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Abstract

Our dissertation concerns robotic navigation in dynamaboor environments using
image-based visual homing. Image-based visual homingsirtfee direction to a
goal location S from the navigator's current location C gsihe similarity between
panoramic image$s andlc captured at those locations. There are several ways to
compute this similarity. One of the contributions of oursdigation is to identify a
robust image similarity measure — mutual image informatido use in dynamic in-
door environments. We crafted novel methods to speed theutation of mutual
image information with both parallel and serial processord demonstrated that these
time-savers had little negative effect on homing succassgke-based visual homing
requires a homing agent to move so as to optimise the mutaglenmformation signal.
As the mutual information signal is corrupted by sensor@aie turned to the stochas-
tic optimisation literature for appropriate optimisatialgorithms. We tested a number
of these algorithms in both simulated and real dynamic latooy environments and
found that gradient descent (with gradients computed bysiehed differences) works
best.
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Chapter 1

Introduction

1.1 Navigation by Robots and Insects

Robot navigation — in particular visual homing — is the pnigneoncern of this disser-
tation. We define navigation as do Franz and Mallot [2000JaVidation is the process
of determining and maintaining a course or trajectory to al ¢cation.”

Many robotic navigation algorithms found in the literatueeplicitly answer the
guestionsWhere is the robot in some suitable coordinate systean@Where is the
goal in the same coordinate systenThe localisation problem has been described by
some researchers as “the most fundamental problem to pngvédmobile robot with
autonomous capabilities” (Thrun et al. [2001]). Expliciemnc localisation requires a
map of landmark locations and descriptions of those lankmai/hile navigating, the
robot has to solve the so-called data association probletermine which landmarks
it is currently sensing given its current sensor data andahémark descriptions pro-
vided (see e.g. Leonard et al. [2001]). The robot then usesgiocentric bearing
and/or range of the identified landmarks to determine itegpssition and orienta-
tion) in map coordinates. As we discuss in greater detailhagZer 2, localisation is
often probabalistic in nature. In early work, maps were jfed by human operators.
In the last few years, workers in robotic navigation havealiegped impressive SLAM
(Simultaneous Localisation and Mapping) procedures;etladi®w the robot to learn
the map of its current environment while localising itseifthat environment. We
review SLAM in Chapter 2 as well.

A second class of robotic navigation systems are topolbgiaaature. Topologi-
cal maps are representations of important and/or disti@gtiaces in an environment,
physical locations where a robot needs to make a key decislaiiway corners and
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doorways are frequently represented in topological mapsfinor robot navigation.
The connectedness of these important places also encooleslagical map (e.g. itis
possible to navigation from one hallway corner to the nexhait passing through any
other so-called important place). As we describe extehsimeChapter 2, topological
navigation gives a qualitative answer to the questlfinere is the robotFor exam-
ple, a topological navigator might infer that it is in a padiar office or moving along
a particular corridor towards the billiard room. The Londduabe map is a popular
example of a topological map. Each Tube stop is an importactpvhere a decision
can be made. The connections between Tube stops (thougtetrit mformation like
absolute distance between Tube stops) are encoded in the map

Turning to navigation in the animal world, ethological estite suggests that central-
place foraging insects like ants and honeybees — formidadole@ators — are able to
navigate in natural, cluttered and dynamic environmenthaut the need of metric
maps. The desert aftataglyphis fortiSor example is capable of travelling hundreds
of metres from its nest in search of food and returning diyectthe nest once the food
has been found. Wehner [1999] reports that desert ants riehaply on path integra-
tion (also known as dead reckoning) for long distance nakiga\We can imagine an
ant’s foraging path as a series of path vectors, attachedigil. The negative of the
sum of these vectors is a vector pointing to the ant’s stggimint (e.g. nest or source
of food). After a tortuous food-finding excursion, ants caud @o use this path inte-
gration vector to return directly to their nests (Wehnerle{£096]). The length and
orientation of each path vector in the series is noisy arglrihise leads to cumulative
error in the goal vector (Wehner [1999]); that is, the goalteeleads an ant to a point
close to the goal but not usually coincidental with it. Bebaval evidence suggests
that ants use a visual homing algorithm (discussed beloiptotheir nest from this
nearby location (Cartwright and Collett [1983]). Judd arwll€it [1998] suggest that
ants create and use a vision-based topological map of pasitiear their nest in order
to facilitate return to the nest.

We note for the sake of completeness that there has been nebeledin recent
years as to whether foraging insects learn a metric mapseptation of their environ-
ment in order to navigate (see e.g. Wehner [1999] and Be(it@®6]). Very recent
evidence (Menzel et al. [2005]) supports the hypothesidthiaeybees store some sort
of landmark location information relative to their nest. Mder [1999], though, argues
convincingly that desert ants do metjuirea metric map of their environment in order
to navigate successfully.
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1.2 Visual Homing

Robotic navigation by visual homing (a type of visual semgiis the focus of our
work in this dissertation. Visual homing algorithms reguiro explicit quantitative lo-
calisation and thus no metric map. An agent employing a Vlsuaing algorithm cap-
tures an imagés (typically called the snapshot) at the goal locat®#s: (xs,ys) and,
when later attempting to return to this location from a nggubsitionC = (xc,yc),
compares the current imagde with the snapshot and infers the direction and/or dis-
tance to the goal location from the disparity between the tWi@ restrict ourselves
to homing in two dimensions in this work though Zeil et al. () demonstrate that
visual homing in three dimensions is possible. We assuntenthaisually obvious
cue marks the goal position. Otherwise the navigating ageunld simply employ a
beacon-aiming strategy to find the goal (Franz and Mallo®{Z

Visual homing is a very useful navigational skill for a rolbothave in its repertoire.
As we indicated above, visual homing can be used in conjonetith dead reckoning
to allow a robot to explore an area from a given home positioth later return to
that position for, for example, refueling. As we discuss ima@ter 2, visual homing
has been used to solve the docking problem which requiresser@ositioning with
respect to an object in the environment (e.g. a rechargatgpsl). We also discuss in
Chapter 2 the uses of visual homing in topological navigatidoming is often used
in conjunction with a vision-based topological navigatgystem to move between
adjacent locations in a topological map.

1.3 Image-based Visual Homing Algorithms and their

Limitations

As we shall discuss in detail in Chapter 2, homing algoritldiffer in the way in which
image disparity is calculated. Feature-based methodsesggsnapshot and current
images into landmarks and background. They then attempaitoepch landmark in
the snapshot image with a landmark in the current imageqake the correspondence
problem). Disparity is computed from the difference in legrand/or apparent size
between paired landmarks. A second class of visual homiggrithms bypass the
correspondence problem, using disparities between whtdgés to compute homing
vectors. These are known as image- or appearance-baseithatgo

Feature-based procedures require a solution to the comespce problem as we
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have said. Historically, solving the correspondence @whin cluttered and dynamic
environments has proved a difficult task. As we review in Gaag, image features
computed with the recently introduced scale-invariantueatransform (SIFT) lead
to reliable correspondence in such environments. Thisespondence, though, often
requires the comparison of hundreds or even thousands wiréssper image pair. In
this work, we prefer to investigate a more parsimonious eagh to visual homing.

The central algorithm to be explored in this dissertatiolieseon the empirical
phenomenon, reported independently in Zeil et al. [2008] lstitchell and Labrosse
[2004], that thedifferencebetween two panoramic intensity images increases monoton-
ically with the physical distance between their capturdtpmss. Zeil et al. computed
image difference with the following pixel-by-pixel rootean-square function:

N M
RMSIs ) = iz 33 (1c(.1) ~1s(, 1)) (1.1)
I=1]=

wherels andlc are panoramic gray-scale images WNrows andM columns.Ic is
rotated to match the orientation Bfusing an external compass signal.

Equation 1.1 defines a mathematical surface, which we cafferehce surface.
A typical difference surface is depicted in Figure 1.1(a)he surface’s global min-
imum coincides with the location at which the snapshot image taken. The sur-
face increases in value monotonically with increasingasise from this location in
all directions. Zeil’s homing algorithm “Run-Down” simplyoves the agent so as
to minimise the RMS signal, stopping when the signal dropevb@ predetermined
threshold. “Run-Down” is in essence an optimisation aldponi.

The RMS signal suffers from a serious drawback: when illation conditions
change between captures of snapshot and current imagegptisd minimum of the
difference surface fails to coincide with the goal locat{eae Figure 1.1(b)).

1.4 Contributions of this Thesis

The main aim of this dissertation is to create an image-basel homing algorithm
which works robustly and efficiently in dynamic visual ind@mvironments. We shall
investigate environments in which lighting or landmarkdtons change between cap-
ture of snapshot and current images. Zeil et al. [2003] nreasuage disparity using
Equation 1.1. After a principled analysis of Equation 1.4 &8 drawbacks in Chap-
ter 3, we propose instead instead to use mutual informalib)t6 gauge the similarity
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Figure 1.1: Two difference surfaces formed using the RMS image difference metric. In
each case, the snapshot was captured at x=150cm, y=150cm in a laboratory environ-
ment. (a) The snapshot was captured in the same landmark and illumination conditions
as all other images. Notice the global minimum at the goal location and the absence of
local minima. (b) Here again we use the same snapshot image as in (a) but the lighting
source has changed in all other images. The global minimum no longer appears at
the goal location. When different goal locations were used, we observed qualitatively

similar disturbances in the difference surfaces formed.

between imageks andlc. Mutual information can be calculated with the following
formula (adapted from Hill et al. [2001]):

(Is,lc) = z Z p(i, % (1.2)

Here, ps(i) is the probability that a pixel will have intensitywherei is typically in
the rangel0,255) in imagels. These probabilities are estimated from the intensity
histogram ofls; pc(i) is defined similarly forlc. The joint probabilityp(i, j) is the
probability that the same pixel will have intensityn Is and intensityj in Ic. Note
that in Equation 1.1 and j range over pixel locations whereas in Equation ilahd
j range over intensity values. As we shall explain more fuliyGhapter 3, mutual
information determines how well the current imagepredicts the snapshot image
We demonstrate empirically in Chapter 3 that the use of Misda difference surface
homing which is in many cases more robust to visual dynamiem the use of RMS.
In Chapter 4 we ask an age-old question in computer scienoe d$ we make
the computation (of image similarity with mutual informati) faster? We investigate
both parallel and serial computation of image similaritg @mquire into the effects of
increased computation speed on homing success.
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Zeil et al. [2003] use a simple optimisation algorithm to rm@homing robot so as
to optimise the difference surface. We explore in Chaptexesal other optimisation
algorithms and — using novel, sensible criteria — determihieh of these is best for the
purpose of difference surface homing. Unlike other visu@hing researchers — Zeil
et al. [2003] included — we explore in Chapter 5 the effectsesfsor noise on visual
homing success. Robotic visual homing agents require areatoecapture a visual
image. Most agents also use a compass (e.g. magnetic) tosalggpshot and current
images in the same external reference direction. Both cfettsensors return noisy
readings. In Chapter 5 we first characterise the noise pifityatensity functions for
both of these sensors. We then look at the effects of thisrarighe image similarity
signal. The characteristics of the noise in the image digpaignal help guide us
in our choice of a good method to optimise the differenceamaf We also use this
noise information to create realistic homing simulatidnsChapter 6 we describe our
robotic homing system and our live experiments carried o office environment
to validate some of the results reported in previous chapter



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we shall review the various homing algonishfound in the robotics
and insect ethology literature. We shall also put visual imgrm the broader context of
robotic navigation algorithms, reviewing general trenahis large body of research.

This chapter is organised as follows. In Section 2.2 we vedarrent trends in
robotic navigation. This includes a discussion of navigatvith both metric and topo-
logical maps and algorithms robots can employ to autonoly@enerate these maps.
We then move on to discuss visual homing in particular, be&gopwith a brief descrip-
tion of the methods used by homing researchers to captur@rgaic images in Sec-
tion 2.3.1. Feature-based methods are covered in Sect®op. 2Ve present a critical
discussion of popular solutions to the correspondencel@moin Section 2.3.3. Sec-
tion 2.3.4 covers image-based (also known as appearasegibaoming algorithms.
We discuss in Section 2.3.5 a description of a recently dis@m “visual compass”
which could be useful in future visual navigation work. Ripawe discuss problems
in computer vision and robotics which are closely relatedisual homing in Sec-
tion 2.4. Conclusions follow in Section 2.6.

We note that several of the papers we included in this worlevperblished after
we completed the bulk of our research. This is true of papebdighed in or after late
2006. This recent work thus had no bearing on our researcls.gé# included these
papers here because they provide useful information abisuaivhoming or related
problems. Sometimes, as with Pons et al. [2007], we revieery published results
so we can compare them with our own later in this dissertation
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2.2 Current Trends in Robotic Navigation

2.2.1 Metric Localisation

Metric localisation is the process of computing pose (pasitand orientation ex-
pressed in a suitable reference frame). Almost all robatllsation algorithms work
by trying to match incoming sensor data with the informatontained in a map. All
sensors return noisy signals and this sensor noise inéyitdxls to uncertainty in the
robot’s inferred pose. Thus, as Thrun et al. [2005] point dus appropriate to rep-
resent a robot’s belief about its pose with a probabilityriisition, a function which
associates a probability with every possible pose thatdabetrmay be in at a given
time.

In general, three distinct localisation problems appe#néniterature (Thrun et al.
[2005]): position tracking, global localisation, and thieikapped robot problem. In
position tracking problems, the initial pose of the robosame suitable global coor-
dinate frame is known with relatively high accuracy and @m®en. Position tracking
algorithms are designed to update this initial pose as thetnmoves through the en-
vironment. In global localisation, the robot’s initial pos unknown. The robot must
infer its pose solely by matching sensor readings with mégrination. This is consid-
ered a harder problem than pose tracking as the robot musgsttinitially, consider
all of the map data when making pose inferences. The kidrhpg®t problem is a
difficult mix of pose tracking and global localisation. Thebptthinksit has a good
initial pose estimate but in fact its information is incarteit is rather in a different
part of the mapped environment altogether. This state afraftould occur because
the robot was moved from a known pose without sensing the riaeit has been
“blindfolded” and kidnapped).

Many localisation algorithms exist in the literature. Weakheview some popular
and influential algorithms below. The algorithm approgifdr use in a certain situa-
tion depends on the type of map provided to the robot (if atmg type of sensor(s) the
robot has to sample the environment, and the type of lo¢alisaroblem the robot’s
user wishes to solve. We have already discussed the vaeatisation problems
which occur in the literature. We shall cover different exdes of maps and sensors
in the course of our discussion of individual localisationgedures.

Perhaps the simplest pose tracking algorithm requires npwieatsoever. Mobile
robots can integrate the translation and rotation commtraysissue while moving to
keep track of their pose over time. Since motor commandsaralways carried out as
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desired (due to e.g. collisions with objects), most wheetetile robots are equipped
with wheel encoders which count the number of rotations i@ctfons of a rotation)
undergone by each wheel while the robot is moving. They ceagmate this odometric
information to produce a pose estimate. Converting wheatiams into pose change
requires knowledge of the radii of the wheels (which are pl slightly different
from one another) and the length of the axle(s) connectiagmheels. The more im-
precise the knowledge of these dimensions, the more etrodinced in the estimation
of pose change from odometric sensors. Borenstein and B&86] devised a method
called the University of Michigan Benchmark (UMBmark) totelenine these dimen-
sions with high accuracy. UMBmark is to be applied only oawaally as Borenstein
and Feng [1996] note that wheel radius and axle length piglolbnot change much
over time. Borenstein and Feng [1996] demonstrate thatsb@tlUMBmark can lead
to an increase in pose estimation accuracy of one order ohituaig.

Imprecision in the knowledge of wheel radii and axle lengili kgmain even if
a procedure like UMBmark is employed. This imprecise knalgke leads to system-
atic error in pose change estimates. Integration of erropgmse change estimates
causes the robot’s pose estimate to become more and monmgaimoer time (Thrun
et al. [2005]). The error is in fact unbounded. Also, robotesls are subject to
non-systematic errors like wheel slippage due to, for eXxamgmooth floors and/or
high-magnitude acceleration (Borenstein and Feng [1998jese non-systematic er-
rors will contribute to erroneous pose tracking as well. #r@se reasons, most pose
tracking schemes use sensor data (usually) in conjunctitmmap information and
odometric measurements in order to localise.

As we said above, Thrun et al. [2005] argue that robot loatibe schemes should
represent pose beliefs probabilistically. That is, a philitg density function should
be maintained that associates with every pose the protyathiit the robot currently
occupies that pose. But how should this belief be updatezhgivovement commands
and sensor information? Thrun et al. [2005] demonstrateatizayes filter is an ap-
propriate general solution to this problem. When a new abr@ibmmand is carried
out, the Bayes filter specifies in general how to update the bedief distribution
using the robot’s state transition probability distrilauti This transition distribution
describes the probability of a robot being in a new state fi@se) given that it was
in a particular prior state and a particular motion commard vgsued. The new pose
distribution is frequently called the prediction. Afteretiprediction is computed, the
robot typically takes sensor readings in its new pose. Tkessor readings should
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influence the belief that the robot is in a given pose. The Béjter algorithm gives a
general form for the computation which updates the prealicgiiven a measurement.
This measurement update requires a measurement propalslitibution which gives
the probability that the robot receives a particular semsading given that it is in a
particular state. The resulting final belief is a posteriaigability distribution given a
control command and subsequent sensor measurement. Tthal2005] show that
for general pose distributions, no closed form solutiorsesdor computing predictions
and measurement updates. The extended Kalman filter whictesaibe next can be
derived from the Bayes filter by assuming that pose beliedsnarmally distributed.
We shall see that this assumption, though, renders the gediealman filter most
appropriate for pose tracking (at least in basic implemntesria) rather than full global
localisation.

2.2.1.1 The Extended Kalman Filter

The extended Kalman filter (EKF) is quite a popular solutmthe pose tracking prob-
lem according to Thrun et al. [2005]. We use an extended Kalfiigr to augment
our robot tracking system described in Chapter 6. Beforeusising EKF and its use
in pose tracking, we will first cover its close cousin the Kamfilter (KF). The KF is
a recursive linear state estimator. A state in the contextt@liocalisation problem is
the robot’s pose. The KF treats state as a random varialheawBaussian distribution.
The Gaussian distribution is a unimodal probability dgn&inction parametrised by
a mean vector and covariance matrix. The mean coincidesthétipeak of the dis-
tribution and the covariance matrix indicates the spreathefdistribution. The KF
estimates the current state of the system given the prite, d@e control command
that brought the system from the prior state to its curreatestand sensor measure-
ments of the system in the current state. The KF is describedaursive because it
estimates the current state from the previous state ontytheoentire state history of
the system. We shall discuss the linear aspect of the Kalrtantfelow.

The Kalman filter requires two functions to be defined: a dtatesition function
and a measurement prediction function. The state transitioction predicts what
the current state of the system will be when a given contigiai is applied to the
previous state. In the context of robotic pose trackingctivgrol signal is a movement
command (or odometric information resulting from a movetreermmand) applied to
change the pose of the robot. The measurement predictiariidnntakes as input
the predicted current state of the system (i.e. the mosntematput from the state
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transition function) and predicts what the sensor measeneof the system will be
in this state. State transition and system measurementsatemed to be stochastic
processes in problems to which the KF is applied. After &ltate transition were
not a stochastic process and the initial state of the systera thown, then the state
transition function alone could be used to track the ev@\state of the system; the
KF would not be required. The KF requires knowledge of thedlaanness involved
in state transition and sensor measurement. The uncert@imtach is considered an
added random variable drawn from a zero mean Gaussianbdistm; the covariance
matrix of each distribution is defined by the user of the KF.

In robotic pose tracking using variants of the Kalman filsamsor measurements
often take the form of the range and/or bearing of one or mamerarks as sensed
from the robot. Thrun et al. [2005] present a Kalman filtesdxhlocalisation algorithm
which uses both range and bearing measurements to landmRekgye and bearing
information can be extracted from, for example, stereo canmeages. Durrant-Whyte
[1994] shows how to track pose using range-only (e.g. acohstcon receivers) and
bearing-only sensors (e.g. non-stereo cameras).

The measurement prediction function requires a map of thee@mment in which
the robot is operating. Thrun et al. [2005] points out thatrinch published work
the map consists of a list of important features or landmarkke environment. As-
sociated with each landmark is a location in map-based auates and what Thrun
et al. [2005] calls a feature signature, essentially a dgson of that landmark for
use in landmark recognition. The measurement predictioctfan takes the robot’s
predicted pose and the map and computes the range and/orgtesa selected set of
landmarks. Predicting range and/or bearing to point lanmésman a map from a given
pose expressed in map coordinates is a relatively simptilegion involving basic
trigonometry. Appropriate formulae can be found in Thrumalef2005].

The measurement prediction function above assumes thabthelled data asso-
ciation problem has been solved. The data associationgarolrivolves matching an
environmental feature whose signature is gleaned fromosedegta with a landmark
stored in the map (Thrun et al. [2005]). When artificial laradks are used, the so-
lution to this problem is often trivial. Each satellite iretiglobal positioning system
broadcasts its identity along with data used to find the lg&fslrange. Durrant-Whyte
[1994] describes reflective beacons which can be identifjetthé unique “bar codes”
laid down in reflective tape on their surface. Data assamat more difficult for nat-
urally occurring features. We shall discuss technique$dature identification later in
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this review. For now, we shall assume unless otherwise nbiEda reliable solution
to the data association problem is employed.

Once the state transition and measurement predictioniturschave been defined,
the Kalman filter can be applied. The user of the filter mudtfirsvide an initial belief
about the state of the system. This belief is of course egprkas a normal distribution.
In the context of robot pose tracking, this initial distritain describes an estimate of
the robot’s initial pose in map-based coordinates as wel@siser’s uncertainty about
this initial pose. In the implementation of Thrun et al. [B)Othe KF waits until a
control signal is applied to change the state of the systetnaameasurement of the
system is taken in this new state. This control signal andsomeanent are passed to the
KF. The KF first predicts the state of the system given thergtiate estimate and the
control signal applied. This prediction — like all belietscat the state of the system in
the context of the KF —is expressed as a normal distribufibbe.mean of the predicted
distribution is simply that predicted by the state tramsitiunction assuming no error
in the application of the control signal. The covariancenratf the predicted state is
a function of the covariance matrix of the previous statévese and the zero-mean
Gaussian distribution expressing the uncertainty in tlhgestransition we described
earlier. Obviously, larger state transition uncertaistigll lead to larger uncertainties
in the predicted current state.

The KF next corrects this system state prediction usingipted and actual sensor
measurements. The algorithm first computes the differert@den the predicted and
actual sensor measurements, a variable often called tlowation. The innovation
gives a measure of the difference between the true and peediarrent states of the
system (Durrant-Whyte [1994]). If the innovation is reladly large (and measurement
uncertainty is relatively small), then the predicted stafgrobably quite different from
the actual state and so the predicted state must be dristtialed. The mean of the
belief about the true state of the system is computed as theothe predicted state
and the innovation weighted by a value known as the Kalmam gai

The Kalman gain is a matrix whose value depends on the zern @aassian noise
associated with state transition and system measuremstriloed above. Elements of
the gain matrix are generally larger if the uncertainty @tstransition given a control
signal is larger than the uncertainty in system measuresr(@ntrrant-Whyte [1994]).
Thus, when sensor uncertainty is relatively large, lesgteis given to the innova-
tion in the computation of the current state estimate. Whansition uncertainty is
relatively large, the Kalman gain ensures that the predistate of the system plays a
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relatively small role in the current state estimate.

The result of the weighted sum described above is a belieftahe current state of
the system (e.g. the robot’s pose in the context of poseitrgtkxpressed as a normal
distribution.

The Kalman filter requires that the state transition and mressent prediction
functions be linear in their input variables. This is be@lsth functions transform the
normally distributed random variable which representsrti®t’s pose belief. When
a Gaussian random variable is transformed by a linear fancthe result is another
Gaussian random variable; this cannot be guaranteed ifréinsforming function is
nonlinear. The Kalman filter depends on the system stateingmgea Gaussian dis-
tribution (Thrun et al. [2005]). Unfortunately, this linggy condition is often violated
in robot pose tracking problems. The state transition fanegle usually involves
some trigonometric functions as can be seen in Durrant-&/[h894]. So too, range
predictions use the Euclidean distance formula, a nonlifugection.

Due to this nonlinearity, the extended Kalman filter (EK&}her than the Kalman
filter, is often used to solve robot pose tracking problembke EKF is quite similar
to the KF. The big difference is that the former allows theestaansition and mea-
surement prediction functions to be nonlinear. The EKF megtthat these functions
be linearised about their state input. This linearisat®adcomplished by estimating
each function with a first order Taylor series approximatibhis approximation is es-
sentially the tangent to the nonlinear function at the pofrthe Gaussian mean vector.
The success of the extended Kalman filter for pose trackipgrids on how well this
linear Taylor series approximates the underlying nonlirieaction.

The extended Kalman filter is an attractive solution to theepwacking problem
because it provides an efficiently computable closed-farut®n to the recursive up-
date of pose beliefs (Thrun et al. [2005]). It is possible &ive this closed-form
solution because the robot’s belief about its pose is reptesl by the Gaussian dis-
tribution. The computation time of the EKF B(k?.4 + n?) when efficient matrix
operations are employed (Thrun et al. [2005]) whieis the size of the output of the
measurement prediction function angs number of state variables to compute. In this
case of planar pose tracking—= 3. As we discuss below, though, it may not always
be advisable to represent pose beliefs with Gaussiantilisons.

The EKF tracker works by linearising the robot’s motion anelasurement models
as discussed above. This is done so that the belief outpiieblgKF remains a Gaus-
sian distribution after each iteration of the algorithm. eTimscented Kalman filter
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(UKF) provides another way to solve this problem. The UKFespnts the Gaussian
pose belief distribution as a set ofi2 1 sigma points whera is the dimensionality
of the Gaussian. In the case of the pose tracking probieis,equal to three when
the robot is moving on a plane since the robot’s pose is coatpota two-coordinate
location value and a heading value. The first sigma pointdatkd at the mean. The
other sigma points are distributed symmetrically aboutttean. With knowledge of
the sigma points, it is easy to recover the mean and covarianatrix which describes
the Gaussian distribution which the sigma points represémthe UKF, the sigma
points are used as arguments to the (generally) nonlinedomand measurement
models. The output of these models is a new set of sigma pehitdh can be used to
compute the mean and covariance matrix of new Gaussiambdistms. Thrun et al.
[2005] demonstrate that the sigma point method is genenatlye accurate than the
approximation provided by the Taylor series linearisagomployed by the EKF.

The EKF for pose tracking as discussed above assumes deedition to the
data association problem. Thrun et al. [2005] in fact noteage 230 that “a single
false correspondence can derail the [EKF] tracker by ingyiain entire stream of lo-
calization and correspondence errors.” The multi-hypsigweacker (MHT) was intro-
duced to overcome this brittleness in the EKF tracker. Thel\épresents the robot’s
belief about its pose with a weighted mixture of multiple Gsians. Each Gaussian
results from a unigue sequence of feature correspondestgnasents processed by
an EKF-like algorithm. The weight associated with a giveru§san indicates the
likelihood that it represents the robot’s true pose. Thisgivecan be used to prune
unlikely pose beliefs, thus reducing the computationalinesments of the algorithm.
The MHT, unlike the EKF tracker, can be used to solve globedlisation problems
by providing an initial set of pose beliefs which covers theionment approximately
uniformly.

2.2.1.2 Monte Carlo Localisation

The extended Kalman filter and unscented Kalman filter areogpiate for pose track-
ing not global localisation. This is because they reprefsmtobot’s belief about its
pose with a unimodal Gaussian distribution. Monte Carlodlisation (MCL) aban-
dons the use of the Gaussian distribution to represent pelgef$ Instead, the pose
distribution is represented by a finite setfweighted particles. Each particle co-
incides with a particular robot pose. A particle’s weighis¢acalled its importance
factor) is proportional to the probability of receiving therrent sensor data given that
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the pose represented by that particle is correct; more andbmditional probability
below. MCL is a non-parametric algorithm in the sense thdbés not try to estimate
belief with a parametrised form like the Gaussian distiiut

The first step in the MCL algorithm involves choosing theialiset of particles.
If MCL is used to solve a global localisation problem, thdialiparticle set can be
drawn randomly from a uniform distribution of poses over @dirmissible locations
and orientations (Thrun et al. [2001]). Each particle weiglset toﬁ whereN is the
total number of particles. This weighting reflects compigigal uncertainty in the
pose of the robot. If there is some knowledge about the Iptiae of the robot, this
can be used to influence the initial sampling of particledatt, MCL can be used to
solve both pose tracking and global localisation problems.

Once the initial particle set is created, the MCL algorithmThrun et al. [2005]
updates the set each time the robot moves and collects sgaisor After a move is
made, each particle in the set is updated given the movenoeminand or odomet-
ric information which results from the move. This updateuiegs knowledge of the
robot’s motion model: the probability distribution of thefrot’s current pose given its
previous pose and the motor command applied at the previamses Fhrun et al. [2001]
point out that in order to make the pose updates it is suffiteehave a function which,
given a prior pose and motor command, returns a randomlyrgetepose drawn ac-
cording to the motion model. A closed-form expression of tfngtion model is not
required. Once the particle poses have been updated, thewseieighted particles is
typically called the proposal distribution (Thrun et alOf2L]). The importance factor
of each patrticle in the proposal distribution is then cadoed from the sensor model:
the probability of the current sensor reading assuming ttmathypothetical particle
reflects the robot’s true current pose. This probability potation requires a map of
the robot’s environment.

Once theN hypothetical particles and their weights are computedMK algo-
rithm undertakes a resampling process (also known as irmpcgtsampling). In this
step,N particles are selected from the hypothetical set of padidescribed above. A
particle is selected at random with a probability proporéibio its weight. Particles are
drawn with replacement so a particle can, and often is, dnawre than once. After
resampling, the set of particles is an approximation of th&tgrior probability distri-
bution of robot poses given all movement commands issueg@nsbr data collected
so far.

One might wonder why resampling is done at all as it leads fwiclte particles
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appearing in the particle set. If resampling were not donen poses with quite low
probability of being the true robot pose would be represgirighe particle set. These
unlikely particles would be processed for each iteratiothefMCL algorithm, almost

certainly wasting computational effort.

Thrun et al. [2005] note that choosing the valu&othe number of particles in the
sample set, is something of an artNfis too small, then there is a risk that no particle
in the initial set will represent a pose near enough to the imitial pose of the robot.
In generalN grows exponentially with the number of state variables g&stimated.

A large value ofN will come at a computational cost as each iteration of the MCL
algorithm carries ouO(N) operations. Care must be taken by the human operator to
choose a value dfl which is neither too big nor too small for the localisatiomipiem

at hand.

We saw above how MCL can be used to solve pose tracking andldtmtalisation
problems. The kidnapped robot problem can be tackled with_.Nd¢ periodically
injecting random poses into the particle set. If the robat hat been kidnapped,
then these patrticles will quickly die out in the course of ortance sampling. If the
robot has been kidnapped, then hopefully one of the newgctaf particles will be
similar to the pose of the kidnapped robot. Sophisticatelrigues exist for choosing
how many patrticles to inject and for calculating the pos¢rithistion from which the
particles should be drawn. We consider the description e$ehtechniques outside
the scope of this review. The interested reader can find nmboemnation about these
methods in Thrun et al. [2005].

Because it is easy to understand and applicable to manyidatiah problems in
robotics, Thrun et al. [2005] on page 250 call MCL “one of thestpopular localiza-
tion algorithms in robotics.” MCL works quite well in pract. Dellaert et al. [1999b]
demonstrated that global localisation with a particle fites able to localise a robot
moving through the Smithsonian museum on a 2 kilometre jyrithe museum was
empty at the time so the environment remained relativelycst@ihe robot used a laser
range scanner and was equipped with an occupancy grid mae ehvironment. We
shall below discuss some MCL localisation approaches eymgjovisual sensors.

2.2.1.3 Range Scanning and Map Matching

The localisation solutions we have seen so far typically nesatively sparse metric
maps populated by important features (i.e. landmarks)eretivironment of interest.
A more dense map is also used: the occupancy grid. AccordiipSouza and Kak
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[2002], the most commonly used type of metric map in visudlot navigation is
the occupancy grid introduced by Moravec and Elfes [1985) o&cupancy grid is
typically a two-dimensional array of cells where each cefiresents a unique area of
physical space in an environment. In the simplest form obttwipancy grid, each cell
stores a binary value indicating whether the space assoomth that cell is occupied
or empty (Thrun et al. [2005]). In the formulation of Moravaed Elfes [1985], cells
store a value between -1 and 1. A negative cell value incidhizt the cell is probably
empty, where the probability of emptiness is equal to thekibs value of the number
stored in the cell. Likewise, a positive cell value indicate belief that the cell is
probably occupied. Cell value zero indicates that no infaron has been gathered
about the physical space represented by the cell. This pilediec formulation is
required because occupancy is inferred from a robot's neésysor readings (sonar in
the case of Moravec and Elfes [1985]). We shall discuss rotag-making in more
detail later in this review.

Range scan matching employs a local occupancy grid for thgoge of pose track-
ing. Range scan matching for pose tracking was introducédiiand Milios [1994]
and fleshed out in Lu and Milios [1997]. Lu and Milios [1997fide a range scan as a
set of robot-object distances in a panoramic 2D slice of tiverenment. Each element
of a scan is a point consisting of the range from the scanrteetsensed object and the
angle (in ego-centric terms) that the sensor was in whemnrdingte value was captured.
Lu and Milios [1997] use a laser range finding sensor to geagemnge scans. The
scan matching algorithm aims to solve the following questiba reference scafe¢
is captured while the robot is in a poBr¢ and sometime later another sc&qp is
captured while the robot is in a different poBgy, can we determine the change in
pose fromPes andPnew given odometric information and the change between scans
Ser and Sen? It is assumed in Lu and Milios [1997] that the robot is moving
two-dimensional environment. This in fact is quite a simpaoblem to that tackled
in visual homing and the solutions of Lu and Milios [1997] aeminiscent of the
image-based solutions to visual homing described belowi¢péarly image warping).

Lu and Milios [1997] provide two solutions to the range scaatching problem.
Both algorithms begin by transforming (rotating and tratislg) the reference scan
into an approximation of the new scan using the rotation aaastation provided by
odometric information. We shall in the following discussieefer to this transformed
reference scan as simply “the reference scan” for the sakecwfty.

One approach to scan matching devised by Lu and Milios [189Bhsed on the
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iterative closest point (ICP) algorithm of Besl and McKa@92]. The algorithm stems
from the fact that if the pose change frdfa s to PhewWere known, then the reference
scan could be transformed (rotated and translated) to niia¢afew scan. Discounting
sensor noise, the range of a particular point in the transéorreference scan would be
identical to the range of the corresponding point in the neans We should note here
that a point in the reference scan corresponds to a pRBiitt the new scan when they
both result from the laser reflecting off of the same phydwedtion in the real world.
Following this logic, Lu and Milios [1997] define the distanioetween the transformed
reference scan and the new scan as the fun&iaf(w, T) = S i = 1"|R,P' +T — R

P is one of then points in the range scaBes andR is the supposed corresponding
point in S,ew Ry is the rotation matrix formed from the rotation angbeT is a trans-
lation vector. The functiortyis assumes point correspondences can be determined.
Solving the correspondence problem reliably is not an easly and we will discuss it
in the context of image data in the visual homing literatu@ew. Relatively simple
approximate solutions to the correspondence problem ugediland Milios [1997]
will be discussed below. The correct valuesandT (i.e. those which correspond to
the change fronRet t0 Phey) are considered to be those which minimiggy. Lu and
Milios [1997] state that closed-form solutions can be dailivo determine values of
w andT which minimiseEyist given a set of correspondences. Once the values of
andT which minimiseEy;s; have been found, the sc&ryis transformed (rotated and
translated) with these values. The process to find a possforam to minimiseEgy;g; is
repeated witt§¢s and the transforme&,ew. This iteration continues until the change
in Egist from one iteration to the next falls under a certain threghalue set by the
user. Lu and Milios [1997] report that between 15 and 20 fiens are required to
compute good pose change estimates in their experiments.

Lu and Milios [1997] describe two complementary and rekdinsimple rules for
quickly (in linear time) establishing correspondencesMaeein points in the new and
reference scans. The closest-point rule was used by BedlaKdy [1992] to solve —
at least approximately — the correspondence problem. Tdsest-point rule assumes
that for each poinB in the new scan, the corresponding point in the reference isca
that closest in Euclidean distanceRo Lu and Milios [1997] also define the matching-
range-point rule to identify corresponding points. Thiens based on the observation
that if the pose change is pure rotation, then the range sait® andP/ will be equal
(discounting noise). This equality will hold approximatéf the translation element
of the sought-for pose change is small. The matching-raqnujetrule additionally as-
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sumes that the rotational element of the pose change is bdwart fairly small. This
rule therefore looks for a poir® in the new scan whose range value is most similar
to the range oP within a bounded angular window aroufid the laser orientation at
which P’ was captured.

Lu and Milios [1997] found that the closest-point corresgence rule gives good
scan matching results when the pose change RPamandP,ewis dominated by trans-
lation; the matching-range-point rule is applicable fospahanges with small transla-
tion but relatively large rotation. With this observationmind, Lu and Milios [1997]
suggest the iterative dual correspondence (IDC) algoritimeach iteration of the in-
cremental scan matching algorithm, IDC creates two setsmmé&spondences between
Ser and Syew, One with the closest point rule and the other with the matgiiange-
point rule. Each of these correspondence sets will lead istanct rotation and trans-
lation estimate. The reported rotation estimate for theenuriteration is that garnered
using the matching-range-point rule. The reported trditsiaestimate for the current
iteration is that garnered using the closest-point rule.

The other solution of Lu and Milios [1997] to the scan matghpmoblem is called
the rotation search/least-squares method. As the namesisgghis method presents
a two-tiered solution to the problem of finding pose chandwee p tier consists of a
search for the rotational elememtof the pose change. Given a candidate rotatipn
Lu and Milios [1997] derive an efficient method — discusselbwe- to compute the
translationT for the assumed rotatian that best explains the change between the new
and reference scans. Lu and Milios [1997] point out that tadise measure between
new and reference scans (when the reference scan is trarefarsing a candidate
rotationw and its associated translatidr) is at a minimum for the true rotation be-
tween the reference and new poses. The distance functioatkipincreases as the
difference betweem and the true rotation increases. Thus Lu and Milios [199%] us
a golden section minimisation method to find the true rotabetween poses. This
minimisation is reminiscent of the method used in visual passing discussed in
Section 2.3.5 to find rotational pose changes from image data

For each candidate rotation the rotation search/least-squares method uses a least-
squares function to efficiently determine the best trarsidt for the assumed rotation.
The first step in the translation-finding method is to rotaeenew scan by the current
guess of the value ab. If wis correct, then a poirR in the new scan differs from the
corresponding poirf®’ only by the unknown translational element of the pose change
Unfortunately, this correspondence is unknown. Lu andd4i[iLl997] use the follow-
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ing method to solve the correspondence problem: for eaatt Poin the rotatedS,ew

a corresponding poii’ in Ser is selected which lies on the intersectiorSaft and the
line from the origin of the scans throudh The set of all correspondences is fed into
a least-squares formula which is a functioncof{assumed to be known) afdid The
authors use a closed-form equation to efficiently deterniirieom this least-squares
formula.

Lu and Milios [1997] reported that the rotation searchAestpiares and IDC scan
matching algorithms described above are complementarg. fétmer can deal with
relatively large error in pose change estimates (due toyrmdemetry) but is not very
accurate. IDC is accurate but may not converge if the ingiede change estimate is
not well known. Lu and Milios [1997] use the two algorithmgtafore in sequence.

Lu and Milios [1997] note that — at the time of writing theirgex — their noisy
sensor data “makes it very difficult to reliably define or extrfeatures” which could
be used to solve the correspondence problem using a fdadiset approach. This is
why the authors take the whole-scan approach to scan mgtdescribed above. We
shall discuss in more detail in our discussion of visual hgrthe problems with and
some current solutions to feature-based correspondence.

Related to scan matching, map matching algorithms use aocypmaps to solve
local and global localisation problems. We find a map magkixample in Schiele
and Crowley [1994]. The essential problem is matching allega-centric occupancy
grid map of the environment (built on-the-fly using curreahge scan readings) to a
particular portion of a global map. In Schiele and Crowle994] line segments are
extracted from local and global maps using a Hough transfdrne authors then find
the robot pose which causes the local set of lines to coerdast with the global set
of lines. This is essentially a data registration procedure

2.2.2 Topological Navigation

A map is a model of the environment in which the robot is natitga Broadly, two

types of maps are employed by robotics researchers: metddapological (Thrun

[2002]). We have already seen examples of metric maps ateoge the occupancy
grid). A metric map stores geometrically accurate inforimraabout the environment.
A topological map on the other hand consists of a list of intguatr places in the en-
vironment and usually some information on how the robot cawel between these
places (like the distance between nodes). Thrun [2002]tpoiut that the distinction
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between metric and topological maps is somewhat artifiamtppological maps often
contain some geometric information as well. Also, the daéiniof nodes and links
between nodes varies somewhat from author to author as Wessbdelow. Topolog-
ical maps are often represented as graphs in which nodesseayirplaces and arcs the
connections between places. The London Underground magaisanical example of
a topological map. The map describes how to travel from ohe &top (i.e. node) to
another, not the geometric relationship (i.e. distancéybeen tube stops.

In the spatial semantic hierarchy of Kuipers [2000], a togatal map consists of
a set of locally distinctive places linked by distinctivelpg A place is considered to
be distinct in Kuipers [2000] if sensor readings indicatat tlhis sufficiently different
from nearby places already included in a topological maps d@tstinctiveness allows
the identified place to be easily revisited using an algori(h.g. visual homing) which
attempts to move the robot so as to maximise local distiantgs.

Gaspar et al. [2000] argue that topological maps are usefubbot navigation in
relatively large-scale environments. Topological magstgpically much sparser than
geometric maps of the same environment. Topological mag@sppropriate when
precise positioning along a path between nodes is not redjuithey are, in the words
of Gaspar et al. [2000] (p. 890) a relatively “long-distath@e&-precision” navigation
solution. Booij et al. [2007] point out that in traversingtveen two (perhaps non-
adjacent) nodes in a topological map, the robot will not seadly take the shortest
navigable path in physical space between the two mappetidosa Metric mapping
schemes are generally able to provide shortest path intfmmaDespite these limita-
tions we shall see below that topological navigation presidnpressive behaviour in
several tests.

We shall first review the topological location tracking gmstdescribed in Ulrich
and Nourbakhsh [2000]. Though relatively simple, this wbighlights several com-
mon problems in topological navigation. The navigatiorutessare quite impressive;
the robot is consistently localised in three large indoat ane large outdoor environ-
ment. The work won the Best Vision Paper Award at the IEEEriv@onal Confer-
ence on Robotics and Automation in 2000. In Ulrich and Nokinsa [2000] each
node of the topological map of an environment representstandtive place as judged
by the robot’s human operator. Two nodes are connected ifaibet is able to move
between the places the nodes represent. Each distinctive [d represented by a se-
guence of panoramic colour reference images associatbadiveit place by the human
operator.
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The main problem solved by Ulrich and Nourbakhsh [2000] & tf place recog-
nition, a problem quite similar to visual homing. As the robmves through a mapped
environment starting from a known initial location, it magtermine which map node
itis in by finding the best match between the current imageideal by its panoramic
image and the set of map references images. Typically, thierdimage must be com-
pared with several hundred reference images for a placenéibon decision. Ulrich
and Nourbakhsh [2000] take an appearance-based (as opjeofsture-based) ap-
proach to this problem. To make image comparison efficierahemage (both current
and reference) is represented by a set of colour histogrimtonly can histograms be
compared efficiently, they are also invariant to imagertiotaand require little mem-
ory for storage. Rotational invariance is important beeaiisallows reference and
current images to be safely compared without knowing thetiked orientations of the
imager when reference and current images were capturedhém words, a compass
is not required for localisation. After experimenting wihveral formulae to measure
the distance between two histograms, Ulrich and NourbaR@G00] identified the Jef-
frey divergence as most suitable for their needs. As we skalbelow, efficient image
storage and comparison are problems common to most visisaebtopological navi-
gation schemes. Ulrich and Nourbakhsh [2000] found in teeperiments that place
recognition was successful between 87.5 and 97.7 perceheadime. They note that
augmenting their algorithm to deal with place recognitiowler varying illumination
would be valuable.

Gaspar et al. [2000] also present a topological navigatystesn based on visual
imaging. Each map node corresponds to a place in an indo@aoenvent where a
special action may be taken like going through a door or tgra corner. Links cor-
respond to parts of the environment where it is relativelsyefar the robot to move
from one node to another (i.e. corridors). Each node is asatwith a single om-
nidirectional 128128 grayscale image used to identify the location corredponto
that node. Along with each link is stored a sequence of iméggsthe robot should
experience while moving along that link.

The robot in Gaspar et al. [2000] performs a place recogmifoery to determine
its position in the topological map described above. Thip sansists of a “very large”
(p. 893) number of reference images representing an officecgmment (an image is
captured every 50cm in the mapping process employed by Gasjpa [2000]). To
reduce the computational effort required to compare a atiireage with so many
reference images, Gaspar et al. [2000] reduce all imagdsaniechnique known as
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Principal Components Analysis (PCA). PCA seeks to projedinmensional data (im-
ages in Gaspar et al. [2000] have X288 dimensions) into an m-dimensional space
(wherem is typically much smaller than) such that the projection retains most of
the variance of the original. The dimensional space is embedded in the highmer
dimensional space. The lower dimensional space is defined $y-called principal
components which are essentially mutually orthoganalement vectors. The first
principal component is the direction of maximal variatitmaugh the original data;
the second principal component is orthogonal to the firstiamu the direction which
maximises variation when the original data set is projecteit the plane formed by
the first and second components; the remainder of the pahcigmponents are de-
fined similarly. Principal components are the eigenvectoaied eigenimages in this
context) of the covariance matrix formed with all of the reigce images. Gaspar et al.
[2000] then select the 10-12 eigenimages with the highgstealues to form the low-
dimensional space into which each input image is projecReferences images are
projected in this way in a pre-processing step. Each cumeage is projected into the
same low-dimensional space before comparison with theelefe images is made.
Gaspar et al. [2000] use a correlation-based measure toarempojected current and
reference images. This low-dimensional representatidronty makes image com-
parison more efficient (10-12 pixels are compared rather fl28«128), it also means
that the storage requirements of the map are dramaticadlyced (as in Ulrich and
Nourbakhsh [2000]). Gaspar et al. [2000] imply that theiage similarity measure is
not robust to changes in illumination. As demonstrated hglBand Hlavac [1999],
low-dimensional projected images are not invariant to @evotation. Gaspar et al.
[2000] avoid this problem by generally orienting the robothe same direction during
localisation and map-making.

