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Abstract

Our dissertation concerns robotic navigation in dynamic indoor environments using

image-based visual homing. Image-based visual homing infers the direction to a

goal location S from the navigator’s current location C using the similarity between

panoramic imagesIS and IC captured at those locations. There are several ways to

compute this similarity. One of the contributions of our dissertation is to identify a

robust image similarity measure – mutual image information– to use in dynamic in-

door environments. We crafted novel methods to speed the computation of mutual

image information with both parallel and serial processorsand demonstrated that these

time-savers had little negative effect on homing success. Image-based visual homing

requires a homing agent to move so as to optimise the mutual image information signal.

As the mutual information signal is corrupted by sensor noise we turned to the stochas-

tic optimisation literature for appropriate optimisationalgorithms. We tested a number

of these algorithms in both simulated and real dynamic laboratory environments and

found that gradient descent (with gradients computed by one-sided differences) works

best.
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Chapter 1

Introduction

1.1 Navigation by Robots and Insects

Robot navigation – in particular visual homing – is the primary concern of this disser-

tation. We define navigation as do Franz and Mallot [2000]: “Navigation is the process

of determining and maintaining a course or trajectory to a goal location.”

Many robotic navigation algorithms found in the literatureexplicitly answer the

questionsWhere is the robot in some suitable coordinate system?andWhere is the

goal in the same coordinate system?. The localisation problem has been described by

some researchers as “the most fundamental problem to providing a mobile robot with

autonomous capabilities” (Thrun et al. [2001]). Explicit metric localisation requires a

map of landmark locations and descriptions of those landmarks. While navigating, the

robot has to solve the so-called data association problem: determine which landmarks

it is currently sensing given its current sensor data and thelandmark descriptions pro-

vided (see e.g. Leonard et al. [2001]). The robot then uses the egocentric bearing

and/or range of the identified landmarks to determine its pose (position and orienta-

tion) in map coordinates. As we discuss in greater detail in Chapter 2, localisation is

often probabalistic in nature. In early work, maps were provided by human operators.

In the last few years, workers in robotic navigation have developed impressive SLAM

(Simultaneous Localisation and Mapping) procedures; these allow the robot to learn

the map of its current environment while localising itself in that environment. We

review SLAM in Chapter 2 as well.

A second class of robotic navigation systems are topological in nature. Topologi-

cal maps are representations of important and/or distinctive places in an environment,

physical locations where a robot needs to make a key decision. Hallway corners and

1



Chapter 1. Introduction 2

doorways are frequently represented in topological maps for indoor robot navigation.

The connectedness of these important places also encodes a topological map (e.g. it is

possible to navigation from one hallway corner to the next without passing through any

other so-called important place). As we describe extensively in Chapter 2, topological

navigation gives a qualitative answer to the question:Where is the robot?For exam-

ple, a topological navigator might infer that it is in a particular office or moving along

a particular corridor towards the billiard room. The LondonTube map is a popular

example of a topological map. Each Tube stop is an important place where a decision

can be made. The connections between Tube stops (though not metric information like

absolute distance between Tube stops) are encoded in the map.

Turning to navigation in the animal world, ethological evidence suggests that central-

place foraging insects like ants and honeybees – formidablenavigators – are able to

navigate in natural, cluttered and dynamic environments without the need of metric

maps. The desert antCataglyphis fortisfor example is capable of travelling hundreds

of metres from its nest in search of food and returning directly to the nest once the food

has been found. Wehner [1999] reports that desert ants rely primarily on path integra-

tion (also known as dead reckoning) for long distance navigation. We can imagine an

ant’s foraging path as a series of path vectors, attached tip-to-tail. The negative of the

sum of these vectors is a vector pointing to the ant’s starting point (e.g. nest or source

of food). After a tortuous food-finding excursion, ants can and do use this path inte-

gration vector to return directly to their nests (Wehner et al. [1996]). The length and

orientation of each path vector in the series is noisy and this noise leads to cumulative

error in the goal vector (Wehner [1999]); that is, the goal vector leads an ant to a point

close to the goal but not usually coincidental with it. Behavioural evidence suggests

that ants use a visual homing algorithm (discussed below) tofind their nest from this

nearby location (Cartwright and Collett [1983]). Judd and Collett [1998] suggest that

ants create and use a vision-based topological map of positions near their nest in order

to facilitate return to the nest.

We note for the sake of completeness that there has been much debate in recent

years as to whether foraging insects learn a metric map representation of their environ-

ment in order to navigate (see e.g. Wehner [1999] and Bennett[1996]). Very recent

evidence (Menzel et al. [2005]) supports the hypothesis that honeybees store some sort

of landmark location information relative to their nest. Wehner [1999], though, argues

convincingly that desert ants do notrequirea metric map of their environment in order

to navigate successfully.
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1.2 Visual Homing

Robotic navigation by visual homing (a type of visual servoing) is the focus of our

work in this dissertation. Visual homing algorithms require no explicit quantitative lo-

calisation and thus no metric map. An agent employing a visual homing algorithm cap-

tures an imageIS (typically called the snapshot) at the goal locationS= (xS,yS) and,

when later attempting to return to this location from a nearby positionC = (xC,yC),

compares the current imageIC with the snapshot and infers the direction and/or dis-

tance to the goal location from the disparity between the two. We restrict ourselves

to homing in two dimensions in this work though Zeil et al. [2003] demonstrate that

visual homing in three dimensions is possible. We assume that no visually obvious

cue marks the goal position. Otherwise the navigating agentcould simply employ a

beacon-aiming strategy to find the goal (Franz and Mallot [2000]).

Visual homing is a very useful navigational skill for a robotto have in its repertoire.

As we indicated above, visual homing can be used in conjunction with dead reckoning

to allow a robot to explore an area from a given home position and later return to

that position for, for example, refueling. As we discuss in Chapter 2, visual homing

has been used to solve the docking problem which requires precise positioning with

respect to an object in the environment (e.g. a recharging station). We also discuss in

Chapter 2 the uses of visual homing in topological navigation. Homing is often used

in conjunction with a vision-based topological navigationsystem to move between

adjacent locations in a topological map.

1.3 Image-based Visual Homing Algorithms and their

Limitations

As we shall discuss in detail in Chapter 2, homing algorithmsdiffer in the way in which

image disparity is calculated. Feature-based methods segment snapshot and current

images into landmarks and background. They then attempt to pair each landmark in

the snapshot image with a landmark in the current image (i.e.solve the correspondence

problem). Disparity is computed from the difference in bearing and/or apparent size

between paired landmarks. A second class of visual homing algorithms bypass the

correspondence problem, using disparities between whole images to compute homing

vectors. These are known as image- or appearance-based algorithms.

Feature-based procedures require a solution to the correspondence problem as we
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have said. Historically, solving the correspondence problem in cluttered and dynamic

environments has proved a difficult task. As we review in Chapter 2, image features

computed with the recently introduced scale-invariant feature transform (SIFT) lead

to reliable correspondence in such environments. This correspondence, though, often

requires the comparison of hundreds or even thousands of features per image pair. In

this work, we prefer to investigate a more parsimonious approach to visual homing.

The central algorithm to be explored in this dissertation relies on the empirical

phenomenon, reported independently in Zeil et al. [2003] and Mitchell and Labrosse

[2004], that thedifferencebetween two panoramic intensity images increases monoton-

ically with the physical distance between their capture positions. Zeil et al. computed

image difference with the following pixel-by-pixel root-mean-square function:

RMS(IS, IC) =
1

NM

√

√

√

√

N

∑
i=1

M

∑
j=1

(IC(i, j)− IS(i, j))2 (1.1)

whereIS andIC are panoramic gray-scale images withN rows andM columns. IC is

rotated to match the orientation ofIS using an external compass signal.

Equation 1.1 defines a mathematical surface, which we call a difference surface.

A typical difference surface is depicted in Figure 1.1(a)).The surface’s global min-

imum coincides with the location at which the snapshot imagewas taken. The sur-

face increases in value monotonically with increasing distance from this location in

all directions. Zeil’s homing algorithm “Run-Down” simplymoves the agent so as

to minimise the RMS signal, stopping when the signal drops below a predetermined

threshold. “Run-Down” is in essence an optimisation algorithm.

The RMS signal suffers from a serious drawback: when illumination conditions

change between captures of snapshot and current images, theglobal minimum of the

difference surface fails to coincide with the goal location(see Figure 1.1(b)).

1.4 Contributions of this Thesis

The main aim of this dissertation is to create an image-basedvisual homing algorithm

which works robustly and efficiently in dynamic visual indoor environments. We shall

investigate environments in which lighting or landmark locations change between cap-

ture of snapshot and current images. Zeil et al. [2003] measure image disparity using

Equation 1.1. After a principled analysis of Equation 1.1 and its drawbacks in Chap-

ter 3, we propose instead instead to use mutual information (MI) to gauge the similarity
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Figure 1.1: Two difference surfaces formed using the RMS image difference metric. In

each case, the snapshot was captured at x=150cm, y=150cm in a laboratory environ-

ment. (a) The snapshot was captured in the same landmark and illumination conditions

as all other images. Notice the global minimum at the goal location and the absence of

local minima. (b) Here again we use the same snapshot image as in (a) but the lighting

source has changed in all other images. The global minimum no longer appears at

the goal location. When different goal locations were used, we observed qualitatively

similar disturbances in the difference surfaces formed.

between imagesIS and IC. Mutual information can be calculated with the following

formula (adapted from Hill et al. [2001]):

MI(IS, IC) = ∑
i

∑
j

p(i, j)log
p(i, j)

pS(i)pC( j)
(1.2)

Here,pS(i) is the probability that a pixel will have intensityi (wherei is typically in

the range[0,255]) in imageIS. These probabilities are estimated from the intensity

histogram ofIS; pC(i) is defined similarly forIC. The joint probabilityp(i, j) is the

probability that the same pixel will have intensityi in IS and intensityj in IC. Note

that in Equation 1.1i and j range over pixel locations whereas in Equation 1.2i and

j range over intensity values. As we shall explain more fully in Chapter 3, mutual

information determines how well the current imageIC predicts the snapshot imageIS.

We demonstrate empirically in Chapter 3 that the use of MI leads to difference surface

homing which is in many cases more robust to visual dynamism than the use of RMS.

In Chapter 4 we ask an age-old question in computer science: How do we make

the computation (of image similarity with mutual information) faster? We investigate

both parallel and serial computation of image similarity and enquire into the effects of

increased computation speed on homing success.
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Zeil et al. [2003] use a simple optimisation algorithm to move a homing robot so as

to optimise the difference surface. We explore in Chapter 5 several other optimisation

algorithms and – using novel, sensible criteria – determinewhich of these is best for the

purpose of difference surface homing. Unlike other visual homing researchers – Zeil

et al. [2003] included – we explore in Chapter 5 the effects ofsensor noise on visual

homing success. Robotic visual homing agents require a camera to capture a visual

image. Most agents also use a compass (e.g. magnetic) to align snapshot and current

images in the same external reference direction. Both of these sensors return noisy

readings. In Chapter 5 we first characterise the noise probability density functions for

both of these sensors. We then look at the effects of this noise on the image similarity

signal. The characteristics of the noise in the image disparity signal help guide us

in our choice of a good method to optimise the difference surface. We also use this

noise information to create realistic homing simulations.In Chapter 6 we describe our

robotic homing system and our live experiments carried out in an office environment

to validate some of the results reported in previous chapters.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we shall review the various homing algorithms found in the robotics

and insect ethology literature. We shall also put visual homing in the broader context of

robotic navigation algorithms, reviewing general trends in this large body of research.

This chapter is organised as follows. In Section 2.2 we review current trends in

robotic navigation. This includes a discussion of navigation with both metric and topo-

logical maps and algorithms robots can employ to autonomously generate these maps.

We then move on to discuss visual homing in particular, beginning with a brief descrip-

tion of the methods used by homing researchers to capture panoramic images in Sec-

tion 2.3.1. Feature-based methods are covered in Section 2.3.2. We present a critical

discussion of popular solutions to the correspondence problem in Section 2.3.3. Sec-

tion 2.3.4 covers image-based (also known as appearance-based) homing algorithms.

We discuss in Section 2.3.5 a description of a recently discovered “visual compass”

which could be useful in future visual navigation work. Finally, we discuss problems

in computer vision and robotics which are closely related tovisual homing in Sec-

tion 2.4. Conclusions follow in Section 2.6.

We note that several of the papers we included in this work were published after

we completed the bulk of our research. This is true of papers published in or after late

2006. This recent work thus had no bearing on our research goals. We included these

papers here because they provide useful information about visual homing or related

problems. Sometimes, as with Pons et al. [2007], we review recently published results

so we can compare them with our own later in this dissertation.

7
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2.2 Current Trends in Robotic Navigation

2.2.1 Metric Localisation

Metric localisation is the process of computing pose (position and orientation ex-

pressed in a suitable reference frame). Almost all robot localisation algorithms work

by trying to match incoming sensor data with the informationcontained in a map. All

sensors return noisy signals and this sensor noise inevitably leads to uncertainty in the

robot’s inferred pose. Thus, as Thrun et al. [2005] point out, it is appropriate to rep-

resent a robot’s belief about its pose with a probability distribution, a function which

associates a probability with every possible pose that the robot may be in at a given

time.

In general, three distinct localisation problems appear inthe literature (Thrun et al.

[2005]): position tracking, global localisation, and the kidnapped robot problem. In

position tracking problems, the initial pose of the robot insome suitable global coor-

dinate frame is known with relatively high accuracy and precision. Position tracking

algorithms are designed to update this initial pose as the robot moves through the en-

vironment. In global localisation, the robot’s initial pose is unknown. The robot must

infer its pose solely by matching sensor readings with map information. This is consid-

ered a harder problem than pose tracking as the robot must, atleast initially, consider

all of the map data when making pose inferences. The kidnapped robot problem is a

difficult mix of pose tracking and global localisation. The robot thinks it has a good

initial pose estimate but in fact its information is incorrect; it is rather in a different

part of the mapped environment altogether. This state of affairs could occur because

the robot was moved from a known pose without sensing the move(i.e. it has been

“blindfolded” and kidnapped).

Many localisation algorithms exist in the literature. We shall review some popular

and influential algorithms below. The algorithm appropriate for use in a certain situa-

tion depends on the type of map provided to the robot (if any),the type of sensor(s) the

robot has to sample the environment, and the type of localisation problem the robot’s

user wishes to solve. We have already discussed the various localisation problems

which occur in the literature. We shall cover different examples of maps and sensors

in the course of our discussion of individual localisation procedures.

Perhaps the simplest pose tracking algorithm requires no map whatsoever. Mobile

robots can integrate the translation and rotation commandsthey issue while moving to

keep track of their pose over time. Since motor commands are not always carried out as
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desired (due to e.g. collisions with objects), most wheeledmobile robots are equipped

with wheel encoders which count the number of rotations (or fractions of a rotation)

undergone by each wheel while the robot is moving. They can integrate this odometric

information to produce a pose estimate. Converting wheel rotations into pose change

requires knowledge of the radii of the wheels (which are probably slightly different

from one another) and the length of the axle(s) connecting the wheels. The more im-

precise the knowledge of these dimensions, the more error introduced in the estimation

of pose change from odometric sensors. Borenstein and Feng [1996] devised a method

called the University of Michigan Benchmark (UMBmark) to determine these dimen-

sions with high accuracy. UMBmark is to be applied only occasionally as Borenstein

and Feng [1996] note that wheel radius and axle length probably do not change much

over time. Borenstein and Feng [1996] demonstrate that the use of UMBmark can lead

to an increase in pose estimation accuracy of one order of magnitude.

Imprecision in the knowledge of wheel radii and axle length will remain even if

a procedure like UMBmark is employed. This imprecise knowledge leads to system-

atic error in pose change estimates. Integration of erroneous pose change estimates

causes the robot’s pose estimate to become more and more uncertain over time (Thrun

et al. [2005]). The error is in fact unbounded. Also, robot wheels are subject to

non-systematic errors like wheel slippage due to, for example, smooth floors and/or

high-magnitude acceleration (Borenstein and Feng [1996]). These non-systematic er-

rors will contribute to erroneous pose tracking as well. Forthese reasons, most pose

tracking schemes use sensor data (usually) in conjunction with map information and

odometric measurements in order to localise.

As we said above, Thrun et al. [2005] argue that robot localisation schemes should

represent pose beliefs probabilistically. That is, a probability density function should

be maintained that associates with every pose the probability that the robot currently

occupies that pose. But how should this belief be updated given movement commands

and sensor information? Thrun et al. [2005] demonstrate that a Bayes filter is an ap-

propriate general solution to this problem. When a new control command is carried

out, the Bayes filter specifies in general how to update the pose belief distribution

using the robot’s state transition probability distribution. This transition distribution

describes the probability of a robot being in a new state (i.e. pose) given that it was

in a particular prior state and a particular motion command was issued. The new pose

distribution is frequently called the prediction. After the prediction is computed, the

robot typically takes sensor readings in its new pose. Thesesensor readings should
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influence the belief that the robot is in a given pose. The Bayes filter algorithm gives a

general form for the computation which updates the prediction given a measurement.

This measurement update requires a measurement probability distribution which gives

the probability that the robot receives a particular sensorreading given that it is in a

particular state. The resulting final belief is a posterior probability distribution given a

control command and subsequent sensor measurement. Thrun et al. [2005] show that

for general pose distributions, no closed form solution exists for computing predictions

and measurement updates. The extended Kalman filter which wedescribe next can be

derived from the Bayes filter by assuming that pose beliefs are normally distributed.

We shall see that this assumption, though, renders the extended Kalman filter most

appropriate for pose tracking (at least in basic implementations) rather than full global

localisation.

2.2.1.1 The Extended Kalman Filter

The extended Kalman filter (EKF) is quite a popular solution to the pose tracking prob-

lem according to Thrun et al. [2005]. We use an extended Kalman filter to augment

our robot tracking system described in Chapter 6. Before discussing EKF and its use

in pose tracking, we will first cover its close cousin the Kalman filter (KF). The KF is

a recursive linear state estimator. A state in the context ofthe localisation problem is

the robot’s pose. The KF treats state as a random variable with a Gaussian distribution.

The Gaussian distribution is a unimodal probability density function parametrised by

a mean vector and covariance matrix. The mean coincides withthe peak of the dis-

tribution and the covariance matrix indicates the spread ofthe distribution. The KF

estimates the current state of the system given the prior state, the control command

that brought the system from the prior state to its current state, and sensor measure-

ments of the system in the current state. The KF is described as recursive because it

estimates the current state from the previous state only, not the entire state history of

the system. We shall discuss the linear aspect of the Kalman filter below.

The Kalman filter requires two functions to be defined: a statetransition function

and a measurement prediction function. The state transition function predicts what

the current state of the system will be when a given control signal is applied to the

previous state. In the context of robotic pose tracking, thecontrol signal is a movement

command (or odometric information resulting from a movement command) applied to

change the pose of the robot. The measurement prediction function takes as input

the predicted current state of the system (i.e. the most recent output from the state
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transition function) and predicts what the sensor measurement of the system will be

in this state. State transition and system measurement are assumed to be stochastic

processes in problems to which the KF is applied. After all, if state transition were

not a stochastic process and the initial state of the system were known, then the state

transition function alone could be used to track the evolving state of the system; the

KF would not be required. The KF requires knowledge of the randomness involved

in state transition and sensor measurement. The uncertainty of each is considered an

added random variable drawn from a zero mean Gaussian distribution; the covariance

matrix of each distribution is defined by the user of the KF.

In robotic pose tracking using variants of the Kalman filter,sensor measurements

often take the form of the range and/or bearing of one or more landmarks as sensed

from the robot. Thrun et al. [2005] present a Kalman filter-based localisation algorithm

which uses both range and bearing measurements to landmarks. Range and bearing

information can be extracted from, for example, stereo camera images. Durrant-Whyte

[1994] shows how to track pose using range-only (e.g. acoustic beacon receivers) and

bearing-only sensors (e.g. non-stereo cameras).

The measurement prediction function requires a map of the environment in which

the robot is operating. Thrun et al. [2005] points out that inmuch published work

the map consists of a list of important features or landmarksin the environment. As-

sociated with each landmark is a location in map-based coordinates and what Thrun

et al. [2005] calls a feature signature, essentially a description of that landmark for

use in landmark recognition. The measurement prediction function takes the robot’s

predicted pose and the map and computes the range and/or bearing to a selected set of

landmarks. Predicting range and/or bearing to point landmarks on a map from a given

pose expressed in map coordinates is a relatively simple calculation involving basic

trigonometry. Appropriate formulae can be found in Thrun etal. [2005].

The measurement prediction function above assumes that theso-called data asso-

ciation problem has been solved. The data association problem involves matching an

environmental feature whose signature is gleaned from sensor data with a landmark

stored in the map (Thrun et al. [2005]). When artificial landmarks are used, the so-

lution to this problem is often trivial. Each satellite in the global positioning system

broadcasts its identity along with data used to find the satellite’s range. Durrant-Whyte

[1994] describes reflective beacons which can be identified by the unique “bar codes”

laid down in reflective tape on their surface. Data association is more difficult for nat-

urally occurring features. We shall discuss techniques forfeature identification later in
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this review. For now, we shall assume unless otherwise notedthat a reliable solution

to the data association problem is employed.

Once the state transition and measurement prediction functions have been defined,

the Kalman filter can be applied. The user of the filter must first provide an initial belief

about the state of the system. This belief is of course expressed as a normal distribution.

In the context of robot pose tracking, this initial distribution describes an estimate of

the robot’s initial pose in map-based coordinates as well asthe user’s uncertainty about

this initial pose. In the implementation of Thrun et al. [2005], the KF waits until a

control signal is applied to change the state of the system and a measurement of the

system is taken in this new state. This control signal and measurement are passed to the

KF. The KF first predicts the state of the system given the prior state estimate and the

control signal applied. This prediction – like all beliefs about the state of the system in

the context of the KF – is expressed as a normal distribution.The mean of the predicted

distribution is simply that predicted by the state transition function assuming no error

in the application of the control signal. The covariance matrix of the predicted state is

a function of the covariance matrix of the previous state estimate and the zero-mean

Gaussian distribution expressing the uncertainty in the state transition we described

earlier. Obviously, larger state transition uncertainties will lead to larger uncertainties

in the predicted current state.

The KF next corrects this system state prediction using predicted and actual sensor

measurements. The algorithm first computes the difference between the predicted and

actual sensor measurements, a variable often called the innovation. The innovation

gives a measure of the difference between the true and predicted current states of the

system (Durrant-Whyte [1994]). If the innovation is relatively large (and measurement

uncertainty is relatively small), then the predicted stateis probably quite different from

the actual state and so the predicted state must be drastically altered. The mean of the

belief about the true state of the system is computed as the sum of the predicted state

and the innovation weighted by a value known as the Kalman gain.

The Kalman gain is a matrix whose value depends on the zero mean Gaussian noise

associated with state transition and system measurement described above. Elements of

the gain matrix are generally larger if the uncertainty in state transition given a control

signal is larger than the uncertainty in system measurements (Durrant-Whyte [1994]).

Thus, when sensor uncertainty is relatively large, less weight is given to the innova-

tion in the computation of the current state estimate. When transition uncertainty is

relatively large, the Kalman gain ensures that the predicted state of the system plays a
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relatively small role in the current state estimate.

The result of the weighted sum described above is a belief about the current state of

the system (e.g. the robot’s pose in the context of pose tracking) expressed as a normal

distribution.

The Kalman filter requires that the state transition and measurement prediction

functions be linear in their input variables. This is because both functions transform the

normally distributed random variable which represents therobot’s pose belief. When

a Gaussian random variable is transformed by a linear function, the result is another

Gaussian random variable; this cannot be guaranteed if the transforming function is

nonlinear. The Kalman filter depends on the system state remaining a Gaussian dis-

tribution (Thrun et al. [2005]). Unfortunately, this linearity condition is often violated

in robot pose tracking problems. The state transition for example usually involves

some trigonometric functions as can be seen in Durrant-Whyte [1994]. So too, range

predictions use the Euclidean distance formula, a nonlinear function.

Due to this nonlinearity, the extended Kalman filter (EKF), rather than the Kalman

filter, is often used to solve robot pose tracking problems. The EKF is quite similar

to the KF. The big difference is that the former allows the state transition and mea-

surement prediction functions to be nonlinear. The EKF requires that these functions

be linearised about their state input. This linearisation is accomplished by estimating

each function with a first order Taylor series approximation. This approximation is es-

sentially the tangent to the nonlinear function at the pointof the Gaussian mean vector.

The success of the extended Kalman filter for pose tracking depends on how well this

linear Taylor series approximates the underlying nonlinear function.

The extended Kalman filter is an attractive solution to the pose tracking problem

because it provides an efficiently computable closed-form solution to the recursive up-

date of pose beliefs (Thrun et al. [2005]). It is possible to derive this closed-form

solution because the robot’s belief about its pose is represented by the Gaussian dis-

tribution. The computation time of the EKF isO(k2.4+ n2) when efficient matrix

operations are employed (Thrun et al. [2005]) wherek is the size of the output of the

measurement prediction function andn is number of state variables to compute. In this

case of planar pose tracking,n = 3. As we discuss below, though, it may not always

be advisable to represent pose beliefs with Gaussian distributions.

The EKF tracker works by linearising the robot’s motion and measurement models

as discussed above. This is done so that the belief output by the EKF remains a Gaus-

sian distribution after each iteration of the algorithm. The unscented Kalman filter
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(UKF) provides another way to solve this problem. The UKF represents the Gaussian

pose belief distribution as a set of 2n+ 1 sigma points wheren is the dimensionality

of the Gaussian. In the case of the pose tracking problem,n is equal to three when

the robot is moving on a plane since the robot’s pose is composed of a two-coordinate

location value and a heading value. The first sigma point is located at the mean. The

other sigma points are distributed symmetrically about themean. With knowledge of

the sigma points, it is easy to recover the mean and covariance matrix which describes

the Gaussian distribution which the sigma points represent. In the UKF, the sigma

points are used as arguments to the (generally) nonlinear motion and measurement

models. The output of these models is a new set of sigma pointswhich can be used to

compute the mean and covariance matrix of new Gaussian distributions. Thrun et al.

[2005] demonstrate that the sigma point method is generallymore accurate than the

approximation provided by the Taylor series linearisationemployed by the EKF.

The EKF for pose tracking as discussed above assumes a reliable solution to the

data association problem. Thrun et al. [2005] in fact note onpage 230 that “a single

false correspondence can derail the [EKF] tracker by inducing an entire stream of lo-

calization and correspondence errors.” The multi-hypothesis tracker (MHT) was intro-

duced to overcome this brittleness in the EKF tracker. The MHT represents the robot’s

belief about its pose with a weighted mixture of multiple Gaussians. Each Gaussian

results from a unique sequence of feature correspondence assignments processed by

an EKF-like algorithm. The weight associated with a given Gaussian indicates the

likelihood that it represents the robot’s true pose. This weight can be used to prune

unlikely pose beliefs, thus reducing the computational requirements of the algorithm.

The MHT, unlike the EKF tracker, can be used to solve global localisation problems

by providing an initial set of pose beliefs which covers the environment approximately

uniformly.

2.2.1.2 Monte Carlo Localisation

The extended Kalman filter and unscented Kalman filter are appropriate for pose track-

ing not global localisation. This is because they representthe robot’s belief about its

pose with a unimodal Gaussian distribution. Monte Carlo Localisation (MCL) aban-

dons the use of the Gaussian distribution to represent pose beliefs. Instead, the pose

distribution is represented by a finite set ofN weighted particles. Each particle co-

incides with a particular robot pose. A particle’s weight (also called its importance

factor) is proportional to the probability of receiving thecurrent sensor data given that
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the pose represented by that particle is correct; more on this conditional probability

below. MCL is a non-parametric algorithm in the sense that itdoes not try to estimate

belief with a parametrised form like the Gaussian distribution.

The first step in the MCL algorithm involves choosing the initial set of particles.

If MCL is used to solve a global localisation problem, the initial particle set can be

drawn randomly from a uniform distribution of poses over allpermissible locations

and orientations (Thrun et al. [2001]). Each particle weight is set to1
N whereN is the

total number of particles. This weighting reflects completeinitial uncertainty in the

pose of the robot. If there is some knowledge about the initial pose of the robot, this

can be used to influence the initial sampling of particles. Infact, MCL can be used to

solve both pose tracking and global localisation problems.

Once the initial particle set is created, the MCL algorithm in Thrun et al. [2005]

updates the set each time the robot moves and collects sensordata. After a move is

made, each particle in the set is updated given the movement command or odomet-

ric information which results from the move. This update requires knowledge of the

robot’s motion model: the probability distribution of the robot’s current pose given its

previous pose and the motor command applied at the previous pose. Thrun et al. [2001]

point out that in order to make the pose updates it is sufficient to have a function which,

given a prior pose and motor command, returns a randomly generated pose drawn ac-

cording to the motion model. A closed-form expression of themotion model is not

required. Once the particle poses have been updated, the setof unweighted particles is

typically called the proposal distribution (Thrun et al. [2001]). The importance factor

of each particle in the proposal distribution is then calculated from the sensor model:

the probability of the current sensor reading assuming thatthe hypothetical particle

reflects the robot’s true current pose. This probability computation requires a map of

the robot’s environment.

Once theN hypothetical particles and their weights are computed, theMCL algo-

rithm undertakes a resampling process (also known as importance sampling). In this

step,N particles are selected from the hypothetical set of particles described above. A

particle is selected at random with a probability proportional to its weight. Particles are

drawn with replacement so a particle can, and often is, drawnmore than once. After

resampling, the set of particles is an approximation of the posterior probability distri-

bution of robot poses given all movement commands issued andsensor data collected

so far.

One might wonder why resampling is done at all as it leads to duplicate particles
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appearing in the particle set. If resampling were not done, then poses with quite low

probability of being the true robot pose would be represented in the particle set. These

unlikely particles would be processed for each iteration ofthe MCL algorithm, almost

certainly wasting computational effort.

Thrun et al. [2005] note that choosing the value ofN, the number of particles in the

sample set, is something of an art. IfN is too small, then there is a risk that no particle

in the initial set will represent a pose near enough to the true initial pose of the robot.

In generalN grows exponentially with the number of state variables being estimated.

A large value ofN will come at a computational cost as each iteration of the MCL

algorithm carries outO(N) operations. Care must be taken by the human operator to

choose a value ofN which is neither too big nor too small for the localisation problem

at hand.

We saw above how MCL can be used to solve pose tracking and global localisation

problems. The kidnapped robot problem can be tackled with MCL by periodically

injecting random poses into the particle set. If the robot has not been kidnapped,

then these particles will quickly die out in the course of importance sampling. If the

robot has been kidnapped, then hopefully one of the newly injected particles will be

similar to the pose of the kidnapped robot. Sophisticated techniques exist for choosing

how many particles to inject and for calculating the pose distribution from which the

particles should be drawn. We consider the description of these techniques outside

the scope of this review. The interested reader can find more information about these

methods in Thrun et al. [2005].

Because it is easy to understand and applicable to many localisation problems in

robotics, Thrun et al. [2005] on page 250 call MCL “one of the most popular localiza-

tion algorithms in robotics.” MCL works quite well in practice. Dellaert et al. [1999b]

demonstrated that global localisation with a particle filter was able to localise a robot

moving through the Smithsonian museum on a 2 kilometre journey. The museum was

empty at the time so the environment remained relatively static. The robot used a laser

range scanner and was equipped with an occupancy grid map of the environment. We

shall below discuss some MCL localisation approaches employing visual sensors.

2.2.1.3 Range Scanning and Map Matching

The localisation solutions we have seen so far typically userelatively sparse metric

maps populated by important features (i.e. landmarks) in the environment of interest.

A more dense map is also used: the occupancy grid. According to DeSouza and Kak
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[2002], the most commonly used type of metric map in visual robotic navigation is

the occupancy grid introduced by Moravec and Elfes [1985]. An occupancy grid is

typically a two-dimensional array of cells where each cell represents a unique area of

physical space in an environment. In the simplest form of theoccupancy grid, each cell

stores a binary value indicating whether the space associated with that cell is occupied

or empty (Thrun et al. [2005]). In the formulation of Moravecand Elfes [1985], cells

store a value between -1 and 1. A negative cell value indicates that the cell is probably

empty, where the probability of emptiness is equal to the absolute value of the number

stored in the cell. Likewise, a positive cell value indicates a belief that the cell is

probably occupied. Cell value zero indicates that no information has been gathered

about the physical space represented by the cell. This probabilistic formulation is

required because occupancy is inferred from a robot’s noisysensor readings (sonar in

the case of Moravec and Elfes [1985]). We shall discuss robotmap-making in more

detail later in this review.

Range scan matching employs a local occupancy grid for the purpose of pose track-

ing. Range scan matching for pose tracking was introduced inLu and Milios [1994]

and fleshed out in Lu and Milios [1997]. Lu and Milios [1997] define a range scan as a

set of robot-object distances in a panoramic 2D slice of the environment. Each element

of a scan is a point consisting of the range from the scanner tothe sensed object and the

angle (in ego-centric terms) that the sensor was in when thatrange value was captured.

Lu and Milios [1997] use a laser range finding sensor to generate range scans. The

scan matching algorithm aims to solve the following question: if a reference scanSre f

is captured while the robot is in a posePre f and sometime later another scanSnew is

captured while the robot is in a different posePnew, can we determine the change in

pose fromPre f andPnew given odometric information and the change between scans

Sre f andSnew? It is assumed in Lu and Milios [1997] that the robot is movingin a

two-dimensional environment. This in fact is quite a similar problem to that tackled

in visual homing and the solutions of Lu and Milios [1997] arereminiscent of the

image-based solutions to visual homing described below (particularly image warping).

Lu and Milios [1997] provide two solutions to the range scan matching problem.

Both algorithms begin by transforming (rotating and translating) the reference scan

into an approximation of the new scan using the rotation and translation provided by

odometric information. We shall in the following discussion refer to this transformed

reference scan as simply “the reference scan” for the sake ofbrevity.

One approach to scan matching devised by Lu and Milios [1997]is based on the
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iterative closest point (ICP) algorithm of Besl and McKay [1992]. The algorithm stems

from the fact that if the pose change fromPre f to Pnew were known, then the reference

scan could be transformed (rotated and translated) to matchthe new scan. Discounting

sensor noise, the range of a particular point in the transformed reference scan would be

identical to the range of the corresponding point in the new scan. We should note here

that a pointP′i in the reference scan corresponds to a pointPi in the new scan when they

both result from the laser reflecting off of the same physicallocation in the real world.

Following this logic, Lu and Milios [1997] define the distance between the transformed

reference scan and the new scan as the functionEdist(ω,T) = ∑ i = 1n|RωP′i +T−Pi |2.

P′i is one of then points in the range scanSre f andPi is the supposed corresponding

point in Snew. Rω is the rotation matrix formed from the rotation angleω. T is a trans-

lation vector. The functionEdist assumes point correspondences can be determined.

Solving the correspondence problem reliably is not an easy task and we will discuss it

in the context of image data in the visual homing literature review. Relatively simple

approximate solutions to the correspondence problem used by Lu and Milios [1997]

will be discussed below. The correct valuesω andT (i.e. those which correspond to

the change fromPre f to Pnew) are considered to be those which minimiseEdist. Lu and

Milios [1997] state that closed-form solutions can be derived to determine values of

ω andT which minimiseEdist given a set of correspondences. Once the values ofω
andT which minimiseEdist have been found, the scanSnew is transformed (rotated and

translated) with these values. The process to find a pose transform to minimiseEdist is

repeated withSre f and the transformedSnew. This iteration continues until the change

in Edist from one iteration to the next falls under a certain threshold value set by the

user. Lu and Milios [1997] report that between 15 and 20 iterations are required to

compute good pose change estimates in their experiments.

Lu and Milios [1997] describe two complementary and relatively simple rules for

quickly (in linear time) establishing correspondences between points in the new and

reference scans. The closest-point rule was used by Besl andMcKay [1992] to solve –

at least approximately – the correspondence problem. The closest-point rule assumes

that for each pointPi in the new scan, the corresponding point in the reference scan is

that closest in Euclidean distance toPi . Lu and Milios [1997] also define the matching-

range-point rule to identify corresponding points. This rule is based on the observation

that if the pose change is pure rotation, then the range values ofPi andP′i will be equal

(discounting noise). This equality will hold approximately if the translation element

of the sought-for pose change is small. The matching-range-point rule additionally as-
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sumes that the rotational element of the pose change is bounded and fairly small. This

rule therefore looks for a pointPi in the new scan whose range value is most similar

to the range ofP′i within a bounded angular window aroundθi , the laser orientation at

whichP′i was captured.

Lu and Milios [1997] found that the closest-point correspondence rule gives good

scan matching results when the pose change fromPre f andPnew is dominated by trans-

lation; the matching-range-point rule is applicable for pose changes with small transla-

tion but relatively large rotation. With this observation in mind, Lu and Milios [1997]

suggest the iterative dual correspondence (IDC) algorithm. In each iteration of the in-

cremental scan matching algorithm, IDC creates two sets of correspondences between

Sre f andSnew, one with the closest point rule and the other with the matching-range-

point rule. Each of these correspondence sets will lead to a distinct rotation and trans-

lation estimate. The reported rotation estimate for the current iteration is that garnered

using the matching-range-point rule. The reported translation estimate for the current

iteration is that garnered using the closest-point rule.

The other solution of Lu and Milios [1997] to the scan matching problem is called

the rotation search/least-squares method. As the name suggests, this method presents

a two-tiered solution to the problem of finding pose change. The top tier consists of a

search for the rotational elementω of the pose change. Given a candidate rotationω,

Lu and Milios [1997] derive an efficient method – discussed below – to compute the

translationT for the assumed rotationω that best explains the change between the new

and reference scans. Lu and Milios [1997] point out that a distance measure between

new and reference scans (when the reference scan is transformed using a candidate

rotationω and its associated translationT) is at a minimum for the true rotation be-

tween the reference and new poses. The distance function smoothly increases as the

difference betweenω and the true rotation increases. Thus Lu and Milios [1997] use

a golden section minimisation method to find the true rotation between poses. This

minimisation is reminiscent of the method used in visual compassing discussed in

Section 2.3.5 to find rotational pose changes from image data.

For each candidate rotationω, the rotation search/least-squares method uses a least-

squares function to efficiently determine the best translationT for the assumed rotation.

The first step in the translation-finding method is to rotate the new scan by the current

guess of the value ofω. If ω is correct, then a pointPi in the new scan differs from the

corresponding pointP′i only by the unknown translational element of the pose change.

Unfortunately, this correspondence is unknown. Lu and Milios [1997] use the follow-
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ing method to solve the correspondence problem: for each point Pi in the rotatedSnew,

a corresponding pointP′i in Sre f is selected which lies on the intersection ofSre f and the

line from the origin of the scans throughPi . The set of all correspondences is fed into

a least-squares formula which is a function ofω (assumed to be known) andT. The

authors use a closed-form equation to efficiently determineT from this least-squares

formula.

Lu and Milios [1997] reported that the rotation search/least-squares and IDC scan

matching algorithms described above are complementary. The former can deal with

relatively large error in pose change estimates (due to noisy odometry) but is not very

accurate. IDC is accurate but may not converge if the initialpose change estimate is

not well known. Lu and Milios [1997] use the two algorithms therefore in sequence.

Lu and Milios [1997] note that – at the time of writing their paper – their noisy

sensor data “makes it very difficult to reliably define or extract features” which could

be used to solve the correspondence problem using a feature-based approach. This is

why the authors take the whole-scan approach to scan matching described above. We

shall discuss in more detail in our discussion of visual homing the problems with and

some current solutions to feature-based correspondence.

Related to scan matching, map matching algorithms use occupancy maps to solve

local and global localisation problems. We find a map matching example in Schiele

and Crowley [1994]. The essential problem is matching a local ego-centric occupancy

grid map of the environment (built on-the-fly using current range scan readings) to a

particular portion of a global map. In Schiele and Crowley [1994] line segments are

extracted from local and global maps using a Hough transform. The authors then find

the robot pose which causes the local set of lines to correlate best with the global set

of lines. This is essentially a data registration procedure.

2.2.2 Topological Navigation

A map is a model of the environment in which the robot is navigating. Broadly, two

types of maps are employed by robotics researchers: metric and topological (Thrun

[2002]). We have already seen examples of metric maps above (e.g. the occupancy

grid). A metric map stores geometrically accurate information about the environment.

A topological map on the other hand consists of a list of important places in the en-

vironment and usually some information on how the robot can travel between these

places (like the distance between nodes). Thrun [2002] points out that the distinction
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between metric and topological maps is somewhat artificial,as topological maps often

contain some geometric information as well. Also, the definition of nodes and links

between nodes varies somewhat from author to author as we shall see below. Topolog-

ical maps are often represented as graphs in which nodes represent places and arcs the

connections between places. The London Underground map is acanonical example of

a topological map. The map describes how to travel from one tube stop (i.e. node) to

another, not the geometric relationship (i.e. distance) between tube stops.

In the spatial semantic hierarchy of Kuipers [2000], a topological map consists of

a set of locally distinctive places linked by distinctive paths. A place is considered to

be distinct in Kuipers [2000] if sensor readings indicate that it is sufficiently different

from nearby places already included in a topological map. This distinctiveness allows

the identified place to be easily revisited using an algorithm (e.g. visual homing) which

attempts to move the robot so as to maximise local distinctiveness.

Gaspar et al. [2000] argue that topological maps are useful for robot navigation in

relatively large-scale environments. Topological maps are typically much sparser than

geometric maps of the same environment. Topological maps are appropriate when

precise positioning along a path between nodes is not required. They are, in the words

of Gaspar et al. [2000] (p. 890) a relatively “long-distance/low-precision” navigation

solution. Booij et al. [2007] point out that in traversing between two (perhaps non-

adjacent) nodes in a topological map, the robot will not necessarily take the shortest

navigable path in physical space between the two mapped locations. Metric mapping

schemes are generally able to provide shortest path information. Despite these limita-

tions we shall see below that topological navigation provides impressive behaviour in

several tests.

We shall first review the topological location tracking system described in Ulrich

and Nourbakhsh [2000]. Though relatively simple, this workhighlights several com-

mon problems in topological navigation. The navigation results are quite impressive;

the robot is consistently localised in three large indoor and one large outdoor environ-

ment. The work won the Best Vision Paper Award at the IEEE International Confer-

ence on Robotics and Automation in 2000. In Ulrich and Nourbakhsh [2000] each

node of the topological map of an environment represents a distinctive place as judged

by the robot’s human operator. Two nodes are connected if therobot is able to move

between the places the nodes represent. Each distinctive place is represented by a se-

quence of panoramic colour reference images associated with that place by the human

operator.
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The main problem solved by Ulrich and Nourbakhsh [2000] is that of place recog-

nition, a problem quite similar to visual homing. As the robot moves through a mapped

environment starting from a known initial location, it mustdetermine which map node

it is in by finding the best match between the current image provided by its panoramic

image and the set of map references images. Typically, the current image must be com-

pared with several hundred reference images for a place recognition decision. Ulrich

and Nourbakhsh [2000] take an appearance-based (as opposedto feature-based) ap-

proach to this problem. To make image comparison efficient, each image (both current

and reference) is represented by a set of colour histograms.Not only can histograms be

compared efficiently, they are also invariant to imager rotation and require little mem-

ory for storage. Rotational invariance is important because it allows reference and

current images to be safely compared without knowing the relative orientations of the

imager when reference and current images were captured. In other words, a compass

is not required for localisation. After experimenting withseveral formulae to measure

the distance between two histograms, Ulrich and Nourbakhsh[2000] identified the Jef-

frey divergence as most suitable for their needs. As we shallsee below, efficient image

storage and comparison are problems common to most vision-based topological navi-

gation schemes. Ulrich and Nourbakhsh [2000] found in theirexperiments that place

recognition was successful between 87.5 and 97.7 percent ofthe time. They note that

augmenting their algorithm to deal with place recognition under varying illumination

would be valuable.

Gaspar et al. [2000] also present a topological navigation system based on visual

imaging. Each map node corresponds to a place in an indoor environment where a

special action may be taken like going through a door or turning a corner. Links cor-

respond to parts of the environment where it is relatively easy for the robot to move

from one node to another (i.e. corridors). Each node is associated with a single om-

nidirectional 128x128 grayscale image used to identify the location corresponding to

that node. Along with each link is stored a sequence of imagesthat the robot should

experience while moving along that link.

The robot in Gaspar et al. [2000] performs a place recognition query to determine

its position in the topological map described above. This map consists of a “very large”

(p. 893) number of reference images representing an office environment (an image is

captured every 50cm in the mapping process employed by Gaspar et al. [2000]). To

reduce the computational effort required to compare a current image with so many

reference images, Gaspar et al. [2000] reduce all images with a technique known as
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Principal Components Analysis (PCA). PCA seeks to project n-dimensional data (im-

ages in Gaspar et al. [2000] have 128x128 dimensions) into an m-dimensional space

(wherem is typically much smaller thann) such that the projection retains most of

the variance of the original. Them dimensional space is embedded in the highern

dimensional space. The lower dimensional space is defined bym so-called principal

components which are essentially mutually orthogonaln element vectors. The first

principal component is the direction of maximal variation through the original data;

the second principal component is orthogonal to the first andis in the direction which

maximises variation when the original data set is projectedonto the plane formed by

the first and second components; the remainder of the principal components are de-

fined similarly. Principal components are the eigenvectors(called eigenimages in this

context) of the covariance matrix formed with all of the reference images. Gaspar et al.

[2000] then select the 10-12 eigenimages with the highest eigenvalues to form the low-

dimensional space into which each input image is projected.References images are

projected in this way in a pre-processing step. Each currentimage is projected into the

same low-dimensional space before comparison with the reference images is made.

Gaspar et al. [2000] use a correlation-based measure to compare projected current and

reference images. This low-dimensional representation not only makes image com-

parison more efficient (10-12 pixels are compared rather than 128x128), it also means

that the storage requirements of the map are dramatically reduced (as in Ulrich and

Nourbakhsh [2000]). Gaspar et al. [2000] imply that their image similarity measure is

not robust to changes in illumination. As demonstrated by Pajdla and Hlavác̆ [1999],

low-dimensional projected images are not invariant to viewer rotation. Gaspar et al.

[2000] avoid this problem by generally orienting the robot in the same direction during

localisation and map-making.

Unlike Ulrich and Nourbakhsh [2000], Gaspar et al. [2000] tackle the problem of

how the robot can autonomously move between map nodes (i.e. traverse map arcs).

In Ulrich and Nourbakhsh [2000], the robot was driven by a human operator through

a mapped environment while autonomously solving the place recognition problem.

Gaspar et al. [2000] use a visual servoing approach (we shalldiscuss visual servoing

in more depth in Section 2.4.1) to move the robot down corridor centres. A sequence

of images along each corridor captured while map-building is used to provide evidence

that the robot is making satisfactory progress down a corridor.

Argyros et al. [2005] present a vision-based topological navigation system some-

what different from that of Gaspar et al. [2000]. We note thatsimilar though prelimi-
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nary work was published by the same research group in Argyroset al. [2001]. Argyros

et al. [2005] are essentially interested in a long-range homing problem. That is, the

robot has an important home position (e.g. a docking station) to which it should return

after a meandering journey to carry out some mission. This journey may be quite long-

range, moving the robot through several different rooms (Argyros et al. [2005] are in-

terested indoor navigation). The assumption is that the journey is too long for standard

visual homing approaches to work successfully. Setting offfrom its home position,

the robot records a series of panoramic images along its path. The system also tracks

corner-point features in these images, noting for each image the ego-centric bearing

of each tracked corner. When the robot is done with its mission, the system selects a

sequence of recorded images as homing targets. Argyros et al. [2005] call the loca-

tions of these target images Milestone Positions (MPs). Therobot then utilises a visual

homing strategy to hop from the current MP to the previous MP in the sequence. The

homing strategy is quite similar to the Snapshot Model discussed in Section 2.3.2.1.

The solution to the feature correspondence problem presented by the Snapshot Model

is trivial here; the bearings of corner point features are known in the images collected

at MPs and can be easily tracked while homing to a target MP. Since corner point

feature bearings are associated with each image, no external compass information is

required to aid in solving the correspondence problem, as isthe case with the original

Snapshot Model. In work similar to Argyros et al. [2005], Smith et al. [2006] use the

average landmark vector (ALV) homing algorithm (see Section 2.3.2.4) rather than the

Snapshot Model to guide the robot between MPs spaced along a predefined route.

Goedemé et al. [2005b] present a topological navigation algorithm somewhat sim-

ilar to that of Argyros et al. [2005]. Goedemé et al. [2005b]tackle the problem of

following a path defined by a pre-collected sequence of non-localised images. Image

capture locations are separated by between 1 and 3 metres. The authors use a visual

homing algorithm to move the robot from one image to the next in the sequence. Vi-

sual homing is split into a two-stage process. In the first stage, feature correspondences

are established between the current and snapshot images (here we use the terminol-

ogy to describe images frequently employed in the visual homing literature). Goe-

demé et al. [2005b] employ SIFT features; we describe SIFT features in more detail in

Section 2.3.3.6. Given the set of computed feature correspondences, Goedemé et al.

[2005b] then use epipolar geometry to compute the movementsrequired to move the

robot from its current pose to the snapshot pose. Visual homing using epipolar ge-

ometry is discussed in Section 2.3.2.5. The system also infers the three-dimensional
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position of each feature and stores it in a local metric map whose origin is defined

by the starting location of the current homing process. In the second stage, the robot

moves given the homing vector generated in stage one. As the robot moves, the visual

features used to generate the home vector are tracked in successive images. The robot

is also localised in the local map. If a feature is lost due to occlusion, then it is arti-

ficially placed in the image given knowledge of the three-dimensional location of the

feature computed earlier.

Unlike Argyros et al. [2005] and Goedemé et al. [2005b], Labrosse [2007] uses an

image-based rather than feature-based visual homing algorithm to follow a route along

which images have been collected previously. He in fact usesthe difference surface-

based homing method introduced in Binding and Labrosse [2006] and described in

Section 2.3.4.2. Labrosse [2007] notes that image-based visual homing algorithms are

attractive because they are more computationally efficientthan feature-based methods

which require feature extraction and correspondence.

2.2.2.1 Image-Based Localisation

A group of papers on so-called image-based localisation employs maps which in our

view straddle the boundary between metric and topological representations of the en-

vironment. In image-based localisation, maps consist of nodes representing distinctive

places in the environment (as with topological navigation). Each node is typically rep-

resented by a panoramic image taken from that place. In common with metric maps,

each node is precisely localised in a Cartesian coordinate frame. As we shall see,

image-based localisation techniques share many of the sameproblems seen in topo-

logical visual navigation: efficient storage of a large database of images and efficient

comparison of a current image with the database for place recognition.

Crowley and Pourraz [2001], like Gaspar et al. [2000], use PCA to reduce the di-

mensionality of the set of reference images forming the map used for localisation. In

this case, though, the set of reference images is well-localised and is used for metric

pose estimation (with motion constrained to a two-dimensional plane) rather than for

topological navigation (as is the case with Gaspar et al. [2000]). Crowley and Pourraz

[2001] use perspective rather than panoramic images in their work. Before making

pose estimations, they collect a grid of reference images; at each grid point, images

from several camera orientations are collected, approximating one panoramic image.

Crowley and Pourraz [2001] point out that the set of reference images are equivalent

to points on a nonlinear manifold embedded in the (high-dimensional) space whose di-
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mension is equal to the number of pixels in each image. Assuming the mapped environ-

ment is visually static, this so-called appearance manifold itself is three-dimensional;

each point on the manifold represents an image taken while the imager is in a particu-

lar three-dimensional pose. Given this manifold, one could, given an image, uniquely

determine the associated imager pose (assuming no perceptual aliasing in the mapped

environment). This observation forms the basis of several image-based localisation

techniques. Unfortunately, the appearance manifold cannot be known precisely for

real-world environments. Crowley and Pourraz [2001] estimate the appearance mani-

fold of a mapped environment using the set of reference images described above.

In order to estimate the pose of a new image given the set of reference images,

the authors attempt to find the reference image with the highest correlation with the

new image. This involves a brute-force search over the wholereference set. To reduce

the computational complexity of this operation, the dimensionality of the reference

set is reduced using PCA as mentioned above. The set ofK basis eigenimages used

to reduce each image in the reference set is also used to reduce the new image. A

Euclidean distance measure is then used to measure the similarity between the new

and reference images. The authors note that Euclidean distance in eigenspace is a

good approximation to the correlation measure in the original space of non-reduced

images. The pose of the reference image most similar to the new image is taken to be

the pose of the new image. Crowley and Pourraz [2001] furtherimprove the efficiency

of the search by storing the reduced reference images in a tree structure; images in the

same portion of the manifold are stored in the same tree leaf.A K-ary search is used to

quickly find the leaf with images most similar to the reduced version of the new image.

The above localisation approach suffers from the fact that the pose estimation error

depends on the density with which the reference set is sampled. A dense sampling is re-

quired for very accurate pose estimates. Of course, larger reference sets required more

computational effort to perform brute-force searches. Crowley and Pourraz [2001]

tried to circumvent this problem by interpolating the appearance manifold formed by a

relatively sparse reference set. It was reported that such interpolation resulted in “only

minimal loss in [localisation] precision.” (p. 748)

The image-based localisation method of Crowley and Pourraz[2001] assumes vi-

sually static environments. They write that their scheme isnot robust in the face of

illumination conditions (particularly illuminant direction) which change after the ref-

erence image set is captured. Image-based localisation with PCA in visually dynamic

environments will be discussed below.
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Related to the work of Crowley and Pourraz [2001], Yang et al.[2007] show that a

local appearance manifold can be linearised and this linearapproximation can be used

to track the pose of a moving imager. The imager in Yang et al. [2007] is free to take

any pose in three dimensional space in a static world. Yang etal. [2007] show how to

approximate the local appearance manifold using seven images which are proximate

on the manifold. They construct a special imaging sensor consisting of four adjacent

cameras which is capable of simultaneously taking the sevenrequired images at known

relative poses. Once the local manifold approximation is computed, the system waits

for the camera to move to a pose and take a new image. Given the new image and the

manifold approximation, the pose change can be computed as the solution to a set of

linear equations.

