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The evolution of southern South Africa: insights into structural inheritance and 
heterogeneous normal fault growth 

The integration of field and seismic data from southern South Africa has provided new 

insights into the understanding of the role that structural inheritance has in the deformation 

of heterogeneous continental crust. 

Southern South Africa provides an unique setting to study the extension of a pre-existing 

compressional belt (negative structural inversion) because of the juxtaposition of excellent 

levels of pre-rift exposure, enabling basement structures to be determined, and high quality 

2D seismic data, allowing the detailed temporal and spatial controls on rift system evolution 

to be established. Through the construction of five regional transects, orientated 

perpendicular to the Permian-Triassic Cape Fold Belt (CFB), an intimate link between 

compression and the subsequent Mesozoic extension can be established. A comparison 

between the CFB and other orogens suggests that it is atypical and it is proposed that the 

north of the foldbelt is controlled by low angle listric faults, while the centre and south are 

dominated by high angle planar faults. These faults have been reactivated during the 

subsequent extension. This model is supported by depth converted seismic sections that 

reveal listric normal faults that detach at a shallow crustal level in the north, while the south 

is dominated by a limited number of large, planar crustal scale normal faults. Comparison 

with both contractional and extensional reactivation (structural inversion and negative 

inversion respectively) models and examples supports the model. 

The high quality of the available 2D seismic data arrays have enabled a sequence level 

seismic stratigraphic framework to be established for the three offshore basins (Pletmos. 

Gamtoos, and Algoa). The integration of the three basins has revealed a generally uniform 

evolution that differs from previous studies. In particular, the formation of previously 

documented deformation features are re-examined in light of detailed basin modelling. The 

dimension and evolution of the South African system are atypical when compared to other 

basins. The lengths of faults are at least 150 km with approximately 12 km of throw on the 

basin-bounding faults, which are significantly larger than most rift settings. There is also no 

evidence of along trend segmentation of the faults and extreme localisation of stress occurs 

from an early stage in the rift history. The results provide a critical test for existing models, 

which adequately account for normal fault evolution in homogeneous crust, to a region with 

a significant pre-existing, compressional fabric. 
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CHAPTER 1: Introduction 

1.1 Rationale 

The presence of a pre-existing structural fabric is considered to be one of the first order 

controls on determining the locus of tectonic activity, and plays a significant part in 

controlling large-scale intraplate failure (e.g. Kuzsnir & Park, 1987, England & Jackson, 

1989; Sandiford & Hand, 1998; Holdsworth et al., 2001). If a pre-existing structure is 

weaker than the surrounding rock, then it will tend to reactivate when a subsequent stress is 

applied to the region. Reactivation of a structure with the same sense of displacement as the 

previous deformational phase is possible, although can often be difficult to demonstrate. 

More common is the reactivation of a structure with an opposite sense of displacement 

(Williams el al., 1989; Holdsworth et al., 1997), leading to either structural inversion 

(contractional reactivation of a former normal fault), or negative inversion (extension on a 

previously contractional fault). Examples of inversion and negative inversion, and the 

associated deformational geometries, are well documented from a variety of settings and 

ages of continental lithosphere (e.g. Ziegler, 1989; Cooper ci al., 1989; Daly el al., 1989; 

Amato ci al., 1992; Buchanan & Buchanan 1995; Sandiford, 1999). The understanding of 

reactivation derived from field observations has been supplemented by numerous analogue 

and numerical modelling experiments (e.g. McClay, 1989; Buchanan & McClay, 1991; 

Huyghe & Mugnier, 1992; Faccenna etal., 1995) and theoretical considerations (e.g. Sibson, 

1985; Sibson, 1995; Ranalli, 2000). The conclusion from all these studies is that continental 

crust is heterogeneous, and that the resulting structural fabrics influence the subsequent 

evolution of the crust (Holdsworth etal., 2001). 

In addition to structural inheritance, another aspect of continental tectonics that is relevant to 

this study is that of crustal extension. It has long been recognised that normal faults play a 

critical role in accommodating extension in the brittle upper crust (e.g. McKenzie, 1978; 

Wemicke & Burchfiel, 1982; Jackson & McKenzie, 1983; Bosworth, 1985), and controlling 

the formation of extensional sedimentary basins (e.g. Leeder & Gawthorpe, 1987). Recently, 

significant advances have been made in the understanding of extensional system 

development, and in particular the temporal and spatial variations in normal fault evolution. 

These advances are a result of detailed fieldwork in areas such as the Gulf of Suez (Gupta ci 

al., 1999; Sharp ci al., 2000), Canyonlands, Utah (Cartwright et al., 1995) and Volcanic 

Tablelands. California (Dawers el al.. 1993: Dawers & Anders. 1995), and the availability of 
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high quality seismic data (e.g. Gupta el al., 1998; Morley, 1999; Dawers & Underhill, 2000; 

Contreras etal., 2000; McLeod etal., 2000). The integration of these studies with the results 

of numerical modelling (e.g. Gupta et al., 1998; Cowie et al., 2000) reveals that the spatial 

and temporal evolution of a normal fault population can be ascertained by establishing the 

loci of hangingwall deposition, using sediments as a proxy for accommodation generation, 

and determining the rate of hangingwall subsidence. Based on these observations, the 

proposed models suggest an initial distributed fault population that progressively undergoes 

strain localisation onto a few dominant structures. In this study, this model will be tested in 

a region with an existing strong structural fabric. 

Most workers have considered either structural inheritance and basin inversion, or normal 

fault evolution in isolation, despite the two often being intimately linked. Some recent 

studies have attempted to integrate these two features of continental tectonics through field 

and seismic studies, and analogue modelling (e.g. Keller & McClay, 1995; Kelly et al., 

1999; Underhill & Paterson, 1998), but these have been restricted to structural inversion of 

extensional systems. The influence of pre-rift structures on the evolution of extensional 

systems in response to negative inversion has barely been documented (Morley, 1999; 

Ebinger etal., 1999). 

Southern South Africa provides an unique setting to study the influence of heterogeneous 

crust on the evolution of an extensional system. It has been well documented that southern 

Africa has undergone multiple phases of deformation throughout the Proterozoic and 

Phanerozoic (Tankard el al., 1983; Dingle et al., 1983; de Wit & Ransome, 1992; Halbich, 

1993). Of particular interest to this study are the Permian-Triassic Cape Foldbelt (CFB) and 

the subsequent Mesozoic extension associated with Gondwana break-up and South Atlantic 

rifling. Many workers describe this transition from compression to extension in terms of 

negative inversion (de Wit & Ransome, 1992, and references therein; Malan et al., 1990; 

Hälbich, 1993; McMillan et al., 1997; Thomson, 1999), but there is very little consideration 

of the structures at depth, discussion of the geometries in the context of other negative 

inversion examples, nor assessment of the influence on the extensional system evolution. 

Excellent exposure of the foldbelt, and high quality 2D offshore seismic data, enables the 

integration of CFB architecture with the large scale structural geometry of the Mesozoic 

faults derived from sub-surface studies. 

2 
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1.2 Thesis objectives 

The central question to be addressed is 

• What role has structural inheritance played in the evolution of southern South Africa? 

By addressing this question, and applying the results to models of extensional system genesis 

and development, it is possible to address the question: 

• How do heterogeneities within continental crust influence extensional sedimentary basin 

formation, specifically the growth of normal fault populations? 

1.3 Thesis structure 

The rationale for this study will be expanded in Chapter 2 with a review of previous work on 

structural inheritance and extensional rift evolution. The second part of Chapter 2 provides 

an overview of the 3.8 Ga crustal history of southern Africa, focusing on the development of 

the Ordovician-Devonian Cape Supergroup, the structural and sedimentological development 

of the Cape Orogeny and Karoo basin, and the establishment of the Mesozoic extensional 

systems. It will also outline why the region is a suitable setting to study the interaction 

between structural inheritance and rift evolution. 

As the central objective of this study is to determine the role of structural inheritance in the 

complex evolution of the region, it is important to establish the sequential tectonic 

development of southern South Africa. In particular, it is imperative to constrain the 

structures controlling the Cape Orogeny. Five regional transects are presented in Chapter 3 

to illustrate the principal features of the highly complex Cape Fold Belt (CFB), and various 

models are proposed to explain its genesis. Chapter 4 presents data from the onshore 

Mesozoic sedimentary basins and adapts the models presented in Chapter 3 to account for 

the observed extension. 

The fundamental problem arising from the data presented in Chapters 3 & 4 is that the 

inferred geometries, derived from the available outcrop data, are poorly constrained at depth, 

and there are no suitable onshore data to assess the spatial and temporal evolution of the 

Mesozoic extension. To address both of these issues, seismic arrays from the offshore south 

coast have been analysed. The nature and distribution of data, and method of establishing a 

seismic stratigraphic framework to aid interpretation, are outlined in Chapter 5. along with a 
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discussion on how the evolution of normal faults can be ascertained through understanding 

temporal and spatial variations in associated syn-rift packages. 

Chapter 6 presents observations from the Gamtoos Basin based on the application of the 

techniques and seismic stratigraphic framework outlined in Chapter 5. Additionally, the 

basin-scale architecture, intra-basin fault arrays and basin-fill deformation features are 

outlined, and their geneses are discussed. A summary of the tectonic and sedimentological 

evolution of the basin is presented and compared with previous studies. Observations from 

similar basin analysis are presented in Chapters 7 and 8 for the Pletmos and Algoa Basins 

respectively. The sedimentary basins discussed in Chapters 6, 7 & 8 are considered in 

isolation. 

Chapter 9 is a regional synthesis that integrates the onshore data from chapters 3 & 4 with 

the offshore data of Chapters 6, 7 & 8, and is divided into two parts. In Part I, the models 

for the CFB are constrained at depth using the depth conversion of key seismic sections. 

Part 2 is concerned primarily with the offshore data and combines the conclusions from the 

basins to obtain an overview of the evolution of the Mesozoic systems. 

Chapter 10 summarises the findings and re-addresses the central objectives of this study. 

The first part syntheses evidence for structural inheritance in South Africa. The second part 

examines the role of structural inheritance in the growth of Mesozoic rifling, and considers 

the implications for fault growth models. 

4 
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2.1 Introduction 

The aim of this chapter is to expand on the central rationale of this study by presenting the 

current understanding of structural inheritance and normal fault evolution and outlining the 

lack of integration between these two facets of continental tectonics. The evolution of 

southern Africa will then be summarised and it will be discussed why it is a suitable area to 

test normal fault evolution models in a region with a significant pre-existing structure. 

2.2 Structural inheritance 

The theoretical control on reactivation is the Mohr-Coulomb-Anderson theory, which 

determines the fracture orientation established when an Andersonian stress field (three 

orthogonal principal stresses, with one vertical and two horizontal; Anderson, 1905) is 

applied to a homogeneous rock volume (Buck, 1993). If the maximum principal stress (a 1 ) 

is vertical, then normal faults are predicted to have a dip of 600  and reverse faults of 300 

(Sibson, 1985), although these values are dependant upon the coefficient of friction (Forsyth, 

1992; Ranalli, 2000). If the rock volume is heterogeneous, then the pre-existing structure 

can be re-activated if the applied stress is less than the critical stress required for the 

formation of a new fracture (Ranalli, 2000). Consequently, as the dip of a pre-existing 

normal fault gets increasingly lower compared to the theoretical 60 1  fracture, the required-

stress for reactivation increases, hence the chances of reactivation decreases. Therefore, low 

angle structures are less likely to be reactivated in an extensional sense compared with 

higher angle structures. In contrast, as reverse faults have a theoretical dip of 30°, pre-

existing low angle structures are easier to reactivate in compression compared to high angle 

fractures. Ranalli (2000) calculates that the maximum mis-orientation angle (i.e. the angle 

between pre-existing fracture and idealised fracture) at which reactivation can occur is 

greater for steep rather than shallower structures. 

Such a model of reactivation is simplistic, and numerous other factors have to be considered; 

the most important are pore-pressure and friction on the fault. A reduction in friction, and 

increase in pore pressure results in a decrease in the shear strength of a fracture, thus 

enabling reactivation to occur more easily (Ivins etal., 1990; Sibson, 1985 & 1995). Forsyth 

(1992) purports that a low angle fault, with a low coefficient of friction, will be reactivated 

in preference to a high angle fault with a more normal friction coefficient. Huyghe & 

5 
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Mugneir (1992), and Sibson (1995) also predict that the probability of fault reactivation is 

not uniform across a structure, and that the chances of reactivation may change with depth. 

Van Wees & Beekman (2000) forward modeling of four basins in Western Europe suggest 

that during inversion sedimentary basins can get progressively strengthened, disagreeing 

with the commonly considered opinion that repeated localisation of stress results in strain 

weakening. They suggest that this apparent parody can be explained by deviations from 

standard rheological assumptions on the inverted structures. 

In conclusion, the theoretical calculations indicate that low angle structures are more 

susceptible to be cross-cut, imply that higher angle structures are preferential for long term 

structural inheritance (i.e. multiples phase of reactivation and inversion). The calculations 

do not predict the inversion geometries associated with reactivation, although these have 

been well documented from field, sub-surface seismic, teleseismic and analogue modelling 

data (e.g. Cooper & Williams, 1989; Buchanan & Buchanan, 1995; Miller, J.A. etal., 1997), 

and will be reviewed in the next two sections. 

2.2.1 Positive structural inversion (compression subsequent to extension) 

Bonini ci al. (2000), using sand-box models, investigated internal deformation of thrust 

sheets controlled by a variable ramp angle of dip 15 1-30°, and a high-angle ramp (considered 

to be a reactivated normal fault) of 45 0-60°. During compression, inversion of the 

hangingwall units occurs against the bounding fault, resulting in an anticline (Figure 2.1a). 

Back thrusts (antithetic to the fault) develop regardless of the dip of the ramp/fault. A low 

angle ramp results in a long wavelength, low amplitude anticline. With increased dip of the 

ramp, the width of the anticline is reduced, and the amplitude increases; at a dip of 60° a 

definite pop-up structure develops. Sand-box model results from Buchanan and McClay 

(1991), McClay (1995) and Mandal & Chattopadhyay (1995) support Bonini et al. (2000) 

and predict that reactivation of a steeper structure would result in a pop-up structure with a 

backthrust dipping at 35°. Numerical modelling using a hybrid cellular automata by Salvini 

c/ al. (2001) provides further evidence that as the ramp dip increases, the anticline 

wavelength decreases and amplitude increases. 

Similar geometries to those modelled have been observed on many sub-surface seismic 

studies (Figure 2.1 b) including the southern North Sea (Badley ci al., 1989) and the Danish 

Central Graben (Cartwright, 1989). Reactivation of high angle extensional faults in 

compression has also been demonstrated by teleseismic data. Amato ci al. (1992) calculated 

the 3-Dimensional velocity structure of the 1980 Irpinia, southern Italy, earthquake and 
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interpreted the aftershocks as the reactivation of a high angle reverse fault as a normal fault. 

Jackson (1980) presented data of reverse fault plane solutions from the Zagros Mountains 

with dips of 40°-50°, and interpreted these to be normal faults reactivated as high angle 

reverse faults. 

2.2.2 Negative structural inversion (extension subsequent to compression) 

Faccenna el al. (1995) compressed a sand-box model, with a velocity discontinuity in the 

basal plate, to produce reverse faults, prior to extending the system to induce normal faults. 

Their results suggest that when the pre-existing reverse fault has a dip of less than 32°, the 

subsequent normal fault will ignore the underlying structure (Figure 2.2a). When the reverse 

fault dip is between 32° and 410  there is interaction between the normal fault and reverse 

fault with the normal fault branching out at the sand interface with the velocity discontinuity. 

For reverse faults with a dip greater than 41° then complete reactivation of the fault occurs. 

Jackson & McKenzie (1983) document the similarity in trend of normal faults in Central 

Greece with the underlying thrusts, and suggest that they may use the same structures. 

Faccenna el al. (1995) presented data from the Italian Central Apermine chain and concluded 

that extensional reactivation of thrusts occurs if the pre-existing reverse fault has a dip of 

between 370  and 40°. They note that where the reverse faults have a shallow dip (-25 °) 

there is no evidence of reactivation and the structures are cross-cut by new, steeper normal 

faults. These conclusions are supported by structural studies of Powell & Williams (1989) 

on the Lewis Thrust system, Montana which had previously been considered as a 

décollement surface for subsequent (post-Laramide) extension (Bally el al., 1966; 

Constenius, 1982). Through sequential restorations of sections, Powell and Williams 

concluded that although negative inversion played a role, it was very localised, whilst the 

majority of extension was accommodated on new, steep, cross-cutting normal faults (Figure 

2.2b). Ring (1994) examined the Central Malawi Rift border fault segments and concluded 

that steep structures are more susceptible to reactivation, and pre-existing structures will be 

utilised if the difference in strike between pre-existing structure and extensional strain is 

within 30°. 

Ratcliffe el aL (1986) discuss evidence of low angle (25°-35°) mylonitic thrust structures in 

the Newark Basin that have been reactivated in extension. There is no evidence, however, to 

indicate the dip at which these structures were active, and whether they were low angle 

normal faults (cf. Wernicke, 1981, 1995; Forsyth, 1992) or high angle normal faults that 
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have since been rotated to shallower dips (Proffett, 1977; Buck, 1988; Koyi & Skelton, 2001; 

Sharp ci al., 2000). 

On a crustal scale, interpretation of the MOIST line imaging the deep structures of the 

Scottish Caledonides implies that deep crustal reactivation and inheritance can occur 

(Smythe etal., 1982; Snyder el al., 1997). The presence of crustal scale heterogeneities may 

play a significant role in determining both the position and architecture of subsequent 

passive margins (Dunbar & Sawyer, 1989a & b; McClay & White, 1995). 

Theses studies suggest during negative inversion of a compressional system, fault 

reactivation of the reverse fault into extension will occur when the pre-existing fault is steep; 

if the pre-existing fault is shallow, then the normal fault will tend to cross-cut the reverse 

fault. 

2.3 Normal faults 

Studies of continental rift settings indicate that extension is dominantly accommodated in the 

brittle upper crustal through slip on normal faults. Studies of extensional settings suggest 

that major normal faults are typically segmented and have characteristic lengths and 

displacements (Jackson, 1987; de Polo el al., 1991; Gawthorpe et al., 1994; Roberts & 

Jackson, 1991). 

Buck (1993) proposed a simple model of rift initiation in which the offset (or heave) of an 

active normal fault, with a dip of 60°, is controlled by the thickness of the lithosphere. 

Scholz & Contreras (1998) expanded on Buck's model, and proposed a simple model of 

symmetric rift initiation with two conjugate normal faults. Both faults will grow in cross-

sectional aspect until one becomes dominant and the other locks-up and becomes antithetic. 

The principal fault will grow until it reaches the base of the seismogenic layer. They 

propose that the thickness of the seismogenic layer imparts a fundamental control on the 

along axis length of the fault, the width of the associated basin and the maximum fault 

displacement. 

Jackson & McKenzie (1983) noted that the majority of normal fault earthquake fault plane 

solutions occur at depths less than 16 km, on planar structures with dips of approximately 

45°, and suggested that this defined a critical size for normal faults. Jackson & White 

(1989), and Chen & Molnar (1983) supported this view by providing evidence that 

seismically active normal faults have dips in the range of 30°-60°, and are predominately 

8 
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located in the upper crust (10-15 km). They also document that fault segments in most 

extensional settings (including, Viking Graben, Gulf of Suez, Central Greece, Basin and 

Range) are commonly 20-25 km long, and basins are typically 25-40 km wide, concluding 

that this scaling is controlled by the thickness of the seismogenic layer. Where faults have 

been demonstrated to be active over much longer distances, Jackson & White suggest that 

they are comprised of smaller segments, and use the Wasatch Fault, Utah as an example of 

this. The Wasatch Fault is seismically active over its 300 km length, but is comprised of 

individual segments that are shorter than 60 km. The fieldwork data, therefore validates 

Buck, and Scholz and Contreras' models. 

More recently, it has been documented that normal faults are not static features and that they 

evolve both spatially and temporally; this dynamic nature will be addressed in the following 

section. 

2.3.1 Fault growth models 

The growth of normal faults has been considered to be either through isolated radial growth 

(Figure 2.3a; Walsh & Watterson, 1988, Cowie & Scholtz, 1992; Anders & Schlische, 1994), 

or by segment linkage (Figure 2.3b; Dawers el al., 1993; Trudgill & Cartwright, 1994; 

Anders & Schlische, 1994; Cartwright et al, 1995; Contreras et al, 2000). More recently, 

authors have proposed a combination of the two models, and documented a spectrum of 

examples between the two end members (e.g. Cartwright et al., 1996; Morley & Wonganan, 

2000). Current models and data demonstrate that the early stage of riffing is characterised by 

small, isolated fault segments which have symmetrical, displacement-length (D-L) profiles 

with high displacement gradients towards the segment ends (Dawers & Anders, 1995; 

Cartwright & Mansfield, 1998; Gupta el al. 1998; Cowie et al., 2000). Cartwright el al. 

(1996) discuss that segments are characterised by: i) abrupt changes in strike; ii) changes in 

throw between segments; ill) bedding attitude changes between segments; iv) relay 

structures. The segmentation of faults has been documented at many scales and typically 

have an en-echelon distribution (Morley el al., 1990; Peacock & Sanderson, 1991, 1994; 

Dawers & Anders, 1995; Cartwright el al., 1996; Contreras el al., 2000). 

Gupta el al. (1998) propose a fault model with initial minor strength heterogeneities (Figure 

2.4). As the model is subjected to an extensional stress, normal faults seed at the points of 

low strength, resulting in isolated fault segments with the characteristics discussed above. 

Associated with the segments are isolated hangingwall depocentres separated by intra-

basement highs. These features are preserved in the stratigraphic record as localised, early 
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syn-rifi sequences, which progressively onlap onto the pre-nfl and have commonly been 

observed in both field and sub-surface studies (Schlishe, 1995; Morley, 1999; McLeod etal., 

2000; Young el al., 2001). The intra-basement highs typically form relay structures that are 

frequently folded, and/or faulted, and occur in a variety of scales and settings (Figure 2.5; 

Morley et al., 1990; Roberts & Jackson, 1991; Peacock & Sanderson, 1991, 1994; Trudgill 

& Cartwright, 1994). 

In Gupta ci al. 's model, as the system undergoes continued extension, fault segments begin 

to interact and link. Asymmetric D-L profiles and accelerated slip rates have been cited as 

evidence of mechanical interaction prior to physical linkage (Cartwright & Mansfield, 1998; 

Cowie ci al., 2000; McLeod et al., 2000). The linkage of segments also results in the 

evolution of the relay-structure from a soft-linkage feature through to a hard linking structure 

between the two segments (Gawthorpe & Hurst, 1993; Trudgill & Cartwright, 1994). The 

progressive linkage of segments has a profound effect on the creation of accommodation 

space, resulting in often dramatic changes in the location of depocentres through time 

(Dawers & Underhill, 2000). As a consequence of segment linkage, Gupta et al.'s model 

predicts that the number of active faults in the system reduces with time. Various field and 

sub-surface studies have demonstrated how the D-L profile of a mature fault can be 

comprised of the cumulative effect of multiple individual segments (Figure 2.5). As the 

strain rate remains constant, the reduction in the fault population results in increasing strain 

localisation on fewer faults and consequently the development of faults with increasingly 

larger displacements. A further consequence is the progressive reduction in the number of 

intra-basin faults. This model has been validated by various field and sub-surface studies 

(see Cowie el al., 2000). 

2.4 Integrating structural inheritance and fault growth 

Only a limited amount of work has integrated fault growth models with structural 

inheritance, and this has tended to be with respect to inversion structures. Keller & McClay 

(1995) undertook 3D sandbox inversion experiments by extending the system to create 60° 

dipping normal faults, prior to compression. They noted that relay structures established by 

the extension tended to remain during compression, and from this concluded that subsequent 

inversion structures were controlled by the extensional geometry. Structural and seismic 

analysis of the inverted Wessex Basin (Underhill & Paterson, 1998) supported Keller & 

McClay's conclusion, in particular with reference to the inherited position of relay ramps. 

10 
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Similar results have been documented by Kelly et al. (1999) in the Mesozoic sediments of 

the Somerset coast. 

The influence of structures on the evolution of extensional systems after negative inversion 

has barely been documented. Morley (1999) proposed that pre-existing structures in the 

Aswa Shear Zone, East African Rift, probably influenced both the position of extension and 

the length of fault segments; a view that is supported by Ebinger et al. (1999). 

There is, therefore, a poor understanding of how the presence of a significant structural 

fabric influences normal fault evolution. The next section will summarise the geological 

history of Southern Africa, and establish why it is a suitable place to advance this issue. 

2.5 Southern African geological setting 

The geological history of southern Africa spans over 2.5 Ga and as a consequence the 

present day geological and tectonic framework is complex. The solid geology and chrono-

stratigraphy of southern Africa is summarised in Figures 2.6 & 2.7. The purpose of this 

section is to summarise the geological events and features that are pertinent to this thesis, 

rather than to describe the full complexities of the region. 

2.5.1 Pre-Cambrian 

The Archean basement (>2.5 Ga) of southern Africa forms the Kaapval Craton (Figure 2.8) 

and is composed of massive and foliated granitoids, gneisses and greenstone terranes 

(Tankard etal., 1982; Thomas etal., 1993). Juxtaposed to the south and west of this craton 

are the high-grade metamorphic and plutonic rocks associated with the Namaqua-Natal 

Province (NNP) mobile belt (Figure 2.8). This mobile belt is primarily greenstone and 

juvenile volcanic arc sediments that were accreted onto the craton by NE directed thrusts and 

nappes around 1.3 Ga (Halbich, 1993). These terranes were subsequently intruded by 

granites between 1.2-1.1 Ga. (Thomas etal., 1993). 

The southern end of the NNP is characterised by a large positive magnetic anomaly (Beattie 

Anomaly) that is coincident with a negative isostatic anomaly and an electrically conductive 

zone (Southern Cape Conductive Belt, SCCB) in the crust or upper mantle (Figure 2.8; De 

Beer, 1983; Pitts el al., 1992). These geophysical observations have been modelled and the 

origin of the anomalies is inferred to be a weak zone of serpentinised basalt underlying the 

Karoo Basin (Figure 2.9). This feature is considered to be oceanic crust obducted during the 

11 
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final closure of an ocean basin during the Namaqua-Natal Orogeny (950-900 Ma) (Tankard 

etal., 1982; HAlbich, 1993). 

Subsequent to the Namaqua-Natal Orogeny, rifling produced flexural downwarping and 

intra-cratonic extension (Tankard el al., 1982). This extension terminated with the 

coalescence of Gondwana during the Pan African Orogeny, 600-450 Ma (Hilbich, 1993; 

Thomas et al., 1993), which resulted in the formation of the Saldania, Damara and Gariep 

Provinces (Figures 2.6 & 8). It has been proposed that the orogeny utilised a south-dipping 

crustal décollement, known as the Pan African Suture (Hälbich, 1993; Tankard el al., 1982). 

The orogeny was accompanied by the deposition of sediments in marginal and rifled basins 

parallel to the east-west trending suture, and the present day remnants of these basins are the 

three Pre-Cape inliers (Kaaimes, Kango and Gamtoos). The Kango and Gamtoos inliers, in 

the central and eastern Cape respectively (Figure 2.6 & 8), contain shelf and terrestrial 

sediments while the Kaaimes horst has sedimentation indicative of a more distal marine 

setting (Figure 2.8; Tankard et al., 1982; Krynauw, 1983; Gresse, 1983). 

The Kango sediments are comprised of carbonate shales, greywackes and turbiditic marine 

sandstones overlain by an eastward wedging para-conglomerate sequence (Tankard et al., 

1982; Le Roux & Gresse, 1983). In total over 3000m of sediments were deposited in an 

east-west trending basin which was open to the south-west (Toerien, 1979). The structural 

evolution of the basin is complicated and multiple phases of folding and uplift have 

punctuated sedimentary deposition (Le Roux, 1983a). The two principal compressional 

events were orthogonal and resulted in north-south striking folds being overprinted by east-

west trending isoclinal folds and northward directed klippen. The sediments within the inlier 

have since been metamorphised into phyllite hornsfels and schists (Tankard et al., 1982). 

The Pre-Cape unit in the Gamtoos inlier (Tankard el al., 1982; Toerien & Hill, 1989; Shone 

el al., 1990) is composed of shallow marine or terrestrial conglomerates, arkosic sandstones, 

quartzites and limestones. Although three lithological units are mappable, they are also 

separated by thrusts and the relationships between the thrust stacks are difficult to establish 

(Shone el al., 1990). The stratigraphic succession is overturned to the north-east and 

commonly exhibits evidence of folding, thrusting and associated imbricate duplexes and 

ramp flat geometries. The Pre-Cape deformation in the Gamtoos inlier is evident despite 

overprinting by the Pent o-Trias Cape Orogeny, and is dominated by NE-verging structures 

(Bell, 1980; Shone et al., 1990). Shone €1 al. (1990) suggest that the observed Pre-Cape 

deformation occurred at a moderately deep crustal level. 
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As a result of the stratigraphic, palaeoenvironment and tectonic resemblance between the 

Gamtoos and Kango mliers, Tankard et al. (1982) infer that the inhiers may have been 

connected and formed a single basin. 

2.5.2 Paleozoic 

1) Cape Supergroup 

Following the Pan-African Orogeny, the south of the region underwent prolonged 

subsidence in the form of a passive continental margin, resulting in the deposition of the 8 

km thick, Ordovician to Early Carboniferous Cape Supergroup (Figure 2.7 & 2.10). 

Subsidence was principally in response to isostatic effects (Lock, 1978), although two 

periods of accelerated subsidence have been documented (Cloetingh el al., 1992). The 

margin's sedimentation was dominated by deltaic and shallow marine deposits sourced from 

the northern cratonic region (Tankard etal., 1982; Thomas eta!, 1993). 

The oldest unit in the Cape Supergroup is the Early Ordovician to earliest Devonian Table 

Mountain Group, which is predominantly cross bedded, super-mature, medium to coarse 

grained, quartz sandstones (Toerien, 1979; Bell, 1980; Toerien & Hill, 1989). The unit is 

approximately 4 km thick, and includes a basal conglomerate and a carbonaceous, black 

shale (Cedaberg Formation) that is attributed to glacial deposits (Haughton, 1963; Tankard el 

al., 1982). The unit was deposited in an east-west trending basin by braided rivers flowing 

from the north and NE across a coastal plain into a shallow marine environments. 

Conformably overlying the Table Mountain Group is the Bokkeveld Group that is 

approximately 2 km of argillaceous fine grained sandstones overlain by more massive shales 

and siltstones (Toerien, 1979; Toenen & Hill, 1989). Deposition was onto the margin of an 

epicontinental sea during the Early to Late Devonian, and variations in the deltaic sequences 

were in response to the interaction between tectonics and eustasy (Broquet, 1992). 

During the Late Devonian to Early Carboniferous, the gradual deepening of the Bokkeveld 

Group depositional environment continued with the deposition of shales and subordinate 

sandstones of the Witteberg Group. As with the older Cape Supergroup units, sedimentation 

occurred from the north onto outer delta plains (Toerien, 1979; Tankard et al., 1982; Toerien 

& Hill, 1989). Although sedimentation continued to be focused on the east-west elongated 

Cape Basin, the extent of the basin diminished to a third of its original size by the time the 

youngest sediments were being deposited. Evidence of cyclicity within the Witteberg Group 

has been attributed to Milankovitch eustasy cycles and led Cotter (1998) to conclude that the 
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basin was open to marine conditions. This is supported by marine fossils in the lower 

Witteberg Group, although there is an absence of them in the upper Witteberg (Tankard el 

al., 1982). The sediments become increasingly influenced by glacial deposits with the 

advent of glaciers from the north during the Late Carboniferous (Tankard el al., 1982; 

Broquet, 1992). 

ii) Karoo Supergroup 

The deposition of the Karoo sediments into the Karoo Basin was controlled by various 

tectonic and climatic factors (Turner, 1986), although the glaciation of the Late 

Carboniferous controlled much of the basin's early development (Tankard el al., 1982; 

Visser, 1992; Veevers el al., 1994). The principal control on the overall formation of the 

basin has long been considered as the progressive northward encroachment of the Cape 

Orogeny (Du Toit, 1937) resulting in subsidence of the weak crust associated with the 

Southern Cape Conductive Belt (SCCB; Cole, 1992). The position of the SCCB 

subsequently controlled the position of the Karoo Basin axis (Figure 2.9; Thomas ci al., 

1993). However, recent modelling suggests loading by the Cape Orogeny can not account 

for all of the observed subsidence, and that there may be a significant back-arc extensional 

component (Visser, 1992; Turner, 1999; Trouw & de Wit, 1999). 

The Cape Orogeny comprised four compressional events during the Permian and Triassic 

(HAlbich ci al., 1983), and the development of the Karoo Basin was intimately linked with 

these events. This section will discuss the sedimentological development of the Karoo Basin 

while Section 2.3.3 summarises the structural evolution of the Cape Orogeny and the 

resultant Cape Fold Belt. 

The sediments of the Karoo Basin are sub-divided into the Dwyka, Ecca, Beaufort and 

Stormberg Groups (Figure 2.7) and have a total thickness of approximately 9 km (Figure 

2.11; Toerien, 1979; Toerien & Hill, 1989). The Dwyka tillite sits unconformably on top of 

the Witteberg Group and is a diamictite that corresponds to four ice sheet advance and retreat 

cycles (Visser el al., 1997). It contains abundant angular erratics that are dominated by 

granite and gneiss clasts (Veevers ci al., 1994) with sub-ordinate sandstones, basalts and 

limestones (Cole, 1992). The first paroxysm of the Cape Orogeny occurred during the 

lithification of this formation (HIbich & Swart, 1983; Cole, 1992) at 278 ±2 Ma (Hälbich ci 

al., 1983). 

The Ecca Group unconformably overlies the glacial deposits and comprises carbonaceous 

shales and limestones with a clastic influx in response to post-glacial rebound in the north 
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(Cole, 1992). Unlike the Cape Supergroup, the sediments of the Karoo are derived from the 

south, and deposited into a northward migrating, relatively deep-water basin (Figure 2.11; 

Veevers et al., 1994). Throughout the glacial and Lower Ecca Group there are numerous 

volcanic ash deposits that decreases in volume from south to north and west to east (Viljoen, 

1990). 

The second compressional paroxysm (258±2 Ma; Hälbich el al., 1983) induced rapid 

downwarping resulting in the deepening of the basin and an accumulation of sandy 

submarine fans (Cole, 1992). Abundant airborne ash is interbedded within parts of the fans 

with numerous rhyodacitic tuffs. The distance to the magmatic arc is debated, although its 

position is considered to have been between 500 and 1500 km to the south (Viljoen, 1990; 

Johnson, 1991; Visser, 1992). In the Late Permian, the sedimentation rate began to exceed 

subsidence, resulting in the gradual filling of the basin, and shallowing of the depositional 

environment to a fiuvially dominated delta setting (Veevers el al., 1994). 

The Beaufort Group of the Early Triassic is dominated by mudstones and sandstones of a 

meandering river system that is the consequence of a large-scale regression (Dingle et al., 

1983). Superimposed upon the regression is the third compressional phase (247±3 Ma, 

Hälbich el al., 1983) that introduced coarse sands that were transported by braided streams 

from the south (Cole, 1992). A detailed study using 38,000 paleocurrents indicate a broadly 

centropetal basin with an east-west elongation (Cole, 1998). There is the continued presence 

of volcanic material, although it is uncertain whether this is recycled (Veevers c/ al., 1994) 

or sourced from the magmatic arc to the south (Johnson. 1991). The Upper Beaufort Group 

has similar facies to the lower section, although in addition, there is evidence for the 

development of monoclinal structures, and syntectonic deformation associated with the 

fourth phase of compression at 230±3 Ma (Häibich etal., 1983; Le Roux etal., 1994). 

Subsequent to the fourth phase of compression there is the deposition of the Stormberg 

Group, comprised of the proximal, fluvially dominated Molteno Formation and the distal 

Elliot Formation (Tankard et al., 1982; Turner, 1983; Cole, 1992). The Late Triassic is 

typified by progressive aridification culminating in the aeolian sands of the Clarens 

Formation. Sedimentation is abruptly halted in the Early Jurassic with the development of 

the Karoo Flood Basalts (Tankard el al., 1982). 
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iii) Cape Fold Belt structural formation 

The previous section outlined the sedimentological evolution of the Karoo Basin, which is 

considered to be the foreland basin to the Cape Orogeny. This section will review the 

structural understanding of the Cape Fold Belt. 

The present exposure of the Cape Fold Belt extends from the east coast at East London to 

Cape Town with an east-west orientation before an abrupt change in direction, called the 

Cape Syntaxis, to a north-south trend along the west coast to Clanwilliam (Figure 2.12; 

SOhnge, 1983; Dingle et al., 1983). Of particular importance to this study is the 

development of the Central and Eastern Capes, therefore only the east-west trending portion 

of the fold belt will be examined. The Western Cape and Cape Syntaxis have been studied 

by various workers including de Beer (1990), Ransome & de Wit (1992), de Beer (1992), 

and Netwon (1993). 

The Cape Orogeny is considered to be formed from four paroxysmic events. These events 

occurred over 45 Ma from the Early Permian to the Late Triassic (Hälbich el al. 1983; 

Halbich & Swart, 1983; Gresse et al., 1992). The ages of the paroxysmic events have been 

obtained by K/Ar, and Ar/Ar techniques (Halbich et al., 1983; Halbich, 1992) and indicate 

that the orogeny youngs towards the north. The later stages of the deformation are evident as 

syn-tectonic deformation in the Late Triassic Beaufort Group (Le Roux et al., 1994). The 

younging to the north is accompanied by a progressive transition in the nature of the 

deformation. Asymmetric folds with south-dipping axial planes are persistent throughout, 

although the nature of the folds change from an upright open geometry to inclined chevron 

fold geometry towards the north (Figure 2.13; Häibich, 1983a; Coetzee, 1983). This has 

been attributed to a variation in the style of deformation through time (Dingle et al., 1983; 

Hälbich & Swart, 1983). Although the lithologies undergoing deformation change 

dramatically across the fold belt they have little effect on the fold geometry, and instead 

control the scale of folding. The Table Mountain Group forms the major anticlines with 

wavelengths of up to 20 km, while the Bokkeveld folds are approximately 1 km (Coetzee, 

1983). In addition to orogenic tectonic folding, disharmonic folds are present across the 

orogeny and have been attributed to gravity sliding detaching on less lithified units. 

(Hälbich, 1983a; 1992). Hälbich (1983b) and Fouché el al. (1992) have published a north-

south transect across the foldbelt that highlights the principal tectonic features and suggest 

between 23-27% shortening across the area (Figure 2.13). In this transect, however, there is 
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little discussion of the controlling structures at depth, or of spatial continuity especially 

towards the east. 

The tectonic fabric of the foldbelt is dominated by folds with occasional faults (Figure 2.12; 

Hälbich & Swart, 1983; Dingle et al., 1983). Bedding plane thrusts are common throughout 

and in the hinge zones of the Table Mountain quartzite, folds, fractures and thrusts are 

common. Some thrusts have been documented but are only minor compared to the scale of 

the foldbelt and appear to form in response to the folding, rather than being the cause of 

folding (Newton, 1992; Shone & Booth, 1993; Booth, 1996). 

Across the Cape region from the Cape Syntaxis in the west (Le Roux. 1983b) to Port 

Elizabeth in the east there is a uniform sub east-west trend of all structures from bedding 

planes, bedding parallel thrusts to meso- and macro-scale folds (Haibich & Swart, 1983; 

Coetzee, 1983). The Cape Orogeny is also sub-parallel to the structures within the Kaaimes 

and Kango Pre-Cape inliers (Kiynauw, 1983; Gresse, 1983; Le Roux & Gresse, 1983; Le 

Roux, 1983b). In the Eastern Cape there is a change in trend to a north-west to south-east 

orientation. Despite this change in trend, the style of deformation is identical to that 

observed in the Central Cape, and the Cape structures are parallel to the Pre-Cape structures 

(Booth & Shone, 1992a, b, & c; Shone & Booth, 1993). 

Metamorphic studies broadly agree with the structural studies and show little variation along 

the east-west trend of the Cape Fold Belt. From north to south there is a steady increase in 

grade from unmetamorphosed Karoo sediments through an upper anchimetamorphic zone (T 

ca. 150°, P=23kb) to lowermost greenschist facies (T ca. 350°C) on the south coast (Figure 

2.13; Hälbich & Cornell, 1983; Duane & Brown, 1992). This transition can be accounted for 

by increased burial of the southern margin compared to the north without the requirement of 

tectonic intervention (Halbich & Cornell, 1983). It is important to note that there is no 

evidence of mid-crustal rock exhumation, or of the development of mylonites even where 

thrusting is observed. Therefore despite the significant folding and occasional thrusting, 

there is very little metamorphism, and where present it is of a low temperature and pressure 

origin (Booth, 1996). 

a) Extent and genesis of the Gondwanide Orogeny 

The Cape Fold Belt forms part of a much larger orogen known as the Gondwanian Foldbelt 

that includes the Sierra de la Ventana in Argentina, the South African Cape Fold Belt, the 

Falkland Islands, Ellsworth Mountains (Antarctica) and Pensicola Mountains portions of the 

Trans-Antarctic Mountains (Du Toit, 1937; Dalziel el al., 2000). Du Toit (1937) recognised 

17 



Chapter 2: Background to rationale 

the presence of the foldbelt and attributed it to a compressional origin, though did not discuss 

possible causal mechanisms. Newton (1973) suggests that orogenic collapse was the 

dominant control although this does not account for the pre-existing topography that would 

have to have been present to allow the collapse to occur. Other workers suggest that intra-

plate compression may have resulted in the deformation (Dingle el al., 1983; Halbich, 

1983b), and Johnston (1998) proposes intra-plate compression associated with a dextral 

shear zone as the genesis. However, the present consensus is convergence associated with 

paleo-pacific subduction (Hälbich, 1983b; de Wit & Ransome, 1992). The distance to the 

invoked subduction margin is inferred to be substantial (-l500 km) and therefore a flat plate 

subduction model is invoked (Lock, 1978; Dalziel ci al., 2000). 

b) Underlying control of the Cape Fold Belt 

There is very little known about the crustal structure across the area, although the crustal 

thickness has been calculated to be approximately a uniform 40 km across most of the fold 

belt (Cloetingh ci al., 1992; de Beer, 1983). 

The Pan-African Orogeny is considered to have been the principal controlling feature, 

resulting in a low angle, south dipping regional décollement (Figure 2.14; Hälbich, 1993). 

This model is based on circumstantial data, although there is evidence in the offshore area to 

the south of a deep crustal structure. Most workers have therefore related the CFB to this 

feature (Hälbich el al., 1983; Hälbich, 1993) and inferred a low angle detachment system. 

2.5.3 Mesozoic to present 

The Karoo Flood Basalts that cap the Karoo sediments are considered to have been emplaced 

in response to the initiation of a mantle plume positioned off the east coast of Southern 

Africa (Tankard el al., 1983; White & McKenzie, 1989). The plume is proposed to be one of 

the principal driving forces controlling the break-up of Gondwana through regional doming 

(Cox, 1992; Storey & Kyle, 1997; Storey et al., 1999) although other controls have been 

suggested, including extension associated with the western progression of the paleo-Pacific 

trench (Ben-Avraham el al., 1993). Dalziel el al. (2000) suggest a causal relationship 

amongst the flat plate subduction genesis of the Gondwanian orogeny, plumes, subduction, 

and continental break-up. They propose that the downgoing paleo-Pacific was subjected to 

horizontal subduction as a result of the buoyancy of a plume beneath the subduction zone. 

Subsequently, the plume broke through the slab, resulting in the uplift of the region, the 

development of the Karoo igneous province, and the initiation of rifling. 
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This section summarises the break-up history of East Gondwana in particular focussing on 

the Mesozoic evolution of South Africa. 

i) Regional break-up of East Gondwana 

The break-up of Gondwana was a long and protracted event that initiated after the 

impingement of the Karoo Plume. The tectonic evolution of the region immediately prior to, 

and post break-up is summarised in the plate-reconstruction timeslices presented in Figure 

2.15 that use a new tight fit of Gondwana (Macdonald et al., 1998; Lawyer et al., 1998). 

This tight fit has been accomplished by various re-considerations of the regional geology. 

The most important features of the reconstruction are: South America is split into various 

plates, e.g. restoration of the Gastre Fault Zone in Patagonia; removal of north-south 

Mesozoic extension within South America; redefining the ocean-continent boundary of the 

South Atlantic; and closure of the Maurice Ewing Bank (MEB) and the Falkland Plateau 

Basin. This last feature is valid because geophysical studies of the MEB (Barker, 1999) 

suggest that it is the volcanic rifled margin of the Falkland Islands and it is composed of 

either extensively thinned continental crust, or oceanic crust. Therefore prior to break-up the 

MEB would have been considerably narrower. A consequence of this reconstruction is the 

much closer fit between South America and southern South Africa compared with previous 

reconstructions (e.g. Bullard etal., 1965; Storey etal., 1992). 