Unlike Ulrich and Nourbakhsh [2000], Gaspar et al. [200@kta the problem of
how the robot can autonomously move between map nodes i@eerse map arcs).
In Ulrich and Nourbakhsh [2000], the robot was driven by a harmoperator through
a mapped environment while autonomously solving the placegnition problem.
Gaspar et al. [2000] use a visual servoing approach (we dlsailiss visual servoing
in more depth in Section 2.4.1) to move the robot down corra#mtres. A sequence
of images along each corridor captured while map-buildéngsed to provide evidence
that the robot is making satisfactory progress down a corrid

Argyros et al. [2005] present a vision-based topologicaigetion system some-
what different from that of Gaspar et al. [2000]. We note tiatilar though prelimi-
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nary work was published by the same research group in Argstrak [2001]. Argyros
et al. [2005] are essentially interested in a long-rangeihgrproblem. That is, the
robot has an important home position (e.g. a docking statewhich it should return
after a meandering journey to carry out some mission. Thisjey may be quite long-
range, moving the robot through several different roomgyAos et al. [2005] are in-
terested indoor navigation). The assumption is that thengwis too long for standard
visual homing approaches to work successfully. Settingrofh its home position,
the robot records a series of panoramic images along its fjéih system also tracks
corner-point features in these images, noting for each @xthg ego-centric bearing
of each tracked corner. When the robot is done with its miggioe system selects a
sequence of recorded images as homing targets. Argyros [0&5] call the loca-
tions of these target images Milestone Positions (MPs).rdbet then utilises a visual
homing strategy to hop from the current MP to the previous MEhe sequence. The
homing strategy is quite similar to the Snapshot Model dised in Section 2.3.2.1.
The solution to the feature correspondence problem preddnt the Snapshot Model
is trivial here; the bearings of corner point features areviim in the images collected
at MPs and can be easily tracked while homing to a target MizeScorner point
feature bearings are associated with each image, no ektmmmgpass information is
required to aid in solving the correspondence problem, gsigase with the original
Snapshot Model. In work similar to Argyros et al. [2005], $imet al. [2006] use the
average landmark vector (ALV) homing algorithm (see SecH#.2.4) rather than the
Snapshot Model to guide the robot between MPs spaced aloreglefmed route.
Goedemé et al. [2005b] present a topological navigatigardhm somewhat sim-
ilar to that of Argyros et al. [2005]. Goedemé et al. [20054¢kle the problem of
following a path defined by a pre-collected sequence of noalised images. Image
capture locations are separated by between 1 and 3 metresauthors use a visual
homing algorithm to move the robot from one image to the nexhe sequence. Vi-
sual homing is splitinto a two-stage process. In the firglestéeature correspondences
are established between the current and snapshot imageswheause the terminol-
ogy to describe images frequently employed in the visualihgrtiterature). Goe-
demé et al. [2005b] employ SIFT features; we describe S#&tuires in more detail in
Section 2.3.3.6. Given the set of computed feature corresgaces, Goedemé et al.
[2005b] then use epipolar geometry to compute the movenmeqtsred to move the
robot from its current pose to the snapshot pose. Visual hgrasing epipolar ge-
ometry is discussed in Section 2.3.2.5. The system alsositifie three-dimensional
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position of each feature and stores it in a local metric mapsghorigin is defined
by the starting location of the current homing process. Bgbcond stage, the robot
moves given the homing vector generated in stage one. A®tw moves, the visual
features used to generate the home vector are tracked iesgi¢e images. The robot
is also localised in the local map. If a feature is lost dueddusion, then it is arti-
ficially placed in the image given knowledge of the three-gisional location of the
feature computed earlier.

Unlike Argyros et al. [2005] and Goedemé et al. [2005Db], lcsise [2007] uses an
image-based rather than feature-based visual homingithigoto follow a route along
which images have been collected previously. He in fact tlseslifference surface-
based homing method introduced in Binding and LabrossegR@fd described in
Section 2.3.4.2. Labrosse [2007] notes that image-base@Mioming algorithms are
attractive because they are more computationally effi¢leant feature-based methods
which require feature extraction and correspondence.

2.2.2.1 Image-Based Localisation

A group of papers on so-called image-based localisation@mpnaps which in our
view straddle the boundary between metric and topolog&adasentations of the en-
vironment. In image-based localisation, maps consist désaepresenting distinctive
places in the environment (as with topological navigatid@ach node is typically rep-
resented by a panoramic image taken from that place. In conwaith metric maps,
each node is precisely localised in a Cartesian coordimated. As we shall see,
image-based localisation techniques share many of the pashems seen in topo-
logical visual navigation: efficient storage of a large thatse of images and efficient
comparison of a current image with the database for placggration.

Crowley and Pourraz [2001], like Gaspar et al. [2000], usé&R&reduce the di-
mensionality of the set of reference images forming the nesga dor localisation. In
this case, though, the set of reference images is wellikezhland is used for metric
pose estimation (with motion constrained to a two-dimemsi@lane) rather than for
topological navigation (as is the case with Gaspar et aDQP0 Crowley and Pourraz
[2001] use perspective rather than panoramic images im thaik. Before making
pose estimations, they collect a grid of reference imagesaeh grid point, images
from several camera orientations are collected, approxngane panoramic image.
Crowley and Pourraz [2001] point out that the set of refeeeincages are equivalent
to points on a nonlinear manifold embedded in the (high-disienal) space whose di-
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mension is equal to the number of pixels in each image. Assgithe mapped environ-
ment is visually static, this so-called appearance mashitsklf is three-dimensional;
each point on the manifold represents an image taken wteleriager is in a particu-
lar three-dimensional pose. Given this manifold, one cogieen an image, uniquely
determine the associated imager pose (assuming no peatapasing in the mapped
environment). This observation forms the basis of sevenage-based localisation
techniques. Unfortunately, the appearance manifold dabaedknown precisely for
real-world environments. Crowley and Pourraz [2001] eat#rthe appearance mani-
fold of a mapped environment using the set of reference isdgscribed above.

In order to estimate the pose of a new image given the set efaefe images,
the authors attempt to find the reference image with the Isigb@rrelation with the
new image. This involves a brute-force search over the wiedgzence set. To reduce
the computational complexity of this operation, the dimenality of the reference
set is reduced using PCA as mentioned above. The de¢thasis eigenimages used
to reduce each image in the reference set is also used toeedemew image. A
Euclidean distance measure is then used to measure thariiyniletween the new
and reference images. The authors note that Euclideamdesia eigenspace is a
good approximation to the correlation measure in the oagpace of non-reduced
images. The pose of the reference image most similar to tvémage is taken to be
the pose of the new image. Crowley and Pourraz [2001] fuithprove the efficiency
of the search by storing the reduced reference images iratnecture; images in the
same portion of the manifold are stored in the same tree fe&f-ary search is used to
quickly find the leaf with images most similar to the reducedsion of the new image.

The above localisation approach suffers from the fact tiapbse estimation error
depends on the density with which the reference set is sainplldense sampling is re-
quired for very accurate pose estimates. Of course, lagjerence sets required more
computational effort to perform brute-force searches. wleyg and Pourraz [2001]
tried to circumvent this problem by interpolating the apjaeae manifold formed by a
relatively sparse reference set. It was reported that sutelgolation resulted in “only
minimal loss in [localisation] precision.” (p. 748)

The image-based localisation method of Crowley and Poy2@21] assumes vi-
sually static environments. They write that their schemeatsrobust in the face of
illumination conditions (particularly illuminant direicin) which change after the ref-
erence image set is captured. Image-based localisatibnR@HA in visually dynamic
environments will be discussed below.
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Related to the work of Crowley and Pourraz [2001], Yang ef24l07] show that a
local appearance manifold can be linearised and this liapgroximation can be used
to track the pose of a moving imager. The imager in Yang e8l07] is free to take
any pose in three dimensional space in a static world. Yamad) €007] show how to
approximate the local appearance manifold using sevenamadpich are proximate
on the manifold. They construct a special imaging sensosisting of four adjacent
cameras which is capable of simultaneously taking the seaganred images at known
relative poses. Once the local manifold approximation isgoted, the system waits
for the camera to move to a pose and take a new image. Givereth@mage and the
manifold approximation, the pose change can be computdaeasolution to a set of
linear equations.

Pajdla and Hlavac [1999] tackle the problem of finding amg® representation
which is invariant to imager rotations for the purposes ofg®e-based localisation.
We saw why rotational invariance was important for imagedshlocalisation when
discussing Ulrich and Nourbakhsh [2000]. Pajdla and Htg®99] introduced the
zero phase representation (ZPR) of panoramic images andeshiihat ZPR images
are rotationally invariant. In Pajdla and Hlavac [1998@hpramic images are formed
with a digital camera viewing a convex mirror (as describe&ection 2.3.1). Pajdla
and Hlavac [1999] map the image of the mirror (a circle)nfrpolar to rectangular
coordinates, “unwrapping” the mirror image to an equivalettangular image. A
shift in the columns of this unwrapped image is equivalerat totation of the imager.
The ZPR procedure finds, for a particular image, the colursavehift required so
that the lowest frequency element of the Fourier transfofrthe image has a phase
value of zero. Pajdla and Hlavac [1999] shows that two paméc images taken in
different imager orientations but from the same positiothkidve nearly identical ZPR
representations (assuming illumination and object locetremain static).

Jogan and Leonardis [1999] extend the work of Pajdla and &&1g¥999] by re-
ducing the dimensionality of ZPR images using principal poments analysis (PCA
is described above). Jogan and Leonardis [1999] show tregenrbased localisation
with reduced ZPR images should have approximately the séame pecognition suc-
cess rate as when all images (current and reference) angredph the same compass
orientation. Jogan and Leonardis [1999] also show that gpebimg image represen-
tation which is invariant to rotation — the autocorrelatiorage (Aihara et al. [1998])
—is inferior for the purposes of image-based localisation.

Jogan and Leonardis [2000] argue that using PCA to compneagas results in
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image comparisons which are not robust to object movemeweas capture of refer-
ence and current images. They attempt to solve this probjerarzlomly subsampling

a current image. Thk pixels chosen in the subsample are those which can be gener-
ated with little error from the eigenvectors associateclite reference images. The
subimage produced thus tends to include pixel locationshvhre not affected by
objects moving in the environment. Jogan and LeonardisqRéldowed that fairly ac-
curate image-based localisation is possible in enviroriswith moving objects using
their scheme in place.

Jogan et al. [2002] point out that PCA-based compressiols@s sensitive to il-
lumination changes between current and reference (i.e.) megges for the purpose
of place recognition. Jogan et al. [2002] point out that gratibased filters when
applied to images make these images more robust to illummahanges for the pur-
pose of similarity measurement. These gradient-basedsfihi@sically highlight edges
in images. Jogan et al. [2002] show how gradient-baseddittan be applied to create
eigenimages which are resilient to illumination changeteWdoing image-based lo-
calisation, the current input image must be filtered withsame set of gradient-based
filters as the eigenimages. It is demonstrated that lo¢adisa vastly improved when
this method is used in an indoor environment with dynamigilination.

Menegatti et al. [2004] point out that many approaches tageraased localisa-
tion like Jogan and Leonardis [1999] would not be reliabledimbal localisation in
environments suffering from perceptual aliasing in theigisnode. Perceptual alias-
ing occurs when two or more node locations appear similaughdo one another so
that a place recognition system cannot tell them apart usihgimage comparisons.
A corridor environment with repeated identical doorwaysdopresent a perceptual
aliasing problem for a robot using vision alone. The authious augment their image-
based localisation algorithm with a Monte Carlo localisatalgorithm (see above for
a general overview of MCL).

Before describing their version of MCL, we shall look at howeiegatti et al.
[2004] perform image compression and comparison. Meniegiadl. [2004] initially
capture grayscale panoramic images of the environmentibrinap-making and later
localisation. Using a method presented earlier in Ishigumd Tsuji [1996], Menegatti
et al. [2004] use the discrete Fourier transform (DFT) to poess panoramic images.
The discrete Fourier transform (Fisher et al. [1996]) ofresmw of each image is first
computed. The magnitudes corresponding to the 15 lowestiércies for each row
are stored. Using the DFT, Menegatti et al. [2004] converfL2x80 pixel grayscale
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panoramic image into a ¥BOx2 element representation, reducing storage require-
ments by a factor of about 17. Not only are the transformedjgsamall, the Fourier
transform renders them rotationally invariant so that tdieading need not be taken
into account when comparing reference and current imagess (#ne case in Ulrich
and Nourbakhsh [2000]). Menegatti et al. [2004] computegensimilarity by sum-
ming the absolute difference between the correspondingéfanagnitudes of current
and reference images. This is similar to a sum-of-squaréerences image similarity
measure.

The MCL algorithm used by Menegatti et al. [2004] follows tivead outline de-
scribed above. We shall merely highlight some peculiaritiere. Each patrticle repre-
sents an hypothetical robot location in map coordinates @w®in several other MCL
applications, a full pose as reference images are rotdlyomzariant). A particle’s
weight is related to the image similarities between theentrimage and the set of
reference images deemed to be close (in terms of Euclidetande) to the location
of the particle. The algorithm is shown to be able to solvebgldocalisation and
kidnapped robot problems in an environment in which percaliasing is present.

The work of Menegatti et al. [2004] is similar to the influeitivork of Dellaert
et al. [1999a]. A difference between the two is that Dellaeil. [1999a] use a dense
map of upward facing images, essentially a visual mosaibeteiling of the mapped
environment (a museum).

2.2.3 Autonomous Mapping

As we saw above, most localisation schemes require a magg @mvironment. Much
work in recent years has gone into crafting algorithms tovaliobots to create maps
autonomously. As visual homing concerns localisationaathan map-making, we
shall only briefly review recent trends in robotic map-makinAutonomous map-
making presents an immediate problem: in order for the radatap the environment
beyond its immediate perceptual range, it needs to move alhectsensor readings
while in various poses. To incorporate those readings ingdohal map, the robot
needs to localise itself. But to localise itself, the robaitléast in most implementa-
tions) requires a map as we saw above. This chicken-and+eddem is solved by a
simultaneous localisation and mapping (SLAM) algorithrh A$1 is also sometimes
called concurrent mapping and localisation (CML) in thertture.

As with localisation algorithms, successful SLAM methods arobabilistic in na-
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ture (Thrun [2002]). This is because the sensors (e.g. @snéaser range finders,
sonar) that robots use to acquire information about therenment for map-making
return noisy data. So too, the technology used to track thetipose over time (e.g.
wheel encoders and inertial navigation units) provide diag®e estimates of this pose.
As with localisation, the current belief about the statehaf world is represented by a
probability distribution. In SLAM, the state consists ofthdhe robot’s current pose
and (in one form of the algorithm) the locations of all obsshtandmarks (Durrant-
Whyte and Bailey [2006]). These states variables are egptem a suitable global
reference frame. Robot pose and landmark locations ammatstd jointly and their
probability distribution is conditioned on all robot cookcommands and sensor ob-
servations made up to the current time.

Just as with probabilistic localisation, the current swisdribution of the SLAM
variables is updated recursively using some variant of thgeB filter. Just as with
localisation, the extended Kalman filter (EKF) is a popukalisation of the Bayes
filter for use in SLAM (Durrant-Whyte and Bailey [2006]). Temind the reader:
the EKF algorithm assumes that the state variables haventairjormal distribution.
In addition, robot motion and sensor measurements are &sbtorsuffer from noise
which has a zero-mean normal distribution. A complete smfuto SLAM using the
extended Kalman filter can be found in Dissanayake et al.JR00

SLAM using the EKF has both benefits and drawbacks. A naivgisolto SLAM
using EKF require®©(K?) computations per map update (Thrun [2002]) whigris
the number of landmarks in the map. Maps of large-scale enmients can contain
thousands of landmarks (Durrant-Whyte and Bailey [2006]}lese computational
requirements are non-trivial. SLAM with the EKF is also vessnsitive to errors in
data association (Durrant-Whyte and Bailey [2006]). A hilyantage of the Kalman
filter approach to SLAM is that it maintains not only a statermeate but also a measure
of the uncertainty about the state. This uncertainty candsel @o judge how useful
the estimated map is for navigation (Thrun [2002]). An opsied real-time EKF-
SLAM algorithm has been successfully applied in a largdes(ize. tens of metres)
outdoor environment (Guivant and Nebot). Other impresssalts for EKF-SLAM in
indoor, outdoor and undersea environments exist in thiatitee (Durrant-Whyte and
Bailey [2006]). SLAM is often applied to robotics with rangeeasuring sensors. An
impressive example of EKF-SLAM with a single moving camergiven in Davison
[2003].

The above discussion of SLAM assumed that metric maps oftfieomment were
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being created. The autonomous creation of topological nhagsbeen studied ex-
tensively as well. We shall review some impressive impletagons of vision-based
topological map-making. Franz et al. [1998a] present aaraarnous topological map-
making system. The robot moves to explore a space. If thewuwew is sufficiently
different from all images stored in the map (or the map is gfphe current view is
stored in a new node in the map. Image similarity is measuigdavsimple correla-
tion measure. Image storage and comparison are made maiergftoy considering
only panoramic horizon line images; see Section 2.3.1 faermrdormation on horizon
lines. The newly created node is connected by an arc to theopiy created node
in the map. The system as described is capable of learniagrlichains of snapshot
locations. It may be the case that the new node is geoméyricadr other nodes in the
map, not just the previously created node. To determine lenehis is the case, the
similarity between the new node’s image and all existing nimagges is checked. If
sufficient similarity is detected, then the robot attempteame from the current loca-
tion to the proposed neighbour. Franz et al. [1998a] usentiagé warping algorithm
to home (see Section 2.3.4.1). If homing is successful, theew arc is added in the
map between the nodes in question.

KoSecka et al. [2003] call their topological map a locatgraph. Each node in
the graph represents an area of the environment (an offiddifg) with a similar ap-
pearance over different poses. During an initial mappirgsgha robot moves through
this environment (controlled by a human operator) and capta grayscale perspec-
tive image approximately every two metres. The similargyvbeen successive images
is computed. In order to assess image similarity, KoSextkal. [2003] first extract
the edges from each grayscale input image. They use edgesnagause they are
relatively invariant to illumination changes in the envirnent. KoSecka et al. [2003]
next compute edge orientation and produce an edge orientaistogram. The sim-
ilarity between two images is then measured by the simyldritween their gradient
orientation histograms. Ko3ecka et al. [2003] usetthmeasure to rate the divergence
between the histogram distributions. They find tkaallows for robust discrimination
between images in a real-world dynamic indoor office enviment. Images collected
during the mapping phase are automatically clustered ubig’ similarity measure.
These clusters define the nodes of the location graph. Senerges may be present
in each cluster. Once the topological map is finalised, ptacegnition is achieved
by using thex? formula to measure the distance between a new image takem in a
unknown pose and the set of reference images. KoSeckaigdfiQ4] compare edge
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orientation histograms and SIFT features for the purpo$gdace recognition; they
found that the latter provided better recognition perfonce being more robust in the
face of viewpoint change.

A very recent topological mapping system is presented inijga@l. [2007]. Un-
like the work of KoSecka et al. [2003], Booij et al. [200@saciate a single image
taken from a particular pose in the environment with eaclenondhe topological map.
The “length” of an arc connecting two nodes indicates howilaintheir associated
images are. The authors note that short links indicate kiealoications the nodes rep-
resent are likely to be geometrically close. As in KoSeakd Li [2004], Booij et al.
[2007] extract SIFT features to measure the similarity leewtwo images. Booij et al.
[2007] rate the similarity between two images using the neinalb corresponding SIFT
features between the two images.

Booij et al. [2007] make an interesting statement compaitiegrelative merits of
vision-based geometric SLAM and topological mapping: “Giféculty of [geometric
SLAM] solutions is that the 3D positions of the landmarks ased while the camera
only provides bearing information. Also the number of laratks grows when the
environment becomes larger, making it impossible to mairdaconsistent state and
covariance estimate.” (p. 2) The work of Davison [2003] (tmamed above) suggests
that the first statement is untrue; this author showed th&-BEKAM with a monoc-
ular camera providing only landmark bearing information @#ork well. The second
statement indicates a real advantage of topological ovaiemeapping.

2.3 Visual Homing

As we discussed in Chapter 1, all visual homing algorithnes somewhat similar.
Each requires a homing agent to capture an iniggé goal positiorS. When seeking
to return toS from a nearby positiolC, the agent captures imade and uses the
discrepancy betweely andIc to infer the homing vectoH. Ic andlg are usually
two-dimensional panoramic intensity images, though asivedl see in the following
discussion this is not always the case. We shall assume thahacular vision system
is used. The orientation of the agentSiis typically different than its orientation at
C. Most homing schemes (though not all; see e.g. Section.2)dquire thalc is
rotated to account for this orientation difference. Orégiuin correction is sometimes
done with the aid of an external compass reference.

Since no metric landmark information is used, the homingmeta is often inac-
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curate. The agent thus moves by some distance (either fixedlaulated based on
current sensor information) in the direction Hf and repeats the process described
above. The algorithm terminates when the discrepancy tethgeandIc (or some
value related to this discrepancy) falls below a certaieghold (again either fixed or
calculated while homing).

Broadly, the discrepancy betweénandlc can be calculated in one of two ways.
Some methods extract salient features (which we also calhfearks in this work) from
Ilc. These features must be identifiedlgYi.e. the correspondence problem must be
solved). As the navigating agent has a monocular visioregysthe change in feature
bearing and/or apparent size is used to infer the homingouettandmark range is
difficult to estimate with monocular vision and not often ds&Ve shall not consider
homing with stereo vision (e.g. Sturzl and Mallot [2002])in& consistent feature
correspondence is often difficult and computationallymsiee, so-called image-based
or appearance-based visual homing methods have been pegteldich compare the
entirety oflc andlsto produce image discrepancy. We are interested in an irbaged
method in this work.

2.3.1 Panoramic Imaging

Most of the homing algorithms implemented in simulation oractual robots capture
panoramic images of their environments. These images afallmecause they provide
visual information which is not dependent on the orientatié the agent, as would a
single field-of-view perspective camera. With a few exaamiwhich we shall discuss
below robotic homers capture panoramic pictures with a CCBa¢ge Coupled De-
vice) camera imaging a hemisphere, cone, paraboloid orrbgp®d with a reflective
surface. The merits of various mirror shapes are discussidyar [1997]. The mirror
reflects light from 360 degrees horizontally and 90 degre@sare vertically, forming
a panoramic (though not completely omnidirectional) imaf¢he environment. A
schematic mirror and camera rig is shown in cross-sectidrignre 2.1; the mirror is
hyperboloid in shape.

The image of an actual hyperboloid mirror is shown in Figui&&). The mirror
rig is situated in a laboratory environment. Figure 2.2(@jtains an image of the
panoramic mirrorand the rig supporting the mirror and camera. Homing researcher
typically mask out the portions of the image which do not espond to objects in the
environment, as these do not contain useful landmark irdtion. The mirror rig is
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Figure 2.1: Schematic of hyperboloid mirror (in cross-section) imaged by a CCD per-

spective camera.

also masked for this reason. A mask for Figure 2.2(a) is shiowkigure 2.2(b) and
the masked version is given in Figure 2.2(c).

Some homing algorithms (see e.g. Zeil et al. [2003]) sim@g the image of the
mirror itself, suitably masked, (i.e. Figure 2.2(c)) whemmgouting image disparity.
Other algorithms (e.g. Franz et al. [1998Db]) extract thealbed horizon circle from
the panoramic mirror image; a sample horizon circle is drawbiack in Figure 2.3(a).
The horizon circle is that portion of the mirror which refleghcoming rays of light
perpendicular to the long axis of the mirror rig through tlaenera’s aperture; such a
ray is depicted in Figure 2.1. If the geometry of the mirroddhe distance between
the camera and the mirror are known, the radius of the hoticie can be calculated
with precision. A useful property of the horizon circle isattobjects imaged in the
horizon circle when the rig is in one position will also be igea from a different
position so long as both positions are on the same plane aratigntation of the rig’s
long axis stays the same.

Since the mirror rig can change in orientation and heiglghsly while the agent
moves, workers typically extract an horizon annulus fromithage of the mirror; see
Figure 2.3(a). The inner and outer radii of the annulus ateuwred in white, enclos-
ing the black horizon circle. The extracted annulus (Figu&b)) is then averaged
column-wise to estimate the intensity signal of the horiziwale (Figure 2.3(c)).

Rather than use the camera and mirror combination descaibe¢e, some homing
robots are equipped with a single perspective CCD camerdakedmultiple images
while the robot rotates 360 degrees in place. The imagestidches] together with
special software, forming a rough panoramic image of therenment. Weber et al.
[1998] describe such a system. This method for capturin@izenic images is more
time-consuming — due to the camera rotation and stitchingufiple images — than
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(©)

Figure 2.2: (a) Image of hyperboloid panoramic mirror situated in a lab-
oratory environment. The image was download from http://www.ti.uni-
bielefeld.de/html/research/avardy/index.html. (b) Mask to remove non-mirror portions

of the image shown in (a). (c) Masked version of the image shown in (a).
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Figure 2.3: (a) Image of hyperboloid panoramic mirror situated in a laboratory environ-
ment. The horizon circle for this mirror and camera combination is drawn in black. The
horizon annulus — inner and outer radii drawn in white — encloses the horizon circle.
(b) Extracted horizon annulus. (c) Horizon circle generated by averaging the horizon

annulus column-wise.
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that described previously in this section.

The Ladybug spherical digital video camera (www.ptgremoffers an alterna-
tive method of capturing panoramic images than those dest@above. The Ladybug
is composed of six colour CCD image sensors: five equallyesgpadong a horizon
ring and one pointing vertically upwards. This camera camgon allows the sys-
tem to image 75 percent of the full sphere. The manufactwktse Ladybug have
provided a software development kit which facilitates imagquisition, camera con-
figuration and image stitching. Bradley et al. [2005] havendastrated the Ladybug’s
effectiveness in real-time acquisition of panoramic ingage

The Ladybug unfortunately suffers from some drawbacks. most serious of
these is the high price of the system: currently 11,950 USIils Bmount exceeds
our project budget. Also worrying is that the system’s saftgvdevelopment kit was
compiled for Windows XP; we intend to use the Linux operasggtem in our work as
we have much more programming experience with this OS. Weareerned as well
with the likelihood that one or more of the Ladybug’s six caasewill fail. We would
probably not have the expertise to replace a broken camehee system would have to
be sent back to the manufacturer or to our in-house techmsda@ repair, necessitating
a delay in our research. The mirror-based panoramic imatggsribed above, on the
other hand, often use a Webcam which, if broken, can be easdycheaply replaced.

2.3.2 Feature-Based Homing

In order to operate successfully, feature-based homingridtgns must extract the
same features frortg andIc (the feature-extraction problem). Each feature frm
must then be paired with a feature frag(the correspondence problem). The feature-
extraction and correspondence problems are difficult teesol unadulterated, clut-
tered environments in real-time. Landmark appearancegeasawith viewpoint.

In the following sections, we describe a number of featuasedl homing algo-
rithms. In each case, we discuss not only how the homing vectgenerated but also
how the feature extraction and correspondence problenmsohred.

Some published work on homing is focused on parsimoniousifeaxtraction
and correspondence, rather than the calculation of the hati®r. We review this
literature in Section 2.3.3. Our main interest in this ditseon is on image-based
homing algorithms which of course do not use correspondalymithms. We review
correspondence algorithms because many of them providéesi&t rate the similarity
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between potential feature pairs. These similarity measooelld be used by image-
based methods to measure whole-image discrepancy. Saitmessful whole-image
similarity measures could be used in feature corresporedalgorithms.

2.3.2.1 The Snapshot Model

Cartwright and Collett [1983] present an early solutiontte visual homing problem.
The paper is an ethological study of homing behaviour in baes and seeks to
answer the following questions: “First, what do bees ledvauh the spatial layout
of landmarks [around a food source]? Secondly, how migtt thiormation help
them reach their destination?” The authors gathered evansupport the hypothesis
that the bee stores a largely unprocessed panoramic srigighe goal position and
compares this stored image to its current view to computenaifg vector. This has
come to be known as the Snapshot Model and has inspired mahg &fature-based
visual homing techniques described below.

Honeybees are thought to align snapshot and current vies@ire external direc-
tional reference (e.g. the Earth’s magnetic field), aftercvlieatures in the snapshot
view and current view are extracted and matched. Featuraaiin in Cartwright and
Collett [1983] was simple, as both simulation and experitalesetups consisted of
black cylindrical landmarks against a white featurelesskjeound. Once extracted,
each landmark in the current view is paired with the landntdokest in bearing in the
shapshot image.

Two vectors, one radial and the other tangential, are aswatwith each feature
pair (see Figure 2.4). The radial vector is parallel to therimg of the snapshot feature;
the tangential vector is perpendicular to the radial vediothe original formulation
of the Snapshot Model, radial and tangential vectors werenif length, although
workers who adapted this model for robotics relaxed the-wedtor restriction, with
interesting results (see Section 2.3.2.3 below). The time®f the radial vector is
chosen to move the agent so as to reduce the discrepancy aneapize between
paired features. The direction of the tangential vectorhissen to move the agent
SO as to reduce the discrepancy in bearing between pairéaréea The radial and
tangential vectors for all feature pairs are averaged tdyce a homing vector.

According to Cartwright and Collett [1983] the Snapshot Mbfivhen run in a
simulator) mimicked bee behaviour in environments with ane three landmarks.
The model also performs comparably when landmarks are @uhfig size, distance,
and/or orientation) between training and testing and imfptex” environments of
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Figure 2.4: lllustration of Cartwright and Collett's Snapshot Model (from Lambrinos et al.
[2000]). The three dark circles are landmarks. The agent’s home position is at the 4.
The agent’s current position is in the lower-right corner of the image. The agent’s inner-
ring represents the view as captured at the home position; the outer ring represents the
current view. Radial and tangential vectors are attached to each inner-ring sector, as

described in the text.
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eight or nine landmarks. Distant landmarks, though, cayselalem as they offer little
useful information about apparent size or bearing but eehe chance of mismatch
between snapshot and current image. The authors suggekse#samight filter distant
landmarks, a finding supported by Cheng et al. [1987].

Franz et al. [1998b] demonstrate that the Snapshot Modetelated algorithms
assume that landmarks are isotropically distributed addbe snapshot position. In
other words, “frequency and distance of landmarks are asdumbe independent of
the viewing direction.” (p. 3) If this assumption holds traed feature correspon-
dences are computed correctly, Franz et al. [1998b] proaetkie Snapshot Model is
guaranteed to guide the robot directly home. If the envireniis non-isotropic and
correspondences are computed correctly, the SnapshotlMdbsill guide the robot
home but on a path that spirals into the snapshot location.

The recent work reported in Bekris et al. [2004] has potdgtiateresting im-
plications on the methodology of ethological visual homaxgperiments (though the
authors are primarily interested in robotic homing). Theplere homing in a simu-
lated environment with three landmarKsi, L, andL3. They assume the landmarks
are consistently extracted from snapshot and current imagd that landmark cor-
respondences can always be found. Their homing algoritHouledes the disparity
betweenls andlc given the change in angular separation betwlegandL,; L; and
L3; andL, andLs.

To this point, Bekris et al. [2004] is fairly uninterestinghe algorithm therein
is quite similar to the Snapshot Model and the chosen experiah environment is
unrealistic, having so few landmarks. The authors thenydgho derive a method to
predict, for a given goal position and landmark configunatithe set of start positions
from which the goal is reachable (i.e. the catchment arelapud@h the authors do not
discuss this, their catchment predictor could be used Bcinsthologists to determine
if their homing algorithm is biologically plausible. It is@bable that similar catchment
predictors could be derived for alternate homing schemegetls

2.3.2.2 Hong’s Homing Algorithm

Though Hong et al. [1991] makes no reference to the SnapsbhdeMHong’s home-
vector computation method is quite similar to that of Caigjvt and Collett. In Hong'’s
method, as in the Snapshot Model, tangential vectors aceiassd with each feature
pair. In the Snapshot Model, though, these tangential veet@ perpendicular to the
bearing of the snapshot feature; in Hong’s method, therenaréangential vectors per
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feature pair, one perpendicular to the bearing of the sragehture and the other per-
pendicular to the bearing of the current feature. Hong de¢€mploy radial vectors
(as his features are merely points with no angular size).

Hong’s homing method was tested on a mobile robot in an unfieddaboratory
environment. Only a few trials were performed, most of whigére successful. The
robot maintained a constant orientation during its jourseyo compass information
was required to rotationally align snapshot and currengiesa

2.3.2.3 The Proportional Vector Model

Introduced in Lambrinos et al. [2000], the Proportional tdedModel (PVM) is a mod-
ification of the Snapshot Model. The unit tangential andakweictors associated with
each feature pair in the Snapshot Model are replaced by nidrvectors in the same
directions. The length of the radial vectors are proposdida the difference in appar-
ent size between paired features. The length of the tarajemrtitors are proportional
to the difference in bearing between paired features. Thieaages cause the length
of the homing vector to be proportional to the distance ofapent from the goal.

Lambrinos et al. [2000] use the length of the homing vectaraotrol the robot's
speed. The robot moves relatively quickly when far from tbalgand slows near the
goal, reducing the chance of overshoot. The robot can aksthedength of the homing
vector (called “disparity” in Lambrinos et al. [2000]) astaggping condition.

Lambrinos et al. [2000] reports that the PVM was tested withabile robot in
the salt pan flats of Tunisia. The mobile robot uses a poldiigit compass based
on that of desert anCataglyphis Lambrinos et. al. wanted to test the system in the
ant’s natural environment, hence the exotic locale. Aréfichigh-contrast landmarks
(large, black cylinders) were used to define the goal pasititight homing runs were
performed in this environment, beginning at different adistes (2 or 4 meters) and di-
rections from the goal. Each homing run brought the agenttioinva few centimetres
of the goal position.

2.3.2.4 The Average Landmark Vector Model

The Average Landmark Vector (ALV) Model was introduced imblarinos et al. [2000].
As in the Snapshot Model, features are extracted frenirhe average of all feature
bearings is calculated and stored as a unit vector. The at@mts this average land-
mark vector ALVs) rather thanls. When homing fronC, Ic is captured andAL\¢)
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Figure 2.5: lllustration of Average Landmark Vector computation. See Section 2.3.2.4

for details.

is calculated in the same manner ad\k). If the agent’s orientation is different in
positionsC and S, the algorithm counterrotatesC\Ve accordingly (with the aid of a
compass). The agent then moves in the directoa: ALVe — ALVs by some fixed
distance. Figure 2.5 depicts the various vectors involaetié computation ofi for a
simple two-dimensional environment with four circular ¢emarks (black circles).

The ALV Model offers a number of advantages over the Snapbtartel. The
agent stores the vectdiLVs, rather than the entire snapshot imdgelt is more com-
putationally efficient to rotate the vect& \: than the imagdc. More importantly,
there is no need to solve the correspondence problem in thewation of the ALV.
Note, though, that the same featuresgandlc must still be extracted in order for the
best average landmark vector to be produced. The authorstdanalyse the effects
on homing success of inconsistent feature extraction.

Lambrinos et al. [2000] alter their experimental envirominso that feature ex-
traction is trivial. Lambrinos and co-workers placed foarge black cylinders around
the goal location to serve as landmarks; these cylinders wehigh contrast to the
bright featureless Saharan desert landscape in which fieriexents were carried out.
Ic andls were panoramic intensity images; landmarks were deteciddavsimple
thresholding operation using a preset intensity cut-off.

The ALV Model was also tested in a cluttered, unadulteratetbor office envi-
ronment (Moller et al. [2001]). Here, feature extractismecessarily a more complex
process. As before, a panoramic intensity image is captarede current location.
The one-dimensional horizon image is extracted as destiib8ection 2.3.1. Sharp
changes in the horizon image (which correspond to imagesdge used as features.
The resulting ALV algorithm is able to home from some stasipions in the office en-
vironment. No comparison is made with other homing algonghnor does the paper
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explore environmental change (e.g. lighting change orrzert movement) between
captures ofsandlc.

Interestingly, Mdller [2000] demonstrates that the hogmirectorsH produced by
the ALV algorithm are the gradients of a surface which hasabal maximum at the
goal location. Thus, homing with the ALV algorithm is akin ¢ptimisation with a
gradient ascent algorithm. There is thus an unexpectedl@tkween ALV, a feature-
based algorithm, and the explicit gradient descent homggrighm described in Sec-
tion 2.3.4.2.

2.3.2.5 Surfing on the Epipoles

Basri et al. [1999] describe a precise, compassless geienselution to the visual
homing problem. The authors call it “surfing on the epipdleghe term “epipole”
comes from epipolar geometry, which relates camera motararpeters in a stereo
view to the coordinates of imaged points in each view; seargi@.6 for more infor-
mation. Unlike most robotic homing researchers, Basri €1&99] use a perspective
rather than a panoramic camera.

The primary result of epipolar geometry is thmtandp, (which are defined in Fig-
ure 2.6) are related by the equatiphE p, = 0 whereE — the so-called essential matrix
—is a &3 matrix whose elements are related to the translation aatisa undertaken
by the camera. Bastri et al. [1999] use an algorithm crafteddnguet-Higgins [1981]
to solve the essential matrix for a particular rotation arahslation; this algorithm
requires eight or more points of correspondence in curradtsmapshot images and
is particularly easy to implement (Hartley [1997]). Badriag [1999] mention other
algorithms for recovering the essential matrix which reguewer correspondences.
The translation vectoF (which is along the line fron€OP to e, hence the name of
the algorithm) is easily determined giv&n The translation vector is actually known
only up to a multiplicative constant. The constant is deteed by moving the camera
a known direction and distance and taking a third image. Tbheement of feature
points in the intervening move is used to solve for the contstahe rotation parame-
ters can be found fror& andT.

Epipole surfing offers a number of advantages over the fedtased visual homing
algorithms described above. With the capture of just twarent” images, the surfing
algorithm gives (assuming the correspondence problemiiedpthe true home vec-
tor. The algorithms above output an estimate to the homewacid require several
iterations to reach home. Surfing does not require a compadigih images to a single
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Figure 2.6: A perspective camera with centre of projection COR, initially images a point
in space P. The image of P on the image plane is p1 (a two-dimensional image point).
The camera then translates and rotates so the image of P on the image plane is at p;
the camera’s centre of projection is now at COP. The points COPR,, COR and P define
the epipolar plane. Points e; and & are called epipoles. Epipolar geometry provides
the translation and rotation undertaken by the camera causing the image of P to move

from p; to P2. See text for details.

reference direction.

Svoboda and Pajdla [2002] characterise the epipolar gegriat catadioptric
cameras. Svoboda et al. [1998] show how to exploit the epipgéometry of cata-
dioptric cameras to solve the homing problem. Their metleoplires at least 8 corre-
sponding points between snapshot and current images tordeéethe essential ma-
trix. Svoboda and Pajdla [2002] then show how to computestesional and rotational
elements of the pose change from current to snapshot posasthe essential matrix.

2.3.3 Feature Extraction and Correspondence Algorithms

Some papers are primarily concerned with solving the feaéxtraction and/or cor-
respondence problem, using the resulting landmark paits tve Snapshot Model or
some other tried-and-true feature-based visual homingriéigm. We review these
efforts below.

2.3.3.1 Weber et. al.

Weber et al. [1998] are interested in solutions to the cpmadence problem in en-
vironments like the one depicted in Figure 2.4 (i.e. blackndyical landmarks in an
otherwise featureless environment). Landmarks are Misuadistinguishable so no
attempt at object recognition is possible. Weber et al.estioe bearings of landmark
centres as viewed at the snapshot location. It is not cleathven the authors use an
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external compass to correct for orientation differenceveeinls andlc but we assume
that they do.

Weber et al. [1998] describes attempts to calculate a omme¢omatching between
snapshot and current features. The authors assume thairiteenof features in snap-
shot and current views is equal (by no means a valid assumiptadl situations). They
test seven different correspondence algorittmhsh7 in simulation.

* hlis an exhaustive search for landmark correspondencesttat possible sets
of pairings are considered and the pairing set with the srataiquared error
in bearing difference is chosen. As there atesets of pairings (where n is
the number of landmarks in snapshot or current vidw)requiresO(n!) time.
Realising thahl is infeasible for large numbers of landmarks, the authess t
non-exhaustive solutio®-h7.

* h2 matches each snapshot feature with the closest (in béanpgired current
feature; this greedy algorithm requir€$n?) steps.

* h3 assumes that landmark order is invariant in snapshot amdrtwiews; that
is, if snapshot featureis matched with current featurg then snapshot feature
i + 1 must be matched with current featuyre- 1. This assumption reduces the
number of possible sets of pairingsrtoso the algorithm i©(n?).

« h4 initially corresponds thé" feature in the snapshot with ti8 feature in the
current view. Adjacent pairings can be swapped bubblestghe if this leads to
a decrease in mean-squared error. This method tGgri3).

* Algorithm h5 is a hybrid ofh2 andh4. The output produced By2 is if possible
improved byh4. Ash2 andh4 areO(n?), h5 is O(n?) as well.

* In methodh6, each landmark in the snapshot maintains a list of landsnizrk
the current view with which it would prefer to be paired, aridesversa. (The
method used to establish these preferences is not desgrivdahdmark in the
snapshot view is paired with the landmark closest in bedririge current view
which it prefers and which prefers it.

« Methodh7 operates likdé12 except that a many-to-one pairing between snapshot
and current features is allowed. That is, one feature in tineent view may be
paired with many features in the snapshot view. This lan&marrespondence
method is identical to that used in Cartwright and Colle&g3].
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Algorithmshl - h7 are first compared in a simulated world in which all landnsark
are always visible, regardless of viewing distance. They fivat homing failure (de-
fined as the inability of the agent to reach within a certaistatice from home) is
lowest when usindnl or h3; homing using the other correspondence methods yields
higher failure rates. The relative succes$®femains steady with increasing numbers
of landmarks. Home vectors are computed using a variantoStiapshot Model.

The authors next consider a slightly more realistic simafgtin which the simu-
lated agent has a “perceptual horizon” beyond which it casanse landmarks. In this
type of environment, there is no clear winner among methddsh7 and no useful
conclusions are drawn.

Usefully, the authors demonstrate that their algorithmsehan inherent tendency
to avoid collisions with landmarks.

The take-home message of the work of Weber et al. [1998] isdbling the
correspondence problem for a non-trivial number of landmas a computationally
expensive task.

2.3.3.2 Gourichon et. al.

Unlike previous approaches, Gourichon et al. [2002] defiations with one-dimensional
colouredpanoramic snapshots. Colours are defined in the HSV (Huar&an and
Value) systermt. The HSV colour space is useful in landmark identificationhatt
object hues are somewhat independent of current lightinditions.

Images are segmented into regions of approximately eql@lcfandmarks). Po-
tential region pairs are scored on their difference in ageraue, average saturation,
average luminosity and azimuth centre. A dynamic programgraigorithm? is em-
ployed to find the set of matched features which maximisesuheof individual match
scores. Each snapshot region can be paired with only onerrégthe current view. It
is not clear whether every snapshot region must be paired.

Like algorithmsh2 - h6 above, the dynamic programming solutionQ$n?) in
time (where n is the number of landmarks in the snapshot viduile hl, the dy-
namic programming approach is global in that every regioth&n snapshot view is

1HSV is a colour space in which a particular colour is représgby three measures: Hue, Saturation
and Value. Hue is the dominant wavelength of the light peezki Saturation is the ratio of the dominant
hue to all other perceived wavelengths; if this ratio is elts zero then grey is perceived. Value, also
known as luminance, is light energy emitted per unit timegugid angle in a given direction.

2Dynamic programming is a recursive technique in which tHet&ms to subproblems are computed
and saved. These subproblem solutions are combined tolagde problems. The Fibonacci sequence
for example can be efficiently computed recursively in thesmer.



Chapter 2. Literature Review 47

compared with every region in the current view; local appress compare a restricted
set of regions (e.g. those that have similar bearings) amdhais more susceptible to
mismatches. The authors claim that the dynamic programagpgoach yields larger
catchment areas than any of the algorithnds- h6, though they don’t provide data
to support this. The dynamic programming approach assunadandmark order is
invariant between current and snapshot views; this assammpill be true only near
the goal position.

The authors show that their correspondence algorithm ikeébim an office envi-
ronment by different objects with similar hues. Despiteftw that the authors use the
HSV colour space, they do not test their algorithm in condisi of dynamic illumina-
tion.

2.3.3.3 Bianco et. al.

Lehrer and Bianco [2000] describe a hovel addition to featnatching research which
employs active vision near the goal. The approach mimicsbedaviour in looking
at landmarks near the goal from a range of positions arounddal before departure.
The algorithm rates landmarks on their visual reliabilgyeraged over these different
views. Only highly reliable landmarks are memorised andduaéer in the homing
process. Catchment areas are shown to increase when usrsghieme to home in
an office environment. Lehrer and Bianco [2000] employ cpldwo-dimensional
images.

The approach does not fully mimic bee behaviour, howevertu#icbees (and
wasps) learn about landmarks as they approach a goal asswetien they leave it. So
too, bees learn about landmarks over the course of multipheats at and departures
from the goal position (Zeil et al. [1996]). Nonetheless,agasider this an interesting
and useful addition to the literature. We note though thatalgorithm of Lehrer and
Bianco [2000] requires copious extra effort on the part eftloming robot in order to
identify visually reliable landmarks.

2.3.3.4 Gaussier et. al.

Gaussier et al. [2000] outline a feature extraction teaaig which “the visual system
focuses on corners and/or end of lines” in an almost complat®ramic image. The
surrounding area of these distinctive points is also cagtut{flor each selected focus
point, a 32 x 32 pixels [sic] local view is built by averagiret148 x 288 pixels of
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the corresponding panoramic image part.” The averagingge®is not described in
detail.

Once feature points and their neighbourhoods have beeswogatt from current and
snapshot views, the correspondence problem is solvedlas/fola root mean square
pixel-by-pixel difference is computed between each lo@iwin the currentimage and
every local view extracted from the snapshot image. “Thé basgesponding views”
are used in the computation of home vectors. The authors tdefine “best” but one
can imagine a thresholding process is employed.

2.3.3.5 Rizziet. al.

Rizzi et al. [2001] describe a solution to the feature extoacand correspondence
problem using a Fourier transform to compute frequencyrmttion for each feature;
“Visual Reference” (VR) is used instead of “feature” or “thnark,” but the terms are
Synonymous.

VRs are extracted from an image using a computationallysite region growing
technique. Marshall [1997] explains that region growingrtst by choosing a seed
pixel, compares it to neighbouring pixels, adds these rmghs to the region if they
are similar (by some measure) to the seed and repeats thesgroa these similar
neighbours. The region stops growing when no more pixekscaalit to the region are
similar enough to the seed pixel to be added to the regiorhiatpoint, a seed for
a new region is chosen and the region is grown as describegeablthe algorithm
continues to choose seeds until all pixels belong to somenetynfortunately, Rizzi
et al. [2001] fails to define a similarity measure; nor doesghper describe how seed
pixels are chosen.

Not all regions are considered viable VRs; only those VR wigsirable “area,
perimeter regularity and chromatic saturation” are sel@ct he paper is vague on how
perimeter regularity is measured and on what values of aegajarity and saturation
indicate usable VRs. They do not reveal if their VR selectechnique is tailored to
their experimental environment.

The feature matching process is as follows: A Fourier-Meli@ansform is com-
puted for each VR in an image. The transform gives transiatémd scale-invariant
information about a particular VR. VRs in current and snapsiews are matched by
comparing their Fourier-Mellon transforms.