Pajdla and Hlavác̆ [1999] tackle the problem of finding an image representation

which is invariant to imager rotations for the purposes of image-based localisation.

We saw why rotational invariance was important for image-based localisation when

discussing Ulrich and Nourbakhsh [2000]. Pajdla and Hlavác̆ [1999] introduced the

zero phase representation (ZPR) of panoramic images and showed that ZPR images

are rotationally invariant. In Pajdla and Hlavác̆ [1999] panoramic images are formed

with a digital camera viewing a convex mirror (as described in Section 2.3.1). Pajdla

and Hlavác̆ [1999] map the image of the mirror (a circle) from polar to rectangular

coordinates, “unwrapping” the mirror image to an equivalent rectangular image. A

shift in the columns of this unwrapped image is equivalent toa rotation of the imager.

The ZPR procedure finds, for a particular image, the columnwise shift required so

that the lowest frequency element of the Fourier transform of the image has a phase

value of zero. Pajdla and Hlavác̆ [1999] shows that two panoramic images taken in

different imager orientations but from the same position will have nearly identical ZPR

representations (assuming illumination and object locations remain static).

Jogan and Leonardis [1999] extend the work of Pajdla and Hlavác̆ [1999] by re-

ducing the dimensionality of ZPR images using principal components analysis (PCA

is described above). Jogan and Leonardis [1999] show that image-based localisation

with reduced ZPR images should have approximately the same place recognition suc-

cess rate as when all images (current and reference) are captured in the same compass

orientation. Jogan and Leonardis [1999] also show that a competing image represen-

tation which is invariant to rotation – the autocorrelationimage (Aihara et al. [1998])

– is inferior for the purposes of image-based localisation.

Jogan and Leonardis [2000] argue that using PCA to compress images results in
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image comparisons which are not robust to object movement between capture of refer-

ence and current images. They attempt to solve this problem by randomly subsampling

a current image. Thek pixels chosen in the subsample are those which can be gener-

ated with little error from the eigenvectors associated with the reference images. The

subimage produced thus tends to include pixel locations which are not affected by

objects moving in the environment. Jogan and Leonardis [2000] showed that fairly ac-

curate image-based localisation is possible in environments with moving objects using

their scheme in place.

Jogan et al. [2002] point out that PCA-based compression is also sensitive to il-

lumination changes between current and reference (i.e. map) images for the purpose

of place recognition. Jogan et al. [2002] point out that gradient-based filters when

applied to images make these images more robust to illumination changes for the pur-

pose of similarity measurement. These gradient-based filters basically highlight edges

in images. Jogan et al. [2002] show how gradient-based filters can be applied to create

eigenimages which are resilient to illumination changes. When doing image-based lo-

calisation, the current input image must be filtered with thesame set of gradient-based

filters as the eigenimages. It is demonstrated that localisation is vastly improved when

this method is used in an indoor environment with dynamic illumination.

Menegatti et al. [2004] point out that many approaches to image-based localisa-

tion like Jogan and Leonardis [1999] would not be reliable for global localisation in

environments suffering from perceptual aliasing in the visual mode. Perceptual alias-

ing occurs when two or more node locations appear similar enough to one another so

that a place recognition system cannot tell them apart usingonly image comparisons.

A corridor environment with repeated identical doorways would present a perceptual

aliasing problem for a robot using vision alone. The authorsthus augment their image-

based localisation algorithm with a Monte Carlo localisation algorithm (see above for

a general overview of MCL).

Before describing their version of MCL, we shall look at how Menegatti et al.

[2004] perform image compression and comparison. Menegatti et al. [2004] initially

capture grayscale panoramic images of the environment for both map-making and later

localisation. Using a method presented earlier in Ishiguroand Tsuji [1996], Menegatti

et al. [2004] use the discrete Fourier transform (DFT) to compress panoramic images.

The discrete Fourier transform (Fisher et al. [1996]) of each row of each image is first

computed. The magnitudes corresponding to the 15 lowest frequencies for each row

are stored. Using the DFT, Menegatti et al. [2004] convert a 512x80 pixel grayscale
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panoramic image into a 15x80x2 element representation, reducing storage require-

ments by a factor of about 17. Not only are the transformed images small, the Fourier

transform renders them rotationally invariant so that robot heading need not be taken

into account when comparing reference and current images (as is the case in Ulrich

and Nourbakhsh [2000]). Menegatti et al. [2004] compute image similarity by sum-

ming the absolute difference between the corresponding Fourier magnitudes of current

and reference images. This is similar to a sum-of-squared differences image similarity

measure.

The MCL algorithm used by Menegatti et al. [2004] follows thebroad outline de-

scribed above. We shall merely highlight some peculiarities here. Each particle repre-

sents an hypothetical robot location in map coordinates (not, as in several other MCL

applications, a full pose as reference images are rotationally invariant). A particle’s

weight is related to the image similarities between the current image and the set of

reference images deemed to be close (in terms of Euclidean distance) to the location

of the particle. The algorithm is shown to be able to solve global localisation and

kidnapped robot problems in an environment in which perceptual aliasing is present.

The work of Menegatti et al. [2004] is similar to the influential work of Dellaert

et al. [1999a]. A difference between the two is that Dellaertet al. [1999a] use a dense

map of upward facing images, essentially a visual mosaic of the ceiling of the mapped

environment (a museum).

2.2.3 Autonomous Mapping

As we saw above, most localisation schemes require a map of the environment. Much

work in recent years has gone into crafting algorithms to allow robots to create maps

autonomously. As visual homing concerns localisation rather than map-making, we

shall only briefly review recent trends in robotic map-making. Autonomous map-

making presents an immediate problem: in order for the robotto map the environment

beyond its immediate perceptual range, it needs to move and collect sensor readings

while in various poses. To incorporate those readings into aglobal map, the robot

needs to localise itself. But to localise itself, the robot (at least in most implementa-

tions) requires a map as we saw above. This chicken-and-egg problem is solved by a

simultaneous localisation and mapping (SLAM) algorithm. SLAM is also sometimes

called concurrent mapping and localisation (CML) in the literature.

As with localisation algorithms, successful SLAM methods are probabilistic in na-
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ture (Thrun [2002]). This is because the sensors (e.g. cameras, laser range finders,

sonar) that robots use to acquire information about the environment for map-making

return noisy data. So too, the technology used to track the robot’s pose over time (e.g.

wheel encoders and inertial navigation units) provide uncertain estimates of this pose.

As with localisation, the current belief about the state of the world is represented by a

probability distribution. In SLAM, the state consists of both the robot’s current pose

and (in one form of the algorithm) the locations of all observed landmarks (Durrant-

Whyte and Bailey [2006]). These states variables are expressed in a suitable global

reference frame. Robot pose and landmark locations are estimated jointly and their

probability distribution is conditioned on all robot control commands and sensor ob-

servations made up to the current time.

Just as with probabilistic localisation, the current statedistribution of the SLAM

variables is updated recursively using some variant of the Bayes filter. Just as with

localisation, the extended Kalman filter (EKF) is a popular realisation of the Bayes

filter for use in SLAM (Durrant-Whyte and Bailey [2006]). To remind the reader:

the EKF algorithm assumes that the state variables have a joint normal distribution.

In addition, robot motion and sensor measurements are assumed to suffer from noise

which has a zero-mean normal distribution. A complete solution to SLAM using the

extended Kalman filter can be found in Dissanayake et al. [2001].

SLAM using the EKF has both benefits and drawbacks. A naive solution to SLAM

using EKF requiresO(K2) computations per map update (Thrun [2002]) whereK is

the number of landmarks in the map. Maps of large-scale environments can contain

thousands of landmarks (Durrant-Whyte and Bailey [2006]) so these computational

requirements are non-trivial. SLAM with the EKF is also verysensitive to errors in

data association (Durrant-Whyte and Bailey [2006]). A big advantage of the Kalman

filter approach to SLAM is that it maintains not only a state estimate but also a measure

of the uncertainty about the state. This uncertainty can be used to judge how useful

the estimated map is for navigation (Thrun [2002]). An optimised real-time EKF-

SLAM algorithm has been successfully applied in a large-scale (i.e. tens of metres)

outdoor environment (Guivant and Nebot). Other impressiveresults for EKF-SLAM in

indoor, outdoor and undersea environments exist in the literature (Durrant-Whyte and

Bailey [2006]). SLAM is often applied to robotics with range-measuring sensors. An

impressive example of EKF-SLAM with a single moving camera is given in Davison

[2003].

The above discussion of SLAM assumed that metric maps of the environment were
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being created. The autonomous creation of topological mapshas been studied ex-

tensively as well. We shall review some impressive implementations of vision-based

topological map-making. Franz et al. [1998a] present an autonomous topological map-

making system. The robot moves to explore a space. If the current view is sufficiently

different from all images stored in the map (or the map is empty), the current view is

stored in a new node in the map. Image similarity is measured with a simple correla-

tion measure. Image storage and comparison are made more efficient by considering

only panoramic horizon line images; see Section 2.3.1 for more information on horizon

lines. The newly created node is connected by an arc to the previously created node

in the map. The system as described is capable of learning linear chains of snapshot

locations. It may be the case that the new node is geometrically near other nodes in the

map, not just the previously created node. To determine whether this is the case, the

similarity between the new node’s image and all existing mapimages is checked. If

sufficient similarity is detected, then the robot attempts to home from the current loca-

tion to the proposed neighbour. Franz et al. [1998a] use the image warping algorithm

to home (see Section 2.3.4.1). If homing is successful, thena new arc is added in the

map between the nodes in question.

Košecká et al. [2003] call their topological map a location graph. Each node in

the graph represents an area of the environment (an office building) with a similar ap-

pearance over different poses. During an initial mapping phase, a robot moves through

this environment (controlled by a human operator) and captures a grayscale perspec-

tive image approximately every two metres. The similarity between successive images

is computed. In order to assess image similarity, Košeckáet al. [2003] first extract

the edges from each grayscale input image. They use edge images because they are

relatively invariant to illumination changes in the environment. Košecká et al. [2003]

next compute edge orientation and produce an edge orientation histogram. The sim-

ilarity between two images is then measured by the similarity between their gradient

orientation histograms. Košecká et al. [2003] use theχ2 measure to rate the divergence

between the histogram distributions. They find thatχ2 allows for robust discrimination

between images in a real-world dynamic indoor office environment. Images collected

during the mapping phase are automatically clustered usingtheχ2 similarity measure.

These clusters define the nodes of the location graph. Several images may be present

in each cluster. Once the topological map is finalised, placerecognition is achieved

by using theχ2 formula to measure the distance between a new image taken in an

unknown pose and the set of reference images. Košecká and Li [2004] compare edge
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orientation histograms and SIFT features for the purposes of place recognition; they

found that the latter provided better recognition performance, being more robust in the

face of viewpoint change.

A very recent topological mapping system is presented in Booij et al. [2007]. Un-

like the work of Košecká et al. [2003], Booij et al. [2007] associate a single image

taken from a particular pose in the environment with each node in the topological map.

The “length” of an arc connecting two nodes indicates how similar their associated

images are. The authors note that short links indicate that the locations the nodes rep-

resent are likely to be geometrically close. As in Košeckáand Li [2004], Booij et al.

[2007] extract SIFT features to measure the similarity between two images. Booij et al.

[2007] rate the similarity between two images using the number of corresponding SIFT

features between the two images.

Booij et al. [2007] make an interesting statement comparingthe relative merits of

vision-based geometric SLAM and topological mapping: “Thedifficulty of [geometric

SLAM] solutions is that the 3D positions of the landmarks areused while the camera

only provides bearing information. Also the number of landmarks grows when the

environment becomes larger, making it impossible to maintain a consistent state and

covariance estimate.” (p. 2) The work of Davison [2003] (mentioned above) suggests

that the first statement is untrue; this author showed that EKF-SLAM with a monoc-

ular camera providing only landmark bearing information can work well. The second

statement indicates a real advantage of topological over metric mapping.

2.3 Visual Homing

As we discussed in Chapter 1, all visual homing algorithms are somewhat similar.

Each requires a homing agent to capture an imageIS at goal positionS. When seeking

to return toS from a nearby positionC, the agent captures imageIC and uses the

discrepancy betweenIS and IC to infer the homing vector~H. IC and IS are usually

two-dimensional panoramic intensity images, though as we shall see in the following

discussion this is not always the case. We shall assume that amonocular vision system

is used. The orientation of the agent atS is typically different than its orientation at

C. Most homing schemes (though not all; see e.g. Section 2.3.4.1) require thatIC is

rotated to account for this orientation difference. Orientation correction is sometimes

done with the aid of an external compass reference.

Since no metric landmark information is used, the homing vector ~H is often inac-
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curate. The agent thus moves by some distance (either fixed orcalculated based on

current sensor information) in the direction of~H and repeats the process described

above. The algorithm terminates when the discrepancy between IS and IC (or some

value related to this discrepancy) falls below a certain threshold (again either fixed or

calculated while homing).

Broadly, the discrepancy betweenIS andIC can be calculated in one of two ways.

Some methods extract salient features (which we also call landmarks in this work) from

IC. These features must be identified inIS (i.e. the correspondence problem must be

solved). As the navigating agent has a monocular vision system, the change in feature

bearing and/or apparent size is used to infer the homing vector. Landmark range is

difficult to estimate with monocular vision and not often used. We shall not consider

homing with stereo vision (e.g. Sturzl and Mallot [2002]). Since consistent feature

correspondence is often difficult and computationally intensive, so-called image-based

or appearance-based visual homing methods have been developed which compare the

entirety ofIC andIS to produce image discrepancy. We are interested in an image-based

method in this work.

2.3.1 Panoramic Imaging

Most of the homing algorithms implemented in simulation or on actual robots capture

panoramic images of their environments. These images are useful because they provide

visual information which is not dependent on the orientation of the agent, as would a

single field-of-view perspective camera. With a few exceptions which we shall discuss

below robotic homers capture panoramic pictures with a CCD (Charge Coupled De-

vice) camera imaging a hemisphere, cone, paraboloid or hyperboloid with a reflective

surface. The merits of various mirror shapes are discussed in Nayar [1997]. The mirror

reflects light from 360 degrees horizontally and 90 degrees or more vertically, forming

a panoramic (though not completely omnidirectional) imageof the environment. A

schematic mirror and camera rig is shown in cross-section inFigure 2.1; the mirror is

hyperboloid in shape.

The image of an actual hyperboloid mirror is shown in Figure 2.2(a). The mirror

rig is situated in a laboratory environment. Figure 2.2(a) contains an image of the

panoramic mirrorand the rig supporting the mirror and camera. Homing researchers

typically mask out the portions of the image which do not correspond to objects in the

environment, as these do not contain useful landmark information. The mirror rig is
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Figure 2.1: Schematic of hyperboloid mirror (in cross-section) imaged by a CCD per-

spective camera.

also masked for this reason. A mask for Figure 2.2(a) is shownin Figure 2.2(b) and

the masked version is given in Figure 2.2(c).

Some homing algorithms (see e.g. Zeil et al. [2003]) simply use the image of the

mirror itself, suitably masked, (i.e. Figure 2.2(c)) when computing image disparity.

Other algorithms (e.g. Franz et al. [1998b]) extract the so-called horizon circle from

the panoramic mirror image; a sample horizon circle is drawnin black in Figure 2.3(a).

The horizon circle is that portion of the mirror which reflects incoming rays of light

perpendicular to the long axis of the mirror rig through the camera’s aperture; such a

ray is depicted in Figure 2.1. If the geometry of the mirror and the distance between

the camera and the mirror are known, the radius of the horizoncircle can be calculated

with precision. A useful property of the horizon circle is that objects imaged in the

horizon circle when the rig is in one position will also be imaged from a different

position so long as both positions are on the same plane and the orientation of the rig’s

long axis stays the same.

Since the mirror rig can change in orientation and height slightly while the agent

moves, workers typically extract an horizon annulus from the image of the mirror; see

Figure 2.3(a). The inner and outer radii of the annulus are coloured in white, enclos-

ing the black horizon circle. The extracted annulus (Figure2.3(b)) is then averaged

column-wise to estimate the intensity signal of the horizoncircle (Figure 2.3(c)).

Rather than use the camera and mirror combination describedabove, some homing

robots are equipped with a single perspective CCD camera andtake multiple images

while the robot rotates 360 degrees in place. The images are stitched together with

special software, forming a rough panoramic image of the environment. Weber et al.

[1998] describe such a system. This method for capturing panoramic images is more

time-consuming – due to the camera rotation and stitching ofmultiple images – than
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(a)

(b)

(c)

Figure 2.2: (a) Image of hyperboloid panoramic mirror situated in a lab-

oratory environment. The image was download from http://www.ti.uni-

bielefeld.de/html/research/avardy/index.html. (b) Mask to remove non-mirror portions

of the image shown in (a). (c) Masked version of the image shown in (a).
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Figure 2.3: (a) Image of hyperboloid panoramic mirror situated in a laboratory environ-

ment. The horizon circle for this mirror and camera combination is drawn in black. The

horizon annulus – inner and outer radii drawn in white – encloses the horizon circle.

(b) Extracted horizon annulus. (c) Horizon circle generated by averaging the horizon

annulus column-wise.
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that described previously in this section.

The Ladybug spherical digital video camera (www.ptgrey.com) offers an alterna-

tive method of capturing panoramic images than those described above. The Ladybug

is composed of six colour CCD image sensors: five equally spaced along a horizon

ring and one pointing vertically upwards. This camera configuration allows the sys-

tem to image 75 percent of the full sphere. The manufacturersof the Ladybug have

provided a software development kit which facilitates image acquisition, camera con-

figuration and image stitching. Bradley et al. [2005] have demonstrated the Ladybug’s

effectiveness in real-time acquisition of panoramic images.

The Ladybug unfortunately suffers from some drawbacks. Themost serious of

these is the high price of the system: currently 11,950 USD. This amount exceeds

our project budget. Also worrying is that the system’s software development kit was

compiled for Windows XP; we intend to use the Linux operatingsystem in our work as

we have much more programming experience with this OS. We areconcerned as well

with the likelihood that one or more of the Ladybug’s six cameras will fail. We would

probably not have the expertise to replace a broken camera sothe system would have to

be sent back to the manufacturer or to our in-house technicians for repair, necessitating

a delay in our research. The mirror-based panoramic imagersdescribed above, on the

other hand, often use a Webcam which, if broken, can be easilyand cheaply replaced.

2.3.2 Feature-Based Homing

In order to operate successfully, feature-based homing algorithms must extract the

same features fromIS and IC (the feature-extraction problem). Each feature fromIS

must then be paired with a feature fromIC (the correspondence problem). The feature-

extraction and correspondence problems are difficult to solve in unadulterated, clut-

tered environments in real-time. Landmark appearance changes with viewpoint.

In the following sections, we describe a number of feature-based homing algo-

rithms. In each case, we discuss not only how the homing vector is generated but also

how the feature extraction and correspondence problems aresolved.

Some published work on homing is focused on parsimonious feature extraction

and correspondence, rather than the calculation of the homevector. We review this

literature in Section 2.3.3. Our main interest in this dissertation is on image-based

homing algorithms which of course do not use correspondencealgorithms. We review

correspondence algorithms because many of them provide metrics to rate the similarity
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between potential feature pairs. These similarity measures could be used by image-

based methods to measure whole-image discrepancy. So too, successful whole-image

similarity measures could be used in feature correspondence algorithms.

2.3.2.1 The Snapshot Model

Cartwright and Collett [1983] present an early solution to the visual homing problem.

The paper is an ethological study of homing behaviour in honeybees and seeks to

answer the following questions: “First, what do bees learn about the spatial layout

of landmarks [around a food source]? Secondly, how might this information help

them reach their destination?” The authors gathered evidence to support the hypothesis

that the bee stores a largely unprocessed panoramic snapshot at the goal position and

compares this stored image to its current view to compute a homing vector. This has

come to be known as the Snapshot Model and has inspired many ofthe feature-based

visual homing techniques described below.

Honeybees are thought to align snapshot and current views insome external direc-

tional reference (e.g. the Earth’s magnetic field), after which features in the snapshot

view and current view are extracted and matched. Feature extraction in Cartwright and

Collett [1983] was simple, as both simulation and experimental setups consisted of

black cylindrical landmarks against a white featureless background. Once extracted,

each landmark in the current view is paired with the landmarkclosest in bearing in the

snapshot image.

Two vectors, one radial and the other tangential, are associated with each feature

pair (see Figure 2.4). The radial vector is parallel to the bearing of the snapshot feature;

the tangential vector is perpendicular to the radial vector. In the original formulation

of the Snapshot Model, radial and tangential vectors were ofunit length, although

workers who adapted this model for robotics relaxed the unit-vector restriction, with

interesting results (see Section 2.3.2.3 below). The direction of the radial vector is

chosen to move the agent so as to reduce the discrepancy in apparent size between

paired features. The direction of the tangential vector is chosen to move the agent

so as to reduce the discrepancy in bearing between paired features. The radial and

tangential vectors for all feature pairs are averaged to produce a homing vector.

According to Cartwright and Collett [1983] the Snapshot Model (when run in a

simulator) mimicked bee behaviour in environments with oneand three landmarks.

The model also performs comparably when landmarks are changed (in size, distance,

and/or orientation) between training and testing and in “complex” environments of
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Figure 2.4: Illustration of Cartwright and Collett’s Snapshot Model (from Lambrinos et al.

[2000]). The three dark circles are landmarks. The agent’s home position is at the +.

The agent’s current position is in the lower-right corner of the image. The agent’s inner-

ring represents the view as captured at the home position; the outer ring represents the

current view. Radial and tangential vectors are attached to each inner-ring sector, as

described in the text.
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eight or nine landmarks. Distant landmarks, though, cause aproblem as they offer little

useful information about apparent size or bearing but increase the chance of mismatch

between snapshot and current image. The authors suggest that bees might filter distant

landmarks, a finding supported by Cheng et al. [1987].

Franz et al. [1998b] demonstrate that the Snapshot Model andrelated algorithms

assume that landmarks are isotropically distributed around the snapshot position. In

other words, “frequency and distance of landmarks are assumed to be independent of

the viewing direction.” (p. 3) If this assumption holds trueand feature correspon-

dences are computed correctly, Franz et al. [1998b] prove that the Snapshot Model is

guaranteed to guide the robot directly home. If the environment is non-isotropic and

correspondences are computed correctly, the Snapshot Model will still guide the robot

home but on a path that spirals into the snapshot location.

The recent work reported in Bekris et al. [2004] has potentially interesting im-

plications on the methodology of ethological visual homingexperiments (though the

authors are primarily interested in robotic homing). They explore homing in a simu-

lated environment with three landmarks:L1, L2 andL3. They assume the landmarks

are consistently extracted from snapshot and current images and that landmark cor-

respondences can always be found. Their homing algorithm calculates the disparity

betweenIS andIC given the change in angular separation betweenL1 andL2; L1 and

L3; andL2 andL3.

To this point, Bekris et al. [2004] is fairly uninteresting:the algorithm therein

is quite similar to the Snapshot Model and the chosen experimental environment is

unrealistic, having so few landmarks. The authors then, though, derive a method to

predict, for a given goal position and landmark configuration, the set of start positions

from which the goal is reachable (i.e. the catchment area). Though the authors do not

discuss this, their catchment predictor could be used by insect ethologists to determine

if their homing algorithm is biologically plausible. It is probable that similar catchment

predictors could be derived for alternate homing schemes aswell.

2.3.2.2 Hong’s Homing Algorithm

Though Hong et al. [1991] makes no reference to the Snapshot Model, Hong’s home-

vector computation method is quite similar to that of Cartwright and Collett. In Hong’s

method, as in the Snapshot Model, tangential vectors are associated with each feature

pair. In the Snapshot Model, though, these tangential vectors are perpendicular to the

bearing of the snapshot feature; in Hong’s method, there aretwo tangential vectors per
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feature pair, one perpendicular to the bearing of the snapshot feature and the other per-

pendicular to the bearing of the current feature. Hong does not employ radial vectors

(as his features are merely points with no angular size).

Hong’s homing method was tested on a mobile robot in an unmodified laboratory

environment. Only a few trials were performed, most of whichwere successful. The

robot maintained a constant orientation during its journeyso no compass information

was required to rotationally align snapshot and current images.

2.3.2.3 The Proportional Vector Model

Introduced in Lambrinos et al. [2000], the Proportional Vector Model (PVM) is a mod-

ification of the Snapshot Model. The unit tangential and radial vectors associated with

each feature pair in the Snapshot Model are replaced by non-unit vectors in the same

directions. The length of the radial vectors are proportional to the difference in appar-

ent size between paired features. The length of the tangential vectors are proportional

to the difference in bearing between paired features. Thesechanges cause the length

of the homing vector to be proportional to the distance of theagent from the goal.

Lambrinos et al. [2000] use the length of the homing vector tocontrol the robot’s

speed. The robot moves relatively quickly when far from the goal and slows near the

goal, reducing the chance of overshoot. The robot can also use the length of the homing

vector (called “disparity” in Lambrinos et al. [2000]) as a stopping condition.

Lambrinos et al. [2000] reports that the PVM was tested with amobile robot in

the salt pan flats of Tunisia. The mobile robot uses a polarised light compass based

on that of desert antCataglyphis. Lambrinos et. al. wanted to test the system in the

ant’s natural environment, hence the exotic locale. Artificial, high-contrast landmarks

(large, black cylinders) were used to define the goal position. Eight homing runs were

performed in this environment, beginning at different distances (2 or 4 meters) and di-

rections from the goal. Each homing run brought the agent to within a few centimetres

of the goal position.

2.3.2.4 The Average Landmark Vector Model

The Average Landmark Vector (ALV) Model was introduced in Lambrinos et al. [2000].

As in the Snapshot Model, features are extracted fromIS. The average of all feature

bearings is calculated and stored as a unit vector. The agentstores this average land-

mark vector ( ~ALVS) rather thanIS. When homing fromC, IC is captured and (~ALVC)
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Figure 2.5: Illustration of Average Landmark Vector computation. See Section 2.3.2.4

for details.

is calculated in the same manner as (~ALVS). If the agent’s orientation is different in

positionsC andS, the algorithm counterrotates~ALVC accordingly (with the aid of a

compass). The agent then moves in the direction~H = ~ALVC− ~ALVS by some fixed

distance. Figure 2.5 depicts the various vectors involved in the computation of~H for a

simple two-dimensional environment with four circular landmarks (black circles).

The ALV Model offers a number of advantages over the SnapshotModel. The

agent stores the vector~ALVS, rather than the entire snapshot imageIS. It is more com-

putationally efficient to rotate the vector~ALVC than the imageIC. More importantly,

there is no need to solve the correspondence problem in the computation of the ALV.

Note, though, that the same features inIS andIC must still be extracted in order for the

best average landmark vector to be produced. The authors do not analyse the effects

on homing success of inconsistent feature extraction.

Lambrinos et al. [2000] alter their experimental environment so that feature ex-

traction is trivial. Lambrinos and co-workers placed four large black cylinders around

the goal location to serve as landmarks; these cylinders were in high contrast to the

bright featureless Saharan desert landscape in which the experiments were carried out.

IC and IS were panoramic intensity images; landmarks were detected with a simple

thresholding operation using a preset intensity cut-off.

The ALV Model was also tested in a cluttered, unadulterated indoor office envi-

ronment (Möller et al. [2001]). Here, feature extraction is necessarily a more complex

process. As before, a panoramic intensity image is capturedat the current location.

The one-dimensional horizon image is extracted as described in Section 2.3.1. Sharp

changes in the horizon image (which correspond to image edges) are used as features.

The resulting ALV algorithm is able to home from some start positions in the office en-

vironment. No comparison is made with other homing algorithms, nor does the paper
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explore environmental change (e.g. lighting change or landmark movement) between

captures ofIS andIC.

Interestingly, Möller [2000] demonstrates that the homing vectors~H produced by

the ALV algorithm are the gradients of a surface which has a global maximum at the

goal location. Thus, homing with the ALV algorithm is akin tooptimisation with a

gradient ascent algorithm. There is thus an unexpected linkbetween ALV, a feature-

based algorithm, and the explicit gradient descent homing algorithm described in Sec-

tion 2.3.4.2.

2.3.2.5 Surfing on the Epipoles

Basri et al. [1999] describe a precise, compassless geometric solution to the visual

homing problem. The authors call it “surfing on the epipoles.” The term “epipole”

comes from epipolar geometry, which relates camera motion parameters in a stereo

view to the coordinates of imaged points in each view; see Figure 2.6 for more infor-

mation. Unlike most robotic homing researchers, Basri et al. [1999] use a perspective

rather than a panoramic camera.

The primary result of epipolar geometry is thatp1 andp2 (which are defined in Fig-

ure 2.6) are related by the equationpT
1 E p2 = 0 whereE – the so-called essential matrix

– is a 3x3 matrix whose elements are related to the translation and rotation undertaken

by the camera. Basri et al. [1999] use an algorithm crafted byLonguet-Higgins [1981]

to solve the essential matrix for a particular rotation and translation; this algorithm

requires eight or more points of correspondence in current and snapshot images and

is particularly easy to implement (Hartley [1997]). Basri et al. [1999] mention other

algorithms for recovering the essential matrix which require fewer correspondences.

The translation vector~T (which is along the line fromCOP2 to e2, hence the name of

the algorithm) is easily determined givenE. The translation vector is actually known

only up to a multiplicative constant. The constant is determined by moving the camera

a known direction and distance and taking a third image. The movement of feature

points in the intervening move is used to solve for the constant. The rotation parame-

ters can be found fromE and~T.

Epipole surfing offers a number of advantages over the feature-based visual homing

algorithms described above. With the capture of just two “current” images, the surfing

algorithm gives (assuming the correspondence problem is solved) the true home vec-

tor. The algorithms above output an estimate to the home vector and require several

iterations to reach home. Surfing does not require a compass to align images to a single
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Figure 2.6: A perspective camera with centre of projection COP1 initially images a point

in space P. The image of P on the image plane is p1 (a two-dimensional image point).

The camera then translates and rotates so the image of P on the image plane is at p2;

the camera’s centre of projection is now at COP2. The points COP1, COP2 and P define

the epipolar plane. Points e1 and e2 are called epipoles. Epipolar geometry provides

the translation and rotation undertaken by the camera causing the image of P to move

from p1 to p2. See text for details.

reference direction.

Svoboda and Pajdla [2002] characterise the epipolar geometry for catadioptric

cameras. Svoboda et al. [1998] show how to exploit the epipolar geometry of cata-

dioptric cameras to solve the homing problem. Their method requires at least 8 corre-

sponding points between snapshot and current images to determine the essential ma-

trix. Svoboda and Pajdla [2002] then show how to compute translational and rotational

elements of the pose change from current to snapshot poses given the essential matrix.

2.3.3 Feature Extraction and Correspondence Algorithms

Some papers are primarily concerned with solving the feature extraction and/or cor-

respondence problem, using the resulting landmark pairs with the Snapshot Model or

some other tried-and-true feature-based visual homing algorithm. We review these

efforts below.

2.3.3.1 Weber et. al.

Weber et al. [1998] are interested in solutions to the correspondence problem in en-

vironments like the one depicted in Figure 2.4 (i.e. black cylindrical landmarks in an

otherwise featureless environment). Landmarks are visually indistinguishable so no

attempt at object recognition is possible. Weber et al. store the bearings of landmark

centres as viewed at the snapshot location. It is not clear whether the authors use an
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external compass to correct for orientation difference betweenIS andIC but we assume

that they do.

Weber et al. [1998] describes attempts to calculate a one-to-one matching between

snapshot and current features. The authors assume that the number of features in snap-

shot and current views is equal (by no means a valid assumption in all situations). They

test seven different correspondence algorithmsh1 - h7 in simulation.

• h1 is an exhaustive search for landmark correspondence; thatis, all possible sets

of pairings are considered and the pairing set with the smallest squared error

in bearing difference is chosen. As there aren! sets of pairings (where n is

the number of landmarks in snapshot or current view),h1 requiresO(n!) time.

Realising thath1 is infeasible for large numbers of landmarks, the authors test

non-exhaustive solutionsh2-h7.

• h2 matches each snapshot feature with the closest (in bearing) unpaired current

feature; this greedy algorithm requiresO(n2) steps.

• h3 assumes that landmark order is invariant in snapshot and current views; that

is, if snapshot featurei is matched with current featurej, then snapshot feature

i + 1 must be matched with current featurej + 1. This assumption reduces the

number of possible sets of pairings ton2 so the algorithm isO(n2).

• h4 initially corresponds theith feature in the snapshot with theith feature in the

current view. Adjacent pairings can be swapped bubble-sortstyle if this leads to

a decrease in mean-squared error. This method too isO(n2).

• Algorithm h5 is a hybrid ofh2 andh4. The output produced byh2 is if possible

improved byh4. Ash2 andh4 areO(n2), h5 is O(n2) as well.

• In methodh6, each landmark in the snapshot maintains a list of landmarks in

the current view with which it would prefer to be paired, and vice-versa. (The

method used to establish these preferences is not described.) A landmark in the

snapshot view is paired with the landmark closest in bearingin the current view

which it prefers and which prefers it.

• Methodh7 operates likeh2 except that a many-to-one pairing between snapshot

and current features is allowed. That is, one feature in the current view may be

paired with many features in the snapshot view. This landmark correspondence

method is identical to that used in Cartwright and Collett [1983].
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Algorithmsh1 - h7 are first compared in a simulated world in which all landmarks

are always visible, regardless of viewing distance. They find that homing failure (de-

fined as the inability of the agent to reach within a certain distance from home) is

lowest when usingh1 or h3; homing using the other correspondence methods yields

higher failure rates. The relative success ofh3 remains steady with increasing numbers

of landmarks. Home vectors are computed using a variant of the Snapshot Model.

The authors next consider a slightly more realistic simulation, in which the simu-

lated agent has a “perceptual horizon” beyond which it cannot sense landmarks. In this

type of environment, there is no clear winner among methodsh1 - h7 and no useful

conclusions are drawn.

Usefully, the authors demonstrate that their algorithms have an inherent tendency

to avoid collisions with landmarks.

The take-home message of the work of Weber et al. [1998] is that solving the

correspondence problem for a non-trivial number of landmarks is a computationally

expensive task.

2.3.3.2 Gourichon et. al.

Unlike previous approaches, Gourichon et al. [2002] define locations with one-dimensional

colouredpanoramic snapshots. Colours are defined in the HSV (Hue, Saturation and

Value) system.1 The HSV colour space is useful in landmark identification in that

object hues are somewhat independent of current lighting conditions.

Images are segmented into regions of approximately equal colour (landmarks). Po-

tential region pairs are scored on their difference in average hue, average saturation,

average luminosity and azimuth centre. A dynamic programming algorithm2 is em-

ployed to find the set of matched features which maximises thesum of individual match

scores. Each snapshot region can be paired with only one region in the current view. It

is not clear whether every snapshot region must be paired.

Like algorithmsh2 - h6 above, the dynamic programming solution isO(n2) in

time (where n is the number of landmarks in the snapshot view). Like h1, the dy-

namic programming approach is global in that every region inthe snapshot view is

1HSV is a colour space in which a particular colour is represented by three measures: Hue, Saturation
and Value. Hue is the dominant wavelength of the light perceived. Saturation is the ratio of the dominant
hue to all other perceived wavelengths; if this ratio is close to zero then grey is perceived. Value, also
known as luminance, is light energy emitted per unit time persolid angle in a given direction.

2Dynamic programming is a recursive technique in which the solutions to subproblems are computed
and saved. These subproblem solutions are combined to solvelarger problems. The Fibonacci sequence
for example can be efficiently computed recursively in this manner.
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compared with every region in the current view; local approaches compare a restricted

set of regions (e.g. those that have similar bearings) and are thus more susceptible to

mismatches. The authors claim that the dynamic programmingapproach yields larger

catchment areas than any of the algorithmsh2 - h6, though they don’t provide data

to support this. The dynamic programming approach assumes that landmark order is

invariant between current and snapshot views; this assumption will be true only near

the goal position.

The authors show that their correspondence algorithm is fooled in an office envi-

ronment by different objects with similar hues. Despite thefact that the authors use the

HSV colour space, they do not test their algorithm in conditions of dynamic illumina-

tion.

2.3.3.3 Bianco et. al.

Lehrer and Bianco [2000] describe a novel addition to feature matching research which

employs active vision near the goal. The approach mimics beebehaviour in looking

at landmarks near the goal from a range of positions around the goal before departure.

The algorithm rates landmarks on their visual reliability,averaged over these different

views. Only highly reliable landmarks are memorised and used later in the homing

process. Catchment areas are shown to increase when using this scheme to home in

an office environment. Lehrer and Bianco [2000] employ colour, two-dimensional

images.

The approach does not fully mimic bee behaviour, however. Actual bees (and

wasps) learn about landmarks as they approach a goal as well as when they leave it. So

too, bees learn about landmarks over the course of multiple arrivals at and departures

from the goal position (Zeil et al. [1996]). Nonetheless, weconsider this an interesting

and useful addition to the literature. We note though that the algorithm of Lehrer and

Bianco [2000] requires copious extra effort on the part of the homing robot in order to

identify visually reliable landmarks.

2.3.3.4 Gaussier et. al.

Gaussier et al. [2000] outline a feature extraction technique in which “the visual system

focuses on corners and/or end of lines” in an almost completepanoramic image. The

surrounding area of these distinctive points is also captured: “[f]or each selected focus

point, a 32 x 32 pixels [sic] local view is built by averaging the 148 x 288 pixels of
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the corresponding panoramic image part.” The averaging process is not described in

detail.

Once feature points and their neighbourhoods have been extracted from current and

snapshot views, the correspondence problem is solved as follows: a root mean square

pixel-by-pixel difference is computed between each local view in the current image and

every local view extracted from the snapshot image. “The best corresponding views”

are used in the computation of home vectors. The authors do not define “best” but one

can imagine a thresholding process is employed.

2.3.3.5 Rizzi et. al.

Rizzi et al. [2001] describe a solution to the feature extraction and correspondence

problem using a Fourier transform to compute frequency information for each feature;

“Visual Reference” (VR) is used instead of “feature” or “landmark,” but the terms are

synonymous.

VRs are extracted from an image using a computationally intensive region growing

technique. Marshall [1997] explains that region growing starts by choosing a seed

pixel, compares it to neighbouring pixels, adds these neighbours to the region if they

are similar (by some measure) to the seed and repeats the process on these similar

neighbours. The region stops growing when no more pixels adjacent to the region are

similar enough to the seed pixel to be added to the region; at this point, a seed for

a new region is chosen and the region is grown as described above. The algorithm

continues to choose seeds until all pixels belong to some region. Unfortunately, Rizzi

et al. [2001] fails to define a similarity measure; nor does the paper describe how seed

pixels are chosen.

Not all regions are considered viable VRs; only those VRs with desirable “area,

perimeter regularity and chromatic saturation” are selected. The paper is vague on how

perimeter regularity is measured and on what values of area,regularity and saturation

indicate usable VRs. They do not reveal if their VR selectiontechnique is tailored to

their experimental environment.

The feature matching process is as follows: A Fourier-Mellon transform is com-

puted for each VR in an image. The transform gives translation- and scale-invariant

information about a particular VR. VRs in current and snapshot views are matched by

comparing their Fourier-Mellon transforms.

As we noted above, solutions to the correspondence problem which measure the

similarity of extracted features can be applied to the whole-image comparison required
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by image-based homing. We shall see for example in Section 2.3.4.1 that the Fourier

Transform for image comparison introduced by Rizzi et al. [2001] is used to hasten an

image-based homing technique.

2.3.3.6 SIFT Features

Pons et al. [2007] use the scale-invariant feature transform (SIFT) algorithm to extract

features from snapshot and current images for the purposes of feature-based hom-

ing. SIFT features were introduced by Lowe [2004]. SIFT features are demonstrably

invariant to translation, scaling and rotation in images. They are also highly distin-

guishable from one another and somewhat invariant to illumination changes. These

properties make them suitable for the purposes of homing, where a particular image

feature changes appearance due to change in imager pose between current and snap-

shot locations.

The first step in the SIFT algorithm is to find candidate feature locations – key-

points – in an input image. Keypoints are defined as scale-space local maxima and

minima. To find keypoints, the input image is convolved with Gaussian functions with

a range of scales (i.e. standard deviations). The scale relates to the level of blurring

of the image. The difference between the Gaussian-blurred images for each pair of

successive scales is computed. Keypoints are then identified at the local optima of

neighbouring difference images. Each keypoint is associated with a particular image

location and scale. Next, the local intensity gradient orientation at each keypoint lo-

cation is computed. The intensity gradient orientation of neighboring pixels around a

keypoint are computed (relative to the keypoint’s orientation) as well. Knowlege of

keypoint orientation provides rotational invariance to the associated feature. These lo-

cal intensity gradient orientations make up a scale-, location- and rotationally-invariant

set of 128 features for each keypoint.

To find feature correspondences between snapshot and current images, Pons et al.

[2007] use the matching scheme outlined in Lowe [2004]. Lowe[2004] argues that

a naive approach would be to find the snapshot feature which isclosest in Euclidean

distance (in feature space) to the candidate feature in the current image. The current

candidate feature, though, may have no legitimate match in the set of snapshot features.

Lowe [2004] found that using a simple distance threshold does not effectively weed out

these false matches. Instead, Lowe [2004] suggests computing the ratio of the closest

distance to the second closest distance. A relatively smallratio value indicates that the

matched snapshot feature is highly distinct.
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Pons et al. [2007] use the homing algorithm described in Vardy and Möller [2005]

for their experiments. This homing schemes assumes that snapshot and current images

were captured in the same orientation. This assumption doesnot generally hold in the

experiments of Pons et al. [2007]. To align the orientation of the current image with

that of the snapshot image, Pons et al. [2007] use a type of visual compass. We describe

the notion of the visual compass in detail in Section 2.3.5. Pons et al. [2007] demon-

strate that their method is successful in both indoor and outdoor static and dynamic

environments. We note that to account for changes in illumination and object position

at the snapshot location, Pons et al. [2007] collected several images at the snapshot

location at different times throughout the day and extracted SIFT features from each

representative image. The aggregate set of SIFT features isused for homing.

SIFT features have also been used in vision-based simultaneous localisation and

mapping systems (e.g. Se et al. [2001]).

Several authors have made attempts to speed-up SIFT featurecomputation and

correspondence. Bay et al. [2006] suggest speeded-up robust features (SURF) as an

alternative to SIFT features. As the name suggests, these authors claim that computa-

tion and comparison of SURFs is faster than that of SIFT features. The SURF algo-

rithm achieves quicker computation by using clever appoximations in some of the SIFT

steps. Ledwich and Williams [2004] remove the rotational information from the SIFT

feature vector noting that this information is not needed for camera-equipped robots

constrained to move on a plane. Ke and Sukthankar [2004] reduced the dimensional-

ity of the SIFT feature vector by applying PCA to the intensity gradient information

around each keypoint.

2.3.4 Image-Based Homing

Since efficient and consistent feature extraction and correspondence is difficult in clut-

tered, unadulterated environments, researchers have developed homing methods which

calculate homing vectors with whole images, rather than landmark sets extracted from

images. These methods are described below. We note that image-based methods are

sometimes known as appearance-based in the literature.

2.3.4.1 Image Warping

Image warping (Franz et al. [1998b]) is aptly named, as will soon become clear. For

each calculation of~H, the set of all pose (position and orientation) changes betweenS



Chapter 2. Literature Review 51

andC are considered. Given a candidate pose change,IS is transformed to the image

that the agent would capture at the location defined by the pose change assuming that

all imaged landmarks are an equal distance fromS. Each warpedIS is compared with

IC with a pixel-by-pixel root-mean-square measure. The pose change associated with

the warpedIS most similar toIC is used to determine the current home vector. If after

following the home vector for a pre-determined distance theagent is not home, the

process is repeated. Since image warping is a computationally costly process repeated

many times for each home vector computation, Franz et al. operate on horizon images;

this implies that image warping is only suitable when the homing agent is travelling

on a plane (i.e. indoors). Note that because the algorithm searches over orientation

changes betweenSandC as well as position changes, image warping does not require

an external compass reference to alignIS andIC.

Some visual homing researchers (e.g. Möller [2002] and Vardy and Oppacher

[2004]) consider image warping to be the most reliable visual homing method for

indoor use. In comparative tests, image warping often produces more reliable homing

directions and larger catchment areas than any other visualhoming method reviewed

here.

Image warping’s most obvious drawback is its brute force nature. That is, the al-

gorithm arrives at an optimal solution by checking every possible pose change rather

than using a more efficient process like gradient descent. Unfortunately, the param-

eter space searched during image warping has many local minima on which gradient

descent could halt prematurely (Franz et al. [1998b]).

Image warping is also biologically implausible (Möller [2002]). It is unlikely that a

small-brained insect could carry out the large number of sequential operations required

by the algorithm in real-time. A more easily parallelizablealgorithm is more plausible.

Some advances in image warping have recently been published. Sturzl and Mallot

[2006] – like some systems in image-based localisation reviewed earlier – compress

current and snapshot images using the discrete Fourier transform. They then show

how to perform image warping as described above with these reduced images. Möller

[2008] shows how to perform image warping on two-dimensional (rather than horizon

line) images relatively efficiently.

2.3.4.2 Homing by Optimising on the Difference Surface

As we outlined in Chapter 1, Zeil et al. [2003] found that the difference between two

panoramic intensity images increases monotonically with the physical distance be-
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tween their capture positions. We described in the following paragraphs how this phe-

nomenon can be exploited for visual homing.

Zeil et al. [2003] describe an algorithm which they call “Run-Down” to move the

homing agent so as to optimise the difference surface. The agent moves forward,

periodically sampling the difference surface. This forward movement continues while

difference surface samples consistently decrease (implying that the agent is nearing

the snapshot location). When the current sample is greater than the previous, the agent

turns ninety degrees counter-clockwise. Upon completing the turn, the agent again

moves forward and samples the difference surface periodically. The agent turns again

when another increase in samples is detected. The agent continues in this manner until

the current difference surface value falls below a preset threshold, at which time the

agent stops, believing itself to be home. This algorithm causes the agent to “spiral in”

to the snapshot location on a sometimes quite tortuous path.

Another way to optimise on the difference surface is to compute the gradient (the

direction of greatest increase) of the surface atC and move in the opposite direction

(the direction of greatest decrease) for a certain distance. If the robot is not then at

S, the gradient at the new location is computed. Zeil et al. [2003] call this homing

method “Triangular.” To compute the gradient atC, an imageIC is captured as usual at

C; imagesID andIE are captured at two nearby orthogonal locationsD andE. The gra-

dient is approximated by the vector(RMS(IS,ID)−RMS(IS,IC)
dist(D,C) , RMS(IS,IE)−RMS(IS,IC)

dist(E,C) ) where

dist(D,C) is the Euclidean distance betweenC andD (measured by dead reckoning);

dist(E,C) is the distance betweenC andE.

Möller and Vardy [2006] present a significant improvement to gradient-based opti-

misation on the difference surface. The authors note that inestimating the gradient of

the difference surface, Zeil’s “Triangular” algorithm directs the homing agent to cap-

ture images at three proximate locations:C and two other positions nearby. They argue

that IC can be warped to approximate the images that would have been captured at the

two locations nearC. The assumption of equal landmark distance first made in Franz

et al. [1998b] is employed to warpIC. A similar algorithm was reported in Binding and

Labrosse [2006].

Möller and Vardy [2006] demonstrate empirically that the gradients generated from

warped imagesIC are often at least as accurate as gradients computed with “Triangu-

lar.” The authors note, though, that the distance betweenC and the two nearby points at

which images are captured for gradient computation with “Triangular” is probably too

great in their experiments. Smaller step sizes, they argue,would have produced better
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gradients. The gradients from warped images simulate imagesampling at locations an

infinitesimal distance fromC.

Möller et al. [2007] report an improvement on the homing algorithm presented in

Möller and Vardy [2006]. They note that in environments with anisotropic landmark

distributions, the difference surface is distorted, losing the radial symmetry that it has

in environments with isotropic landmark distributions. M¨oller et al. [2007] show that

the gradient of these distorted difference surfaces often fails to point directly to the

snapshot location. This divergence between the true home direction and the gradient

direction causes a homing robot to take a curved path to the snapshot location. The

authors address this problem by using Newton’s method to move the robot so as to

optimise the difference surface. The use of Newton’s methodrequires knowledge of

the Hessian matrix of the difference surface. The Hessian ata point on a function is the

square matrix containing all of the second-order partial derivatives of the function at

that point. Since the difference surface is – at least in Möller et al. [2007] – a function

of two independent variables (i.e. the robot’s position on aplane), the Hessian in this

case contains four elements: the second-order partial spatial derivatives of the differ-

ence surface. The version of Newton’s method derived by Möller et al. [2007] requires

only the Hessian of the difference surface at the goal location. The Hessian elements

thus are only computed once, immediately after the robot captures the snapshot image.

Möller et al. [2007] showed in tests in several real-world indoor anisotropic environ-

ments that the home vectors produced by Newton’s method are more accurate than

those produced with the method described in Möller and Vardy [2006]. In isotropic

environments, the two methods produced similar home vectors.

In very recently published work, Sturzl and Zeil [2007] demonstrated that the shape

of the difference surface (called an image difference function in Sturzl and Zeil [2007])

is dependent on the structure of the imaged environment. In particular, the difference

surface becomes wider as the mean distance between the imager and imaged objects

increases. The catchment area of a difference surface-based homing algorithm pre-

sumably increases as well, though Sturzl and Zeil [2007] carried out no homing runs

to confirm this. Sturzl and Zeil [2007] also investigated image preprocessing steps

to make difference surfaces robust to illumination changes. They report that (p. 519)

“image processing operations – like subtracting the local mean, difference-of-Gaussian

filtering and local contrast normalization – make difference functions robust against

changes in illumination and the spurious effects of shadows.” We stress that the work

presented in Sturzl and Zeil [2007] was published after we completed the work de-
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scribed in this dissertation and did not have a bearing on ourresearch.

Baccou and Jouvencel [2002] report a homing algorithm whichuses non-visual

input. We discuss the algorithm here because the problem solved is in essence quite

similar to that described in Zeil et al. [2003].

The problem is this: an autonomous underwater vehicle (AUV)is to navigate to a

single radio beacon. The AUV infers its distance from the beacon given the time-of-

flight of the signal emitted by the beacon. In Zeil’s homing algorithm, the disparity

betweenIS andIC is a function of the Euclidean distance betweenSandC; here, the

time-of-flight of the radio signal is a function of the distance between the AUV and

the beacon. While Baccou and Jouvencel [2002] have a function relating AUV-beacon

distance and time-of-flight, there is no knowledge of such a function in Zeil’s scheme.

The authors use an extended Kalman filter to estimate the vehicle’s location with

respect to the beacon. See Section 2.2.1 for more information on the use of the EKF

for localisation. The filter requires a good initial estimate of the vehicle’s position in a

coordinate system with the beacon at the origin. The authorsgenerate this estimate by

driving the vehicle in a circle around its starting point, capturing a number of beacon-

range measurements along the way. A non-linear least squares optimisation algorithm

is used to find the initial vehicle position which is most consistent with the series of

range estimates.

This initial estimate is fed to the extended Kalman filter which, if all goes well,

will improve the estimation of the moving vehicle’s position given odometric readings

paired with ongoing beacon-range measurements. The authors found that the error in

the position estimate decreases most rapidly when the vehicle is made to travel in a

circle centred at the beacon. This movement scheme is obviously at odds with the goal

of navigating to the beacon.

The authors do not consider the optimisation methods described in earlier in this

section.

2.3.4.3 Visual Homing with Optic Flow Techniques

Vardy and Möller [2005] apply optic flow techniques to solvethe homing problem.

Optic flow is the perceived movement of objects caused by viewer rotation and/or

translation. In the context of visual homing, moving fromS to C causes a particu-

lar imaged pointIS(x,y) to move toIC(x′,y′) (assuming no inter-object occlusion has

occurred). The optic flow displacement vector associated with this imaged point is

(x′−x,y′−y).
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Using straightforward trigonometry, Vardy and Möller [2005] demonstrated that

the home vector can be calculated given the optic flow displacement vector associated

with one imaged point. The solution requires that the image is two-dimensional; both

the vertical and horizontal components of the displacementvector are required in the

calculation. In addition, the robot is constrained to travel in a single plane. If the hom-

ing robot is in a different orientation when capturingIS than when capturingIC, the

latter image must be rotated to account for this difference before optic flow calcula-

tions can be carried out. Since individual displacement vectors are typically noisy, the

authors generate displacement vectors across the entiretyof IS and average the result-

ing home vectors. Vardy and Möller [2005] demonstrated that if correspondence errors

are uncorrelated then the home vectors which result from these faulty correspondences

will tend to cancel each other out when summed together. Thus, only home vectors re-

sulting from correct correspondences will tend to affect the final, average home vector.

But how are the displacement vectors computed? Vardy and Möller [2005] adapted

several methods from the optic flow literature, testing eachin turn. The BlockMatch

methods segmentsIS into a number of subimages. The best match for each subimage is

found inIC using a brute-force search in the region surrounding the subimage. Another

displacement vector computation method – FirstOrder – estimated the displacement

from the intensity gradient at each pixel inIC. This has the obvious advantage over

BlockMatch that no search is required to compute the displacement vector.