Rifling initiated between Africa and Antarctica using pre-existing Proterozoic and Archaen 

weaknesses (Thomas et al., 1993) in the Early Middle Jurassic (Figure 2.15b). Extension 

was accommodated by the inception of major dextral strike slip motion to the east of the 

Explora Escarpment, and sinistral strike slip to the west, resulting in the formation of East 

(South America and Africa) and West (Antarctica, Australia and India) Gondwana. In East 

Gondwana, dextral strike slip motion occurred along the proto-.Agulhas Falkland Fracture 

Zone (AFFZ), which may be related to the Gastre Fault System of South America (Rapela & 

Pankhurst, 1992). Halbich (1993) infers from the sedimentary age of the neighbouring 

basins that the full intra-continental AFFZ initiated after the beginning of rifting, and 

suggests an Early Cretaceous age of between 140 and 130 Ma. This is supported by the 

structural analysis of the AFFZ by Ben-Avraham et al. (1997). Macdonald et al. (1998) have 

included the 1800  clockwise of the Falkland Island micro-continent's as a result of 

substantial sedimentological, structural and paleomagnetic work (du Toit, 193 7; Adie, 1952; 

Mitchell et al., 1986; Musset & Taylor, 1994; Marshall, 1994a & b; Curtis & Hyam, 1998; 

Hunter, 1998), although the rotation, and timing of rotation remains controversial (de Wit, 
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1992; Richards et al., 1996; Thomson, 1998; Lawrence et al., 1999; Johnstone, 2000). 

Macdonald et al. (1998) also include the anticlockwise rotation of the Ellsworth Mountain's 

anticlockwise rotation, in their Early-Middle Jurassic reconstruction (Figure 2.1 lb). The 

first oceanic crust formed in the Mozambique Basin during the Middle Jurassic (Figure 

2.15c) by which time Macdonald el al. (1998) infer that micro-continental block rotation had 

ceased. Subsequently, Antarctica broke off to the south with oceanic crust being formed in 

the Wedell Sea at 145-122 Ma (Figure 2.15e; Martin & 1-lartnaday, 1981). 

The complete break-up of Gondwana was concluded in the Hauterivian with the separation 

of South America and South Africa, associated with the M 10 (130 Ma) sea floor magnetic 

anomaly (Figure 2.15f; Austin & Uchuppi, 1982). 

ii) South Africa Mesozoic geology 

The Mesozoic geology of southern South Africa is dominated by a series of sedimentary 

extensional basins (Figure 2.16), three of which have onshore portions. The offshore system 

is known collectively as the Outeniqua Basin with the 200 m isobath dividing it into northern 

and southern sub-basins. The Northern Outeniqua Basin is separated into the Bredasdorp, 

Pletmos, Gamtoos and Algoa Basin and the latter two have onshore portions. In addition to 

the onshore Gamtoos and Algoa Basins, there are various Mesozoic inliers, the largest of 

which is the Oudtshoorn Basin (Figure 2.6 & 2.16). The basins are asymmetric half grabens 

that downthrow towards the south and have an approximate east-west trend, except in the 

east where there is a swing to the south-east (Dingle etal., 1983). The understanding of the 

offshore areas has been a result of sub-surface hydrocarbon exploration by Petroleum 

Agency South Africa (formerly SOEKOR). 

The timing of rift initiation in South Africa is uncertain although the oldest dated sediments 

are Oxfordian which suggest an early Late, or possibly Middle Jurassic age (McMillan etal., 

1997). The oldest recorded date is 162±7 Ma for the Suurberg Volcanics in the Algoa Basin 

(McLachlan & McMillan, 1976) and this age is supported by a partial extensional 

overprinting of the Cape Fold Belt at 177 Ma (determined from Ar/Ar dating technique, 

Gresse etal., 1992). 

a) Offshore 

The four offshore sedimentary basins (Bredasdorp, Pletmos, Gamtoos and Algoa) have 

similar histories, although only the Pletmos, Gamtoos and Algoa Basins will be discussed 

here. The evolution of the Bredasdorp Basin is broadly similar, and is discussed by 
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McMillan et al. (1997). The overall structure is a series of half grabens (Figure 2.17), 

generally with the bounding faults to the east of the basins. The faults themselves are often 

curved in plan view and are separated by a series of basement highs and arches (Cartwright, 

1989; Bate and Malan, 1992; Thomson, 1998). 

The oldest syn-rift sequence to be penetrated in any of the basins is Kinimeridgian, although 

Late Oxfordian sediments are thought to be present in the deepest parts (Figure 2.18; Broad, 

1989; Malan et al., 1990; Bate, 1993; McMillan et al., 1997). The earliest syn-rift 

sediments, which are generally fluvially dominated pebbly sandstones, onlap onto the 

Jurassic rift topography. During the Kimmeridgian and Berriasian, shallow marine 

claystones and sandstones dominated all of the basins, with localised regressions and 

shallowing-up sequences. The Valanginian deposits of the Gamtoos and Algoa Basin are 

dominated by mid-outer shelf clays (Broad, 1989). In all three basins the deposits form 

classic wedges into the basin-bounding fault (cf. Prosser, 1993). Bate & Malan (1992) 

describe three tectonostratigraphic packages within the syn-rift and attribute them to 

variations relative sediment supply and accommodation space. The outer shelf sandstones of 

the Portlandian form a divergent basal seismic package against the basin-bounding faults, 

and are attributed to accommodation space created by fault movement being greater than 

sediment supply. By the Berriasian and Early Valanginian sediment supply was equal to 

tectonic activity, resulting in a weakly divergent package. The depositional environment 

during this time was shallower than the Portlandian with mid-outer shelf deposits. By the 

Late Valanginian the gradual shallowing continued across the area despite being 

accompanied by an increase in divergence towards the fault associated with renewed fault 

motion. 

The rift-drift transition is placed at the end of the Valanginian (Figure 2.18) and is 

characterised by different processes in the three basins. In the Pletmos, uplift and erosion 

occurred resulting in a substantial aggradational and progradational clastic package from the 

north (McMillan el al., 1997). In the Gamtoos and Algoa Basins the section is incomplete as 

a result of uplift and erosion (Broad, 1989). Where present, sediments were deposited in a 

shelf to slope setting that was poorly oxygenated. Localised deformation, in particular 

folding in the Gamtoos Basin, has been attributed to compression and uplift as a 

consequence of strike slip motion on the on the incipient AFFZ (Thomson, 1998; Bate & 

Malan, 1993). 
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The post-rift sediments are relatively uniform across the area with very little or no tectonic 

deformation. Canyoning is present in the Algoa, and to a lesser extent the Gamtoos Basin, 

which was infihled by marine deposits (Bate & Malan, 1992). Sedimentation during the 

post-rift was dominated by well oxygenated slope sandstones and claystones deposition that 

was punctuated by unconformities associated with eustatic fluctuations (Keenan, 1990; Brink 

et al., 1994). In the post Mid-Albian there is a decline in sedimentation rate with an increase 

in the width of the continental shelf followed by mild uplift and regional tilting to the south 

in the Late Cenomanian (McMillan et al., 1997). 

b) Onshore 

The onshore Mesozoic outcrops are localised to the onshore portions of the (iamtoos and 

Algoa Basins, and various inliers, the largest of which is the Oudtshoorn Basin (Figure 2.6 & 

2.12). Deposition is considered to be fault controlled (Kleywegt, 1971; Dingle et al., 1983; 

Shone et al., 1990; Viljoen, 1992). Despite the geographical distribution of these outcrops, 

the sedimentology is remarkably consistent, and is separated into three units: Enon 

Conglomerate; Kirkwood Formation; and the Sundays River Formation (Viljoen, 1992; 

Figure 2.7). 

The Enon Conglomerate is a well sorted and rounded conglomerate containing subordinate 

sand and siltstones (Malan & Theron, 1987). The clasts can be up to 70 cm in diameter and 

depending on the location within the Cape, are either of Table Mountain Group, or 

Bokkeveld Group provenance. A terrestrial topographic infill, or earliest syn-rift genesis has 

been assigned to them, and although it is impossible to date the unit, a Middle Jurassic to 

Lower Cretaceous age has been attributed to it (Dingle etal., 1983). 

The Kirkwood Formation is a cross-bedded sandstone with channel lags interfingering with 

brown shales and siltstones (McLachlan & McMillan, 1976). The top of the formation is a 

dominantly shale unit with a large number of foraminifera specimens and a small variety of 

species, suggesting a brakish lacustrine depositional environment. Palaeontology of the 

sequence supports the lacustrine interpretation and suggests Late Valanginian and 

Hautenvian ages (McMillan, 1999). 

The Sundays River Formation comprises grey clays, silts and sands of shallow water marine 

and estuarine origin, and has been dated as Late Cretaceous (McLachlan & McMillan, 1976; 

Dingle etal., 1983; Shone, 1978). 
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As a result of poor exposures, especially in the Eastern Cape, the relationship between the 

units is poorly understood with the units either being interfingered or separated by 

unconformities (McLachlan & McMillan, 1976; Shone, 1978; McMillan etal., 1997). 

c) Reactivation of the Cape Fold Belt 

Ever since Du Toit (1937) remarked on the position of the Cape's pre-existing structures 

being parallel to the Mesozoic normal faulting, numerous authors have documented the 

relationship. Dingle el al. (1983) observe that the south dipping normal faults typically 

bound the southern side of major anticlines but do not discuss whether the same faults are 

utilised. De Wit & Ransome (1992) attribute the extension, which resulted in the normal 

fault development, to the relaxation of the CFB prior to the break-up of Gondwana. de Wit 

(1992) discusses how the same structures are used during sequential deformation events. 

Onshore evidence for the relationship between extension and compression has been 

discussed by Halbich (1983a, b) who addressed the presence of extensional structures within 

the Cape Supergroup. Le Roux (1983a & b) and Shone et al. (1990) document extensional 

deformation within the Pre-Cape units. Gresse et al. (1992) use 40Ar/39Ar data to produce 

evidence of partial overprinting of the Cape Orogeny by the rifling event. Evidence of 

structural inversion has been documented across the area including the west Central Cape 

(Newton, 1992; Viljoen, 1992), the Central Cape (Booth & Shone, 1996), and the Eastern 

Cape (Booth and Shone, 1992 a & b; Shone and Booth, 1993). However, a problem with 

many of the studies is that the age of normal faulting is very difficult to determine except 

where Mesozoic sediments are preserved in the hangingwalls. 

Evidence from the offshore also supports the premise that there is a relationship between the 

Mesozoic extension and the underlying CFB. Fouché et al (1992) discuss that the presence 

of metamorphic rocks as the basement to the extensional systems, asymmetric grabens and 

the arcuate nature of the extension all support the inheritance concept. Bate & Malan (1992) 

and Thomson (1999) invoke structural inversion of the CFB thrusts as listric normal faults. 

The reactivation of thrusts, intra-basement reflectors associated with basement shear zones, 

and the curvature of the basins have been used as further evidence by Broad (1989), 

Cartwright (1989), Bate (1993) and Roux (1992). Hälbich (1992) presents a regional 

geotransect in which the Mesozoic extension soles out onto the inferred Pan-African 

décollement (Figure 2.14b). 

Despite this wealth of evidence supporting the notion of structural inheritance, there is very 

little discussion of what the overall structure is at depth. The only model discussed is the 
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reactivation of the inferred Pan-African decollément in a simple shear sense. However there 

is very little integration of onshore and offshore data in a holistic model. 

2.6 Project rationale 

This chapter has outlined the styles of deformation associated with reactivation of structures 

during subsequent phases of deformation. It has also considered normal fault growth 

models, and in particular discussed the occurrence of strain localisation onto fewer structures 

during fault development. The previous section has considered the geological history of 

southern Africa and discussed the concept of structural inheritance with respect to the Cape 

Fold Belt and Mesozoic extension. Southern South Africa, therefore provides an ideal 

setting to consider the interplay between pre-existing structural fabric and extension. 
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CHAPTER 3: Structural Controls on the Development of the Cape 

Fold Belt; Evidence from the Restoration of Regional 

Transects 

3.1 Introduction 

The role of structural inheritance on the development of an extensional system can only be 

assessed if the architecture of the pre-rift structure can be ascertained. It is, therefore, critical 

to understand the geometry of, and structural controls on, the Cape Fold Belt (CFB) prior to 

addressing the role of basement control on the evolution of the Mesozoic extensional system. 

This chapter will establish models for the formation of the CFB that will be utilised in 

following chapters. 

Previous work (Chapter 2) and published sections across the CFB have focused on the 

Central Cape and specific areas within it (e.g. the Meeringspoort Pass, Transect 3). This 

chapter aims to consider the CFB in a regional context from the Central Cape to its eastern 

extent. This will be done using five regional transects across the area constructed from 

published maps and supplemented by field data. For each transect the observed deformation 

is used to discuss possible controlling structures at depth. The transects are then compared 

and contrasted prior to a discussion of possible mechanisms for the development of CFB. 

3.2 Data sources and methodology 

Five true scale transects have been constructed from published geological maps (RSA 

Geological Survey maps 3320, 3420, 3322, 3324) using the established stratigraphic units of 

the Geological Society, RSA (Table 3.1), from the Karoo Foreland Basin in the north to the 

south coast, perpendicular to the structural trend of the CFB at a scale of 1:125,000 (Figure 

3.1). The factors considered when deciding the position of the transects were: 

• Transects were positioned to maximize the use of field data especially where river 

gorges with high levels of exposure enabled detailed structural analyses to be 

undertaken. In some instances field data have been projected along strike onto the 

transects. 

• Transects were to be as evenly spaced across the area as possible. 
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• To achieve an overview of the regional structures, however, some transects specifically 

include areas with atypical features. 

• In some cases the data in the transect does not fully constrain the geometries. Therefore 

supplementary sections have been included and incorporated into the principal transect. 

Each transect is presented in a number of ways. The enclosures include the raw map data 

(including supplementary sections), which are superimposed upon topography with very 

little interpretation. Where map data were oblique to the transect, the data were converted to 

apparent dip. The enclosures also include an interpreted and extrapolated section (the 

methods used to form this section will be discussed later). The transects are reproduced as 

figures in the main body of the thesis where they are accompanied by restored sections and 

available field data, sketches and photographs. Stereonets of structural data have been 

plotted for each of the transects and are shown on Figure 3.1. 

3.2.1 Methodology 

The transects were constructed using standard techniques (Dahlstrom 1969; Elliot & Johnson 

1980; Boyer & Elliot 1982; Elliot 1983) of line length and area preservation, assuming no 

out of plane motion or volume change. The thickness of individual units was determined 

where the data were well constrained, and each transect was considered in isolation. When 

thicknesses were compared along transects, between transects, and with published data 

(Toerien 1979; Toenen & Hill 1989), the data showed near consistent thicknesses in a north-

south trend, with minor variations from east to west. Therefore, for individual transects 

constant unit thickness was assumed, and used to extrapolate surface geometries both to the 

sub-surface and sub-aerially. As a further approximation, faulting was included only where 

mapped. 

The underlying control and overall geometry of the transects were constructed using some 

simple assumptions regarding controlling faults and section balancing. Surface folds were 

assumed to result from either buckling or an underlying fault. Fold trains with regular 

spacing, and equal amplitudes, and wavelengths where wavelength is a function of unit 

thickness, tend to be associated with buckling (Morley, 1994). Folds associated with faults 

are often isolated and irregular. Where folds were determined to be fault controlled, the 

geometry, especially dip of fold limbs, and location of fold axes, was used to infer the 

geometry and position of the controlling fault (Boyer & Elliot, 1982; Mitra, 1990). If low- 
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angle detachments were either observed or inferred, they were assumed to converge onto a 

single décollement horizon at depth, unless evidence suggested otherwise. 

Section balancing was tested using Midland Valley's 2D Move software (Version 3.1) in 

which a number of horizons in the transects were digitised and then sequentially restored 

(maintaining area) to a pre-deformed state. The first stage of the restorations was the removal 

of extensional faults, and the associated unrotating of the hangingwall. As there were few 

syn-rift data it was difficult to remove the effect of the extension, such as footwall rotation. 

However, the evidence below shows that an approximation of the original fold belt geometry 

can be achieved. The restored foldbelt geometry was then unfolded by applying 2-D Move's 

restoration function on four horizons (top Ripon Formation, Middle Ecca, Permian; top 

Witteberg Group, Middle Devonian; top Bokkeveld Group, Devonian / Silurian; and top 

Peninsula Formation) assuming an original layer-cake sedimentary model for the Cape 

Supergroup. Any resulting overlap or deficit of units was a result of an incomplete model. 

Although the Cape Supergroup was deposited on a passive margin and hence southward 

thickening away from the hinterland may be expected, the thickness data discussed above 

suggests that any such thickening is insignificant and therefore the layer cake model is an 

appropriate assumption. The exception to this is the Peninsula Formation, which is 

discussed below. The transects, and corresponding models produced using 2-D Move are 

non-unique solutions, although they are presented as the most geologically valid. In some 

instances, more than one geometry can explain the observed data in which case alternative 

models have been proposed. 

3.2.2 Specific problems and limitations to section balancing 

The Pre-Cape unit, which previous workers have assumed underlies the entire Cape 

Supergroup (Hälbich, 1983b), is only present in two inliers in the study area. Even where 

there is exposure, there are very few structural data, therefore the Pre-Cape unit has not been 

included in the transect reconstructions. 

A consistent problem in all of the transects is the lack of structural data present in the 

Peninsula Formation outcrop. As will become evident, Peninsula Formation outcrops 

generally form large-scale folds with structurally well constrained limbs, but poorly 

constrained cores. This problem is addressed in Transects A and B as field data were used to 

constrain both large and small scale geometries. In the other transects the structure of the 

fold cores were kept as simple as possible. 
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The Upper Devonian sequence (cf. Da in transects) is often poorly constrained as it is 

relatively thin, although commonly has a very wide outcrop pattern. A subsidiary section to 

Transect A suggests that the Upper Devonian has a significant number of minor folds which 

account for the wide outcrop; this observation was used in less well defined areas in the 

other transects. 

As a result of significant uplift and erosion the extent of the units is not always evident, and 

this posed some problems of how far to extrapolate the data. The Permian Karoo sequences, 

which are at the north of the transects, were deposited in the developing  foreland basin of the 

CFB (cf. Chapter 2), and are therefore unlikely to have been deposited across the whole area. 

For this reason they have not been extrapolated significantly to the south of their present 

outcrop. The Devonian and older sequences crop out right across the foldbelt to the south 

coast in at least one transect, and therefore were extrapolated across the whole foldbelt. 

There is no evidence on the maps of the northern extent of these units beneath the Karoo 

Basin, however, published data from boreholes and geophysical data beneath the Karoo 

(Hälbich, 1983b) suggest that the units continue without significant thinning across this area. 

A further complication is the inconsistency in naming and colour coding of units and 

formations between the geological maps. In each transect the mapping units have been kept 

as they remain on the maps (map key shows the different terms used in each map) although 

colour coding has been made consistent. In the text, units are referred to collectively as ages, 

except for the Peninsula Formation because of its importance in the region. Enclosure 1 is a 

table of the mapped units and a correlation between transects. 

3.3 Regional transects 

The position of the transects are shown in Figure 3. 1, and each is discussed separately in the 

following sections. The data used to construct each transect have been plotted onto 

stereonets that are shown in Figure 3.1. Each section contains a structural summary, and a 

discussion on the pre-compressional restoration of the transects. 

3.3.1 Transect A (Figure 3.2, Enclosure 2) 

I) Structure 

The northern end of the transect, formed from the Permian Karoo sediments, shows a 

southward transition from gentle undulations to a zone of increased folding culminating with 

two moderate scale folds (wavelengths 4 and 2 km, and amplitudes of approximately 2000 
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m). Although some beds within the folds are overturned there is no evidence of substantial 

deformation, however, the slight asymmetry, overturning of northern limbs and shallower 

southern limbs is suggestive of northward vergeance. 

The contact between Permian and Devonian units is undeformed and dips gently (15°) 

towards the north. However, unlike the other transects, the Devonian outcrop in this transect 

shows a significant degree of deformation with a series of moderately tight, northward 

verging, asymmetric folds which lie above a moderate (50°), northward dipping contact with 

the lower Devonian/Silurian units. The Peninsula Formation crops out towards the south. 

The northern end of the Peninsula Formation outcrop is north-dipping and relatively 

undeformed and forms the north limb of a large scale monocline. Three sketches in Figure 

3.3 illustrate deformation typical of the Peninsula Formation along the Seweekspoort Pass on 

Transect A. The overall structure of the pass is a Z fold rotated by 90° with moderate to steep 

northward dipping north and south limbs, with a sub-horizontal central section. This 

dominantly quartzitic sandstone formation shows characteristic bedding-parallel thrusts (see 

Figure 3.9b in Transect B), and small scale (1-5 m wavelength) northward verging folds. 

Later brittle faulting cross-cutting the folds is also present in the Pass (Figure 3.4), and 

although the timing and nature of these faults are unknown it is suggested that they are 

associated with Mesozoic extension. These field observations, supported by the map data, 

suggest the Peninsula Formation forms either a 10 km wide anticline / syncline fold pair, or a 

gentle monocline depending on the dip of the core area of the fold. 

To the south of the folded Peninsula Formation (Op) there is an abrupt change to the 

Devonian (Ds) before a northward dipping repetition of the Devoman to Peninsula sequence. 

There is very little evidence (in particular contact dip direction) to constrain the geometry at 

the faulted contact between Op and Ds. The most feasible geometries are either a northward 

dipping reverse fault, emplacing the Os formation on top of the Ds unit, or a southward 

dipping normal fault (Figure 3.5a). The second of the two models is preferred because the 

system is northward verging at a regional scale, therefore a southward verging thrust fault 

with a substantial displacement is inconsistent. Furthermore, along strike to the west the 

Kango normal fault is present (Figure 3.1). It is inferred that this fault is a continuation of 

the Kango Fault, without preservation of the Mesozoic unit in the hangingwall. 

To the south of the fault, Devonian to Peninsula Formation sequences form a broad, slightly 

asymmetric, northward-verging anticline (wavelength 15 km, amplitude 2000 m), although it 

is uncertain how much of this folding is a result of rotation by the inferred normal fault to the 
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north. The south-dipping limb forms the northern limb of an open syncline, which itself 

forms the northern, steep, though not overturned, dipping limb of a large wavelength fold 

cored by Peninsula Formation. The deformation within the core is poorly mapped, although 

there are three faults which have unknown displacements and dips. The most southern of the 

faults down throws towards the south, and it is suggested that this has a normal attitude. The 

southern limb of the fold gently, and consistently, dips towards the south approximately 20 

km north of Devonian outcrop. In this transect there are virtually no data in the Devonian, 

however, the subsidiary section, 10 km to the west, shows that the unit gently undulates. 

The southern-most extent of the transect shows an abrupt change from the undeformed 

Devonian sequences to highly deformed, near vertical to overturned beds on the south coast. 

This geometry is similar to the northern limbs of anticlines present in other transects, 

therefore it is inferred that this forms the northern limb of a large anticline, the remains of 

which is currently offshore. The presence of the Da unit (Middle Devonian) at the coast 

appears out of place, and without data to the south is very difficult to include with certainty 

in the model. However it is suggested that as the contact between Da and the Peninsula 

Formation is faulted this may be a south dipping normal fault (Figure 3.5b). 

ii) Fold belt reconstruction and underlying structure 

The folds evident in the Karoo sediments are irregular with synclines and anticlines with 

non-consistent amplitudes and wavelengths. As discussed in Section 3.2.1, these 

observations imply that the folding is unlikely to be a result of buckling, and are therefore 

probably controlled by underlying faults. Furthermore, the asymmetric nature of the folding, 

with sub-vertical to overturned northern limbs and moderately steep (500)  south dipping 

southern limbs, suggests a moderate, southward dipping controlling fault, as shown on the 

transect. As is the case throughout the transects, the key question is whether these faults 

continue with a steep dip, or décolle, and if so, at what level is the décollement? In the 

Karoo Basin, the other transects (in particular Transect B) suggest that the décollement has 

to be deeper than the Peninsula Formation. In this transect, therefore, the inferred faults are 

continued to beyond the base of the Peninsula Formation and into the Pre-Cape unit. The 

213-Move restoration of the inferred fold geometries at depth (assuming that bed thickness of 

units remains constant and that the faults do not décolle until at least the Pre-Cape unit) 

produces an incomplete model as is evident from the area deficit in the Peninsula Formation 

(Figure 3.2c). The model also predicts that the fold-controlling faults have an extensional 

throw at depth. Despite these apparent problems with the models, the transect shows the 
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geometries in this way as it is the simplest model. The problems with this transect are 

common in many of the transects and will be discussed later. 

In the central and southern parts of the transects, two normal faults are evident and as these 

are assumed to be Mesozoic age, need to be removed to obtain the original CFB geometry. 

The lack of syn-rift sedimentation within the hangingwalls of the faults makes restorations 

difficult to achieve with any certainty, although it is assumed that the normal faults caused 

hangingwall rotation and subsidence, and footwall uplift. When the faults were removed, and 

fault blocks appropriately rotated, the result was three box folds in the main CFB area. It is 

suggested that these box folds are controlled by three underlying faults, the nature of which 

will be discussed at the end of the chapter. 

3.3.2 Transect B: Merringspoort-George (Figure 3.6, Enclosure 3) 

I) Structure 

The Karoo sediments show gentle, symmetric undulations (wavelengths 2.5 km) to the 

north of a zone of sub-vertical dipping sediments forming a syncline-anticline pair 

(wavelength and amplitudes - 4 km). Despite the steep dip, there is little internal 

deformation of the Lower Permian Whitehill Formation except for a persistent south-dipping 

cleavage (e.g. in the shale unit at the north of the photograph in Figure 3.7). This location 

forms the core of an asymmetric anticline that has an overturned, shorter, northern limb and 

a southern limb with a dip of approximately 600.  This pattern of tight overturned anticlinal 

folding is repeated again towards the south into the Devonian sequences, although the 

wavelength and amplitude of the folding is reduced (2 km wavelength, 1.5 km amplitude). 

The majority of the Devonian sequences are sub-horizontal, with gentle undulations for 

approximately 8 km to the north of an abrupt increase in bedding dip towards the north, and 

the subsequent exposure of the Cape Supergroup, and in particular the Peninsula Formation, 

which forms the Swartberg Mountains. Excellent exposure allowed a sketch-montage to be 

compiled (see next section), which supplements the map data. Two examples of sketches 

detailing the complex structures present in this area are reproduced in Figure 3.8. An 

overturned contact at the base of the Peninsula Formation marks the change to the Pre-Cape 

Kango Group. The repetition of the three Kango units, all of which are overturned, implies a 

complex underlying structure. However, with the limited data it is impossible to include 

these within the transect. 
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The southern boundary of the Kango Group is defined by the Kango Fault that juxtaposes the 

Mesozoic Enon Formation against the basement. The geometry of the basement below the 

Mesozoic sediments is unconstrained, therefore it is assumed that it is undeformed and dips 

towards the fault in a similar geometry to that of Transect A. There is little control of the 

internal structure of the Mesozoic basin, although field observations (cf. Chapter 4) suggest a 

gentle dip towards the north. 

The geometry of the middle Cape Supergroup directly to the south of the Mesozoic basin is 

difficult to determine. The southern dip of the Silurian units (Sb and Sk), especially as they 

are overturned, suggests that they form the northern overturned limb of an asymmetric 

anticline. The Peninsula Formation is folded towards the south and appears to be 

geometrically consistent with a short wavelength box fold (4 km). Over a short distance, the 

southern limb of the box fold changes to approximately 13 km of gently undulating 

Devonian sediments. This sequence then changes to a small (2 km wavelength) northward 

verging asymmetric fold, with an overturned northern limb. A further zone of relatively 

undeformed Devonian sediments is present before significant Peninsula Formation 

deformation that has an overturned lower contact with the Pre-Cape Kango Group. The 

Kango Group probably forms the core of an anticline towards the south. 

ii) Meeringspoort Pass transect (36-40 km on Transect B, Figure 3.9 and Enclosure 4) 

One of the major uncertainties with the transects is the geometry of the Peninsula Formation 

because of the lack of structural data. The aim of conducting this transect (see Figure 3.9 for 

summary section and Enclosure 4 for the full section) was to address this problem by 

analysing a critical exposure of the Peninsula Formation through the Merringspoort Pass in 

the Swartberg Mountains (see Enclosure 3 for position). Although the outcrops along the 

pass have been discussed in the literature (Sohnge & Hälbich 1983 and references there in), 

there is not a published complete section through this part of the CFB and the purpose of this 

transect is to obtain an overview of the deformation. Due to the complexity and difficult 

access to the exposures the transect is compiled from sketch-montages supplemented by 

photographs, sketches, and field data. The key objectives of the section are to highlight: 

the overall geometry of the exposed strata at Meeringspoort Pass 

the variability of structures within it 

some small scale structural analysis 
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The Pass is almost entirely composed of quartz sandstones of the Silurian, or quartzites of 

the Peninsula Formation without any internal marker horizons. It is therefore impossible to 

conduct any restoration of the transect. 

Faulting 

Throughout the transect, and the CFB as a whole, the Peninsula Formation is dominated by 

well cemented quartzitic sandstones, and quartzites. On a small scale, the dominant features 

are bedding surfaces approximately every 0.5 m, commonly with cross-bedding evident, that 

have been pervasively utilised by reverse faults (Figure 3.9b). Occasionally shales and 

siltstones are present between the quartzite beds with reverse shear indicators present. These 

bedding/thrusting structures are present every 0.5-1.0 in throughout the entire 8 km length of 

the exposure. 

Evidence of large scale thrusting is present at a number of places especially at locality E 

(Enclosure 4) which juxtaposes Lower Silurian units upon the Peninsula Formation. This 

locality is further complicated by folding which has been described as being syn-depositional 

(Coetzee, 1983). Across the area the lack of marker horizons makes reconstruction and 

determination of fault throws very difficult. 

As in the Seweweekspoort Pass (Transect A, Figure 3.4), larger scale brittle faults that cross 

cut the folded basement are evident (Figure 3.9.e). Although no shear sense indicators are 

present, it is suggested that these may be later stage normal faults associated with the 

Mesozoic extension. 

Folding 

The Meeringspoort Pass area is pervasively folded at wavelengths from 2-3 m up to the 8 km 

length of the exposure. Across the transect there appears to be a lower wavelength threshold 

value of approximately 2 m. Since bed-thickness is consistently 0.5-1 m, it is likely that this 

controls the wavelength threshold. The styles of folding also vary along the transect and 

although no detailed fold analysis has been carried out, the general features are important in 

determining the overall structure. 

The main features are noted on the sketch section (Enclosure 4), and below only the 

summary points are discussed. Throughout the sections, as will be shown on the 

accompanying stereonets, all beds have an approximate east-west strike. This is therefore in 

agreement with the regional scale trends shown by the stereonets in Figure 3.1. 
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FROM 

The transition from the Devonian to Silurian units is poorly exposed because both units are 

predominantly comprised of easily weathered sand and siltstone, although an overall 

northward dipping nature to the contact is observable. 

The dominant feature in the north is steep north-dipping, occasionally sub-vertical to 

overturned beds with very little internal deformation except for bedding-parallel thrusting, 

and jointing perpendicular to bedding; no small-scale folding is present. These beds (Figure 

Enclosure 4) form the northern limb of a shallow, southerly dipping, large open fold (fold 

plane dip of 15° towards the south). The southern limb is formed from sub-horizontal beds 

that also show little internal deformation except for the occasional southerly plunging kink 

band. 

Further south, deformation progressively increases from south-plunging kink bands (Figure 

Enclosure 4) to a series of stacked chevron folds that have an average axial plane dip of 

approximately 20° to the south (Figure C, Enclosure 4). In the mountains above the pass, 

there are large scale (>100 m wavelength) Z folds with horizontal long limbs and sub-

vertical short limbs. 

Central 

Silurian units are thrust on top of the Peninsula Formation and complex geometries with 

frequent faults, both high angle and low angle thrust faults, are evident (Figure D, Enclosure 

4). However, as has been discussed at the beginning of the section, the lack of a marker unit 

makes it impossible to determine either extent or displacement of these thrusts. 

To the south of this complex zone, there is a substantial area where there is very limited 

deformation with sub-horizontal, and gently undulating beds (Figure E, Enclosure 4), similar 

to Figure 3.3b in the Seweweekspoort Pass, Transect A. 

South 

The predominantly undeformed, sub horizontal beds of the southern central area abruptly 

change to predominantly steep to overturned beds in the south (Figure F, Enclosure 4). 

Internal deformation is accommodated by tightly stacked chevron folds with wavelengths of 

10's metres, and gentle (20°) southerly dipping axial surfaces. This series of stacked 

chevron folds then changes to less folded, sub-vertical beds with little internal deformation 

apart from the occasional shallow dipping southerly plunging kink band (Figure G, 

Enclosure 4). 
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The southern contact of the Peninsula Formation the Pre-Cape unit is not visible, although 

the southern end of the exposure shows steep northward dipping and overturned Peninsula 

Formation (Figure 3.9.j). 

Overall structure 

The transect through the Merringspoort Pass suggests that the overall structure is an 

overturned Z fold (Figure 3.9) which is consistent with previous workers (Coetzee 1983). 

Within the overall geometry, there is significant variability with a combination of open and 

tight isoclinal and chevron folds. The structural analysis using the stereonets on the transect 

(Figure 3.9) shows that all folds and kink bands throughout the transect are north verging, 

with an approximate east-west trend, and relatively shallow dipping axial planes. 

iii) Fold Belt reconstruction and underlying structure to Transect B 

The folds at the northern end are asymmetric and northward verging, implying that they are 

being controlled at depth by a northward verging reverse fault. Coetzee (1983) suggests that 

the faults controlling the Karoo folds décolle onto the Cedaberg Formation (Oc) directly 

above the Peninsula Formation. However, the large amplitude nature of the folding (in 

particular the inferred depth of the synclines) suggests that the décollement has to be deeper 

than the Oc level. When the units are projected at depth and the section is restored, the same 

problems as observed in Transect A of non-balanced section and apparent extensional faults 

at depth occur. 

The restoration to the pre-extension state using 2D Move produces a more complicated 

geometry than that in Transect A, although the overall geometry is still one of large scale 

kink bands or box folds. The anticlinal geometry (55-60 km on Transect B) appears to be a 

box fold with a low-angle thrust deforniing its northern limb; Halbich (1 983 a) suggested that 

it was a broad fold that underwent subsequent thrusting. 

In the model of Transect B (Figure 3.6) it is proposed that there are five principal faults 

controlling the deformation observed. This does not include the southern exposure of the 

Pre-Cape unit where the data are too limited. 
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3.3.3 Transect C : North-West Willomore to Plettenberg (Figure 3.10, 

Enclosure 5) 

i) Structure 

In this transect, the amount of deformation of Karoo sediments is less compared to transects 

A & B, with only moderate undulations, small fold amplitudes (500 in compared to 4000 

m) and occasional overturning of the northern limbs of folds. To the south, where the 

Dwyka tillite (Pd) outcrops, there is increased folding with sub-vertical and overturned beds 

across a narrow zone. This highly deformed area changes to a wide exposure of Upper 

Devonian (Da) with few structural constraints. In other transects, where there is better 

structural control, the broad outcrop pattern of the thin Da unit is explained by gentle 

undulations. In this transect it is therefore assumed that to maintain uniformed thickenss the 

unit has to have minor undulations, as well as a small kink band that is evident from the data 

available. 

As with the previous transect, the undeformed area abruptly changes to overturned Lower 

Devonian / Silurian sequences to the south that are likely to form the northern limb of an 

anticline. The core of the fold is a very narrow band of Peninsula Formation, dissected by 

the Kango Fault, which down throws to the south and has Mesozoic sediments preserved in 

the hangingwall. There is limited structural data within the Mesozoic basin, although there is 

a general northerly dip towards the fault and the southern boundary onlaps onto the Upper 

Devonian (Da). 

To the south of the Mesozoic basin the geometry of the Upper Devonian outcrop is difficult 

to determine because of limited structural data; where there are data, there is a relatively 

steep northerly dip despite a wide outcrop pattern. This steep dip and wide outcrop requires 

sedimentological thickening, tectonic duplication, or significant folding. Sedimentological 

thickening is unlikely because of thickness consistency both along and between transects, 

and there is no evidence of tectonic duplication, therefore it is inferred that there is 

significant small scale folding. 

The Upper Devonian sediments to the south are juxtaposed against the Silurian sediments by 

a southerly dipping reverse fault. Although the dip of the fault is not evident, the bed and 

cleavage to the south are both relatively steeply dipping (50°-70°) suggesting a relatively 

steeply dipping reverse fault, especially if thrusting and folding are axial planar to cleavage. 
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The Silurian sequence (Sk), which the high angle reverse fault emplaces upon the Upper 

Devonian sediments, forms the northern limb of a southerly inclined syncline, cored by 

lowermost Devonian. The southern limb is overturned and forms the northern limb of the 

next anticline to the south, which itself is cored by the Pre-Cape sequence. Across both of 

these folds, the cleavage consistently dips moderately towards the south. It is useful to note 

that the wavelength of these folds is not substantial considering the amplitude (10 km by 

10km), although the southern anticline is broader (15 km) with approximately the same 

amplitude. The internal geometry of the Peninsula Formation is very poorly constrained, 

therefore the nature of the anticline can not be determined accurately. There is no map 

evidence that there is a significant thrust, hence the geometry used in the transect is that of a 

fold with the minimum thickness of Pre-Cape unit. This assumption is supported by the low 

northward dip of the Pre-Cape unit. The southern extent of the Pre-Cape unit is defmed by a 

south dipping fault with Peninsula Formation preserved to the south. The nature of the fault 

is unknown, although the possibilities are either a south dipping normal fault, or north 

dipping reverse fault (Figure 3.11). The same arguments apply as for Transect A (Figure 

3.5), and therefore a south dipping normal fault is preferred. 

The downthrown Peninsula Formation to the south of the fault forms the southern limb of a 

faulted anticline and the northern limb of a further syncline to the south. As in previous 

transects, the internal geometry of the Peninsula Formation is poorly constrained. The 

amplitude of both folds is inferred to be approximately 5 km, however, the anticline is 

considerably broader than the syncline (wavelength of 12 km compared to 6 km). Exposure 

is poor across this region, although where available the field data (Figure 3.12) imply that the 

styles of deformation are similar in this transect to that observed in the others. Deformation 

styles are also similar at many scales, with kink bands at centimetre scale, Figure 3.12a, and 

at lOOm scale, Figure F, Enclosure 4. Evidence of later brittle faulting is also present in this 

transect (Figure 3.12b). 

The Peninsula Formation crops out in the two belts towards the south and although the 

geometries are poorly constrained, these outcrops are probably cores of small anticlines. As 

in the other transects, the Peninsula Formation comprises bedded quartzites with bedding 

parallel thrusts (Figure 3.13a). This locality also shows isoclinal folds that are being cross 

cut by later thrusting, and both are northward verging. Towards the south coast, a fault 

juxtaposes two Silurian units (Sk and St) against each other. As with faults elsewhere, the 

dip is unknown, and therefore a south dipping normal fault is the most likely geometry. 
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Between the fault and the south coast there are intermittent the Mesozoic sediments lying 

unconformably ontop of significantly eroded Peninsula Formation (Figure 3.13b). 

fl) Fold Belt reconstruction and underlying structure 

The folds in the Karoo sequences are asymmetric, suggesting a north-verging controlling 

reverse fault at the northern end of the transect. These folds are smaller than equivalent folds 

in previous transects, therefore when the horizons are projected to depth the problem of 

apparent extensional faults at depth does not occur. 

When the Mesozoic extensional faults are removed, the restored fold belt has three box-folds 

with only minor asymmetry towards the north west, therefore it is proposed that there are 

three principal faults controlling the central and southern areas. The 2D modelling shows 

that the southern part of the transect does not have area preservation. This may be because of 

sub-surface geometries that have not been inferred, or differential thickening of the 

Peninsula Formation (e.g. Figure 3.13a) that has not been restored properly due to 

insufficient data. 

3.3.4 Transect D (Figure 3.14, Enclosure 6) 

i) Structure 

The Karoo sediments at the northern end of this transect show remarkably little folding in 

comparison to the transects to the east, although there is a series of southward dipping faults 

(approximately 200-1000 m displacement on each). Two of these faults have been mapped 

with a reverse nature and the other two are extensional. A further normal fault is present to 

the south that juxtaposes Permian sediments (Pd) against a Middle Devonian sequence (Dk) 

with a displacement of approximately 1500 m. 

As in the other transects, the exposure of Da shows very little deformation, with only small 

undulations, and a minor north verging kink band. To the south of this undeformed section, 

deformation increases, although not as significantly as in other transects. The folding here is 

open (inter limb-angles of 135 °) with only moderately dipping southern limbs. A further 

fold to the south becomes increasingly steep, with an overturned southern limb, although the 

wavelength and amplitude is small (2 km by 3 km) in comparison to the large anticlines to 

the east. Furthermore, there is no surface outcrop of Peninsula Formation. The folding of 

the Lower Devonian sequences is truncated by a down-to-the-north fault, which is interesting 

for two reasons. Firs, it downthrows to the north, therefore, is either a south dipping reverse 

fault, or a north dipping normal fault. The south dipping reverse fault is preferred because 
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the faults observed elsewhere are all southerly dipping, and the foldbelt is northward 

verging, therefore a south dipping reverse fault is consistent with the regional model. 

Second, although the dip of the fault is unknown, the dip of the hangingwall is relatively 

steep (600  towards the south) and it is inferred that the fault has a similar attitude. This 

relatively steep hangingwall dip shallows abruptly, returning to the sub-horizontal and gently 

undulating outcrop of the Upper Devonian sequences, as observed in other transects. 

Another south-dipping reverse fault deforms the sub-horizontal Devonian sequences and 

juxtaposes Peninsula Formation on top of locally deformed Devonian sediments. The 

Peninsula Formation outcrop is bounded to the south by a southward dipping normal fault, 

with Mesozoic sediments preserved in its hangingwall (Figure 3.15). The majority of the 

outcrop from the Mesozoic basin to the south coast is Peninsula Formation with some 

notable exceptions. Three of the four exceptions are outcrops of Lower Silurian deposits that 

core northward-verging synclines with shallow northern limbs, and steep or overturned 

southern limbs. The fourth exception is a small, but important, outcrop of Pre-Cape Unit. 

This has a faulted southern contact against Peninsula Formation, which downthrows to the 

south, and is therefore inferred to be a normal fault (see previous transects, e.g. Figure 3.11, 

for discussion). This normal fault dies out towards the east, as shown by the supplementary 

section in Enclosure 6. This supplementary section shows the Peninsula Formation forming a 

12 km wide, and approximately 6 km high box fold. As with most of the transects, the 

nature of the internal structure of the Peninsula Formation is difficult to ascertain, although 

the available data imply that the deformation is similar to that observed in the Meeringspoort 

Pass (Transect B, Enclosure 4). On the southern coast, exposures in gorge cuttings show that 

although the Peninsula Formation is in places sub-vertically dipping, there appears to be 

little internal deformation except for the characteristic bedding-parallel thrusting (Figure 

3.15b). 

ii) Fold Belt reconstruction and underlying structure 

The small reverse faults in the Karoo Basin are not accompanied by substantial folding and 

there is very little to suggest at which level they décolle. The two other compressional faults 

involve Ordovician units, consequently it is suggested that they decollé below the Peninsula 

Formation. 

The removal of the three extensional faults to the pre-extension fold belt geometry reveals 

three anticlinal box folds each separated by narrow synclines that are similar to the other 

transects. Restoration of the horizons to the horizontal indicates that the Silurian units have 
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longer line lengths than the other units, although as in previous transects this may be a result 

of internal thickening, especially within the Peninsula Formation. 

3.3.5 Transect E : Western Algoa Basin through the Algoa Basin (Figure 3.16, 

Enclosure 6) 

i) Structure 

As with the other transects, there appears to be localisation of the deformation in the Karoo 

sequence. The northern area gently undulates with shallow plunging, open folding, whereas 

towards the south there is an abrupt change with two overturned, south-dipping limbs of 

northern-verging anticlines (wavelengths of approximately 6 km and amplitude of 3 km). 

The southern limb of the southern most anticline is folded directly north of a down-to-the 

south normal fault with approximately 2000 m throw. A small outcrop of the downthrown 

block is preserved north of the onlap of the north-western Algoa Basin Mesozoic sediments. 

There is no evidence of controlling faults on either side of the Mesozoic outcrop, suggesting 

that either there is a series of smaller faults within the basin, or the system is onlapping from 

the central basin (to the south-east) into a topographic low. Within the Mesozoic sediments 

there is very little structural data. Furthermore there is no exposure of the basement, although 

a transect to the west of the main transect implies that there is moderate folding of the 

basement (wavelengths approximately 800 m and amplitudes of 500 m). 

Where the basement is exposed to the south of the Mesozoic outcrop, there is a relatively 

undeformed sequence of Devonian sediments that abruptly changes to highly deformed 

lower Devonian and Silurian sequences, which form the steep dipping northern limb of a box 

fold cored by Peninsula Formation sediments. Although the exposure of the Peninsula 

Formation is not as good as further to the west, the deformation appears to be very similar. 

In this area structures including bedding parallel thrusts, isoclinal folds, open folds and steep 

dipping, undeformed beds adjacent to the normal faults are observed (Figure 3.17). To the 

south, the anticlines cored by the Peninsula Formation passes into a Silurian-cored syncline 

with a moderately undulating and deformed core. The southern limb of this syncline is 

overturned and contains the contact with the Peninsula Formation, which youngs to the north 

and has a southern contact with the rarely outcropping Lower Ordovician (Os). A poorly 

exposed sequence of Pre-Cape Unit is present between the Os Formation and the Gamtoos 

Fault (see Chapter 4 for field data) and is steeply dipping to overturned (Figure 3.17c). 

Shone & Booth (1992) have suggested that the contact between the Os and Pre-Cape Units is 
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faulted. With the available data it is impossible to integrate the Pre-Cambrian units into the 

transect. 

Data from the Mesozoic Gamtoos Basin are discussed in Chapter 4 although the minimum 

depth of the basin (2326 m; McMillan, 1999) is controlled by well (Lol/69), and has been 

included in the transect. 