As we noted above, solutions to the correspondence probleichwneasure the
similarity of extracted features can be applied to the whimlage comparison required
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by image-based homing. We shall see for example in Sect&d.2.that the Fourier
Transform for image comparison introduced by Rizzi et 80(2] is used to hasten an
image-based homing technique.

2.3.3.6 SIFT Features

Pons et al. [2007] use the scale-invariant feature trans{& FT) algorithm to extract
features from snapshot and current images for the purpdsésature-based hom-
ing. SIFT features were introduced by Lowe [2004]. SIFT dees are demonstrably
invariant to translation, scaling and rotation in imagesey are also highly distin-
guishable from one another and somewhat invariant to ithatidon changes. These
properties make them suitable for the purposes of homingreva particular image
feature changes appearance due to change in imager possebetwrent and snap-
shot locations.

The first step in the SIFT algorithm is to find candidate feati@cations — key-
points — in an input image. Keypoints are defined as scaleeslggal maxima and
minima. To find keypoints, the input image is convolved withuSsian functions with
a range of scales (i.e. standard deviations). The scaleseaia the level of blurring
of the image. The difference between the Gaussian-blumedyés for each pair of
successive scales is computed. Keypoints are then idengfi¢he local optima of
neighbouring difference images. Each keypoint is assediatith a particular image
location and scale. Next, the local intensity gradientr@agon at each keypoint lo-
cation is computed. The intensity gradient orientationefjhboring pixels around a
keypoint are computed (relative to the keypoint’s orieiotat as well. Knowlege of
keypoint orientation provides rotational invariance te #ssociated feature. These lo-
cal intensity gradient orientations make up a scale-, lonatind rotationally-invariant
set of 128 features for each keypoint.

To find feature correspondences between snapshot and cimages, Pons et al.
[2007] use the matching scheme outlined in Lowe [2004]. L§R@0O4] argues that
a naive approach would be to find the snapshot feature whiclo$gst in Euclidean
distance (in feature space) to the candidate feature inufrertt image. The current
candidate feature, though, may have no legitimate matditeiset of snapshot features.
Lowe [2004] found that using a simple distance thresholdame effectively weed out
these false matches. Instead, Lowe [2004] suggests camgpthie ratio of the closest
distance to the second closest distance. A relatively siuiadl value indicates that the
matched snapshot feature is highly distinct.
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Pons et al. [2007] use the homing algorithm described inyardl Moller [2005]
for their experiments. This homing schemes assumes thpsbBoband current images
were captured in the same orientation. This assumption mloiegenerally hold in the
experiments of Pons et al. [2007]. To align the orientatibthe current image with
that of the snapshotimage, Pons et al. [2007] use a typeuwdh®mpass. We describe
the notion of the visual compass in detail in Section 2.3d&ndet al. [2007] demon-
strate that their method is successful in both indoor andanrt static and dynamic
environments. We note that to account for changes in illatiam and object position
at the snapshot location, Pons et al. [2007] collected atumages at the snapshot
location at different times throughout the day and extd@¢&T features from each
representative image. The aggregate set of SIFT featutesetsfor homing.

SIFT features have also been used in vision-based simoltariecalisation and
mapping systems (e.g. Se et al. [2001]).

Several authors have made attempts to speed-up SIFT feaiorputation and
correspondence. Bay et al. [2006] suggest speeded-uptrigaisres (SURF) as an
alternative to SIFT features. As the name suggests, thékeraiclaim that computa-
tion and comparison of SURFs is faster than that of SIFT festuThe SURF algo-
rithm achieves quicker computation by using clever app@atioms in some of the SIFT
steps. Ledwich and Williams [2004] remove the rotation&bimation from the SIFT
feature vector noting that this information is not neededciamera-equipped robots
constrained to move on a plane. Ke and Sukthankar [2004Festithe dimensional-
ity of the SIFT feature vector by applying PCA to the intepgtadient information
around each keypoint.

2.3.4 Image-Based Homing

Since efficient and consistent feature extraction and sporedence is difficult in clut-
tered, unadulterated environments, researchers havéogedhoming methods which
calculate homing vectors with whole images, rather thadrserk sets extracted from
images. These methods are described below. We note thaeibespd methods are
sometimes known as appearance-based in the literature.

2.3.4.1 Image Warping

Image warping (Franz et al. [1998D]) is aptly named, as wilirsbecome clear. For
each calculation ofl, the set of all pose (position and orientation) changes &ens
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andC are considered. Given a candidate pose chairge,transformed to the image
that the agent would capture at the location defined by the plbange assuming that
all imaged landmarks are an equal distance f@nkach warpeds is compared with

Ic with a pixel-by-pixel root-mean-square measure. The pbs@ege associated with
the warpeds most similar tolc is used to determine the current home vector. If after
following the home vector for a pre-determined distanceapent is not home, the
process is repeated. Since image warping is a computdiiaitatly process repeated
many times for each home vector computation, Franz et atatgen horizon images;
this implies that image warping is only suitable when the hragent is travelling
on a plane (i.e. indoors). Note that because the algoritrarcbes over orientation
changes betweefandC as well as position changes, image warping does not require
an external compass reference to aligandlc.

Some visual homing researchers (e.g. Moller [2002] anddyand Oppacher
[2004]) consider image warping to be the most reliable Miswaning method for
indoor use. In comparative tests, image warping often predumore reliable homing
directions and larger catchment areas than any other vimraing method reviewed
here.

Image warping’s most obvious drawback is its brute forcaireat That is, the al-
gorithm arrives at an optimal solution by checking everysiole pose change rather
than using a more efficient process like gradient descenfortdmately, the param-
eter space searched during image warping has many locainaion which gradient
descent could halt prematurely (Franz et al. [1998b]).

Image warping is also biologically implausible (Molled@2]). It is unlikely that a
small-brained insect could carry out the large number ofisatjal operations required
by the algorithm in real-time. A more easily parallelizablgorithm is more plausible.

Some advances in image warping have recently been publi§ted:| and Mallot
[2006] - like some systems in image-based localisatiorevesd earlier — compress
current and snapshot images using the discrete Fouriesftnan. They then show
how to perform image warping as described above with thetdgced images. Moller
[2008] shows how to perform image warping on two-dimensi¢regher than horizon
line) images relatively efficiently.

2.3.4.2 Homing by Optimising on the Difference Surface

As we outlined in Chapter 1, Zeil et al. [2003] found that thi#etlence between two
panoramic intensity images increases monotonically wieh physical distance be-
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tween their capture positions. We described in the follgnparagraphs how this phe-
nomenon can be exploited for visual homing.

Zeil et al. [2003] describe an algorithm which they call “RDown” to move the
homing agent so as to optimise the difference surface. Tleatagoves forward,
periodically sampling the difference surface. This fordvarovement continues while
difference surface samples consistently decrease (impliat the agent is nearing
the snapshot location). When the current sample is grdaerthe previous, the agent
turns ninety degrees counter-clockwise. Upon completirgturn, the agent again
moves forward and samples the difference surface perithgidde agent turns again
when another increase in samples is detected. The ageimwestin this manner until
the current difference surface value falls below a presetstiold, at which time the
agent stops, believing itself to be home. This algorithrseatthe agent to “spiral in”
to the snapshot location on a sometimes quite tortuous path.

Another way to optimise on the difference surface is to commple gradient (the
direction of greatest increase) of the surfac€atnd move in the opposite direction
(the direction of greatest decrease) for a certain distaffcne robot is not then at
S the gradient at the new location is computed. Zeil et al0ORCall this homing
method “Triangular.” To compute the gradienGtan imagdc is captured as usual at

C;imagedp andlg are captured at two nearby orthogonal locatibrendE. The gra-

sIb)-RMSlslc) RMSIsle)-RMSIs|C)
dist(D,C) ’ dist(E,C)

dist(D,C) is the Euclidean distance betwe€randD (measured by dead reckoning);
dist(E,C) is the distance betweéhandE.
Moller and Vardy [2006] present a significant improvemengtadient-based opti-

dient is approximated by the vect(:.BMg(I ) where

misation on the difference surface. The authors note thastimating the gradient of
the difference surface, Zeil's “Triangular” algorithm dats the homing agent to cap-
ture images at three proximate locatio@sand two other positions nearby. They argue
thatlc can be warped to approximate the images that would have lzgared at the
two locations nea€. The assumption of equal landmark distance first made inzZ~ran
et al. [1998b] is employed to walp. A similar algorithm was reported in Binding and
Labrosse [2006].

Moller and Vardy [2006] demonstrate empirically that tmadjents generated from
warped image$: are often at least as accurate as gradients computed widm'tu-
lar.” The authors note, though, that the distance betWze@mnd the two nearby points at
which images are captured for gradient computation withdfigular” is probably too
great in their experiments. Smaller step sizes, they angaald have produced better
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gradients. The gradients from warped images simulate irmaggling at locations an
infinitesimal distance frorg.

Moller et al. [2007] report an improvement on the homingaaithm presented in
Moller and Vardy [2006]. They note that in environmentshwatnisotropic landmark
distributions, the difference surface is distorted, Igsine radial symmetry that it has
in environments with isotropic landmark distributions.ol&i et al. [2007] show that
the gradient of these distorted difference surfaces oftéls fo point directly to the
snapshot location. This divergence between the true horeetidin and the gradient
direction causes a homing robot to take a curved path to tapséot location. The
authors address this problem by using Newton’s method toentiog robot so as to
optimise the difference surface. The use of Newton’s metiegdires knowledge of
the Hessian matrix of the difference surface. The Hessiarpatnt on a function is the
square matrix containing all of the second-order partigivdéives of the function at
that point. Since the difference surface is — at least inldt@t al. [2007] — a function
of two independent variables (i.e. the robot’s position @iame), the Hessian in this
case contains four elements: the second-order partiabspativatives of the differ-
ence surface. The version of Newton’s method derived byléét al. [2007] requires
only the Hessian of the difference surface at the goal lonatihe Hessian elements
thus are only computed once, immediately after the robdiecap the snapshot image.
Moller et al. [2007] showed in tests in several real-wondaor anisotropic environ-
ments that the home vectors produced by Newton’s method are accurate than
those produced with the method described in Moller and Wé2006]. In isotropic
environments, the two methods produced similar home vector

In very recently published work, Sturzl and Zeil [2007] demstrated that the shape
of the difference surface (called an image difference fiomah Sturzl and Zeil [2007])
is dependent on the structure of the imaged environmentatiicplar, the difference
surface becomes wider as the mean distance between theriaredy@naged objects
increases. The catchment area of a difference surfacettasaing algorithm pre-
sumably increases as well, though Sturzl and Zeil [200/@dout no homing runs
to confirm this. Sturzl and Zeil [2007] also investigated gagreprocessing steps
to make difference surfaces robust to illumination chandé®y report that (p. 519)
“image processing operations — like subtracting the locdm difference-of-Gaussian
filtering and local contrast normalization — make differerfanctions robust against
changes in illumination and the spurious effects of shadowe stress that the work
presented in Sturzl and Zeil [2007] was published after wameted the work de-
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scribed in this dissertation and did not have a bearing omesearch.

Baccou and Jouvencel [2002] report a homing algorithm whisés non-visual
input. We discuss the algorithm here because the problemedas in essence quite
similar to that described in Zeil et al. [2003].

The problem is this: an autonomous underwater vehicle (Al$\tp navigate to a
single radio beacon. The AUV infers its distance from thecbeagiven the time-of-
flight of the signal emitted by the beacon. In Zeil's homingalthm, the disparity
betweens andlc is a function of the Euclidean distance betwé&andC; here, the
time-of-flight of the radio signal is a function of the distanbetween the AUV and
the beacon. While Baccou and Jouvencel [2002] have a funalating AUV-beacon
distance and time-of-flight, there is no knowledge of suchrecfion in Zeil’'s scheme.

The authors use an extended Kalman filter to estimate theleé&hiocation with
respect to the beacon. See Section 2.2.1 for more informaticthe use of the EKF
for localisation. The filter requires a good initial estimalf the vehicle’s position in a
coordinate system with the beacon at the origin. The authensrate this estimate by
driving the vehicle in a circle around its starting pointpt&ing a number of beacon-
range measurements along the way. A non-linear least sgjoptenisation algorithm
is used to find the initial vehicle position which is most astent with the series of
range estimates.

This initial estimate is fed to the extended Kalman filter efhiif all goes well,
will improve the estimation of the moving vehicle’s positigiven odometric readings
paired with ongoing beacon-range measurements. The auihwnd that the error in
the position estimate decreases most rapidly when the Ieeisienade to travel in a
circle centred at the beacon. This movement scheme is aflyiatiodds with the goal
of navigating to the beacon.

The authors do not consider the optimisation methods de=tin earlier in this
section.

2.3.4.3 Visual Homing with Optic Flow Techniques

Vardy and Moller [2005] apply optic flow techniques to solbe homing problem.
Optic flow is the perceived movement of objects caused by efewtation and/or
translation. In the context of visual homing, moving fré@no C causes a particu-
lar imaged points(x,y) to move tolc(X,Y) (assuming no inter-object occlusion has
occurred). The optic flow displacement vector associatet this imaged point is

(X/_X7}/_y)
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Using straightforward trigonometry, Vardy and Moller [28] demonstrated that
the home vector can be calculated given the optic flow digplent vector associated
with one imaged point. The solution requires that the imageo-dimensional; both
the vertical and horizontal components of the displacemeator are required in the
calculation. In addition, the robot is constrained to ttane single plane. If the hom-
ing robot is in a different orientation when capturitgthan when capturindc, the
latter image must be rotated to account for this differene®ite optic flow calcula-
tions can be carried out. Since individual displacementorsare typically noisy, the
authors generate displacement vectors across the erdirgyand average the result-
ing home vectors. Vardy and Moller [2005] demonstrated ifta@rrespondence errors
are uncorrelated then the home vectors which result frometifeeulty correspondences
will tend to cancel each other out when summed together. ,Tdnilg home vectors re-
sulting from correct correspondences will tend to affeetfihal, average home vector.

But how are the displacement vectors computed? Vardy anieMB2005] adapted
several methods from the optic flow literature, testing eacturn. The BlockMatch
methods segmentginto a number of subimages. The best match for each subirsage i
found inlc using a brute-force search in the region surrounding thevsadpe. Another
displacement vector computation method — FirstOrder -nedéd the displacement
from the intensity gradient at each pixel lip. This has the obvious advantage over
BlockMatch that no search is required to compute the digphant vector.

In tests in a few indoor environments, Vardy and Moller [D8howed that their
optic flow techniques often surpassed image warping in hgreurtcess. They used
two criteria for comparison: average angular error andrretatio. Angular error is
the difference — at a particular locati@and for a particular snapshot locati@+
between the computed home vector and actual home vect@nidasure is averaged
over a large number of pairings 8&andC. The return ratio for a particular snapshot
locationSis the percentage of successful homing runSt@m a grid of surrounding
starting locations. Their test were carried out in visualgtic and dynamic indoor
environments. Lighting or landmark locations changed leetwcaptures of snapshot
and current images in their dynamic environments. Theicdjow algorithms showed
resilience to this dynamism.
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2.3.5 The Visual Compass

As we detailed above, the robot may be in a different origoniadt S than atC. In
order to meaningfully comparg andlc, Ic must be rotated to account for this ori-
entation difference. Most of the homing methods descrillExa require an external
compass reference to determine the orientation differeflce obvious choice of com-
pass is magnetic. Unfortunately, magnetic compasses ameamgsly noisy in indoor
environments as the geomagnetic signal is distorted byredalcequipment. Both Zeil

et al. [2003] and Labrosse [2004] propose the so-calledaVismmpass as an alterna-
tive. These authors found that ksis rotated over 360 degrees (either by physically
rotating the imager or by shifting the pixelslgfto simulate such a rotation) the RMS
difference betweehs and the rotatett: often attains the global minimum at or near the
orientation at whichs was captured. This is more likely to be true the ne@eto S

At locationsC relatively far fromS, the desired orientation is at or near a local RMS
minimum. For these reasons, the visual compass — accomiBmting and Labrosse
[2006] — must initially be seeded with the agent’s currememtation in the compass
reference frame used when capturigg The visual compass can then be used to up-
date the agent’s orientation as it navigates. The initiehagrientation is provided by

a human operator, a significant drawback for autonomoudicgo

2.4 Tasks Related to Visual Homing

2.4.1 Visual Servoing

Hutchinson et al. [1996] define visual servoing as followthe“task in visual servoing
is to use visual information to control the pose of the rabetid-effector relative to a
target object or a set of target features. The task can algefoeed for mobile robots,
where it becomes the control of the vehicle’s pose with respesome landmarks.”
(p. 651) Hutchinson et al. [1996] and Chaumette and Hutcmf2006] distinguish
between two types of visual servoing: position-based arabgrbased. The former
attempts to explicitly estimate the pose change betweermiand target poses using
image features and some knowledge of the three-dimensstnalture of the envi-
ronment. In image-based visual servoing, the control contteare deduced directly
from image features. Visual homing as we defined it aboven, tb&n be seen as a type
of image-based visual servoing. Usher et al. [2002] for eplargenerate an alternative
to the ALV homing algorithm described in Section 2.3.2.4ngsboth feature bearing
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andrange and call it a servoing algorithm. It should benefit cnslerstanding of the
current state-of-the-art in visual homing to review somganeesults in image-based
visual servoing.

Chaumette and Hutchinson [2006] note that most visual segvechemes essen-
tially attempt to move a camera so as to minimise a time-dégetnerror function of
the forme(t) = s(t) — s«. In image-based visual servoirgft) is a set of image feature
parameters (e.g. the pixel locations of corner points) imera’s current view and
s« is the set of parameters for the same features in the target \Hutchinson et al.
[1996] notes thas« can be acquired via a “teach by showing approach in which the
robot is moved to the goal position and the correspondingyeria used to compute
a vector of desired image feature parameters” (p. 661). iEthise approach adopted
in visual homing algorithms. The computationegf) typically requires a solution to
the correspondence problem (the servoing solution of Ushal. [2002] is a notable
exception). We shall return to feature correspondencesnaliservoing a bit later.

How can a robot be instructed to move so as to minine{$g? Chaumette and
Hutchinson [2006] argue that most image-based visual segvechemes adopt the
same general approach in the design of a controller. Thisralter sets the veloc-
ity (translational and rotational) of a camera-equippadaeag robot. The controller
exploits the fact that the derivative eft) with respect to time is a function of the
product of the robot velocity and the so-called interactiaatrix (also known as the
feature Jacobian in the literature). One can solve this temuéor velocity to obtain
an expression for the desired velocity of the robot as theycbof the inverse of the
interaction matrix and the derivative of tie& ).

Unfortunately in practice one cannot generally know thecéxalues in the in-
teraction matrix or by extension its inverse (Chaumette ldotthinson [2006]). The
form of the interaction matrix in general depends on theuesaparameters chosen and
the distance of imaged objects from the camera (Chaumetitélatchinson [2007]).
For point-like features and perspective camera imagesntaeaction matrix depends
in part on the distance of imaged objects from the cameras fEnge cannot be de-
termined if a single image from a single camera is used. Thugparoximation to the
interaction matrix is often employed. Espiau et al. [199#] éxample use the inter-
action matrix valid at the goal location throughout sergpitreating it as a constant.
This approximation only requires the range of feature pointthe goal orientation
which can be determined in a pre-processing step. Chauf2éftid] devised the form
of the interaction matrix for feature parameters consgstih the moments of planar
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objects. Again, the depth of image features must be appwteidifor the moments-
based matrix. Barreto et al. [2002] derived the interacti@irix for catadioptric imag-
ing systems. Generally, the search for useful feature petensand their associated
interaction matrices is a major topic in the visual servditgrature (Chaumette and
Hutchinson [2006]).

We mentioned above that computationedff) typically requires a solution to the
feature correspondence problem. Marchand and Chauméiid]2ote that “[most]
of papers [sic] related to visual servoing consider veryibasage processing algo-
rithms.” (p. 2) The initial correspondence between featiseactually sometimes com-
puted manually (see e.g. Hutchinson et al. [1996] and Cranc&hChaumette [2001]).
Marchand and Chaumette [2004] report correspondencea&stimby an estimation of
the fundamental matrix. Once an initial correspondencesidenmany visual servoing
solutions track features as they move in images. Featurement is of course due to
parallax induced by the movement of the servoing camerachtard and Chaumette
[2004] review feature tracking algorithms used in visualzeeng. They report for ex-
ample that simple edge features are tracked by searchifg iilmage in the direction
of the edge normal. Marchand and Chaumette [2004] alser#iatuse of image regis-
tration algorithms to find the affine transformation of imdojecks. Papanikolopoulos
and Smith [1995] describe the use of block-matching usingvaef-squares similarity
measure to track regions in successive images.

Deguchi and Noguchi [1996] present an appearance-basker riitan feature-
based approach to image-based visual servoing. They retiacgimensionality of
each captured image (including the image taken at the gaatigm) using principal
components analysis (PCA), atechnique we saw used in thextaiimage-based lo-
calisation. The camera images used to create the eigemversed in PCA reduction
are collected in a preprocessing step before servoing scddeguchi and Noguchi
[1996] then show how visual servoing is equivalent to trg@rpath along the appear-
ance manifold made up by reduced images. They demonstggdtéhth parameters of
the tangent plane to the appearance manifold at any givert poithe manifold can
be seen as an interaction matrix. Deguchi and Noguchi [186&lly show how the
change from the current pose to the goal pose can be estimsitegl the current in-
teraction matrix and the difference between dimensiopaéitiuced current and goal
images. This technique is quite similar to that of Yang ef20107] described earlier.
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2.4.2 Docking

Robotic docking involves controlling a robot so that it amlgs a desired pose with
respect to a docking station. The docking station will beuassd to be static in this
review. Autonomous fork-lifts and robotic geologists cotaanind when robot dock-
ing is mentioned. Also, a robot arm must dock with an objedbieegrasping it. A
docking algorithm is typically employed once the dock ishiitthe perceptual range
of the robot’s sensors; docking is therefore consideredatively short-range navi-
gation skill. Docking solutions should ideally provide hig accurate positioning of
the robot relative to the dock. As we shall see below, robgtgpped with visual
sensors can solve the docking problem by visual homing amet eisual servoing ap-
proaches. Docking in fact provides a useful applicationvisual homing in indoor
environments. Santos-Victor and Sandini [1997] distispuretween ego-docking —
where the camera is mounted on the robot — and eco-dockingerevthe camera is
mounted on the docking station. We shall here considerediegking solutions only,
as these are most similar to visual homing.

Wei et al. [2005] present a docking algorithm based on thesaelandmark vector
model, a feature-based visual homing algorithm describe8dction 2.3.2.4. Wei
et al. [2005] augment the basic ALV algorithm to allow moregse control over the
trajectory of the robot as it approaches the dock. Brieflis tontrol is exerted by
weighting each image feature differently and using thesights in the computation
of homing vectors. The solution achieves positioning aacyion the order of 1cm in
real-world tests with artificial landmarks. Though poorlyitten and frankly difficult
to understand, Jantapremiit and Wilson [2007] seem to desarsimilar solution for
docking autonomous underwater vehicles.

McCarthy and Barnes [2006] describe a method to allow a rédbakock with a
planar surface perpendicular to the ground plane to whiehrgioot is constrained
(i.,e. awall). The authors are primarily concerned with colling a robot to stop as
close to a wall as possible without actually touching it. Histsense, the robot is not
concerned with docking with a particular point on the wallf merely approaching
it safely. McCarthy and Barnes [2006] use the optical flonutisg from moving
towards the wall to measure the time-to-contact. The astdemonstrate that the
divergence of the flow field can be used to compute the timesatact to an object
along the optical axis of the camera. This computation restthe assumption that
the wall is perpendicular to the camera’s optical axis. As th rarely the case in
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practice, McCarthy and Barnes [2006] devise a way to esértiate-of-contact from
flow field divergence when this assumption is not met. The ohacvall is assumed
to be sufficiently textured to provide strong optical flowteats as the robot moves
toward the wall. This assumption may prove to be the Achliesl of the method, as
walls frequently lack such texture. The work of McCarthy &aines [2006] is similar
to the earlier work of Santos-Victor and Sandini [1997].

2.4.3 Image Registration

Visual homing is quite similar to the problem of image regibn. An image regis-
tration algorithm attempts to find the function which beansforms one image of an
object or scene into a second image of the same scene or.objeetwo images can
differ due to the poses of the imager, the modalities in wkiiehimages were captured,
and/or the layout of the scene among other things. Imagstragon algorithms seek
a function which transforms pixel locations; this functignoften though not always
affine. While image registration algorithms search for thespby-pixel transforma-
tion between two images, visual homing seeks to estimatéréimsformation of an
imagerfrom Sto C given imageds andlc.

Hill et al. [2001] give a comprehensive review of image régison algorithms
used in medical imaging applications. The paper demomesithat image registration
solutions are quite similar to many visual homing algorithriarly registration work
tried to find landmarks in the images to be aligned and usedhlhage in pose of
these landmarks to infer the overall image transformati®hese algorithms had to
select appropriate landmarks and match correspondingriarié in multiple images,
both difficult problems as we discussed earlier in this chapt

More recent work in image registration has attempted tonadigtire images, es-
chewing landmark selection and correspondence issueslaStmappearance-based
homing, these image registration algorithms search fointiage transformation which
maximises the similarity between one image and a secondftianed image of the
same scene. A focus of this work has been on the similaritysoreaused to compare
images. The use of mutual information in image registratvas first reported by Viola
and Wells [1995] and apparently independently discoveyelliaes et al. [1997].

Registration techniques are used in metric robot locatisatVe saw examples of
the use of registration for scan- and map-matching in Se&ia.1.
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2.5 Mapless versus Metric Map-based Visual Homing

After reviewing both metric localisation algorithms andswal homing (plus related
publications in servoing and topological navigation),striatural to ask which ap-
proach gives better results in solving the homing problenosein the introduction to
this chapter. Goedemeé et al. [2005a] seek to answer thitique In particular, these
authors want to determine whether acquiring knowledge @tlinee-dimensional lay-
out of landmark features (i.e. “structure”) near the snapsbcation makes homing
easier.

The so-called structureless homing algorithm used by Goédet al. [20053] is
a bearing-only variant of the Snapshot Model described oti&e 2.3.2.1. Goedemé
et al. [2005a] extract two types of features from their shapsnd current images.
They use a variant of the SIFT features described in Secti®3.5. Goedemé et al.
[20054a] also extract so-called invariant column segmeéertis.robot in Goedemé et al.
[20054a] is constrained to move on the floor of an office envitent. Many objects
in this environment (e.g. window frames and white boardenfedges parallel to the
floor plane in images. The top and bottom edges of say a windamwed correspond
to two sharp nearby intensity gradients in several adjacelumns of an unwrapped
panoramic image of the scene. These paired sharp intensitijegts delimit a col-
umn segment from which feature data is extracted. Goedé¢mie [005a] note that
column segment features can be identified more quickly tHgi &atures. Feature
correspondences are established at the beginning of thenggrocess. After that,
while the robot moves along a homing vector, features areiefiily tracked in suc-
cessive current images. The home vector is continuouslgtepdas the robot moves
towards the snapshot position.

The second homing method of Goedemé et al. [2005a] buildsee-dimensional
map of local features as the robot homes. The origin of the is#éipe point at which
the robot begins the homing procedure. As before, both S#atufes and invariant
column segments are extracted from current and snapshgesn& hese features are
now, though, localised in a three-dimensional map of thalleavironment. Goedemé
et al. [2005a] use a simultaneous localisation and map@Bhé\k1) algorithm based
on the extended Kalman filter (EKF) to create the local mag Ssstion 2.2.3 for more
information on EKF-SLAM. The estimate of the snapshot lmsabn the local map
is updated along with the robot’s current pose, increadirgaccuracy of the home
vector estimate.
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To compare the two homing methods, Goedemé et al. [200&eagheir robot (an
autonomous wheelchair) between 1 and 2 metres from a singleskot position in
an indoor environment. They run an unspecified number of hgmins. Half of the
runs use the so-called structureless homing method andtbelwalf of course use the
map-based method. It appears that the latter algorithns ldedrobot in a more-or-less
straight path to the snapshot location while the structs®imethod takes a slightly
more meandering path. They both seem to exhibit about the $aral precision,
though. The map-based method, on the other hand, requinestham 100 times more
processing time per home vector computation than the sireletss method. On their
800 MHz processor, the map-based homing algorithm took 7pendhome vector
and the mapless algorithm, 0.44 ms. One wishes that the muthoried out more
experiments, varying the home distance and the number tdiresaextracted from
images. The latter has a great bearing on the time requirpérform EKF-SLAM.
We also wish that the overall time-to-home had been publishe this would seem an
important criteria for comparing the two methods.

We conclude from this study that so-called structurelesmihg algorithms are
probably sufficient for visual homing and preferable whenabite robot is equipped
with a relatively primitive processor. A robot should empla map-based solution,
though, if path length must be minimised for some reason.

2.6 Conclusions

We began this review by looking into two major trends in robotavigation: metric
navigation and topological navigation. Metric localisatseeks to answer the question
“Where is the robot?” quantitatively (i.e. the robot is abodinates (3,4) with heading
90 degrees in a given reference frame). Topological nagigaiives a more qualitative
answer (i.e. the robot is in the office or is travelling dowe tmallway towards the
library). There are strengths and weaknesses to both agmegas we have discussed
above.

In this review we have seen that visual servoing algorithmaguently form an im-
portant part of a robot’s algorithmic repertoire in topala approaches to navigation.
A servoing algorithm is typically employed to guide a robetween adjacent nodes
in a topological map. Visual homing is a type of servoing aathstimes the algo-
rithm used in a topological navigation system is explictthlled a homing algorithm.
We also note that measuring image similarity plays an ingyanole in vision-based
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topological navigation. For the purposes of localisatioplace recognition, the sim-
ilarity between the robot’s current view is compared witferences images stored in
the topological map. For autonomous topological map-n@kimage similarity mea-
sures are employed to determine if the current location isgueually distinct from
previous mapped positions; if so, a new map node is typidayantiated. Topo-
logical navigation calls for the image similarity measunebe both computationally
efficient and relatively invariant to visual change in theiemnment (due to e.g. light-
ing change and object movement). Efficiency is required bsea newly collected
image must usually be compared with many reference (i.e.) mmagges in order to
recognise a place. Invariance to environmental changeeidatkbecause the environ-
ment may have changed since the reference images were@adptWe shall return to
image similarity measures below.

Focusing on the topic of visual homing, we have in this chapttiined the most
important visual homing algorithms found in the literatutdese algorithms fall nat-
urally into two categories: feature-based and image-bésed known as appearance-
based). Almost all feature-based algorithms require lnddigolutions to the problems
of consistent feature extraction and correspondence tarerssiccessful operation. If
these problems can be solved consistently, our reviewatekcthat the epipole-surfing
algorithm Basri et al. [1999] should be used to home. Thismtlgm produces an ac-
curate home vector given just two successive “current” iesamnd requires no external
compass reference (as several homing algorithms do). €tensifeature extraction,
though, is by no means an easy task. It is telling that mangrxents in feature-
based visual homing take place in adulterated environnveititseasy-to-detect artifi-
cial landmarks. An exception to this was the work of Pons .gR&l07]. These authors
extracted SIFT features from snapshot and current imagesised a robust matching
scheme to establish feature correspondence. SIFT featgaglatively invariant to
changes in orientation, scale and location in images andesappropriate for the vi-
sual homing problem. Though Pons et al. [2007] offer impweskoming results in
indoor and outdoor static and dynamic environments, thgoraghm seems to require
thousands of feature similarity computations for each heswtor calculation. Pons
et al. [2007] do not offer figures on how long each home veabonputation requires.
Computationally efficient SIFT features (e.g. SURFs) hagerbproposed recently
and will probably play a role in future feature-based visuaiing algorithms.

As we have demonstrated, image-based visual homing preldeoid explicit fea-
ture correspondence. This approach therefore offers aapally robust and efficient
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complement to feature-based homing. Image-based homiegrses infer home vec-
tors by considering every pixel in snapshot and current esatreating each as a fea-
ture in its own right. We have reviewed three image-basedihgmlgorithms in this
chapter. Image warping requires a computationally intenbrute force search for
every home vector computation. We consider this a major bleak. The optic flow-
based algorithms of Vardy and Moller [2005] — though imgres — assume that the
homing agent is constrained to travel on a single plane. \Wesider the difference sur-
face homing algorithm pioneered by Zeil et al. [2003] to be ittnage-based homing
algorithm which shows the most promise.

Unfortunately, as described by Zeil et al. [2003], this @it is sensitive to
changes in lighting between capture of snapshot and curmages. Also, Zeil et al.
[2003] applied only simple optimisation algorithms to thésk and assumed perfect
compassing information in the process. There are thus oparigms in difference
surface-based homing which we chose to tackle at the outgsetravork on this dis-
sertation. We also seek in this work to improve the compouteti efficiency of the
image similarity measure which lies at the heart of the défiee surface homing al-
gorithm. We do this not only to improve the efficiency of diface surface homing,
we also believe that this image similarity measure coulddgied to the problems of
place recognition and mapping in vision-based topologieadigation. As we noted
above, solutions to these problems benefit from a computatioefficient image sim-
ilarity measure.



Chapter 3

Building Robust Difference Surfaces

3.1 Introduction

As we discussed in Chapters 1 and 2, homing by moving an ageas ® optimise a
difference surface — a technique pioneered by Zeil et aD326 is quite a promising
solution to the visual homing problem. We see for examplaguie 3.1(a) a difference
surface formed in whichs and all current imagelg are captured in a static laboratory
environment. A number of sample homing runs using this tbfiee surface are shown
in Figure 3.1(b), each beginning at a different point on #imkatory floor. The agent
uses a gradient descent algorithm, described more fullyerti@ 3.2.1 to move so
as to optimise the difference surface. All homing runs asssful (i.e. end within
30cm of the reference location).

Zeil et al. [2003] identified a significant problem with diféace surface homing:
whenlsandlc are captured in different illumination conditions, the sbas of homing
successfully decrease, often dramatically. We see an dramfiphis in Figure 3.2.
This is obviously an issue in indoor environments — the foolisur study in this
dissertation — where human occupants often change liglconglitions to suit their
needs. Of course, illumination changes — sometimes fretyueutdoors too.

This chapter will focus in part on building difference swéa in a laboratory envi-
ronment which are robust to changes to illumination. Theee&o obvious remedies:

» Transform reference and current image intensities to mise the effects of dy-
namic illumination (using e.g. histogram equalisation).

» Use image similarity measures other than the root-meaassq

65
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Figure 3.1: (a) A difference surface formed using the RMS image similarity measure
defined by Equation 3.1. The reference image was captured at x=150cm, y=150cm in a
laboratory environment. The reference image was captured in the same landmark and
illumination conditions as all other images. Notice the global minimum at the reference
location and the absence of local minima. (b) Here we illustrate a number of homing
runs using the difference surface in (a). Each homing run starts at a grid point on the
laboratory floor. The simulated agent moves so as to optimise the difference surface
using a gradient descent algorithm. All homing runs are successful (i.e. end within

30cm of the reference location).
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(@) (b)

Figure 3.2: (a) A difference surface formed using the RMS image similarity measure de-
fined by Equation 3.1. As in Figure 3.1 the reference image was captured at x=150cm,
y=150cm in a laboratory environment. In this example, though, the reference image
was captured in a different illumination condition than all current images Ic. Notice that
a local difference surface minimum coincides with the reference location but other lo-
cal optima have appeared. (b) Here we illustrate a number of homing runs using the
difference surface in (a). Each homing run starts at a grid point on the laboratory floor.
The simulated agent moves so as to optimise the difference surface using a gradient
descent algorithm. Successful homing runs (i.e. those ending within 30cm of the ref-
erence location) are shown in blue and homing failures are shown in red. There are a

significant number of homing failures, unlike in Figure 3.1(b).
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While these approaches are not mutually exclusive, we andbkés work to follow the
second approach only. We find difference surface homingaiwe because, among
other reasons, the image similarity measurement involsealgorithmically simple
and computationally efficient. To heavily preprocégsand/orlc for the purposes
of illumination correction would compromise this efficigncAlso, we could find no
principled way of choosing which intensity transformatdo apply and in what order.
We chose therefore to focus on alternative image similangasures in this work. We
chose these alternatives based on careful and systemalyseof the problems with
difference surface homing usifM Sto measure image similarity.

The locations of objects in human-populated environmemsabject to frequent
change. So along with dynamic illumination, we are alsorggted in this chapter on
the effect of the movement of imaged objects between captifig andlc. Thisis a
guestion not specifically addressed by Zeil et al. [2003].

This chapter is organised as follows. In Section 3.2 we desclifference surface
homing experiments and their results with image similamtgasured usinBMS This
section also contains a detailed analysis of the drawbackESas an image simi-
larity measure for use in visual homing in dynamic environtse This analysis leads
us to an alternative similarity measure: the covarianceSention 3.3 we repeat the
experiments of Section 3.2 using covariance to assess isiagarity. Our analysis of
the limitations of covariance leads us to propose mutuagariaformation as a third
similarity measure. We experiment with mutual informataswe did withRMSand
covariance and analyse its strengths and weaknesses. Weainalusions from our
experimental results in Section 3.7. Section 3.8 descfiltese work.

3.2 Exploring the Root-Mean-Square Image Similarity

Measure

3.2.1 Experiments and Results

We define thd&RM Simage similarity between grayscale imageandlc as

N
RMSls,Ic) = \/% _Zl(lc(i) —1s(i))? (3.1)

Both Isandlc haveN pixels.
We shall use Andrew Vardy’s image database in our experisaétie database is
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Figure 3.3: Schematic showing the dimensions of the experimental area represented
by Vardy's image data sets (see text for details). Location of plant is indicated by a

green polygon. Chairs are represented by red polygons.

available for download at http://www.ti.uni-bielefel@html/research/avardy/index.html
and is described in detail in Vardy and Moller [2005]. Theadese consists of a num-
ber of image sets. Each set contains 170 colour panoramgest@ptured every 30cm
ona2.7m x 4.8m horizontal grid on a laboratory floor. All inesgvere captured with
the camera in the same compass direction. Landmark layalo@iiumination con-
ditions differ from set to set as described in Table 3.1.

We show a sample image from each data set in Figure 3.4. As ah milher work
on visual robotic navigation (e.g. Menegatti et al. [2004dl &long et al. [1991]), the
panoramic images were made by pointing a camera at a thremndional (in this case
hyperbolic) mirror. The mirror appears as a large circleuggéng most of each image
in Figure 3.4. The rig supporting the mirror and camera isgetoutside this circle;
the robotic platform carrying the mirror is imaged at the tterof the circle. This
extraneous information must be removed from each image®é#fe image is used for
navigation; we created the mask depicted in Figure 3.5(edtso.

As stated above, we want to measure the success of visuahevith RM Sdiffer-
ence surfaces in a laboratory environment in both staticdgndmic visual conditions.
To this end, we created a number of difference surface setsh Hifference surface
set is defined by the source of snapshot and current imagesxBmple, one set of
difference surfaces used the “Original” images for bigland|c; another set tooks
from “Winlit” and all Ic from “Original”, thus simulating dynamic illumination. En
complete list of data set pairings is given in Table 3.2. Weduthe pairings along
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Original

All overhead lights are on. No obstructive objects have been

placed on the floor of the experimental area.

Winlit

Only the bank of lights near the curtained window (up

half of the image) are switched on. Those near the door

off.

per
are

Doorlit

Only the bank of lights near the closed door are switc
on. Those above the curtained window are off.

hed

Arboreal

All overhead lights are on. A plant has been placed in
centre of the experimental area (solid green polygon in
ure 3.3).

the
:ig_

Chairs1

All overhead lights are on. Three office chairs have b
placed along the walls of the laboratory, out of the exp
mental area.

1%
[¢)
]

eri-

Chairs2

All overhead lights are on. The three chairs in “Chairs
have been moved to the experimental area. The chair
represented by solid red polygons in Figure 3.3.

51"
5 are

Table 3.1: Description of each of the image data sets used in this work.

Original Winlit Doorlit

Chairs1

Figure 3.4: Sample from each of the Vardy image data sets used in this work. See text

for details.
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@) (b)

Figure 3.5: (a) Mask used to remove sections of Vardy images not corresponding to
panoramic mirror. (b) Example of masked Vardy image. Every Vardy image used in this

work is similarly masked.

Current image data set
Original | Winlit | Doorlit | Arboreal | Chairs1 | Chairs 2
Original v v v v
% Winlit v v v
n
2 Doorlit v v v
g
5 Arboreal v v
Chairs 1 - - - - v v
Chairs 2 - - - - v v

Table 3.2: Source of shapshot and current images for the various difference surfaces
used in this work. A v'indicates that the pairing was used to create a set of difference

surfaces.

the diagonal of the table to create difference surfacescteilg static environments.
The off-diagonal pairings involving the “Winlit” and “Dobt” sets simulate a labo-
ratory environment in which illumination is non-constaite off-diagonal pairings
involving the “Arboreal” set simulate an environment in whithere is change in the
location of a relatively unobtrusive landmark. The paigr{@hairsl,Chairs?) and
(Chairs2,Chairsl) yield difference surfaces reflecting the movement of moaf
nent objects in the environment.

Every difference surface set consists of nineteen surfacegsponding to the
nineteen different snapshot locations shown in Figure 8/8.chose these locations
because they are fairly uniformly distributed around thpasimental area while not
being inside a chair (in the “Chairs2” set) or the plant (ie thrboreal” set). If we
had used all 170 grid points as snapshot locations, our aieaihoming experiments
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Figure 3.6: The set of nineteen snapshot locations used in this work. A diamond indi-

cates a snapshot location.

would have required several months of computation time.

To rate the success of homing on the difference surfacesided@above, we use
the criterion defined in Vardy and Moller [2005]: the avezagturn ratio. The return
ratio (RR is, for a particular difference surface, the ratio of siesfal homing runs
to the total number of homing runs. Homing runs are initidtedh each of the 169
non-snapshot locations (fewend is drawn from the “Chairs2” or “Arboreal” sets) in
the experimental area. The average return ra&B)(is the mean return ratio for all
nineteen difference surfaces in a difference surface det. average return ratio pro-
vides a fairly good summary of the ease or difficulty of homimgarticular conditions
(static, dynamic illumination, or dynamic landmark locets).

The agent uses the gradient of the difference surface to hdine gradient of a
two-dimensional functiorf (like the difference surface) at a particular poirty) is
the vector of the partial derivatives of the function(aty) and is typically labelled
Of(x,y).l The gradient a(x,y) points in the direction of greatest increase of the
function at this point (Kleitman [2005]). To home, the agassesses the gradient of
the difference surface at its start location, moves by 30crthé direction opposite
the gradient (since the agent must move so amitomisethe RM Sdifference surface
in order to home), and recalculates the gradient at its nesitipn. The process of
gradient calculation is described below. The agent corsnn this manner until one
of a set of stopping criteria is met; these criteria are dised below.

1The gradient can be calculated for a function of more thandimeensions but this is not relevant
to our task.
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We use Matlab’'gradient command to compute the gradient of the difference sur-
face at each step. This command estimates the true gradiamicdnt(x,y) using the
following two-sided differencing equation:

f(x+hy)—f(x=h)y)
] (3.2)

- h
Df(xy) ~ [ fxyih)- fxy-1)
2h

wherehis the separation between grid points, in our case 30cm.derado estimate the
gradient a{x,y), Equation 3.2 implies that the homing agent must assessfteredce
surface at the four end points of a cross centred»oy). Equation 3.2 is undefined at
the boundaries of the function. At these boundaries, a aimoihe-sided differencing
equation is employed. We note that our gradient descentitiigowill typically find
the local difference surface minimum nearest the startiosa\We explore alternative
optimisation techniques in Chapter 5.

It will often be the case that during homing we must estimagegradient of the dif-
ference surface at a non-grid point (i.e. a location in oyregdnental area at which no
image was captured). We first thought of using Matlatterp2 function to interpolate
the difference surface gradient (or rather, to interpoésteh component of the differ-
ence surface gradient in turn agerp2 is designed to interpolate two-dimensional
scalar-valued functions, not vector-valued functionshatlsb’sinterp2 interpolates a
two-dimensional function given a matrix of samples of thatdtion.interp2 is capa-
ble of constructing new data points with a nearest neightimlimear, bicubic or spline
interpolation. Unfortunately, when drawing current imad@®m the “Chairs2” or “Ar-
boreal” data sets, the difference surface value for thoskpgints that are occupied
by, respectively, a chair or plant will be undefined leadiogihdefined gradients. We
found thatinterp2 produces an undefined answer when presented with one or more
sampled function values which are undefined (i.e. Not-a-blemn Matlab’s scripting
language). Thus we were forced to abandudarp?2.

We instead devised our own two-dimensional interpolati@thad. To determine
the gradient of the difference surface at a non-grid péxy) we use Equation 3.2
to compute the gradient of the difference surface at the gid points closest to
(x,y); these grid points form a square aroupdy). The x- and y-components of the
interpolated gradient are computed separately but theegioe is identical for each
so we shall describe the computation of the x-component. o define a sel,
which contains the x-component of each grid point gradiesetuin the interpolation.
The cardinality ofF will be at most four. Undefined values are removed figmWe
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found no situation in our simulations in whi€h was empty. The interpolated value of
the x-component of the gradient @ y) — denotedfy(x,y) will be the weighted mean
of the elements offy:

_ 2geR 9 Wy

fu(X,y) = m (3.3

The weightwy is inversely related to the Euclidean distance betweey) and the
grid point (Xg,Yg) corresponding tavg. We define a seb each of whose elements
Dy is the Euclidean distance betweeqy) and the grid pointxg,yg). Weightwy is
defined as

min(D)
Wq =
g Dg
This interpolation procedure is relatively simple to immplent, provides smooth

(3.4)

gradient interpolation and allows us to easily ignore unafidifference surface val-
ues.

It is possible during a homing run that the agent will collidgh an object. The
“Chairs2” and “Arboreal” data sets were captured with proermit objects — three chairs
in the former case and a plant in the later — placed within #peBmental area. Also,
since we felt extrapolating the difference surface outsidebounds covered by the
data sets would have yielded dubious surface values, wetréae experimental area
as surrounded by a transparent wall. We assume our agenebasihged with prim-
itive bump sensors which give it a rough indication of theediion of the obstruction
when a collision occurs. The agent turns away from the ob8tm until it is free
to move forward at which point it continues homing. We grarattthe avoidance of
the imaginary walls surrounding the experimental area nighty inflate the success
rates of our homing runs since the distance the robot caeltfreom any snapshot lo-
cation is bounded. We argue though that each of the metriexpiere below will be
equally advantaged by this decision.

The agent continues a homing run until one of the followirgpping criteria is
satisfied:

» The number of gradient calculations exceeds 400. Foureahsteps of 30cm
each is sufficient to move between any two points in the erpental area, no
matter how tortuous the route.