In tests in a few indoor environments, Vardy and Möller [2005] showed that their

optic flow techniques often surpassed image warping in homing success. They used

two criteria for comparison: average angular error and return ratio. Angular error is

the difference – at a particular locationC and for a particular snapshot locationS –

between the computed home vector and actual home vector. This measure is averaged

over a large number of pairings ofSandC. The return ratio for a particular snapshot

locationS is the percentage of successful homing runs toS from a grid of surrounding

starting locations. Their test were carried out in visuallystatic and dynamic indoor

environments. Lighting or landmark locations changed between captures of snapshot

and current images in their dynamic environments. Their optic flow algorithms showed

resilience to this dynamism.
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2.3.5 The Visual Compass

As we detailed above, the robot may be in a different orientation at S than atC. In

order to meaningfully compareIS and IC, IC must be rotated to account for this ori-

entation difference. Most of the homing methods described above require an external

compass reference to determine the orientation difference. The obvious choice of com-

pass is magnetic. Unfortunately, magnetic compasses are notoriously noisy in indoor

environments as the geomagnetic signal is distorted by electrical equipment. Both Zeil

et al. [2003] and Labrosse [2004] propose the so-called visual compass as an alterna-

tive. These authors found that asIC is rotated over 360 degrees (either by physically

rotating the imager or by shifting the pixels ofIC to simulate such a rotation) the RMS

difference betweenIS and the rotatedIC often attains the global minimum at or near the

orientation at whichIS was captured. This is more likely to be true the nearerC is toS.

At locationsC relatively far fromS, the desired orientation is at or near a local RMS

minimum. For these reasons, the visual compass – according to Binding and Labrosse

[2006] – must initially be seeded with the agent’s current orientation in the compass

reference frame used when capturingIS. The visual compass can then be used to up-

date the agent’s orientation as it navigates. The initial agent orientation is provided by

a human operator, a significant drawback for autonomous robotics.

2.4 Tasks Related to Visual Homing

2.4.1 Visual Servoing

Hutchinson et al. [1996] define visual servoing as follows: “the task in visual servoing

is to use visual information to control the pose of the robot’s end-effector relative to a

target object or a set of target features. The task can also bedefined for mobile robots,

where it becomes the control of the vehicle’s pose with respect to some landmarks.”

(p. 651) Hutchinson et al. [1996] and Chaumette and Hutchinson [2006] distinguish

between two types of visual servoing: position-based and image-based. The former

attempts to explicitly estimate the pose change between current and target poses using

image features and some knowledge of the three-dimensionalstructure of the envi-

ronment. In image-based visual servoing, the control commands are deduced directly

from image features. Visual homing as we defined it above, then, can be seen as a type

of image-based visual servoing. Usher et al. [2002] for example generate an alternative

to the ALV homing algorithm described in Section 2.3.2.4 using both feature bearing
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and range and call it a servoing algorithm. It should benefit our understanding of the

current state-of-the-art in visual homing to review some major results in image-based

visual servoing.

Chaumette and Hutchinson [2006] note that most visual servoing schemes essen-

tially attempt to move a camera so as to minimise a time-dependent error function of

the forme(t) = s(t)−s∗. In image-based visual servoing,s(t) is a set of image feature

parameters (e.g. the pixel locations of corner points) in a camera’s current view and

s∗ is the set of parameters for the same features in the target view. Hutchinson et al.

[1996] notes thats∗ can be acquired via a “teach by showing approach in which the

robot is moved to the goal position and the corresponding image is used to compute

a vector of desired image feature parameters” (p. 661). Thisis the approach adopted

in visual homing algorithms. The computation ofe(t) typically requires a solution to

the correspondence problem (the servoing solution of Usheret al. [2002] is a notable

exception). We shall return to feature correspondence in visual servoing a bit later.

How can a robot be instructed to move so as to minimisee(t)? Chaumette and

Hutchinson [2006] argue that most image-based visual servoing schemes adopt the

same general approach in the design of a controller. This controller sets the veloc-

ity (translational and rotational) of a camera-equipped servoing robot. The controller

exploits the fact that the derivative ofe(t) with respect to time is a function of the

product of the robot velocity and the so-called interactionmatrix (also known as the

feature Jacobian in the literature). One can solve this equation for velocity to obtain

an expression for the desired velocity of the robot as the product of the inverse of the

interaction matrix and the derivative of thee(t).

Unfortunately in practice one cannot generally know the exact values in the in-

teraction matrix or by extension its inverse (Chaumette andHutchinson [2006]). The

form of the interaction matrix in general depends on the feature parameters chosen and

the distance of imaged objects from the camera (Chaumette and Hutchinson [2007]).

For point-like features and perspective camera images, theinteraction matrix depends

in part on the distance of imaged objects from the camera. This range cannot be de-

termined if a single image from a single camera is used. Thus an approximation to the

interaction matrix is often employed. Espiau et al. [1992] for example use the inter-

action matrix valid at the goal location throughout servoing, treating it as a constant.

This approximation only requires the range of feature points in the goal orientation

which can be determined in a pre-processing step. Chaumette[2004] devised the form

of the interaction matrix for feature parameters consisting of the moments of planar
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objects. Again, the depth of image features must be approximated for the moments-

based matrix. Barreto et al. [2002] derived the interactionmatrix for catadioptric imag-

ing systems. Generally, the search for useful feature parameters and their associated

interaction matrices is a major topic in the visual servoingliterature (Chaumette and

Hutchinson [2006]).

We mentioned above that computation ofe(t) typically requires a solution to the

feature correspondence problem. Marchand and Chaumette [2004] note that “[most]

of papers [sic] related to visual servoing consider very basic image processing algo-

rithms.” (p. 2) The initial correspondence between features is actually sometimes com-

puted manually (see e.g. Hutchinson et al. [1996] and Cretual and Chaumette [2001]).

Marchand and Chaumette [2004] report correspondence estimation by an estimation of

the fundamental matrix. Once an initial correspondence is made, many visual servoing

solutions track features as they move in images. Feature movement is of course due to

parallax induced by the movement of the servoing camera. Marchand and Chaumette

[2004] review feature tracking algorithms used in visual servoing. They report for ex-

ample that simple edge features are tracked by searching in the image in the direction

of the edge normal. Marchand and Chaumette [2004] also relate the use of image regis-

tration algorithms to find the affine transformation of imageblocks. Papanikolopoulos

and Smith [1995] describe the use of block-matching using a sum-of-squares similarity

measure to track regions in successive images.

Deguchi and Noguchi [1996] present an appearance-based rather than feature-

based approach to image-based visual servoing. They reducethe dimensionality of

each captured image (including the image taken at the goal position) using principal

components analysis (PCA), a technique we saw used in the context of image-based lo-

calisation. The camera images used to create the eigenvectors used in PCA reduction

are collected in a preprocessing step before servoing occurs. Deguchi and Noguchi

[1996] then show how visual servoing is equivalent to tracing a path along the appear-

ance manifold made up by reduced images. They demonstrate that the parameters of

the tangent plane to the appearance manifold at any given point on the manifold can

be seen as an interaction matrix. Deguchi and Noguchi [1996]finally show how the

change from the current pose to the goal pose can be estimatedusing the current in-

teraction matrix and the difference between dimensionality-reduced current and goal

images. This technique is quite similar to that of Yang et al.[2007] described earlier.
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2.4.2 Docking

Robotic docking involves controlling a robot so that it achieves a desired pose with

respect to a docking station. The docking station will be assumed to be static in this

review. Autonomous fork-lifts and robotic geologists cometo mind when robot dock-

ing is mentioned. Also, a robot arm must dock with an object before grasping it. A

docking algorithm is typically employed once the dock is within the perceptual range

of the robot’s sensors; docking is therefore considered a relatively short-range navi-

gation skill. Docking solutions should ideally provide highly accurate positioning of

the robot relative to the dock. As we shall see below, robots equipped with visual

sensors can solve the docking problem by visual homing and other visual servoing ap-

proaches. Docking in fact provides a useful application forvisual homing in indoor

environments. Santos-Victor and Sandini [1997] distinguish between ego-docking –

where the camera is mounted on the robot – and eco-docking – where the camera is

mounted on the docking station. We shall here considered ego-docking solutions only,

as these are most similar to visual homing.

Wei et al. [2005] present a docking algorithm based on the average landmark vector

model, a feature-based visual homing algorithm described in Section 2.3.2.4. Wei

et al. [2005] augment the basic ALV algorithm to allow more precise control over the

trajectory of the robot as it approaches the dock. Briefly, this control is exerted by

weighting each image feature differently and using these weights in the computation

of homing vectors. The solution achieves positioning accuracy on the order of 1cm in

real-world tests with artificial landmarks. Though poorly written and frankly difficult

to understand, Jantapremjit and Wilson [2007] seem to describe a similar solution for

docking autonomous underwater vehicles.

McCarthy and Barnes [2006] describe a method to allow a robotto dock with a

planar surface perpendicular to the ground plane to which the robot is constrained

(i.e. a wall). The authors are primarily concerned with controlling a robot to stop as

close to a wall as possible without actually touching it. In this sense, the robot is not

concerned with docking with a particular point on the wall, but merely approaching

it safely. McCarthy and Barnes [2006] use the optical flow resulting from moving

towards the wall to measure the time-to-contact. The authors demonstrate that the

divergence of the flow field can be used to compute the time-of-contact to an object

along the optical axis of the camera. This computation restson the assumption that

the wall is perpendicular to the camera’s optical axis. As this is rarely the case in
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practice, McCarthy and Barnes [2006] devise a way to estimate time-of-contact from

flow field divergence when this assumption is not met. The docking wall is assumed

to be sufficiently textured to provide strong optical flow patterns as the robot moves

toward the wall. This assumption may prove to be the Achillesheel of the method, as

walls frequently lack such texture. The work of McCarthy andBarnes [2006] is similar

to the earlier work of Santos-Victor and Sandini [1997].

2.4.3 Image Registration

Visual homing is quite similar to the problem of image registration. An image regis-

tration algorithm attempts to find the function which best transforms one image of an

object or scene into a second image of the same scene or object. The two images can

differ due to the poses of the imager, the modalities in whichthe images were captured,

and/or the layout of the scene among other things. Image registration algorithms seek

a function which transforms pixel locations; this functionis often though not always

affine. While image registration algorithms search for the pixel-by-pixel transforma-

tion between two images, visual homing seeks to estimate thetransformation of an

imagerfrom S to C given imagesIS andIC.

Hill et al. [2001] give a comprehensive review of image registration algorithms

used in medical imaging applications. The paper demonstrates that image registration

solutions are quite similar to many visual homing algorithms. Early registration work

tried to find landmarks in the images to be aligned and used thechange in pose of

these landmarks to infer the overall image transformation.These algorithms had to

select appropriate landmarks and match corresponding landmarks in multiple images,

both difficult problems as we discussed earlier in this chapter.

More recent work in image registration has attempted to align entire images, es-

chewing landmark selection and correspondence issues. Similar to appearance-based

homing, these image registration algorithms search for theimage transformation which

maximises the similarity between one image and a second transformed image of the

same scene. A focus of this work has been on the similarity measure used to compare

images. The use of mutual information in image registrationwas first reported by Viola

and Wells [1995] and apparently independently discovered by Maes et al. [1997].

Registration techniques are used in metric robot localisation. We saw examples of

the use of registration for scan- and map-matching in Section 2.2.1.
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2.5 Mapless versus Metric Map-based Visual Homing

After reviewing both metric localisation algorithms and visual homing (plus related

publications in servoing and topological navigation), it is natural to ask which ap-

proach gives better results in solving the homing problem set out in the introduction to

this chapter. Goedemé et al. [2005a] seek to answer this question. In particular, these

authors want to determine whether acquiring knowledge of the three-dimensional lay-

out of landmark features (i.e. “structure”) near the snapshot location makes homing

easier.

The so-called structureless homing algorithm used by Goedemé et al. [2005a] is

a bearing-only variant of the Snapshot Model described in Section 2.3.2.1. Goedemé

et al. [2005a] extract two types of features from their snapshot and current images.

They use a variant of the SIFT features described in Section 2.3.3.6. Goedemé et al.

[2005a] also extract so-called invariant column segments.The robot in Goedemé et al.

[2005a] is constrained to move on the floor of an office environment. Many objects

in this environment (e.g. window frames and white boards) form edges parallel to the

floor plane in images. The top and bottom edges of say a window frame correspond

to two sharp nearby intensity gradients in several adjacentcolumns of an unwrapped

panoramic image of the scene. These paired sharp intensity gradients delimit a col-

umn segment from which feature data is extracted. Goedemé et al. [2005a] note that

column segment features can be identified more quickly than SIFT features. Feature

correspondences are established at the beginning of the homing process. After that,

while the robot moves along a homing vector, features are efficiently tracked in suc-

cessive current images. The home vector is continuously updated as the robot moves

towards the snapshot position.

The second homing method of Goedemé et al. [2005a] builds a three-dimensional

map of local features as the robot homes. The origin of the mapis the point at which

the robot begins the homing procedure. As before, both SIFT features and invariant

column segments are extracted from current and snapshot images. These features are

now, though, localised in a three-dimensional map of the local environment. Goedemé

et al. [2005a] use a simultaneous localisation and mapping (SLAM) algorithm based

on the extended Kalman filter (EKF) to create the local map; see Section 2.2.3 for more

information on EKF-SLAM. The estimate of the snapshot location on the local map

is updated along with the robot’s current pose, increasing the accuracy of the home

vector estimate.
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To compare the two homing methods, Goedemé et al. [2005a] place their robot (an

autonomous wheelchair) between 1 and 2 metres from a single snapshot position in

an indoor environment. They run an unspecified number of homing runs. Half of the

runs use the so-called structureless homing method and the other half of course use the

map-based method. It appears that the latter algorithm leads the robot in a more-or-less

straight path to the snapshot location while the structureless method takes a slightly

more meandering path. They both seem to exhibit about the same final precision,

though. The map-based method, on the other hand, requires more than 100 times more

processing time per home vector computation than the structureless method. On their

800 MHz processor, the map-based homing algorithm took 71 msper home vector

and the mapless algorithm, 0.44 ms. One wishes that the authors carried out more

experiments, varying the home distance and the number of features extracted from

images. The latter has a great bearing on the time required toperform EKF-SLAM.

We also wish that the overall time-to-home had been published, as this would seem an

important criteria for comparing the two methods.

We conclude from this study that so-called structureless homing algorithms are

probably sufficient for visual homing and preferable when a mobile robot is equipped

with a relatively primitive processor. A robot should employ a map-based solution,

though, if path length must be minimised for some reason.

2.6 Conclusions

We began this review by looking into two major trends in robotic navigation: metric

navigation and topological navigation. Metric localisation seeks to answer the question

“Where is the robot?” quantitatively (i.e. the robot is at coordinates (3,4) with heading

90 degrees in a given reference frame). Topological navigation gives a more qualitative

answer (i.e. the robot is in the office or is travelling down the hallway towards the

library). There are strengths and weaknesses to both approaches, as we have discussed

above.

In this review we have seen that visual servoing algorithms frequently form an im-

portant part of a robot’s algorithmic repertoire in topological approaches to navigation.

A servoing algorithm is typically employed to guide a robot between adjacent nodes

in a topological map. Visual homing is a type of servoing and sometimes the algo-

rithm used in a topological navigation system is explicitlycalled a homing algorithm.

We also note that measuring image similarity plays an important role in vision-based
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topological navigation. For the purposes of localisation or place recognition, the sim-

ilarity between the robot’s current view is compared with references images stored in

the topological map. For autonomous topological map-making, image similarity mea-

sures are employed to determine if the current location is perceptually distinct from

previous mapped positions; if so, a new map node is typicallyinstantiated. Topo-

logical navigation calls for the image similarity measure to be both computationally

efficient and relatively invariant to visual change in the environment (due to e.g. light-

ing change and object movement). Efficiency is required because a newly collected

image must usually be compared with many reference (i.e. map) images in order to

recognise a place. Invariance to environmental change is needed because the environ-

ment may have changed since the reference images were captured. We shall return to

image similarity measures below.

Focusing on the topic of visual homing, we have in this chapter outlined the most

important visual homing algorithms found in the literature. These algorithms fall nat-

urally into two categories: feature-based and image-based(also known as appearance-

based). Almost all feature-based algorithms require reliable solutions to the problems

of consistent feature extraction and correspondence to ensure successful operation. If

these problems can be solved consistently, our review indicates that the epipole-surfing

algorithm Basri et al. [1999] should be used to home. This algorithm produces an ac-

curate home vector given just two successive “current” images and requires no external

compass reference (as several homing algorithms do). Consistent feature extraction,

though, is by no means an easy task. It is telling that many experiments in feature-

based visual homing take place in adulterated environmentswith easy-to-detect artifi-

cial landmarks. An exception to this was the work of Pons et al. [2007]. These authors

extracted SIFT features from snapshot and current images and used a robust matching

scheme to establish feature correspondence. SIFT featuresare relatively invariant to

changes in orientation, scale and location in images and so are appropriate for the vi-

sual homing problem. Though Pons et al. [2007] offer impressive homing results in

indoor and outdoor static and dynamic environments, their algorithm seems to require

thousands of feature similarity computations for each homevector calculation. Pons

et al. [2007] do not offer figures on how long each home vector computation requires.

Computationally efficient SIFT features (e.g. SURFs) have been proposed recently

and will probably play a role in future feature-based visualhoming algorithms.

As we have demonstrated, image-based visual homing problems avoid explicit fea-

ture correspondence. This approach therefore offers a potentially robust and efficient
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complement to feature-based homing. Image-based homing schemes infer home vec-

tors by considering every pixel in snapshot and current images, treating each as a fea-

ture in its own right. We have reviewed three image-based homing algorithms in this

chapter. Image warping requires a computationally intensive brute force search for

every home vector computation. We consider this a major drawback. The optic flow-

based algorithms of Vardy and Möller [2005] – though impressive – assume that the

homing agent is constrained to travel on a single plane. We consider the difference sur-

face homing algorithm pioneered by Zeil et al. [2003] to be the image-based homing

algorithm which shows the most promise.

Unfortunately, as described by Zeil et al. [2003], this algorithm is sensitive to

changes in lighting between capture of snapshot and currentimages. Also, Zeil et al.

[2003] applied only simple optimisation algorithms to thistask and assumed perfect

compassing information in the process. There are thus open problems in difference

surface-based homing which we chose to tackle at the outset of our work on this dis-

sertation. We also seek in this work to improve the computational efficiency of the

image similarity measure which lies at the heart of the difference surface homing al-

gorithm. We do this not only to improve the efficiency of difference surface homing,

we also believe that this image similarity measure could be applied to the problems of

place recognition and mapping in vision-based topologicalnavigation. As we noted

above, solutions to these problems benefit from a computationally efficient image sim-

ilarity measure.



Chapter 3

Building Robust Difference Surfaces

3.1 Introduction

As we discussed in Chapters 1 and 2, homing by moving an agent so as to optimise a

difference surface – a technique pioneered by Zeil et al. [2003] – is quite a promising

solution to the visual homing problem. We see for example in Figure 3.1(a) a difference

surface formed in whichIS and all current imagesIC are captured in a static laboratory

environment. A number of sample homing runs using this difference surface are shown

in Figure 3.1(b), each beginning at a different point on the laboratory floor. The agent

uses a gradient descent algorithm, described more fully in Section 3.2.1 to move so

as to optimise the difference surface. All homing runs are successful (i.e. end within

30cm of the reference location).

Zeil et al. [2003] identified a significant problem with difference surface homing:

whenIS andIC are captured in different illumination conditions, the chances of homing

successfully decrease, often dramatically. We see an example of this in Figure 3.2.

This is obviously an issue in indoor environments – the focusof our study in this

dissertation – where human occupants often change lightingconditions to suit their

needs. Of course, illumination changes – sometimes frequently – outdoors too.

This chapter will focus in part on building difference surfaces in a laboratory envi-

ronment which are robust to changes to illumination. There are two obvious remedies:

• Transform reference and current image intensities to minimise the effects of dy-

namic illumination (using e.g. histogram equalisation).

• Use image similarity measures other than the root-mean-square.

65
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Figure 3.1: (a) A difference surface formed using the RMS image similarity measure

defined by Equation 3.1. The reference image was captured at x=150cm, y=150cm in a

laboratory environment. The reference image was captured in the same landmark and

illumination conditions as all other images. Notice the global minimum at the reference

location and the absence of local minima. (b) Here we illustrate a number of homing

runs using the difference surface in (a). Each homing run starts at a grid point on the

laboratory floor. The simulated agent moves so as to optimise the difference surface

using a gradient descent algorithm. All homing runs are successful (i.e. end within

30cm of the reference location).
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Figure 3.2: (a) A difference surface formed using the RMS image similarity measure de-

fined by Equation 3.1. As in Figure 3.1 the reference image was captured at x=150cm,

y=150cm in a laboratory environment. In this example, though, the reference image

was captured in a different illumination condition than all current images IC. Notice that

a local difference surface minimum coincides with the reference location but other lo-

cal optima have appeared. (b) Here we illustrate a number of homing runs using the

difference surface in (a). Each homing run starts at a grid point on the laboratory floor.

The simulated agent moves so as to optimise the difference surface using a gradient

descent algorithm. Successful homing runs (i.e. those ending within 30cm of the ref-

erence location) are shown in blue and homing failures are shown in red. There are a

significant number of homing failures, unlike in Figure 3.1(b).
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While these approaches are not mutually exclusive, we chosein this work to follow the

second approach only. We find difference surface homing attractive because, among

other reasons, the image similarity measurement involved is algorithmically simple

and computationally efficient. To heavily preprocessIS and/or IC for the purposes

of illumination correction would compromise this efficiency. Also, we could find no

principled way of choosing which intensity transformations to apply and in what order.

We chose therefore to focus on alternative image similaritymeasures in this work. We

chose these alternatives based on careful and systematic analysis of the problems with

difference surface homing usingRMSto measure image similarity.

The locations of objects in human-populated environments are subject to frequent

change. So along with dynamic illumination, we are also interested in this chapter on

the effect of the movement of imaged objects between captures of IS andIC. This is a

question not specifically addressed by Zeil et al. [2003].

This chapter is organised as follows. In Section 3.2 we describe difference surface

homing experiments and their results with image similaritymeasured usingRMS. This

section also contains a detailed analysis of the drawbacks of RMSas an image simi-

larity measure for use in visual homing in dynamic environments. This analysis leads

us to an alternative similarity measure: the covariance. InSection 3.3 we repeat the

experiments of Section 3.2 using covariance to assess imagesimilarity. Our analysis of

the limitations of covariance leads us to propose mutual image information as a third

similarity measure. We experiment with mutual informationas we did withRMSand

covariance and analyse its strengths and weaknesses. We draw conclusions from our

experimental results in Section 3.7. Section 3.8 describesfuture work.

3.2 Exploring the Root-Mean-Square Image Similarity

Measure

3.2.1 Experiments and Results

We define theRMSimage similarity between grayscale imagesIS andIC as

RMS(IS, IC) =

√

1
N

N

∑
i=1

(IC(i)− IS(i))
2 (3.1)

Both IS andIC haveN pixels.

We shall use Andrew Vardy’s image database in our experiments. The database is
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Figure 3.3: Schematic showing the dimensions of the experimental area represented

by Vardy’s image data sets (see text for details). Location of plant is indicated by a

green polygon. Chairs are represented by red polygons.

available for download at http://www.ti.uni-bielefeld.de/html/research/avardy/index.html

and is described in detail in Vardy and Möller [2005]. The database consists of a num-

ber of image sets. Each set contains 170 colour panoramic images captured every 30cm

on a 2.7m x 4.8m horizontal grid on a laboratory floor. All images were captured with

the camera in the same compass direction. Landmark layout and/or illumination con-

ditions differ from set to set as described in Table 3.1.

We show a sample image from each data set in Figure 3.4. As in much other work

on visual robotic navigation (e.g. Menegatti et al. [2004] and Hong et al. [1991]), the

panoramic images were made by pointing a camera at a three dimensional (in this case

hyperbolic) mirror. The mirror appears as a large circle occupying most of each image

in Figure 3.4. The rig supporting the mirror and camera is imaged outside this circle;

the robotic platform carrying the mirror is imaged at the centre of the circle. This

extraneous information must be removed from each image before the image is used for

navigation; we created the mask depicted in Figure 3.5(a) todo so.

As stated above, we want to measure the success of visual homing withRMSdiffer-

ence surfaces in a laboratory environment in both static anddynamic visual conditions.

To this end, we created a number of difference surface sets. Each difference surface

set is defined by the source of snapshot and current images. For example, one set of

difference surfaces used the “Original” images for bothIS andIC; another set tookIS

from “Winlit” and all IC from “Original”, thus simulating dynamic illumination. The

complete list of data set pairings is given in Table 3.2. We used the pairings along
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Original All overhead lights are on. No obstructive objects have been

placed on the floor of the experimental area.

Winlit Only the bank of lights near the curtained window (upper

half of the image) are switched on. Those near the door are

off.

Doorlit Only the bank of lights near the closed door are switched

on. Those above the curtained window are off.

Arboreal All overhead lights are on. A plant has been placed in the

centre of the experimental area (solid green polygon in Fig-

ure 3.3).

Chairs1 All overhead lights are on. Three office chairs have been

placed along the walls of the laboratory, out of the experi-

mental area.

Chairs2 All overhead lights are on. The three chairs in “Chairs1”

have been moved to the experimental area. The chairs are

represented by solid red polygons in Figure 3.3.

Table 3.1: Description of each of the image data sets used in this work.

Original Winlit Doorlit

Arboreal Chairs1 Chairs2

Figure 3.4: Sample from each of the Vardy image data sets used in this work. See text

for details.
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(a) (b)

Figure 3.5: (a) Mask used to remove sections of Vardy images not corresponding to

panoramic mirror. (b) Example of masked Vardy image. Every Vardy image used in this

work is similarly masked.

Current image data set

Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

S
na

ps
ho

ts
et

Original X X X X - -

Winlit X X X - - -

Doorlit X X X - - -

Arboreal X - - X - -

Chairs 1 - - - - X X

Chairs 2 - - - - X X

Table 3.2: Source of snapshot and current images for the various difference surfaces

used in this work. A Xindicates that the pairing was used to create a set of difference

surfaces.

the diagonal of the table to create difference surfaces reflecting static environments.

The off-diagonal pairings involving the “Winlit” and “Doorlit” sets simulate a labo-

ratory environment in which illumination is non-constant.The off-diagonal pairings

involving the “Arboreal” set simulate an environment in which there is change in the

location of a relatively unobtrusive landmark. The pairings (Chairs1,Chairs2) and

(Chairs2,Chairs1) yield difference surfaces reflecting the movement of more promi-

nent objects in the environment.

Every difference surface set consists of nineteen surfacescorresponding to the

nineteen different snapshot locations shown in Figure 3.6.We chose these locations

because they are fairly uniformly distributed around the experimental area while not

being inside a chair (in the “Chairs2” set) or the plant (in the “Arboreal” set). If we

had used all 170 grid points as snapshot locations, our simulated homing experiments
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Figure 3.6: The set of nineteen snapshot locations used in this work. A diamond indi-

cates a snapshot location.

would have required several months of computation time.

To rate the success of homing on the difference surfaces described above, we use

the criterion defined in Vardy and Möller [2005]: the average return ratio. The return

ratio (RR) is, for a particular difference surface, the ratio of successful homing runs

to the total number of homing runs. Homing runs are initiatedfrom each of the 169

non-snapshot locations (fewer ifIC is drawn from the “Chairs2” or “Arboreal” sets) in

the experimental area. The average return ratio (R̄R) is the mean return ratio for all

nineteen difference surfaces in a difference surface set. The average return ratio pro-

vides a fairly good summary of the ease or difficulty of homingin particular conditions

(static, dynamic illumination, or dynamic landmark locations).

The agent uses the gradient of the difference surface to home. The gradient of a

two-dimensional functionf (like the difference surface) at a particular point(x,y) is

the vector of the partial derivatives of the function at(x,y) and is typically labelled

∇ f (x,y).1 The gradient at(x,y) points in the direction of greatest increase of the

function at this point (Kleitman [2005]). To home, the agentassesses the gradient of

the difference surface at its start location, moves by 30cm in the direction opposite

the gradient (since the agent must move so as tominimisetheRMSdifference surface

in order to home), and recalculates the gradient at its new position. The process of

gradient calculation is described below. The agent continues in this manner until one

of a set of stopping criteria is met; these criteria are discussed below.

1The gradient can be calculated for a function of more than twodimensions but this is not relevant
to our task.



Chapter 3. Building Robust Difference Surfaces 73

We use Matlab’sgradient command to compute the gradient of the difference sur-

face at each step. This command estimates the true gradient at a point(x,y) using the

following two-sided differencing equation:

∇ f (x,y)≈
[

f (x+h,y)− f (x−h,y)
2h

f (x,y+h)− f (x,y−h)
2h

]

(3.2)

whereh is the separation between grid points, in our case 30cm. In order to estimate the

gradient at(x,y), Equation 3.2 implies that the homing agent must assess the difference

surface at the four end points of a cross centred on(x,y). Equation 3.2 is undefined at

the boundaries of the function. At these boundaries, a similar one-sided differencing

equation is employed. We note that our gradient descent algorithm will typically find

the local difference surface minimum nearest the start location. We explore alternative

optimisation techniques in Chapter 5.

It will often be the case that during homing we must estimate the gradient of the dif-

ference surface at a non-grid point (i.e. a location in our experimental area at which no

image was captured). We first thought of using Matlab’sinterp2 function to interpolate

the difference surface gradient (or rather, to interpolateeach component of the differ-

ence surface gradient in turn asinterp2 is designed to interpolate two-dimensional

scalar-valued functions, not vector-valued functions). Matlab’sinterp2 interpolates a

two-dimensional function given a matrix of samples of that function. interp2 is capa-

ble of constructing new data points with a nearest neighbour, bilinear, bicubic or spline

interpolation. Unfortunately, when drawing current images from the “Chairs2” or “Ar-

boreal” data sets, the difference surface value for those grid points that are occupied

by, respectively, a chair or plant will be undefined leading to undefined gradients. We

found thatinterp2 produces an undefined answer when presented with one or more

sampled function values which are undefined (i.e. Not-a-Number in Matlab’s scripting

language). Thus we were forced to abandoninterp2.

We instead devised our own two-dimensional interpolation method. To determine

the gradient of the difference surface at a non-grid point(x,y) we use Equation 3.2

to compute the gradient of the difference surface at the fourgrid points closest to

(x,y); these grid points form a square around(x,y). The x- and y-components of the

interpolated gradient are computed separately but the procedure is identical for each

so we shall describe the computation of the x-component only. We define a setFx

which contains the x-component of each grid point gradient used in the interpolation.

The cardinality ofFx will be at most four. Undefined values are removed fromFx. We
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found no situation in our simulations in whichFx was empty. The interpolated value of

the x-component of the gradient at(x,y) – denotedfx(x,y) will be the weighted mean

of the elements ofFx:

fx(x,y) =
∑g∈Fx

g ·wg

∑g∈Fx
wg

(3.3)

The weightwg is inversely related to the Euclidean distance between(x,y) and the

grid point (xg,yg) corresponding towg. We define a setD each of whose elements

Dg is the Euclidean distance between(x,y) and the grid point(xg,yg). Weightwg is

defined as

wg =
min(D)

Dg
(3.4)

This interpolation procedure is relatively simple to implement, provides smooth

gradient interpolation and allows us to easily ignore undefined difference surface val-

ues.

It is possible during a homing run that the agent will collidewith an object. The

“Chairs2” and “Arboreal” data sets were captured with prominent objects – three chairs

in the former case and a plant in the later – placed within the experimental area. Also,

since we felt extrapolating the difference surface outsidethe bounds covered by the

data sets would have yielded dubious surface values, we treated the experimental area

as surrounded by a transparent wall. We assume our agent has been ringed with prim-

itive bump sensors which give it a rough indication of the direction of the obstruction

when a collision occurs. The agent turns away from the obstruction until it is free

to move forward at which point it continues homing. We grant that the avoidance of

the imaginary walls surrounding the experimental area may slightly inflate the success

rates of our homing runs since the distance the robot can travel from any snapshot lo-

cation is bounded. We argue though that each of the metrics weexplore below will be

equally advantaged by this decision.

The agent continues a homing run until one of the following stopping criteria is

satisfied:

• The number of gradient calculations exceeds 400. Four hundred steps of 30cm

each is sufficient to move between any two points in the experimental area, no

matter how tortuous the route.

• The agent detects that its last twenty homing steps clusteraround a particular lo-

cation. This clustering will occur around local differencesurface optima, which
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frequently (though not necessarily) coincide with the snapshot location. Cluster-

ing is detected by dead reckoning, a process (described in Chapter 2) by which

a moving agent tracks its pose by integrating an estimate of all angles turned

and linear distances travelled (see e.g. Krantz [1996]). Real robots such as the

Koala used in the live experiments described in Chapter 6 often use wheel en-

coders to infer the pose change resulting from a movement command. A wheel

encoder measures the number of rotations (including fractional rotations) made

by a given wheel. Though the Koala has four wheels in total, two per side, the

left and right wheel pairs are each driven by one motor, rotating in synchrony (K-

Team [2001]); thus the Koala has two wheel encoders. In both simulated and live

homing runs, our agent is limited to move in sequences consisting of pure trans-

lations and pure rotations. After one of these translationsor rotations has been

carried out, it is easy to use the wheel encoder readings along with knowledge

of the wheel radii and axle length to compute the angle turnedor linear distance

travelled. As we related in Chapter 2, measurement of robot motion by wheel en-

coders is corrupted by both systematic and non-systematic noise. Wheel slippage

due to smooth floors and/or high-magnitude acceleration is acommon source of

non-systematic measurement noise. Systematic noise comesfrom imprecision

in the knowledge of robot wheel radii and axle length as well as the finite preci-

sion of the wheel encoder reading. We assume that our simulated environment

is dry and flat so no wheel slippage occurs (none was observed in the live exper-

iments in Chapter 6). We inject systematic noise into our simulated agent’s dead

reckoning system by adding an offset to the actual distance translated or angle

rotated by the agent when performing a motor command. The offset for both

rotation and translation is normally distributed with zeromean and for rotation a

standard deviation of 0.1 degrees and for translation a standard deviation of 0.2

cm. This noise distribution was derived by Zampoglou et al. [2006]. We note

that although dead reckoning noise leads to unbounded errors in pose tracking

with respect to an initial pose over time, local clustering detection should not be

greatly affected by such noise.

A homing run is deemed successful if it ends within 30cm of thesnapshot location.

We carried out the experiment described above. The results are given in Table 3.3.
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Current image data set

Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

S
na

ps
ho

ts
et

Original 0.977 (0.066) 0.584 (0.398) 0.654 (0.412) 0.933 (0.083) - -

Winlit 0.427 (0.164) 0.949 (0.058) 0.020 (0.059) - - -

Doorlit 0.536 (0.210) 0.037 (0.110) 0.967 (0.051) - - -

Arboreal 0.956 (0.070) - - 0.924 (0.075) - -

Chairs 1 - - - - 0.975 (0.048) 0.598 (0.117)

Chairs 2 - - - - 0.953 (0.065) 0.578 (0.106)

Table 3.3: Average return ratios for homing experiments carried out on RMSdifference

surfaces in static and dynamic environments. The standard deviation of the average

return ratio for each data set pairing is given in brackets.

3.2.2 Discussion

We can make several observations about the results presented in Table 3.3. WhenIS

andIC are taken from the same data set, difference surface homing works quite well in

almost all cases. For example, when all images are taken fromthe “Original” data set,

the average return ratio is 0.977; when snapshot and currentimages are drawn from the

“Winlit” set, R̄R is reduced to the still impressive 0.949. We see a glaring exception

when all images are drawn from the “Chairs2” set. We shall discuss this exception

below.

As reported in Zeil et al. [2003] for outdoor scenes, difference surface homing is

much less successful when illumination conditions change between capture ofIS and

IC. When for exampleIS is drawn from “Original” andIC is drawn from “Winlit” R̄R

is 0.584. The situation is even worse – in fact quite dire – when “Doorlit” is the source

of the snapshot image;̄RRin this case is 0.037.

Results are mixed when landmarks change positions between capture ofIS andIC.

WhenIS is drawn from “Chairs1” andIC is drawn from “Chairs2”, the average return

ratio is 0.598 but when the sources of the snapshot and current images are reversed,̄RR

improves to 0.953. There seems in fact to be a general diminution of average return

ratio whenIC is drawn from “Chairs2” – even when the snapshot image is alsodrawn

from “Chairs2” as we noted above. There is a similar, though much less dramatic trend

when the “Arboreal” set is used. We speculate that the presence of the large objects

in the experimental area, rather than movement of imaged objects between capture of

snapshot and current images, causes difference surface homing to perform less well.
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We shall try to justify this speculation below.

We would like to know why homing onRMSdifference surfaces is affected by

visual dynamism as described above. As given in Equation 3.1, RMS is difficult to

analyse. We therefore break the equation into several termsas follows:

MSD(IS, IC) =
1
N

N

∑
i=1

(IS(i)− IC(i))2 (3.5)

=
1
N

N

∑
i=1

[IS(i)]
2+

1
N

N

∑
i=1

[IC(i)]2− 2
N

N

∑
i=1

IS(i)IC(i) (3.6)

Note first that the square root in Equation 3.1 has been removed from Equation 3.5,

transforming theRMSinto an expression of mean squared differences (MSD); we have

done this because the square root plays no significant role inthe behaviour ofRMSand

slightly muddies our mathematical analysis.

Equation 3.6 contains three terms. These terms can be transformed into forms more

amenable to analysis. Several standard textbooks on statistics (see e.g. Svenshnikov

[1968]) tell us that

1
N

N

∑
i=1

[IS(i)]
2≈Var(IS)+(ĪS)

2 (3.7)

1
N

N

∑
i=1

[IC(i)]2≈Var(IC)+( ¯IC)2 (3.8)

1
N

N

∑
i=1

IS(i)IC(i)≈Cov(IS, IC)+ ĪS ¯IC (3.9)

whereVar(IS) is the variance of the intensities inIS, ĪS is the mean intensity inIS;

Var(IC) and ¯IC are defined similarly.Cov(IS, IC) is the pixelwise covariance between

IS andIC. Since the number of pixels inIS andIC is large, the difference between the

left and right hand sides of each of the three equations aboveis exceedingly small in

practice.

We substitute the right hand sides of Equation 3.7, Equation3.8 and Equation 3.9

into Equation 3.6 and perform some algebraic manipulation.TheMSD is transformed

into

MSD(IS, IC)≈Var(IS)+Var(IC)−2Cov(IS, IC)+(ĪS− ¯IC)2 (3.10)

From Equation 3.10 it becomes clear that in moving our homingagent so as to

minimise theRMSbetweenIC andIS, the agent is actually simultaneously
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Figure 3.7: Homing paths starting from all non-goal positions for a difference surface

with snapshot location at x=90cm, y=30cm. The snapshot image was drawn from the

“Original” set and all current images were drawn from the “Winlit” set. No homing runs

reached the goal location.

• seeking high covariance betweenIS andIC (i.e. minimising−2Cov(IS, IC));

• seeking low variance current images (i.e. minimisingVar(IC)); and

• seeking equality of the mean intensities ofIS andIC (i.e. minimising(ĪS− ¯IC)2).

The second and third items above can cause homing errors. These errors are evident in

a number of the homing experiments we performed whose results are summarised in

Table 3.3.

We see the equalisation of mean intensities playing a deleterious role when for

example the snapshot image is taken from the “Original” dataset and all current images

are drawn from the “Winlit” data set. Figure 3.7 shows the homing paths (starting from

all non-goal positions) for this data set pairing when the goal location was set at x =

90cm, y = 30cm. None of the runs manages to reach the goal position, even those

which begin quite close to the goal.

The influence of the term(ĪS− ¯IC)2 in Equation 3.10 is easy to see when we con-

sider the spatial gradient ofMSD. Recall that the simulated homing agent follows the

negativeMSDgradient to generate the homing paths depicted in Figure 3.7. It follows

directly (Kleitman [2005]) from Equation 3.10 that the negative spatialMSDgradient

(denoted∇MSD) is given by the following equation:
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Figure 3.8: −∇MSD(IS, IC) (black vector) as the vector sum of −∇[Var(IC)] +

∇[2Cov(IS, IC)] (green vector) and−∇[(ĪS− ¯IC)2] (red vector). The true home direction

is represented by the blue vector.

−∇MSD(IS, IC)≈−∇[Var(IS)]+−∇[Var(IC)]+∇[2Cov(IS, IC)]−∇[(ĪS− ¯IC)2]

(3.11)

SinceIS is constant during a homing run,∇[Var(IS)] =~0 so

−∇MSD(IS, IC)≈−∇[Var(IC)]+∇[2Cov(IS, IC)]−∇[(ĪS− ¯IC)2] (3.12)

For the purposes of our current example, it is useful to view−∇MSD(IS, IC) as the

vector sum of−∇[Var(IC)]+ ∇[2Cov(IS, IC)] and−∇[(ĪS− ¯IC)2]. With this in mind,

we look at Figure 3.8. This figure shows−∇MSD(black vector) at x=120cm, y=90cm

for the homing runs depicted in Figure 3.7. We can see that−∇MSD is oriented more

than 90 degrees from the true home direction (blue vector) soany move in this direction

will bring the agent farther from the goal. The error in−∇MSD(IS, IC) is largely due

to the influence of−∇[(ĪS− ¯IC)2] (red vector). The red vector points roughly in the

direction of the window, which is the part of the experimental arena in the “Winlit”

set whose average lighting intensity is most similar to thatof the snapshot (which was

taken from the “Original” set). When we home using−∇[Var(IC)]+ ∇[2Cov(IS, IC)]

(green vector) as the negative gradient direction, we meet with much more success; see

Figure 3.9. The gradient error described above is qualitatively similar to many others

we came across when lighting differed between snapshot and current images.

Equation 3.10 implies that the homing agent will be attracted to areas whose corre-

sponding images have relatively low variance compared withimages of nearby areas.

Figure 3.10(a) shows the magnitude and gradient of the variance of all current images
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Figure 3.9: Homing runs on the difference surface described in the caption of Fig-

ure 3.7. Here, we used −∇[Var(IC)]+∇[2Cov(IS, IC)] as the negative gradient rather

than Equation 3.12. Successful homing runs are shown in blue, unsuccessful in red. In

comparison with Figure 3.7, we see that homing errors have been dramatically reduced.

from the “Original” data set. Relatively low variance values and gradients of high

magnitude are evident at the top of the figure. We can see the effect of this area of

rapidly changing, low variance in the example depicted in Figure 3.10(b). This figure

shows−∇MSD (black vector) at x=120cm, y=480cm. The mean intensity difference

equalisation term has been removed fromMSDso that its influence cannot be blamed

for the homing error we shall describe. The true home vector,pointing to the snapshot

location at x=60cm, y=30cm, is shown in blue. We can see that−∇MSD is oriented

more than 90 degrees from the true home direction (blue vector) so any move in this

direction will bring the agent farther from the goal. The error in −∇MSD(IS, IC) is

largely due to the influence of−∇[Var(IC)] (red vector). It is clear in Figure 3.10(b)

that∇[2Cov(IS, IC)] (green vector) is a much better estimate of the true home direction

than is−∇MSD. The gradient error described above is qualitatively similar to many

others we came across when the agent came near regions whose images had relatively

low variance.

The variance of current images also sometimes decreases when the agent moves

toward a chair. This is because the chairs, from certain viewpoints, are large almost

uniformly dark objects. When the agent moves toward a chair,the portion of an image

taken up by a chair becomes larger, driving the variance of the image down. We can

see this effect in Figure 3.11. Figure 3.11(a) showsIC at x=210cm, y=180cm in the
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Figure 3.10: (a) The magnitude and gradient of the variance of all current images from

the “Original” data set. The colour bar on the right indicates the magnitude of the

variance. (b) Depiction of gradient error caused by low, rapidly changing variance; see

text for details.

(a) (b)

Figure 3.11: Illustration of the changing appearance of a chair as the agent moves to-

wards it. (a) IC at x=210cm, y=180cm in the “Chairs2” environment. (b) IC at x=210cm,

y=150cm in the “Chairs2” environment.

“Chairs2” environment; Figure 3.11(b) isIC in the same environment but 30cm closer

to the nearest chair. The image of the chair takes up more of the image in Figure 3.11(b)

than in Figure 3.11(a) while the rest of the image content stays largely the same. The

intensity variance decrease between the images in Figures 3.11(a) and 3.11(b) is 237;

we assume this decrease is largely due to the changing appearance of the chair.

Figure 3.12(a) illustrates the effect of diminishing imagevariance caused by an

image of a nearby chair. This figure shows−∇MSD (black vector) at x=210cm,

y=180cm; current images are taken from the “Chairs2” data set and the snapshot im-

age was drawn from the “Chairs1” data set. The mean intensitydifference equalisation

term has been removed fromMSDso that its influence cannot be blamed for the hom-
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Figure 3.12: Two examples of MSDgradient error caused by proximate chairs; text for

details.

ing error we shall describe. The true home vector, pointing to the snapshot location at

x=210cm, y=450cm, is shown in blue. The black vector is−∇MSD; it clearly deviates

from the true home vector. The error in−∇MSD(IS, IC) is largely due to the influence

of −∇[Var(IC)] (red vector). This red vector points toward the nearby chair. It is clear

in Figure 3.12(a) that∇[2Cov(IS, IC)] (green vector) is a better estimate of the true

home direction than is−∇MSD. We show a similar example in Figure 3.12(b). Here

we assess−∇MSD(black vector) at x=60cm, y=330cm. The snapshot location isnow

at x=210cm, y=210cm. Again, the error in−∇MSD(IS, IC) (black vector) is largely

due to−∇[Var(IC)] (red vector).

It seems clear from the previous discussion that assessing the similarity betweenIS

andIC with covariance rather thanRMSis a more sensible approach. We determine if

this is indeed the case in the next section.

3.3 Exploring the Covariance Image Similarity Measure

3.3.1 Experiments and Results

Here, we used covariance to measure the similarity betweenIS andIC where covariance

(COV) is defined as:

COV(IS, IC) =
1
N

N

∑
i=1

(IS(i) · IC(i))− ĪS· ¯IC (3.13)

N, IS, IC, ĪS and ¯IC are defined as above.
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Current image data set

Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

S
na

ps
ho

ts
et

Original 0.974 (0.061) 0.729 (0.227) 0.805 (0.321) 0.939 (0.084) - -

Winlit 0.915 (0.211) 0.998 (0.007) 0.065 (0.201) - - -

Doorlit 0.668 (0.283) 0.076 (0.218) 0.994 (0.015) - - -

Arboreal 0.961 (0.069) - - 0.930 (0.083) - -

Chairs 1 - - - - 0.978 (0.043) 0.600 (0.097)

Chairs 2 - - - - 0.965 (0.069) 0.582 (0.124)

Table 3.4: Average return ratios for homing experiments carried out on COV difference

surfaces in static and dynamic environments. The standard deviation of the average

return ratio for each data set pairing is given in brackets.

To test the covariance as a potentially useful similarity measure in static and dy-

namic conditions, we carried out the same experiments described in Section 3.2.1, of

course using Equation 3.13 to assess image similarity rather than Equation 3.1. When

homing onRMSdifference surfaces we attempted to minimise theRMSsignal; with

COV difference surfaces we seek to move the agent so as tomaximisethe value of the

difference surface.

The results of our experiments usingCOV to measure image similarity are given in

Table 3.4.

3.3.2 Discussion

For a given data set pairing, each average return ratio listed in Table 3.4 is greater than

that given in Table 3.3. But are these differences statistically significant? We used

McNemar’s test (Sprent and Smeeton [2007]) to make this determination. McNemar’s

is a nonparametric test designed for nominal, paired data. Our data are paired in the

sense that every homing run on anRMSdifference surface corresponds to exactly one

homing run on aCOV difference surface. The results are nominal since each run results

in either success or failure. We set the level of significanceat 5%. Signficance results

are given in Table 3.5.

Taken together, Tables 3.3, 3.4 and 3.5 tell us that theCOV is sometimes a better

image similarity measure thanRMSin static conditions – in particular those conditions

with non-uniform overhead lighting.COV always outperformsRMSwhen illumination

conditions change between captures ofIS and IC. We note, though, thatCOV results
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Current image data set

Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

S
na

ps
ho

ts
et

Original N Y Y N - -

Winlit Y Y Y - - -

Doorlit Y Y Y - - -

Arboreal Y - - N - -

Chairs 1 - - - - N N

Chairs 2 - - - - Y N

Table 3.5: This table indicates whether the average return ratio given in Table 3.4 (COV

results) is significantly different than the average return ratio given in Table 3.3 (RMS

results) for a given data set pairing. A ’Y’ indicates a statistically significant difference

for a particular data set pairing; an ’N’ indicates that there is not enough experimental

evidence to reject the hypothesis that the average return ratios are equal. McNemar’s

test was used with a 5% level of significance. See text for details.

are quite poor in the face of relatively extreme illumination change, whenIS is drawn

from “Doorlit” and IC is drawn from “Winlit” or vice-versa.

COV sometimes outperformsRMSwhen objects move between capture ofIS and

IC – namely, the (“Arboreal”,”Original”) and (“Chairs2”, “Chairs1”) data set pairings.

The average return ratios for the two similarity measures are statistically indistinguish-

able when large objects are placed within the experimental area during capture of cur-

rent images (i.e. when current images are drawn from the “Chairs2” or “Arboreal”

sets). This last point is somewhat surprising. Given our analysis in Section 3.2.2, we

expected difference surface homing with theCOV measure to be more successful than

homing withRMSin environments with large objects in the experimental arena. We

are not as yet certain why this improvement fails to occur.

The covariance is only a trustworthy measure of the similarity betweenIS givenIC

when there is a linear relationship between pixel intensities inIS andIC. Such a linear

relationship betweenIS andIC doesexist in static conditions. Figure 3.13(a) shows a

scatterplot in which we plotted the intensity of each pixel in IC against the intensity of

the corresponding pixel inIS; intensities range from 0 to 255. Both images were taken

from the “Original” data set and from the same location (x=60cm, y=270cm); in other

words,IC is identical toIS. In this case, there is a perfectly linear relationship between

IS and IC. As the capture position ofIC moves away from that ofIS, the strength of
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Figure 3.13: (a) This figure depicts a scatterplot in which we plotted the intensity of

each pixel in IC against the intensity of the corresponding pixel in IS. Both images

were captured at the same location (x=60cm, y=270cm) and both were taken from the

“Original” set. (b) Scatterplot formed as in (a) but here IC was captured 60cm from

capture position of IS. (c) Scatterplot formed as in (a) but here IC was captured 120cm

from capture position of IS.
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Figure 3.14: This figure depicts a scatterplot in which we plotted the intensity of each

pixel in IC against the intensity of the corresponding pixel in IS. Both images were

captured at the same location (x=60cm, y=270cm) but IS was taken from the “Winlit”

data set and IC from the “Original” set.

the linear relationship decreases but remains clearly linear (see Figures 3.13(b) and

3.13(c)).

There ceases to be a linear relationship between pixel intensities inIS andIC when

the two images are drawn from different data sets (i.e. in dynamic conditions). Fig-

ure 3.14 shows a pixel intensity scatterplot similar to those in Figure 3.13 in which

we plotted the intensity of each pixel inIC against the intensity of the corresponding

pixel in IS. Both images were captured at the same location (x=60cm, y=270cm) but

IS was taken from the “Winlit” data set andIC from the “Original” set. This is clearly

a nonlinear relationship. The bifurcated nature of the scatterplot is due to the fact that

the portion ofIS which images the curtained window is quite similar to the same part

of IC; the rest ofIC is brighter than corresponding parts ofIS since lights above the

door were turned off whenIS was taken.

3.4 Exploring the Mutual Information Image Similarity

Measure

Though there isn’t a strictly linear relationship betweenIS and IC in Figure 3.14,IS

is quitepredictablegiven IC. For example, if we are told that a pixel inIC has value

200, then we can predict with high probability that the corresponding pixel inIS has

an intensity close to either 60 or 175. This predictability can be measured with mutual

image information. Mutual information as an image similarity measure was pioneered
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by Viola and Wells [1995] for the purposes of appearance-based image registration.

Similar though apparently independent work was published by Maes et al. [1997]. We

reviewed image registration and its similarity to visual homing in Chapter 2.

Mutual image information (MI ) can be defined as

MI(IS, IC) = H(IS)−H(IS|IC) (3.14)

whereH(IS) is the entropy ofIS andH(IS|IC) is the conditional entropy ofIS given

IC. This definition of mutual information is adapted from the one given in Hill et al.

[2001]. Entropy and conditional entropy are themselves defined as follows:

H(IS) =−
B−1

∑
a=0

pS(a)log2(pS(a)) (3.15)

H(IS|IC) =−
B−1

∑
a=0

B−1

∑
b=0

pSC(a,b)log2(pS|C(a|b) (3.16)

In Equation 3.15pS(a) is the probability that a pixel will have intensitya (0≤ a < B)

in imageIS. In this work,pS(a) is calculated from the normalised intensity histogram

of IS. Image entropy is highest when all possible pixel values areequally likely (i.e. the

pixel intensity histogram has a uniform distribution) and lowest (zero) when one pixel

value is certain and the others never occur. The joint probability pSC(a,b) in Equa-

tion 3.16 is the probability that a given pixel inIS has intensitya and the same pixel in

IC has valueb; pSC(a,b) is calculated from the normalised joint intensity histogram of

IS andIC. Finally, the conditional probabilitypS|C(a|b) is the probability that a pixel

will have intensitya in IS given that the corresponding pixel inIC has intensityb.

