Theoretical and Experimental Studies on Charge Deformation Densities and Hydrogen Bridges in Borane Anions and Related Species

Gary F Mitchell

> Doctor of Philosophy University of Edinburgh
> 1988

Declaration

I declare that the work described in this thesis has not been submitted for any other degree, and is the original work of the author, except where acknowledgement is made by reference. The work was carried out in the Chemistry Department of the University of Edinburgh between October 1983 and September 1986 under the supervision of Dr. A.J.Welch.

Acknowledgement

I would like to thank the Science and Engineering Research Council for the grant which funded this research and the Edinburgh Regional Computing Centre for the provision of computing services essential to the research. Thanks are also due to the ERCC advisory staff who were helpful in solving the more obscure problems.

In the course of my research at Edinburgh I was fortunate to have good friends and colleagues around me. Their knowledge and experience were as important a source of information as any library and for taking time to share it with me I thank them all. I would like to especially thank four people: Dr R.O.Gould for preparing a computer program necessary for the graphical presentation of the Fourier Maps, Dr Paul Taylor for his cooperation and advice on diverse computing problems and Dr A.J.Blake for being a good sport and enabling me to conclude the latter part of my work at Edinburgh. Finally, I would like to thank my supervisor, Dr Alan Welch for his enthusiasm for the research, advice, encouragement and patience.

Dedication

This work is dedicated to my parents Charles and Margaret. I will always be grateful to them for supporting me through those extra years at University
"Read not to contradict and confute, nor to believe and take for granted, nor to find talk and discourse, but to weigh and consider."

UNIVERSITY OF EDINBURGH ABSTRACT OF THESIS (Regulation 7.9)

The thesis is primarily concerned with the use of x-ray diffraction measurements of extraordinary precision and quantity to characterise the electron density distribution in three selected compounds. These compounds $\left(\mathrm{CaB}_{6}\right.$, salts of the ions $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ and $\left.\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}\right)$were selected because their structures can only be rationalised by chemical bonding called 'delocalised'. The experimental results are compared and contrasted with results from theoretical calculations. This leads to important conclusions about suggested improvements in the method of experimental measurement and about the significant deficiencies in the theoretical simulation of the electron density distribution of some these structures.

The results from work on the polymeric semiconductor CaB_{6} give a description of the electron density distribution in good agreement with theoretical models and, uniquely, in good agreement with the Electric Field Gradient Tensor which had previously been established by NQR spectroscopy.

The study of a salt containing the icosahedral di-anion $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ shows (via the deformation electron density) that the radial binding component is negligable relative to binding over the polyhedral surface. This corrects some misconceptions about the importance of chemical bonding between non-adjacent atoms in this and similar clusters. This particular experiment further reveals a weakness in the popular two-stage measurement of diffraction data and suitable precautions are suggested.

The principal conclusion from the work on the benzyltrimethylammonium salt of the octahydrotriborate anion $\left(\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}\right)$is that the theoretical simulation of the electron distribution, and even of the geometry of the ion, is anomalously poor. The experimental results cast doubt on the established topological explanation of the rare feature of this anion: the B-B bonds of the B_{3} triangle which are bridged by hydrogens are short relative to the unbridged one. A molecular orbital based approach to hydrogen bridging is described which not only explains the anomalous structure of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$but also explains the usual lengthening of H -bridged connectivities. The utility of the Laplacian function in the estimation of the ease with which molecular electron densities can be measured by X-ray diffraction is also introduced.

Finally, an algorithm is presented which estimates with a high degree of success the positions of hydrogen atoms given the geometry of the non-hydrogen atoms in, for example, transition metal clusters. This new method replaces a previously established program which had severe limitations originating from it's foundation on simple empirical rules. The new method reproduces observed asymmetry in the $\mathrm{M}-\mathrm{H}$ bond lengths of hydrogen-bridged metal-metal bonds for all compounds for which the method was tested.

Introduction

This thesis is primarily concerned with the use of X-ray diffraction measurements of extraordinary precision and quantity to characterise the electron density distribution in selected compounds. These 'electron-deficient' compounds $\left(\mathrm{CaB}_{6}\right.$, salts of $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ and $\left.\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}\right)$have been selected because their structures can only be rationalised by a type of chemical bonding called 'delocalised'. The experimental results are compared and contrasted with results from theoretical calculations. This leads to important conclusions about suggested improvements in the method of experimental measurement and about the significant deficiencies in the theoretical simulation of the electron density distribution of some these structures.