The southern margin of the basin onlaps onto to the steeply dipping to overturned northern 

limb of a further Peninsula Formation cored box fold, which is the northernmost of a series 

of four syncline-anticline pairs. These fold pairs are all inferred to have flat-topped box fold 

geometry, with steep northern limbs and shallower southern limbs. The wavelengths and 

amplitudes of the anticlines are on the order of 10-16 km and 2 km, respectively, with the 

intervening synclines showing considerably shorter wavelengths (4 km), but similar 

amplitudes. An exception occurs in the middle of the transect where the anticlines are less 

defined and smaller (4 km wavelength), however, these are the lateral terminations of along 

strike anticlines. 

ii) Fold Belt reconstruction and underlying structure 

The only part of this transect that requires reconstruction is the Gamtoos Fault, however, 

because of the magnitude of displacement and the lack of structural data in the immediate 

footwall (Pre-Cape Unit), an accurate reconstruction is difficult to achieve. Therefore, in the 

restored section, the Cape Supergroup in the hangingwall has been restored to the elevation 

of the equivalent horizons in the footwall. It is impossible to project the Pre-Cape Units 

from the available data. 

3.3.6 Summary of transects 

The five transects that have been discussed are approximately 125 km long from north to 

south, and cover nearly 400 km from west to east. Despite this wide distribution, the field 

data, observations and transects show remarkable similarity in their geometries (Figure 

3.18). The most consistent observations are: 

a) All of the transects appear to have very different geometric characteristics in the north 

and the south. This change appears to occur in approximately the same position as the 

southern boundary of the Southern Cape Conductive Belt (SCCB) (Figure 3.1; Beer, 

1983). 
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The north of the transects tend to have open folds with more obvious northward verging 

asymmetry. 

The central and southern areas typically show large-scale folding and deformation, 

generally in the form of steep limbed box folds cored with Peninsula Formation, or Pre-

Cape Units, with wavelengths of the order of 10-15km. Both the northern and southern 

limbs tend to be steep. Internal structures within the folds are beyond the resolution of 

the map data, although they have been assessed in the Meenngspoort Pass, Transect B, 

Enclosure 4. 

The deformation is not uniformly distributed across the region. Some areas show very 

little or no deformation, and these are commonly where Upper Devonian (Da unit) 

outcrops, while others show significant deformation e.g. Peninsula Formation of the 

Meeringspoort Pass. The average width of the anticlines is of the order of 8-15 km 

whereas the width of the synclines is 2-4 km. 

The oldest units exposed in the CFB are the Pre-Cape units that are Pre-Cambrian or 

Cambrian in age (cf. Chapter 2). 

Where normal faulting occurs, it is commonly directly to the south of the northern limb 

of a box fold in the Peninsula Formation or Pre-Cape unit. This will be discussed further 

in Chapter 4. 

Extension is restricted to the central and southern parts of the Cape Supergroup. 

Similar styles of deformation, e.g. chevron folds, bedding-parallel thrusting, occur at 

various scales and across all of the transects. 

Field data and published data show approximate east-west structural trends, suggesting a 

north-south compression orientation with little or no oblique component (Figure 3.1) 

There is no evidence of large scale thrusts with features indicative of large amounts of 

transport, e.g. roof thrusts, allochthonous blocks. There is only one transect that shows 

evidence for the development of a nappe (Transect B). 

The percentage of shortening varies considerably along the trend of the CFB and 

between the north and south (summarised in Figure 3.1). 
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3.4 Comparison with other compressional orogenies and discussion 

It is not the intention to early out a full review of thrust tectonics here (e.g. McClay el al., 

1992) but it is important to asses the summary of the transects outlined in the previous 

section in light of other compressional orogenies. Compressional orogenies in continental 

settings are typically represented by fold and thrust belts. Although there are significant 

variations between settings, fold and thrust belts have many characteristics in common. 

They typically have thrust faults with developed mylonitic fabrics, klippen, low angle frontal 

ramps, imbricalions, varying degrees of metamorphism, juxtaposition of out of sequence 

units (e.g. Boyer & Elliot, 1982; Butler, 1982b; Coward, 1984; Butler el al., 1986; Dewey ci 

al., 1986; Le Fort, 1986; Vann ci al., 1986; Hossack, 1983; Mitra, 1990; Spring & Crespo-

Blanc 1992; Mercier el al., 1997; Philippe el al., 1998). The style of deformation presented 

for the CFB, especially in the south, is therefore atypical of fold and thrust belts. 

Three models are presented to explain the principal observations from the transects and the 

possible underlying control on the development of the CFB (Figure 3.19). The first two 

models both invoke a low angle regional décollement horizon, while the third predominantly 

utilises high angle reverse faults. 

In models i) and ii) (Figure 3.19b) the deformation is proposed to be controlled by an 

underlying regional décollement. Although the depth of this horizon is unknown, the 

involvement of Pre-Cape units implies that it must be stratigraphically within, or below the 

Pre-Cape unit and therefore must be have a depth of at least 10 km. In model i) the box folds 

are predominantly controlled by northward verging reverse faults with the southern limbs of 

the anticlines formed from southward verging antithetic faults, both of which assimilate onto 

the décollement horizon. This model is similar to Butler's (1996) pop-up model for Alpine 

deformation. In this model the décollement horizon splays to form the deformation at the 

north of the transects. 

Model ii) invokes a more complex underlying structure with the box folds being controlled 

by duplex formation beneath the folds, with the upper Pre-Cape and Peninsula Formation 

units being deformed passively. The northern end of this model has a similar controlling 

geometry to that in model i). 

The observed deformation in the south of the transects is explained in model iii) by south 

dipping high angle reverse faults with north dipping antithetic faults, in a similar geometry to 

that of the pop-up features in model i). The principal difference between model i) and iii) is 
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that the faults in the later model do not assimilate at depth, or at least not in the brittle upper 

crust (cf. Jackson & White, 1989). Such faults may be the remnants of the extensional 

normal faults associated with the pre-existing passive margin which were re-activated as 

reverse faults during the Cape Orogeny (see discussion below). In the north of the transects 

the deformation is accommodated by a low angle thrust fault as in the previous two models. 

In this model the change in tectonic nature may be explained by thin skinned compression 

occurring in the north and thick skinned in the south (Jackson, 1980; Boyer & Elliot, 1982; 

Coward, 1984). 

From the available data it is difficult to determine which model is correct and it is the aim of 

the following chapters to constrain these models further. However it is useful to discuss 

additional available data. The only subsurface geophysical data come from a seismic 

reflection profile (discussed in Hälbich, 1993) which shows: 1. a distinct boundary at 6 s two 

way travel time (-16 km); 2. a reflector at 18 km that may be a dcollement; and 3. the 

reflection moho at 9.5 s TWT (-30 km). The section is along the south coast of Transect C 

and it is therefore uncertain how such a horizon projects towards the north. 

The data required to support model iii) would be syn-rift thickening into the inferred normal 

faults at depth, however, because of the lack of exposure and poor quality data available in 

the Pre-Cape Unit, this is not possible. Model iii) is however supported by sand box 

modelling of Beer (1983) in which the formation of box folds were simulated using high 

angle reverse fractures in the basement below the sand layers (Figure 3.20). Furthermore, the 

size and distribution of the box folds (approximately 15 km wide), and therefore the inferred 

controlling faults, is not of a dissimilar scale to that of extensional faults in a passive margin 

setting (Jackson & White, 1989). 

A problem that is not solved in any of the models is that of the apparent extensional 

geometries when the sediments beneath the Karoo Basin are projected to depth. There are 

no data to suggest that the packages do thicken into the faults, therefore it is difficult to 

determine the nature of these faults at depth. 

All three models suggest that the northern and southern areas have very different structural 

styles (Figure 3.18) and this may be a result of the underlying crustal character because the 

division between the two areas coincides with the southern extent of the Southern Cape 

Conductive Belt. Halbich (1983b) suggests that the crust containing the SCCB is 

considerably weaker compared with to the southern area (cf. Chapter 2), and may play a role 

in determining the overlying structure. However, in all three models it would appear from 
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the amounts of shortening that the observed strain is greater south of the SCCB and from the 

transect data it appears that the SCCB may form a buttress which prevents the deformation 

migrating further to the north. This would contradict Hälbich's assumption of the SCCB 

being weaker. 

3.5 Conclusions 

Despite the various styles and degrees of deformation across 400 km, there is remarkable 

similarity at all scales, suggesting the region is responding to a single phase of deformation 

in a predictable way. The transects presented imply that the formation of the CFB may have 

been influenced by pre-existing crustal structures, and hence structural inheritance may play 

a role. Three models have been proposed to explain the development of the foldbelt. The 

first two models have deformation being accommodated by a low angle detachment fault, 

while the third model has high angle structures, and it has been suggested that such 

geometries may be controlled by the pre-existing passive margin. However, there is 

insufficient evidence from these observations alone to determine which of the models is most 

suitable. Data from the following chapter will be used to constrain the models further. 

This chapter has only addressed the question of the overall structure of the CFB, and not the 

nature, or control of basement structures on the subsequent Mesozoic extension. The next 

chapter will discuss how the onshore Mesozoic geology can be used to constrain the 

understanding of the CFB further. 
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CHAPTER 4: The Role of Structural Inheritance on the Onshore 

Mesozoic 

4.1 Introduction 

The regional scale architecture of the Pen -no-Triassic Cape Fold Belt (CFB) has been 

demonstrated in the previous chapter. This chapter uses the onshore Mesozoic geology to 

examine the role of CFB structures in the development of the subsequent extensional system. 

The interaction between the underlying foldbelt and Mesozoic extension will be ascertained 

by examining the structural trends of the extension, and comparing them with basement 

compression orientations. The structural styles and sedimentology of two of the principal 

onshore basins (Oudtshoorn and Gamtoos) will be integrated with results from the regional 

transects and used to predict the underlying structure of the CFB and geometries of the 

extensional systems at depth. 

4.2 Exposure limitations 

The original aim of the fieldwork was to conduct detailed structural and sedimentological 

transects perpendicular to the Mesozoic faults with a view of determining whether there are: 

along-strike variations in basement structures and corresponding variations in the early syn-

rift sedimentation (cf. Chapter 2). Unfortunately the levels of exposure in both basement and 

the Mesozoic basins were very poor, therefore the original aim of the fieldwork was not 

attainable. The fieldwork was restricted to understanding the larger scale structures within 

the stratigraphic framework established by previous workers (Chapter 2). 

4.3 Data, methodology 

The trends of extensional features and compressional structures were compared on a regional 

scale using published geological maps (RSA Geological Survey maps 3320, 3420, 3322, 

3324) and validated through structural fieldwork (cf. Chapter 3). The fieldwork presented in 

this chapter was conducted across the Central and Eastern Cape to develop a better 

understanding of the exposed Mesozoic basins, and the immediately adjacent Cape Fold 

Belt. 
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4.4 Mesozoic and foldbelt structural trends 

The superimposition of Mesozoic basins upon the older Cape Supergroup has long been 

recognised (cf. Chapter 2), as has the similarity in the structural trends of the two units. 

These observations are evident when the trends of the principal CFB compressional features 

and the Mesozoic normal faults are plotted together (Figure 4. 1), and when the normal faults 

are plotted on the stereonet of basement structures from Chapter 3 (Figure 4.1c). However, 

such data do not connote the nature of the interaction at depth. 

To determine the interaction at depth, a better understanding of the Mesozoic sub-surface 

geology is required. The following two sections will assess the suitability of using the 

onshore Mesozoic structural and sedimentological data to infer the geometries of the 

Mesozoic basins at depth. The two areas studied are those with the best Mesozoic exposure; 

the Oudtshoorn Basin in the Central Cape and the Gamtoos Basin in the Eastern Cape. 

4.5 Oudtshoorn Basin 

The exposure in the Oudtshoorn Basin is very limited, although as Figure 4.2 shows, there 

are some important observations that can further the understanding of the area. The basin is 

bounded to the north by the Kango Fault, a south-dipping (400)  normal fault that juxtaposes 

Mesozoic conglomerates against Pre-Cape sediments. The Mesozoic sediments are poorly 

sorted and predominantly quartz-clast conglomerates that are bedded in packages that dip 

and thicken towards the Kango Fault (Figure 4.2c). It is impossible from the available field 

data to ascertain fault displacement. 

The unfaulted southern margin of the basin consists of a substantial northward prograding 

conglomeratic sequence (Figure 4.2b) that lies on Devonian sediments of the Cape 

Supergroup. Interestingly, the clasts in this paraconglomerate are dominantly indurated 

laminated grey siltstone; in comparison, other Mesozoic conglomerates are dominated by a 

quartzite provenance (Dingle el al., 1983), most likely to be from the Peninsula Formation. 

At this locality, however, the siltstone clasts are Bokkeveld Group, and are sourced from 

either outcrops directly to the south, or erosion of the Bokkeveld Group from the top of the 

mountains cored by Peninsula Formation that lie further to the south. 

There is very little other evidence that can be used to constrain the extensional geometry at 

depth. 
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4.6 Gamtoos Basin 

As in the Oudtshoorn Basin, there is limited, localised exposure in the Gamtoos Basin, 

making it difficult to correlate between outcrops. Where possible, structural mapping was 

conducted and a summary of the geology of the basin is accompanied by structural field data 

in Figure 4.3a. Fieldwork involved mapping the contacts between the CFB, Pre Cape and 

Mesozoic in the north of the onshore Gamtoos Basin. The contacts used in the south of the 

Gamtoos Basin, and the Algoa Basin have been taken from the published geological maps 

(RSA Geological Survey map 3324). The most important feature on the map is the change 

in regional basement structural trend from the west-east structures of the Central Cape (pole 

to the 2t-girdle of 00.2 to 096, Figure 4.3c) to the NW-SE orientation of bedding and 

structures in the Gamtoos Basin (pole to the 2t-girdle of 07 to 133°, Figure 4.3b). However, 

despite this significant difference, the style of deformation present in the basement is 

consistent between the two areas (Figure 3.17 in Chapter 3). This change in basement trend 

is accompanied by an identical change in orientation of the Gamtoos Fault that further 

supports the suggestion that there is a correlation between Mesozoic and basement structural 

trends. 

The Gamtoos Fault is not visible anywhere in the basin, although the contact is inferred to 

run between the alluvial sediments of the Mesozoic and the phylitic shales of the Pre-Cape 

unit (Figure 4.4a). From these poor levels of exposure it is impossible either to undertake 

structural analysis of the fault contact, or infer sub-surface geometries using surficial syn-rift 

structures. It is also difficult to determine if there are internal structures within the basin, 

although the exposures that are visible (Figures 4.5b, 4.6a) suggest that there is very little 

intra-basinal deformation. These exposures also suggest that the basin was predominantly 

filled by fluvially dominated sandstones and flood plain mudstones with occasionally 

significant erosional surfaces (McLachlan & McMillan 1976; Dingle  elal., 1983). The poor 

levels of exposure do not enable correlations between outcrops or identification of classic 

wedge shaped syn-rift packages thickening into the fault (cf. Prosser, 1983). This prevents 

the determination of early syn-rift depocentres making it impossible to apply current fault 

growth models (cf. Chapter 2) to the onshore Gamtoos Fault. 

In the north-west of the basin (Figure 4.5a), the trend of the Gamtoos Fault changes 

dramatically from NW-SE to NE-SW. The southern end of the NE-SW section terminates 

against an east-west trending, south dipping normal fault. An important consideration is 

whether extensional strain is localised on the Gamtoos Fault, or if it is uniformly distributed 
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across this part of the basin. If it is the later, then the basement to the west of the NE-SW 

portion would be expected to show evidence of extension (Figure 4.5a). The presence of the 

Komodo Darn enables a detailed structural section to be constructed to the west of the NE-

SW Garntoos Fault section (Figure 4.5b), and reveals no evidence of extension. Although 

this is a very limited outcrop compared with the length of the fault, it indicates that the 

extensional strain may be localised on the Gamtoos Fault and is not dissipated.. 

Also present in the north of the basin is the Enon conglomerate which is composed almost 

entirely of clast supported quartz pebbles, cobbles and boulders (Figure 4.5b). The 

stratigraphic position of the Enon is uncertain although it has been suggested that it is either 

the lateral equivalent to the Kirkwood Formation (Figure 4.5a), or topographic influl prior to 

the principal phase of Mesozoic extension (Dingle etal., 1983) There is insufficient outcrop 

to determine whether the package thickens into the fault. Regardless of its stratigraphic 

position, it is important to note that it has been sourced from the Peninsula Formation. The 

extent of the deposit is unknown, although two exploration wells, Mkl/70 and Lol/69 

(Figure 4.3 for locations) both terminate within the Enon having drilled through 2326 and 

1058m of the conglomerate respectively. These wells also show that the later syn-rift 

sediments are Hauterivian estuarine deposits (determined from foraminifera, McMillan, 

1999). 

4.7 Cross-section geometry 

The previous sections have discussed the close correlation between the structural trend of the 

Mesozoic and the basement, however, it has not been possible to assess the correlation at 

depth. Therefore, the only method of examining the relationship between the extension and 

compression at depth is to use the transects from the previous chapter. 

The foldbelt reconstructions from Figure 3.18 have been re-produced in Figure 4.7 and the 

positions of the extensional faults have been superimposed in order to compare the location 

of extension with the underlying fold belt. In all of the transects, apart from Transect D in 

which there is very little evidence of extension, the extensional structures consistently occur 

immediately to the south of the northern limbs of box folds. in Transect D the reverse fault 

is directly to the north of the normal fault and may be a footwall cut-off fault, although there 

are insufficient data to validate this. 
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4.8 Discussion 

Four models are proposed that describe the role of basement in controlling the Mesozoic 

extension at depth (Figure 4.8). The first model (Figure 4.8b) proposes that there is no 

control at depth and that the extension cross-cuts the underlying structure (shown here as a 

low angle thrust system). This model, however, does not explain why the extension 

consistently occurs in a structurally similar setting (i.e. at the northern end of box folds). 

The other three models are revised from those proposed 111 Chapter 3 (Figure 3.19b). In both 

the low angle reverse fault with pop-up structure model (Figure 4.8 c i) and the high angle 

reverse fault model (Figure 4.8 c ill), the fault controlling the formation of the northern limb 

of the box fold is reactivated in extension. Both of these models require antithetic faults to 

account for the steep southern limb of the box fold. The third model, invoking box fold 

formation through underlying duplexing (Figure 4.8 c ii), requires the reactivation of thrustal 

flats and ramps to accommodate the extension. In this model the position of the extensional 

fault would therefore be determined by the specific nature of the underlying duplexes and it 

is unlikely that the inferred complex duplexing would result in the consistent position of 

extension that is observed. 

4.9 Conclusions 

The onshore Mesozoic geology of the Central and Eastern Cape suggests that there is a 

correlation between the trends of the Cape Fold Belt (CFB) and the subsequent Mesozoic 

extension. Furthermore, by superimposing the locations of extension onto the transects 

derived in the previous chapter it becomes apparent that the extension appears to utilise the 

northern part of the central flat of the box folds. Although the data were used to propose 

four models (three of which revised from Chapter 3) only two (low angle thrust with pop-up 

structures and high angle reverse fault) explain the observations without significant 

complexities. 

Structural inheritance, therefore, has a significant role in the development of the Mesozoic 

extensional system. However, from the data discussed so far the nature of this control at 

depth is uncertain. This uncertainty will be addressed in the following three chapters in 

which data seismic data will be used to evaluate the offshore Mesozoic sedimentary basins. 
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5.1 Introduction 

The role of structural inheritance in the development of the Mesozoic extensional systems 

has been demonstrated, at least in plan view, in the onshore studies presented in the previous 

chapters. However, these onshore studies do not reveal the nature of the inheritance at 

depth. Offshore seismic reflection and well data have been used to evaluate this interaction 

in the sub-surface. Before this can be discussed it is important to have an understanding of 

the methods used and the limitations of the study; these are addressed in this chapter. 

5.2 Data set 

Sub-surface data (seismic and boreholes) from the offshore portions of three sedimentary 

basins in southern South Africa have been made available by the Petroleum Agency South 

Africa (formerly SOEKOR) for this study. The basins that will be studied are (from west to 

east): Pletmos, Gamtoos, and Algoa (Figure 5.1). 

5.2.1 Seismic data 

The seismic data are 2D seismic arrays with various vintages from four exploration tranches 

(Ga, Gb, Ha and Hb) covering a total aerial extent of 23,000 km 2  with 19,000 km of seismic 

section (Table 5.1); the coverage and distribution of the data for each basin will be discussed 

in the appropriate chapters. The 2D seismic data were obtained in digital format and 

interpreted using Schlumberger GeoQuest IESX Version 3.1 software at the University of 

Edinburgh. All seismic data have a vertical axis in milliseconds two-way-travel-time (ms 

TWT) with maximum recording values of either 5000 or 6000 ms. With the exception of 

specific sections, it was outwith the scope of this study to undertake depth-conversion. The 

data were processed by the Petroleum Agency South Africa, and although approximately 

60% of sections were stacked and migrated, and the remaining only stacked, no significant 

problems were encountered in merging the data. The data were rotated to zero phase during 

processing, have a negative recording polarity, 60 fold geophone coverage, 25 m shotpoint 

interval and a range of high and low frequency recording filters that are shown in Table 5.1. 
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1) Seismic interpretation 

The primary aim of the interpretation of the seismic data was the determination of mega-

sequences using seismic stratigraphy techniques (Hubbard et al., 1 985a & b) through the 

identification of seismic reflector geometries (e.g. downiap, onlap, erosional truncation, 

Mitchum et al., 1977), and associated unconformities and correlatable conformities. Seismic 

reflectors were picked on the zero phase (+/) of the wavelet, and interpretations had to be 

internally consistent between sections. In all three basins, mega-sequences were attributed to 

the broad classification of pre-rift, syn-rift or post rift, defined by the nature of the internal 

reflector geometries (Prosser, 1993; Hubbard etal., 1985a). 

Individual mega-sequences were sub-divided into sequences to obtain a more detailed 

understanding of their constituent stratigraphic sequences. Sequences are conformable 

packages within a mega-sequence; the top of each sequence was defined by a seismic trace 

with an easily identifiable character (Hubbard el al., 1985 a& b). The defining upper 

horizon of each sequence was constrained by age data from 41 boreholes (Section 5.2.2), and 

the appropriate age was attributed to the horizon, and underlying sequence. A regional 

seismic stratigraphy was established using the available age data (Figure 5.2). As a 

consequence of limited well data, and the presence of localised sequences, this stratigraphy 

was not always applicable to particular basins. Wherever possible this seismic stratigraphy 

was used, although in all of the basins there are variations (highlighted in Figure 5.2), with 

some sequences not being present, or additional sequences required to further the 

understanding of specific packages. 

Where seismic horizons were faulted, the position of footwall and hangingwall cut-offs were 

marked, and the corresponding fault planes defined. For each horizon, the position of the 

cut-offs were plotted and correlated between sections to demarcate fault polygons. Defining 

such fault polygons often proved to be problematic. Where the throw on the fault is large, 

and line spacing is small, individual faults were easy to correlate between sections. 

However, where the fault throw was small, and line spacing was large, defining fault arrays 

was difficult. The largest faults were demarcated first, and then fault character (e.g. dip and 

approximate strike), was used to correlate the smaller faults. In some instances, especially 

where line spacing was large, it was difficult to determine whether faults either had throws 

beyond seismic resolution, or coalesced with neighbouring fault arrays. 

Once the chosen horizons had been interpreted, various analyses were undertaken. The 

principal analysis was the calculation of isochrons (thickness in TWT) between specific 
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horizons using IESX software, allowing the thickness of mapped sequences to be obtained. 

Where the sequence had a para-conformable base, the isochron was calculated between the 

upper horizon and various lower horizons. The isochron calculation determined the vertical 

difference in TWT between the two horizons, therefore if the horizons were dipping the 

isochron value would be greater than the true sequence thickness. Across most of the region, 

the dips of the horizons are small, and the difference between isochron and true package 

thickness is considered to be minimal. 

In addition to calculating sequence isochrons, cumulative sediment thickness was plotted. 

These plots were calculated from the top basement horizon to a specific horizon to assess 

how cumulative sediment accumulation varies through time. 

All data, whether horizon TWT, or isochrons, have been presented as contour and grid plots. 

The contouring and gridding was achieved using the least squares algorithm in the IESX 

software with the convergent/blanking option that accounts for footwall and hangingwall 

cut-offs and fault polygons. 

2D Move restoration 

To understand the temporal evolution of the geometries within the basins, specific sections 

were modelled using Midland Valley's 2D Move restoration programme. This programme 

sequentially restores horizons, from youngest to oldest, to the horizontal. A specific horizon 

is restored to an appropriate elevation, and the underlying horizons undergo vertical shear 

restoration to maintain area preservation. By this method, progressively older horizons were 

restored to the horizontal and the temporal evolution of observed geometries ascertained. It 

is, however, important to state that this restoration programme produces a non-unique 

solution, and there is no assessment of associated errors. Furthermore, although inclined 

shear can be applied, it is impossible to determine the true shear during the deformation. 

Vertical shear was therefore consistently used in all restorations. Despite these limitations, 

the programme is useful in understanding observed deformation. 

Errors and resolution 

In general, the minimum vertical resolution of seismic data is a quarter of one seismic 

wavelet (Badley el al., 1990; Pickering et al., 1997). As the wavelength of the wavelet 

increases with depth, the minimum resolution correspondingly decreases, and it is estimated 

that the resolution varies from approximately 10-50 ms TWT depending on the depth of the 

reflector and the acquisition frequency (Table 5.1). Such an error, even at depth, is generally 
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negligible compared to the scale of the sequences that are of interest. Where the error is 

significant with respect to the observed feature (e.g. small-scale faults), the implications will 

be discussed. The horizontal resolution of the seismic pick, defined by the Fresnel zone, is 

deemed to be insignificant compared to line spacing, and can be ignored. 

Some parts of the basins have been faulted significantly and with limited well control, the 

position of a particular horizon could be uncertain. In such cases, cross correlating-between 

sections from well-controlled positions, using the most reasonable geological interpretation, 

was undertaken. 

Direct comparisons between sequence isochron thicknesses have to be considered carefully. 

As a consequence of both lithological and compaction variations with depth, if two 

sequences have the same isochron thickness, the lower sequence will tend to have a greater 

true depth in metres (assuming the lower sequence is more sand-rich, which the data in 

subsequent chapters will show as being valid). Such errors are difficult to quantify, and can 

only be excluded by depth conversion of the entire seismic data set, which is beyond the 

scope of this study. Therefore, these errors will be discussed where appropriate. 

Although complete depth conversions will not be conducted, for specific sections it is 

essential to carry out approximate depth conversions; the method and associated errors will 

be discussed in Chapter 9. In preceding chapters approximate depth conversions will use 

data from McMillan etal. (1997). 

5.2.2 Well data 

The two primary applications for the well data were: to ascribe age data to seismic horizons 

both to date seismic packages, and to constrain seismic correlations across the basin; and 

integrate seismic observations with other data, including sedimentology and depositional 

environment. 

In total 41 wells were used in the study, although the types of data available vary for 

individual wells. A summary of these data types are listed below, and each chapter contains 

the details for individual wells. It should be noted that no analytical work has been 

conducted on these well-logs as part of this study and that the data presented, including 

environmental interpretations, have been obtained from Petroleum Agency South Africa. In 

this study the principal work undertaken was to calculate time-depth conversions, and to 

extract and compile the well data relevant to the study. 
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Available data 

Composite Logs: These logs contain standard down-hole recordings including gamma, 

caliper, and lithological descriptions of basket/side-wall cuttings. Of particular importance 

are gamma readings that were used to determine lithological variations, including 

coarsening/fining upward sequences. 

Time-tops: This database (McMillan, 1999) gives the depth to the top of age units. Data are 

presented only in depth (metres) and therefore have been converted to time, see (ii) below. 

Check-shots and synthetic seismograms: These data provide information on the time-

depth relationship for individual wells. 

Lithofacies: Contained in these logs are: lithological descriptions; dip-meter readings (some 

of which have had structural dip removed), and interpreted paleo-environments. 

Palynology: These contain paleo-environment interpretation from palaeontology studies. 

Time-depth conversion 

The depth to each available age datum is presented in the time-tops database (McMillan, 

1999) in depth (metres) and requires conversion to depth (TWT). Each well contains 

discrete points at which depth-time conversion is known from the synthetic-seismograms and 

check-shots, although the majority of required time-top points are between the discrete 

values. Table Curve 3.0 graph package was used to calculate the best least squares fit 

correlation equation for each well using the available time-depth data. The resultant 

equation was then used to calculate the depth (in TWT, ms) to the top of each time period for 

individual wells. Graphs corresponding to the depth-conversions for individual wells are 

included in the appendix for the appropriate chapters. 

Sedimentation rate calculations 

To understand the evolution of particular sequences within the syn-rift packages, 

sedimentation rates were estimated using well data and the time-top. Rates were calculated 

in metres per year. These rates are subjected to significant errors and have to be used with 

caution. The primary error is that of the age constraints, and this will be discussed in the 

next section. The other significant error is in determining sequence thickness as a 

consequence of erosion and differential compaction. These errors will be discussed for 

individual examples. 
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iv) Errors 

The principal problem with the available data is that as a study of the raw data, especially 

palaeontology and age data, has been out with the scope of this project, it is difficult to 

assess the reliability of the data. However, in most cases this is not considered to be 

significant because the integration of seismic data with well data allows for consistency 

between data sets to be ascertained. Furthermore, as all the age data have been interpreted 

using the same technique by Petroleum Agency South Africa, it is assumed that the data is 

consistent between basins. 

Tying of data to regional events is also problematical, especially ascribing specific ages to 

the defined periods. Petroleum Agency South Africa have tied palaeontological data to 

recognised time periods using the Haq ci al. (1988) timescale for specific ages. This 

timescale has not been used in this study because it has been superseded by more recent 

studies, and there are problems tying the timescale to specific regional events. An example 

of the latter problem is that of the opening of the South Atlantic, which has been attributed to 

the sea floor magnetic anomaly MlO (Hauterivian, 130 Ma) by Nurnberg & Muller (1991), 

and Austin & Uchupi (1982). Haq ci al. (1988) places M10 and the Hauterivian at 121 Ma, 

while Gradstein el al. (1995) dates it at 130 Ma and Harland el al. (1990) at 130 Ma. As 

Gradstein etal. (1995) is the most recent it has been used for this study, although this creates 

a problem because it uses the Rhyzanian stage, whereas the available data uses the 

Portlandian. This is important for sedimentation rate calculations and will be discussed 

where appropriate. 

5.3 Understanding fault and basin evolution 

To understand the evolution of the faults and basins within this study, it is important to 

recognise that the creation and evolution of accommodation space in the hangingwall of a 

normal fault is intimately associated with the growth of that fault (cf. Chapter 2; Leeder & 

Gawthorpe, 1987; Prosser, 1993; Gawthorpe ci al., 1994; Anders & Schlische, 1994; 

Contreras ci al., 1997; Gawthorpe & Leeder, 2000). As discussed, faults have been 

demonstrated to grow by isolated radial growth and segment linkage (Figure 5.3; Walsh & 

Watterson, 1987; Cowie & Scholtz, 1992a, b; Cartwright et a!, 1995), although many 

examples illustrate that faults may grow by a combination of the two (e.g. Cartwright & 

Mansfield, 1998; Morley & Wonganan, 2000). In 5.3a, an isolated normal fault is illustrated 

with displacement at a maximum at its centre and decreasing along strike resulting in onlap 

56 



Chapter 5: Suh-surtice data and methods 

onto the basin margins. The fault grows by radial propagation, and through time the fault 

propagates laterally whilst increasing displacement. In Figure 5.3b, four small isolated 

segments, and associated depocentres are present at the beginning, and grow by radial 

propagation in a similar mechanism to Figure 5.3a. Through time the segments interact and 

become mechanically linked resulting in a single fault comprised of the four segments. 

Correspondingly, the depocentres grow and progressively interact. In both models, the 

characteristic hangingwall cross-section and displacement-length profile are illustrated. 

Using well-tied seismic stratigraphy the determination of hangingwall cross-sections and 

displacement-length profiles for a particular fault system can be used to establish the spatial 

and temporal evolution of sedimentary basin and infer the evolution of the fault system (e.g. 

Gupta el al., 1998; Morley, 1999; Contreras el al., 2000; McLeod et al., 2000; Young el al., 

2001) and this method is used in this study. Although accommodation space can be created 

by both tectonic subsidence and eustatic variations (Leeder & Gawthorpe. 1987) in this study 

sequences are typically between 500 and 1250 ms TWT thick (equivalent to 500— 1500 m), 

therefore eustatic variations are considered as secondary. A further consideration is whether 

sediment accumulation can be used as a proxy for accommodation space. Although well 

data is available, there is insufficent data to address the question of sediment supply, 

therefore observed sequence thicknesses will be a minimum value for the available 

accommodation space. Redistribution of sediments will tend to be remobilsed to the deepest 

areas of the basin and will therefore preferentially record local depocentres (McLeod et al., 

2002) 

5.4 Conclusions 

This Chapter has outlined the methods that will be used in the following three chapters to 

evaluate the evolution of the offshore Mesozoic basins using sub-surface data. The 

methodologies for both interpretation of the seismic data and subsequent modelling have 

been described, as have some of the limitations and inherent errors in the methods. 
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6.1 Introduction 

The premise that structural inheritance played a role in the development of both the Cape 

Fold Belt (CFB) and the onshore Mesozoic extension has been explored in Chapters 3 & 4. 

Although previous studies have discussed this (cf. Chapter 2), the nature of the sub-surface 

interaction between the CFB and the extensional system is still uncertain. Likewise, the role 

of structural inheritance on the subsequent evolution of the extensional system has not been 

addressed. 

The aims of this, and the following two chapters are to use sub-surface, offshore data to 

constrain the nature of the interaction between the CFB and extension at depth, and assess 

whether structural inheritance has influenced the evolution of the Mesozoic basins. This 

chapter will focus on the Gamtoos Basin, which has the best tectono-stratigraphic control of 

the three basins, while the following two chapters will examine the Pletmos and Algoa 

Basins. 

To understand the role of structural inheritance in the formation and subsequent evolution of 

the basin, it is important to understand its overall tectonic framework. This framework will 

be established by defining tectono-stratigraphic mega-sequences, as outlined in Chapter 5. 

The distribution and nature of both basin-bounding faults and intra-basin faults will then be 

determined prior to an evaluation of structural styles within the sedimentary basin fill. The 

results from these three sections will be integrated with paleo-environment data from 

Petroleum Agency South Africa to establish the overall basin evolution. Only then is it 

possible to address the nature of the interaction between basement and the Mesozoic basin, 

and the role of structural inheritance in the development of the Gamtoos Basin. 

6.2 Gamtoos data 

This study has utilised 4,272 km of 1976, 1982, 1983, 1985 and 1987 vintage 2-D multi-

channel seismic data (Figure 6.1) with maximum recording times of either 5000, or 6000 ms 

two-way time (TWT). Approximately half of the data have been migrated while the half 

have been stacked, although there are no discernable problems in correlating between the 

two data sets. The seismic data have been tied to 10 boreholes (Appendix A), which are 
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summarised in Figure 6.2 and reproduced in Appendix 1.C. Throughout the chapter, seismic 

sections will be reproduced and the positions of the lines are plotted on Enclosure 8. 

6.3 Tectonic and stratigraphic framework 

The determination and characterisation of sequences and mega-sequences, integrated with 

available well data, are used in this section to develop a tectonic and stratigraphic framework 

of the Gamtoos Basin. This framework comprises four mega-sequences, namely: Basement; 

Principal Syn-Rift; Late Syn-Rift; and Post-Rift. The Principal Syn-Rift mega-sequence is 

divided into six sequences, and these are evident in the two regional sections (Figure 6.3a & 

b). The seismic character, areal extent and thickness in TWT of each mega-sequence and 

sequence will be discussed. Although the primary aim is to understand the tectonic 

evolution of the basin, the sedimentology of each of the sequences is assessed briefly 

(summary of wells in Figure 6.2 with complete well logs in Appendix 1.Q. 

6.3.1 Basement 

The top basement is a strong seismic reflector (commonly a doublet) onto which the 

overlying syn-rift sequences onlap. Across much of the basin, the strength of the reflector 

results in significant lateral continuity allowing the horizon to be traced with confidence. 

However, as seismic resolution decreases as a function of depth, in the centre of the basin, 

where the reflector is deepest, the confidence of the pick is reduced. This error is increased 

because the reflector is occasionally deeper than the longest recording depth of 5s TWT in 

some of the sections. To alleviate this problem, the TWT map of top basement (Figure 

6.4a) has the locations at which the reflector crosses 5s TWT marked. 

From the TWT map and 3D sketch (Figure 6.4a and b), it is evident that the dominant 

offshore basement feature is the Gamtoos Fault, which down-throws towards the south and 

south-east, defining an arcuate-shaped half graben. In the NW the fault is a direct 

continuation of the onshore Gamtoos Fault (Chapter 3) and has a NW-SE trend, while in the 

east there is an abrupt change in orientation to a north-south orientation. The geometry of 

the fault will be discussed in a later section (6.4.1). 

The basement high, which forms the footwall to the Pletmos extensional basin to the west, is 

predominantly composed of milky-white to grey quartzite interbedded with slates and other 

meta-sediments (wells Ha-Hi and Ha-J 1). This is consistent with the Cape Fold Belt (CFB) 

observed in the onshore portion of the Gamtoos Basin (Chapters 3 & 4). The only other well 
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to penetrate basement was drilled through the Gamtoos Fault in the NE (well Ha-K 1) and as 

in the other two wells, indicates that basement is sedinientologically identical to the CFB. 

Smaller faults are present within the basin (lop_basement TWT map, Figure 6.4a), especially 

on the basement high in the west, where there are complex fault geometries (Section 6.4.2). 

These faults are traceable in plan view and have an arcuate trace similar to the Gamtoos 

Fault. In the centre of the basin, low seismic resolution makes it difficult to map faults, 

although a zone of deformation is observable. 

6.3.2 Pseudo-basement 

Although the overall basin geometry can be determined from TWT maps even where 

top_basement is deeper than 5 seconds TWT, calculating accurate isochron plots between 

Principal Syn-Rift horizons and top_basement is more problematic. Where basement is 

deeper than 5 seconds, the resultant isochron is artificially thin, which creates difficulties 

when sediment thickness is used to infer fault evolution (Section 6.4.1). To reduce this error, 

a pseudo top basemen! horizon (called top_ps. basement) has been identified that is the 

lowest reflector that is fully correlatable across the whole basin and therefore enables 

accurate isochron maps to be plotted. Although this results in a package between 

top basemen! and top_ps. basement being excluded from the syn-rift isochron plots it enables 

isochron plots to be compared. 

6.3.3 Earliest Syn-Rift? 

In the west of the basin there is evidence of a wedge-shaped seismic package beneath the 

picked top basement horizon. This is most evident in a north-south orientation (Figure 6.5) 

where it appears to thicken towards the north and may be truncated against a fault. However 

this package is not imaged well enough in perpendicular sections to be able to determine 

either its extent or geometry. It has also not been penetrated by any of the wells, and 

therefore has not been included in the overall tectonic framework. 

6.3.4 Principal Syn-Rift (Middle? Jurassic-Late Valanginian) 

This mega-sequence is bounded at the base by onlap onto the lop_basement (Figure 6.2b), 

and at the top either by erosional truncation below a basin-wide unconformity, or a para-

conformity and associated correlative conformity with the Late Syn-Rift mega-sequence in 

the NE of the basin. As this mega-sequence accounts for over 75% of the basin fill, it has 

been divided into six sequences to develop a better understanding of its evolution. These 

sequences were originally defined using seismic character, although it transpires that the 
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division of the sequences closely matches the age boundaries determined from well control. 

In some wells there is a mis-correlation between well data and seismic data and in these 

instances, because the basin architecture is of more importance than detailed age 

correlations, seismic continuity and reflector ties are preferential to well mis-ties. 

Furthermore, such mis-ties may be a result of the seismic reflectors not being true chrono-

stratigraphic markers. For each sequence the following data are presented: 

ages from published Soekor Time-Top database (McMillan, 1999), 

grided and contoured TWT maps with associated fault polygons to evaluate the overall 

basin geometry, 

inter-horizon isochron plots to determine the evolution of the sequence, 

sedimentology from Soekor well logs and reports are summarised (complete wells are 

included in Appendix A). 

The sequences are named after the defining top horizon and are referred to by the age of that 

horizon. 

i) Kimmeridgian 

Although the deepest sediments in the basin have not been penetrated, the oldest dated 

sediments are Kinmiendgian and are found on the western basement high. This sequence, 

which is defined as the oldest syn-rift package above lopfis.basemeni, is a relatively 

transparent package with occasional strong, bifurcating reflectors. The top kimmeridgian 

horizon is defined by a very strong triple reflector that is traceable across much of the basin 

with the middle trace taken as the sequence top. 

The two wells that penetrate this sequence (Ha-J I and Ha-HI) are both on the western high. 

They demonstrate that the sequence contains a combination of coarsening and fining up 

sediment packages between red grit, occasionally pebbly quartzitic sandstone, and red-green 

silt stones. Although the wells in the centre of the basin do not penetrate to a suitable depth 

to encounter this sequence, the thickening nature of the seismic package (which will be 

discussed later), and areal extent of the top kimmeridgian reflector (Figure 6.6a), suggests 

that this sequence underlies the entire syn-rift package. The TWT map (Figure 6.6a) shows 

that in addition to the Gamtoos Fault and the faults in the western basement high, there are a 

limited number of intra-basin faults in the south-east. 
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Sedimentation occurred across the entire basin, as is evident from the isochron plot of 

topps. basement to lop kimmeridgian (Figure 6.7a) with the thickest sediment accumulation 

occurring against the north-south trending portion of the Gamtoos Fault. There is no 

significant accumulation in the adjacent hangingwall of the east-west trending Gamtoos 

Fault, nor is there evidence of differential accumulation across the intra-basinal faults. 

ii) Early Portlandian 

Across much of the basin, the Early Portlandian sequence (defined by iop_e-porilandian) is 

conformable with the Kimnieridgian, although towards the east there is evidence of dowrilap 

at the base of the Early Portlandian sequence onto the lop kimmeridgian. However, because 

of the poor resolution at this depth (4 seconds TWT) it is difficult to determine the specific 

geometry and the lateral extent of the unconformity. As the majority of the basin has a 

conformable contact, this complexity will be ignored. 

The Early Portlandian package is characterised by strong, commonly closely spaced 

reflectors, and towards the top of the sequence the reflectors become increasingly well 

defined with a series of six very fine traces. Overlying these six traces there is a transparent 

package prior to a strong negative trace, and this strong trace defines the top of the sequence. 

At the base of the Portlandian in the west, the coarse grained sandstones of the 

Kinimeridgian fine-up to a silt, before abruptly becoming a grey claystone. The Portlandian 

sequence is the deepest that is penetrated by the wells in the centre of the basin where it is 

predominantly grey silt and claystone with black shales identified at the base of Ha-132. 

There are however pulses of very fine to fine, occasionally coarse grained sands, often with 

sharp top and bottom contacts intermittently through the section. 

The TWT map of the lop_e-portlandian (Figure 6.6b) has a similar geometry and fault 

distribution to the lop_kimmeridgian map (Figure 6.6a), except that there is a greater number 

of intra-basin faults. The Early Portlandian sequence thickens towards the Gamtoos Fault 

(Figure 6.7b, isochron plot of top kimmeridgian to zop_e-por:landian) with the locus of 

maximum sediment thickness occurring at the apex of the Gamtoos Fault curve rather than 

against the north-south section of the fault as in the previous sequence. Unexpectedly, the 

locus of maximum sediment thickness is not immediately adjacent to the fault, instead there 

is an axis of lower sediment accumulation against the fault. Such a distribution may be 

expected to be controlled by a SW-NE trending fault however there is no evidence to support 

this in the seismic data. Possible causes of this unusual distribution will be discussed later. 
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Late Portlandian-Mid Berriasian 

The defining upper horizon in this package does not correspond as closely to a specific age 

as the other syn-rifi sequences, although it is in the Late Portlandian to Mid Berriasian, and 

is named lop rn-berriasian. The seismic character is a more transparent sequence than the 

underlying packages with finer, higher resolution reflectors capped by a series of three 

strong double reflectors. The first negative trace of the lowermost of the three double 

reflectors defines the top of this sequence and is traceable across the basin. 

The dominant clay lithology of the previous sequence continues in the Late Portlandian 

across the whole basin. The number of sand bodies increases in this section, although unlike 

the sharp beds in the lower sequence, these tend to be in coarsening-up packages with sharp 

tops. 

As is evident from the seismic section (Figure 6.3b) and the TWT map (Figure 6.6c), there 

are more intra-basin faults compared to the underlying sequences. Sediment accumulation 

continues to be focused at the apex of the Gamtoos Fault curve (isochron plot of lope-

portlandian to lop_m-berriasian, Figure 6.7c), although in this plot the locus of maximum 

accumulation is now adjacent to the fault. 

Upper Berriasian 

This sequence sits conformably above the Middle Berriasian package and is formed from the 

series of three double reflectors of which the lowest one is lop_m-berriasian. The top of the 

package, zop_u-berriasian, is the uppermost reflector in the series. 

In the west of the basin the amount of clastic material in the dominantly clay and silt 

sediments is reduced compared to the Portlandian and Lower Berriasian, although where 

present it is very similar petrologically with a mixture of lithics and quartz clasts. In the 

centre and east there is an influx of shelly and lignitic material compared to the dominant 

clay lithology in the west. 

The Gamtoos Fault and the basement high faults observed in the previous sequence are 

mappable in this sequence (TWT in Figure 6.6d), as are an increased number of intra-basin 

faults in the south and east that show no evidence of differential sedimentation across them. 

This increase is accompanied by the development of observable deformation near to the apex 

of the Gamtoos Fault curve, the architecture and genesis of which will be discussed in 

Section 6.5.2. 
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The locus of accumulation for this sequence ( top m-berriasian to top u-berriasian isochron, 

Figure 6.7d) migrates further to the north and west compared to the lower sequences, with 

increased accumulation proximal to the west-east section of the Gamtoos Fault, although 

deposition is not necessarily greatest adjacent to the fault. 