It is clear from Equation 3.14 that maximising the mutual information betweenIS

andIC involves minimising the conditional entropyH(IS|IC); H(IS) is constant while

homing. Analysis of Equation 3.16 tells us thatH(IS|IC) is minimal (zero) if knowing

that a pixel inIC has intensityb allows us to predict with probability 1 that the corre-

sponding pixel inIS has intensitya for all a andb. Conditional entropy will be much

higher if intensity values inIC are poor predictors of corresponding pixel intensities in

IS. Hence, mutual image information is a measure of how predictableIS is givenIC.

We use the following equation to computeMI in our experiments. This form is

equivalent to Equation 3.14 (Hill et al. [2001]) but is slightly less computationally

intensive.

MI(IS, IC) =
B−1

∑
a=0

B−1

∑
b=0

pSC(a,b)log2(
pSC(a,b)

pS(a)pC(b)
) (3.17)
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Current image data set

Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

S
na

ps
ho

ts
et

Original 0.905 (0.097) 0.602 (0.238) 0.892(0.208) 0.865 (0.098) - -

Winlit 0.914 (0.115) 0.979 (0.072) 0.307 (0.305) - - -

Doorlit 0.790 (0.119) 0.274 (0.297) 0.987 (0.023) - - -

Arboreal 0.892 (0.097) - - 0.811 (0.133) - -

Chairs 1 - - - - 0.832 (0.135) 0.557 (0.126)

Chairs 2 - - - - 0.807 (0.148) 0.498 (0.152)

Table 3.6: Average return ratios for homing experiments carried out on MI difference

surfaces in static and dynamic environments. The standard deviation of the average

return ratio for each data set pairing is given in brackets.

3.4.1 Experiments and Results

We repeated the experiments described in Section 3.2.1, usingMI as the image similar-

ity measure rather thanRMS. The results of these experiments are given in Table 3.6.

3.4.2 Discussion

AsCOV is generally a better measure of image similarity thanRMSfor the purposes of

difference surface homing, we shall compareMI with COV only. As in Section 3.3.2,

we use McNemar’s test to determine if there is a statistically significant difference

between the average return ratios given in Table 3.4 and Table 3.6. Table 3.7 makes

clear that the average return ratios ofCOV andMI are statistically different for all but

one data set pairing, whenIS is taken from “Winlit” and all current images are taken

from “Original.”

MI is generally not as good a similarity measure asCOV in our experiments.MI

outperformedCOV for only four out of sixteen data set pairings (see Table 3.6). MI

beatCOV in situations where lighting conditions changed from snapshot to current

image capture. This outperformance is dramatic for severe illumination changes: when

snapshot images are drawn from the “Winlit” set and current images are drawn from the

“Doorlit” set, or vice-versa. In fact, homing with theCOV measure almost always fails

for these data set pairings. We also note that whenCOV does beatMI the difference

in return ratios is often not terribly large. In fact, the mean return ratio over all data set

pairings is 0.76 forCOV and 0.75 forMI . SinceCOV fails almost totally in the face
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Current image data set

Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

S
na

ps
ho

ts
et

Original Y Y Y Y - -

Winlit N Y Y - - -

Doorlit Y Y Y - - -

Arboreal Y - - Y - -

Chairs 1 - - - - Y Y

Chairs 2 - - - - Y Y

Table 3.7: This table indicates whether the average return ratio given in Table 3.6 (MI

results) is significantly different than the average return ratio given in Table 3.4 (COV

results) for a given data set pairing. A ’Y’ indicates a statistically significant difference

for a particular data set pairing; an ’N’ indicates that there is not enough experimental

evidence to reject the hypothesis that the average return ratios are equal. McNemar’s

test was used with a 5% level of significance. See text for details.

of relatively extreme lighting change andMI is at least competitive withCOV in many

other cases, we chose to useMI as an image similarity measure in the remainder of

this dissertation. We note thatCOV should be used to assess image similarity if it is

known that illumination conditions are likely to remain static.

3.5 Run-Time Comparison of Similarity Measures

The aim of this chapter is to compare various image similarity measures for the pur-

pose of difference surface homing in static and dynamic environments. So far, we

have made this comparison on the basis of homing failure rates. It is also sensible to

measure the computation time required for each of these similarity measures. After

all, the operator of a homing robot would not want her machineto sit stationary for

interminable seconds while struggling to compute image similarity.

The computation ofRMSwith Equation 3.1 requires the summation ofN terms

whereN is the number of pixels inIS (equal to the number of pixels inIC). Each term

involves two pixel-value queries (one for the current and one for the snapshot image),

one subtraction and one squaring.RMSis therefore anO(N) algorithm.

To compute the first term of Equation 3.13,N multiplication operations are re-

quired. Each multiplication involves two pixel-value queries (one for the current and
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one for the snapshot image). The second term of Equation 3.13is the product of

the mean intensities ofIC and IS. We can assume that the mean intensity ofIS is

precomputed before homing begins. The calculation of the mean intensity ofIC re-

quiresN pixel-value queries andN summations. Thus, in all – likeRMS– covariance

computation is anO(N) algorithm. For a given value ofN, though, computation of

Equation 3.13 may take somewhat longer than computation of Equation 3.1 as the for-

mer requires more fundamental operations (i.e. multiplication, summation, etc.) to be

carried out per summation term.

Before computing Equation 3.17, the intensity histogram ofIC, that ofIS, and their

joint histogram must be generated. The histogram of the image IS can be compiled

before homing begins and therefore does not count in the computational cost of mu-

tual information. Computation of the intensity histogram of IC requires that an array

of B elements (whereB is the number of intensity levels inIC) be initialised. Fol-

lowing this, each of theN pixels of IC is read and the corresponding element in the

histogram array is incremented. Histogram computation is therefore anO(B+N) al-

gorithm. By a similar argument, it is clear that generation of the aforementioned joint

histogram requiresO(B2 + N) time. We note that ifB2 < N, it makes sense to com-

pute the intensity histogram ofIC by summing the elements of each row of the joint

histogram, anO(B2) operation. Once we have the necessary histograms, computa-

tion of Equation 3.17 can begin. Equation 3.17 involves the sum of B2 terms, each

of which requires three histogram queries, two multiplications, one division and one

call to the logarithm function. Computation of Equation 3.17 therefore requiresO(B2)

operations. Taking the histogram generation into account,computation of mutual in-

formation takesO(B2+N) time.

For a given number of intensity levels and image size, mutualinformation compu-

tation requires more time than the calculation of covariance orRMS. To see what this

difference means in practice, we timed each of these three similarity measures for var-

ious image sizes. In the case ofMI we also varied the number of intensity levels. This

test was carried out on a Dell Pentium 4 Optiplex 2.0 GHz computer, the same com-

puter used to compute image similarity in our live robotic experiments described in

Chapter 6. Similarity measures were computed using purpose-built Matlab functions.

We created random grayscale images as input to the similarity functions. The size of

these images varied from 424130 pixels (the size of the images in Vardy’s database)

down to 24130 pixels in steps of 50000 pixels. For all covariance andRMScalcula-

tions and for one set of mutual information calculation the number of intensity levels
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Figure 3.15: This graph depicts the results of our experiment comparing the time re-

quired to compute the image similarity measures examined in this chapter. See the text

of Section 3.5 for details of the experimental procedure.

was set to 256. We carried out a second set of mutual information computations using

images downsampled to 16 gray levels.

The results of this experiment are depicted in Figure 3.15. Each data point in this

figure is the mean time required for 100 similarity measure calculations. The standard

deviation for each data point was quite small, too small for meaningful error bars to

be included in the figure. As predicted,RMSis the speediest similarity measure for

all image sizes, followed by the covariance. For all image sizes,MI (with images

downsampled to 16 graylevels) took more time than covariance. MI with images with

256 graylevels took the most time.

3.6 Comparison with Other Homing Methods

In this section we determine how the difference surface based homing algorithms de-

scribed in this chapter rate against other visual homing studies which employed Vardy’s

image data set.

3.6.1 Vardy and M öller [2005]

Vardy and Möller [2005] were the first researchers (appropriately enough) to exten-

sively use Vardy’s image database for visual homing studies. We reviewed in Chapter 2

the novel homing algorithms developed by Vardy and Möller [2005]. Perhaps the most
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impressive of these algorithms in terms of consistent performance and computational

complexity is the one called FirstOrder. Briefly, this algorithm computes feature cor-

respondence between snapshot and current images using the intensity-based optic flow

between these two images. More detail about FirstOrder can be found in Chapter 2.

Vardy and Möller [2005] reported that the mean return ratiowhen FirstOrder was

used to home with all images taken from the “Original” data set was 0.9746. In tests

where snapshots were taken from one data set and current images from the same or

another set to simulate homing in several static and dynamicenvironments (the same

procedure we used in this chapter), the mean return ratio forFirstOrder over all such

data set pairings was 0.614. We note that Vardy and Möller [2005] used a superset of

the image data sets we employed in this chapter. Unfortunately, the return ratio for

individual data set pairings is not given quantitatively. Rather, in Figure 12 in Vardy

and Möller [2005] return ratio values are encoded as shadesof gray with white indi-

cating a return ratio of 1 and black a return ratio of 0. Vardy and Möller [2005] state

that FirstOrder had particular difficulty when lighting changed between snapshot and

current images. This may be because FirstOrder assumes constant illumination be-

tween snapshot and current images. This difficulty is reflected in the qualitative results

reported in Figure 12 in Vardy and Möller [2005]. Finally, we note that FirstOrder is a

relatively fast homing algorithm as it requires no searching to solve the correspondence

problem. Vardy and Möller [2005] reported that image processing for FirstOrder took

on average 193.7ms on a Pentium 4 2GHz processor.

Before comparing FirstOrder to the algorithms we looked at in this chapter, we

note that there is a procedural difference between the experiments of Vardy and Möller

[2005] and our own. Vardy and Möller [2005] tuned their image pre-processing steps

to optimise the performance of each homing algorithm. This tuning was done by sim-

ulating homing with the “Original” data set with different sets of pre-processing pa-

rameters. The parameters which yielded the best return ratio results were used in sub-

sequent trials in which different data sets were used. We didno image pre-processing

in our work and no extensive parameter tuning. This procedural difference renders our

homing experiments more realistic and potentially more difficult than those described

in Vardy and Möller [2005].

Now we compare our homing results with those of Vardy and Möller [2005]. When

image similarity is computed with theRMSmeasure, we reported in Table 3.3 a mean

return ratio of 0.977 (standard deviation 0.066) when both current and snapshot images

are taken from the “Original” data set. When image similarity is computed with the
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COV measure, we reported in Table 3.4 a mean return ratio of 0.974(standard deviation

0.061). For the mutual information image similarity measure, Table 3.6 gives a mean

return ratio of 0.905 (standard deviation 0.097). Thus for two of the three similarity

measures we used in this chapter, the return ratios were about equal to that of Vardy

and Möller [2005] for images taken from the “Original” dataset. The return ratio of

0.905 for mutual information is lower than expected in lightof other static results. We

note that Table 3.6 reports that when both snapshot and current images are taken from

the “Winlit” set, the mean return ratio for mutual information-based homing is 0.979

(standard deviation 0.072). Also, when both snapshot and current images are taken

from the “Doorlit” set, the average return ratio is 0.987 (standard deviation 0.023).

One would assume that these static environments are more difficult to home in than

the “Original” environment due to non-uniform overhead lighting. Despite this, the

mutual information-based homing performs quite well.

We said above that the mean return ratio for FirstOrder over all data set pairings

considered in Vardy and Möller [2005] was 0.614. The mean return ratio forRMS-

based difference surface homing over all data sets considered in this chapter is 0.69;

for COV the value is 0.76 and forMI the value is 0.75. Thus our difference surface

optimisation homing method provides better overall behaviour than FirstOrder for all

of the image similarity measures considered.

Finally, we said above that FirstOrder requires on average 193.7ms on average

to process one pair of current and snapshot images to generate a home vector. The

data in Figure 3.15 indicate that the computation of image similarity can be up to ten

times faster than the computation of a home vector with FirstOrder. This data was

generated on a computer with the same processor speed as thatused by Vardy and

Möller [2005]. The reader may argue that to generate a home vector (i.e. gradient) in

difference surface homing the robot has to move to three adjacent locations and carry

out image similarity measurements at these three locations. Home vector computation

takes longer therefore than a single image similarity computation. This is true but

Möller and Vardy [2006] demonstrated that the robot need not actually move in order to

generate a gradient estimate of the difference surface. Thus, home vector computation

in difference surface homing is still potentially faster than home vector computation

by FirstOrder.
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3.6.2 Möller and Vardy [2006]

Möller and Vardy [2006] used Vardy’s “Original” data set intheir experiments to test a

gradient-descent difference surface homing algorithm called the matched-filter descent

in image distances or MFDID. The MFDID algorithm is described more fully in Chap-

ter 2. Möller and Vardy [2006] compared the MFDID with the one-sided differencing

gradient computation method we described in Section 3.2.1;Möller and Vardy [2006]

called this the DID (descent in image distance) algorithm. Möller and Vardy [2006]

used an image similarity measure for the DID algorithm almost identical to the root-

mean-square measure employed by Zeil et al. [2003]. They computed the return ratios

of DID and MFDID for the “Original” data set for all snapshot locations and report

an average return ratio of 0.932 (standard deviation 0.21) for the DID algorithm and

an average return ratio of 0.956 (standard deviation 0.17) for the MFDID algorithm.

Clearly, in these tests, MFDID outperformed DID. As we explained in Chapter 2, MF-

DID also has the virtue that – unlike DID and our own optimisation algorithms – the

robot does not move in order to compute the gradient of the difference surface at a

particular location.

How do these results compare with our own homing experimentsusing the “Origi-

nal” data set? Before answering this question, we note an important procedural differ-

ence between the experiments reported in this chapter and those described in Möller

and Vardy [2006]. Möller and Vardy [2006] removed high frequency image informa-

tion from current and snapshot images using a Butterworth filter. They chose filter

parameters which optimised the performance (as judged by return ratios) of the hom-

ing methods they explored. According to Figure 9 (bottom plot) in Möller and Vardy

[2006], this optimisation process favoured the MFDID algorithm over the DID algo-

rithm. As the homing algorithms we examined in this chapter are similar to DID, the

use of the Butterworth filter may advantage the MFDID algorithm as compared to our

algorithms as well. This procedural difference renders ourhoming experiments more

realistic and potentially more difficult than those described in Möller and Vardy [2006].

Now we compare our results with those of Möller and Vardy [2006]. When image

similarity is computed with theRMSmeasure, we reported in Table 3.3 a mean return

ratio of 0.977 (standard deviation 0.066) when both currentand snapshot images are

taken from the “Original” data set. When image similarity iscomputed with theCOV

measure, we reported in Table 3.4 a mean return ratio of 0.974(standard deviation

0.061). For the mutual information image similarity measure, Table 3.6 gives a mean
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return ratio of 0.905 (standard deviation 0.097). So our homing algorithms produce

better results than both DIDandMFDID when theRMSandCOV measures are used

to compute image similarity. One reason for this might be that we are using different

snapshot locations than Möller and Vardy [2006] did. We believe this is not a likely

explanation, though, since our snapshot locations spannedthe entire experimental area

just as did those of Möller and Vardy [2006]. A second more plausible explanation

is that we when possible used two-sided differencing to compute difference surface

gradients (see Section 3.2.1) whereas Möller and Vardy [2006] used one-sided differ-

encing. It is quite possible that the former method producesmore accurate difference

surface gradients as it uses more difference surface information to compute them. This

is a question we take up again in Chapter 5.

Unfortunately, difference surface homing with the mutual information image sim-

ilarity measure in the “Original” data set does not perform as well as DID or MFDID.

In defence of the mutual information measure, we note that Table 3.6 reports that when

both snapshot and current images are taken from the “Winlit”set, the mean return ra-

tio for mutual information-based homing is 0.979 (standarddeviation 0.072). Also,

when both snapshot and current images are taken from the “Doorlit” set, the average

return ratio is 0.987 (standard deviation 0.023). One wouldassume that these static

environments are more difficult to home in than the “Original” environment due to

non-uniform overhead lighting. Despite this, the mutual information-based homing

performs quite well.

In a follow-up to Möller and Vardy [2006], Möller et al. [2007] also used a part

of Vardy’s image database in their homing work. The work in M¨oller et al. [2007] is

described in Chapter 2. Möller et al. [2007] did not use the return ratio to measure the

effectiveness of their homing solution. They in fact did notcarry out full homing runs

at all. Möller et al. [2007] instead computed home vectors for various locations around

a snapshot location. They were primarily interested in comparing the angular error

between true and estimated home vectors for various difference surface optimisation

algorithms. As their criteria for success are different from ours, we shall not compare

our work with that of Möller et al. [2007].

3.6.3 Pons et al. [2007]

Pons et al. [2007] also used Vardy’s image database in their visual homing study. We

reviewed the homing algorithm of Pons et al. [2007] in Chapter 2. Briefly, these authors
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extracted SIFT features from current and snapshot images. Corresponding features

were used as input to the homing algorithm of Vardy and Möller [2005].

We should note two important procedural differences between our work and that

reported in Pons et al. [2007]. To make their algorithm more robust to changes in

lighting and object location at a particular snapshot position, Pons et al. [2007] col-

lect several images over time from that position. For their outdoor test for example,

they collect images throughout a particular day (the precise number of images is left

unspecified). SIFT features for a particular snapshot location are extracted from all

representative snapshot images. We on the other hand use oneimage to represent a

snapshot location. We consider our approach more realisticas it is unlikely that an au-

tonomous robot will stay in one place for an entire day, powered on, capturing images.

One could argue that the robot would leave and return to the snapshot location over the

course of a day, taking a new snapshot image each time it arrives home. This approach

assumes that the robot would be able to home to its snapshot location using the snap-

shot images already captured. This assumption is not testedby Pons et al. [2007]. A

second difference between our work and that of Pons et al. [2007] is in how Vardy’s

environments are rendered dynamic. We use image sets captured by Vardy in the same

office environment. Vardy altered the environment for each set by moving landmarks

or turning overhead lights on or off. Pons et al. [2007] take asingle set (presumably

Vardy’s “Original” set) and alter the images to simulate changes in lighting or object

movement. We consider our tests therefore to be more realistic. These procedural

differences make it difficult to compare our homing method with that of Pons et al.

[2007]. Nonetheless, we attempt a comparison below.

Pons et al. [2007] find that their method is affected by dynamics in the environment

and that its success is highly dependent on the snapshot position. For one snapshot po-

sition near the centre of Vardy’s grid (at x=180cm and y=300cm in the coordinate

system in Figure 3.6), they report return ratios of 1 for bothrelatively minor and rel-

atively major environmental dynamics. When the snapshot location is moved to a

corner (x=30cm, y=30cm), the return ratios drop to 0.88 and 0.77 respectively. Pons

et al. [2007] attribute the poorer return ratios in the latter case to some non-goal posi-

tions being too far from the snapshot location for correct SIFT feature correspondence

to occur.

Here we compare the homing results of Pons et al. [2007] with our own. Unfor-

tunately, the snapshot locations we used (see Figure 3.6) did not coincide with those

chosen by Pons et al. [2007]. We therefore examine homing runs for snapshot loca-
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Current image data set

Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

S
na

ps
ho

ts
et

Original 0.976 0.824 1.000 0.906 - -

Winlit 0.982 1.000 0.053 - - -

Doorlit 0.694 0.288 1.000 - - -

Arboreal 0.953 - - 0.900 - -

Chairs 1 - - - - 0.912 0.688

Chairs 2 - - - - 0.929 0.659

Table 3.8: Return ratios for homing experiments carried out on MI difference surfaces

in static and dynamic environments. The snapshot location for all homing runs was at

x=150cm, y=270cm in the coordinate system in Figure 3.6.

Current image data set

Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

S
na

ps
ho

ts
et

Original 0.871 0.482 0.424 0.718 - -

Winlit 0.829 1.000 0.394 - - -

Doorlit 0.876 0.000 0.971 - - -

Arboreal 0.888 - - 0.641 - -

Chairs 1 - - - - 0.600 0.306

Chairs 2 - - - - 0.641 0.318

Table 3.9: Return ratios for homing experiments carried out on MI difference surfaces

in static and dynamic environments. The snapshot location for all homing runs was at

x=60cm, y=30cm in the coordinate system in Figure 3.6.
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tions close to those used by Pons et al. [2007]. We compare ourresults at snapshot

location x=150cm, y=270cm with the results of Pons et al. [2007] at snapshot location

x=180cm, y=300cm. Both of these home positions are central in Vardy’s image capture

grid. The return ratios for homing to x=150cm, y=270cm are given in Table 3.8; all

Vardy data set pairings examined in this chapter are represented in this table. We note

that many of the return ratios in Table 3.8 are less than 1 (thereturn ratio reported by

Pons et al. [2007] for snapshot location x=180cm, y=300cm).We stress, though, that

due to the procedural differences stated above, our resultsare not directly comparable

to those of Pons et al. [2007].

We compare our results at snapshot location x=60cm, y=30cm with the results of

Pons et al. [2007] at snapshot location x=30cm, y=30cm. Bothof these home posi-

tions are close to the lower-left-hand corner in Vardy’s image capture grid. The return

ratios for homing to x=60cm, y=30cm are given in Table 3.9; all Vardy data set pair-

ings examined in this chapter are represented in this table.We note that several of the

return ratios, including those resulting from dynamic conditions, are greater than or

approximately equal to 0.88 which is the larger of the two return ratios reported by

Pons et al. [2007] for homing runs to x=30cm, y=30cm. We againstress that compar-

ison based on these results is difficult due to experimental differences. Nonetheless,

the data in Table 3.9 indicates that our method may be on par – at least for relatively

minor environmental dynamism – with the feature-based method of Pons et al. [2007].

3.7 Conclusions

The work of Zeil et al. [2003] suggests that visual homing by optimisingRMSdiffer-

ence surfaces outdoors works well in static conditions but is compromised when the

illumination conditions in which the snapshot was capturedare different than those in

which current images are captured. In this work we confirmed that this was also the

case in an indoor, laboratory environment. Our analysis ofRMSrevealed that a hom-

ing agent will move so as to equalise the average intensitiesof IC and IS in dynamic

illumination conditions. We also showed empirically that homing onRMSdifference

surfaces is robust to at least some movement of imaged objects. Our novel analysis

of the RMSimage similarity measure led us to infer that whenIC is captured near a

large, monochromatic object (like a chair in the “Chairs2” data set) andC is relatively

far from S, the homing agent may be attracted to this object rather thanto S. We con-

firmed this finding – at least anecdotally – by looking at individual homing runs in our
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laboratory environment.

Our analysis ofRMSin Section 3.2.2 led us to propose the covariance as an alterna-

tive image similarity measure. Judging by the average return ratios listed in Tables 3.3

and 3.4, the covariance is a better similarity measure than root-mean-square in our

laboratory environment in both static and dynamic conditions. As we noted in Sec-

tion 3.3.2, the covariance assumes a linear relationship between pixel intensities inIS

and IC. This is not always the case in dynamic conditions. The mutual image infor-

mation similarity measure (Section 3.4) makes no such assumption and instead more

broadly measures howpredictable IS is givenIC.

The comparison between covariance and mutual information is somewhat ambigu-

ous: mutual information does dramatically better than covariance in most cases where

illumination changes betweenIC and IS. Mutual information does slightly less well

than covariance in static environments and in environmentsin which the agent passes

near large, monochromatic objects. Since mutual information is generally a relatively

good image similarity measure and sometimes relatively very good, we will use it to

measure image similarity for the purposes of difference surface homing in the rest of

this dissertation.

In Section 3.5, we compared the time required to calculate each of the image sim-

ilarity measures. As predicted,RMSwas the fastest for a given image size, followed

byCOV which was in turn faster thanMI . We note, though, that none of the similarity

measures was particularly slow; none required more than 0.1seconds for any image

size used. Still, as we have argued above thatMI provides the most robust homing

performance of the three measures, we would like to find ways of speeding the com-

putation ofMI without degrading homing performace to a high degree. We undertake

this work in the next chapter.

In Section 3.6 we compared difference surface-based visualhoming with other re-

cently published visual homing algorithms which were tested with Vardy’s database.

We argued that comparison was difficult because (1) other authors made certain as-

sumptions which made their homing experiments easier than ours and (2) other authors

used different parts of the Vardy database than we did. Still, our comparison indicates

that the success of difference-surface based homing is on par with the other methods

we examined.
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3.8 Future Work

As we discussed in Section 3.1, we chose not to apply any intensity or colour trans-

formations to eitherIS or IC. Of course, some transformations could render homing by

optimising on the difference surface even more successful than reported in our results,

especially when illumination conditions change between capture ofIS and andIC. This

was in fact strongly implied by Sturzl and Zeil [2007], a workwe discussed in Chap-

ter 2. These authors advocated the use of difference-of-Gaussian filtering, subtraction

of image mean intensity from each image pixel, and local contrast normalisation to

fight the effects of dynamic illumination.

The hue-saturation-value (HSV) colour space is reported bysome researchers (see

e.g. Gourichon et al. [2002]) to be more robust to illumination change than grayscale.

Histogram equalisation is also sometimes used to account for dynamic illumination.

A logical next step in our research is to apply these or other as yet unidentified image

transformations toIS and/orIC before computing image similarity with mutual infor-

mation.

To bolster illumination invariance, we could also find edgesin both current and

snapshot images by convolving each image with, say, a Sobel kernel. Edges are

relatively illumination invariant features favoured by several image-based navigation

schemes described in Chapter 2. We did some preliminary testing with edge-filtered

images and found that they, using a difference surface approach, yielded a very small

catchment area since edge overlap between current and snapshot images is minimal

when the robot moves even a small distance from the goal location (i.e. 30cm). An-

other approach we could take is to use an image registration algorithm given edge-

filtered current and snapshot images to find the pose change between the current and

snapshot poses.

Sturzl and Mallot [2006] found that they could expand the catchment area of their

homing routine by removing high-frequency components of current and snapshot im-

ages. These blurred images, though, lead to less precise homing performance. They

suggested a multi-scale approach, using relatively blurryimages at the beginning of

a homing run and increasingly sharper images as the run proceeds. We could try the

same approach in difference surface-based homing. We note that Zeil et al. [2003]

advocated this approach but did not use it.

We have looked at three image similarity measures in this work: root-mean-square,

covariance, and mutual information. There are other similarity measures described in
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the statistics literature which may be applicable; these include the Kendall tau rank

correlation coefficient, Spearman’s rank correlation coefficient (Anderson and Sclove

[1986]), and pointwise mutual information. We carried out small-scale homing exper-

iments using the first two measures to compute image similarity. We found neither

Kendall nor Spearman produced better better thanCOV or MI . As these experiments

were limited, though, we feel that more work with these alternative image similarity

measures is warranted.

The image similarity measures we have experimented with require thatIS and IC

are aligned to the same external compass direction. In our work this alignment is

achieved by rotatingIC. This is a drawback for two reasons: (1) a compass is required

and (2) image rotation requires non-trivial computationaleffort. Must IS and IC be

aligned in this way by measuring the discrepancy between thetwo? Not necessarily.

We could, for example, simply compare the marginal intensity distributions ofIS and

IC (i.e. compare the normalised intensity histograms of theseimages). The Kullback-

Leibler divergence (Weisstein [2007b]) is a commonly used measure of the difference

between probability distributions and is defined as follows:

DKL(IS||IC) =
B−1

∑
a=0

pS(a)log2
pS(a)

pC(a)
(3.18)

pS(a) is the probability that a pixel has intensitya (0≤ a < B) in IS; pC(a) is defined

similarly.

We performed the homing experiments described in Section 3.2.1 with a few of

the data set pairings listed in Table 3.2 using Equation 3.18to measure image simi-

larity. When both snapshot and current images were taken from the “Original” data

set, the average return ratio was 0.843 (standard deviation0.212). This result is quite

promising. Unfortunately, when snapshots were taken from the “Original” data set but

current images were drawn from the “Winlit” set – simulatingan illumination change

– R̄Rwas only 0.110 (with a standard deviation of 0.172). This average return ratio

was much smaller than whenRMS, COV andMI were used to assess image similar-

ity. We saw a similar degradation in average return ratio when snapshots were drawn

from “Chairs1” and current images drawn from “Chairs2”:̄RRwas 0.289 with stan-

dard deviation of 0.205. It seems from this limited study that measuring the similarity

between non-aligned images using the Kullback-Leibler divergence works fairly well

in static environments but fails dramatically in dynamic ones. Future work in this area

might involve normalising the intensity histograms ofIS andIC before assessing their
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similarity or using an algorithm other than Kullback-Leibler to measure this similarity.

RMS (or something very similar) is quite often used to measure the difference

between images in other image-based navigation schemes (e.g. the image warping

algorithm of Franz et al. [1998b], the image-based Monte Carlo localisation algorithm

of Menegatti et al. [2004], and several topological navigation algorithms). As in our

work, these algorithms compare a current image with one or more images captured

previously. Lighting and landmark locations might well have changed in the interim.

We have demonstrated that mutual information is robust to this dynamism and so could

provide a useful image similarity measure in image-based robot navigation in general.

As we discussed in Chapter 2, central-place foraging insects like ants and honey-

bees seem to employ a visual homing algorithm to rediscover anest or food source. A

number of visual homing algorithms, both feature-based andimage-based, have been

published in the robotics and insect ethology literature though which algorithm(s) these

insects use is still unknown. A biologically plausible neural circuit implementing im-

age similarity measurement using mutual information, covariance orRMSwould lend

weight to the hypothesis that insects move so as to optimise an image similarity signal

in order to home. Zeil [2007] believes that a neural implementation of mutual image

information is possible but no significant work on this has yet been done.



Chapter 4

Fast Computation of Mutual Image

Information

4.1 Introduction

In this chapter, we explore methods to speed the computationof mutual information

(MI). There are a few reasons to do this. If we can reduce the time to compute MI

without drastically diminishing the ease with which a difference surface can be op-

timised, then an agent should arrive home faster from a givenstarting location. We

note that it may be the case that robot movement time during homing is vastly greater

than MI computation time, whether relatively fast or slow. We investigate this issue in

this and the next chapter. Another reason to speed MI computation is that this image

similarity measure could be used not only for homing but alsofor place recognition

in vision-based topological navigation. Place recognition, as we discussed in Chap-

ter 2, typically involves the comparison of a recently captured input image with a large

number of reference (i.e. map) images. This high volume of image comparison is

also required in image-based metric localisation (see Chapter 2) so fast computation of

mutual image information may also be useful in this field.

There are two ways to compute mutual image information (MI) using the technol-

ogy at our disposal: serially or in parallel. We have in our laboratory an AnaFocus

EyeRIS Vision System (Castillo [2005b]) which is capable ofperforming a variety of

operations in parallel on images stored as analogue signals. We present novel marginal

and joint histogram algorithms for use in MI computation with the EyeRIS. Alterna-

tively, we can capture images using a standard Webcam and store and process them

with a serial Pentium-type computer, as is often done in visual navigation in robotics

103
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(see e.g. Franz et al. [1998b]).

The algorithms for parallel and serial MI computation suggest different ways to

increase processing speed. Analysing our novel parallel algorithm, we find that a re-

duction in the number of intensity levels will produce a corresponding decrease in the

time required to compute MI. On the other hand, the serial MI algorithm depends on

both spatial image resolution and the number of image intensity levels. In our experi-

ments, we will systematically vary the spatial and intensity resolutions of images used

to compute MI difference surfaces. We shall attempt to determine whether any of our

parameter settings produce difference surfaces which are likely to be unduly difficult

to optimise. We shall then attempt to identify the best parameter settings and use these

to time MI computation on systems described above.

This chapter is organised as follows: Section 4.2 describesthe EyeRIS Vision Sys-

tem in detail. We also describe the Webcam and Pentium computer used for serial MI

computation. In Section 4.3 we describe the algorithms usedfor the computation of

mutual image information in serial and in parallel. Section4.4 outlines the experiments

we performed to compare the chosen methods of MI computation. Results are given

in Section 4.5. We close with a discussion and conclusions inSection 4.6 and future

work in Section 4.7. Related work is discussed in Section 4.8.

4.2 Materials

4.2.1 AnaFocus EyeRIS Vision System

The AnaFocus EyeRIS Vision System consists of two processors: the AnaFocus ACE16kv2

Focal Plane Processor (FPP) and the Altera NIOS II Digital Microprocessor (Castillo

[2005a]).

The FPP is both an image capture system and parallel image processor. The FPP

contains a rectangular grid of 128×128 photosensors. Each photosensor is coupled

with a processor, connected with each of its eight neighbours in the grid. The FPP can

store and process up to seven images at a time. Images are stored in analog form on

the FPP, but are digitised into 256 gray levels when downloaded to the digital micro-

processor’s memory.

The FPP’s processors are capable of performing several common image operations

in parallel (see Castillo [2005c]). These include unary operations such as thresholding,

global averaging and convolutions and binary logical and arithmetic (subtraction, ad-
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dition) operations. All operations result in new images; this includes global averaging,

which produces a constant image all of whose 128×128 values are set to the mean

of the input image. The FPP is programmed in a proprietary language described in

Castillo [2005c].

The digital microprocessor is responsible for the flow of program execution and

manipulating the results of images processed by the FPP. Themicroprocessor is pro-

grammed in the C programming language. See Castillo [2005c]for more information.

The microprocessor can store up to 1024 digital images of thetype described above.

The EyeRIS is a very attractive system for parallel image processing. The appli-

cation programming interface described in Castillo [2005c] is a comprehensive library

of image manipulation functions. It is easy to incorporate these functions into control

programs resident on the system’s microprocessor. Geis et al. [2007] laud the EyeRIS

for the “massively parallel character of the focal plane processor and the lower power

consumption of the system together with a comparably small size” (p. 2930). The last

two of these qualities make the system particularly appropriate for use in autonomous

mobile robotics in which size and energy requirements are often important constraints.

4.2.2 Laptop and Webcam

We also compute MI with more traditional hardware than that described above: namely

a Webcam providing images to a laptop. The camera is a Creative Labs Video Blaster

Webcam III Model 6840 (Cre [2000]). The Webcam is capable of capturing colour

images at the following resolutions: 640×480, 352×288, 320×240, 176×144, and

160×120. The camera’s frame rate depends on the capture resolution; at resolution

640×480, the maximum frame rate is 24 frames per second.

Our laptop is an Acer Travelmate 313T. We chose this laptop because it is lightweight

enough at 1.2kg to be carried by a Koala mobile robot. The Acer’s processor speed is

266 MHz.

4.3 Computation of Mutual Image Information

Mutual information (MI) between snapshot imageIS and current imageIC is calculated

with the following formula (adapted from Hill et al. [2001]):

MI(IS, IC) = ∑
i

∑
j

p(i, j)log
p(i, j)

pS(i)pC( j)
(4.1)
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Algorithm 1 Compute histogram of intensity image serially
Require: I is intensity image withN rows,M columns and intensities 0..B−1

Ensure: hist[i] stores number of pixels with intensityi in I , 0≤ i ≤ B−1

1: procedure COMPUTEIMAGEHISTOGRAMSERIALLY (I )

2: var int[0..B-1]hist ⊲ Must initialisehist to all zeros

3: for r ← 1,N do

4: for c← 1,M do

5: i← I [r][c]

6: hist[i]← hist[i]+1

7: end for

8: end for

9: return hist ⊲ The image histogram ofI

10: end procedure

Here, pS(i) is the probability that a pixel will have intensityi in imageIS; gray level

intensities range from 0 toB− 1 (B is 256 or less for our hardware). These proba-

bilities are estimated from the intensity histogram ofIS; pC( j) is defined similarly for

current imageIC. The joint probabilityp(i, j) is the probability that the same pixel will

have intensityi in IS and intensityj in IC. These probabilities are estimated from the

normalised joint histogram of imagesIS andIC. The joint histogram of two images is a

square matrix of sizeB×B. Entry (i, j) in the joint histogram is the number of pixels

in the first image with intensityi coinciding with pixels with intensityj in the second

image. The logarithm in Equation 4.1 is to base 2.

Histograms are typically computed serially but with the EyeRIS system we have

the option of generating them in parallel. We describe both methods below.

4.3.1 Serial Computation of Image Histograms

The algorithm for computing the intensity histogram of a grayscale image is included

in almost every image processing textbook (see e.g. Fisher et al. [1996]). The pseu-

docode is given in Algorithm 1.

Explicit program listings for the computation of joint image histograms is some-

what difficult to find. It is easy, though, to glean the pseudocode from written de-

scription of the joint histogram (see e.g. Hill et al. [2001]). The serial joint histogram

algorithm is outlined in Algorithm 2.
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Algorithm 2 Compute joint histogram of two intensity images serially
Require: I , J are intensity images withN rows,M columns and intensities 0..B−1

Ensure: jhist[i][ j] stores number of coincidences of intensityi in I with intensity j in

J, 0≤ i, j ≤ B−1

1: procedure COMPUTEJOINTIMAGEHISTOGRAMSERIALLY (I , J)

2: var int[0..B-1][0..B-1] jhist ⊲ Must initialise jhist to all zeros

3: for r ← 1,N do

4: for c← 1,M do

5: i← I [r][c]

6: j← J[r][c]

7: jhist[i][ j]← jhist[i][ j]+1

8: end for

9: end for

10: return jhist ⊲ The joint image histogram ofI andJ

11: end procedure

4.3.2 Parallel Computation of Image Histograms

We devised novel single and joint histogram algorithms for use on the EyeRIS’s paral-

lel Focal Plane Processor.

Pseudocode for single image parallel histogram computation is given in Algo-

rithm 3. The algorithm iteratesB times, once for each gray levelb. In each iteration,

the algorithm computes a thresholded image in which only pixels with intensity value

b in the original image are turned “on.” The algorithm then counts the number of “on”

pixels in the thresholded image and stores this count in the histogram bin for intensity

b.

Figure 4.1 illustrates the thresholding process. The imageto be analysed – the

“original” – is in the top left-hand corner. The original consists of eight intensity

levels 0..7 and has dimensions 128×128. The original image contains eight intensity

bands of equal area. The eight binary thresholded images areshown as well. Black

pixels in the threshold image for intensityb indicate pixels in the original image not

equal to intensityb. A histogram created from the original images will be uniform and

identical; each bin will contain a count of 2048 pixels.

Algorithm 3, line 5 requires the computation of the number of1’s in the bandpass

intensity thresholded imageIThresh. There are at least two ways to do this with the

EyeRIS’s FPP. The FPP has a built-in function called AddressEventFunction (Castillo
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Algorithm 3 Compute histogram of intensity image in parallel
Require: I is intensity image withN rows,M columns and intensities 0..B−1

Ensure: hist[i] stores number of pixels with intensityi in I , 0≤ i ≤ B−1

1: procedure COMPUTEIMAGEHISTOGRAMINPARALLEL (I )

2: var int[0..b-1]hist ⊲ Must initialisehist to all zeros

3: for i← 0,B−1 do

4: Ithresh← bandpass thresholdI at intensityi ⊲ Produces binary image with

1’s within threshold

5: hist[i]← number of 1’s inIthresh(see text for details)

6: end for

7: return hist ⊲ The image histogram ofI

8: end procedure

[2005c]), which counts the number of white pixels in a binaryimage. Unfortunately,

the running time of this operation – though very fast – is dependant on the number

of 1’s in the input image. Also, the count is capped at 4095 pixels due to memory

limitations.

Alternatively, we could use the GlobalMean operator to compute the mean image

intensitym of IThresh. Using special circuitry, the mean is computed almost instanta-

neously, regardless of image content (Castillo [2005c]). Given this mean, the number

of white pixels inIThresh is m·1282

255 (assuming white pixels are stored at intensity 255).

As the GlobalMean returns an integer value in the range[0,255], this method will be

somewhat inaccurate. For example, a true mean in the range [99.5, 100.5) will be

rounded to 100, giving a count of 6425 white pixels. The actual number of white pix-

els is in the range [6393, 6457). For this reason, despite itslimitations, we use the

AddressEventFunction to compute the number of white pixelsin IThreshrather than the

GlobalMean method.

Our algorithm for parallel joint histogramming is given in Algorithm 4. The main

idea is this: In order to compute the joint histogram value for intensitiesi and j we

compute the bandpass thresholded image ofI at intensityi producing binary image

Ithresh. We similarly bandpassJ at intensity j. We then compute a pixel-wise logical-

and ofIthreshandJthresh, which produces a binary imageK whose pixels are only “on”

at locations in whichI has intensityi andJ had intensityj. The count the number of

“on” pixels in K is stored in the joint histogram entry at(i, j).

Figure 4.2 illustrates the process of creating the imagesK. ImageI is given in
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Figure 4.1: Images illustrating the thresholding process used for parallel single image

histogramming. See text for more information.

Figure 4.2(a) andJ in Figure 4.2(b). Figure 4.2(c) shows the jointly thresholded image

K for each value ofi and j (0≤ i, j ≤ 7).

4.3.3 Time Requirements of MI Computation with Parallel and Se-

rial Histogramming

It is clear from Equation 4.1 that, once image intensity probabilities have been gen-

erated from image histograms, the computation of mutual information requiresO(B2)

time, whereB is as before the number of image gray levels. Conversion of histogram

counts to intensity probabilities also requiresO(B2) operations. This analysis holds

regardless of the method used to compute the histograms.

It follows from Algorithms 1 and 2 that serial computation ofboth single and joint

image histograms requiresO(NM) operations, where each image hasN rows andM

columns. Thus, serial computation of mutual information requires a total ofO(B2 +

NM) steps.

Parallel computation of a single image histogram, on the other hand, requiresO(B)

steps, as the loop in Algorithm 3 iteratesB times. Generation of the joint histogram

in parallel requiresO(B2) steps, owing to the doubly-nested loop structure of Algo-

rithm 4. Parallel computation of mutual information requires a total ofO(B2) steps.

Note that we assume that the instructions on lines 4 and 6-8 ofAlgorithm 4 require unit

time (independent of the size of the input). As we shall discuss later, this is the case on



Chapter 4. Fast Computation of Mutual Image Information 110

(a) Image 1 (b) Image 2

Im
ag

e
1

In
te

n
si

ty

Image 2 Intensity

0
7

0 7

(c) Jointly Thresholded Images

Figure 4.2: Illustration of the parallel joint histogramming process. See text for details.
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Algorithm 4 Compute joint histogram of two intensity images in parallel
Require: I , J are intensity images withN rows,M columns and intensities 0..B−1

Ensure: jhist[i][ j] stores number of coincidences of intensityi in I with intensity j in

J, 0≤ i, j ≤ B−1

1: procedure COMPUTEJOINTIMAGEHISTOGRAMSERIALLY (I , J)

2: var int[0..B-1][0..B-1] jhist ⊲ Must initialise jhist to all zeros

3: for i← 0,B−1 do

4: Ithresh← bandpass thresholdI at intensityi

5: for j← 0,B−1 do

6: Jthresh← bandpass thresholdJ at intensityj

7: K← Ithresh∧Jthresh ⊲ ∧ denotes logical pixel-wise “and”

8: jhist[i][ j]← number of 1’s inK

9: end for

10: end for

11: return jhist ⊲ The joint image histogram ofI andJ

12: end procedure

the EyeRIS platform but may not be so with all parallel image processing systems.

4.4 Experiments

4.4.1 Viable MI difference surfaces with reduced images

Given the analysis presented in Section 4.3.3 it is evident that the time required for se-

rial histogram computation depends on both spatial and intensity resolution. A crucial

question then is how much can we reduce spatial and/or intensity resolution without

producing MI difference surfaces which are unduly difficultto optimise? We attempt

to answer this question with experiments using Vardy’s image data set, described in

the previous chapter.

As indicated in Section 4.2 our Webcam is capable of producing images at vari-

ous resolutions. We reproduce an approximate subset of these resolutions (352×288,

176×144, and 160×120) by scaling Vardy’s images to, respectively, 50%, 25% and

20% of their original size. Additionally, we scale Vardy’s images to 17% their original

size to approximate images captured by the EyeRIS system.

Image scaling by a factor of1n is a two-step process. In the first stage, the original
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Figure 4.3: Snapshot coordinates used in experiments described in Section 4.4.

image is convoluted with ann×n averaging filter each of whose entries is1
n2 . The con-

volved image is then sampled at everynth row and, within that row, everynth column.

Though our Webcam’s resolution reduction algorithm is unpublished, some reports

(see e.g. Filippov [2006]) suggest typical Webcams mimic this process to produce

low-resolution images.

For each of the four spatial resolutions above, we varied thenumber of gray levels,

using 256, 128, 64, 32 and 8 in turn. A simple linear binning process was used when

necessary to reduce gray levels from the original 256. For example, to reduce to 8 gray

levels, intensities in the range [0,31] in the original image are mapped to intensity 0,

intensities in [32,63] are mapped to intensity 1, and so forth.

To form MI difference surfaces, we fixed snapshot locations at the nine coordinates

indicated in Figure 4.3; this set was designed to be small while covering most of the

experimental environment. For a given gray level and spatial resolution, we computed

three difference surfaces for each snapshot location. Theydiffer as follows:

1. Both snapshot and current images were taken from the “Original” set.

2. The snapshot was taken from the “Original” set and the current images were

taken from the “Winlit” set.

3. The snapshot was taken from the “Original” set and the current images were

taken from the “Chairs” set.

The first set of difference surfaces models a static environment, the second set mod-

els a dynamic environment with changing lighting and the third models a dynamic

environment with changing object locations.
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We created 675 difference surfaces in total. Given so many surfaces to assess, we

could not simulate homing runs from all possible starting points for each surface as

we did in the previous chapter. We therefore assessed returnratios for all 225 static

difference surfaces by homing from thirty-two uniformly distributed starting locations

on each surface. These homing simulations use the software described in the previous

chapter.

To measure ease of optimisation on difference surfaces created in dynamic and

static environments, we shall use the following criteria; these are less computationally

intensive than the return ratio:

4.4.1.1 Global maximum at reference location

When homing, we shall assume that the reference location occurs at the global max-

imum of the difference surface. Thus it is crucial that for each difference surface the

reference location coincides with the global maximum.

4.4.1.2 Local maxima

Commonly used optimisation algorithms guarantee – at best –the identification of the

maximum nearest the starting location (see e.g. Adby and Dempster [1974]). Thus,

local maxima away from the reference location should be rareand easy to distinguish

from the global maximum. A local maximum is defined as a position whose value is

greater than all immediate neighbours.

4.4.1.3 Meaningful gradients

Some optimisation schemes are gradient-based (again see Adby and Dempster [1974]);

they attempt to determine and follow the local gradient (when maximising) or negative

gradient (when minimising). Assuming we can accurately approximate function gra-

dients, these gradients will only provide useful information if the angular divergence

between the true home direction and the current local gradient is small. We therefore

measure this angular divergence.

4.4.1.4 Monotonic difference surfaces

So-called direct search (Adby and Dempster [1974]) optimisation methods employ raw

function values rather than local gradients (see e.g. the RunDown method in Zeil et al.

[2003]). These algorithms assume that – when maximising – anincrease in function
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value indicates a decrease in distance to a local maximum. Wemeasure the probability

that a unit move (i.e. 30cm) in a random direction will provide useful information. A

move towards the reference location should correspond to anincrease when using the

MI metric. So too, a move away from the reference location should correspond to a

decrease when using the MI metric. Below, we frequently refer to this as the “good

moves” criterion.

4.4.2 Timing Experiments

Here, we determine the speed with which mutual information is calculated on the plat-

forms described in Section 4.2 using the range of viable resolutions and gray levels

identified in the previous experiments. We will look in particular at computation in

parallel using the EyeRIS and computation in serial on our Acer laptop.

4.5 Results

4.5.1 Viable MI difference surfaces with reduced images

We use the criteria established in the previous section to judge the viability of the

difference surfaces produced here. In all experiments, theglobal maximum of the

difference surface coincided with the goal location, regardless of reduction of spatial

and/or intensity resolution.

Table 4.1 gives the results of our homing experiments in static conditions with im-

ages reduced spatially and/or in number of gray levels. It isclear that these reductions

have little effect on the success – as measured by return ratio – of homing in Vardy’s

laboratory environment.

Table 4.2 gives the mean number of local maxima for all spatial and intensity re-

ductions for difference surfaces in which current and snapshot images were taken from

the “Original” data set. Local maxima seem to decrease with decreasing numbers of

gray levels. The maxima tend to increase with decreasing spatial resolution. As only

nine difference surfaces were created for each pairing of spatial resolution and inten-

sity resolution, there is not enough data to determine if thelocal maxima reported in

Table 4.2 are significantly different.

The non-snapshot maxima reported in Table 4.2 may cause problems during hom-

ing. If an agent begins homing close to one of these spurious maxima, it may well be

attracted to it in the homing process and even eventually halt at it. We remind the reader
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Num. Gray Levels

Scale Down To 256 128 64 32 8

100% 0.97 0.97 0.97 0.95 0.98

50% 0.97 0.97 0.97 0.95 0.98

25% 0.98 0.98 0.97 0.97 0.97

20% 0.97 0.97 0.97 0.96 0.97

17% 0.97 0.98 0.97 0.95 0.97

Table 4.1: Return ratios for homing on MI difference surfaces formed using Vardy’s

images scaled to various spatial and/or intensity resolutions. Both snapshot and current

images were taken from the “Original” data set.

Num. Gray Levels

Scale Down To 256 128 64 32 8

100% 1.9 1.9 1.9 1.8 1.0

50% 1.9 2.0 1.9 1.9 0.9

25% 1.7 1.9 1.9 1.7 1.3

20% 2.6 2.1 1.8 1.8 1.4

17% 2.2 2.4 2.6 2.1 1.4

Table 4.2: Mean number of local maxima (in addition to the true global maximum) in

MI difference surfaces formed using Vardy’s images scaled to various spatial and/or

intensity resolutions. Both snapshot and current images were taken from the “Original”

data set.

that the stopping criterion used by our homing algorithm cannot distinguish between

local and global difference surface maxima. This is a problem frequently reported in

the optimisation literature. We experiment with one methodof avoiding non-snapshot

maxima in the next chapter. We also give an extensive discussion of another method –

simulated annealing – in the future work section of the next chapter.

Table 4.3 gives the mean number of local maxima for all spatial and intensity re-

ductions for difference surfaces in which current images were taken from the “Winlit”

set and snapshot images were taken from the “Original” set. Acomparison of Ta-

ble 4.2 and Table 4.3 indicates – in accord with the results ofthe previous chapter –

that dynamic illumination leads to more difference surfacelocal maxima than are seen

in static conditions, making homing more difficult. Here, unfortunately, reduction of
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Num. Gray Levels

Scale Down To 256 128 64 32 8

100% 3.2 3.8 3.7 3.6 3.6

50% 2.9 3.1 4.3 4.0 3.9

25% 3.2 3.3 3.7 4.1 4.6

20% 3.2 3.2 3.7 4.2 4.6

17% 3.7 3.9 3.6 4.3 4.3

Table 4.3: Mean number of local maxima in MI difference surfaces formed using Vardy’s

images scaled to various spatial and/or intensity resolutions. Snapshot were taken from

the “Original” data set and current images were taken from the “Winlit” set.

Num. Gray Levels

Scale Down To 256 128 64 32 8

100% 3.6 3.9 3.8 4.1 3.6

50% 3.6 3.7 4.0 4.2 3.3

25% 4.0 4.3 4.2 4.2 3.3

20% 3.4 4.1 4.2 4.3 3.7

17% 3.9 4.4 4.9 4.0 3.6

Table 4.4: Mean number of local maxima in MI difference surfaces formed using Vardy’s

images scaled to various spatial and/or intensity resolutions. Snapshot were taken from

the “Original” data set and current images were taken from the “Chairs” set.

spatial and/or intensity resolution often yields more (though not dramatically more)

local maxima than we saw in difference surfaces formed with unreduced images.

Table 4.4 gives the mean number of local maxima for all spatial and intensity re-

ductions for difference surfaces in which current images were taken from the “Chairs”

set and snapshot images were taken from the “Original” set. There seems to be no dis-

cernible relationship between number of intensity levels and number local maxima. As

spatial resolution decreases, number of local maxima tend to increase as in Tables 4.2

and 4.3; again this increase does not seem dramatic.

We next looked at the standard deviation of angular discrepancy between difference

surface gradient and true home direction. Figure 4.4 illustrates this divergence for

snapshot and current images taken from the “Original” data set. Images were scaled

down by 50% and various gray level reductions were used. The curve in blue illustrates
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Figure 4.4: Angular discrepancy between difference surface gradient and true home

direction as a function of goal distance. Snapshot and current images were taken from

the “Original” data set. Images were scaled down by 50% and various gray level reduc-

tions were used. The curve in blue illustrates the standard deviation of divergence for

difference surfaces produced from unreduced images.

the standard deviation of divergence for difference surfaces produced from unreduced

images. As can be seen, there is no dramatic difference in this criteria for the various

gray level reductions shown. Spatial reductions of images to 25%, 20% and 17% of

original size yield almost identical results.

When current images are taken from either the “Winlit” or “Chairs” data set, we see

largely the same results as reported in the previous paragraph. We do note, though, that

the maximal and minimal gray level settings tend to produce slightly worse behaviour

when spatial reduction is fairly large, as seen in Figure 4.5.

As with the divergence criterion, the “good moves” criterion (defined in Section 4.4.1.4)

exhibits little sensitivity to spatial and/or gray level reduction in static environments.

So too, in dynamic scenes the “good moves” criterion slightly favours mid-level gray

level reductions for large spatial reductions.