* The agent detects that its last twenty homing steps clasbemnd a particular lo-
cation. This clustering will occur around local differersmgéface optima, which
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frequently (though not necessarily) coincide with the stay location. Cluster-
ing is detected by dead reckoning, a process (describedapt€h2) by which
a moving agent tracks its pose by integrating an estimatdl @ingles turned
and linear distances travelled (see e.g. Krantz [1996]al R#bots such as the
Koala used in the live experiments described in Chapter énaise wheel en-
coders to infer the pose change resulting from a movemenibwd. A wheel
encoder measures the number of rotations (including traatirotations) made
by a given wheel. Though the Koala has four wheels in totad, per side, the
left and right wheel pairs are each driven by one motor, nogein synchrony (K-
Team [2001]); thus the Koala has two wheel encoders. In bothlated and live
homing runs, our agent is limited to move in sequences comgisf pure trans-
lations and pure rotations. After one of these translatmm®tations has been
carried out, it is easy to use the wheel encoder readinggaldtthh knowledge
of the wheel radii and axle length to compute the angle tuordithear distance
travelled. As we related in Chapter 2, measurement of rolmiton by wheel en-
coders is corrupted by both systematic and non-systemaite nWheel slippage
due to smooth floors and/or high-magnitude acceleratiorc@@amon source of
non-systematic measurement noise. Systematic noise doomesmprecision
in the knowledge of robot wheel radii and axle length as welhe finite preci-
sion of the wheel encoder reading. We assume that our sietutvironment
is dry and flat so no wheel slippage occurs (none was obsemibé iive exper-
iments in Chapter 6). We inject systematic noise into ounusated agent’s dead
reckoning system by adding an offset to the actual distarareskated or angle
rotated by the agent when performing a motor command. Theebfbr both
rotation and translation is normally distributed with zenean and for rotation a
standard deviation of 0.1 degrees and for translation alatarndeviation of 0.2
cm. This noise distribution was derived by Zampoglou et 2006]. We note
that although dead reckoning noise leads to unboundedsangrose tracking
with respect to an initial pose over time, local clusterimgetttion should not be
greatly affected by such noise.

A homing run is deemed successful if it ends within 30cm ofghapshot location.
We carried out the experiment described above. The reseltgigen in Table 3.3.
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Current image data set
Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

Original | 0.977 (0.066)| 0.584 (0.398)| 0.654 (0.412)| 0.933 (0.083)

5 Winlit 0.427 (0.164)| 0.949 (0.058)| 0.020 (0.059)

2]

g Doorlit | 0.536 (0.210)| 0.037 (0.110)| 0.967 (0.051)

g Arboreal | 0.956 (0.070) 0.924 (0.075)
Chairs 1 0.975 (0.048)| 0.598 (0.117)
Chairs 2 0.953 (0.065)| 0.578 (0.106)

Table 3.3: Average return ratios for homing experiments carried out on RM Sdifference
surfaces in static and dynamic environments. The standard deviation of the average

return ratio for each data set pairing is given in brackets.

3.2.2 Discussion

We can make several observations about the results presentable 3.3. Wherig
andl¢ are taken from the same data set, difference surface honorigswuite well in
almost all cases. For example, when all images are takentfrerfOriginal” data set,
the average return ratio is 0.977; when snapshot and cumagtes are drawn from the
“Winlit” set, RRis reduced to the still impressive 0.949. We see a glaringetian
when all images are drawn from the “Chairs2” set. We shaltuls this exception
below.

As reported in Zeil et al. [2003] for outdoor scenes, differe surface homing is
much less successful when illumination conditions charege/®en capture di and
Ilc. When for examplég is drawn from “Original” andlc is drawn from “Winlit” RR
is 0.584. The situation is even worse — in fact quite dire —rwiioorlit” is the source
of the snapshot imag&Rin this case is 0.037.

Results are mixed when landmarks change positions betwagsare ofls andlc.
Whenls is drawn from “Chairs1” andc is drawn from “Chairs2”, the average return
ratio is 0.598 but when the sources of the snapshot and d¢umeges are reverseRR
improves to 0.953. There seems in fact to be a general dilomof average return
ratio whenlc is drawn from “Chairs2” — even when the snapshot image is dlawn
from “Chairs2” as we noted above. There is a similar, thougichress dramatic trend
when the “Arboreal” set is used. We speculate that the poesehthe large objects
in the experimental area, rather than movement of imageectbpetween capture of
snapshot and current images, causes difference surfacegnémperform less well.
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We shall try to justify this speculation below.

We would like to know why homing oM Sdifference surfaces is affected by
visual dynamism as described above. As given in EquationR@MSis difficult to
analyse. We therefore break the equation into several tashallows:

MSDslc) = < (Is(i) —lc(i))? (3.5)

= s NZIC %i's(i)'c(i) (3.6)

Note first that the square root in Equation 3.1 has been rethfreen Equation 3.5,
transforming thdRM Sinto an expression of mean squared different&S[D); we have
done this because the square root plays no significant refeeibehaviour oRM Sand
slightly muddies our mathematical analysis.

Equation 3.6 contains three terms. These terms can bedramsd into forms more
amenable to analysis. Several standard textbooks ont&tsifsee e.g. Svenshnikov
[1968]) tell us that

1 N —

N2 [1s(i)]? = Var(ls) + (Is)? (3.7)

e ]

N-Z[Icmz~var<lc>+<lc>2 (3:8)
Zl|s (i)lc(i) ~ Covls, Ic) +Ilc (3.9)

whereVar(ls) is the variance of the intensities I, ls is the mean intensity itg;
Var(lc) andIE are defined similarlyCoV(ls, Ic) is the pixelwise covariance between
Isandlc. Since the number of pixels i andlc is large, the difference between the
left and right hand sides of each of the three equations alsomeceedingly small in
practice.

We substitute the right hand sides of Equation 3.7, Equa&iBrand Equation 3.9
into Equation 3.6 and perform some algebraic manipulafldre MSDis transformed
into

MSD(Is, Ic) ~ Var(ls) + Var(lc) — 2Co(ls, Ic) + (Is— Ic)? (3.10)

From Equation 3.10 it becomes clear that in moving our honaiggnt so as to
minimise theRMSbetweeric andlg, the agent is actually simultaneously
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Figure 3.7: Homing paths starting from all non-goal positions for a difference surface
with snapshot location at x=90cm, y=30cm. The snapshot image was drawn from the
“Original” set and all current images were drawn from the “Winlit” set. No homing runs

reached the goal location.

* seeking high covariance betwekyandIc (i.e. minimising—2Couls, Ic));
* seeking low variance current images (i.e. minimis#ay(lc)); and
» seeking equality of the mean intensitiedeandlc (i.e. minimising(l_s— IE)Z).

The second and third items above can cause homing errorseBneors are evident in
a number of the homing experiments we performed whose seatdtsummarised in
Table 3.3.

We see the equalisation of mean intensities playing a deaterole when for
example the snapshotimage is taken from the “Original” datand all current images
are drawn from the “Winlit” data set. Figure 3.7 shows the hugpaths (starting from
all non-goal positions) for this data set pairing when thaldocation was set at x =
90cm, y = 30cm. None of the runs manages to reach the goai@usiven those
which begin quite close to the goal.

The influence of the termis— Ic)? in Equation 3.10 is easy to see when we con-
sider the spatial gradient M SD. Recall that the simulated homing agent follows the
negativeM SDgradient to generate the homing paths depicted in Figurdt¥allows
directly (Kleitman [2005]) from Equation 3.10 that the négaspatialMSD gradient
(denotedIMSD) is given by the following equation:
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Figure 3.8: —OMSD(ls,Ic) (black vector) as the vector sum of —O[Var(lc)] +

O[2CoV(s,Ic)] (green vector) and —O[(Is— Ic)?] (red vector). The true home direction

is represented by the blue vector.

—OMSD(Is, Ic) ~ —ONVar(ls)] + —OVar(lc)] + O[2CoUls, Ic)] — O[(Is— Ic)?]
(3.11)
Sincelsis constant during a homing ru)Var(ls)] = 0 so

—~OMSD(ls,Ic) ~ —OVar(lc)] + 0[2Covls, Ic)] — O[(Is— Ic)?] (3.12)

For the purposes of our current example, it is useful to vieWMSD(Ig, Ic) as the
vector sum of-O[Var(Ic)] + O[2Cou(s, Ic)] and—0|(Is— Ic)?]. With this in mind,
we look at Figure 3.8. This figure shows1MSD (black vector) at x=120cm, y=90cm
for the homing runs depicted in Figure 3.7. We can see-thd¥1SDis oriented more
than 90 degrees from the true home direction (blue vectaahgonove in this direction
will bring the agent farther from the goal. The error-+tIMSD(Is, Ic) is largely due
to the influence of—D[(Ig— IE)Z] (red vector). The red vector points roughly in the
direction of the window, which is the part of the experimértgena in the “Winlit”
set whose average lighting intensity is most similar to tiidhe snapshot (which was
taken from the “Original” set). When we home usirgl[Var(Ic)] + O[2CoV s, Ic)]
(green vector) as the negative gradient direction, we méhtmuch more success; see
Figure 3.9. The gradient error described above is qualébtisimilar to many others
we came across when lighting differed between snapshotament images.

Equation 3.10 implies that the homing agent will be attrd¢teareas whose corre-
sponding images have relatively low variance compared intiges of nearby areas.
Figure 3.10(a) shows the magnitude and gradient of thenegiaf all current images
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Figure 3.9: Homing runs on the difference surface described in the caption of Fig-
ure 3.7. Here, we used —O[Var(lc)] + O[2CoMU s, Ic)] as the negative gradient rather
than Equation 3.12. Successful homing runs are shown in blue, unsuccessful in red. In

comparison with Figure 3.7, we see that homing errors have been dramatically reduced.

from the “Original” data set. Relatively low variance vasuand gradients of high
magnitude are evident at the top of the figure. We can see feet @if this area of
rapidly changing, low variance in the example depicted guFe 3.10(b). This figure
shows—[MSD (black vector) at x=120cm, y=480cm. The mean intensityedéhce
equalisation term has been removed frb8D so that its influence cannot be blamed
for the homing error we shall describe. The true home vepmnting to the snapshot
location at x=60cm, y=30cm, is shown in blue. We can see-tt#¥1SDis oriented
more than 90 degrees from the true home direction (blue vestoany move in this
direction will bring the agent farther from the goal. Thearin —OMSD(Is,Ic) is
largely due to the influence efO[Var(lc)] (red vector). Itis clear in Figure 3.10(b)
thatd[2CoVIs,Ic)] (green vector) is a much better estimate of the true homettbre
than is—[OMSD. The gradient error described above is qualitatively samib many
others we came across when the agent came near regions wiexgesi had relatively
low variance.

The variance of current images also sometimes decreasas tivbexgent moves
toward a chair. This is because the chairs, from certain paaats, are large almost
uniformly dark objects. When the agent moves toward a ctiarportion of an image
taken up by a chair becomes larger, driving the variance @ifrttage down. We can
see this effect in Figure 3.11. Figure 3.11(a) shdwat x=210cm, y=180cm in the
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Figure 3.10: (a) The magnitude and gradient of the variance of all current images from
the “Original” data set. The colour bar on the right indicates the magnitude of the
variance. (b) Depiction of gradient error caused by low, rapidly changing variance; see

text for details.

@) (b)

Figure 3.11: lllustration of the changing appearance of a chair as the agent moves to-
wards it. (a) Ic at x=210cm, y=180cm in the “Chairs2” environment. (b) Ic at x=210cm,

y=150cm in the “Chairs2” environment.

“Chairs2” environment; Figure 3.11(b) s in the same environment but 30cm closer
to the nearest chair. The image of the chair takes up moreaifitage in Figure 3.11(b)
than in Figure 3.11(a) while the rest of the image contenysskargely the same. The
intensity variance decrease between the images in Figuté¢éa3 and 3.11(b) is 237,
we assume this decrease is largely due to the changing @mgeanf the chair.

Figure 3.12(a) illustrates the effect of diminishing imaggiance caused by an
image of a nearby chair. This figure showsIMSD (black vector) at x=210cm,
y=180cm; current images are taken from the “Chairs2” datasd the snapshot im-
age was drawn from the “Chairs1” data set. The mean intedsfgrence equalisation
term has been removed fromiSD so that its influence cannot be blamed for the hom-
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Figure 3.12: Two examples of MSD gradient error caused by proximate chairs; text for

details.

ing error we shall describe. The true home vector, pointothe snapshot location at
x=210cm, y=450cm, is shown in blue. The black vectorisSMSD, it clearly deviates
from the true home vector. The error #JMSD(Is, Ic) is largely due to the influence
of —O[Var(lc)] (red vector). This red vector points toward the nearby chais clear
in Figure 3.12(a) thafl[2CoV(s,Ic)] (green vector) is a better estimate of the true
home direction than is-[IMSD. We show a similar example in Figure 3.12(b). Here
we assess-[IMSD (black vector) at x=60cm, y=330cm. The snapshot locatiomis
at x=210cm, y=210cm. Again, the error inOMSD(Is,Ic) (black vector) is largely
due to—O[Var(lc)] (red vector).

It seems clear from the previous discussion that assegsengjrilarity betwees
andlc with covariance rather thaRMSis a more sensible approach. We determine if

this is indeed the case in the next section.

3.3 Exploring the Covariance Image Similarity Measure

3.3.1 Experiments and Results

Here, we used covariance to measure the similarity betlsmmdlc where covariance
(COV) is defined as:
1N = =
COV(lsle) = Zi(ls(') (i) —1Is-lc (3.13)
i=

N, Is, Ic, Is andlc are defined as above.
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Current image data set
Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

Original | 0.974 (0.061)| 0.729 (0.227)| 0.805 (0.321)| 0.939 (0.084)

5 Winlit 0.915 (0.211)| 0.998 (0.007)| 0.065 (0.201)

2]

g Doorlit | 0.668 (0.283)| 0.076 (0.218)| 0.994 (0.015)

g Arboreal | 0.961 (0.069) 0.930 (0.083)
Chairs 1 0.978 (0.043)| 0.600 (0.097)
Chairs 2 0.965 (0.069)| 0.582 (0.124)

Table 3.4: Average return ratios for homing experiments carried out on COV difference

surfaces in static and dynamic environments. The standard deviation of the average

return ratio for each data set pairing is given in brackets.

To test the covariance as a potentially useful similarityamuge in static and dy-

namic conditions, we carried out the same experiments thestm Section 3.2.1, of

course using Equation 3.13 to assess image similarityrétae Equation 3.1. When

homing onRMSdifference surfaces we attempted to minimise RMSsignal; with

COV difference surfaces we seek to move the agent so amkimisehe value of the

difference surface.

The results of our experiments usi@@V to measure image similarity are given in

Table 3.4.

3.3.2 Discussion

For a given data set pairing, each average return ratiallist&able 3.4 is greater than
that given in Table 3.3. But are these differences stasifiyisignificant? We used
McNemar's test (Sprent and Smeeton [2007]) to make thiguhation. McNemar’s

is a nonparametric test designed for nominal, paired data.data are paired in the

sense that every homing run on BM Sdifference surface corresponds to exactly one

homing run on £ OV difference surface. The results are nominal since eachesuits

in either success or failure. We set the level of significaaicg%. Signficance results

are given in Table 3.5.
Taken together, Tables 3.3, 3.4 and 3.5 tell us thaO¥ is sometimes a better
image similarity measure th&M Sin static conditions — in particular those conditions

with non-uniform overhead lightingcOV always outperformBMSwhen illumination

conditions change between capturedgpfndic. We note, though, th& OV results
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Current image data set
Original | Winlit Doorlit | Arboreal | Chairs1 | Chairs 2
Original N Y Y N
2 Winlit Y Y Y
n
2 | Doorlit Y Y Y
g
& Arboreal Y - - N
Chairs 1 - - - - N N
Chairs 2 - - - - Y N

Table 3.5: This table indicates whether the average return ratio given in Table 3.4 (COV
results) is significantly different than the average return ratio given in Table 3.3 (RMS
results) for a given data set pairing. A 'Y’ indicates a statistically significant difference
for a particular data set pairing; an 'N’ indicates that there is not enough experimental
evidence to reject the hypothesis that the average return ratios are equal. McNemar's

test was used with a 5% level of significance. See text for details.

are quite poor in the face of relatively extreme illuminatichange, whelg is drawn
from “Doorlit” and I¢ is drawn from “Winlit” or vice-versa.

COV sometimes outperformRMSwhen objects move between capturd 9and
Ic — namely, the (“Arboreal”,"Original”) and (“Chairs2”, “Ciirs1”) data set pairings.
The average return ratios for the two similarity measuresstatistically indistinguish-
able when large objects are placed within the experimengal during capture of cur-
rent images (i.e. when current images are drawn from the it€2aor “Arboreal”
sets). This last point is somewhat surprising. Given oulyaigin Section 3.2.2, we
expected difference surface homing with @@V measure to be more successful than
homing withRMSin environments with large objects in the experimental arewe
are not as yet certain why this improvement fails to occur.

The covariance is only a trustworthy measure of the sintyldreétween s givenlc
when there is a linear relationship between pixel inteesitinls andlc. Such a linear
relationship betweets andlc doesexist in static conditions. Figure 3.13(a) shows a
scatterplot in which we plotted the intensity of each pixelg against the intensity of
the corresponding pixel i, intensities range from 0 to 255. Both images were taken
from the “Original” data set and from the same location (xe®Qy=270cm); in other
words,lc is identical tols. In this case, there is a perfectly linear relationship lestmw
Isandlc. As the capture position d& moves away from that dfs, the strength of
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Figure 3.13: (a) This figure depicts a scatterplot in which we plotted the intensity of
each pixel in Ic against the intensity of the corresponding pixel in Is. Both images
were captured at the same location (x=60cm, y=270cm) and both were taken from the
“Original” set. (b) Scatterplot formed as in (a) but here Ic was captured 60cm from
capture position of Is. (c) Scatterplot formed as in (a) but here Ic was captured 120cm

from capture position of |s.
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Figure 3.14: This figure depicts a scatterplot in which we plotted the intensity of each
pixel in Ic against the intensity of the corresponding pixel in Is. Both images were
captured at the same location (x=60cm, y=270cm) but |g was taken from the “Winlit”

data set and I¢ from the “Original” set.

the linear relationship decreases but remains clearhatiigee Figures 3.13(b) and
3.13(c)).

There ceases to be a linear relationship between pixelsiitesiinls andlc when
the two images are drawn from different data sets (i.e. inadyie conditions). Fig-
ure 3.14 shows a pixel intensity scatterplot similar to thos Figure 3.13 in which
we plotted the intensity of each pixel lg against the intensity of the corresponding
pixel in Is. Both images were captured at the same location (x=60cm/QerR) but
Is was taken from the “Winlit” data set arld from the “Original” set. This is clearly
a nonlinear relationship. The bifurcated nature of thetsgalbt is due to the fact that
the portion ofls which images the curtained window is quite similar to the sgrart
of Ic; the rest ofl¢ is brighter than corresponding parts lgfsince lights above the
door were turned off whehs was taken.

3.4 Exploring the Mutual Information Image Similarity

Measure

Though there isn't a strictly linear relationship betwderandIc in Figure 3.14 s

is quitepredictablegivenlc. For example, if we are told that a pixel ig has value
200, then we can predict with high probability that the cep@nding pixel inls has
an intensity close to either 60 or 175. This predictabiliy de measured with mutual
image information. Mutual information as an image simtlameasure was pioneered
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by Viola and Wells [1995] for the purposes of appearancethasiage registration.
Similar though apparently independent work was publishellbes et al. [1997]. We
reviewed image registration and its similarity to visuahting in Chapter 2.

Mutual image informationNil) can be defined as

Mi(ls,Ic) = H(ls) = H(lsllc) (3.14)

whereH (lIg) is the entropy ofis andH (Igllc) is the conditional entropy ofs given
lc. This definition of mutual information is adapted from theeagiven in Hill et al.
[2001]. Entropy and conditional entropy are themselveseefias follows:

B-1

H(ls) = — ZO ps(a)logz(ps(a)) (3.15)
B-1B-1

H(lsllc) = — Z) > Psc(a,b)logz(psc(alb) (3.16)
a=0b=0

In Equation 3.15g(a) is the probability that a pixel will have intensigy(0 < a < B)

in imagels. In this work, ps(a) is calculated from the normalised intensity histogram
of Is. Image entropy is highest when all possible pixel valueggtally likely (i.e. the
pixel intensity histogram has a uniform distribution) aod/ést (zero) when one pixel
value is certain and the others never occur. The joint pritibatpsc(a,b) in Equa-
tion 3.16 is the probability that a given pixel ig has intensitya and the same pixel in
Ic has valuéb; psc(a,b) is calculated from the normalised joint intensity histograf
Isandlc. Finally, the conditional probabilitpgc(alb) is the probability that a pixel
will have intensitya in Is given that the corresponding pixellig has intensity.

It is clear from Equation 3.14 that maximising the mutuabmnfiation betwees
andl¢ involves minimising the conditional entropgy(ls|lc); H(ls) is constant while
homing. Analysis of Equation 3.16 tells us théfls|lc) is minimal (zero) if knowing
that a pixel inlc has intensityb allows us to predict with probability 1 that the corre-
sponding pixel ing has intensitya for all a andb. Conditional entropy will be much
higher if intensity values itc are poor predictors of corresponding pixel intensities in
Is. Hence, mutual image information is a measure of how prabiets is givenlc.

We use the following equation to compu¥d in our experiments. This form is
equivalent to Equation 3.14 (Hill et al. [2001]) but is sliyhless computationally

intensive.
B—1B—1

Mli(ls,Ic) = aZO bZo psc(a, b)logz(%) (3.17)
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Current image data set
Original Winlit Doorlit Arboreal Chairs 1 Chairs 2

Original | 0.905 (0.097)| 0.602 (0.238)| 0.892(0.208) | 0.865 (0.098)

% | Winiit 0.914 (0.115)| 0.979 (0.072)| 0.307 (0.305)

2]

g Doorlit | 0.790 (0.119)| 0.274 (0.297)| 0.987 (0.023)

g Arboreal | 0.892 (0.097) 0.811 (0.133)
Chairs 1 0.832 (0.135)| 0.557 (0.126)
Chairs 2 0.807 (0.148)| 0.498 (0.152)

Table 3.6: Average return ratios for homing experiments carried out on M| difference

surfaces in static and dynamic environments. The standard deviation of the average

return ratio for each data set pairing is given in brackets.

3.4.1 Experiments and Results

We repeated the experiments described in Section 3.2rig MHias the image similar-

ity measure rather thaRMS The results of these experiments are given in Table 3.6.

3.4.2 Discussion

AsCOV is generally a better measure of image similarity tRiSfor the purposes of
difference surface homing, we shall comp&téwith COV only. As in Section 3.3.2,
we use McNemar’s test to determine if there is a statisyicsithnificant difference
between the average return ratios given in Table 3.4 anceTalBl. Table 3.7 makes
clear that the average return ratiosS@®V andMI are statistically different for all but
one data set pairing, wheg is taken from “Winlit” and all current images are taken

from “Original.”

MI is generally not as good a similarity measureC43V in our experimentsMI
outperformedCQV for only four out of sixteen data set pairings (see Table.3\6)
beatCOV in situations where lighting conditions changed from shapgo current
image capture. This outperformance is dramatic for seWieraination changes: when

shapshotimages are drawn from the “Winlit” set and curnerages are drawn from the

“Doorlit” set, or vice-versa. In fact, homing with tligOV measure almost always fails
for these data set pairings. We also note that WB€V does beaM| the difference
in return ratios is often not terribly large. In fact, the meaaturn ratio over all data set
pairings is 0.76 folCOV and 0.75 forMI. SinceCOQV fails almost totally in the face
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Current image data set
Original | Winlit Doorlit | Arboreal | Chairs1 | Chairs 2
Original Y Y Y Y
2 Winlit N Y Y
n
2 | Doorlit Y Y Y
g
& Arboreal Y - - Y
Chairs 1 - - - - Y Y
Chairs 2 - - - - Y Y

Table 3.7: This table indicates whether the average return ratio given in Table 3.6 (Ml
results) is significantly different than the average return ratio given in Table 3.4 (COV
results) for a given data set pairing. A 'Y’ indicates a statistically significant difference
for a particular data set pairing; an 'N’ indicates that there is not enough experimental
evidence to reject the hypothesis that the average return ratios are equal. McNemar's

test was used with a 5% level of significance. See text for details.

of relatively extreme lighting change ail is at least competitive witEOV in many
other cases, we chose to ugé as an image similarity measure in the remainder of
this dissertation. We note th&OV should be used to assess image similarity if it is
known that illumination conditions are likely to remaintita

3.5 Run-Time Comparison of Similarity Measures

The aim of this chapter is to compare various image simylarieasures for the pur-
pose of difference surface homing in static and dynamicrenments. So far, we
have made this comparison on the basis of homing failuresrdtes also sensible to
measure the computation time required for each of thesdagitgimeasures. After
all, the operator of a homing robot would not want her machmsit stationary for
interminable seconds while struggling to compute imagelarity.

The computation oRMSwith Equation 3.1 requires the summationNfterms
whereN is the number of pixels it (equal to the number of pixels ig). Each term
involves two pixel-value queries (one for the current and or the snapshot image),
one subtraction and one squarifMSis therefore arO(N) algorithm.

To compute the first term of Equation 3.18, multiplication operations are re-
quired. Each multiplication involves two pixel-value gigsr (one for the current and
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one for the snapshot image). The second term of Equationi8.if# product of
the mean intensities dg andls. We can assume that the mean intensity $fs
precomputed before homing begins. The calculation of thammetensity oflc re-
quiresN pixel-value queries and summations. Thus, in all — likBRMS— covariance
computation is arO(N) algorithm. For a given value dfl, though, computation of
Equation 3.13 may take somewhat longer than computatiomodton 3.1 as the for-
mer requires more fundamental operations (i.e. multipilice summation, etc.) to be
carried out per summation term.

Before computing Equation 3.17, the intensity histograntpthat ofls, and their
joint histogram must be generated. The histogram of the athagan be compiled
before homing begins and therefore does not count in the atatipnal cost of mu-
tual information. Computation of the intensity histografml@ requires that an array
of B elements (wherd is the number of intensity levels ilt) be initialised. Fol-
lowing this, each of théN pixels of ¢ is read and the corresponding element in the
histogram array is incremented. Histogram computatiohésefore arO(B+ N) al-
gorithm. By a similar argument, it is clear that generatiéthe aforementioned joint
histogram require®(B? + N) time. We note that iB? < N, it makes sense to com-
pute the intensity histogram ¢¢ by summing the elements of each row of the joint
histogram, arO(B?) operation. Once we have the necessary histograms, computa-
tion of Equation 3.17 can begin. Equation 3.17 involves th f B2 terms, each
of which requires three histogram queries, two multipiieas, one division and one
call to the logarithm function. Computation of EquationBtherefore require®(B?)
operations. Taking the histogram generation into accarorputation of mutual in-
formation take€O(B? + N) time.

For a given number of intensity levels and image size, mutdafmation compu-
tation requires more time than the calculation of covaamicRMS To see what this
difference means in practice, we timed each of these thneiesity measures for var-
ious image sizes. In the caseMf we also varied the number of intensity levels. This
test was carried out on a Dell Pentium 4 Optiplex 2.0 GHz cdempthe same com-
puter used to compute image similarity in our live robotipesments described in
Chapter 6. Similarity measures were computed using purpageMatlab functions.
We created random grayscale images as input to the simgifantctions. The size of
these images varied from 424130 pixels (the size of the imayg®ardy’s database)
down to 24130 pixels in steps of 50000 pixels. For all cova&gandRMScalcula-
tions and for one set of mutual information calculation thienber of intensity levels
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Figure 3.15: This graph depicts the results of our experiment comparing the time re-
quired to compute the image similarity measures examined in this chapter. See the text

of Section 3.5 for details of the experimental procedure.

was set to 256. We carried out a second set of mutual infoomamputations using
images downsampled to 16 gray levels.

The results of this experiment are depicted in Figure 3.1J&chEdata point in this
figure is the mean time required for 100 similarity measuteuwtations. The standard
deviation for each data point was quite small, too small feamingful error bars to
be included in the figure. As predicteBMSis the speediest similarity measure for
all image sizes, followed by the covariance. For all imagesiMI (with images
downsampled to 16 graylevels) took more time than covadali¢ with images with
256 graylevels took the most time.

3.6 Comparison with Other Homing Methods

In this section we determine how the difference surface dasening algorithms de-
scribed in this chapter rate against other visual homingdistuvhich employed Vardy’s
image data set.

3.6.1 Vardy and M déller [2005]

Vardy and Moller [2005] were the first researchers (appeipty enough) to exten-
sively use Vardy’s image database for visual homing studMsreviewed in Chapter 2
the novel homing algorithms developed by Vardy and Mot&&(J5]. Perhaps the most
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impressive of these algorithms in terms of consistent perémce and computational
complexity is the one called FirstOrder. Briefly, this aligfmam computes feature cor-
respondence between snapshot and current images usimgehsity-based optic flow
between these two images. More detail about FirstOrder edound in Chapter 2.

Vardy and Moller [2005] reported that the mean return ratlten FirstOrder was
used to home with all images taken from the “Original” dataveas 0.9746. In tests
where snapshots were taken from one data set and currenesiiagn the same or
another set to simulate homing in several static and dynamiconments (the same
procedure we used in this chapter), the mean return rati&ifstOrder over all such
data set pairings was 0.614. We note that Vardy and Molled$2 used a superset of
the image data sets we employed in this chapter. Unfortlypdke return ratio for
individual data set pairings is not given quantitativelyatier, in Figure 12 in Vardy
and Moller [2005] return ratio values are encoded as shatigsay with white indi-
cating a return ratio of 1 and black a return ratio of 0. Vardg &Moller [2005] state
that FirstOrder had particular difficulty when lighting ctgeed between snapshot and
current images. This may be because FirstOrder assumetnbiikimination be-
tween snapshot and current images. This difficulty is regat the qualitative results
reported in Figure 12 in Vardy and Moller [2005]. Finallyewote that FirstOrder is a
relatively fast homing algorithm as it requires no searghmsolve the correspondence
problem. Vardy and Moller [2005] reported that image psxirg for FirstOrder took
on average 193.7ms on a Pentium 4 2GHz processor.

Before comparing FirstOrder to the algorithms we lookednathis chapter, we
note that there is a procedural difference between the arpats of Vardy and Moller
[2005] and our own. Vardy and Moller [2005] tuned their ineggre-processing steps
to optimise the performance of each homing algorithm. Timnértg was done by sim-
ulating homing with the “Original” data set with differenéts of pre-processing pa-
rameters. The parameters which yielded the best returm negults were used in sub-
sequent trials in which different data sets were used. Wendiolhage pre-processing
in our work and no extensive parameter tuning. This procaldiifference renders our
homing experiments more realistic and potentially moréalift than those described
in Vardy and Moller [2005].

Now we compare our homing results with those of Vardy andI®$2005]. When
image similarity is computed with tHeMSmeasure, we reported in Table 3.3 a mean
return ratio of 0.977 (standard deviation 0.066) when batihent and snapshot images
are taken from the “Original” data set. When image simijai# computed with the
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COV measure, we reported in Table 3.4 a mean return ratio of (8ZAdard deviation
0.061). For the mutual information image similarity measurable 3.6 gives a mean
return ratio of 0.905 (standard deviation 0.097). Thus ¥av bf the three similarity
measures we used in this chapter, the return ratios weret algoal to that of Vardy
and Moller [2005] for images taken from the “Original” dagat. The return ratio of
0.905 for mutual information is lower than expected in lightther static results. We
note that Table 3.6 reports that when both snapshot andntumeges are taken from
the “Winlit” set, the mean return ratio for mutual informai-based homing is 0.979
(standard deviation 0.072). Also, when both snapshot angémuimages are taken
from the “Doorlit” set, the average return ratio is 0.987afslard deviation 0.023).
One would assume that these static environments are mdieutfifo home in than
the “Original” environment due to non-uniform overheadhligpg. Despite this, the
mutual information-based homing performs quite well.

We said above that the mean return ratio for FirstOrder ollatada set pairings
considered in Vardy and Maoller [2005] was 0.614. The meduarreratio forRMS
based difference surface homing over all data sets comsglderthis chapter is 0.69;
for COV the value is 0.76 and favll the value is 0.75. Thus our difference surface
optimisation homing method provides better overall bebavthan FirstOrder for all
of the image similarity measures considered.

Finally, we said above that FirstOrder requires on avera@@7Ins on average
to process one pair of current and snapshot images to gerefame vector. The
data in Figure 3.15 indicate that the computation of imagglarity can be up to ten
times faster than the computation of a home vector with Gidér. This data was
generated on a computer with the same processor speed assdthby Vardy and
Moller [2005]. The reader may argue that to generate a hogatov (i.e. gradient) in
difference surface homing the robot has to move to threecadjdocations and carry
out image similarity measurements at these three locatldose vector computation
takes longer therefore than a single image similarity cotagan. This is true but
Moller and Vardy [2006] demonstrated that the robot neddntually move in order to
generate a gradient estimate of the difference surfaces, Tfmme vector computation
in difference surface homing is still potentially fasteathhome vector computation
by FirstOrder.
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3.6.2 Modller and Vardy [2006]

Moller and Vardy [2006] used Vardy’s “Original” data settimeir experiments to test a
gradient-descent difference surface homing algorithiedahe matched-filter descent
inimage distances or MFDID. The MFDID algorithm is descdimaore fully in Chap-
ter 2. Moller and Vardy [2006] compared the MFDID with thesssided differencing
gradient computation method we described in Section 3Ndller and Vardy [2006]
called this the DID (descent in image distance) algorithndli®ét and Vardy [2006]
used an image similarity measure for the DID algorithm almasntical to the root-
mean-square measure employed by Zeil et al. [2003]. Theyated the return ratios
of DID and MFDID for the “Original” data set for all snapshatdations and report
an average return ratio of 0.932 (standard deviation 0.@1)he DID algorithm and
an average return ratio of 0.956 (standard deviation 0.4i7)ife MFDID algorithm.
Clearly, in these tests, MFDID outperformed DID. As we exma in Chapter 2, MF-
DID also has the virtue that — unlike DID and our own optimiaialgorithms — the
robot does not move in order to compute the gradient of thieréifice surface at a
particular location.

How do these results compare with our own homing experimesitgy the “Origi-
nal” data set? Before answering this question, we note anitapt procedural differ-
ence between the experiments reported in this chapter ase thescribed in Moller
and Vardy [2006]. Moller and Vardy [2006] removed high foemcy image informa-
tion from current and snapshot images using a Butterwortbr filThey chose filter
parameters which optimised the performance (as judgedthyrreatios) of the hom-
ing methods they explored. According to Figure 9 (bottont)dlo Moller and Vardy
[2006], this optimisation process favoured the MFDID aition over the DID algo-
rithm. As the homing algorithms we examined in this chaptersamilar to DID, the
use of the Butterworth filter may advantage the MFDID aldoritas compared to our
algorithms as well. This procedural difference renderslmuming experiments more
realistic and potentially more difficult than those desedlin Moller and Vardy [2006].

Now we compare our results with those of Moller and VardyJe@p When image
similarity is computed with th&@MSmeasure, we reported in Table 3.3 a mean return
ratio of 0.977 (standard deviation 0.066) when both curesmt snapshot images are
taken from the “Original” data set. When image similaritic@mputed with th&€ OV
measure, we reported in Table 3.4 a mean return ratio of O(S&hdard deviation
0.061). For the mutual information image similarity measurable 3.6 gives a mean
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return ratio of 0.905 (standard deviation 0.097). So our imgnalgorithms produce
better results than both DIBnd MFDID when theRMSandCOV measures are used
to compute image similarity. One reason for this might be e are using different
snhapshot locations than Moller and Vardy [2006] did. Wedsa this is not a likely
explanation, though, since our snapshot locations spatheeghtire experimental area
just as did those of Moller and Vardy [2006]. A second moraugible explanation
is that we when possible used two-sided differencing to agmplifference surface
gradients (see Section 3.2.1) whereas Moller and Vard9§PQsed one-sided differ-
encing. It is quite possible that the former method produwese accurate difference
surface gradients as it uses more difference surface irdbomto compute them. This
is a question we take up again in Chapter 5.

Unfortunately, difference surface homing with the mutuibrmation image sim-
ilarity measure in the “Original” data set does not perfosngll as DID or MFDID.
In defence of the mutual information measure, we note thialieTa.6 reports that when
both snapshot and current images are taken from the “Wisdit; the mean return ra-
tio for mutual information-based homing is 0.979 (standdediation 0.072). Also,
when both snapshot and current images are taken from therliD@s®t, the average
return ratio is 0.987 (standard deviation 0.023). One wadsume that these static
environments are more difficult to home in than the “Originathvironment due to
non-uniform overhead lighting. Despite this, the mutudbimation-based homing
performs quite well.

In a follow-up to Moller and Vardy [2006], Moller et al. [B7] also used a part
of Vardy’s image database in their homing work. The work inlMf et al. [2007] is
described in Chapter 2. Moller et al. [2007] did not use #teim ratio to measure the
effectiveness of their homing solution. They in fact did natry out full homing runs
at all. Moller et al. [2007] instead computed home vectors/arious locations around
a snapshot location. They were primarily interested in canmg the angular error
between true and estimated home vectors for various difeeresurface optimisation
algorithms. As their criteria for success are differentifirours, we shall not compare
our work with that of Moller et al. [2007].

3.6.3 Pons et al. [2007]

Pons et al. [2007] also used Vardy’s image database in tiiaiyhoming study. We
reviewed the homing algorithm of Pons et al. [2007] in Cheptdriefly, these authors
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extracted SIFT features from current and snapshot imagesresponding features
were used as input to the homing algorithm of Vardy and M326805].

We should note two important procedural differences betwa& work and that
reported in Pons et al. [2007]. To make their algorithm maneust to changes in
lighting and object location at a particular snapshot pasjtPons et al. [2007] col-
lect several images over time from that position. For theitdoor test for example,
they collect images throughout a particular day (the peenismber of images is left
unspecified). SIFT features for a particular snapshot iooadre extracted from all
representative snapshot images. We on the other hand usenage to represent a
snapshot location. We consider our approach more readistitis unlikely that an au-
tonomous robot will stay in one place for an entire day, p@alern, capturing images.
One could argue that the robot would leave and return to tapsot location over the
course of a day, taking a new snapshot image each time iearigme. This approach
assumes that the robot would be able to home to its snapstaitdo using the snap-
shot images already captured. This assumption is not test€bns et al. [2007]. A
second difference between our work and that of Pons et ab7p8 in how Vardy’s
environments are rendered dynamic. We use image sets edgiyVardy in the same
office environment. Vardy altered the environment for easthby moving landmarks
or turning overhead lights on or off. Pons et al. [2007] talerale set (presumably
Vardy’s “Original” set) and alter the images to simulate mfes in lighting or object
movement. We consider our tests therefore to be more nealiSihese procedural
differences make it difficult to compare our homing methodhwhat of Pons et al.
[2007]. Nonetheless, we attempt a comparison below.

Pons et al. [2007] find that their method is affected by dymarim the environment
and that its success is highly dependent on the snapshtibpos$ior one snapshot po-
sition near the centre of Vardy’s grid (at x=180cm and y=300a the coordinate
system in Figure 3.6), they report return ratios of 1 for bitatively minor and rel-
atively major environmental dynamics. When the snapshecation is moved to a
corner (x=30cm, y=30cm), the return ratios drop to 0.88 arid @espectively. Pons
et al. [2007] attribute the poorer return ratios in the lat@se to some non-goal posi-
tions being too far from the snapshot location for correétiSleature correspondence
to occur.

Here we compare the homing results of Pons et al. [2007] withovn. Unfor-
tunately, the snapshot locations we used (see Figure 3@)adicoincide with those
chosen by Pons et al. [2007]. We therefore examine homing femsnapshot loca-



Chapter 3. Building Robust Difference Surfaces

Current image data set
Original | Winlit Doorlit | Arboreal | Chairs1 | Chairs 2

Original 0.976 0.824 1.000 0.906 - -

= Winlit 0.982 1.000 | 0.053 - - -

7]

g Doorlit 0.694 0.288 1.000 - - -

UE;- Arboreal 0.953 - - 0.900 - -
Chairs 1 - - - - 0.912 0.688
Chairs 2 - - - - 0.929 0.659

97

Table 3.8: Return ratios for homing experiments carried out on MI difference surfaces

in static and dynamic environments. The snapshot location for all homing runs was at

x=150cm, y=270cm in the coordinate system in Figure 3.6.

Current image data set
Original | Winlit | Doorlit | Arboreal | Chairs1 | Chairs 2

Original 0.871 0.482 0.424 0.718 - -

o Winlit 0.829 1.000 0.394 - - -

(2]

g Doorlit 0.876 0.000 0.971 - - -

g Arboreal 0.888 - - 0.641 - -
Chairs 1 - - - - 0.600 0.306
Chairs 2 - - - - 0.641 0.318

Table 3.9: Return ratios for homing experiments carried out on MI difference surfaces

in static and dynamic environments. The snapshot location for all homing runs was at

x=60cm, y=30cm in the coordinate system in Figure 3.6.
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tions close to those used by Pons et al. [2007]. We compareesults at snapshot
location x=150cm, y=270cm with the results of Pons et alO[d@&t snapshot location
x=180cm, y=300cm. Both of these home positions are cemtiidy’s image capture
grid. The return ratios for homing to x=150cm, y=270cm aneegiin Table 3.8; all
Vardy data set pairings examined in this chapter are repteden this table. We note
that many of the return ratios in Table 3.8 are less than 1réhen ratio reported by
Pons et al. [2007] for snapshot location x=180cm, y=3004Mg.stress, though, that
due to the procedural differences stated above, our remdtaot directly comparable
to those of Pons et al. [2007].

We compare our results at snapshot location x=60cm, y=30itmtie results of
Pons et al. [2007] at snapshot location x=30cm, y=30cm. Bbtihese home posi-
tions are close to the lower-left-hand corner in Vardy’s ge&apture grid. The return
ratios for homing to x=60cm, y=30cm are given in Table 3.9Vardy data set pair-
ings examined in this chapter are represented in this t&l#enote that several of the
return ratios, including those resulting from dynamic citinds, are greater than or
approximately equal to 0.88 which is the larger of the twaimetratios reported by
Pons et al. [2007] for homing runs to x=30cm, y=30cm. We ag#iess that compar-
ison based on these results is difficult due to experimeriti@grences. Nonetheless,
the data in Table 3.9 indicates that our method may be on pateast for relatively
minor environmental dynamism — with the feature-based owdf Pons et al. [2007].

3.7 Conclusions

The work of Zeil et al. [2003] suggests that visual homing pyimising RM Sdiffer-
ence surfaces outdoors works well in static conditions $utompromised when the
illumination conditions in which the snapshot was captwesidifferent than those in
which current images are captured. In this work we confirnfed this was also the
case in an indoor, laboratory environment. Our analysiRMfSrevealed that a hom-
ing agent will move so as to equalise the average intensifiés andls in dynamic
illumination conditions. We also showed empirically thanting onRMSdifference
surfaces is robust to at least some movement of imaged sbj&uir novel analysis
of the RMSimage similarity measure led us to infer that whenis captured near a
large, monochromatic object (like a chair in the “Chairs2talset) an€ is relatively
far from S, the homing agent may be attracted to this object rathertih&n\We con-
firmed this finding — at least anecdotally — by looking at indiaal homing runs in our
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laboratory environment.

Our analysis oRMSin Section 3.2.2 led us to propose the covariance as an aitern
tive image similarity measure. Judging by the average matatios listed in Tables 3.3
and 3.4, the covariance is a better similarity measure tbatrmean-square in our
laboratory environment in both static and dynamic condgioAs we noted in Sec-
tion 3.3.2, the covariance assumes a linear relationshipdsan pixel intensities ihg
andlc. This is not always the case in dynamic conditions. The niutnage infor-
mation similarity measure (Section 3.4) makes no such assamand instead more
broadly measures hopredictable §is givenlc.

The comparison between covariance and mutual informasisninewhat ambigu-
ous: mutual information does dramatically better than cavee in most cases where
illumination changes betwedga andls. Mutual information does slightly less well
than covariance in static environments and in environmientghich the agent passes
near large, monochromatic objects. Since mutual inforomais generally a relatively
good image similarity measure and sometimes relatively geiod, we will use it to
measure image similarity for the purposes of differencéaserhoming in the rest of
this dissertation.

In Section 3.5, we compared the time required to calculate eathe image sim-
ilarity measures. As predicte®MSwas the fastest for a given image size, followed
by COV which was in turn faster thakll. We note, though, that none of the similarity
measures was particularly slow; none required more thars€cbnds for any image
size used. Still, as we have argued above Matprovides the most robust homing
performance of the three measures, we would like to find wagpeeding the com-
putation ofMI without degrading homing performace to a high degree. Wedakle
this work in the next chapter.

In Section 3.6 we compared difference surface-based vigaraing with other re-
cently published visual homing algorithms which were tdstath Vardy’s database.
We argued that comparison was difficult because (1) othdroasitmade certain as-
sumptions which made their homing experiments easier themanmd (2) other authors
used different parts of the Vardy database than we did., 8tii comparison indicates
that the success of difference-surface based homing is owitfathe other methods
we examined.
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3.8 Future Work

As we discussed in Section 3.1, we chose not to apply anysityeor colour trans-
formations to eithels or Ic. Of course, some transformations could render homing by
optimising on the difference surface even more succedsam teported in our results,
especially when illumination conditions change betwegnuwa oflsand andc. This
was in fact strongly implied by Sturzl and Zeil [2007], a ware discussed in Chap-
ter 2. These authors advocated the use of difference-of€kau filtering, subtraction
of image mean intensity from each image pixel, and local re@hthormalisation to
fight the effects of dynamic illumination.

The hue-saturation-value (HSV) colour space is reportesidoye researchers (see
e.g. Gourichon et al. [2002]) to be more robust to illuminatchange than grayscale.
Histogram equalisation is also sometimes used to accoumtyfmamic illumination.
A logical next step in our research is to apply these or otkered unidentified image
transformations tds and/orlc before computing image similarity with mutual infor-
mation.

To bolster illumination invariance, we could also find edge®oth current and
shapshot images by convolving each image with, say, a Sareek Edges are
relatively illumination invariant features favoured byseal image-based navigation
schemes described in Chapter 2. We did some preliminarngestith edge-filtered
images and found that they, using a difference surface appryielded a very small
catchment area since edge overlap between current andnenapsges is minimal
when the robot moves even a small distance from the goalitwcéte. 30cm). An-
other approach we could take is to use an image registratgmritdom given edge-
filtered current and snapshot images to find the pose changed® the current and
shapshot poses.

Sturzl and Mallot [2006] found that they could expand thebatent area of their
homing routine by removing high-frequency components ofent and snapshot im-
ages. These blurred images, though, lead to less precism@p@arformance. They
suggested a multi-scale approach, using relatively blumgges at the beginning of
a homing run and increasingly sharper images as the run @dgscéNe could try the
same approach in difference surface-based homing. We hatezeil et al. [2003]
advocated this approach but did not use it.

We have looked at three image similarity measures in thikwaot-mean-square,
covariance, and mutual information. There are other shitylaneasures described in
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the statistics literature which may be applicable; thestugte the Kendall tau rank
correlation coefficient, Spearman’s rank correlation tioeint (Anderson and Sclove
[1986]), and pointwise mutual information. We carried omnzdl-scale homing exper-
iments using the first two measures to compute image sittyilawwe found neither

Kendall nor Spearman produced better better @V or MI. As these experiments
were limited, though, we feel that more work with these alative image similarity

measures is warranted.

