter 3)

that makes use of gold standard relation extraction data to optimise and evaluate GRI

models. News data from the ACE shared tasks is used for development and for testing

on a held-out evaluation set in the same domain. The presence of double annotation

in the ACE 2005 data makes it possible to compute a human upper bound for the GRI

task. Biomedical data from BioInfer is also used, which allows assessment of model

consistency across application domains.

Previous GRI work has relied extensively on co-occurring entity mention windows

defined in terms of intervening token thresholds or in terms of natural boundaries like

documents or sentences. Some constraints on intervening tokens have also been sug-

gested. Filatova and Hatzivassiloglou (2003), for example, require a verbal connector

in the intervening context. And, Zhang et al. (2005) require a parse that spans both

entity mentions and thus includes a path connecting them. In the literature on su-

pervised (including rule-based) relation extraction (RE), features based on parse trees

have been used successfully to learn extractors for specific tasks and domains (e.g., Ze-

lenko et al., 2002; Bunescu et al., 2004; Daraselia et al., 2004; Harabagiu et al., 2005;

Riedel and Klein, 2005; Zhou et al., 2005; Fundel et al., 2007; Liu et al., 2007b). How-

ever, beyond requiring a spanning parse tree, no previous approaches have investigated

the use of syntactic parsing to constrain GRI. The current work investigates the use
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of domain-neutral co-occurrence windows for GRI that are based on paths connecting

entity mention pairs through syntactic parse trees.

A detailed description of previous work can be found in Chapter 2. This chapter

begins with a description of the setup for experimental evaluation in Section 4.2. Next,

Section 4.3 contains a specification of the models that are compared here. Sections

4.4.1 through 4.4.4 contain experimental results and discussion. Finally, Section 4.5

contains a detailed analysis of the experimental results.

4.2 The Task: Experimental Setup

4.2.1 GRI Based on Co-occurrence Windows

Previous work on GRI has been based on defining a window and counting all en-

tity mention pairs within that window as co-occurring or relation-forming. These

approaches can be generalised in terms of the GENERICRELATIONID algorithm in

Figure 4.2. This takes as input an array of entity mentions E and the Boolean function

ISPAIR. The ISPAIR function returns true if two entity mention indices constitute a

co-occurring pair and false otherwise. Figure 4.2 includes the ISPAIRbaseline function

as an example, which simply counts all pairs of entity mentions occurring in the same

sentence as relation-forming pairs. The GENERICRELATIONID algorithm starts by

initialising the set of entity mention pairs P to the empty set. It then loops over all pos-

sible pairs from E, which is assumed to be sorted in terms of the order of occurrence

(i.e., increasing entity mention start location as the primary sort index and decreas-

ing entity mention end location as the secondary sort index, which places embedded

entity mentions after their parent embedding entity mentions). Pairs are added to P
if the text describes a relation between them. The experiments here will be based on

different definitions of the ISPAIR function, based on intervening token windows and

dependency path windows. These are defined in Section 4.3 below.

4.2.2 Data and Evaluation

The evaluation uses news data from the Automatic Content Extraction (ACE) 2004 and

2005 shared tasks and biomedical data derived from the BioInfer corpus (see Chapter

3 for details of data sets and preparation). The ACE 2004 data is used for development

experiments. The ACE 2005 data serves as the held-out news test set and the BioInfer

data serves as the biomedical test set. The evaluation measure used here is the balanced
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GENERICRELATIONID: E, ISPAIR

1 P ←{}
2 i← 0

3 while i≤ length(E)

4 j← i+1

5 while j ≤ length(E)

6 if ISPAIR(i, j)

7 P ← P ∪ [i, j]

8 i← i+1

9 return P

ISPAIRbaseline : i, j

1 if sent(i) = sent( j)

2 return true

3 else
4 return f alse

Figure 4.2: Algorithm for generic relation identification with baseline function

for identifying co-occurring entity mention pairs.

f-score described in Chapter 3 (Section 3.4.2). This is calculated with respect to the

gold standard data where precision is defined as the number of correct entity mention

pairs divided by the number of predicted entity mention pairs and recall is defined as

the number of correct entity mention pairs divided by the number of gold standard

entity mention pairs.

An important aspect of the evaluation here is the introduction of an upper bound

based on human agreement. The ACE 2005 data includes markup from two human

annotators and a final adjudicated version of the markup, which makes it possible to

compute inter-annotator agreement. This is calculated by first obtaining a mapping

from entity mentions marked by annotators to entity mentions in the adjudicated gold

standard annotation. The mapping used here is derived from the ACE 2005 evaluation

script, which computes an optimised one-to-one mapping based on maximal character

overlap between entity mention strings LDC (2004a). Given this mapping, it is possible

to determine for each putative entity mention pair whether the annotators marked a

relation mention. Figure 4.3 contains the ISPAIRhuman function which returns true if a

relation mention between entity mentions i and j is marked by the given annotator. This

assumes that annotated relation mentions can be read from a two-dimensional matrix

Al that contains entries for all relation-forming entity mention pairs in the markup from

annotator l. This matrix is read from a file containing relation mention markup over

the mapped entity mention identifiers.

Table 4.1 contains precision (P), recall (R) and f-score (F) results for the individual
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ISPAIRhuman : i, j,Al

1 if exists(Al[i, j])

2 return true

3 else
4 return f alse

Figure 4.3: Function for computing relation identification values for annota-

tors.

P R F

Human 1 0.888 0.697 0.780

Human 2 0.924 0.653 0.761

Mean 0.906 0.675 0.773

Table 4.1: Precision (P), recall (R) and f-score (F) results for human annota-

tors against adjudicated gold standard.

human annotators when compared to the final adjudicated data set. The first two rows

contain the individual annotator results and the bottom row contains the mean of the

two individual annotators. Interestingly, the annotators have high agreement with the

adjudicated data set in terms of precision and lower agreement in terms of recall. This

suggests that the annotators rarely marked bad relation mentions but each missed a

number of relation mentions that the other annotator marked. The mean human f-

score agreement is 0.773. This is a good score with respect to other relation extraction

annotation efforts that report inter-annotator agreement (e.g., Alex et al. (2008b) report

f-score agreement of 0.761 for a protein-protein interaction corpus and 0.741 for a

tissue expression corpus).

4.3 Models

In this section, the different models of entity mention co-occurrence used to extract

relation-forming pairs are described in detail. Figure 4.4 contains an example sentence

and the entity mention pairs extracted by various possible systems based on the co-

occurrence models used here. The first row contains the example sentence where entity

mention starts and ends are marked with square brackets and the entity mention type is
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Example

Sentence

[place American] saxophonist [person David Murray] recruited [person

Amidu Berry] and DJ [person Awadi] from [organisation PBS].

Baseline {<American,David Murray>, <American,Amidu Berry>,

<American,Awadi>, <American,PBS>,

<David Murray,Amidu Berry>, <David Murray,Awadi>,

<David Murray,PBS>, <Amidu Berry,Awadi>,

<Amidu Berry,PBS>, <Awadi,PBS>}
Event {<American,Amidu Berry>, <American,Awadi>,

<American,PBS>, <David Murray,Amidu Berry>,

<David Murray,Awadi>, <David Murray,PBS>}
Toks

(t=0)

{}

Toks

(t=2)

{<American,David Murray>, <David Murray,Amidu Berry>,

<Amidu Berry,Awadi>, <Awadi,PBS>}
Toks

(t=5)

{<American,David Murray>, <American,Amidu Berry>,

<David Murray,Amidu Berry>, <David Murray,Awadi>,

<Amidu Berry,Awadi>, <Amidu Berry,PBS>,

<Awadi,PBS>}
Deps

(d=0)

{<American,David Murray>, <Amidu Berry,Awadi>

<Amidu Berry,PBS>, <Awadi,PBS>}
Deps

(d=1)

{<American,David Murray>, <David Murray,Amidu Berry>,

<David Murray,Awadi>, <Amidu Berry,Awadi>,

<Amidu Berry,PBS>, <Awadi,PBS>}
Comb

(t=2,d=0)

{<American,David Murray>, <David Murray,Amidu Berry>,

<Amidu Berry,Awadi>, <Amidu Berry,PBS>,

<Awadi,PBS>}
Gold

Standard

{<American,David Murray>, <David Murray,Amidu Berry>,

<David Murray,Awadi>, <Amidu Berry,PBS>,

<Awadi,PBS>}

Figure 4.4: Example sentence and extracted entity mention pairs corre-

sponding to various co-occurrence models: Baseline, atomic events (Event),

intervening tokens (Toks), dependency paths (Deps) and Gold Standard.

Where relevant, window size is specified in parentheses under the model

type.
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indicated by the superscript text to the right of the opening bracket. In the remaining

rows of the table, the model type is specified in the first column and the set of entity

mention pairs extracted by that model is given in the second column. The models are

described in detail in the following sections.

4.3.1 Baseline

The baseline system uses the ISPAIRbaseline function defined in Figure 4.2. As men-

tioned, this counts all pairs of entity mentions occurring in the same sentence as

relation-forming pairs. This is the same co-occurrence model used by Smith (2002).

An example sentence and the relation-forming pairs extracted by the baseline model

can be seen in Figure 4.4. The baseline model has perfect recall with respect to the

gold standard relation mention set in the last column but it also generates the most

precision errors of all the models. For example it posits a relation mention between

“American” and “Amidu Berry”, which is clearly not supported by the semantics of

the sentence and is not actually true in the world as Amidu Berry is from Senegal.

4.3.2 Atomic Events

The results here are also compared to a system based on the approach to identifying

atomic events from Filatova and Hatzivassiloglou (2003). This uses the ISPAIRevent

function defined in Figure 4.5. This accepts all pairs of entity mentions that 1) occur

in the same sentence and 2) have a verbal ‘connector’ (i.e., a verb or a noun that is

a WordNet hyponym of event or activity) in the intervening context. The ISPAIRevent

function assumes access to a function (intervening-connectors) that returns the set of

connectors that occur between the two entity mentions indexed by i and j. An example

sentence and the relation-forming pairs extracted by the event-based model (Event) can

be seen in Figure 4.4. While this example suggests that the event-based model should

not be expected to have high recall for relation identification, the model is useful for

comparison. Furthermore, despite having low recall, it might provide a method for

identifying long-distance verbal relation mentions (explored in Section 4.4.3 below).

4.3.3 Intervening Token Windows

The next model of entity mention co-occurrence is based on intervening token windows

(Toks). It uses the ISPAIRtoks function defined in Figure 4.6. This counts all pairs of
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ISPAIRevent : i, j

1 if sent(i) = sent( j) and count(intervening-connectors(i, j))≥ 1

2 return true

3 else
4 return f alse

Figure 4.5: Function for GRI based on Filatova and Hatzivassiloglou (2003)

atomic events.

entity mentions that 1) occur in the same sentence and 2) have t or fewer intervening

tokens. This assumes access to a function (intervening-tokens) that returns the set of

tokens that occur between the two entity mentions indexed by i and j. For the current

work, stop word tokens and entity mention word tokens (from other entity mentions

than the two under consideration) are included in the count of intervening tokens. Most

previous GRI work has used some variant of this model. Hasegawa et al. (2004), for

example, use the ISPAIRtoks function with the intervening token threshold t set to 5.

However, Hasegawa et al. do not explicitly motivate this choice.

An example sentence and the relation-forming pairs extracted by the intervening

token (Toks) model with various settings of the threshold t can be seen in Figure 4.4.

The second, third and fourth rows correspond to models with t set to 0, 2 and 5 re-

spectively. The t=0 system is the worst in terms of recall on the example sentence

as there are no entity mention pairs with zero intervening tokens. The t=2 system

does well in terms of precision, generating one false positive relation mention between

“Amidu Berry” and “Awadi”.2 It does less well in terms of recall due to missing the

<David Murray,Awadi> and <Amidu Berry,PBS> relation mentions. The t=5 sys-

tem achieves perfect recall on the example sentence, but generates two false positive

relation mentions (i.e., <American,Amidu Berry> and <Amidu Berry,Awadi>).

Figure 4.7 contains optimisation results for setting the intervening token threshold

t on the news development data (ACE 2004). The shaded bars correspond to mean

f-scores (actual value printed above the bars) for different settings of t (specified along

the bottom of the horizontal axis). The best f-score is shown in bold. Values that are

statistically distinguishable from the best (i.e., p ≤ 0.05) are underlined. The results

2It could be argued that there is an implicit relation mention in the example sentence from Figure
4.4 between “Amidu Berry” and “Awadi” because the are both members of “PBS”. However, implicit
relation mentions are not annotated in the ACE corpora.
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ISPAIRtoks : i, j, t

1 if sent(i) = sent( j) and count(intervening-tokens(i, j))≤ t

2 return true

3 else
4 return f alse

Figure 4.6: Function for GRI based on intervening token windows.
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Figure 4.7: Window size results for token-based model. The best score

is in bold and those that are statistically distinguishable from the best are

underlined.

suggest that the best performance is achieved with t set to 2, though this is not reliably

different from scores for t=1 and t=4 which suggests a range of optimal values from 1

to 4. For the comparisons in the rest of this chapter, the Toks model should be assumed

to have t set to 2 unless stated otherwise. Recall (R) and precision (P) are plotted

as dotted grey and solid black lines respectively, demonstrating that as t is increased,

recall goes up dramatically and precision goes down. Recall and precision are closest

to being balanced at t=1.

4.3.4 Dependency Path Windows

The experiments here also consider a novel approach to modelling entity mention co-

occurrence that is based on syntactic governor-dependency relations (Deps). This uses

the ISPAIRdeps function defined in Figure 4.8, which counts all pairs of entity mentions
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ISPAIRdeps : i, j,d

1 if sent(i) = sent( j) and count(dep-path-tokens(i, j))≤ d

2 return true

3 else
4 return f alse

Figure 4.8: Function for GRI based on dependency path windows.

that 1) occur in the same sentence and 2) have d or fewer intervening token nodes on the

shortest dependency path connecting the two entity mentions (the derivation of which

is described in the next paragraph). This assumes access to a function (dep-path-

tokens) that returns the set of token nodes on the dependency path connecting the two

entity mentions indexed by i and j. While dependency paths have been successfully

incorporated into supervised approaches to relation extraction, they have not been used

for GRI.

For the current work, dependency paths are derived from syntactic parses obtained

from the Minipar software. Minipar (Lin, 1998) is a broad-coverage parser based on

an efficient message passing architecture with a lexicon derived from WordNet and

a statistical ranking mechanism for selecting the best parse.3 Minipar produces syn-

tactic parse information in the form of typed grammatical relations including 1) the

directional link from governors to their dependent lexical items and 2) grammatical

relation types (e.g., subject, object). Chapter 3 and Appendix A contain further de-

tails of the pre-processing, which includes tokenisation, dependency parsing and the

addition of the resulting governor-dependency relations to the XML representation of

the documents. Figure 4.9(a) contains the Minipar parse of the example sentence from

Figure 4.4. Dependency relations include, e.g. a modifier (mod) relation from gover-

nor noun “Murray” to dependent adjective “American”, a subject (subj) relation from

governor verb “recruited” to dependent noun “Murray”, a object (obj) relation from

“recruited” to dependent noun “Berry”, a prepositional modifier (from) relation from

governor noun “Awadi” to dependent noun “PBS”.4

3Minipar achieves approximately 79% coverage of the dependency relationships in the SUSANNE
corpus with 89% precision (Lin, 1998). The current evaluation only considers Minipar because the
purpose here is to determine whether dependency information is useful for the GRI task, not to find the
best dependency parser for the GRI task. For comparable systems, see e.g. Briscoe and Carroll (2006),
de Marneffe et al. (2006).

4The prepositional modifier (from) relation from governor noun “Awadi” to dependent noun “PBS”
is not actually a single grammatical relation in the Minipar output. It originally consists of two relations:
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a) Dependency parse for example sentence

American
Adjective

saxophonist
Noun

David
U

Murray
Noun

recruited
Verb

Amidu
U

Berry
Noun

and
U

DJ
U

Awadi
N

from
Prep

PBS
Noun

subj
obj

lex-modnn

mod

lex-mod

conj

punc
lex-mod from

b) Shortest dependency paths between candidate entity mention pairs

1 American ←−−−−
mod David Murray

2 Amidu Berry −−−−→
conj Awadi

3 Awadi −−−−→
from PBS

4 David Murray ←−−−−
subj recruited −−−→obj Amidu Berry

5 David Murray ←−−−−
subj recruited −−−→obj Awadi

6 Amidu Berry −−−−→
conj Awadi −−−−→from PBS

7 American ←−−−−
mod Murray ←−−−−subj recruited −−−→obj Amidu Berry

8 American ←−−−−
mod Murray ←−−−−subj recruited −−−→obj Awadi

9 David Murray ←−−−−
subj recruited −−−→obj Berry −−−−→

from PBS

David Murray ←−−−−
subj recruited −−−→obj Awadi −−−−→from PBS

10 American ←−−−−
mod Murray ←−−−−subj recruited −−−→obj Berry −−−−→from PBS

American ←−−−−
mod Murray ←−−−−subj recruited −−−→obj Awadi −−−−→from PBS

Figure 4.9: Example dependency parse and dependency paths for all entity

mention pairs.

The shortest dependency paths between all candidate entity mention pairs are then

extracted from the parse graph. Figure 4.9(b) contains dependency paths for the ex-

ample sentence from Figure 4.4. Line 1, for example, contains the dependency path

between “American” and “David Murray”. This consists of a direct modifier (mod)

relation with zero intervening word token nodes. Line 4, on the other hand, contains

a dependency path (between “David Murray” and “Amidu Berry”) that passes through

1 word token node (“recruited”). Line 5 contains a collapsed path that is a result of a

post-processing operation over the Minipar output that passes governor-dependency re-

lations along chains of conjoined tokens in the intervening context. Based on the parse

a modifier (mod) relation from governor “Awadi” to dependent “from” and a preposition complement
(pcomp) relation from governor “from” to dependent “PBS”. These are collapsed to a single relation
as a post-processing step following Lin and Pantel (2001). This serves to connect the prepositional
complement directly to the words modified by the preposition.
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Figure 4.10: Window size results for dependency-based model. The best

score is in bold and those that are statistically distinguishable from the best

are underlined.

graph from Figure 4.9(a), the shortest path between “David Murray” and “Awadi”

would actually pass through two word token nodes (instead of one) and include three

relations: a subject (subj) relation between governor recruited and dependent “Mur-

ray”, an object (obj) relation between recruited and “Berry” and a conjunction (conj)

relation between “Berry” and “Awadi”. The collapsing operation removes the object

and conjunction relations, replacing them with a single object relation from governor

“recruited” to dependent “Awadi”. In cases like Lines 9 and 10 where the conjunction

collapsing operation means there are multiple paths of the same length, the first path is

chosen.

The example sentence and the relation-forming pairs extracted by the dependency

path (Deps) model with various settings of the threshold d can be seen in Figure 4.4.

The fifth and sixth rows correspond to models with d set to 0 and 1 respectively.

The d=0 system does well in terms of precision on the example sentence, generating

only one false positive entity mention pair (<Amidu Berry,Awadi>). It does worse

in terms of recall, missing two gold standard relation mentions (<David Murray,

Amidu Berry> and <David Murray,Amidu Berry>). The d=1 system picks up the

same false positive relation mention but achieves perfect recall on the example sen-

tence.

Figure 4.10 contains optimisation results for setting the dependency path threshold

d on the news development data (ACE 2004). The shaded bars correspond to mean

f-score (actual value printed above the bars) for different settings of d, which are spec-
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ISPAIRcomb : i, j, t,d

1 if sent(i) = sent( j) and (count(intervening-tokens(i, j))≤ t

or count(dep-path-tokens(i, j))≤ d)

2 return true

3 else
4 return f alse

Figure 4.11: Function for GRI based on combined (token and dependency)

windows.

ified along the bottom of the horizontal axis. The best f-score is shown in bold and

is achieved at d=0. Values that are statistically distinguishable (i.e., p≤ 0.05) are un-

derlined. Results here suggest a range of optimal values from d=0 to d=1. Recall (R)

and precision (P) are plotted as dotted grey and solid black lines respectively, demon-

strating that as d is increased, recall goes up dramatically while precision goes down.

Recall and precision are closest to being balanced at d=0.

4.3.5 Combined Windows

Finally, the current work also introduces an entity mention co-occurrence model that

combines token and dependency windows (Comb). It uses the ISPAIRcomb function

defined in Figure 4.11. This counts all pairs of entity mentions that 1) occur in the same

sentence and 2) either have t or fewer intervening tokens or have d or fewer intervening

dependency path nodes. This assumes access to two functions (intervening-tokens and

dep-path-tokens) that are described in Sections 4.3.3 and 4.3.4 above.

An example sentence and the relation-forming pairs extracted by the combined

(Comb) model with the intervening token threshold t set to 2 and the dependency

path threshold d set to 0. The system does well in terms of precision on the example

sentence, generating one false positive relation mention (<Amidu Berry,Awadi>).

It also does reasonably well in terms of recall, missing just one relation mention

(<David Murray,Awadi>).

Figure 4.12 contains joint optimisation results for the intervening token (t) and de-

pendency path (d) thresholds on the news development data (ACE 2004). The shaded

bars correspond to mean f-score (actual value printed above the bars) for different set-

tings of t and d, which are specified along the bottom of the horizontal axis. The
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Figure 4.12: Window size results for combined (token and dependency)

model. The f-score of the system that achieves the highest mean rank is

in bold and those that are statistically distinguishable from the best are un-

derlined.

optimal system is chosen in terms of the mean rank of f-scores across entity pair sub-

domains. The best mean rank is achieved with t=2 and d=0.5 Values that are statisti-

cally distinguishable from the best (i.e., p≤ 0.05) are underlined. The results suggest

a range of optimal settings with t ranging from 0 to 2 and d ranging from 0 to 1. The

system with t=3 and d=0 is also statistically indistinguishable from the best. Recall

(R) and precision (P) are plotted as dotted grey and solid black lines respectively.

4.4 Evaluation Experiments

4.4.1 Experiment 1: Model Comparison

4.4.1.1 Method

The first experiment compares the various window-based models for GRI. Specifically,

it addresses the following question:

• What window function is best for identifying relation mentions?

This directly compares the intervening token, dependency path and combined models

for entity mention co-occurrence. All models use window configurations optimised

5Note that the system with t=2 and d=0 is also better than the system with t=1 and d=0 in terms of
recall, the prioritisation of which is discussed in Section 4.4.1.2 below.
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P R Fµ

Toks 0.291 0.510 0.342

Deps 0.456 0.392 0.360
Comb 0.277 0.538 0.332

Table 4.2: Comparison of precision (P), recall (R) and f-score (F) results

for token-based (Toks), dependency-based (Deps) and combined (Comb)

systems on news test set. The best score in each column is in bold and

those that are statistically distinguishable from the best are underlined.

on the news development data (see Section 4.3). The intervening token model uses a

threshold of t=2; the dependency path model uses a threshold of d=0; and the combined

model uses thresholds of t=2 and d=0.

4.4.1.2 Results

Table 4.2 contains precision (P), recall (R) and f-score (F) results. Rows in the table

correspond to the intervening token (Toks), dependency path (Deps) and combined

(Comb) models. The best score for each evaluation measure is in bold. Systems that

are statistically distinguishable from the best for the given measure (i.e., p≤ 0.05) are

underlined. The highest f-score is obtained using the dependency path model, though

this is not statistically distinguishable from the Toks or Comb models. In terms of

recall, the Comb model obtains the highest score (0.538), which is significantly better

than the Toks and Deps models. The Deps model, however, obtains a precision score

that is significantly better than the Comb model. The results suggest that the the Toks

model with (t=2) contributes more in terms of recall, though the Deps model (with

d=0) obtains higher precision.

For the current work, the combined model is considered to be the best as it achieves

the highest recall while the f-score is statistically indistinguishable from the other mod-

els. The prioritisation of recall is motivated by the fact that weighting is generally

applied to co-occurring entity pairs for applications of GRI. For example, the rela-

tion mining work discussed in Chapter 2 uses statistical measures of association such

as pointwise mutual information, φ2 and log likelihood ratio to estimate association

strengths. Furthermore, the extrinsic evaluation in Chapter 6 follows the methodol-

ogy of Filatova and Hatzivassiloglou (2004), who use similar models of atomic events



Chapter 4. Generic Relation Identification 88

based on weighted pairs of co-occurring entities in the context of extractive summari-

sation. Thus, a certain amount of noise in GRI should be acceptable if the subsequent

weighting scheme is assumed to give higher weight to true relation-forming entity

pairs. This assumption is supported by the analysis in Section 4.5.4 and by the extrin-

sic evaluation experiments in Chapter 6.

4.4.2 Experiment 2: Comparison to Performance Bounds

4.4.2.1 Method

The second experiment evaluates the accuracy of the combined window-based model

with respect to lower and upper bounds. It addresses the following questions:

• Can GRI be improved using window-based models optimised on gold standard

data?

• How does the optimised window-based model compare to human performance?

This evaluates the contribution of the combined model with respect to a baseline ap-

proach from the related literature (see Section 4.3.1 above). It also compares to a

human upper bound derived from the ACE double annotation (see Section 4.2.2). The

window configuration uses thresholds of t=2 and d=0.

4.4.2.2 Results

Table 4.3 contains precision (P), recall (R) and f-score (F) results. Rows in the table

correspond to the baseline model (Baseline), combined co-occurrence window model

(Comb) and the human agreement (Human). The best score for each evaluation mea-

sure is in bold. Systems that are statistically distinguishable from the best for the given

measure (i.e., p ≤ 0.05) are underlined. The recall for the Baseline model is perfect

because it counts all pairs of entity mentions that occur in the same sentence. This

is equivalent to the GRI approach used by the Smith (2002) and Zhang et al. (2005)

systems discussed in Chapter 2. The results in Table 4.3 demonstrate that the Comb

model outperforms the Baseline model (p = 0.0078).

There is room for improvement with respect to the Human upper bound. The main

difference is in terms of precision, where the Comb model performs far worse than

the Human upper bound. However, while Comb recall is significantly worse than

Human recall (p = 0.0391), the difference is not large. Furthermore, it should be
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P R Fµ

Baseline 0.110 1.000 0.195

Comb 0.277 0.538 0.332

Human 0.906 0.675 0.773

Table 4.3: Precision (P), recall (R) and f-score (F) results for combined

window-based system (Comb) with respect to baseline (Baseline) and hu-

man upper bound (Human) on news test set. The best score in each column

is in bold and those that are statistically distinguishable from the best are

underlined.

noted that inter-annotator agreement on ACE is a very strong upper bound for the

GRI task as the annotators are given detailed guidelines that provide a prescriptive

notion of what counts as a relation mention. The GRI task, on the other hand, is not

guided by a pre-defined schema and, as shown in the analysis below (Section 4.5.2.1),

GRI predicts a number of relation mentions that are incorrect with respect to the gold

standard annotation but could arguably be considered true relation mentions.

4.4.3 Experiment 3: Integrating Long-Distance Relation Mentions

4.4.3.1 Method

The third experiment looks at the potential contribution of constrained long-distance

relation mentions. It addresses the following question:

• Is it possible to improve generic relation identification using filtering constraints

(i.e., by requiring a verb or nominalisation in the intervening context)?

This seeks to assess the potential impact of incorporating the atomic event identifi-

cation from Filatova and Hatzivassiloglou (2003), which considers all pairs of entity

mentions that occur in the same sentence but constrains them by requiring a verbal

‘connector’ as explained in Section 4.3.2. The hypothesis here is that the connector

constraint may allow the model to incorporate some long-distance relation mentions

with relatively high precision. The combined model again uses the optimised thresh-

olds of t=2 and d=0.
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P R F

Event 0.050 0.392 0.083

Comb 0.277 0.538 0.332

Table 4.4: Precision (P), recall (R) and f-score (F) results for combined

window-based system (Comb) with respect to Filatova and Hatzivassiloglou

(2004) atomic event system (Event) on news test set. The best score in each

column is in bold and those that are statistically distinguishable from the best

are underlined.

4.4.3.2 Results

Table 4.4 contains precision (P), recall (R) and f-score (F) results. Rows in the table

correspond to the atomic event model (Event) – considered here as a potential model of

constrained long-distance relation mentions – and the combined window-based model

(Comb). The best score for each evaluation measure is in bold and systems that are

statistically distinguishable from the best for the given measure (i.e., p ≤ 0.05) are

underlined. The Comb model is the better in terms of overall f-score, giving an error

rate reduction over the Event model with respect to the human upper bound of 36.1%.

Because the Event model is constrained to detect relation mentions that are predicated

by a verbal connector, it is not surprising that recall is not higher than the other sys-

tems. However, the very low precision suggests that the atomic event approach cannot

be used as a high-precision metric to capture some long-distance relation mentions

predicated by a verbal connector and improve the overall f-score. This question is

also explored in the analysis below (Section 4.5.3), where the connector constraint is

considered as a possible filter for improving the precision of smaller window functions.

4.4.4 Experiment 4: GRI Across Domains

4.4.4.1 Method

Finally, the fourth experiment addresses the claim of modification-free domain adap-

tation (i.e., that models achieve comparable accuracy when transferred, without modi-

fication of model parameters, across domains). It poses the following question:

• Does model performance generalise across data sets and domains?
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Specifically, the performance of the various models are compared across the news

domain and the biomedical domain. These models are optimised on the news devel-

opment data (ACE 2004) and applied directly to the news (ACE 2005) and biomedical

(BioInfer) test sets without modification. Results for the baseline and event models are

also presented for comparison.

4.4.4.2 Results

Table 4.5 contains precision (P), recall (R) and f-score (F) results. Rows in the table

correspond to the baseline model (Baseline), the atomic event model (Event), the in-

tervening token model (Toks), the dependency path model (Deps) and the combined

model (Comb). The best score for each evaluation measure is in bold and systems

that are statistically distinguishable from the best (i.e., p ≤ 0.05) are underlined. Ta-

ble 4.5(a) repeats the results for the news domain test set (ACE 2005). Table 4.5(b)

contains the results for the biomedical domain test set (BioInfer).