We close this section showing a few representative difference surfaces. Rather than

present fully three-dimensional difference surfaces (e.g. Figure 4.6(a)) in this section,

we represent each difference surface with three transects (e.g. Figures 4.6(b), 4.6(c)

and 4.6(d)). Each transect intersects the goal location; the first (Figure 4.6(b)) has

slope infinity in the coordinate system of Figure 4.3; the second (Figure 4.6(c)) has

slope 1; and the third (Figure 4.6(d)) has slope -1. This kindof difference surface plot

makes it easier to see the effects of gray level and/or spatial reduction. The negative
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Figure 4.5: Angular discrepancy between difference surface gradient and true home

direction as a function of goal distance. Snapshot images were taken from the “Original”

data set and current images were taken from the “Winlit” data set. Images were scaled

down to 25% of original size and various gray level reductions were used. The curve

in blue illustrates the standard deviation of divergence for difference surfaces produced

from unreduced images.

distances in the transect plots indicate positions with x-coordinates less than that of the

goal location.

Figure 4.7 depicts six difference surfaces captured at a single snapshot location

(x=180cm, y=180cm); both snapshot and current images were taken from the “Origi-

nal” data set. Figures 4.7(a), 4.7(b) and 4.7(c) each display a single transect from each

of the six difference surfaces; the transects are defined as in Figure 4.6. The difference

surface in blue was created with images whose spatial and intensity resolution was

unreduced; we provide this for comparison. The four other difference surfaces – in

green, red, cyan, and magenta – used images which were reduced to – respectively –

128, 64, 32, and 8 gray levels (spatial resolution was unchanged). As can be seen in

the figure, reduction of gray levels results in a scaling-down of MI surface values near

the snapshot location and a constant shift of MI surface values relatively far from the

snapshot location. We see qualitatively similar results atother snapshot locations, for

other spatial resolutions, and in the dynamic environmentswe experimented with.

Figure 4.8 depicts six difference surfaces captured at a single snapshot location

(x=180cm, y=180cm); both snapshot and current images were taken from the “Origi-

nal” data set. Figures 4.8(a), 4.8(b) and 4.8(c) each display a single transect from each

of the six difference surfaces; the transects are defined as in Figure 4.6. The difference
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Figure 4.6: Difference surfaces Section 4.5 are presented not as fully three-dimensional

(e.g. a). We rather depict three transects (e.g. b, c and d), each intersecting the goal

location. See text for more details.
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Figure 4.7: Transects of six difference surfaces produced at snapshot location

x=180cm, y=180cm. Snapshot and current images were taken from the “Original” data

set. See text for details of how the six difference surfaces were created.
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Figure 4.8: Transects of six difference surfaces produced at snapshot location

x=180cm, y=180cm. Snapshot and current images were taken from the “Original” data

set. See text for details of how the six difference surfaces were created.
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Figure 4.9: Mean times for serial MI computation on our laptop for various spatial and

gray scale resolutions. Note that the vertical scale on each subplot is different. See

Section 4.5.2 for details.

surface in blue was created with images whose spatial and intensity resolution was

unreduced; we provide this for comparison. The four other difference surfaces – in

green, red, cyan, and magenta – used images which were scaleddown to – respectively

– 50%, 25%, 20%, and 17% of their original size (number of graylevels remained

constant at 256). As can be seen in the figure, spatial resolution reduction leaves the

MI value at the snapshot location almost unchanged. There isa constant shift of MI

surface values relatively far from the snapshot location. We see qualitatively similar

results at other snapshot locations, for other spatial resolutions, and in the dynamic

environments we experimented with.

4.5.2 Timing Experiments

Figure 4.9 shows the mean time (over 20 trials) required to compute MI on the Acer

laptop for various spatial resolutions and gray levels. Thestandard deviation of com-

putation times on the laptop is exceedingly small, so we do not show it.

It proved difficult to alter the number of gray levels used in parallel computation of

MI on the EyeRIS. Given the results of the previous section, we fixed the number of

gray levels at 16 for our parallel timing experiment. Mean MIcomputation time over

20 trials with 16 gray levels was 0.098 seconds with a standard deviation of 0.0656

seconds. Image resolution was 128x128 pixels, the native size of all EyeRIS images.

This mean time is approximately equal to the mean computation time on the laptop at
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Figure 4.10: Mean intensity of images of constant well-lit scene captured over time with

the EyeRIS system.

the lowest spatial resolution.

4.5.3 Noise in Image Capture on EyeRIS

As the EyeRIS system is in a fairly early stage of development, we wanted to determine

whether it produces any unreported bugs when capturing images and computing mu-

tual information. In an early test, we programmed the EyeRISsystem to capture 500

images, one every 35 ms (the default exposure time); all overhead lights were turned

on. A troubling trend soon became apparent. As depicted in Figure 4.10, the mean

image intensity over time increases approximately logarithmically, with periodic sharp

dips. This contrasts with Webcam images captured over time,which are corrupted by

zero mean Gaussian noise.

We looked at the values of individual pixels in successive EyeRIS images and found

that the dips evident in Figure 4.10 are caused by a reductionin the majority of image

pixels. This decrease is invariably followed by an increaseof pixel value in one of the

next few images. The mean intensity increase is usually slightly higher than the pre-

ceding mean intensity decrease. Between dips, successive images differ by noise with a

slightly positive mean and approximately Gaussian distribution. We have brought this

problem to the manufacturer of the EyeRIS but they have as yetoffered no solution.

Our laboratory is lit by flourescent lights. It may be the casethat the dips in mean

image intensity in Figure 4.10 are caused by the flicker – the periodic dimming – of

these lamps. The flicker of computer monitors near the EyeRISmay contribute to this

phenomenon as well. To determine whether the dips are causedby these light sources,
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Figure 4.11: Mean intensity of images of constant scene captured over time with the

EyeRIS system. All flourescent lights and nearby computer monitors in the laboratory

were turned off.

we as before programmed the EyeRIS system to capture 500 images, one every 35

ms. This time, though, the images were taken with all flourescent lights and nearby

computer monitors turned off. The only illumination came from natural light flowing

through our laboratory’s windows. Figure 4.11 depicts the mean intensity of the 500

images we captured successively in this experiment. We haveadjusted the range of the

y-axis of Figure 4.11 to cover fourteen gray levels, more than are needed to display the

data; this is to make comparison with Figure 4.10 – whose y-axis also spans fourteen

gray levels – easier. The mean image intensities depicted inFigure 4.11 are smaller

than those in Figure 4.10 since the images used to create the former figure were taken

in much darker conditions. About ten sudden sharp dips in mean intensity level are

evident in Figure 4.11, far fewer than the number of dips in Figure 4.10. The majority

of dips in Figure 4.10 represent a change in mean intensity ofabout three gray levels

whereas the dips in Figure 4.11 are generally of smaller magnitude – about one gray

level. Interestingly, there are about ten dips in Figure 4.10 which represent a change in

mean intensity of about one gray level, matching the patternseen in Figure 4.11. Our

conclusion is that the lab’s flourescent lighting causes themajority of dips in mean

image intensity seen in Figure 4.10. There may be another periodically flickering

source of illumination – dimmer than the flourescents and as yet unidentified – in our

laboratory which was still active when capturing the imagesused to make Figure 4.11.

An important question is this: does the noise described above disrupt MI difference

surfaces, making them difficult to optimise? In order to find out, we performed the
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following experiment: We first computed a difference surface transect using images

from Vardy’s “Original” data set. The snapshot was the imageat x=150 cm, y=0 cm.

We then simulated a homing run along a line to this snapshot location, beginning at

x=150 cm, y=330 cm. As expected, this homing run produces a graph in which MI

increases monotonically with decreasing goal distance, reaching a maximum at the

goal (see Figure 4.12, dashed line).

In order to determine the effect of EyeRIS noise on the MI signal, we computed

the difference surfaces transect described above but this time corrupted Vardy’s images

with this noise. We corrupted each image by adding a random integer (allowed to

be position or negative) to each pixel value in the image. Thenoise value for each

pixel was drawn randomly from a probability density function generated from some

of the 500 noisy EyeRIS images we described above. To generate this probability

density function we assumed that the Vardy images along the transect were captured at

1 second intervals. We also assumed, somewhat arbitrarily,that movement along the

transect began 5 seconds after starting to acquire EyeRIS images. We identified the

EyeRIS image whose capture time corresponded best with the assigned capture time

of the current Vardy image. The EyeRIS images were captured every 35ms. Thus, the

second Vardy image in the transect, for example, was matchedwith the 172nd EyeRIS

image and the third Vardy image in the transect was matched with the 201st EyeRIS

image. To compute the noise probability density function for the third Vardy image, we

subtracted the 172nd EyeRIS image from the 201st and created a histogram from the

pixel differences. The noise probability density functions for the other Vardy images

in the transect were computed similarly. The difference surface transect which resulted

from the corrupted Vardy images is shown in Figure 4.12 (solid line). The MI signal

generated from corrupted images exhibits a much less pronounced maximum at the

goal location than does the uncorrupted MI signal. We consider this MI signal, in fact,

to be unusable for homing purposes. We repeated this experiment with several (ten)

combinations of snapshot location and starting location using Vardy’s “Original” data

set. The result in each case was qualitatively similar to that described above.

4.6 Discussion and Conclusions

The goal of this chapter was to provide methods to speed the computation of mutual

image information without reducing the effectiveness of difference surface-based vi-

sual homing. We proposed a novel method of computing mutual image information
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Figure 4.12: Solid line: transect of homing run using images from Vardy’s “Original” data

set. Dashed line: transect homing run using same images as before, but corrupted by

noise of the type seen in Figure 4.10.

with the help of a parallel image processing device: the AnaFocus EyeRIS Vision Sys-

tem. We showed that this algorithm computes mutual image information inO(B2)

operations, whereB is the number of intensity levels in the input images. We then

demonstrated that reduction of gray levels (to a minimum of 8) does not have a neg-

ative impact on homing performance in a laboratory environment in both static and

dynamic conditions.

Unfortunately, it is clear from the work described in Section 4.5.3 that the noise

in the EyeRIS’s image capture process renders this device unusable for our homing

studies. We demonstrated that this noise is in part due to thefluorescent lighting used

to illuminate our laboratory environment.

As the EyeRIS system proved to be non-viable for our purposes, we attempted

to speed the serial computation of mutual information. We did so by reducing the

spatial resolution and/or number of intensity levels in snapshot and current images.

Serial computation of mutual image information takesO(B2+NM) steps where each

input image hasN rows andM columns. We demonstrated that a reduction in spa-

tial and/or intensity levels in our input image has little discernible negative effect on

homing performance in a laboratory environment in both static and dynamic condi-

tions. We considered quite a large range of spatial and intensity level reductions, as

described in Section 4.4.

We compared the time required to compute mutual informationwith parallel and

serial algorithms in Section 4.5.2. We computed mutual information using the Eye-
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RIS using input images of 128x128 pixels subsampled to 16 gray levels. On average

computation took 0.098 seconds. Serial computation with slightly larger images with

16 gray levels took on average about 0.042 seconds, less thanhalf the time. The se-

rial setup is therefore faster than the parallel (at least with input images reduced as

described above) and is not subject to the debilitating image capture noise described

in Section 4.5.3. In “live” homing experiments, therefore,we feel justified in using

our laptop (or when possible a faster desktop computer) – rather than the EyeRIS – to

compute mutual image information with reduced images.

But what image size and gray level resolution should we use when computing mu-

tual image information serially? There is no one combination of image size and gray

level cardinality that yields consistently superior performance by any of the measures

of comparison considered in Section 4.4.1. The results reported in Section 4.4.1 lead

us to conclude that for difference surface homing in static and dynamic conditions, im-

ages with a spatial resolution of 176x144 pixels (20 percent of the original size of the

Vardy images) downsampled to 128 gray levels will consistently yield relatively good

homing performance. Mutual information with images of thissize will take on aver-

age 0.09 seconds to compute serially using our laptop, approximately the same amount

of time required by the parallel algorithm (albeit with smaller images and fewer gray

levels).

We believe that homing with reduced images is successful dueto the effect that

such reduction has on the mutual information signal. We saw in Figure 4.7 that re-

duction of gray levels results in a scaling-down of MI surface values near the snapshot

location and a constant shift of MI surface values relatively far from the snapshot lo-

cation. Even for quite drastic reduction in the number of gray levels the difference

surface retains a global maximum at the snapshot location. For a location somewhat

distant from the snapshot location, the gradient of the difference surface for one gray

level setting is approximately equal to the gradient of the surface at the same location

for another gray level setting. These qualities lead difference surface homing results

which are largely unaffected by the number of gray levels in input images.

The observations detailed above are based on experimental results. We would like

to provide some analytical support for these results. We first look at the change in

MI due to gray level reduction whenIC is captured at the snapshot location. IfIC is

identical toIS at this location (i.e. no image capture noise, environment is static), then

MI(IS, IC) = MI(IS, IS). It follows from Equation 4.1 that
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MI(IS, IS) =−
B−1

∑
a=0

pS(a)lg(pS(a)) = H(IS) (4.2)

wherepS(a) is the probability that a pixel will have intensitya (0≤ a < B) in image

IS; lg is shorthand for a logarithm with base 2. Values ofa for which pS(a) = 0

are ignored in the calculation of Equation 4.2. As indicated, MI(IS, IS) is simply the

entropy ofIS (denotedH(IS)). In the remainder of this discussion, we shall drop the

subscripts attached to probabilities (e.g.pS(a) becomesp(a)).

When the number of gray levels inIS is halved,H(IS) becomes

Hreduced(IS) =−
B−1

∑
a=0
by2

[p(a)+ p(a+1)] lg [(p(a)+ p(a+1)] (4.3)

which can be rewritten as

Hreduced(IS) =−
B−1

∑
a=0
by2

p(a)lg [(p(a)+ p(a+1)]+ p(a+1)lg [(p(a)+ p(a+1)] (4.4)

So too, Equation 4.2 can be rewritten as

H(IS) =−
B−1

∑
a=0
by2

[p(a)lg(p(a))+ p(a+1)lg(p(a+1))] (4.5)

Each term in−p(a)lg [(p(a)+ p(a+1)] in Equation 4.4 corresponds to a single term

−p(a)lg(p(a)) in Equation 4.5. Since 0< p(a), p(a+1) < 1,−p(a)lg [(p(a)+ p(a+1)]<

−p(a)lg(p(a)) for all a. Thus, as we saw in Figure 4.7, gray level reduction causes a

decrease in MI value at the snapshot location. The scale of MIreduction is dependent

on the distribution of intensities inIS. If, for example, the distribution of intensities is

uniform, thenp(a) = 1
B for all a. Equation 4.5 becomes

H(IS) =−
B−1

∑
a=0
by2

[

1
B

lg
1
B

+
1
B

lg
1
B

]

=−B
2

2
B

lg

[

1
B

]

=−lg

[

1
B

]

= lg(B) (4.6)

and Equation 4.3 becomes

Hreduced(IS) =−
B−1

∑
a=0
by2

2
B

lg

[

2
B

]

=−B
2

2
B

lg

[

2
B

]

=−lg

[

2
B

]

= lg(B)−1 (4.7)
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Thus, whenIS has a uniform intensity distribution, halving the number ofintensity

levels leads to a reduction of 1 in the MI signal at the snapshot location.

We saw in Figure 4.7 that reduction of gray levels results in aconstant shift of MI

surface values relatively far from the snapshot location. We shall provide some analyt-

ical support for this observation. We define four mutual image information readings:

• MI1 = MI(IS, IC1) is the mutual information reading at a position~x1 relatively far

from the snapshot location;IC1 denotes the image captured at~x1 and – as usual

– IS is the image captured at the snapshot location.

• MI2 = MI(IS, IC2) is the mutual information reading at a position~x2 close to~x1;

IC2 denotes the image captured at~x2.

• MI1,reducedis the mutual information reading at~x1 with the number of gray levels

in IS andIC1 cut in half.

• MI2,reducedis the mutual information reading at~x2 with the number of gray levels

in IS andIC2 cut in half.

To support our empirical findings, we would like to show thatMI1−MI1,reduced≈
MI2−MI2,reduced.

It is convenient to express mutual image information in the form (from Hill et al.

[2001])

MI(IS, IC) = H(IS)+H(IC)−H(IS, IC) (4.8)

whereH(IC) is the entropy ofIC andH(IS, IC) is the joint entropy between the two

images (which we shall define later).

Equation 4.8 makes clear that demonstrating thatMI1−MI1,reduced≈MI2−MI2,reduced

is equivalent to showing that

[H(IS)+H(IC1)−H(IS, IC1)]−
[

H(IS,reduced)+H(IC1,reduced)−H(IS,reduced, IC1,reduced)
]

≈
[H(IS)+H(IC2)−H(IS, IC2)]−

[

H(IS,reduced)+H(IC2,reduced)−H(IS,reduced, IC2,reduced)
]

(4.9)

We shall assume that, since~x2 near to~x1, H(IC1) = H(IC2) andH(IC1,reduced) = H(IC2,reduced).

This assumption is valid if neither~x2 nor ~x1 is close to an imaged object and the
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Figure 4.13: Graph (in blue) of j versus j · lg j for small positive values of j . The linear

Taylor series estimate of j · lg j is shown in red.

visual environment is static. Given these assumptions, in order to show thatMI1−
MI1,reduced≈MI2−MI2,reducedit suffices to demonstrate that

−H(IS, IC1)+H(IS,reduced, IC1,reduced)≈−H(IS, IC2)+H(IS,reduced, IC2,reduced) (4.10)

Joint entropy is defined as

H(IS, IC) =−
B−1

∑
a=0

B−1

∑
b=0

p(a,b)lg(p(a,b)) (4.11)

wherep(a,b) is the probability that a given pixel inIS has intensitya and the same

pixel in IC has valueb. Terms withp(a,b) = 0 are ignored in the calculation of the

joint entropy.

When the number of gray levels inIS andIC is halved, Equation 4.11 becomes

H(IS,reduced, IC,reduced) =−
B−1

∑
a=0
by2

B−1

∑
b=0
by2

[p(a,b)+ p(a,b+1)+ p(a+1,b)+ p(a+1,b+1)] ·

lg [p(a,b)+ p(a,b+1)+ p(a+1,b)+ p(a+1,b+1)]

(4.12)

We found it difficult to show that Equation 4.10 is true using joint entropy as ex-

pressed in Equations 4.11 and 4.12. Equations 4.11 and 4.12 consist of a number of

terms of the formj · lg j, where j is a particular joint probability. We shall replace
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each of these terms with its Taylor polynomial approximation. According to Taylor’s

theorem (Burden and Faires [1993]), any function which is n-times differentiable can

be approximated by a polynomial of (up to) degree n whose terms are dictated by the

theorem. The Taylor polynomial is designed to coincide withthe approximated func-

tion for one valueη of the function’s dependent variables. The approximation becomes

less exact as the distance fromη increases. Since~x is far from the snapshot location,

each joint probabilityj will be a positive real number very near zero (j could in fact

be equal to zero but these values are ignored in the computation of joint entropy). As

can be seen in Figure 4.13, the graph ofj · lg j is almost linear whenj is near zero (a

typical range of joint probability values was used to createthis graph). Thus, we feel

justified in using a Taylor polynomial of degree one to approximate j · lg j; this Taylor

polynomial is

j · lg j ≈ ηlg(η)+ lg(eη)( j−η) (4.13)

wheree is the base of the natural logarithm andη is a small positive real number. We

shall use the following more convenient form of Equation 4.13

j · lg j ≈ jlg(eη)−ηlg(e) (4.14)

Using Equation 4.14 we can rewrite Equation 4.11:

H(IS, IC) ≈ −
B−1

∑
a=0

B−1

∑
b=0

[p(a,b)lg(eη)−ηlg(e)]

≈ −lg(eη)
B−1

∑
a=0

B−1

∑
b=0

p(a,b)+ηlg(e)
B−1

∑
a=0

B−1

∑
b=0

1

(4.15)

Of course,
B−1

∑
a=0

B−1

∑
b=0

p(a,b)= 1. According to the definition of joint entropy given earlier

in this section, terms of Equation 4.15 withp(a,b) = 0 are ignored in the calculation

of the joint entropy. Thus,
B−1

∑
a=0

B−1

∑
b=0

1 is a count of the number of non-zero values of

p(a,b) for all a andb. As p(a,b) will sometimes be zero for particular values ofa and

b, this count is sometimes less thanB2. We shall let
B−1

∑
a=0

B−1

∑
b=0

1 equalK whereK ≤ B2.

Thus Equation 4.15 becomes

H(IS, IC)≈−lg(eη)+Kηlg(e) (4.16)
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We can substitute the right-hand side of Equation 4.16 into Equation 4.10:

−K1ηlg(e)+K1,reducedηlg(e)≈−K2ηlg(e)+K2,reducedηlg(e) (4.17)

This equality will hold ifK1,reduced−K1≈ K2,reduced−K2; we see that empirically this

is often the case. For example, in one instance using Vardy’sdata set,K1,reduced−K1 =

−18188 andK2,reduced−K2 =−18275; in this case~x1 and~x2 were separated by 30cm.

We saw quantitatively similar results for other samples of Vardy’s data set.

We showed in this chapter that we could speed the computationof mutual infor-

mation without reduction in the success of difference surface homing. It could be the

case, though, that the time taken to home is dominated by robot movement rather than

difference surface evaluation. In the next chapter we carryout detailed simulations of

difference surface homing with various optimisation algorithms; mutual information

is used to compute image similarity. The results of about 5000 simulations in static

and dynamic conditions indicate that about 2.3 percent of homing time is on average

spent doing difference surface evaluations when using the gradient-based optimisation

algorithm employed in the previous chapter. The robot spends the rest of the time mak-

ing pose changes. Other optimisation algorithms (both gradient-based and not) yield

similar results.

The work done in this chapter is still of some value, though. The simulated robot

was made to move rather slowly (8.0 cm per sec) on the assumption that in our live

experiments the robot will move slowly in order to avoid wheel slippage. If the robot

is made to move faster, function evaluation time plays a larger role in overall homing

time. Also, speedy image histogram and mutual information computation is of general

interest as these algorithms are widely applicable in imageprocessing tasks (see e.g.

Shahbahrami et al. [2008] and Li [2005]).

4.7 Future Work

The obvious next step in using the EyeRIS is to eliminate the noise in image capture

depicted in Figure 4.10. We have contacted the manufacturerto make them aware of

the problem. They have as yet offered no solution.

Authors have recently reported attempts to compute image histograms (see e.g.

Scheuermann and Hensley [2007]) and mutual image information (see e.g. Shams

and Barnes [2007]) with graphics processing units (GPUs). GPUs are chips which
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were developed to facilitate the transformation and rendering of computer graphics

primitives like polygons on personal computers. The development of the GPU has

been driven by the flourishing computer gaming industry whose products are of course

often extremely graphics-intense. GPUs transform and render quickly by performing

common vector operations in parallel. As many algorithms, not just those in computer

graphics, rely on vector operations, researchers have in the last few years seen the

potential for extremely fast general-purpose computationwith GPUs (GPGPU) beyond

mere rendering (Luebke et al. [2006]).

The main problem with mutual information calculation with aGPU is in image

histogramming. Shams and Barnes [2007] show that histogramming runs into trouble

when two or more different GPU subprocessors, working in parallel, attempt to incre-

ment the same histogram bin at the same time. These authors overcome this problem

by dividing the GPU into blocks of subprocessors. Each blockis devoted to comput-

ing the joint histogram of a unique subset of the input images. Each subprocessor in

a particular block increments a unique subset of histogram bins. Once each block has

computed the joint histogram for the subset of the input for which it is responsible, the

joint histograms are combined to produce the complete jointhistogram for the input

images. This melding process is described by Shams and Barnes [2007] as efficient

but is not laid out in detail.

A field-programmable gate array (FPGA) is a device consisting of thousands of

reconfigurable hardware logic blocks (Li [2005]). Each logic block can be configured

by a programmer to execute a relatively simple function (i.e. a logic gate, decoder,

etc.). The programmer can also define the connections between logic blocks. In this

way, an FPGA can be used to create complex integrated circuits by a programmer “in

the field” rather than by a chip manufacturer.

FPGAs have in the past few years received interest from researchers in image pro-

cessing and vision-based robotics (see e.g. Draper et al. [2000], Shahbahrami et al.

[2008] and Anderson et al. [2005]). With their array of logicblocks, FPGAs lend

themselves to parallel implementations image processing routines. Efforts have been

made to parallelise the computation of image histograms using FPGAs (see e.g. Li

[2005] and Shahbahrami et al. [2008]). Histogram computation is, as we have previ-

ously explained, a crucial step in the calculation of mutualimage information. Shah-

bahrami et al. [2008] note that the major challenge in the parallel computation of an

image histogram with an FPGA is memory collision. That is, ifall image pixels are

read simultaneously to compute a histogram, it is likely that at least two pixels will
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have the same intensity value. Each subprocessor handling this pixel value will try to

increment the associated histogram bin at the same time. Shahbahrami et al. [2008]

solve this problem by dividing images in half and computing in serial the histogram of

the half-images at the same time on separate processors.

It would be interesting to pit our parallel algorithm for mutual information com-

putation against an FPGA-based or GPU-based MI computation. The FPGA-based

MI computation in Li [2005] is tested on 3D images so we cannoteasily compare the

reported timing results to ours. Nor can we compare our results directly with those re-

ported by Shams and Barnes [2007] as these authors do not report the time required for

mutual information computation of individual images. Thus, we would likely have to

implement the mutual image information algorithms described in Li [2005] and Shams

and Barnes [2007] before a comparison with our work could be made.

Other parallel image histogram algorithms exist, but are designed for systems dif-

ferent than the EyeRIS and somewhat unlike FPGAs. Jenq and Sahni [1992] describes

an efficient algorithm to be used on a reconfigurable mesh parallel processor. Like the

EyeRIS’s FPP, a reconfigurable mesh consists of a grid of locally connected proces-

sors. As the name suggests, the connections of the reconfigurable mesh can be opened

or closed during program execution. Given anN×N image withB gray levels, the

histogram is computed inO(
√

B log√B( N√
B
)) steps ifB < N andO(

√
B) for B≥ N.

4.8 Related Work

After creating our parallel single-image histogramming algorithm (Algorithm 3), we

found a similar algorithm in Braunl et al. [2001]. The algorithms differ in how band-

pass intensity images are created for each intensity and in how the number of band-

passed pixels are counted. We could find no parallel joint histogramming algorithm in

the literature.

We could find only one instance of visual homing with parallelcomputation (Möller

[2000]). In this work, Mőller describes a purpose-built analog circuit which computes

a homing vector with the average landmark vector scheme. He demonstrates that the

system works in simple arena consisting of black cylinders on a white background.

The system was not tested in more complex environments.



Chapter 5

Optimising the Difference Surface

5.1 Introduction

In Chapter 2, we described two methods which Zeil et al. [2003] used to move the

homing agent so as to optimise the difference surface: “Run-Down” and “Triangular.”

These may not be the best solutions to this problem. This chapter investigates ways of

optimising the difference surface in order to home. Unlike Zeil et al. [2003] (and to

our knowledge all other visual homing researchers), we consider visual homing under

the influence of realistic sensor noise.

5.2 Problem Definition

We assume that the agent is travelling on a planar surface while homing. Without loss

of generality, we define the starting point of the agent’s homing run to be the origin

of a local two-dimensional Cartesian coordinate system. The agent’s initial orientation

defines the x-axis of this coordinate system; the y-axis is inthe orthogonal direction in

the plane on which the agent travels.

With this coordinate system in mind, we can make the following useful definitions.

We defineI(~x) to be the panoramic intensity image capturable at position~x = (x,y).

The value of the difference surface at~x – the signal measured by the homing agent –

will be defined to bef (~x). The function f is synonymous with what we have called

the difference surface in previous chapters.

The process of optimisation, as we shall see in the followingsections, is an iterative

one. The agent moves through a sequence of points between itsstarting position (at

the origin of our coordinate system) and the snapshot location. We label thekth point

135



Chapter 5. Optimising the Difference Surface 136

in this sequence~xk (1≤ k≤N). We let~xS be the location of the snapshot.

The problem is to move the agent to search for global optimum~x∗ of f . We assume

that~x∗ is equal to~xS; the results reported in Chapter 3 indicate that this assumption

is valid quite often in both static and dynamic environmentsfor difference surfaces

formed using the mutual information image similarity measure. To be precise, this

assumption held true for 291 of the 304MI difference surfaces (or 96%) used in the

experiments in Chapter 3. The 13 difference surfaces which did not meet this assump-

tion were formed with dramatic lighting change between snapshot and current images

(i.e. the snapshot image was drawn from the “Winlit” set and current images were

drawn from the “Doorlit” set or vice-versa).

5.3 Optimisation Algorithms

The literature provides many algorithms to optimise a function (see e.g. Adby and

Dempster [1974]). Some are designed for linear functions, others for non-linear, some

work only for functions with integer domains, others for real-value inputs. Which

algorithms are right for us? Our optimisation problem has a number of qualities which

will help us narrow down the search for an appropriate algorithm.

1. Our moving agent can use path integration and/or dead-reckoning to estimate~xk.

These techniques suffer from cumulative errors. Thus as homing proceeds, our

agent will have an increasingly vague estimate of~xk.

2. Unlike many optimisation problems found in the literature, in order to measure

f at two distinct points~x and~x′, the robot must travel from~x to~x′.

3. Since the robot we use is non-holonomic, it must rotate in order to change its

direction of travel. This rotation of course takes time.

4. Rotation and translation of the robot are noisy processes. That is, the robot

executes each requested motor command with some level of imprecision.

5. Given our empirical study of the difference surface in previous chapters,f is

clearly nonlinear. Unfortunately, we do not know the functional form of f . Note

that in prior published work we have made some attempt to identify this form, at

least in the case ofRMSdifference surfaces (see Szenher [2005b]).
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6. The evaluation of thef at~x is corrupted by sensor noise, as we will show in

Sections 5.4.1 and 5.4.2.

7. The gradient off at~x is not directly available. Iff (~x) were a known function

– e.g. 3x2 + 6x+ 4y3 – then we could compute its gradient; the parameterised

gradient of our example function is[6x+6 12y2]T . If we knew thatx= 4 andy=

5, we could compute the gradient at this point to be[30 300]T . Unfortunately,

while homing we know neither the precise form off nor the value of~x.

Given the considerations in the above list, as well as the problem statement in

Section 5.2, the literature indicates that stochastic optimisation algorithms are most

appropriate for the problem at hand. According to Spall [2003], stochastic optimisa-

tion algorithms apply when there is noise in the measurementof the function to be

optimised and/or the direction in which to search during optimisation is (at least some-

times) chosen with some randomness. Both are certainly the case here (see list items

(4) and (6) above). As we shall see there exist some useful so-called direct search

stochastic optimisers which require no function gradient information. Other stochas-

tic optimisers provide ways of approximating the gradient.Below, we describe the

stochastic optimisers suggested by Spall [2003] which we have chosen to use.

5.3.1 Stochastic Optimisation

The gradient of a function at a point is a vector pointing in the direction of greatest

function increase at that point. If we knew the gradient off at ~xk we could home by

moving in the direction of that gradient for a certain distance, reassess the gradient at

the new location and continue in this manner until home. As discussed above, we can-

not directly measure the gradientf at a given location. Spall [2003] suggests a number

of methods to estimate the local gradient from a few local function measurements.

The such first method – two-sided finite differencing (2FDSA)– is defined by the

following equation:

~g(xk,yk) =

[

f (xk+ck,yk)− f (xk−ck,yk)
2ck

f (xk,yk+ck)− f (xk,yk−ck)
2ck

]

(5.1)

~g(xk,yk) denotes the estimate of the gradient off (i.e. the difference surface) at thekth

step in the homing algorithm. To evaluate Equation 5.1, the value of f at four points

– (xk + ck,yk), (xk− ck,yk), (xk,yk + ck) and (xk,yk− ck) – must be computed. The
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Figure 5.1: (a) A skematic of the moves made by our model agent to gather the informa-

tion required to calculated Equation 5.2. The moves required to calculate Equation 5.1

are given in (b).

points(xk +ck,yk) and(xk−ck,yk) form a line segment of length 2ck with (xk,yk) at

its midpoint. The value we assignck will be discussed below. This line segment can

be oriented in any direction in the plane on which the agent ismoving. The points

(xk,yk +ck) and(xk,yk−ck) also form a line segment of length 2ck with (xk,yk) at its

midpoint. This line segment must be orthogonal to the first. The geometric relationship

between these four points is depicted in Figure 5.1(b). The x-component of~g(xk,yk) is

proportional to the difference between the value off at (xk +ck,yk) and(xk−ck,yk).

The y-component of~g(xk,yk) is proportional to the difference between the value off

at (xk,yk + ck) and(xk,yk− ck). Note that the estimate of the gradient off given in

Equation 5.1 follows directly from the definition of the gradient as being the vector of

partial derivatives off (Kleitman [2005]).

Spall [2003] suggests a less time-consuming alternative tothe gradient estimate

given in Equation 5.1. The one-sided difference procedure (1FDSA) is described by

the following equation:

~g(xk,yk) =

[

f (xk+ck,yk)− f (xk,yk)
ck

f (xk,yk+ck)− f (xk,yk)
ck

]

(5.2)

Equation 5.2 requires that the homing robot visit three adjacent points and carry

out a single function evaluation (i.e.MI calculation) at each of these points. When

estimating the gradient off with Equation 5.1, the robot visits four points and eval-
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uates fourMI image differences. There are several possible sequences ofmovement

commands that the robot can use to visit these points. We havehand-choreographed

these moves to minimise the movement time required to carry out 1FDSA and 2FDSA.

Figure 5.1(a) depicts the actions our homing agent makes in order to calculate the dif-

ference surface gradient at(xk,yk) using Equation 5.2. The agent moves from the loca-

tion of the previous gradient estimate(xk−1,yk−1) along the dotted line emanating from

the lower left-hand corner of the figure to(xk,yk). When it reaches(xk,yk), the agent

carries out a function evaluation. It then moves byck distance units (e.g. cm) in its

current heading to(xk +ck,yk). Another function evaluation is carried out. The agent

must now move to(xk,yk+ck) and carry out a function evaluation there. It could move

back to(xk,yk), turn 90 degrees counter-clockwise1 and moveck units to(xk,yk +ck).

It takes less time, though – starting from(xk +ck,yk) – to rotate 45 degrees clockwise

and move in reverse by
√

2ck units to(xk,yk + ck); this is what the agent does. The

agent uses dead-reckoning to estimate all distances travelled and angles turned. At this

point, the agent has the information necessary to estimate the gradient of the difference

surface at(xk,yk) using Equation 5.2.

Once the gradient has been calculated, the agent should movefrom (xk,yk) in the

direction of the gradient (θ) by a distanceak to reach(xk+1,yk+1). The value we assign

ak is discussed below. Unfortunately, the agent is currently sitting at (xk,yk + ck). It

would be inefficient to travel back to(xk,yk) and from there move to(xk+1,yk+1).

We instead use simple trigonometry to infer the distance (a′k) and direction (θ′) to

(xk+1,yk+1) from (xk,yk +ck). These are given by the following equations:

a′k =
√

a2
k cos2 θ+(ck−ak sinθ)2 (5.3)

θ′ = atan2(aksinθ−ck,akcosθ) (5.4)

The functionatan2(y,x) is the so-called two-argument inverse tangent (Weisstein [2007a]);

it returns the counterclockwise angle between the x-axis and the vector[x y]T and,

unlike the standard inverse tangent function, it is valid for all four quadrants of the

Cartesian plane.

The set of moves used to gather the difference surface valuesrequired to calculate

Equation 5.1 is depicted in Figure 5.1(b). As in Figure 5.1(a), the agent moves along

the dotted line starting from the lower left-hand corner of the figure toward(xk,yk).

In this case, though, the agent stopsck units from (xk,yk) to sample the difference

1Our simulated agent – like the Koala robot we shall use in our live robotic experiments described
in Chapter 6 – is non-holonomic.
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surface at(xk− ck,yk). It then moves ahead by 2ck units to(xk + ck,yk); once there,

it again samples the difference surface. To move to(xk,yk + ck), the agent as above

rotates by 45 degrees clockwise and moves in reverse by
√

2ck units. After sampling

the function at(xk,yk +ck) the agent rotates 45 degrees clockwise and moves forward

by 2ck units to measure the difference surface at(xk,yk− ck). Using the movement

commands we just described, 1FDSA is approximately 2 times faster than 2FDSA.

This movement speed-up may counterbalance the assumed reduction in the accuracy

of 1FDSA’s gradient estimate; we shall attempt to determineif this is the case in our

experiments, described below.

Once the gradient has been estimated, the homing agent movesfrom its current

location~xk in the direction of this gradient and by a distanceak to the next point in the

optimisation process,~xk+1.

Spall [2003] suggests that the choice of the evolution of gainsak andck are crucial

to the success of the stochastic optimisation algorithm. Several authors (e.g. Spall

[2003] and Cole-Rhodes et al. [2003]) use the following equations to compute gain

sequences:

ak =
a

(k+1+A)α (5.5)

ck =
c

(k+1)γ (5.6)

These equations of course depend on the user-defined values of a, c, A, α, andγ. As

above, the independent variablek is the current iteration of the homing algorithm. Spall

[2003] suggests that the value of these parameters is the deciding factor in the success

or failure of the finite difference stochastic optimisationalgorithm. For example, an

overly large value ofa will cause the optimisation algorithm to behave wildly in early

iterations. If α or A is too large, the algorithm will move very slowly towards an

optimum. Ifc is not large enough, the gradient estimate will be overcome by function

noise.

Cole-Rhodes et al. [2003] limit the parameters of Equations5.5 and 5.6 to the

following: a,c> 0, A≥ 0, 0< γ < α < 1. Spall [2003] provides a proof that ifa, c, α,

γ, the function to be minimised and the measurement noise meetcertain criteria then

one can guarantee that a stochastic optimisation algorithmutilising a finite-difference

gradient will converge to an optimum value. Unfortunately,our function does not

seem to meet the criteria. Still, Equations 5.5 and 5.6 provide useful forms for our
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gain sequences which we shall use in our experiments. We discuss determination of

good values fora, c, A, α, andγ in Section 5.4.

5.3.2 Rejected Optimisation Algorithms

Spall and other authors suggest a number of optimisation algorithms which we have

rejected. We discuss these algorithms, and why we chose to reject them, briefly in this

section.

Spall [2003] describes a third method (apart from 1FDSA and 2FDSA) to estimate

the gradient: simultaneous perturbation (SP). SP randomlyselects a new direction from

a given distribution (usually a Bernoulli distribution) and moves in that direction forck

units. The function is measured at the beginning and end of the move. The difference

in the two measurements is used to estimate the magnitude of the projection of the

gradient in the chosen direction. The algorithm uses this estimated magnitude to decide

how far to move in the chosen direction. SP requires only two function measurements

per iteration. Unlike 1FDSA and 2FDSA, the number of function evaluations required

per iteration remains fixed regardless of the number of independent variables. This

limit in function evaluations comes at a cost of a relativelypoor gradient estimate. In

preliminary tests, the disadvantage of SP outweighed the advantage, so we chose not

to use it in the experiments described below. SP may prove useful, though, if homing

in three dimensions. In three dimensions, 2FDSA requires six function evaluations to

estimate the difference surface gradient; SP still requires just two.

The Nelder-Mead (Spall [2003]) algorithm is a popular optimisation algorithm

when only noisy function measurements (rather than noisy ornon-noisy function gra-

dients) are available. When optimising in two dimensions, Nelder-Mead (NM) samples

the function at the vertices of an (initially random) triangle; the triangle is called a sim-

plex. The vertex with the worst (i.e. least optimal) function value is identified and this

vertex is reflected through the line connecting the other twovertices. If the function

value at this new vertex is an improvement, another reflection if performed. If not,

we shrink the simplex and evaluate the function at the vertices of the new vertex. We

reject NM for homing because the path the algorithm generates is quite tortuous; as

noted above, rotating and translating the homing robot takes time.

We discussed in Chapter 2 the use of the extended Kalman filterby Baccou and

Jouvencel [2002] to solve a navigation problem essentiallyequivalent to difference

surface homing. Though the Kalman filter is not an optimisation algorithm, we still



Chapter 5. Optimising the Difference Surface 142

discuss it in this section because we ultimately decided to reject it for use in difference

surface homing. The extended Kalman filter allowed Baccou and Jouvencel [2002] to

infer the location of their robot with respect to the home position using a succession of

noisy estimates of their distance from home. We cannot use this approach in our work

because our homing robot has no knowledge of the function relating difference surface

values to home distance. It is concievable that the homing agent could learn such a

function on its first outward trip from the snapshot location. We implemented this idea,

though, and met with very little success. The problem was that the function learned

by the agent as it left the snapshot location was invalid during homing in dynamic

conditions. Another problem with the Kalman filter approachis the homing agent

has no knowledge of its initial location with respect to the snapshot location; a rough

intial position estimate is required by the Kalman filter. Using a particle filter (see e.g.

Menegatti et al. [2004] and Fox et al. [2001]) instead of the Kalman filter may solve

this problem.

Some authors (see e.g. Lizotte [2005]) recommend performing a regression to

estimate the underlying functionf from noisy samples. Given an estimate off from

regression, we could use well-known techniques from calculus to find the value of~x

which optimises the estimate off derived from the regression. Standard regression

techniques require knowledge of the underlying form of the function being sampled;

we do not know the functional form off . This is not necessarily a problem, since

we could interpolate the difference surface – with a method like Gaussian process

regression (Lizotte et al. [2007]) – using noisy differencesurface samples and then

search over all interpolated values to find an optimum. This approach is problematic

because the difference surface samples must be paired with the values of~xC at which

they were collected. According to item (1) in the above list,we have an increasingly

noisy estimate of~xC as the robot moves from one sampling location to the next. For

these reasons, we choose not to use any form of regression to optimise the difference

surface.

In Zampoglou et al. [2006], we investigated the use of a biologically inspired opti-

misation algorithm for difference surface homing. The algorithm was based on chemo-

taxis behaviour of the nematode worm as described by Feree and Lockery [1999]. The

algorithm takes a difference surface readingf (~xk) at the agent’s current location~xk,

moves forward by a distance dependent onf (~xk) to ~xk+1 and takes another surface

reading. The agent then turns in direct proportion tof ( ~xk+1) and to f (~xk)− f ( ~xk+1);

the turn is also subject to a constant bias. The constants of proportionality as well as
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the bias term are free parameters. We used a genetic algorithm in simulation to find

values for these parameters which optimised homing successon a number of training

difference surfaces (created using Vardy’s image data sets). Image similarity was mea-

sured withRMSin this work since, when we carried out these experiments we were

unaware of mutual image information. We found that the parameters evolved in simu-

lation caused the robot to turn excessively in simulated test trials. Also, the parameters

evolved in simulation were not effective when applied to “live” robotic homing. For

these reasons, we chose not to pursue this method of optimisation in this chapter.

5.4 Experiments in Simulation

Here, we will describe simulation experiments we undertookto determine which of

the optimisation algorithms described in Section 5.3 worksbest to solve the problem of

visual homing by optimising on difference surfaces. To makethe simulation as realistic

as possible, we investigated the noise injected into the mutual image information signal

by our noisy Webcam and compass sensors; see Section 5.4.1 and 5.4.2 respectively.

We use the same robot movement noise model as was employed in the experiments in

Chapter 3. As we are using Vardy’s image data sets in our simulations, mutual image

information is only available at grid points spaced at 30cm intervals on a 3m x 4.5m

planar area. We determine in Section 5.4.3 the best way to interpolate the difference

surface in the presence of the aforementioned signal noise.

5.4.1 Webcam Capture Noise

We wanted to characterise the noise present in images captured by our Webcam. To do

so, we took 28 grayscale images of a static scene (see Figure 5.2).

We consider the intensity of each pixel to be a random variable. To establish the

expected value at each pixel, we computed the mean intensityvalue at each pixel,

forming a mean image. We shall assume that this mean image is agood estimate of

the expected image of the static scene.

To estimate the distribution of intensity noise, we subtracted the mean image from

each of our 28 test images and used the resulting intensity differences to produce a

histogram, shown in Figure 5.3. The distribution of intensity noise from the mean

is approximately Gaussian (skewness = -0.0352, kurtosis = 3.2556) with a standard

deviation of 0.9443 and mean of zero.
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Figure 5.2: Image of static scene used in Webcam noise test. Image is of our panoramic

mirror.
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Figure 5.3: Histogram of intensity deviations from the mean (i.e. intensity noise) in our

test images.
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Distance from snapshot (cm)MINoiseless meanMINoisy std. dev.MINoisy

0 7.1648 5.3204 0.0023

30 1.4825 1.4758 0.0009

60 1.0444 1.0444 0.0009

90 0.8808 0.8806 0.0011

120 0.7787 0.7788 0.0008

150 0.6973 0.6970 0.0009

180 0.6307 0.6307 0.0009

210 0.5958 0.5962 0.0008

240 0.5463 0.5455 0.0009

270 0.5026 0.5006 0.0009

300 0.4833 0.4821 0.0008

330 0.4339 0.4336 0.0009

360 0.4039 0.4040 0.0009

390 0.3730 0.3731 0.0008

420 0.3495 0.3476 0.0010

Table 5.1: Comparison of mutual information values computed from noiseless and noisy

current images. The intensity of each image pixel was corrupted with zero-mean Gaus-

sian noise. See text for details.

Autocorrelation of each noise image indicates that intensity noise is spatially in-

dependent. We do not have enough data to determine whether pixel intensity noise is

correlated over time, but visual inspection suggests that temporal correlation is low.

We saw in Chapter 4 that certain image capture noise has quitea deleterious ef-

fect onMI difference surfaces. We wonder if this is true of the zero-mean Gaussian

white noise described here. To find out, we computed anMI transect using images

from the “Original” data set beginning at x=120cm, y=60cm and moving parallel to

the y-axis. We computed theMI signal with noiseless images (assuming Vardy’s im-

ages are noiseless) and then corrupted each current image 100 times with a different

noise matrix each time. Elements of the noise matrix were drawn independently from

N(0,0.94432). The plot of this data is rather difficult to interpret so we instead list it

in Table 5.1.

As we can see in Table 5.1,MINoiselessdecreases monotonically as distance from

the snapshot location increases (as expected). This is alsotrue of the meanMINoisy
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signal. The meanMINoisy signal is less than theMINoiselesssignal at and near (i.e.

30cm away from) the snapshot location. This makes sense:IC is a good predictor

of IS near the snapshot location. Adding noise toIC in this case will therefore cause

relatively large decreases inMI . Away from the snapshot location, the mean value

of MINoisy is approximately equal toMINoiseless. The standard deviation of the noisy

signal is relatively small at all data points. This indicates that any single noisyMI

value is likely to be close to the mean. Thus, it is probably enough to capture one

current imageIC and use theMI valued derived from it rather than the meanMI value

computed from several images captured at the same location.

We would like to transform the distribution of intensity noise described above into

a distribution of mutual information given noisy current images. Such a distribution

of MI noise would be quite useful in quickly injecting realistic noise into our homing

simulations. Unfortunately, we were unable to do this, though we did derive some

aspects of such a noise distribution for RMS difference signals (see Appendix A).

Below we discuss other methods to simulate homing with noisysensors.

5.4.2 Compass Noise

The visual homing system requires an estimate of the robot’sorientation in some exter-

nal reference frame. This is because the robot almost certainly has a different orienta-

tion atSthan it does atC. IC must be rotated in software to account for this orientation

difference, otherwise measuring the similarity betweenIS and IC would be meaning-

less. The orientation estimate will be somewhat noisy in real-world experiments. In

this section we investigate the effects of compass noise on theMI signal.

We originally intended to use a digital magnetic compass in our homing experi-

ments. As we describe in Section 6.2.1, our digital compass was overcome by envi-

ronmental noise in the indoor environment in which we carried out experiments. We

therefore had to rely on our tracking system to provide directional information. As

we discuss in Section 6.2.2, we at first sought to use a tether tracking system to track

the robot during experiments and provide “live” directional information. This tether

tracker proved unsuitable and we created a visual tracker toreplace it. The experiments

in this section, however, assume the use of the tether tracker. The noise characteristics

of the direction estimates provided by the tether and visualtrackers are similar.

The tracker provides position information in a reference frame defined by the lo-

cation of the tether bases. We can in principle use the difference between the current
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Figure 5.4: Plot of locations recorded by our tracking system. Robot moved in a straight

line from lower left to upper right.

position estimate and the previous position estimate to infer the agent’s direction of

travel. In practice, these estimates are somewhat noisy, asillustrated in Figure 5.4.

Thus, we shall estimate travel direction by fitting a line to the previous N samples,

where N is to be determined.

In order to determine the noise characteristics of the compass signal provided by the

tracker, we drove a tethered agent along fourteen straight tracks on our laboratory floor.

The agent moved at constant speed of about 1cm
sec. At this speed, position estimates

were generated on average every 0.85mm. The shortest track was roughly 10cm and

the longest, 50cm. Track directions varied.

For each track, we took the agent’s true direction to be the slope of the best fitting

line through the set of track points. We computed the agent’sestimate of its current

direction at every 50th data point, using the previous 80 data points. The value of N=80

was empirically determined to provide a small standard deviation in the local direction

estimate.

We calculated the distribution of difference between the agent’s actual direction of

travel and its current local estimate; see Figure 5.5. This distribution has kurtosis equal

to 3.36 so we conclude that it is Gaussian. The standard deviation is 0.86 degrees. As

is clear in the plot, the distribution is skewed slightly positive. We believe that this

was caused by an error in calibrating the tether tracking system (see Section 6.2.2 for

information on tracker calibration). For simulation purposes, we shall assume that

generally the distribution of compassing error is zero meanGaussian with the reported

standard deviation. Since successive direction estimatesuse overlapping data sets,
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Figure 5.5: Distribution of difference between actual direction and estimated direction

using tether tracker to infer direction.

there is a small correlation between errors in successive estimates. We shall ignore this

in simulation.

As with Webcam noise, we are interested in the effect of a noisy direction estimate

on theMI signal. We computed anMI transect using images from the “Original” data

set beginning at x=120cm, y=60cm and moving parallel to the y-axis. We computed

theMI signal with noiseless images (assuming Vardy’s images are noiseless) and then

corrupted each current image 100 times with a different rotation error each time. Com-

pass errors were drawn independently fromN(0,0.862). We list the results of this

experiment in Table 5.2.

Compass noise seems to have a greater effect on theMI signal near the snapshot

location than does Webcam noise. The standard deviation of the noisy signal is such

that some compass readings may mask the global maximum at thesnapshot location.

Care should be taken when nearing the goal that the compass signal is accurate.

As with the Webcam noise, we were unable to completely characterise the effects

of compass noise on theMI signal. We describe how compass noise is injected into

our homing simulation below.

5.4.3 Interpolating the Difference Surface

We will use Vardy’s image data sets to form difference surfaces with which to simulate

homing. We wish to include the measurement noise identified in the Sections 5.4.1

and 5.4.2 to make the simulation as realistic as possible. Ashas been described pre-



Chapter 5. Optimising the Difference Surface 149

Distance from snapshot (cm)MINoiseless meanMINoisy std. dev.MINoisy

0 7.1648 3.4089 1.6460

30 1.4825 1.4696 0.0197

60 1.0444 1.0464 0.0060

90 0.8808 0.8795 0.0052

120 0.7787 0.7754 0.0085

150 0.6973 0.6937 0.0104

180 0.6307 0.6311 0.0071

210 0.5958 0.5947 0.0045

240 0.5463 0.5464 0.0016

270 0.5026 0.5029 0.0020

300 0.4833 0.4825 0.0038

330 0.4339 0.4333 0.0042

360 0.4039 0.4030 0.0018

390 0.3730 0.3707 0.0024

420 0.3495 0.3508 0.0010

Table 5.2: Comparison of mutual information values computed from noiseless and noisy

current images. Current images were rotated by a random amount to simulate compass

noise. See text for details.
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viously, Vardy’s images were sampled every 30cm on a regular3.0m×5.4m planar

grid. What should we do when, during the simulation, the agent wishes to measure

the difference surface value at a non-grid point~x which has been corrupted by this

measurement noise?

Though we know the noise characteristics of the compass and Webcam, we were

unable to derive a distribution for noise in theMI signal resulting from imprecision in

these sensors. Our only recourse, then, is, to corrupt an image or images at grid points

close to~x with compass and Webcam noise and use corresponding signal(s) to estimate

the noisyMI signal at~x. We thought of a number of ways to do this:

1. Corrupt the image at the grid point closest to~x with compass and Webcam noise.

Use theMI value calculated with this corrupted image as the best estimate of the

MI value at~x corrupted by the same noise.

2. Corrupt the four images at grid points surrounding~x with identical compass and

Webcam noise. Compute theMI value for each of these corrupted images. Take

the noisyMI value at~x to be the weighted sum of the four surroundingMI values;

weight each according to its distance from~x and normalise so that the weights

sum to 1.

3. Corrupt the four images at grid points surrounding~x with identical compass and

Webcam noise. Compute the weighted sum of the images (assignweights, again,

according to distance from~x and ensure that weights sum to 1). Compute theMI

value of this composite, noisy image and use this as the estimate of theMI value

at~x.

4. Compute the weighted sum of the four images surrounding~x. Corrupt the com-

posite image with Webcam and compass noise. Compute theMI value of this

noisy image and use this as the estimate of theMI value at~x.

We note that the first interpolation method described above is somewhat unrealistic,

as it yields a “stepped,” highly discontinuous difference surface, akin to an Egyptian

pyramid. We include the method, though, because it is significantly faster than the

other three.

How do we choose which of these interpolation methods to use?We do so by look-

ing at positions~x for which we do have image data. We selected snapshot images from

the “Original” data set at the locations shown in Figure 5.6.For each snapshot, we
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Figure 5.6: Location of snapshots used in experiment to determine the best way to

interpolate the difference surface when compass and Webcam are corrupted by noise.

randomly selected 100 current images from the “Original” data set. For each current

imageIC, we randomly generated a Webcam noise matrix and compass error from the

distributions described in Sections 5.4.1 and 5.4.2. We corruptedIC with this noise and

computed the mutual information between the current snapshot and the corrupted im-

ageIC; we shall call thisMItrue. We corrupted the images at grid points directly north,

east, south and west ofIC with the same noise values. We then estimatedMItrue using

each of the four methods described above producingMIest1, MIest2, MIest3, MIest4 for

eachMItrue. Weights, when required, were set at 0.25 as all image captured locations

were an equal distance from the location ofIC.