The image similarity measures we have experimented withiredhatls andlc
are aligned to the same external compass direction. In ouk #s alignment is
achieved by rotating:. This is a drawback for two reasons: (1) a compass is required
and (2) image rotation requires non-trivial computatioetbrt. Mustls andlIc be
aligned in this way by measuring the discrepancy betweertvib@ Not necessarily.
We could, for example, simply compare the marginal intgngdistributions ofls and
Ic (i.e. compare the normalised intensity histograms of thmsges). The Kullback-
Leibler divergence (Weisstein [2007b]) is a commonly usezhsure of the difference
between probability distributions and is defined as follows

B-1
DkL(lgl[lc) = a;) ps(a)logy Si((z)) (3.18)

ps(a) is the probability that a pixel has intensiy(0 < a < B) in Is; pc(a) is defined
similarly.

We performed the homing experiments described in Sectidrl 3vith a few of
the data set pairings listed in Table 3.2 using Equation Bl8easure image simi-
larity. When both snapshot and current images were taken fiee “Original” data
set, the average return ratio was 0.843 (standard devi@tiit?). This result is quite
promising. Unfortunately, when snapshots were taken flioei'©riginal” data set but
current images were drawn from the “Winlit” set — simulateg illumination change
— RRwas only 0.110 (with a standard deviation of 0.172). Thisrage return ratio
was much smaller than whd®MS COV andMI were used to assess image similar-
ity. We saw a similar degradation in average return ratio meapshots were drawn
from “Chairs1” and current images drawn from “ChairsRRwas 0.289 with stan-
dard deviation of 0.205. It seems from this limited studyt th@asuring the similarity
between non-aligned images using the Kullback-Leibleedjence works fairly well
in static environments but fails dramatically in dynami@enFuture work in this area
might involve normalising the intensity histogramslgfandic before assessing their
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similarity or using an algorithm other than Kullback-Lesbkto measure this similarity.

RMS (or something very similar) is quite often used to measuee dliference
between images in other image-based navigation schenges tfge image warping
algorithm of Franz et al. [1998b], the image-based Montdddacalisation algorithm
of Menegatti et al. [2004], and several topological navgaglgorithms). As in our
work, these algorithms compare a current image with one arenroages captured
previously. Lighting and landmark locations might well Bashanged in the interim.
We have demonstrated that mutual information is robustisodynamism and so could
provide a useful image similarity measure in image-basedtroavigation in general.

As we discussed in Chapter 2, central-place foraging isdéda ants and honey-
bees seem to employ a visual homing algorithm to rediscomessaor food source. A
number of visual homing algorithms, both feature-basediaradje-based, have been
published in the robotics and insect ethology literatucaitih which algorithm(s) these
insects use is still unknown. A biologically plausible nauircuit implementing im-
age similarity measurement using mutual information, cevece orRM Swould lend
weight to the hypothesis that insects move so as to optimigaage similarity signal
in order to home. Zeil [2007] believes that a neural impletagan of mutual image
information is possible but no significant work on this haslygen done.



Chapter 4

Fast Computation of Mutual Image

Information

4.1 Introduction

In this chapter, we explore methods to speed the computafiamutual information
(MI). There are a few reasons to do this. If we can reduce thne to compute Ml
without drastically diminishing the ease with which a diéfece surface can be op-
timised, then an agent should arrive home faster from a gstariing location. We
note that it may be the case that robot movement time duringjipis vastly greater
than MI computation time, whether relatively fast or slowe Wivestigate this issue in
this and the next chapter. Another reason to speed MI cortipnts that this image
similarity measure could be used not only for homing but d¢sgplace recognition
in vision-based topological navigation. Place recognitias we discussed in Chap-
ter 2, typically involves the comparison of a recently captlinput image with a large
number of reference (i.e. map) images. This high volume afgencomparison is
also required in image-based metric localisation (see @n&p so fast computation of
mutual image information may also be useful in this field.

There are two ways to compute mutual image information (Mihg the technol-
ogy at our disposal: serially or in parallel. We have in ourdeatory an AnaFocus
EyeRIS Vision System (Castillo [2005b]) which is capablgefforming a variety of
operations in parallel on images stored as analogue sighlpresent novel marginal
and joint histogram algorithms for use in MI computationtwibhe EyeRIS. Alterna-
tively, we can capture images using a standard Webcam arnel &tol process them
with a serial Pentium-type computer, as is often done inalisavigation in robotics

103
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(see e.g. Franz et al. [1998D]).

The algorithms for parallel and serial Ml computation sugjgdifferent ways to
increase processing speed. Analysing our novel paratierdhm, we find that a re-
duction in the number of intensity levels will produce a esponding decrease in the
time required to compute MI. On the other hand, the serial igbathm depends on
both spatial image resolution and the number of image inttelevels. In our experi-
ments, we will systematically vary the spatial and intgnstolutions of images used
to compute MI difference surfaces. We shall attempt to deitez whether any of our
parameter settings produce difference surfaces whichiketly to be unduly difficult
to optimise. We shall then attempt to identify the best pat@msettings and use these
to time MI computation on systems described above.

This chapter is organised as follows: Section 4.2 desctlre&yeRIS Vision Sys-
tem in detail. We also describe the Webcam and Pentium canpsed for serial Ml
computation. In Section 4.3 we describe the algorithms disethe computation of
mutual image information in serial and in parallel. Secdofoutlines the experiments
we performed to compare the chosen methods of Ml computaRa&sults are given
in Section 4.5. We close with a discussion and conclusior&ertion 4.6 and future
work in Section 4.7. Related work is discussed in Section 4.8

4.2 Materials

4.2.1 AnaFocus EyeRIS Vision System

The AnaFocus EyeRIS Vision System consists of two processioe AnaFocus ACE16kv2
Focal Plane Processor (FPP) and the Altera NIOS Il Digitairbfirocessor (Castillo
[2005a]).

The FPP is both an image capture system and parallel imagessor. The FPP
contains a rectangular grid of 128128 photosensors. Each photosensor is coupled
with a processor, connected with each of its eight neighbouthe grid. The FPP can
store and process up to seven images at a time. Images ad st@nalog form on
the FPP, but are digitised into 256 gray levels when dowrdddd the digital micro-
processor's memory.

The FPP’s processors are capable of performing several conmmage operations
in parallel (see Castillo [2005c]). These include unaryrapens such as thresholding,
global averaging and convolutions and binary logical anthmaretic (subtraction, ad-
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dition) operations. All operations result in new imagess thcludes global averaging,
which produces a constant image all of whose 228 values are set to the mean
of the input image. The FPP is programmed in a proprietarguage described in
Castillo [2005c].

The digital microprocessor is responsible for the flow ofgyeon execution and
manipulating the results of images processed by the FPPniltreprocessor is pro-
grammed in the C programming language. See Castillo [20@Bchore information.
The microprocessor can store up to 1024 digital images dfyie described above.

The EyeRIS is a very attractive system for parallel imageessing. The appli-
cation programming interface described in Castillo [2005@ comprehensive library
of image manipulation functions. It is easy to incorpordiese functions into control
programs resident on the system’s microprocessor. Gels[@087] laud the EyeRIS
for the “massively parallel character of the focal planegassor and the lower power
consumption of the system together with a comparably srr!l §p. 2930). The last
two of these qualities make the system particularly appad@for use in autonomous
mobile robotics in which size and energy requirements aendmportant constraints.

4.2.2 Laptop and Webcam

We also compute MI with more traditional hardware than tresiaiibed above: namely
a Webcam providing images to a laptop. The camera is a Ceslasilss Video Blaster
Webcam 11l Model 6840 (Cre [2000]). The Webcam is capableagftering colour
images at the following resolutions: 64380, 352x 288, 320x 240, 176x 144, and
160x 120. The camera’s frame rate depends on the capture resglati resolution
640x 480, the maximum frame rate is 24 frames per second.

Our laptop is an Acer Travelmate 313T. We chose this laptoplbee it is lightweight
enough at 1.2kg to be carried by a Koala mobile robot. The 'Ageocessor speed is
266 MHz.

4.3 Computation of Mutual Image Information

Mutual information (M) between snapshot imadgend current imagk: is calculated
with the following formula (adapted from Hill et al. [2001])

(Is,Ic) = z Z p(i, Iong). (4.1)
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Algorithm 1 Compute histogram of intensity image serially
Require: | is intensity image witlN rows,M columns and intensities 8 — 1

Ensure: hist[i] stores number of pixels with intensityn 1, 0<i <B-1
1. procedure COMPUTEIMAGEHISTOGRAMSERIALLY (1)

N

var int[0..B-1]hist > Must initialisehist to all zeros
3 forr — 1, Ndo
4 forc—1,Mdo
5: i — [r][c]
6 hist[i] < hist[i] + 1
7 end for
8 end for
9 return hist > The image histogram adf
10: end procedure

Here, ps(i) is the probability that a pixel will have intensityin imagels; gray level
intensities range from 0 t8 — 1 (B is 256 or less for our hardware). These proba-
bilities are estimated from the intensity histogram§fpc(j) is defined similarly for
currentimagéc. The joint probabilityp(i, j) is the probability that the same pixel will
have intensity in Is and intensityj in Ic. These probabilities are estimated from the
normalised joint histogram of imagésandlc. The joint histogram of two images is a
square matrix of siz8 x B. Entry (i, j) in the joint histogram is the number of pixels
in the first image with intensity coinciding with pixels with intensity in the second
image. The logarithm in Equation 4.1 is to base 2.

Histograms are typically computed serially but with the B{® system we have
the option of generating them in parallel. We describe bogithmds below.

4.3.1 Serial Computation of Image Histograms

The algorithm for computing the intensity histogram of aygeale image is included
in almost every image processing textbook (see e.g. Fidhar f1996]). The pseu-
docode is given in Algorithm 1.

Explicit program listings for the computation of joint imadpistograms is some-
what difficult to find. It is easy, though, to glean the pseumttecfrom written de-
scription of the joint histogram (see e.g. Hill et al. [200IThe serial joint histogram
algorithm is outlined in Algorithm 2.
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Algorithm 2 Compute joint histogram of two intensity images serially
Require: 1, J are intensity images witN rows,M columns and intensities 8 — 1

Ensure: jhist[i][j] stores number of coincidences of intensity | with intensityj in
J,0<i,j<B-1

1: procedure COMPUTEJOINTIMAGEHISTOGRAMSERIALLY (I, J)

2 var int[0..B-1][0..B-1] jhist > Must initialise jhist to all zeros

3 forr — 1,Ndo

4 for c<— 1,M do

5: i — 1[r][c]

6 j = J[r][c]

7 jhist[i][j] < jhist[i][j] +1

8 end for

9 end for

10: return jhist > The joint image histogram dfandJ

11: end procedure

4.3.2 Parallel Computation of Image Histograms

We devised novel single and joint histogram algorithms &® an the EyeRIS’s paral-
lel Focal Plane Processor.

Pseudocode for single image parallel histogram computasogiven in Algo-
rithm 3. The algorithm iterateB times, once for each gray leviel In each iteration,
the algorithm computes a thresholded image in which onlglgiwith intensity value
b in the original image are turned “on.” The algorithm then etauthe number of “on”
pixels in the thresholded image and stores this count inigtedram bin for intensity
b.

Figure 4.1 illustrates the thresholding process. The intagee analysed — the
“original” — is in the top left-hand corner. The original caists of eight intensity
levels 0.7 and has dimensions 128128. The original image contains eight intensity
bands of equal area. The eight binary thresholded imageshangn as well. Black
pixels in the threshold image for intensityindicate pixels in the original image not
equal to intensity. A histogram created from the original images will be urifioand
identical; each bin will contain a count of 2048 pixels.

Algorithm 3, line 5 requires the computation of the numbelsfin the bandpass
intensity thresholded imaglenesn There are at least two ways to do this with the
EyeRIS’s FPP. The FPP has a built-in function called AddtesatFunction (Castillo
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Algorithm 3 Compute histogram of intensity image in parallel
Require: | is intensity image witlN rows,M columns and intensities 8 — 1

Ensure: hist[i] stores number of pixels with intensityn 1, 0<i <B-1
1. procedure COMPUTEIMAGEHISTOGRAMINPARALLEL (1)

2: var int[0..b-1]hist > Must initialisehist to all zeros
3 fori<—0,B—1do
4: lthresh<— bandpass thresholdat intensityi > Produces binary image with

1’'s within threshold

5: hist[i] <— number of 1’s inlypresh (Se€ text for details)

6: end for

7: return hist > The image histogram df
8:

end procedure

[2005c]), which counts the number of white pixels in a binsmage. Unfortunately,
the running time of this operation — though very fast — is aelamt on the number
of 1's in the input image. Also, the count is capped at 409®Igixlue to memory
limitations.

Alternatively, we could use the GlobalMean operator to catafghe mean image
intensitym of IThesh Using special circuitry, the mean is computed almost imsta
neously, regardless of image content (Castillo [2005c]yeGthis mean, the number
of white pixels inltpreshis % (assuming white pixels are stored at intensity 255).
As the GlobalMean returns an integer value in the raj@g255, this method will be
somewhat inaccurate. For example, a true mean in the rarggg, [200.5) will be
rounded to 100, giving a count of 6425 white pixels. The datuanber of white pix-
els is in the range [6393, 6457). For this reason, despitmitations, we use the
AddressEventFunction to compute the number of white pixelsyesprather than the
GlobalMean method.

Our algorithm for parallel joint histogramming is given irigdrithm 4. The main
idea is this: In order to compute the joint histogram valueifdensitiesi and j we
compute the bandpass thresholded imagé aff intensityi producing binary image
lthresh We similarly bandpas$ at intensityj. We then compute a pixel-wise logical-
and oflipreshanddinresh Which produces a binary imagewhose pixels are only “on”
at locations in whicH has intensity andJ had intensityj. The count the number of
“on” pixels in K is stored in the joint histogram entry @t j).

Figure 4.2 illustrates the process of creating the imagedmagel is given in
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Original Image

Figure 4.1: Images illustrating the thresholding process used for parallel single image

histogramming. See text for more information.

Figure 4.2(a) and in Figure 4.2(b). Figure 4.2(c) shows the jointly threslemldmage
K for each value of andj (0 <i,j <7).

4.3.3 Time Requirements of Ml Computation with Parallel and Se-

rial Histogramming

It is clear from Equation 4.1 that, once image intensity jitalities have been gen-
erated from image histograms, the computation of mutuarination require©(B?)
time, whereB is as before the number of image gray levels. Conversionstbgram
counts to intensity probabilities also requit@$B?) operations. This analysis holds
regardless of the method used to compute the histograms.

It follows from Algorithms 1 and 2 that serial computationladth single and joint
image histograms requiréd3(NM) operations, where each image sows andv
columns. Thus, serial computation of mutual informatioguiees a total 0fO(B? +
NM) steps.

Parallel computation of a single image histogram, on therdtland, require®(B)
steps, as the loop in Algorithm 3 iteratBgimes. Generation of the joint histogram
in parallel require$D(B?) steps, owing to the doubly-nested loop structure of Algo-
rithm 4. Parallel computation of mutual information redagra total ofO(B?) steps.
Note that we assume that the instructions on lines 4 and 6A&ofithm 4 require unit
time (independent of the size of the input). As we shall disdater, this is the case on
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(a) Image 1 (b) Image 2

Image 2 Intensity
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Image 1 Intensity
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(c) Jointly Thresholded Images

Figure 4.2: lllustration of the parallel joint histogramming process. See text for details.
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Algorithm 4 Compute joint histogram of two intensity images in parallel
Require: 1, J are intensity images witN rows,M columns and intensities 8 — 1

Ensure: jhist[i][j] stores number of coincidences of intensity | with intensityj in
J,0<i,j<B-1

1: procedure COMPUTEJOINTIMAGEHISTOGRAMSERIALLY (I, J)

2 var int[0..B-1][0..B-1] jhist > Must initialise jhist to all zeros

3 fori<—0,B—1do

4 linresh<— bandpass thresholdat intensityi

5: for j«— 0,B—1do

6 Jnresh<— bandpass thresholbat intensityj

7 K «— lthresh/A Jihresh > A denotes logical pixel-wise “and”

8 jhist[i][j] < number of 1's inK

9 end for

10: end for

11: return jhist > The joint image histogram dfandJ

12: end procedure

the EyeRIS platform but may not be so with all parallel imaggpssing systems.

4.4 Experiments

4.4.1 Viable Ml difference surfaces with reduced images

Given the analysis presented in Section 4.3.3 it is evidatitthe time required for se-
rial histogram computation depends on both spatial anahgiteresolution. A crucial
guestion then is how much can we reduce spatial and/or ityenresolution without
producing Ml difference surfaces which are unduly difficiltoptimise? We attempt
to answer this question with experiments using Vardy’s imdgta set, described in
the previous chapter.

As indicated in Section 4.2 our Webcam is capable of produoimages at vari-
ous resolutions. We reproduce an approximate subset af tkeslutions (352 288,
176x 144, and 16 120) by scaling Vardy’'s images to, respectively, 50%, 25% an
20% of their original size. Additionally, we scale Vardyraages to 17% their original
size to approximate images captured by the EyeRIS system.

Image scaling by a factor (# is a two-step process. In the first stage, the original
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Figure 4.3: Snapshot coordinates used in experiments described in Section 4.4.

image is convoluted with amx n averaging filter each of whose entriesﬁ}s The con-
volved image is then sampled at evef{ row and, within that row, evergt" column.
Though our Webcam'’s resolution reduction algorithm is unijsined, some reports
(see e.g. Filippov [2006]) suggest typical Webcams mimis pgrocess to produce
low-resolution images.

For each of the four spatial resolutions above, we variedhtimeber of gray levels,
using 256, 128, 64, 32 and 8 in turn. A simple linear binninggeiss was used when
necessary to reduce gray levels from the original 256. Fangxe, to reduce to 8 gray
levels, intensities in the range [0,31] in the original ireaagye mapped to intensity O,
intensities in [32,63] are mapped to intensity 1, and sdfort

To form MI difference surfaces, we fixed snapshot locatidrib@nine coordinates
indicated in Figure 4.3; this set was designed to be smallendavering most of the
experimental environment. For a given gray level and spa&olution, we computed
three difference surfaces for each snapshot location. ity as follows:

1. Both snapshot and current images were taken from the fi@digset.

2. The snapshot was taken from the “Original” set and theeturimages were
taken from the “Winlit” set.

3. The snapshot was taken from the “Original” set and theeturimages were
taken from the “Chairs” set.

The first set of difference surfaces models a static enviemtnthe second set mod-
els a dynamic environment with changing lighting and thedttmodels a dynamic
environment with changing object locations.
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We created 675 difference surfaces in total. Given so marfg®es to assess, we
could not simulate homing runs from all possible startingnpofor each surface as
we did in the previous chapter. We therefore assessed redtios for all 225 static
difference surfaces by homing from thirty-two uniformlysttibuted starting locations
on each surface. These homing simulations use the softweaided in the previous
chapter.

To measure ease of optimisation on difference surfacesedtea dynamic and
static environments, we shall use the following criterieede are less computationally
intensive than the return ratio:

4.4.1.1 Global maximum at reference location

When homing, we shall assume that the reference locatiomr®@t the global max-
imum of the difference surface. Thus it is crucial that focleaifference surface the
reference location coincides with the global maximum.

4.4.1.2 Local maxima

Commonly used optimisation algorithms guarantee — at b#s identification of the
maximum nearest the starting location (see e.g. Adby andd3em[1974]). Thus,
local maxima away from the reference location should be aackeasy to distinguish
from the global maximum. A local maximum is defined as a positvhose value is
greater than all immediate neighbours.

4.4.1.3 Meaningful gradients

Some optimisation schemes are gradient-based (again $seafid Dempster [1974));
they attempt to determine and follow the local gradient (wheximising) or negative
gradient (when minimising). Assuming we can accuratelyrapipate function gra-

dients, these gradients will only provide useful informatif the angular divergence
between the true home direction and the current local gnadsesmall. We therefore
measure this angular divergence.

4.4.1.4 Monotonic difference surfaces

So-called direct search (Adby and Dempster [1974]) opttiis methods employ raw
function values rather than local gradients (see e.g. tm®Rwn method in Zeil et al.
[2003]). These algorithms assume that — when maximising r@ease in function
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value indicates a decrease in distance to a local maximumnm&ésure the probability
that a unit move (i.e. 30cm) in a random direction will providseful information. A
move towards the reference location should correspond toaease when using the
MI metric. So too, a move away from the reference locatiorugghgorrespond to a
decrease when using the Ml metric. Below, we frequentlyrredgehis as the “good

moves” criterion.

4.4.2 Timing Experiments

Here, we determine the speed with which mutual informatsocaiculated on the plat-
forms described in Section 4.2 using the range of viableluéisns and gray levels
identified in the previous experiments. We will look in padiar at computation in
parallel using the EyeRIS and computation in serial on owerAaptop.

45 Results

4.5.1 Viable Ml difference surfaces with reduced images

We use the criteria established in the previous section dgguthe viability of the
difference surfaces produced here. In all experimentsgtbbal maximum of the
difference surface coincided with the goal location, retgss of reduction of spatial
and/or intensity resolution.

Table 4.1 gives the results of our homing experiments incstainditions with im-
ages reduced spatially and/or in number of gray levels.dkgar that these reductions
have little effect on the success — as measured by retum-+aif homing in Vardy’s
laboratory environment.

Table 4.2 gives the mean number of local maxima for all spatid intensity re-
ductions for difference surfaces in which current and shapsnages were taken from
the “Original” data set. Local maxima seem to decrease wéitreasing numbers of
gray levels. The maxima tend to increase with decreasingaspasolution. As only
nine difference surfaces were created for each pairing afigpresolution and inten-
sity resolution, there is not enough data to determine ifitical maxima reported in
Table 4.2 are significantly different.

The non-snapshot maxima reported in Table 4.2 may causéepnslduring hom-
ing. If an agent begins homing close to one of these spuriama, it may well be
attracted to it in the homing process and even eventualtyahal We remind the reader
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Num. Gray Levels
Scale Down To| 256 | 128 | 64 32 8
100% 0.97| 0.97| 0.97| 0.95| 0.98

50% 0.970.97] 0.97| 0.95| 0.98
25% 0.98| 0.98| 0.97| 0.97| 0.97
20% 0.970.97| 0.97| 0.96| 0.97
17% 0.97] 0.98| 0.97| 0.95| 0.97

Table 4.1: Return ratios for homing on MI difference surfaces formed using Vardy’'s
images scaled to various spatial and/or intensity resolutions. Both snapshot and current

images were taken from the “Original” data set.

Num. Gray Levels
Scale Down To| 256 | 128 | 64 | 32 | 8
100% 19/19(19,18|1.0
50% 19/20(19(19(0.9
25% 1.7(19]19|17|13
20% 26(21|18|18|1.4
17% 22| 24|126|21|14

Table 4.2: Mean number of local maxima (in addition to the true global maximum) in
MI difference surfaces formed using Vardy’s images scaled to various spatial and/or
intensity resolutions. Both snapshot and current images were taken from the “Original”

data set.

that the stopping criterion used by our homing algorithmnardistinguish between
local and global difference surface maxima. This is a pnobleequently reported in
the optimisation literature. We experiment with one metbbdvoiding non-snapshot
maxima in the next chapter. We also give an extensive digmus$ another method —
simulated annealing — in the future work section of the néxsipter.

Table 4.3 gives the mean number of local maxima for all spatid intensity re-
ductions for difference surfaces in which current imagesawaken from the “Winlit”
set and snapshot images were taken from the “Original” setomparison of Ta-
ble 4.2 and Table 4.3 indicates — in accord with the resulthefprevious chapter —
that dynamic illumination leads to more difference surflxxal maxima than are seen
in static conditions, making homing more difficult. Here fanunately, reduction of
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Num. Gray Levels
Scale Down To| 256 | 128| 64 | 32 | 8
100% 3.2 38|3.7|36|36
50% 29131|43]4.0]|39
25% 32(33|37|4.1|4.6
20% 3232374246
17% 3.7|139|36|43|4.3

Table 4.3: Mean number of local maxima in Ml difference surfaces formed using Vardy’'s
images scaled to various spatial and/or intensity resolutions. Snapshot were taken from

the “Original” data set and current images were taken from the “Winlit” set.

Num. Gray Levels
Scale Down To| 256 | 128 | 64 | 32 | 8
100% 36(139|38/4.1|36
50% 36|37/4.0|4.2|33
25% 40| 4342|4233
20% 3441|4243 3.7
17% 39(144|149]4.0/|3.6

Table 4.4: Mean number of local maxima in Ml difference surfaces formed using Vardy’s
images scaled to various spatial and/or intensity resolutions. Snapshot were taken from

the “Original” data set and current images were taken from the “Chairs” set.

spatial and/or intensity resolution often yields more (o not dramatically more)
local maxima than we saw in difference surfaces formed witteduced images.

Table 4.4 gives the mean number of local maxima for all spatid intensity re-
ductions for difference surfaces in which current imagesavwaken from the “Chairs”
set and snapshot images were taken from the “Original” detrd seems to be no dis-
cernible relationship between number of intensity levald aumber local maxima. As
spatial resolution decreases, number of local maxima temttease as in Tables 4.2
and 4.3; again this increase does not seem dramatic.

We next looked at the standard deviation of angular discrephetween difference
surface gradient and true home direction. Figure 4.4 iaiss this divergence for
snapshot and current images taken from the “Original” data Bnages were scaled
down by 50% and various gray level reductions were used. Thedn blue illustrates
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Figure 4.4: Angular discrepancy between difference surface gradient and true home
direction as a function of goal distance. Snapshot and current images were taken from
the “Original” data set. Images were scaled down by 50% and various gray level reduc-
tions were used. The curve in blue illustrates the standard deviation of divergence for

difference surfaces produced from unreduced images.

the standard deviation of divergence for difference s@sgaroduced from unreduced
images. As can be seen, there is no dramatic differencesrctheria for the various

gray level reductions shown. Spatial reductions of imagea5%, 20% and 17% of

original size yield almost identical results.

When current images are taken from either the “Winlit” or ‘dis” data set, we see
largely the same results as reported in the previous pgragk&e do note, though, that
the maximal and minimal gray level settings tend to produighily worse behaviour
when spatial reduction is fairly large, as seen in Figure 4.5

As with the divergence criterion, the “good moves” criteri@efined in Section 4.4.1.4)
exhibits little sensitivity to spatial and/or gray levebrtection in static environments.
So too, in dynamic scenes the “good moves” criterion shigfavours mid-level gray
level reductions for large spatial reductions.

We close this section showing a few representative difiegesurfaces. Rather than
present fully three-dimensional difference surfaces. (Eigure 4.6(a)) in this section,
we represent each difference surface with three transeas Figures 4.6(b), 4.6(c)
and 4.6(d)). Each transect intersects the goal locatiamfitet (Figure 4.6(b)) has
slope infinity in the coordinate system of Figure 4.3; theoselc(Figure 4.6(c)) has
slope 1; and the third (Figure 4.6(d)) has slope -1. This kihdifference surface plot
makes it easier to see the effects of gray level and/or dpatiaction. The negative
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Figure 4.5: Angular discrepancy between difference surface gradient and true home
direction as a function of goal distance. Snapshot images were taken from the “Original”
data set and current images were taken from the “Winlit” data set. Images were scaled
down to 25% of original size and various gray level reductions were used. The curve
in blue illustrates the standard deviation of divergence for difference surfaces produced

from unreduced images.

distances in the transect plots indicate positions witlardinates less than that of the
goal location.

Figure 4.7 depicts six difference surfaces captured at glesisnapshot location
(x=180cm, y=180cm); both snapshot and current images va&entfrom the “Origi-
nal” data set. Figures 4.7(a), 4.7(b) and 4.7(c) each dispkingle transect from each
of the six difference surfaces; the transects are defined igjure 4.6. The difference
surface in blue was created with images whose spatial aedsity resolution was
unreduced; we provide this for comparison. The four othéfiedince surfaces — in
green, red, cyan, and magenta — used images which were cetueerespectively —
128, 64, 32, and 8 gray levels (spatial resolution was urgedn As can be seen in
the figure, reduction of gray levels results in a scaling-d@ivMI surface values near
the snapshot location and a constant shift of M| surfaceegatalatively far from the
snapshot location. We see qualitatively similar resultstéer snapshot locations, for
other spatial resolutions, and in the dynamic environmesmtexperimented with.

Figure 4.8 depicts six difference surfaces captured at glesisnapshot location
(x=180cm, y=180cm); both snapshot and current images va&sntfrom the “Origi-
nal” data set. Figures 4.8(a), 4.8(b) and 4.8(c) each dispkingle transect from each
of the six difference surfaces; the transects are definenligure 4.6. The difference
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Figure 4.6: Difference surfaces Section 4.5 are presented not as fully three-dimensional
(e.g. a). We rather depict three transects (e.g. b, ¢ and d), each intersecting the goal

location. See text for more details.
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Figure 4.7:

Transects of six difference surfaces produced at snapshot location

x=180cm, y=180cm. Snapshot and current images were taken from the “Original”’ data

set. See text for details of how the six difference surfaces were created.
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Figure 4.8:

Transects of six difference surfaces produced at snapshot location

x=180cm, y=180cm. Snapshot and current images were taken from the “Original”’ data

set. See text for details of how the six difference surfaces were created.



Chapter 4. Fast Computation of Mutual Image Information 122

Res=160x120 Res=176x144 Res=320x240

o
o
a
S

Mean MI computation time (s)
Mean MI computation time (s)
Mean MI computation time (s)

.26
0 100 200 300 0 100 200 300 [ 100 200 300
Number of gray levels Number of gray levels Number of gray levels

Res=352x288 Res=640x480

Mean MI computation time (s,
o
w
8

Mean MI computation time (s)

0.35 1.075
0 100 200 300 0 100 200 300

Number of gray levels Number of gray levels

Figure 4.9: Mean times for serial Ml computation on our laptop for various spatial and
gray scale resolutions. Note that the vertical scale on each subplot is different. See

Section 4.5.2 for details.

surface in blue was created with images whose spatial aedsity resolution was
unreduced; we provide this for comparison. The four othéfiedince surfaces — in
green, red, cyan, and magenta — used images which were sicaledo — respectively
— 50%, 25%, 20%, and 17% of their original size (humber of desgls remained

constant at 256). As can be seen in the figure, spatial résolteéduction leaves the
MI value at the snapshot location almost unchanged. Theaec@astant shift of Ml

surface values relatively far from the snapshot locatiore &k qualitatively similar
results at other snapshot locations, for other spatialluésos, and in the dynamic
environments we experimented with.

4.5.2 Timing Experiments

Figure 4.9 shows the mean time (over 20 trials) required tomae MI on the Acer
laptop for various spatial resolutions and gray levels. $tamdard deviation of com-
putation times on the laptop is exceedingly small, so we dshow it.

It proved difficult to alter the number of gray levels used argdlel computation of
Ml on the EyeRIS. Given the results of the previous sectiom fixed the number of
gray levels at 16 for our parallel timing experiment. Mean d&dmputation time over
20 trials with 16 gray levels was 0.098 seconds with a stahdaviation of 0.0656
seconds. Image resolution was %288 pixels, the native size of all EyeRIS images.
This mean time is approximately equal to the mean computaitioe on the laptop at
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Figure 4.10: Mean intensity of images of constant well-lit scene captured over time with

the EyeRIS system.

the lowest spatial resolution.

4.5.3 Noise in Image Capture on EyeRIS

As the EyeRIS system is in a fairly early stage of developmeatvanted to determine
whether it produces any unreported bugs when capturingesiagd computing mu-
tual information. In an early test, we programmed the Eye®iS§em to capture 500
images, one every 35 ms (the default exposure time); allh@agt lights were turned
on. A troubling trend soon became apparent. As depictedgargi4.10, the mean
image intensity over time increases approximately loganritally, with periodic sharp
dips. This contrasts with Webcam images captured over tivhesh are corrupted by
zero mean Gaussian noise.

We looked at the values of individual pixels in successive® images and found
that the dips evident in Figure 4.10 are caused by a redurtitre majority of image
pixels. This decrease is invariably followed by an increafsgixel value in one of the
next few images. The mean intensity increase is usuallytijidigher than the pre-
ceding mean intensity decrease. Between dips, successges differ by noise with a
slightly positive mean and approximately Gaussian distiidm. We have brought this
problem to the manufacturer of the EyeRIS but they have asffered no solution.

Our laboratory is lit by flourescent lights. It may be the ct=a the dips in mean
image intensity in Figure 4.10 are caused by the flicker — #mgodic dimming — of
these lamps. The flicker of computer monitors near the EyaRd$ contribute to this
phenomenon as well. To determine whether the dips are cénysiese light sources,
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Figure 4.11: Mean intensity of images of constant scene captured over time with the
EyeRIS system. All flourescent lights and nearby computer monitors in the laboratory

were turned off.

we as before programmed the EyeRIS system to capture 50Gsnage every 35
ms. This time, though, the images were taken with all floweastights and nearby
computer monitors turned off. The only illumination camerir natural light flowing
through our laboratory’s windows. Figure 4.11 depicts theamintensity of the 500
images we captured successively in this experiment. We &djusted the range of the
y-axis of Figure 4.11 to cover fourteen gray levels, morethee needed to display the
data; this is to make comparison with Figure 4.10 — whoseig-also spans fourteen
gray levels — easier. The mean image intensities depict&igure 4.11 are smaller
than those in Figure 4.10 since the images used to createrter figure were taken
in much darker conditions. About ten sudden sharp dips inmensity level are
evident in Figure 4.11, far fewer than the number of dips guFé 4.10. The majority
of dips in Figure 4.10 represent a change in mean intensigpotit three gray levels
whereas the dips in Figure 4.11 are generally of smaller iitagdg — about one gray
level. Interestingly, there are about ten dips in Figuré4vhich represent a change in
mean intensity of about one gray level, matching the patieen in Figure 4.11. Our
conclusion is that the lab’s flourescent lighting causesntlagority of dips in mean
image intensity seen in Figure 4.10. There may be anotheogeally flickering
source of illumination — dimmer than the flourescents andeasigidentified — in our
laboratory which was still active when capturing the imagssd to make Figure 4.11.
An important question is this: does the noise describedadmrupt Ml difference
surfaces, making them difficult to optimise? In order to find,ave performed the
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following experiment: We first computed a difference sugfdansect using images
from Vardy’s “Original” data set. The snapshot was the image=150 cm, y=0 cm.
We then simulated a homing run along a line to this snapsheattitmn, beginning at
x=150 cm, y=330 cm. As expected, this homing run producesaphgin which Mi
increases monotonically with decreasing goal distanaghieg a maximum at the
goal (see Figure 4.12, dashed line).

In order to determine the effect of EyeRIS noise on the MI aigwe computed
the difference surfaces transect described above buitrtiescorrupted Vardy’s images
with this noise. We corrupted each image by adding a randdegén (allowed to
be position or negative) to each pixel value in the image. Atise value for each
pixel was drawn randomly from a probability density functigenerated from some
of the 500 noisy EyeRIS images we described above. To gendret probability
density function we assumed that the Vardy images alongaieéct were captured at
1 second intervals. We also assumed, somewhat arbitrdrdyymovement along the
transect began 5 seconds after starting to acquire EyeRa§es We identified the
EyeRIS image whose capture time corresponded best withsiigreed capture time
of the current Vardy image. The EyeRIS images were captwey&85ms. Thus, the
second Vardy image in the transect, for example, was mateftadhe 1729 EyeRIS
image and the third Vardy image in the transect was matchéutve 20% EyeRIS
image. To compute the noise probability density functiarttie third Vardy image, we
subtracted the 179 EyeRIS image from the 26%and created a histogram from the
pixel differences. The noise probability density func8dor the other Vardy images
in the transect were computed similarly. The differencdemr transect which resulted
from the corrupted Vardy images is shown in Figure 4.12 (sliie). The MI signal
generated from corrupted images exhibits a much less prasablmaximum at the
goal location than does the uncorrupted MI signal. We cangius Ml signal, in fact,
to be unusable for homing purposes. We repeated this expetimith several (ten)
combinations of snapshot location and starting locationgugardy’s “Original” data
set. The result in each case was qualitatively similar tbdleacribed above.

4.6 Discussion and Conclusions

The goal of this chapter was to provide methods to speed thpetation of mutual
image information without reducing the effectiveness dfedence surface-based vi-
sual homing. We proposed a novel method of computing mutnagie information
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Figure 4.12: Solid line: transect of homing run using images from Vardy’s “Original” data

set. Dashed line: transect homing run using same images as before, but corrupted by

noise of the type seen in Figure 4.10.

with the help of a parallel image processing device: the Arak EyeRIS Vision Sys-
tem. We showed that this algorithm computes mutual imagerimdtion in O(B?)
operations, wher® is the number of intensity levels in the input images. We then
demonstrated that reduction of gray levels (to a minimum)al@:s not have a neg-
ative impact on homing performance in a laboratory envirentrin both static and
dynamic conditions.

Unfortunately, it is clear from the work described in Sent#.5.3 that the noise
in the EyeRIS’s image capture process renders this deviasalne for our homing
studies. We demonstrated that this noise is in part due téubeescent lighting used
to illuminate our laboratory environment.

As the EyeRIS system proved to be non-viable for our purposesattempted
to speed the serial computation of mutual information. W sb by reducing the
spatial resolution and/or number of intensity levels ingsfet and current images.
Serial computation of mutual image information taka@? + NM) steps where each

input image had\ rows andM columns. We demonstrated that a reduction in spa-
tial and/or intensity levels in our input image has littlesc@rnible negative effect on
homing performance in a laboratory environment in bothist@bd dynamic condi-
tions. We considered quite a large range of spatial and sitielevel reductions, as
described in Section 4.4.
We compared the time required to compute mutual informatidh parallel and
serial algorithms in Section 4.5.2. We computed mutualrimftion using the Eye-
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RIS using input images of 12828 pixels subsampled to 16 gray levels. On average
computation took 0.098 seconds. Serial computation wighty larger images with

16 gray levels took on average about 0.042 seconds, lesdifthe time. The se-
rial setup is therefore faster than the parallel (at leash wiput images reduced as
described above) and is not subject to the debilitating enagpture noise described
in Section 4.5.3. In “live” homing experiments, therefovee feel justified in using
our laptop (or when possible a faster desktop computer)herdhan the EyeRIS — to
compute mutual image information with reduced images.

But what image size and gray level resolution should we usswvdomputing mu-
tual image information serially? There is no one combimabbimage size and gray
level cardinality that yields consistently superior penfiance by any of the measures
of comparison considered in Section 4.4.1. The resultsrtegan Section 4.4.1 lead
us to conclude that for difference surface homing in statt dynamic conditions, im-
ages with a spatial resolution of 2xB14 pixels (20 percent of the original size of the
Vardy images) downsampled to 128 gray levels will consityaneld relatively good
homing performance. Mutual information with images of thige will take on aver-
age 0.09 seconds to compute serially using our laptop, appately the same amount
of time required by the parallel algorithm (albeit with stealimages and fewer gray
levels).

We believe that homing with reduced images is successfultaltiee effect that
such reduction has on the mutual information signal. We saWwigure 4.7 that re-
duction of gray levels results in a scaling-down of M| suda@lues near the snapshot
location and a constant shift of Ml surface values relagifal from the snapshot lo-
cation. Even for quite drastic reduction in the number ofydevels the difference
surface retains a global maximum at the snapshot locationaRocation somewhat
distant from the snapshot location, the gradient of theediffice surface for one gray
level setting is approximately equal to the gradient of thdaxe at the same location
for another gray level setting. These qualities lead diffiee surface homing results
which are largely unaffected by the number of gray levelsipui images.

The observations detailed above are based on experimestdis. We would like
to provide some analytical support for these results. We liagk at the change in
MI due to gray level reduction whelg is captured at the snapshot location.Idfis
identical tols at this location (i.e. no image capture noise, environmestatic), then
Ml (ls,Ic) = MI(ls,Is). It follows from Equation 4.1 that
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I(Is 1s) = zops )lg(ps(a)) = H(ls) 4.2)

wherepg(a) is the probability that a pixel will have intensigy(0 < a < B) in image
Is; 1g is shorthand for a logarithm with base 2. Valuesaofor which ps(a) = 0
are ignored in the calculation of Equation 4.2. As indicatddl(ls,|s) is simply the
entropy ofls (denotedH (Is)). In the remainder of this discussion, we shall drop the
subscripts attached to probabilities (epg(a) becomeg(a)).

When the number of gray levels igis halved H(ls) becomes

B-1
Hreducedls) = — % [p(a) + pa+1)]lg[(p(a) + p(a+1)] (4.3)
by
which can be rewritten as
HreducedIs) % p(a)lg[(p(a) + p(a+1)]+ p(a+1)lg[(p(a) + p(a+1)] (4.4)

So too, Equation 4.2 can be rewritten as

B-1

H(ls) = —aZ) [p(a)lg(p(a)) + p(a+1)lg(p(a+1))] (4.5)

by2

Each term in—p(a)lg[(p(a) + p(a+1)] in Equation 4.4 corresponds to a single term
—p(a)lg(p(a)) in Equation 4.5. Since & p(a), p(a+1) <1,—p(a)lg[(p(a) + p(a+1)] <
—p(a)lg(p(a)) for all a. Thus, as we saw in Figure 4.7, gray level reduction causes a
decrease in Ml value at the snapshot location. The scale eétiction is dependent
on the distribution of intensities ik, If, for example, the distribution of intensities is
uniform, thenp(a) = & for all a. Equation 4.5 becomes

H(ls) = _é [élgé+ EIgg} - 22y E} — g [é} _igB)  (46)

and Equation 4.3 becomes

reauced1s) = szz & =-35i|3] -9 |g] @1 @)
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Thus, whenls has a uniform intensity distribution, halving the numberimensity
levels leads to a reduction of 1 in the MI signal at the snaplsitation.

We saw in Figure 4.7 that reduction of gray levels results @omastant shift of Ml
surface values relatively far from the snapshot locatior.slall provide some analyt-
ical support for this observation. We define four mutual imagormation readings:

* Ml1=MI(Is Ic1) is the mutual information reading at a positigirelatively far
from the snapshot locatioihg; denotes the image capturedxatand — as usual
—Isis the image captured at the snapshot location.

* Ml2 = MiI(ls,Ic2) is the mutual information reading at a positignclose toxi;
Ic2 denotes the image capturedkat

* Ml reducediS the mutual information reading & with the number of gray levels
in Isandlcy cut in half.

* Ml reducediS the mutual information reading & with the number of gray levels
in Isandlc, cut in half.

To support our empirical findings, we would like to show tial; — Ml reduced~

Ml — Mlz,reduced
It is convenient to express mutual image information in threnf (from Hill et al.

[2001])

|\/||(|s7 IC) :H(|s)—|—H(|C)—H(|s, IC) (4.8)

whereH (Ic) is the entropy ofic andH(ls,Ic) is the joint entropy between the two
images (which we shall define later).

Equation 4.8 makes clear that demonstratingthiat—MI 1 reduced™~ M12 —MI2 requced
is equivalent to showing that

[H (|s) +H (|Cl) -H (|s, |Cl)] - [H (|Sreducecﬁ +H (|C1,reduced) -H ('Sreduced |C1,reduced)] ~
[H (|s) +H (|C2) -H (|S, |CZ)] - [H (ISreducecD +H (|C2,reduced) -H (ISreduced ICZ,reduced)]
(4.9)

We shall assume that, singgnear taxi, H(lc1) = H(Ic2) andH (Ic1 reduced = H (Ic2,reduced -
This assumption is valid if neithet; nor X3 is close to an imaged object and the
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Figure 4.13: Graph (in blue) of j versus | - 1gj for small positive values of j. The linear

Taylor series estimate of j-1gj is shown in red.

visual environment is static. Given these assumptionsyderoto show thaMl; —
Ml 1 reduced™ MI2 — MI2 reducedit suffices to demonstrate that

—H (|57 |Cl) +H (ISreduced ICl,reduced) ~—H (IS7 ICZ) +H (|Sreduced IC27reduced) (4-10)
Joint entropy is defined as

B-1B-1
H(ls Ic) = — Zjbz p(a b)lg (p(a,b)) (4.11)
a=0b=0

where p(a,b) is the probability that a given pixel irs has intensitya and the same
pixel in Ic has valueb. Terms withp(a,b) = 0 are ignored in the calculation of the
joint entropy.

When the number of gray levels Ig andlc is halved, Equation 4.11 becomes

B-1B-1
H (Isreduced Ic reduced = — ZO z [p(a,b)+ p(a,b+1)+ p(a+1,b)+ p(a+1,b+1)]-
B2 o2
lg[p(a,b) + p(a,b+1)+p(a+1,b)+p(a+1,b+1)
(4.12)
We found it difficult to show that Equation 4.10 is true usiognj entropy as ex-

pressed in Equations 4.11 and 4.12. Equations 4.11 and dristst of a number of
terms of the formj -1gj, wherej is a particular joint probability. We shall replace
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each of these terms with its Taylor polynomial approximatidccording to Taylor’s
theorem (Burden and Faires [1993]), any function which tswes differentiable can
be approximated by a polynomial of (up to) degree n whosegexra dictated by the
theorem. The Taylor polynomial is designed to coincide il approximated func-
tion for one value of the function’s dependent variables. The approximatecomes
less exact as the distance frayrincreases. Sincgis far from the snapshot location,
each joint probabilityj will be a positive real number very near zerpdould in fact
be equal to zero but these values are ignored in the compntatijoint entropy). As
can be seen in Figure 4.13, the graphjofgj is almost linear when is near zero (a
typical range of joint probability values was used to crdahte graph). Thus, we feel
justified in using a Taylor polynomial of degree one to apprete j - 1gj; this Taylor
polynomial is

j-lgj~nlg(n)+Ilg(en)(j—n) (4.13)

wheree is the base of the natural logarithm amds a small positive real number. We
shall use the following more convenient form of Equation34.1

j-19j =~ jlg(en) —nlg(e) (4.14)

Using Equation 4.14 we can rewrite Equation 4.11:

B-1B-1
H(lslc) =~ —;b;[p(a,b)lg(en)—nlg(e)]
B _B—lB—l B—1B-1
~ -
g(en)a;bzop(ajb)mlg(e)a;b;l
(4.15)
B-1B-1

of course,% z p(a,b) = 1. According to the definition of joint entropy given earlier
=0 b=0

in this section, terms of Equation 4.15 wiglia, b) = O are ignored in the calculation

B-1B-1

of the joint entropy. Thus,z) Z 1 is a count of the number of non-zero values of
=0 b=0

p(a, b) for all aandb. As p(a,b) will sometimes be zero for particular valuesafnd

B—1B—1
b, this count is sometimes less thBfi We shall IetZ) Z}l equalk whereK < B2
a=0b=

Thus Equation 4.15 becomes

H(ls Ic) = —lg(en) +-Knlg(e) (4.16)
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We can substitute the right-hand side of Equation 4.16 impoaEion 4.10:

—Kinlg(e) + Ky reducedllg(e) ~ —Konlg(e) + Ko reducedl!g(€) (4.17)

This equality will hold ifK1 redquced— K1 =~ K2 reduced— K2; we see that empirically this
is often the case. For example, in one instance using Vaddy&s setK requced— K1 =
—18188 anKy reduced— K2 = —18275; in this casg; andx, were separated by 30cm.
We saw guantitatively similar results for other samples afdy’s data set.