Early Valanginian 

The Early Valanginian sequence, defmed by top e-valanginian, is very similar in seismic 

character to that of the Upper Berriasian package with three double reflectors correlatable 

across the basin. 

Sedimentologically, the western area continues to be almost entirely dominated by claystone, 

with occasional siltstones and limestones. In the north, well Ha-DI has an influx of medium 

to coarse grained, well sorted quartzitic sandstone, and this may have been derived from the 

fault scarp. The sandstones in well Ha-Al are, however, quite different as they are fine to 

medium grained light grey sands with wood fragments and coaly horizons. Throughout the 

rest of the basin there is a significant reduction in the sand content with the sediments being 

almost completely dominated by claystone with occasional siltstones. 

The increased intra-basin faulting and deformation observed in the Upper Berriasian (Figure 

6.6d) is even more evident in the top e-valanginian (TWT map in Figure 6.6e) and again 

there is no evidence of differential growth across the intra-basin faults ( top u-berriasian to 

lop e-valanginian, Figure 6.7e). This package has a uniform sediment thickness across the 

basin with the exception of the apex of the Gamtoos Fault and the western basement high, 

where minor thickening and thinning occurs respectively. 

Late Valanginian 

The iop_l-valanginian horizon is the uppermost horizon of the Principal Syn-Rift and is 

either eroded by the basin-wide unconformity or NW unconformities, or is onlapped by the 

Late Syn-Rift mega-sequence (Figure 6.3a & b). It is cut by very few intra-basin faults 

(Figure 6.6f). A consequence of the part erosion of the Late Valanginian sequence is that the 

top e-valanginian to top_1-valanginian isochron plot (Figure 6.7g) does not produce the true 

thickness of the sequence. Despite this, it is evident from the plot that there is renewed 

sedimentation accumulation against the Gamtoos Fault, although it is focussed against the 

east-west section portion rather than at the apex of the curve. 

Across the whole basin there is very little clastic input with the sequence being dominated by 

claystone, with occasional siltstone and limestones. 
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6.3.5 Late Syn-Rift 

This mega-sequence, which is sub-divided into four sequences, lies conformably above the 

Late Valanginian proximal to the east-west trending Gamtoos Fault in the northern part of 

the basin and is also present to the west of the basement high block. The mega-sequence is 

bounded at the base by the top 1-valanginian, at the top by the basin-wide unconformity, 

and internally divided into four sequences by three horizons (Late Syn-Rift (LSR) 1, II, and 

III). These horizons are defmed by strong, continuous reflectors that are easily traceable 

across the extent of the deposit, and have been mapped to develop a better understanding of 

the unit. 

In comparison to the Principal Syn-Rift, the extent of this mega-sequence is restricted to the 

hangingwall of the east-west portion of the Gamtoos Fault in the north and east and onlaps 

onto the lop 1-valanginian horizon in the south (Figure 6.8). LSR I is the most restricted 

(Figure 6.8a) and is contained entirely in the hangingwall of the east-west Gamtoos Fault. 

LSR If has a greater areal extent (Figure 6.8b) while the full extent of LSR Ill (Figure 6.8c) 

is unknown because of erosional truncation in the north and west. Only the lower most unit 

is cut by the intra-basin faults that are present in the Principal Syn-Rift package. Although 

the three LSR horizons dip towards the south (Figure 6.8), the LSR I sequence dramatically 

thickens towards the east-west trending Gamtoos Fault (isochron plot of top_l-valanginian to 

top_LSR-I, Figure 6.9a). This is in contrast to the Late Valanginian package that exhibits 

sedimentation across the whole basin with only moderate thickening into the fault (Figure 

6.7e). Unlike the LSR I package, there is no evidence of LSR II (Figure 6.9b) thickening 

into the Gamtoos Fault except in the western most margin, although thickening is resumed 

during the LSR III package (Figure 6.9c). A result of the basin-wide unconformity (Section 

6.4.6) is the significant erosion of the Late Syn-Rift mega-sequence above LSR III, although 

as is evident from the seismic section (Figure 6.3b) some sedimentation is preserved against 

the Gamtoos Fault. Late Syn-Rift sedimentation is also preserved to the west of the 

basement high and is inferred to be above LSR III because the lop LSR-IIJ horizon onlaps 

onto zop_1-valanginian further to the east. However, when the isochron between top I-

valanginian and basin-wide_unconformity, i.e. the preserved thickness of the Late Syn-Rift 

mega-sequence, is plotted (Figure 6.10) there is very little sedimentation in the west. Even 

accounting for erosion during the formation of the basin wide unconformity, sedimentation is 

still focussed upon the Gamtoos Fault. 
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The change in areal extent of deposition between the Late Valanginian and the Latest 

Valanginian is accompanied by a change in sedimentology. The Late Valanginian, which 

was dominated by grey claystones changes to a dark, commonly anoxic, claystone 

throughout this mega-sequence. Proximal to the Gamtoos Fault there are occasional, thin 

interbeds of predominantly medium-coarse grained, occasionally pebbly quartzitic 

sandstones. 

6.3.6 Basin-wide unconformity 

Directly above the Late Syn-rifi package there is an unconformity (basin-

wide_unconformity) which is traceable as a single horizon across the whole basin that 

shallowly dips towards the south (Figure 6.11), although is itself truncated by a subsequent 

unconformity in the north-west (Figure 6.12). As discussed in the previous sections, there is 

a significant amount of erosional truncation of both Late Valanginian and LSR sediments 

directly below this horizon (Figures 6.3 a & b). Furthermore, as the sub-crop map highlights 

(Figure 6.13), the unconformity has resulted in the erosion of a significant amount of 

material, and on the basement high has a sub-crop of quartzitic basement. 

6.3.7 Barremian 

Directly above basin- wide unconformity is a small package of Barremian sediments that 

occur on the western margin. This sequence is present only in well Ha-JI and is 

sedimentologically identical to the Late Syn-Rift massive grey claystones and occasional 

beds of medium-coarse, red-brown, sorted and rounded quartzitic sandstone. This sequence 

extends into the Pletmos Basin towards the west. 

6.3.8 Localised Late Syn-Rift 

The basin-wide unconformity dips towards the south, forming a planar horizon (Figure 

6.11). The exception to this is in the south-east of the basin where there is a very localised 

Albian package (see eastern part of section, Figure 6.2a, and Figure 6.14a). This package 

thickens towards the Gamtoos Fault (isochron plot of basin-wide unconfo rmity to 

top albian, Figure 6.14b), and divergent nature of the internal reflector geometries (Figure 

6.14c) suggest that this is a syn-rift sequence. This package extends beyond the southern 

extent of the data coverage. 
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6.3.9 Post-Rift 

Overlying basin-wide unconformity and conformably on top of the Barremian in the west 

and Albian syn-rift in the east is the Post Rift mega-sequence. Although the mega-sequence 

contains various internal unconformities, these tend to be small scale (Figure 6.15a) and are 

commonly accompanied by significant progradational packages without any evidence of 

faulting. Furthermore the mega-sequence lies directly across the Gamtoos Fault (Figure 6.3a 

& b) with only minor horizon disruption that is attributed to differential compaction between 

the underlying sedimentary fill and basement. Therefore, there is no tectonic signature 

evident and the unconformities that are present are attributed to eustatic fluctuations. 

As there is limited tectonic influence this mega-sequence has not been extensively studied. 

However, to understand the basin scale development of the post-rift, and to be able to 

compare it with the other basins, three horizons have been picked. The horizons (lop_e-

cenomanian, top e-e-turonian, and top e-turonian) have been tied to various wells, and 

when mapped out across the basin form similar south dipping, planar surfaces (Figure 6.16). 

The isochron plots of the horizons do however show differences. There is very little 

differential sediment accumulation across the basin except in the west against the Gamtoos 

Fault during the Cenomanian (isochron plot of basin-wide unconformity to lop_c-

cenomanian, Figure 6.17) which is possibly a result of differential compaction. There is also 

little differential sedimentation in the middle and late Turonian packages (Figure 6.18a & b), 

although these packages thin and onlap onto the basin-wide unconformity in the north 

(Figure 6.12). The package from the Turonian to sea floor shows significant thickening 

towards the south, except above the basement high (Figure 6.18c) where there is only minor 

thickening. Localised canyoning occurs above the Turonian (Figure 6.1 5c). 

6.4 Nature of faulting 

The previous section set out the tectonic and stratigraphic framework for the Gamtoos Basin. 

This section will build upon this framework by examining the faulting across the basin and 

where appropriate evaluate the spatial and temporal evolution of the fault systems. 

6.4.1 Gamtoos Fault 

i) Geometry 

The mapping of the top_basement horizon defined the geometry of the Gamtoos Fault, and 

the subsequent tectonic framework suggests that it controlled most of the basin's 

RVAN 
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sedimentation. Figure 6.19 is a compilation of seismic sections perpendicular to the trend of 

the Gamtoos Fault, and demonstrates that the cross-sectional geometry is similar regardless 

of orientation. The only exception is Figure 6.19f in which fault scarp degradation has 

played a role. The fault appears as a discrete single surface, although in the north-west the 

principal fault splays into two faults that may be an offshore equivalent to the bounding 

faults of the onshore Pre-Cape block (Figure 6.1) discussed by Shone etal. (1990). 

The nature of the fault is important for various reasons, some of which will be discussed 

later: 

• There is no evidence in the seismic data of any cross-cutting faults or other strong 

reflectors within the Gamtoos Fault footwall (cf. (iii) of this section). 

• When the sections are integrated with depth-time data the fault is imaged to at least 12 

km (McMillan et al. 1997). 

• The fault in all sections is a planar structure to at least 5.Os TWT (and in some sections 

to 5.5s TWT) . This is important in Chapter 9 to constrain the models developed in 

Chapter 4. 

ii) Evolution 

Using spatial and temporal variations in sediment accumulation it is possible to unravel the 

evolution of sedimentary basins (cf. Chapter 2 & 5). The isochron plots (Figures 6.7 & 6.9) 

for each of the syn-rift sequences suggest that the accumulation of sediment varied both 

spatial and temporally. However, the evolution of the Gamtoos Fault is not readily apparent 

from these plots. To understand the evolution of the fault, cumulative sediment 

accumulation has been plotted by determining sediment thickness (in TWT) from Iopfis-

basement to the top of sequential horizons (Figures 6.20 & 6.21). In these plots the sediment 

thickness from the Gamtoos Fault plane to the horizon under consideration has also been 

included. 

The locus of maximum sediment accumulation in the Kinirneridgian and Portlandian (Figure 

6.20a & b) is focused on the north-south portion of the Gamtoos Fault with significantly less 

accumulation against the east-west portion. During the Berriasian and Valangmian (Figure 

6.20c & d) the locus of maximum sediment accumulation migrates towards the north-east 

with the east-west fault portion receiving increased accumulation. This results in the locus 

being focused at the apex of the fault curve by the Early Valanginian (Figure 6.20e). During 

the Late Valanginian (Figure 6.200, the east-west Gamtoos Fault portion becomes the locus 
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of accumulation (Figure 6.70 resulting in maximum accumulation migrating towards the 

west. 

Using the assumptions discussed in Chapter 5, sediment accumulation in the Kimmeridgian 

(Figure 6.20a) suggests that in the early syn-rift phase the north-south fault portion was the 

active structure with only minor extension occurring on the east-west portion. During the 

Portlandian to Middle Berriasian the position of maximum extension migrates towards the 

apex of the curve suggesting that the direction of extension also changes from east-west to 

NE-SW, relative to the current position. In the Upper Berriasian the amount of extension 

increases on the east-west fault portion (Figures 6.7d & 6.20d), while there is very little 

extension by the Early Valanginian (Figures 6.7e & 6.20e). The amount of extension then 

increases again in the Latest Valanginian, focusing on the east-west fault portion, although 

with sedimentation across the whole basin (Figure 6.7f & 6.20f). In the LSR (Latest 

Valanginian and Hauterivian) extension is still focused on the east-west fault portion 

suggesting a north-south extension orientation (Figure 6.21). The areal extent of the LSR is 

much reduced compared to the Principal Syn-Rift although the position of maximum 

accumulation is static five kilometres east of the middle of the mapped fault segment (Figure 

6.22). Figure 6.23 is a plot of sediment accumulation versus length along the fault. It 

illustrates that there is although there is some variation in sequence thickness there are no 

points at which accumulation is reduced to zero, not even in the lowest mappable units. The 

implications for this will be discussed in Chapter 10. This plot also shows the dramatic 

change in sediment accumulation between the Principal and Late Syn-Rift megasequences. 

iii) Gamtoos Fault: one or two faults? 

From the previous section it becomes apparent that the Gamtoos Fault appeared to behave 

almost as though it consisted of two discrete fault segments, the older being north-south 

trending and the younger east-west. This would explain the dramatic switching of the two 

extension directions between the Early Valanginian and Latest Valanginian. Such a model 

would suggest that the younger fault cross-cuts the older fault, hence the hangingwall 

package of the older fault would be expected to be preserved in the footwall of the younger 

fault (Figure 6.24). Furthermore, assuming a characteristic normal fault depocentre 

geometry (Chapters 2 & 5), the depocentre of the second fault may be expected to continue 

further to the east, and neither of these predictions are supported by the data. The footwall of 

the east-west fault is composed of quartzite basement (well Ha-I 1), therefore the hangingwall 

sedimentation of the north-south fault would require at least 12 km of uplift to account for its 

M. 



Chapter 6 Tectonic evolution of the offshore Garntoos Basin 

removal from the footwall of the east-west fault. In addition to this, the Late Valanginian 

isochron (Figure 6.70 suggests that there was a transition between extension being focussed 

on the north-south and east-west faults. It is therefore proposed that the Gamtoos Fault has 

behaved as one discrete fault, and that the active section has migrated through time. This 

conclusion is supported by the seismic data that show a coherent fault plane, with no 

evidence of cross-cutting of fault (Section 6.5.1(i), Figure 6.19). 

iv) Conclusions on the development of the Gamtoos Fault 

By using sediment accumulation as a proxy for the fault activity, it is proposed that the 

Gamtoos Fault has undergone complex temporal and spatial changes. It appears that 

although the fault has behaved as a single structure throughout the evolution of the Mesozoic 

basin, it has been able to alter the most active portion in response to changes in the inferred 

extension direction. The scale of the syn-rift packages thickening in towards the fault are 

substantial and although eustatic changes may have some influence on the mega-sequence 

evolution, the scale of the packages suggest a dominant tectonic control. The eustatic effects 

are considered, therefore, to be small and have subsequently been ignored in this study. 

6.4.2 Western basement high 

The TWT maps of the lop_basement (Figure 6.4a) and the sequences within the Principal 

Syn-Rift mega-sequence (Figures 6.6 a-c) reveal the presence of a number of faults on the 

western basement high that have an arcuate trend that parallels that of the Gamtoos Fault 

(Section 6.4.1). The majority of the faults are extensional (Figure 6.25) and two of the 

principal arrays delimit a small graben structure (approximately 5 km wide). The most 

westerly fault array is more interesting as there is evidence along the length of the fault that 

it is a west-dipping high angle reverse fault juxtaposing basement on top of the Principal 

Syn-Rift mega-sequence. In the south, the fault has a throw of approximately 0.5 seconds 

TWT, although this decreases towards the north. None of the faulting, neither reverse nor 

normal, cross-cut the basin wide-unconformity. When the reverse faulting is removed, and 

the section is restored to a flattened Late Valanginian reflector (Figure 6.26), classic on-lap 

onto a basement high is observed suggesting that the margin was subjected to a single phase 

of compression resulting in reverse faulting. 

6.4.3 Intra-basin faults 

Across much of the eastern area there are abundant fault arrays within the Principal Syn-Rift 

mega-sequence that have approximate NW-SE trends (cf. TWT maps in Figure 6.6). The 
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upper sequences (Upper Berriasian and Valanginian) are pervasively cut by south-dipping 

faults with occasional antithetic north-dipping faults that result in graben structures (Figure 

6.27). Fault throws are very variable, ranging from the resolution of seismic data (-30 ms 

TWT) up to 200 ms TWT. The faults tend to either die out, or assimilate at depth resulting 

in localised faulting in the Berriasian sequences. This localisation of faulting continues with 

only a limited number of faults cutting the Portlandian and Kimmeridgian sequences. The 

reduction in the number of faults with depth is accompanied by the reduction of observed 

throw on the faults. Therefore, not only is the lop kimmeridgian horizon not commonly 

faulted, the throw on the faults are insignificant (--50 ms). In Figure 6.28 the same 

characteristics are observed, although in this section many of the faults appear to décolle 

onto a horizon directly under lop_porliandian. Furthermore, the lower Mid Berriasian 

reflectors are folded in an architecture not dissimilar to hangingwall rollover deformation 

associated with listric faulting (McClay & Hartnaday, 1986). 

The dramatic decrease in fault throw with depth suggests that the reduction in both the 

number of faults, and observed throw is unlikely to be a result of resolution decrease with 

depth. If all the packages were undergoing uniform strain, then a decrease in the number of 

faults would be expected to be associated with an increase in the throw on the individual 

faults, and faults with throws of this magnitude would be expected to be resolved. This is 

not the case with these faults. Therefore it is suggested that the packages are not undergoing 

uniform strain and possible reasons for this will be discussed in Section 6.5.3. 

The isochron plots of the Principal Syn-Rift sequences (Figure 6.7) do not show differential 

growth across the intra-basin faults, therefore they are post lithification, and hence post Late 

Valanginian. Furthermore, the majority of the faults terminate at top 1-valanginian and the 

LSR reflectors onlap onto faulted and rotated Late Valanginian reflectors (Figure 6.27). The 

timing of the intra-basin faults is therefore between the Late Valanginian and the Latest 

Valanginianl Early Hauterivian. 

The position of the faults is important in understanding the development of the basin. They 

are restricted to the east, and are generally south of the deposition of the LSR. It is therefore 

suggested that between the Late Valanginian and Latest Valanginian extension increasingly 

focussed on east-west fault and was taken up by that part of the Gamtoos Fault. In the 

eastern part close to the north-south Garntoos Fault, extension could not be accommodated 

by the basin-bounding fault because it was in the wrong orientation, therefore the extension 
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was taken up by intra-basin normal faults with the basement to the north acting as an 

undeformable buttress. 

6.4.4 Summary of faulting 

Although the basin is dominated by the Gamtoos Fault and to a lesser extent the basement 

high, faulting occurs across the basin. Of the three fault systems examined only the Gamtoos 

fault has suitable stratigraphic control to allow the determination of its spatial and temporal 

evolution, although the timing of the faults in the other arrays can be determined. The effect 

of the faults on the basin fill has been discussed in this section, especially with respect to 

controlling the deposition of sediments. The next section will examine the basin-fill and 

discuss deformation within it. 

6.5 Basin-fill deformational styles 

By determining the tectonic framework and associated faulting, it becomes apparent that the 

basin-fill has undergone various styles and degrees of deformation. This section will discuss 

these observations and seismic sections will highlight the variation in both the styles and 

amounts of deformation across the basin. Each area will be discussed separately and where 

possible the observed deformation will be modeled using 2D Move and horizon restoration 

to determine the genesis of the structures. 

6.5.1 Northern margin 

1) Observed structure 

Proximal to the east-west trending section of the Gamtoos Fault, the LSR packages below 

the basin-wide unconformity  dip basin-ward, away from the bounding fault and have little 

internal deformation (Figure 6.29). The uppermost package (between Iop_ LSR-III and 

basin-wide unconformily) comprises moderate southward dipping reflectors with significant 

amounts of erosional truncation directly below the basin-wide unconformity. When the 

uppermost of these packages is restored to the horizontal, the underlying packages, which are 

Hauterivian in age, thicken into the fault and are therefore defined as a syn-rift sequence 

(Figure 6.29). This is substantiated by the isochron plots (Figure 6.8). 

ii) Modelling of structures 

There are two possible mechanisms to explain the observed deformation, and they both 

require uplift and erosion after the deposition of the Principal and Late Syn-Rift mega- 
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sequences (Figure 6.30 a-c). The first mechanism has differential uplift of the northern 

portion and subsidence in the south after the deposition of the Late Syn Rift packages 

(Figure 6.30 d-e i). If a relative base level fall occurred (either eustatic or tectonic) then the 

north, being higher, would preferentially erode, thereby resulting in an unconformity and 

erosional truncation. Modelling, using Midland Valley's 2D Move programme, produces 

truncation of the LSR reflectors but does not produce either the observed geometries, nor 

truncation of both ends of some of the higher reflectors. 

An alternative mechanism invokes reactivation of the basin-bounding fault in a reverse 

sense, thereby structurally inverting the LSR sedimentary package (cf. Chapter 2). The 

thickening of the Post-Rift package above the basin-wide unconformily suggests a 

subsequent regional southerly tilt. If inversion was localised against the fault, modelling 

suggests that the observed reflector geometries can be achieved (Figure 6.30 d-e ii). There is 

very little internal deformation of the LSR package, therefore if structural inversion had 

occurred then the maximum compressive stress orientation ((Fh m ) would have been 

perpendicular to the bounding fault. If a hn,ax  had been oblique to the fault, a component of 

strike-slip is likely to have resulted and the package would be expected to show oblique 

trending folds and faults. In the absence of such folds and faults, a major wrench component 

has been discounted. 

6.5.2 Eastern margin 

I) Observed structures 

Unlike the northern margin (which has very little along-strike variability), the area proximal 

to the bend of the Gamtoos Fault and along its N-S shows significant variation of 

deformational styles on a short wavelength (Figure 6.3 la-c). Of particular importance is that 

the geometry of the basin-bounding fault remains constant between the sections. 

The most northerly section of the three (Figure 6.31a) is located at the bend in the Gamtoos 

Fault and shows that the upper Principal Syn-Rift package forms a box fold with an 

amplitude of up to 0.5 seconds TWT and a width of 8 km directly above the Gamtoos Fault 

plane. The apex of the box fold, containing the upper-most Principal Syn-Rift package, is 

formed from a complex array of small scale anticimes and synclines, with wavelengths of 

approximately 1 km. The middle and lower Principal Syn-Rift packages show less 

deformation, forming a small monocline against the fault. The reflectors in this region are 

subjected to minor extensional faulting (throws of up to 50 ms). Towards the west, the 
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deformation of all horizons dies out very abruptly and the reflectors become sub-horizontal. 

The Principal Syn-Rift package shows minor amounts of erosion at the top of the fold and 

the progressive onlap of the LSR package in the west. There is significant erosional 

truncation of the LSR beneath the basin-wide unconformity. 

In the middle section (Figure 6.3 lb), where the Gamtoos Fault is trending N-S, the wide box 

fold is replaced by a monoclinal structure involving middle and upper Principal Syn-Rift 

packages. The limb of the monocline is sub-parallel to the Gamtoos Fault, and is 

approximately 4.5 km wide and at least 1.7 seconds TWT high, although the absolute height 

is unknown because it is truncated by the basin-wide_unconformity. As in the northern 

section, deformation dies out abruptly away from the fault, with sub-horizontal packages to 

the west. Onlapping onto the monocline and diverging away from it is the LSR package 

which shows evidence of erosional truncation directly below the basin-wide unconformity. 

In this seismic section the spatially restricted Albian syn-rift package is evident between the 

basin-wide unconformity and the Gamtoos Fault. 

In the southern section (Figure 6.30c) the amount of deformation of the Principal Syn-Rift is 

significantly reduced compared to the other two sections, and there is no evidence of the 

LSR package. There is also an increase in the width and thickness of the Albian Syn-Rift 

package. 

ii) Modelling of structures 

Any explanation for the deformation has to account for the large along-trend variation as 

well as the onlapping nature of the LSR package onto the structures. There are various 

mechanisms, both compressional and extensional, that may be invoked. 

The principal method using compression would be compression oblique to the bounding 

fault where the basement (i.e. Gamtoos Fault footwall) remains undeformed and the 

sediment fill accommodates the strain. One major problem is that that the divergence of the 

Late Syn-rift package indicates extension, therefore the basin would have to be 

simultaneously in extension and compression. It has been suggested (Cole, 1992), that the 

NW-SE orientated extension on the east-west portion of the fault could result in 

compression. However, what this does not explain is the decrease in deformation away from 

the fold. 

Modelling was undertaken using 2D Move to determine if the deformation could be 

explained entirely by extension. The section chosen for restoration was an east-west section 
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containing both the monocline and the LSR mega-sequence (Figure 6.32a-c). The section 

was restored to a horizontal Late Valanginian geometry (Figure 6.32d) and then the LSR 

packages were sequentially added in order that the temporal change in the basin-fill 

geometry could be observed (Figure 6.32e-h). This model suggests that simply by having 

extension on, and deposition of the LSR against the east-west fault, the Principal Syn-Rift 

package will deform as though it is a pre-rift to the E-W fault. Figure 6.33 is a 

reconstruction of the deformation associated with the deposition of the LSR packages. As 

the LSR is deposited it results in the Principal Syn-Rift being folded towards the east-west 

Gamtoos Fault. With increased deposition the areal extent of both the LSR and deformation 

increases as would be predicted in the standard fault growth models (cf. Chapter 2 & 5). 

However, the basement to the east does not deform, therefore the basin-fill adjacent to the 

north-south portion of the Gamtoos Fault accommodates this by forming a monocline. 

Through time, and increased extension, the extent and size of the monoclme increases. 

However, in the north-east the presence of the basement prevents the immediately adjacent 

Principal Syn-Rift being deformed as much, hence generating box folds. The model (Figure 

6.32), however, is not quite accurate because area is not preserved during the restoration. 

This may be a result of out of plane motion on the east-west fault; this can only be resolved 

by three dimensional modelling and assessing volume preservation which is not possible 

with the available software. 

6.5.3 Central basin 

i) Observations 

In north-south trending sections across the central and southern basin, a series of anticlines 

within the Principal Syn-Rift package are evident (Figures 6.34 and 35) and although they 

are dissected by intra-basin faults the position of the hinge points are obvious. However, as 

a result of a number of factors, including horizons being dissected by faults, the spacing 

between sections relative to the scale of folding and the location of the sections, the axial 

surface traces of the folds are not always evident (Figure 6.36a(i)-k(i)) and are therefore 

difficult to map. To overcome this, in each section the non-faulted geometry of the lop e-

valanginian reflector is restored, using 2D Move, by removal of the displacement on the 

intra-basin faults (Figure 6.36a(ii)-k(ii)). In many of the sections the hinge point is evident 

despite the southern limbs of the anticlines often being inferred beyond the southern limit of 

the data. There are, however, some exceptions where the hinge point is less obvious, in 

particular at the eastern extent of the sections (e.g. Figure 6.36a) there is very little folding 
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with only a gentle dip towards the north. In the central sections (Figure 6.36 g and h) a much 

broader and flatter anticlinal feature is evident in comparison to the tighter folds both to the 

east and west. To understand these folds in three dimensions the restored sections of Figure 

6.36 ii have been plotted in space (Figure 6.37). A consequence of removing the extension 

in the faults is that the sections are reduced in length, therefore their position with respect to 

the other sections is only approximate. From this figure it becomes evident that the hinge 

points are traceable between sections and that there are two folds with an en-echelon 

geometry and an approximate east-west trend (i.e. parallel to the east-west Gamtoos Fault). 

The northern anticline (approximately 16 km wide and has an amplitude of 600 ms) dies out 

towards the west while the southern has a periclinal geometry (13 km wide and has an 

amplitude of 500 ms). Both of these folds have onlap of the Late Syn-Rift package onto 

top 1-valanginian reflector (Figure 6.34 & 6.35) suggesting that they were formed prior to 

deposition of the LSR. 

ii) Genesis of fold structures 

The onlapping geometry of the LSR package onto the folded iop l-valanginian reflector 

suggests that this folding is synchronous with the development of folding in the eastern 

margin (Section 6.5.2). These geometries are proposed to be the equivalent of monoclinal 

features frequently associated with normal fault evolution. In order to obtain the anticlinal 

geometry rather than simply a monocline a further fault to the south of the data set is 

required to form the southern limbs (Figure 6.38). Such a model explains the east-west trend 

of the anticlines as this is parallel to the active east-west Gamtoos Fault portion. It is 

proposed that the basin fill is deformed through flexure. This would result in the outer arc 

being in more extension that lower packages, and therefore would explain the greater 

number of faults in the upper sequences and the reduction in observed extension with depth 

(cf. Section 6.4.3). 

6.5.4 North-West margin 

Although much of the seismic detail in the near sea floor area is obscured by sea-bed 

multiples two important features are evident (Figure 6.12). 

The top-e-cenomanian and top luronian horizons, and adjacent reflectors, progressively 

onlap onto the basin-wide_unconformity towards the north-west. Such an onlap may be in 

response to either a eustatic base level rise or differential tilting with uplift in the north and 

subsidence in the south. Although it is difficult to determine which model is more applicable 
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without examining the other basins, the latter is preferred because of substantial thickening 

of sediments towards the south observed between the Turonian and sea floor (Figure 6.18c) 

is greater than expected from eustatic variations. 

Directly beneath the sea floor reflector, both in the north-west and in the north-east, there is 

substantial erosional truncation involving the Post-Rift, basin-wide unconformity, Late and 

Principal Syn-Rifts, and basement (Figure 6.12). Although present in the east, it is more 

significant in the west and accounts for the erosion observed in the TWT maps (Figure 6.6) 

and the sub-crop of basement at the sea floor in the north-west. The scale of uplift suggests 

that it has a tectonic genesis and as it is present at the sea floor further implies that the uplift 

may be currently active. 

6.6 Timing of uplift and compression 

It has been demonstrated in the previous three sections that although the basin has 

predominantly undergone extension there is evidence of phases of uplift and compression at 

the end of the LSR, one phase of uplift in the post-rift, and one possibly occurring today. To 

fully understand the evolution of the basin it is imperative to determine the timing of these 

events. 

Uplift and possible structural inversion of the Gamtoos Fault in the north of the basin 

occurred between the deposition of the LSR sequence (Hauterivian) beneath the basin-wide 

unconformity and the Albian package that overlies the unconformity in the east of the basin 

(Figure 6.3b). Similar arguments, with the same conclusions, are valid across much of the 

north and east of the basin (e.g. Figures 6.31 a-c), however in these localities the timing can 

not be constrained further. 

At the basin's western margin the timing can be better constrained. Well Ha-il (Figure 

6.39) penetrates to basement directly to the west of the high angle reverse faulting (Section 

6.4.2) and from the well data it is evident that conformably on top of the Late Valanginian 

sequence is the Latest Valanginian and early Hauterivian package (analogous to the Late 

Syn-Rift). This package is separated from the overlying Barremian sequence by an erosional 

unconformity identified in the well. There is then a non-depositional, but not erosional, 

unconformity between the Barremian and the Albian, which is the first Post-Rift sequence to 

be deposited across the entire basin. 
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The presence of an erosional unconformity between the Hauterivian and the Barremian is 

substantiated in the seismic data as the highest Hauterivian reflectors are erosionally 

truncated against an unconformity, and when mapped out to the north and east, it is 

equivalent to the basin-wide unconformity. Furthermore, the high angle reverse fault 

(Figure 6.39) deforms the Principal Syn-Rift and Hauterivian sequences but terminates at the 

unconformity and does not deform the Barremian. From these arguments therefore the 

basin-wide unconformity, which is associated with the uplift and compression in the north-

east, is equivalent to the unconformity that occurred at the end of the high angle reverse 

faulting and is identified in the well as being between the Hauterivian and the Barremian. It 

would appear that the basin under-went compression and uplift resulting in the formation of 

the basin-wide _unconformity in the Late Hauterivian. 

The post-rift uplift phase can be constrained from well data that indicate there is erosion, and 

unconformity between the Turonian and Santonian, which agrees with the seismic 

observations in Section 6.5.4. 

6.7 Basin evolution and depositional environment interpretation 

It has been demonstrated in the previous section that there are various complexities across 

the basin. The purpose of this section is to integrate these complexities with the tectonic and 

stratigraphic framework established in Section 6.3, and depositional environments to 

establish a spatial and temporal understanding of the basin's evolution. Throughout this 

section depositional environments have been taken from Soekor interpreted lithofacies and 

palaeontological logs (presented in the logs in Appendix 1.C) 

6.7.1 Principal Syn-Rift 

i) Kimmeridgian 

Although the age of rifting initiation is unknown, the seismic data suggest that at least 

towards the end of the Kimmeridgian sedimentation occurred across the whole basin and that 

its distribution was being controlled by a very similar basement geometry as observed today 

(Figure 6.40a). The sediment accumulation plots (Figure 6.20a) suggest that the controlling 

fault was the Gamtoos Fault with the locus of maximum sediment accumulation at the 

southern end of the north-south trending section. With the exception of the minor faults on 

the western high, there is no evidence of significant intra-basin growth faults. 
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The only Kimmendgian sediments that are penetrated by a well are on the basement high. 

These are a proximal marine depositional environment with switching from a continental 

setting to shallow-marine, river dominated system. 

ii) Portlandian - Late Valanginian 

Throughout the majority of the Principal Syn-Rift the basin appears to change gradually both 

structurally and sedimentologically (Figure 6.40b). Sedimentation continued across the 

whole offshore portion of the basin with thickening against the Gamtoos Fault, and no 

evidence of intra-basin fault growth. Throughout this period there is a gradual migration of 

the locus of maximum sediment accumulation from the north-south section towards the apex 

of the fault curve. At the beginning of this period the north-south portion of the fault was the 

main control on sedimentation, although the package also thickened into the east-west 

portion to a lesser degree. The minor faulting on the western high had abated. Towards the 

middle and top of this period the locus of maximum accumulation migrated to the north-east 

and progressively became focussed at the apex of the fault curve. The relative orientation of 

maximum extension is therefore inferred to have rotated from east-west during the 

Kimmeridgian to NW-SE. During the Late Valanginian, the east-west Gamtoos Fault 

portion dominates suggesting that the extension directions becomes north-south. 

Overlying the fiuvially dominated Kimmendgian, the Portlandian siltstones and claystones 

of the western high have been interpreted to be shelf deposits (Ha-J 1), therefore implying an 

overall base level rise from the Kimmeridgian. Black shales in well Ha-132, radiolaria fauna 

in Ha-Al, and the absence of significant amounts of clastic input suggest that the central and 

eastern basin is significantly deeper in the Portlandian than the western margin, and may be 

as deep as anoxic plain. 

Towards the middle and upper Portlandian, although the background sedimentation remains 

similar to that of the lower Portlandian, there is a significant increase in the amount of clastic 

input. The composite logs (Appendix A) indicate that the petrography and colour of the 

sands are very varied. It is important to note that there is not the dominance of quartzitic 

sandstones that is observed in later sections. The increasing frequency of the sand packages 

towards the top of the Portlandian has been inferred to indicate a gradual shallowing of the 

system (Appendix 1.C) and this is supported by the general shallowmg trend from abyssal 

plain to upper slop in the palaeontological data (palaeontological logs, Appendix I .C). 

This gradual shallowing in the Porfiandian continues during the Berriasian with an increase 

in clastic input, and paleontology data indicating a gradual change from upper slope to outer 
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shelf across most of the basin. The lithofacies logs suggest that the clastics have been 

transported and deposited in submarine channels and fans. 

This base-level fall, evident from the paleontology logs, continues throughout the Early and 

Late Valanginian with the majority of wells recording a change from outer to middle shelf. 

An interesting observations in this period is that despite this observed shallowmg, there is a 

significant reduction in the amount of clastic input. 

Therefore, during the accumulation of middle and upper Principal Syn-Rifi, the Gamtoos 

Fault remains active although the depositional environment becomes shallower. Such a 

shallow-ing could be a result of a number of reasons including reduction of tectonic activity, 

lowering of eustatic sea-level, or increase in sediment supply. Despite the problems with 

accurately calculating sedimentation rates (cf. Chapter 5), approximate rates have been 

obtained for the Principal Syn-Rift sequences and for the LSR mega-sequence (Table 6.1). 

Although these rates must be considered with caution, any errors should be applicable to all 

of the units and therefore comparisons between age units in the same wells are valid. These 

data imply that there is no significant difference in sedimentation rates between the Early 

and Late Valanginian even accounting for the Late Valanginian rates being minimum 

estimates because of erosion, hence sediment supply can not account for the shallowing of 

the depositional environment. The gradual change over approximately 15 million years with 

an overall magnitude on the order of 200 m from slope to upper shelf would tend to rule out 

eustatic changes, especially as sea level was more likely to have been rising rather than 

falling (}laq el al., 1988). Therefore the change in depositional environment is most likely to 

be a response to a gradual reduction in tectonic activity on the Gamtoos Fault. 

The lack of quartzitic sandstones, and the dominance of lithic sandstones is interesting 

because the current source of sandstones to the basin is the quartzitic sandstones from the 

eroding Cape Fold Belt (Chapters 2, 3 & 4). This absence of quartzitic sandstone during the 

Principal Syn-Rift, and Late Syn-Rift periods suggests that the provenance of the syn-rift 

material was not the quartzitic Cape Super Group. 

6.7.2 Latest Valanginian-Ha uterivian (135-130 Ma) 

The gradual shallowing during the Valanginian comes to an abrupt halt in the Latest 

Valanginian with a switch from the middle shelf to a lower slope setting (Figure 3.40d). 

This setting is characterised by the change from light to dark grey claystones that are 

occasionally anoxic (McMillan el al., 1997). The presence of the quartzitic sands proximal 
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6.7.4 Barremian 

The clay dominated Barrernian sequence is only preserved to the west of the high angle 

reverse faults and is overlain by a basin-wide hiatus. 

6.7.5 Albian 

There is only limited deposition of this package in a localised syn-nft package against the 

north-south Gamtoos Fault section and it is unclear what the cause of this extension is. 

6.7.6 Post-Rift - recent 

There are various packages of clastic shelf sediments, often forming the progradational 

features with occasional canyons. The scale of these features is significantly smaller than 

those associated with the basin's tectonically active phase and as there is no evidence of 

active tectonics during this period, these younger features are probably controlled by eustatic 

fluctuations. The sandstones are dominated by quartz and are therefore likely to be sourced 

from quartzitic basement and hence are much closer to the present onshore geology 

compared to the mixed petrography of the earlier units. There is, however, the presence of 

background clay and siltstones similar to that of the principal and late syn-rift packages. 

Although many of the internal geometries are probably eustatically controlled, there is 

evidence of uplift and erosion in the north-west occurring today. 

6.8 Discussion and role of structural inheritance 

The aim of this chapter has been two-fold: firstly to attempt to constrain the sub-surface 

relationship between the CFB and the Mesozoic extension; secondly to understand the role 

of structural inheritance and in particular the control of pre-existing structures on the 

evolution of the extensional system. 

The basement is poorly imaged by the seismic data, with no visible internal structures. The 

only constraint on the subsurface interaction between the extension and the CFB is the 

Gamtoos Fault with its 12 km of Mesozoic syn-rift sedimentation. However, as there is only 

one main fault present it is difficult to draw conclusions from this alone. Therefore, the 

models of Mesozoic superimposition upon basement will be discussed once the rest of the 

sub-surface data are discussed. 

The data presented in this chapter indicate that throughout the development of the Gamtoos 

Basin the two principal structures (Gamtoos Fault and western basement high) have 
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controlled the basin's evolution and have been re-activated during various phases of 

deformation. Although the evolution of the extensional system will be discussed with 

respect to fault growth models in Chapter 10, the importance of structural inheritance is 

discussed below. 

The primary feature of the basin is of course the Gamtoos Fault, and throughout the 

evolution of the basin extension has been focused on it. Regardless of whether the Gamtoos 

Fault is a structure inherited from the CFB (to be discussed in Chapter 9), there is evidence 

that it has had a fundamental control on the development of the basin. From a very early 

stage it has almost entirely controlled sedimentation to the exclusion of any other faults. 

Therefore, when the relative extensional direction changed in the upper Principal Syn-Rift 

and Late Syn-Rift packages, instead of new extensional structures being created the change 

was accommodated by the Gamtoos Fault. In much of the basin this was possible with 

reactivation if the pre-existing structure. However, proximal to the north-south fault section, 

the north-south extension could not be accommodated by the pre-existing structure and was 

transferred to the basin and resulted in significant deformation. Subsequently, when the 

basin underwent compression and uplift, the Gamtoos Fault was structurally inverted as a 

high angle reverse fault, and it is likely that the high angle reverse faulting in the west was 

also utilising an underlying structure. The early structures appear to be long lived and have 

had a significant influence on resultant basin-fill geometry. 

In addition to addressing the issue of structural inheritance, the data presented constrain 

some of models proposed by previous workers to explain some of the features in the basin. 

This is possible because this study has examined and mapped the evolution of the basin on a 

sequence scale in order to understand its development on a smaller timescale than previous 

studies. This study has also modeled the formation of some of the complex deformation and 

does not require complicated scenarios in which some parts of the basin are in compression 

and others are in extension. 

The main issues raised by previous studies that will be addressed are: the role of the Agulhas 

Falklands Fracture Zone (AFFZ); the timing of the transition from the syn-rift to post-rift; 

and folding of the basin fill. 

In many of the previous studies (Bate & Malan, 1992; McMillan el al., 1997; Thomson,, 

1999) it has been suggested that the AFFZ has played an important part in the development 

of the basin, from exaggerating the curve of the Gamtoos Fault, to deforming the basin fill. 
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Some of these issues are discussed below, although the more regional effect of the AFFZ 

will be discussed in Chapter 9. 

The rift to drift transition unconformity has traditionally been mapped as the top_I-
valanginian horizon (Bate & Malan, 1992; McMillan et al., 1997). The results from this 

study indicate that there is substantial syn-rift in the Latest Valanginian and Hauterivian. 

Therefore this study puts the rift-drift transition at the end of the Hauterivian. 

The formation of the monoclinal folding (Gamtoos Anticline) has been much discussed in 

the literature and attributed to various mechanisms. Bate & Malan (1992) account for the 

folding through Late Valanginian extensional rejuvenation of the Gamtoos Fault in a dip-slip 

displacement with a minor strike-slip component. This resulted in extension and rotation 

adjacent to the east-west part of the fault and compression and uplift adjacent to the north-

south fault. 

McMillan el al. (1997) suggest that the timing of the Gamtoos Anticline is contemporaneous 

with the reverse faults in the western basement high and is related to localised compression 

as a result of right-lateral strike slip motion on the AFFZ. They support this by suggesting 

that the intra-basin faults are formed in response to strike-slip motion along the north-south 

Gamtoos Fault. This seems unlikely for a number of reasons. This study has demonstrated 

that the reverse faulting is not contemporaneous with the monoclinal folding. Furthermore, 

if the anticline formed from strike slip motion then folding and faulting would be expected 

to be oblique to the north-south fault, and this is not the case. The AFFZ, or a pre-cursor to 

it would have been present through most of the evolution of the basin, therefore any 

deformation in the basin associated with the AFFZ strike slip motion would be expected to 

be manifested throughout the basin's evolution and not only in the Hautenvian. 

Thomson (1999) has a similar explanation to McMillan el a/.(1997) and associates the 

compression with strike-slip motion on the AFFZ. Thomson discusses the presence, though 

not the three dimensional geometry, of the eastern most anticline (Section 6.1.1) and 

attributes it to roll-over above a listric Gamtoos Fault as modeled by McClay el al. (1991). 

Although in some sections that are oblique to the Gamtoos Fault, the fault geometry can 

appear listric, this study has demonstrated the planar nature throughout its length. It is also 

uncertain why the roll-over geometry would be transitory, only occurring in the Hauterivian 

and not throughout the evolution of the syn-rift packages. 

The only problem with the model of the basin's evolution outlined in this study is the non- 

depositional hiatus in the Aptian. It is unclear why the basin undergoes uplift, compression 
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and erosion in the late Hauterivian, then Barremian sediments are deposited in a slope 

environment with no obvious clastic input prior to the non-depostional hiatus. It is also 

uncertain what its genesis is. 

6.9 Conclusions 

By integrating offshore seismic data with borehole, sedimentological and age data the 

evolution of the Gamtoos Basin has been documented. The observed complex deformation, 

especially of the basin fill, can be explained predominantly by extension with a short phase 

of uplift and compression. Various models have been proposed to explain the genesis of the 

observed deformation. Throughout the development of the basin, structural inheritance has 

played an important role in controlling where sedimentation has occurred and in its 

subsequent deformation. 

This chapter has only addressed the offshore Gamtoos Basin and it is therefore impossible to 

determine if the features observed in this basin are representative of the other South African 

basins. The following two chapters will form tectono-stratigraphic frameworks for the 

neighboring basins, the Pletmos and Algoa, in order to put the Gamtoos Basin into a regional 

context. 



CHAPTER 7: Tectonic Evolution of the Offshore Pletmos Basin 

7.1 Introduction 

It is evident from the data presented in Chapter 6 that structural inheritance has played a role 

on the development of the Gamtoos Basin. However, deductions based on a single basin can 

not be reliably extrapolated to conclusions about inheritance on a regional scale, the 

interaction between the onshore basement and the offshore extension, or about the more 

general role of inheritance in the development of extensional systems. This chapter will 

therefore use the same techniques used in the previous Chapter to determine the tectonic 

framework for the Pletmos Basin, directly to the west of the Gamtoos Basin. 

As in the Gamtoos Basin chapter, the overall structural framework will be established prior 

to evaluating the nature of faulting and basin-fill deformation. These observations will be 

integrated with published sedimentological observations to determine the evolution of the 

basin. 

7.2 Pletmos data 

Approximately 8,000 km of 2D multi channel 2D seismic data, and 21 boreholes have been 

utilised to establish the evolution of the Pletmos Data (Figure 7.1). The seismic data are of 

1979, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990 and 1991 vintage (cf. 

Table 5.1) with a maximum recording time of either 5000 or 6000 ms two-way-time (TWT). 

About 75% of the seismic data have been migrated, while the remainder has been stacked. 