In the biomedical domain, the Comb model performs best in terms of f-score with

a score of 0.453 though it is statistically indistinguishable from the Toks model. This

is a stronger result than in the news domain where there was no significant differences

among the f-scores of the Toks, Deps and Comb models. Consistent with the news

domain, there are no significant differences among the precision scores of the Toks,

Deps and Comb models and, importantly, the Comb model is significantly better than

the Toks and Deps models in terms of recall in both domains.

Interestingly, the f-score of the Baseline model is statistically indistinguishable

from the Comb model on the biomedical data. Since Baseline recall is the same for

both domains (1.000), this is due to higher precision (0.268 as opposed to 0.110). This

suggests that the biomedical GRI task is easier due to the higher proportion of true

relation-forming pairs among entity mentions that occur in the same sentence. The

biomedical result is consistent with the news result, however, in that Comb precision

is significantly better than Baseline precision on both domains.

The result for the Event model is also consistent across domains. Precision is very

low with respect to the other models (significantly worse than Toks, Deps and Comb

at p ≤ 0.05). This lends further support to the conclusion that the verbal connector

constraint cannot be used as a high-precision metric to capture some long-distance

relation mentions and improve f-score.
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a) ACE 2005 (News Test Set)

P R Fµ

Baseline 0.110 1.000 0.195

Event 0.050 0.392 0.083

Toks 0.291 0.510 0.342

Deps 0.456 0.392 0.360
Comb 0.277 0.538 0.332

b) BioInfer (Biomedical Test Set)

P R Fµ

Baseline 0.268 1.000 0.415

Event 0.186 0.418 0.247

Toks 0.527 0.388 0.422

Deps 0.450 0.302 0.349

Comb 0.500 0.454 0.453

Table 4.5: Comparison of precision (P), recall (R) and f-score (F) results on

news and biomedical test sets. Rows correspond to the baseline (Baseline),

atomic event (Event), intervening tokens (Toks), dependency path (Deps)

and combined (Comb) models. The best score in each column is in bold and

those that are statistically distinguishable from the best are underlined.

4.5 Analysis

4.5.1 Precision and Recall of Entity Pair Sub-Domains

Table 4.6 contains precision/recall scores for each entity pair sub-domain. Rows in

Table 4.6(a) correspond to the entity pair sub-domains of the news test set where entity

types include FACILITY/VEHICLE/WEAPON (F), GEOGRAPHICAL/POLITICAL/LO-

CATION (G), ORGANISATION (O) and PERSON (P). Rows in Table 4.6(b) correspond

to the entity pair sub-domains of the biomedical test set where entity types include

AMINO-ACID (A), SUBSTANCE (B), PROTEIN-COMPLEX (C), PROTEIN-FAMILY (F),

NUCLEIC-ACID (N), INDIVIDUAL-PROTEIN (P), SOURCE (R) and PROTEIN-SUB-

STRUCTURE (S). Columns correspond to the GRI models described in Section 4.3.

As mentioned above (Section 4.4.2.2), the baseline model accepts all possible en-

tity pairs so achieves perfect recall. Thus, precision scores reflect the rate of true rela-

tion mentions in each entity pair sub-domain. As discussed in Section 4.4.3, the low

recall of the Event model with respect to the other models is not surprising due to the

constraint requiring an intervening event word. The low precision, however, indicates

that the constraint is not helpful as a method to capture long-distance relation mentions

based on intervening token windows. The Event model does particularly poorly on the

ACE 2005 G-G and BioInfer P-F sub-domains due to the fact that true pairs rarely have

a verbal connector in the intervening token context. True relation mentions in the ACE
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a) ACE 2005 (News Test Set)

SD Baseline Event Toks Deps Comb

F-G 0.171/1.000 0.027/0.100 0.609/0.700 0.813/0.650 0.560/0.700

F-P 0.196/1.000 0.146/0.556 0.310/0.250 0.615/0.222 0.364/0.333

G-G 0.067/1.000 0.006/0.057 0.216/0.862 0.158/0.517 0.177/0.874

G-O 0.049/1.000 0.020/0.265 0.194/0.618 0.169/0.588 0.115/0.618

G-P 0.125/1.000 0.081/0.522 0.327/0.323 0.688/0.264 0.347/0.383

O-P 0.115/1.000 0.048/0.319 0.289/0.471 0.627/0.353 0.286/0.496

P-P 0.050/1.000 0.019/0.295 0.091/0.344 0.120/0.148 0.087/0.361

b) BioInfer (Biomedical Test Set)

SD Baseline Event Toks Deps Comb

A-N 0.191/1.000 0.169/0.651 0.333/0.140 0.300/0.070 0.300/0.140

N-N 0.119/1.000 0.132/0.531 0.102/0.265 0.085/0.204 0.090/0.286

P-C 0.415/1.000 0.319/0.462 0.744/0.246 0.642/0.277 0.662/0.377

P-F 0.270/1.000 0.060/0.088 0.755/0.720 0.872/0.637 0.752/0.819

P-P 0.278/1.000 0.197/0.269 0.407/0.463 0.380/0.465 0.397/0.602

P-S 0.362/1.000 0.242/0.400 0.750/0.508 0.689/0.238 0.763/0.569

R-B 0.242/1.000 0.182/0.529 0.600/0.375 0.523/0.221 0.533/0.385

Table 4.6: Precision/recall on entity pair sub-domains for news and biomedi-

cal test sets.

2005 G-G sub-domain tend to be geographical part-of relations where the two entity

mentions are adjacent (e.g., the relation between the G entity mention “Peoria” and the

G entity mention “Illinois” in the fragment “Peoria, Illinois”). And, true relation men-

tions in the BioInfer P-F sub-domain tend to be appositives (e.g., the relation between

the P entity mention “cofilin” and the F entity mention “actin-binding protein” in the

fragment “cofilin, a ubiquitous actin-binding protein”) or nominal modifiers (e.g., the

relation between the F entity mention “cyclin-dependent kinase inhibitors” and the P

entity mention “p57” in the fragment “the cyclin-dependent kinase inhibitors (CKIs)

p27 and p57”).

With respect to the intervening tokens (Toks), dependency path (Deps) and com-

bined (Comb) models on the ACE 2005 test set (Table 4.6(a)), Toks is generally better

in terms of recall while Deps is better in terms of precision. Recall is generally highest

for the combined model, achieving large improvements with respect to the Toks and
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Deps models on the F-P sub-domain. Precision for the combined model is generally in

between Toks and Deps precision though closer to the lower of the two.

On the BioInfer test set (Table 4.6(b)), the combined model is again best in terms

of recall, achieving large improvements with respect to the Toks and Deps models on

the P-C, P-F and P-P sub-domains. Toks, rather than Deps, is generally better in terms

of precision, which is probably due in part to lower parse accuracy (see Section 4.5.2

below). However, all systems actually do better in terms of precision on the BioInfer

test data (as compared to the ACE 2005 test data). This can be attributed at least in part

to the much higher rate of true relation mentions in the BioInfer test set (mean across

sub-domains of 26.8%) with respect to the ACE 2005 test set (11.0%).

4.5.2 Error Analysis

This section contains an analysis that aims to characterise the types of errors made

by the combined (Comb) GRI system. For each entity pair sub-domain, ten instances

are chosen randomly from the set of erroneously classified instances. These are man-

ually inspected to determine the error types. The analysis is presented in two parts:

1) Section 4.5.2.1 contains a breakdown of error types for false positive (FP) classifi-

cations where the system posits a relation mention that the annotators do not and 2)

Section 4.5.2.2 contains a breakdown of error types for false negative (FN) classifica-

tions where the system misses a relation mention that is present in the annotation.

4.5.2.1 False Positives

In Tables 4.7(a) and 4.7(b), the columns correspond to entity pair sub-domains as de-

scribed in Section 4.5.1 above.6 The first row in the table corresponds to the count of

FPs among the random sample of ten erroneously classified instances, the second row

corresponds to the percentage of FPs where the number of intervening tokens is within

the threshold (t=2) and the third row corresponds to the percentage of FPs where the

number of token nodes on the dependency path is within the threshold (d=0). The

fourth row in Table 4.7(a) corresponds to the percentage of FPs where one or both

entity mentions are pronouns while the fourth row in Table 4.7(b) corresponds to the

percentage of FPs where the entity mentions are embedded (i.e., the begin and end to-

kens of one entity mention span are within the begin and end tokens of the other entity

mention span). The rest of the rows contain the breakdown of error types, which are

6The P-C column of Table 4.7(b) is all NAs because there were no FPs among the error sample.
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described with examples in the remainder of this section. These are grouped into three

categories: 1) unequivocal system errors, 2) system errors where a relation is more

or less implicit given the context of the sentence and 3) annotation errors where the

system is actually correct.

Bad Parse instances are FP errors that are due to a parse error. This is exemplified

by the relation mention predicted in the BioInfer data between the SOURCE (R) entity

mention “RVS161” and the SUBSTANCE (B) entity mention “actin cytoskeleton” (due

to an erroneous conjunction dependency relation between “RVS161” and “cytoskele-

ton”) in the following sentence:

“Mutations in RVS161 and RVS167, the two yeast amphiphysin homologs,
cause very similar growth phenotypes, a depolarized actin cytoskeleton,
and a defect in the internalization step of endocytosis.”

This type of error is rare, occurring once in each of the ACE G-P, ACE P-P and BioInfer

R-B sub-domains. This suggests that parse errors do not have a large effect on the

precision of the combined model though an improved parser would lead to slightly

higher precision in the sub-domains mentioned.

Model Noise instances are FP errors that are due to over-generation by the GRI

model. This is exemplified by the relation mention that is predicted in the ACE data

between the FACILITY/VEHICLE/WEAPON (F) entity mention “air force one” and the

PERSON (P) entity mention “him” in the following sentence:7

“the president greeting a number of dignitaries as he gets ready here to
board air force one on his way home.”

This type of error is somewhat common. It is difficult to address due to the nature of

the task, which adopts shallow approaches to favour generic solutions over the best

possible performance on a given domain or task. Section 4.5.3 below considers some

possible indicator features to improve precision by filtering FP errors.

Comparison instances are FP errors where there is arguably a relation mention

that makes an explicit comparison. This is exemplified by the relation mention that

is predicted in the ACE data between the PERSON (P) entity mention “Gul” and the

PERSON (P) entity mention “Erdogan” in the following sentence:

“Unlike the soft-spoken Gul, Erdogan has a reputation as a fighter.”

7As discussed in Chapter 3, the ACE news data is sourced from both newswire and broadcast news.
Text snippets from the broadcast news transcripts are presented as-is, without any capitalisation and
including any disfluencies.
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a) ACE 2005 (News Test Set)

F-G F-P G-G G-O G-P O-P P-P

N 6 7 10 10 3 8 8

Toks Accept 100% 100% 80% 90% 67% 88% 75%

Deps Accept 0% 14% 70% 40% 33% 13% 38%

Pronominal Entities 100% 71% 20% 20% 67% 63% 50%

System Error 0% 29% 0% 10% 67% 13% 0%

Bad Parse – – – – 33% – –

Model Noise – 29% – 10% 33% 13% –

Implicit Relation 100% 71% 100% 90% 33% 75% 100%

Comparison – – – – – – 13%

Conjunction – – 70% 10% – 13% 38%

Figurative 20% – – 10% – – –

Formulaic – – – 70% – – –

Future/Past 20% – – – – – –

Identity – – 10% – – – 38%

Inferable 60% 71% 20% – 33% 63% 13%

True Rel (Annot Err) 0% 0% 0% 0% 0% 13% 0%

b) BioInfer (Biomedical Test Set)

A-N N-N P-C P-F P-P P-S R-B

N 2 6 0 4 7 4 2

Toks Accept 100% 33% NA 100% 43% 100% 50%

Deps Accept 0% 67% NA 0% 71% 50% 100%

Embedded Entities 0% 67% NA 0% 43% 25% 50%

System Error 0% 0% NA 25% 0% 25% 50%

Bad Parse – – NA – – – 50%

Model Noise – – NA 25% – 25% –

Implicit Relation 50% 100% NA 75% 100% 75% 50%

Conjunction – 83% NA – 43% 25% –

Identity – – NA – 29% – –

Inferable 50% 17% NA 75% 29% 50% 50%

Other – – NA – 0% – –

True Rel (Annot Err) 50% 0% NA 0% 0% 0% 0%

Table 4.7: Breakdown of FP error types for combined token- and

dependency-based model on news and biomedical test sets.
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This type of error only occurs just once in the ACE P-P sub-domain so is not a sub-

stantial problem. This could actually be argued to be an explicit relation mention, but

it does not fit into the relation type schema that was used to guide the annotation task.

Conjunction instances are FP errors where the entity mentions are in a list or oth-

erwise conjoined, which sometimes indicates implicit relation concerning similarity.

This is exemplified by the relation mention that is predicted in the BioInfer data be-

tween the NUCLEIC-ACID (N) entity mention “tropomyosin” and the NUCLEIC-ACID

(N) entity mention “Abp1p” in the following sentence:

“A null mutation of the actin gene (ACT1) is lethal, but null mutations in
the tropomyosin (TPM1), fimbrin (SAC6), Abp1p (ABP1), and capping
protein (CAP1 and CAP2) genes have relatively mild or no effects.”

This is the second most common type of FP error in both the ACE and BioInfer data,

accounting respectively for 19% and 25% of the total FP errors (mean across sub-

domains). This occurs primarily in symmetric domains (i.e., where both entity men-

tions have the same type). Section 4.5.3 investigates the use of conjunction indicator

features as a filter for reducing FP errors among system predictions.

Figurative instances are FP errors where the relation mention is embedded in fig-

urative language such as metaphors. This is exemplified by the relation mention that

is predicted in the ACE data between the GEOGRAPHICAL/POLITICAL/LOCATION

(G) entity mention “we” and the FACILITY/VEHICLE/WEAPON (F) entity mention

“bridge” in the following sentence:

“We are not facing that kind of situation but we will cross that bridge when
we come to it.”

This type of error is rare occurring once in each of the ACE F-G8 and ACE G-O sub-

domains, which suggests that this error does not affect the model much. While a

lexicon of figurative speech may help to filter these instances, the rarity of the error

means it is probably not worth the additional machinery.

Formulaic instances are FP errors where the relation mention is embedded in

a standardised phrase structure such as newspaper bylines. This is exemplified by

the relation mention that is predicted in the ACE data between the GEOGRAPHI-

CAL/POLITICAL/LOCATION (G) entity mention “ANKARA” and the ORGANISATION

(O) entity mention “AP” in the following fragments:

8Note that the entity mention “we” is annotated as GEOGRAPHICAL/POLITICAL/LOCATION (G)
because it is taken from a quote in which U.S. Ambassador John Negroponte is replying to a question
about American foreign policy and is referring to the country’s government when he says we.
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“ANKARA, Turkey (AP)”

This type of error was only found to occur in the G-O domain but accounts for 70%

of the errors there. This could be addressed by developing a pre-processing system to

identify formulaic phrases. In fact, this is how Hasegawa et al. (2004) handle by-lines

in their experimental data from the New York Times. However, formulaic phrases are

domain-specific so this is not a generic solution that would apply across e.g. domains

and tasks.

Future/Past instances are FP errors where a relation mention is evident from the

text but it is a relation that held in the past or is expected to hold in the future. This is

exemplified by the relation mention that is predicted in the ACE data between the FA-

CILITY/VEHICLE/WEAPON (F) entity mention “itself” and the GEOGRAPHICAL/PO-

LITICAL/LOCATION (G) entity mention “hawaii” in the following sentence:

“his son was on one of the ships that escorted a carrier. although this came
home by itself from hawaii.”

This type of error only occurs once in the ACE F-G sub-domain so is not a substantial

problem. While temporal modelling may help to filter these instances, the rarity of the

error means it is probably not worth the additional machinery.

Identity instances are FP errors where the entity mentions are coreferent (i.e., they

refer to the same underlying object). This is exemplified by the relation mention that is

predicted in the BioInfer data between the INDIVIDUAL-PROTEIN (P) entity mention

“chick actin-depolymerizing factor” and the INDIVIDUAL-PROTEIN (P) entity mention

“ADF” in the following sentence:

“Two cDNAs, isolated from a Xenopus laevis embryonic library, encode
proteins of 168 amino acids, both of which are 77% identical to chick
cofilin and 66% identical to chick actin-depolymerizing factor (ADF), two
structurally and functionally related proteins.”

This type of error is rare, occurring once in the ACE G-G sub-domain and twice in the

BioInfer P-P sub-domain. Cases like the one above could be easily addressed using

existing methods for abbreviation detection (e.g., Schwartz and Hearst, 2003; Torii

et al., 2006). However, because the error is rare, it may not be worth the additional

machinery.

Inferable instances are FP errors where a relation can be inferred from the con-

text. This is exemplified by the relation mention that is predicted in the BioInfer data

between the AMINO-ACID (A) entity mention “RAD52 proteins” and the NUCLEIC-

ACID (N) entity mention “RAD51” in the following sentence:
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“Because other researchers have shown that the RAD51 and RAD52 proteins
interact, RAD51 on a high copy number plasmid was tested and found to
suppress the rad52-20 allele, but RAD 54, 55 and 57 did not suppress.”

Here, there is a clear statement of interaction between the first mention of entity men-

tion “RAD51” and the entity mention “RAD52 proteins” while the relation between

“RAD52 proteins” and the second mention of “RAD51” is inferable from the context

but not marked in the gold standard. This type of FP error is the most common in both

the ACE and BioInfer data, accounting respectively for 37% and 45% of the total FP

errors (mean across sub-domains). The intervening token threshold model is generally

more prone to this type of error (100% and 78% of errors respectively on ACE and

BioInfer) than the dependency path model (0% and 33%). Thus, it could be addressed

by using the dependency path model exclusively. However, the development results in

Section 4.3 above demonstrate that this also results in a large loss in recall.

True Rel instances are FP errors where a relation mention should have been posited

in the gold standard annotation. This is exemplified by the relation mention missing

from the BioInfer data between the NUCLEIC-ACID (N) entity mention “histone” and

the AMINO-ACID (A) entity mention “H4” in the following sentence:

“The histone H4 and histone H2b genes encode 10% of the total H4 and
H2b mRNA.”

Annotator errors are very rare occurring only once each in the FP samples for the ACE

and BioInfer data sets.

4.5.2.2 False Negatives

In Tables 4.8(a) and 4.8(b), the columns correspond to entity pair sub-domains as de-

scribed in Section 4.5.1 above.9 The first row of the table corresponds to the count of

FNs among the random sample of ten erroneously classified instances. The second row

in Table 4.8(a) corresponds to the percentage of FNs where one or both entity men-

tions are pronouns while the second row in Table 4.8(b) corresponds to the percentage

of FNs where the entity mentions are embedded (i.e., the begin and end tokens of one

entity mention span are within the begin and end tokens of the other entity mention

span). No embedded entity mentions are actually recorded in Table 4.8(b), however

the 0 counts are left in to illustrate the contrast with embedded entity mention counts

for the FP instances (Table 4.7(b)). The rest of the rows contain the breakdown of FN
9The G-G and G-O columns of Table 4.8(a) are all NAs because there were no FNs among the error

sample.
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a) ACE 2005 (News Test Set)

F-G F-P G-G G-O G-P O-P P-P

N 4 3 0 0 7 2 2

Pronominal Entities 25% 33% NA NA 29% 50% 100%

System Error 75% 67% NA NA 86% 100% 100%

Bad Parse 25% – NA NA – – –

Thresh Error 50% 67% NA NA 86% 100% 100%

Quest Rel (Annot Err) 25% 33% NA NA 14% 0% 0%

Future/Past – – NA NA 14% – –

World Knowledge 25% 33% NA NA – – –

b) BioInfer (Biomedical Test Set)

A-N N-N P-C P-F P-P P-S R-B

N 8 4 10 6 3 6 8

Embedded Entities 0% 0% 0% 0% 0% 0% 0%

System Error 100% 100% 100% 83% 67% 83% 67%

Bad Parse 13% 25% – 33% 33% – –

Thresh Error 88% 75% 100% 50% 33% 83% 67%

Quest Rel (Annot Err) 0% 0% 0% 17% 33% 17% 33%

World Knowledge – – – 17% 33% 17% 33%

Table 4.8: Breakdown of FN error types for combined token- and

dependency-based model on news and biomedical test sets.

error types which are described with examples in the remainder of this section. These

are grouped into two categories: 1) unequivocal system errors and 2) questionable re-

lation mentions (Quest Rel) where the validity of the annotated relation mention may

be called into question (i.e., the error is arguably in the annotation, not in the system

prediction).

Bad Parse instances are FN errors that are due to a parse error. This is exemplified

by the relation mention that is missed in the BioInfer data between the INDIVIDUAL-

PROTEIN (P) entity mention “cofilin” and the PROTEIN-FAMILY (F) entity mention

“actin-binding protein” (due to the bad parse output missing an appositive governor-

dependency relation between “cofilin” and “protein”) in the following sentence:

“Here we identify a pathway for the regulation of cofilin, a ubiquitous
actin-binding protein that is essential for effective depolymerization of
actin filaments.”
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This type of error occurs only once in the ACE data but is the second most common

in the BioInfer data, accounting for 15% of the total FN errors (mean across sub-

domains). This suggests that the Minipar parser does not perform as well on biomed-

ical text as it does on news text. Another parser that has been developed or modified

for biomedical text processing may do better (e.g., Hara et al., 2005; Briscoe et al.,

2006) but evaluating modification-free domain adaptation without a specialised parser

is a stronger test condition.

Thresh Error instances are FN errors that are due to coverage limitations of the

tuned models (i.e., the number of intervening tokens is greater than two and the number

of token nodes on the dependency path is greater than zero). This is exemplified by the

relation mention missed in the ACE data between the ORGANISATION (O) entity men-

tion “tyco” and the PERSON (P) entity mention “dennis kozlowski” in the following

fragment:10

“tyco’s ceo and president dennis kozlowski”

This type of FN error is the most common in both the ACE and BioInfer data, account-

ing respectively for 81% and 71% of the total FN errors (mean across sub-domains).

These recall errors can be addressed simply by increasing the intervening token or

dependency path thresholds. However, the development results in Section 4.3 demon-

strate that this also results in a large decrease in precision. Thus, as mentioned in

Section 4.5.2.1 above with respect to FP errors due to model noise, further improve-

ments require methods to filter false positives from high recall systems. Some possible

filtering approaches are examined in the following section (Section 4.5.3).

Future/Past instances are FN errors where a relation mention is evident from the

text but it is a relation that held in the past or is expected to hold in the future. This

exemplified by the relation mention that is missed between the PERSON (P) entity

mention “own” and the GEOGRAPHICAL/POLITICAL/LOCATION (G) entity mention

“iraq” in the following sentence:11

“chalabi staged his own rally yesterday to support his bid to become the
next leader of iraq.”

10The dependency path for this fragment has one intervening node (“president”) and two governor-
dependency relations. The first is a subject relation between “tyco” and “president” (which should
technically be a possessive relation but the wrong type does not change the number of nodes). The
second is a person relation between “president” and “kozlowski”. The number of intervening word
tokens is four.

11Arguably, the relation mention should be between “chalabi” and “iraq”. However, even if this were
the case, the relation mention would still be missed by the system and, more to the point, it would still
be a possible future relation as opposed to a relation mention that is true in the context of the sentence
and document.
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This type of error is very rare, occurring only once in the ACE G-P sub-domain. It is

interesting, though, that this kind of temporal confusion occurs both among the false

positive errors and among the false negative errors, suggesting that the annotators did

not have a clear idea of how to the interaction between time and relations should have

been treated.

World Knowledge instances are FN errors where a relation is not clearly stated

in the sentence but is implicit, requiring reasoning or external domain/world knowl-

edge. This is exemplified by the USER-OWNER-INVENTOR-MANUFACTURE relation

mention that is missed between the GEOGRAPHICAL/POLITICAL/LOCATION entity

mention “We” and the FACILITY/VEHICLE/WEAPON entity mention “Australian em-

bassy” in the following sentence:

“We have quite a substantial security presence at the Australian embassy
in Riyadh . . . .”

Here, it would be necessary to know that “We” is used by an Australian official to refer

to the country’s government and that it is the Australian government that owns and

uses the Australian embassy. This type of FN error is the second most common in the

ACE data and the third most common in the BioInfer data, accounting respectively for

12% and 14% of the total FN errors (mean across sub-domains). It is interesting that

implicit errors occur both among the false positives and the false negatives, suggesting

some confusion among annotators as to whether these should be marked.

4.5.3 Feature-Based Filtering of FP Errors

Due to the nature of the window-based models, recall can be improved simply by in-

creasing token or dependency windows (illustrated in Figures 4.7 and 4.10 above).

However, this also results in lower precision. Thus, improved f-scores require meth-

ods to filter false positives from high recall window-based models. Table 4.9 contains

correlation (phi coefficient) scores that compare various binary indicator features with

a binary variable indicating whether the instance constitutes a true relation mention

according to the annotation. Since the focus is on filtering false positives, only entity

mention pairs that are predicted to be relation mentions by a system are considered.

The rows in Table 4.9 correspond to the various models. The columns correspond

to the various indicator features which include presence of an event connector word

in intervening token context (CNt), presence of a conjunction/disjunction in interven-

ing token context (CJt), presence of an event connector word on the dependency path
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a) ACE 2005 (News Test Set)

CNt CJt CNd CJd USd ENd MB1 MB2

Baseline -0.290 -0.124 -0.322 -0.050 -0.118 -0.116 NA NA

Toks -0.253 -0.041 -0.415 NA -0.094 -0.099 NA NA

Deps NA -0.296 NA -0.293 NA NA NA NA

Comb -0.195 -0.076 -0.360 -0.175 -0.068 -0.055 NA NA

b) BioInfer (Biomedical Test Set)

CNt CJt CNd CJd USd ENd MB1 MB2

Baseline -0.186 -0.285 -0.194 -0.108 -0.164 -0.143 -0.084 -0.043

Toks 0.083 -0.209 -0.038 -0.207 0.100 -0.083 NA -0.285

Deps -0.009 -0.133 NA -0.200 NA NA NA -0.310

Comb 0.051 -0.208 -0.004 -0.242 -0.102 -0.092 NA -0.233

Table 4.9: Phi coefficient correlation analysis comparing a true relation men-

tion indicator feature to various indicator features for filtering false positives

errors from GRI output.

(CNd), presence of a conjunction/disjunction on the dependency path (CJd), presence

of a unspecified governor-dependency relation on dependency path (USd),12 presence

of an empty node on the dependency path (ENd),13 whether the tokens of one entity

mention are a subset of the tokens of the other entity mention (MB1) and whether one

entity mention is actually contained within the other in the text (MB2).

Following conventions in the literature for effect size of the phi coefficient (e.g.,

Cohen, 1988; Coolican, 2004), values over 0.10 (typeset in italicised bold font) are

considered to indicate a small effect and values over 0.30 (typeset in bold font) are

considered to indicate a medium effect. NA values indicate cases where the phi co-

efficient is undefined due to one or both of the variables having zero variance. The

table suggests that the presence of a connector word on the dependency path (CNd)

would be the strongest filter of false positive instances for ACE 2005 with medium

negative correlations of -0.322, -0.415 and -0.360 respectively for the Baseline, Toks

12Unspecified governor-dependency relations are artifacts of Minipar dependency parsing where the
relation type could not be determined by Minipar.

13Empty nodes are artifacts of Minipar dependency parsing. Empty nodes are nodes that do not
correspond to a specific word token in the input.
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and Comb models.14 This effect is also evident, though smaller, for the Baseline model

on the BioInfer test set. The table also suggests that the embedding of entity mentions

(MB2) would be the strongest filter of false positive instances for BioInfer with small

to medium negative correlations of -0.285, -0.310 and -0.233 respectively for the Toks,

Deps and Comb models.15

Thus, using the existence of event connector words as a filter should increase preci-

sion on ACE 2005 and either have no effect or increase precision slightly on BioInfer.

By contrast, using embedding of entity mentions as a filter should increase precision

on BioInfer and have no significant effect on ACE 2005. Considering only the com-

bined model (Comb), a number of other indicator features are also candidate filters

(i.e., in order of effect size: CJd , CJt , CNt , USd) though the effect size is smaller and

detailed experiments would be necessary to see if any corresponding reduction in recall

is detrimental to f-scores and to determine the effect of dependencies between various

features (e.g., CJt and CJd). These results in combination with the development results

in Section 4.3 suggest that it would be worth looking at higher recall systems (e.g.,

Deps with d=1) that use the filtering constraints discussed here to improve precision.

4.5.4 Comparison of Ranking Methods

Another possible method for improving precision would be to incorporate methods

from the literature for ranking entity mention pairs using statistical measures of asso-

ciation. Section 2.4.1 describes several such methods including pair probability (Pr),

log-likelihood (G2), φ2, and pointwise mutual information (PMI). Table 4.10 contains

correlation (point-biserial) scores that compare rank weights obtained from these mea-

sures with a binary variable indicating whether the instance constitutes a true relation

mention according to the annotation. Following Cohen (1988), values over 0.10 (type-

set in italicised bold font) are considered to indicate a small effect and values over 0.30

(typeset in bold font) are considered to indicate a medium effect. NA values indicate

cases where the point-biserial coefficient is undefined due to one or both of the vari-

ables having zero variance. The table suggests that a threshold filtering low values of

14The correlation result suggesting that the presence of a connector word on the dependency path
(CNd) is somewhat contrary to the previous results in which the Event model achieved very low precision
scores (Sections 4.5.1 and 4.4.3 above). This suggests that a refined Event model based on dependency
paths may do better than the Filatova and Hatzivassiloglou (2004) Event model evaluated above.

15The correlation with the entity mention embedding indicator features (i.e., MB1 and MB2) is not
measurable in the ACE data due to the the mapping of embedded relation mentions described in Section
3.3.1.2.
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a) ACE 2005 (News Test Set)

Pr G2 φ2 PMI

Baseline -0.093 0.108 0.262 0.273

Toks -0.098 0.250 0.329 0.356

Deps -0.092 0.067 0.145 0.168

Comb -0.091 0.219 0.294 0.326

b) BioInfer (Biomedical Test Set)

Pr G2 φ2 PMI

Baseline 0.030 0.037 0.105 0.073

Toks 0.114 0.107 -0.009 -0.004

Deps 0.056 0.070 -0.023 -0.008

Comb 0.081 0.116 0.003 0.041

Table 4.10: Point-biserial correlation analysis comparing a true relation men-

tion indicator feature to various approaches for ranking GRI predictions by

pair association strength.