We showed in this chapter that we could speed the computefiomutual infor-
mation without reduction in the success of difference sigflaoming. It could be the
case, though, that the time taken to home is dominated by mbeement rather than
difference surface evaluation. In the next chapter we cautydetailed simulations of
difference surface homing with various optimisation altfons; mutual information
is used to compute image similarity. The results of aboutO5€ithulations in static
and dynamic conditions indicate that about 2.3 percent afihg time is on average
spent doing difference surface evaluations when usingriddignt-based optimisation
algorithm employed in the previous chapter. The robot spéimel rest of the time mak-
ing pose changes. Other optimisation algorithms (bothigracbased and not) yield
similar results.

The work done in this chapter is still of some value, thoughe Simulated robot
was made to move rather slowly (8.0 cm per sec) on the assomibtat in our live
experiments the robot will move slowly in order to avoid whelg@page. If the robot
is made to move faster, function evaluation time plays aellargle in overall homing
time. Also, speedy image histogram and mutual informatmmngutation is of general
interest as these algorithms are widely applicable in im@geessing tasks (see e.g.
Shahbahrami et al. [2008] and Li [2005]).

4.7 Future Work

The obvious next step in using the EyeRIS is to eliminate thisenin image capture
depicted in Figure 4.10. We have contacted the manufactoneake them aware of
the problem. They have as yet offered no solution.

Authors have recently reported attempts to compute imagdrams (see e.g.
Scheuermann and Hensley [2007]) and mutual image infoomgsee e.g. Shams
and Barnes [2007]) with graphics processing units (GPUsPU&are chips which
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were developed to facilitate the transformation and rendeof computer graphics
primitives like polygons on personal computers. The dgwelent of the GPU has
been driven by the flourishing computer gaming industry velm®ducts are of course
often extremely graphics-intense. GPUs transform andaeqdickly by performing
common vector operations in parallel. As many algorithnos jast those in computer
graphics, rely on vector operations, researchers haveanast few years seen the
potential for extremely fast general-purpose computatiith GPUs (GPGPU) beyond
mere rendering (Luebke et al. [2006]).

The main problem with mutual information calculation withG#®U is in image
histogramming. Shams and Barnes [2007] show that histagiragruns into trouble
when two or more different GPU subprocessors, working irajbal; attempt to incre-
ment the same histogram bin at the same time. These authensoove this problem
by dividing the GPU into blocks of subprocessors. Each biseakevoted to comput-
ing the joint histogram of a unique subset of the input imadesch subprocessor in
a particular block increments a unique subset of histograns. fDnce each block has
computed the joint histogram for the subset of the input foiolv it is responsible, the
joint histograms are combined to produce the complete juistogram for the input
images. This melding process is described by Shams and 8§6087] as efficient
but is not laid out in detail.

A field-programmable gate array (FPGA) is a device congistihthousands of
reconfigurable hardware logic blocks (Li [2005]). Each glock can be configured
by a programmer to execute a relatively simple function (eelogic gate, decoder,
etc.). The programmer can also define the connections betlege blocks. In this
way, an FPGA can be used to create complex integrated aroyia programmer “in
the field” rather than by a chip manufacturer.

FPGASs have in the past few years received interest from refsess in image pro-
cessing and vision-based robotics (see e.g. Draper etG0[2 Shahbahrami et al.
[2008] and Anderson et al. [2005]). With their array of loditocks, FPGAs lend
themselves to parallel implementations image processingnes. Efforts have been
made to parallelise the computation of image histogramsguSPGAs (see e.g. Li
[2005] and Shahbahrami et al. [2008]). Histogram compoitais, as we have previ-
ously explained, a crucial step in the calculation of mutoedge information. Shah-
bahrami et al. [2008] note that the major challenge in thalpgrcomputation of an
image histogram with an FPGA is memory collision. That islifimage pixels are
read simultaneously to compute a histogram, it is likelyt @taleast two pixels will
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have the same intensity value. Each subprocessor handisgikel value will try to
increment the associated histogram bin at the same timehb&heami et al. [2008]
solve this problem by dividing images in half and computimgérial the histogram of
the half-images at the same time on separate processors.

It would be interesting to pit our parallel algorithm for nwat information com-
putation against an FPGA-based or GPU-based MI computafitre FPGA-based
MI computation in Li [2005] is tested on 3D images so we cargasily compare the
reported timing results to ours. Nor can we compare our teslilectly with those re-
ported by Shams and Barnes [2007] as these authors do not tieptime required for
mutual information computation of individual images. Thug would likely have to
implement the mutual image information algorithms desadtiim Li [2005] and Shams
and Barnes [2007] before a comparison with our work could been

Other parallel image histogram algorithms exist, but asigleed for systems dif-
ferent than the EyeRIS and somewhat unlike FPGAs. Jenqg dnd B&92] describes
an efficient algorithm to be used on a reconfigurable mesHIpbpaocessor. Like the
EyeRIS’s FPP, a reconfigurable mesh consists of a grid oflfjocannected proces-
sors. As the name suggests, the connections of the recaaifigunesh can be opened
or closed during program execution. Given ldnx N image withB gray levels, the

histogram is computed i@(+/B Iog\/g(%)) steps ifB < N andO(+/B) for B> N.

4.8 Related Work

After creating our parallel single-image histogrammingaxithm (Algorithm 3), we

found a similar algorithm in Braunl et al. [2001]. The algbms differ in how band-
pass intensity images are created for each intensity andvinthe number of band-
passed pixels are counted. We could find no parallel jointbgramming algorithm in
the literature.

We could find only one instance of visual homing with parat@hputation (Moller
[2000]). In this work, Méller describes a purpose-builaéog circuit which computes
a homing vector with the average landmark vector scheme. ddgodstrates that the
system works in simple arena consisting of black cylindersaovhite background.
The system was not tested in more complex environments.



Chapter 5

Optimising the Difference Surface

5.1 Introduction

In Chapter 2, we described two methods which Zeil et al. [2@48&d to move the
homing agent so as to optimise the difference surface: “Bawn” and “Triangular.”
These may not be the best solutions to this problem. Thistehawestigates ways of
optimising the difference surface in order to home. Unlilal 2t al. [2003] (and to
our knowledge all other visual homing researchers), weidenvisual homing under
the influence of realistic sensor noise.

5.2 Problem Definition

We assume that the agent is travelling on a planar surfade Wwbiming. Without loss
of generality, we define the starting point of the agent’s imymun to be the origin
of a local two-dimensional Cartesian coordinate systene ddgent’s initial orientation
defines the x-axis of this coordinate system; the y-axis te@worthogonal direction in
the plane on which the agent travels.

With this coordinate system in mind, we can make the foll@wseful definitions.
We definel (X) to be the panoramic intensity image capturable at poskien(x,y).
The value of the difference surfacesat the signal measured by the homing agent —
will be defined to bef(X). The functionf is synonymous with what we have called
the difference surface in previous chapters.

The process of optimisation, as we shall see in the followewions, is an iterative
one. The agent moves through a sequence of points betwestaritilg position (at
the origin of our coordinate system) and the snapshot locatiVe label thék;, point

135
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in this sequencg (1 < k < N). We letxs be the location of the snapshot.

The problem is to move the agent to search for global optirguai f. We assume
thatX* is equal toXs; the results reported in Chapter 3 indicate that this assomp
is valid quite often in both static and dynamic environmdbtsdifference surfaces
formed using the mutual information image similarity measuTo be precise, this
assumption held true for 291 of the 384 difference surfaces (or 96%) used in the
experiments in Chapter 3. The 13 difference surfaces whitnok meet this assump-
tion were formed with dramatic lighting change between shapand current images
(i.e. the snapshot image was drawn from the “Winlit” set andent images were
drawn from the “Doorlit” set or vice-versa).

5.3 Optimisation Algorithms

The literature provides many algorithms to optimise a fiorcisee e.g. Adby and
Dempster [1974]). Some are designed for linear functiotigrs for non-linear, some
work only for functions with integer domains, others for Irgalue inputs. Which

algorithms are right for us? Our optimisation problem hasiaber of qualities which
will help us narrow down the search for an appropriate atari

1. Our moving agent can use path integration and/or dedanétg to estimate.
These techniques suffer from cumulative errors. Thus asiigproceeds, our
agent will have an increasingly vague estimatejof

2. Unlike many optimisation problems found in the liter&uin order to measure
f at two distinct pointX andX’/, the robot must travel frorr to X'

3. Since the robot we use is non-holonomic, it must rotaterdeioto change its
direction of travel. This rotation of course takes time.

4. Rotation and translation of the robot are noisy procesddsat is, the robot
executes each requested motor command with some level oéaisn.

5. Given our empirical study of the difference surface invpryas chaptersf is
clearly nonlinear. Unfortunately, we do not know the funo@l form of f. Note
that in prior published work we have made some attempt taifyehis form, at
least in the case M Sdifference surfaces (see Szenher [2005b]).
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6. The evaluation of thé at X is corrupted by sensor noise, as we will show in
Sections 5.4.1 and 5.4.2.

7. The gradient off atX is not directly available. Iff (X) were a known function
—e.g. 3%+ 6x+ 4y® — then we could compute its gradient; the parameterised
gradient of our example function j§x+6 12y°]T. If we knew thaix = 4 andy =
5, we could compute the gradient at this point to[®@ 30Q". Unfortunately,
while homing we know neither the precise formfohor the value oK.

Given the considerations in the above list, as well as thélpro statement in
Section 5.2, the literature indicates that stochasticnaigttion algorithms are most
appropriate for the problem at hand. According to Spall 08tochastic optimisa-
tion algorithms apply when there is noise in the measurerakttie function to be
optimised and/or the direction in which to search duringraf#ation is (at least some-
times) chosen with some randomness. Both are certainlyabe loere (see list items
(4) and (6) above). As we shall see there exist some usefobked direct search
stochastic optimisers which require no function gradiefdrimation. Other stochas-
tic optimisers provide ways of approximating the gradieBelow, we describe the
stochastic optimisers suggested by Spall [2003] which we lshosen to use.

5.3.1 Stochastic Optimisation

The gradient of a function at a point is a vector pointing ia threction of greatest
function increase at that point. If we knew the gradienf @it xi; we could home by
moving in the direction of that gradient for a certain distanreassess the gradient at
the new location and continue in this manner until home. Asussed above, we can-
not directly measure the gradiehat a given location. Spall [2003] suggests a number
of methods to estimate the local gradient from a few locatfiom measurements.

The such first method — two-sided finite differencing (2FDSA$ defined by the
following equation:

_ 2
0% Y) = f(Xk7YK+Ck)Ekf (XY= ) .1)

2Ck

d(x, Yk) denotes the estimate of the gradienf df.e. the difference surface) at the
step in the homing algorithm. To evaluate Equation 5.1, tilaesof f at four points
— (X% + Ck, k), (X — Ck, Yk), (X, Yk + Ck) and (X, Yk — Ck) — must be computed. The
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(xk +Cu yk)
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Figure 5.1: (a) A skematic of the moves made by our model agent to gather the informa-
tion required to calculated Equation 5.2. The moves required to calculate Equation 5.1

are given in (b).

points (xx + Ck, Yk) and (Xkx — Ck, Yk) form a line segment of lengthc with (i, y«) at
its midpoint. The value we assign will be discussed below. This line segment can
be oriented in any direction in the plane on which the agembasing. The points
(X, Yk + Ck) and (X, Yk — k) also form a line segment of lengtimwith (X, yk) at its
midpoint. This line segment must be orthogonal to the firke eometric relationship
between these four points is depicted in Figure 5.1(b). Fhemponent ofj(xx, k) is
proportional to the difference between the valuef aft (xx + cx, k) and (Xk — Cx, Yk)-
The y-component ofi(xx, k) is proportional to the difference between the valud of
at (X, Yk + ¢k) and (X, Yk — Ck). Note that the estimate of the gradientfofjiven in
Equation 5.1 follows directly from the definition of the gradt as being the vector of
partial derivatives off (Kleitman [2005]).

Spall [2003] suggests a less time-consuming alternativbeagradient estimate
given in Equation 5.1. The one-sided difference procedliFd®SA) is described by
the following equation:

(5.2)

F (X Ci,Yi) — F (X, Yk)
C
90, Yk) = [ f(Xk,yk+Ck§—f(Xk7YK) ]

Ck
Equation 5.2 requires that the homing robot visit three @atja points and carry

out a single function evaluation (i.eMI calculation) at each of these points. When

estimating the gradient of with Equation 5.1, the robot visits four points and eval-
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uates fourM| image differences. There are several possible sequencasva@ment
commands that the robot can use to visit these points. We leawve-choreographed
these moves to minimise the movement time required to carr§ BDSA and 2FDSA.
Figure 5.1(a) depicts the actions our homing agent makesdier ¢o calculate the dif-
ference surface gradient @, yx) using Equation 5.2. The agent moves from the loca-
tion of the previous gradient estimgt&_1, yk—1) along the dotted line emanating from
the lower left-hand corner of the figure (&, y«x). When it reache$x, k), the agent
carries out a function evaluation. It then movesdpydistance units (e.g. cm) in its
current heading toxx + Cx, Yk). Another function evaluation is carried out. The agent
must now move t@xy, yk + Cx) and carry out a function evaluation there. It could move
back to(xk, yk), turn 90 degrees counter-clockwisand movegy units to (X, yk + Cx).-

It takes less time, though — starting fraix + Cx, Y«) — to rotate 45 degrees clockwise
and move in reverse by/'2¢ units to (X, Yk + Cx); this is what the agent does. The
agent uses dead-reckoning to estimate all distancesle\aid angles turned. At this
point, the agent has the information necessary to estirhatgradient of the difference
surface atx, yk) using Equation 5.2.

Once the gradient has been calculated, the agent should froowéxy, yk) in the
direction of the gradientd) by a distancey to reach(xx 1, Yk+1). The value we assign
a is discussed below. Unfortunately, the agent is curreritting at (X, Yk + Ck). It
would be inefficient to travel back t@xy,yx) and from there move t@xy1,Yk+1)-
We instead use simple trigonometry to infer the distarag énd direction ') to
(%11, Yk+1) from (X, Yk + ¢k). These are given by the following equations:

a = \/aﬁco§9+(ck—aksin9)2 (5.3)
0’ = atan2(aysin® — cx, ax cosh) (5.4)

The functionatan2(y, x) is the so-called two-argument inverse tangent (Weiss&gii Ta));
it returns the counterclockwise angle between the x-axistae vector|x y|T and,
unlike the standard inverse tangent function, it is validdt four quadrants of the
Cartesian plane.

The set of moves used to gather the difference surface vedgeged to calculate
Equation 5.1 is depicted in Figure 5.1(b). As in Figure 5)1{fae agent moves along
the dotted line starting from the lower left-hand corner o figure toward x, Yi)-

In this case, though, the agent stapsunits from (x,Yx) to sample the difference

1our simulated agent — like the Koala robot we shall use in imerrobotic experiments described
in Chapter 6 — is non-holonomic.
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surface atxx — Cx,Yk)- It then moves ahead bycRunits to (X« + Ck, Yk); once there,

it again samples the difference surface. To movéxtoyk + ck), the agent as above
rotates by 45 degrees clockwise and moves in reversg2iy units. After sampling

the function at(x, yk + C«x) the agent rotates 45 degrees clockwise and moves forward
by 2cy units to measure the difference surface>at yx — ck). Using the movement
commands we just described, 1FDSA is approximately 2 timetef than 2FDSA.
This movement speed-up may counterbalance the assumettiogdun the accuracy

of 1IFDSA's gradient estimate; we shall attempt to deternffitieis is the case in our
experiments, described below.

Once the gradient has been estimated, the homing agent rfromests current
locationx in the direction of this gradient and by a distamgeo the next point in the
optimisation processg. 1.

Spall [2003] suggests that the choice of the evolution afig@j andcy are crucial
to the success of the stochastic optimisation algorithmvefad authors (e.g. Spall
[2003] and Cole-Rhodes et al. [2003]) use the following ¢igma to compute gain
sequences:

a
%= G 1rA0 (5.5)
O = (kfl)v (5.6)

These equations of course depend on the user-defined vdlaes, &, a, andy. As
above, the independent varialilies the current iteration of the homing algorithm. Spall
[2003] suggests that the value of these parameters is thdinigéactor in the success
or failure of the finite difference stochastic optimisatiaigorithm. For example, an
overly large value of will cause the optimisation algorithm to behave wildly inlga
iterations. Ifa or A is too large, the algorithm will move very slowly towards an
optimum. Ifcis not large enough, the gradient estimate will be overcoynibction
noise.

Cole-Rhodes et al. [2003] limit the parameters of Equatidisand 5.6 to the
following: a,c > 0,A>0,0<y< a < 1. Spall [2003] provides a proof thataf c, a,
vy, the function to be minimised and the measurement noise oee&tin criteria then
one can guarantee that a stochastic optimisation algouitiiising a finite-difference
gradient will converge to an optimum value. Unfortunateyr function does not
seem to meet the criteria. Still, Equations 5.5 and 5.6 pwiseful forms for our
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gain sequences which we shall use in our experiments. Westistetermination of
good values fom, ¢, A, a, andyin Section 5.4.

5.3.2 Rejected Optimisation Algorithms

Spall and other authors suggest a number of optimisaticorighgns which we have
rejected. We discuss these algorithms, and why we chosgetd them, briefly in this
section.

Spall [2003] describes a third method (apart from 1FDSA arD2A) to estimate
the gradient: simultaneous perturbation (SP). SP randeaiécts a new direction from
a given distribution (usually a Bernoulli distribution)émoves in that direction fazi
units. The function is measured at the beginning and endeofrtve. The difference
in the two measurements is used to estimate the magnitudegirbjection of the
gradient in the chosen direction. The algorithm uses thimesed magnitude to decide
how far to move in the chosen direction. SP requires only wfion measurements
per iteration. Unlike 1FDSA and 2FDSA, the number of functévaluations required
per iteration remains fixed regardless of the number of irddpnt variables. This
limit in function evaluations comes at a cost of a relativebor gradient estimate. In
preliminary tests, the disadvantage of SP outweighed tharadge, so we chose not
to use it in the experiments described below. SP may provielysigough, if homing
in three dimensions. In three dimensions, 2FDSA requiregusiction evaluations to
estimate the difference surface gradient; SP still regyirst two.

The Nelder-Mead (Spall [2003]) algorithm is a popular opsation algorithm
when only noisy function measurements (rather than noigyarnoisy function gra-
dients) are available. When optimising in two dimensiornslddr-Mead (NM) samples
the function at the vertices of an (initially random) tridgexghe triangle is called a sim-
plex. The vertex with the worst (i.e. least optimal) functialue is identified and this
vertex is reflected through the line connecting the othervwexices. If the function
value at this new vertex is an improvement, another refladfiperformed. If not,
we shrink the simplex and evaluate the function at the vestaf the new vertex. We
reject NM for homing because the path the algorithm gensristguite tortuous; as
noted above, rotating and translating the homing robotstéikee.

We discussed in Chapter 2 the use of the extended Kalmantiit&accou and
Jouvencel [2002] to solve a navigation problem essentedjyivalent to difference
surface homing. Though the Kalman filter is not an optim@sagalgorithm, we still
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discuss it in this section because we ultimately decidedjext it for use in difference
surface homing. The extended Kalman filter allowed BaccalJauvencel [2002] to

infer the location of their robot with respect to the homeipos using a succession of
noisy estimates of their distance from home. We cannot us@fproach in our work

because our homing robot has no knowledge of the functi@ing difference surface
values to home distance. It is concievable that the homimgiagould learn such a
function on its first outward trip from the snapshot locatidve implemented this idea,
though, and met with very little success. The problem wasttieafunction learned

by the agent as it left the snapshot location was invalidrduhioming in dynamic

conditions. Another problem with the Kalman filter approastthe homing agent
has no knowledge of its initial location with respect to tinegshot location; a rough
intial position estimate is required by the Kalman filterindga particle filter (see e.qg.
Menegatti et al. [2004] and Fox et al. [2001]) instead of threrKan filter may solve

this problem.

Some authors (see e.g. Lizotte [2005]) recommend perfayraimegression to
estimate the underlying functiohfrom noisy samples. Given an estimatefofrom
regression, we could use well-known techniques from caktd find the value of
which optimises the estimate dfderived from the regression. Standard regression
techniques require knowledge of the underlying form of tinection being sampled;
we do not know the functional form of. This is not necessarily a problem, since
we could interpolate the difference surface — with a methke Gaussian process
regression (Lizotte et al. [2007]) — using noisy differersteface samples and then
search over all interpolated values to find an optimum. Th@each is problematic
because the difference surface samples must be pairedheitvatues o at which
they were collected. According to item (1) in the above het have an increasingly
noisy estimate ok as the robot moves from one sampling location to the next. For
these reasons, we choose not to use any form of regressigutitoige the difference
surface.

In Zampoglou et al. [2006], we investigated the use of a lgically inspired opti-
misation algorithm for difference surface homing. The aildpon was based on chemo-
taxis behaviour of the nematode worm as described by Fete@rkery [1999]. The
algorithm takes a difference surface readifigk) at the agent’s current locatiofy,
moves forward by a distance dependentfd®i) to x:1 and takes another surface
reading. The agent then turns in direct proportiorf {® 1) and tof (X) — f(x1);
the turn is also subject to a constant bias. The constantopbpionality as well as
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the bias term are free parameters. We used a genetic algoairitisimulation to find
values for these parameters which optimised homing suareasnumber of training
difference surfaces (created using Vardy’s image datd.detage similarity was mea-
sured withRMSin this work since, when we carried out these experiments emew
unaware of mutual image information. We found that the patans evolved in simu-
lation caused the robot to turn excessively in simulatetttieds. Also, the parameters
evolved in simulation were not effective when applied toéli robotic homing. For
these reasons, we chose not to pursue this method of optiomsa this chapter.

5.4 Experiments in Simulation

Here, we will describe simulation experiments we underttmkietermine which of

the optimisation algorithms described in Section 5.3 wandst to solve the problem of
visual homing by optimising on difference surfaces. To mleesimulation as realistic
as possible, we investigated the noise injected into theahihage information signal
by our noisy Webcam and compass sensors; see Section 5d4.3.4r2 respectively.

We use the same robot movement noise model as was employez éxperiments in

Chapter 3. As we are using Vardy’'s image data sets in our sitions, mutual image
information is only available at grid points spaced at 30atervals on a 3m x 4.5m
planar area. We determine in Section 5.4.3 the best way ¢opalate the difference
surface in the presence of the aforementioned signal noise.

5.4.1 Webcam Capture Noise

We wanted to characterise the noise present in images eadyrour Webcam. To do
so, we took 28 grayscale images of a static scene (see Fidl)re 5

We consider the intensity of each pixel to be a random vagialbb establish the
expected value at each pixel, we computed the mean intevelityg at each pixel,
forming a mean image. We shall assume that this mean imaggasdestimate of
the expected image of the static scene.

To estimate the distribution of intensity noise, we sulizddhe mean image from
each of our 28 test images and used the resulting intendfgretices to produce a
histogram, shown in Figure 5.3. The distribution of intéysioise from the mean
is approximately Gaussian (skewness = -0.0352, kurtosi®2558) with a standard
deviation of 0.9443 and mean of zero.
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Figure 5.2: Image of static scene used in Webcam noise test. Image is of our panoramic

mirror.
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Figure 5.3: Histogram of intensity deviations from the mean (i.e. intensity noise) in our

test images.
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Distance from snapshot (cnﬁ)MINoisemss meanMIyoisy | Std. dev.MInoisy
0 7.1648 5.3204 0.0023
30 1.4825 1.4758 0.0009
60 1.0444 1.0444 0.0009
90 0.8808 0.8806 0.0011
120 0.7787 0.7788 0.0008
150 0.6973 0.6970 0.0009
180 0.6307 0.6307 0.0009
210 0.5958 0.5962 0.0008
240 0.5463 0.5455 0.0009
270 0.5026 0.5006 0.0009
300 0.4833 0.4821 0.0008
330 0.4339 0.4336 0.0009
360 0.4039 0.4040 0.0009
390 0.3730 0.3731 0.0008
420 0.3495 0.3476 0.0010

Table 5.1: Comparison of mutual information values computed from noiseless and noisy
current images. The intensity of each image pixel was corrupted with zero-mean Gaus-

sian noise. See text for details.

Autocorrelation of each noise image indicates that intgnsvise is spatially in-
dependent. We do not have enough data to determine whek@liqtiensity noise is
correlated over time, but visual inspection suggests graporal correlation is low.

We saw in Chapter 4 that certain image capture noise has gultdeterious ef-
fect onMI difference surfaces. We wonder if this is true of the zeram&aussian
white noise described here. To find out, we computeddriransect using images
from the “Original” data set beginning at x=120cm, y=60cnd anoving parallel to
the y-axis. We computed thHdl signal with noiseless images (assuming Vardy’s im-
ages are noiseless) and then corrupted each current im@geni€s with a different
noise matrix each time. Elements of the noise matrix werevdiiadependently from
N(0,0.944%). The plot of this data is rather difficult to interpret so wetiead list it
in Table 5.1.

As we can see in Table 5.MInoiselessdecreases monotonically as distance from
the snapshot location increases (as expected). This igrals®f the meaMInoisy
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signal. The meamMIyoisy Signal is less than thbliygiselesssignal at and near (i.e.
30cm away from) the snapshot location. This makes sehsé& a good predictor
of Is near the snapshot location. Adding noisddan this case will therefore cause
relatively large decreases MI. Away from the snapshot location, the mean value
of Mlnoisy is approximately equal tMIygiseless The standard deviation of the noisy
signal is relatively small at all data points. This indigatlat any single noisi|
value is likely to be close to the mean. Thus, it is probablgugh to capture one
current imagdc and use thél valued derived from it rather than the megh value
computed from several images captured at the same location.

We would like to transform the distribution of intensity seidescribed above into
a distribution of mutual information given noisy currentages. Such a distribution
of MI noise would be quite useful in quickly injecting realistigise into our homing
simulations. Unfortunately, we were unable to do this, tiftowe did derive some
aspects of such a noise distribution for RMS difference aigrisee Appendix A).
Below we discuss other methods to simulate homing with ngésors.

5.4.2 Compass Noise

The visual homing system requires an estimate of the robagéatation in some exter-
nal reference frame. This is because the robot almost obriaas a different orienta-
tion atSthan it does af. Ic must be rotated in software to account for this orientation
difference, otherwise measuring the similarity betwégeand|c would be meaning-
less. The orientation estimate will be somewhat noisy ifrneald experiments. In
this section we investigate the effects of compass noisee@Wl L signal.

We originally intended to use a digital magnetic compassuntomming experi-
ments. As we describe in Section 6.2.1, our digital compass evercome by envi-
ronmental noise in the indoor environment in which we caroeit experiments. We
therefore had to rely on our tracking system to provide diog@l information. As
we discuss in Section 6.2.2, we at first sought to use a tathekibg system to track
the robot during experiments and provide “live” directibimdormation. This tether
tracker proved unsuitable and we created a visual trackepiace it. The experiments
in this section, however, assume the use of the tether tratke noise characteristics
of the direction estimates provided by the tether and visaakers are similar.

The tracker provides position information in a referenaafe defined by the lo-
cation of the tether bases. We can in principle use the difilez between the current
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Figure 5.4: Plot of locations recorded by our tracking system. Robot moved in a straight

line from lower left to upper right.

position estimate and the previous position estimate teritife agent’s direction of
travel. In practice, these estimates are somewhat noisfluasated in Figure 5.4.
Thus, we shall estimate travel direction by fitting a line he fprevious N samples,
where N is to be determined.

In order to determine the noise characteristics of the campignal provided by the
tracker, we drove a tethered agent along fourteen straigtits on our laboratory floor.
The agent moved at constant speed of abd{l}. 1At this speed, position estimates
were generated on average every 0.85mm. The shortest ti@skoughly 10cm and
the longest, 50cm. Track directions varied.

For each track, we took the agent’s true direction to be tbpesbf the best fitting
line through the set of track points. We computed the ageastsnate of its current
direction at every 50 data point, using the previous 80 data points. The value &N=
was empirically determined to provide a small standardatewm in the local direction
estimate.

We calculated the distribution of difference between therdlg actual direction of
travel and its current local estimate; see Figure 5.5. Tisisidution has kurtosis equal
to 3.36 so we conclude that it is Gaussian. The standardtt@via 0.86 degrees. As
is clear in the plot, the distribution is skewed slightly iee. We believe that this
was caused by an error in calibrating the tether trackingesygsee Section 6.2.2 for
information on tracker calibration). For simulation puges, we shall assume that
generally the distribution of compassing error is zero m@anssian with the reported
standard deviation. Since successive direction estimeesoverlapping data sets,
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Figure 5.5: Distribution of difference between actual direction and estimated direction

using tether tracker to infer direction.

there is a small correlation between errors in successiuaates. We shall ignore this
in simulation.

As with Webcam noise, we are interested in the effect of aymiiection estimate
on theMI signal. We computed a¥| transect using images from the “Original” data
set beginning at x=120cm, y=60cm and moving parallel to taig. We computed
theMI signal with noiseless images (assuming Vardy’s images@iseless) and then
corrupted each currentimage 100 times with a differentiateerror each time. Com-
pass errors were drawn independently frft0,0.86%). We list the results of this
experiment in Table 5.2.

Compass noise seems to have a greater effect oNth&gnal near the snapshot
location than does Webcam noise. The standard deviatidmeafidisy signal is such
that some compass readings may mask the global maximum sh#pshot location.
Care should be taken when nearing the goal that the comgass 8 accurate.

As with the Webcam noise, we were unable to completely chevige the effects
of compass noise on thdl signal. We describe how compass noise is injected into
our homing simulation below.

5.4.3 Interpolating the Difference Surface

We will use Vardy’s image data sets to form difference swefawith which to simulate
homing. We wish to include the measurement noise identifiethé Sections 5.4.1
and 5.4.2 to make the simulation as realistic as possiblenassheen described pre-
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Distance from snapshot (cnﬁ)MINoisemss meanMInoisy | Std. dev.MInoisy
0 7.1648 3.4089 1.6460
30 1.4825 1.4696 0.0197
60 1.0444 1.0464 0.0060
90 0.8808 0.8795 0.0052
120 0.7787 0.7754 0.0085
150 0.6973 0.6937 0.0104
180 0.6307 0.6311 0.0071
210 0.5958 0.5947 0.0045
240 0.5463 0.5464 0.0016
270 0.5026 0.5029 0.0020
300 0.4833 0.4825 0.0038
330 0.4339 0.4333 0.0042
360 0.4039 0.4030 0.0018
390 0.3730 0.3707 0.0024
420 0.3495 0.3508 0.0010

Table 5.2: Comparison of mutual information values computed from noiseless and noisy
currentimages. Currentimages were rotated by a random amount to simulate compass

noise. See text for details.
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viously, Vardy’s images were sampled every 30cm on a reg@@amx5.4m planar
grid. What should we do when, during the simulation, the agéshes to measure
the difference surface value at a non-grid poinwhich has been corrupted by this
measurement noise?

Though we know the noise characteristics of the compass astit&h, we were
unable to derive a distribution for noise in thd signal resulting from imprecision in
these sensors. Our only recourse, then, is, to corrupt agdéraaimages at grid points
close toX with compass and Webcam noise and use corresponding sipteed{stimate
the noisyMI signal atX. We thought of a number of ways to do this:

1. Corrupt the image at the grid point closeskteith compass and Webcam noise.
Use theMI value calculated with this corrupted image as the best astif the
MI value atX corrupted by the same noise.

2. Corrupt the four images at grid points surroundingith identical compass and
Webcam noise. Compute tiv value for each of these corrupted images. Take
the noisyMI value aiXto be the weighted sum of the four surroundmgvalues;
weight each according to its distance frehand normalise so that the weights
sumto 1.

3. Corrupt the four images at grid points surroundingith identical compass and
Webcam noise. Compute the weighted sum of the images (assights, again,
according to distance fromand ensure that weights sum to 1). Computevihe
value of this composite, noisy image and use this as the atiof theM| value
atx.

4. Compute the weighted sum of the four images surroundir@prrupt the com-
posite image with Webcam and compass noise. Comput®thealue of this
noisy image and use this as the estimate oMhe/alue atx.

We note that the first interpolation method described absw@mewhat unrealistic,
as it yields a “stepped,” highly discontinuous differenceface, akin to an Egyptian
pyramid. We include the method, though, because it is saamfly faster than the
other three.

How do we choose which of these interpolation methods to Wge@o so by look-
ing at position for which we do have image data. We selected snapshot imegyas f
the “Original” data set at the locations shown in Figure 5Hfr each snapshot, we
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Figure 5.6: Location of snapshots used in experiment to determine the best way to

interpolate the difference surface when compass and Webcam are corrupted by noise.

randomly selected 100 current images from the “Originalfadset. For each current
imagelc, we randomly generated a Webcam noise matrix and compasdrem the
distributions described in Sections 5.4.1 and 5.4.2. Weuptedic with this noise and
computed the mutual information between the current sr@sid the corrupted im-
agelc; we shall call thigvlrye. We corrupted the images at grid points directly north,
east, south and west &f with the same noise values. We then estimatiég,e using
each of the four methods described above produblihgn, Mlesp, Mlesg, Mlesu for
eachMliye. Weights, when required, were set at 0.25 as all image oaghlocations
were an equal distance from the location @f

The above procedure gave us 900 data points with which tcejticlg efficacy of
each method. The scatter plotsMf e versusMlesn, Mlirye VersusMlesp, and so
forth are given in Figure 5.7. The relationship in each caselearly linear so we
computed the correlation coefficient between the valuddlgf,e andMlesn, between
Mlirue andMlegp, €tc. These correlation coefficients are given in Table F3ugh
each relationship is quite strong, Method 2 yields the hsgleefficient. The proba-
bility of getting the reported correlation by chance is vehyse to zero in each case.
We also looked at the standard deviation of the differen¢®denM; ,e and each es-
timate. Method 2 yields the smallest standard deviatiousTtve shall use Method 2
to interpolate the difference surface fdil values corrupted by sensor noise.

Dynamic environments had little effect on this result.

Method 2 above involves manipulating images of the envireninm order to gen-
erate noisy interpolateld| values. It would probably be more efficient to draw a noisy
MI value from a probability density function (p.d.f.) whosestdibution is based on
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Figure 5.7: Scatterplots indicating relationship between Ml e and Mlggt for each Ml

difference surface interpolation method described in Section 5.4.3.

Method 1| Method 2| Method 3| Method 4
r| 0.9114 0.9961 0.9904 0.9902

Table 5.3: Correlation coefficients for the four scatterplots shown in Figure 5.7.
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the noise distributions of Webcam and compass measuremBuatss it possible to
determine this probability density function without caiiesiing the content of current
and/or snapshot images?

We investigated this question in simulation, as it was easiehange the structure
of a simulated environment than a real one. The simulatede@mment is a two-
dimensional world enclosed by a circular wall which is segted into arcs of equal
length. Each arc is painted a particular shade of gray. Tingtheof each arc and the
shades which they are painted are controlled by the userselsieaded arcs provide
the visual information required for homing. No other landkseare present. The agent
can take a panoramic image (a one-dimensional array of 380gpale elements) from
any position within the circular enclosure.

To demonstrate that the noise in thl# signal which results from compass noise
is dependant on the structure of the environment, we firsttera world in which each
painted segment of the circular enclosure has an arc lerfdgitieodegrees. We use
nine shades of gray — ranging from 0 to 8 — to paint the arcs fif$tearc — at a bearing
of zero and running counterclockwise — is painted with shaate, the next is painted
with shade one, and so on. When a particular arc is paintddshitade eight, the next
will be painted with shade zero. We let bdrandC be located at the centre of the
circle. The agent has a noisy compass whose signal is usedate icurrent images
to account for orientation changes betw&andC. The compass noise has a simple
distribution: it is constantly three degrees. TWé\iselessvalue in this case is 3.1699
and the value oMInoisyis 2.1990, a difference of 0.9710. We then increase theengt
of each painted arc to ten degrees. In this caseVithigiselesvalue is again 3.1699 but
MInoisyis 2.2886, a difference of 0.8813. Finally, we increase ength to 20 degrees
and find thaMInoiselesg€mains 3.169MInoisyhas risen to 2.5601, and the difference
between them is 0.6098.

We see clear, explicable trends in these results. As ar¢HengreasedMInoiseless
remains constant. This is because, sikeés identical tols when compass noise is
ignored,MInoiselesdS €qual to the entropy dg (or equivalently the entropy dg). In
each of the three cases abolgghas a uniform intensity histogram of nine elements.
Thus, MlInoiselessiS unchanged in each of these three cases. More germaine to th
topic at hand, we also see above that when arc length ina@dbgisyalso increases,
though always remaining less th&Hoiseless When arc length of each segment is 5
degrees, there are 72 objects visiblddrandlc. A three degree compass error will
result in 3 72 = 216 pixel disagreements betwel@‘i’iSy andls. But when object arc
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length is 10 degreess contains 36 objects so a three degree compass error wilt resu
in only 3-36 = 108 pixel disagreements. This reduction in pixel disagre®simeans
thatlé\"’isyis a better predictor offs in the latter case than in the former, leading to an
increase inMInoisy in the latter case. The trend continues when object arc leisgt
increased to 20 degreeMInoisy is always less thaMlyiselessbecause the compass
noise always causes some drop in the abilitygbofsyto predictls.

Generalising from this result, we hypothesise that — in weald homing — mutual
information noise (i.e. the difference betwelBHyiselessand MInoisy) for a given
compass error will depend on the distribution of the appieseaes of imaged objects.
Images containing few, relatively large objects will exhiless mutual information
noise than those with objects of lesser apparent size. Appabject sizes in turn
depend on the structure of the environment in which hominguee  Since mutual
information noise caused by compassing noise depends na streicture, one cannot
simulate noise in mutual information without attendinghe tmages used to compute
the mutual information.

5.4.4 Stopping Criteria

In static environments in which there is no sensor noise, éasy to determine when
to stop homing. The agent could simply remember the difiegesurface value at the
shapshot location at the beginning of its outbound jourmelystop homing when the
absolute difference between the current surface value lisdstored “home” value
falls below some (small) threshold.

Spall [2004] suggests that deciding when to stop a stochaptimiser is much
more difficult. Certain of our findings lead us to agree. In (ea 3 we reported
that environmental change after the snapshot image is remptliminishes the global
optimum at the shapshot location. In Sections 5.4.2 and %vé.found that sensor
noise — particularly compass noise — injects variabilityoithe M1 signal which is
particularly acute at the snapshot location. Ideally, weillaise the current image
and knowledge of sensor noise to predict the modified diffeeesurface value at the
snapshot location; unfortunately, we found no method tohie. tinstead, we must
rely on the current different surface value and perhapsratbenparisons between the
current and snapshot images to derive stopping criterias@&lariteria must be as robust
as possible to changes in the environment and to sensor. fitieg must be applicable
without knowledge of how the environment has changed ardioent sensor noise
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values.

We explored several different stopping criteria of our owention. The interested
reader can refer to Appendix B to find out more about theser@itind the experiments
we carried out to measure their viability. Unfortunatelge tmore successful ones
required the agent to gather information about the rangeftgrence surfaces found
in its environment in both static and dynamic conditionsisTearning would require
a lot of time and effort before homing could begin; we did rfobk this was feasible.

For both simulated and live homing runs, we employed thepsimpcriterion used
in our experiments in Chapter 3. Optimisation halts wheres#successive values of
Xk cluster around a point. Such clustering indicates thatghist is a local optimum.
This criterion was suggested by Spall [2003]. The clustggrterion can be used
without any knowledge of the environment in which homingaisihg place and can be
implemented in conjunction with every optimisation algionn studied in this chapter.
Of course, this criteria will cause the homing agent to hakray difference surface
optimum, whether it coincides with the snapshot locatiomat. We shall also halt
homing runs after a large amount of simulated time (900 sg€pimas elapsed without
the clustering criterion having been met. The simulatiohaming time is discussed
in Section 5.4.5.1.

5.4.5 Experiments

We wanted to determine which of the optimisation algorititescribed in Section 5.3
works best in static and dynamic indoor environments. Weal Msdy’s image data
sets to provide the images for our simulations. Please tef&hapter 3 for a full
description of these data sets.

As in the experiments in Chapter 3, we drew snapshot and rduimeages from
the same data set in order to simulate static conditions r@mal different data sets in
order to simulate dynamic conditions. We used the “Oridirf&Vinlit” and “Chairs”
data sets here. We paired these data sets to create twoastdtibree dynamic en-
vironments: (“Original”, “Original”), (“Original”, “Winlit”), (“Winlit”, “Original”),
(“Winlit”, “Winlit”), (“Chairs”, “Original”).

For each data set pairing above, we fixed nineteen snapstaitdos; these are
depicted as black diamonds in Figure 5.8. Note that a feweddlsnapshot locations
are slightly different than the ones used in Chapter 3; thiseicause we are no longer
using the “Arboreal” data set so do not have to worry aboutapshot location being
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Figure 5.8: The set of nineteen snapshot locations and twenty-eight starting locations
used in our experiments. A diamond indicates a snapshot location. A plus indicates the

location of the start of a homing run.

in the interior of the plant in that data set.

For each combination of data set pairing and snapshot totatie homed starting
from a set of twenty-eight starting locations; these areiadled as black plusses in
Figure 5.8. Note that we skipped a homing run if current insagere drawn from the
“Chairs” data set and the starting location fell within tiheerrior of a chair.

We explore fewer data set pairings and starting locations thein we did in Chap-
ter 3 because the addition of sensor noise in our simulaticreases the time required
to compute mutual information, thus causing simulated Imgmins to take too long to
run. We computed 100 mutual information calculations witjected sensor noise on
our desktop computer and found that a calculation took oreaee0.16 seconds. This
value takes into account image reading, calculation andiadaf image noise, image
masking, histogramming and entropy calculations. In thpeexnents of Chapter 3, we
used 16 data set pairings and 19 snapshot locations, yieddiatal of 304 difference
surfaces on which we simulated homing. For each differendase, 169 homing runs
were carried out, each starting from a different non-snapghd point. In total, there-
fore, the experiments in Chapter 3 involved 51376 homingrufiwe had used the
same number of data set pairings and starting locationseirexperiments described
in this chapter, we would have carried out 513760 homing aswwe consider a total
of ten optimisation algorithms in this chapter. We foundtthan the experiments we
did carry out here — 74 mutual information calculations oarage were required per
homing run. Thus, to process the mutual information cateuta for 513760 homing
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runs would have taken approximately 6082900 seconds, drddys of computation
time. This is a low estimate for the total time these expentaevould have taken as
we have only accounted for the calculation of mutual infaiora Though homing
simulations in this chapter are mostly taken up with calculation, other factors (like
keeping track of the simulated agent’s pose, saving files) ebme into play as well.
We consider something more than 70.4 days of computatios tirm long to wait for
a set of experiments to terminate.

For each combination of data set pairing, snapshot locatiwhstarting location,
we carried out a homing run using each of the optimisatioorilyns described in
Section 5.3.

We also homed with Zeil's “Run-Down” algorithm (Zeil et aRQ03]) to deter-
mine if any of our suggested optimisers is better than thatkvburrently exists in the
visual homing literature. “Run-Down” is known in the optiation literature as one-
direction-at-a-time search (see e.g. Adby and Dempstéi4p9“Run-Down” works
as follows: the agent travels in the direction it is currgriticing, periodically mea-
suring the function to be optimised. The distamdgetween samples is an algorithm
parameter and is unchanging during optimisation. When theent function value
measurement is less than the previous one, the agent turety miegrees to the left
or right (it does not matter which, as long as the same dwads consistently taken).
The agent moves hyin this new direction and measures the function. If this nezam
surement is an improvement, the agent continues to movefasehé not, the agent
turns 180 degrees and moves in this direction, samplinguthetion everyc units, un-
til the function ceases to improve. It then turns ninety éegrin either direction and
repeats the process described above. The agent execstetgihiithm until stopping
criteria is met. “Run-down” was not specifically designeddse with noisy function
values. The distance between samples is typically chosenHyman operator to be
large enough to overcome measurement noise but small ersautifat the algorithm
halts within a reasonable distance from the optimum.

A drawback of the “Run-Down” algorithm is that it takes a mthortuous route to
the snapshot location while homing. A drawback to the gradimsed optimisation
methods we described above (i.e. 1FDSA) is that they mayerd#ipg on the value
of ax, move along the estimated gradient a relatively long distdrefore resampling
the difference surface. If the gradient estimate is po@ntthe agent could move a
significant distance before realising its mistake. If thadient estimate is good, the
agent might still move too far in that direction, overshagtthe snapshot location. We
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shall try merging these algorithms into a novel fourth aigjon: travel in the direction
of the estimated gradient, but instead of moving for a fixesladice, sample the dif-
ference surface periodically and recalculate the gradidr@n a decrease in successive
difference surface values is detected. This hybrid algoritnay decrease the overall
distance travelled by the agent during a homing run. On therdtand, it may require
more difference surface evaluations than “Run-Down” ang im& more susceptible
to stalling in non-goal optima than the other gradient-dast®chastic optimisers we
used in our experiments.

5.4.5.1 Ciriterion for Comparison of Optimisation Algorith ms

Those who study optimisation algorithms often base themgarison of competing
algorithms on the number of function evaluations requie@¢dme within a certain
small distance of an optimum value (Spall [2003]). As we dadteSection 5.3, the
homing robot must translate and rotate in order to move from difference surface
evaluation point to the next. Hence, the time required toeutatte these motor com-
mands as well as the time taken to actually compute mutuaenrdormation must be
taken into account in any comparison of algorithms. One ofooiteria for algorithm
comparison is therefore the total tifigyy taken for a homing run, as given by the
following formula

eTotal Drotal Frotal
Speeghtation  SP€EEansiation  SPEEEomputation
whereBr1qtq is the sum of all angles turned by the homing agent during aifgm

TTotaI = (5 . 7)

run; speeghation is the speed of the agent’s rotatiddy o4 is the total linear distance
travelled during a homing rurspeedansiationis the speed at which the agent translates;
Frotal IS the total number of mutual image information computagiondertaken during
a homing run; and peedomputationis the time required for eaddll computation. For
our simulation experiments, we assume our robot transkttasspeed of 8.0 cm/sec
and rotates at a rate of 28.65 degrees/sec. These are rbksestmates of the speed
our actual Koala Silver mobile robot moves at in “live” homgiruns (see Chapter 6).
We assume that one mutual image information evaluatiorstke seconds, again a
reasonable estimate of the actual time required for thisatiga in “live” runs. Trotal

is measured in seconds. Equation 5.7 will not only allow usdmpare different
optimisation algorithms, it will also give us a concretesenf the actual time required
to complete a homing run in real-world experiments. We oaketsuccessful homing
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runs (i.e. those halting within 30cm of the snapshot loggtinto account when using
this criteria.

We shall also compare optimisation algorithms using therretatio measure de-
fined in Chapter 3.