There have been no problems in correlating between the two data sets. The locations of 

sections that are reproduced as figures are highlighted on Enclosure 9. The well data have 

only been used to age tie the seismic data (Appendix B) because no stratigraphic, lithofacies, 

or palaeo-environment data were available for the study. 

7.3 Tectonic and stratigraphic framework 

This section discusses the determination and characterisation of mega-sequences within the 

Pletmos Basin and integrates them with well age data to establish a tectonic framework. 

This framework comprises the four mega-sequences (Basement, Principal Syn-Rift, Late 

Syn-Rift and Post-Rift) that were established in Chapter 5, and used in the Gamtoos Basin, 

although the individual sequences within the mega-sequences differ (Figure 7.2). The 
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seismic character, areal extent and thickness of each mega-sequence, and corresponding 

sequences, will be discussed. 

7.3.1 Basement 

The nature and continuity of the top basement reflector varies significantly across the basin. 

In the centre and west it is evident as a strong, traceable, double reflector onto which the 

Principal Syn-Rift onlaps; in the north and east, it is either deeper than the maximum 

recording time of 5 .Os Two-Way-Time (TWT), or is poorly imaged, and therefore difficult to 

pick. The extent of the accurately picked Top Basement is plotted on the horizon's TWT 

map (Figure 7.3a). 

The top basement geometry is dominated by two faults, the south dipping Plettenberg Fault 

and the north dipping Pletmos Fault (Figure 7.3b), which define two sub-basins separated by 

the Springbok High. This high is formed from a complex array of smaller anastomising 

faults. A third controlling fault, the Superior Fault, is present in the west of the basin, 

although its extent is difficult to assess because it is at the very edge of the data set. For 

much of the basin the overall geometry is dominated by east-west trending structures, except 

in the east where there is a significant change in trend of the both the Plettenberg Fault and 

the Springbok High from east-west to north-south. 

The wells that have penetrated to basement (McMillan el al., 1997) indicate that it is 

composed of Cape Super Group lithologies and is therefore consistent with the onshore 

basement geology (Chapter 3). 

The basement generally has a transparent internal character, except in the west, where it is 

shallower and better imaged, and there is evidence of deformation of intra-basement 

reflectors (Figure 7.4). Although the data coverage does not permit detailed mapping of the 

structures it is evident that they have a broadly east-west trend, i.e. parallel to the regional 

fabric in that area. These features are well-tied within the basement and are probably not 

multiples. The geometry is therefore likely to be imaged folds within the Cape Fold Belt 

(CFB) and the scale of them is not dissimilar to that observed onshore (Chapter 3). 

Unlike the Gamtoos Basin, it is not possible to pick a pseudo-basement horizon across the 

basin because much of the syn-rift is deeper than 5s TWT. 
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7.3.2 Principal Syn-Rift (Middle? Jurassic-La te Valanginian) 

This mega-sequence is present across the entire basin, and is unconformably above top 

basement, and conformably, or para-conformably below either the Late Syn-Rift or Post-

Rift. The oldest horizon picked in the wells is Kimmeridgian and is present on the basin 

highs, although it has not been traced across the basin because of a lack of well control in the 

deepest portions. 

The only well-tied horizons that can be reliably correlated are top_pordandian, top early-

valanginian and top late-valanginian, and these have been used to define sequences within 

the Principal Syn-Rift mega-sequence. In addition to these age related sequences two other 

horizons, Earliest Syn-Rift and Early Syn-Rift, have been traced to study the pre-Portlandian 

syn-rift packages. 

I) Earliest Syn-Rift(?) 

Although the most prominent Principal Syn-Rift sequences occur against the basin 

controlling faults (Figure 7.2) there is evidence of a localised syn-rift package at the base of 

the Principal Syn-Rift to the south of the Plettenberg Fault. This package is traceable across 

much of the northern sub-basin although the eastern extent is unknown because of the 

reduction in seismic data quality (Figure 7.5a). No wells penetrate it therefore the age is 

uncertain. 

Seismically the package is relatively transparent although weak internal reflectors are 

visible. It thickens towards a controlling fault in the south and varies between being fault 

bound or thinning and onlapping onto top_basement in the north (Figure 7.2). 

ii) Early Syn-Rift 

The lack of a correlative pick for the top kimmeridgian results in the pre-Portlandian 

geometry being poorly understood. To overcome this, a seismically correlative, but not 

well-tied reflector (called top esr), has been picked across the north and east of the basin; it 

defines the top of the Early Syn-Rift (ESR) sequence which either onlaps conformably onto 

lop—basement, or conformably onto the Earliest Syn-Rift sequence. It has not been possible 

to trace the top esr reflector across the Springbok High, although it is probably present. 

The reflector chosen is the first strong reflector above the predominantly transparent ESR 

sequence and is traceable along much of the Plettenberg Fault's sub-basin. In the south-east 

it becomes increasingly difficult to pick the horizon for three reasons. Firstly, the lowermost 
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syn-rift package becomes less transparent, therefore the chosen reflector is less discrete. 

Secondly, there is only one line that ties the north of the data set to the south-east therefore 

making the tie impossible to cross-correlate. This problem is accentuated because the tie 

between the areas occurs on the basement high, therefore it is difficult to trace the reflector 

into the deeper depocentre. Thirdly, in the south-east sub-basin there are at least 2s TWT of 

Post-Rift sedimentation, and at this depth the geometry of the ESR is poorly constrained. As 

a result, subsequent isochron plots may be mis-leading in this area and have to be treated 

with caution. 

The areal extent of the horizon (TWT map in Figure 7.5b) is confined in the north by the 

Plettenberg Fault and either onlaps onto, or is faulted against the basement in the south. As 

the horizon is not well correlated it is impossible to tie the reflector across the basin high. 

The isochron plot of the ESR thickness is problematic because of the undefined nature of the 

lop_basemenl in the south-east (Figure 7.6a). To overcome this, two additional horizons 

(topfiseudo basement, and basement5s) have been picked. The isochron is then the 

calculated thickness between ESR and the relevant horizon for the section where 

top basement is uncertain. Therefore, in the isochron plot (Figure 7.6a) the south-east 

corner is thinner than the true thickness. Despite this, it is evident that the thickest sediment 

accumulation is in the north and east of the basin (up to 1100 ms thick) with only limited 

accumulation in the west (250 ms). In this plot it should be re-iterated that ESR is probably 

present to the south of the Springbok High, but as there is no substantiating data to the south 

it has not been correlated across the high. 

lii) Portlandian 

Conformably on top of the ESR sequence where it is present, and unconformably on top of 

the basement where ESR is not present, is a transparent package that does not have any 

significant internal reflectors, but is capped by a strong reflector that is well-tied to a 

lopfiortlandian time-top age. This reflector is well-tied across the basin, allowing it to be 

confidently traced across both the Springbok High (Figure 7.5c), and the Plettenberg Fault 

footwall, hence into the Gamtoos Basin. In addition to the three basin-controlling faults, 

there are various other intra-basin faults evident in the TWT map that will be discussed in 

Section 7.4. 

During the Portlandian the basin was divided into two smaller graben basins with the 

dominant sediment accumulation occurring against the Plettenberg and Pletmos Faults, and 

with smaller faults on the Springbok High acting as the other graben controlling faults 
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(Figure 7.6b). The Portlandian thickness plot (Figure 7.6b) has to be considered with care 

because to the north of the Springbok High the isochron was calculated between 

Iopfiorilanthan and lop_esr while to the south it was between lop fiortlandian and 

lop basement. The plot in the south therefore accounts for a larger sequence. Against the 

Plettenberg Fault accumulation occurs along its mapped length on both east-west and north-

south trending portions, although the greatest mappable accumulation occurs to the west end 

of the east-west portion (maximum of 1050 ms). Sedimentation also occurs on the 

Springbok High and on the footwall to the eastern Plettenberg Fault. 

Early Valanginian 

The Berriasian sequence was picked in the Gamtoos Basin between the Portlandian and 

Valanginian, however, in the Plelmos Basin there are insufficient well-ties to accurately 

correlate the horizon across the basin. The next pickable horizon above iop portlandian is 

the lop e-valanginian reflector that defines the top of the Early Valanginian sequence. The 

reflector is generally strong, which along with the well ties makes it relatively easy to trace 

and correlate. 

In a similar geometry to the underlying sequences, it is bounded in the north and south by the 

Plettenberg and Pletmos Faults, and to a lesser extent the Superior Fault (Figure 7.5d). In the 

east the geometry is less clear as it forms a monoclinal structure above the north-south 

trending portion of the Plettenberg Fault (cf. Section 7.5). To the east of the monocline, it is 

correlatable with the iop_e-valanginian of the Gamtoos Basin. Intra-basin faults are evident 

from the TWT map (Figure 7.5d), and have a general east-west trend. 

The two sub-basin grabens are still evident from the isochron plot of the Early Valanginian 

(Figure 7.6c), although the relative importance of the Springbok High is reduced. The locus 

of maximum sediment accumulation is now positioned approximately at the apex of the 

Plettenberg Fault curve, and has therefore migrated towards the east compared to the 

Portlandian sequence (maximum of 1050 ms). Accumulation still occurs against the Pletmos 

Fault (500 ms), although in this sequence the Superior Fault becomes relatively more 

important (1000 ms). The intra-basin faults that are evident in the TWT map do not show 

any sediment growth across them. 

Late Valanginian 

The lop_1-valanginian horizon defines the top of the Principal Syn-Rift mega-sequence and 

the top of the Late Valanginian sequence, which is conformably above the Early Valanginian 

all 
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sequence across the basin. The package is composed of a series of very strong reflectors that 

are broadly sub-parallel, and the top_1-valanginain is evident as the uppermost strong 

reflector. The nature of this reflector is either conformable onlap of the subsequent 

sequences, or non-depositional hiatus with a minor degree of erosion. 

The reflector is traceable across the whole basin (TWT map in Figure 7.5e) with its 

distribution being controlled by the basin-bounding faults. The north-south trending 

Plettenberg Fault has not been traced to the south because top 1-valanginian has a similar 

monoclinal geometry to that of the top_e-valanginian. 

In comparison to the Early Valanginian, there are fewer faults, in particular intra-basin 

faults, (cf. TWT map Figure 7.5e), and this is discussed in Section 7.4.7. There are minor 

amounts of erosion at the top of the Late Valanginian commonly associated with small 

rotated fault blocks. (cf. Section 7.4.7). 

Sedimentation occurs across the basin (isochron plot of top 1-valanginian to lope-

valanginian, Figure 7.5d) with accumulation continuing to be focused on the Plettenberg and 

Pletmos Fault (maxima of 850 ms and 700 ms respectively). The two grabens, and the 

Springbok High are no longer discernable. The locus of sediment accumulation remains 

adjacent to the Plettenberg Fault although it migrates from the apex of the fault curve (cf. 

Early Valanginian) to the centre of the east-west trending fault portion. Despite this 

migration of the locus, there is still active sedimentation in the hangingwall of the the north-

south trending fault portion. 

7.3.3 Late Syn-Rift (Latest Valanginian - Late Hauterivian) 

Despite the Late Syn-Rift (LSR) mega-sequence locally being conformable with the 

Principal Syn-Rift mega-sequence, the majority of it is either unconformable or para-

conformable with the PSR (Figure 7.2). The presence of this unconformity and the dramatic 

change in areal extent of the LSR compared to the PSR results in this package being 

characterised as a separate mega-sequence. 

i) Early Hauterivian and Pseudo Early Hauterivian 

The lop_e-haulerivian reflector has been picked in various wells in the north of basin and 

results in the defining of two sub basins, one associated with the Plettenberg Fault and the 

other with the Superior Fault (Figure 7.7a). In both of these locations the sequence is 

conformable with, and onlaps onto topi-valanginian. In the south there is no top_e-

hauterivian well pick, however, the same geometry above the Late Valanginian sequence is 
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present. As neither well nor seismic data show either an unconformity or non-depositional 

hiatus between lop 1-valanginian and top-1-hauterivian, it is inferred that top_e-ha uterivian 

is present. Therefore, a reflector with similar character to that in the north has been picked 

as lop pseudo-e-hauierivian in the southern sub-basin. Of particular importance is the 

dramatic reduction in areal extent of the sequence compared to the Principal Syn-Rift. 

The Early Hauterivian package, regardless of position, forms a strongly divergent seismic 

package into the appropriate bounding faults (Figure 7.2) with its top defined by a 

correlatable, strong reflector. The sequence against the Plettenberg Fault is bounded by a 

smaller-north dipping antithetic fault for much of its southern extent, and in the south east it 

onlaps onto top - I-va/anginian. At its eastern extent, it crosses the north-south fault without 

deformation and is correlatable with the equivalent sequence in the western Gamtoos Basin. 

The north-west sub-basin is fault-bound to the south by the northward dipping Superior 

Fault, and onlaps onto the top 1-valanginian in the north and east. The southern sub-basin, 

where the top jseudo-e-hauierñ'ia has been picked, is more difficult to map. Although it 

onlaps onto the lop 1-valanginian in the north, the data coverage to the south is not extensive 

enough to determine its southern limit, although it is inferred that the east-west trending 

Pletmos Fault continues to the east and controls its deposition. 

There is no evidence of faulting except for the principal basin-bounding faults. 

The isochron plots highlight the dramatic thickening of the sequence into the Plettenberg 

Fault (1250 ms; Figure 7.8a) with only minor thickening into the other two faults (Pletmos 

Fault - 300 ms; Superior Fault - 275 ms). The locus of maximum sediment accumulation 

against the Plettenberg Fault is in the centre of the east-west trending portion, in a similar 

location to that of the Late Valanginian (cf. Figure 7.6d). 

ii) Late Hauterivian 

The lop 1-haulerivian reflector is well-tied across the basin and is therefore correlatable to 

the south, unlike the lop e-hauierivian (Figure 7.7b). Its distribution continues to be 

controlled by the Plettenberg, Pleimos and Superior Faults, and the aereal extent of the 

horizon is relatively limited, although greater than that of the Early Hauterivian sequence. 

The sequence is a relatively transparent package conformably on top of either the top_e-

hauterivian or the lop 1-valanginian and the uppermost defining reflector is a moderately 

strong, correlatable feature. As in the underlying sequence it diverges into the bounding 

faults, although not as much as the Early Hauterivian. Where it is not fault bounded it onlaps 
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onto lop 1-valanginian. The uppermost reflectors of the sequence do not show evidence of 

erosional truncation anywhere across the basin except in eastern extent of the data, on the 

Plettenberg Fault footwall. Figure 7.9 suggests that on the footwall the lop_/-hauierivian 

reflector becomes the correlatable conformity of the Gamtoos Basin's basin-wide 

unconformity (cf. Chapter 6). 

Despite the increase in areal extent of the Late Hauterivian, sediment accumulation is still 

dominated by the east-west trending portion of the Plettenberg Fault (Figure 7.8b), with no 

deposition along the north-south trending portion (maximum of 1250 ms). As in the Early 

Hauterivian, the Pletmos and Superior Faults define the areal extent of the Late Hauterivian 

in the south and west without significant thickening (Pletmos Fault - 550 ms; Superior Fault 

- 175 ms). 

7.3.4 Post Rift 

The transition from Syn-Rift to Post-Rift phases in the Pletmos Basin is highlighted in the 

restored section in Figure 7.10c with the Late Hauterivian sequence diverging into the 

Plettenberg Fault and being overlain by non-diverging Early Barremian and younger 

sequences. Therefore the Early Barremian and younger sequences are defined as the Post 

Rift. 

i) Early Barremian 

The Early Barremian sequence (defined by lop_e-barremian) is dominated by a southward 

prograding system with well imaged 100 ms (--lOOm) high clinoforms (Figure 7.I0c) that 

aggrade at a shallow angle towards the south. The sequence lies conformably above the Late 

Hauterivian and is constrained in the south by the Iop_I-valanginian horizon (Figure 7.11) 

with a geometry implying that it infills a pre-existing topography. This topography results in 

the sequence only being present immediately adjacent to the east-west trending portion of the 

Plettenberg Fault (Figure 7.12a). 

The progradational nature of the sequence results in the thinning of the sequence towards the 

south (from 400 ms to 100 ms; Figure 7.13a). It is important to re-iterate that the observed 

thickening in the north is a consequence of southern progradation rather than divergence into 

the Pletteneberg Fault. 
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Late Barremian 

The Late Barremian sequence (defined by top_l-barremian) forms the middle part of the 

progradation system containing the Early Barremian with the clinoform break point to the 

south of that of the Early Barremian (Figure 7.14). Its has a significantly greater areal extent 

compared to the Early Barremian and is present in all of the wells. However, although it is 

present on the western Springbok High (well Hb-Spkl) it is ambiguous from the seismic data 

whether the horizon onlaps, and terminates against the Late Valanginian, or is draped across 

the western part of the high (Figure 7,15) and has therefore not been included in the TWT 

map (Figure 7.12b). The thickness of the Late Barremian (isochron plot in Figure 13b) is 

similar to the Early Barremian except that the break in slope of the progradational system is 

further to the south (625 ms in the north to 100 ms in the south). 

Early Cenomanian 

The lop _e-cenornanian horizon forms a planar surface that dips uniformly towards the south 

and despite being in the Post-Rift, some localised faulting is present (Figure 7.12c). The 

majority of these faults have no growth across them and are associated with the Springbok 

High, however, one of the faults in the west can be shown to have growth across it (cf. 

Section 7.4.7). 

The package is characterised by relatively sub-parallel reflectors, although the lowest 

reflectors are included with the progradational system of the Barremian. The isochron plot 

(Figure 6.13c) shows a dramatic thickness change because of the nature of the underlying 

Late Barremian progradational system (175 ms in the north and 475 ms in the south). It is 

uncertain whether there is no progradation within the upper Early Cenomanian, or whether 

the clinoforms occur to the south of the data coverage. 

Early Turonian 

The Early Turonian sequence (defined by top_e-turonian) is seismically conformable with 

the Early Cenomanian, although the absence of the Late Cenomanian in all of the well data 

indicates that there is a depositional hiatus. Although the horizon forms a planar southward 

dipping surface with no significant faults (Figure 7.12 d), it is evident from the isochron plot 

(Figure 7.13d) that there is a ribbon of thicker sediment at the south of the basin (385 ms 

compared to 75 ms), which is a result of the progradational nature of the sequence. 
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v) Late Turonian to Present 

Although this sequence contains various progradational systems and small scale 

unconformities, it is dominated by two features. There is a significant thickening of the 

package towards the south and it appears that the fulcrum of this is the Springbok High 

(Figure 7.2). The other feature evident across the basin is the late stage uplift of the coastal 

region which is equivalent to that discussed in the Gamtoos Basin (Figures 7.2, 7.9 and 

7.14). 

7.4 Faulting 

It is evident from the tectonic framework discussed in Section 7.3 that unlike the Gamtoos 

Fault (with its one fault), the Pletmos Basin is more complex with three principal faults, and 

various other growth faults. The three controlling faults will be discussed before the other 

faults. Where possible the geometry of the faults will be demonstrated and the timing and 

interaction between the faults will be established. 

7.4.1 Plettenberg Fault 

The Plettenberg Fault is the principal controlling fault in the north and east of the basin. 

I) Geometry 

The east-west trending section of the Plettenberg Fault is a plane that dips at approximately 

45° towards the south, has an identical trend to the onshore basement structure, and is 

traceable along its length of 160 km as a discrete and continuous structure (Figure 7.16). 

The hangingwall is dominated by the Principal and Late Syn-Rift mega-sequence sediments 

and in the deepest portions of the basin the top basement reflector is at least 5.Os TWT with 

occasional sections suggesting that it is deeper than 5.5s TWT. There are no wells that 

penetrate its footwall, although the transparent character of the package is similar to that 

observed in the Gamtoos Basin, and as it is close to the onshore basement it is inferred that 

the footwall is formed from CFB basement. There is no evidence of syn-rift deposits on the 

footwall with only minor Post-Rift sediments. When the fault surface is mapped out it is 

evident that towards the east it changes trend dramatically becoming a north-south trending 

fault. Despite this curve, the fault plane remains as a single traceable feature and there is no 

evidence of any cross-cutting faults. 

The imaging of the north-south trending portion of the Plettenberg Fault is poor compared to 

the east-west section, although it is evident as a change in character between the transparent 
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basement and structured syn-rift reflectors. In this area there is a much greater thickness of 

Post-Rift sediments, therefore the syn-rift megasequences are considerably deeper and the 

fault is less well imaged at depth. The Principal Syn-Rift mega-sequence is cut by the fault, 

while the Late Syn-Rift megasequence is draped across. This observation will be discussed 

in Section 7.5. 

ii) Evolution 

The evolution of the Plettenberg Fault can be ascertained using sediment accumulation as a 

proxy for fault growth and activity (cf. Chapter 5). 

The isochron plots presented for individual sequences (Figures 7.6 and 7.8) indicate that the 

position of maximum sediment accumulation, and hence the inferred position of maximum 

fault displacement, has changed through time. As discussed for the Gamtoos Basin, the 

switching in the position of the maximum accumulation for individual sequences makes it 

difficult to understand the overall evolution of the fault. To overcome this, cumulative 

isochron plots have been formed from the syn-rift horizons to top_basemen! (Figure 7.17). 

These plots are subjected to the same limitations as the Early Syn-Rift isochron plots of the 

top basement being either difficult to pick, or below the maximum recording time of 5.0 or 

5.5 s TWT. Furthermore, the lack of seismic coverage, especially in the north-east results in 

artificial depocentres where the contour grid spacing approaches that of the line spacing. 

From the cumulative plots (Figure 7.17) the migration of the locus of maximum 

sedimentation can be assessed. In the Portlandian (Figure 7.17a) sedimentation occurs along 

the full extent of the fault (including the north-south trending portion) with little differential 

accumulation, while in the Early Valanginian the locus is more pronounced and located near 

to the apex of the Plettenberg Fault curve. In the Late Valanginian the locus becomes more 

diffuse again (Figure 7.17c), although is more focused along the east-west fault portion, 

despite continued deposition in the east. 

The dramatic change in deposition during the Late Syn-Rift (Section 7.3.3) is evident in the 

cumulative isochron plots for the Early and Late Hauterivian (Figure 7.18). The Late Syn-

Rift mega-sequence is only present along the east-west portion of the Plettenberg Fault and 

not the north-south, with maximum accumulation occurring at the centre of the fault portion. 

This is reflected in the cumulative isochron to top basement plot (Figure 7.18b and c) that 

demonstrates the dominance of the east-west portion of the Plettenberg Fault at the end of 

the syn-rift deposition. 
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A further technique for assessing the evolution of a fault is by plotting Displacement / 

Length profiles (cf. Chapter 5). As determination of displacement requires depth conversion 

of all sections (which is beyond the scope of this project), fault throws (in TWT) have been 

plotted against length (Figure 7.19). This has the advantage that it can be compared with 

other fault studies that will be discussed in Chapter 10. This plot shows that although 

accumulation varies along strike, there is the continuous presence of each sequence without 

localised and confined depocentres, hence no significant local maxima and minima, an 

observation that will be discussed in Chapter 10. 

7.4.2 Gemsbok Fault 

The isochron plots in the previous section and Section 7.3 show the presence of a north-

south fault that forms the western margin of a north-south trending graben in the east of the 

basin. Although this east-dipping fault, the Gemsbok Fault, is visible on the seismic data 

(Figure 7.20), its total displacement is unknown because of the limitations of imaging at 

depth. From the plots (Figure 7.17) the fault continues to the north before changing to an 

east-west trend. 

The thickening of the Principal Syn-Rift mega-sequence into the Gemsbok Fault suggests 

that it was active throughout this time, although the amount of sediment accumulation 

diminishes during the Early Valanginian before a brief re-generation in the Late Valanginian. 

During the Hauterivian there is no evidence of accumulation and it is inferred that the fault 

has switched off, although the presence of its footwall appears to control the extent of the 

Hauterivian depocentre (Figure 7.18a). 

7.4.3 Pletmos Fault 

The lateral extent of the Pletmos Fault, in the south of the basin, is not mappable because 

only a portion of it is imaged on sections at the south-west area of the coverage, although 

from the isochron plots (Figure 7.17) it can be inferred that it continues to the east. These 

isochron plots also suggest that the sediment accumulation, and hence inferred fault 

displacement, reduces towards the west. The fault itself is a planar dipping structure with a 

dip of approximately 450  (Figure 7.21) and is imaged for at least 60 km. The centre of the 

depocentre is to the east of the mappable fault section implying that the fault may continue 

considerably further to the east, and be much longer than 60 km. 

The data coverage does not enable the full extent of the Pletmos Fault to be established, 

however it is important to notice the substantial increase of throw on the fault towards the 
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east trend on the throw vs. length plot (Figure 7.22). This plot will be used later in this 

chapter to compare the Pletmos Fault with the Superior Fault. 

As discussed (Section 7.3.2), the Early Syn-Rift, lop esr reflector, has not been traced across 

the basin high into this sub-basin, although the lop_kimmeridgian reflectors on the flank of 

the rotated fault block suggest that the fault was active during the same time as the 

Plettenberg Fault (Figure 7.21b). Flattening of the top 1-valanginian reflector indicates that 

it was still an active fault throughout the Principal Syn-Rift mega-sequence (Figure 7.21c). 

Extension continued during the Hauterivian (Figure 7.21d), although this section, and the 

areal plots (Figure 7.18a) indicate that its lateral extent was significantly reduced. 

Furthermore, the fulcrum of extension and hangingwall rotation is very close to the fault 

compared to the much broader Principal Syn-Rift package. 

7.4.4 Superior Fault 

Despite the Superior Fault being at the western extent of the data, it is imaged relatively well 

and its position is obvious from the isochron plots (Figure 7.17). In many sections it has an 

approximately planar geometry with a dip to the north of 45°, however at the western extent 

of the data it has an unusual geometry with a dramatic reduction in dip towards the top of the 

fault (Figure 7.23). The geometry of the fault appears to be paralleled by the underlying 

inlia-basement reflectors. As discussed in the Section 7.3.1, such reflectors are unlikely to 

be multiples, or side swipe from the fault plane, and are most likely to be primary. 

Therefore, as the fault parallels these reflectors, it is inferred that the geometry of the fault is 

being inherited from the basement structure. 

Restoration of the section demonstrates that the fault has a very similar evolution to the other 

faults discussed, with deposition from pre-Kirnnieridgian times through to the Early 

Valanginian (Figure 7.23). There is then renewed subsidence in the Late Valanginian prior 

to localised extension in the Hauterivian. However, unlike the other faults, the eastern end 

of the Superior Fault was re-activated during the Post-Rift. When the section in Figure 7.24 

is restored to lop _e-turonian, the Turonian sequence, and in particular the Early Cenomanian 

sequence thickens into the north dipping fault. This is supported by the isochron plot of the 

Early Cenomanian (Figure 7.13). 

In all of the thickening packages the maximum sediment thickness in the isochron plots 

(Figure 7.17 and 18) is at the western extent of the data set, therefore it is inferred that only 

the eastern end of the Superior fault is present in the data coverage. This is supported by the 
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throw vs. length plot (Figure 7.22) that shows substantial thickening of the sequences 

towards the west. 

7.4.5 En-echelon nature of the Pletmos and Superior Faults 

The isochron plots (Figure 7.17), and throw vs. length plots (Figure 7.22) indicate that while 

sediment accumulation in the hangingwall of the Pletmos Fault reduces to the west, the 

accumulation associated with the Superior Fault increases to the west, suggestive of an en-

echelon geometry. This is supported by Figure 7.23, onto which north-south sections are 

plotted to show the gradual reduction in displacement of the Superior Fault and associated 

increase on the Pletmos Fault from west to east. 

7.4.6 Springbok High 

Although the Springbok High, in the centre of the basin, is a complex array of anastomosing 

faults, the overall structure is a basement high defined by north- and south-dipping normal 

faults. 

The north end of the high is dominated by a north-dipping fault that is continuous along the 

mappable length of the high. To the west, a lack of data makes it difficult to ascertain its 

true geometry although it is evident from the series of sections (Figure 7.26) that its 

displacement dramatically reduces before the fault becomes insignificant at the western 

extent. The south-dipping fault that defines the southern Springbok High is similar to that of 

the northern fault in that it dies out to the west, although it also dies out towards the east. 

The timing constraint of the high's development comes from well Gb-Spkl and indicates 

various stages of extension on the different fault arrays (Figure 7.27). The reconstructions of 

the high (Figure 7.27c, d and e) suggest that the faults on either side were active prior to the 

Portlandian and then switched off between the Portlandian and the Early Valanginian. 

Further extension occurred between the Early and Late Valanginian. 

7.4.7 Intra-basin faults 

In addition to the principal fault arrays there are a number of smaller faults that do not show 

significant growth but are still important to understanding the evolution of the basin. One 

problem with such faults is their scale, as it is often difficult to correlate single fault surfaces 

between horizons, especially where line spacing is large. 

One fault that is traceable between sections is a north-dipping normal fault that occurs in the 

immediate hangingwall to the Plettenberg Fault (Figure 7.28) and is at least 40 km long with 
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an east-west trend. This fault is unusual as it offsets the Late Valanginian and Early 

Valanginian although does not offset the underlying Portlandian. It appears to décolle onto a 

mid-Principal Syn-Rift horizon, and was active during the Hauterivian, resulting in the 

formation of a rollover geometry of the Late Valanginian reflector. 

Other intra-basin fault arrays are evident from the TWT maps, especially that of lope-

valanginian (Figure 7.5c), and tend to be focused around the Springbok High. One such 

array to the south of the high (Figure 7.29a) trends east-west with small displacements 

(largest is 200 ms but with average 60 ms). These faults are a combination of south and 

north dipping faults that delimit a small graben structure that is associated with the furthest 

extent of the Hauterivian. It is interesting to note that these faults die out rapidly towards the 

west, as shown by the parallel section in Figure 7.29b. A similar array occurs north of the 

high with a very similar geometry, including delimiting the extent of the Hauterivian 

deposition. The timing of both of these arrays is post top 1-valanginian and probably prior 

to, or during the Early Hauterivian (Figure 7.29a). One problem that arises from these 

sections is the specific position of the iop 1-va/anginian reflector. From the resolution of the 

data it is difficult to determine whether the horizon is faulted and rotated in domino fault 

block fashion, or whether the horizon is an erosional surface that truncates the top of the 

faults and sequence. 

A similar array of Late Valanginian intra-basin faults is evident in the north of the basin. 

These are all north dipping faults with small throws (up to 50 ms) and occur at the limit of 

Hauterivian deposition. As discussed for Figure 7.29, the specific position of the top!-

va/anginian. 

7.4.8 Summary of faulting 

It has been demonstrated that although the Plettenberg Fault dominates the control of 

sediment accumulation through much of the evolution of the basin, there are various other 

faults that control either localised, or sub-basin accumulation. 

7.5 Basin-fill deformational styles 

In comparison to the complex basin fill deformation of the Gamtoos Basin, there is very little 

present in the Pletmos Basin. There are three areas in which basin fill deformation occurs: 

the north; the east; and south, although the lack of suitable data coverage makes it difficult to 

describe and map the features in three dimensions. 
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In the north, folding of the PSR occurs in the hangingwall of the Plettenberg Fault with an 

anticline of an amplitude of 400 ms, and a wavelength of approximately 8 km (Figure 7.31 a 

and b). This feature is dissected by one of the arrays of intra-basin faults discussed in 

Section 7.4.7, and they have a similar east-west trending nature (Figure 7.31 is along strike 

of Figure 7.30 and illustrates the same feature). In the Gamtoos Basin it was discussed 

whether the genesis of such structures was compressional or extensional, and a similar 

argument is valid here. If the folding was a result of compression it would have to have been 

synchronous with the extension during the Late Syn-Rift, which seems unlikely. Midland 

Valley's 2D Move programme was used to sequentially restore the basin to determine if the 

deformation could be extensionally related (Figure 7.31 d to i). After the deposition of the 

Late Valanginian sequence the Early Hauterivian syn-rift was deposited immediately 

adjacent to the Plettenberg Fault. The localised re-activation of the Plettenberg Fault results 

in arc flexure of the Principal Syn-Rift mega-sequence forming both the folding of the Late 

Valanginian, and the intra-basin faulting (cf. Figures 7.29 & 30). The early Post-Rift 

package progrades to the south prior to regional southern tiliting in the post Early Turonian. 

Of particular importance in this model is that: i) folding and deformation can be explained by 

simply changing the extent of active extension; ii) there is no requirement for uplift or 

inversion during the Late Syn-Rift or early Post-Rift; and ill) there is regional tilting to the 

south in the post Early Turonian. 

In the east of the basin, proximal to the north-south trending Plettenberg Fault, it has been 

discussed that the Late Valanginian forms a monoclinal structure (Section 7.3.2e), not 

dissimilar to the Gamtoos Anticline (Chapter 6) but on a smaller scale. 2D Move restoration 

of this area (Figure 7.32) suggests that such folding can be achieved by the progressive 

deposition of the Late Syn-Rift mega-sequence along the east-west trending Plettenberg 

Fault. The north-south portion remains passive and acts as a buttress preventing Late Syn-

Rift subsidence. 

The folding in the south is difficult to map out because of the limitations of the data, 

although it is evident that the Late Valanginian is deformed into a broad low amplitude fold 

train (Figure 7.33). These folds occur directly in the hangingwall of the Pletmos Fault, and 

are of greatest intensity in the south, close to the fault. These folds result in the unusual 

outcrop pattern of the Pseudo-Early, Early, and Late Hauterivian sequences (Figure 7.7a). It 

is therefore suggested that these folds formed as a direct consequence of varying degrees of 

extension on the Pletmos Fault, and are not of a compressional genesis. 
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the immediate footwalls of the three basin-bounding faults there are additional faults that 

were active during this time and these were associated with folding of the syn-rift sequences. 

During the deposition of this sequence, the areal extent of the package increases, although 

continues to be dominated by the east-west faults (Figure 7.34e). 

The increased subsidence is accompanied by a marked deepening of the depositional 

environment (McMillan et al., 1997), and the deposition of organic rich claystones. 

When sedimentation rates are calculated for the sequences picked in the Pletmos Basin, 

(Table 7.1) there is no discernible change between the Late Valanginian and Early 

Hauterivian. In the Gamtoos Basin (Chapter 6) it was argued that in order to source the 

basin with the relatively large amounts of claystone observed, a provenance that will erode 

into clay is required, and therefore is unlikely to be the Cape Super Group quartz and 

sandstones. Such a provenance may be either the Permian sediments of the Karoo Basin, or 

the upper Cape Supergroup. 

These observations indicate that during the Principal and Late Syn-Rift mega-sequences the 

evolution of the Pletmos Basin is very similar to that of the Gamtoos Basin. The significant 

difference, however, is that the top of the mega-sequence is conformable with the overlying 

package, and there is no evidence of the erosional truncation at the top of the sequence, nor 

of the Basin-wide Unconformity. As discussed, the Late Hauterivian horizon can be 

correlated across the eastern Plettenberg footwall is correlatable with the Basin-wide 

Unconformity. 

7.6.3 Post-Rift 

During the early Post Rift the system was dominated by southward progradation (Figure 

7.34f & g), prior to more general shelf deposition and regional southward tilting (Figure 

7.34h). Within this mega-sequence there are many small unconformities that have not been 

mapped in this study, and have been correlated and attributed to glacio-eustatic fluctuations 

(Brown etal., 1995). 

Sedimentation is dominated by shallow marine sandstones often with abundant temgenous 

input (McMillan eta[, 1997). 

7.7 Discussion 

The observations presented on the Gamtoos Basin (Chapter 6) suggest that structural 

inheritance played an important role in both the development and subsequent evolution of 
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7.6 Summary of basin evolution 

The tectonic framework, fault evolution and basin-fill deformation for the Pletmos Basin has 

been established in the previous three sections and the purpose of this section is to integrate 

these observations. Although no stratigraphic or depositional environment data were 

available for this study, appropriate data from published literature have been used. This is 

particularly important for a comparison with the Gamtoos Basin in the discussion chapter 

(Chapter 9). 

7.6.1 Principal Syn-Rift 

Kimmeridgian 

Although this sequence has been observed in some wells, the deeper wells have not 

penetrated to a great enough depth to test if this sequence is present. Despite the reflector 

not being reliably correlatable, the presence of the Kinimeridgian on the basement high is 

important because it implies that rifling initiated prior to the Kimmeridgian. There is no 

evidence of active faults, other than those already discussed, therefore it is inferred that the 

Kimineridgian has a distribution similar to the Portlandian. 

Portlandian - Late Valanginian 

During this period most of the faults were active, including the three principal faults 

(Plettenberg, Pletmos and Superior) and those that form the Springbok High, resulting in 

deposition across the basin (Figure 7.34a). In the Early Valanginian the faulting was 

localised on the bounding faults with little activity on the other growth faults (Figure 7.34b). 

In the Late Valanginian the extension was focused on the east-west trending portion of the 

Pletteneberg Fault, although did occur across the whole basin (Figure 7.34c). 

Sedimentologcially (McMillan el al., 1997), the Portlandian and Berriasian sequences are 

outer shelf argillaceous sandstones that change in the Valanginian to become a widespread 

shelly sandstones indicating a transition to a shallow marine setting. The exception is in the 

hangingwall of the Plettenberg Fault where middle to outer shelf claystones and sandstones 

continue during the Early and Late Valanginian. 

7.6.2 Latest Valangin ian-Hauterivian 

Between the top_1-valanginian and the Hauterivian there was a dramatic reduction in the 

areal extent of the deposition with sediment accumulation only occurring on the east-west 

trending faults, and the east-west trending portion of the Plettenberg Fault (Figure 7.34d). In 
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the extensional system. However, it is impossible to form regional scale conclusions, or 

discuss generic concepts from a single basin. The objective of this and the following chapter 

is to address these questions on a regional scale. Therefore the primary discussion will be in 

Chapter 9 after the Algoa Basin is evaluated. However, it is useful to briefly discuss some of 

the features more pertinent to the Pletmos Basin here. 

The Pletnios Basin is dominated by east-west trending structures that change dramatically to 

a north-south trend in the south-east of the basin. The genesis of this change in trend in the 

Pletmos Basin has been attributed to the same mechanism as the trend change in the 

Gamtoos Basin, namely either inheritance from the basement, or late stage deformation in 

response to motion of the Aghulas Falkland Fracture Zone (AFFZ) (Malan et al., 1990; 

McMillan etal., 1997). These mechanism will be discussed further in Chapter 9. 

On a basin scale, it has been demonstrated that structural inheritance plays as an important 

role in the Pletmos Basin as it does in the Gamtoos Basin. Structures that were controlling 

the evolution of the basin at a very early stage have been continually utilised throughout the 

evolution of the basin. Temporal changes in sediment accumulation have been used as a 

proxy of fault activity and to infer changes in the orientation of the maximum extension 

direction. In the Pletmos Basin, a change in the maximum extension direction is inferred 

from the migration of most active fault section. It is important to note that the pre-existing 

structures are used and are not cross cut. 

Furthermore, it has been shown that some of the basin's structures can be switched on and 

off. For example the faulting on the Springbok High was active during the Portlandian, was 

inactive in the Early Valanginian, and then re-activated in the Late Valanginian and 

Hauterivian. 

The overall tectonic framework established in this Chapter broadly agrees with published 

literature (Malan el al., 1990; McMillan ci al., 1997), although as in the Gamtoos Basin the 

analysis on a sequence scale is more detailed than previous work. In particular the use of 

these sequences to understand fault evolution has not been conducted before. This 

framework does question the role of the AFFZ on the evolution of the basin. Roux (1992) 

attributes the formation of the basin to wrench tectonics on the AFFZ, and discusses oblique 

slip motion on the bounding faults. The strike-slip component is inferred to result in 

localised compression and basin fill folding which rotate during the evolution of the basin. 

The folds that Roux refers to have been discussed, and modelled in this Chapter and 

attributed to alterations in the extensional regime,  and do not require a complex strike-slip or 
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compressional regime. Furthermore, there is no deformation observed within the basin that 

requires strike-slip motion. 

7.8 Conclusions 

This chapter has established a tectono-stratigraphic framework of the Pletmos Basin by 

integrating seismic and well data with published sedimentological data. This framework is 

broadly similar to that of the Gamtoos Basin obtained in Chapter 6, and will be fully 

compared in Chapter 9. The primary difference is that there is no phase of uplift and 

compression in the Late Hauterivian as there is in the Gamtoos Basin. The principal fault 

arrays have been analysed using cumulative isochron plots and throw vs. displacement plots 

and these will be used in Chapter 10 to compare the Pletmos Fault with normal faults in 

other tectonic settings. lntra-basin deformation has been modelled and accounted for using 

extensional tectonics, disagreeing with previous workers. 

The next chapter will apply the same tectonic-stratigraphic framework technique to the 

Algoa Basin, which is located to the east of the Gamtoos Basin. The purpose of this is to 

assess the role of structural inheritance on a regional scale, and to determine whether the 

normal fault systems of southern South Africa conform to pre-existing fault models. 
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8.1 Introduction 

In Chapters 6 and 7 the tectonic framework for both the Gamtoos and Pletmos Basins were 

established. The objective of this chapter is to apply the same techniques to understand the 

evolution of the Algoa Basin, which lies to the east of the Gamtoos Basin. This will enable a 

regional synthesis to be presented in Chapter 9, and hence allow the role of structural 

inheritance in the development of southern South Africa to be assessed. 

As with the other basins, the evolution of the Algoa Basin was determined by establishing a 

tectonic and stratigraphic framework, understanding fault evolution, and documenting basin-

fill deformation 

8.2 Algoa Basin data 

Evaluation of the Algoa Basin utilised 5,000 km of 1975, 1976, 1983, 1984, 1985, 1986 and 

1989 vintage 2D multi-channel seismic data (Figure 8.1) of which 60% were migrated and 

40% stacked sections. Nine exploration boreholes (containing composite, lithofacies, paleo-

environment logs; Appendix C) were integrated with the seismic data to determine the 

sedimentology and age of the basin fill (Figure 8.2). The locations of sections reproduced as 

figures are highlighted on Enclosure 10. 

The available seismic data was of a high quality, although two problems have been 

encountered. First, in the Port Elizabeth Trough poor migration of the data has resulted in 

significant problems in correlating between east-west and north-south trending sections. In 

order to assess the geometry of the principal structure (the north-south trending Port 

Elizabeth Fault) east-west lines were interpreted and one north-south line was used to 

correlate between them. It transpired that although there were difficulties, accurate 

correlation could be achieved if the specific horizon character was not used. Second, in the 

south-east of the basin the data quality is poor, making interpretation very difficult. This 

area has been excluded from the study. 
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8.3 Tectonic and stratigraphic framework 

This section outlines the tectonic and stratigraphic framework established in this study for 

the Algoa Basin. The framework comprises four mega-sequences (Basement, Principal Syn-

Rift, Late Syn-Rift, and Post-Rift, Figure 8.3), and is therefore very similar to that of the 

Gamtoos and Pletmos Basins (Chapters 6 and 7). Lithological well data is available, hence 

in addition to the seismic character, areal extent and thickness of each mega-sequence being 

discussed, appropriate sedimentology will be summarised. 

8.3.1 Basement (top basement) 

The sop_basement horizon is a high amplitude, positive polarity reflector onto which the 

syn-rift packages onlap (Figure 8.3). It is mappable across the Recife Arch in the west 

where it correlates with the sop basement of the Gamtoos Basin. Unlike the Gamtoos and 

Pletmos Basins, in the Algoa Basin the reflector is imaged across the entire basin and is 

never deeper than the maximum recording time of 5.0 s two-way-time (TWT). This negates 

the need to have the pseudo-basement reflector required in the other two basins. There is 

little internal basement structure in the west, even across the Recife Arch where the 

basement is shallow. In the east, strong parallel reflectors are imaged within the basement 

and these may be related to underlying basement structures (Figure 8.4; Bate & Malan, 

1992). 

The architecture of the offshore Algoa Basin is dominated by two sub-basins and 

corresponding controlling faults (top basement TWT map, Figure 8.5). Both sub-basins 

have their controlling faults in the east. The western sub-basin, the Port Elizabeth Trough, is 

bounded in the east by the Port Elizabeth Fault, while the eastern sub-basin, the Uitenhage 

Trough, is bounded in the east by the St Croix Fault and dissected in the south by the 

Uitenhage Fault (Figure 8.5b). 

Top_basement is well imaged with two exceptions. In the immediate hangingwall of the 

Port Elizabeth Fault the position of the horizon is poorly defined, and has been taken as the 

lowest imaged divergent reflector. This problem also applies to the St Croix Fault and is 

compounded by its complex geometry (Section 8.4.2). 

The basement is penetrated by four wells and in each it is composed of either quartzite or 

micaceous schist and is therefore consistent with the onshore Cape Fold Belt lithologies 

(Chapter 3). 
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8.3.2 Principal Syn-Rift (Middle Jurassic?-La te Valanginian) 

The Principal Syn-Rift (PSR) mega-sequence is unconformably above top_basement and 

below either base canyon, or basin-wide unconJbr,nily. It is sub-divided into the five 

sequences, Kimmeridgian, Portlandian, Berriasian, Early Valanginian, and Late Valanginian, 

with the name of each sequence defined by the uppermost reflector. The mega-sequence has 

been well-tied across much of the basin except for the northernmost Port Elizabeth Trough. 

In this area, the PSR mega-sequence terminates against the Northern P.E. Fault (Section 

8.4. 1) and although the reflector character of the package above the footwall of the fault is 

very similar to that of the PSR, there is no well tie to confirm this. As it is impossible to 

correlate PSR sequences across the fault this area has been omitted from the study. 

i) Kimmeridgian 

The zop_kimmeridgian reflector defines the lowest syn-rift sequence and is imaged as the 

first high amplitude, positive polarity reflector within the syn-rift package. In the Port 

Elizabeth Trough the package has relatively high amplitude reflectors with sub-parallel 

geometries that diverge into the bounding faults. In the Uitenhage Trough the sequence is 

more transparent, although top_kimmeridgian remains a high amplitude reflector. Both the 

seismic and well data indicate that the reflector is present only in the deepest portions of the 

troughs, and onlaps onto top_basement on the western flanks of both troughs (Figure 8.6a). 