PMI would be the best filter for the ACE 2005 test set (small to medium correlation

of 0.273, 0.356, 0.168 and 0.326 respectively for the Baseline, Toks, Deps and Comb

models). On the BioInfer test set, by contrast, no measure has consistent correlation

across systems and effect sizes are largely negligible. The highest correlation is 0.116

for G2 on the Comb system. While this effect is small, in conjunction with the ACE

2005 results, it suggests that G2 would be the better ranking method for domain-neutral

relation identification.

4.6 Summary and Future Work

This chapter presented experiments with window-based models for the generic rela-

tion identification (GRI) task. It compared the intervening token window approach

(Toks) from the literature to a novel GRI approach based on windows defined over

dependency paths (Deps). In addition, it introduced a combined approach (Comb) that

integrates the intervening token and dependency path models. Models were optimised

on gold standard data in the news domain and applied directly to data from the news

and biomedical domains for testing. The use of the ACE 2005 data for a news test set
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allowed comparison to a human upper bound for the task. And the use of gold standard

annotation in both domains allowed detailed analysis, exploring the behaviour of the

various models.

Model comparison suggested that the Deps and Comb models are best. In par-

ticular, the Comb approach performed reliably better than the other models in terms

of recall while maintaining statistically indistinguishable precision and f-score. High

recall models were prioritised here based on the fact that applications of generic re-

lation extraction (including the summarisation task addressed in Chapter 6) generally

incorporate a mechanism for ranking identified relation mentions. Correlation analysis

supported this prioritisation of recall, suggesting that ranking metrics can be used as a

weak indicator of true/false relation status. Based on the output of the Comb model,

pointwise mutual information (PMI) demonstrated a medium effect on the news data

while log-likelihood (G2) obtained a small effect that was more consistent across do-

mains.

Experimental results also showed that optimisation of the window-based models

leads to an improvement over a baseline approach from the literature that accepts all

entity mention pairs occurring in the same sentence. Comparison to human perfor-

mance suggests that there is room for considerable improvement of all models, though

the performance of human annotators is a very strong upper bound due to the fact that

they performed a highly constrained task of marking relation mentions according to

specific guidelines and a relation type schema as opposed to the generic task that is

being evaluated.

The optimised window-based model was also compared to a model for atomic

events (Event) that is similar to the window-based relation models, but also requires a

verbal connector word in the intervening context. This model was significantly worse

than the Comb model in terms of f-score. The precision of the Event model was very

low, refuting the hypothesis that this could be used as a constrained, high-precision

metric for identifying some long-distance relation mentions. Furthermore, related cor-

relation analysis suggested that false positive filters based on the presence of inter-

vening connectors would serve to improve precision of models with smaller windows

(e.g., intervening tokens threshold of t=2 or dependency path threshold of d=0).

Experiments and analysis suggest that GRI accuracy is comparable when applying

the newswire-optimised models directly to the biomedical domain. In both domains the

best recall is achieved by the Comb model and the f-score is at least as good as the next

best model (in the biomedical domain, the Comb f-score is actually significantly better
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than the Deps f-score). One not unexpected difference is that there were considerably

more false negative errors in the biomedical data that could be attributed to parsing

errors (15% as opposed to 5% in the news data).

The error analysis also demonstrated that the majority of false positive errors in

both the news and biomedical data sets (81% and 54% respectively) can be considered

implicit relation mentions (i.e., the relation is not explicitly stated but is more or less

implicit given the context of the sentence). These types of false positives are not nec-

essarily problematic in applications of GRE. In fact, these implicit relation mentions

are likely to be helpful in obtaining reliable rankings e.g. for weighting relations for

entity sketches (as discussed in Chapter 3) or for representing the conceptual content

of a sentence for extractive summarisation (as in the extrinsic evaluation in Chapter 6).

Future work will look at improving the precision of GRI models. In conjunction

with development experiments, correlation analysis of indicator features for filtering

false positives suggests that constrained high recall systems may lead to further ac-

curacy improvements for GRI. For example, the dependency path model might be

improved by including entity mention pairs that have one intervening node on the de-

pendency path but requiring that the intervening node be a verbal connector. Other

possible constraints include a requirement that the intervening node not be a conjunc-

tion or that the two entity mentions not be embedded.

Finally, accuracy may also be improved through refinement of the dependency

model. Greenwood and Stevenson (2007) compare several pattern representations on

a relation identification task, where the goal of the system is to identify pairs of entity

mentions that are part of the same event according to a gold standard corpus. They

find that the top-ranked patterns for a highly constrained representation have preci-

sion between 0.8 and 0.9 and that more expressive representations identify patterns

with precision that is consistently in the range of 0.2 to 0.4, degrading slowly with in-

creased recall, the most expressive representation achieving recall as high as 0.8. The

more constrained approaches could be explored as a means of improving the accuracy

and efficiency of GRI. As another example, Banko and Etzioni (2008) list eight simpli-

fied syntactic patterns that cover 95% of the binary relation mentions in an IE corpus

of 500 sentences. Among these patterns, they find that the pattern consisting of two

entity’s with an intervening verb covers 37.8% of binary relation mentions.



Chapter 5

Generic Relation Characterisation

Experiments are reported that address the generic relation characterisa-
tion task, comparing similarity models that are parametrised by feature
set and dimensionality reduction technique. A novel feature set is intro-
duced for the task based on syntactic features from governor-dependency
parses. Comparison of dimensionality reduction techniques shows that a
similarity model based on latent Dirichlet analysis (LDA) – a probabilis-
tic generative approach – successfully incorporates a larger and more in-
terdependent feature set than an unreduced model and a model based on
singular value decomposition (SVD). LDA offers as much as a 34.5% re-
duction in the error rate when compared to SVD. And, while not always
significant, it achieves higher f-scores than other approaches on five out
of six evaluation settings. Taken together with the superior interpretability
of the probabilistic generative approach, this motivates the use of LDA in
applications of generic relation extraction. Furthermore, these models are
shown for the first time to achieve comparable accuracy when transferred
across domains.

5.1 Introduction

This chapter addresses the generic relation characterisation (GRC) task, where the goal

is to induce a partition (or clustering) over relation-forming entity mention pairs (or re-

lation mentions) that groups them by relation type.1 Figure 5.1 contains an overview of

the GRC task, which is split into three main sub-tasks. The input is a collection of nat-

ural language documents with entity mentions and relation-forming pairs identified.2

1Full GRC includes a cluster labelling step, which is addressed in the relation discovery literature
(e.g., Hasegawa et al., 2004; Chen et al., 2005) and discussed in Chapter 2. For the purposes of this
chapter, we focus on the primary modelling task with respect to entity mention pair clustering and refer
to this sub-task when using the term GRC.

2For the evaluation here, the input includes gold standard relation-forming entity mention pairs as
discussed in Chapter 3. The ACE data input only includes relation-forming pairs over entities mentions
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Natural 
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Figure 5.1: Overview of GRC clustering sub-tasks.

The first sub-task has the goal of identifying features from the context of the entity

mention pairs that are indicative of relation type and outputs a feature-based represen-

tation of the pairs. The second sub-task introduces a novel step into the GRC pipeline,

where the feature space is optionally transformed using dimensionality reduction tech-

niques. Finally, in the third sub-task, the actual clustering is performed. The output

consists of a partition over relation-forming pairs that groups them by relation type.

As discussed in Chapter 2, previous GRC work has largely failed to use standard-

ised data or evaluation measures, making it difficult to compare approaches. This

chapter employs a principled framework for evaluation (introduced in Chapter 3) that

makes use of gold standard relation extraction data to optimise and evaluate GRC

models. News data from the ACE shared tasks (described in Chapter 3) is used for

development and for testing on a held-out evaluation set in the same domain. The

presence of double annotation in the ACE 2005 data makes it possible to compute a

human upper bound for the GRC task. Additionally, biomedical data from BioInfer

(also described in Chapter 3) is also used, allowing assessment of model consistency

across application domains.

In terms of modelling, previous GRC work has relied extensively on various lexi-

cal and shallow syntactic features of the context surrounding entity mention pairs (e.g.,

word tokens, part-of-speech, chunk phrase information). As discussed in Chapter 2,

Zhang et al. (2005) introduced a clustering model based on tree kernels, derived from

parse trees obtained from a phrase structure parser (Collins, 1999). However, previ-

ous approaches do not exploit dependency parsing, which provides typed governor-

dependency relations between word tokens as opposed to the syntactic constituency

information provided by phrase structure parsing (e.g. Mel’čuk, 1987; de Marneffe

et al., 2006). Dependency parse information has been successfully incorporated into

supervised (including rule-based) approaches to relation extraction (e.g., Bunescu and

that are named, prenominal or pronominal as discussed at the end of Section 3.3.1.2.
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Mooney, 2007; Fundel et al., 2007), so it is a natural extension to GRC. The current

work incorporates features based on dependency parsing information in a framework

that also uses features from the intervening context. Another shortcoming of previous

models of GRC is that they rely on direct matching of features for computing similarity,

which fails to identify similarities between features with different surface strings but

similar underlying (or latent) semantics. The current work also introduces the use of

dimensionality reduction and compares two common approaches used in the language

processing and information retrieval literature.

A detailed comparison of previous GRC work can be found in Chapter 2. This

chapter begins with a description of the setup for experimental evaluation in Section

5.2. Next, Section 5.3 contains a specification of the models that are compared here.

Section 5.4 contains experimental results and discussion. Finally, Section 5.5 contains

a detailed analysis of the experimental results.

5.2 The Task: Experimental Setup

5.2.1 GRC Framework

This chapter explores models for GRC that are based on novel feature sets derived

from dependency parsing and transformation of the resulting feature space using di-

mensionality reduction techniques from the language processing literature. These two

primary modelling parameters correspond to the first two sub-tasks in Figure 5.1 and

will be discussed in detail in the modelling section below (Section 5.3). This section

addresses the other parameters that are held constant for the experiments presented

here. These include 1) the approach to model order selection (i.e., determining the

number of clusters), 2) the measure for quantifying similarity between feature vectors

and 3) the clustering algorithm itself.

5.2.1.1 Model Order Selection

Model order selection is the task of determining the number of clusters in a data set.

This has been variously treated in the GRC literature. Chen et al. (2005) and Chen

et al. (2006) use approaches from the literature for automatic model order selection

(see Chapter 2). Hasegawa et al. (2004), on the other hand, use hierarchical agglomer-

ative clustering based on the fact that the task is exploratory in nature and the number

of clusters or desired granularity would not be known in advance and is moreover de-
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pendent on the application scenario. Furthermore, while related gold standards exist

that could be used to tune automatic order selection techniques, these gold standards

themselves are based on arbitrary decisions about the depth and breadth of the relation

type schema. This point is illustrated through a quick comparison of the ACE (LDC,

2004c, 2005b) and BioInfer (Pyysalo et al., 2007) data sets (Cf. full schemas in Ap-

pendix B). Where ACE 2004 has a relatively simple relation type schema consisting

of a hierarchy with 2 levels and 22 leaf nodes (2 and 18 respectively for ACE 2005),

the BioInfer schema consists of a hierarchy that is 6 deep in places and has a total of

68 leaf nodes.

For the evaluation in this chapter, the gold standard number of clusters is used.

This is motivated first by the fact that this allows the dimensionality reduction models

to be explicitly and efficiently tuned to represent the density and skew of the cluster

distribution in the development data as discussed in the experimental sections below.

Second, this is motivated by the fact that the output of dimensionality reduction rather

than the subsequent clustering output is used for the extrinsic evaluation (see Chap-

ter 6). While this weakens the claim that the GRC approach learns the relation type

schema for the development data, the resulting tuned models can still be considered to

learn the relation type schema for unseen data. Particularly when one considers that

it is possible to either 1) follow Hasegawa et al. (2004) in outputting the dendrogram

from the hierarchical clustering rather than a partition based on the hierarchical clus-

tering or 2) perform automatic model order selection based on approaches from the

literature as demonstrated in the full GRE system output in Section 3.2.4.

5.2.1.2 Measuring Similarity

Cosine is commonly used in the literature to compute similarities between tf*idf -

weighted feature vectors. This is defined as:

Cosine(p,q) = ∑i piqi√
∑ j p2

j

√
∑ kq2

k

(5.1)

where p and q are feature vectors. In the current work, cosine similarity is used for

unreduced feature and SVD representations (described below in Section 5.3.2).

The choice of measure for quantifying similarity for probabilistic models such as

LDA (described below in Section 5.3.2) is based on previous work (Hachey, 2006),

where Kullback-Leibler (KL) divergence was compared with symmetrised KL diver-

gence and Jensen-Shannon (JS) divergence on the GRC task. Experiments showed
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that KL performed significantly better than symmetrised KL and was indistinguish-

able from JS. Due to the fact that the mean KL score was slightly higher than JS and

KL is more efficient, KL is used for the experiments here. KL divergence is defined

as:

KL(p||q) = ∑
i

pi log
pi

qi
(5.2)

where p and q are probability distributions over the same event space. In information-

theoretic terms, KL divergence is the average number of bits wasted by encoding events

from a distribution p with a code based on distribution q.

Technically, the divergence measures are dissimilarity measures as higher values

correspond to larger differences (smaller similarities) between distributions. However,

they can be converted to increasing measures of similarity through various transfor-

mations. The choice here is also motivated by previous work (Hachey, 2006), which

found the simple approach from Lee (1999) (SimLee(p,q) = C−KL(p||q), where C

is a free parameter to be tuned) to outperform a related approach from Dagan et al.

(1997) (SimDagan(p,q) = 10−βKL(p||q)). Also, the divergence-to-similarity conversion

metric was found to interact with the dimensionality, motivating joint optimisation of

the two parameters. Optimised values for the experiments here are reported below in

Section 5.3.2.

5.2.1.3 Clustering Techniques

Clustering is performed with the CLUTO software3 and the technique used is identical

across models. Hierarchical agglomerative clustering is used for comparability with

the original relation discovery work of Hasegawa et al. (2004) (discussed in Chapter 2

and Section 5.2.1.1 above).

One way to view the clustering problem is as an optimisation process where an

optimal clustering is chosen with respect to a global criterion function over the entire

solution (Zhao and Karypis, 2004). Global criterion functions include:

I1 - a function that maximises the sum of pairwise similarities between instances as-

signed to each cluster;

I2 - an internal function that maximises the similarity between each instance and the

centroid of the cluster it is assigned to;

3http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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E1 - an external function that minimises the similarity between the centroid vector of

each cluster and the centroid vector of the entire collection; and

H1 - a combined (internal and external) function that consists of the ratio of I1 over

E1.

Another way to view the agglomerative clustering problem is as a greedy optimisation

process where an optimal clustering is chosen based on a series of greedy decisions

concerning which two clusters to merge next (Zhao and Karypis, 2005; Manning et al.,

2008). Local criterion functions include:

single-link - a function that measures similarity between clusters by their two most

similar members;

complete-link - a function that measures similarity between clusters by their two least

similar members; and

group average - a function that measures similarity between clusters as the average

similarity between their members.

In preliminary experiments on the development data, the I2, H1 and H2 criterion func-

tions were found to outperform single link, complete link and group average on the

development data in terms of accuracy. The experiments reported below use I2, which

had accuracy comparable to that of H1 and H2 but is superior in terms of computational

complexity (Cf., Zhao and Karypis, 2004).

5.2.2 Data and Evaluation

The evaluation uses news data from the Automatic Content Extraction (ACE) 2004 and

2005 shared tasks and biomedical data derived from the BioInfer corpus (see Chapter

3 for details of data sets and preparation). The ACE 2004 data is used for development

experiments. The ACE 2005 data serves as the held-out news test set and the BioInfer

data serves as the held-out biomedical test set. As discussed in Chapter 3, evaluation

of clustering is in terms of both the 1-to-1 f-score (F1:1) and the pairwise f-score (Fpw).

These are both calculated with respect to the partition defined by the gold standard

relation annotation (Equations 3.15 and 3.17 in Chapter 3). Differences are tested for

statistical significance using paired Wilcoxon signed ranks tests across the entity pair

sub-domains (also described in Chapter 3).
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a) 1-to-1 f-score (F1:1)

P R F

Human 1 0.947 0.935 0.941

Human 2 0.991 0.990 0.991

Mean Human 0.969 0.963 0.966

b) Pairwise f-score (Fpw)

P R F

Human 1 0.913 0.884 0.897

Human 2 0.979 0.990 0.984

Mean Human 0.946 0.937 0.941

Table 5.1: Precision (P), recall (R) and f-score (F) results for human annota-

tors against adjudicated gold standard.

Another aspect of the evaluation here is the introduction of an upper bound based

on human agreement. The ACE 2005 data includes markup from two human annota-

tors and a final adjudicated version of the markup, which makes it possible to compute

inter-annotator agreement. This is calculated by first obtaining a mapping from entity

mentions marked by annotators to entity mentions in the adjudicated gold standard

annotation. The mapping used here is derived from the ACE 2005 evaluation script,

which computes an optimised one-to-one mapping based on maximal character over-

lap between entity mention strings LDC (2004a). Given this mapping, it is possible

to align relation-forming pairs and extract partitions for each annotator and the adju-

dicated gold standard. The partitions derived from the individual annotators are then

evaluated against the gold standard in the same way as the systems.

Table 5.1 contains precision (P), recall (R) and f-score (F) results for the individual

human annotators when compared to the final adjudicated data set. The first two rows

contain the individual annotator results and the bottom row contains the mean of the

two individual annotators. The mean agreement is 0.966 and 0.941 in terms of F1:1 and

Fpw respectively.

5.3 Models

The focus of the experiments in this chapter includes 1) novel feature sets derived

from dependency parsing and 2) transformation of the resulting feature space using

dimensionality reduction techniques. These correspond to the first two steps of the

GRC clustering sub-task in Figure 5.1. In the remainder of this section, these two

modelling concerns are discussed as experimental parameters.
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5.3.1 Features Beyond Intervening Words

The first experimental parameter explored here is the feature representation for GRC.

In this section, several feature sets are described for representing relation types. Figure

5.2 contains an example sentence and the various feature representations extracted for

the relation-forming entity mention pairs. The first row contains the example sentence

where entity mention starts and ends are marked with square brackets and the entity

type is indicated by the superscript text to the right of the opening bracket. In the

remaining rows of the table, the feature type is specified in the first column, the entity

mention pair is given in the second and the features extracted are given in the second

column. The feature sets are described in detail in the following subsections.

5.3.1.1 Intervening Word Features

The Intervening Word (W) features are based on the word tokens that occur in the

intervening context between two relation-forming entity mentions. Stop words are

removed using a publicly available list distributed with the Infomap NLP software.4

Then intervening tokens are stemmed using the Porter stemming algorithm (Porter,

1980). All remaining non-stop tokens are kept as intervening word features. This

feature space is equivalent to that used by Hasegawa et al. (2004) and Chen et al.

(2005).5 Chen et al. also experiment with word tokens from the sentence context before

the first entity mention and after the second entity mention, though these are not found

to improve scores.

An example sentence and the associated Intervening Word features for each relation-

forming pair can be seen in Figure 5.2. Intervening Word features do well at capturing

relevant information for verbal relation mentions like the BUSINESS relation mention

between “David Murray” and “Amidu Barry”, which is described by the interven-

ing verb “recruited” (whose stem is “recruit”). However, Intervening Word features

do poorly in capturing relevant information that is implicitly present in the underly-

ing syntax or semantics. For example, saxophonist is the only feature extracted for

the CITIZEN-RESIDENT-RELIGION-ETHNICITY relation mention between “Ameri-

can” and “David Murray”. And no features are extracted for the MEMBER-OF-GROUP

relation mention between “Awadi” and “PBS” or the CAUSAL relation mention be-
4http://infomap-nlp.sourceforge.net/
5Actually, the Intervening Words approach here may differ slightly from related work. Hasegawa

et al. (2004) do not use stemming and do not say how their stop list is compiled. Chen et al. (2005) do
not say whether they perform stemming or stopping.
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a) ACE 2004 (News Development Set)

Example

Sentence

[place American] saxophonist [person David Murray] recruited [person

Amidu Barry] and DJ [person Awadi] from [organisation PBS].

Intervening <American,David Murray> {saxophonist}
Word <David Murray,Amidu Barry> {recruit}

<David Murray,Awadi> {recruit, amidu, barri, dj}
<Amidu Barry,PBS> {dj, awadi}
<Awadi,PBS> {}

Entity <American,David Murray> {}
Word <David Murray,Amidu Barry> {}

<David Murray,Awadi> {}
<Amidu Barry,PBS> {}
<Awadi,PBS> {}

Dependency <American,David Murray> {r mod}
Path <David Murray,Amidu Barry> {r subj, w recruit, r obj}

<David Murray,Awadi> {r subj, w recruit, r obj}
<Amidu Barry,PBS> {r conj, w awadi, r from}
<Awadi,PBS> {r from}

b) BioInfer (Biomedical Test Set)

Example

Sentence

[gene Cdc3+] encodes [protein profilin], an [protein actin-monomer]-

binding protein.

Intervening <cdc3,profilin> {encod}
Word <profilin,actin-monomer> {}
Entity <cdc3,profilin> {profilin}
Word <profilin,actin-monomer> {profilin, actin, -monom}
Dependency <cdc3,profilin> {r subj, w encod, r obj}
Path <profilin,actin-monomer> {r appo, w protein, r mod, w bind,

r lex-mod}

Figure 5.2: Example sentences with gold standard relation-forming entity

mention pairs and corresponding feature representations for various feature

sets.
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tween “profilin” and “actin-monomer”. Furthermore, Intervening Word features often

produce noise even when they produce relevant features, as in the barri and dj features

extracted for the BUSINESS relation mention between “David Murray” and “Awadi”.

5.3.1.2 Entity Word Features

The Entity Word (E) features are based on the word tokens that occur in the entity men-

tion phrases themselves. First, a simple heuristic method is used to determine whether

an entity mention is nominal. This uses part-of-speech tags to count the number of

proper noun tokens (Cpn) and the total number of tokens (Cttl) in a given entity men-

tion phrase. Entity mentions are considered to be nominal if the proportion of proper

noun tokens (Cpn/Cttl) is less than 0.75. Non-nominal entity mentions are not used to

generate Entity Word features. Next, stop words are removed from the set of entity

mention word tokens using a list of function words, function word parts-of-speech and

number tags. Function word lists are sourced from the per-class word frequency lists

from the British National Corpus (BNC) web page.6 Lists for conjunctions, determin-

ers, pronouns, prepositions and interjections were used. Parts-of-speech from Minipar

are used to identify multi-word prepositions. Finally, numeric tokens are identified us-

ing num relations from Minipar dependency parses. All remaining non-stop tokens are

kept as entity mention word features. This is comparable to the Entity Word features

introduced by Chen et al. (2005) in related work.

The specific Entity Word features used here are based on preliminary experiments

on the ACE development data, where it was found that using only non-stop word tokens

from nominal entity mentions was more beneficial than using word tokens from entity

mentions of any mention type. The intuition is that nominal (including non-named

prenominal) entity mentions may sometimes describe the relation type (e.g., “brother”,

“lawyer”) while named entity mentions are not likely to describe the relation type.

Consider the following fragment:

“the [person Bush] [organisation cabinet]”

The EMPLOY-EXECUTIVE relation mention between “Bush” and “cabinet” is described

in part by the fact that a cabinet is something that a person can appoint and head (and

in part by the underlying syntax). Furthermore, Entity Word features also contribute a

level of coreference resolution, in that they make it more likely for entity mentions con-

taining the same word tokens to be assigned to the same relation type cluster. This is
6BNC frequency lists were accessed on 28 November 2006 from http://ucrel.lancs.ac.uk/

bncfreq/flists.html.
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often beneficial, though can also cause errors. Consider the CAUSAL relation mention

between “profilin” and “actin-monomer” in Figure 5.2(b) and the PART-OF relation

mention between “pollen profilin isoform” and “ZmPRO1” in the following fragment:

“the [protein pollen profilin isoform], [protein ZmPRO1]”

The fact that the feature sets for both relation mentions contain the entity word “pro-

filin” could lead to the two entity mention pairs being wrongly placed in the same

relation type cluster.

As concerns the running examples, the Entity Word features include the profilin

feature for the relation mention between “Cdc3+” and “profilin” in Figure 5.2(b),

which has a gold standard relation type of IS-A. They do not include any features

for “Cdc3+” (or any of the entity mentions in Figure 5.2(a)) because it is not identified

as a nominal entity mention.

5.3.1.3 Dependency Path Features

The Dependency Path (D) features are based on words and grammatical relations

from a dependency parser. This is a novel approach to representing relation type in-

formation for GRC clustering, which extracts features from the shortest dependency

path connecting the two entity mentions (derivation described in the next paragraph).

This is motivated by the fact that some relation mentions are described by the un-

derlying syntax rather than the words themselves. Consider the CITIZEN-RESIDENT-

RELIGION-ETHNICITY relation mention between “American” and “David Murray” in

Figure 5.2(a). This relation type is not completely evident from the entity mentions or

surrounding words alone, but it is evident given the fact that the underlying governor-

dependency structure contains a modifier relation mention between the words “Mur-

ray” and “American”. While dependency parse information has proved successful in

supervised approaches to relation extraction (e.g., Bunescu and Mooney, 2007; Fundel

et al., 2007), it has not been used for GRC.

As described in Chapter 4, dependency paths are derived from syntactic parses ob-

tained from Minipar (Lin, 1998). Minipar produces syntactic parse information in the

form of typed grammatical relations including 1) the directional link from governors to

their dependent lexical items and 2) grammatical relation types (e.g., subject, object).7

Figure 5.3 repeats the Minipar parse of the example news data sentence from Figure
7Section 4.3.4 contains further details of dependency parsing. Section 3.3 contains details of pre-

processing, including tokenisation and dependency parsing. And, Appendix A contains details of the
XML document type used here for encoding relation extraction data and linguistic annotation.
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a) Dependency parse for example sentence

American
Adjective

saxophonist
Noun

David
U

Murray
Noun

recruited
Verb

Amidu
U

Berry
Noun

and
U

DJ
U

Awadi
N

from
Prep

PBS
Noun

subj
obj

lex-modnn

mod

lex-mod

conj

punc
lex-mod from

b) Shortest dependency paths between relation-forming entity mention pairs

1 American ←−−−−
mod David Murray

2 David Murray ←−−−−
subj recruited −−−→obj Amidu Barry

3 David Murray ←−−−−
subj recruited −−−→obj Awadi

4 Amidu Barry ←−−−−
conj Awadi −−−−→from PBS

5 Awadi −−−−→
from PBS

Figure 5.3: Example dependency parse and dependency paths for relation-

forming entity mention pairs.

5.2(a) and the associated dependency paths. In Chapter 4, dependency paths were used

without governor-dependency relation type information. Here, on the other hand, type

information is used to derive features for clustering. This is done by extracting rela-

tion types and word tokens from the dependency path. For the CITIZEN-RESIDENT-

RELIGION-ETHNICITY relation mention between “American” and “David Murray”

in Figure 5.2, for example, the dependency features include a dependency relation of

type modifier (r mod), which is extracted from the dependency path shown on Line 1

of Figure 5.3(b). This addresses the problem with the Intervening Word features, for

which only the word “saxophonist” is extracted, which does not help to describe the

relation type. Further examples of Dependency Path features can be seen in Figure 5.2

where dependency relations are prefixed with “r ” and words are prefixed with “w ”.

5.3.2 Dimensionality Reduction

The second experimental parameter explored here is dimensionality reduction. Di-

mensionality reduction is a means of inferring latent structure in distributional data

which has been argued to create models of semantic similarity that are more linguistic

in nature (e.g., see the Landauer et al. (1998) discussion of LSA and synonym tests).

Three approaches are compared here: 1) a baseline approach where no dimensionality
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reduction is performed, 2) singular value decomposition (SVD) and 3) latent Dirichlet

allocation (LDA). These are described in the rest of this section.

5.3.2.1 Unreduced Feature Space

The first approach here is a baseline approach where no dimensionality reduction is

performed. Here, feature vectors are extracted for each relation mention and weighted

using tf*idf, which is calculated as:

w(i, j) =

√
t fi, j ∗ log

(
N +1

d fi

)
(5.3)

where t fi, j is the number of times feature i occurs in the context of relation-forming

entity mention pair j and d fi is the number of relation-forming pair contexts in which

feature i occurs. As specified in Section 5.2.1.2 above, cosine is used to measure the

similarity between feature vectors in the unreduced feature space.

5.3.2.2 SVD-Reduced Feature Space

The first dimensionality reduction technique employed in the current work is singu-

lar value decomposition (SVD), a linear algebraic least squares method (Eckart and

Young, 1936). SVD has proved successful for related work in information retrieval

and language processing. For example, Berry et al. (1994) describe an SVD-based ap-

proach to information retrieval that they term latent semantic indexing. And Landauer

et al. (1998) describe the application of SVD-based latent semantic approaches to var-

ious cognitive modelling tasks including modelling synonymy, sorting words by word

senses and modelling semantic priming. Where Xr× f is a relation-by-feature (R×F)

matrix,8 SVD performs a decomposition of X into the product of three matrices with n

latent semantic dimensions:

Xr× f = Rr×nSn×n(Ff×n)T

In the resulting decomposition, the R and F matrices represent relation mentions and

features in the new space and S is a diagonal matrix of singular values in decreasing

order. These are generally sorted by decreasing magnitude of the singular values.

This is illustrated in Figure 5.4. The box labelled X represents the original r× t

matrix (with r rows representing relation mentions and f columns representing fea-

tures). The boxes labelled R, S and F represent the full detail of the decomposition.
8Here, the input matrix to SVD is composed of the tf*idf -weighted feature vectors described in

Section 5.3.2.1.
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Figure 5.4: Matrix visualisation of singular value decomposition (SVD).

The shaded areas of these boxes represent the areas in the matrices corresponding to

the n highest singular values. Thus, taking the product Rr×nSn×n(Ff×n)T over the first

n columns gives the best least squares approximation of the original matrix X by a ma-

trix of rank n, i.e. a reduction of the original matrix to n dimensions. Similarly, a rank

n representation of relation mentions can be derived by rescaling the first n columns of

R with the first n singular values (Rr×nSn×n).