5.4.5.2 Setting Finite Difference Gain Parameters

Spall [2003] outlines a method to automatically set the patarsa, c, o, y andA
of Equations 5.5 and 5.6. This approach assumes that théasthdeviation of the
function value noise is independent of the location at whitehfunction is evaluated.
From Sections 5.4.2 and 5.4.1 we know this not to be the casse mariance increases
dramatically when mutual information is evaluated nearsitegpshot location. It seems
therefore that we have to set the valuesapt, a, y and A manually. We did not
want these parameter settings to result from extensive oioknawledge; after all, the
homing robot cannot “practice” homing to several differesnapshot locations from
several different starting points, adjusting gains as égytefore undertaking a “real”
homing task. We therefore observed homing runs to just tvapsinot locations from
a small number of starting locations, taking all images figandy’s “Original” data
set. We tried several different settingsafc, a, y andA for each of these homing
runs. We chose the parameter set which provided the beshigaoms as measured by
Equation 5.7. We note too few trials were undertaken to ckliat one parameter set
provided statistically significantly better results thanother.

For one-sided finite differencing, we let= 15cm a=100cm A=0,a =1 and
y= 0. We found that any value of much less than one caused the values ob decay
too slowly; the homing agent often overshot the snapshatioe several times before
stopping at it. We set a lower limit ay at 15cm to prevent the agent from moving
negligible distances in the direction of the gradient. Astant value oty = 15cm
seemed to suffice for gradient estimation both near and dan the snapshot location
so we lety = 0. We use the same gain parameters for two-sided differgnditsing
the same procedure, we chose the stepsae’'Run-Down” to be 15¢cm.

5.4.6 Results and Discussion

Given the results reported in Table 5.4, it seems that homiitigy noisy sensors is a
more difficult problem than homing with noise-free sensditsough different starting
locations and — in some cases — different snapshot locatvens used in the exper-
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Optimisation Method Average Return Ratio
Run-Down 0.807
1FDSA 0.836
2FDSA 0.905
Hybrid Run-Down/1FDSA 0.722

Table 5.4: Average return ratios for static environments for each optimisation algorithm

considered in the chapter. All pairs of average return ratios are significantly different

with 95% probability according to McNemar's test (see Chapter 3 for details of this

significance test).
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Optimisation Method Average Return Ratio
Run-Down 0.504
1FDSA 0.567
2FDSA 0.641
Hybrid Run-Down/1FDSA 0.580

Table 5.5: Average return ratios for dynamic lighting environments for each optimisation
algorithm considered in the chapter. All pairs of average return ratios are significantly

different with 95% probability according to McNemar’s test.

Optimisation Method Average Return Ratio
Run-Down 0.801
1FDSA 0.798
2FDSA 0.833
Hybrid Run-Down/1FDSA 0.695

Table 5.6: Average return ratios for a moving landmark environment for each optimisa-
tion algorithm considered in the chapter. All pairs of average return ratios are signifi-

cantly different with 95% probability according to McNemar’s test.

iments reported in Chapter 3 making direct comparison dilfiche return ratios for

homing in static environments were generally higher in Gaap than those reported
in Table 5.4. It is clear that gradient ascent homing usiragligmts estimated by two-
sided finite differencing is superior in static environmentnfortunately, Figure 5.9
indicates that — as we expected — two-sided finite differemtakes much more time
than 1FDSA. Gradient ascent with one-sided finite diffenregexhibits the second
best return ratio in static conditions (see Table 5.4).

The trends we saw in static conditions are generally repeatsimulated envi-
ronments with dynamic illumination. Table 5.5 indicatesattigradient ascent with
gradient computation with two-sided finite differencingshthe highest return ratio.
Gradient estimation with one-sided differencing is seebedt. Again, according to
Figure 5.10, the relative success of 2FDSA comes at a costatey mean homing
times. We note that no optimisation algorithm performsipatarly well in the face of
dynamic illumination. Almost all failed runs become stuokacal optima which do
not coincide with the snapshot location. We shall deal vhtk problem below.
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Figure 5.10: Mean homing time as a function of starting distance from the snapshot
location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. Experiments
were conducted in dynamic illumination environments. The error bars indicate the stan-

dard deviation from the mean homing time.

Optimisation Method Average Return Ratio
Run-Down 0.685
1FDSA 0.721
2FDSA 0.785
Hybrid Run-Down/1FDSA 0.660

Table 5.7: Average return ratios for all (static and dynamic) environments for each op-
timisation algorithm considered in the chapter. All pairs of average return ratios are

significantly different with 95% probability according to McNemar's test.
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Figure 5.11: Mean homing time as a function of starting distance from the snapshot
location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. Experiments
were conducted in an environment in which landmark locations changed between cap-
tures of snapshot and current images. The error bars indicate the standard deviation

from the mean homing time.
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Figure 5.12: Mean homing time as a function of starting distance from the snapshot
location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. All difference

surface pairings were taken into account. The error bars indicate the standard deviation

from the mean homing time.



Chapter 5. Optimising the Difference Surface 165

5.4.7 Experiments: Avoiding Local Maxima

In looking at individual homing runs in the previous sectidris clear that the over-
whelming reason for homing failure is that the agent getged in difference surface
maxima that do not coincide with the snapshot location. Femiihg runs “time out.”
In accord with the observations given in Chapter 3, the fionctalues at these non-
goal maxima are almost always much less than the functiarewatithe snapshot loca-
tion for a particular difference surface. Therefore, irstbéction, we want to determine
if the non-goal maxima can be distinguished from the diffiegesurface maximum at
the snapshot location. In a cursory examination of a numiierence surfaces (both
static and dynamic), we saw that all non-goal maxima hacdifice surface values
less than 0.75 and all snapshot maxima were greater than 0.75

We augmented each optimisation algorithm to detect angpesuésleading differ-
ence surface optima as follows: when the algorithm’s staggoriterion is triggered,
check if the current or previous difference surface samgdsss than 0.75. If this
is the case, then escape this assumed non-snapshot optiynsetelsting a random
value uniformly from the rangf9, 360, rotating by that amount and translating by one
metre. The optimisation algorithm then resumes from thig sgot.

5.4.8 Results and Discussion: Avoiding Local Maxima

The detection of non-snapshot optima clearly has a saleféagt on homing in many
cases. Compare, for example, Tables 5.4 and 5.8. All reatiasrare dramatically
higher in Table 5.8 than in Table 5.4; the differences argssially significant, too,
according to McNemar's test with 95% probability. This ieased success seems to
come at the cost, though, of higher mean homing times; coenpmyures 5.9 and
5.13. This increase in mean time is due to those homing runshwhiled without
non-shapshot optimum detection and which subsequentbesddecause of it. These
relatively time-consuming homing runs are not counted enrtieans reported in Fig-
ures 5.9 but do affect the means in Figure 5.13.

We see as well that homing is more likely to succeed in dyndigtiting conditions
when we attempt to detect and avoid non-snapshot optima.p@anTables 5.5 and
5.9. We noticed that almost all homing failures reported abl€& 5.9 result from the
algorithm reaching the maximum number of iterations; tisatnio optimum is ever
located. This happens because in these cases the fundiieratéhe snapshot location
is less than 0.75, our crudely determined threshold forsdigag difference surface
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Optimisation Method Average Return Ratio
Run-Down 0.826
1FDSA 0.974
2FDSA 0.979
Hybrid Run-Down/1FDSA 0.911

Table 5.8: Average return ratios for static environments for each optimisation algorithm
considered in the chapter. The algorithms are augmented with a method to escape
non-snapshot optima. All pairs of average return ratios are significantly different with

95% probability according to McNemar’s test.
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Figure 5.13: Mean homing time as a function of starting distance from the snapshot
location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. The algo-
rithms are augmented with a method to escape non-snapshot optima. Experiments
were conducted in static environments. The error bars indicate the standard deviation

from the mean homing time.



Chapter 5. Optimising the Difference Surface

167

Optimisation Method Average Return Ratio
Run-Down 0.618
1FDSA 0.829
2FDSA 0.779
Hybrid Run-Down/1FDSA 0.814

Table 5.9: Average return ratios for dynamic lighting environments for each optimisation

algorithm considered in the chapter. The algorithms are augmented with a method to

escape non-snapshot optima. All pairs of average return ratios are significantly different

with 95% probability according to McNemar’s test.
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Mean homing time as a function of starting distance from the snapshot

location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. The algo-

rithms are augmented with a method to escape non-snapshot optima. Experiments

were conducted in dynamic illumination environments. The error bars indicate the stan-

dard deviation from the mean homing time.
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Optimisation Method Average Return Ratio
Run-Down 0.974
1FDSA 0.979
2FDSA 0.976
Hybrid Run-Down/1FDSA 0.921

Table 5.10: Average return ratios for a moving landmark environment for each optimisa-
tion algorithm considered in the chapter. The algorithms are augmented with a method
to escape non-snapshot optima. All pairs of average return ratios — except Run-Down,
1FDSA and 1FDSA, 2FDSA — are significantly different with 95% probability according

to McNemar’s test.

Optimisation Method Average Return Ratio
Run-Down 0.812
1FDSA 0.917
2FDSA 0.898
Hybrid Run-Down/1FDSA 0.874

Table 5.11: Average return ratios for all (static and dynamic) environments for each op-
timisation algorithm considered in the chapter. The algorithms are augmented with a
method to escape non-snapshot optima. All pairs of average return ratios are signifi-

cantly different with 95% probability according to McNemar’s test.

optima. The illumination change causes the mutual imagenmétion betweeihs and
Ic at the snapshot location to be quite low, though an optimulirusually exists at
the snapshot location as made clear in Chapter 3. Therelsplpno threshold value
which will rid us totally of these false negatives while aling us to detect with high
probability non-snapshot optima.

Surprisingly — unlike in past experiments — the hybrid aition is among the top
performing optimisation algorithms in Table 5.9. We are astyet certain why the
hybrid algorithm performs relatively well in this experimie

5.4.9 Experiments: Learning Gains

Spall [2003] suggests that the choice of gain sesiess crucial in determining the
success or failure of gradient ascent optimisation witldgnats estimated with one-
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Figure 5.15: Mean homing time as a function of starting distance from the snapshot
location for optimisation methods Run-Down, 1FDSA, 2FDSA and Hybrid. The algo-
rithms are augmented with a method to escape non-snapshot optima. Experiments
were conducted in an environment in which landmark locations changed between cap-
tures of snapshot and current images. The error bars indicate the standard deviation

from the mean homing time.
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Figure 5.16: Mean homing time as a function of starting distance from the snapshot lo-
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are augmented with a method to escape non-snapshot optima. All difference surface
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the mean homing time.
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or two-sided finite differencing. We wondered if we could fadnore intelligent way
of setting these gains than the rather limited trial-angeprocedure described in
Section 5.4.5.2.

The nature of the homing problem demands the agent visitsrithpshot location
and travels away from it at least once before attempting tbifiagain by homing. We
wondered if useful information about gains could be learmedhis outbound path. It
seems that ants (Judd and Collett [1998]) and honeybeesdgiLahd Bianco [2000])
learn something about the environment near the snapshatidacfor the purposes
of homing while travelling away from it. A relatively simpkbhough useful piece of
information would be a mapping from mutual information t@agdistancel. We could
use this mapping to repla@g as an estimate of the distance to travel in the direction
of an estimated gradient. We published a similar idea in Beze[2005a], though this
work pertained to difference surfaces generated wittRNESmetric.

After some trial and error, we found that Equation 5.8 givesasonable fit to goal
distanceal as a function of noisy mutual information values.

1 Ml -C
d_étan( A )

(5.8)

Here,d is the agent’s distance to the snapshot locationMhds the current mutual
information value.A, B andC are free parameters which define the shape of Equa-
tion 5.8.C can be seen as the maximum mutual information signal enecediA and

B are empirically typically positive values close to zero. WW&ve no theoretical basis
for choosing Equation 5.8 to mayl value to goal distance. This functional form was
empirically the best among many that we experimented with.

An example of the application of Equation 5.8 is given in Feb.17. We used
Vardy’s “Original” data set to generate the noisyl data in Figure 5.17 (plotted in
the figure as pluses). We simulated a robot leaving the soapstation at x=60cm,
y=30cm. It moved in the direction of the y-axis and sampledribisyMI signal once
every 10cm until hitting the boundary of the data set. Goslatice information was
inferred by dead-reckoning. We used this data as input tonéimear function fitting
algorithm. The algorithm seeks values farB andC which minimise the squared dif-
ference between the data and Equation 5.8. We used Mattalsisearch routine to
perform this minimisationfminsearch employs the Nelder-Mead optimisation proce-
dure described in Section 5.3.2. The search begiAs-a0.03,B = 0.05 andC = 1.5;
we noticed that most good fits had parameter values closese thettings. The solid
line in Figure 5.17 represents the version of Equation 5.Bwhest fits the data.
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Figure 5.17: The pluses are (noisy MI, goal distance) data pairs to which we would like

to fit Equation 5.8. See text for details about how this data was generated. The solid line

plots the instantiation of Equation 5.8 which best fits the data: d = 0.01268tan( M_'B%%gf"').

We repeated the experiments described in Section 5.4.% uban 1IFDSA and
2FDSA gradient estimation algorithms. Instead of setégas described in Sec-
tion 5.4.5.2, the agent learns parameters for Equationds.@dch snapshot location
in the manner described above. When homing, the agent usésaimed function to
transform a noisMI reading into a distance to travel in the estimated gradigatd
tion. The agent continues to avoid non-snapshot differsnéace maxima as in the
previous set of experiments. Results are given below.

5.4.10 Results and Discussion: Learning Gains

Table 5.12 shows that the learning of gains increases thgapiiity that homing in
static conditions will be successful. As we can see in Figuls this learning also
speeds homing dramatically. The same observations can the atmut learned gains
in environments in which the locations of landmarks changteben capture of snap-
shot and current images (see Table 5.14 and Figure 5.20).

A quite different result is evident when illumination chasgbetween capture of
shapshot and current images (Table 5.13). The reason fee ti®ysmal return ratios
is that the mutual information at a given location is oftencmiess wherc andls are
captured under different illumination conditions than whiey are taken in the same
illumination conditions. This reduction in mutual infortian leads Equation 5.8 to
overestimate (often by a large amount) the agent’s curr&tamce to the snapshot
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Optimisation Method | Average Return Ratio
1FDSA 0.974
2FDSA 0.992

Table 5.12: Average return ratios for static environments for each 1FDSA and 2FDSA.
The algorithms are augmented with a method to escape non-snapshot optima. The
distance to move in a gradient direction is learned. The return ratios are not significantly

different with 95% probability according to McNemar’s test.

location. For example, suppose thais captured at x=150cm, y=150cm and drawn
from the “Original” data set. Wheit is captured at the nearby location x=150cm,
y=120cm and also drawn from the “Original” data set, the ga@iM| (Is,Ic) is 1.59.
Whenlc is captured x=150cm, y=120cm but drawn from the “Winlit” daget, the
value ofMI(Is,Ic) is reduced to 0.72. In the former case, Equation 5.8 prethets
the goal is 32cm away from x=150cm, y=120cm, quite a goodiptied. In the later
case, Equation 5.8 predicts that the goal is 149cm away fr@rctrrent location.
Though the estimated gradient points towards the goalimtah our example, the
agent in the later case wildly overshoots the goal locatioaying past it by more
than one meter. This example is qualitatively similar to euous other examples we
examined.

If successive gradient estimates generally point towdrdgbal, then the overes-
timates of the agent’s goal distance described above wile#he agent to move back
and forth over the goal location but never in a tight enouglster for the clustering
stopping criterion discussed in Section 5.4.4 to be invoKemlparticular goal distance
overestimate causes the agent to move far from the goal thieegradient estimate at
this relatively distant location will likely not point towds the goal. Thus, the agent
will begin to take large steps in essentially random dimwi The agent will come
close to the goal again only by chance. In either case (whdflegegradient points
towards the goal or not), the homing run is likely to stop heseathe time-out criterion
in Section 5.4.4 is met, not because the goal location isctette We stop homing
runs after more than 900 simulated seconds have elapseslisiwhy we see in Fig-
ure 5.19 that the mean homing time for both 1FDSA and 2FDSArdlgns is about
900 seconds, regardless of starting distance from the goal.
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Figure 5.18: Mean homing time as a function of starting distance from the snapshot
location for optimisation methods 1FDSA and 2FDSA. The algorithms are augmented
with a method to escape non-snapshot optima. The distance to move in a gradient
direction is learned. Experiments were conducted in static environments. The error

bars indicate the standard deviation from the mean homing time.

Optimisation Method | Average Return Ratio
1FDSA 0.116
2FDSA 0.138

Table 5.13: Average return ratios for dynamic lighting environments for each optimisa-
tion algorithm considered in the chapter. The algorithms are augmented with a method
to escape non-snapshot optima. The distance to move in a gradient direction is learned.
The return ratios are significantly different with 95% probability according to McNemar’s

test.

Optimisation Method | Average Return Ratio
1FDSA 0.986
2FDSA 0.993

Table 5.14: Average return ratios for a moving landmark environment for each optimisa-
tion algorithm considered in the chapter. The algorithms are augmented with a method
to escape non-snapshot optima. The distance to move in a gradient direction is learned.
The return ratios are significantly different with 95% probability according to McNemar’s

test.
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Figure 5.19: Mean homing time as a function of starting distance from the snapshot
location for optimisation methods 1FDSA and 2FDSA. The algorithms are augmented
with a method to escape non-snapshot optima. The distance to move in a gradient di-
rection is learned. Experiments were conducted in dynamic illumination environments.

The error bars indicate the standard deviation from the mean homing time.
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Figure 5.20: Mean homing time as a function of starting distance from the snapshot
location for optimisation methods 1FDSA and 2FDSA. The algorithms are augmented
with a method to escape non-snapshot optima. The distance to move in a gradient
direction is learned. Experiments were conducted in an environment in which landmark
locations changed between captures of snapshot and current images. The error bars

indicate the standard deviation from the mean homing time.
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5.5 Conclusions

In this chapter, we set out to identify appropriate alganthfor moving the homing
agent so as to optimise a difference surface in both statiw@snally dynamic environ-
ments. In Section 5.3, we described homing algorithms whiete appropriate to the
task at hand: stochastic optimisation algorithms. We dlesdrin Section 5.3.2 a num-
ber of popular optimisation algorithms which are inapprag for difference surface
homing for a variety of reasons. It is hoped that the disausef these inappropriate
algorithms will constrain future visual homing researcher

The optimisation algorithms which were ultimately seleloteere compared in sim-
ulated homing runs. A novel comparison criteria is define®action 5.4.5.1 which
estimates the total time taken for the robot to carry out aihgmun. To make the sim-
ulated homing runs as realistic as possible, the noise imahuiformation due to sen-
sor (imager and compass) noise was investigated in Se&idrisand 5.4.2. We found
that realistic compass noise had a much more deleterioest&fh theMl| signal than
did realistic imager noise. Both noise sources were prasemir simulations. Sensor
noise is rarely considered in robotic homing studies. Amthregmany visual homing
papers reviewed in Chapter 2 only Moller et al. [2007] lodke the degradation of
home vector precision as a function of compass noise. Thaydfainsurprisingly that
home vector precision decreases with increasing compass &oller et al. [2007]
report that this problem can be alleviated by removing Higlqguency components of
current and snapshot images.

In our simulated homing experiments we compared the stticteggimisers (LFDSA
and 2FDSA) described in Section 5.3 with the “Run-Down” aitdpon used for differ-
ence surface homing by Zeil et al. [2003]. Also considered wanovel hybrid be-
tween “Run-Down” and 1FDSA which was intended to overcomedtawbacks of
each constituent algorithm. Though 2FDSA consistentlpedbrmed the other opti-
misation algorithms in terms of homing success rate, ithowbdf gradient estimation
is quite time-consuming. The 1FDSA algorithm was consifesecond-best in terms
of homing success and consistently yields dramaticallyelawtal mean homing time
than 2FDSA. We thus conclude that 1FDSA is the best algoritfitihose that we
experimented with to use for difference surface homing.

The link between stochastic optimisation and differengéase homing which we
forged here was very useful. Our investigation of the stetihaptimisation literature
led us to methods for effectively choosing the gains whi@han integral part of the
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1FDSA and 2FDSA algorithms.

5.6 Future Work

Central place foraging insects often home to the same lmcatie.g. their nest — over
and over again. Some applications — like docking and reahgua@f an inconspicuous
wall mains — may require a homing robot to do something sim@an a homing robot
autonomously improve homing performance over multiple lmgruns to a single
snapshot location (perhaps in a dynamic environment)?endhtext of the work done
in this chapter, this may mean updating the values, af A, a, andy in Equations 5.5
and 5.6 over multiple homing runs.

Work related to this problem from which we may take inspoathas already ap-
peared in the literature. Martinez-Marin and Duckett [2D08ed a fast reinforcement
learning algorithm to train a mobile robot to dock with a begitting on an otherwise
empty tabletop. Training was done online and it took less @ hour for the robot
to learn a workable mapping of states to actions for this.tségéber et al. [2003] pre-
sented similar work, though the training was done in simaoiatin these papers, the
possible actions to take in a particular state formed a eliscfinite set. In the prob-
lem described above, the actions are related to continuaushlesa, c, A, a, andy.
This difference may cause our problem to be more difficultdwes by reinforcement
learning.

In addition to those described in Section 5.3, another dp#tion scheme recom-
mended by Spall [2003] is simulated annealing (SA). SA is ashall see designed to
avoid stalling in local optima relatively early in an optwation process. Empirically,
SA seems to work well when the function to be optimised iswqoted by noise. Like
the optimisation schemes we used in our experiments, aatetiannealing algorithm
selects a sequence of points in the search space. An SAtalgarnay choose the suc-
cessor to a pointi at random, using gradient information or with some othetecia.

If the function value at the successqf ; to Xk is better than (e.g. greater than) that at
Xk, then the new point is accepted; that is, the new point besdheebase for further
explorations of the search space. If the function valugaf is worse than that ag,
Xr1 may still be accepted with a certain probability. The prdligtdepends on the
current “temperature” of the annealing process; the higfinetemperature, the greater
the probability of accepting a “bad” move. The temperatarmitially relatively high

in early stages of the optimisation process and is reducédraseases. The rate of
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cooling is controlled by the annealing schedule, a monctilyi decreasing function
of k. The success of simulated annealing is notoriously higapethdent on the choice
of the initial temperature and on the annealing scheduld &93]. We did not use
SA here because we assumed a lot of human parameter settird ke required to
make SA successful, limiting the autonomy of a homing rofidiis assumption may
not be valid though; SA should be explored in future.

We included realistic sensor noise in our simulation experits to make these
simulations as realistic as possible. We did not, thougiuyine into how much sensor
noise the homing process could tolerate before homing besdififficult or impossible.
We would like to do so in future. In particular, we would camwyt homing trials
using Vardy’s “Original” data set using various snapshat atarting locations. For a
particular snapshot and starting location, we would sitedenumber of homing runs,
each time increasing the Webcam and/or compass noise. We wmasure homing
success using the average return ratio criterion.

In our implementation in Section 5.4, estimation of theeati#nce surface gradient
atxc using Equation 5.2 or Equation 5.1 requires the homing afgemiove to two or
more positions adjacent t¢ and evaluate mutual image information at each of these
positions. Both the agent movement avidl evaluation take time. Moller and Vardy
[2006] demonstrated that the difference surface gradie@ a when image similarity
is measured witlRM S— can be estimated without explicitly moving the agent fogm
These workers demonstrated that imag%) can be inferred from (xc) if x7C is near
*c. The inference depends on the assumption that all imagexttsbgre at an equal
distance fromxg; an assumption inspired by and similar to that made by theyéna
warping algorithm (Franz et al. [1998b]). The image siniijabetweenl (xz) and the
snapshot and two or more warped images and the snapshot caedéo estimate the
gradient. The creation of warped imal_;(e?c) takes significant computational effort,
though, and multiple warped images must be created for e@achent estimate.

We believe the difference surface gradient can be estimaitbdut agent motion
aboutxc andwithout image warpingBefore discussing the method we introduce some
new notation: leMlg(x,y) be the mutual image information between a snapshot image
and the image captured @ y); the snapshot location is at the origin of the coordinate
system in whichx,y) is defined. Our proposed method calls for the agent to capture
two additional images near the snapshot after having stbeednapshot itself, one at
—c units from the snapshot location along the x-axis and therah—c units from
the snapshot location in the y-direction. These images beechptured only once,
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Figure 5.21: Difference surface gradient directions (shown as unit vectors) estimated
with Equation 5.9. We set c at 60cm. The snapshot is located at x=120cm, y=180cm.

All images were taken from Vardy'’s “Original” data set.

probably as the agent leaves the snapshot location for thtetifine. We shall call
these imageb(x3,) andl (x3,). The gradient ak is then estimated with the following
equation

g(x,y) = [ M|S((x+c,32—M|s(x.,y)Mlsl(x,y+cc)4v||s(x,y) } (5.9)

Note that the agent does not move from its current locatioorder to compute the
gradient with this formula. We compare this with the the @ited difference gradient
estimated of Equation 5.2 rewritten using our new notation

g(xy) = Mls(x+c,y():—Mlg(x,y)Mls(x,erCéfMls(x,y) ] (5.10)

Equations 5.9 and 5.10 yield the same answbftli (x+ c,y) = Mlg(x+c,y) and
Mls, (x,y+c) = MlIs(x,y+c). We assume these equalities hold i relatively small.

We estimated difference surface gradients using Equati®mu&ing images from
Vardy’s data set. The resulting gradient vector directisf®wn as unit vectors) are
shown in Figure 5.21. The mean deviation between the gredigepicted in Fig-
ure 5.21 and the true home vector was approximately zercedsdrl.7 degrees) with
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a standard deviation of 24.2 degrees. By contrast, the m@aattbn between the gra-

dients computed with Equation 5.10 was -0.5 degrees witaradsird deviation of 29.9

degrees. Though gradient directions produced by our pexposethod are on average
better than those produced by Equation 5.10, we cannot daimproposed method is

generally better; more experimentation must be done. Thranrdeviation between the
gradients computed with each method was 20.9 degrees \aitllastd deviation 18.6

degrees, indicating that Equations 5.9 and 5.10 produckagrevectors in roughly the

same direction.



Chapter 6

Robotic Experiments

6.1 Introduction

Much of our work in the previous chapters was done in simatatising Vardy’s im-
age data sets, described Chapter 3. We would like to replmat reported findings in
a different environment to lend credence to the idea th&tmihce surface homing is
generally applicable. To this end, we carried out a numb#éia” robotic trials in our
laboratory environment. We describe the robot and imagysgesn we assembled for
these experiments in Section 6.2.1. We created a visudingsystem — described
in Section 6.2.2 — to estimate the robot’s pose (positionaiehtation) during exper-
iments. Pose information is required for both post-experitranalysis and to provide
the robot’s current orientation to its homing algorithm. r@xperiments and their re-
sults are detailed in Section 6.3; conclusions follow int®&c6.4. We discuss future
work in Section 6.5.

6.2 Materials

6.2.1 Description of Robot

We used a Koala Silver Edition mobile robot in our live expeents (see Figure 6.1).
To capture panoramic images of the environment, the robetegaipped with a Cre-
ative Labs CT4840 Video Blaster Webcam imaging a panoraniicom The Web-
cam’s gain control mechanism was turned off. Since the Weatscgain control algo-
rithms are unpublished, having gain control active woulddeifected our experiments
in ways which we could not predict or account for.

181
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Figure 6.1: Image of Koala Silver mobile robot mounted with Acer 313T laptop computer

and panoramic imaging rig used in our “live” homing experiments.

The Koala also carried a small Acer 313T laptop computer. Wése this laptop
because it is one of the few affordable laptops which weighs than one kilogram, a
requirement as the Koala’'s maximum weight capacity is aB&gt The laptop com-
putes with an Intel Pentium 266 MHz processor and has 32MBANM RThe laptop’s
Lithium lon battery allows for about two hours of off-mainses We installed Slack-
Ware Linux 11.0 running the 2.6 Linux kernel on the laptop.

We originally intended that the Koala equipped with the Alegtop would home
completely autonomously. The laptop would run a programédpture panoramic
images from the Webcam, compute mutual image informatienggate appropriate
homing vectors, and cache data for future analysis. Simceigh, the tracking sys-
tem required us to manually interact with panoramic imagesur desktop computer
during homing (see Section 6.2.2), we had to change this plan

We could have connected our Webcam directly to our desktoppoer via a USB
(Universal Serial Bus) extension cord of up to 5 metres. Thrsl, though, would have
appeared in many of the images captured by the Webcam, edlsgpliying the role
of a moving landmark and thereby making homing more difficite cord would have
also become tangled in the robot’s wheels during homingyirewy frequent human
intervention.

In the final system, the Acer laptop was equipped with a Cisicoret 340 wire-
less network card, allowing communication with the Univigi's wireless network.
We installed OpenVPN on the laptop to establish a link betitbe wireless network
and our Desktop-based network account. Images capturbdhetkoala’'s panoramic
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imaging rig were sent via the wireless network to our deskiomputer (a Dell Pen-
tium 4 Optiplex). Image similarity was calculated on theldep computer. Wireless
image transmission took about 0.2 seconds per image. Invegrescaptured at a res-
olution of 320x240 pixels and stored in the jpeg (Joint Phdphic Experts Group)
format as this format compresses images for relativelyviaigless transmission.

Difference surface homing requires an estimate of the felooientation in some
external reference frame. This is because the robot alnmestioly has a different
orientation alSthan it does at. Ic must be rotated in software to account for this ori-
entation difference otherwise measuring the similaritynsenls andlc with mutual
image information would be meaningless.

We originally intended to use a digital magnetic compassunhmming exper-
iments to measure orientation. Digital magnetic compass#@sserial and/or USB
(universal serial bus) connectability are typically quétgensive (see e.g. http://www.
oceanserver-store.com/compass.html). We were fortuaéited an inexpensive model
manufactured by Silicon Laboratories, the F350. This caapaovides a tilt-corrected
azimuthal compass signal, as well as the tilt of the compadgtee current tempera-
ture. We wrote a daemon program in C to continually sampledendde the compass
signal; we shall make this code available online.

Unfortunately, we eventually found that the F350 is undal@dor our needs. The
signal is highly sensitive to magnetic interference, whikltommon indoors. Even
when we attempted to shield the compass from such noisezimeitn reading exhib-
ited a large standard deviation when travelling on a stitgigith; the mean error was
non-zero as well. The tilt signal is quite reliable indodrgugh, as is the temperature.

Until we can afford a more sophisticated digital compassipwst fall back on our
tracking system (see Section 6.2.2) for directional infation. This as we shall see
limits the autonomy of the robot, but we are left with littleaice.

6.2.2 Tracking System

We needed to track the robot during homing to provide a reobitie robot’s move-
ment for post-experiment analysis. As our magnetic comfakes] to work indoors
(see Section 6.2.1), we also used our tracking softwaredeige an estimate of the
robot’s orientation at each homing step so thatcould be rotated to account for
changes in robot orientation betwegandC.

We originally intended to track the movement of the robotigigia homing run
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Figure 6.2: Sample image from our panoramic imaging system used by our tracking

system.

with a tether tracking system designed by Robert MacGreggrior technical officer
in the School of Informatics at the University of Edinburghhis system consists of
up to four base stations, each of which holds a spool of fiskning. The end of
each length of wire is attached to a point on the robot. If i@t moves away from
a base station the wire unwinds. Movement towards the baserstwill cause the
wire to respool, as the base station pulls the wire towardsgth a small, constant
force. Each base station maintains an accurate and prestisgate of the length of
wire currently unspooled (i.e. the distance of the roboibfrihe base station). In an
initial calibration phase, the position of each base sta(iio a coordinate system with
a particular station at the origin) is estimated. Given ¢hassitions and the distance of
the robot to each base station, simple trigonometry can lpdassed to infer the robot’s
position in the aforementioned coordinate system. Two Iséeton locations/robot-
distance measurements are required for this calculationote than two base stations
are available, several estimates (one for every possibifeopdase stations) of the
robot’s position are made and the average position is regoithe robot’s orientation
can be estimated by calculating the best-fitting line thiosgveral successive position
estimates as the robot moves in a particular direction.

As we mentioned earlier, the tether tracking system provediitable for our pur-
poses. The fishing wire must be tethered to the highest paitihe@ robot otherwise
the wire becomes tangled on the robot when the robot rotdtke. highest point on
our robot is the top of the panoramic mirror rig. The consfauiting force of the base
stations causes the rig to bend, distorting the capturedenmaways that are difficult
to correct for in software. The pulling force also causesrgue around the centre of
mass of the robot, frequently causing the robot to topple.ove

We designed and built a visual tracking system to replacéetiher tracker. The vi-



Chapter 6. Robotic Experiments 185

sual tracker relies on a surveying technique called rese¢iMcCaw [1918]) to deter-
mine the robot’s current positidixg, yr). Resection takes as input the ego-centric bear-
ing of three landmarks whose positions in some suitableeate frame are known.
The resection algorithm itself is a rather involved trigometric procedure; we refer
the reader to McCaw [1918]) for details. Once the agent'stiposis fixed, its bearing

0 (i.e. rotation counter-clockwise from the x-axis of the mtinate system in which the
landmark locations are defined) can be computed using therkiacation of one of
the landmarkgx, ,yi ). We use the following formula to compute the robot’s bearing

6 —tan (ﬁ) 6.1)

Using Equation 6.1 we can compute three bearing estimaiag tise three differ-
ent landmark locations used in the resection process. pelbearing estimates are
averaged using the circular mean (Batschelet [1983]) ftamu

As resection requires the locations of recognised landsjavie placed six land-
marks in our experimental laboratory environment. Oureadjues — for an experiment
of their own — marked out a 4m x 5m grid on our laboratory flodierid was marked
in masking tape spaced at one metre intervals. One can segans this grid in Fig-
ure 6.1. We placed the six landmarks along the peripheryeftid, on intersection
points of the grid. In this way, we were easily able to loalisese landmarks.

We used images taken with the robot’'s panoramic imagingaiddtermine the
robot-centric bearing of these landmarks. See Figure 6.2 &ample image used by
our tracking system. We chose landmarks that were visuatignspicuous and, when
possible, part of a typical laboratory so that it could notckeemed that we adulter-
ated the laboratory environment to improve the performari@ar homing robot. One
landmark was, for example, a waste basket and another waster jpglinder standing
on end. It proved difficult to automatically identify thessntmarks in our images.
Thus, we had to perform the identification manually. As wecdbgd in Section 6.2.1,
each time a pose estimate was required, the robot’s on-lmmanguter captured the
current panoramic image and sent it wirelessly to our dgsktonputer. Our tracking
program displayed the image on screen and we mouse-cliakeghch visible land-
mark.

Given their locations in pixel-coordinates, the trackimggram inferred the robot-
centric bearing of each selected landmark. As we mentioaeler the resection
algorithm requires three landmark bearings to calculagertibot’s position. If more
than three landmark are visible, the tracking program usesSRANSAC (RANdom
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SAmple Consensus) algorithm (Fischler and Bolles [198d jleétermine the subset
of landmark bearings which gives the most consistent sebsitipn estimates. The
mean of these position estimates is taken to be the robagsgosition. The mean
position is then used to compute the agent’s bearing usingtitn 6.1. We use an
extended Kalman filter (Welch and Bishop [2006]) to furthéefiout noise in the

pose estimate. The filter modifies the position estimate ywed by the RANSAC

method by taking into account the tracker’s previous positgstimate and the robot
movement commands issued at this previous location.

As the panoramic imaging rig is somewhat unstable, the iocatf the panoramic
mirror in the images provided by the Webcam changes slighwigr time. At the
beginning of each homing run, the tracker finds the centrebamthdary of the imaged
mirror using the Hough transform (Fisher et al. [1996]). A® tHough transform
is computationally expensive, we do not reestimate thetimcaf the mirror in the
Webcam image during a homing run. The assumption that tlatioakhip between
the mirror and the Webcam does not change during a homingeems to be valid in
most cases. We also use the mirror location information tsknaait non-mirror image
segments when computing mutual image information.

We wanted to determine how well our visual tracker estimtitesobot’s pose. We
first tested the tracker in simulation. The simulated envinental area contained six
landmarks, represented by the blue pluses in Figure 6.3 [@hdmark arrangement
was quite similar to the one we used in our “live” robotic IsiaThe agent started at
position x=200, y=200 in this arena, oriented at 45 degr&se-hundred movement
steps were simulated. In each step, the agent made a rand@sioddo move forward
by 10 distance units or to rotate by 90 degrees counterclisekvirorward movement
occurred with 85% probability. After each movement, therdgestimated its pose
using the method described above. The pose estimate regjueragent to measure the
bearing of each sensed landmark. To mirror real-world cions, we added random
noise to these bearing measurements. Each noise sampleravas iddependently
from a zero mean Gaussian distribution with a standard tewiaf 1.5 degrees.

The result of one run of our simulation is shown in Figure 6The solid black
line in this figure indicates the robot’s true path and thelnee our visual tracker’s
estimate of the robot’s position. The position estimate &pproximately zero mean
error (0.16 distance units in the x-direction and 0.05 aisgaunits in the y-direction).
The standard deviation of the position estimate was smalb dlistance units in the
x-direction and 1.75 distance units in the y-direction. Toleot’'s estimated bearing is
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Figure 6.3: Result of a simulated test of our visual tracking system. The start position of
the simulated agent’s path is depicted as a green star, the end position a red star. The
true path of the simulated agent is shown as a solid black line. The agent’s estimated

location is shown as a red line. Landmarks are depicted as blue pluses.

not shown in Figure 6.3. The mean bearing error was -0.09edsgwith a standard
deviation of 0.66 degrees. The distribution of the bearingrewas approximately
Gaussian, with kurtotis = 2.89 and skewness = -0.17. Wen¢h@a simulation several
times; the results were similar in every run.

We next tested the visual tracker in our laboratory envirenm We could not
assess the tracker’s ability to estimate position sindaeguse coarse grid laid out on
our laboratory floor, we had only a rough sense of the agenisgosition. To measure
the tracker’s ability to estimate bearing, we drove the ta@dong a straight 2.5m track
on the laboratory floor. The robot stopped approximatelynebem (as measured by
dead reckoning), at which point a pose estimate was madeedtimeated position of
each data capture point is shown in Figure 6.4. We drove thetralong two other
2.5m tracks in different parts of our laboratory and gatdes® equally spaced pose
estimates along these tracks as well. We combined the datedhree tracks and
found that the standard angular deviation from the mean7$ Gegrees, broadly in
line with our simulation results. The skewness is 0.09 (§naal in the simulation)
but, unlike in the simulation, the kurtosis of the data is#§ifdicating a non-Gaussian
distribution with a relatively high peak at the mean.



Chapter 6. Robotic Experiments 188

Figure 6.4: Result of a test of our visual tracking system in our laboratory environment.
We drove the robot along a straight 2.5m track, taking pose estimates every 5cm (for a

total of 50 estimates). The position estimates are depicted as black crosses.

6.3 Experiments and Results

In our first experiment, we wanted to determine which imagmilarity measure —
RMSor MI - yields better homing performance in static environmewes.measured
homing performance using the criteria used in previous thap total homing time
and return ratio. In this experiment, our robot homed gtgrfrom either one or two
metres away (approximately) from the snapshot locatiorl.oxérhead lights in our
laboratory were turned on during capture of both snapshotarmrent images, result-
ing in constant illumination over the entire experimenteaa We selected snapshot
locations which were uniformly distributed in our test emviment and starting loca-
tions uniformly distributed (when possible) around thepstet positions. For every
pairing of start location and snapshot location, we per&nwo homing runs, one
usingRMSto measure image similarity and the other udihigto measure image sim-
ilarity. For each similarity measure, we performed eighé-anetre (i.e. starting one
metre from the snapshot location) and twelve two metre tésts total of forty hom-
ing runs. We used the “Run-Down” algorithm to home in thegeeexnents, setting the
interval between difference surface samples at 15cm faritieemetre experiments and
25cm for the two-metre experiments. These inter-samplaikies were determined
empirically after observing a few unrecorded homing rungaious starting distances
in our environment.

The results of this experiment are summarised in Table é11heé one-metre ex-
periments, homing witRMSandMI was roughly equivalent, thoud¥il had a higher
return ratio. The disparity between the return ratio in tlve-imetre tests was greater,
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Similarity Measure|  Frotal Drotal (€M)  Brotar (deg)  Trota () RR
Goal Distancex 1 metre
RMS 28.4[13.3] 426.0[200.0] 1188.0[373.3] 97.6[39.2] 0.75
M 27.1[7.4] 407.1[111.1] 1015.7[253.0] 89.1[23.0] 0.88
Goal Distancex 2 metres
RMS 22.6[2.7] 565.6[66.7] 888.8[169.7] 104.0[14.3] O.f5
MI 28.8[12.0] 720.5[301.2] 1251.8[654.5] 136.6[60.2] 0/92

Table 6.1: Summary of results for homing runs comparing M| and RMSimage similarity
measures in static conditions. Mean values over all homing runs are reported, with
standard deviations in square brackets. Only successful homing runs were used to
calculate the summary statistics other than, of course, the return ratio. In this table
Frotal is the total number of image similarity computations undertaken during a homing
run; Dotal is the total linear distance travelled during a homing run; B1ta Stands for
the sum of all angles turned by the homing agent during a homing run; Tyotg is the
total time taken during a homing run; and RRis the return ratio. As in our simulations
in Chapter 5, the robot translated at 8 cm/sec and rotated at about 29 degrees/sec. A
single computation of Ml and RMStook roughly the same amount of time, about 0.1
seconds. When calculating Tygta1, We ignored the time required to transmit images over
the wireless network and the time required to estimate the robot's pose using the visual

tracker as these are implementation dependent.
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with MI reaching the goal 92% of the time. As might be expected, tta¢ tisne re-
quired to home in th# | experiments increases with increasing starting distarace f
the goal. Since the sample interval is greater for the twirenests, the increase in
mean function evaluations and mean total translation didinmeyease dramatically.
StrangelyFrotal @nd Brqt5 actually decrease in the two-metRM S experiments as
compared to the one-metRIM Sexperiments. We believe that this is because in sev-
eral of the one-metrBM Shoming runs the robot became temporarily trapped in local
optima before finally reaching the goal.

In our second experiment, we sought to determine which antylmeasure RMS
or Ml —yields better homing performance in an environment in Whighting changed
between snapshot and current image capture. As above,libestarts homing from
either one or two metres away (approximately) from the shapecation. We selected
snapshot locations which were uniformly distributed in tagt environment and start-
ing locations uniformly distributed (when possible) arduhe snapshot positions. For
every pairing of start location and snapshot location, wiégoeed two homing runs,
one usingRMSto measure image similarity and the other usiiyto measure im-
age similarity. All snapshot images were captured with eéirbead lights turned on.
Current images were captured with half of the overhead digltectly above the ex-
perimental area turned off; in some experiments we turneddft bank of lights off
and in others we turned the right bank of lights off when cepgyicurrent images.

For each similarity measure, we performed eight one-mettkeaght two-metre
tests, for a total of thirty-two homing runs. We used the “Rown” algorithm to
home in these experiments, setting the interval betwederdifce surface samples at
15cm for the one-metre experiments and 25cm for the twoerestperiments. These
inter-sample distances were determined empirically asebo

The results of our dynamic illumination experiments areorégd in Table 6.2. As
measured with the return ratlRR homing usingMI to measure image similarity is
clearly more robust than when usiRMS This agrees with the results given in Chap-
ter 3. In the two-metre tests, homing wigM Swas only successful 38% of the time
compared with a 75% return rate ftl. We observed that while homing usiRM S
a robot starting in a relatively unlit portion of the enviraent would move toward the
more brightly lit part of the arena rather than towards thapsmot location. This ob-
servation jibes with our finding — reported in Chapter 3 — REtSdifference surface
homing will cause the homing agent to move so as to equalesentan intensities of
the current and snapshotimages. The other criteria listédble 6.2 indicate that suc-
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Similarity Measure Frotal Drotal (CM) B1otal (deg) Trotal (S) RR
Goal Distancex 1 metre
RMS 21.6[3.2] 540.0[80.2] 864.0[225.9] 99.8[17.7] 0.62
Ml 19.7[6.5] 492.9[161.8] 810.0[207.8] 91.9[27.7] 0.88
Goal Distancex 2 metres
RMS 23.0[4.6] 575.0[114.6] 840.0[137.5] 103.5[19.6] 0.38
Ml 24.2[6.0] 604.2[151.2] 870.0[245.9] 108.3[27.6] 0.75

Table 6.2: Summary of results for homing runs comparing Ml and RM Simage similarity
measures in dynamic illumination conditions. Mean values over all homing runs are re-
ported, with standard deviations in square brackets. Only successful homing runs were
used to calculate the summary statistics other than the return ratio RR For definitions

of Frotal: DTotals ®Total, and Trotal S€€ the caption of Table 6.1.

cessful homing wittMI takes roughly the same amount of time as successful homing
with RMS

Given the relatively inferior return ratio of “Run-Down” perted in Table 5.7, one
may be surprised that we used this algorithm for differenoése optimisation in the
experiments described above. We wanted each “live” homingto be as speedy as
possible since the battery life of the Koala and the Acerdpatre quite limited, both
lasting for a little over an hour of constant use. Once drieach battery requires sev-
eral hours to recharge. In trial homing runs, the majorityhef time (about 90 percent)
was spent making the semi-manual pose estimation descnilSsttion 6.2.2. We per-
formed a pose estimate each time the difference surfaceamagled because the ori-
entation of the robot is required to compute image simifaiie chose “Run-Down”
to compareM| andRMSdifference surfaces in the experiments above because “Run-
Down” — as demonstrated in Figure 6.5 — required fewer diffiee surface evaluations
as a function of starting distance than 1FDSA, 2FDSA or Hylimi our simulation
experiments. The difference in function evaluations igwoftiramatic; for example,
Figure 6.5 indicates that “Run-Down” always requires fewrd often less than half
the number of difference surface evaluations on average IR®DSA for any given
starting distance. Though the performance of “Run-Downfeigtively poor in Ta-
ble 5.7, in absolute terms its mean return ratio was only afexgentage points worse
than 1FDSA. For this reason — and to make our live experimenfast as possible —
we chose to use “Run-Down” in the experiments described@bov
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Figure 6.5: Mean number of difference surface evaluations as a function of starting dis-

tance from the snapshot location for optimisation methods Run-Down, 1FDSA, 2FDSA

and Hybrid. The error bars indicate the standard deviation from the mean number of

difference surface evaluations. All simulated homing runs used to make Figure 5.12 in

Chapter 5 were used to create these graphs.
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Opt. Algorithm Frotal Drotal (cm) B1otal (deg) Trotal (S) RR

Goal Distancex 1 metre

RunDown 27.1[7.4] 407.1[111.1] 1015.7[253.0] 89.1[23.0] 0.88
1FDSA 24.4[9.1] 983.9[329.8] 1258.9[394.6] 169.4[55.7] 1.00

Goal Distancex 2 metres

RunDown 29.8[13.1] 743.8[328.6] 1158.8[687.8] 136.4[65.8] 1/00
1FDSA 21.0[0.0] 859.3[0.0] 1236.8[116.1] 152.7[4.1] 0.Y5

Table 6.3: Summary of results for homing runs comparing “Run-Down” and gradient
descent with one-sided finite differencing (1IFDSA) in a static environment. Mutual in-
formation was used to measure image similarity. Mean values over all homing runs are
reported, with standard deviations in square brackets. Only successful homing runs
were used to calculate the summary statistics other than the return ratio RR For defi-

nitions of Frotal, D1otals O7otal @and Trotal S€€ the caption of Table 6.1.