The horizon is truncated against the Port Elizabeth and St Croix Faults, and is dissected by 

an array of small intra-basin faults in the south of the Port Elizabeth Trough. In the south of 

the Uitenhage Trough, top_kimmeridgian is not picked in well Hb-C 1 as the younger 

Portlandian sequence is present directly on top of top_basement. In the seismic data 

top_kimmeridgian can be traced across this area and it is suggested that it has not been 

observed in the well because the lowest most sediments (dated as Portlandian) are 

continental sandstones and conglomerates. 

This continentally dominated sedimentation is characteristic of the Kimmeridgian sequence 

in the Uitenhage Trough with interbedded red conglomerates, sandstones and minor red 

claystones. The conglomerates are dominated by fractured, rounded quartz clasts while the 

sandstones are quartz arenites with minor lithics. The sequence is only present in one of the 

Port Elizabeth Trough wells where it comprises alternating coarse and fining sandstones, 

silstones and claystone sequences with occasional coal beds. 
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During the deposition of the Kimmeridgian sequence sediment accumulation is at a 

maximum in the immediate footwalls of the Port Elizabeth and St Croix Faults (600 ms and 

800 ms respectively; isochron plot of top basement to lop_kimmeridgian, Figure 8.7a). 

The localised increase in sediment thickness in the north of the Port Elizabeth Trough is 

attributed to a small east-west trending fault (Section 8.4.1 ii). There is no evidence of 

growth across either the Uitenhage Fault or the intra-basin faults. 

Portlandian 

The top port/ant/ian reflector is well-tied and traceable in both troughs and is a high 

amplitude reflector capping the package above top_kimmeridgian. The areal extent of the 

reflector is very similar to that of top kimmeridgian with onlap onto top_basement at the 

flanks of the basin and truncation against the Port Elizabeth and St Croix Faults (Figure 

8.6b). It is dissected by the Uitenhage and intra-basin faults, and in the centre of the 

Uitenhage Trough there is minor truncation against a later stage canyon system 

Sedimentologically, the conglomerates and quartz sandstones of the Kimmeridgian are 

replaced by fine to medium grained lithic sandstones with occasional siltstones in the 

Uitenhage Trough, and argillaceous sandstones, siltstones and clyastones in the Port 

Elizabeth Trough. Deposition remained focused on the Port Elizabeth and St Croix Faults, 

and the loci of maximum accumulation was more pronounced and occurred further to the 

south-west compared to the Kimmeridgian (maximum of 650 ms for both; Figure 8.7b). 

Berriasian 

The Ben-iasian sequence has a transparent seismic character with the top defined by a 

moderately high amplitude reflector (top_berriasian) that is either conformable with the 

overlying Valanginian sequence, or erosionally truncated against the basin-

wide_unconformity or base_canyon. The base of the sequence is either conformably ontop 

of the Portlandian sequence, or unconformably onto top basement. The sequence is laterally 

continuous across the basin, however, as in the underlying sequences, it is dissected by the 

Port Elizabeth, St Croix, Uitenhage and inira-basin faults. 

The two troughs continue to have different sedimentary fills. The Uitenhage Trough remains 

more sand dominated with upward coarsening quartitic sandstone units changing to lithic 

sandstones towards the sequence top, while in the Port Elizabeth Trough there are 

interbedded shelly sandstones and siltstones in the north-west and siltstones containing deep 

marine radiolaria and shallow marine ostracods in the south-east. 
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The loci of maximum sediment accumulation remained in the immediate hangingwall of the 

Port Elizabeth and St Croix Faults, although the former only had 750 ms compared to 1250 

ms of the latter (Figure 8.7c). The sediment accumulation in the south-east of the basin 

increased (maximum of 500 ms), although the position of the controlling fault is uncertain 

because it does not appear to be consistent with growth on the Uitenhage Fault. 

Early Valanginian 

The top e-valanginian reflector is a high amplitude, negative phase reflector that is well-

tied and correlateable across the basin, although it is less extensive than the lop_berriasian 

because of erosion by the canyon system and the basin-wide unconformity (Figure 8.3 & 

8.6d). The seismic character of the sequence differs significantly depending on location with 

the Port Elizabeth Trough dominated by high amplitude sub-parallel reflectors with moderate 

divergence into the bounding fault. The sequence in the Uitenhage Trough is more 

transparent and the top_e-valanginian is a moderate amplitude, negative phase reflector 

below a sequence of stronger reflectors. Where the horizon is not erosionally truncated 

against either the canyon or the basin-wide unconformity, it is truncated against one of the 

basin bounding faults. In comparison to the underlying sequences, few intra-basin faults are 

evident, although this may be a result of the lower areal extent of the preserved horizon. 

The sequence in the Uitenhage Trough comprises a mixture of lithic and quartz sandstones 

interbedded with coal and claystones. In the Port Elizabeth Trough it is dominated by 

upward coarsening, fine-grained sandstones, siltstones and shales 

The isochron plots demonstrate that both the Port Elizabeth and St Croix Faults continue to 

control sediment accumulation (maximum of 1000 ms in the latter) although the loci of 

maximum accumulation have migrated towards the north-west in both faults compared to 

that in the Bemasian (Figure 8.7d). There is an east-west trending depocentre evident in the 

Port Elizabeth Trough (maximum of 1000 ms compared to average of 750 ms); this is 

probably associated with post-deposition deformation. 

Late Valanginian 

The areal extent of this sequence is significantly smaller than the Early Valanginian package 

with the uppermost defining horizon (top_/-valanginian) not being preserved in the Port 

Elizabeth Trough and only present in the hangingwall of the St Croix Fault where it is well-

tied (Figure 8.6e). This reduction is a result of significant erosion of this upper Principal 

Syn-Rift sequence by both the basin-wide unconformity and the canyon system. The 
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sequence is characterised by relatively transparent reflectors with little or no divergence 

towards the St Croix Fault. 

Where present, the sequence is sedimentologically similar to the Early Valanginian with 

interbedded silstones and argillaceous sansdtones in the Uitenhage Trough, and shales and 

claystones in the Port Elizabeth Trough. 

As a result of the limited extent of the top_l-valanginian reflector, the isochron plot (Figure 

8.7e) is relatively inconclusive. However, the data presented are not incompatible with the 

continued northward migration of the locus of maximum sedimentation that was observed in 

the Early Valanginian. 

8.3.3 Late Syn-Rift (Latest Valanginian - Hauterivian) 

Conformably on top of the top 1-valanginian horizon is a sequence that is dated by wells 

1-Ib-PI and Hb-Dl as Latest Valanginian and Hauterivian. Although these well picks are 

limited by the significant canyon erosion, the horizon can be tentatively correlated across the 

canyon into the hangingwall of the St Croix Fault (Figure 8.8a). The sequence contains a 

series of reflector packages with upward increasing reflector amplitude and the top of the 

first of these packages has been picked as latest valanginian. Furthermore, the reflectors 

within these packages diverge into the St Croix Fault and have therefore been assigned to the 

Late Syn-Rift (LSR) mega-sequence (Figure 8.3). The areal extent of the sequence is 

restricted by the basin-wide_unconformity and canyon system erosion (Figure 8.8a). 

Two wells penetrate the sequence and in contrast to the sandstones and siltstones of the Late 

Valanginian, the Late Syn-Rift mega-sequence is dominated by claystone with occasional 

silty claystone. 

Despite the LSR's limited extent, the latest _valanginian to top basement package thickens 

into the east-west trending portion of the St Croix Fault, and thins to the east (isochron plot 

in Figure 8.8b). The locus of maximum sediment accumulation has migrated to the west 

compared its position during the Late Valanginian. 

8.3.4 Canyonisation and canyon fill 

Many of the Principal Syn-Rift sequences are observed to have erosional truncation either 

against the basin-wide unconformity or base canyon. The canyon system, defined by the 

base_canyon reflector will be discussed in this section, and the basin-wide_unconformity 

will be discussed in Section 8.3.5. 
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To understand the geometry and development of the canyon system, three horizons have 

been picked: base canyon; base transp (defining an inter-canyon horizon); and top canyon. 

The base canyon reflector is of variable amplitude, although it is evident because it 

consistently truncates the Principal Syn-Rift reflectors. The seismic character of the canyon 

fill is moderately transparent, and because it is overlain by high amplitude post-rift reflectors 

many of the internal reflector geoemtries are poorly imaged (Figure 8.9). The extent of the 

canyon system can be determined from the TWT of base canyon and is approximately 30 by 

60 kilometres, accounting for at least 40% of the areal extent of the Algoa Basin (Figure 

8.10a). The main system occurs in the Uitenhage Trough, although there is a smaller 

subsidiary canyon in the Port Elizabeth Trough. 

The base transp horizon is an intra-canyon reflector that is approximately tied to the Late 

Aptian and separates the more transparent upper package from the less transparent lower 

package. The reflectors within the lower package (below base_transp) are better imaged, 

sub-horizontal and onlap against the sides of the canyon, suggesting that the canyon was 

passively mfilled (Figure 8. lOb). This is apparent in Figure 8.9c in which the canyon system 

has been flattened to base transp. Also apparent in these figures is the minor amount of 

erosion present at the base_transp level. The age of the canyoning is constrained to the Late 

Hautenvian /Early Aptian because the oldest sediments into which the canyon erode are 

Hauterivian and the earliest sediments that infill the canyon are Late Aptian. The canyon fill 

sediments consist of claystones interbedded with cycles of upward fining sandstone to 

siltstones beds. 

Towards the top of the transparent package there is a south-eastward progradational package 

that fills the rest of the canyon (Figure 8.11). The base of this unit is dated as Mid-Albian 

(well Hb-C 1). This progradational package corresponds to an influx of coarser grained 

quartz or carbonaceous sandstones. 

The majority of the canyon system occurs in the Uitenhage Trough where it reaches a 

maximum incision of 750 ms (isochron of lop—canyon to base canyon, Figure 8.12a). There 

is a smaller system in the Port Elizabeth Trough that is approximately 300 ms deep. The 

locus of maximum accumulation migrated from the north to the south (compare top transp 

to base can isochron with top_canyon to top_transp, Figure 8.12b & c) although there is 

no evidence of growth into any of the faults. The Uitenhage Trough canyon opens towards 

the south, however, the geometry of the Port Elizabeth Trough canyon is less evident. This 

later canyon has closure in the north, east and south and is truncated against the Port 
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Elizabeth Fault in the east (Figure 8.8). There is no growth into Port Elizabeth Fault during 

or after the deposition of the canyon fill, indicating that the fault was inactive by the time the 

canyon was established. It is inferred that the exit point of the canyon is narrow and beyond 

the resolution of the data. 

8.3.5 Top canyon / basin-wide unconformity 

Across the basin there is a traceable, high amplitude, positive reflector that either defines the 

top of the canyon ( top canyon) or is the basin-wide_unconformity (Figure 8.3). When the 

horizon is mapped out (either as iop canyon or basin-wide unconformity) it forms a uniform 

south dipping plane (Figure 8.13a). 

Where the reflector is top_canyon there is no evidence of erosional truncation of seismic 

reflectors at the top of the canyon and this is supported by the non-existence of an 

unconformity in the available well data (Figure 8.9). This implies that the canyon fill is 

conformable with the overlying Post-Rift. 

Where the reflector is the basin-wide unconformity there is significant erosional truncation 

of the syn-rift packages (Figure 8.3 & 14). This erosion has resulted in the removal of the 

majority of the Late Syn-Rift mega-sequence and much of the Late and Early Valanginian 

sequences. In places it also erodes the entire Principal Syn-Rift mega-sequence with a sub-

crop of basement (Figure 8.13b). 

The relative timing of the basin-wide_unconJbrmity and canyon formation will be discussed 

in Section 8.7. 

8.3.6 Principal Post-Rift 

To understand the development of the Post-Rift mega-sequence above the canyon fill, three 

horizons (tope-cenomanian, lop_e-turonian and lop_maa.strichtian) have been picked and 

correlated from well ties. The top e-cenomanian reflector is a high amplitude, negative 

polarity trace that is at the top of the parallel Cenomanian reflectors. For much of the basin 

this package is para-conformable with the basin-wide_unconformity and conformable with 

the top_canyon (Figures 8.11 & 14) except in the north of the Port Elizabeth Trough where it 

onlaps onto basin-wide_unconformity. In the north of the Uitenhage Trough it is erosionally 

truncated against the sea-bed (Figure 8.15a). In a proximal setting (i.e. in the north), there is 

an influx of fine to coarse grained quartz rich sandstones while, to the south sedimentation is 

dominantly claystone with frequent floating quartz grains. 
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The top e-turonian is present in the south-east of the basin and onlaps onto the lope-

cenomanian (Figure 8.15b) with very similar sedimentation to that of the Cenomanian. The 

Iop_maastrichiian reflector is tracable across the basin, except where it is erosionally 

truncated against the sea-bed. 

During the Cenomanian and the Turonian there is only moderate thickening towards the 

south (Figure 8.16). This is in contrast to higher sequences (in particular above 

top rnaastrichiian, Figure 8.17) where there is evidence of significant subsidence in the 

south, and the development of large scale southward prograding sequences. This subsidence 

in the south is accompanied by uplift of the coastal regions and truncation of the nearshore 

Post-Rift sediments. 

The scale of the subsidence in the south is evident in sections across the southern Algoa 

Basin into the Southern Outeniqua Basin (Figure 8.18) that indicate the dramatic deepening 

of the water depth and thickening of the Post-Rift packages towards the Agulhas Falklands 

Fracture Zone. 

8.4 Faulting 

It is evident from the TWT map of top_basement (Figure 8.5), and from the tectonic and 

siratigraphic framework (Section 8.3) that there are various fault arrays present in both the 

Port Elizabeth and Uitenhage Troughs (Figure 8.19). This section will discuss the geometry 

and timing of the arrays and where possible model their evolution. 

8.4.1 Port Elizabeth Trough 

i) Port Elizabeth Fault 

This is a north-south trending fault that defines the eastern margin of the Port Elizabeth 

Trough and controls the majority of sedimentation within the trough. The cross-sectional 

geometry is consistent with a west dipping, planar structure (Figure 8.20) traceable for at 

least 30 km and continues to the south of the data limit. The exception to the uniform 

geometry is in the north where the presence of the Northern Port Elizabeth Trough Fault 

(NPETF) results in the depth to fop_basement in the hangingwall of the Port Elizabeth Fault 

being dramatically reduced (Figure 8.20a). The isochron thickness plots for the individual 

Principal Syn-Rift sequences (Figure 8.7) and the cumulative isochron plots from 

top_basement to sequential Principal Syn-Rift sequences (Figure 8.21) both indicate that 

sedimentation was controlled by the Port Elizabeth Fault throughout the deposition of the 
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mega-sequence. The maximum sediment accumulation of 2800 ms occurs at the southern 

extent of the data. From the available data it is difficult to determine whether the locus of 

maximum sediment accumulation has migrated during the evolution of the fault, although 

the lop_e-valanginian cumulative plot (Figure 8.21 d) implies that it may have migrated to 

the north. 

The sediment accumulation (in TWT) vs. length plot (Figure 8.22) for the Port Elizabeth 

Fault indicates that throughout the Principal Syn-Rift mega-sequence sediment accumulation 

is focussed to the south of the fault. From this plot there is no evidence of accumulation 

minima along the fault trend. The decrease in sediment thickness at 17 km in Figure 8.22 is 

a result of the interaction between the Port Elizabeth Fault and the Central Port Elizabeth 

Trough Fault (CPETF; Section 8.4.1 .ii) rather than fault segmentation. It is important to 

note that this graph only accounts for sediment accumulation in the hangingwall of the fault. 

From Figure 8.20c it is evident that sediment was deposited onto the footwall, hence fault 

throw can be determined. However, the deposition on the footwall is not preserved in the 

north of the trough, therefore to maintain a consistent datum along the fault length, only 

hangingwall sediment accumulation has been calculated. 

Central Port Elizabeth Trough Fault (CPETF) 

This fault is a small east-west trending structure that is 10 km long and is only active during 

the deposition of the Kinimeridgian (Figure 8.23). Its maximum throw of 400 ms occurs in 

the centre of the basin although it is not imaged towards the east where the Port Elizabeth 

Fault is present (Figure 8.19). 

Northern Port Elizabeth Trough Fault (NPETF) 

The east-west trending NPETF is mappable for 13 kilometres and the throw on it varies 

significantly (Figure 8.24). In the west there is no single fault plane and extension is 

accommodated by various small throw faults (maximum of 600 ms). The throw increases 

towards the centre of the mapped fault with the maximum achieved of 1250 ms. To the east 

of the maximum, the throw reduces slightly before the fault intersects the Port Elizabeth 

Fault. There is no evidence that the fault continues to the west of the Port Elizabeth Fault 

although the cross-cutting of the Port Elizabeth Fault by the NPETF results in the decrease in 

depth to lop basement observed in Figure 8.20a. 

Although the NPETF is a significant east-west trending structure that is well imaged, its 

geometry is difficult to evaluate. The Principal Syn-Rift is truncated against the fault (Figure 
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8.24), crucially however, there is neither evidence of growth into it, nor reflectors diverging 

towards it implying that the fault was in-active during post Principal Syn-Rift deposition. 

This however cannot be fully verified because although there is a package above 

top basement on the footwall of the fault that has the same seismic character as the Principal 

Syn-Rift, there is no well tie to confirm this. 

It is proposed that the NPETF was active after the deposition of the Principal Syn-Rift and 

that a northward thickening Late-Syn-Rift sequence may have been associated with it. This 

sequence would subsequently have been eroded by the basin-wide unconformity. This model 

will be discussed further in Section 8.5. 1 ii. 

iv) One fault or two faults? 

The two principal faults in the Port Elizabeth Trough have very different trends with the Port 

Elizabeth Fault in a north-south orientation and the NPETF trending east-west. In the 

Gamtoos Basin (Chapter 7) it was discussed whether a similar change in trend was a result of 

it being either one curved fault or two independent faults, and the same arguments apply 

here. The two models proposed are that the north-south fault was active first resulting in the 

formation of a depocentre in its hangingwall during the Principal Syn-Rift. Subsequently, a 

new fault developed in an east-west orientation, possibly in the Late Syn-Rift, that cross-cut 

the pre-existing fault. In the alternative model, the fault is a single structure with a dramatic 

change in trend from north-south to east-west. Sediment accumulation was originally 

accrued on the north-south portion with little sediment on the east-west portion. In the late 

Principal Syn-Rift, or Late Syn-Rift, sedimentation occurred only along the east-west 

portion. 

The first model is preferred because there is evidence of cross-cutting of the Port Elizabeth 

Fault by the Northern P.E. Fault. Furthermore, Principal Syn-Rift sediments are preserved in 

the footwall of the Northern P.E. fault and there is no growth into it during the deposition of 

this mega-sequence indicating that it was not present until later. 

8.4.2 Uitenhage Trough 

i) St Croix Fault 

The St Croix Fault is traceable for at least 60 km in a north-west to south-east orientation at 

the north of the Uitenhage Trough. Cross-sections perpendicular to the fault trace illustrate 

both the complex geometry and lateral variability of the structure (Figure 8.25). 

116 



Chapter 8: Tectonic evolution o[ the Algoa Basin 

The cross-sectional geometry of the St Croix Fault is a south-west dipping structure that is 

listric at depth. At its western extent it is a single fault plane with few faults in the adjacent 

hangingwall (Figure 8.25a). Late Syn-Rift extension is accommodated on the principal fault. 

In the next section to the east (Figure 8.25b), the St Croix Fault plane is dissected by a 

steeper fault plane into which there is growth of the Late Syn-Rift sequence. This latter 

structure is spatially limited and is not present further east where the fault returns to being a 

single plane, although there is the continued growth of the Late Syn-Rift package (Figure 

8.25c). The basement fault remains a single fault plane to the east, although it has a 

increasingly listric geometry at depth. This increase in listric geometry, and corresponding 

decrease in fault dip, is accompanied by the increase in the importance of steeper, short-cut 

Late Syn-Rift faults. These high angle faults merge with the St Croix Fault at depth. The 

throw across the St Croix Fault dramatically reduces towards the south-east from 3500 ms in 

the north-west to 500 ms in the south-east (Figure 8.25g). 

Sections parallel to the St Croix Fault highlight the complexity of the fault geometry, 

especially in the west of the fault system. In Figure 8.26a, the high amplitude reflector is the 

trace of the St Croix Fault plane. The two, shallow, high amplitude reflectors are cross-

correlated to the steep structures observed in Figures 8.25b & ci, implying that these 

structures are oblique to the St Croix Fault. 

The eastern extent of the St Croix Fault is uncertain because the sediment accumulation in its 

adjacent hangingwall reduces abruptly towards the south-east (Figure 8.26b). This coincides 

with the presence of a north-south trending, west dipping normal fault that is evident as two 

discrete reflectors; a shallow dipping reflector that is correlated to the St Croix Fault, and a 

steeper structure. This fault could either be a continuation of the St Croix Fault with an 

arcuate plan geometry (cf. Gamtoos Fault, Chapter 6), or a late stage structure that cross-cuts 

the St Croix Fault. The footwall of the north-south fault is predominantly basement with a 

small (100 ms) thickness of syn-rift preserved on its footvall compared to its hangingwall 

(1500 ms). As this would require significant throw on the north-south fault, and there is 

growth into the fault during the Principal Syn-Rift, the preferred model is the former with the 

arcuate fault. 

Despite the complexity of the fault geometry, the Principal Syn-Rift mega-sequence 

consistently thickens into the fault. There is minor along-trend variation in sediment 

accumulation with the locus of maximum accumulation remaining static towards the south-

east of the fault (Figure 8.21). Sediment accumulation varies along the length of the St Croix 
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Fault (Figure 8.27a) with the maximum occurring towards the south-east. The general trend 

of the plot is an increase towards the maximum, although there are two local maxima. 

Although the locus of maximum accumulation remains static in the south-east, the thickness 

plots for the individual sequences (Figure 8.7) imply that the most active part of the fault 

migrates towards the north-west during the Principal Syn-Rift. 

Understanding the deposition of the Late Syn-Rift package is problematic because of the 

substantial erosion. Cumulative sediment accumulation has not been plotted because of the 

very limited extent of the mega-sequence. However, TWT map of the lop 1-valanginian 

reflector, and the associated sequence isochron plots, suggest that the St Croix Fault was 

active, and that the west end of it was more active than the east. 

It is proposed that the St Croix Fault was active along its length during the deposition of the 

Principal Syn-Rift as a single fault plane. The fault was undulatory and listric at depth. 

During the Late Syn-Rift the complex array of faults was established (Figure 8.28). In the 

west, the St Croix Fault plane was used whilst at the centre of the St Croix Fault a number of 

smaller faults became active that had a trend slightly oblique to the St Croix Fault. In some 

sections these later faults cross-cut the St Croix Fault, whilst in others new short-cut faults 

were established. 

ii) Uitenhage Fault 

The Uitenhage Fault is an east-west trending structure that exhibits significant along strike 

variation in both geometry and throw (Figure 8.29), in particular between the eastern and 

western portions. In the west it is a planar fault with limited throw across it that reduces 

towards the west (Figure 8.29b). Although the data coverage is limited in the west, the fault 

throw reduces to beyond seismic resolution to the east of the Port Elizabeth Fault. There is 

limited syn-rift sedimentation preserved in its hangingwall as a result of the canyon erosion. 

In the east the throw on the fault increases dramatically, and the cross-sectional geometry 

becomes increasingly listric. The maximum throw on the fault is at the eastern extent of the 

data where it is 2800 ms (Figure 8.20b). The change in geometry is also evident from the 

TWT map of the fault plane (Figure 8.19). In the eastern portion the depth to lop_basemeni 

increases, and the depth of canyon incision decreases, resulting in the preservation of much 

of the Principal Syn-Rift. The geometry of the Principal Syn-Rift package adjacent to the 

eastern portion of the fault is unexpected in two ways: first, there is no thickening into the 

fault (Figure 8.29c & d); secondly, the sediment thickness in the footwall is significantly 

greater than that of the hangingwall (in Figure 8.29c this is most evident with 
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lopfiorllandian to top berriasian). When the Principal Syn-Rift sequences are restored 

across the fault (in Figure 8,29ciii it is restored to flattened top berriasian) they thicken into 

the St Croix Fault with no apparent deformation by the Uitenhage Fault. It is proposed that 

the Uitenhage Fault was not active during the Principal Syn-Rift and became active in the 

Late Syn-Rift as an east-west trending extensional fault. This is substantiated as there are 

Hauterivian sediments preserved in the hangingwall of the Uitenhage Fault, although their 

extent is limited because of canyon erosion. 

8.4.3 Intra-basin faults 

In addition to the principal controlling faults, there are also intra-basin faults that dissect the 

basin fill in both the Uitenhage and Port Elizabeth Troughs 

In the Port Elizabeth Trough two intra-basin fault arrays are evident (Figure 8.19). The 

geometry of the northern array is evident in Figure 8.23 with multiple, parallel, south dipping 

faults that have average throws of 50-80 ms cross-cutting the entire Principal Syn-Rift mega-

sequence and top basemeni reflector. This array has an east-west trend that is parallel to 

both the Northern and Central P.E. Faults. The timing of the faults is poorly constrained, but 

they are post-deposition of the Principal Syn-Rift and pre base_canyon/basin-

wide_uncontormily. It is inferred that the timing of these faults is contemporaneous with the 

NPETF and is probably associated with the Late Syn-Rift age of Latest Valanginian / 

Hautenvian. 

The other Port Elizabeth Trough fault array is in the south of the trough (Figure 8.19) and 

has a WNW-ESE trend. This array is therefore not parallel to the northern array, although 

the geometry and timing of the two arrays are identical (Figure 8.30a). 

The Uitenhage Trough also has two arrays of intra-basin faults, one in the north and the other 

in the south (Figure 8.19). The northern array (Figure 8.30b) has a similar geometry to the 

Port Elizabeth Trough arrays with north dipping, parallel faults that have an average throw of 

50 ms. These faults offset the Principal Syn-Rift and lop_basement reflectors but do not cut 

the latest_valanginian reflector. In some sections the early Late Syn-Rift reflectors are back 

tilted by these faults and there is evidence of growth into them. This northern array has an 

east-west trend. 

The southern array in the Uitenhage Trough has a very different geometry to the other intra-

basin fault arrays (Figure 8.30c). The faults in this array also trend east-west but are a 

combination of south and north dipping faults. The upper Principal Syn-Rift reflectors are 
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offset by up to 80 ms while the lower Principal Syn-Rift show no visible offset. The faults 

also coincide with anticlinal folding of iop_e-valanginian and top berriasian reflectors (cf. 

Section 8.5. Iii). The age of the faults are post Principal Syn-Rift and pre canyon formation, 

and the genesis of them will be discussed in Section 8.5.lii. 

8.4.4 Summary of faulting 

Faulting in the Algoa Basin is more complex than in the either the Gamtoos or Pletmos 

Basins. Two principal faults control the deposition of the Principal Syn-Rift package and 

these have approximately north-south trends. As a result of the significant erosion by the 

basin-wide_unconformity and the canyon system there is only a small amount of the Late 

Syn-Rift preserved. However, it has been inferred that during the Late Syn-Rift extensional 

phase east-west trending faults were established resulting in the formation of the Uitenhage 

Fault, the NPETF and the four arrays of smaller intra-basin faults. These faults frequently 

cross-cut the pre-existing structures. 

8.5 Basin-fill deformational styles 

The basin-fill deformation within the Algoa Basin is more limited than that observed in the 

Gamtoos Basin, although the geometries that are present are important to furthering the 

understanding of the basin. The most significant features are folding of the Principal Syn-

Rift in both the Port Elizabeth and Uitenhage Troughs, and the basin-wide _ .unconjbrrnity and 

the correlatable lop canyon reflectors. 

8.5.1 Folding 

I) Port Elizabeth Trough 

In the hangingwall of the CPETF there is east-west trending anticlinal folding of the 

Principal Syn-Rift sequences. The fold hinge is directly above the fault's hangingwall and 

the displacement on the fault is approximately proportional to the amount of folding, 

although this is very difficult to quantify (Figure 8.31). 

Modelling using Midland Valley's 2D Move software was undertaken to determine if the 

geometry has an extensional or compressional genesis. In the extensional model (Figure 

8.32) deposition of the Principal Syn-Rift occurs across the trough and is controlled by the 

Port Elizabeth Fault. In the Late Syn-Rift, extension occurs on a narrow axis in response to 

the east-west trending NPETF becoming active; the intra-basin faults also develop. This 
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narrow axis of extension is a valid assumption in light of the evidence from the other two 

basins (Chapter 6 & 7). Subsequent to the Late Syn-Rift extension, uplift occurs with 

significant erosion of the Late Syn-Rift and much of the Principal Syn-Rift, resulting in the 

development of the basin-wide unconformity and the canyon system. The basin-

wide unconformity horizon is assumed to be sub-horizontal because flattening of the horizon 

restores both the canyon fill and the overlying Cenomanian reflectors to the horizontal. 

Following the infihling of the canyon, deposition of the post-rift sequences is accompanied 

by subsidence in the south. Therefore in this model the folding is formed by extension on 

the NPETF inducing tilting of the northern region, and tilting in the south by regional 

subsidence. 

In the inversion model, re-activation of the CPETF as a high angle reverse fault occurs after 

the deposition of the Principal Syn-Rift mega-sequence. This re-activation results in the 

inversion of the syn-rift package in a harpoon structure (cf. Chapter 2). Subsequent uplift 

erodes the anticlinal closure prior to the deposition of the Post-Rift. 

Both of these models can explain the observed geometry. The critical test is the geometry of 

the truncation of the anticline. The extensional model implies that the basin-

wide_unconformity and the Principal Syn-Rift reflectors were folded synchronously in 

response to subsidence in the south, hence the PSR reflectors should be broadly sub-parallel 

to the basin-wide _unconformity. In contrast, the inversion model requires that the anticline 

be eroded by the basin-wide_unconformity, prior to southern tilting. This would result in a 

significantly greater southern dip on the PSR reflectors compared to the basin-

ivide unconformity. When the basin-wide_unconformity is restored to the horizontal, the 

reflectors directly below the unconformity at the fold hinge are sub-horizontal (Figure 8.33) 

implying that the extensional model is more feasible. Furthermore, this negates the 

requirement for a phase of inversion, and the geometry agrees well with the extensionally 

derived geometries in the Uitenhage Trough and the other two basins. 

ii) Uitenhage Trough 

Folding of the top_berriasian and top e-va/anginian reflectors has been observed in the 

sections that show the intra-basin faults in the southern Uitenhage Trough (Figure 8.29b & 

c). The extent of the folding is difficult to ascertain because of the limited data in a suitable 

orientation, however, from the available data, the fold axis is inferred to have an east-west 

trend and is in the immediate hangingwall to the Uitenhage Fault. The fold is dissected by 

the intra-basin faults (Section 8.4.3) and it is proposed that they formed in response to outer 
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arc extension associated with Late Syn-Rift extension on the Uitenhage Fault, in a similar 

mechanism to that discussed in the Gamtoos Basin (Chapter 6). As a result of the subsequent 

erosion there is no syn-rift sequence evident, although there are the remnants of Hauterivian 

sediments, which this model would predict. 

8.5.2 Port Elizabeth Trough basin-wide uncon formity 

The section across the Port Elizabeth Trough presented in Section 8.3.5 (Figure 8.14) 

illustrated the significance of the basin-wide unconformity. It is evident that the truncated 

horizons continued to the west, and therefore by projecting them an estimate of the amount 

of erosion can be determined, in Figure 8.32b the Principal Syn-Rift horizons are projected 

using the assumptions: a) they converge towards the flank of the basin (i.e. west); b) the 

geometry of the projection is a continuation of the geometry of where the horizon is present; 

c) there is no significant feature, e.g. fault on the Recife Arch. This last assumption is 

validated by sections that cross the arch. The projection (Figure 8.34) is approximately 

depth converted by pinning the section at sea-level and using the compilation depth-time 

conversion plot for the Algoa Basin (Appendix C-iii) to estimate that 3.5s TWT of syn-rift 

sedimentation is equivalent to 6 km depth (see Chapter 9 for method). This depth converted 

section is then juxtaposed against a similarly depth converted sections from the Gamtoos 

Basin in order to estimate the amount of erosion (Figure 8.32c). Despite the projections 

being taken as the lowest elevations that the observed geometries allow, it is estimated that at 

least 3 km of sediments and basement were eroded. 

8.6 Summary of basin evolution 

This section will integrate the data from the previous three sections to understand the 

evolution of the Algoa Basin. The spatial and temporal development of faults and basin fill 

deformation will be integrated with the tectonic and stratigraphic framework (Figure 8.35). 

In addition, paleo-environmental data from well logs will also be included. 

8.6.1 Principal Syn-Rift 

i) Kimmeridgian 

The oldest recorded sediments in the Algoa Basin are of Kimmeridgian age. However, no 

well penetrates to the deepest sediments in the hangingwall of the controlling faults, 

therefore the initiation of riffing may be older. During the Kimmeridgian the two principal 

controlling faults were the St Croix and Port Elizabeth Faults, with minor activity on the 
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NPETF (Figure 8.35a). The depocentres were immediately adjacent to the two faults with 

the sequences onlapping onto top_basement. None of the other faults were active. 

The depositional environment varied across the basin with terrestrially dominated braided 

fluvial systems and alluvial fans in the Uitenhage Trough, and Shallow marine sandstones in 

the Port Elizabeth Trough 

ii) Portlandian - Late Valanginian 

Sedimentation continued to be focussed on the St Croix and Port Elizabeth Faults throughout 

this period. The areal extent of the sequences increased with the spatially limited 

Kimmeridgian and Portlandian packages being overlain by Berriasian and Valanginian 

sequences (Figure 8.35b). These two later packages are inferred to have been deposited 

across the entire basin. The NPETF becomes inactive prior to the Portlandian and there is no 

suggestion of any of the mapped faults being active other than the St Croix and Port 

Elizabeth Faults. There is evidence of sediment accumulation in the south-east of the basin, 

however, the controlling fault is not present within the available seismic data. Between the 

Kimmeridgian and Portlandian, the locus of maximum accumulation migrates towards the 

south-east of the St Croix Fault. During the Portlandian to Early Valanginian it migrates 

back towards the north-west. The locus of maximum accumulation associated with the Port 

Elizabeth Fault remains relatively static throughout the period at the fault's southern extent. 

Although the Late Valanginian has limited preservation (Figure 8.35d), the laterally 

extensive nature of the horizon from the Pletmos Basin (Chapter 7) across the Gamtoos 

Basin (Chapter 6) and into the Algoa Basin implies that it was probably present across the 

entire Algoa Basin. 

The northern part of the Uitenhage Trough remains terrestrially dominated with meandering 

river systems and clay overbank interludes while the southern part increasingly marine 

dominated in the Berriasian and Valanginian. 

The shallow marine conditions of the Kimmeridgian in the Port Elizabeth Trough deepen to 

distal slope deposits during the Portlandian. This deepening is short lived and the 

depositional environment of the trough gradually shallows during the Berriasian until it 

becomes inter-tidal in the Valanginian (Soekor well reports). 

8.6.2 Late Syn-Rift: Latest Valanginian-Hauterivian 

This sequence is only preserved in the immediate hangingwall wall of the St Croix Fault 

(Figure 8.35d). However, Section 8.4 has demonstrated that during this Late Syn-Rift phase 
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there is a dramatic change in the distribution of active faults. It is inferred that the NPETF 

and Uitenhage Faults become active while activity on the Port Elizabeth Fault ceases. The 

St Croix Fault continues to be active, although much of the extension is inferred to have 

occurred along new structures that are slightly oblique to the St Croix Fault. 

As a result of the subsequent erosion by the basin-wide _unconjb rmily and the canyon system 

it is uncertain how extensive Late Syn-Rift sedimentation was. However, in both the 

Gamtoos and Pletmos Basins, the LSR package was not extensive and only occurred 

immediately adjacent to the active faults. Therefore it is proposed that sediment only 

occurred in the immediate hangingwalls of the NPETF, Uitenhage and western St Croix 

Faults. In addition to these faults, smaller intra-basin faults developed to enable the basin-

fill to accommodate this late stage extension. In the southern Uitenhage Trough and to the 

south of the NPETF localised folding of the Principal Syn-Rift mega-sequence developed. 

The orientation of the active controlling faults, intra-basin faults and basin-fill folding is 

east-west, implying that during this period extension was north-south with respect to the 

present orientation. 

Where the sequence is preserved the sediments are interpreted to be lower slope claystones 

(Appendix Q. There is, therefore, a significant deepening of the depositional environment 

between the Principal and Late Syn-Rift mega-sequences. 

8.6.3 Late Hauterivian-Aptian 

This period is characterised by a period of uplift, erosion and canyon formation (Figure 

8.35e). The age is constrained by pre-erosion deposition of Hauterivian slope deposits and 

post-erosion deposition of Aptian sediments. In addition to the peneplanation by the basin-

wide unconformity, there was at least 750m of incision by the canyon system. The setting 

for, and genesis of, this canyon system will be discussed in Section 

8.6.4 Aptian 

Despite the significant erosion, the canyon system is passively infilled during the Aptian 

with slope claystones that are not in a dissimilar depositional environment to the Late Syn-

Rift (Figure 8.350. Therefore there is very little change in depositional environment 

between the Late Syn-Rift and the Aptian despite the significant amount of erosion that 

occurred. This will be discussed further in Section 8.7. 

The northern section of the Uitenhage Trough canyon has more accumulation below the 

base _transp horizon than the south (Figure 8.12b) that suggests the presence of two sub- 
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basins. Sediment supply was sourced from the north, and filled the northern sub-basin first 

with occasional spills to the south and the deposition of parallel reflectors. After the 

northern sub-basin was filled, sediment influxed to the south, resulting in the minor 

unconformity at the base of the transparent package. A possible analogue would be the fill-

and spill processes documented by Sinclair & Tomasso (2002) from the Coyer Canyon in the 

French Alpine foreland basin. The depositional environment become gradually shallower, 

with the southern migration of the shelf inferred from the prograding sand units towards the 

top of the canyon fill. 

8.6.5 Post Rift: Albian - Recent 

Subsequent to the infilling of the canyon, post nfl sedimentation occurred across the basin 

from the Albian to present. During the Albian and Cenomanian there is a gradual thickening 

towards the south and deposition of quartz rich sandstones (Figure 8.35g). These sandstones 

are most probably sourced from the Table Mountain Group. 

From the Maastrichtian to the present day there is increased subsidence in the south with the 

development of a substantial southward progradational system with sedimentation 

continuing to be dominated by quartz sandstones (Figure 8.350. This is accompanied by 

onlap onto :op_e.cenomanian and the subsequent uplift of the coastal areas. 

8.7 Discussion and role of structural inheritance 

The evolution of the Algoa Basin will be integrated with the data from the Gamtoos and 

Pletmos Basins into a regional synthesis in Chapter 9, therefore this discussion will be 

limited to specific features of the Algoa Basin. 

The key observation is that structural inheritance does not play a significant role during the 

development of the basin. Although the two principal structures, the Port Elizabeth and St 

Croix Faults, are present through out the deposition of the Principal Syn-Rift sequences, 

there is a dramatic change in active structures during the Late Syn-Rift phase. The Port 

Elizabeth Fault is not utilised, instead new structures become active and cross cut the 

existing fault. With the St Croix Fault it is more complicated, although there is substantial 

evidence suggesting that it is also cross cut by new structures and only partly utilised. There 

is no evidence of the Uitenhage Fault during the Principal Syn-Rift package, and it becomes 

active during the Late Syn-Rift. 
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The interpretation of the St Croix Fault geometry differs from previous workers. The 

complex nature had been observed and explained by an array of overlapping fault segments 

on the main St Croix Fault (Cartwright, 1989; Bate & Malan el al, 1992). Such 

segmentation would be expected to be preserved through variation in sediment accumulation 

in the fault's depocentre; no such variation is observed. Furthermore, the complex faulting 

appears to be intimately linked to the development of the Late Syn-Rift sequences, and not to 

the Principal Syn-Rift, as the previous model implies. 

The basin-wide unconformity is present in the Gamtoos Basin, and therefore is a regional 

scale feature, and will be discussed in Chapter 9. The canyon system is more localised and 

will be briefly discussed here, although because it is closely associated with the basin-

w'deunconforinity, a full discussion of it will also occur in Chapter 9. The nature of the 

system is perplexing because of its timing and the depositional environments immediately 

prior to, and post incision. 

The principal timing constraints are: the canyon system incises both Principal and Late Syn-

Rift packages, implying that erosion was post Late Syn-Rift; the top canyon is not an 

unconformity, therefore erosion I incision ceased by the earliest canyon fill (Late Aptian). 

Hence, erosion is confined to being between the Late Hauterivian and the Late Aptian but 

does not constrain the number, nor relative timing of erosional events. 

The relative timing of the canyon incision is one of three possibilities: canyon system 

incision followed by basin-wide unconformity erosion; basin-wide unconformity occurs 

across the whole basin and then canyon system cuts into the basin; or synchronous canyon 

and basin-wide unconformity formation. In all possibilities, erosion occurred prior to 

canyon infilling. 

Each of the models raises specific questions or there are problems with validating them. In 

the first model, the canyon would be present during the erosion associated with the basin-

wide unconformity, hence the base of the canyon would be expected to contain deposits 

associated with this erosion. The local provenance is the silt and claystones of the Principal 

Syn-Rift; any erosionally derived deposits therefore may not be distinguishable from the 

deposits expected in a slope setting. 

Both the first and second models require two phase of uplift and incision / erosion in a 

relatively short period of time (see below), a suitable mechanism is therefore required. 
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The third model invokes synchronous basin-wide_unconformity erosion and canyon incision. 

This model only requires one phase of uplift, and no erosional canyon fill deposit would be 

predicted. However, when basin-wide unconformity and top canyon are plotted together, a 

uniform, south dipping plane is formed, suggesting that the area has been peneplained 

(Figure 8.13). Peneplaination, and canyon incision, are unlikely to be the result of a single 

erosional mechanism; incision is a localised event, while peneplanation is regional. 

Therefore, if canyon incision occurred synchronously with basin-wide_unconformity 

erosion, then they are the result of two different mechanisms. For example, peneplaination 

may be the rest of regional uplift and erosion, while canyonisation is the incision related to a 

localised drainage network. 

A further problem with the canyon system is that of the depositional and erosional 

environments. Immediately prior to, and post erosion, the depositional environment is a 

deep marine setting. The basin, between these slope depositional events, underwent 

significant basin-wide_uncoiformity, and approximately 750 in of incision by the canyon 

system. Such a change is too great to be related to only glacio-eustatic fluctuations, and 

requires an uplift event. This uplift and erosion occurred between the Late Hauterivian 

(-130 Ma) and the Mid Aptian (-115 Ma), corresponding to a relatively short period of time. 

Therefore, within 15 Ma the basin went from a deep marine setting, was uplifted to either 

shallow marine, or sub-areal setting, underwent up to 3 km of erosion (including quartz 

basement), had incision of 750 m, and then subsided rapidly to deep marine setting. 

The canyon system is a significant basin feature, and large by continental margin scales (e.g. 

Daly, 1936; Satterfield & Behrens, 1990; Cronin & Kidd, 1998; Wonham et al., 2000), 

further work is required to full understand its erosional genesis and fill history. 

8.8 Conclusions 

This chapter has established the tectonic and stratigraphic framework for the Algoa Basin, 

which is the eastern most of the three South African basins used in this study. It has been 

demonstrated that the Principal Syn-Rift deposition is controlled by two faults. To 

accommodate the extension in the Late Syn-Rift phase, new faults evolve rather than 

utilising the pre-existing structures. The basin has undergone significant erosion and 

canyonisation, and the timing and extent of these erosional events produces constraints to 

any uplift model invoked. 
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Chapter 8: Tectonic evolution of the Algoa Basin 

The following chapter will integrate the observations from all three offshore basins and the 

onshore basement transects to address the role of structural inheritance in the evolution of 

the region. 
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CHAPTER 9: Regional Synthesis 

9.1 Introduction 

The study of the onshore geology, and analyses of the offshore sedimentary basins in the 

preceding chapters have revealed that structural inheritance has had a significant influence 

on the evolution of southern South Africa. This chapter will integrate the onshore and 

offshore data through the modification of the Cape Fold Belt (CFB) schematic section 

presented in Chapter 4 (Onshore Mesozoic) with the sub-surface data derived from the 

seismic studies. Second, to evaluate the evolution of the offshore sedimentary systems by 

combining the observations from the three basins. Additionally, the influence of regional 

events on the development of the Mesozoic Basins will be addressed. 

This chapter is intended to be a synthesis of the key observations from this study with 

conclusions specific to understanding South Africa. The next chapter will uses this synthesis 

firstly to address generic questions of structural inheritance and the effect of pre-existing 

structures on normal fault growth. 

9.2 Onshore structures 

Five transects (each - 100 km long), orientated perpendicular to the regional structural trend, 

were compiled to evaluate the Permo-Triassic Cape Fold Belt (CFB) and the super-

imposition of Mesozoic extension (chapters 3 & 4). A comparison of the transects reveals 

that in an east-west orientation there is remarkable similarity in the foldbelt geometry over 

500 km, whilst there is significant variations in structural styles between the north and south 

of the region. 

In the north, the CFB is characterised by asymmetric, northward verging folds with 

wavelengths of approximately 5 km (Figure 9.1a). In the centre and south, steep limbed box 

folds, cored with Peninsula Formation or Pre-Cape Units, are evident with wavelengths of 

10-15 km. The northern limbs of the box folds tend to be steeply dipping to overturned. In 

Chapter 3 it was discussed that as there are no large scale thrusts, significant metamorphism, 

evidence of exotic block transport or klippen, the architecture of the CFB is atypical of 

continental compressional orogenies associated with thrusting and décollements (e.g. 