The implementation used here is from the Python LinearAlgebra module, which

provides interfaces to the LAPACK libraries in FORTRAN (Anderson et al., 1999).

LAPACK is a suite of routines for linear algebra problems that includes various effi-

cient solutions to singular value problems. SVD is performed using an implementa-

tion of Cuppen’s divide and conquer algorithm to find the eigenvalues and the eigen-

vectors (Rutter, 1994). The model contains one free parameter: the dimensionality

of the reduced space n. This is tuned on the ACE 2004 news development data.

Values compared during tuning include the constant values {5,10,15,25,50,75,100}
and values specified as a proportion of the size f of the unreduced feature space

{0.05 f ,0.10 f ,0.25 f ,0.50 f ,0.75 f ,0.90 f ,0.95 f ,0.97 f ,0.99 f} (rounded to the near-

est whole number). Tuned n values used in the remaining experiments are given in

the first data column (SVD n) of Table 5.2, where the rows correspond to the differ-

ent combinations of intervening word (W), entity word (E) and dependency path(D)

features.

The resulting rank n rescaled vectors (Rr×nSn×n) are used as a latent semantic rep-

resentation of relation mentions. As specified in Section 5.2.1.2, cosine is used to

measure the similarity between two vectors in the SVD-reduced feature space.
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Features SVD n LDA T LDA C LDA β LDA α

W 15 0.97F 12 0.0001 50/T

D 0.10 f 0.99F 20 0.001 10

WE 5 0.99F 15 200/F 50/T

WD 0.10 f 0.75F 15 0.001 50/T

ED 0.05 f 0.90F 20 0.0001 50/T

WED 5 0.97F 8 0.0001 50/T

Table 5.2: Tuned SVD and LDA parameter values for various feature com-

binations based on intervening words (W), entity words (E) and dependency

paths (D).

5.3.2.3 LDA-Reduced Feature Space

While SVD has proved successful, its representation of words and documents (or re-

lations) as points in a Euclidean space is not easy to interpret, motivating more recent

work on analogous probabilistic models of latent semantic information. In early work,

Hofmann (2001) introduced a generative probabilistic version of latent semantic anal-

ysis that models each word in a document as a sample from a mixture model. It does

not, however, provide a model at the document (or relation) level. Latent Dirichlet

allocation (LDA) addresses this by representing documents as random mixtures over

latent topics (Blei et al., 2003). LDA has a clear probabilistic generative interpretation

making its output easy to understand and making it easy to embed in larger applica-

tions. Thus, it is explored in the current work as an alternative to SVD.

Here, LDA is used to model the contribution of different topics to a relation men-

tion by treating each topic as a probability distribution over features, where a relation

mention is a probabilistic mixture of topics. Where T is the number of topics, the

probability of the ith feature is written as:

P( fi) =
T

∑
j=1

P( fi|zi = j)P(zi = j) (5.4)

where zi is a latent variable indicating the topic from which feature fi is drawn, P( fi|zi =

j) is the probability of drawing feature fi under topic j and P(zi = j) is the probability

of topic j for the current relation mention. Intuitively, P(f|z) indicates which features

are important to a topic and P(z) is the prevalence of those topics for a given relation

mention (Griffiths and Steyvers, 2004).
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Figure 5.5: Graphical representation of latent Dirichlet allocation (LDA).

Figure 5.5 contains a graphical representation of the LDA model in plate notation,

where nodes represent variables (shaded nodes corresponding to observed variables

and non-shaded nodes corresponding to latent variables), arrows represent conditional

dependencies and plates (boxes) represent repeated sampling steps (the variable in the

lower right hand corner of plates corresponding to the number of repetitions). The

numbered text on the right side of the figure describes the generative process. In

the figure, φ represents the multinomial distributions over features for each topic, i.e.

P( fi|zi = j) = φ
(zi= j)
fi . And θ represents the multinomial distributions over topics for

each relation mention, i.e. P(zi = j) = θ
(rk)
zi= j. R, F and T are the total number of relation

mentions, features and topics respectively.

In its generative mode, the LDA model first chooses a topic distribution from a

Dirichlet (θ ∼ Dir(α)). Then, it samples a topic zi = j from the mention-specific

multinomial distribution θ(rk). Finally, it samples a feature fi from the topic-specific

multinomial distribution φ(zi= j). The version of LDA used here also incorporates a

Dirichlet prior over the multinomial distributions for features (φ∼Dir(β)), which was

introduced by Blei et al. (2003) to address sparsity. The model here follows Griffiths

and Steyvers (2004) in assuming symmetric Dirichlet priors with a single value each

for β and α. These hyperparameters determine the nature of the priors, where values

over one indicate a preference for multinomials that are closer to uniform and val-

ues under one indicate a preference for multinomials that are sparser (Goldwater and

Griffiths, 2007).

The choice of the Dirichlet distribution as a prior is explained by its conjugacy

to the multinomial distribution, meaning that if a multinomial distribution is endowed

with a Dirichlet prior then the posterior will also be a Dirichlet. This allows efficient
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estimation of the joint distribution over features and topics P(f,z) = P(f|z)P(z) by

integrating φ and θ out of the equations for P(f|z) and P(z). Griffiths and Steyvers

describe how this is performed to obtain a set of samples from the posterior distribu-

tions P(z|w) using Gibbs sampling, an approximate iterative method for sampling from

complex distributions (Gilks et al., 1996). Given these samples from the posterior, a

predictive distribution over topics θ can be estimated as:

θ̂
(r)
j =

n(r)
j +α

n(r)
· +T α

(5.5)

where n(r)
j is the number of times a word from relation mention r has been assigned to

topic j.

The implementation of Gibbs sampling for LDA used here is provided in Mark

Steyvers and Tom Griffiths’ Matlab Topic Modeling Toolbox.9 The resulting similarity

model contains three free parameters: the number of topics T , the two hyperparameters

(β and α) and the constant C for divergence-to-similarity conversion. These are tuned

on the ACE 2004 news development data. First, T and C are tuned jointly with pos-

sible values of T being the same as for SVD {5,10,15,25,50,75,100,0.05F,0.10F,

0.25F,0.50F,0.75F,0.90F,0.95F,0.97F,0.99F} and possible values of C including

{0,5,8,10,12,15,20}. Next, values compared for β include {0.0000001,0.000001,

0.00001,0.0001,0.001,0.01,0.1,1,10,100,200/F}.10 Lastly, values compared for α

include {0.0001,0.001,0.01,0.1,1,10,100,1000,50/T}.11 Tuned values used in the

remaining experiments are given in the last four columns of Table 5.2, where the rows

correspond to the different combinations of intervening word (W), entity word (E) and

dependency path(D) features..12

The resulting topic distributions θ̂(r) are used as a latent semantic representation of

relation mentions r. As specified in Section 5.2.1.2, C−KL(p||q) is used to measure

the similarity between two vectors in the LDA-reduced feature space.

9http://psiexp.ss.uci.edu/research/programs data/toolbox.htm.
10200/F is the default value for β in the Topic Modeling Toolbox software.
1150/T is the default value for α suggested by Steyvers and Griffiths (2007).
12Tuned values used for the final experiments here are based on optimisation using the 1-to-1 f-score

(F1:1. Results are similar for the pairwise f-score (Fpw).
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5.4 Evaluation Experiments

5.4.1 Experiment 1: Model Comparison

5.4.1.1 Method

The first experiment compares the various combinations of feature sets and dimension-

ality reduction techniques. Specifically, it addresses the following questions:

1. Which dimensionality reduction technique is best?

2. Which combination of features is best?

Models are compared on the ACE 2004 news development data using the dimension-

ality reduction parameters from the tuning experiments described above (Table 5.2).

5.4.1.2 Results

Table 5.3 contains mean f-score (across entity pair sub-domains) results for six dif-

ferent feature sets: intervening words (W), dependency path (D), W combined with

entity words (WE), W and D combined (WD), D combined with entity words (ED) and

all three combined (WED). Rows in the table correspond to the unreduced cluster-

ing model (Cl:None), the SVD reduced model (Cl:SVD) and the LDA reduced model

(Cl:LDA). The best score for each feature set is in bold. Systems that are statistically

distinguishable from the best for the given feature set (i.e., p ≤ 0.05) are underlined.

The table suggests that the LDA-reduced similarity models are generally better, ob-

taining statistically better mean f-scores on many feature sets (i.e., WD and ED for F1:1

and D, WE, WD, ED and WED for Fpw).

Interestingly, the best unreduced and SVD-reduced models are obtained with the

intervening word (W) features while the best LDA-reduced models are obtained when

feature combinations including word and dependency path features (i.e., the WD and

WED feature sets) are used. This suggests that dimensionality reduction with LDA

helps to incorporate a larger and more interdependent feature set. This may be ex-

plained by the LDA hyperparameters, which control the impact of sparsity (as de-

scribed in Section 5.3.2.3 above). Specifically, nearly all of the tuned similarity mod-

els specified in Table 5.2 above have small β values of 0.0001 or 0.001. This can

be expected to result in a fine-grained decomposition into topics that address specific

relation types. Such a specification is not possible with SVD and indeed the tuned
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b) 1-to-1 F-Score (F1:1)

W D WE WD ED WED

Cl:None 0.664 0.572 0.614 0.563 0.584 0.591

Cl:SVD 0.674 0.568 0.657 0.624 0.567 0.609

Cl:LDA 0.638 0.668 0.653 0.706 0.675 0.683

a) Pairwise F-Score (Fpw)

W D WE WD ED WED

Cl:None 0.628 0.466 0.543 0.469 0.471 0.486

Cl:SVD 0.651 0.489 0.612 0.534 0.473 0.505

Cl:LDA 0.597 0.643 0.664 0.697 0.662 0.676

Table 5.3: Comparison of f-scores for dimensionality reduction techniques on

news development set. Rows correspond to the unreduced (Cl:None), SVD-

reduced (Cl:SVD) and LDA-reduced (Cl:LDA) clustering models. Columns

correspond to the different combinations of intervening word (W), entity word

(E) and dependency path (D) features. The best score in each column is in

bold and those that are statistically distinguishable from the best are under-

lined.
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a) 1-to-1 f-score (F1:1)

Hypothesis p

W<WE 0.2344

W<D 0.1473

W<WD 0.0711

W<ED 0.0467*

W<WED 0.0463*

WE<ED 0.2344

WE<WED 0.2344

WE<D 0.1875

WE<WD 0.1179

D<ED 0.4170

D<WED 0.3375

D<WD 0.1473

ED<WD 0.5000

ED<WED 0.3937

WD<WED 0.2008

b) Pairwise f-score (Fpw)

Hypothesis p

W<D 0.0467*

W<WE 0.0391*

W<WD 0.0180*

W<ED 0.0180*

W<WED 0.0178*

D<WE 0.4688

D<ED 0.3375

D<WED 0.1042

D<WD 0.1036

ED<WE 0.4688

ED<WD 0.2008

ED<WED 0.0295*

WE<WED 0.1548

WE<WD 0.0234*

WD<WED 0.3937

Table 5.4: Partial ranking of feature combinations for LDA-reduced similarity

model based on Wilcoxon p values.

parameters for SVD are very different, with SVD-reduced models performing better

with few topics (see Table 5.2 above).

Table 5.3 suggests that the best performance for the LDA-reduced model is achieved

with the WD feature set. However, a more detailed look suggests that the WED fea-

ture set may be preferable. Table 5.4 contains a partial ranking of feature sets for the

LDA-reduced similarity model based on p values for paired Wilcoxon signed ranks

tests, where statistically significant values (p ≤ 0.05) are marked with a star. While

the WD<WED p values are not significant, they suggest that WED may be preferable.

Based on these results, the similarity models in the rest of the experiments use the com-

bined WED feature set and LDA dimensionality reduction unless otherwise specified.
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5.4.2 Experiment 2: Comparison to Performance Bounds

5.4.2.1 Method

The second experiment evaluates the accuracy of the optimised similarity model with

respect to lower and upper bounds. It addresses the following questions:

• Do GRC similarity models optimised on gold standard data offer an improve-

ment over the baseline?

• How does GRC using the optimised similarity model compare to human perfor-

mance on the task?

This evaluates the contribution of the similarity model developed here with respect to

a simple baseline approach on the ACE 2005 news test data. It also compares to a

human upper bound derived from the ACE double annotation (see Section 5.2.2).

5.4.2.2 Results

Table 5.5 contains precision (P), recall (R) and f-score (F) results. Rows in the table

correspond to the lower bound based on a random partition of the data (LB:Rand),

the clustering approach using LDA dimensionality reduction and the WED feature set

(Cl:LDA) and the upper bound based on human agreement (UB:Hum). The best score

for each evaluation measure is in bold. Systems that are statistically distinguishable

from the best for the given measure (i.e., p≤ 0.05) are underlined. The f-score results

are mixed as to whether the Cl:LDA model outperforms the lower bound, with p values

of 0.1094 for F1:1 and 0.0078 for Fpw. Other results are consistent across the 1-to-1

and pairwise evaluation measures, however, with Cl:LDA being significantly better

than LB:Rand in terms of recall and the two being statistically indistinguishable in

terms of precision. Recall (especially Rpw) is relatively high with respect to precision

for the LDA model. Again, this can be attributed to small values of hyperparameters

(further discussion in Section 5.4.3 below).

There is room for improvement with respect to the human upper bound. Cl:LDA

performs significantly worse in terms of all measures except pairwise recall (Rpw). It

should probably be noted that inter-annotator agreement on ACE is a very strong upper

bound for the GRC task as the annotators are given detailed guidelines of a specific

relation type schema. The GRC task, on the other hand, is not guided by a pre-defined

schema. Nevertheless, the comparison is informative to get a rough of idea of human

performance on the task.
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a) 1-to-1 F-Score (F1:1)

P1:1 R1:1 F1:1

LB:Rand 0.414 0.429 0.485

Cl:LDA 0.564 0.634 0.591

UB:Hum 0.969 0.923 0.966

b) Pairwise F-Score (Fpw)

Ppw Rpw Fpw

LB:Rand 0.509 0.366 0.415

Cl:LDA 0.523 0.875 0.646

UB:Hum 0.946 0.937 0.941

Table 5.5: Precision (P), recall (R) and f-score (F) results for LDA-

reduced similarity model (Cl:LDA) with respect to lower (LB:Rand) and upper

(UB:Hum) bounds on news test set. The best score in each column is in bold

and those that are statistically distinguishable from the best are underlined.

5.4.3 Experiment 3: GRC Across Domains

5.4.3.1 Method

The final experiment addresses the claim of modification-free domain adaptation (i.e.,

that models achieve comparable accuracy when transferred, without modification of

model parameters, across domains). Specifically, it poses the following question:

• Do GRC similarity models generalise across data sets and domains?

Here, the performance of the various models are compared on the news and biomedical

domains. These models are optimised on the news development data (ACE 2004) and

applied directly to the news (ACE 2005) and biomedical (BioInfer) test sets without

modification. Results for the lower bound are also presented for comparison.

5.4.3.2 Results

Table 5.6 contains precision (P), recall (R) and f-score (F) results. Rows correspond to

the lower bound (LB:Rand), the unreduced clustering approach (Cl:None), the SVD-

reduced approach (Cl:SVD) and the LDA-reduced approach (Cl:LDA). All clustering

approaches here use the WED feature set. The best score for each evaluation measure is

in bold and systems that are statistically distinguishable from the best (i.e., p ≤ 0.05)

are underlined. Table 5.6(a) contains results for the news domain development set

(ACE 2004); Table 5.6(b) contains results for the news domain test set (ACE 2005);

and Table 5.6(c) contains results for the biomedical domain test set (BioInfer).

In terms of the f-score results of the clustering systems, the LDA-reduced sim-

ilarity model achieves the highest scores in most combinations of sub-domains and
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a) ACE 2004 (News Development Set)

P1:1 R1:1 F1:1

LB:Rand 0.583 0.357 0.437

Cl:None 0.720 0.511 0.591

Cl:SVD 0.726 0.540 0.609

Cl:LDA 0.692 0.685 0.683

Ppw Rpw Fpw

LB:Rand 0.521 0.295 0.372

Cl:None 0.616 0.414 0.486

Cl:SVD 0.593 0.472 0.505

Cl:LDA 0.551 0.923 0.676

b) ACE 2005 (News Test Set)

P1:1 R1:1 F1:1

LB:Rand 0.414 0.429 0.485

Cl:None 0.674 0.566 0.607
Cl:SVD 0.663 0.555 0.599

Cl:LDA 0.564 0.634 0.591

Ppw Rpw Fpw

LB:Rand 0.509 0.366 0.415

Cl:None 0.552 0.511 0.513

Cl:SVD 0.543 0.523 0.518

Cl:LDA 0.523 0.875 0.646

c) BioInfer (Biomedical Test Set)

P1:1 R1:1 F1:1

LB:Rand 0.655 0.444 0.525

Cl:None 0.729 0.522 0.600

Cl:SVD 0.765 0.596 0.663

Cl:LDA 0.720 0.705 0.708

Ppw Rpw Fpw

LB:Rand 0.597 0.374 0.455

Cl:None 0.644 0.457 0.526

Cl:SVD 0.639 0.586 0.587

Cl:LDA 0.606 0.779 0.672

Table 5.6: Comparison of precision (P), recall (R) and f-score (F) results

on news and biomedical test sets. Rows correspond to the lower bound

(LB:Rand), unreduced (Cl:None), SVD-reduced (Cl:SVD) and LDA-reduced

(Cl:LDA) models. The best score in each column is in bold and those that

are statistically distinguishable from the best are underlined.
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evaluation measures. And it is significantly better than the baseline across all combi-

nations. The LDA-reduced model is significantly better than the unreduced and SVD

reduced models in terms of Fpw on both the news development and test sets, though

not on the biomedical test set. Taking a perfect upper bound (i.e., f-scores of 1), the

LDA-reduced system achieves error rate reductions with respect to the SVD-reduced

system of 34.5%, 26.6% and 20.6% respectively on the ACE 2004, ACE 2005 and

BioInfer data sets. In terms of recall, however, the LDA-reduced model is significantly

better than the unreduced model for all combinations except in terms of R1:1 on the

news test set. Again, the effect of the hyperparameters can be observed in the rel-

atively high recall for the LDA-reduced model. Here, the small values of α (means

across sub-domains of 0.63, 0.67 and 0.65 respectively for the ACE 2004, ACE 2005

and BioInfer data sets) can be expected to result in skewed topic distributions, which

subsequently lead to skewed distributions over clusters. This effect can be observed in

terms of the very strong negative correlation between values of α and pairwise recall

(Pearson’s r of−0.686,−0.733 and−0.865 respectively for the ACE 2004, ACE 2005

and BioInfer data sets).

While Cl:LDA is significantly better than Cl:SVD on both news data sets in terms

of Fpw, the fact that the performance of the SVD and LDA systems is similar suggests

that a choice between them can be made freely based on other criteria. SVD-reduced

similarity models may be preferable in some cases, e.g. where scalability rules out

LDA (Turney, 2006). However, based on the results here, LDA performs at least as

well as SVD-reduced models and arguably better (in terms of Fpw). Therefore, because

of the interpretability argument above (Section 5.3.2.3), the LDA-reduced similarity

model is preferred for the extrinsic evaluation in Chapter 6.

5.5 Analysis

5.5.1 Characterisation of Entity Pair Sub-Domains and Performance

Table 5.7 contains, for each entity pair sub-domain, the sub-domain size (N), the type-

to-token ratio (T T R), the number of relation mentions (|K |) and the entropy of the

relation type distribution (H(K)). Type-to-token ratio (T T R) is the number of features

divided by the number of feature instances and indicates how much repetition there

is in features. Since T T R can vary depending on the denominator (i.e., the number

of tokens), it is computed on a random sample of 30 features from each sub-domain.
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a) ACE 2005 (News Test Set)

Sub-Domain Statistics Sub-Domain F1:1 Sub-Domain Fpw

SD N T T R |K | H(K) None SVD LDA None SVD LDA

F-G 41 0.865 3 1.520 0.718 0.756 0.701 0.522 0.540 0.565

F-P 41 0.912 2 0.872 0.707 0.684 0.536 0.631 0.696 0.650

G-G 109 0.862 2 0.411 0.711 0.696 0.864 0.674 0.656 0.890

G-O 98 0.856 2 0.999 0.608 0.583 0.352 0.570 0.532 0.658

G-P 322 0.905 3 1.345 0.631 0.581 0.537 0.614 0.452 0.596

O-P 195 0.912 7 1.685 0.360 0.420 0.665 0.227 0.321 0.630

P-P 71 0.877 4 1.524 0.513 0.474 0.479 0.354 0.430 0.531

µ 125 0.884 3.3 1.194 0.607 0.599 0.591 0.513 0.518 0.646

b) BioInfer (Biomedical Test Set)

Sub-Domain Statistics Sub-Domain F1:1 Sub-Domain Fpw

SD N T T R |K | H(K) None SVD LDA None SVD LDA

A-N 42 0.863 3 1.198 0.657 0.658 0.656 0.442 0.480 0.486

N-N 33 0.843 4 1.558 0.726 0.765 0.583 0.613 0.653 0.423

P-C 130 0.855 2 0.737 0.585 0.755 0.673 0.634 0.640 0.751

P-F 187 0.769 2 0.364 0.671 0.667 0.819 0.634 0.633 0.791

P-P 694 0.898 3 1.355 0.508 0.638 0.670 0.409 0.675 0.666

P-S 126 0.813 3 0.940 0.495 0.626 0.848 0.445 0.515 0.817

R-B 89 0.856 3 0.931 0.555 0.534 0.708 0.505 0.512 0.771

µ 186 0.842 2.9 1.012 0.600 0.663 0.708 0.526 0.587 0.672

Table 5.7: Breakdown of f-scores by sub-domain with number of relation

mentions (N), type-to-token ratio (T T R), number of gold standard relation

types (|K |), and entropy of relation type distribution (H(K)).
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This is repeated ten times and averaged. Note also that T T R is computed on the same

features that are used for clustering, i.e. the list of features for T T R is simply the

concatenated list of features (with repetition) for each relation mention within a sub-

domain. Entropy is represented as H(K), where K is a random variable encoding the

gold standard class distribution. H(K) can be interpreted as a measure of the uni-

formity of a distribution. Low H(K) indicates a more spiked distribution while high

H(K) indicates a more uniform distribution. Table 5.7 also contains the sub-domain f-

score results for the unreduced (None), SVD-reduced (SVD) and LDA-reduced (LDA)

systems with the WED feature set. Rows in the table correspond to the entity pair

sub-domains. Entity types for the news data include FACILITY/VEHICLE/WEAPON

(F), GEOGRAPHICAL/POLITICAL/LOCATION (G), ORGANISATION (O) and PERSON

(P). Entity types for the biomedical data include AMINO-ACID (A), SUBSTANCE (B),

PROTEIN-COMPLEX (C), PROTEIN-FAMILY (F), NUCLEIC-ACID (N), INDIVIDUAL-

PROTEIN (P), SOURCE (R) and PROTEIN-SUBSTRUCTURE (S). Inspection of the table

seems to suggest that the most difficult sub-domains (i.e., those with the lowest f-

scores) have both high T T R (little repetition in features) and high H(K) (relation type

distribution close to uniform). This is exemplified by the ACE 2005 P-P and the BioIn-

fer P-P sub-domains, where T T R and H(K) are above average and most f-scores are

below average. By contrast, sub-domains that have low T T R or low H(K) tend to be

easier.

These tendencies are summarised in the correlation analysis in Table 5.8, where

columns correspond to the various sub-domain characteristics described above and

rows correspond to the unreduced (None), SVD-reduced (SVD) and LDA-reduced

(LDA) systems respectively. The values in the table correspond to the correlation

(Pearson’s r).13 For example, the first data cell of the first table contains the correla-

tion (-0.337) across sub-domains between the the sub-domain size (N) and the 1-to-1

f-score result for the unreduced system (None). Following conventions in the literature

for effect size of Pearson’s r (e.g., Cohen, 1988; Coolican, 2004), values over 0.10

(typeset in italicised bold font) are considered to indicate a small effect, values over

0.30 (typeset in bold font) are considered to indicate a medium effect and values over

0.50 (underlined bold font) a strong effect. Negative correlation values support the

conclusion that sub-domains with high T T R (little feature repetition) and high H(K)

(relation type distribution close to uniform) correspond to low f-scores. In addition,
13A detailed correlation analysis using multiple regression, which accounts for covariance between

the independent variables, would be interesting here. However, there are only seven sub-domains; not
enough data points for reliable results (e.g., Coolican, 2004, p 464).
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a) ACE 2005 (News Test Set)

F1:1 N T T R |K | H(K)

None -0.337 -0.378 -0.907 -0.633

SVD -0.414 -0.375 -0.764 -0.544

LDA -0.019 -0.049 -0.544 -0.269

Fpw N T T R |K | H(K)

None -0.064 -0.279 -0.929 -0.786

SVD -0.521 -0.265 -0.856 -0.835

LDA -0.035 -0.273 -0.347 -0.861

b) BioInfer (Biomedical Test Set)

F1:1 N T T R |K | H(K)

None -0.518 -0.315 0.192 0.082

SVD -0.165 -0.063 0.019 0.166

LDA -0.008 -0.690 -0.517 -0.726

Fpw N T T R |K | H(K)

None -0.437 -0.520 -0.315 -0.424

SVD 0.525 0.056 -0.099 0.068

LDA 0.181 -0.387 -0.688 -0.770

Table 5.8: Spearman’s r correlation analysis comparing f-scores of unre-

duced (None), SVD-reduced (SVD) and LDA-reduced (LDA) systems to

number of relation mentions (N), type-to-token ratio (T T R), number of gold

standard relation types (|K |) and entropy of relation type distribution (H(K)).

negative correlation values suggest that sub-domains with high |K | (many relation

types) also correspond to low f-scores. This is consistent across sub-domains and

measures for the unreduced and LDA-reduced systems though not consistent across

sub-domains for the SVD-reduced system.

5.5.2 Error Analysis

This section contains an analysis that aims to characterise the types of errors made

by the LDA-reduced system with the WED feature set. Like the pairwise accuracy

measures (described in Chapter 3), these are based on pairs of data points, i.e. whether

two data points have both the same system cluster and the same gold standard class.

Specifically, the analysis here looks at false positive and false negative errors. False

positive errors are pairs of data points that are in the same cluster but do not have the

same gold standard class (i.e., are clustered together when they should not have been).

False negative errors are pairs of data points that have the same gold standard class

but are not in the same cluster (i.e., are not clustered together when they should have

been).
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5.5.2.1 False Positives

Inspection of false positive (FP) errors allows the characterisation of common causes

of low precision. The focus is on the most frequent false positive errors, defined as

those that account for more than 15% of the total number of clustered instance pairs

in the system output (i.e., pairs of relation mentions that are part of the same system

cluster) for any of the entity pair sub-domains. Percentages are calculated with respect

to the total number of clustered instance pairs in the system output to quantify the

impact on precision.

LOCATED relation types (describing the physical location of an entity) account for

a very large number of wrongly clustered data points. These are frequently confused

with several relation types. In the ACE 2005 G-P sub-domain, for instance, 36.4% of

clustered instance pairs consist of LOCATED relation mentions wrongly paired with

EMPLOYMENT relation mentions. Consider the following two sentence excerpts, the

first containing a LOCATED relation mention between “geraldo rivera” and “iraq” and

the second containing a EMPLOYMENT relation mention between “John Negroponte”

and “US”:

1. “[Person geraldo rivera] may not be kicked out of [GPL iraq].”

2. “[GPL U.S.] Ambassador [Person John Negroponte]”

The first is difficult because the fact that “geraldo rivera” is in “iraq” has to be in-

ferred from a statement about whether he will be leaving. In the second, the EM-

PLOYMENT relation mention has to be inferred from the title of the job (i.e., ambas-

sador). Other common FP errors involving LOCATED relation mentions include incor-

rect clustering with SUBSIDIARY and USER-OWNER-INVENTOR-MANUFACTURER

relation mentions. Errors with SUBSIDIARY relation mentions account for 50% of

clustered instance pairs in the ACE 2005 G-O sub-domain while errors with USER-

OWNER-INVENTOR-MANUFACTURER relation mentions account for 44.6% of pairs

in the ACE 2005 F-P sub-domain.14

FAMILY relation mentions are frequently confused with two other types of rela-

tions. In the ACE 2005 P-P sub-domain, for instance, 15.4% of clustered instance pairs

14GEOGRAPHICAL relation mentions (describing in, at or part-of relations) are similar to LOCATED
relation mentions in that they are often wrongly clustered together with USER-OWNER-INVENTOR-
MANUFACTURER relation mentions, accounting for 33.4% of clustered instance pairs in the ACE 2005
F-G sub-domain. GEOGRAPHICAL relation mentions are also wrongly clustered together with LO-
CATED relation mentions in the ACE 2005 G-G and ACE 2005 F-G sub-domains, accounting respec-
tively for 15.7% and 14.8% of pairs.



Chapter 5. Generic Relation Characterisation 136

consist of FAMILY relation mentions wrongly paired with LASTING-PERSONAL rela-

tion mentions (describing other long-term personal relations e.g. friendship). Consider

the following two fragments, the first containing a FAMILY relation mention between

“her” and “scott” and the second containing a LASTING-PERSONAL relation mention

between “her” and “anna”:

1. “[Person her] husband [Person scott]”

2. “[Person her] friend [Person anna]”

The difference between these two relation mentions is actually very subtle. In fact,

for many applications of generic relation extraction, it is probably not detrimental to

have these two relation mentions clustered together. FAMILY relation mentions are

also frequently wrongly clustered with BUSINESS relation mentions in the ACE 2005

P-P sub-domain, accounting for 29.3% of clustered instance pairs.

EMPLOYMENT and MEMBERSHIP relation mentions are frequently wrongly clus-

tered together in the ACE 2005 O-P sub-domain, accounting for 22.6% of clustered

instance pairs. Consider the following sentence excerpts, the first containing an EM-

PLOYMENT relation mention between “Kofi Annan” and “U.N.” and the second con-

taining a MEMBERSHIP relation mention between “whitman” and “republican”:

1. “[Organisation U.N.] Secretary General [Person Kofi Annan]”

2. “[Person whitman] did consider herself sort of the [Organisation republican] envi-

ronmentalist”

Again, the difference is subtle and probably not essential to applications of generic

relation extraction.