In our final experiment, we sought to determine whether “Rawn” or gradient
descent with one-sided finite differencing (LFDSA) was thtdy optimisation algo-
rithm. As above, the homing robot started from either onevarrinetres away (approx-
imately) from the snapshot location. We selected snapsications which were uni-
formly distributed in our test environment and startingdtions uniformly distributed
(when possible) around the snapshot positions. For everyngaf start location and
snapshot location, we performed two homing runs, one usitign“Down” to home
and the other using 1FDSA. All snapshot and current imagee wa&ptured with all
overhead lights turned on. Image similarity was computeti wiutual information.

For each optimisation algorithm, we performed eight ondrenand eight two-
metre tests, for a total of thirty-two homing runs. For thestRDown” algorithm, we
set the interval between difference surface samples at I&cthe one-metre exper-
iments and 25cm for the two-metre experiments. These sample distances were
determined empirically as above. When homing with 1IFDSA seft, at 25cm for
all k anday = %cm These gains were empirically determined in the same way tha
we fixed the “Run-Down™s inter-sample interval. To gath&etdifference surface
samples required to make a gradient estimate with 1FDSA, see the sequence of
movement commands described in Section 5.3.1.

As we can see in Table 6.3, 1FDSA is more successful at argjadtstance of
one metre than is “Run-Down.” The 1FDSA algorithm, thougikets dramatically
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more time to home than does “Run-Down.” This disparity is thuthe movement that
the robot has to undertake in order to compute each gradstimate. Interestingly,
1FDSA requires less time to home at two meters than at onernveteas yet do not
have an explanation for this. 1FDSA at two meters is stilhv&othan “Run-Down,”

though.

The fact that — as reported in Table 6.3 — “Run-Down” perfobmter than 1IFDSA
at 2 metres runs counter to our expectations given the stionleesults of Chapter 5.
We examined in detail the records of the two homing runs incwHiFDSA fails and
“Run-Down” succeeds. In one case, the 1FDSA algorithm guitie agent closer
to the snapshot location after every gradient estimate aesged. Unfortunately,
in the later part of the homing run, the agent’s distance ftbensnapshot locaction
decreases only slightly (by a few centimetres) in each titamaof the optimisation
algorithm since it moves in a zig-zag fashion towards thel.g@dis behaviour is
interpreted as clustering around a fictitious differencdam@ optimum so the agent
halts at about 50cm from the snapshot location. The cluggestopping criterion fails
in this instance. In the case of the second 1FDSA failureirtial gradient estimate
is fairly poor; the agent’s one metre move in this directioim@s it only slightly closer
(1.8 metres) to the goal position than the starting distafh2anetres. The new location
is a local optimum so the agent spends the remainder of thénigomn meandering
near this location. This example highlights a weakness thigh1lFDSA algorithm:
if at least one of the first few gradient estimates is poornttiee agent will move
only slightly nearer or indeed away from the goal locatioatgmtially to a location
which is more difficult to home from than the starting locati6Run-Down” does not
make such large steps so turns towards the snapshot lotegiore finding this local
optimum.

Some of the standard deviations for two-metre 1FDSA replorieTable 6.3 are
zero. This may seem odd at first glance. The reason for it t3hlechoming algorithm
checks if the “clustering” stopping criterion is true siagt on the seventh iteration
of the 1FDSA algorithm. In all of our two-metre 1FDSA testsg tstopping criterion
happened to be true on reaching the seventh iteration olgloeithm. The number of
difference surface evaluations and the linear distanceled (as measured by dead
reckoning) is directly proportional to the number of itéoats of the 1FDSA algorithm.
Thus, these values were equal to 21.0 and 859.3cm, resglgctivall successful two-
metre 1FDSA runs.
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6.4 Conclusions

Some results reported in Section 6.3 are broadly in agreemih our simulation
experiments described in previous chapters. In staticitond, visual homing using
RMSto measure image similarity performs roughly as well as whHnis used to
measure similarity. When illumination changes betweenctygure of the snapshot
and current images, homing usidj is dramatically more robust. We observed that
several of th(RMShoming runs in dynamic lighting fail in the manner prediciad
Chapter 3: the robot moves so as to equalise the mean intensitapshot and current
images, rather than towards the snapshot location. Unlikeur simulation work,
the choice between optimisation algorithms — specificaltyri-Down” and 1FDSA
— yields ambiguous results. The 1FDSA algorithm is succ#ds10% of the time
when homing starts 1 metre from the snapshot location b@sis tobust than “Run-
Down” when starting from 2 meters. 1FDSA consistently takewe time to home
than does “Run-Down” due to the expensive gradient estonatarried out by the
former algorithm.

Homing success rates reported in this chapter are genemlpar with those gar-
nered from simulated experiments and reported on in ChdptéaMe found though
that in our “live” experiments the robot reliably homed fram to 2 metres from the
snapshot locations but in our simulated experiments — wgamdy’s image data set —
the homing agent could reach home from a greater startingraie (up to 4.5 metres).
There are a few factors which could account for this disanega We may not have
accounted for all sources of sensor noise in our simulatpdraxents. In particular,
as we noted above, the Webcam image of the mirror moves owuerdue to physical
instability in our panoramic imaging rig. We corrected fhitmovement at the begin-
ning of every homing run in “live” experiments but it might\ebeen better to apply
the correctiorduringhoming runs as well (though this would have required sigaiftc
computational effort). Our panoramic mirror was upturnegflecting large parts of
our laboratory’'s ceiling whereas Vardy’s mirror was dowmied so that floor of his
laboratory took up a large part of the images which he cagtuféhereas the image of
the floor changes very little as the agent moves, the imadeeafeiling (with its lights
and repeated tile pattern) changes more rapidly. Relgtieglid change in image con-
tent leads to relatively rapid decrease in mutual imagerimétion as the agent leaves
the snapshot location. Finally, of course, the laboratorirenment in which Vardy
captured his images was different than the laboratory irctvlawve captured ours. If
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Vardy’s environment contained imaged objects which wemgelaand farther from the
robot than those in our environment, mutual information logenerally be usable
over a wider area in Vardy’s lab.

6.5 Future Work

We described in this chapter the difficulty we had in attagrenglobal compass refer-
ence to match the orientations of current and snapshot isnatje ended up using our
tracking software to provide an orientation signal to thebiteorobot. This of course
limits the autonomy of the robot.

There are a few alternatives to our compassing solutionwvie could try in fu-
ture. We could use the zero phase representation (ZPR) gieisn@escribed in Chap-
ter 2. The ZPR uses phase information from the discrete Eotrensform of images
to rotate any image taken in a particular environment to glsioanonical orientation.
We could also use angle histograms (Hsieh et al. [1997])igm @urrent and snapshot
images. In computing an angle histogram, snapshot andntumages would first be
edge-filtered and the orientation of each edge in each imagé&hbe computed. Then,
the orientation of each edge in the currentimage would bepesed to the orientation
of all edges in the snapshot image. Each such comparisotsysl angular differ-
ence which would be used to increment the correspondingniting angle histogram.
At the end of this process, the bin with the most elementgdgiain estimate of the
orientation difference between current and snapshot isiagleis technique might be
particularly useful in our laboratory as the ceiling hadidist edges whose orientation
in our panoramic images is highly dependent on the oriesriatf the robot. These
two alternatives to compassing — ZPR and angle histogranmHevef course have to
be tested in the context of difference surface-based vismaing before being used.

We could also use the visual compass described in Chaptera2aionally align
current and snapshot images. We in fact did some prelimitesting to determine
whether this was a viable solution for visual homing by difece surface optimisation.
The visual compass seemed to sometimes introduce locataptilocations relatively
far from the snapshot location. These local optima wouldairse attract a nearby
homing robot, steering it away from the true snapshot locatilt may benefit us to
take another look at the visual compass, though.

If all of the above methods fail to provide reliable infornwat to align the ori-
entations of snapshot and current images, we could try pmgpthe Koala with a
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gyroscope. The gyroscope would augment our dead reckorysigra to track the
robot’s orientation over time. Due to systematic and nosteyatic odometric errors
(described in Chapter 2), the robot’s dead reckoning syssansufficient to perform
this tracking. A gyroscope measures the angular velocitgrofccelerating system.
The gyroscope’s output can be integrated over time to egtith@ robot’s orientation
with respect to its initial orientation. As in RoumeliotischBekey [1997], an extended
Kalman filter can be used to fuse wheel encoder informatidgh mieasurements from
the robot’s gyroscope to boost the accuracy of the robotentation estimate. See
Chapter 2 for more information on the extended Kalman filter.



Chapter 7
Conclusions and Key Future Work

In this dissertation we have investigated a computatigrefficient and robust algo-
rithm for visual homing in dynamic indoor environments. Ag discussed in Chap-
ter 2 visual homing in general is a useful visual servoinditegue. Visual homing
is frequently employed to guide a robot between adjacenesiad a vision-based
topological navigation system (see e.g. Argyros et al. B00Visual homing is an
appropriate approach for these systems because purellotipal vision-based rep-
resentations of an environment do not contain explicit metformation about that
environment (i.e. landmark locations). As we first set ouCimapter 1 visual hom-
ing allows for navigation without explicit knowledge of thecation of landmarks in
a global coordinate system. We saw in Chapter 2 that visualitg is also used to
solving the docking problem in which a robot must be guided frecise pose with
respect to an object in the environment for the purpose gf reaharging or grasping.

We argued in Chapter 2 that image-based (as opposed to ddzdsed) visual
homing is a worthwhile approach to visual navigation. Iméagsed approaches es-
chew feature selection, extraction and correspondencenyMavigation algorithms
require consistently successful solutions to these diffifgioblems in order to oper-
ate. Though SIFT features (see Chapter 2 for details) offeveerful tool for feature
extraction and correspondence, we in this dissertationmjpivestigate a more parsi-
monious approach to visual homing.

When we began work on this dissertation, there were two irtegped visual hom-
ing algorithms to be found in the literature: image warpifgahz et al. [1998b]) and
homing by difference surface optimisation (Zeil et al. [2)0 Image warping uses
a computationally intensive brute-force search to infamkovectors. Difference sur-
face homing, on the other hand, is quite computationallgiefiit and algorithmically

198
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simple. Unfortunately, Zeil et al. [2003] found that difégrce surface homing using a
root-mean-squardRM 9 formula to measure image similarity is not robust in visgal
dynamic environments. As we shall argue here, our coniohub the field of visual
homing has been to render difference surface homing morestab visual dynamism;
to push the algorithm to limits not considered by Zeil; angittneer methods to speed
up the computation required by difference surface homirigauit degradation of hom-
ing success. Along the way we have discovered novel andutiiitks between visual
homing and other bodies of literature.

Zeil et al. [2003] identified limitations teRMS as an image similarity measure
used for difference surface homing. In Chapter 3, we pravidevel empirical and
analytical proof of these limitations. We demonstratedlif@r first time that difference
surface homing witlRMSalso works well in a static indoor laboratory environment.
In agreement with Zeil et al. [2003], we showed empiricaliatt difference surface
homing with RMSis not robust when the snhapshot imageand current imagéc
are captured in different lighting conditions. In a novelthematical analysis of the
root-mean-square measure, we demonstrated that movirtgpthing agent so as to
minimiseRMSbetween current and snapshot images is equivalent to sinradusly

* seeking high covariance betwekyandIc (i.e. minimising—2Co1ls, Ic));
« seeking low variance current images (i.e. minimis#ay(lc)); and
« seeking equality of the mean intensitied @andlc (i.e. minimising(Is— Ic)?).

We argued that the second two items above often lead the lgomgient to difference
surface minima which do not coincide with the snapshot iocdt.e. false positives).
We demonstrated in a principled way in Chapter 3 that thezdatter alternatives
to RMSfor measuring image similarity for the purpose of differersurface homing.
Our novel analysis of the root-mean-square measure peetlieat the covariance term
of theRMSequation would yield more robust difference surfaces inagyit environ-
ments than th&MSitself. We confirmed this prediction with simulated hominms
using Vardy’s image data sets. We argued that the covariacdy a trustworthy mea-
sure of the similarity betweely givenIc when there is a linear relationship between
intensities inls andlc at corresponding pixel locations. We demonstrated that auc
linear relationship betweely andlc doesexist in static conditions but is not always
present in dynamic situations; we gave an example in whiahmihation change be-
tween capture dfs andlc leads to a nonlinear relationship in pixel intensities. Wait
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image informationi1) assumes no such linear relationship, only that pixel isitess
in Ic are goodpredictorsof corresponding pixelés. Mutual image information was
indeed superior to covariance for the purposes of diffegeswaface homing in several
dynamic environments.

As we argued in Chapter 3, mutual image information as an ésagilarity mea-
sure may have applications outside the narrow confines fardiice surface homing.
RMS(or something very similar) is quite often used to measuedifference between
images in other image-based navigation schemes (e.g. @geinvarping algorithm
of Franz et al. [1998b] and image-based Monte Carlo lodatisgMenegatti et al.
[2004]]). As in our work, these algorithms compare a curierdge with images cap-
tured previously. Lighting and landmark locations mightliWeave changed in the
interim. We have demonstrated that mutual image informmaigorobust to this dy-
namism and so could provide a useful image similarity mesasuimage-based robot
navigation in general. Thus this dissertation may well batarest to many workers in
visual robotic navigation and machine vision, not just thfixused on visual homing.

Compared to other image-based visual homing algorithmsrticplarly image
warping (see Franz et al. [1998b] and Chapter 2) — differenwréace homing is a
computationally efficient homing algorithm. One of our imsts in this work was to
increase this efficiency without drastically diminishirngetease with which a differ-
ence surface can be optimised. We did so using techniquehwhbiother researchers
in visual homing have yet explored. In Chapter 4 we explo@dpgutation of mutual
information using both serial and parallel processors. AaMS parallel image pro-
cessing device was available in our laboratory for our use.cvéated novel parallel
histogramming algorithms for use on the EyeRIS and dematestrthat computation
of mutual information with these algorithms requi@&B?) operations wher8 is the
number of intensity levels in the input images.

Unfortunately, noise in the EyeRIS’s image capture procesders images unus-
able for difference surface homing. We therefore explorethmds to speed the serial
computation of mutual information. Serial computation aitoal image information
takesO(B? + NM) steps where each input image Hdgows andM columns. We
demonstrated that a reduction (sometimes quite drastgpatial and/or intensity lev-
els in our input image has little or no discernible effect mmiing performance in a
laboratory environment in both static and dynamic condgioWe used a number of
novel criteria to assess or in some cases infer homing ssicogsre information on
these criteria can be found in Chapter 4. We found that the tequired for serial
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computation of mutual information for low resolution imageas of the same order of
magnitude as the time required for parallel computatiomwie EyeRIS. We thus felt
justified in abandoning the EyeRIS for the time being and aaimg mutual informa-
tion serially in the remainder of our dissertation work.

We presented empirical evidence that reduction in the nurobenage intensity
levels results in a scaling-down of Ml surface values nearstapshot location and a
constant shift of MI surface values relatively far from timapshot location. The reduc-
tion of the spatial resolution of input images had a simitexugh not identical effect
on MI surface values. We speculated that homing with rediedjes is successful
due to the effect that such reduction has on the mutual irdion signal. At the end
of Chapter 4 we provided novel analytical support for theesbsd reduction in Ml
values in response to gray level reduction both at and velgtiar from the snapshot
location.

Unlike most researchers in robotic homing, we demonstritatiour homing al-
gorithms operate successfully in both realistic simulaaod “live” robotic trials. We
introduced realistic sensor noise in our simulations, fifi@ng noise in both the image
capture and compassing systems and determining the resdlstribution of noise in
the mutual information signal. We scanned the optimisali@nature to identify a
set of appropriate algorithms to guide the homing robot tximase the difference
surface. Of these algorithms, we found that a gradient @asaiim one-sided gradient
estimation (1FDSA) is the best algorithm for the task at hasgudged by our novel
evaluation criteria.

For our “live” homing trials (described in Chapter 6), we stnucted a mobile robot
capable of visual homing and designed and built a visuakiingcsystem to infer the
robot’s pose (position and orientation) during experinseiie pose information pro-
vided by the tracker was important for the interpretatioexperiments; we also used
it to align snapshot and current images to a single globalpas® direction. With-
out such image rotation, calculation of mutual image infation would have been
meaningless.

The results reported in Chapter 6 are sometimes in line wibseé garnered from
simulation. We found — when snapshot and current imagesaptied in different
illumination conditions — that the mutual information ingagimilarity measure often
leads to more robust difference surface homing than themezn-square image sim-
ilarity measure does. Unlike in our simulation work, the icieocbetween optimisation
algorithms — specifically “Run-Down” and 1FDSA — is ambigaolthe 1FDSA algo-
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rithm is successful 100% of the time when homing starts 1 entetrm the snapshot
location but is less robust than “Run-Down” when startiranir2 meters. 1FDSA con-
sistently takes more time to home than does “Run-Down” diled@xpensive gradient
estimation carried out by the former algorithm.

The 1FDSA algorithm is expensive because it requires thergpagent to move
in order estimate the difference surface gradient at aqdati location. We outlined a
method in Chapter 5 which allows the homing agent to estirttegtelifference surface
gradient at a location without moving from that location. rQquoposed method calls
for the agent to capture two additional images near the $rapdter having stored the
snhapshot itself, one atc centimetres from the snapshot location in a randomly chosen
direction and the other atc centimetres from the snapshot location in a direction
orthogonal to the randomly chosen direction. These imagesl tbe captured only
once, probably as the agent leaves the snapshot locatidmefdirst time. We showed
in Chapter 5 how the image similarity between each of thesmetenapshot images
and the current imagk: could be used to estimate the difference surface gradient at
the current image capture point. In a pilot study, we denratet the success of this
method in a static laboratory environment. The gradiengssaimple difference surface
computed with this method are shown in Figure 5.21. More vebriuld be done with
this algorithm to demonstrate its usability in other enmireents.

As we relate in Chapter 6, our “live” homing trials demongthto us that accurate
compassing indoors is difficult. The image similarity measuve experimented with
in Chapter 3 require thdg andlc are aligned to the same external compass direction.
Mustlsandlc be aligned in this way before measuring the similarity betwthe two?
Not necessarily. We showed in a pilot study described in @hrapthat the marginal
intensity distributions ofs andl¢ (i.e. the normalised intensity histograms of these
images) could be compared with the Kullback-Leibler diesrce (Weisstein [2007Db]).
The intensity histogram of an imagdgis of course left unchanged whénis rotated.
Using this image similarity measure we demonstrated restdgrsuccessful difference
surface homing in a static laboratory environment. Resunillynamic conditions were
poor, though. More work must be done with the Kullback-Lerlgivergence similarity
measure to improve performance in dynamic situations.

We close this chapter with a discussion of the overall sfjsatea novel strategy in
the visual homing community — we employed to make progressik on this disser-
tation. In essence we attempted to find connections betwisaal\homing and other
bodies of literature whenever possible and to bring suéeksgppropriate algorithms



Chapter 7. Conclusions and Key Future Work 203

from these fields to bear on difference surface visual homing

In the latter part of Chapter 3 we argued that visual hominguge similar to
the problem of image registration. An image registratiogoathm attempts to find
the function which best transforms one image of an objectcens into a second
image of the same scene or object. The two images can difeetalthe poses of the
imager, the modalities in which the images were captured/aarthe layout of the
scene among other things. The function sought is a transfitomof pixel locations,
often though not always affine. While image registrationoathms search for the
pixel-by-pixel transformation between two images, vishaming seeks to estimate
the transformation of ammagerfrom Sto C given imageds andlc. Hill et al. [2001])
demonstrate that mutual image informatidl | can be used to assess image similarity
for the purposes of image registratiddl works well as an image similarity measure
in registration even when the two images to be registerderdsignificantly in for
instance lighting and modality. The kinship between imaggistration and visual
homing — and the success i in the former — led us to applyI to measure image
similarity in visual homing with, as Chapter 3 demonstrateneficial results.

Our study in Chapter 5 of noise in the mutual information sigad us to the body
of literature known as stochastic optimisation. This htere gave us several optimi-
sation algorithms to experiment with which have provenkrescords in optimising
noisy functions. As we mentioned above, we found that ambagd algorithms gra-
dient ascent using one-sided differencing to compute tadignt was the best choice
according to our novel evaluation criteria. The stochasgitmisation literature pro-
vided useful advice on choosing realistic gains for the 1LAR&orithm.

In sum, difference-surface based visual homing is commurtally efficient method
which we have shown to be competitive with other recentlylishied homing algo-
rithms in dynamic indoor environments. Our novel mutuabimiation image simi-
larity measure renders difference surface-based homiagjwely robust to dramatic
illumination changes in the environment. We have shownriaual information can
be computed efficiently with little loss of homing in homingcsess. This computa-
tional efficiency means that mutual information may well fancble in place recogni-
tion problems for topological navigation in which a currémiage must be compared
with many reference images.
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Appendix A

RMS Distribution Due to Webcam

Noise

Here, we derive the distribution of ttRMSsignal when the current imade is cor-
rupted by zero-mean Gaussian white noise. This is the Weluzgture noise de-
scribed in Section 5.4.1.

RMSis closely related to the mean squared differen8&SD) measure, which we
use here for the sake of mathematical simpliity

N M
MSD(Is Ic) = NlM_; 5 (1t ) - el ) (A1)
i=1j=

Here, as usualgis our snapshot image ainglis our current image. Each is an intensity
image withN rows andM columns.

As stated above, each pix@l j) in Ic is corrupted by a noisg ; drawn from a
normal mean Gaussian distribution with standard deviatio®; ; ~ N(0,02). This
noise is spatially and temporally uncorrelated. We shdlltba noisy current image
ICNoisy.

The following relatesiSD(Is, Ic) to MSD(Is, 1Y)

10ther authors have replac&MSwith MSD; see for example Moller and Vardy [2006].
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=z
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The first term in Equation A.2 above is simply Equation A.1.eThird term is the
sample variance of the noise distribution. This term hasxpeeted value 06?; it’s
distribution is, according to Weisstein [2003], a Pearsguetlll distribution. As the
noise has a mean of zero, the second term is an estimate ok(tive) covariance
between the signal and the difference image Ic. The noise is independent of the
difference image. Thus, this second term will be very claseero. We shall assume
itis zero.

From this discussion we conclude that corruptiggwith zero-mean Gaussian
white noise leads to a positive shiftSDvalue with expected valug? with a Pear-
son type Il distribution. To test this, we corrupted an iradg with Gaussian white
noise with variance 25 1000 times. The mean difference batwleeM SDwith noisy
images and the “trueMMSDwas 24.1. When we reduced the intensity noise variance
to 16, the mean difference became 15.4. When we reduced tke variance to 9,
the mean difference became 8.7. In all cases the individifferehces were posi-
tive as predicted. It seems as though the mean differenaansistently slightly less
than the intensity noise variance (our mathematical argfyedicted equality). This
discrepancy might be due to the fact that we limit noisy istgnvalues to be in the
range[0, 255 when injected noise brings an intensity value outside t#ige. This
thresholding in effect reduces the variance of the noise &iyall amount.

We next wanted to determine whether the distribution ofedéhces was indeed a
Pearson type Il distribution as predicted. We first lookédme of our empirically
generated probability distributions (for intensity noisih variance 9) and saw a re-
semblance to the gamma distribution (which is a Pearson yukstribution). We
then used Matlab’gamfit function to calculate maximum likelihood estimates of the
shape and scale parameters for our empirical distribuisayming that it is a gamma
distribution). Finally, we used Matlab&hi2gof function to determine whether the es-
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timated shape and scale parameters yield a gamma distrbarhich is a statistically
“good” fit for our empirical distribution. Unfortunatelyhe chi2gof function indi-
cated that the null hypothesis — that the empirical distidyuis a gamma distribution
—should be rejected. A five percent significance level wad.ud&e repeated this pro-
cedure with other members of the family of Pearson type Birthutions but failed to
find an appropriate distribution.



Appendix B
Optimisation Stopping Criteria

As we discussed in Section 5.4.4, it is difficult to know whem boming algorithm
has reached its goal. We propose the following stoppingrigito aid in making this
decision:

1. Stop when the current Ml difference surface sample exxeepredetermined
threshold. Given the discussion in Section 5.4.4, thiggstis unlikely to work
in all situations. It's advantage is that every stochaspitmisation algorithm
described in Section 5.3 makes use of difference surfaceesalo this criteria is
applicable regardless of the method of optimisation.

2. Stop when the magnitude of the current estimate of thagmadf the difference
surface exceeds a predetermined value. Spall [2003] stgytped gradient esti-
mates are less susceptible to noise than are value estismatbis criteria may
prove better than (1). Of course, we can only apply this gatehen using an
optimisation algorithm which estimates the local gradient

3. Section 5.4.2 suggests that a small compass error neamnadipshot location will
produce a relatively noisy estimate of the local Ml value.nTitigate this prob-
lem, we could store many versions of the reference imageatadtby different
amounts from the true reference image. We could then contpatill value of
the current image (counterrotated using the current comgsismate) and each
of these reference images. We could use the maximum M| valtieeebest esti-
mate of the current Ml value. Unfortunately, this algoritheguires several Ml
computations (one for each reference image) for each iberaf the optimisa-
tion routine. For fast homing, this is unacceptable.

220
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Instead of the above procedure, we shall compute the piisg-wean of the
rotated reference images above. This image average negderdomputed
once, at the start of the agent’s homing run. We shall thenpcoenthe mutual
information between the current and mean reference imagémation stops
when this Ml estimate exceeds a predetermined value.

4. Preliminary tests with Vardy’s images indicate that thetural information be-
tween binary, edge-filtered reference and current imagekse to zero away
from the snapshot location and significantly greater than ae(and most likely)
near the snapshot location. This may only occur in indooirenments where
there is strong edge information. Thus we can stop homingwthe Ml value
between edge-filtered snapshot and current images excpeeldaiermined thresh-
old.

Computing an edge-filtered current image at each homingasidp overhead.
This overhead may outweigh the benefit of using this stopgiitgria. We shall
attempt to determine this in tests below.

5. Compass noise affects the Ml signal of edge-filtered imagewell. The aver-
aging technique used in criterion (3) seems not to work fgeefiltered images
for reasons that we do not fully understand. Instead, wegongtite seven edge-
filtered snapshot images rotated by -3, -2, -1, 0, 1, 2, andg8eds from the
shapshot orientation. We assume that these edge-filtergkesrhave few edge
pixels compared to the total number of pixels. A sparse spration, then, is
justified in which we store only the locations of edges in escage. Instead
of computing the mutual information between these edgexéitt snapshots and
the edge-filtered current image, we simply count the numbeidge pixels in
the current image which coincide with the edge pixels in eawdpshot image.
We then normalise this count by the total number of edge pi&eh a snapshot
image (all snapshots will have the same number of edge sgdlsey differ only
in rotation). The largest normalised count is used in thogging criterion. We
halt optimisation when the maximum normalised count exseedrecomputed
threshold.

6. The relatively large standard deviation of MI value nés snapshot location
due to relatively small compass errors could be used to owargdge. Specifi-
cally, we could precompute three snapshot images rotatet] By and 1 degrees
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Figure B.1: Location of snapshots used in experiment to determine good stopping cri-

teria for homing.

from the snapshot orientationg?, 12 and1{?) and compute the mutual infor-
mation between the current image and each of these threstsmtamages. We
then let this criteria equal:

MI(Is™1c) =MI(1g1c)] [MI(1Ig% 1c) —MI (1 Ic)|
MI(1E,1c) ’ MI(1E,1c)
Optimisation halts when this criterion exceeds a precoegthreshold.

max ) (B.1)

In order to evaluate the above stopping criteria in bothicstd dynamic situ-
ations, we drew images from three of Vardy’s data sets: “i@alj, “Winlit” and
“Chairs.” Following from the results given in Chapter 4, attages were reduced
to one-quarter their original size and the original 256 msity levels were linearly
mapped to 64.

We first drew both snapshot and current images from the “@aifjidata set. Snap-
shot locations are as shown in Figure B.1. One-hundredtniale conducted for each
snapshot location. In twenty-five of these trials, the aurfecation coincided with the
snapshot location. In the other 75% of the trials, the cur@ration was selected at
random from the 169 non-snapshot grid locations. The cuimeage was corrupted
with the sensor noise described in Sections 5.4.1 and 5\Wecomputed the value
of each of the six criteria above for the snapshot and cuireages chosen for the
current trial.

We repeated the process described in the previous parafwapie eight other
possible data set pairings. This yielded a total of 8100 paiiats to examine. Twenty-
five percent of these data points (i.e. 2025) were at snapstations and the rest (i.e.
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6075) were at non-snapshot locations. Each data point vea$idd as a snapshot or
non-snapshot location.

We used this labelled data to determine which of the six stapgriterion or set of
criteria is best. Early experiments indicated that crit€@) was particularly ineffective,
for reasons we do not fully understand. We decided to onstehiterion from further
testing. The remaining five criteria can be formed into 31guei combinations con-
sisting of between 1 and 5 individual criteria. Each craeelies on a predetermined
threshold. For each of the 31 criteria sets, 3-fold crosslatibn was performed on a
randomly shuffled version of the data set. Using the MATLABg&nal machine learn-
ing package (see http://finalfantasyxi.inf.cs.cmu.eddfiMABArsenal/MATLABArsenal.htm),
we trained a linear perceptron classifier to identify theadatthe training set as either
a snapshot location or non-snapshot location using thewcuset of criteria.

To evaluate the criteria, we first looked at classificatiaomerates; that is, the ratio
false positives and negatives to the number of test points oliviously seek criteria
with low classification error rates. We also observe thatdadositives — that is, when
the agent mistakenly believes itself to be home — are mucle m@ngerous than false
negatives. A false positive will cause the agent halt prenedit while a false negative
will result in the agent passing through the snapshot lopatvithout stopping. In
the later case, the optimisation algorithm is likely to lgritne agent quickly back to
the snapshot location. The agent will likely meander arotihd snapshot location
until sensor noise allows for a correct classification. Wfits in mind, we list both
classification errors and the rates of false positives irerghl.

In order to determine whether a particular set of criterialable B.1 is better
than another based on error rates, we need to know whethegivée error rates are
significantly different from one another. Martin and Hirbeing [1996] suggests that
the standard test for significant difference between diaasion error rates is given
in Anderson and Sclove [1986]. The test reported in Andemsoth Sclove [1986]
indicates whether proportions drawn from two independamdes of a data set are
statistically similar. Our samples are indeed independerthe test data was randomly
shuffled. Results of this test of significance are given fbpairs of sets of stopping
criteria in Table B.2. A 95% confidence level was used. Nois tiis data is split
columnwise into multiple successive tables so that no tabléder than a single page.

When using direct search algorithms (in which no gradietitregte is made), Ta-
ble B.1 suggests that using criteria 1, 4 and 5 in concertss Gdese yield the lowest
classification error when gradients are unavailable. I, the classification error re-



Appendix B. Optimisation Stopping Criteria

Stopping Criteria

Classification Error

False Positive Rate

1 12.2% 4.0%

2 10.3% 2.6%

3 12.0% 0.9%

4 5.9% 3.1%

5 5.1% 3.5%
4+5 3.9% 2.1%
3+5 2.7% 0.6%
3+4 6.0% 0.5%
2+5 3.7% 1.4%
2+4 5.0% 3.8%
2+3 12.4% 6.5%
1+5 4.3% 3.3%
1+4 5.2% 2.6%
1+3 6.5% 2.5%
1+2 13.1% 6.0%
3+4+5 2.1% 1.1%
2+4+5 2.9% 0.8%
2+3+5 2.5% 1.0%
2+3+4 4.6% 2.1%
1+4+5 2.0% 1.1%
1+3+5 2.5% 1.7%
1+3+4 7.2% 0.1%
1+2+5 3.7% 1.0%
1+2+4 4.3% 1.7%
1+2+3 9.7% 6.8%
1+2+3+4 4.7% 2.8%
1+2+3+5 2.4% 1.3%
1+2+4+5 2.3% 0.8%
1+3+4+5 3.1% 1.4%
2+3+4+5 2.2% 1.7%
1+2+3+4+5 1.9% 0.4%

224

Table B.1: Classification error rates for given stopping criteria using a linear perceptron

classifier.
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Table B.2: Cell (i, J) in this table indicates whether the error rates for stopping criteria
given in rows i and j in Table B.1 are significantly different with 95% confidence. A "Y”
indicates signficant difference and an "N” signals no significant difference. This table is
symmetric about the diagonal so only data below the diagonal are given. This table is

split columnwise into several tables (see below) in order to fit on a single page.
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Table B.3: Continuation of Table B.2.
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sulting from the use of this set of criteria is not signifidsurdifferent than the best
overall classification error (when all criteria are usedettbgr). The rate of false posi-
tives when using criteria 1, 4 and 5 is quite low too.

The data in Tables B.1 and B.2 suggests that, when differmntace gradients are
estimated, criteria 2 and 5 taken together yield quite gaarfbpmance. The classifi-
cation errors are not quite as low as when criteria 1, 4 ane%pplied, but criteria 2
and 5 requires less computation.

In the final incarnation of our difference surface homingoaithms, we chose not
to use the stopping criteria described in this appendixs Thbecause each criterion
requires a threshold to be set. The homing robot would haganple several images
at different locations in its environment to determine aprapriate value for each
threshold. We felt that this sampling led us away from théofgm we wished to focus
on, namely difference surface homing. The work described hmay well be of benefit
to future visual homing applications.



Appendix C
Published Papers

| published four papers on visual homing in the course of wamkthis dissertation.
These papers in chronological order are:

* M. Szenher. Visual homing with learned goal distance imiation. In K. Murase,
K. Sekiyama, N. Kubota, T. Naniwa, and J. Sitte, editBreceedings of the 3rd
International Symposium on Autonomous Minirobots for Reseand Edutain-
ment pages 223-229, 2005.

* M. Szenher. Visual homing in natural environments. In UhNeow, C. Mel-
huish, and M. Witkowski, editor®roceedings of Towards Autonomous Robotic
Systemspages 221-226, 2005.

¢ M. Zampoglou, M. Szenher, and B. Webb. Adaptation of cdlers for image-
based homingAdaptive Behaviqrl4(4):381-399, 2006.

« Szenher, M. (to appear). Navigation by image-based visaaling. In J. R.
Rabunal, J. Dorado and A. Pazos (EdBncyclopedia of Atrtificial Intelligence
Hershey, PA, USA: Information Science Reference.

The text of these papers is included in this appendix.

Three of the four papers describe work which was wholly my @nd were writ-
ten entirely by me (with welcome comments from my advisogrpeand reviewers).
The paper titled “Adaptation of controllers for image-bé$oming” describes work
primarily done by Marcus Zampoglou, an MSc student at thevemsity of Edin-
burgh, under the supervision of myself and Dr. Barbara WeBampoglou wrote
most of the paper and performed the experiments descrileedith The original idea
(biologically-based optimisation of a difference surfpapet forth in the paper was

228
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mine. | constructed most of the hardware and software usgdnmpoglou used in his
experiments.



Visual Homing with Learned Goal Distance
Information

Matthew Szenher

Institute of Perception Action and Behaviour, University of Edinburgh, Room
1106, James Clerk Maxwell Building, Mayfield Road, Edinburgh, EH9 3JZ, UK
M.Szenher@sms.ed.ac.uk

Summary. Visual homing is a navigational technique allowing an agent to return to
a location which it has visited previously, using visual information alone. Traditional
visual homing techniques eschew goal distance information. We show that, using our
novel algorithm, such information is relatively easy to acquire. We then show that
the use of such goal distance information reduces the computational cost of homing.

1 Introduction

An agent employing visual homing begins at some target location at which it
stores some visual information (frequently referred to as a snapshot image).
The agent then meanders, perhaps completing certain tasks, until it is time
to return to the target from its current location. The agent captures some
visual information at the current location, compares this information to that
stored at the target and uses the discrepancy to generate a homing vector. The
homing vector generally leads the agent closer to the target, but not directly
to it. Visual homing is an iterative process.

Most homing schemes estimate the bearing of, and not the distance from,
the target position with respect to the agent’s current location. The agent
merely takes a unit step in the estimated direction of the target location before
computing another such estimate (see e.g. [2]). Other homing schemes, such as
the average landmark vector model [5] use the difference between information
garnered from current and snapshot images to infer “some information” about
the distance to the goal. This information correlates with but is not normally
equal to the current distance to the target position. The information is used
to slow the agent near the goal to avoid overshoot and serves as a stopping
threshold.

In this paper, we employ a simple method to learn a novel map between
the image difference of current and snapshot views and the spatial distance of
the current and target positions. We use this estimated distance to augment
some existing homing algorithms. We show that this additional information
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reduces the number of computational steps required to home without loss of
homing reliability.

2 Related Research

Visual homing algorithms fall into two categories: feature-based or image-
based. Feature-based homing schemes attempt to segment images into fore-
ground (features or landmarks) and background. A homing vector is inferred
from the difference in bearing and (sometimes) apparent size between paired
features in current and target images. Image-based homing algorithms use
the whole-image difference between snapshot and current views to generate a
homing vector.

Examples of feature-based visual homing algorithms include the snapshot
model [2], the average landmark vector model [6], Hong’s homing scheme [4]
and Basri et al.’s epipole surfing algorithm [1]. Feature-based homing schemes
require that the same landmarks are detected in both snapshot and current
images, which are often captured at dramatically different viewpoints. This
proved a problem in our test environment, so we did not use any feature-
based visual homing schemes in the experiments described below. Instead, we
employed the following two image-based visual homing algorithms reported
in the literature.

2.1 Image Warping

Image warping [3] is a much-cited image-based visual homing algorithm. The
algorithm makes the often unrealistic assumption that all landmarks are at
an equal distance from the goal position. The algorithm iterates through all
possible pose changes between goal and current positions and, using the equal
distance assumption, warps the current image to a candidate snapshot. The
candidate snapshot most similar to the actual snapshot yields a homing vec-
tor whose length is proportional to (but, because of the equal distance as-
sumption) not equal to the agent’s actual distance to the goal location. This
brute-force algorithm has been shown to work well in practice (see, e.g., [8]).

2.2 Homing by Gradient Descent

Zeil et al. in [10] demonstrated that image difference between a snapshot image
and images taken nearby is highly correlated with the spatial distance between
the locations at which the images were captured. They defined image differ-
ence as the root-mean-square difference over all pixels (RMS). When RM S
values are calculated at all points on the plane with respect to a particular
reference image, the result is an RM .S difference surface (see Figure 1).

In novel work, we confirmed that the results of Zeil et al. hold for a lab-
oratory environment (see Figure 1). Our data (provided by Andrew Vardy
and used in [8]) was collected in a laboratory whose periphery was lined with
computers, posters, curtains, plants, etc. There were no obstructions in the
experimental area itself (the floor). Using a small Webcam imaging a hyper-
bolic mirror, 170 panoramic colour images were captured at 30 cm intervals
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in a 3m x 5.1m area on the flat laboratory floor. The area was illuminated by
overhead, fluorescent lights. All images are aligned with an external compass
reference.

RMS differen

300

200

x (em) °e y (em)

Fig. 1. RM S difference surface with respect to reference point x = 150cm, y =
300cm in our laboratory environment.

To home, the agent can calculate RM S values at three proximate, noncol-
inear points in the environment. The agent can then, using these three values,
make a planar estimate of the local RM S difference surface and calculate the
gradient of this plane. The gradient serves as the local homing vector. The
length of the estimated gradient is rarely equal to the agent’s distance from
the goal. The agent can continue this process until the RM S falls below a
certain threshold, near zero. Zeil et al. call this method “Triangular.”

3 Learning the Local Distance Map

Unlike previous approaches to visual homing, we will use the estimated spatial
distance of the agent from the goal position while performing a homing run.
In this section, we will give a novel algorithm which a homing agent can use
to learn such a distance estimate.

After viewing a number of RM S surfaces similar to that shown in Figure 1,
we realised that most take a characteristic shape: the RM S value increases
monotonically from the target position; the magnitude of the gradient of the
RMS surface near the reference position is relatively large and decreases as
the spatial distance from the reference location increases. Zeil et al. reported
that this monotonic property holds for up to three meters outdoors. In our
laboratory environment, the RMS surface increased monotonically for 4.5
meters from the target location in some cases.

In previous work ([7]), we found that the power law as a function of dis-
tance to the goal provides a good fit to the characteristic RM S surface. This
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power function is

RMS = Ad® 1)

where A and B are constants and d is the Euclidean distance from the current
location to the reference location. Given A, B and an RM S value at a partic-
ular location, we can use the inverse of Equation 1 to estimate goal distance.
We show in Section 4 that this simple metric information can render visual
homing dramatically more efficient.

We chose to employ the least squares fitting approach described in [9]
to determine A and B. A set of n training values RMS; are collected on
the agent’s first outward journey from the goal position. The agent’s path
integration system (we assume our agent possesses such a sensor) provides
the associated values d;. On first leaving the goal, path integration is fairly
accurate.

4 Experiments and Results

All experiments described below used the laboratory data set described in
Section 2 and were carried out offline.

4.1 Distance Estimation

The purpose of this experiment was to measure the reliability of the inverse of
Equation 1 in the estimation of distance from the goal. We iterated through all
170 images, choosing each to be the reference image in turn. For each reference
image, we calculated parameters A and B as described in [9]. Twenty loca-
tions in a Gaussian distribution (with standard deviation 60cm) around the
reference were selected at random as training points; in unpublished work,
we found that this sampling regime worked well. Having calculated A and
B, we used the inverse of Equation 1 to estimate the distance from every
other (non-training) point in the data set to the current reference point. This
yielded 150 test points of varying distances from the goal location. We re-
peated this process using every other point in the data set as the reference
point in turn, resulting in a set of 25500 estimated distances. Results are
reported in Figure 2; they indicate that in our laboratory environment the
inverse of Equation 1 is a fairly accurate predictor of spatial distance from
the goal.

4.2 Using Distance Estimation in Visual Homing

Our aim in this project was to show that existing visual homing algorithms
could benefit from learned goal distance information without loss of reliabil-
ity. The most obvious benefit would be in decreased homing path lengths but
we found no significant change in path lengths with the addition of goal dis-
tance information. We instead looked at reduction in pixel operations during
homing. All homing algorithms are iterative processes, in which new hom-
ing vectors are calculated at each iteration. Thus, the number of iterations
required for a homing run multiplied by the number of pixel operations re-
quired in each iteration dictates the total number of pixel operations carried
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Fig. 2. Average error in distance estimate as a function of distance from the goal
position. Error bars indicate standard deviation of distance estimation.

out in a homing run. Gradient descent homing requires only O(nm) pixel op-
erations in each iteration where n and m are the dimensions of the snapshot
and current images. Our images were 752 x 564 pixels. Image warping, a brute
force algorithm, requires O(nmp) pixel operations in each iteration, where n
and m are as before and p is the number of candidate agent poses considered
(3600 in our case). Figure 3(a) shows a graph of the average total number of
pixel operations required by each homing algorithm as a function of goal dis-
tance. Clearly, the addition of goal distance information drastically reduced
computation time.

Did this savings in computation time affect homing reliability? To find out,
we computed the mean return ratio for each algorithm in our laboratory envi-
ronment. Return ratio is a measure of homing performance first introduced in
[8]. Each position in the environment is taken in turn as the goal position. The
return ratio for that goal position is the percentage of other locations from
which homing is successful. Return ratio is akin to what other visual homing
researchers call catchment area size (e.g. [3]). We found that the mean return
ratio for image warping was 0.88 (s.d. 0.26) while the mean return ratio for
image warping augmented with distance was 0.91 (s.d. 0.20). For gradient de-
scent homing, the mean return ratio was 0.85 (s.d. 0.22); when augmented with
goal distance information, the mean return ratio for the algorithm was 0.84
(s.d. 0.22). Application of the one-tailed Wilcoxon Signed-Rank Matched-Pair
Test tells us that, with 95% confidence, the differences in return ratio means
between unaugmented and augmented homing algorithms is significant.

As a final indication of the benefit of using goal distance information in
homing, we show in Figure 3(b) that image warping or gradient descent aug-
mented with goal distance information allow the agent to home in just one
iteration beginning from relatively long distances from the goal. In contrast,
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Fig. 3. a: Average number of pixel operations as a function of distance. b: Ratio of
single step homing runs to all successful homing runs as a function of distance from
the goal location for homing algorithms augmented with distance information.

unaugmented image warping and gradient descent only take the agent home
in one step when the agent begins homing one unit (30 ¢cm in our setup) from
the goal location.

We repeated the above experiments with data sets captured in the same
laboratory environment under a number of different lighting conditions. We
arrived at largely the same results, so long as the snapshot and current images
compared during the homing process were captured under the same illumi-
nation conditions (e.g. constant illuminant spectrum, intensity and location).
Visual homing is not robust when illumination conditions change in the period
between snapshot capture and current image capture.
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5 Conclusions and Future Work

Our aim in this project was to show that visual homing augmented with goal
distance information is more computationally efficient than unaugmented vi-
sual homing, with no loss of reliability. We demonstrated that indeed two
image-based visual homing algorithms — image warping and homing by gradi-
ent descent — which employed goal distance information required dramatically
less computation time than their unaugmented counterparts. The inclusion of
distance information improves homing reliability in the case of image warping
and only slightly reduces it in the case of homing by gradient descent.

Many extensions to this project are possible. We will certainly test our
augmented homing schemes in environments different than the laboratory
described in this paper. For example, [3] reports that the performance of image
warping is degraded when there are obstacles between the goal location and
the current location. We will also try to tackle visual homing in environments
with non-static lighting and /or moving landmarks. We also wish to determine
whether our results translate to online robot homing.
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Abstract

In the past few years, a number of researchers
(e.g. Zeil et al. (2003)) have found that, in a va-
riety of natural environments, the difference be-
tween a reference intensity image and images cap-
tured nearby increases monotonically with dis-
tance from the reference location. The image dif-
ference as a function of spatial distance typically
takes the form depicted in Figure 1(a) which we
call a difference surface. Zeil et al. devised a novel
visual homing algorithm which took advantage of
the characteristic shape of difference surfaces. We
propose in this paper that the shape of the differ-
ence surface springs from a particular quality of
natural scenes. Our hypothesis leads to a mathe-
matical description of difference surfaces. We use
our derived function to make predictions about
the efficacy of visual homing in various environ-
ments and under different conditions.

1 Introduction

Consistently successful autonomous navigation in out-
door environments remains a Holy Grail in robotics. We
believe that a step towards this goal was taken in Zeil
et al. (2003). This paper reported that, in static outdoor
environments, the difference between two images (image
difference is defined in Section 1.2) increases with the
distance between the positions at which the images were
captured. If an image is captured at a reference location
and compared with images taken nearby, the plot of dif-
ference values as a function of image capture location
with respect to the reference typically forms a surface
like the one shown in Figure 1(a) (up to about 3m from
the reference). We call this function a difference surface.
Mitchell and Labrosse (2004) apparently independently
discovered this phenomenon. Our purpose in this paper
is to determine why difference surfaces take this charac-

teristic shape in natural environments'. We believe that
a particular quality of images of natural environments,
discussed in Sections 2, leads to these characteristic dif-
ference surfaces.

Zeil et al. (2003) and Mitchell and Labrosse (2004)
took advantage of the typical form of the difference sur-
face to construct very simple, robust navigation algo-
rithms which guide a mobile robot autonomously to the
reference location in outdoor environments. Their navi