The above procedure gave us 900 data points with which to judge the efficacy of

each method. The scatter plots ofMItrue versusMIest1, MItrue versusMIest2, and so

forth are given in Figure 5.7. The relationship in each case is clearly linear so we

computed the correlation coefficient between the values ofMItrue andMIest1, between

MItrue andMIest2, etc. These correlation coefficients are given in Table 5.3.Though

each relationship is quite strong, Method 2 yields the highest coefficient. The proba-

bility of getting the reported correlation by chance is veryclose to zero in each case.

We also looked at the standard deviation of the difference betweenMtrue and each es-

timate. Method 2 yields the smallest standard deviation. Thus, we shall use Method 2

to interpolate the difference surface forMI values corrupted by sensor noise.

Dynamic environments had little effect on this result.

Method 2 above involves manipulating images of the environment in order to gen-

erate noisy interpolatedMI values. It would probably be more efficient to draw a noisy

MI value from a probability density function (p.d.f.) whose distribution is based on
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Figure 5.7: Scatterplots indicating relationship between MItrue and MIest for each MI

difference surface interpolation method described in Section 5.4.3.

Method 1 Method 2 Method 3 Method 4

r 0.9114 0.9961 0.9904 0.9902

Table 5.3: Correlation coefficients for the four scatterplots shown in Figure 5.7.
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the noise distributions of Webcam and compass measurements. But is it possible to

determine this probability density function without considering the content of current

and/or snapshot images?

We investigated this question in simulation, as it was easier to change the structure

of a simulated environment than a real one. The simulated environment is a two-

dimensional world enclosed by a circular wall which is segmented into arcs of equal

length. Each arc is painted a particular shade of gray. The length of each arc and the

shades which they are painted are controlled by the user. These shaded arcs provide

the visual information required for homing. No other landmarks are present. The agent

can take a panoramic image (a one-dimensional array of 360 gray-scale elements) from

any position within the circular enclosure.

To demonstrate that the noise in theMI signal which results from compass noise

is dependant on the structure of the environment, we first create a world in which each

painted segment of the circular enclosure has an arc length of five degrees. We use

nine shades of gray – ranging from 0 to 8 – to paint the arcs. Thefirst arc – at a bearing

of zero and running counterclockwise – is painted with shadezero, the next is painted

with shade one, and so on. When a particular arc is painted with shade eight, the next

will be painted with shade zero. We let bothS andC be located at the centre of the

circle. The agent has a noisy compass whose signal is used to rotate current images

to account for orientation changes betweenSandC. The compass noise has a simple

distribution: it is constantly three degrees. TheMINoiselessvalue in this case is 3.1699

and the value ofMINoisy is 2.1990, a difference of 0.9710. We then increase the length

of each painted arc to ten degrees. In this case, theMINoiselessvalue is again 3.1699 but

MINoisy is 2.2886, a difference of 0.8813. Finally, we increase arc length to 20 degrees

and find thatMINoiselessremains 3.1699,MINoisyhas risen to 2.5601, and the difference

between them is 0.6098.

We see clear, explicable trends in these results. As arc length increases,MINoiseless

remains constant. This is because, sinceIC is identical toIS when compass noise is

ignored,MINoiselessis equal to the entropy ofIC (or equivalently the entropy ofIS). In

each of the three cases above,IC has a uniform intensity histogram of nine elements.

Thus, MINoiselessis unchanged in each of these three cases. More germaine to the

topic at hand, we also see above that when arc length increases,MINoisyalso increases,

though always remaining less thanMINoiseless. When arc length of each segment is 5

degrees, there are 72 objects visible inIS and IC. A three degree compass error will

result in 3·72= 216 pixel disagreements betweenINoisy
C andIS. But when object arc
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length is 10 degrees,IC contains 36 objects so a three degree compass error will result

in only 3·36= 108 pixel disagreements. This reduction in pixel disagreements means

that INoisy
C is a better predictor ofIS in the latter case than in the former, leading to an

increase inMINoisy in the latter case. The trend continues when object arc length is

increased to 20 degrees.MINoisy is always less thanMINoiselessbecause the compass

noise always causes some drop in the ability ofINoisy
C to predictIS.

Generalising from this result, we hypothesise that – in realworld homing – mutual

information noise (i.e. the difference betweenMINoiselessand MINoisy) for a given

compass error will depend on the distribution of the apparent sizes of imaged objects.

Images containing few, relatively large objects will exhibit less mutual information

noise than those with objects of lesser apparent size. Apparent object sizes in turn

depend on the structure of the environment in which homing occurs. Since mutual

information noise caused by compassing noise depends on scene structure, one cannot

simulate noise in mutual information without attending to the images used to compute

the mutual information.

5.4.4 Stopping Criteria

In static environments in which there is no sensor noise, it is easy to determine when

to stop homing. The agent could simply remember the difference surface value at the

snapshot location at the beginning of its outbound journey and stop homing when the

absolute difference between the current surface value and this stored “home” value

falls below some (small) threshold.

Spall [2004] suggests that deciding when to stop a stochastic optimiser is much

more difficult. Certain of our findings lead us to agree. In Chapter 3 we reported

that environmental change after the snapshot image is captured diminishes the global

optimum at the snapshot location. In Sections 5.4.2 and 5.4.1 we found that sensor

noise – particularly compass noise – injects variability into the MI signal which is

particularly acute at the snapshot location. Ideally, we would use the current image

and knowledge of sensor noise to predict the modified difference surface value at the

snapshot location; unfortunately, we found no method to do this. Instead, we must

rely on the current different surface value and perhaps other comparisons between the

current and snapshot images to derive stopping criteria. These criteria must be as robust

as possible to changes in the environment and to sensor noise. They must be applicable

without knowledge of how the environment has changed and/orcurrent sensor noise
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values.

We explored several different stopping criteria of our own invention. The interested

reader can refer to Appendix B to find out more about these criteria and the experiments

we carried out to measure their viability. Unfortunately, the more successful ones

required the agent to gather information about the range of difference surfaces found

in its environment in both static and dynamic conditions. This learning would require

a lot of time and effort before homing could begin; we did not think this was feasible.

For both simulated and live homing runs, we employed the stopping criterion used

in our experiments in Chapter 3. Optimisation halts when several successive values of

~xk cluster around a point. Such clustering indicates that thispoint is a local optimum.

This criterion was suggested by Spall [2003]. The clustering criterion can be used

without any knowledge of the environment in which homing is taking place and can be

implemented in conjunction with every optimisation algorithm studied in this chapter.

Of course, this criteria will cause the homing agent to halt at any difference surface

optimum, whether it coincides with the snapshot location ornot. We shall also halt

homing runs after a large amount of simulated time (900 seconds) has elapsed without

the clustering criterion having been met. The simulation ofhoming time is discussed

in Section 5.4.5.1.

5.4.5 Experiments

We wanted to determine which of the optimisation algorithmsdescribed in Section 5.3

works best in static and dynamic indoor environments. We used Vardy’s image data

sets to provide the images for our simulations. Please referto Chapter 3 for a full

description of these data sets.

As in the experiments in Chapter 3, we drew snapshot and current images from

the same data set in order to simulate static conditions and from different data sets in

order to simulate dynamic conditions. We used the “Original”, “Winlit” and “Chairs”

data sets here. We paired these data sets to create two staticand three dynamic en-

vironments: (“Original”, “Original”), (“Original”, “Winlit”), (“Winlit”, “Original”),

(“Winlit”, “Winlit”), (“Chairs”, “Original”).

For each data set pairing above, we fixed nineteen snapshot locations; these are

depicted as black diamonds in Figure 5.8. Note that a few of these snapshot locations

are slightly different than the ones used in Chapter 3; this is because we are no longer

using the “Arboreal” data set so do not have to worry about a snapshot location being
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Figure 5.8: The set of nineteen snapshot locations and twenty-eight starting locations

used in our experiments. A diamond indicates a snapshot location. A plus indicates the

location of the start of a homing run.

in the interior of the plant in that data set.

For each combination of data set pairing and snapshot location, we homed starting

from a set of twenty-eight starting locations; these are depicted as black plusses in

Figure 5.8. Note that we skipped a homing run if current images were drawn from the

“Chairs” data set and the starting location fell within the interior of a chair.

We explore fewer data set pairings and starting locations here than we did in Chap-

ter 3 because the addition of sensor noise in our simulation increases the time required

to compute mutual information, thus causing simulated homing runs to take too long to

run. We computed 100 mutual information calculations with injected sensor noise on

our desktop computer and found that a calculation took on average 0.16 seconds. This

value takes into account image reading, calculation and addition of image noise, image

masking, histogramming and entropy calculations. In the experiments of Chapter 3, we

used 16 data set pairings and 19 snapshot locations, yielding a total of 304 difference

surfaces on which we simulated homing. For each difference surface, 169 homing runs

were carried out, each starting from a different non-snapshot grid point. In total, there-

fore, the experiments in Chapter 3 involved 51376 homing runs. If we had used the

same number of data set pairings and starting locations in the experiments described

in this chapter, we would have carried out 513760 homing runsas we consider a total

of ten optimisation algorithms in this chapter. We found that – in the experiments we

did carry out here – 74 mutual information calculations on average were required per

homing run. Thus, to process the mutual information calculations for 513760 homing
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runs would have taken approximately 6082900 seconds, or 70.4 days of computation

time. This is a low estimate for the total time these experiments would have taken as

we have only accounted for the calculation of mutual information. Though homing

simulations in this chapter are mostly taken up withMI calculation, other factors (like

keeping track of the simulated agent’s pose, saving files, etc.) come into play as well.

We consider something more than 70.4 days of computation time too long to wait for

a set of experiments to terminate.

For each combination of data set pairing, snapshot locationand starting location,

we carried out a homing run using each of the optimisation algorithms described in

Section 5.3.

We also homed with Zeil’s “Run-Down” algorithm (Zeil et al. [2003]) to deter-

mine if any of our suggested optimisers is better than that which currently exists in the

visual homing literature. “Run-Down” is known in the optimisation literature as one-

direction-at-a-time search (see e.g. Adby and Dempster [1974]). “Run-Down” works

as follows: the agent travels in the direction it is currently facing, periodically mea-

suring the function to be optimised. The distancec between samples is an algorithm

parameter and is unchanging during optimisation. When the current function value

measurement is less than the previous one, the agent turns ninety degrees to the left

or right (it does not matter which, as long as the same direction is consistently taken).

The agent moves byc in this new direction and measures the function. If this new mea-

surement is an improvement, the agent continues to move as before; if not, the agent

turns 180 degrees and moves in this direction, sampling the function everyc units, un-

til the function ceases to improve. It then turns ninety degrees in either direction and

repeats the process described above. The agent executes this algorithm until stopping

criteria is met. “Run-down” was not specifically designed for use with noisy function

values. The distance between samples is typically chosen bya human operator to be

large enough to overcome measurement noise but small enoughso that the algorithm

halts within a reasonable distance from the optimum.

A drawback of the “Run-Down” algorithm is that it takes a rather tortuous route to

the snapshot location while homing. A drawback to the gradient-based optimisation

methods we described above (i.e. 1FDSA) is that they may, depending on the value

of ak, move along the estimated gradient a relatively long distance before resampling

the difference surface. If the gradient estimate is poor, then the agent could move a

significant distance before realising its mistake. If the gradient estimate is good, the

agent might still move too far in that direction, overshooting the snapshot location. We
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shall try merging these algorithms into a novel fourth algorithm: travel in the direction

of the estimated gradient, but instead of moving for a fixed distance, sample the dif-

ference surface periodically and recalculate the gradientwhen a decrease in successive

difference surface values is detected. This hybrid algorithm may decrease the overall

distance travelled by the agent during a homing run. On the other hand, it may require

more difference surface evaluations than “Run-Down” and may be more susceptible

to stalling in non-goal optima than the other gradient-based stochastic optimisers we

used in our experiments.

5.4.5.1 Criterion for Comparison of Optimisation Algorith ms

Those who study optimisation algorithms often base their comparison of competing

algorithms on the number of function evaluations required to come within a certain

small distance of an optimum value (Spall [2003]). As we noted in Section 5.3, the

homing robot must translate and rotate in order to move from one difference surface

evaluation point to the next. Hence, the time required to undertake these motor com-

mands as well as the time taken to actually compute mutual image information must be

taken into account in any comparison of algorithms. One of our criteria for algorithm

comparison is therefore the total timeTTotal taken for a homing run, as given by the

following formula

TTotal =
θTotal

speedrotation
+

DTotal

speedtranslation
+

FTotal

speedcomputation
(5.7)

whereθTotal is the sum of all angles turned by the homing agent during a homing

run; speedrotation is the speed of the agent’s rotation;DTotal is the total linear distance

travelled during a homing run;speedtranslation is the speed at which the agent translates;

FTotal is the total number of mutual image information computations undertaken during

a homing run; andspeedcomputationis the time required for eachMI computation. For

our simulation experiments, we assume our robot translatesat a speed of 8.0 cm/sec

and rotates at a rate of 28.65 degrees/sec. These are reasonable estimates of the speed

our actual Koala Silver mobile robot moves at in “live” homing runs (see Chapter 6).

We assume that one mutual image information evaluation takes 0.1 seconds, again a

reasonable estimate of the actual time required for this operation in “live” runs. TTotal

is measured in seconds. Equation 5.7 will not only allow us tocompare different

optimisation algorithms, it will also give us a concrete sense of the actual time required

to complete a homing run in real-world experiments. We only take successful homing
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runs (i.e. those halting within 30cm of the snapshot location) into account when using

this criteria.

We shall also compare optimisation algorithms using the return ratio measure de-

fined in Chapter 3.

5.4.5.2 Setting Finite Difference Gain Parameters

Spall [2003] outlines a method to automatically set the parametersa, c, α, γ andA

of Equations 5.5 and 5.6. This approach assumes that the standard deviation of the

function value noise is independent of the location at whichthe function is evaluated.

From Sections 5.4.2 and 5.4.1 we know this not to be the case; noise variance increases

dramatically when mutual information is evaluated near thesnapshot location. It seems

therefore that we have to set the values ofa, c, α, γ and A manually. We did not

want these parameter settings to result from extensive domain knowledge; after all, the

homing robot cannot “practice” homing to several difference snapshot locations from

several different starting points, adjusting gains as it goes, before undertaking a “real”

homing task. We therefore observed homing runs to just two snapshot locations from

a small number of starting locations, taking all images fromVardy’s “Original” data

set. We tried several different settings ofa, c, α, γ andA for each of these homing

runs. We chose the parameter set which provided the best homing runs as measured by

Equation 5.7. We note too few trials were undertaken to claimthat one parameter set

provided statistically significantly better results than another.

For one-sided finite differencing, we letc = 15cm, a = 100cm, A = 0, α = 1 and

γ = 0. We found that any value ofα much less than one caused the values ofak to decay

too slowly; the homing agent often overshot the snapshot location several times before

stopping at it. We set a lower limit ofak at 15cm to prevent the agent from moving

negligible distances in the direction of the gradient. A constant value ofck = 15cm

seemed to suffice for gradient estimation both near and far from the snapshot location

so we letγ = 0. We use the same gain parameters for two-sided differencing. Using

the same procedure, we chose the step sizec of “Run-Down” to be 15cm.

5.4.6 Results and Discussion

Given the results reported in Table 5.4, it seems that homingwith noisy sensors is a

more difficult problem than homing with noise-free sensors.Though different starting

locations and – in some cases – different snapshot locationswere used in the exper-
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Optimisation Method Average Return Ratio

Run-Down 0.807

1FDSA 0.836

2FDSA 0.905

Hybrid Run-Down/1FDSA 0.722

Table 5.4: Average return ratios for static environments for each optimisation algorithm

considered in the chapter. All pairs of average return ratios are significantly different

with 95% probability according to McNemar’s test (see Chapter 3 for details of this

significance test).
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Figure 5.9: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. Experiments

were conducted in static environments. The error bars indicate the standard deviation

from the mean homing time.
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Optimisation Method Average Return Ratio

Run-Down 0.504

1FDSA 0.567

2FDSA 0.641

Hybrid Run-Down/1FDSA 0.580

Table 5.5: Average return ratios for dynamic lighting environments for each optimisation

algorithm considered in the chapter. All pairs of average return ratios are significantly

different with 95% probability according to McNemar’s test.

Optimisation Method Average Return Ratio

Run-Down 0.801

1FDSA 0.798

2FDSA 0.833

Hybrid Run-Down/1FDSA 0.695

Table 5.6: Average return ratios for a moving landmark environment for each optimisa-

tion algorithm considered in the chapter. All pairs of average return ratios are signifi-

cantly different with 95% probability according to McNemar’s test.

iments reported in Chapter 3 making direct comparison difficult, the return ratios for

homing in static environments were generally higher in Chapter 3 than those reported

in Table 5.4. It is clear that gradient ascent homing using gradients estimated by two-

sided finite differencing is superior in static environments. Unfortunately, Figure 5.9

indicates that – as we expected – two-sided finite differencing takes much more time

than 1FDSA. Gradient ascent with one-sided finite differencing exhibits the second

best return ratio in static conditions (see Table 5.4).

The trends we saw in static conditions are generally repeated in simulated envi-

ronments with dynamic illumination. Table 5.5 indicates that gradient ascent with

gradient computation with two-sided finite differencing has the highest return ratio.

Gradient estimation with one-sided differencing is second-best. Again, according to

Figure 5.10, the relative success of 2FDSA comes at a cost of greater mean homing

times. We note that no optimisation algorithm performs particularly well in the face of

dynamic illumination. Almost all failed runs become stuck in local optima which do

not coincide with the snapshot location. We shall deal with this problem below.
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Figure 5.10: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. Experiments

were conducted in dynamic illumination environments. The error bars indicate the stan-

dard deviation from the mean homing time.

Optimisation Method Average Return Ratio

Run-Down 0.685

1FDSA 0.721

2FDSA 0.785

Hybrid Run-Down/1FDSA 0.660

Table 5.7: Average return ratios for all (static and dynamic) environments for each op-

timisation algorithm considered in the chapter. All pairs of average return ratios are

significantly different with 95% probability according to McNemar’s test.
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Figure 5.11: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. Experiments

were conducted in an environment in which landmark locations changed between cap-

tures of snapshot and current images. The error bars indicate the standard deviation

from the mean homing time.
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Figure 5.12: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. All difference

surface pairings were taken into account. The error bars indicate the standard deviation

from the mean homing time.
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5.4.7 Experiments: Avoiding Local Maxima

In looking at individual homing runs in the previous section, it is clear that the over-

whelming reason for homing failure is that the agent gets trapped in difference surface

maxima that do not coincide with the snapshot location. Few homing runs “time out.”

In accord with the observations given in Chapter 3, the function values at these non-

goal maxima are almost always much less than the function value at the snapshot loca-

tion for a particular difference surface. Therefore, in this section, we want to determine

if the non-goal maxima can be distinguished from the difference surface maximum at

the snapshot location. In a cursory examination of a number difference surfaces (both

static and dynamic), we saw that all non-goal maxima had difference surface values

less than 0.75 and all snapshot maxima were greater than 0.75.

We augmented each optimisation algorithm to detect and escape misleading differ-

ence surface optima as follows: when the algorithm’s stopping criterion is triggered,

check if the current or previous difference surface samplesis less than 0.75. If this

is the case, then escape this assumed non-snapshot optimum by selecting a random

value uniformly from the range[0,360], rotating by that amount and translating by one

metre. The optimisation algorithm then resumes from this new spot.

5.4.8 Results and Discussion: Avoiding Local Maxima

The detection of non-snapshot optima clearly has a salutaryeffect on homing in many

cases. Compare, for example, Tables 5.4 and 5.8. All return ratios are dramatically

higher in Table 5.8 than in Table 5.4; the differences are statistically significant, too,

according to McNemar’s test with 95% probability. This increased success seems to

come at the cost, though, of higher mean homing times; compare Figures 5.9 and

5.13. This increase in mean time is due to those homing runs which failed without

non-snapshot optimum detection and which subsequently succeed because of it. These

relatively time-consuming homing runs are not counted in the means reported in Fig-

ures 5.9 but do affect the means in Figure 5.13.

We see as well that homing is more likely to succeed in dynamiclighting conditions

when we attempt to detect and avoid non-snapshot optima. Compare Tables 5.5 and

5.9. We noticed that almost all homing failures reported in Table 5.9 result from the

algorithm reaching the maximum number of iterations; that is, no optimum is ever

located. This happens because in these cases the function value at the snapshot location

is less than 0.75, our crudely determined threshold for classifying difference surface
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Optimisation Method Average Return Ratio

Run-Down 0.826

1FDSA 0.974

2FDSA 0.979

Hybrid Run-Down/1FDSA 0.911

Table 5.8: Average return ratios for static environments for each optimisation algorithm

considered in the chapter. The algorithms are augmented with a method to escape

non-snapshot optima. All pairs of average return ratios are significantly different with

95% probability according to McNemar’s test.
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Figure 5.13: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. The algo-

rithms are augmented with a method to escape non-snapshot optima. Experiments

were conducted in static environments. The error bars indicate the standard deviation

from the mean homing time.
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Optimisation Method Average Return Ratio

Run-Down 0.618

1FDSA 0.829

2FDSA 0.779

Hybrid Run-Down/1FDSA 0.814

Table 5.9: Average return ratios for dynamic lighting environments for each optimisation

algorithm considered in the chapter. The algorithms are augmented with a method to

escape non-snapshot optima. All pairs of average return ratios are significantly different

with 95% probability according to McNemar’s test.
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Figure 5.14: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. The algo-

rithms are augmented with a method to escape non-snapshot optima. Experiments

were conducted in dynamic illumination environments. The error bars indicate the stan-

dard deviation from the mean homing time.
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Optimisation Method Average Return Ratio

Run-Down 0.974

1FDSA 0.979

2FDSA 0.976

Hybrid Run-Down/1FDSA 0.921

Table 5.10: Average return ratios for a moving landmark environment for each optimisa-

tion algorithm considered in the chapter. The algorithms are augmented with a method

to escape non-snapshot optima. All pairs of average return ratios – except Run-Down,

1FDSA and 1FDSA, 2FDSA – are significantly different with 95% probability according

to McNemar’s test.

Optimisation Method Average Return Ratio

Run-Down 0.812

1FDSA 0.917

2FDSA 0.898

Hybrid Run-Down/1FDSA 0.874

Table 5.11: Average return ratios for all (static and dynamic) environments for each op-

timisation algorithm considered in the chapter. The algorithms are augmented with a

method to escape non-snapshot optima. All pairs of average return ratios are signifi-

cantly different with 95% probability according to McNemar’s test.

optima. The illumination change causes the mutual image information betweenIS and

IC at the snapshot location to be quite low, though an optimum still usually exists at

the snapshot location as made clear in Chapter 3. There is probably no threshold value

which will rid us totally of these false negatives while allowing us to detect with high

probability non-snapshot optima.

Surprisingly – unlike in past experiments – the hybrid algorithm is among the top

performing optimisation algorithms in Table 5.9. We are notas yet certain why the

hybrid algorithm performs relatively well in this experiment.

5.4.9 Experiments: Learning Gains

Spall [2003] suggests that the choice of gain seriesak is crucial in determining the

success or failure of gradient ascent optimisation with gradients estimated with one-
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Figure 5.15: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. The algo-

rithms are augmented with a method to escape non-snapshot optima. Experiments

were conducted in an environment in which landmark locations changed between cap-

tures of snapshot and current images. The error bars indicate the standard deviation

from the mean homing time.
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Figure 5.16: Mean homing time as a function of starting distance from the snapshot lo-

cation for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. The algorithms

are augmented with a method to escape non-snapshot optima. All difference surface

pairings were taken into account. The error bars indicate the standard deviation from

the mean homing time.
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or two-sided finite differencing. We wondered if we could finda more intelligent way

of setting these gains than the rather limited trial-and-error procedure described in

Section 5.4.5.2.

The nature of the homing problem demands the agent visits thesnapshot location

and travels away from it at least once before attempting to find it again by homing. We

wondered if useful information about gains could be learnedon this outbound path. It

seems that ants (Judd and Collett [1998]) and honeybees (Lehrer and Bianco [2000])

learn something about the environment near the snapshot location for the purposes

of homing while travelling away from it. A relatively simplethough useful piece of

information would be a mapping from mutual information to goal distanced. We could

use this mapping to replaceak as an estimate of the distance to travel in the direction

of an estimated gradient. We published a similar idea in Szenher [2005a], though this

work pertained to difference surfaces generated with theRMSmetric.

After some trial and error, we found that Equation 5.8 gives areasonable fit to goal

distanced as a function of noisy mutual information values.

d =
1
B

tan(
MI−C
−A

) (5.8)

Here,d is the agent’s distance to the snapshot location andMI is the current mutual

information value.A, B andC are free parameters which define the shape of Equa-

tion 5.8.C can be seen as the maximum mutual information signal encountered;A and

B are empirically typically positive values close to zero. Wehave no theoretical basis

for choosing Equation 5.8 to mapMI value to goal distance. This functional form was

empirically the best among many that we experimented with.

An example of the application of Equation 5.8 is given in Figure 5.17. We used

Vardy’s “Original” data set to generate the noisyMI data in Figure 5.17 (plotted in

the figure as pluses). We simulated a robot leaving the snapshot location at x=60cm,

y=30cm. It moved in the direction of the y-axis and sampled the noisyMI signal once

every 10cm until hitting the boundary of the data set. Goal distance information was

inferred by dead-reckoning. We used this data as input to a nonlinear function fitting

algorithm. The algorithm seeks values forA, B andC which minimise the squared dif-

ference between the data and Equation 5.8. We used Matlab’sfminsearch routine to

perform this minimisation;fminsearchemploys the Nelder-Mead optimisation proce-

dure described in Section 5.3.2. The search begins atA = 0.03,B = 0.05 andC = 1.5;

we noticed that most good fits had parameter values close to these settings. The solid

line in Figure 5.17 represents the version of Equation 5.8 which best fits the data.
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Figure 5.17: The pluses are (noisy MI , goal distance) data pairs to which we would like

to fit Equation 5.8. See text for details about how this data was generated. The solid line

plots the instantiation of Equation 5.8 which best fits the data: d = 1
0.0268tan(MI−2.1054

−0.0204 ).

We repeated the experiments described in Section 5.4.5 using the 1FDSA and

2FDSA gradient estimation algorithms. Instead of settingak as described in Sec-

tion 5.4.5.2, the agent learns parameters for Equation 5.8 for each snapshot location

in the manner described above. When homing, the agent uses the learned function to

transform a noisyMI reading into a distance to travel in the estimated gradient direc-

tion. The agent continues to avoid non-snapshot differencesuface maxima as in the

previous set of experiments. Results are given below.

5.4.10 Results and Discussion: Learning Gains

Table 5.12 shows that the learning of gains increases the probability that homing in

static conditions will be successful. As we can see in Figure5.18 this learning also

speeds homing dramatically. The same observations can be made about learned gains

in environments in which the locations of landmarks change between capture of snap-

shot and current images (see Table 5.14 and Figure 5.20).

A quite different result is evident when illumination changes between capture of

snapshot and current images (Table 5.13). The reason for these abysmal return ratios

is that the mutual information at a given location is often much less whenIC andIS are

captured under different illumination conditions than when they are taken in the same

illumination conditions. This reduction in mutual information leads Equation 5.8 to

overestimate (often by a large amount) the agent’s current distance to the snapshot
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Optimisation Method Average Return Ratio

1FDSA 0.974

2FDSA 0.992

Table 5.12: Average return ratios for static environments for each 1FDSA and 2FDSA.

The algorithms are augmented with a method to escape non-snapshot optima. The

distance to move in a gradient direction is learned. The return ratios are not significantly

different with 95% probability according to McNemar’s test.

location. For example, suppose thatIS is captured at x=150cm, y=150cm and drawn

from the “Original” data set. WhenIC is captured at the nearby location x=150cm,

y=120cm and also drawn from the “Original” data set, the value of MI(IS, IC) is 1.59.

When IC is captured x=150cm, y=120cm but drawn from the “Winlit” data set, the

value ofMI(IS, IC) is reduced to 0.72. In the former case, Equation 5.8 predictsthat

the goal is 32cm away from x=150cm, y=120cm, quite a good prediction. In the later

case, Equation 5.8 predicts that the goal is 149cm away from the current location.

Though the estimated gradient points towards the goal location in our example, the

agent in the later case wildly overshoots the goal location,moving past it by more

than one meter. This example is qualitatively similar to numerous other examples we

examined.

If successive gradient estimates generally point towards the goal, then the overes-

timates of the agent’s goal distance described above will cause the agent to move back

and forth over the goal location but never in a tight enough cluster for the clustering

stopping criterion discussed in Section 5.4.4 to be invoked. If a particular goal distance

overestimate causes the agent to move far from the goal, thenthe gradient estimate at

this relatively distant location will likely not point towards the goal. Thus, the agent

will begin to take large steps in essentially random directions. The agent will come

close to the goal again only by chance. In either case (whether the gradient points

towards the goal or not), the homing run is likely to stop because the time-out criterion

in Section 5.4.4 is met, not because the goal location is detected. We stop homing

runs after more than 900 simulated seconds have elapsed. This is why we see in Fig-

ure 5.19 that the mean homing time for both 1FDSA and 2FDSA algorithms is about

900 seconds, regardless of starting distance from the goal.
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Figure 5.18: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods 1FDSA and 2FDSA. The algorithms are augmented

with a method to escape non-snapshot optima. The distance to move in a gradient

direction is learned. Experiments were conducted in static environments. The error

bars indicate the standard deviation from the mean homing time.

Optimisation Method Average Return Ratio

1FDSA 0.116

2FDSA 0.138

Table 5.13: Average return ratios for dynamic lighting environments for each optimisa-

tion algorithm considered in the chapter. The algorithms are augmented with a method

to escape non-snapshot optima. The distance to move in a gradient direction is learned.

The return ratios are significantly different with 95% probability according to McNemar’s

test.

Optimisation Method Average Return Ratio

1FDSA 0.986

2FDSA 0.993

Table 5.14: Average return ratios for a moving landmark environment for each optimisa-

tion algorithm considered in the chapter. The algorithms are augmented with a method

to escape non-snapshot optima. The distance to move in a gradient direction is learned.

The return ratios are significantly different with 95% probability according to McNemar’s

test.
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Figure 5.19: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods 1FDSA and 2FDSA. The algorithms are augmented

with a method to escape non-snapshot optima. The distance to move in a gradient di-

rection is learned. Experiments were conducted in dynamic illumination environments.

The error bars indicate the standard deviation from the mean homing time.
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Figure 5.20: Mean homing time as a function of starting distance from the snapshot

location for optimisation methods 1FDSA and 2FDSA. The algorithms are augmented

with a method to escape non-snapshot optima. The distance to move in a gradient

direction is learned. Experiments were conducted in an environment in which landmark

locations changed between captures of snapshot and current images. The error bars

indicate the standard deviation from the mean homing time.
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5.5 Conclusions

In this chapter, we set out to identify appropriate algorithms for moving the homing

agent so as to optimise a difference surface in both static and visually dynamic environ-

ments. In Section 5.3, we described homing algorithms whichwere appropriate to the

task at hand: stochastic optimisation algorithms. We described in Section 5.3.2 a num-

ber of popular optimisation algorithms which are inappropriate for difference surface

homing for a variety of reasons. It is hoped that the discussion of these inappropriate

algorithms will constrain future visual homing researchers.

The optimisation algorithms which were ultimately selected were compared in sim-

ulated homing runs. A novel comparison criteria is defined inSection 5.4.5.1 which

estimates the total time taken for the robot to carry out a homing run. To make the sim-

ulated homing runs as realistic as possible, the noise in mutual information due to sen-

sor (imager and compass) noise was investigated in Sections5.4.1 and 5.4.2. We found

that realistic compass noise had a much more deleterious effect on theMI signal than

did realistic imager noise. Both noise sources were presentin our simulations. Sensor

noise is rarely considered in robotic homing studies. Amongthe many visual homing

papers reviewed in Chapter 2 only Möller et al. [2007] looked at the degradation of

home vector precision as a function of compass noise. They found unsurprisingly that

home vector precision decreases with increasing compass error. Möller et al. [2007]

report that this problem can be alleviated by removing high-frequency components of

current and snapshot images.

In our simulated homing experiments we compared the stochastic optimisers (1FDSA

and 2FDSA) described in Section 5.3 with the “Run-Down” algorithm used for differ-

ence surface homing by Zeil et al. [2003]. Also considered was a novel hybrid be-

tween “Run-Down” and 1FDSA which was intended to overcome the drawbacks of

each constituent algorithm. Though 2FDSA consistently outperformed the other opti-

misation algorithms in terms of homing success rate, its method of gradient estimation

is quite time-consuming. The 1FDSA algorithm was consistently second-best in terms

of homing success and consistently yields dramatically lower total mean homing time

than 2FDSA. We thus conclude that 1FDSA is the best algorithmof those that we

experimented with to use for difference surface homing.

The link between stochastic optimisation and difference surface homing which we

forged here was very useful. Our investigation of the stochastic optimisation literature

led us to methods for effectively choosing the gains which are an integral part of the
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1FDSA and 2FDSA algorithms.

5.6 Future Work

Central place foraging insects often home to the same location – e.g. their nest – over

and over again. Some applications – like docking and recharging at an inconspicuous

wall mains – may require a homing robot to do something similar. Can a homing robot

autonomously improve homing performance over multiple homing runs to a single

snapshot location (perhaps in a dynamic environment)? In the context of the work done

in this chapter, this may mean updating the values ofa, c, A, α, andγ in Equations 5.5

and 5.6 over multiple homing runs.

Work related to this problem from which we may take inspiration has already ap-

peared in the literature. Martinez-Marin and Duckett [2005] used a fast reinforcement

learning algorithm to train a mobile robot to dock with a bottle sitting on an otherwise

empty tabletop. Training was done online and it took less than an hour for the robot

to learn a workable mapping of states to actions for this task. Weber et al. [2003] pre-

sented similar work, though the training was done in simulation. In these papers, the

possible actions to take in a particular state formed a discrete, finite set. In the prob-

lem described above, the actions are related to continuous variablesa, c, A, α, andγ.

This difference may cause our problem to be more difficult to solve by reinforcement

learning.

In addition to those described in Section 5.3, another optimisation scheme recom-

mended by Spall [2003] is simulated annealing (SA). SA is as we shall see designed to

avoid stalling in local optima relatively early in an optimisation process. Empirically,

SA seems to work well when the function to be optimised is corrupted by noise. Like

the optimisation schemes we used in our experiments, a simulated annealing algorithm

selects a sequence of points in the search space. An SA algorithm may choose the suc-

cessor to a point~xk at random, using gradient information or with some other criteria.

If the function value at the successor~xk+1 to ~xk is better than (e.g. greater than) that at

~xk, then the new point is accepted; that is, the new point becomes the base for further

explorations of the search space. If the function value at~xk+1 is worse than that at~xk,

~xk+1 may still be accepted with a certain probability. The probability depends on the

current “temperature” of the annealing process; the higherthe temperature, the greater

the probability of accepting a “bad” move. The temperature is initially relatively high

in early stages of the optimisation process and is reduced ask increases. The rate of
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cooling is controlled by the annealing schedule, a monotonically decreasing function

of k. The success of simulated annealing is notoriously highly dependent on the choice

of the initial temperature and on the annealing schedule Spall [2003]. We did not use

SA here because we assumed a lot of human parameter setting would be required to

make SA successful, limiting the autonomy of a homing robot.This assumption may

not be valid though; SA should be explored in future.

We included realistic sensor noise in our simulation experiments to make these

simulations as realistic as possible. We did not, though, inquire into how much sensor

noise the homing process could tolerate before homing becomes difficult or impossible.

We would like to do so in future. In particular, we would carryout homing trials

using Vardy’s “Original” data set using various snapshot and starting locations. For a

particular snapshot and starting location, we would simulate a number of homing runs,

each time increasing the Webcam and/or compass noise. We would measure homing

success using the average return ratio criterion.

In our implementation in Section 5.4, estimation of the difference surface gradient

at ~xC using Equation 5.2 or Equation 5.1 requires the homing agentto move to two or

more positions adjacent to~xC and evaluate mutual image information at each of these

positions. Both the agent movement andMI evaluation take time. Möller and Vardy

[2006] demonstrated that the difference surface gradient at ~xC – when image similarity

is measured withRMS– can be estimated without explicitly moving the agent from~xC.

These workers demonstrated that imageI(~x′C) can be inferred fromI(~xC) if ~x′C is near

~xC. The inference depends on the assumption that all imaged objects are at an equal

distance from~xC; an assumption inspired by and similar to that made by the image

warping algorithm (Franz et al. [1998b]). The image similarity betweenI(~xC) and the

snapshot and two or more warped images and the snapshot can beused to estimate the

gradient. The creation of warped imageI(~x′C) takes significant computational effort,

though, and multiple warped images must be created for each gradient estimate.

We believe the difference surface gradient can be estimatedwithout agent motion

about~xC andwithout image warping. Before discussing the method we introduce some

new notation: letMIS(x,y) be the mutual image information between a snapshot image

and the image captured at(x,y); the snapshot location is at the origin of the coordinate

system in which(x,y) is defined. Our proposed method calls for the agent to capture

two additional images near the snapshot after having storedthe snapshot itself, one at

−c units from the snapshot location along the x-axis and the other at−c units from

the snapshot location in the y-direction. These images needbe captured only once,
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Figure 5.21: Difference surface gradient directions (shown as unit vectors) estimated

with Equation 5.9. We set c at 60cm. The snapshot is located at x=120cm, y=180cm.

All images were taken from Vardy’s “Original” data set.

probably as the agent leaves the snapshot location for the first time. We shall call

these imagesI(~xSx) andI( ~xSy). The gradient at~x is then estimated with the following

equation

g(x,y) =
[

MISx(x+c,y)−MIS(x,y)
c

MISy(x,y+c)−MIS(x,y)
c

]

(5.9)

Note that the agent does not move from its current location inorder to compute the

gradient with this formula. We compare this with the the one-sided difference gradient

estimated of Equation 5.2 rewritten using our new notation

g(x,y) =
[

MIS(x+c,y)−MIS(x,y)
c

MIS(x,y+c)−MIS(x,y)
c

]

(5.10)

Equations 5.9 and 5.10 yield the same answer ifMISx(x+c,y) = MIS(x+c,y) and

MISy(x,y+c) = MIS(x,y+c). We assume these equalities hold ifc is relatively small.

We estimated difference surface gradients using Equation 5.9 using images from

Vardy’s data set. The resulting gradient vector directions(shown as unit vectors) are

shown in Figure 5.21. The mean deviation between the gradients depicted in Fig-

ure 5.21 and the true home vector was approximately zero degrees (-1.7 degrees) with
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a standard deviation of 24.2 degrees. By contrast, the mean deviation between the gra-

dients computed with Equation 5.10 was -0.5 degrees with a standard deviation of 29.9

degrees. Though gradient directions produced by our proposed method are on average

better than those produced by Equation 5.10, we cannot claimour proposed method is

generally better; more experimentation must be done. The mean deviation between the

gradients computed with each method was 20.9 degrees with standard deviation 18.6

degrees, indicating that Equations 5.9 and 5.10 produce gradient vectors in roughly the

same direction.



Chapter 6

Robotic Experiments

6.1 Introduction

Much of our work in the previous chapters was done in simulation using Vardy’s im-

age data sets, described Chapter 3. We would like to replicate our reported findings in

a different environment to lend credence to the idea that difference surface homing is

generally applicable. To this end, we carried out a number of“live” robotic trials in our

laboratory environment. We describe the robot and imaging system we assembled for

these experiments in Section 6.2.1. We created a visual tracking system – described

in Section 6.2.2 – to estimate the robot’s pose (position andorientation) during exper-

iments. Pose information is required for both post-experiment analysis and to provide

the robot’s current orientation to its homing algorithm. Our experiments and their re-

sults are detailed in Section 6.3; conclusions follow in Section 6.4. We discuss future

work in Section 6.5.

6.2 Materials

6.2.1 Description of Robot

We used a Koala Silver Edition mobile robot in our live experiments (see Figure 6.1).

To capture panoramic images of the environment, the robot was equipped with a Cre-

ative Labs CT4840 Video Blaster Webcam imaging a panoramic mirror. The Web-

cam’s gain control mechanism was turned off. Since the Webcam’s gain control algo-

rithms are unpublished, having gain control active would have affected our experiments

in ways which we could not predict or account for.

181
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Figure 6.1: Image of Koala Silver mobile robot mounted with Acer 313T laptop computer

and panoramic imaging rig used in our “live” homing experiments.

The Koala also carried a small Acer 313T laptop computer. We chose this laptop

because it is one of the few affordable laptops which weighs less than one kilogram, a

requirement as the Koala’s maximum weight capacity is about3kg. The laptop com-

putes with an Intel Pentium 266 MHz processor and has 32MB of RAM. The laptop’s

Lithium Ion battery allows for about two hours of off-mains use. We installed Slack-

Ware Linux 11.0 running the 2.6 Linux kernel on the laptop.

We originally intended that the Koala equipped with the Acerlaptop would home

completely autonomously. The laptop would run a program to capture panoramic

images from the Webcam, compute mutual image information, generate appropriate

homing vectors, and cache data for future analysis. Since, though, the tracking sys-

tem required us to manually interact with panoramic images on our desktop computer

during homing (see Section 6.2.2), we had to change this plan.

We could have connected our Webcam directly to our desktop computer via a USB

(Universal Serial Bus) extension cord of up to 5 metres. Thiscord, though, would have

appeared in many of the images captured by the Webcam, essentially playing the role

of a moving landmark and thereby making homing more difficult. The cord would have

also become tangled in the robot’s wheels during homing, requiring frequent human

intervention.

In the final system, the Acer laptop was equipped with a Cisco Aironet 340 wire-

less network card, allowing communication with the University’s wireless network.

We installed OpenVPN on the laptop to establish a link between the wireless network

and our Desktop-based network account. Images captured with the Koala’s panoramic
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imaging rig were sent via the wireless network to our desktopcomputer (a Dell Pen-

tium 4 Optiplex). Image similarity was calculated on the desktop computer. Wireless

image transmission took about 0.2 seconds per image. Imageswere captured at a res-

olution of 320x240 pixels and stored in the jpeg (Joint Photographic Experts Group)

format as this format compresses images for relatively fastwireless transmission.

Difference surface homing requires an estimate of the robot’s orientation in some

external reference frame. This is because the robot almost certainly has a different

orientation atS than it does atC. IC must be rotated in software to account for this ori-

entation difference otherwise measuring the similarity betweenIS andIC with mutual

image information would be meaningless.

We originally intended to use a digital magnetic compass in our homing exper-

iments to measure orientation. Digital magnetic compasseswith serial and/or USB

(universal serial bus) connectability are typically quiteexpensive (see e.g. http://www.

oceanserver-store.com/compass.html). We were fortunateto find an inexpensive model

manufactured by Silicon Laboratories, the F350. This compass provides a tilt-corrected

azimuthal compass signal, as well as the tilt of the compass and the current tempera-

ture. We wrote a daemon program in C to continually sample anddecode the compass

signal; we shall make this code available online.

Unfortunately, we eventually found that the F350 is unsuitable for our needs. The

signal is highly sensitive to magnetic interference, whichis common indoors. Even

when we attempted to shield the compass from such noise, the azimuth reading exhib-

ited a large standard deviation when travelling on a straight path; the mean error was

non-zero as well. The tilt signal is quite reliable indoors,though, as is the temperature.

Until we can afford a more sophisticated digital compass, wemust fall back on our

tracking system (see Section 6.2.2) for directional information. This as we shall see

limits the autonomy of the robot, but we are left with little choice.

6.2.2 Tracking System

We needed to track the robot during homing to provide a recordof the robot’s move-

ment for post-experiment analysis. As our magnetic compassfailed to work indoors

(see Section 6.2.1), we also used our tracking software to provide an estimate of the

robot’s orientation at each homing step so thatIC could be rotated to account for

changes in robot orientation betweenSandC.

We originally intended to track the movement of the robot during a homing run
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Figure 6.2: Sample image from our panoramic imaging system used by our tracking

system.

with a tether tracking system designed by Robert MacGregor,senior technical officer

in the School of Informatics at the University of Edinburgh.This system consists of

up to four base stations, each of which holds a spool of fishingwire. The end of

each length of wire is attached to a point on the robot. If the robot moves away from

a base station the wire unwinds. Movement towards the base station will cause the

wire to respool, as the base station pulls the wire towards itwith a small, constant

force. Each base station maintains an accurate and precise estimate of the length of

wire currently unspooled (i.e. the distance of the robot from the base station). In an

initial calibration phase, the position of each base station (in a coordinate system with

a particular station at the origin) is estimated. Given these positions and the distance of

the robot to each base station, simple trigonometry can be employed to infer the robot’s

position in the aforementioned coordinate system. Two basestation locations/robot-

distance measurements are required for this calculation. If more than two base stations

are available, several estimates (one for every possible pair of base stations) of the

robot’s position are made and the average position is reported. The robot’s orientation

can be estimated by calculating the best-fitting line through several successive position

estimates as the robot moves in a particular direction.

As we mentioned earlier, the tether tracking system proved unsuitable for our pur-

poses. The fishing wire must be tethered to the highest point on the robot otherwise

the wire becomes tangled on the robot when the robot rotates.The highest point on

our robot is the top of the panoramic mirror rig. The constantpulling force of the base

stations causes the rig to bend, distorting the captured image in ways that are difficult

to correct for in software. The pulling force also causes a torque around the centre of

mass of the robot, frequently causing the robot to topple over.

We designed and built a visual tracking system to replace thetether tracker. The vi-
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sual tracker relies on a surveying technique called resection (McCaw [1918]) to deter-

mine the robot’s current position(xR,yR). Resection takes as input the ego-centric bear-

ing of three landmarks whose positions in some suitable reference frame are known.

The resection algorithm itself is a rather involved trigonometric procedure; we refer

the reader to McCaw [1918]) for details. Once the agent’s position is fixed, its bearing

θ (i.e. rotation counter-clockwise from the x-axis of the coordinate system in which the

landmark locations are defined) can be computed using the known location of one of

the landmarks(xL,yL). We use the following formula to compute the robot’s bearing:

θ = tan−1
(

yL−yR

xL−xR

)

(6.1)

Using Equation 6.1 we can compute three bearing estimates using the three differ-

ent landmark locations used in the resection process. Multiple bearing estimates are

averaged using the circular mean (Batschelet [1983]) formula.

As resection requires the locations of recognised landmarks, we placed six land-

marks in our experimental laboratory environment. Our colleagues – for an experiment

of their own – marked out a 4m x 5m grid on our laboratory floor. The grid was marked

in masking tape spaced at one metre intervals. One can see a portion of this grid in Fig-

ure 6.1. We placed the six landmarks along the periphery of the grid, on intersection

points of the grid. In this way, we were easily able to localise these landmarks.

We used images taken with the robot’s panoramic imaging rig to determine the

robot-centric bearing of these landmarks. See Figure 6.2 for a sample image used by

our tracking system. We chose landmarks that were visually inconspicuous and, when

possible, part of a typical laboratory so that it could not beclaimed that we adulter-

ated the laboratory environment to improve the performanceof our homing robot. One

landmark was, for example, a waste basket and another was a poster cylinder standing

on end. It proved difficult to automatically identify these landmarks in our images.

Thus, we had to perform the identification manually. As we described in Section 6.2.1,

each time a pose estimate was required, the robot’s on-boardcomputer captured the

current panoramic image and sent it wirelessly to our desktop computer. Our tracking

program displayed the image on screen and we mouse-clicked on each visible land-

mark.

Given their locations in pixel-coordinates, the tracking program inferred the robot-

centric bearing of each selected landmark. As we mentioned earlier, the resection

algorithm requires three landmark bearings to calculate the robot’s position. If more

than three landmark are visible, the tracking program uses the RANSAC (RANdom
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SAmple Consensus) algorithm (Fischler and Bolles [1981]) to determine the subset

of landmark bearings which gives the most consistent set of position estimates. The

mean of these position estimates is taken to be the robot’s true position. The mean

position is then used to compute the agent’s bearing using Equation 6.1. We use an

extended Kalman filter (Welch and Bishop [2006]) to further filter out noise in the

pose estimate. The filter modifies the position estimate produced by the RANSAC

method by taking into account the tracker’s previous position estimate and the robot

movement commands issued at this previous location.

As the panoramic imaging rig is somewhat unstable, the location of the panoramic

mirror in the images provided by the Webcam changes slightlyover time. At the

beginning of each homing run, the tracker finds the centre andboundary of the imaged

mirror using the Hough transform (Fisher et al. [1996]). As the Hough transform

is computationally expensive, we do not reestimate the location of the mirror in the

Webcam image during a homing run. The assumption that the relationship between

the mirror and the Webcam does not change during a homing run seems to be valid in

most cases. We also use the mirror location information to mask out non-mirror image

segments when computing mutual image information.

We wanted to determine how well our visual tracker estimatesthe robot’s pose. We

first tested the tracker in simulation. The simulated environmental area contained six

landmarks, represented by the blue pluses in Figure 6.3. This landmark arrangement

was quite similar to the one we used in our “live” robotic trials. The agent started at

position x=200, y=200 in this arena, oriented at 45 degrees.One-hundred movement

steps were simulated. In each step, the agent made a random decision to move forward

by 10 distance units or to rotate by 90 degrees counterclockwise. Forward movement

occurred with 85% probability. After each movement, the agent estimated its pose

using the method described above. The pose estimate requires the agent to measure the

bearing of each sensed landmark. To mirror real-world conditions, we added random

noise to these bearing measurements. Each noise sample was drawn independently

from a zero mean Gaussian distribution with a standard deviation of 1.5 degrees.

The result of one run of our simulation is shown in Figure 6.3.The solid black

line in this figure indicates the robot’s true path and the redline our visual tracker’s

estimate of the robot’s position. The position estimate hadapproximately zero mean

error (0.16 distance units in the x-direction and 0.05 distance units in the y-direction).

The standard deviation of the position estimate was small: 1.56 distance units in the

x-direction and 1.75 distance units in the y-direction. Therobot’s estimated bearing is
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Figure 6.3: Result of a simulated test of our visual tracking system. The start position of

the simulated agent’s path is depicted as a green star, the end position a red star. The

true path of the simulated agent is shown as a solid black line. The agent’s estimated

location is shown as a red line. Landmarks are depicted as blue pluses.

not shown in Figure 6.3. The mean bearing error was -0.09 degrees with a standard

deviation of 0.66 degrees. The distribution of the bearing error was approximately

Gaussian, with kurtotis = 2.89 and skewness = -0.17. We re-ran the simulation several

times; the results were similar in every run.

We next tested the visual tracker in our laboratory environment. We could not

assess the tracker’s ability to estimate position since, using the coarse grid laid out on

our laboratory floor, we had only a rough sense of the agent’s true position. To measure

the tracker’s ability to estimate bearing, we drove the robot along a straight 2.5m track

on the laboratory floor. The robot stopped approximately every 5cm (as measured by

dead reckoning), at which point a pose estimate was made. Theestimated position of

each data capture point is shown in Figure 6.4. We drove the robot along two other

2.5m tracks in different parts of our laboratory and gathered 50 equally spaced pose

estimates along these tracks as well. We combined the data ofthe three tracks and

found that the standard angular deviation from the mean is 0.71 degrees, broadly in

line with our simulation results. The skewness is 0.09 (small, as in the simulation)

but, unlike in the simulation, the kurtosis of the data is 6.54, indicating a non-Gaussian

distribution with a relatively high peak at the mean.
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Figure 6.4: Result of a test of our visual tracking system in our laboratory environment.

We drove the robot along a straight 2.5m track, taking pose estimates every 5cm (for a

total of 50 estimates). The position estimates are depicted as black crosses.

6.3 Experiments and Results

In our first experiment, we wanted to determine which image similarity measure –

RMSor MI – yields better homing performance in static environments.We measured

homing performance using the criteria used in previous chapters: total homing time

and return ratio. In this experiment, our robot homed starting from either one or two

metres away (approximately) from the snapshot location. All overhead lights in our

laboratory were turned on during capture of both snapshot and current images, result-

ing in constant illumination over the entire experimental area. We selected snapshot

locations which were uniformly distributed in our test environment and starting loca-

tions uniformly distributed (when possible) around the snapshot positions. For every

pairing of start location and snapshot location, we performed two homing runs, one

usingRMSto measure image similarity and the other usingMI to measure image sim-

ilarity. For each similarity measure, we performed eight one-metre (i.e. starting one

metre from the snapshot location) and twelve two metre tests, for a total of forty hom-

ing runs. We used the “Run-Down” algorithm to home in these experiments, setting the

interval between difference surface samples at 15cm for theone-metre experiments and

25cm for the two-metre experiments. These inter-sample distances were determined

empirically after observing a few unrecorded homing runs atvarious starting distances

in our environment.