In the biomedical data, CAUSAL and IS-A relation mentions are frequently wrongly

clustered together, accounting respectively for 34.3%, 20.5% and 15.1% of clustered

instance pairs in the A-N, N-N and P-S sub-domains. CAUSAL and OBSERVATION re-

lation mentions are also frequently confused, accounting for 24.5% and 31.9% of clus-

tered instance pairs in the P-P and R-B sub-domains. In the P-C sub-domain, 34.4%

of clustered instance pairs consist of wrongly clustered CAUSAL and PART-OF rela-

tion mentions. And, finally, in the N-N sub-domain, 31.1% of clustered instance pairs

consist of wrongly clustered PART-OF and IS-A relation mentions.
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5.5.2.2 False Negatives

Inspection of false negative (FN) errors allows the characterisation of common causes

of low recall. The rest of this section focuses on the most frequent false negative (FN)

errors, defined as those that account for more than 5% of the total number of grouped

instance pairs in the gold standard annotation (i.e., pairs of of relation mentions that

are part of the same gold standard class) for any of the entity pair sub-domains. Per-

centages are calculated with respect to the total number of grouped instance pairs in

the gold standard annotation to quantify the impact on recall.

LOCATED relation types (describing the physical location of an entity) account for

a large number of FN errors. In the ACE 2005 F-P and F-G sub-domains respectively,

these account for 21.2% and 8.4% of instance pairs that have the same gold standard

class. Consider the following two sentence excerpts, the first containing a LOCATED

relation mention between “allan chernoff” and “new york stock exchange” and the

second between “they” and “ramstein air base”:

1. “[Person allan chernoff] live from the [FVW new york stock exchange]”

2. “[Person they]’ll be arriving at [FVW ramstein air base]”

Both of these are somewhat difficult due the fact that they are arguably event mentions

that are meant to be interpreted as relation mentions (i.e., a reporting event mention in

the first and an arriving event mention in the second). Furthermore, the second relation

mention also shows up twice in the sample of false positive errors. Both times it is

clustered with USER-OWNER-INVENTOR-MANUFACTURE relation mentions, which

could also be considered a valid relation type.

GEOGRAPHICAL relation types (describing in, at or part-of relations) also account

for a large number of FN errors. In the ACE 2005 F-G and G-G sub-domains re-

spectively, these account for 12.6% and 8.4% of instance pairs that have the same

gold standard class. Consider the following sentence excerpts, the first of which has

a GEOGRAPHICAL relation mention between “Paris” and “European” and the second

between “Lahaina” and “Hawaii”:

1. “Washington’s anger with [GPL European] resistance to the campaign was fo-

cused more on [GPL Paris]”

2. “[GPL Lahaina], [GPL Hawaii]”
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Here, the first is rather difficult as it is not explicitly stated. Identifying this relation

mention requires either 1) inferring that focusing anger with European resistance on

Paris means that Paris is part of Europe or 2) world knowledge.

FAMILY relation FN errors are also common, accounting for 24.8% of instance

pairs that have the same gold standard class in the ACE 2005 P-P sub-domain. Con-

sider the following sentence excerpts, the first containing a FAMILY relation mention

between “her” and “sara” and the second between “tariq aziz” and “ziad”:

1. “she said she could no longer cope with [Person her] daughter daughter’s learning,

disability prps [Person sara]”

2. “[Person tariq aziz]’s sun [Person ziad]”

Both of these relation mentions are from the broadcast news data. In the first, the dis-

fluencies in the transcription (i.e., the repetition of the word “daughter”, the misplaced

comma, the non-word token “prps” and the lack of capitalisation) lead to errors in the

dependency path. In the second, by contrast, the disfluencies in the transcription (i.e.,

the confusion of the words “sun” and “son”) do not lead to errors in the dependency

path. The coincidence of the FN error and the bad dependency path is highly repre-

sentative as 80% of the sampled FN errors in the ACE 2005 data include at least one

entity mention pair with a bad or noisy dependency path.15

In the biomedical data, IS-A relation mentions account for the largest percentage

of FN errors. In the A-N and N-N domains respectively, these account for 51.4% and

23.3% of instance pairs that have the same gold standard class. Consider the following

two sentence excerpts, the first containing a IS-A relation mention between “member

of the cofilin/ADF family” and “twinstar locus” and the second between “subunits of

which” and “viral UL5, UL8 and UL52 genes”:

1. “A similar phenotype was seen in testes treated with cytochalasin B and has been

noted previously in mutants at the [NucleicAcid twinstar locus], a gene that encodes

a Drosophila [AminoAcid member of the cofilin/ADF family]”

2. “Herpes simplex virus type I expresses a heterotrimeric helicase-primase, the

[AminoAcid subunits of which] are encoded by the [NucleicAcid viral UL5, UL8 and

UL52 genes]”
15It is not evident that the parser does worse on broadcast news. This can be summarised by calcu-

lating the correlation between a variable coding whether the dependency path was good or bad and a
second variable coding whether the relation mention came from broadcast news or newswire data. The
resulting phi correlation value for the ACE 2005 data is 0.032.
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In the first, a bad dependency path leads to many extraneous features. In the second, the

dependency path is correct, consisting of an object relation from the word “encoded”

to the word “subunits” and a by-subject relation from the word “encoded” to the word

“genes”. Again, this coincidence of the FN error and the bad dependency path is

representative as 56% of the sampled FN errors in the BioInfer data included at least

one entity mention pair with a bad or noisy dependency path. The fact that this is

much lower than the 80% reported for the news data is due at least in part to the

fact that a large proportion of entity mention pairs in the BioInfer data are nominal

modifier relations (e.g., the PART-OF relation mention between “histone” and “H3” in

“[ProteinFamily histone] [Protein H3]”).

PART-OF and CAUSAL relation mentions also account for many FN errors in the

BioInfer data. In the P-F, N-N and P-C sub-domains, PART-OF FN errors account

respectively for 26.2%, 14.0% and 12.0% of instance pairs that have the same gold

standard class. And in the N-N and R-B sub-domains, CAUSAL FN errors account for

11.6% and 10.7% of instance pairs that have the same gold standard class.

5.6 Summary and Future Work

This chapter presented experiments addressing the generic relation characterisation

task (GRC), comparing similarity models for clustering entity mention pairs by re-

lation type. A novel feature set was introduced for the task based on syntactic fea-

tures from governor-dependency parses and two dimensionality reduction techniques

were compared. The first dimensionality technique was singular value decomposition

(SVD), a linear algebraic method that has proved successful in the language processing

and information retrieval literature. The second version was latent Dirichlet allocation

(LDA), a probabilistic generative analogue of SVD. The dimensionality reduction ap-

proaches were compared to a similarity model with no dimensionality reduction and

to a baseline that creates a random partition.

Experiments suggest that the LDA-reduced model successfully incorporates a larger

and more interdependent feature set than the unreduced and SVD-reduced models.

This was explained in terms of the LDA hyperparameters, which control the impact

of sparsity. Across domains, the LDA-reduced model is significantly better than the

SVD-reduced model in terms of pairwise f-score on both the ACE 2004 and ACE 2005

data, obtaining reductions in the error rate with respect to perfect performance (i.e., f-

scores of 1) of 34.5% and 26.6% respectively. The error rate reduction is also high
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on the BioInfer data (20.6%), though the the difference was not found to be signifi-

cant. The LDA-reduced system does especially well in terms of recall. Again, this

was attributed to small values for the LDA hyperparameters leading to skewed topic

distributions, which subsequently lead to skewed distributions over clusters.

A characterisation of entity pair sub-domains suggested that the clustering systems

struggle most on tasks with little repetition in features, relation type distributions close

to uniform and/or many relation types. Error analysis identified commonly confused

relation types. False positive errors tended to include relation mentions that required

inference or used figurative language. In addition, some false positive errors, while

incorrect according to the gold standard, were deemed to constitute subtle differences

between relation types that are probably not essential to applications of generic relation

extraction. Among false negative errors, bad dependency paths were highly prevalent.

Other false negative errors were due to transcription errors in the broadcast news data

and to difficult relation mentions that required inference or used figurative language.

While the LDA-reduced model is significantly better than SVD-reduced model on

both news data sets in terms of Fpw, the fact that the performance of the SVD and LDA

systems is similar suggests that a choice between them can be made freely based on

other criteria. SVD-reduced similarity models may be preferable in some cases, e.g.

where efficiency is more important than accuracy. However, based on the results here,

LDA performs at least as well as SVD-reduced models and arguably better (in terms

of Fpw). Therefore, because of the interpretability argument above (Section 5.3.2.3),

the LDA-reduced similarity model is used for the extrinsic evaluation in Chapter 6.

The experiments with dependency path features here show that this is a useful

source of information for GRC. However, the feature set makes limited use of the in-

formation in dependency parses. Representations could be extended, for example, to

incorporate dependency triples consisting of two word tokens and the relation between

them or a full dependency path representation like that used by Lin and Pantel (2001)

for discovery of inference rules for question answering. It may also be useful to incor-

porate information from outside the dependency path. This could could help capture

relation type information, for instance, in cases where relation mentions exist between

conjoined entity mentions (e.g., in the sentence ““Teammate [Person Kobe Bryant] said

he would not be surprised if [Person O’Neal] had a big game Saturday”, where the word

“teammate” describes the relation mention but is not on the dependency path).

There are also many options for extending models due to the flexible nature of

probabilistic topic modelling. Some possibilities include: 1) non-parametric models
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where the number of topics is sampled (e.g., Blei et al., 2004; Teh et al., 2004), 2)

variations of the model topology that model topics with respect to entity mention pairs

akin to author-topic and author-recipient-topic models (e.g., Rosen-Zvi et al., 2004;

McCallum et al., 2004), and 3) approaches that integrate coreference into the generic

relation extraction task. Coreference information could be integrated by augmenting

the feature space based on the output of a preceding coreference module akin to re-

lated work in summarisation (e.g., Steinberger et al., 2005). Coreference information

could also be integrated using joint or iterative models that use coreference informa-

tion to inform relation extraction models and vice versa akin to related work in named

entity recognition (e.g., Wellner et al., 2004). With respect to the latter approach, one

could use distributional information over relation types and related entity mentions to

contribute to similarity models for entity coreference.

The next chapter will demonstrate that the generic relation extraction approach

developed in this thesis is useful for an extrinsic summarisation task. However, as the

error analysis demonstrated, the output is somewhat noisy. Another possible use of

the generic approaches developed here is as a way of initialising a fully bottom-up

active learning approach. This could be easily achieved by using human annotators

to introduce pairwise constraints, which can be incorporated using semi-supervised

clustering approaches based on learnt similarity measures (e.g., Klein et al., 2002; Xing

et al., 2003; Bilenko et al., 2004) or by assigning arbitrarily high similarity values to

pairs annotated as having the same type and arbitrarily low values to pairs annotated

as not having the same type (e.g., Blum and Chawla, 2001).



Chapter 6

Generic Relation Extraction and

Multi-Document Summarisation

Generic relation extraction is not necessarily an end in itself but can be
used to enhance applications such as automatic summarisation. To this
end, experiments are reported on an extractive multi-document summari-
sation task, using representations based on generic relation extraction.
This serves as an extrinsic evaluation of end-to-end GRE based on the
models developed in this thesis, showing significantly improved perfor-
mance over a non-trivial baseline based on tf*idf -weighted words. Fur-
thermore, the experiments here demonstrate that models tuned on relation
extraction data achieve comparable relative accuracy when used for sum-
marisation.

6.1 Introduction

The goal of summarisation is to take an information source, extract content from it,

and present the most important content in a condensed form (Mani, 2001). Summaries

can be intended to convey all of the important content from the source or can be in-

tended just to help the reader decide whether to look at the original (Borko and Bernier,

1975). Abstracts of academic publications are an example of (generally indicative)

summaries, which are often written by the authors (cf. e.g., ANSI: American National

Standards Institute, 1997). In some professional fields, summaries are often prepared

by information management professionals at publishing or archiving organisations.

The Incorporated Council for Law Reporting1, for example, publishes human-written

1http://www.lawreports.co.uk/
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summaries of UK court proceedings, which are important due to the central role of

precedent in English common law.

The field of automatic summarisation (cf., Endres-Niggemeyer, 1998; Mani, 2001;

Spärck Jones, 2007) aims to create tools that address various summarisation tasks

with minimal human intervention. Mani (2001, pp. 19–20) lists a number of applica-

tions from the literature, including: news summarisation from multiple online sources

(e.g., Columbia Newsblaster2, NewsInEssence3); assistants for patient-focused access

to medical literature (e.g., McKeown et al., 1998; Elhadad and McKeown, 2001); meet-

ing summarisation (e.g., Waibel et al., 1998; Murray et al., 2005a); and re-presentation

for devices with small screens (e.g., Nakao, 2000; Corston-Oliver, 2001).

Approaches to summarisation are frequently divided into two main camps: ab-

stractive and extractive. Abstractive approaches create conceptual representations of

the source document based on deep linguistic pre-processing and thus require summary

generation techniques that create novel output (i.e., text strings that are not necessarily

found in the input). Extractive approaches create representations of the source docu-

ment that are generally based on an easily identified text sub-unit such as sentences or

paragraphs. These representations are then used to identify representative or important

snippets of text to place in the summary. Research on extractive approaches consti-

tutes a very large majority of current work on automatic summarisation. This is due

to the fact that extractive systems are more general in that they do not require much in

the way of domain-specific resources for interpretation, which also makes them rela-

tively easy to develop. For the purposes of the current work, extractive summarisation

provides a convenient framework for comparing models of text content.

Another important distinction is between extractive approaches that use unsuper-

vised salience functions and those that learn salience functions from annotated training

material. The former generally use functions based on frequency counts of extract indi-

cator features. Specific examples include the Luhn (1958), Edmundson (1968) and Fi-

latova and Hatzivassiloglou (2004) systems, which are described in Section 6.2 below.

The latter generally use supervised machine learning algorithms to learn a function

that maps features of a text unit to a salience prediction. Specific examples include

the systems described by Kupiec et al. (1995) and Teufel and Moens (1997), which

learn summary classifiers using naı̈ve Bayes to incorporate various features including

cue phrase, location, sentence length and term importance information. Supervised

2http://newsblaster.cs.columbia.edu/
3http://lada.si.umich.edu:8080/clair/nie1/nie.cgi
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Figure 6.1: Main sub-tasks of automatic summarisation.

approaches have the advantage of being able to incorporate diverse information into a

single salience function. However, they require training material where sentences are

annotated for extract-worthiness.

Following Spärck Jones (1999, 2007), summarisation systems can be characterised

with respect to their approach to the three main sub-tasks in Figure 6.1. The input

consists of the source document (or a collection of source documents in the case of

multi-document summarisation). The first step (interpretation) creates a representation

of the source document by performing some level of interpretation. A simple approach

here would represent sentences by their tokens (i.e., as an unordered bag-of-words).

The next step (Transformation) is the compaction step where the source representation

is converted into the summary representation, e.g. by identifying sentences whose word

subsets are most representative of the full text. Finally, in the generation step, the

output summary is created. In the case of sentence extraction, this involves preparation

which includes various operations to maximise coherence such as ensuring that entity

references are comprehensible and arranging the sentences in a sensible order.

The current work uses a sentence extraction framework to evaluate relation-based

representations based on GRE output and will refer to summarisation via sentence

extraction using unsupervised salience functions by default. From a summarisation

perspective, the motivation is to explore GRE as a novel knowledge stream and explore

the type of summaries where it will be beneficial. Section 6.2 situates the current

work with respect to related source representations from the summarisation literature.

Section 6.3 describes the setup for the experimental evaluation. The models compared

here are described in Section 6.4. The experiments are present in Sections 6.5.1, 6.5.2

and 6.5.3. And the analysis of results is presented in Sections 6.6.
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6.2 Review

The interpretation and representation of source documents is an important aspect of

automatic extractive summarisation which has experienced a slow but steady evolution

in the literature. In seminal work, Luhn (1958) introduces a representation based on

content words. These are defined as non-function words from the source document

that are neither too frequent nor too infrequent. Luhn uses frequency to weight con-

tent words and extracts sentences with the highest combined content scores to form

the summary. Subsequent work adapted the tf*idf weighting scheme, where term fre-

quency (tf ) is combined with inverse document frequency (idf ), an inverse measure of

term occurrence across documents that serves to down-weight common words (Spärck

Jones, 1972). Another representation used in early work is based on the position of sen-

tences within a document. These features are based on the observation that important

information tends to occur at the edges of e.g. documents and paragraphs (Baxendale,

1958; Brandow et al., 1995). In modern work, position- and tf*idf -based representa-

tions are often used as simple but non-trivial baselines, e.g. the DUC shared-tasks4 and

Filatova and Hatzivassiloglou (2004).

Other work has incorporated various cue phrase information into representations

of the source documents (Edmundson, 1968; Rush et al., 1971). Edmundson, for

example, use lists of words derived from an annotated training corpus that indicate

whether a sentence salience score should be increased (bonus words) or decreased

(stigma words). According to Edmundson’s analysis, bonus lists tend to contain “cue

words that are comparatives, superlatives, adverbs of conclusion, value terms, relative

interrogatives and causality terms” while stigma lists contain “anaphoric expressions,

belittling expressions, insignificant-detail expressions and hedging expressions”. Later

work explored the use of both single and multiple word indicators, which include bonus

phrases like ‘the purpose of this research is’ and ‘our investigation has shown that’ as

well as bonus words and stigma words.

In recent literature, representations have tended toward more abstract approaches

based on linguistic structure, therefore moving toward underlying content rather than

relying on surface structure. Barzilay and Elhadad (1997) and Lin and Hovy (2000),

for example, present systems that generalise over surface structures by mapping words

to more abstract conceptual representations based on synonymy. These can be built

using lexical knowledge sources like WordNet (e.g., Barzilay and Elhadad, 1997) or

4http://www-nlpir.nist.gov/projects/duc/index.html
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derived automatically from large corpora (e.g., Lin and Hovy, 2000). Other approaches

use models of the underlying discourse structure to determine extract-worthiness. Mi-

ike et al. (1994) and Marcu (1997), for example, incorporate explicit models of the

rhetorical relations between sentences in the text. A full rhetorical analysis of a text

produces a tree structure where the the most important information is closer to the root

of the tree. Marcu’s algorithm uses this property to rank the extract-worthiness of text

snippets (i.e., phrases that correspond roughly to the syntactic notion of clauses). In a

related approach to discourse-based summarisation, Boguraev and Kennedy (1997) in-

corporate salience of referential noun phrases (e.g., ‘he’, ‘priest’) into their extraction

function.

Yet other approaches tending toward more abstract representations of underlying

content have tried to capture semantics through logical forms or templates. Tucker and

Spärck Jones (2005), for instance, describe a system that is based on logical forms,

derived from a parser which the authors use to extract predicate-argument structures.

For example, interpretation of the following sentence:

“Japanese investment in Asia is propelling the region toward economic
integration.”

produces the following predications:

1:propel(B,D) 4:name of(C,Asia) 7:integration(E)

2:investment(B) 5:in(B,C) 8:economic(E)

3:japanese(B) 6:region(D) 9:toward(D,E)

The authors use these to build graphs linked by arguments (e.g., predication node 1

above is linked to nodes 2, 3 and 5 by virtue of the fact that they all have B as an

argument and is also linked to nodes 6 and 9 by virtue of the fact that they have D as

a common argument). Links are also formed when predicates are the same or simi-

lar. When extracting sentences, the nodes with highest linkage according to several

measures are selected first and the corresponding sentences extracted.5

This kind of logical approach is very interesting because it helps to incorporate

underlying linguistic structure. However, it still relies on matching arguments and
5In addition to their sentence extraction approach, Tucker and Spärck Jones (2005) describe a phrase

generation approach that lies somewhere on the continuum between purely extractive and purely ab-
stractive systems. A number of other authors (e.g., McKeown and Radev, 1995; Barzilay et al., 1999;
Elhadad and McKeown, 2001; Nobata et al., 2002; Vanderwende et al., 2004; Leskovec et al., 2005)
also present work using representations derived from syntactic and semantic interpretation that move
away from extractive summarisation towards approaches that are more abstractive in nature. These
are not presented here due to the focus on extractive approaches as a test bed for comparing source
representations based on information extraction.
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predicates and thus does not do enough to abstract away from surface forms. As a

remedy, the use of representations based on information extraction (IE) has been sug-

gested. This is based on the notion that IE definitions of types for entities, relations

and events provide a level of abstraction that may be more appropriate for automatic

summarisation. McKeown et al. (1998), White and Cardie (2002) and Harabagiu and

Maiorano (2002), for example, explore the use of IE-based representations for extrac-

tive summarisation: McKeown et al. incorporate patient characteristic templates for

matching potential treatments to specific patients in a medical summarisation system;

White and Cardie incorporate a bootstrapped IE system based on Autoslog (Riloff,

1996) for filling event templates; and Harabagiu and Maiorano incorporate a hybrid

approach that uses conventional IE techniques for known topics and a more general

approach based on WordNet for unknown topics.6

The problem with these systems is that they all use supervised approaches to IE

that require that the IE templates be known in advance and additionally require signif-

icant investment in writing extraction rules or in annotating data for training. Where

more general techniques are used, they still require domain-specific resources, e.g.

White and Cardie’s bootstrapping approach still requires that the extraction templates

be known in advance and Harabagiu and Maiorano’s approach depends on the Word-

Net lexical database, for which coverage is not guaranteed for arbitrary domains.

Filatova and Hatzivassiloglou (2004) go a step further, introducing methods using

more general IE representations that are not based on supervised learning. Given a

named entity recogniser, the representation is automatically derived and consists of

<Ent,Connector,Ent> event triples, where connectors are verbs or action nouns (i.e.,

nouns that are hyponyms of event or activity in WordNet) that occur in between the

two NEs. Thus, the approach aims to perform a simple generic IE task that the au-

thors refer to as atomic events. This representation is shown to outperform a tf*idf

baseline on the DUC 2001 data. As we will see in Section 6.4.3 below, Filatova and

Hatzivassiloglou’s approach has three main shortcomings.

The most obvious problem is the exclusive focus on simple atomic events (i.e.,

entity mention pairs with an intervening verbal connector), meaning that it will not

be able to address tasks like biographical summarisation where relations are at least

as important as events. Second, it suffers from the same problem as the Tucker and

Spärck Jones approach in that it relies heavily on representations based on surface
6Comparable work using IE in the context of abstractive as opposed to extractive summarisation in-

cludes work by DeJong (1982), Hahn and Reimer (1999), White et al. (2001) and Saggion and Lapalme
(2002).
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forms, which are not capable of capturing latent semantic similarities. Finally, like

the Harabagiu and Maiorano approach (though to a lesser extent), its performance is

subject to the coverage of WordNet. In the rest of this chapter, a set of experiments

are reported that compare the contribution of several possible knowledge streams to

effective interpretation and representation of source documents for extractive sum-

marisation. The experiments focus on IE-based representations including including

the Filatova and Hatzivassiloglou event representation and a representation based on

the GRE models developed in the previous chapters of this thesis.

6.3 The Task: Experimental Setup

For the sake of comparison, the experimental setup uses the same extraction algorithm,

data and evaluation as Filatova and Hatzivassiloglou (2004). These are described in the

remainder of this section.

6.3.1 Sentence Extraction as Set Cover

Given a source representation and weighting scheme, summarisation via sentence ex-

traction generally proceeds by selecting the sentences with the highest weights and

placing them in the summary until the summary meets the desired length (e.g., Luhn,

1958; Edmundson, 1968). However, this does not necessarily account for the pos-

sibility of redundancy (i.e., conceptual overlap between the selected sentences). To

address this problem, Carbonell and Goldstein (1998) introduce the general purpose

maximal marginal relevance (MMR) algorithm which combines an arbitrary salience

function (e.g., based on unsupervised or supervised approaches to salience) with a sec-

ond function that measures redundancy via overlap with already extracted text. Other

recent work on algorithms has focused on salience, developing supervised learning ap-

proaches in which extractors are trained for given domains (e.g., Daumé III and Marcu,

2005; Daumé III, 2006) or approaches based on modern graph algorithms (e.g., Erkan

and Radev, 2004; Yoshioka and Haraguchi, 2004; Mihalcea, 2005; Li et al., 2006).

By contrast, several recent papers have investigated various techniques that ac-

count for salience and redundancy using approximation algorithms for global inference

from the literature. Filatova and Hatzivassiloglou (2004) introduce an approach based

on algorithms for the set cover problem and compare several techniques for dealing

with both salience and redundancy on the DUC 2001 multi-document summarisation
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c1 c2 c3 c4 c5

t1 1 1 0 1 1

t2 1 0 0 1 0

t3 0 1 0 0 1

t4 1 0 1 1 1

Table 6.1: Text × concept matrix for set cover approach to automatic sum-

marisation (Filatova and Hatzivassiloglou, 2004).

task. McDonald (2007) compares approaches based on a greedy search procedure

similar to MMR, a dynamic programming solution (based on the knapsack problem)

and integer linear programming (ILP). McDonald’s results suggest that the dynamic

programming solution performs as well as ILP in terms of accuracy on the DUC 2005

query-focused summarisation task and incurs a fraction of the computational resources

required by ILP. As noted previously, the current evaluation adopts the Filatova and

Hatzivassiloglou framework for the sake of comparing their atomic event models to

the GRE-based models introduced here.

Filatova and Hatzivassiloglou (2004) define a general extraction model based on

a mapping between textual units and concepts. To illustrate, consider the matrix in

Table 6.1 where rows represent textual units (e.g., sentences, paragraphs) and columns

represent concepts (e.g., words, events, relations) in the input text. Each concept is

either absent or present in a given textual unit. Additionally, each concept has a weight

associated with it. Looking at the problem in this way makes it natural to formulate it

as follows: the summary should select textual units such that there is maximal coverage

of the salient conceptual units.7 This is essentially the maximum coverage problem,

which has been shown to be reducible to the set covering problem and therefore to be

NP-hard (e.g., Cormen et al., 2001). Approximation algorithms for set covering run in

polynomial time or better (Hochbaum, 1997; Bienstock and Iyengar, 2004).

Filatova and Hatzivassiloglou define three greedy algorithms for extractive sum-

marisation: a simple greedy algorithm and two versions of the greedy algorithm in-

spired by approximate solutions to the set covering problem. These can be parametrised

7While not considered in the current experiments, a more discourse-oriented approach could be
derived within the set cover framework by down-weighting conceptual units that occur e.g. in por-
tions of the source documents that describe background information, where text segments containing
background information could be identified using a sentence-level rhetorical status classifier like that
developed by Teufel and Moens (2002).
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SUMMARISE : D,EXTRACT,UPDATE,k

1 S ←{}
2 while ∑ti∈S LENGTH(ti) < k

3 t j← EXTRACT(D)

4 S ← S ∪ t j

5 D← UPDATE(D, t j)

6 return S

EXTRACTde f ault : D

1 ti← argmaxti∈rows(D) SCORE(D, ti)

2 return ti

UPDATEstatic : D, ti
1 D← DELETE(D, ti)

2 return D

Figure 6.2: Generalised version of Filatova and Hatzivassiloglou (2004) func-

tion for extractive summarisation with default scoring function and static up-

date function.

in terms of the general SUMMARISE function in Figure 6.2. In addition to the text ×
concept matrix D and the maximum summary length k, this function takes an extrac-

tion function EXTRACT and a matrix update function UPDATE as input. The extrac-

tion function determines which text unit to select next for addition to the summary and

makes use of a SCORE function. Filatova and Hatzivassiloglou simply calculate the

sum over the concept weights for the given text unit, i.e.:

SCORE : D, ti 7→ return ∑
c j∈cols(D)

D[ti,c j] (6.1)

The matrix update function determines how the text × concept matrix should be up-

dated after a text unit is extracted. The function first initialises the summary S to the

empty set. Then it enters a loop that continues until the summary reaches the desired

length. Within the loop, a text unit is extracted and added to the summary after which

the text × concept matrix is updated (i.e., to reflect the extracted text unit and, option-

ally, the extracted content). The output of the algorithm is a set S comprising the text

units that make up the summary.

The first algorithm uses a simple greedy approach and is referred to as the static

greedy algorithm (AL1). For this algorithm, the SUMMARISE function is invoked with

the default extraction function and the static update function as defined in Figure 6.2.

EXTRACTde f ault selects the textual unit with the highest score and UPDATEstatic simply

removes the row representing the extracted text unit from the text × concept matrix D.

For the static greedy algorithm, the actual implementation of the extract function is

made more efficient by calculating the text unit scores once and placing them in a

heap data structure, then simply extracting text units from the top of the heap until the
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UPDATEadaptive : D, ti
1 for each c j ∈ cols(D)

2 if D[ti,c j] > 0

3 for each tk ∈ rows(D)

4 D[tk,c j]← 0

5 D← DELETE(D, ti)

6 return D

Figure 6.3: Matrix update function for adaptive greedy algorithm.

summary reaches the desired length. The static greedy algorithm does not explicitly

address redundancy in the summary.

The two adaptive versions of the greedy algorithm are referred to as the adaptive

greedy algorithm (AL2) and the modified adaptive greedy algorithm (AL3). Intuitively,

these aim to minimise redundancy in the summary by globally maximising the number

of conceptual units covered in the output. For the AL2, the SUMMARISE function is in-

voked with the default extraction function from Figure 6.2 and the adaptive matrix up-

date function (UPDATEadaptive) defined in Figure 6.3. In addition to removing the row

representing the extracted text unit from the text × concept matrix D, UPDATEadaptive

iterates through the remaining text units and assigns zero weights to all concepts that

are covered by the extracted text unit.

For AL3, the SUMMARISE function is invoked with the adaptive matrix update

function from Figure 6.3 and the modified extraction function defined in Figure 6.4.

EXTRACTmodi f ied first identifies the concept c j not yet covered in the summary that

has the highest overall weight in the text × concept matrix D. Then it selects the

text unit tk with the highest score from among the text units that contain concept c j.