The first chapter gives an introduction to the concepts of deformation density studies which are presented in subsequent chapters and a short description of the development of this field of research which began in earnest in the late 1970's.

The second chapter describes work on the polymeric semiconductor CaB_{6}. This refractory compound afforded excellent measurements which gave a description of the electron density distribution in good agreement with theoretical models and, uniquely, in good agreement with the Electric Field Gradient Tensor which had previously been established by NQR spectroscopy.

The third chapter describes work on a salt containing the icosahedral di-anion $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$. The deformation density, (defined as the difference between the molecular electron density and that from the simple superimposition of atomic electron densities) of this anion has now been
successfully characterised - even though it is extremely small. These results, backed by new theoretical calculations, correct some misconceptions about the importance of chemical bonding between non-adjacent atoms in these clusters. The radial bonding component is demonstrated to be negligeable relative to the binding over the polyhedral surface. This particular experiment further revealed a weakness in the popular two-stage measurement of diffraction data and suitable precautions are suggested.

The fourth chapter describes work on $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$. The principle conclusion is that the theoretical simulation of the electron distribution, and even of the geometry of the ion, is anomalously poor. The experimental results cast doubt on the established topological explanation of the rare feature of this anion: the $B-B$ bonds of the B_{3} triangle which are bridged by hydrogens are SHORT relative to the unbridged one. An alternative explanation of this feature and the more usual opposite effect on bond lengths is propounded in the sixth chapter. The utility of the Laplacian function in the estimation of the ease with which molecular electron densities can be measured by X-ray diffraction is also introduced.

The fifth chapter describes a project which was initialised by the study of the bridging H-positions in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$. A pilot computer program was developed which estimates with a high degree of success the positions of hydrogen atoms given the geometry of the non-hydrogen atoms in, for example, transition metal clusters. This new method replaces a previously established program which had severe limitations originating from it's foundation on simple empirical rules. The justification of the development of this new program lies in its capability to be combined with X-ray diffraction results to give information (the hydrogen positions) which are chemically important but
which hitherto have only been attainable by making vastly more expensive and difficult neutron diffraction measurements.

The sixth and final chapter describes an approach to hydrogen bridging which not only explains the usual lengthening of H -bridged connectivities but also explains the anomalous structure of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$which was re-affirmed in the thorough study described above.
1 Charge Deformation Density : Concepts and History
1.1 Synopsis -2-
1.2 X-ray Structure Factors and Fourier Transforms -2-
1.3 Simple Modification of Scattering Curves -4-
1.4 X-N and $X-X$ Maps -6-
1.5 Multipolar Methods -7-
1.6 Ab-initio Calculations -8-
2 Charge Deformation Density in CaB_{6}
2.1 Why Study CaB_{6} ? -11-
2.2 Experimental -13-
2.2.1 Data Collection -13-
2.2.1.1 Collection 'RTMO' (Room Temperature Mo-K ${ }_{\alpha}$).-14-
2.2.1.2 Collection 'RTAG' (Room Temperature $\mathrm{Ag}-\mathrm{K}_{\alpha}$)-14-
2.2.2 Data Reduction -14-
2.2.2.1 RTMO -14-
2.2.2.2 RTAG -14-
2.3 Refinement of Standard Parameters -15-
2.4 Experimental Charge Deformation Density -16-
2.4.1 X-X Maps -16-
2.4.2 The limitations of $X-X$ Maps -17-
2.5 Multipolar Refinement -18-
2.5.1 The Multipolar Model -18-
2.5.2 Multipolar refinement of CaB_{6} -19-
2.5.2.1 Verification of Thermal Deconvolution -21-
2.5.3 Static Deformation Maps -23-
2.5.4 Dynamic Deformation Density Maps -24-
2.5.5 Residual Density Maps -24-
2.5.6 The Limitations of Multipolar Maps -25-
2.5.7 Moments and Charges -26-
2.5.8 Electric Field Gradient Tensor -28-
2.6 Theoretical Deformation Density -31-
2.6.1 The Method of Calculation -31-
2.6.2 Models for CaB_{6} -32-
2.6.3 Theoretical Static Deformation Maps -33-
2.7 Discussion: Theory and Experiment -35-
2.7.1 Which Maps Should be Compared -35-
2.7.2 External Comparisons -38-
2.7.3 Bonding in CaB_{6} -41-
2.7.4 Bonding in $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ -42-
2.7.5 Pauling's Electroneutrality Principle Does $\mathrm{Ca}^{2+}\left(\mathrm{B}_{6}\right)$ Exist? -44-