McClay, 1992 and references therein; Mattaur, 1986; Ricou & Siddans, 1986; Coward, 1983; 

Butler, 1982a & b; Boyer & Elliot, 1982). 
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Normal faults, commonly containing Mesozoic age syn-rift sediments (Chapter 2 & 4), are 

superimposed upon the CFB with an east-west strike parallel to the foldbelt. These faults are 

restricted to the central and southern regions (Chapter 4). In cross-section, the normal faults 

consistently occur at the northern end of the central box-fold flats (Figure 9. lb). As the 

position of the normal faults occurs in a structurally similar setting, it is inferred that the 

location of extension is structurally inherited from the pre-existing foldbelt (Chapter 4). 

Despite some of these observations having been presented by previous workers (Dingle el 

al., 1983; de Wit & Ransome, 1992), the question of structural control at depth has not been 

raised. In Chapter 4, two models were proposed, the first was reactivation of a thrustal 

décollement system, the second, normal reactivation of high angle reverse faults. From the 

onshore data it is impossible to constrain these models at depth, or differentiate between. 

9.3 Offshore Mesozoic structures and evolution 

The two objectives of studying the offshore data (Chapters 6, 7 and 8) were to determine the 

geometry of the Mesozoic extension at depth, thereby constraining the structural inheritance 

models proposed from the onshore data, and to understand the evolution of the extensional 

system. An understanding of the extensional system will be used in Chapter 10 to address 

whether structural inheritance influences normal fault growth. 

9.3.1 Overall structure 

The south-east offshore region of South Africa is comprised of three Mesozoic sedimentary 

basins (Pletmos, Gamtoos and Algoa; Figure 9.2), and these basins are principally controlled 

by the Plettenberg, Gamtoos, Port Elizabeth and St Croix Faults (Chapters 6, 7 & 8). The 

Pletmos Basin also contains the Pletmos and Superior Faults (Chapter 7), although they 

occur at the periphery of the available data are therefore not discussed in this chapter. There 

are no significant intra-basin faults in the Gamtoos Basin (Chapter 6), and the other faults 

present in the Algoa Basin are late rift stage structures (Chapter 8). The Plettenberg, 

Gamtoos, Port Elizabeth and St Croix Faults have east-west trends, which swing towards the 

south-east at the southern limit of the data coverage. The offshore Gamtoos Fault is a direct 

continuation of the onshore Gamtoos Fault (Chapter 6), while there are no direct equivalent 

onshore portions of the other faults. The width of the basin ranges from approximately 20 

km for the western Pletmos Basin to 60 km for the Garutoos Basin and Port Elizabeth 

Trough. In cross-section (Figure 9.3) the Plettenberg, Gamtoos and Port Elizabeth Faults are 

very planar, with throws of approximately 5.Os TWT for the former two, and 3.5s TWT for 
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the latter. The St Croix Fault has a more undulating, listric geometry with a throw of 3.5s 

TWT. From the throw (in TWT) it is impossible to determine the true displacement or dip, 

therefore it is necessary to depth convert these sections. 

i) Representative sections 

Four sections are presented to illustrate the overall geometry of the basin-bounding  faults 

(Pletmos, Gamtoos, Port Elizabeth and St Croix Faults; Figure 9.3). These sections have 

been chosen because they illustrate the appropriate fault with maximum observed throw. 

Although the data available to this study is insufficient to permit accurate depth conversion 

of sections from depth in ms TWT to depth in metres, an approximate conversion of each of 

these sections have been undertaken to allow basin dimensions and fault throw, dip and 

displacement to be estimated. The method and errors corresponding to this conversion are 

discussed in the following section. 

II) Depth conversions and limitations 

Accurate depth conversion of sections is beyond this project, and as it is the overall 

geometry on a basin scale that is important, in particular the dimensions and dip of the basin 

bounding faults, the conversion has been approximated. Using check shot data and time-

depth data (Chapter 5) from 41 wells, depth in time was plotted against depth in metres. 

Data from all wells have been plotted together (Figure 9.4) and a best-fit time-depth function 

was calculated using Table Curve 3.0 graph package. As a consequence of insufficient data 

across the basins,  this function was used for the four sections in Figure 9.3. The time-depth 

function suggests that the range of values are approximately ± 400 ms TWT from the 

predicted best-rift. This value is used as an approximate error for the calculated data.. The 

top basemen: hangingwall and footwall cut-off points were obtained from the sections in 

depth (TWT) and converted to depth in metres using this function. A linear velocity 

function between the two cut-off points is assumed. The true dip and vertical sediment 

thickness accumulation for each of the sections is then calculated (Table 10.1). 

There are various limitations with this method. The first is that as there is no well 

penetration deeper than 4,374m (2920 ms TWT), the velocity structure for the deeper 

portions of the basin has to be estimated. As the seismic velocity in sediments increases with 

depth due to increasing compaction, the gradient of the depth-time curve correspondingly 

increases with depth. To conservatively estimate the depth-time correlation at depth, the 
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curve is projected using the gradient of the lowest well velocity data to estimate depths 

beyond well penetration. In reality, the gradient will continue to increase, therefore this 

method will underestimate the true depth. Lithological variations of the basin fill also 

introduce an error. The lithology from which the velocity data are derived is predominantly 

shale, the dominant basin fill, although evidence from the basin margins suggest that the 

early syn-rift fill may be more sandstone dominated (as predicted by Prosser, 1993). As 

sandstones have a higher internal velocity than shales, by assuming that the unpenetrated 

basin fill is shale, the calculated sediment thickness will again underestimate the true 

sediment thickness. It is impossible to estimate an error for the projection at depth, however, 

the range of known data from the best-fit line is approximately ??%; a similar error is 

assumed for the depth to footwall cut-offs. 

A further error is introduced because the calculated sediment accumulation is under 

estimated because of erosion of hangingwall sediments against the Gamtoos, Port Elizabeth 

and St Croix Faults, although the observations from Chapters 6 & 8, suggest that there is less 

than 250 ms of erosion (equivalent to less than 5 %). 

As the minimum resolution of faults is generally considered to be a quarter of a wavelet (e.g. 

Badley el al., 1990; Pickering el al., 1997), and the wavelength of a wavelet increases with 

depth, the resolution of the fault cut-off pick decreases with depth. It is estimated that the 

resolution varies between 10-40 ms (Chapter 5), which is a negligible error compared to the 

scale of the half-graben bounding faulting. The errors in determining heave are negligible for 

hangingwall cut-off and are estimated to be approximately 100-200 in for footwall cut-offs, 

which is equivalent to 1-2%. 

In Chapter 5 it was discussed that sediment accumulation is used as a proxy for 

displacement. By assuming that calculated total sediment thickness is equivalent to total 

fault displacement, as is done here, further errors are introduced. The formation of 

accommodation space is a result of the interaction of tectonic subsidence and eustatic 

fluctuations (e.g. Gawthorpe & Leeder, 2000). As the thickness of sediments is significantly 

larger than eustatic fluctuations (-12 km compared to 100 m), eustatic effects have been 

ignored. The basins were probably underfilled for much of their evolution because syn-rift 

sedimentation was dominantly shelf to slope deposits (cf. Chapters 6, 7 & 8). This 

introduces an error because sediment supply was not filling all the available accommodation 

space, hence displacement is underestimated. In these calculations it is the total 
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displacement that is important; the underfihling of accommodation space would only increase 

inferred displacement by —I 00m (ef displacement of approximately 12 km). 

A final consideration is that sediment accumulation does not account for elastic re-bound or 

isostatic restoration of the faults' footwalls (e.g. Stein & Barrientos, 1985; McKenzie & 

Jackson 1986; Anders el al., 1993), resulting in further underestimation of displacement. 

Scale of faulting 

The depth-conversion of the data in the previous section reveals that the maximum 

dimensions of the basins are: 60 km wide; fault lengths of up to 150 km; and up to 12 km 

throw on the bounding faults, which are moderately to steeply dipping (Table 9.1). it is 

important to note that these are minimum estimates (see previous section). The 

determination of the length of the faults is problematic. The lengths stated are the minima 

that are evident from the seismic data alone (except the Gamtoos Fault where both onshore 

and offshore portions are included). Previous workers (e.g. McLeod et al., 2000) have used 

displacement/length profiles to estimate total fault length; this has not been undertaken here 

due to the uncertainty of errors in the displacement/length (D/L) profiles (see Chapter 10). 

The onshore portions of the faults will not be discussed because of a lack of accurate data. 

Implications for CFB model 

The depth-conversion of the Mesozoic faulting can provide further constraints for the models 

of the CFB (Figure 9. lc &d). This assumes that there is continuity of structures between the 

onshore and offshore, which is reasonable given the similarity in structural styles across the 

foldbelt. 

In both of the models, the north of the CFB is controlled by a shallow décollement thrust 

system, which is consistent with the listric geometry of the St Croix Fault flattening out at 

approximately 5 km. The two models differ with respect to the control of the southern CFB. 

Inherent in the décollement model is that the normal faults become listric at depth, soling out 

onto a controlling décollement, and that the system undergoes complete, rather than partial, 

reactivation (see discussion in Chapter 3; Figure 9.1c). This last assumption is valid as the 

main compressional features are the box folds, which are inferred to be controlled by some 

structure at depth. This requires the controlling reverse fault to occur immediately to the 

south of the northern limb (i.e. northern end of the box-fold flat). As this is the position 

where the normal fault is observed, it is inferred to reactivate the pre-existing reverse fault. 
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The Gamtoos and Plettenberg Faults are planar structures with dips of 42.5° and 65° 

respectively. If reactivation is assumed, then the ramp structures of the pre-existing reverse 

faults have to have the equivalent dip. This invoked ramp dip is significantly steeper than 

most documented examples, where geometries tend to be shallower than 30° (Boyer & 

Elliot, 1982). The planar nature of the Gamtoos and Plettenberg Faults to at least 12 km 

confines the depth of the décollement to greater than 12 km, and it may be considerably 

deeper unless the steep ramps merge with the décollement without becoming listric. In 

Chapter 10 these observations will be integrated with the current understanding of structural 

inheritance (reviewed in Chapter 2) to asses which of the two proposed models is more 

applicable. 

v) Evolution of South African offshore 

The second aim in studying the offshore data was to establish a tectono-stratigraphic 

framework to understand the evolution of the Mesozoic extensional setting. has been 

established, and results from all three basins will be integrated in this section (Figure 9.5). 

As discussed in Chapter 5, and a Section 9.2.2, it is assumed that accommodation space is 

controlled by tectonic subsidence and that sediment accumulation is a proxy for 

accommodation space. Therefore variations in sediment accumulation are assumed to reflect 

variations in fault displacement. 

The earliest syn-rift sediments are not penetrated in the deepest portions of the basins, and 

the oldest sediments dated in any borehole is Kimmeridgian; rifling is assumed to have 

initiated prior to the Kimmeridgian. 

Onshore data in Chapter 3 suggests that the earliest syn-rift may be Enon conglomerate, 

although from the available data it is difficult to know how extensive this unit is and how it 

relates to the offshore units. Across most of the offshore region, the top_kimmeridgian well-

tie is picked, and even at this early stage deposition is controlled by the principal faults with 

no evidence of other controlling faults. Borehole evidence suggests that sedimentation is 

dominantly fluvial, and deposition is greatest adjacent to the north-south trending faults, 

although does also occur on the east-west portions (-800 ms compared to 400 ms for the 

Gamtoos Fault). It is inferred that the north-south fault portions have greater displacements 

compared to the east-west portions, and that extension is east-west orientated with respect to 

the current position. In the Algoa Basin, deposition does not occur across the whole basin, 

but is focussed on the controlling faults, and onlaps onto the flanks of the sub-basins. In the 

Pletmos Basin, other faults are active and have deposition associated with them. 
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Across the region in the Portlandian, Berriasian and Valanginian (Principal Syn-Rift 

megasequence), sediment accumulation continues to be focussed on the controlling faults, 

with the other faults in the Pletmos Basin becoming less significant. During this period there 

is at least 1800 ms TWT of sediments accumulated adjacent to the Plettenberg Fault, 2500 

ms TWT against the Gamtoos Fault, 1200 ms for the Port Elizabeth Fault, and 2100 ms 

associated with the St Croix Fault. There is a migration of the loci of maximum 

accumulation towards the north-west in all of the basins, although this is less evident in the 

Algoa, where these sequences are less well preserved. The orientation of the regional stress 

system is inferred to have changed and become more north-east to south-west orientated. 

The depositional environment deepens dramatically between the Kimmeridgian and 

Portlandian, with fluvially dominated sediments being replaced by marine sediments, except 

in the proximal Algoa Basin where estuarine deposits dominate. Immediately adjacent to the 

Plettenberg and Gamtoos Faults, sediments were deposited in outer shelf conditions. 

In the Latest Valanginian and Hautenvian (Late Syn-Rift mega-sequence), the loci of 

deposition migrate to the west in the three basins, with extension only occurring on the east-

west trending fault portions. The total accumulations during this stage are: Plettenberg 

Fault, 1700 ms; Gamtoos Fault, 1750 ms; St Croix Fault, >500 ms. Sediment accumulation 

only occurs immediately adjacent to the bounding faults, and onlaps onto the underlying 

Principal Syn-Rift sequences. In the Gamtoos and Pletmos Basins the pre-existing bounding 

faults are utilised, whilst in the Algoa Basin, new faults evolve that cross-cut the pre-existing 

faults. Across the region, arrays of smaller extensional faults, trending east-west, evolve in 

the sedimentary fill of the basins, and folding of basin-fill sediments occurs proximal to the 

north-south trending Gamtoos and Plettenberg Faults. Features such as the Gamtoos 

Anticline develop at this stage in response to this localised phase of extension. There is no 

erosional truncation evident between the Principal Syn-Rift and the Late Syn-Rift mega-

sequences. 

The depositional environment changes between the Late and Latest Valangiman from 

shallow marine/shelf to deeper marine slope, and this is accompanied by a change in 

petrorgraphy from lithic sandstones to claystones. Such a petrographic variation may be in 

response to either a switch to a more distal depositional environment (and probably 

corresponding decrease in coarse clastic sediment supply), or a change in provenance. 

Despite the errors inherent in the calculation of sediment accumulation rates (see Chapter 5), 

there is no evidence of a dramatic reduction in sedimentation, therefore a change provenance 
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is the more probable cause. The lithic and quartz provenance is most likely to be from the 

upper Cape Supergroup, which are lithic, not quartz, dominated sandstones (Chapter 2). The 

claystone 'input may be a result of erosion of the Karoo Basin. 

Subsequent to the Hauterivian, the east of the study area experienced a major erosional 

truncation event which affects the whole of the Algoa Basin, and 60% of the Gamtoos Basin 

(eastern portion). The reconstruction of the Port Elizabeth Trough (Chapter 8) reveals that 

there may have been at least 3 km vertical erosion. At this time, there is evidence of 

compression and reverse faulting on the Gamtoos Basin western flank, and possible 

reactivation of the east-west trending Gamtoos Fault. This erosion is synchronous across the 

Gamtoos and Algoa Basins and has been dated as Barremian. 

In contrast, in the Pletmos Basin (150 km to the west), there is subsidence with the 

development of a southward prograding system. 

A regional hiatus is evident in the Aptian, prior to the Algoa Basin's canyon infilling in the 

mid-Aptian. Mild regional subsidence in the south is followed by uplift of coastal areas and 

dramatic subsidence during the Late Cretaceous and Tertiary. 

The key conclusions from this synthesis are: 

I) There is evidence of fault growth along the entire length of the principal faults from a 

very early stage. 

Associated with the early Principal and Late Syn-Rift stages there is a significant 

increase in water depth of the depositional environment. 

There is the sequential migration of the loci of maximum sediment accumulation 

towards the north-west during the evolution of the basins. It is inferred that this reflects 

a variation in the location of maximum fault displacement. 

During the Latest Valanginian and Hauterivian, when extension becomes north-south 

orientated, the east-west portions of the Plettenberg and Gamtoos Faults are re-used, 

resulting in the deformation of their basin-fill sequences, while in the Algoa Basin new 

faults cross-cut the pre-existing structures. 
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9.4 Modification of Mesozoic basins by regional events 

Prior to discussing whether structural inheritance has influenced the development of the 

basins, it is necessary to discuss whether the Mesozoic evolution has been modified by 

regional events. 

i) Aghulas Falkland Fracture Zone 

The Aghulas Falkland Fracture Zone (AFFZ) has been much cited as a significant influence 

on the evolution of southern South Africa, from the overall geometry of the basins to 

localised deformation events (e.g. Ben-Avraham et al., 1993; McMillan et al., 1997). This 

section will briefly asses whether such claims are valid in light of the presented observations. 

Arcuate basin geometries: On a regional scale, three mechanisms have been proposed to 

explain the arcuate nature of the Mesozoic extensional structures, two of which involve the 

AFFZ. Ben-Avraham et al. (1993) attribute the change in trend to rotation of the faults by 

the dextral AFFZ during initial rifting. Many others (Martin et al., 1981; Thomson, 1999) 

propose that it is inherited from the arcuate shape of the CFB. 

In Chapters 3 & 4 it was documented that that the Cape Fold Belt deformation was identical 

regardless of whether it had an east-west or NE-SW orientation (as it does in the Gamtoos 

Basin) and that there was no discontinuity between the two areas. This suggests that the 

along trend variation in the CFB was not a result of brittle deformation. The deformation 

associated with the AFFZ would be expected to be of a brittle nature in the upper crust, and 

therefore does not explain the observations. It is concluded that the arcuate nature was 

inherited from the underlying foldbelt. 

Strike-slip and compression due to AFFZ: Many of the deformational features within the 

Gamtoos and Pletmos Basins have been attributed to a strike-slip component of the normal 

faults displacement, often inducing localised compression (cf. Chapter 2). The dominant 

cause of this strike-slip motion has been attributed to AFFZ motion. In particular, the 

Gamtoos Anticline, the change in extension of the Gamtoos Basin to the east-west fault 

portion only, and the folding within the Pletmos Basin have been cited as examples of 

compressional deformation. In each of the chapters, the formation of these inferred 

compressional structures have been attributed to extensional strain being superimposed upon 

the specific conditions within the basin. For example, the Gamtoos Anticine had been 

attributed to subsidence in the west of the basin resulting in compression and uplift of the 

basin fill in the east adjacent to the curve of the basin fill (Fouché el al. 1992). 
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Reconstruction of the geometries has revealed (Chapter 6) that this apparent folding can be 

achieved by switching the locus of active extension to the east-west trending fault, resulting 

in the deformation of the pre-existing basin fill. There are no features within any of the 

basins that require strike-slip motion on the AFFZ. 

Proximity to AFFZ: Interpretations of published sections from the Southern Outeniqua 

Basin, which lies between the study area and the AFFZ, demonstrate that there was little or 

no deformation during the period when the AFFZ was active. It is presumed that associated 

deformation would be expected to be more evident closer to the AFFZ. In a study of the 

region to the south of the Outeniqua Basin, Ben-Avraham etal. (1993) conclude that there is 

no evidence of post-Hauterivian motion or deformation of the Diaz Ridge because AFFZ 

deformation is localised to the south. This localisation of deformation on a relatively narrow 

zone beside a transform margin has been documented in analogous settings (e.g. Mascie ci 

al., 1987; Ben-Avraham & Zoback, 1992; Basile & Brun., 1993), by sand-box models 

(Basile etal., 1999) and thermomechanical modelling (Gad & Scrutton, 1997). 

There is therefore no evidence that the AFFZ has played a significant role in modifying the 

basins in the study area. 

9.5 Gamtoos and Algoa Basin uplift 

It has been documented in this study that the eastern Gamtoos and Algoa Basins underwent 

uplift and erosion during the Late Hauterivian. The Gamtoos Fault footwall has undergone 

the most significant erosion (4 km), with evidence of uplift and erosion of the eastern 

Gamtoos Basin, and across much of the Algoa Basin. There is no evidence of this uplift 

either in the western most Gamtoos Basin, or the Pletmos Basin, implying that the width of 

deformation is in the order of 200 km. 

As the deformation is on the scale of 200 km (i.e. significantly greater than basin scale), it is 

concluded that a local causal mechanism is not valid, and a more regional mechanism is 

required. In other regions where basin inversion / exhumation has occurred, the dominant 

mechanisms invoked are: uplift due to either hot spots, or a transient spreading centre; post-

glaciation lithosphenc isostatic rebound; intra-plate compression associated with collision, or 

spreading centre ridge-push; or underplating beneath continental crust (Dewey, 1989; 

Coblentz etal., 1995; Ferreira etal., 1998; Withjack etal., 1995). 
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Thermal anomalies associated with hot spots typically have topographic expressions on a 

wavelength of approximately 2000 km (White and McKenzie, 1989), which does not 

correspond to the observed deformation, and no hot spots were nearby at this time (Martin, 

1987, Morgan, 1983). The progression of the sea floor spreading ridge to the south of the 

AFFZ has been suggested as a possible mechanism (Thomson, 1999). However, the 

associated uplift would be expected to be transient with maximum uplift passing to the west 

with time. The uplift is synchronous across the area and does not effect the western portion. 

Isostatic rebound is not valid as there is no evidence of glaciation since the 

Carboniferous/Permian Dwyka Tillite (Dingle etal., 1983). 

The principal plate driving force on the African plate during the Cenozoic has been 

compression as a result of ridge-push and Meijer & Worte (1999) conclude that there is no 

relationship between ridge push torque and changes in the Africa-Eurasian collision. 

Therefore, as there has been no change in plate margin boundary conditions, except for the 

northern margin, ridge-push was the dominant driving force in Southern Africa during the 

Late Hauterivian. The timing of the sea floor spreading initiation has been determined using 

sea-ward dipping reflectors on both the Namibian and Argentinian margins, which give an 

age of 130Ma, and by the first sea floor magnetic anomaly, chron CM 10 (Austin & Uchupi, 

1982). Chron CMIO and 130Ma are recognised as being of Late Hautenvian age (Channel 

el al., 1995) which is co-incident with the pulse of uplift/compression. The compressional 

effects of ridge-push have been documented both by geophysical modelling (Lithgow -

Bertelloni & Richards, 1998; VAgnes, el al., 1998; Meijer el al., 1997; Richardson, 1992; 

Bott & Kusznir, 1979), and from studies of inverted margins and basins (Doré et al., 1997; 

Coblentz et al., 1998; Withjack et al., 1995; 1998). The majority of these studies document 

inversion of the adjacent margin, and not a basin that is over 600 km from the spreading 

centre. It is also uncertain why the compression would be focussed on this particular area. 

An alternative would be uplift associated with underplatmg and the emplacement of intrusive 

bodies under the area, however, there are no available geophsyical data to either support or 

disprove this. 

From the available data it is difficult to differentiate between horizontal and vertical 

compression, therefore the genesis of the uplift remains an enigma. 
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9.6 Variation in extension orientation 

The regional synthesis documents a consistent rotation in the relative orientation of 

extension from east-west in the early syn-rift, to the northwest-southeast in the Valanginian, 

to north-south in the Hauterivian. From the available data it is uncertain whether this 

variation is a consequence of a variation in the regional stress system, or a result of African 

plate rotation about a static stress system. 

9.7 Conclusion 

The objective of this chapter was to integrate the onshore and offshore data. Through the 

approximate depth conversion of seismic sections, the proposed models for the CFB have 

been constrained further in depth 

Data from the offshore chapters reveal that the evolution of the three basins are very similar. 

In the Gamtoos and Pletmos Basins the controlling faults remain dominant throughout the 

evolution regardless of extension orientation. In the Algoa Basin, where the controlling 

structures are shallower, when the extension orientation changes, new structures are 

established to accommodate the new stress regime. 
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10.1 Introduction 

Studies of structural inheritance and extensional system evolution have both received 

significant attention over the last decade (see review in Chapter 2). However, until recently, 

there have been very few studies that have attempted to fully integrate these two important 

aspects of continental tectonics. The central objectives of this study are to understand the 

role of structural inheritance in the evolution of southern South Africa, and to address the 

role of structural inheritance during the growth of normal faults. 

This chapter is divided into two parts. The first part will address whether structural 

inheritance, and fault reactivation, can adequately explain the observations from the Cape 

Fold Belt and Mesozoic extension outlined in Chapter 9. The second part will examine the 

observations from the Mesozoic system and discuss whether current fault growth models are 

applicable to a region with a significant pre-existing structural fabric. 

10.2 Structural inheritance 

The repeated use of a tectonic fabric by multiple phases of deformation, structural 

inheritance, is intimately associated with reactivation, which is the accommodation of 

geologically separable displacement events along pre-existing structures (Holdsworth ci al., 

1997). Depending upon the change in stress regime, reactivation can result in either 

inversion, the compression of an extensional system and the uplift of syn-rift sequences; or 

negative inversion, the extension of a previously contractional system (Williams ci al., 1989; 

for discussion on nomenclature see Cooper el al., 1989). Reactivation of a structure with the 

same sense of slip is more difficult to observe. 

This section will discuss whether the concepts of reactivation, and associated inversion 

geometries, are applicable to, and aid the understanding of, the CFB and Mesozoic 

extension. 

Controls on CFB formation: It is assumed that the Cape Fold Belt deformation is 

controlled by underlying reverse faults (Chapter 3). There is no surface expression of these 

contractional structures, therefore the dips and strikes have to be inferred from the available 

data. 
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The key observation from onshore studies in South Africa, presented in Chapter 3, is the 

very different style of deformation between the northern foldbelt and the central and south 

areas. The former is dominated by 5 km wavelength, north-verging asymmetric folds, while 

the latter (central and south) are dominated by 20 km wavelength, 10 km amplitude anticlinal 

box-folds separated by - 5 km wavelength synclines; there are no significant thrust faults, 

mylonites, klippen that are indicative of a fold and thrust system, especially in the south (cf. 

Chapter 3). The key questions are whether the nature of the controlling faults can be 

ascertained from these geometries, and why there is a difference between north and south. 

The north region does not present a problem as the geometry of the surface folds are similar 

to those expected from blind thrusts (Boyer & Elliot, 1982; Coward, 1984; Mitra, 1990). 

The south is problematic because the box-folds are very different in style to the north and to 

those expected in fold and thrust belts. In Chapter 3, three models for the genesis of the box 

folds were suggested: regional décollement with either back-thrusting or stacked duplexes 

forming the box-folds; or reactivation of high-angle reverse faults. From the available data it 

is difficult to conclude which model is more valid. In Chapter 2 it was shown that given a 

simple ramp-flat geometry, box-folds (similar to those of the CFB) were produced in 

analogue models (Buchanan & McClay, 1991; McClay, 1995; Mandal & Chattopaddhyay, 

1995; Bonni el al., 2000) only when the ramp angle has a dip of between 45-60° (Figure 

10.1). These model also predict that at these steep ramp angles, significant back-thrusts 

evolve resulting in the rear limb of the fold being steep. The implication of the analogue 

models is that faults coring the CFB are steep. These results support the modelling of 

Hälbich (1983) presented in Chapter 3. Although reverse faults are more commonly shallow 

structures (cf. Chapter 2), reverse slip on high angle faults (>40°) is possible, as the 

telesismic data published by Jackson (1980) and Amato et al. (1992) reveals. The alternative 

explanation proposed in Chapter 3 (model 2) is that complex stacked duplexes, which are 

currently subsurface, result in a box-fold geometry in the overyling sequences (e.g. 

McDougall & Hussain, 1991). From the basement geometry alone it is impossible to 

differentiate between the models. 

Mesozoic extension: In the onshore data, the extensional structures have the same trend as 

the basement fabric (Chapter 4) with an east-west orientation in the Central Cape (Figure 

10.1a), and a north-west to south-east orientation in the Gamtoos Basin (Figure 10. lb). The 

offshore Plettenberg Fault (Chapter 7) has the same trend as the immediately adjacent 

onshore basement (Figure 10.2a), while the Gamtoos Fault offshore has a consistent trend to 
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that of the onshore fault, and the onshore basement (Figure 10.2b). Additionally, the 

regional transects (Chapter 3 & 4), have demonstrated that the normal faults consistently 

occur in the same structural setting within the foldbelt, that is, at the north end of the box-

fold flat. Similarity in trend of the CFB folds and Mesozoic faults, and the consistent 

structural relationship between the two suggest that Mesozoic extensional architecture is 

inherited from the CFB, and that the CFB underwent negative inversion. As discussed in 

Chapter 3, assuming the reactivation of high angle faults, the location of the normal faults at 

the northern end of box fold flats tends to preclude the existence of a complex stacked 

duplex system underlying the CFB. 

The observations from the offshore seismic data are high angle planar (42 1, 65°), large (>12 

km displacement) normal faults in the centre and south, with more listric (32°), shallower 

detachment depth - 5 km (32°) in the north (cf. Chapter 6,7, 8 & 9). Therefore, there is a 

difference in the style of faulting between north and south (although the data set is very 

limited). If it is inferred that the position and character of the normal faults are inherited 

from the CFB, then the observations of the offshore faults imply that the northern faults may 

be shallow structures while the central and southern faults are deep rooted (to at least 12 

km). The CFB models can therefore be tentatively constrained at depth (Figure 10.2). 

The consensus from the studies of negative inversion and theoretical considerations 

discussed in Chapter 2 is reactivation of a reverse fault into extension is more likely to occur 

if the pre-existing fault is steep (>35°), while a shallower reverse fault will be cross-cut by 

crustal scale faults (Table 10.1). Therefore, reactivation of a high angle reverse fault during 

Mesozoic extension is plausible. 

The role of structural inheritance in South Africa: The integration of observations from 

the basement and the Mesozoic, both onshore and offshore, strongly suggest that structural 

inheritance has played a significant role in establishing the architecture of the Mesozoic 

system. What remains less certain is the controlling geometry at depth. The consensus from 

previous work (Chapter 2) is that there is a regional décollement (Figure 10.3a). The 

integration of observations presented in this study with the current understanding of 

structural inheritance presented in Chapter 2, suggests that an alternative model may be one 

of a décollement in the north and high angle faults in the south that, during Permian-Triassic 

compression, form box folds. In the subsequent Mesozoic extension, the northern faults 

relax, forming shallow listric faults, while the southern faults are crustal scale and 

accommodate the majority of the extensional strain. 
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These shallow (i.e. not crustal scale) faults in the north are more likely to be cross-cut 

(Chapter 2), as is evident in the Late Syn-Rift phase (Chapters 8 & 9). Furthermore, such a 

model may explain why the CFB has an atypical architecture when compared with other fold 

and thrust systems (cf. Chapter 3 & 9). Theoretical considerations discussed in Chapter 2 

suggest that high angle (> 45°) reverse faults are more likely to have initiated through 

reactivation of extensional faults; a premise that is also proposed by Bonini et al. (2000), 

and Jackson (1980) (cf. Chapter 2). It is speculated that these high angle faults may have 

been normal faults on the Cape Supergroup (Ordovician to Devonian) passive margin 

(Figure 10.3). Only by conducting further studies e.g. analysis of sediment variation within 

the Cape Supergroup, crustal scale seismic sections, will it be possible to ascertain which 

model is more appropriate. 

10.3 Implications for normal fault evolution 

10.3.1 Comparison of South African faults with fault growth models 

Normal faults have been demonstrated to grow by both radial tip propagation, and segment 

linkage (Morley el al., 1990; Roberts & Jackson, 1991; Peacock & Sanderson, 1991, 1994; 

Trudgill & Cartwright, 1994; Dawers & Anders, 1995; Cartwright et al., 1996; Morley, 

1999; Contreras el al., 2000; Young el al., 2001; McLeod et al., 2002). The evolution of 

fully grown normal fault systems can be reconstructed through the identification of segment 

boundaries determined by: 1. changes in strike; 2. along strike-displacement variations; 3. 

footwall lows and mtra-basin highs; 4. the growth of depocentres; and 5. abandoned fault 

tips. By determining whether these characteristic features are evident in observations 

presented in Chapters 6, 7 & 8, it is possible to determine the evolution of the South Africa 

faults. It then possible to assess whether the presence of the pre-existing structural fabric (as 

described in the previous section influences) fault growth. 

Changes in strike: the principal fault planes in this study are mappable as discrete, 

continuos surfaces for 158 km (Plettenberg), 96 km (Gamtoos, offshore only), 52 km (St 

Croix), and 38 km (Port Elizabeth). There is no evidence from the TWT of the fault planes 

(Figure 10.4) of along strike changes in trend. 

Along strike displacement variations: Sediment accumulation is used a proxy for fault 

displacement (Chapter 9), and sediment accumulation / length plots for the Plettenberg, 

Gamtoos, Port Elizabeth and St Croix Faults are shown in Figure 10.5. Even with the 
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earliest sequences there are no points at which the accumulation approaches zero. Therefore, 

the fault is accumulating displacement along its length even during the early syn-rift stages. 

Footwall lows, mtra-basin highs: There is no evidence of intra-basement highs (e.g. 

onlap and thinning of sequences parallel to the fault) in the observations presented in any of 

the basins (Chapters 6, 7 & 8). 

Isolated depocentres: There is no evidence of isolated depocentres, even in the earliest 

mappable syn-rift packages, in the sediment accumulation - Length plots of the four 

principal faults (Plettenberg, Gamtoos, Port Elizabeth and St Croix Faults; Figure 5, 6, 7 & 

8). In all of the sequences, sedimentation occurs across all of the basin area. Even 

accounting for the lack of available data on sediment supply, the basins have been 

underfilled and redistribution of marine sediments would be expected to result in the 

preferential preservation of depocentres (McLeod etal., 2002). 

Abandoned fault tips: There is no evidence in the observations of abandoned fault tips 

(Chapters 6, 7 & 8). 

The faults of South Africa therefore do not show evidence of segmentation; the following 

s7ection will compare the observations from the studied faults with predictions from the fault 

growth model reviewed in Chapter 2. 

10.3.2 Normal fault growth in heterogeneous crust 

It is proposed that the growth of the South African faults, without evidence for segmentation, 

is a consequence of the significant pre-existing fabric (cf. Section 10.2). A model is 

presented for extensional system evolution in a region with a significant pre-existing 

structural fabric, and compared with that of the near-homogenous lattice of Gupta et al. 

(1998) in Figure 10.16. 

The model of Gupta ci al. (1998) is initiated with a lattice containing randomly distributed, 

minor, strength heterogeneities. As stress is applied, the lattice points with least strength are 

the loci of fault nucleation, resulting in isolated fault segments across the lattice. With 

continued extension, interaction of local stresses (Willemese ci al., 1996; Willemese, 1997) 

and stress feedback mechanisms (Cowie, 1998) results in the progressive coalescing of the 

isolated segments. In the model presented in Figure 10.9, the pre-existing plane of weakness 

is used as a "seed-point" for new faults which grow radially. These faults grow and interact, 

however because they are on the same plane, there is no evidence of either abandoned tips, 

or en-echelon segments in plan view. Furthermore, because of the pre-existing weakness 
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there are no effective rupture barriers to prevent radial fault tip propagation (Cowie & 

Scholz, 1992), and the faults can become very long, despite being significantly 

underdisplaced. A consequence of stress being localised onto a few structures is that strain 

is accumulated rapidly, therefore in the heterogenous model, the system evolves from 

isolated segments to a single fault significantly quicker than in the Gupta ci a!, model. This 

is supported by the absence of both isolated depocentres adjacent to the principal faults, and 

intra-basin faults even during the early syn-rift phase. During the middle and late rift stage, 

faults in the Gupta et a!, model are increasingly dominated by a few major faults that are still 

increasing in length and displacement. At this stage in the heterogenous model, the fault 

length has already been achieved, and displacement is accrued to redress the deficit. 

A further feature of the fault growth models is the progressive localisation of strain on a few 

principal structures during the evolution of fault system (e.g. Gupta eta!, 1998; Cowie etal., 

2000), which has been demonstrated in sub-surface studies (Chapter 2; McLeod ci al., 2000). 

In all three basins, from at least the earliest syn-rift sequences, there is no evidence of any 

intra-basin faults. Instead, strain appears to be localised from a very early stage on the 

principal faults. 

An alternative way to view the growth history is through the maximum displacement/length 

ratio (D ma,JL). Cartwright ci al. (1996) demonstrate a step-like cycle of growth through a 

combination of segment linkage and propagation. When a fault grows by segment linkage, 

length increases with little accumulation of displacement, however, when it grows by 

propagation, displacement can be accumulated with little increase in length, resulting in a 

step-like plot (Figure 10.10). In South Africa, there is probably an initial period of growth as 

isolated segments (during the poorly resolved earliest syn-rift phase) followed by a rapid 

period of linkage to produce a long, under-displaced fault. Subsequently, there is a 

prolonged period of growth through the accumulation of displacement. The absence of 

isolated depocentres in the early syn-rift implies that the transition from segment linkage to 

displacement accruement must have occurred early in the basin's evolution. 

10.3.3 Scale of South African faulting 

A final consideration for the South African faults is their size. The Plettenberg and Ganitoos 

Faults have minimum lengths of 150 km and 96 km (150 km including onshore) 

respectively, and maximum displacements of 13 km and 16,5 km (Chapter 9). The Port 

Elizabeth and St Croix Faults are smaller with minimum lengths of 38 km and 52 km, and 

maximum displacements of 8.6 km and 12.7 km. respectively. It has been suggested that 
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fault displacements scale with length according to the relationship of D=cL, where c is a 

constant associated with rock properties (Watterson, 1986; Walsh & Watterson, 1988; 

Gillespie etal., 1992; Marren & Allmendinger, 1991; Cowie & Scholz, 1992; Dawers el al., 

1993; Schlische etal. 1996). The ratio Of Dm  /L for the South African faults (0.08 for the 

Plettenberg Fault; 0.17 for the Gamtoos (0.11 if onshore is accounted for); 0.22 for the Port 

Elizabeth Fault; and 0.24 for the St Croix Fault) are considerably higher than the value of 

0.03, which is predicted from Schlische el al.'s best fit line, and has been supported by 

various recent studies (Contreras ci al., 2000; McLeod el al., 2000). From the available data 

it is uncertain whether this correlation between D max  and L is not valid for this region, or 

whether the faults are significantly longer than the seismic coverage (for a D/L value of 0.03, 

the length of the Plettenberg and Gamtoos Faults would have to be at 433 km and 550 km). 

The observed lengths of the Plettenberg and Gamtoos Faults are at the upper limit of normal 

faults documented on continental crust (Figure 10.11 & 12), therefore, the estimated lengths 

of 433 km and 550 km from the global D/L are considered to be unrealistic, suggesting that 

the D/L ration of 0.03 may not be globally applicable. 

When the South African fault values are plotted onto the global data set compiled by 

Schlische ci al. (1996), they have significantly larger D and L values compared to other 

normal fault arrays (Figure 10.11). 

The faults in this study also have displacements considerably larger than previously 

documented for an extensional continental setting (cf. Chapter 2; Figure 10.12). Other 

regions with large displacement and long faults (e.g. East African Rift with faults of 150 km 

length and 7 km displacement; Baikal Rift with 140 km long faults) have been explained by 

large elastic and seismogenic thicknesses, abnormally mafic and dry lower crust, and low 

geothermal gradients (Déverchè etal., 1991; Jackson & Blenkinsop, 1993, 1997; Hayward & 

Ebinger, 1996; Foster & Ninimo, 1996; Jackson & Blenkinsop, 1997; van der Beck, 1997; 

Ebinger etal., 1999; Contreras ci al., 2000). Although such explanations may be applicable 

to southern Africa, without a better understanding of regional crustal dynamics, and 

geophysical characteristics, it is impossible to ascertain the genesis of such large faults in 

southern South Africa. 

In conclusion, the faults in South Africa have grown through strain localisation from an 

unprecedentedly early stage, most likely in response to structural inheritance, and have 

dimensions that are larger than previously documented for an extensional, continental 

setting. 
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Figure 2.1: Examples of positive structural inversion, a) Sand-box modeling with a variable ramp angle 
(cx) illustrating that the higher the ramp angle, the shorter the wavelength of the resultant hangingwall 
deformation (Bonini etal.. 2000). b) Two examples of inversions from seismic studies that illustrate the 
overall pop-up geometry that can be observed (after McClay, 1995). 
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Figure 2.2: Two examples of negative structural inversion, a) Faccena et al. (1 995)'s results from 
sandbox models show that the complete reactivation of an existing reverse fault into extension occurs if 
the dip of the structure is> 410.  b) Structural cross-section across the Lewis thrust sheet, northwest 
Montana. Note that the majority of normal faults ignore the pre-existing low angle thrust fault. The lower 
two diagrams show partly and fully restored sections (after Powell & Williams, 1989). 

B 

2 



Chapter 2 Background to rationale 

Map View a, 
E 

I) ,  
Q 
a 
0. 

O 

Strike Distance 

C) 
a 
0 

onlap of basin 
onto margin as Strike Distance 
faults propagate  

a, 
E 

CL 
a, 

Strike Distance 

Hangingwall strike cross-section  

Map View 
E 

I' 	 a) 
/ 

0. 
Co 

Strike Distance 
C 

a, 
0. 
Co 	 -- 

0 

Strike Distance 
C 
a, 

— 	 - 	 E 
III) 

a, 
0. 
U) 

0 

	

Hangingwall strike cross-section 	 Strike Distance 

Figure 2.3: Two models of fault system evolution and associated sedimentary basin formation are 
illustrated, with growth controlled by a) isolated radial propagation, and b) segment linkage. For both 
models, map view and displacement/length profiles through time (i-iii) and final hangingwall strike 
sections are presented (after Cartwright et al. (1995); Morley & Wonganan, 2000). The evaluation of 
hangingwall strike cross-sections and displacement/length profiles can be used to establish the evolution 
of the fault system (cf. Chapter 5). 
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depocentres adjacent to early formed faults 

(2) Mid-rift Initiation: Continued nucleation, and 
onset of segment interaction and linkage 

w, e, y, Zr enhanced 

z 	

"0 
• Abrupt enlargement of early formed depocentres 

by linkage of adjacent fault segments. 
• Major depocentres established in 

hangingwall of longer segments. 

(3) Late Rift Initiation: Dominant fault segment 
Interaction and linkage 	 Major depocentre 

	

iç Zr inactive 	 X 	
develops as large 

	

z: enhanced 	z 	
fault array grows 
by linkage 

Ape 

W AV  

• Growth of major depocentres by coalescence of smaller 
depocentres as deformation localises on major fault 
segments. Maximum subsidence rates at segment centres 

• Depocentres adjacent to inactive fault segments cease 
to subside 

(4) Rift initiation - Rift Climax Transition: 
Full linkage of fault segments to produce a 
through-going fault system 

w, x: inactive 
y, zr enhanced 

Figure 2.4: Tectono-stratigraphic 
model for the evolution of a normal 
fault array and the associated 
evolution of syn-rift depocentres 
(after Cowie et al., 2000) 

• Single large depocentre develops adjacent 
to the major linked fault 

• More uniform subsidence rate along strike 
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Figure 2.5: Two examples illustrating how the displacement-length profile of an evolved fault can be 
composed of individual segments. In a) the total throw is 93 m, and the cumulative throw on individual 
segments approaches that of an isolated fault (after Dawers & Anders. 1995), In b) the fault system is 
much larger (2.0 s TWT —3 km), with cumulative displacement plot for the entire system (i) being formed 
from sequences associated with three segments (ii) (after Contreras et al., 2000). 
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Chapter 2 Background to rationale 
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Figure 2.7: Chrono-stratigraphic diagram for South Africa showing sediment distribution and appropriate 
unit names. After Dingle etal., 1983; Hälbich & Swart, 1983; McMillan etal., 1997; Veevers et al., 1994.. 
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Chapter 2 Background to rationale 
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Figure 2.8: Pre-Cape geology of southern Africa highlighting the extent of the principal Proterozoic 
provinces (after Cole, 1992; Veevers el aL, 1994). The Falkland Islands have been placed in their pre-
breakup position. SCCB - Southern Cape Conductive Belt. 1: Kango, 2: Gamtoos. 3: Kaaimes. 
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Figure 2.9: a) North-south section across South Africa showing the position of the Cape Supergroup 
and Karoo Basins with respect to the weaker crust of the Southern Cape Conductive Belt (including 
the Beattie Anomaly) and stronger Namaqua-Natal crust (after Cole, 1992). Position in Figure 2.8. b) 
Model of gravity profile of section in (a) showing the presence of the high density, highly conductive 
body (yellow) that is interpreted to be obducted oceanic crust (Pius et al., 1992). 
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Figure 2.10: a) Outcrop map of South Africa showing the present day distribution of the Cape Supergroup 
units (Table Mountain, Bokkeveld, and Witteberg Groups; after Tankard etal., 1983; Veevers et al., 1994). 
Falkland Islands have been restored to pre-break-up position with the equivalent units mapped: -Port 
Stephens, 2-Fox Bay, - Port Stanley (after Marshall, 1994a). 
b) Isochpach map of the Cape Supergroup. The sediments were deposited from the north into an east-west 
trending basin with the basin axis directly to the south of the SCCB (cf. Figure 2.8 & 9), after Veevers etal., 
1994. 
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Figure 2.11: a) Outcrop map of South Africa showing the present distribution of the Karoo 
Supergroup units (Dwyka, Ecca, Beaufort, and Stormberg). (after Veevers et al., 1994). Falkand 
Islands have been restored to pre-break-up position with the equivalent units mapped. '-Lafonian 
Diamictite, .. Upper Lafonian Group (after Trewin et al., 2002). 
b) Isopach map of the Karoo Supergroup. The sediments were deposited from the south into an east-west 
trending basin with the basin axis immediately to the north of the SCCB (cf. Figure 2.8 & 9), after Veevers 
etal.. 1994. The change from north to south provenance (cf. Figure 2.10) is in response to the initiation 
and northward migration of the Cape Orogeny. Overall structural trend of anticlines associated with the 
orogeny are marked on. 
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Figure 2.13: Stratigraphic and structural section across the Cape Fold Belt located at 22.5°E. I -Pre-Cape 
sequences with granites, 2-Bokkeveld Group, 3-Dwyka Group, 4-Beaufourt Group, 5- Jurassic-
Cretaceous. (after Dingle etal., 1983; Hälbich & Cornell, 1983). Illite crystallinity shows the gradual 
increase in metamorphic facies towards the south. 
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Figure 2.14: Model for the evolution of the Cape Fold Belt utilising the inferred low angle, pre-existing 
Pan-African ddcollement. b): Subsequent Mesozoic extension utilises the Cape Fold Belt structures. CC-
Continental Crust, CLM-Continental Lithospheric Mantle, AM-Asthenospheric Mantle, OLM-Oceanic 
Lithospheric Mantle (after Hälbich, 1993). 
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chapter 2 B 

K 
Final stages of Gondwa 

Figure 2.1 51 195 Ma - Early Jurassic. Final stages of Gondwana convergence. Crustal uplift and doming, 
as a result of Karoo volcanism, may have begun. After Macdonald et al., (1998) 

Ak 
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Dextral strike-slip motion on 	 movement to the east and dextral 
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San Jorge in overlap zone  
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Formation ofseaward-dipping 
reflectors (Explora Escammen 

A *
aeginnWigot:x1enon il 
Falkland Plateau Basin 

Falkland  Islands and Ellsworth 	 / 

/ 	itmore blocks rotating in 
.contrary senses  

Figure 2.15b: 180 Ma - Early-Middle Jurassic. East and West Gondwana begin to rift. Major dextral 
strike-slip motion occurs, separating South Africa, the Falklands Plateau. Falkland Islands (clockwise 
rotation), and Ellsworth Mountains (counter-clockwise rotation).After Macdonald etal., (1998). 
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Figure 2.15c : 165 Ma - Middle Jurassic: . Southern South America restored by dextral strike-slip 
movement along the Gastre Fault System. The Falklands and Ellsworth Mountains are fully rotated. First 
rift-related volcanics in South Africa at 162 Ma (Dingle etal.. 1 983).After Macdonald et aL, (1998) 
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Figure 2.15d 150 Ma. Tithonian, Late Jurassic. Sea-floor spreading in the Weddell Sea. Initiation of the 
negative inversion of the Cape Fold Belt (South Africa). The oldest observed rift related sediments are 
Kimmeridgian. After Macdonald etal.. (1998) 
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Figure 2.1 5e: 135 Ma- Valanginian-Hauterivian, Early Cretaceous. West Gondwana continues to break-
up. The South Atlantic start to open at 132 Ma. After Macdonald etal., (1998). 