This implementation of the modified extraction function is made more efficient by

calculating the concept scores once and placing them in a heap data structure. Then,

Line 1 of the modified extraction function is implemented as a loop that takes items

from the top of the heap until a concept is found that is not yet covered in the summary.

For the experiments reported here, the text units (t) are sentences, the length func-

tion (LENGTH(ti)) is the number of word tokens in sentence ti and the score function

(SCORE(D, ti)) is the sum of concept weights defined in Equation 6.1. What remains

is to define the mapping from text to conceptual units. This corresponds to the in-

terpretation step in Figure 6.1, which takes the raw document collection as input and
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EXTRACTmodi f ied : D

1 c j← argmaxc j∈cols(D) ∑ti∈rows(D) D[ti,c j]

2 tk← argmaxtk∈rows(D)&D[tk,c j]>0 SCORE(D, tk)

3 return tk

Figure 6.4: Extraction function for modified greedy algorithm.

outputs the conceptual representation. The various representations compared here are

described below in Section 6.4. The code used is my own implementation, which

achieves similar results to those reported by Filatova and Hatzivassiloglou (2004).

6.3.2 Data

The evaluation uses data created by the American National Institute for Standards and

Technology8 in the context of the document understanding conferences (DUC). DUC

was a series of shared community evaluations that ran from 2001 through 2007 and

explored various summarisation tasks including single document summarisation (e.g.,

DUC 2001, 2002), multi-document summarisation (e.g., DUC 2001, 2002, 2005),

headline generation (e.g., DUC 2003, 2004) and query-focused summarisation (e.g.,

DUC 2005, 2006). The experiments here use the multi-document summarisation data

from the DUC 2001 multi-document summarisation task (Harman and Marcu, 2001),

which is the same data used by Filatova and Hatzivassiloglou (2004). This comprises

30 test document sets, which are made up of approximately 10 news stories. Each

document set is collected by a human and focuses on a particular topic, though they

vary in terms of coherence across documents. Example topics include the nomination

of Clarence Thomas to the American Supreme Court, Neil Bush’s role in the collapse

of Silverado Savings and Loan and the Exxon Valdez oil spill. Gold standard sum-

maries are provided for each document set for summary lengths of 50, 100, 200 and

400 words. This helps to ensure that the systems are not over-tuned to specific sum-

mary lengths. For each summary task (i.e., all document sets and all summary lengths),

there are three distinct gold standard summaries created by different human analysts.

Pre-processing includes the same modules that are used for the relation extrac-

tion corpora (described in Chapter 3). This includes sentence boundary identifica-

tion, segmentation of words (tokenisation), labelling words with part-of-speech tags,

8http://www-nlpir.nist.gov/projects/duc/index.html
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identification of noninflected base word forms (lemmatisation) from the LT-TTT tools

(Grover et al., 2000). Pre-processing also includes dependency parsing using Mini-

par (Lin, 1998) and automatic named entity recognition using the C&C tagger (Curran

and Clark, 2003) trained on the data from the MUC-7 shared task (Chinchor, 1998).

In addition to named entities, the ten most frequent nouns in each document set are

marked as entities, which are marked with type label XFN. Filatova and Hatzivas-

siloglou (2004) introduced the tagging of frequent nouns as entities to help identify

non-named referring expressions.

6.3.3 Evaluation

The evaluation uses Rouge9 to determine which representation selects content that

overlaps most with human summaries. Rouge estimates the coverage of appropriate

concepts (Lin and Hovy, 2003; Lin, 2004) in a summary by comparing it to several

human-created reference summaries. Rouge-1 does so by computing precision and

recall based on macro-averaged unigram overlap. Rouge-SU4 does so by calculating

bigram overlap where bigrams are allowed to be composed of non-contiguous words

(with as many as four words intervening). Rouge-SU4 also includes unigrams to de-

crease the chances of zero scores where there is no skip bigram overlap.

The configuration10 is based on comparisons between Rouge and human judge-

ments of content coverage (Lin, 2004), which suggest that Rouge-1 and Rouge-SU4

with stemming11 and removal of stop words are good measures for evaluating multi-

document summarisation tasks, consistently achieving Pearson’s correlation scores

above 0.72 and as high as 0.9 for longer summaries. The results also suggest that

comparison to multiple human summaries is better (especially where the number of

human reference summaries is greater than or equal to three). A jackknifing procedure

(i.e., k− 1 cross-evaluation) is used here so that human gold-standard and automatic

system summaries can be compared.

It has been shown in DUC 2005 and work by Murray et al. (2005b) that Rouge does

not always correlate well with human evaluations. Rouge suffers from a lack of power

to discriminate between systems whose performance is judged to differ by human an-

notators. In particular, Rouge may be misleading when comparing diverse systems

9Rouge stands for recall-oriented understudy for gisting evaluations. While current versions also
compute precision and f-score of system summaries, the evaluation here uses recall alone. Rouge can
be obtained from http://haydn.isi.edu/ROUGE/.

10i.e., ROUGE-1.5.5.pl -n 1 -2 4 -u -m -s -r 1000 -f A -p 0.5 -t 0
11Rouge stemming uses Porter’s algorithm (Porter, 1980).
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such as abstractive versus extractive or even when comparing two extractive systems

that use different generation techniques to process the selected content. However, it is a

sound measure for comparing different representations in the current evaluation, where

all systems use the same sentence selection framework and the same generation tech-

niques. Furthermore, comparison of Rouge on the data used here (DUC 2001) have

shown that Pearson’s correlation with human judgement is 0.73 and 0.72 for Rouge-1

and Rouge-SU4 respectively on short, 50 word summaries. On summaries of 100-400

words, both measures have higher correlations in the range of 0.83 to 0.90, generally

increasing for longer summaries (Lin, 2004).

6.4 Models

In this section, the different representations compared here are described in more de-

tail. Figure 6.5 contains an example sentence and its representation using various cor-

responding to the various representations of sentence content explored here.12 These

will be described in detail in the following sections.

6.4.1 Baseline tf*idf Representation

The baseline model represents sentences by bags-of-words using a conventional weight-

ing scheme based on term frequency (TF). Following the methodology from Filatova

and Hatzivassiloglou (2004), document frequencies for terms were obtained from a

list of 31,928,892 terms compiled from a snapshot of 49,602,191 web pages.13 Term

weighting is calculated using tf*idf as:

w(i, j) =

√(
1+ log

(
t fi, j

))
∗ log

(
N

d fi

)
(6.2)

where t fi, j is the number of times term i occurs in sentence j and d fi is the number of

documents in which term i occurs. An example sentence and its tf*idf representation

can be seen in Figure 6.5.

12The sentence was selected from a document set from DUC 2001 that contains articles about Neil
Bush and his role in the collapse of Silverado Savings and Loan during the U.S. Savings and Loan crisis
of the 1980s and 1990s.

13The document frequency files were compiled from a January 2001 version of the Stanford Web-
Base archive (http://dbpubs.stanford.edu:8091/∼testbed/doc2/WebBase/). The work was
carried out by researchers from digital library projects at Stanford University and University of Cali-
fornia, Berkeley. The document frequency data was downloaded 6 June 2007 from ftp://elib.cs.
berkeley.edu/outgoing/df/ which, unfortunately, is now defunct.
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Example

Sentence

Bush worked as an oil lease negotiator for Amoco in Denver

and later started his own oil company, JNB Exploration.

tf*idf

(TF)

jnb:3.55, amoco:3.13, oil:3.05, negotiator:3.04,

lease:2.58, exploration:2.54, denver:2.45, bush:2.44,

worked:2.28, started:2.21, later:2.13, own:1.96,

company:1.94, his:1.93, as:1.56, that:1.55, an:1.54,

for:1.34, in:1.33, and:1.32

event

(EV)

<PER bush,worked,XFN oil>:0.00023,

<PER bush,worked,ORG amoco>:0.00011,

<PER bush,worked,LOC denver>:0.00011,

<XFN oil,started,ORG jnbexploration>:0.00011,

<ORG amoco,started,ORG jnbexploration>:0.00011,

<LOC denver,started,ORG jnbexploration>:0.00011,

<LOC denver,started,XFN oil>:0.00011,

<ORG amoco,started,XFN oil>:0.00011,

<PER bush,worked,ORG jnbexploration>:0.00003,

<PER bush,started,XFN oil>:0.00003,

<PER bush,started,ORG jnbexploration>:0.00003

relation

(RL)

<ORG amoco,rd94,LOC denver>:0.00039,

<ORG amoco,rd505,LOC denver>:0.00039,

<XFN oil,rd92,ORG jnbexploration>:0.00002,

<XFN oil,rd712,ORG jnbexploration>:0.00002,

...

neevent

(EE)

<PER bush,XFN oil>:0.00244,

<PER bush,LOC denver>:0.00122,

<PER bush,ORG jnbexploration>:0.00044,

<LOC denver,XFN oil>:0.00033,

<PER bush,ORG amoco>:0.00022,

...

nerelation

(ER)

<LOC denver,ORG amoco>:0.00311,

<ORG jnbexploration,XFN oil>:0.00155

Figure 6.5: Example sentence and various representations of sentence con-

tent. Weights are defined in the respective model description sections.
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6.4.2 Filatova and Hatzivassiloglou Event Representation

We also compare to the atomic event (EV) representation from Filatova and Hatzivas-

siloglou (2004). As described above, this consists of <Enti,Connector j,Entk> event

triples, where connectors are verbs or action nouns (i.e., nouns that are hyponyms of

event or activity in WordNet) that occur in between the two entity mentions. Given

a named entity recogniser and a lexical resource (WordNet), these are derived auto-

matically from the text using a methodology that can be generalised to the framework

in Figure 6.6. The algorithm processes one sentence at a time. In the first step, pairs

of co-occurring entity mentions are identified. All pairs of entity mentions that occur

together in a sentence are considered co-occurring at this point. Next, the algorithm

characterises the entity mention pairs using event-denoting words from the intervening

context, referred to as Connectors and discards pairs without an intervening connector

word.14

Event triple weighting is calculated by combining entity pair and connector weights

as:

wev(i, j,k) = wne(i,k)∗wcn( j, i,k) (6.3)

where wne(i,k) is the weight of the entity pair <i,k> consisting of entities i and k and

wcn( j, i,k) is the weight of connector j in the context of entity pair <i, j>. Filatova

and Hatzivassiloglou calculate wne(i,k) as the normalised entity pair count, i.e.:

wne(i,k) =
Cne(< i,k >)
Cne(< ∗,∗>)

(6.4)

where Cne(<i,k>) is the count of mentions of entity pair <i,k>15 and Cne(<∗,∗>) is

the total count of all mentions of entity pairs <∗,∗>. And they calculate wcn( j, i,k) as

the normalised count of connector j in the context of the entity pair, i.e.:

wcn( j, i,k) =
C<i,k>

cn ( j)

C<i,k>
cn (∗)

(6.5)

where C<i,k>
cn ( j) is the count of occurrences of connector j in the context of entity

pair <i,k> and C<i,k>
cn (∗) is the total count of all connectors in the context of en-

tity pair <i,k>.16 An example sentence and its event representation can be seen in
14Valid connectors consist of verbs or action nouns. Action nouns are defined as nouns that are

hyponyms of event or activity in WordNet. No word sense disambiguation is performed.
15Coreference between entity mentions is computed as based on exact string match after removing

punctuation, converting to all lower case, and prefixing the entity type. For example, the entity mention
string “JNB Exploration” with type ORGANISATION is normalised to ORG jnbexploration.

16Filatova and Hatzivassiloglou do not specify whether their weighting is at the level of a single
sentence or over the full document set. For the evaluation here, event weighting incorporates the two
levels. This is achieved by multiplying the sentence-level weight by the document-level weight.
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For each sentence:

1 Identify event protagonists (pairs of co-occurring entity mentions)

2 Characterise event type (intervening event-denoting words)

Figure 6.6: Filatova and Hatzivassiloglou’s algorithm for atomic event extrac-

tion.

Figure 6.5. Event triples generated for the example sentence include <PER bush,

worked,ORG amoco> and <PER bush,started,ORG jnbexploration>. Some er-

roneous event triples are also generated, which are discussed in more detail below.

The first error has to do with the fact that entities include named entities identified

in the pre-processing as well as the ten most frequent nouns in the document set. In

the example sentence from Figure 6.5, non-named referring expressions include “oil

lease negotiator” and “oil company” (where noun phrase heads are underlined). The

most frequent nouns for this sentence’s document set include ‘oil’ but not ‘negotiator’

or ‘company’ and the approach does not differentiate between heads and non-heads

of noun phrases. Therefore, ‘oil’ is labelled as an entity and extracted in a number of

triples such as <PER bush,worked,XFN oil> (as opposed to <PER bush,worked,

XFN negotiator>).

Another problem illustrated by the example sentence has to do with the noisy

nature of the surface-level approach to identifying entity pairs and connectors tends

to generate many false positive events. Consider the triple <ORG amoco,started,

ORG jnbexploration>. The sentence does not actually describe an event involv-

ing Amoco and JNB Exploration and certainly not a ‘started’ event between the two.

Rather, it includes aspects of two events involving Neil Bush and companies that he

was involved with. If the algorithm was constrained based on the underlying grammat-

ical structure, it should be able to identity that the arguments of ‘worked’ are ‘Bush’

and ‘Amoco’ (i.e., <PER bush,worked,ORG amoco>) and that ‘worked’ does not de-

scribe an event involving ‘Amoco’ and ‘JNB Exploration’.

6.4.3 GRE-based Relation Representation

The focus of the evaluation is the relation-based representation based on the GRE

models developed in this thesis. Thus, relation mentions are identified using the opti-

mised GRI approach from Chapter 4. Specifically, co-occurring entity mention pairs
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are defined as all those that have either 1) no more than two intervening words in the

surface order of the sentence or 2) no more than one edge intervening on the shortest

path through the dependency parse. This is more strict than the Filatova and Hatzivas-

siloglou (2004) approach in the sense that entity mentions have to occur much closer

or be connected by a single dependency relation. At the same time, it is less strict in

the sense that an action- or event-denoting word is not required in the context, which

reflects the focus on relations instead of events.

Relation connectors are derived from the output of the optimised GRC approach

from Chapter 5. Specifically, the LDA model incorporating word, entity and depen-

dency path features is used. For every relation-forming entity mention pair, this outputs

a topic distribution that represents the type of relation that is described. This represen-

tation abstracts away from surface-level event descriptors used by Filatova and Hatzi-

vassiloglou (2004) and should help to create more general models of relation types

and possibly event types as well. For the purpose of comparison, relation triples are

weighted in the same way as event triples using Equation 6.3 above using the same

approach for entity pair weighting. The connector pair weighting is modified to use

the distribution over topics given by the LDA output.17

An example sentence and its corresponding relation representation can be seen in

Figure 6.5. Relation triples generated for the example sentence include <ORG amoco,

rd94,LOC denver> and <ORG amoco,rd505,LOC denver>, where the connectors

(i.e., rd94 and rd505) are identifiers that index particular topics from the LDA out-

put. Here, rd94 and rd505 index topics that correspond to located-in relations so

the respective triples both describe located-in relations between Amoco and Denver.

Relation triples generated for the example sentence also include <XFN oil,rd92,

ORG jnbexploration> and <XFN oil,rd712,ORG jnbexploration>. These are

erroneous for the same reason as some of the event triples above, namely the fact that

the shallow approach to identifying non-named referring expressions identifies ‘oil’

but not “oil company”.

6.4.4 Entity Pair Representations

Finally, we investigate the performance of representations that do not model event or

relation type information. These are identical to the EV and RL representations above,

17Distributions for entity mention pairs tend to have a long uniform tail and only a few topics with
higher probability. In converting to a weighting scheme, topic representations here are converted to a
sparse representation where all topics in the uniform tail are removed.
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except they are <Ent,Ent> 2-tuples instead of <Ent,Connector,Ent> 3-tuples. That

is, entity pairs are included here provided that they meet the GRI constraints. They

are weighted using the normalised entity pair count (Equation 6.4 above). Entity pairs

generated for the example sentence in Figure 6.5 include <LOC denver,ORG amoco>

and <ORG jnbexploration,XFN oil>.

6.5 Experiments

6.5.1 Experiment 1: Comparing Extraction Algorithms

6.5.1.1 Method

The first experiment here compares the various greedy approaches to set cover to see

which is best. Specifically, it addresses the following questions:

• Are comparative results for extractive summarisation algorithms the same as

Filatova and Hatzivassiloglou’s? Are differences statistically significant?

• Do differences hold when using relation representation?

This is a replication of the Filatova and Hatzivassiloglou (2004) study for the tf*idf

representation and their event representation and a comparison to see if the results

hold for the relation representation. Furthermore, this experiment seeks to establish

whether any differences are statistically reliable, using paired Wilcoxon signed ranks

tests across document sets.

6.5.1.2 Results

Tables 6.2 and 6.3 contain results for the tf*idf and event representations respectively.

Rows in the tables represent the different extractive summarisation algorithms (de-

scribed above in Section 6.3.1). The static algorithm is represented as AL1, the adap-

tive algorithm as AL2 and the modified adaptive algorithm as AL3. Columns contain

results for the four different lengths of summary (50, 100, 200 and 400 words). The

best algorithm for each summary length is in bold. Systems that are statistically dis-

tinguishable from the best (i.e., p≤ 0.05) are underlined.

The results for the tf*idf representation demonstrate that algorithm type has no

significant effect on performance, with relative ordering of the algorithms differing de-

pending on which Rouge measure is used for all four summary lengths. The results for
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Rouge-1

50 100 200 400

AL1 0.0849 0.1164 0.1754 0.2438

AL2 0.0849 0.1102 0.1807 0.2496

AL3 0.0797 0.1113 0.1742 0.2467

Rouge-SU4

50 100 200 400

AL1 0.0221 0.0296 0.0468 0.0723

AL2 0.0220 0.0276 0.0476 0.0720

AL3 0.0173 0.0259 0.0442 0.0693

Table 6.2: Comparison of extractive summarisation algorithms for the tf*idf

representation. Rows correspond to the static (AL1), adaptive (AL2) and

modified adaptive (AL3) algorithms. The best score in each summary length

column is in bold and those that are statistically distinguishable from the best

are underlined.

Rouge-1

50 100 200 400

AL1 0.1300 0.1763 0.2173 0.2821

AL2 0.1412 0.1778 0.2237 0.2899

AL3 0.1360 0.1776 0.2315 0.3019

Rouge-SU4

50 100 200 400

AL1 0.0358 0.0506 0.0665 0.0876

AL2 0.0397 0.0499 0.0679 0.0898

AL3 0.0376 0.0494 0.0692 0.0950

Table 6.3: Comparison of extractive summarisation algorithms for the event

representation. Rows correspond to the static (AL1), adaptive (AL2) and

modified adaptive (AL3) algorithms. The best score in each summary length

column is in bold and those that are statistically distinguishable from the best

are underlined.
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Rouge-1

50 100 200 400

AL1 0.1484 0.1645 0.2049 0.2718

AL2 0.1525 0.1626 0.2117 0.2664

AL3 0.1360 0.1766 0.2412 0.3014

Rouge-SU4

50 100 200 400

AL1 0.0430 0.0464 0.0610 0.0869

AL2 0.0459 0.0443 0.0615 0.0810

AL3 0.0356 0.0491 0.0701 0.0939

Table 6.4: Comparison of extractive summarisation algorithms for the relation

representation proposed here. Rows correspond to the static (AL1), adaptive

(AL2) and modified adaptive (AL3) algorithms. The best score in each sum-

mary length column is in bold and those that are statistically distinguishable

from the best are underlined.

the event representation suggest that algorithm type has a small effect on performance.

For summaries of length 50 evaluated with Rouge-1, the adaptive algorithm (AL2) is

significantly better than the static algorithm (AL1). And, for summaries of length 400

evaluated with Rouge-1, the modified adaptive algorithm (AL3) is significantly better

than the static algorithm (AL1). This is a weak result but is generally in line with Fila-

tova and Hatzivassiloglou’s conclusion that an improvement may be achieved by using

adaptive algorithms with the event representation. On the other hand, this does not sup-

port their conclusion that the modified adaptive algorithm also leads to improvements

over the static algorithm when using the tf*idf representation.

Table 6.4 contains results for the different extractive summarisation algorithms us-

ing the relation representation. Here, there is a stronger effect of algorithm type on

system performance. The modified adaptive algorithm (AL3) scores significantly bet-

ter than the other algorithms when evaluating summaries of length 200 and 400 with

Rouge-1. And, it scores significantly better than the other algorithms when evaluat-

ing summaries of length 400 with Rouge-SU4. Based on these results, the modified

adaptive algorithm is used for all of the remaining experiments.
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6.5.2 Experiment 2: Relation-Based Representations

6.5.2.1 Method

The second experiment looks at the potential contribution of relation representations

for extractive summarisation. It addresses the following questions:

• Which is the best GRC configuration for summarisation using relation represen-

tations?

• Can extractive summarisation be improved using representations based on generic

relation extraction? How do relation representations compare to event represen-

tations?

This seeks to determine which of the various approaches to relation characterisation is

most beneficial to extractive summarisation. This also evaluates the contribution of re-

lation representations with respect to conventional tf*idf representations and compares

this to the related improvements using Filatova and Hatzivassiloglou’s event represen-

tation. Based on results from the previous section, the modified adaptive algorithm

(AL3) is used here.

6.5.2.2 Results

Table 6.5 contains results for various relation representations based on different ap-

proaches to GRC. Rows in the table represent the different feature sets used for relation

characterisation. The feature set consisting of word and dependency features is repre-

sented as WD, the feature set consisting of entity and dependency features as ED, and

the feature set consisting of all three feature types as WED. Free parameters are tuned

individually for each feature set on the ACE data (described in Chapter 5). Columns

contain results for different lengths of summary (50, 100, 200 and 400 words). As

above, the best feature set for each summary length is in bold and feature sets that are

statistically distinguishable from the best (i.e., p ≤ 0.05) are underlined. The results

show that the full feature set (WED) achieves the highest mean Rouge scores for all

summary sizes. Furthermore, the WED feature set is always significantly better than

the WD feature set though it is not always significantly better than the ED feature set.

These results suggest that the entity features are important despite the fact that enti-

ties are explicitly modelled in <Enti,Connector j,Entk> triples. This confirms that the

best feature set from the GRC experiments in Chapter 5 is also the best feature set for

the extrinsic summarisation task.
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Rouge-1

50 100 200 400

WD 0.1086 0.1493 0.2068 0.2823

ED 0.1192 0.1766 0.2171 0.2932

WED 0.1360 0.1766 0.2412 0.3014

Rouge-SU4

50 100 200 400

WD 0.0267 0.0364 0.0556 0.0844

ED 0.0288 0.0454 0.0618 0.0908

WED 0.0356 0.0491 0.0701 0.0939

Table 6.5: Comparison of Rouge scores for different relation representations.

Rows correspond to the different GRC feature combinations based on inter-

vening words (W), entity words (E) and dependency paths (D). The best

score in each summary length column is in bold and those that are statisti-

cally distinguishable from the best are underlined.

Rouge-1

50 100 200 400

TF 0.0797 0.1113 0.1742 0.2467

EV 0.1360 0.1776 0.2315 0.3019

RL 0.1360 0.1766 0.2412 0.3014

HU 0.4870 0.5197 0.5655 0.6045

Rouge-SU4

50 100 200 400

TF 0.0173 0.0259 0.0442 0.0693

EV 0.0376 0.0494 0.0692 0.0950

RL 0.0356 0.0491 0.0701 0.0939

HU 0.3803 0.3990 0.4159 0.4324

Table 6.6: Comparison of Rouge scores for the tf*idf (TF), event (EV) and

relation (RL) representations with respect to the human upper bound (HU).

The best score in each summary length column is in bold and those that are

statistically distinguishable from the best are underlined.

Table 6.6 contains results for tf*idf and relation representations. It also contains

results for the human upper bound obtained by comparing the gold standard summaries

with each other (described in Section 6.3.3). Here, the tf*idf representation is referred

to as TF, the event representation as EV, the relation representation as RL and the

human upper bound as HU. The results demonstrate unambiguously that the event and

relation representations outperform the tf*idf representation, with strongly significant

p-values less than 0.001 for both Rouge measures and all summary lengths. The event

and relation representations are indistinguishable for both Rouge measures and all

summary lengths. Finally, there is still room for dramatic improvement as both of the

event and relation representations are much lower than the human upper bound.
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6.5.3 Experiment 3: Contributions of GRI and GRC

6.5.3.1 Method

The third experiment isolates the effect of generic relation identification. It addresses

the following question:

• How does the entity pair representation based on the GRI models developed

in Chapter 4 perform with respect to the entity pair representation based on

Filatova and Hatzivassiloglou event extraction?

• How do the event and relation representations perform with respect to corre-

sponding entity pair representations?

This serves as an evaluation of the optimised generic relation identification without

characterisation. This also serves as a comparison to a similar though much simpler

representation that could be considered a strong baseline.

6.5.3.2 Results

Table 6.7 contains results for the entity pair representations (described in Section

6.4.4). Rows contain the different representations based on the approaches to entity

pair identification for relations (ER) and events (EE) respectively. Columns contain

results for different lengths of summary (50, 100, 200 and 400 words). The best repre-

sentation for each summary length is in bold and representations that are statistically

distinguishable from the best (i.e., p ≤ 0.05) are underlined. In contrast to the results

for normal tf*idf, relation and event representations which use the modified adaptive

algorithm, all results for entity pair representations use the adaptive algorithm.18 The

results suggest that the entity pair model that has been optimised on relation extraction

data outperforms the entity pair model based on Filatova and Hatzivassiloglou’s event

extraction algorithm, at least for medium sized summaries of 100 and 200 words where

ER is significantly better than EE for both Rouge measures.

The scores for the entity pair representations reported in Table 6.7 are statistically

indistinguishable from those for the corresponding relation and event representations

in Tables 6.3 and 6.4 above. This appears to be a mixed result for both the relation

18For ER, the adaptive algorithm is significantly better than the static and modified adaptive algo-
rithms (p≤ 0.01) for both Rouge measures and all summary lengths. Rouge-SU4 results are not signif-
icant but have the same trend.



Chapter 6. Generic Relation Extraction and Multi-Document Summarisation 165

Rouge-1

50 100 200 400

ER 0.1497 0.1929 0.2527 0.3123

EE 0.1442 0.1705 0.2288 0.3061

Rouge-SU4

50 100 200 400

ER 0.0419 0.0537 0.0786 0.1008

EE 0.0364 0.0447 0.0643 0.0963

Table 6.7: Comparison of Rouge scores for entity pair representations based

on relations (ER) and events (EE). The best score in each summary length

column is in bold and those that are statistically distinguishable from the best

are underlined.

representation introduced here and the Filatova and Hatzivassiloglou event represen-

tation. While optimised relation identification is shown to have a positive effect on

Rouge scores when compared to relation identification based on Filatova and Hatzivas-

siloglou’s approach to atomic event extraction, the same cannot be said of approaches

to characterising relation and event types. However, as the correlation analysis (Section

6.6.1 below) demonstrates, RL and ER do not necessarily perform well on the same

document sets. This suggests that they are actually complementary to some degree

meaning that a combined systems based on both representations would outperform RL

and ER on their own.

6.6 Analysis

6.6.1 Complementarity

Figure 6.7 contains results for a correlation analysis comparing the various representa-

tions: tf*idf (TF), event (EV), relation (RL), entity pair based on event extraction (EE)

and entity pair based on relation extraction (ER). This also includes a comparison to the

human upper bound (HU). Values are arranged in a matrix where cells contain the asso-

ciation values measured across document set Rouge-SU4 scores19 using Spearman’s ρ

rank correlation coefficient (rS). Here, high values mean that two representations tend

to perform well on the same document sets such that an ordering of document sets

by Rouge scores is similar for the representations being compared. In the figure, as-

sociation strength is represented by shading where light-toned squares indicate strong

correlation (and the darkest squares indicate weak negative correlation). For example,

19Association across document set Rouge-1 scores shows similar trends.
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Figure 6.7: Comparison of representations using Spearman’s rs. Row and

column labels correspond to tf*idf (TF), event (EV), relation (RL), event entity

pair (EE), relation entity pair (ER) and human (HU) representations. Lighter

toned squares indicate stronger correlation.

the upper left cell contains Spearman’s rS between the TF and EV representations. The

four squares correspond to rS values of -0.085, 0.199, 0.245 and 0.267 respectively for

summaries of 50, 100, 200 and 400 words.

The analysis illustrates a number of interesting points. First, it demonstrates that

none of the representations correlate highly with the human upper bound. This means

that the automatic systems do not necessarily do well on the document sets that may

be considered easier as measured by human agreement using Rouge. Thus, it suggests

that task difficulty (as measured by human agreement) does not need to be consid-

ered as a possible underlying cause of correlation between the automatic systems. The

analysis also illustrates that there is no clear and consistent relationship between sum-

mary length and correlation values. Some cells suggest that correlation may have a

monotonic linear relationship increasing with length (e.g., TF*EV) while others seem

to suggest inverse linear (e.g., TF*RL), quadratic (e.g., EV*HU) and invariant (e.g.,

EV*EE) relationships with length.

Looking at correlation between automatic systems, correlation values closer to zero

suggest that the systems do well on different document sets and that a combined sys-

tem might therefore be better. By this reasoning, the largest gains would come from

combining TF with any other representation. Among the other automatic systems,

the relation representation (RL) shows moderately strong potential for combination

with its corresponding entity pair representation (ER) with Spearman’s rS values in the

range from 0.348 to 0.476. This suggests that ER should not necessarily be considered
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a simpler representation of the same information captured by RL when comparing re-

sults. The event representation (EV), by contrast, shows the weakest correlation of any

comparison with its corresponding entity pair representation (EE) with rS values in the

range from 0.541 to 0.725.

6.6.2 Error Analysis

This section addresses the types of errors that characterise the automatic summarisation

systems. Figures 6.8 and 6.9 contain summaries from document sets where the rela-

tion (RL) and event (EV) representations perform poorly with respect to the tf*idf (TF)

representation. Figures 6.10 and 6.11 contain summaries from document sets where

RL performs well with respect to EV and/or TF. The figures also contain human gold

standard summaries (HU).20 The numbers in parentheses below each summary repre-

sentation label indicate the Rouge-SU4 score and the rank of document set rank for

the representation according to the Rouge-SU4 scores. Automatic system summaries

should be viewed as a list of extracted sentences due to the fact that the evaluation here

is exclusively concerned with content and no attempt is made to address coherence.