The results of this experiment are summarised in Table 6.1. In the one-metre ex-

periments, homing withRMSandMI was roughly equivalent, thoughMI had a higher

return ratio. The disparity between the return ratio in the two-metre tests was greater,
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Similarity Measure FTotal DTotal (cm) θTotal (deg) TTotal (s) RR

Goal Distance≈ 1 metre

RMS 28.4 [13.3] 426.0 [200.0] 1188.0 [373.3] 97.6 [39.2] 0.75

MI 27.1 [ 7.4] 407.1 [111.1] 1015.7 [253.0] 89.1 [23.0] 0.88

Goal Distance≈ 2 metres

RMS 22.6 [ 2.7] 565.6 [66.7] 888.8 [169.7] 104.0 [14.3] 0.75

MI 28.8 [12.0] 720.5 [301.2] 1251.8 [654.5] 136.6 [60.2] 0.92

Table 6.1: Summary of results for homing runs comparing MI and RMSimage similarity

measures in static conditions. Mean values over all homing runs are reported, with

standard deviations in square brackets. Only successful homing runs were used to

calculate the summary statistics other than, of course, the return ratio. In this table

FTotal is the total number of image similarity computations undertaken during a homing

run; DTotal is the total linear distance travelled during a homing run; θTotal stands for

the sum of all angles turned by the homing agent during a homing run; TTotal is the

total time taken during a homing run; and RR is the return ratio. As in our simulations

in Chapter 5, the robot translated at 8 cm/sec and rotated at about 29 degrees/sec. A

single computation of MI and RMStook roughly the same amount of time, about 0.1

seconds. When calculating TTotal, we ignored the time required to transmit images over

the wireless network and the time required to estimate the robot’s pose using the visual

tracker as these are implementation dependent.
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with MI reaching the goal 92% of the time. As might be expected, the total time re-

quired to home in theMI experiments increases with increasing starting distance from

the goal. Since the sample interval is greater for the two-metre tests, the increase in

mean function evaluations and mean total translation did not increase dramatically.

StrangelyFTotal and θTotal actually decrease in the two-metreRMSexperiments as

compared to the one-metreRMSexperiments. We believe that this is because in sev-

eral of the one-metreRMShoming runs the robot became temporarily trapped in local

optima before finally reaching the goal.

In our second experiment, we sought to determine which similarity measure –RMS

or MI – yields better homing performance in an environment in which lighting changed

between snapshot and current image capture. As above, the robot starts homing from

either one or two metres away (approximately) from the snapshot location. We selected

snapshot locations which were uniformly distributed in ourtest environment and start-

ing locations uniformly distributed (when possible) around the snapshot positions. For

every pairing of start location and snapshot location, we performed two homing runs,

one usingRMSto measure image similarity and the other usingMI to measure im-

age similarity. All snapshot images were captured with all overhead lights turned on.

Current images were captured with half of the overhead lights directly above the ex-

perimental area turned off; in some experiments we turned the left bank of lights off

and in others we turned the right bank of lights off when capturing current images.

For each similarity measure, we performed eight one-metre and eight two-metre

tests, for a total of thirty-two homing runs. We used the “Run-Down” algorithm to

home in these experiments, setting the interval between difference surface samples at

15cm for the one-metre experiments and 25cm for the two-metre experiments. These

inter-sample distances were determined empirically as above.

The results of our dynamic illumination experiments are reported in Table 6.2. As

measured with the return ratioRR, homing usingMI to measure image similarity is

clearly more robust than when usingRMS. This agrees with the results given in Chap-

ter 3. In the two-metre tests, homing withRMSwas only successful 38% of the time

compared with a 75% return rate forMI . We observed that while homing usingRMS,

a robot starting in a relatively unlit portion of the environment would move toward the

more brightly lit part of the arena rather than towards the snapshot location. This ob-

servation jibes with our finding – reported in Chapter 3 – thatRMSdifference surface

homing will cause the homing agent to move so as to equalise the mean intensities of

the current and snapshot images. The other criteria listed in Table 6.2 indicate that suc-
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Similarity Measure FTotal DTotal (cm) θTotal (deg) TTotal (s) RR

Goal Distance≈ 1 metre

RMS 21.6 [ 3.2] 540.0 [80.2] 864.0 [225.9] 99.8 [17.7] 0.62

MI 19.7 [ 6.5] 492.9 [161.8] 810.0 [207.8] 91.9 [27.7] 0.88

Goal Distance≈ 2 metres

RMS 23.0 [ 4.6] 575.0 [114.6] 840.0 [137.5] 103.5 [19.6] 0.38

MI 24.2 [ 6.0] 604.2 [151.2] 870.0 [245.9] 108.3 [27.6] 0.75

Table 6.2: Summary of results for homing runs comparing MI and RMSimage similarity

measures in dynamic illumination conditions. Mean values over all homing runs are re-

ported, with standard deviations in square brackets. Only successful homing runs were

used to calculate the summary statistics other than the return ratio RR. For definitions

of FTotal, DTotal, θTotal, and TTotal see the caption of Table 6.1.

cessful homing withMI takes roughly the same amount of time as successful homing

with RMS.

Given the relatively inferior return ratio of “Run-Down” reported in Table 5.7, one

may be surprised that we used this algorithm for difference surface optimisation in the

experiments described above. We wanted each “live” homing run to be as speedy as

possible since the battery life of the Koala and the Acer laptop are quite limited, both

lasting for a little over an hour of constant use. Once drained, each battery requires sev-

eral hours to recharge. In trial homing runs, the majority ofthe time (about 90 percent)

was spent making the semi-manual pose estimation describedin Section 6.2.2. We per-

formed a pose estimate each time the difference surface was sampled because the ori-

entation of the robot is required to compute image similarity. We chose “Run-Down”

to compareMI andRMSdifference surfaces in the experiments above because “Run-

Down” – as demonstrated in Figure 6.5 – required fewer difference surface evaluations

as a function of starting distance than 1FDSA, 2FDSA or Hybrid in our simulation

experiments. The difference in function evaluations is often dramatic; for example,

Figure 6.5 indicates that “Run-Down” always requires fewerand often less than half

the number of difference surface evaluations on average than 1FDSA for any given

starting distance. Though the performance of “Run-Down” isrelatively poor in Ta-

ble 5.7, in absolute terms its mean return ratio was only a fewpercentage points worse

than 1FDSA. For this reason – and to make our live experimentsas fast as possible –

we chose to use “Run-Down” in the experiments described above.
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(a) Run-Down
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(b) 1FDSA
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(c) 2FDSA
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(d) Hybrid

Figure 6.5: Mean number of difference surface evaluations as a function of starting dis-

tance from the snapshot location for optimisation methods Run-Down, 1FDSA, 2FDSA

and Hybrid. The error bars indicate the standard deviation from the mean number of

difference surface evaluations. All simulated homing runs used to make Figure 5.12 in

Chapter 5 were used to create these graphs.
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Opt. Algorithm FTotal DTotal (cm) θTotal (deg) TTotal (s) RR

Goal Distance≈ 1 metre

RunDown 27.1 [ 7.4] 407.1 [111.1] 1015.7 [253.0] 89.1 [23.0] 0.88

1FDSA 24.4 [ 9.1] 983.9 [329.8] 1258.9 [394.6] 169.4 [55.7] 1.00

Goal Distance≈ 2 metres

RunDown 29.8 [13.1] 743.8 [328.6] 1158.8 [687.8] 136.4 [65.8] 1.00

1FDSA 21.0 [ 0.0] 859.3 [ 0.0] 1236.8 [116.1] 152.7 [ 4.1] 0.75

Table 6.3: Summary of results for homing runs comparing “Run-Down” and gradient

descent with one-sided finite differencing (1FDSA) in a static environment. Mutual in-

formation was used to measure image similarity. Mean values over all homing runs are

reported, with standard deviations in square brackets. Only successful homing runs

were used to calculate the summary statistics other than the return ratio RR. For defi-

nitions of FTotal, DTotal, θTotal, and TTotal see the caption of Table 6.1.

In our final experiment, we sought to determine whether “Run-Down” or gradient

descent with one-sided finite differencing (1FDSA) was the better optimisation algo-

rithm. As above, the homing robot started from either one or two metres away (approx-

imately) from the snapshot location. We selected snapshot locations which were uni-

formly distributed in our test environment and starting locations uniformly distributed

(when possible) around the snapshot positions. For every pairing of start location and

snapshot location, we performed two homing runs, one using “Run-Down” to home

and the other using 1FDSA. All snapshot and current images were captured with all

overhead lights turned on. Image similarity was computed with mutual information.

For each optimisation algorithm, we performed eight one-metre and eight two-

metre tests, for a total of thirty-two homing runs. For the “Run-Down” algorithm, we

set the interval between difference surface samples at 15cmfor the one-metre exper-

iments and 25cm for the two-metre experiments. These inter-sample distances were

determined empirically as above. When homing with 1FDSA, wesetck at 25cm for

all k andak = 100
k+1cm. These gains were empirically determined in the same way that

we fixed the “Run-Down”’s inter-sample interval. To gather the difference surface

samples required to make a gradient estimate with 1FDSA, we used the sequence of

movement commands described in Section 5.3.1.

As we can see in Table 6.3, 1FDSA is more successful at a starting distance of

one metre than is “Run-Down.” The 1FDSA algorithm, though, takes dramatically
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more time to home than does “Run-Down.” This disparity is dueto the movement that

the robot has to undertake in order to compute each gradient estimate. Interestingly,

1FDSA requires less time to home at two meters than at one meter; we as yet do not

have an explanation for this. 1FDSA at two meters is still slower than “Run-Down,”

though.

The fact that – as reported in Table 6.3 – “Run-Down” performsbetter than 1FDSA

at 2 metres runs counter to our expectations given the simulation results of Chapter 5.

We examined in detail the records of the two homing runs in which 1FDSA fails and

“Run-Down” succeeds. In one case, the 1FDSA algorithm guides the agent closer

to the snapshot location after every gradient estimate as isdesired. Unfortunately,

in the later part of the homing run, the agent’s distance fromthe snapshot locaction

decreases only slightly (by a few centimetres) in each iteration of the optimisation

algorithm since it moves in a zig-zag fashion towards the goal. This behaviour is

interpreted as clustering around a fictitious difference surface optimum so the agent

halts at about 50cm from the snapshot location. The clustering stopping criterion fails

in this instance. In the case of the second 1FDSA failure, theinitial gradient estimate

is fairly poor; the agent’s one metre move in this direction brings it only slightly closer

(1.8 metres) to the goal position than the starting distanceof 2 metres. The new location

is a local optimum so the agent spends the remainder of the homing run meandering

near this location. This example highlights a weakness withthe 1FDSA algorithm:

if at least one of the first few gradient estimates is poor, then the agent will move

only slightly nearer or indeed away from the goal location, potentially to a location

which is more difficult to home from than the starting location. “Run-Down” does not

make such large steps so turns towards the snapshot locationbefore finding this local

optimum.

Some of the standard deviations for two-metre 1FDSA reported in Table 6.3 are

zero. This may seem odd at first glance. The reason for it is that the homing algorithm

checks if the “clustering” stopping criterion is true starting on the seventh iteration

of the 1FDSA algorithm. In all of our two-metre 1FDSA tests, the stopping criterion

happened to be true on reaching the seventh iteration of the algorithm. The number of

difference surface evaluations and the linear distance travelled (as measured by dead

reckoning) is directly proportional to the number of iterations of the 1FDSA algorithm.

Thus, these values were equal to 21.0 and 859.3cm, respectively, in all successful two-

metre 1FDSA runs.
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6.4 Conclusions

Some results reported in Section 6.3 are broadly in agreement with our simulation

experiments described in previous chapters. In static conditions, visual homing using

RMS to measure image similarity performs roughly as well as whenMI is used to

measure similarity. When illumination changes between thecapture of the snapshot

and current images, homing usingMI is dramatically more robust. We observed that

several of theRMShoming runs in dynamic lighting fail in the manner predictedin

Chapter 3: the robot moves so as to equalise the mean intensity of snapshot and current

images, rather than towards the snapshot location. Unlike in our simulation work,

the choice between optimisation algorithms – specifically “Run-Down” and 1FDSA

– yields ambiguous results. The 1FDSA algorithm is successful 100% of the time

when homing starts 1 metre from the snapshot location but is less robust than “Run-

Down” when starting from 2 meters. 1FDSA consistently takesmore time to home

than does “Run-Down” due to the expensive gradient estimation carried out by the

former algorithm.

Homing success rates reported in this chapter are generallyon par with those gar-

nered from simulated experiments and reported on in Chapter5. We found though

that in our “live” experiments the robot reliably homed fromup to 2 metres from the

snapshot locations but in our simulated experiments – usingVardy’s image data set –

the homing agent could reach home from a greater starting distance (up to 4.5 metres).

There are a few factors which could account for this discrepancy. We may not have

accounted for all sources of sensor noise in our simulated experiments. In particular,

as we noted above, the Webcam image of the mirror moves over time due to physical

instability in our panoramic imaging rig. We corrected for this movement at the begin-

ning of every homing run in “live” experiments but it might have been better to apply

the correctionduringhoming runs as well (though this would have required significant

computational effort). Our panoramic mirror was upturned,reflecting large parts of

our laboratory’s ceiling whereas Vardy’s mirror was downturned so that floor of his

laboratory took up a large part of the images which he captured. Whereas the image of

the floor changes very little as the agent moves, the image of the ceiling (with its lights

and repeated tile pattern) changes more rapidly. Relatively rapid change in image con-

tent leads to relatively rapid decrease in mutual image information as the agent leaves

the snapshot location. Finally, of course, the laboratory environment in which Vardy

captured his images was different than the laboratory in which we captured ours. If
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Vardy’s environment contained imaged objects which were larger and farther from the

robot than those in our environment, mutual information would generally be usable

over a wider area in Vardy’s lab.

6.5 Future Work

We described in this chapter the difficulty we had in attaining a global compass refer-

ence to match the orientations of current and snapshot images. We ended up using our

tracking software to provide an orientation signal to the mobile robot. This of course

limits the autonomy of the robot.

There are a few alternatives to our compassing solution which we could try in fu-

ture. We could use the zero phase representation (ZPR) of images described in Chap-

ter 2. The ZPR uses phase information from the discrete Fourier transform of images

to rotate any image taken in a particular environment to a single canonical orientation.

We could also use angle histograms (Hsieh et al. [1997]) to align current and snapshot

images. In computing an angle histogram, snapshot and current images would first be

edge-filtered and the orientation of each edge in each image would be computed. Then,

the orientation of each edge in the current image would be compared to the orientation

of all edges in the snapshot image. Each such comparison yields an angular differ-

ence which would be used to increment the corresponding bin in the angle histogram.

At the end of this process, the bin with the most elements yields an estimate of the

orientation difference between current and snapshot images. This technique might be

particularly useful in our laboratory as the ceiling has distinct edges whose orientation

in our panoramic images is highly dependent on the orientation of the robot. These

two alternatives to compassing – ZPR and angle histograms – would of course have to

be tested in the context of difference surface-based visualhoming before being used.

We could also use the visual compass described in Chapter 2 torotationally align

current and snapshot images. We in fact did some preliminarytesting to determine

whether this was a viable solution for visual homing by difference surface optimisation.

The visual compass seemed to sometimes introduce local optima at locations relatively

far from the snapshot location. These local optima would of course attract a nearby

homing robot, steering it away from the true snapshot location. It may benefit us to

take another look at the visual compass, though.

If all of the above methods fail to provide reliable information to align the ori-

entations of snapshot and current images, we could try equipping the Koala with a
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gyroscope. The gyroscope would augment our dead reckoning system to track the

robot’s orientation over time. Due to systematic and non-systematic odometric errors

(described in Chapter 2), the robot’s dead reckoning systemis insufficient to perform

this tracking. A gyroscope measures the angular velocity ofan accelerating system.

The gyroscope’s output can be integrated over time to estimate the robot’s orientation

with respect to its initial orientation. As in Roumeliotis and Bekey [1997], an extended

Kalman filter can be used to fuse wheel encoder information with measurements from

the robot’s gyroscope to boost the accuracy of the robot’s orientation estimate. See

Chapter 2 for more information on the extended Kalman filter.



Chapter 7

Conclusions and Key Future Work

In this dissertation we have investigated a computationally efficient and robust algo-

rithm for visual homing in dynamic indoor environments. As we discussed in Chap-

ter 2 visual homing in general is a useful visual servoing technique. Visual homing

is frequently employed to guide a robot between adjacent nodes in a vision-based

topological navigation system (see e.g. Argyros et al. [2005]). Visual homing is an

appropriate approach for these systems because purely topological vision-based rep-

resentations of an environment do not contain explicit metric information about that

environment (i.e. landmark locations). As we first set out inChapter 1 visual hom-

ing allows for navigation without explicit knowledge of thelocation of landmarks in

a global coordinate system. We saw in Chapter 2 that visual homing is also used to

solving the docking problem in which a robot must be guided toa precise pose with

respect to an object in the environment for the purpose of, say, recharging or grasping.

We argued in Chapter 2 that image-based (as opposed to feature-based) visual

homing is a worthwhile approach to visual navigation. Image-based approaches es-

chew feature selection, extraction and correspondence. Many navigation algorithms

require consistently successful solutions to these difficult problems in order to oper-

ate. Though SIFT features (see Chapter 2 for details) offer apowerful tool for feature

extraction and correspondence, we in this dissertation optto investigate a more parsi-

monious approach to visual homing.

When we began work on this dissertation, there were two image-based visual hom-

ing algorithms to be found in the literature: image warping (Franz et al. [1998b]) and

homing by difference surface optimisation (Zeil et al. [2003]). Image warping uses

a computationally intensive brute-force search to infer home vectors. Difference sur-

face homing, on the other hand, is quite computationally efficient and algorithmically

198
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simple. Unfortunately, Zeil et al. [2003] found that difference surface homing using a

root-mean-square (RMS) formula to measure image similarity is not robust in visually

dynamic environments. As we shall argue here, our contribution to the field of visual

homing has been to render difference surface homing more robust to visual dynamism;

to push the algorithm to limits not considered by Zeil; and topioneer methods to speed

up the computation required by difference surface homing without degradation of hom-

ing success. Along the way we have discovered novel and fruitful links between visual

homing and other bodies of literature.

Zeil et al. [2003] identified limitations toRMSas an image similarity measure

used for difference surface homing. In Chapter 3, we provided novel empirical and

analytical proof of these limitations. We demonstrated forthe first time that difference

surface homing withRMSalso works well in a static indoor laboratory environment.

In agreement with Zeil et al. [2003], we showed empirically that difference surface

homing with RMS is not robust when the snapshot imageIS and current imageIC

are captured in different lighting conditions. In a novel mathematical analysis of the

root-mean-square measure, we demonstrated that moving thehoming agent so as to

minimiseRMSbetween current and snapshot images is equivalent to simultaneously

• seeking high covariance betweenIS andIC (i.e. minimising−2Cov(IS, IC));

• seeking low variance current images (i.e. minimisingVar(IC)); and

• seeking equality of the mean intensities ofIS andIC (i.e. minimising(ĪS− ¯IC)2).

We argued that the second two items above often lead the homing agent to difference

surface minima which do not coincide with the snapshot location (i.e. false positives).

We demonstrated in a principled way in Chapter 3 that there are better alternatives

to RMSfor measuring image similarity for the purpose of difference surface homing.

Our novel analysis of the root-mean-square measure predicted that the covariance term

of theRMSequation would yield more robust difference surfaces in dynamic environ-

ments than theRMSitself. We confirmed this prediction with simulated homing runs

using Vardy’s image data sets. We argued that the covarianceis only a trustworthy mea-

sure of the similarity betweenIS given IC when there is a linear relationship between

intensities inIS andIC at corresponding pixel locations. We demonstrated that such a

linear relationship betweenIS and IC doesexist in static conditions but is not always

present in dynamic situations; we gave an example in which illumination change be-

tween capture ofIS andIC leads to a nonlinear relationship in pixel intensities. Mutual
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image information (MI ) assumes no such linear relationship, only that pixel intensities

in IC are goodpredictorsof corresponding pixelsIS. Mutual image information was

indeed superior to covariance for the purposes of difference surface homing in several

dynamic environments.

As we argued in Chapter 3, mutual image information as an image similarity mea-

sure may have applications outside the narrow confines of difference surface homing.

RMS(or something very similar) is quite often used to measure the difference between

images in other image-based navigation schemes (e.g. the image warping algorithm

of Franz et al. [1998b] and image-based Monte Carlo localisation [Menegatti et al.

[2004]]). As in our work, these algorithms compare a currentimage with images cap-

tured previously. Lighting and landmark locations might well have changed in the

interim. We have demonstrated that mutual image information is robust to this dy-

namism and so could provide a useful image similarity measure in image-based robot

navigation in general. Thus this dissertation may well be ofinterest to many workers in

visual robotic navigation and machine vision, not just those focused on visual homing.

Compared to other image-based visual homing algorithms – particularly image

warping (see Franz et al. [1998b] and Chapter 2) – differencesurface homing is a

computationally efficient homing algorithm. One of our interests in this work was to

increase this efficiency without drastically diminishing the ease with which a differ-

ence surface can be optimised. We did so using techniques which no other researchers

in visual homing have yet explored. In Chapter 4 we explored computation of mutual

information using both serial and parallel processors. An EyeRIS parallel image pro-

cessing device was available in our laboratory for our use. We created novel parallel

histogramming algorithms for use on the EyeRIS and demonstrated that computation

of mutual information with these algorithms requiresO(B2) operations whereB is the

number of intensity levels in the input images.

Unfortunately, noise in the EyeRIS’s image capture processrenders images unus-

able for difference surface homing. We therefore explored methods to speed the serial

computation of mutual information. Serial computation of mutual image information

takesO(B2 + NM) steps where each input image hasN rows andM columns. We

demonstrated that a reduction (sometimes quite drastic) inspatial and/or intensity lev-

els in our input image has little or no discernible effect on homing performance in a

laboratory environment in both static and dynamic conditions. We used a number of

novel criteria to assess or in some cases infer homing success; more information on

these criteria can be found in Chapter 4. We found that the time required for serial
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computation of mutual information for low resolution images was of the same order of

magnitude as the time required for parallel computation with the EyeRIS. We thus felt

justified in abandoning the EyeRIS for the time being and computing mutual informa-

tion serially in the remainder of our dissertation work.

We presented empirical evidence that reduction in the number of image intensity

levels results in a scaling-down of MI surface values near the snapshot location and a

constant shift of MI surface values relatively far from the snapshot location. The reduc-

tion of the spatial resolution of input images had a similar though not identical effect

on MI surface values. We speculated that homing with reducedimages is successful

due to the effect that such reduction has on the mutual information signal. At the end

of Chapter 4 we provided novel analytical support for the observed reduction in MI

values in response to gray level reduction both at and relatively far from the snapshot

location.

Unlike most researchers in robotic homing, we demonstratedthat our homing al-

gorithms operate successfully in both realistic simulation and “live” robotic trials. We

introduced realistic sensor noise in our simulations, identifying noise in both the image

capture and compassing systems and determining the resulting distribution of noise in

the mutual information signal. We scanned the optimisationliterature to identify a

set of appropriate algorithms to guide the homing robot to maximise the difference

surface. Of these algorithms, we found that a gradient ascent with one-sided gradient

estimation (1FDSA) is the best algorithm for the task at handas judged by our novel

evaluation criteria.

For our “live” homing trials (described in Chapter 6), we constructed a mobile robot

capable of visual homing and designed and built a visual tracking system to infer the

robot’s pose (position and orientation) during experiments. The pose information pro-

vided by the tracker was important for the interpretation ofexperiments; we also used

it to align snapshot and current images to a single global compass direction. With-

out such image rotation, calculation of mutual image information would have been

meaningless.

The results reported in Chapter 6 are sometimes in line with those garnered from

simulation. We found – when snapshot and current images are captured in different

illumination conditions – that the mutual information image similarity measure often

leads to more robust difference surface homing than the root-mean-square image sim-

ilarity measure does. Unlike in our simulation work, the choice between optimisation

algorithms – specifically “Run-Down” and 1FDSA – is ambiguous. The 1FDSA algo-
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rithm is successful 100% of the time when homing starts 1 metre from the snapshot

location but is less robust than “Run-Down” when starting from 2 meters. 1FDSA con-

sistently takes more time to home than does “Run-Down” due tothe expensive gradient

estimation carried out by the former algorithm.

The 1FDSA algorithm is expensive because it requires the homing agent to move

in order estimate the difference surface gradient at a particular location. We outlined a

method in Chapter 5 which allows the homing agent to estimatethe difference surface

gradient at a location without moving from that location. Our proposed method calls

for the agent to capture two additional images near the snapshot after having stored the

snapshot itself, one at−c centimetres from the snapshot location in a randomly chosen

direction and the other at−c centimetres from the snapshot location in a direction

orthogonal to the randomly chosen direction. These images need be captured only

once, probably as the agent leaves the snapshot location forthe first time. We showed

in Chapter 5 how the image similarity between each of these three snapshot images

and the current imageIC could be used to estimate the difference surface gradient at

the current image capture point. In a pilot study, we demonstrated the success of this

method in a static laboratory environment. The gradients ofa sample difference surface

computed with this method are shown in Figure 5.21. More workshould be done with

this algorithm to demonstrate its usability in other environments.

As we relate in Chapter 6, our “live” homing trials demonstrated to us that accurate

compassing indoors is difficult. The image similarity measures we experimented with

in Chapter 3 require thatIS andIC are aligned to the same external compass direction.

Must IS andIC be aligned in this way before measuring the similarity between the two?

Not necessarily. We showed in a pilot study described in Chapter 3 that the marginal

intensity distributions ofIS and IC (i.e. the normalised intensity histograms of these

images) could be compared with the Kullback-Leibler divergence (Weisstein [2007b]).

The intensity histogram of an imageIC is of course left unchanged whenIC is rotated.

Using this image similarity measure we demonstrated reasonably successful difference

surface homing in a static laboratory environment. Resultsin dynamic conditions were

poor, though. More work must be done with the Kullback-Leibler divergence similarity

measure to improve performance in dynamic situations.

We close this chapter with a discussion of the overall strategy – a novel strategy in

the visual homing community – we employed to make progress inwork on this disser-

tation. In essence we attempted to find connections between visual homing and other

bodies of literature whenever possible and to bring successful, appropriate algorithms
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from these fields to bear on difference surface visual homing.

In the latter part of Chapter 3 we argued that visual homing isquite similar to

the problem of image registration. An image registration algorithm attempts to find

the function which best transforms one image of an object or scene into a second

image of the same scene or object. The two images can differ due to the poses of the

imager, the modalities in which the images were captured, and/or the layout of the

scene among other things. The function sought is a transformation of pixel locations,

often though not always affine. While image registration algorithms search for the

pixel-by-pixel transformation between two images, visualhoming seeks to estimate

the transformation of animagerfrom S toC given imagesIS andIC. Hill et al. [2001])

demonstrate that mutual image information (MI ) can be used to assess image similarity

for the purposes of image registration.MI works well as an image similarity measure

in registration even when the two images to be registered differ significantly in for

instance lighting and modality. The kinship between image registration and visual

homing – and the success ofMI in the former – led us to applyMI to measure image

similarity in visual homing with, as Chapter 3 demonstrates, beneficial results.

Our study in Chapter 5 of noise in the mutual information signal led us to the body

of literature known as stochastic optimisation. This literature gave us several optimi-

sation algorithms to experiment with which have proven track records in optimising

noisy functions. As we mentioned above, we found that among these algorithms gra-

dient ascent using one-sided differencing to compute the gradient was the best choice

according to our novel evaluation criteria. The stochasticoptimisation literature pro-

vided useful advice on choosing realistic gains for the 1FDSA algorithm.

In sum, difference-surface based visual homing is computationally efficient method

which we have shown to be competitive with other recently published homing algo-

rithms in dynamic indoor environments. Our novel mutual information image simi-

larity measure renders difference surface-based homing relatively robust to dramatic

illumination changes in the environment. We have shown thatmutual information can

be computed efficiently with little loss of homing in homing success. This computa-

tional efficiency means that mutual information may well finda role in place recogni-

tion problems for topological navigation in which a currentimage must be compared

with many reference images.
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Appendix A

RMS Distribution Due to Webcam

Noise

Here, we derive the distribution of theRMSsignal when the current imageIC is cor-

rupted by zero-mean Gaussian white noise. This is the Webcamcapture noise de-

scribed in Section 5.4.1.

RMSis closely related to the mean squared differences (MSD) measure, which we

use here for the sake of mathematical simplicity1:

MSD(IS, IC) =
1

NM

N

∑
i=1

M

∑
j=1

(IS(i, j)− IC(i, j))2 (A.1)

Here, as usual,IS is our snapshot image andIC is our current image. Each is an intensity

image withN rows andM columns.

As stated above, each pixel(i, j) in IC is corrupted by a noiseεi, j drawn from a

normal mean Gaussian distribution with standard deviationσ: εi, j ∼ N(0,σ2). This

noise is spatially and temporally uncorrelated. We shall call the noisy current image

INoisy
C .

The following relatesMSD(IS, IC) to MSD(IS, I
Noisy
C ):

1Other authors have replacedRMSwith MSD; see for example Möller and Vardy [2006].

217



Appendix A. RMS Distribution Due to Webcam Noise 218

MSD(IS, I
Noisy
C ) =

1
NM

N

∑
i=1

M

∑
j=1

[IS(i, j)− (IC(i, j)+ εi, j)]
2

=
1

NM

N

∑
i=1

M

∑
j=1

[(IS(i, j)− IC(i, j))2+2εi, j(IS(i, j)− IC(i, j))+ ε2
i, j ]

=
1

NM

N

∑
i=1

M

∑
j=1

[IS(i, j)− IC(i, j)]2+
2

NM

N

∑
i=1

M

∑
j=1

[εi, j(IS(i, j)− IC(i, j))]+

1
NM

N

∑
i=1

M

∑
j=1

ε2
i, j (A.2)

The first term in Equation A.2 above is simply Equation A.1. The third term is the

sample variance of the noise distribution. This term has an expected value ofσ2; it’s

distribution is, according to Weisstein [2003], a Pearson type III distribution. As the

noise has a mean of zero, the second term is an estimate of (twice the) covariance

between the signal and the difference imageIS− IC. The noise is independent of the

difference image. Thus, this second term will be very close to zero. We shall assume

it is zero.

From this discussion we conclude that corruptingIC with zero-mean Gaussian

white noise leads to a positive shift inMSDvalue with expected valueσ2 with a Pear-

son type III distribution. To test this, we corrupted an image IC with Gaussian white

noise with variance 25 1000 times. The mean difference between theMSDwith noisy

images and the “true”MSDwas 24.1. When we reduced the intensity noise variance

to 16, the mean difference became 15.4. When we reduced the noise variance to 9,

the mean difference became 8.7. In all cases the individual differences were posi-

tive as predicted. It seems as though the mean difference is consistently slightly less

than the intensity noise variance (our mathematical analysis predicted equality). This

discrepancy might be due to the fact that we limit noisy intensity values to be in the

range[0,255] when injected noise brings an intensity value outside this range. This

thresholding in effect reduces the variance of the noise by asmall amount.

We next wanted to determine whether the distribution of differences was indeed a

Pearson type III distribution as predicted. We first looked at one of our empirically

generated probability distributions (for intensity noisewith variance 9) and saw a re-

semblance to the gamma distribution (which is a Pearson typeIII distribution). We

then used Matlab’sgamfit function to calculate maximum likelihood estimates of the

shape and scale parameters for our empirical distribution (assuming that it is a gamma

distribution). Finally, we used Matlab’schi2gof function to determine whether the es-
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timated shape and scale parameters yield a gamma distribution which is a statistically

“good” fit for our empirical distribution. Unfortunately, the chi2gof function indi-

cated that the null hypothesis – that the empirical distribution is a gamma distribution

– should be rejected. A five percent significance level was used. We repeated this pro-

cedure with other members of the family of Pearson type III distributions but failed to

find an appropriate distribution.



Appendix B

Optimisation Stopping Criteria

As we discussed in Section 5.4.4, it is difficult to know when our homing algorithm

has reached its goal. We propose the following stopping criteria to aid in making this

decision:

1. Stop when the current MI difference surface sample exceeds a predetermined

threshold. Given the discussion in Section 5.4.4, this criteria is unlikely to work

in all situations. It’s advantage is that every stochastic optimisation algorithm

described in Section 5.3 makes use of difference surface values so this criteria is

applicable regardless of the method of optimisation.

2. Stop when the magnitude of the current estimate of the gradient of the difference

surface exceeds a predetermined value. Spall [2003] suggests that gradient esti-

mates are less susceptible to noise than are value estimatesso this criteria may

prove better than (1). Of course, we can only apply this criteria when using an

optimisation algorithm which estimates the local gradient.

3. Section 5.4.2 suggests that a small compass error near thesnapshot location will

produce a relatively noisy estimate of the local MI value. Tomitigate this prob-

lem, we could store many versions of the reference image, rotated by different

amounts from the true reference image. We could then computethe MI value of

the current image (counterrotated using the current compass estimate) and each

of these reference images. We could use the maximum MI value as the best esti-

mate of the current MI value. Unfortunately, this algorithmrequires several MI

computations (one for each reference image) for each iteration of the optimisa-

tion routine. For fast homing, this is unacceptable.

220
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Instead of the above procedure, we shall compute the pixel-wise mean of the

rotated reference images above. This image average need only be computed

once, at the start of the agent’s homing run. We shall then compute the mutual

information between the current and mean reference image. Optimisation stops

when this MI estimate exceeds a predetermined value.

4. Preliminary tests with Vardy’s images indicate that the mutual information be-

tween binary, edge-filtered reference and current images isclose to zero away

from the snapshot location and significantly greater than zero at (and most likely)

near the snapshot location. This may only occur in indoor environments where

there is strong edge information. Thus we can stop homing when the MI value

between edge-filtered snapshot and current images exceeds apredetermined thresh-

old.

Computing an edge-filtered current image at each homing stepadds overhead.

This overhead may outweigh the benefit of using this stoppingcriteria. We shall

attempt to determine this in tests below.

5. Compass noise affects the MI signal of edge-filtered images as well. The aver-

aging technique used in criterion (3) seems not to work for edge-filtered images

for reasons that we do not fully understand. Instead, we precompute seven edge-

filtered snapshot images rotated by -3, -2, -1, 0, 1, 2, and 3 degrees from the

snapshot orientation. We assume that these edge-filtered images have few edge

pixels compared to the total number of pixels. A sparse representation, then, is

justified in which we store only the locations of edges in eachimage. Instead

of computing the mutual information between these edge-filtered snapshots and

the edge-filtered current image, we simply count the number of edge pixels in

the current image which coincide with the edge pixels in eachsnapshot image.

We then normalise this count by the total number of edge pixelsE in a snapshot

image (all snapshots will have the same number of edge pixelsas they differ only

in rotation). The largest normalised count is used in this stopping criterion. We

halt optimisation when the maximum normalised count exceeds a precomputed

threshold.

6. The relatively large standard deviation of MI value near the snapshot location

due to relatively small compass errors could be used to our advantage. Specifi-

cally, we could precompute three snapshot images rotated by-1, 0, and 1 degrees
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Figure B.1: Location of snapshots used in experiment to determine good stopping cri-

teria for homing.

from the snapshot orientation (I−1
S , I0

S and I+1
S ) and compute the mutual infor-

mation between the current image and each of these three snapshot images. We

then let this criteria equal:

max(
|MI(I−1

S , IC)−MI(I0
S, IC)|

MI(I0
S, IC)

,
|MI(I+1

S , IC)−MI(I0
S, IC)|

MI(I0
S, IC)

) (B.1)

Optimisation halts when this criterion exceeds a precomputed threshold.

In order to evaluate the above stopping criteria in both static and dynamic situ-

ations, we drew images from three of Vardy’s data sets: “Original”, “Winlit” and

“Chairs.” Following from the results given in Chapter 4, allimages were reduced

to one-quarter their original size and the original 256 intensity levels were linearly

mapped to 64.

We first drew both snapshot and current images from the “Original” data set. Snap-

shot locations are as shown in Figure B.1. One-hundred trials were conducted for each

snapshot location. In twenty-five of these trials, the current location coincided with the

snapshot location. In the other 75% of the trials, the current location was selected at

random from the 169 non-snapshot grid locations. The current image was corrupted

with the sensor noise described in Sections 5.4.1 and 5.4.2.We computed the value

of each of the six criteria above for the snapshot and currentimages chosen for the

current trial.

We repeated the process described in the previous paragraphfor the eight other

possible data set pairings. This yielded a total of 8100 datapoints to examine. Twenty-

five percent of these data points (i.e. 2025) were at snapshotlocations and the rest (i.e.
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6075) were at non-snapshot locations. Each data point was labelled as a snapshot or

non-snapshot location.

We used this labelled data to determine which of the six stopping criterion or set of

criteria is best. Early experiments indicated that criteria (6) was particularly ineffective,

for reasons we do not fully understand. We decided to omit this criterion from further

testing. The remaining five criteria can be formed into 31 unique combinations con-

sisting of between 1 and 5 individual criteria. Each criteria relies on a predetermined

threshold. For each of the 31 criteria sets, 3-fold cross validation was performed on a

randomly shuffled version of the data set. Using the MATLABAresenal machine learn-

ing package (see http://finalfantasyxi.inf.cs.cmu.edu/MATLABArsenal/MATLABArsenal.htm),

we trained a linear perceptron classifier to identify the data in the training set as either

a snapshot location or non-snapshot location using the current set of criteria.

To evaluate the criteria, we first looked at classification error rates; that is, the ratio

false positives and negatives to the number of test points. We obviously seek criteria

with low classification error rates. We also observe that false positives – that is, when

the agent mistakenly believes itself to be home – are much more dangerous than false

negatives. A false positive will cause the agent halt prematurely while a false negative

will result in the agent passing through the snapshot location without stopping. In

the later case, the optimisation algorithm is likely to bring the agent quickly back to

the snapshot location. The agent will likely meander aroundthe snapshot location

until sensor noise allows for a correct classification. Withthis in mind, we list both

classification errors and the rates of false positives in Table B.1.

In order to determine whether a particular set of criteria inTable B.1 is better

than another based on error rates, we need to know whether thegiven error rates are

significantly different from one another. Martin and Hirschberg [1996] suggests that

the standard test for significant difference between classification error rates is given

in Anderson and Sclove [1986]. The test reported in Andersonand Sclove [1986]

indicates whether proportions drawn from two independent samples of a data set are

statistically similar. Our samples are indeed independent, as the test data was randomly

shuffled. Results of this test of significance are given for all pairs of sets of stopping

criteria in Table B.2. A 95% confidence level was used. Note this this data is split

columnwise into multiple successive tables so that no tableis wider than a single page.

When using direct search algorithms (in which no gradient estimate is made), Ta-

ble B.1 suggests that using criteria 1, 4 and 5 in concert is best. These yield the lowest

classification error when gradients are unavailable. In fact, the classification error re-
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Stopping Criteria Classification Error False Positive Rate

1 12.2% 4.0%

2 10.3% 2.6%

3 12.0% 0.9%

4 5.9% 3.1%

5 5.1% 3.5%

4+5 3.9% 2.1%

3+5 2.7% 0.6%

3+4 6.0% 0.5%

2+5 3.7% 1.4%

2+4 5.0% 3.8%

2+3 12.4% 6.5%

1+5 4.3% 3.3%

1+4 5.2% 2.6%

1+3 6.5% 2.5%

1+2 13.1% 6.0%

3+4+5 2.1% 1.1%

2+4+5 2.9% 0.8%

2+3+5 2.5% 1.0%

2+3+4 4.6% 2.1%

1+4+5 2.0% 1.1%

1+3+5 2.5% 1.7%

1+3+4 7.2% 0.1%

1+2+5 3.7% 1.0%

1+2+4 4.3% 1.7%

1+2+3 9.7% 6.8%

1+2+3+4 4.7% 2.8%

1+2+3+5 2.4% 1.3%

1+2+4+5 2.3% 0.8%

1+3+4+5 3.1% 1.4%

2+3+4+5 2.2% 1.7%

1+2+3+4+5 1.9% 0.4%

Table B.1: Classification error rates for given stopping criteria using a linear perceptron

classifier.
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1 2 3 4 5 4+
5

3+
5

3+
4

2+
5

2+
4

2+
3

1+
5

1+
4

1+
3

1+
2

3+
4+

5

1 - - - - - - - - - - - - - - - -

2 Y - - - - - - - - - - - - - - -

3 N Y - - - - - - - - - - - - - -

4 Y Y Y - - - - - - - - - - - - -

5 Y Y Y Y - - - - - - - - - - - -

4 + 5 Y Y Y Y Y - - - - - - - - - - -

3 + 5 Y Y Y Y Y Y - - - - - - - - - -

3 + 4 Y Y Y N Y Y Y - - - - - - - - -

2 + 5 Y Y Y Y Y N Y Y - - - - - - - -

2 + 4 Y Y Y Y N Y Y Y Y - - - - - - -

2 + 3 N Y N Y Y Y Y Y Y Y - - - - - -

1 + 5 Y Y Y Y Y N Y Y Y N Y - - - - -

1 + 4 Y Y Y N N Y Y Y Y N Y Y - - - -

1 + 3 Y Y Y N Y Y Y N Y Y Y Y Y - - -

1 + 2 N Y Y Y Y Y Y Y Y Y N Y Y Y - -

3 + 4 + 5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y -

2 + 4 + 5 Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y

2 + 3 + 5 Y Y Y Y Y Y N Y Y Y Y Y Y Y Y N

2 + 3 + 4 Y Y Y Y N Y Y Y Y N Y N N Y Y Y

1 + 4 + 5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

1 + 3 + 5 Y Y Y Y Y Y N Y Y Y Y Y Y Y Y N

1 + 3 + 4 Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y

1 + 2 + 5 Y Y Y Y Y N Y Y N Y Y Y Y Y Y Y

1 + 2 + 4 Y Y Y Y Y N Y Y Y Y Y N Y Y Y Y

1 + 2 + 3 Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y

1 + 2 + 3 + 4 Y Y Y Y N Y Y Y Y N Y N N Y Y Y

1 + 2 + 3 + 5 Y Y Y Y Y Y N Y Y Y Y Y Y Y Y N

1 + 2 + 4 + 5 Y Y Y Y Y Y N Y Y Y Y Y Y Y Y N

1 + 3 + 4 + 5 Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y

2 + 3 + 4 + 5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

1 + 2 + 3 + 4 + 5 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

Table B.2: Cell (i, j) in this table indicates whether the error rates for stopping criteria

given in rows i and j in Table B.1 are significantly different with 95% confidence. A ”Y”

indicates signficant difference and an ”N” signals no significant difference. This table is

symmetric about the diagonal so only data below the diagonal are given. This table is

split columnwise into several tables (see below) in order to fit on a single page.
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2+
4+

5

2+
3+

5

2+
3+

4

1+
4+

5

1+
3+

5

1+
3+

4

1+
2+

5

1+
2+

4

1+
2+

3

1+
2+

3+
4

1+
2+

3+
5

1+
2+

4+
5

1+
3+

4+
5

2+
3+

4+
5

1+
2+

3+
4+

5

1 - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - - - -

3 - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - -

5 - - - - - - - - - - - - - - -

4 + 5 - - - - - - - - - - - - - - -

3 + 5 - - - - - - - - - - - - - - -

3 + 4 - - - - - - - - - - - - - - -

2 + 5 - - - - - - - - - - - - - - -

2 + 4 - - - - - - - - - - - - - - -

2 + 3 - - - - - - - - - - - - - - -

1 + 5 - - - - - - - - - - - - - - -

1 + 4 - - - - - - - - - - - - - - -

1 + 3 - - - - - - - - - - - - - - -

1 + 2 - - - - - - - - - - - - - - -

3 + 4 + 5 - - - - - - - - - - - - - - -

2 + 4 + 5 - - - - - - - - - - - - - - -

2 + 3 + 5 N - - - - - - - - - - - - - -

2 + 3 + 4 Y Y - - - - - - - - - - - - -

1 + 4 + 5 Y Y Y - - - - - - - - - - - -

1 + 3 + 5 N N Y N - - - - - - - - - - -

1 + 3 + 4 Y Y Y Y Y - - - - - - - - - -

1 + 2 + 5 Y Y Y Y Y Y - - - - - - - - -

1 + 2 + 4 Y Y N Y Y Y N - - - - - - - -

1 + 2 + 3 Y Y Y Y Y Y Y Y - - - - - - -

1 + 2 + 3 + 4 Y Y N Y Y Y Y N Y - - - - - -

1 + 2 + 3 + 5 N N Y N N Y Y Y Y Y - - - - -

1 + 2 + 4 + 5 Y N Y N N Y Y Y Y Y N - - - -

1 + 3 + 4 + 5 N Y Y Y Y Y Y Y Y Y Y Y - - -

2 + 3 + 4 + 5 Y N Y N N Y Y Y Y Y N N Y - -

1 + 2 + 3 + 4 + 5 Y Y Y N Y Y Y Y Y Y Y N Y N -

Table B.3: Continuation of Table B.2.
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sulting from the use of this set of criteria is not significantly different than the best

overall classification error (when all criteria are used together). The rate of false posi-

tives when using criteria 1, 4 and 5 is quite low too.

The data in Tables B.1 and B.2 suggests that, when differencesurface gradients are

estimated, criteria 2 and 5 taken together yield quite good performance. The classifi-

cation errors are not quite as low as when criteria 1, 4 and 5 are applied, but criteria 2

and 5 requires less computation.

In the final incarnation of our difference surface homing algorithms, we chose not

to use the stopping criteria described in this appendix. This is because each criterion

requires a threshold to be set. The homing robot would have tosample several images

at different locations in its environment to determine an appropriate value for each

threshold. We felt that this sampling led us away from the problem we wished to focus

on, namely difference surface homing. The work described here may well be of benefit

to future visual homing applications.



Appendix C

Published Papers

I published four papers on visual homing in the course of workon this dissertation.

These papers in chronological order are:

• M. Szenher. Visual homing with learned goal distance information. In K. Murase,

K. Sekiyama, N. Kubota, T. Naniwa, and J. Sitte, editors,Proceedings of the 3rd

International Symposium on Autonomous Minirobots for Research and Edutain-

ment, pages 223-229, 2005.

• M. Szenher. Visual homing in natural environments. In U. Nehmzow, C. Mel-

huish, and M. Witkowski, editors,Proceedings of Towards Autonomous Robotic

Systems, pages 221-226, 2005.

• M. Zampoglou, M. Szenher, and B. Webb. Adaptation of controllers for image-

based homing.Adaptive Behavior, 14(4):381-399, 2006.

• Szenher, M. (to appear). Navigation by image-based visualhoming. In J. R.

Rabunal, J. Dorado and A. Pazos (Eds.),Encyclopedia of Artificial Intelligence.

Hershey, PA, USA: Information Science Reference.

The text of these papers is included in this appendix.

Three of the four papers describe work which was wholly my ownand were writ-

ten entirely by me (with welcome comments from my advisor, peers and reviewers).

The paper titled “Adaptation of controllers for image-based homing” describes work

primarily done by Marcus Zampoglou, an MSc student at the University of Edin-

burgh, under the supervision of myself and Dr. Barbara Webb.Zampoglou wrote

most of the paper and performed the experiments described therein. The original idea

(biologically-based optimisation of a difference surface) put forth in the paper was

228
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mine. I constructed most of the hardware and software used inZampoglou used in his

experiments.
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Adaptation of Controllers for Image-Based Homing

Markos Zampoglou1, Matthew Szenher2, Barbara Webb2

1Department of Applied Informatics, University of Macedonia
2Institute of Perception Action and Behaviour, School of Informatics, University of Edinburgh

Visual homing is a short-range robot navigation method which can lead an agent to a position with

accuracy, provided that the majority of the scene visible from the home position is also visible from the

current robot position. Recently Zeil, Hoffmann and Chahl (2003) showed that a simple calculation—
the root mean square (RMS) difference between the current image and the home image—produces a

monotonic function leading to the home position for natural images. In this article we propose a gradi-

ent descent algorithm based on Caenorhabditis elegans chemotaxis (Ferree & Lockery, 1999) for hom-
ing with the RMS signal. The parameters for this algorithm are evolved for a simulated agent, and the

resulting homing behavior compared with alternative algorithms in simulation and using a real robot. A

simulated agent using this algorithm in an environment constructed from real world images homes effi-
ciently and shows generalization to variations in lighting and changes in the scene. In the real robot this

algorithm is affected by noise resulting from imperfect sensors, and alternative algorithms appear more

robust. However, the best performing algorithm for unchanging environments, image warping (Franz,
Schölkopf, Mallot, & Bülthoff, 1998), is completely disabled by scene changes that do not affect algo-

rithms utilizing the RMS difference.

Keywords homing · taxis · image difference

1 Background

1.1 Introduction

The problem of visual homing can be stated as follows.
An agent, equipped with a monocular camera, is located
at a point S. The goal is for the agent to move to a home
position C, using a home image taken from location C
and the current visual information from the camera
(Figure 1) to determine its movement. Visual homing is
a short-range robot navigation method which can lead
an agent to a position with accuracy, provided the
majority of the scene visible from the home position is
also visible from the current robot position.

Most approaches to visual homing use an omnidi-
rectional image of the environment (Franz & Mallot,
2000), typically obtained by using a spherical, para-
bolic or conical mirror located above a camera point-
ing upwards. Assuming movement takes place on a
flat surface, there is a circle on the mirror, centerd on
its central vertical axis, where the angle between the
line of sight and the surface normal of the mirror is
equal to the angle between the ground plane and the
mirror surface. For points projected on this circle, the
line of sight is reflected in a direction parallel to the
ground plane. For object whose projections fall on this
circle, these projections will change their bearing in
the circle as the agent moves, but will never leave this
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(2006), Vol 14(4): 381–399.
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circle (Figure 2). The visual information used in many
approaches is the one-dimensional image created by
unfolding this circle into a line.

Existing visual homing methods can be divided
into two groups: feature-based methods, where specific
features are extracted from the images and matched
between the current and home images, and image-
based methods, where the image pixel values are used
directly. Feature-based methods include the snapshot
model (Cartwright & Collett, 1983; Hong, Tan, Pinnette,
Weiss, & Riseman, 1992; Weber, Venkatech, & Srini-
vasan, 1998), and the average landmark vector method
(Lambrinos, Möller, Labhart, Pfeifer, & Wehner, 2000;
Möller, 2000), while the most popular image-based
method is image warping (Franz et al., 1998).

The image warping algorithm works under the
assumption that all landmarks are situated at equal dis-
tances from the home location. Using a grayscale one-
dimensional horizon image taken from the current
location, the model calculates all possible deformations
of the image line, for all possible rotations and move-
ment vectors. The agent then moves according to the
movement vector that produces the image most closely
resembling the home image. The measure of resem-
blance suggested by Franz et al. is the dot product
between the two (normalized) image lines. Image warp-
ing is a very effective and robust algorithm, even in
cases where the equal distance assumption does not
hold. Its major disadvantage, however, is its computa-
tional cost, since it has to perform a full search at
every homing step.

1.2 The Root Mean Square (RMS) 
Difference Surface

Recently, Zeil et al. (2003) studied the properties of
outdoor scenes for the purpose of image homing, using
a panoramic camera in the natural habitat of a wasp
that is known to locate its nest by visual homing. They
captured a home position image, and similar images
from various positions in 3-D space, at different times
of day. Instead of extracting the horizon line, the whole
panoramic images were unfolded, and then each image
was compared with the home image using the root
mean square difference function. That is, the differ-
ence between the current image and the home image
was determined by:

, (1)

where IC(i, j) is the intensity function for pixel (i, j) in
the current image, IS(i, j) is the intensity function for
pixel (i, j) in the home image, and M × N are the
dimensions of the images. This function applies to
greyscale images, but can be generalized for color
images.

Zeil et al. estimated the RMS difference for a grid
of camera positions (x, y, z) in a given area, compared
with a home image taken from the centre of the area.
In our work, however, the camera remains at a con-
stant height z. The 3-dimensional function resulting

Figure 1 The homing task is to move the agent from S
in the direction of C. In the simplest case, visual informa-
tion is the relative location of the projection landmark L;
this allows the home direction to be calculated from sim-
ple geometry.

Figure 2 Capturing a horizon line using a spherical mir-
ror mounted above a camera. If MA is parallel to the
ground plane, the projection of A will change its bearing
with respect to a circle centerd on the vertical axis of the
mirror, but will never move out of this circle.
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from the (x, y) pairs and the corresponding RMS val-
ues will be referred to from now on as the RMS differ-
ence surface.

The resulting difference surface was unimodal in
both dimensions, for a certain area around the home
position. That is, in dimensions x and y, movement
towards the home position resulted in gradual reduc-
tion of the difference, reaching a global minimum in
the target location, with no local minima whatsoever.
The size of the area for which this held true (the “catch-
ment area”) was up to 3 square meters for the specific
experiment (the term “catchment area” in visual hom-
ing refers to the area that contains all the start positions
from which an agent can home).

The same characteristic applied to the dimension z,
and also for rotation. Regardless of the relative position
of the agent with respect to the goal position, the RMS
difference was reduced as the current height approached
the height at which the home image was taken, and was
also reduced as the current orientation approached the
orientation of the home image. In each case, the RMS
difference reached a global minimum when the current
and home coordinates matched. Labrosse (2004) did
an extensive study of this property of the image differ-
ence and its potential use as a compass.

1.3 Homing as Gradient Descent

As Zeil et al. suggest, it is possible to take advantage
of the unimodal property of the catchment area to per-
form visual homing. The agent can determine its orien-
tation by turning until the minimum RMS difference is
encountered and move towards the home location by
descending towards the point that gives the minimum
RMS difference. Homing can thus be regarded as a
gradient descent problem.

Function minimization by gradient descent (also
known as steepest descent) in general works by deter-
mining the negative of the gradient of the function at
the current position and moving in this direction until a
line-minimum is reached (Weisstein, 2006). The algo-
rithm recalculates the negative of the gradient at the
new position (which is orthogonal to the current direc-
tion of movement) and minimizes the function along
this new direction. This process is repeated until the
magnitude of the gradient is very near zero, indicating
proximity to a local minimum.