-- 	 - 	 -. 	 - 	
- 	 I -  ---- 

L Seaward dipping 	 dipping reflecto 
reflectors off Argentina 	 off Namibia if, 	

- ,;. 

/ 	..-.... • 1 

Figure 2.15f: 120 Ma - Aptian, Early Cretaceous. South Atlantic sea floor spreading, indicated by seaward 
dipping reflectors on both the Namibian and Argentinian passive margins. After Macdonald etal. (1998). 
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Figure 2.18: Sequence stratigraphic framework for the offshore South African Mesozoic Basins. 
Abbreviations: OXF- Oxfordian, KIM- Kimmeridgian, PO-Portlandian, BE- Berriasian, VA-
Valanginian, HA-Hauterivian, BA- Barremian, AP-Aptian, Al- Albian, CE- Cenomanian, UI- Turonian., 
CO-Coniacian, SA- Santonian, CA- Campanian, MA-Maastrichtian, PA- Paleocene, ED- Eocene, OL-
Oligocene, M1O- Miocene, PL- Pliocene. After McMillan et al., 1997. 
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Formation Subgroup Group Age 

Enon, Kirkwood, Sunday's River Mesozoic 

Abrahamskraal Beaufort 
Waterford 

Fort Brown 

Ripon rn 
Prince Albert, 

- -- 	

- Whitehill Collinghani 

Permian! 
Dwyka Carboniferous 

Floriskaal, Waaiport 

Witpoort 	 Cr 

Weltevrede 

Traka 
0 

Boplass 	 o 
Tra-Tra 	 i 

Ic 
Hex River 	 ' 5 

Ceres 	i 	 (• I Swartkransl 	 I 
1°-  Con 

Gamka J 	) Gydo 	 ( 
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C 
- Baviaanskloof  

Kouga 	 I 
Tchando 	 I Ir 

1° 	 0 
Cedarberg 	 I 
Peninsula 	 J Sardinia Bay 	/ 

Pre-Cape 	 Pre Cambrian 

Table 3.1: Key to stratigraphic units used in the five regional transects in this chapter. For 
complete list of mapped units, and correlation between maps, see Enclosure 1. 
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Figure 3.2 : a) Summary of Transect A (see Enclosure 2 for full transect and data). b) 
Transect A restored to pre-extension Cape Fold Belt geometry. c) Balanced restoration 
removing compressional deformation with tie-points and corresponding percentages 
of compression shown. The incomplete restoration of the section is discussed in the 

a text. Faults have been approximately projected to depth as planar structures, although 	Mesozoic Permian Carboniferous Devonian 	Silurian Ordovician Pre-Cape 
they may décolle (see text for discussion). See Table 3.1 for complete key. 



view towaras uou - 
Cliff Height - 600m 

South 
C) 

North* 

Chapter 3 Cape Fold Belt structural controls 

54° 	
/ 

a) 

N 	

620 	
South 

 230  

/U' // 	•" '42 	.Tç 	
. 

1) 

428O° 	/7 /\581268 	

View towards 2700 * 

\  

28° 	 Cliff Height - 400m  
b) 	

North 	 South 

	

1. f- 	
38° 

- 

--1 	T-- 

) 
22  

- 

----S - - - -- __ flfl0 

\ 7 	 View towards 284° 
Cliff Height - 600m 

Figure 3.3: Representative sketches from the Seweweekspoort Pass in the Peninsula Formation outcrop at 
the north of Transect A. a) Northern end oftransect - gentle folding with northern limb dipping towards the 
north; b) Middle - relatively little deformation and obvious bedding-parallel thrusts; c) Southern end- little 
deformation with open fold and southern limb dipping towards the north.*  The orientation of these 
sketches has been reversed so that north is consistently towards the left throughout this chapter. 
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Figure 3.4: An example from the Seweweekspoort Pass (Transect A) of later brittle deformation cross-
cutting pre-existing folding. Age of the later faulting is unknown, although is possibly Mesozoic. See 
Enclosure 2 for position. * The orientation of these sketches has been reversed so that North is 
consistently towards the left throughout this chapter. 
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Figure 3.5: Two localities in Transect A have ambiguous fault geometries, a) is in the centre of the transect and b) at the south coast (see Transect A for locations). i) 
Map data, ii) south dipping normal fault, iii) north dipping reverse fault. In both instances the south dipping normal fault model is preferred, see text for discussion. 
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Figure 3.6 a) Summary of Transect B (see Enclosure 3 for full transect and data). b) Transect B 
restored to pre-extension Cape Fold Belt geometry. c) Balanced restoration removing compressional 
deformation with tie-points and corresponding percentages of compression shown. Faults have been - 
projected to depth as planar structures, although they may décolle (see text for discussion). See Table Mesozoic Permian Carboniferous Devonian 	Silurian Ordovician Pre-Cape 
3.1 forcompiete key. 
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Figure 3.8 : Sketches from the Meeringspoort Pass (Positions shown on Transect B). a) a variety of 
deformation styles are present with high amplitude, short wavelength folding in the north and longer 
wavelength folds in the south. This section is also cross-cut by later brittle faults. b) Chevron folds 
showing consistent northward verging fold axial planes (data shown on sketches). * The orientation of 
this sketch has been reversed so that North is consistently towards the left throughout this Chapter. 
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Figure 3.10: a) Summary of Transect C (see Enclosure 54 for full transect 
and data). b) Transect C restored to pre-extension Cape Fold Belt 
geometry. b) Balanced restoration removing compressional deformation 
with tie-points and corresponding percentages of compression shown. 
Faults have been projected to depth as planar structures, although they 
may dëcolle (text for discussion). See Table 3.1 for complete key. 
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Figure 3.11: Ambiguous geometry in centre of Transect C (see Enclosure 5 for position). Unknown type of 
fault that down-throws towards the south. a) Map data, b) south-dipping normal fault, C) north-dipping 
reverse fault. When compared with the complete transect, the normal fault geometry is preferred. 

30 



South North 

North South 
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\V Pie  

bedding parallel 

Jointing 	

thrust 

-- 1wrbhtaF Fault 41/186 

Figure 3.12: Structures within the Peninsula Formation in Transect C, positions shown in Enclosure 5. a) 
Small scale kink folds (north verging). Notice similarity of structures compared to the much larger scale 
kink bands of Figure F, Enclosure 4. b) Outcrop is cross-cut by brittle fault. 
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South 	 North 

Section 3.13: a) Northward verging, tight fold which is dissected by a north verging thrust. 
b) Southern coast of section showing sub-horizontal Mesozoic sediments unconformably on top of 
moderately south dipping Peninsula Formation quartzites. Height of cliff - 30m. 
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Figure 3.14: a) Summary of Transect D (Enclosure 6 for full section and 
data). b) Transect D restored to pre-extension Cape Fold Belt geometry. 
c) Balanced restoration removing compressional deformation with tie-
points and corresponding percentages of compression shown. 
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Figure 3.15: a) Normal fault at southern end of Transect D. View looking north-west showing 
Peninsula Formation faulted against itself in the background, and Mesozoic in the foreground. Height 
of cliff is - 40m. 
b) River gorge at Storms River, 10 km East of section showing sub-vertical, undeformed Peninsula 
Formation; looking East. 
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Figure 3.16: a) Summary of Transect E(see Enclosure 7 for full section 
and data). b) Transect E restored to pre-extension Cape Fold Belt 
geometry, c) Balanced restoration removing compressional deformation - 
with tie-points and corresponding percentages of compression shown. 	 Mesozoic Permian Carboniferous Devonian 	Silurian Ordovician Pre-Cape 
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Figure 3.17: Photographs from the Gamtoos transect (Transect E). These structures are very similar to those observed in the Meeringspoort Pass (Transect b). a) 
Open, northward verging folds, height of cliff– 80m, b) isoclinal folding, height of cliff– 30m, c) overturned cross-bedding in the Pre-Cape unit, 30 cm hammer 
for scale. 
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Chapter 3 Cape Fold Belt structural controls 
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• 	 TiL'1 
Permian Carboniferous Devonian 	Silurian Ordovician Pie-Cape 

Figure 3.18 : Compilation of transects restored to pre-extensional foldbelt geometry. The important 
observation is deformation in the north is characterised by asymmetric, north verging folds, while the 
centre and south typically have anticlinal box folds. 
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Figure 3.19 : a) Composite section 	r 

j% 	 from Transects D & E illustrating the 
overall architecture of the CFB. 
Position of sections shown on map. 
b) Models proposing the formation of 
the Fold Belt i) low angle 
décollement controlling fault with 
pop-up structures, ii) low angle 
controlling fault with duplexing of 
Pre Cape units, ii) high angle reverse 
faults in the centre and south and a 
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Re-activation of normal faults Buckling in Da unit? 
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Figure 3.20: a) i-iv: Sequential compression of sand box model with deformation being controlled by high angle basement faults (Hälhich & Swart, 1983). b) High 
angle faults in Figure 3.19 model (iii) are proposed to be pre-existing extensional structures (associated with a previous passive margin?) that are reactivated in 
compression during the Cape Orogeny. The passive margin may not have extended to the north of the sections, therefore compressional deformation is 
accommodated by thin skinned thrust tectonics. NB. scale is approximate. 
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Figure 4.1: a) Geological map of southern South Africa with the principal structural elements shown in the sketch map (b). Extensional faults are marked with 
rectangles on the down-thrown side, and extensional basins are yellow. All other lines correspond to compressional features. Stereonet of basement structures 
(Chapter 3) has the three extensional fault plotted. Position of transects (A-E) from Chapter 3 shown in red. 
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- 	Figure 4.2: Overview of the geology of the Oudtshoorn Basin (see Figure 4.1 b for location). 

k3. IPOT'Am _____ 10 cm sequences fining up hm  a) Geological map showing the position ofthe Mesozoic basin with respect to the outcrop of 
cobbles to mud 	 Pre-Cape and Cape Supergroup units. b) Southern flank of the basin, where Mesozoic - 	

- 	 sediments onlap onto the Cape Supergroup, shows foresets of northward prograding ) 
Red/purple clast-supported, poorly sorted conglomerate (1-30cm elongated clasts- 	 alluvial system. c) Near to the Kango Fault in the north. Syn-rift sediments dip and thicken 
indurated, finely laminated grey siltstonedenved from Bolikeveld Formation?) 	 northwards into the controlling fault (Redstone Hill Location). View to the east. 
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Figure 4.3: a) Structural map of the Gamtoos Basin also showing location of chapter figures and the two exploration wells Lol/69 and Mkl/70. See Figure 4.1 for 

location. Note the Gamtoos Fault is parallel to the basement trend. b) Stereonet of pole to bedding from Gamtoos Basin. c) Comparison of structural data (including it-
girdles) from Gamtoos Basin (blue) and Central Cape (red, data taken from Figure 3.9) show that there is a significant change in structural trend. Triangles show poles . 

to it-girdles. 
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Chapter 4 Onshore Mesozoic Geology 
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Figure 4.4: a) Overview of the ncetween the Mesozoic and Pre-Cape units which is where 
the Gamtoos Fault occurs. Panora  
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Figure 4.5 : Examples of syn-rift sedimentation in the Gamtoos Basin. See Figure 4.3 & 4.4 for locations. 
a) Cliff section west of Hankey showing undeformed Kirkwood Formation - fluvial sandstone interbedded 
with bentonites and overbank silts (Dingle et al., 1983). Cliff —30m high. 250m long. b i)Large Enon 
conglomerate outcrop in the north-west of the basin. Cliff —30m high. ii) The Enon is a very mature, 
poly modal quartz conglomerate containing boulders up to 1-2m diametre, all well rounded and frequently 
fractured. Matrix is quartz sandstone with occasional blocks of silt and sandstone. 
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Peninsula Formation, 
West North-West North 

North of Kareedow Enon conglomerate outrcop 
Paul Sawyer Dam, Komdomo Figure 	5b - - 	 -- 
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Cape Supergroup 

P  -Cape 

MesozoicsectionwesloLHankPy 	 Mesozoic basin no-obvious-topographic 

basement high Figure 45a expression of Gamtoos 
Fault where Mesozoic is 
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very fine light brown 	 towards top of bed 	 sandstone weathering 	 channels, very 
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Figure 4.4: a) Overview of the north-west section of the Gamtoos Basin from a viewpoint 5 km south-east of Hankey. Of particular importance is the very poorly exposed nature of the contact between the Mesozoic and Pre-Cape units which is where 
the Gamtoos Fault occurs. Panorama is approximately 25 km across. b) Sketch of road-cutting section through part of the Mesozoic syn-rift basin fill, 10 km north-west of Harkey. 
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Figure 4.5 : Examples of syn-rift sedimentation in the Gamtoos Basin. See Figure 4.3 & 4.4 for locations. 
a) Cliff section west of Hankey showing undeformed Kirkwood Formation - fluvial sandstone interbedded 
with bentonites and overbank silts (Dingle et al., 1983). Cliff -30m high, 250m long. b i)Large Enon 
conglomerate outcrop in the north-west of the basin. Cliff -30m high. ii) The Enon is a very mature, 
polymodal quartz conglomerate containing boulders up to 1-2m diametre, all well rounded and frequently 
fractured. Matrix is quartz sandstone with occasional blocks of silt and sandstone. 
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Peninsula Formation quartzites. 
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53/220 40/213 40/210 So-38/214 43/208 50/213 48/206 46/225 49/220 
Abundant slip Dark grey siltstone, Fine sandstone Joint-54/343 Silty sand, major Large blocky unit, Towards south. Much finer, more Very 
between bedding bedding variable with nearly Bedding still deformation in banded quartzite. less indurated phyllitic silt. Dark unconsolidated 
frequently from 0.5 cm to symmetric showing phyllitic material, Has some and less grey colour appears sand and silts 
involving phyllite indurated material ripples. Crests of thrusts and thrusting bedding parallel quartzitic, but throughout Some with significant 
interbedded on 30 cm. Tops of ripples trend 115, between thrusting, but not more thrusted. bands very dark brecciation. 
material, beds still show flow to the north, indurated as much as north and organic rich. 

thrusting. siltstones. end. 

Section is - 400m long, 10-50 m high 

No evidence of extensional deformation in 
section. If strain was dissipated would  
evidence of extension, hence inferred that 
strain is localised on NE-SW trending 
Gamtoos Fault. 

(1kill 	* 
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fr& 

Camtoos Fault 

Figure 4.6a : Outcrop of Peninsula Formation at the Paul Sawyer Dam, 
Komdomo that is due west of NE--SW trending section of the Gamtoos Fault 
(b).. Despite the proximity to the Gamtoos Fault there is no evidence of 
extensional structures, see text for discussion. In the north the principal features 
are 0.5 -Im scale quartzite beds with parallel and shallowly cross-cutting thrust 
faults. To the south there are pervasive thrust aand no kinematic indicators of 
extension. See Figure 4.3 for position of map. 
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0 k 	 50 km 	 100 km 

Permian Carboniferous Devonian 	Silurian Ordovician Pre-Cape 

Figure 4.7 : Compilation of transects restored to pre-extensional foldbelt geometry from Figure 3.18 with 
the position of Mesozoic extensional faults (red) superimposed. Extension consistently occurs at the 
northern end of the anticlinal box fold flats.. 
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Figure 4.8 a) Summary of the observations from the transects across the Cape Fold Belt (Figure 3.19) 
with the location of the Mesozoic extension superimposed. b) Model in which there is no structural control 
at depth. c) i)Low angle controlling fault with pop-up in which the southernfaults are reactivated, ii) 
reactivation of ramp and flat thrust geometries in extension, iii) reactivation ofhigh angle reverse faults. 
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Figure 5.1: Seismic array and borehole utilised in this study to evaluate the Pletmos, Gamtoos and Algoa Basins. The data set 
consists of 18,000 km of 2-D seismic data and 41 wells. I
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Chapter 5 Sub-surface data and methods 

Seismic Array High Filter (Hz) Low Filter (Hz) 

Ga79 62 8 

Ga81 64 5 

Ga82 64 5.3 

Ga84 64 5.3 

Ga85 180 5 

Ga86 154 4 

Ga87 250 3 

Ga88 188 8 

Ga89 218 8 

Ga90 218 8 

Ga91 218 8 

Gb81 64 5 

Gb82 64 5.3 

Gb83 64 5.0 

Gb84 64 5.3 

Gb85 180 5.5 

Gb87 250 3 

Gb89 218 8 

Gb91 102 8 

Ha 76 62 8 

Ha 82 90 3 

Ha 83 64 5 

Ha 85 250 3 

Ha 87 64 5 

11b75 62 12 

Hb76 62 8 

Hb83 64 5 

11b84 64 5 

Hb85 180 5 

Hb86 154 4 

Hb89 218 8 

Pletmos Basin 

Pletmos Basin 

Gamtoos Basin 

Algoa Basin 

Table 5.1: The various 
vintages of 2D seismic 
arrays are shown for the 
three basins that are 
studied. Acquisition 
frequency data are also 
shown, and discussed in 
text with respect to seismic 
resolution. 
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Figure 5.2: The seismic stratigraphy, and mega-sequences established for each of the basins is shown, and 
are based on McMillan (1999) time-top well data. 
'-Age data are from Gradstein et al. 1995. 2  there is a discrepancy between McMillan using 
'Portlandian', and Gradstein etal. (1995) using 'Tithonian' (see text for discussion). 
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Chapter 5 Sub-surface data and methods 

a) Map View 
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Figure 5.3: Two models of fault system evolution and associated sedimentary basin formation are 
illustrated, with growth controlled by a) isolated radial propagation, and b) segment linkage. For both 
models, map view and displacement/length profiles through time (i-iii) and final hangingwall strike 
sections are presented (after Cartwright et al., 1996; Morley & Wonganan, 2000). The evaluation of 
hangingwall strike cross-sections and displacement/length profiles can be used to establish the evolution 
of the fault system (see text). 
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Figure 6.1: The location of the offshore seismic and well data set used to establish the tectono-
stratigraphic framework of the Gamtoos Basin. In the north-west offshore the Gamtoos Fault forms two 
splays (Figure 6.19) that are possible along strike continuations of the onshore Gamtoos and Elandsberg 
Faults (Shone et al. 1990). The principal onshore geological units are shown (after Toerien, 1989). The 
position of sections used in this chapter are shown in Enclosure 8. 
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Chapter 6 i'eclon,c evolution of the offshore Ganoo 
West 	
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Figure 6.2a: Summary of wells in the southern area of the Gamtoos Basin displayed from west to east and 
positions marked on map inset. Age data between wells have been correlated. Full well logs are included 
in Appendix A. Although wells have been plotted against time, depth/conversion data (Appendix A) 
suggests that time/depth relationships are comparable amongst wells. 
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Figure 6.2b: Summary of wells along the trace of the Gamtoos Fault plane from the north-west to the 
south-east with positions marked on the map inset. Age data between wells have been correlated. Full 
well logs are included in Appendix A. Although wells have been plotted against time, depth/conversion 
data (Appendix A) suggests that time/depth relationships are comparable amongst wells. 
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Figure 6.3a: North-south section across the Gamtoos Basin showing the overall basin geometry, mega-sequences and sequences. The Gamtoos Fault appears tc 
be listric because the section is oblique to the fault trend. Line Ha87-026. Abbreviations: base. -basement: base >5s- basement deeper than 5s;ps base. - pseud 
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Albian Syn-Rift package. The positions of wells Ha-B2 and Ha-Hi are shown. Line Ha87-45. Abbreviations - as in Figure 6.3a 
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reference for all other maps). b) 3D sketch of the Gamtoos Basin to highlight the salient features. Of 
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Figure 6.6 : 1 \VT maps for the picked Principal Syn-Rift seismic horizons, a) wp_kirnmeridgian. b) 
top_e-portlandian, c) top_,n-be rriasian, d) top _1-berriasian, e) top_e-valanginian, top 1-
valanginian. Note the increase in the number of intra-basin faults throughout the mega-sequence, the 
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the fault curve (c-e). 
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Figure 6.7 : lsochron plots of Principal Syn-Rift sequences. a) Kinimeridgian. b) Larly Portlimdian. c) 
Mid Berriasian. d) Upper Berriasian, e) Early Valanginian, f) Late Valanginian. The Late Valanginian to 
Early Valanginian plot does not have the full sediment thickness because of erosion by the basin-wide 
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Figure 6.8: TWT maps of the Late Syn-Rift sequences. a) top LSR 1, b) top_LSR ii, C) top_LSR W. 
Notice the dramatic reduction in areal extent of sedimentation compared to the Principal Syn-Rift 
mega-sequence (cf. Figure 6.7). 
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the sequences generally thickening into the East-West Gamtoos Fault portion (b) shows very little 
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Figure 6.10: Isochron plot of the basin-wide _unconformity to top _l-valanginian, i.e. preserved thickness 
of the Late Syn-Rift package. Although it is uncertain how much erosion has occurred, it is evident from 
this plot that between LSR III and the basin-wide unconformity the areal extent of the deposition 
increased from the lower LSR packages (c.f. Figure 6.9). 
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Figure 6.11: TWT map of the basin-wide — unconjo- rmiiy. Despite this being a significant unconformity 
the horizon forms a planar surface that dips twards the south. 
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unconformity. Line Ha 82-036. 
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Figure 6.13: Sub-crop map to the basin-wide _unconformity. The intersect between a horizon and the 
unconformity is shown by a line with the colour corresponding to the appropriate horizon. LSR - Late 
Syn-Rift. 
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Figure 6.14: a) TWT map of lop_albian Syn-Rift package. 
b) Isochron plot of top_albian reflector to basin-wide_unconformity showing thickening of the 
package into the Gamtoos Fault. The brown reflectors within the seismic section (c-i, ii) are 
progressively folded towards the base of the package indicating that it is a syn-rift sequence rather 
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Figure 6.15: Sections showing Post-Rift deformation. 
Figures a) Line Ha 87-032 and b) Line Ha 87-31, both highlight the varying amounts of sediment 
accumulation during the Post Rift interval. In both sections there is very little accumulation below Iop_e-
turonian and significant progradational packages above tope-turonian. Localised canyoning above the 
rop_e-turonian is also present (c), Line 87-008. 
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Figure 6.16: TWT maps of the Post-Rift mega-sequence horizons, a) lop_e-cenomanian, b) top_c-c-
turonian and c) top_e-turonian. 
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Figure 6.17 : a) Isochron plot of sediment 
thickness between basin-wide unconformity 
and lop e-cenomanian. 
h) Enlarged area from a) showing very little 
sediment thickness variation across the 
central and western parts of the basin. c) 
Enlarged area from a) showing dramatic 
thickening of the package towards the 
(iamtoos Fault. 
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Figure 6.18 : Isochron thickness plots of a) Early Cenomanian. h) Turonian and c) sea bed to Early 
Turonian. There is very little sediment accumulation until after the Turonian (cf, progradational 
packages in Figure 6.15). 
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Figure 6.20: lsochron thickness plots between the Principal Syn-Rift reflectors and top_ps-
basement reflector. Sediments between the Gamtoos Fault plane and the appropriate 
reflector have been include. Plots show thickness of top_ps-basement to a) Kimmeridgian, 
b) Early Portlandian, c) Middle Berriasian. d) Late Berriasian, e) Early Valanginian. f) Late 
Valanginian (incomplete because oferosion in the south). These plots show that through time 
the locus of maximum sediment accumulation migrates from the south-east towards the east-
west section of the Gamtoos Fault in the Late Valanginian. 
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Figure 6.21: Cumulative isochron plots from iopjis-basement to a) rop_LSR I, b) top LSR II, c) 
top_LSR III (including sediments above the Gamtoos Fault). The locus of maximum sediment 
accumulation remains static adjacent to the east-west section of the Gamtoos Fault. 
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Figure 6.23: Sediment accumulation-length profiles along the Gamtoos Fault. a) Cummulative 
isochron from top pseudo-basement. b) Isochron plots of individual syn-rift sequences. Note 
the significant decrease in active fault length between the Late Valangian and Latest Valanginian. 
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Figure 6.24: Two models proposing the evolution of the Gamtoos Fault. In both models light colour 
indicates thin sediment thickness and dark indicates thick sediment successions, green is deposition of the 
Principal Syn-Rift and yellow/brown is Late Syn-Rift. The present coastline and onshore area is shaded in 
grey, black line corresponds to active fault portion. The Principal Syn-Rift package is deposited on a 
north-south fault with the position of the locus of maximum sediment accumulation migrating north. In 
model a) sediment accumulation in the Principal Syn-Rift is controlled entirely by a north-south fault and 
Late Syn-Rift accumulation occurs against a separate east-west fault. In model b) there is one discrete 
fault controlling the sedimentation of both packages. The primary difference is that the footwall of the 
east-west fault is either Principal Syn-Rift sediments (model a) or basement (model b), see text for 
discussion.. 
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Figure 6.25: 6.25: Section across the western basement high in which complex faulting is evident. Two arrays 
of normal faults define a small graben in the east, while a high angle reverse fault juxtaposes basement 
onto the Principal and Late Syn-Rift packages in the west. Line 87-002. 
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Figure 6.26: Section across the western basement high in Figure 6.25 with the top e-valanginian reflector 
flattened to the horizontal. The restoration results in the removal of the high angle reverse faulting and 
much of the normal faulting to produce classic onlap geometry onto the basin margin. 
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Figure 6.30: 2D Move restoration of the basin-fill deformation adjacent to the East-West Gamtoos Fault 
discussed in Figure 6.29. a) Top_lyalanginian deposited across the whole section. b) and c) deposition of 
the Late Syn-Rift sequences adjacent to the fault. Two models are proposed to obtain observed geometry. 
Model i (d-i) invokes differential uplift in the north and subsidence in the south (red arrows) while Model ii 
requires structural inversion against the fault with horizontal shortening (d-ii). e-i&ii) basin-wide 
unconformity prior to regional subsidence towards the south (f-i&ii). Model i does not result in the 
observed reflector geometries, especially in the upper LSR package, nor is there evidence of the regional 
tilting prior to the basin-wide unconformity, therefore Model ii is preferred. 
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Figure 6.36: North-south sections in the centre and south of the basin that show evidence of folding; 
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Figure 6.38: Modelling of the intra-basin folding in the south of the basin using a north-south section. The 
southern end of the section is inferred (see text). a) Deposition of the Late Valanginian sequence across the 
whole basin with minor growth into the two controlling fault. b) Early Late Syn-Rift (LSR) deposition 
(Hauterivian) is confined to adjacent to the controlling faults. The Principal Syn-Rift undergoes flexure 
in the centre of the basin resulting in localised normal faults that are more pronounced on the outer arc. c) 
Late LSR sedimentation across the basin followed by uplift, basin-wide unconformity and erosion (d). (e) 
Regional subsidence to the south. 
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Figure 6.39: Section on the western margin with well Ha-JI that confines the age of the basin-wide 
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Figure 7.1: Map of the Pletmos Basin showing the location of seismic and well data used to establish the 
tectono-stratigraphic evolution of the basin. Although much of the basin has good data coverage there are 
limitations, especially in the north-east and north-west. The onshore geology has been shown. Position of 
Figures 7.2 & 7.4 are shown, and the location of other sections can be found in Enclosure 2. 
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Figure 7.13: Isochron thicknesses of Post-Rift sequences, a) top e-barremian to lop 1-hauterivian, b) 
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tope-cenomanian. In (b) it is uncertain whether top_e-barremian horizon is draped across the intra-basin 
high, see Figure 7.12. 
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Figure 7.17: Cumulative isochron plots within the Principal Syn-Rift mega-sequence from lop basement 
(including top_ps_basement and basement>5. Os) to, a) top_portlandian, b) top_e-valanginian, and c) 
top_i-valanginian. 

119 



Chapter 7 Tectonic evolution of the Pletmos Basin 

onlap onto lop I-valanginian 

V \'a 

- Kilometres 	 g 
0 	 40 	 80 

V 

Kilometres 

0 	 40 	 80 

0 

Kilometres 
- 

C) 	 0 	 40 	 80 

Figure 7.18: Cumulative isochron plots of a) Hauterivian (top_l-hauteriviun to lop_l-valanginian), b) 
top basement to top_e-hauterivian, and c) top_basement to top_l-hauterivian. In b) and c) where 
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Figure 7.34: Summary sketches of the evolution of the Pletmos Basin highlighting the principal tectonic 
events, relative sea-level, and type of sedimentation. Note that the coast is shown as it is today. Red arrows 
indicating extension with respect to present orientation, other arrows indicate sediment progradational 
direction. 
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Figure 8.1: The location of the offshore seismic and well data set used to establish the tectono-
stratigraphic framework of the Algoa Basin. The principal onshore geological units are shown (after 
Toerien, 1989). The position of sections used in this chapter are shown in Enclosure 10. 
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top_portlandian, c) top_berriasian, d) top_e-valanginian, e) top_l-valanginian. Fault polygons have been 
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systems and the basin-wide unconformity have been plotted. 
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Figure 8.7: Thickness plots (in TWT) of the Principal Syn-rift sequences. a) Kimmeridgian thickness 
(top _kimmeridgian to top_basement) b) Portlandian thickness (topfiortlandian to top_kimmeridgian), 
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Figure 9.4: Depth-time data compiled from all wells in the three South African basins. The well data 
only penetrate to —3000ms (4500m) and have to be extrapolated for depth conversion, see text for 
discussion. 
The best-fit line (calculated using Table Curve 3.0) is 

TWT(m)=22.30±0.88z+ 1.341 xl 0 5z2+2.2662x 1 0 7z3 -1 .255x 1 0' °z4+2.420x I o - 4ZI_ 1 .650x I 0' 8Z6  
r2  = 0.9915 1. The upper and lower ranges of the data are used as approximate error ranges, and are 
approximately ± 400m 

Fault Length Dip Throw Heave Displacement Basin D/L ratio 
(km)' (m) 7 (m) (m) Width 

(km)  
Plettenberg 158 65° 12,168 5,5518 13,000 19 0.08 

36 
Gamtoos 96 42.5° 11,114 12,139 16,500 63 0.17 

1502  0.11 
Port 38 37° 5,222 6,849 8,600 60 6  0.22 
Elizabeth 
St Croix 52 24°  5,233 11,616 12J00 30 0.24 

Table 9.1: Compiled data for the dimensions of the extensional systems in South Africa. 
Measurements for throw (hence dip and displacement) are lowest estimates, see text for discussion. 
Displacement-Length (D/L) ratios are calculated and will be discussed in Chapter 10. 
'-minimum length determined from seismic data only, 2-includes onshore fault portion, '-taken at 

west end of the basins 4-east end of basin (both & measured to the centre of the intra-basin high), '-
southern end of fault to western faulted margin, 6-fault to Gamtoos Fault to account for reconstruction 

in Chapter 8, - the estimated errors derived from the data range in Figure 9.4 is approximately ± 400 
m. Other errors are discussed in the text. 
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Figure 9.5: Summary sketches of the evolution of the South African basins. Of particular importance to 
this study is the temporal variation in fault activity inferred from the migration of maximum sediment 
accumulation (assumes sedimentation accumulation is a proxy for accommodation space formed through 
tectonic subsidence, see text). 
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Chapter 10 Implications and conclusions 

- - - - - - - 

C) 	 - 	 a45 

U,=30'
d)  

Figure 10.1: Sand-box modeling with a variable ramp angle (a) illustrating that the higher the ramp angle, 
the shorter the wavelength of the resultant hangingwall deformation (Bonini et al., 2000). 

N 	 21 

Plettenberg Fault AL 	 Gamtoos Fault 
Onshore MesozoicA. 	 Onshore 	A 
faults 	 Offshore 	A 

Figure 10.2: Stereonets to show the similarity in trend between basement trend and Mesozoic faults. a) 
The offshore Plettenberg Fault (Chapter 8), and the Central Cape Mesozoic faults and basement (dots), b) 
Gamtoos Basin with offshore and onshore fault portions, and basement structures (dots). Onshore data 

from Chapters 3 & 4. Data have been plotted on lower hemisphere projections, and it-girdles have been 
plotted. 

Method Result Reference 

Sandbox model a>41° full reactivation Faccenna etal., 1995 

32° < a <410  partial reactivation 

a < 32° no reactivation 

Field observations —.25° no reactivation Faccenna et al., 1995 

37°40° reactivation 

low angle thrust cross cut Powell & Williams, 1989 

Steep reactivation Ring, 1994 

Table 10.1: Summary of negative inversion data from Chapter 2. 
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Figure 10.4: TWT plots to the fault planes of the a) Plettenberg Fault. b) Gamtoos Fault, c) Algoa Basin (i- St 
Croix. ii-Port Elizabeth, iii-Uitenhage Faults). There is no evidence of changes in strike, abandoned faults tips, 
see text for discussion. 
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Figure 10.5: 	Sediment accumulation-length profiles along the Plettenberg Fault. a) 
Cummulative isochron from top_basement. b) Isochron plots for individual syn-rift sequences. 
See text for discussion. 
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Figure 10.6: Sediment accumulation-length profiles along the Gamtoos Fault. a) Cummulative 
isochron from. b) Isochron plots of individual syn-rift sequences. Note the significant decrease 
in active fault length between the Late Valanginian and Latest Valanginian. 
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Figure 10.10: Schematic Displacement-Length plot illustrating showing idealised growth by an 
idealised isolated fault, step-like cycle of linkage , and growth line for the South African faults 
which have fault lengths established in the very early syn-rift (after Cartwright etal., 1996). 
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Appendix A: Gamroos Basin well data 

Appendix A-i: Available well data for the Gamtoos Basin 

Well Name Composite Lithofacies Palynology 	Synthetic Time top 

Ha-Al Yes Yes Yes Yes Yes 

Ha-B2 Yes Yes Yes Yes Yes 

Ha-DI Yes Yes Yes Yes Yes 

Ha-Fl Yes No Yes Yes Yes 

Ha-GI Yes Yes Yes Yes Yes 

Ha-HI Yes Yes Yes Yes Yes 

Ha-II Yes 	I Yes Yes Yes No 

Ha-Ji Yes Yes Yes Yes Yes 

Ha-K! Yes Yes Yes Yes Yes 

Ha-NI Yes No Yes Yes Yes 

Appendix A-ii: Time-depth conversion graphs for the Gamtoos Basin 
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Appendix A: Gamtoos Basin well data 

Appendix A-ii (continued) 
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Appendix A-u: Depth-time data plotted (with appropriate r 2  values) for each of the wells in the Gamtoos 
Basin. Regression line were obtained from Table Curve 3.0 plotting programme. 
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Appendix A: Gamtoos Basin well data 

Annendix A-i ii: Time-depth converted age-depth data for the Gamtoos Basin 
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Depth (Z(m)) to top of age horizons (McMillan, 1999) have been converted to time (TWT, ins) using 
equations obtained from linear regression lines for individual wells (cf. Appendix A-u). 
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Appendix A: Gamtoos Basin well data 

Appendix A-iii (continued) 
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Appendix B: Pletmos Basin well data 

Appendix B-i: Available well data for the Pletmos Basin 

Well Name 	Composite Lithofacies 	PalYnologyJ 

Ga-A2 	Yes Yes 	Yes 

Ga-A3 	Yes - Yes 	Yes 

Ga-BI 	Yes Yes 	Yes 

Ga-DI 	Yes No 	 Yes 

Ga-El 	Yes Yes Yes 

Yes Ga-E2 	Yes Yes 

Ga-Fl 	Yes Yes Yes 

Ga-Gi 	Yes Yes Yes 

Ga-JI 	Yes Yes Yes 

Ga-MI 	Yes No Yes 

Ga-Qi 	Yes Yes Yes 

Yes Ga-S2 	Yes Yes 

Gb-CI Yes Yes Yes 

Gb-Fl Yes No Yes 

Gb-HI Yes Yes Yes 

Gb-JI Yes Yes Yes 

Yes Yes Gb-Kl Yes 

Yes Yes Gb-Li Yes 

Yes Yes Gb-Mi Yes 

Gb-Spkl - 	 Yes No Yes 

Appendix B-u: Time-depth conversion graphs for the Pletmos Basin 
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Appendix B: Pletmos Basin well data 

Appendix B-u (continued) 
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Appendix B: Plennos Basin well data 

Appendix B-ii (continued) 
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Appendix B: Plermos Basin well data 

Appendix B-ii (continued) 
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Appendix B: Pleimos Basin well data 

Appendix B-iii: Time-depth converted age-depth data for the Pletmos Basin 
Depth (Z(m)) to top of Age Horizons (from McMillan, 1999) have been converted to time (TWT) 
using equations obtained from linear regression lines for individual wells (cf. Depth-time data plots). 

Ga-A2  Ga-A3 Ga-B1 Ga-Di 

Z(m) TWT Z(m) TWT Z(m) TWT Z(m) TWT 

Holocene  
Pleistocene Late  

Early 
Plicoene  
Miocene Late - 

Early 
Oligocene Late  

Early  
Eocene Late  317 327  

Mid 288 340 347 360  
Early 341 397 390 406  

Palaeocene  366 422 415 432  186 194 

Maastrichtian  442 499 494 515 307 328  

Campanian Late 643 689 683 704 427 452 196 205 

Early 671 713 707 728 442 467 210 220 

Santonian Late  
Early  

Conacian Late 746 780 768 785  
L.Early 807 832 884 890 506 529 260 274 

E.Early  ____  
Turonian Late  ______  _____  

Mid 850 868 940 938 - _____  
853 871 945 942 567 586 330 347 

E.Early_ 990 982 1030 1014  -- 360 377 

Cenomanian Late  ______  
Early 1137 1096 1170 1124 640 651 430 444 

Albian Late 1243 1175 1183 1133 643 654 440 454 

Mid 1316 1227 1244 1178 680 686 470 481 

Early  
Aptian Late  

E.Early 1402 1288 1329 1239 811 794 

Barremian Late 1450 1321 1400 1288 1050 968 550 554 
94q7 

Hauterivian Late  1531 1308 

Early - 
 --  2168 1664 

Valanginian 	- Latest  ___  __  2660 1925 

Late 1714 1493 1643 1441 1692 1414 2862 2028 ___ 
___ Early 1944 1631 1814 1540 

2646 1913  Berriasian 2100 1718 1996 1641 

Portlandian  2319 1833 2207 1757 3041 2099  

Kimmeridgian  2358 1852 2251 1782_  ____ 

Basement  2580r I957 2460 k 	1906  



Appendix B: Pletmos Basin well data 

Appendix B-iii (continued) 

Ga-El  Ga-E2 Ga-Fl Ga-GI Ga-JI  

Z(m) iwr Z(m) 1WT Z(m) TWT Z(m) Z(m) TWI Z(m) 

Hol.____  

Peist. L 

E 

P11.  

Mio. I 

E 

011g. L 

E 198 224  

Eocene L 451 472 470 458 - 	 210 237 351 - 363 

Mid 480 499 480 467  320 343 430 445 

E 540 554 540 526 500 516 

Pal. - 600 608 600 583  380 398 560 576 

Maas. 690 690 690 668 230 239 470 481 640 653 

Camp. L 980 956 970 920 230 239 660 682 910 902 

E 1040 1010 1020 963 -  690 691 940 928 

Sant. I.. _____ 990 971 

E 

Con. 1 1280 1215 1160 1082 -  780 777 - 1060 1031 

L.E. 1360 1278 1240 1148  905 892 1260 1195 

E.E. 1545 1414 1395 1273  

Tur. L 

Mid 1778 1576 1600 1432  1440 1334 

L.E. 1838 1617 1660  955 937 1490 1372 

E.E.  1025 996 

L 

E 2138 1822 1999 1723  1155 1099 1790 1587 

L 2168 1841 2085 1782  1185 1122 1830 1615 

r 

Mid 2390 1984 2548 2087  1215 1143 2097[ 1792 

E 
L 
L.E. 2705 2180 2659 2156  2435 2004 

E.E.  1365 1245 2485 2034 

Barr. L 2727 2194 2760 2217 330 340 1690 1441 2620 2113 

E  1020 924  
- 

Haut. L 

E  1455 

 1675 

1244  

Val. Let - 1388 2474 1900  

L 2795 2235 2938 2322 1782 1455  3112 2384 

E  4108 2862 2374 1797  

Berr.  4369 2988 2980 2105  

Port.  

Base. -  2775 2042  
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Appendix B: Pletmos Basin well data 

Appendix B-iii (continued) 
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Appendix B: Pletmos Basin well data 

Appendix B-ill (continued) 
Gb-Hi Gb-Ji Gb-K1 Gb-Spr 

TWT 	Z(m) TWT 	Z(m) Z(m) 	TWT Z(m) 	1WT 

Hol. 

Pleist.  

E 

P11. 

Mio. 	L 
194 

4 - 

171  

175 	180 E L 
Eocene L  348 339 3291 352 420L 377  

Mid 380 374 400 429 470 	428 

E 440 440 410 	439 510, 	468 

Pal. 182 	167 500, 505 500 533 580'  
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Appendix C: Algaa Basin well data 

Appendix C-i: Available well data for the Algo Basin 

Well Name Composite Lithofacies Palynology Synthetic Time top 

Ub-Bi Yes Yes No Yes Yes 

Hb-C1 Yes Yes No Yes Yes 

Hb-D1 Yes No No Yes Yes 

fib-GI Yes No Yes Yes Yes 

14b-Hart Yes Yes Yes Yes Yes 

Hb-I1 Yes Yes No Yes Yes 

Hb-Kl Yes Yes No Yes Yes 

Hb-P1 Yes Yes No Yes Yes 

Appendix C-ii: Time-depth conversion graphs for the Algoa Basin 
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- - - - 	 Appendix C: Algoa Basin well data 

Appendix C-ii (continued) 
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- 	 Appendix C: Algoa Basin well data 

Appendix C-iii: Time-depth converted age-depth data for the Algoa Basin 

Depth (Z(m)) to top of Age Horizons (from McMiilan, 1999) have been converted to time (TWT) 
using equations obtained from linear regression lines for individual wells (cf. Depth-time data plots). 

Hb-B1 Hb-C1 Hb-D1 Hb-G1  
Z(m) TWT Z(m) TWT Z(m) TWT Z(m) 	I TWT 

Holocene 148 136  
Pleistocene Late  

Early  
Plicoene  181 173  
Miocene Late  

Early  330 330  
Oligocene Late  

Early  442 444  

Eocene Late  570 569  
Mid  630 625  
Early  

Palaeocene  650 644  330 344 

Maastnchtian  720 7081 326 338.41 350 363 

Campanian Late  920 884  450 459 

Early  960 917  480 487 

Santonian Late  1070 1008  
Early  

Conacian Late  
L.Earty  1230 1134 
E.Early  

Turonian  Late  
Mid  
LEarly  1270 1165  
E.Early  

Cenomanian Late 
Early  1380 1247 370 382.5  

Aib Ian Late  1550 1368  
Mid  1880 1587 580 579  
Early  820 779.9  

ptian Late  
L.Eatly  
E.Early  

Barremian Late____  

Hauterivian 
Early 
Late  

-  1040 946.8 
- 

Valanginian Latest  1100 989.9  
Late  2268 1821 1170 1039 540 540 
Early  2618 2013 1320 1141 600 592 

Bernasian  2978 2198 1730 1398 1365 1158 
Portlandian   4093 2718 3937 2567  
Kimmeridgian  
Basement  4433 2871  1721 1389 
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Appendix ç: Algoa Bin well data 

Appendix C-iii (continued) 
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Appendix C: Algoa Basin well data 
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