The bold numbers in square brackets before each sentence indicates its rank in terms

of the order in which it was extracted. If part of the final sentence was shortened for

evaluation so as not to exceed the word limit, then this is indicated by the word “END”

in square brackets.

The document set for the summaries in Figure 6.8 illustrate a situation where

the relation and event representations performed worse than tf*idf. The gold stan-

dard summary describes a disease outbreak event, addressing the cause, affected re-

gions and susceptible population as regards the increase in cases of tuberculosis in

the 1980s and 1990s. The particularly poor performance of the event representation

seems to be due to the fact that the sentences selected contain a very large num-

ber of false positive events. The third sentence, the most extreme example, con-

tains 176 events. These include the true positive atomic events like <ORG centers,

recorded,XFN cases>, but it also includes many false positive atomic events such

as <LOC wyoming,recorded,XFN cases>, <XFN tb,is,PER leebreichman> and

<PER leebreichman,division,LOC dentistry>. The false positive atomic events

are due primarily to the event identification algorithm being noisy on sentences with

many entity mentions and many valid connectors. The sentence under considera-

20There are three human summaries for each document set. The summary presented here is the one
created by the same individual who chose the topic and collected the documents.
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TF

(0.046)

(3/29)

[S1] The CDC committee also recommends new tests at least once a year, rapid chest

X-rays for TB-infected people showing symptoms, and isolation – off the prison prop-

erty, if necessary – for those with suspected or confirmed symptomatic TB cases. [S2]
At the present time, there are no laws in Latvia that would require infectious cases of

tuberculosis to undergo mandatory treatment. [S3] YOU’RE INTERESTEDEmployees

who think that poor air quality at their workplace is contributing to health problems can

call Cal-OSHA, a state agency that monitors worker safety and health. [S4] Moreover,

unlike AIDS, TB is a highly contagious [END] disease that can be spread by airborne

particles coughed up by a person with untreated, clinically active pulmonary TB.

EV

(0.023)

(23/29)

[S1] Those at high risk for contracting TB are people whose capacity for resisting in-

fection is weakened, either through diseases such as HIV infection, by drug or alcohol

abuse, serious illness such as cancer, or by poor nutrition. [S2] Stead’s study, published

in the New England Journal of Medicine, was based largely on a review of 25,398 el-

derly people who were free of TB infection when they were admitted to Arkansas nurs-

ing homes. [S3] In Wyoming, the Centers for Disease Control recorded no new cases of

TB in 1989, demonstrating that it is a condition that can be controlled and cured [END],
according to Dr. Lee B. Reichman, director of the pulmonary division of the University

of Medicine and Dentistry in New Jersey.

RL

(0.035)

(17/29)

[S1] Twenty-three percent of those with HIV also carried TB bacteria as did 20 percent

of those who were free of the AIDS virus. [S2] AIDS tests should be offered to all in-

mates with known TB infections, the CDC report said. [S3] “In some large correctional

systems, the incidence of TB has increased dramatically,” the CDC said, noting that in

New York state there were 106 TB cases per 100,000 inmates in 1986 – seven times

more than the average of 15 cases reported in 1976-78. [S4] In homes where the initial

source of the disease was white, 17 percent of [END] blacks and 12 percent of whites

caught the infection.

HU

(0.354)

(26/29)

The occurrences of tuberculosis increased in the 1980s after a three decade decline.

By 1990 it was the world’s deadliest infectious disease, killing three million annually.

The tuberculosis was fueled by AIDS patients who were vulnerable when their lowered

immune system allowed the latent bacteria to develop into active tuberculosis. They then

transmitted it to others. Tuberculosis ran rampant in sub-Saharan Africa, and increased

in Latin America and Southeast Asia. In the United States the highest rates of infection

were in the Northeast. Prisoners are highly susceptible to the disease. Airtight buildings

with bad ventilation spawns tuberculosis. [END]

Figure 6.8: Example system and human (HU) summaries where the relation

(RL) and event (EV) representations perform poorly with respect to the tf*idf

(TF) representation: Tuberculosis Document Set (d15).
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TF

(0.033)

(7/29)

[S1] Seven thousand British and 4,000 French workers, on eight- to 12-hour shifts, have

completed more than half of the job. [S2] But the men staying here – most of them

migrant laborers from Ireland and northern England – are rumored to earn as much

as $1,750 a week. [S3] The French favourite is Le Touquet, still an elegant place for

Parisians to spend le weekend. [S4] Critics say the tangle of commuter lines in south-

east England, so obsolete that trains can be delayed by a sudden fall of autumn leaves,

will delay tunnel traffic. [S5] Mr Jo Libeer, managing director of the Courtrai [END]
chamber of commerce, is equally optimistic about the likely impact on the area of the

tunnel.

EV

(0.034)

(16/29)

[S1] Eurotunnel will run shuttle trains once every three minutes at peak times between

terminals near Folkestone and Calais, and British Rail and the Frenh state railroad will

operate trains from London and Paris. [S2] Giant boring machines are digging three

tunnels toward each other from Folkestone, England and Calais, France, with the first

underground meeting expected in November in the service tunnel between the rail tun-

nels. [S3] President Francois Mitterrand and Mrs. Thatcher are expected to meet each

other in the tunnel Jan. [S4] Once the tunnel is open, said Parry, industry will be attracted

to the area and people will move in. [END]

RL

(0.014)

(28/29)

[S1] When Kelly sees Range Rover and Jaguar drivers collecting their cases of wine in

Hesdin, she would like them to drop into her office 100 metres away and choose a house

as well. [S2] Many observers believe that, by doing nothing to improve the nation’s

creaking rail system, Britain will lose out on the full benefits of the Chunnel. [S3] Critics

say this will waste time and Britain should follow the continental practice of handling

such matters on the train during the journey. [S4] Eurotunnel will run shuttle trains once

every three minutes at peak times between terminals near Folkestone and Calais [END],
and British Rail and the Frenh state railroad will operate trains from London and Paris.

HU

(0.392)

(16/29)

British and French workers were expected to complete the 31-mile “chunnel” between

England and France by May 1994. It would cut the London-Paris journey from six

hours to three and reinforce trade. Initially, the English showed that they did not want

a fixed link, fearing rabies, rats and terrorists coming through. In rural SE England,

they were reluctant to have high-speed trains screaming through. The French viewed

the chunnel positively, expecting it to revitalize its depressed northern regions where

the tunnel surfaces and as buyers and entrepreneurs set up bases on the Continent, and

holidaymakers and freight [END] traffic heads for the tunnel.

Figure 6.9: Example system and human (HU) summaries where the relation

(RL) and event (EV) representations perform poorly with respect to the tf*idf

(TF) representation: Channel Tunnel Document Set (d39).
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tion has nine entity mentions (LOC wyoming, ORG centers, ORG diseasecontrol,

XFN cases, XFN tb, PER leebreichman, ORG universityofmedicine,

LOC dentistry, LOC newjersey) and nine connectors (recorded, demonstrating,

is, be, condition, controlled, cured, according, division). Some of the false

positive errors in this sentence can also be attributed to bad named entity recognition.

For example, “Centers for Disease Control” is incorrectly recognised as two sepa-

rate entity mentions (i.e., “Centers” and “Disease Control”, normalised respectively

to ORG centers and ORG diseasecontrol). More generally, the event and relation

representations for this evaluation cannot capture date, time or numeric event or rela-

tion information as these entity types have not been included. Neither do they capture

event or relation information involving non-MUC entity types such as disease names

(e.g., “tuberculosis”). Finally, the event and relation representations do not capture

descriptive or analytic information such as the details about susceptible populations.

The document set for the summaries in Figure 6.9 illustrates a second situation

where the relation and event representations performed worse than tf*idf. However,

here it is the relation representation that does particularly poorly. The gold standard

summary describes a construction event, addressing the building of the Channel Tunnel

with a focus on differing attitudes towards the project in Britain and France. The poor

performance of the relation representation seems to be due in part to the fact that it

gives undue importance to irrelevant and noisy relationships, e.g. between PER kelly

and ORG rangerover and between ORG rangerover and ORG jaguar in the first sen-

tence. More generally, the relatively poor performance of the relation and event repre-

sentations is due to the fact that they do not capture sentiment, which is the main focus

of the summary.

The document set for the summaries in Figure 6.10 illustrates a situation where

the relation and event representations perform well with respect to tf*idf. The gold

standard summary describes a beating event, addressing the basic facts of the Rodney

King beating by Los Angeles police as well as the political aftermath which consists

primarily of a related investigation event and a summary of related police brutality

events. The difference in performance seems to be due to the fact that relations and

events are central to all aspects of this summary and the relation and event represen-

tations clearly do better than tf*idf at capturing this information. This summary also

illustrates an unintended side-effect of the relation representation where the generic

relation identification algorithm finds relations between components of lexical com-

pounds or multi-word phrases. The representation for the third sentence in the RL
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summary, for example, includes a relation between ORG police and XFN chief in ad-

dition to true positive relations e.g. between ORG police and PER darylgates and

false positive relations e.g. between PER tombradley and ORG police.

The document set for the summaries in Figure 6.11 illustrate a second situation

where the relation representation performs well. However, here it is the event repre-

sentation that performs poorly by comparison. The gold standard summary is a bi-

ographical sketch of a political group, addressing relations like the leaders, location,

constituency and rivals of the the Peru’s Shining Path Maoist group as well as events

like founding and leadership succession. The fact that the relation representation out-

performs the event representation here seems to be due to the fact that relations are

more important than events in this document set. The representation for the first sen-

tence of the EV summary, for example, has 63 events consisting of various combina-

tions of the sentence’s entities (ORG bup, ORG centralcommittee, PER feliciano,

ORG newpower, ORG peoplesliberationarmy, and ORG blackgroup) and connec-

tors (presided, orders, movement, order, party, based, break). The representa-

tion for the first sentence of the RL summary, by contrast, contains three relations be-

tween ORG maoistshiningpath and XFN guerrillas, between LOC peru and LOC -

huallagarivervalley and between XFN guerrillas and LOC peru.

This error analysis suggests that the different approaches here are appropriate for

different types of summary task. The relation and event representations perform poorly

on summarisation tasks that are oriented towards sentiment, description or analysis.

However, they do well on document sets that are oriented towards relation and event

information typical to information extraction tasks. This supports the notion from the

previous section that the different representations evaluated here are complementary.

6.7 Summary and Future Work

This chapter presented results of an extrinsic evaluation of generic relation extrac-

tion, demonstrating that it is an effective representation for sentence extraction for

multi-document summarisation. The relation representation was compared to a non-

trivial tf*idf baseline and found to perform significantly better for a range of summary

lengths. Related representations based on events and entity pairs exhibited statistically

indistinguishable performance. A correlation analysis suggested that different repre-

sentations are complementary due to the fact that they perform well on different doc-

ument sets. Error analysis supported this conclusion, suggesting that the relation and
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TF

(0.016)

(20/29)

[S1] Mr. Williams likened the report to the Knapp Commission, a 1970s blue-ribbon

study that exposed widespread corruption in the New York Police Department and led

to significant improvements there. [S2] “There’s no doubt in our mind that the only

reason they stopped Joe Morgan was because he is black and he was the first black

who happened to come by,” said William Barnes, one of the attorneys representing the

former ballplayer. [S3] Joseph McNamara, retired chief of San Jose’s department and

now a fellow at Stanford University’s Hoover Institution, said he has been getting calls

all summer from [END] cities around the country about racism and brutality in their

departments.

EV

(0.060)

(9/29)

[S1] A high-ranking commission appointed after the beating, under the chairmanship of

Mr Warren Christopher, a lawyer and former deputy secretary of state, concluded that

the Los Angeles police department got results, in terms of arrests, but had developed

a ‘siege mentality that alienates the officer from the community’. [S2] The images of

Los Angeles police swinging nightsticks at King as he lay on the ground, played repeat-

edly on national news programs, were burned into the national conscience and led to

widespread calls for investigation of police brutality. [S3] Besides recommending that

Mr Gates should go, the Christopher commission urged a policy [END] of community

policing with more foot patrols, as well as measures to discipline racist police officers

and to improve the investigation of complaints about police brutality.

RL

(0.094)

(3/29)

[S1] Mr. Gates opposed the Police Corps because its members would not be profes-

sionals. [S2] Shortly after Rodney King’s beating, a news program on ABC illustrating

police brutality showed a still photo of police using a martial-arts weapon against a

person being arrested, but there was no mention that the episode involved Operation

Rescue. [S3] The report was issued yesterday by a commission appointed by Mayor

Tom Bradley and Police Chief Daryl Gates in the wake of the videotaped beating March

3 of a black motorist, Rodney King, by Los Angeles police. [S4] Investigations have

been launched by the FBI, the Los [END] Angeles County district attorney’s office and

the Long Beach Police Department.

HU

(0.400)

(15/29)

The most important of the many cases of police brutality reported in southern California

1989-1992, was the beating of Rodney King by four Los Angeles officers on March

3, 1991. An investigating commission outlined steps for improvement of the police

department and called for the resignation of Chief Gates. Gates did not resign until

the following year after the acquittal of the four officers caused massive rioting. Other

cases of police brutality arose in Minneapolis, Chicago and Kansas City. Operation

Rescue claimed that its non-violent anti-abortion demonstrators were seriously injured

by excessive police tactics in more than [END] 50 cities.

Figure 6.10: Example system and human (HU) summaries where the re-

lation (RL) and event (EV) representations perform well with respect to the

tf*idf (TF) representation: Police Brutality Document Set (d06).
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TF

(0.035)

(6/29)

[S1] (Note 3) For example, in his presentation of the video recording of Guzman’s first

call for peace talks, Fujimori claimed that the Shining Path “political” leadership “has

tacitly admitted that the Peruvian state has totally recovered the initiative in confronting

the Shining Path” (Lima Radio and TV, 4 October 1993). [S2] During the 1992 partisan

meeting, it was stated that during an adverse situation the party should draft “a new

plan, taking into account the experience of the past years, establish new axes, sub-axes,

guidelines, and lines of action with a nationwide criteria (. . . ), seek new ways to develop

and [END] set up strategic military plans, and establish, for example, those objectives

and carry them out on an established date.”

EV

(0.020)

(25/29)

[S1] The Central Committee Plenum that “Feliciano” presided over in order to break

away from the Black Group orders the “unleashing of a massive reassertion movement

based on the BUP throughout the party, the People’s Liberation Army, and among the

masses of the New Power.” [S2] The second point of the document of the Central Com-

mittee meeting presided over by “Feliciano” highlights the agreements of the Working

Meeting of the Shining Path leadership held in August 1993, almost one year after Guz-

man was arrested, and during which the implementation of the agreements of the Third

Plenum held in March 1992 was [END] discussed.

RL

(0.078)

(5/29)

[S1] The Maoist Shining Path guerrillas who dominate Peru’s Upper Huallaga River

Valley have brought their own law and order to a cocaine-corrupted, violence-ridden

region. [S2] – Also in response to the second letter, Caretas on 14 October claimed that

Fujimori was “using” Guzman “in the campaign” to win the 31 October referendum,

noting that “with Guzman’s letters” calling for peace talks, Fujimori’s “promise” to

wipe out the Shining Path by 1995 “may gain credibility.” [S3] Police captured the top

military leader of the Shining Path, a Maoist rebel group whose eight-year guerrilla war

has taken more than [END] 10,000 lives in Peru, officials said Monday.

HU

(0.363)

(23/29)

The Shining Path is a Peruvian Maoist group founded in 1970 by Abimael Guzman.

This group sought to overthrow Peru’s elected government and install a peasant and

worker state. For 10 years is worked among the Indians in the Andes, then began guer-

rilla operations eventually moving into the jungles and cities. Until Fujimori was elected

president in 1990, Peruvian presidents had not been successful in handling the Shining

Path, but, by 1994, many leaders of the group, including Guzman, were in jail. A fac-

tion of free guerrillas also had formed and was beginning to assert power repudiating

Guzman and [END] his negotiations with the government.

Figure 6.11: Example system and human (HU) summaries where the rela-

tion (RL) and tf*idf (TF) representations perform well with respect to event

(EV) representation: Shining Path Document Set (d53).
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event representations perform poorly on summarisation tasks that are oriented towards

e.g. sentiment, description or analysis while they perform well on tasks that focus on

fact-oriented information typical to information extraction tasks.

Given the complementarity of representations suggested by the analysis, better

performance might be obtained by combining representations. One simple approach

would be to convert extraction scores from the various representations to ranks, which

could be simply combined by taking the mean. There may be better combination

metrics though. A user evaluation of the summary output could be used to further

examine the hypothesis that different representations are preferable for different types

of summaries and provide more detailed criteria for combination. The summarisa-

tion approach could also be extended to incorporate query- or topic-relevance into the

extraction scores and be incorporated into a question answering system to address in-

formation requests that require information about relations between entities.



Chapter 7

Conclusion

Relation extraction is a highly promising technology for converting un-
structured text data into a format that can be more effectively used for
querying and automated reasoning. However, adapting conventional sys-
tems to new domains, tasks or languages requires significant effort from
annotators and developers. This thesis addresses the adaptation problem
by applying generic techniques that achieve comparable accuracy when
transferred, without modification of model parameters, across domains
and tasks. This chapter contains a summary discussion of thesis outcomes
and directions for future work.

7.1 Primary Outcomes

While relation extraction promises to be a powerful technology for extracting struc-

tured information from unstructured text data, conventional approaches incur devel-

opment costs that are often prohibitively expensive. In the case of rule engineering,

writing extraction rules requires extensive effort from a language engineer (expert at

least in rule engineering and ideally also in the target domain). In the case of su-

pervised learning, annotation of training data and tuning features/model parameters

require extensive effort from at least one annotator (expert in the target domain) and

from a language engineer (expert in natural language processing). This has motivated

work on partially supervised approaches for bootstrapping. However, at the least, these

require seed data meaning that the relation type schema of a new application must be

anticipated. This motivates the exploratory approach developed here based on generic

techniques that do not require any annotation or parameter tuning when moving to new

domains. This is referred to as generic relation extraction (GRE).

This thesis contributes a unified approach to GRE that synthesises the previously

175
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disparate literatures on relation mining and relation discovery. Primary outcomes in-

clude new state-of-the-art approaches to relation identification and characterisation that

incorporate governor-dependency information. Dimensionality reduction is also intro-

duced as a step in building similarity models for the relation characterisation clustering

task. Use of the ACE 2005 data, which contains markup from two annotators and an

adjudicated version, allows comparison to a human upper bound for the first time.

In addition, the use of gold standard relation annotation allows detailed analysis of

GRE performance. This thesis also applies news-optimised models directly to a re-

lation extraction task in the biomedical domain, demonstrating for the first time that

an approach to GRE achieves comparable performance when transferred across do-

mains. Finally, this thesis demonstrates that the relative performance of GRE models

is consistent across tasks and that the GRE-based representation leads to significant

improvements in sentence extraction for automatic summarisation when compared to

a non-trivial baseline from the literature.

Experiments on the generic relation identification (GRI) task compared several

window-based models for establishing entity mention pair co-occurrence. Combined

windows based on intervening word tokens and syntactic governor-dependency paths

were preferred due to significantly higher recall, which is prioritised due to the ex-

ploratory nature of the GRE task and due to the fact that applications of GRE (including

the summarisation task addressed here) generally incorporate a mechanism for ranking

identified relations. A correlation analysis supported this prioritisation, suggesting that

ranking metrics can be used as a weak indicator of true/false relation mention status.

A detailed analysis found that as much as 81% of false positive errors in the news test

data (54% in biomedical data), while not marked in the gold standard, are actually

implicit in the context of the sentence or document. Many of these errors would not

actually be detrimental to applications of GRE. Finally, correlation analysis identified

several possible indicator features that may be used as noisy filters for false positive

GRI errors. These include the presence of a verb or nominalisation in the intervening

window context. They also include the presence of a conjunction or disjunction.

Experiments on the generic relation characterisation (GRC) task compared similar-

ity models for clustering entity mention pairs by relation type. Novel feature sets based

on information from governor-dependency paths were shown to lead to improvements,

as was the introduction of dimensionality reduction. Comparison of dimensionality

reduction techniques showed that a model using latent Dirichlet allocation (LDA) –

a probabilistic generative approach – successfully incorporates a larger and more in-
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terdependent feature set than an unreduced model and a linear algebraic model based

on singular value decomposition (SVD). The LDA-reduced system does particularly

well in terms of recall. This is attributed to the LDA hyperparameters, which control

the impact of sparsity. Analysis suggests that false positive errors tend to coincide

with relation mentions that require inference or use figurative language. In addition, a

number of errors were deemed to constitute subtle differences between gold standard

relations types that are not essential to applications of GRE. False negative errors tend

to coincide with relation mentions that have bad dependency paths, require inference,

use figurative language or contain transcription errors. While SVD may be preferred in

other application scenarios, LDA is preferred here due to accuracy and interpretability.

Finally, experiments on extractive multi-document summarisation explore GRE

relation output as a novel knowledge stream for interpretation and representation of

source documents. This serves as an extrinsic evaluation of end-to-end GRE based

on the models developed in this thesis, demonstrating a significant improvement over

a non-trivial tf*idf baseline. This also shows that the approaches to GRI and GRC

developed here are capable of generalising across tasks. Detailed analysis suggested

that the different representations compared are complementary. Specifically, represen-

tations based on relations and events tend to perform poorly on tasks that are oriented

towards e.g. sentiment, description or analysis while they perform well on tasks that

focus on factual information. This complementarity of representations suggests that

better performance might be obtained by combining representations.

Taken together, the experimental chapters of this thesis show that GRE can be

improved using dependency parsing and dimensionality reduction. In addition, com-

parison of dimensionality reduction techniques suggests that latent Dirichlet alloca-

tion is preferable for GRE; it performs as well as or better than SVD and offers su-

perior interpretability. Furthermore, the experimental chapters validate the claim of

modification-free adaptation for the first time with respect to both domain and task.

Models developed on news data are shown to have comparable results when applied

directly to biomedical data and relative performance of GRE models is shown to be the

same when applied to extractive summarisation.

7.2 Secondary Outcomes

In addition to the primary experimental and modelling outcomes above, this thesis also

contributes to the formalisation of the GRE task. First, the GRE task is presented in a
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way that unifies the previously disjoint but closely related literatures on relation mining

and relation discovery. Second, evaluation data is derived from standard and publicly

available materials (i.e., the ACE 2004, ACE 2005 and BioInfer data sets), making it

possible to replicate experiments. A three-stage process (re-factoring, pre-processing,

re-annotation) was described for adapting these corpora to the GRE task. And, a stan-

dard XML document type for marking relation extraction data as token offsets was

proposed. Finally, a detailed framework was presented for development and evalua-

tion testing with respect to the gold standard relation extraction data. This provided for

a rigorous experimental design with held-out evaluation data sets in multiple domains

and the use of paired Wilcoxon signed ranks tests to quantify significant differences

across entity pair sub-domains.

7.3 Future Work

This thesis only scratches the surface of research on and applications of the GRE task.

Some future work was mentioned in the experimental chapters with respect to further

exploration of models. This included indicator features for filtering GRI false positive

errors such as verbal connector words or conjunctions on the intervening dependency

path. It also included the exploration of relation extraction pattern models from Green-

wood and Stevenson (2007) as a possible means of improving accuracy of GRI based

on topic-focused document sets returned from IR queries. With respect to GRC, there

are many options for extending models due to the flexible nature of probabilistic topic

modelling. Some possibilities include: 1) non-parametric models where the number

of topics is sampled (e.g., Blei et al., 2004; Teh et al., 2004), 2) variations of the

model topology that model topics with respect to entity mention pairs, akin to author-

topic and author-recipient-topic models (e.g., Rosen-Zvi et al., 2004; McCallum et al.,

2004), and 3) approaches that integrate coreference into the GRE task. Coreference

information could be integrated by augmenting the feature space based on the output

of a preceding coreference module, akin to related work in summarisation (e.g., Stein-

berger et al., 2005). Coreference information could also be integrated using joint or

iterative models that use coreference information to inform relation extraction models

and vice versa akin to related work in named entity recognition (e.g., Wellner et al.,

2004). With respect to the latter approach, one could use distributional information

over relation types and related entities to contribute to similarity models for entity

mention coreference.
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Another direction for future research lies in the combination of generic approaches

and semi-supervised bootstrapping to create a completely bottom-up approach. This

would use the GRE models developed in this thesis to initialise the semi-supervised

bootstrapping approaches. Active learning could be initialised this way by identifying

pairs of clustering instances that lie at decision boundaries (e.g., maximally dissimilar

pairs within a cluster or maximally similar pairs across clusters) to be presented to hu-

man annotators. Annotators could choose to introduce pairwise constraints requiring

that these be in the same cluster or not in subsequent partitions. Pairwise constraints

can be incorporated using semi-supervised clustering approaches based on learnt sim-

ilarity measures (e.g., Klein et al., 2002; Xing et al., 2003; Bilenko et al., 2004) or by

assigning arbitrarily large or small similarity values to pairs annotated respectively as

having or not having the same type (e.g., Blum and Chawla, 2001). Other bootstrap-

ping approaches could also be initialised this way, such as the iterative approaches that

are seeded by example entity pairs of a specific type of relation (e.g., Agichtein and

Gravano, 2000; Tomita et al., 2006). Instead of manually seeding, these approaches

could be initialised by choosing instances that are representative of a certain cluster

(e.g., instances that are close to the cluster centroid) and using them to induce new

extraction rules and subsequently identify more example entity pairs.

In addition, various extrinsic tasks have been mentioned in this thesis to motivate

the utility of the GRE task. The multi-document summarisation task demonstrated

the extrinsic utility of the GRE models developed here. However, the experimental

results and analysis suggested that better performance could be obtained by combin-

ing representations. One simple approach would be to convert extraction scores from

the various representations to ranks, which could be simply combined by taking the

mean. There may be better combination metrics though. A user evaluation of the

summary output could be used to further examine the hypothesis that different repre-

sentations are preferable for different types of summaries and provide more detailed

criteria for combination. The summarisation approach could also be extended to in-

corporate query- or topic-relevance into the extraction scores and be incorporated into

a question answering system to address information requests that require information

about relations between entities.

The GRE-based approach to generating entity sketches (Chapter 3) could also

be further explored. This could be incorporated into abstractive summarisation as

a method for creating knowledge bases for natural language generation (e.g., White

et al., 2001). It could also be used to identify relation triple factoids for question
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answering systems. Based on manual annotation of part of the Encarta query log,

Agichtein et al. (2005) show that a small number of relation types address the major-

ity of questions that can be answered by relation factoids and thus advocate query log

analysis to identify relationships most relevant to user needs. GRE could be used here

as an interactive tool to help identify common relation types in query logs. Sekine

(2006) suggest another approach that uses GRE as a post-processing tool to identify

prevalent relations among the documents returned for a specific IR query. Yet another

application of GRE-based entity sketches is the automatic generation of hyperlinks

between documents. Links could be generated from a target document to other docu-

ments that describe similar relations or to other documents that describe entities that

are related to (e.g., within n degrees of) entities in the target document. This could

be evaluated using an information foraging task and collecting click-through data for

hyperlinks and measuring the amount of time taken to perform the task.

Blue-sky directions include the automatic generation of graphic representations of

entity networks that include relation types. This could follow techniques developed for

the presentation of manually generated, narrative-focused networks (Lombardi et al.,

2003) and incorporate time-lines to specify temporal duration of relations. Further-

more, these graphics could be hyperlinked to lead to documents describing the rela-

tions or entities. Potential applications include investigative journalism based on news

archives and tax fraud detection based on filings and news archives. Related text-based

automation has already been demonstrated in bioinformatics (Smalheiser and Swan-

son, 1998) where conventional supervised information extraction is used as a noisy

approach to generating hypotheses from text data that can later be tested in wet lab

experiments.
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Document Management

A.1 An XML Document Type for RE Data

Figure A.1 contains the RE XML document type definition developed for this thesis.

This includes a top-level rexml element containing one or more document (doc) ele-

ments, which are made up of a text element and a markup element. The text element

contains the tokenised document text, marked up with in-line paragraph (p), sentence

(s) and word token (w) information. Basic linguistic information for word tokens is en-

coded as attributes on w elements, including parts-of-speech (p) and lemmas (l). The

markup element contains stand-off entity (nes) and relation (rels) annotation. Indi-

vidual entity instances (ne) are specified with reference to the identifiers of the word

tokens that start and end the entity text span (attributes fr and to). And individual

relation instances (rel) are specified with reference to the entities participating in the

relation (attributes e1 and e2).

Figure A.2 contains an example document with the basic RE XML markup. This

is drawn from the BioInfer data (see Chapter 3) and contains markup for the following

sentence:

“Beta-catenin is also found in these structures.”

The markup in the figure specifies two entities (ne). The first ne element (with id

“e75”) contains the markup for the SUBSTANCE entity “Beta-catenin”, which starts

(fr) and ends (to) with the word token (w) with id “w211”. The markup in the figure

also specifies a relation (with id “r32”) of type CAUSAL between entity “e75” (“Beta-

catenin”) and entity “e77” (“structures”).