However, if we are trying to home by having a
robot descend the surface formed by the RMS calcula-

tion for various positions, the only information availa-
ble to the robot is the current input and the sequence of
the inputs so far. This means that we cannot easily cal-
culate the gradient of the function at a given position.
The only higher-order information we have is an esti-
mate of the local derivative of the function in the direc-
tion that the agent previously moved, which can be
extracted through the difference between the current
and the previous input. Based on this, Zeil et al. (2003)
proposed the RunDown algorithm, which is a variation
of the gradient descent algorithm, adjusted for the par-
ticularities of the problem. The agent moves in a
random direction for a programmer-determined step
length. If the RMS difference decreases, the agent
moves forward again. Otherwise, the agent turns 90
degrees in one direction and moves forward again. If
the step size is sufficiently small, the agent will effec-
tively move in one direction until the function in that
direction reaches its minimum value, then turn in a
direction orthogonal to the previous one and repeat,
thus achieving a good approximation of gradient
descent. However, in this method, the resulting path
lengths are large relative to the initial distance of the
agent from the goal.

1.4 Taxis as Gradient Descent

In an attempt to find a more efficient way to take
advantage of the properties of the RMS difference sur-
face for the purpose of visual homing, we turned
towards a biologically inspired approach. Chemotaxis
is a process used by some organisms to locate sources
of food. Ferree and Lockery (1999) define it as “oriented
movement in response to a chemical gradient.” In
effect, during chemotaxis, an organism performs gradient
ascent from an area of low concentration of a chemical
substance, to the global maximum of concentration.
Organisms such as Caenorhabditis elegans perform
chemotaxis using a single sensor to detect only the cur-
rent concentration of the chemical substance, and thus
solve an analogous problem to a robot trying to home
using only the current RMS difference. In this sense,
C. elegans chemotaxis is a gradient ascent method
more suitable for robot homing than the various math-
ematical models, since it takes into account the partic-
ularities of the real world (single sensor, need for a
minimal path length). By imitating the chemotaxis
mechanism, in this case for gradient descent instead of
ascent, the robot should be able to home.
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In Ferree and Lockery (1999), the neural network
that controls the taxis behavior of C. elegans is studied,
and the underlying computational rules are extracted.
It is demonstrated that the behavior of C. elegans dur-
ing taxis can be modeled by

, (2)

where dθ/dt is the turning rate (i.e., the angle turned at
a time step), Ωbias, z0, and z1 are constant parameters,
C(t) the input at time t, and dC/dt the temporal gradi-
ent, which can be estimated as

. (3)

Function (2) can be used to produce gradient
descent on an input surface, using only local informa-
tion, provided the function parameters are properly
selected. The agent can thus home by moving forward
some distance at each time step, and then turning
according to the output of (2). In most forms of gradi-
ent descent or ascent, a decreasing step size is desira-
ble, so that the agent can approach the goal rapidly and
then slow down to locate it with the desired accuracy.
This can be implemented for gradient descent by mak-
ing the forward movement at each time step proportional
to C(t), that is, C(t) multiplied by some constant U.

To use this Taxis algorithm it is necessary to find
appropriate parameter values of Ωbias, z0, z1 and U. In
this article, we used an evolutionary strategy to evolve
these parameters, using a simulated agent homing on
RMS difference surfaces calculated from previously col-
lected images in a robot lab environment consisting of an
empty space surrounded by desks with desktop comput-
ers on them. We then tested the generality of the evolved
algorithms on different surfaces and compare their per-
formance to the RunDown algorithm. We then com-
pared the Taxis algorithm, RunDown and image warping
on a physical robot performing homing in our lab.

2 Methods

2.1 Environment for Simulated Homing

A number of image datasets (available at http://www.
ti.uni-bielefeld.de/html/research/avardy/index.html),
courtesy of Andrew Vardy (Memorial University, St.
John’s) were used to build a simulated environment in

which the agent would move. These sets were omnidi-
rectional images of the same 3 × 5.1 m area (an office
room), and consisted of three sets with the same pictures
captured under different illumination levels (“Orig-
inal”, “Twilight”, “Night”), and another set where a
number of chairs had been added to the room (“Chairs”)
(Vardy & Möller, 2005). The images corresponded to
a real world grid with 30 cm distances between every
two consecutive images.

For a controller to be robust, we have to ensure
that homing can be achieved not only when the current
illumination conditions are identical to the conditions
under which the home image was captured, but also
when there are significant differences between the
two. That is, the agent would ideally be able to home
in twilight using a home image taken in full daylight.
To create these conditions for the simulated agent, all
possible RMS surfaces were formed, by comparing a
home image to the image set it was drawn from (e.g., a
home image from the “Original” set, compared with
all the images in the “Original” dataset) and compar-
ing a home image with a different image set (e.g., a
home image from the “Original” dataset, subtracted
from all the images of the “Night” dataset). Of the total
16 surfaces formed, 9 surfaces were chosen for use in
simulation. They are listed in Table 1. To normalize
the values we adopted the technique used by Zeil et al.
The pixels of the home image were shuffled, so that a
new random image was created. That image had the

dθ
dt
------ Ωbias= z0C t( ) z1

dC
dt
-------+ +

dC
dt
------- C t( ) C t 1–( )–=

Table 1 The surfaces on which homing was tested. The
surfaces marked * were used for evolving the controllers.

Surface
Home image 

from
Current images 

from

O_O* “Original” “Original”

O_T “Original” “Twilight”

O_N* “Original” “Night”

O_C* “Original” “Chairs”

N_O* “Night” “Original”

T_N “Twilight” “Night”

C_O* “Chairs” “Original”

C_C* “Chairs” “Chairs”

N_C “Night” “Chairs”
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same pixel value distribution as the home image. On
the other hand, because of the change in the position of
each pixel, the RMS difference between the original
and the randomized image gave a good estimate of the
maximum RMS difference for that particular home
position. All RMS differences were then normalized
through division by that maximum value.

The fundamental property of the global minimum
appearing at the home position held true for all sur-
faces (Figure 3A). Excluding the “Chairs” dataset, the
unimodality of the surface also held true. In all the sur-
faces where the “Chairs” dataset was used as the cur-
rent image set, although the general cusped form was
retained, a number of local optima always appeared
(Figure 3B, 3C). At this point, it interesting to note that,

when using a home image from the “Chairs” set and cur-
rent images from the same set, local minima and maxima
still appear (Figure 3C), while when using a home
image from the “Chairs” set, and the current images
from “Original” (Figure 3D), no local optima can be
seen. This suggests that local optima appear not when
there are differences between the home image and cur-
rent image set, but when objects (chairs) are close to
the camera, so that moving the agent causes significant
deformations that disrupt the catchment area.

2.2 Optimization Through Evolution

Having built the surfaces around which the simulated
agent would move, we wanted to optimize the four

Figure 3 Four characteristic root mean square (RMS) difference surfaces. A) RMS difference between a home image
from the “Original” set and every image in the “Original” set. B) RMS difference between the same home image and the
“Chairs” set. C) RMS difference between a home image from the “Chairs” set and the “Chairs” set. D) RMS difference
between a home image from “Chairs” and the “Original” set. Each unit in the axes corresponds to 0.3 m.
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parameters (Ωbias, z0, z1, and U) of the Taxis algorithm
described in Equation (2). Individuals were encoded
by four real numbers, and, as a result, a high mutation
probability (0.6) was necessary, to ensure that a large
range of values was covered. Mutation involved chang-
ing each parameter by a random value drawn from a
uniform distribution, ranging from –0.05 to 0.05 for
the first three parameters and from –0.0175 to 0.0175 for
U. One point crossover was used with the fixed proba-
bility 0.6. When crossover took place, a crossover
point was randomly chosen in one of the three possible
positions, and the parameters of the two individuals
chosen for crossover exchanged place. The selection
method used was stochastic universal sampling (Mitch-
ell, 1998), and the population size was 200.

The fitness was evaluated by running each indi-
vidual for a maximum of 500 time steps on six differ-
ent surfaces (out of the nine possible home image–
current image combinations) and seeing if, and in how
many steps, an individual could reach the home posi-
tion. At each simulation time step, the agent reads the
current normalized RMS difference from the grid posi-
tion corresponding to its actual position. As the origi-
nal data only provides values at 30 cm intervals on the
grid, the value at intermediate positions was interpo-
lated from the nearest data values. The agent then esti-
mates the new turning angle using Equation (2) and
moves forward by C(t) × U. A run was considered suc-
cessful when the agent’s distance from the goal was
less than a threshold D (= 0.1 m). The fitness score was
500–number of steps to reach home, with failure to
reach home within 500 steps scored as 1. To reduce
dependence of the evolved solutions on details of the
simulated environment, we applied Jakobi’s “radical
envelope of noise” methodology (Jakobi, 1997).

According to this methodology, when evolving a
robot controller in a simulated world for real-world
application there are three steps to be taken:

(1) Identify a base set of robot–real-world-environment
interactions, which have a basis in reality, and
explicitly separate them from the simulation imple-
mentation aspects.

(2) Ensure that the implementation aspects vary signif-
icantly from evaluation to evaluation, so that the con-
troller learns to ignore them and focus on the base
set (i.e., ensure the simulation is base set exclusive).

(3) Ensure that every aspect of the base set varies slightly
from evaluation to evaluation so that the controller

is forced to cope with the differences between the
simulation and the real world that result from noise
(i.e., ensure the simulation is base set robust).

In our case, the base set consisted of only two
interactions: the RMS difference input from the world,
and the robot’s movement in it.

The second step was implemented partly by the
use of the different surfaces, as mentioned above, and
also by using randomly chosen start positions for
homing from the circle of locations a distance R (= 1
meter) from the home position. For the third step,
Gaussian noise was added to the RMS value, the agent’s
turning angle and the displacement at each time step.
The final parameters of the noise distribution were
taken from the actual Koala robot (Figure 4) that was
to be used for the real-world experiments, and were
N(0, 0.002) for the RMS input and N(0, 0.0005) for
both the turning angle (in radians) and the displace-
ment (in the simulation 1 distance unit = 0.3 meters),
where N(µ, σ) indicates a normal random distribution
with mean µ and standard deviation σ.

Figure 4 The Koala robot used in the experiments.
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The RunDown algorithm was also implemented
for the simulated agent. In this, the agent moves a fixed
distance in an initial random direction, and if the RMS
difference decreases, continues in that direction. If it
increases, on the next step the agent moves in a direc-
tion 90 degrees to the right of the previous direction.
One alteration was made with respect to the implemen-
tation described in Zeil et al. (2003). This was to use a
variable step size, that is, C(t) × U, rather than a fixed
step size, to make the results more directly comparable
to the Taxis algorithm. Both algorithms were then
tested on all nine surfaces, and compared for homing
success rate, time-steps required, total distance traveled,
total turning, and final homing precision.

2.3 Robot Implementation

A Koala robot was used for real-world evaluation com-
parison of the Taxis, RunDown and image warping
algorithms. Images were captured using a Creative Labs
webcam pointing downward at a parabolic mirror man-
ufactured by Kugler. The camera was supported on a
rig consisting of three narrow pillars, which were visible
in the image but did not appear to significantly affect
any of the algorithms. The webcam connected via a
USB port to a Dell Inspiron 7500 laptop with an Intel
Pentium III processor, running Mandrake Linux 8.2.
All image processing, calculations and generation of
movement commands were programmed in C on the
laptop. Motor commands were sent via a serial link to
the built-in robot microprocessor for execution. The
robot proved very consistent and accurate in its turning
angle and movement distance, well within the noise
parameters used in the simulation.

As well as the Taxis and RunDown algorithms,
the image warping algorithm was also implemented
on the robot, as follows: Given rotation ψ, home vec-
tor angle α and the ratio ρ of the agent’s distance from
the home position d to the home position’s distance
from the landmarks R, that is, ρ = d/R, a pixel located
at angle θ in the current horizon image will be dis-
placed by

. (4)

By shifting all pixels in the current image by their
respective δ values, we build an approximation of the
image, had the agent moved and rotated according to

α and ψ, and had ρ been a good estimate of the actual
agent and landmark distances. Searching over all ψ, α
and ρ, the best match to the home image is found, and
the corresponding home vector used to move the robot
for a fixed distance. The termination of homing is sig-
naled when the home vector changes by > 170 degrees,
which indicates the robot has just passed over the home
position. The only free parameter is the step size, which
was set to 0.25 meters.

It proved necessary to rerun the parameter optimi-
zation procedure for the Taxis algorithm on the real
robot, as the RMS differences measured by the robot
differed in several ways from the surfaces from the
Vardy dataset (see Section 3.3). We explored a fast
method for obtaining an estimate of the surface prop-
erties that could be used for optimization, which does
not require capturing a complete image grid. The robot
captured a home image, and then captured a line of
RMS differences by moving outwards in one direction
and capturing images at equal distances. The surface
was then created by assuming symmetry, that is, rotating
this line of values through 360 degrees. Since a Taxis
controller only has to adapt its parameters to the steep-
ness and value range of a surface, it was assumed that
any particularities of an area (e.g., local optima) could
be ignored. By capturing the RMS difference line for
each of the four directions and evolving a controller
that could home on all four corresponding (artificial)
surfaces, the controller was optimized for the proper-
ties (steepness, value range) of the given area. Initially,
four surfaces were built in this way, for a particular
home position and movement in four different direc-
tions, and the genetic algorithm (GA) was run on all
four using the simulated agent. Since, in the original
simulation, it was possible to evolve controllers on
certain surfaces that were able to home on other, simi-
lar ones, it was assumed that a similar result could be
achieved for the real-world controllers. However, this
was not the case. The optimal controller for one surface
was often unable to home on another one. However,
the similarities between the principal characteristics of
the surfaces ensured that the final population of 200
individuals from the GA run on the four initially sam-
pled surfaces included at least some individuals that
could home on other, similar, areas. Thus, every time
the environment changed, the RMS surface for the par-
ticular environmental setup was again sampled for
each of the four directions, and each of the 200 indi-
viduals was reevaluated on it in simulation. The best

δ arctan
ρ θ α–( )sin

1 ρ θ α–( )cos–
--------------------------------------- 
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individual was then used to set the parameters for the
evaluation of homing on the robot.

3 Results

3.1 Results of Evolving the Simulated Agent

The GA was able to come up with an efficient control-
ler in about 250 generations. The controller parame-
ters from three different runs of the GA appear in
Table 2.

It is possible to directly interpret these parame-
ters, following the discussion of Ferree and Lockery
(1999) who used the same function to control chemo-
taxis of simulated nematodes. Recall that the control
rule is:

, (5)

where dθ/dt is the turning rate (i.e., the angle turned at
a time step), and C(t) the input at time t. After turning
the agent moves forward by the distance U × C(t).

In all three controllers the bias Ωbias and the first-
order term z1 had the same sign. This meant that, for a
certain value range of C(t) – C(t – 1) < 0, the bias and
the first-order term cancel each other out, resulting in
a small or zero turning rate when the gradient is
decreasing. As the values moved out of that range, the
agent is forced to turn in steeper angles. As Ferree and
Lockery point out, the role of the first-order term
causes a behavior called klinotaxis, described as “a
change in turning rate in response to the spatial gradi-
ent of a stimulus field.”

In a typical RMS surface, the gradient is not con-
stant, but grows steeper as we approach the home
position. Near the home position, the RMS values are
small, and it is klinotaxis that plays the most impor-

tant role in navigation. However, when the agent is
away from the home position, the gradient is small,
and the RMS values are high. In that case, it is the
zero-order term z0 that plays the most important role,
changing the turning rate proportionally to the input
itself. This behavior is defined as klinokinesis: “A
change in turning rate in response to the scalar value
of a stimulus field” (Ferree & Lockery, 1999). The
sign of the zero-order term can be either positive or
negative, without seeming to follow any particular
pattern. This is because the input is always positive,
and, since we are dealing with angles, reducing an
angle towards 0 is the same as increasing it towards
360 degrees. As the agent moves towards the home
position, klinotaxis becomes more and more impor-
tant, while the role of klinokinesis is reduced to
simply adjusting the effects of the first-order term.
Note that C(t) – C(t – 1) is generally much smaller
than C(t) itself, hence z1 is correspondingly larger
than z0.

3.2 Evaluating the Controllers in Simulation

In order to evaluate the homing abilities of the con-
trollers, we performed 1,000 runs of each controller on
each of the nine surfaces, including the six on which
the controller was evolved, and the three not used in
evolution. The RunDown algorithm was also tested on
the same surfaces for comparison. The controllers
were evaluated with respect to five different meas-
ures: the homing success rate; the mean number of
steps; the total distance traveled; the total angle
turned; and the homing precision achieved. In these
evaluation runs, the agent was considered to have
homed when the RMS difference became smaller than
a preset threshold (= 0.42).

A sample run of each controller appears in Figure 5.
The homing success rate for each controller appears in
Table 3. There is in fact one common factor for the sur-

dθ
dt
------ Ωbias z0C t( ) z1 C t( ) C t 1–( )–( )+ +=

Table 2 Evolved parameters for three different runs of the GA.

Controller Ωbias z0 z1 U (in 0.3 m)

1 0.6490 0.9485 44.6288 0.6744

2 1.3821 –0.7951 37.0456 0.6492

3 1.3250 –0.7987 36.1076 0.9403
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Table 3 The success rate for each controller and each surface, 1,000 runs per surface.

Controller

Surface 1 2 3 Overall RunDown

O_O 100% 100% 100% 100% 100%

O_T 100% 100% 100% 100% 100%

O_N 100% 100% 100% 100% 100%

O_C 90.6% 94.7% 84.9% 90.07% 78.6%

N_O 100% 100% 100% 100% 100%

T_N 100% 100% 100% 100% 100%

C_O 100% 100% 100% 100% 100%

C_C 95.4% 96.9% 83.3% 91.87% 78.2%

N_C 91.8% 95.7% 89.8% 92.43% 77.4%

Figure 5 A sample run with each controller on surface N_O. Upper left: Controller #1. Upper right: Controller #2. Bot-
tom left: Controller #3. Bottom right: RunDown.
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faces where performance is relatively low: they use as
the current image set, the “Chairs” dataset. This implies
that the true difficulty for homing comes when local
optima appear, as a result of objects that are lying near
the catchment area and can come too close to the cam-
era. This is a common problem for all homing algo-
rithms, but in the RMS difference approach it takes the
form of local minima or maxima in the surface.

Another observation on the success rates is the
relatively poor performance of RunDown on the sur-
faces that contain local optima. One reason for this is
the “rigid” behavior of RunDown. Unlike Taxis, where

at each step the turning rate is completely different,
and thus a local optimum usually simply causes a small
divergence from the course, RunDown often gets
trapped, moving around a local minimum in square
patterns (Figure 6).

Figure 7 shows the mean number of steps taken by
each controller to home on each surface. It is apparent
that there is no direct link between the surfaces used to
train the controllers, and the steps needed to home.
This is desirable, since it indicates that the controllers
were not optimized for the specific surfaces used for
the evolution, but were instead optimized for homing
on surfaces which carry the general properties of these
surfaces. We can see that RunDown is in most cases
worse than Controller #3, slightly worse than the aver-
age of the three Taxis controllers, and better than the
other two controllers. The exception is surface N_C,
where RunDown faces serious problems. Surface N_C
has the most extreme local optima, and RunDown’s
inability to deal with them is apparent.

A similar pattern emerges from Figure 8, which
shows the mean distance traveled per homing run.
However, in this case, RunDown is slightly worse than
all the other controllers. The superiority of the Taxis
algorithms in the distance traveled is countered by
their higher cost in turning, as shown in Figure 9. This
is to be expected, since the Taxis controllers turn at least
a little at every time step, while the RunDown algo-
rithm often covers large distances by moving straight
ahead. This is also reflected in the higher variances in

Figure 6 A RunDown homing run on surface C_C. In
this run, it took 68 steps to home.

Figure 7 The mean number of steps taken to reach home by the different algorithms on each surface.
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the turning rates of the Taxis controllers. The Taxis
algorithm is not as predictable in its behavior as Run-
Down. On a surface that is not completely symmetri-
cal, the course of the agent depends heavily on the start
position. Even noise plays a role in leading to a differ-
ent course at each run. This unpredictability is not nec-
essarily a disadvantage, however, since it increases the
robustness of homing in the presence of local optima.

As for homing precision, it is strictly determined by
three parameters: the controller’s step length; the RMS
values near the home position; and the RMS threshold,
which is fixed across all runs. This leads to homing
precision being more or less the same in every homing
run for the same surface and the same controller, which
is reflected in the extremely low variance in the data in
Figure 10. However, comparing the overall homing pre-

Figure 8 The mean distance traveled to reach home by the different algorithms for each surface.

Figure 9 The mean angle turned during homing by the different algorithms for each surface.
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cision on different surfaces, we see that there are clear
differences between them. This results from the termi-
nation condition of the Taxis algorithm. Some surfaces
had a very low value at the home position (O_O and
C_C actually had zero), so the RMS difference goes
below the threshold while the agent is still quite far
away from the goal. Ideally, the threshold would be
adapted to the surface, but in the real world, this will
not be possible, since we cannot know in advance the
conditions under which the agent might have to home.

In summary, the Taxis controllers are on average
as good as RunDown, if not better, for most criteria,
excluding the total angle turned. However, in the pres-
ence of local optima on the RMS difference surface,
the performance of RunDown deteriorates signifi-
cantly, while Taxis homing is able to maintain a rela-
tively high performance.

3.3 Comparing the Vardy Surfaces and the 
Robot Lab Surfaces

Our initial attempts to use the evolved controllers from
the simulated agent on the robot were very unsuccess-
ful, which led us to study more closely the shape of the
RMS difference surface for our specific camera-mirror
setup and environment. The RMS surface was esti-
mated by taking single rows of equally distanced (30
cm) images with the Koala robot. For previous sur-
faces, it was assumed that all images were taken under
the same orientation. As for any given position the
minimum RMS difference appears when the home

image and current orientation match, it is possible to
estimate the RMS difference for that orientation by
capturing an image at a random orientation, modeling
rotation by shifting the unfolded image, and keeping
the minimum RMS difference from all possible shifts.

In studying the resulting RMS difference sur-
faces, a number of observations were made:

(1) The fundamental properties of the RMS surface
were present in all cases (i.e., global minimum at
the home position, and gradual increase in the RMS
difference as the robot moves away from home).
The RMS difference increase generally looks as a
quadratic function of the distance from home,
although the exact properties of the function are
only now beginning to be studied (Szenher, 2005).

(2) The RMS surface was clearly not as steep as in the
Vardy dataset. Steepness was affected by changes
in the illumination levels, decreasing as the illumi-
nation decreased, but even in the case of maximum
possible lighting, the value range was significantly
narrower, and the slope smaller (Figure 11).

(3) The introduction of new objects, or movement of
old ones either after taking the home image or
throughout the experiment, did very little to dis-
turb the RMS surface.

(4) Moving the robot too close to an object led to a
local maximum on the RMS surface. This is because,
as the area covered by the object on the image
increased, it covered a large part of it and resulted
in large differences. As the robot moved on and

Figure 10 The mean homing accuracy of the different algorithms for each surface.
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away from the object, the landmarks reappeared
and led to smaller RMS differences (Figure 12).

(5) The radius of the catchment area reached up to
2.7m, and never came below 1.5m (Figure 11).
Again, the radius was affected by the illumination
levels, decreasing as the illumination decreased,
but also from the presence of nearby objects.

The main reason for the reduced slope appeared to
be noise introduced by rotation, although it is also pos-
sible that differences in the environment or the image
capture method used contributed to the problem. The
assumption that rotation can be modeled by shifting
the unfolded image by a number of columns requires
that the camera is perfectly orthogonal to the pano-
ramic mirror, and the position of the mirror center in
the panoramic image (i.e., before unfolding) is known
with accuracy. Our camera rig was less accurate in this
respect than those used by Zeil et al. and Vardy. Cap-
turing an image from the home position with the same
orientation as the original home image gave a mini-
mum normalized RMS difference of 0.01 to 0.1. Rotat-
ing the robot by 180 degrees to capture the image, and
then shifting the image columns by 180 degrees (which
should compensate for the rotation) gave a minimum
normalized RMS difference of 0.4 to 0.5 (Figure 13).
In general, it can be said that the RMS difference
increased as the current orientation moved up to 10–15
degrees away from the home image orientation, and
then remained similar for further rotations. Thus, the
RMS difference will be overestimated when the cur-
rent image is not taken at the same orientation as the
home image (Figure 14). Moreover, when the orienta-
tions are aligned, the RMS difference will be notice-

Figure 11 RMS values for different situations: X: The
RMS difference for the “Original” Vardy dataset. O: RMS
differences taken from the lab area under bright illumina-
tion. Stars: RMS differences taken from the same area
under low illumination.

Figure 12 The change in the RMS surface when the
agent happens to pass too close to an object, resulting in
occlusion of most other features. X: No object. O: A small
cardboard box next to the agent’s route at 1 m from the
home position.

Figure 13 The RMS difference for all theoretical rota-
tions of two images, taken from the home position with
different orientations. Continuous line: Current agent ori-
entation matches the home image orientation, producing
a minimum of 0.08 at 0º. Interrupted line: Current agent
orientation 180º from home image orientation, producing
a minimum of 0.48 at 180º.
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ably smaller, which can effectively cause a transient
minimum that affects the homing process. This prob-

lem could not be effectively modeled by Gaussian
noise, hence the controllers evolved for the simulated
agent could not deal with it. We therefore had to repeat
the GA search for parameters on surfaces estimated
from the robot data as described earlier. This produced
moderately successful controllers as described below.

3.4 Comparison of Taxis, RunDown and 
Image Warping in the Physical Robot

The performance of the three algorithms was com-
pared using the same measures as in the simulation.
The first tests used a well-lit, unchanging environment,
and consisted of two sets of ten runs for each algo-
rithm: Ten starting from different positions 1 meter away
from the home position, and another ten runs starting
from 2 meters away. Three different home positions
were used across the trials.

The first observation is that, unlike the simulation,
the Taxis algorithm performs worse than the Run-
Down algorithm (Tables 4 and 5), particularly for the
longer distance where there is a high failure rate

Figure 14 The RMS difference for the same route and
home position, with the home image captured at different
orientations. X: Matching home image and current orien-
tations. O: 90º angle between home image and current ori-
entations.

Table 4 The results for 10 short-range homing runs (1 meter away), in a clear, bright area with no movement (numbers
in brackets indicate the standard deviation).

Algorithm Taxis RunDown Warping

% success 90% 80% 100%

# of steps 20.67 (45.11) 13.75 (29.43) 6.8 (6.76)

Distance traveled 4.211 (1.5) 2.525 (1.02) 1.776 (0.518)

Angle turned 1316.41 (346180) 360 (72900) 316.04 (105180)

Homing precision 0.4290 (0.08) 0.179 (0.01) 0.2876 (0.02)

Table 5 The results for 10 long-range (2 meters away) homing runs in a clear, bright area with no movement (numbers
in brackets indicate the standard deviation).

Algorithm Taxis RunDown Warping

% success 40% 90% 60%

# of steps 22.25 (7.6875) 23.56 (112.025) 16.33 (18.56)

Distance traveled 5.988 (3.87) 4.489 (4.9) 3.814 (1.148)

Angle turned 1559.3 (150550) 580 (218000) 999.30 (246560)

Homing precision 0.4180 (0.046) 0.252 (0.016) 0.2647 (0.02)
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(60%), but also at the shorter distance where the number
of steps, distance traveled, angle turned and homing
precision are all worse for the Taxis algorithm. The
poor performance of the Taxis is likely to be due to
noise as described above. The behavior of an agent
during RunDown homing only depends on the sign of
the gradient, while Taxis homing also depends on the
actual RMS difference values. This means that it is
significantly more sensitive to noise than RunDown. It
should be pointed out, however, that the Vardy images
used in the simulation were also captured in the real
world, but the quality of the equipment reduced the
noise to a level that did not disturb Taxis homing. It
therefore seems plausible that, with better equipment
(where the image is not distorted in rotation), the noise
could be reduced enough for the Taxis algorithm to
home more effectively than seen here.

The real-world implementation of the image warp-
ing algorithm, on the other hand, performed better than
both the real and the simulated versions of both the
Taxis algorithm and RunDown over shorter distances.
This means that the Taxis algorithm is in fact not in a
position to compete with image warping on these
measures, even if the real-world conditions were ideal.
However, note that this result is for a static environment.
Our next test examined homing by each algorithm

when gradual changes were made to the environment
with respect to the stored home image.

Obviously, sufficient change in the environment
will render the home image position unrecognizable,
and homing will fail for any algorithm. On the other
hand, all algorithms demonstrate a level of tolerance to
minor changes in the environment. The question, then,
is which algorithm is the first to break down if we grad-
ually increase the number of changes in the scene? In
the example of the changes shown in Figure 15, it was
observed that the image warping algorithm was unable
to home. In fact, its perceived home position had been
relocated from position H in Figure 16 where the robot
lies, to the “trap” position marked with T. The move-
ment of the objects had changed the horizon line
enough for image warping to find the best match in that
position, instead of the home position. When the trap
point was not visible from the start position, but the
actual home position was, the agent would initially
move to the true home position, bringing the trap point
within homing range, and the agent would then go on
and home on the trap. Thus, the image warping algo-
rithm was rendered completely useless.

As for the RMS-based algorithms, the most sig-
nificant problem was the appearance of a local mini-
mum at the position marked with M in Figure 16. This

Figure 15 The moved landmarks experiment. A: The unfolded home image. B: An unfolded image taken from the
home position after the changes in the scene.
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in some way resembles the way in which image warp-
ing was misguided. There is a fundamental difference
though, in that the local minimum was not as deep as
the global minimum, which remained on the home
position. This is because the RMS surface is calcu-
lated using visual information not only from the hori-
zon line, but instead from the entire scene, including
floor and ceiling patterns. This means that, even when
the landmarks happen to move in such a way as to
misguide image warping, the RMS surface needs much
more radical changes in the scene to lose the global
minimum.

The results for the homing runs in this environment
are given in Table 6. It can be seen that no significant
changes in the behavior of the algorithms appeared,
suggesting that, if the agent does not get trapped in the
local minimum, it remains completely unaffected by

the changes in the environment. The RunDown algo-
rithm still outperformed the Taxis algorithm.

4 Discussion

A new algorithm for image-based homing was pro-
posed. It combines the properties of the RMS pixel dif-
ference between the home image and any image in the
catchment area (Zeil et al., 2003), and a computational
model for C. elegans chemotaxis (Ferree & Lockery,
1998). Parameters for this algorithm were optimized
using an evolutionary strategy for a simulated agent
homing in an environment built from image data gath-
ered in the real world. For the simulated agent, the
evolved Taxis controllers were more efficient than the
RunDown algorithm proposed by Zeil et al. and per-
formed significantly better in situations where objects
close to the agent caused local minima in the RMS dif-
ference surface. However, in homing by the real robot
the Taxis algorithm suffered from noise, and performed
worse than the RunDown algorithm. When there was
no change in the scene between capture of the home
image and the homing run, both RMS-based algorithms
performed worse than image warping over short dis-
tances, although the success of image warping was
reduced at larger distances. However, in the more real-
istic situation of some changes occurring, the image
warping algorithm was much less robust, becoming
entirely mistaken about the home location. The RMS-
based algorithms were relatively unaffected.

The main difference between the RMS-based con-
trollers was observed when the starting distance was
larger. It would be reasonable to assume that, for a Taxis
controller adapted for a particular surface, the catch-
ment area extends as long as the RMS difference keeps

Table 6 The results for 10 homing runs after changing the scene.

Algorithm Taxis RunDown

% success 80% 90%

# of steps 22.75 (57.68) 13.33 (4.44)

Distance traveled 5.077 (3.676) 1.639 (0.099)

Angle turned 1670.38 (592560) 209.99 (7200)

Homing precision 0.220 (0.013) 0.188 (0.006)

Figure 16 The moved chairs scene. H: The home posi-
tion. M: The local minimum. T: The perceived home posi-
tion for image warping.
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increasing. In the experiments in a bright, static envi-
ronment, the catchment area often extended as far
as 2.7 meters. It is clear that both image warping and
the Taxis algorithm have problems homing beyond
2 meters, while RunDown seems relatively reliable at
those distances. As this problem was not observed
for the simulated agent, it suggests that the first two
algorithms are more affected by the real world noise
introduced by less-than-perfect calibration of the
camera–mirror position. On the other hand, as the sim-
ulated agent was using real-world data, it appears rea-
sonable to assume that with a better camera–mirror rig,
this noise level could be reduced to a degree that
would make both algorithms competitive with Run-
Down over these longer distances, and possibly more
efficient.

We can also compare the computational cost of
the algorithms, which is due to the image comparisons
required. To estimate the RMS difference at each step,
there is a comparison under all 360 possible orienta-
tions, and each comparison takes 360 × H × 3 calcula-
tions, where H the image height, 360 the image width
and the three calculations are the subtraction, square
and addition. Furthermore, to shift an image by N col-
umns, it takes 2 × N + 360 – N = 360 + N operations.
Thus for all orientations (0 to 359), a total of 360 +
362 + … + 719 = 149,220 operations are required. In
our implementation, the image height H was 70, mak-
ing for 27,216,000 operations for all comparisons, and
27,410,220 operations in total.

Image warping compares nα × nρ × nψ images,
where nα, nρ, and nψ are the number of increments for
α, ρ, and ψ respectively, and compares them using
360 × 2 calculations for the normalization and 360 × 2
calculations for the comparison (multiplication and
summation). In order to build each image, image
warping transforms the current image using Equation
(4) for each pixel. The total number of operations nec-
essary, including the auxiliary ones (modulus by 360,
adding to the current pixel position, since δ only signi-
fies the pixel shift) is 14. In our implementation, it is
nα = 36, nρ = 36, and nψ = 10 for the first recursion,
and nα = 3, nρ = 3, and nψ = 10 for the second recur-
sion. This adds up to a total of 84,564,000 operations,
which means that image warping requires 3.01 times
more operations to come up with a home vector.

Note, however, that our implementation of image
warping used a recursive implementation to search for
the best values, starting with a search increment of 10

degrees for α and ψ, and reducing it at each recursion.
Similarly, the increment for ρ was initially 0.2, and was
reduced at each subsequent recursion. The current RMS
implementation performs a full search, since the behav-
ior of the RMS values with rotation was not known
beforehand. It should be straightforward to implement
RMS with a recursive search, with an initial step of
10 degrees, as used for image warping. This should
reduce the number of calculations for RMS algo-
rithms by an order of magnitude, increasing the
advantage over Image Warping to a factor of about 30
times faster.

There are other function minimization techniques
described in the mathematics literature that—like Run-
Down and Taxis—minimize a function without explicit
calculation of the gradient. Downhill simplex and Pow-
ell’s method are two popular examples (Press, Flannery,
Teukolsky, & Vetterling, 1992). Downhill simplex
evaluates the function at the points of a triangle (the
“simplex” of the title). The initial triangle is deter-
mined by the robot’s initial pose. The algorithm then
usually reflects the vertex with largest function value
about the line running through the other two vertices,
forming a new triangle. In this way, downhill simplex
marches towards the nearest function minimum. The
simplex can adapt itself to functional values with long,
narrow valleys, which typically cause problems with
other minimization schemes. Powell’s method, like Run-
Down, minimizes the function along two alternating
directions. Unlike RunDown, though, Powell’s method
adapts these directions during optimization to take
advantage of the local topography of the function. We
may in future compare the efficacy of RunDown and
Taxis with that of downhill simplex and Powell’s
method to solve the problem at hand.

In conclusion, it was demonstrated that the proposed
Taxis algorithm is a more efficient homing algorithm
than RunDown, but less robust to noise introduced by
rotation of our camera–mirror rig on the real robot. The
reduced computational complexity of the RMS algo-
rithms and tolerance to changes in the scene make
them possible competitors to image warping, which is
widely recognized as the most successful visual homing
algorithm to date, and the one most commonly used for
comparison (Vardy & Möller, 2005). It also seems
more plausible that an RMS-based algorithm could be
neurally implemented, but as yet any possible mecha-
nisms for storage and comparison of images in insect
brains are a matter of speculation.
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Navigation by Image-based Visual Homing

Matthew Szenher, M.Szenher@sms.ed.ac.uk
Institute of Perception Action and Behaviour (IPAB)
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1.  INTRODUCTION
Almost all autonomous robots need to navigate. We define navigation as do Franz & Mallot 

(2000): “Navigation is the process of determining and maintaining  a course or trajectory to a goal 
location” (p. 134).  We allow that this definition may be more restrictive than some readers are used to - it 
does not for example include problems like obstacle avoidance and position tracking - but it suits our 
purposes here. 

Most algorithms published in the robotics literature localise in order to navigate (see e.g. 
Leonard & Durrant-Whyte (1991a)).  That  is,  they determine  their own location  and the 
position of the goal in some suitable coordinate system. This approach is problematic for 
several reasons.  Localisation requires a map of available landmarks (i.e. a list of landmark 
locations in some suitable coordinate system) and a description of those landmarks.  In early 
work, the human operator provided the robot with a map of its environment. Researchers have 
recently, though, developed simultaneous localisation and mapping (SLAM) algorithms which 
allow robots  to  learn environmental  maps  while navigating (Leonard  &  Durrant-Whyte 
(1991b)). Of course, autonomous SLAM algorithms must choose which landmarks to map and 
sense these landmarks from a variety of different positions and orientations.  Given a map, the 
robot has to associate sensed landmarks with those on the map.  This data association problem 
is difficult in cluttered real-world environments and is an area of active research. 

We describe in this chapter an alternative approach to navigation called visual homing 
which makes no explicit  attempt to localise and thus requires no landmark map.  There are 
broadly two types of visual homing algorithms: feature-based and image-based.  The feature-
based algorithms, as the name implies, attempt to extract the same features from multiple images 
and use the change in corresponding features to navigate. Feature correspondence  is - like data 
association - a difficult, open problem in real-world environments. We argue that image-based 
homing  algorithms,  which  provide  navigation  information  based  on  whole-
image comparisons, are more suitable for real-world environments in contemporary robotics. 

2.  BACKGROUND

Visual homing algorithms make no attempt to localise in order to navigate. No map is 
therefore  required. Instead, an image  IS (usually called a snapshot for historical  reasons)  is 
captured at a goal location S = (xS , yS ).  Note that though S is defined as a point on a plane, 
most homing algorithms can be easily extended to three dimensions (see e.g. Zeil et al. (2003)) . 
When a homing robot seeks to return to S from a nearby position C = (xC , yC ), it takes an image 
IC and compares it with IS. The home vector H = C - S is inferred from  the disparity between 
IS and IC (vectors are in upper case and bold in this work).  The robot’s orientation at C and S 
is often different; if  this is the case, image disparity is meaningful only if  IC is rotated to 
account  for  this  difference.  Visual  homing  algorithms differ  in  how  this  disparity is 
computed. 

Visual homing is an iterative process.  The home vector  H is frequently inaccurate, 
leading the robot closer to the goal position but not directly to it.  If H does not take the robot 
to the goal, another image IC is taken at the robot’s new position and the process is repeated. 

The images IS and  IC are typically panoramic grayscale images.  Panoramic images 



are  useful  because,  for  a  given location  (x,y) they  contain  the  same image information 
regardless  of  the robot’s orientation.  Most researchers  use a  camera imaging a  hemispheric, 
conical or paraboloid mirror to create these images (see e.g. Nayar (1997)). 

Some visual homing algorithms extract features from  IS and  IC and use these to 
compute image disparity.  Alternatively, disparity can be computed from entire images, 
essentially treating each pixel as a viable feature.  Both feature-based and image-based visual 
homing algorithms are discussed below.

3.  FEATURE-BASED VISUAL HOMING
Feature-based visual homing methods segment IS and IC into features and background 

(the feature extraction problem).  Each identified feature in the snapshot is then usually paired 
with a  feature  in  IC (the  correspondence  problem).  The home vector is  inferred from - 
depending on the algorithm - the change in the bearing and/or apparent size of the paired 
features. In order for feature-based homing algorithms to work properly, they  must reliably 
solve the feature extraction and correspondence problems. 

The Snapshot Model (Cartwright & Collett (1983)) - the first visual homing algorithm to 
appear in the literature and the source of the term “snapshot” to describe the goal image - matches 
each snapshot feature with the current feature closest in bearing (after both images are rotated 
to the same external compass orientation). Features in (Cartwright & Collett (1983)) were 
black cylinders in an otherwise empty environment. Two unit vectors, one radial and the 
other tangential, are associated with each feature pair. The radial vector is parallel to the 
bearing of the snapshot feature; the tangential vector is perpendicular to the radial vector.  The 
direction of the radial vector is  chosen to move the agent so as to reduce the discrepancy  in 
apparent size between paired features. The direction of the tangential vector is chosen  to 
move the agent so as to reduce the discrepancy in bearing between paired features. The radial 
and tangential  vectors  for all  feature  pairs are averaged to produce a  homing vector.   The 
Snapshot Model was devised to explain the behaviour of nest-seeking honeybees but  has 
inspired several robotic visual homing algorithms.

One such algorithm is the Average Landmark Vector (ALV) Model (Möller et al. 
(2001)). The ALV Model, like the Snapshot Model, extracts features from both  IC and  IS. 
The ALV Model, though, does not explicitly solve the correspondence problem.  Instead, 
given features extracted from IS , the algorithm computes and stores a unit vector ALVS in the 
direction of the mean bearing to all features as seen from S.  At  C, the algorithm extracts 
features from IC and computes their mean bearing, encoded in the unit vector ALVC . The 
home vector H is defined as  ALVC    - ALVS. Figure 1 illustrates home vector computation 
for a simple environment with four easily discernible landmarks.

Several other interesting feature-based homing algorithms can be found in the literature. 
Unfortunately, space constraints prevent us from reviewing them here. Two algorithms of note 
are: visual homing by “surfing the epipoles” (Basri et al. (1998) and the Proportional Vector 
Model (Lambrinos et al. (2000)).

The Snapshot  and ALV Models were tested by their creators in environments  in 
which features contrasted highly with background and so were easy to extract.  How is 
feature extraction and correspondence solved in real-world cluttered environments?  One method 
is described in Gourichon et al. (2002).  The authors use images converted to the HSV (Hue-
Saturation-Value) colour space which is reported to be more resilient to illumination change than 
RGB.  Features are defined as image regions of approximately equal colour (identified using a 
computationally expensive region-growing technique).  Potential feature pairs are scored on their 
difference in average hue, average saturation,  average intensity and bearing.   The algorithm 
searches for a set of pairings which maximise the sum of individual match scores.  The pairing 



scheme requires O(n2) pair-score computations.  The algorithm is sometimes fooled by features 
with similar colours (specifically, pairing a blue chair in the snapshot image with a blue door in 
the  current  image).  Gourichon  et  al.  did not  explore environments  with changing  lighting 
conditions. 

Several other methods feature extraction and correspondence algorithms appear in the 
literature; see e.g. Rizzi et al. (2001), Lehrer & Bianco (2000) and Gaussier et al. (2000). 
Many of these suffer from some of the same problems as the algorithm of Gourichon et al. 
described  above.   The  appearance  of  several  competing  feature  extraction  and 
correspondence algorithms in recent publications indicates that these are open and difficult 
problems; this is why we are advocating image-based homing in this chapter.  

4.  IMAGE-BASED VISUAL HOMING
Feature-based  visual  homing  algorithms  require  consistent  feature  extraction  and 

correspondence over a variety of viewing positions.  Both of these are still open problems in 
computer vision.  Existing solutions are often computationally intensive.  Image-based visual 
homing algorithms avoid these problems altogether. They infer image disparity from entire 
images; no pixel is disregarded.  We believe that these algorithms present a more viable 
option for real-world, real-time robotics.

Three image-based visual homing algorithms have been published so far; we describe 
these below.

4.1  Image Warping
The image warping algorithm (Franz et al. (1998)) asks the following question: When 

the robot is at C in some unknown orientation, what change in orientation and position is required 
to transform IC into IS ?  The robot needs to know the distance to all imaged objects in IS to answer 
this question precisely.  Not having this information, the image warping algorithm makes the 
assumption that all objects are at an equal (though unknown) distance from S.  The algorithm 
searches for the values of position and orientation change which minimises the mean-square error 
between a transformed IC and IS . Since the mean square error function is rife with local minima, 
the authors resort to a brute force search over all permissible values of position and orientation 
change.

Unlikely as the equal distance assumption is, the algorithm frequently results in quite 
accurate values for  H.  Unlike most visual homing schemes, image warping requires no external 
compass reference.  Unfortunately, the brute force search for the homing vector and the large 
number  of  transformations  of  IC carried  out  during  this  search make image warping  quite 
computationally expensive.
 
4.2  Homing with Optic Flow Techniques 

When an imaging system moves from S to  C , the image of a particular point in space 
moves from IS(x,y) to IC(x',y').  This movement is called optic flow and (x-x , y- y )′ ′  is the so called 
pixel displacement vector.  Vardy & Möller (2005) demonstrate that the home vector H can be 
inferred from a single displacement vector so long as the navigating robot is constrained to move 
on a single plane.  So too, several noisy displacement vectors can be combined to estimate H.

Vardy & Möller (2005) describe a number of methods, adapted from the optic flow 
literature, to estimate the displacement vector. One of the most successful methods – BlockMatch 
- segments the snapshot image into several equal-sized subimages.  The algorithm then does a 
brute force search of a subset of  IC to find the best match for each subimage.  A displacement 



vector is computed from the centre of each subimage to the centre of its match pair in IC.
A less computationally intensive algorithm estimates the displacement vector from the 

intensity gradient at each pixel in IC . The intensity gradient at a particular pixel can be computed 
straightforwardly from intensities surrounding that pixel.  No brute-force search is required.

In comparative tests, Vardy & Möller demonstrated that their optic flow based methods 
perform consistently better than image warping in several unadulterated indoor environments. A 
drawback to the optic flow homing methods is that the robot is constrained to move on a single 
plane.  The authors do not provide a way to extend their algorithm to three dimensional visual 
homing.

4.3  Surfing the Difference Surface 
Zeil et al. (2003) describe a property of natural scenes which can be exploited for visual 

homing: as the Euclidean distance between  S and  C increases, the pixel-by-pixel root  mean 
square (RMS) difference between IS and IC increases smoothly and monotonically. Labrosse  and 
Mitchell  discovered this phenomenon as  well;  see Mitchell & Labrosse (2004).  Zeil  et  al. 
reported that the increase in the RMS signal was discernible from noise up to about three meters 
from S in their outdoor test environment; they call this region the catchment area.

RMS, when evaluated at  locations in  a  subset  of  the  plane surrounding  S,  forms a 
mathematical surface, the difference surface.  A sample difference surface is shown in Figure 2(a) 
(see caption for details).

Zeil et al.  describe a simple algorithm to home using the RMS difference surface.  Their 
“Run-Down” algorithm directs the robot to  move in  its  current  direction  while periodically 
sampling the RMS signal. When the current sample is greater than the previous, the robot is made 
to stop and turn ninety degrees (clockwise or counter-clockwise, it  does not matter). It  then 
repeats the process in this new direction. The agent stops when the RMS signal falls below a pre-
determined  threshold. We  have  explored  a  biologically inspired difference surface  homing 
method which was more successful than “Run-Down” in certain situations (Zampoglou et al. 
(2006)).

Unlike the optic flow methods described in Section 4.2, visual homing by optimising the 
difference surface is easily extensible to three dimensions (Zeil et al. (2003)).

Unfortunately, when lighting  conditions  change  between capture  of  IS and  IC ,  the 
minimum  of  the  RMS  difference surface  often  fails  to  coincide  with  S,  making  homing 
impossible (Figure 2(b)).

5.  FUTURE TRENDS 
No work has yet been published comparing the efficacy of  the image-based homing 

algorithms described in Sections  4.2 and 4.3.  This would seem the logical next step for image-
based homing researchers.  As we mentioned in Section 4.3, the difference surface is disrupted by 
changes in lighting between captures of IS and IC.  This problem obviously demands a solution 
and is a focus of our current research.  Finally, it would be interesting to compare standard map-
based navigation algorithms with the image-based visual homing methods presented here. 

6.  CONCLUSION
Visual  homing  algorithms -  unlike most  of  the  navigation  algorithms  found  in  the 

robotics literature - do not require a detailed map of their environment.  This is because they 
make no attempt to explicitly infer their location with respect to the goal.  These algorithms 
instead infer the home vector from the discrepancy between a stored snapshot image taken at the 



goal position and an image captured at their current location. 
We reviewed two types of visual homing algorithms: feature-based and image-based.  We 

argued that image-based algorithms are preferable because they make no attempt to solve the 
tough problems of consistent feature extraction and correspondence - solutions to which feature-
based algorithms demand.   Of the three image-based algorithms reviewed, image warping is 
probably not  practicable due to  the  computationally  demanding brute force search required. 
Work is required to  determine  which of  the two remaining image-based algorithms is more 
effective for robot homing in real-world environments. 

REFERENCES
Basri, R., Rivlin, E., & Shimshoni, I. (1998). Visual homing: Surfing on the epipoles. In  The 

Proceedings of the Sixth International Conference on Computer Vision  (p. 863-869). 
Cartwright, B.,  & Collett,  T.  (1983). Landmark  learning  in  bees.  Journal of  Comparative  

Physiology, 151, 521-543. 
Franz, M., & Mallot, H. (2000). Biomimetic robot navigation. Robotics and Autonomous Systems, 

30, 133-153. 
Franz, M., Schölkopf, B., Mallot, H., & Bülthoff, H. (1998).  Where did i take that snapshot?  

scene-based homing by image matching. Biological Cybernetics, 79, 191-202. 
Gaussier, P., Joulain, C., Banquet, J., Leprêtre, S., & Revel, A. (2000). The visual homing  

problem: an example of robotics/biology cross fertilization. Robotics and Autonomous 
Systems, 30, 155-180. 

Gourichon, S., Meyer, J., & Pirim, P. (2002). Using colored snapshots for short-range guidance 
in mobile robots.  International Journal of Robotics and Automation: Special Issue on  
Biologically Inspired Robotics, 17 (4), 154-162. 

Lambrinos, D.,  Möller, R.,  Labhart, T.,  Pfeifer, R.,  & Wehner, R.  (2000). A mobile robot  
employing insect strategies for navigation. Robotics and Autonomous Systems, 30, 39-64. 

Lehrer, M., & Bianco, G. (2000). The turn-back-and-look behaviour: bee versus robot. Biological 
Cybernetics, 83, 211-229. 

Leonard, J. J., & Durrant-Whyte, H. F. (1991a). Mobile robot localization by tracking geometric 
beacons. IEEE Transactions on Robotics and Automation, 7 (3), 376-382. 

Leonard, J. J., & Durrant-Whyte, H. F. (1991b). Simultaneous map building and localization for 
an autonomous mobile robot. In  Proceedings of the IEEE International Workshop on  
Intelligent Robots and Systems (pp. 1442-1447). Osaka, Japan. 

Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., & Wehner, R. (2001).  Insect strategies of 
visual homing in mobile robots.  In B. Webb & T. R. Consi (Eds.), Biorobotics:  Methods 
and Applications (pp. 37-66). The MIT Press, Cambridge, Massachusetts. 

Mitchell, T., & Labrosse, F. (2004).  Visual homing:  a purely appearance-based approach.  In 
Proceedings  of  TAROS (Towards  Autonomous Robotic  Systems).  The University of  
Essex, UK. 

Nayar,  S.  K.  (1997).  Omnidirectional  video  camera.  In  Proceedings  of  DARPA  image  
understanding workshop. New Orleans, USA. 

Rizzi, A., Duina, D., & Cassinis, R. (2001).  A novel visual landmark matching for a biologically 
inspired homing. Pattern Recognition Letters, 22, 1371-1378. 

Vardy, A., & Möller, R. (2005). Biologically plausible visual homing methods based on optical 
flow techniques. Connection Science, Special Issue: Navigation, 17 (1-2), 47-89. 

Zampoglou, M., Szenher, M., & Webb, B. (2006). Adaptation of controllers for image-based 



homing. Adaptive Behavior, 14 (4), 381-399. 
Zeil, J., Hofmann, M., & Chahl, J. (2003).  Catchment areas of panoramic snapshots in outdoor 

scenes. Journal of the Optical Society of America A, 20 (3), 450-469. 

TERMS AND DEFINITIONS
Catchment Area: The area from which a goal location is reachable using a particular  navigation 
algorithm.
Correspondence Problem: The problem of pairing an imaged feature extracted from one image 
with the same imaged feature extracted from a second image. The images may have been taken 
from different locations, changing the appearance of the features. 
Image-based Visual Homing: Visual homing (see definition below) in which the home vector is 
estimated  from the whole-image disparity between snapshot and current  images. No feature 
extraction or correspondence is required.
Feature Extraction Problem:  The problem of extracting the same imaged features from two 
images taken from (potentially) different locations. 
Navigation: The process of determining and maintaining a course or trajectory to a goal location. 
Optic Flow: The perceived movement of objects due to viewer translation and/or rotation. 
Snapshot Image: In the visual homing literature, this is the image captured at the goal location. 
Visual Homing: A method of navigating in which the relative location of the goal is inferred by 
comparing an image taken at the goal with the current image.  No landmark map is required.



Figure 1.  Illustration of Average Landmark Vector computation. See Section 3 for details. 



(a)

(b)

Figure 2.   Two difference surfaces formed using the RMS image similarity measure.  Both the surfaces 
and their contours are shown.  In each case,  the snapshot  IS was captured at x=150cm, y=150cm in a 
laboratory environment. (a) The snapshot was captured in the same illumination conditions as all other 
images.  Notice the global minimum at the goal location and the absence of local minima.  (b) Here we 
use the same snapshot image as in (a) but the lighting source has changed in all other images.  The 
global minimum no longer appears at the goal location.  When different goal locations were used, we 
observed qualitatively similar disturbances in the difference surfaces formed. The images used were 
taken from a database provided by Andrew Vardy which is described in Vardy & Möller (2005). 