181
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<!ELEMENT rexml (doc+)> <!-- Rexml: Contains Doc(s) -->

<!ELEMENT doc (text,markup)> <!-- Doc: Contains Text, Markup -->

<!ELEMENT text (p)+> <!-- Text: Contains paragraphs -->

<!ELEMENT p (s|w)+> <!-- P(aragraph): Contains Ss -->

<!ELEMENT s (w+)> <!-- S(entence): Contains Words -->

<!ELEMENT w (#PCDATA)> <!-- W(ord): Contains Word Text -->

<!ELEMENT markup (nes,rels)> <!-- Markup: Contains NEs, Rels -->

<!ELEMENT nes (ne*)> <!-- Nes: Contains NE Mentions -->

<!ELEMENT ne (textspan*)> <!-- Ne: Contains NE Textspan -->

<!ELEMENT textspan (#PCDATA)> <!-- Textspan: Contains NE Text -->

<!ELEMENT rels (rel*)> <!-- Rels: Contains Rel Ment’ns -->

<!ATTLIST doc id CDATA #IMPLIED> <!-- Document ID -->

<!ATTLIST s id CDATA #REQUIRED> <!-- Sentence ID -->

<!ATTLIST w id CDATA #REQUIRED> <!-- Token ID -->

<!ATTLIST w p CDATA #REQUIRED> <!-- Token part-of-speech -->

<!ATTLIST w l CDATA #REQUIRED> <!-- Token lemma -->

<!ATTLIST ne id CDATA #REQUIRED> <!-- NE Mention ID -->

<!ATTLIST ne fr CDATA #REQUIRED> <!-- NE Start Token ID -->

<!ATTLIST ne to CDATA #REQUIRED> <!-- NE End Token ID -->

<!ATTLIST ne t CDATA #REQUIRED> <!-- NE End Token ID -->

<!ATTLIST ne st CDATA #IMPLIED> <!-- NE Sub Type -->

<!ATTLIST rel e1 CDATA #REQUIRED> <!-- Rel NE 1 ID -->

<!ATTLIST rel e2 CDATA #REQUIRED> <!-- Rel NE 2 ID -->

<!ATTLIST rel t CDATA #REQUIRED> <!-- Rel Type -->

<!ATTLIST rel st CDATA #IMPLIED> <!-- Rel Sub Type -->

Figure A.1: Basic Document Type Definition for RE XML.
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<rexml>

...

<doc id='15'>

<text>

<p>

<s id='s11'>

<w id='w211' p='NN' l='beta-catenin'>Beta-catenin</w>
<w id='w212' p='VBZ' l='be'>is</w>
<w id='w213' p='RB'>also</w>
<w id='w214' p='VBN' l='find'>found</w>
<w id='w215' p='IN'>in</w>
<w id='w216' p='DT'>these</w>
<w id='w217' p='NNS' l='structure'>structures</w>
<w id='w218' p='.'>.</w>
</s>

</p>

</text>

<markup>

<nes>

<ne id='e75' fr='w211' to='w211' t='Substance' st='Individual protein'>

<textspan>Beta-catenin</textspan>
</ne>

<ne id='e77' fr='w217' to='w217' t='Source' st='Cell component'>

<textspan>structures</textspan>
</ne>

</nes>

<rels>

<rel id='r32' e1='e75' e2='e77' t='Causal' st='Change/Location'/>

</rels>

</markup>

</doc>

...

</rexml>

Figure A.2: Example document with basic RE XML markup.
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A.2 Conversion to RE XML

The BioInfer data (see Chapter 3) is already encoded in XML, includes sentence and

word token markup, and uses token standoff annotation for entities and relations.

Therefore, conversion to the RE XML document type is a matter of simple XML-to-

XML transformation. Additionally, while the information is not used for the evaluation

in this thesis, NOT relations (specifying negation) are mapped to a negation attribute

(neg) on relation elements (rel). And, EQUAL and COREFER relations are converted

to coreference information in the form of a grounded entity identifier attribute (gid)

on entity elements (ne).

The ACE data (see Chapter 3) is encoded in SGML, does not include sentence or

word token markup, and uses character standoff annotation for entities and relations.

Therefore, conversion to RE XML requires SGML-to-XML conversion, tokenisation

and mapping from character offset to token offset. Sentence boundary identification

and word tokenisation is performed using LT-TTT (Grover et al., 2000), a general

purpose text tokenisation tool based on the generic XML text processing tools in LT-

XML2 (Grover et al., 2006). Then, the conversion from character to token standoff

is performed using LT-XML2 tools. This is achieved by first wrapping each character

with an element and then mapping the standoff from the character elements to the word

token elements. After this, the data is well-formed XML using token offsets and the

final conversion is a simple XML-to-XML transformation. Entity start (fr) and end

(to) tokens are set based on the head extent from the ACE markup.

A.3 Encoding Dependency Parse Information

Figure A.3 contains the extended document type definition for marking up dependency

parse information. The top-level element for dependency parse information is dps,

which is added as a daughter of the markup element in the basic RE document type

definition in Figure A.1 above. The dps element is a container element used to group

the individual dependency parse elements (dp) corresponding to sentences (s) in the

document text. The dp contain dpg elements corresponding to dependency relations

where the d attribute specifies the dependent word token element and the g attribute

specifies the governing word token element. The type of the governor-dependency

relation is encoded in the t attribute and the word token is encoded in the w attribute.

Figure A.4 illustrates the Minipar (see Chapter 3) dependency parse for the ex-



Appendix A. Document Management 185

ample sentence. Word tokens constitute nodes in the dependency graph, arks specify

relations where the word token at the end of the arrow is the dependent token and the

annotations (e.g., s+obj) between arrow heads and word tokens specify the relation

types. Figure A.5 contains the RE XML markup for corresponding to the dependency

parse. The first dpg element, for example, encodes a relation of type object (s+obj)

between the dependent token (d) with identifier “w211” and the governor token (g)

with identifier “w214”.
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<!ELEMENT dps (dp)> <!-- Dps: Dependency Parse Container -->

<!ELEMENT dp (dpg*)> <!-- Dp: Contains Dependency Parse -->

<!ELEMENT dpg EMPTY> <!-- Dpg: Specs Governor-Dependency Relation -->

<!ATTLIST dp sid CDATA #REQUIRED> <!-- DP Sentence ID -->

<!ATTLIST dpg d CDATA #REQUIRED> <!-- DPG Dependency Token ID -->

<!ATTLIST dpg g CDATA #REQUIRED> <!-- DPG Governor Token ID -->

<!ATTLIST dpg t CDATA #REQUIRED> <!-- DPG Gov-Dep Relation Type -->

<!ATTLIST dpg w CDATA #REQUIRED> <!-- DPG Word Text -->

Figure A.3: Additional document type information for encoding dependency

parse information.

obj
Beta-catenin found

in
structures

be
is

amod
also in

det
these

Figure A.4: Example dependency parse.

<dp sid='s1'>

<dpg d='w211' g='w214' t='s+obj' w='Beta-catenin'/>

<dpg d='w212' g='w214' t='be' w='is'/>

<dpg d='w213' g='w214' t='amod' w='also'/>

<dpg d='w214' g='' t='' w='found'/>

<dpg d='w215' g='' t='' w='in'/>

<dpg d='w216' g='w217' t='det' w='these'/>

<dpg d='w217' g='w214' t='in' w='structures'/>

<dpg d='w218' g='' t='' w='.'/>

</dp>

Figure A.5: RE XML markup example dependency parse.
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Full Relation Schemas for Data Sets

B.1 ACE 2004

This section contains details the full relation type schema for the ACE 2004 data. For

further details, refer to the annotation guidelines (LDC, 2004c). The total number of

mentions for each type is shown in parentheses.

1. PHYSICAL (1216)
Physical relations describe physical proximities of taggable entities.

• LOCATED (745)
The Located relation captures the exact location of an entity. However, if an entity
is located in a geographical region like a lake, a river, or a mountain, it should be
reported as a Located relation even if the text does not explicitly refer to the shores
of the lake, the banks of the river, or the foothills of the mountain.

• NEAR (87)
Near indicates that an entity is explicitly near another entity, but not actually in
that location or part of that location.

• PART-WHOLE (384)
Part-Whole characterizes physical relationships between entities and their parts.

2. PERSONAL-SOCIAL (365)
Personal-Social relations describe the relationship between entities of type person. No
other entity type is allowed as an argument of these relations. The order of the arguments
does not impact relations of this type. We record only that there exists a relationship
between the entities.

• BUSINESS (179)
Business captures the connection between two entities in any professional rela-
tionship. This includes boss-employee, lawyer-client, co-workers, political rela-
tionships, etc.

187
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• FAMILY (130)
Family captures the relation between an entity and another entity with which it is
in any familial position.

• OTHER (56)
Other is reserved for all Social relationships that do not cleanly fit into the subtypes
above.

3. EMPLOYMENT-MEMBERSHIP-SUBSIDIARY (1631)
This relation includes: 1) Employment relationship between a person and the organi-
sation or GPE by which they are employed (only valid when the person is paid by the
organisation or GPE); 2) Subsidiary relationships (i.e., ownership, administrative, and
other hierarchical relationships) between two organizations and between an organization
and a GPE; and 3) Membership relationships between an agent (person, organisation,
GPE) and an organization of which they are a member.

• EMPLOY-EXEC(S) (503)
This subtype describes relations between persons and organizations where the per-
son holds a managerial position such as CEO , president, vice-president, director,
leader, or head.

• EMPLOY-STAFF (554)
This subtype is for relationships between organizations and GPEs and persons who
fill general staff positions within them.

• EMPLOY-UNDETERMINED (79)
At times the context does not give you enough in formation to determine whether
an individual is performing a managerial or general staff position within an orga-
nization. Employ-undetermined is for these relations.

• MEMBER-OF-GROUP (192)
Member relations include organization membership such as political party mem-
bership, church membership, and so on.

• SUBSIDIARY (209)
Subsidiary characterizes the relationship between a company and its parent com-
pany.

• PARTNER (12)
Partner characterizes the collaborative relationship between two agents (person,
organisation, GPE).

• OTHER (82)
Other is reserved for relationships between person, organisation, and GPE that do
not fit into the other schemas.

4. AGENT-ARTIFACT (212)
Agent-Artifact describes the relationship between agentive entities and artifacts.

• USER-OWNER (200)
An agent is in a Possessor-Owner relationship with an artifact when that agent is
the owner of the artifact or has possession of or habitually uses it. In the following
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example, it is not explicitly clear whether I own or rent the house. Possessor-
Owner can be applied to either relationship.

• INVENTOR-MANUFACTURER (9)
An agent is in an Inventor-Manufacturer relationship with an artifact when that
agent caused the artifact to come into being.

• OTHER (3)
Other is reserved for any Agent-Artifact relations that do not fall under the other
two subtypes.

5. PERSON-ORGANISATION AFFILIATION (142)
Person-Organisation Affiliation describes relationships between entities that are not cap-
tured by other relation types.

• ETHNIC (39)
Ethnic describes the relationship between Person(s) and the collective person group
to which they are identified.

• IDEOLOGY (49)
Ideology describes the relationship between Person(s) and the collective Person/
Organisation group(s) defined by coherent ideological systems to which they are
identified by themselves or the article.

• OTHER (54)
Other should be used for all Person/Organisation Affiliation relations that do not fit
cleanly into any other categories. Many of the relations that fall under this subtype
will be cases where a person or organisation modifies another entity. The intended
meaning of this construction is often unclear. This subtype can also be filled with
relations that have type overlap.

6. GPE AFFILIATION (529)
GPE Affiliation describes the relationship between entities of type person and organisa-
tion with GPEs when more than one aspect of the GPE is referenced by the context of
the text.

• CITIZEN-RESIDENT (273)
Citizen-Resident describes the relation between a person and the GPE in which
they have citizenship or in which they live.

• BASED-IN (216)
Organizations are not always located in the GPE in which they are based. We
distinguish between the physical locations of an organisation with their GPE of
origin with the Based-In Subtype.

• OTHER (40)
Other should be used for all GPE Affiliation relations that do not fit cleanly into
any other categories. Many of the relations that fall under this subtype will be cases
where a GPE modifies another entity. The intended meaning of this construction
is often unclear.
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7. DISCOURSE (279)
A Discourse relation is one where a semantic part-whole or membership relation is es-
tablished only for the purposes of the discourse. The whole or group referred to is not
an official entity relevant to world knowledge. Instead, it has been constructed for solely
the purposes of discursive efficiency.

B.2 ACE 2005

This section contains details the full relation type schema for the ACE 2005 data. For

further details, refer to the annotation guidelines (LDC, 2005b). The total number of

mentions for each type is shown in parentheses.

1. PHYSICAL (878)

• LOCATED (774)
The Located Relation captures the physical location of an entity. This Relation
is restricted to people. In other words, arg1 in Located Relations can only be
occupied by mentions of Entities of Type Person.

• NEAR (104)
Near indicates that an entity is explicitly near another entity, but neither entity is a
part of the other or located in/at the other.

2. PART-WHOLE (643)

• GEOGRAPHICAL (446)
The Geographical Relation captures the location of a Facility, Location, or GPE in
or at or as a part of another Facility, Location, or GPE. Geographical relationships
are the sorts of things one might find in a gazetteer, on a map, or on a building plan
(although this is not a requirement per se). Similarly, these are typically permanent
relationships, though there are obviously exceptions (a tent might be put up in a
certain location for a special event, for example).

• SUBSIDIARY (184)
Subsidiary captures the ownership, administrative, and other hierarchical relation-
ships between organizations and between organizations and GPEs. This includes
relationships between a company and its parent company, as well as between a de-
partment of an organization and that organization. It also includes the relationship
between organizations and the GPE’s government of which they are a part.

• ARTIFACT (13)
Artifact characterizes physical relationships between concrete physical objects and
their parts. Both arguments must have the same entity type (though not subtype).
This Relation is restricted to Vehicles, Substances, and Weapons.

3. PERSONAL-SOCIAL (360)
Personal-Social relations describe the relationship between people. Both arguments
must be entities of type person. Please note: The arguments of these Relations are
not ordered. The Relations are symmetric.
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• BUSINESS (77)
The Business Relation captures the connection between two entities in any profes-
sional relationship. This includes boss-employee, lawyer-client, studentteacher,
co-workers, political relationships on a personal level, etc. This does not include
relationships implied from interaction between two entities (e.g., “President Clin-
ton met with Yasser Arafat last week”).

• FAMILY (244)
The Family Relation captures the connection between one entity and another with
which it is in any familial relationship.

• LASTING-PERSONAL (39)
Lasting-Personal captures relationships that meet the following conditions: 1) The
relationship must involve personal contact (or a reasonable assumption thereof)
and 2) There must be some indication or expectation that the relationship exists
outside of a particular cited interaction. The first condition excludes relationships
like “Gore’s supporters,” “her opponents,” or “people who help Americans laugh,”
where there is no expectation that one party will have interacted personally with
the other party (or, put another way, spent time with the other party). A reason-
able expectation of personal interaction is sufficient: there are relationships that
often but not always involve personal contact (like “classmate” or “neighbor”) –
these will be allowed in general, as long as their commonplace usage would tend
to imply personal contact. The second condition excludes relationships like “his
visitors,” “his victims,” or “his successor,” where there is no indication from the
text that the relationship exists outside of the specific event being discussed (a
visit, a crime, or a succession, here). In the same way, this excludes cases where
one might try to infer a relationship from a description of an event involving both
entities (e.g., “He visited her in the hospital.”). Relationships must be explicitly
mentioned in the text.

4. ORG-AFFILIATION (1023)

• EMPLOYMENT (761)
Employment captures the relationship between Persons and their employe rs. This
Relation is only taggable when it can be reasonably assumed that the person is
paid by the organisation or GPE. This Relation includes the relationship between
an elected representative and the GPE he represents, for example, “John Kerry
(D-Massachusetts).”

• OWNERSHIP (15)
Ownership captures the relationship between a Person and an Organization owned
by that Person.

• FOUNDER (31)
Founder captures the relationship between an agent (Person, Organization, or
GPE) and an Organization or GPE established or set up by that agent.

• STUDENT-ALUM (18)
Student-Alum captures the relationship between a Person and an educational insti-
tution the Person attends or attended. Please note that only attendance is required.
It is not necessary for the person to have officially graduated from the institution.
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• SPORTS-AFFILIATION (24)
Sports-Affiliation captures the relationship between a player, coach, manager, or
assistant and his or her affiliation with a sports organization (including sports
leagues or divisions as well as individual sports teams). This Relation subtype
exists because it often requires domain-specific world knowledge to determine
whether a sports team is made up of paid or unpaid players (i.e. whether a rela-
tionship between a player and a team qualifies as Employment).

• INVESTOR-SHAREHOLDER (25)
Investor-Shareholder captures the relationship between an agent (Person, Organi-
zation, or GPE) and an Organization in which the agent has in vested or in which
the agent owns shares/stock. Please note that agent s may invest in GPEs.

• MEMBERSHIP (149)
Membership captures the relationship between an agent and an organization of
which the agent is a member. Organizations and GPEs can be members of other
Organizations (such as NATO or the UN). As discussed above, instances where
a Person is a member of an elected government body (the Senate, the Knesset,
the Supreme Court, etc.) will be tagged as Membership, even when the word
“member” is not present (e.g., Supreme Court justice).

5. AGENT-ARTIFACT (358)

• USER-OWNER-INVENTOR-MANUFACTURER (358)
This Relation applies when an agent owns an artifact, has possession of an artifact,
uses an artifact, or caused an artifact to come into being.

6. GEN-AFFILIATION (396)

• CITIZEN-RESIDENT-RELIGION-ETHNICITY (258)
Citizen-Resident-Religion-Ethnicity describes the Relation between a person en-
tity and a) the GPE in which they have citizenship, b) the GPE or Location in
which they live, c) the religious organisation or person entity with which they
have affiliation, or d) the GPE or person entity that indicates their ethnicity. We
consider a person’s birthplace as a place of residence for this purpose (e.g., “the
Russian-born athlete” or “he was born in San Francisco”).

• ORG-LOCATION-ORIGIN (138)
Org-Location-Origin captures the relationship between an organization and the
LOC or GPE where it is located, based, or does business.

B.3 BioInfer

This section contains details of the full relation type schema for the BioInfer data. For

further details, refer to the paper describing the corpus (Pyysalo et al., 2007) and the

project web page.1 The total number of mentions for each type is shown in parentheses.

1http://mars.cs.utu.fi/BioInfer/?q=relationship ontology
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1. OBSERVATION (145)

• TEMPORAL (12)

– COOCCUR (8)
Use as COOCCUR(arg1,arg2,...,argN). The arguments are events that occur
together.

– COEXPRESS (4)
Use as COEXPRESS(arg1,arg2,...,argN). The arguments (genes) are expressed
together.

• SPATIAL (105)

– COPRECIPITATE (5)
Use as COPRECIPITATE(arg1,arg2,...,argN) where the arguments are pro-
teins. The arguments precipitate as a complex.

– PRESENCE (8)
Use as PRESENCE(arg1,arg2). An observation that arg1 is present when arg2
occurs. Experimental setups or the presence in a cell are not included.

– COLOCALIZE (89)
Use as COLOCALIZE(arg1,arg2,...,argN). The arguments (proteins) are found
in the same place (or move to the same place) at the same time.

– ABSENCE (3)
Use as ABSENCE(arg1,arg2). An observation that arg1 is absent when arg2
occurs. Experimental setups or the absence in a cell are not included.

• COREGULATE (3)
Use as COREGULATE(arg1,arg2,...,argN). The arguments are coregulated.

• CORELATE (25)
Use as CORELATE(arg1,arg2,...,argN). A general, unspecified co-relation between
the arguments.

2. PART-OF (575)

• COLLECTION:MEMBER (258)

– MEMBER (258)
Use as MEMBER(arg1,arg2). A member (arg2) belongs to a collection (arg1).
For example a protein belongs to a protein family.

• OBJECT:COMPONENT (317)

– SUBSTRUCTURE (14)
Use as SUBSTRUCTURE(arg1,arg2). A component (arg2) is a part of a struc-
ture other than a complex (arg1). For example a polymer contains many
monomers.

– F-CONTAIN (13)
Use as F-CONTAIN(arg1,arg2). Like CONTAIN but arg1 is a fusion protein.

– MUTUALCOMPLEX (10)
Use as MUTUALCOMPLEX(arg1,arg2,...,argN). Like BIND but the arguments
may form several complexes, each complex having a different composition.
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– CONTAIN (280)
Use as CONTAIN(arg1,arg2). A component (arg2) is a part of a complex
(arg1).

3. IS-A (517)

• SIMILARITY (517)
– FUNCTIONAL-SIMILARITY (15)

* FNSIMILAR (15)
Use as FNSIMILAR(arg1,arg2,...,argN). A functional similarity. The ar-
guments (proteins) have similar functions. Use only if functional simi-
larity cannot be expressed through interactions with other entities.

– PHYSICAL-SIMILARITY (75)

* STSIMILAR (5)
Use as STSIMILAR(arg1,arg2,...,argN). A structural similarity. The ar-
guments (proteins) have similar structures. For example two proteins
have a domain in common.

* SQSIMILAR (14)
Use as SQSIMILAR(arg1,arg2,...,argN). A sequence similarity. The ar-
guments (genes/proteins) have similar sequences.

* SIMILAR (56)
Use as SIMILAR(arg1,arg2,...,argN). A general, unspecified similarity
between the arguments.

– EQUALITY (427)

* ENCODE (33)
Use as ENCODE(arg1,arg2). A gene (arg1) produces an mRNA or a
protein (arg2).

* EQUAL (249)
Use as EQUAL(arg1,arg2). Only for aliases.

* COREFER (145)
Use as COREFER(arg1,arg2). An anaphoric equality where arg1 is the
anaphora and arg2 the referent.

4. CAUSAL (1461)

• CONDITION (117)
– PREVENT (18)

Use as PREVENT(arg1,arg2). The arg1 prevents arg2 from happening. The
condition for using this predicate is that arg2 must not have been happening
before. See also FULL-STOP.

– CONDITION (97)
Use as CONDITION(arg1,arg2). The arg1 is required (but is not necessarily
sufficient) for the arg2.

– MUTUALCONDITION (2)
Use as MUTUALCONDITION(arg1,arg2). Consider as non-directional CON-
DITION. MUTUALCONDITION(a,b) translates to CONDITION(a,b) CONDI-
TION(b,a).
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• CHANGE (1135)
– DYNAMICS (312)

* START (24)
� INITIATE (24)

Use as INITIATE(arg1,arg2) where arg2 is a process. This predicate
is used when arg2 has not been happening and is now started by arg1.
See also HALT and STIMULATE.

* NEGATIVE (101)
� DOWNREGULATE (15)

Use as DOWNREGULATE(arg1,arg2) where arg2 is a gene (or more
specifically gene expression). The arg1 decreases the expression level
(i.e. the rate at which the product is produced) of a gene (arg2). See
also UPREGULATE and REGULATE.
� SUPPRESS (70)

Use as SUPPRESS(arg1,arg2) where arg2 is a process. The arg1 de-
creases the speed of the process (arg2). See also STIMULATE and
CONTROL.

� INHIBIT (16)
Use as INHIBIT(arg1,arg2) where arg2 is a protein. The arg1 de-
creases the activity (e.g., enzymatic activity) of the protein (arg2).
See also ACTIVATE, MODULATE, and INACTIVATE.

* UNSPECIFIED (68)
� REGULATE (1)

Use as REGULATE(arg1,arg2). A general regulatory relationship where
arg2 is a gene expression. See also UPREGULATE and DOWNREGU-
LATE.

� CONTROL (57)
Use as CONTROL(arg1,arg2). A general regulatory relationship where
arg2 is a process. See also STIMULATE and SUPPRESS.
� MODULATE (10)

Use as MODULATE(arg1,arg2). A general regulatory relationship
where arg2 is a protein. See also ACTIVATE and INHIBIT.

* POSITIVE (109)
� CATALYZE (4)

Use as CATALYZE(arg1,arg2). The arg1 (an enzyme) catalyzes arg2
(a reaction).
� UPREGULATE (6)

Use as UPREGULATE(arg1,arg2) where arg2 is a gene (or more specif-
ically gene expression). The arg1 increases the expression level (i.e.
the rate at which the product is produced) of the gene (arg2). See also
DOWNREGULATE and REGULATE.

� STIMULATE (41)
Use as STIMULATE(arg1,arg2) where arg2 is a process. The arg1
increases the speed of the process (arg2). See also SUPPRESS and
CONTROL.
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� MEDIATE (41)
Use as MEDIATE(arg1,arg2). The arg1 mediates arg2 but does not
necessarily regulate it.

� ACTIVATE (17)
Use as ACTIVATE(arg1,arg2) where arg2 is a protein. The arg1 in-
creases the activity (e.g., enzymatic activity) of a protein (arg2). See
also INHIBIT and MODULATE.

* FULL-STOP (10)
� HALT (9)

Use as HALT(arg1,arg2) where arg2 is a process. This predicate is
used when arg2 has been happening and is now stopped by arg1. See
also INITIATE and SUPPRESS.

� INACTIVATE (1)
Use as INACTIVATE(arg1,arg2) where arg2 is a protein or a gene.
This predicate is used when a gene expression or protein activity
(arg2) is decreased to essentially zero by arg1. This can be consid-
ered as an extremely strong downregulation or inhibition. See also
DOWNREGULATE and INHIBIT.

– PHYSICAL (508)

* MODIFICATION (40)
� REMOVAL (4)

· REMOVE (0)
Use as REMOVE(arg1,arg2) where arg2 is a protein. A general
relationship in which arg1 modifies arg2 by removing a (small)
molecule from it. See also ADD.

· DEPHOSPHORYLATE (4)
Use as DEPHOSPHORYLATE(arg1,arg2) where arg2 is a protein. A
phosphate group is removed from arg2 by arg1. See also PHOS-
PHORYLATE.

� ADDITION (30)
· ACETYLATE (6)

Use as ACETYLATE(arg1,arg2) where arg2 is a protein. An acetyl
group is added to arg2 by arg1.

· ADD (1)
Use as ADD(arg1,arg2) where arg2 is a protein. A general rela-
tionship in which arg1 modifies arg2 by adding a (small) molecule
to it. See also REMOVE.

· PHOSPHORYLATE (23)
Use as PHOSPHORYLATE(arg1,arg2) where arg2 is a protein. A
phosphate group is added to arg2 by arg1. See also DEPHOSPHO-
RYLATE.

� MODIFY (6)
Use as MODIFY(arg1,arg2). An unspecified modification where arg1
modifies arg2.
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* BREAK-DOWN (28)
� UNBIND (9)

Use as UNBIND(arg1,arg2). arg1 and arg2 dissociate from each other.
See also BIND.

� CLEAVE (4)
Use as CLEAVE(arg1,arg2) where arg2 is a a protein or a gene. arg2
is physically cleaved into two by arg1.

� DISASSEMBLE (4)
Use as DISASSEMBLE(arg1,arg2). A general relationship for describ-
ing catabolic reactions where arg1 degrades arg2. See also ASSEM-
BLE.

� DEPOLYMERIZE (6)
Use as DEPOLYMERIZE(arg1,arg2). Components (monomers) of arg2
(a polymer) are cleaved/removed from arg2 by arg1. See also POLY-
MERIZE.

� DISRUPT (5)
Use as DISRUPT(arg1,arg2) where arg2 is a complex. This predicate
is used when arg1 makes arg2 to dissociate to its components. See
also BIND.

* ASSEMBLY (440)
� ATTACH (6)

Use as ATTACH(arg1,arg2,...,argN). A general relationship for de-
scribing anabolic reactions where the arguments join together to form
a new structure.. See also ASSEMBLE.

� ASSEMBLE (0)
Use as ASSEMBLE(arg1,arg2). A general relationship for describing
anabolic reactions where arg1 synthesises arg2. See also DISASSEM-
BLE.

� CROSS-LINK-AP (6)
Use as CROSS-LINK-AP(arg1,arg2). The arg1 causes the arg2 to
cross-link.

� CROSS-LINK (9)
Use as CROSS-LINK(arg1,arg2). arg1 and arg2 are proteins and are
covalently bound. See also BIND.

� BIND (416)
Use as BIND(arg1,arg2,...,argN). Non-covalent binding (i.e. forma-
tion of a complex, association) between the arguments. Each argu-
ment is present in the same complex but there are not necessarily all
pairwise contacts between the arguments. See also CROSS-LINK and
DISRUPT.

� POLYMERIZE (3)
Use as POLYMERIZE(arg1,arg2). The arg1 joins multiple arg2 (mon-
omers) covalently together to form a chain (a polymer). See also DE-
POLYMERIZE.
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– AMOUNT (10)

* DECREASE (4)
Use as DECREASE(arg1,arg2). The absolute amount of arg2 is de-
creased by arg1. See also INCREASE.

* INCREASE (6)
Use as INCREASE(arg1,arg2). The absolute amount of arg2 is increased
by arg1. See also DECREASE.

– LOCATION (68)

* LOCALIZE (39)
Use as LOCALIZE(arg1,arg2). This predicate is used when arg1 causes
the position of arg2 to change. See also LOCALIZE-TO.

* LOCALIZE-TO (29)
Use as LOCALIZE-TO(arg1,arg2). This predicate is used when arg1
changes its position to arg2. See also LOCALIZE.

– AFFECT (117)
Use as AFFECT(arg1,arg2). A general directional relationship where arg1
causes a change in arg2. See also INTERACT.

– INTERACT (119)
Use as INTERACT(arg1,arg2,...,argN). A general non-directional relationship
where each argument causes a change in the other arguments . See also AF-
FECT.

– MUTUAL-AFFECT (1)
Use as MUTUAL-AFFECT(arg1,arg2). Consider as non-directional AFFECT.
MUTUAL-AFFECT(a,b) translates to AFFECT(a,b) AFFECT(b,a).

• PARTICIPATE (97)
Use as PARTICIPATE(arg1,arg2). The arg1 is involved in the arg2 but is not alone
sufficient to cause it.

• CAUSE (101)
Use as CAUSE(arg1,arg2). A general directional causal relationship. The arg1 is
the cause for the arg2.

• XOR (11)
Use as XOR(arg1,arg2). The arguments are mutually exclusive.

5. HUMANMADE (10)
Use as HUMANMADE(arg1,arg2). This predicate is used when the relationship is forced
or caused by human intervention. The actual type of the relationship is not stated but is
one of the types in this ontology.

6. NOT (163)
Use as NOT(arg1) where arg1 is a relationship. This predicate is used when a relation-
ship is explicitly stated not to be true.

7. RELATE (99)
Use as RELATE(arg1,arg2). A general, unspecified, non-directional relationship. This
predicate is used when no details of the relationship is known.
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8. REL-ENT (50)
Use as REL-ENT(arg1,arg2). This predicate is used when an unnamed entity (arg1)
refers to that of a named entity (arg2). E.g. REL-ENT(“activation”,“sphingomyelinase”)
means that “activation” is “activation of sphingomyelinase”.
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