3 Charge Deformation Density in $\left[\mathrm{Et}_{3} \mathrm{NH}^{+}{ }_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right]^{2-}\right.$

3.1 Why Study $\left[\mathrm{Et}_{3} \mathrm{NH}^{+}{ }_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right]^{2-}\right.$? $-48-$
3.2 Experimental
3.2.1 Data Collection -49-
3.2.2 Data Reduction -51-
3.3 Standard Refinement -51-
3.4 Experimental Charge Deformation Density -52-
3.4.1 Multipole Model and Refinement -52-
3.4.2 Multipole Refinement Results -54-
3.4.3 Static Deformation Density Maps -58-
3.4.3.1 The Triethylammonium Cation -59-
3.4.3.2 The closo- $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ Ion -59-
3.4.4 Dynamic Deformation Density Maps -60-
3.4.5 Residual Density Maps -60-
3.4.6 Charges and Moments -61-
3.4.7 Electric Field Gradient Tensor -62-
3.5 Theoretical Deformation Density Maps -63-
3.5.1 Models for $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$and $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ -63-
3.5.2 The $\left[\mathrm{Et}_{3} \mathrm{NH}^{+}\right.$Cation -64-
3.5.3 The $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ Anion -65-
3.6 Discussion: Theory and Experiment -65-
3.6.1 Charge Distribution in $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$ -65-
3.6.2 Charge Distribution in the $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ Ion -72-
3.6.3 Related Deformation Density Studies -73-
$3.7\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right]^{2-}$ and $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$: Similarities and Contrasts -76-
3.8 Chemical Reactivity and Deformation Density -78-
4 Charge Deformation Density of Benzyltrimethylammonium Octahydrotriborate
4.1 Why Study $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NMe}_{3}\right]^{+}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$? -80-
4.2 Experimental -82-
4.2.1 Preparation of the Crystal -82-
4.2.2 Data Collection -83-
4.2.3 Data Reduction -84-
4.3 Standard Parameter Refinement -84-
4.4 Experimental Charge Deformation Density -85-
4.4.1 Multipole Model and Refinement -85-
4.4.2 Multipole refinement results -86-
4.4.3 Static Deformation Density Maps -93-
4.4.3.1 The Benzyltrimethylammonium Cation -93-
4.4.3.2 The $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$Anion -94-
4.4.4 Dynamic Deformation Density Maps -94-
4.4.5 Residual Density Maps -94-
4.4.6 Charges and moments -95-
4.5 Theoretical Deformation density Maps -97-
4.5.1 Models for $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NMe}_{3}\right]^{+}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ -97-
4.5.2 The $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NMe}_{3}\right]^{+}$Cation -97-
4.5.3 The $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$Anion -98-
4.6 Discussion : Theory and Experiment -99-
4.6.1 BTMA Charge Distribution
4.6.1 BTMA Charge Distribution -99-
4.6.2 $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$Charge Distribution -102-
5 The Effect of Edge-bridging Hydrogen Atoms on the Lengths of B-B and Metal-Metal Bonds in Cluster Compounds
5.1 Introduction -105-
5.2 The Problem Addressed -105-
5.3 Rationalisation via FMO Occupation -106-.
5.4 Advantages of using FMO Occupations and FDM's -109-
5.5 LMO Approximations : FDM's for Low Symmetry Species -110-
6 Hydride Location in Transition Metal Clusters
6.1 The Need for Empirical Methods -114-
6.2 The "HYDEX" Computer program by A.G. Orpen -114-
6.3 Anderson's EHMO Method : ASED -116-
6.4 Hydride Location using the ASED Method -120-
6.4.1 Implementation of the Formula -120-
6.4.2 Examples -120-
6.5 Assessment of Results -124-
6.6 Proposed Improvements to the Program -125-
Apppendix I References -127-
Apppendix II Glossary -135-
Apppendix III Parameters used in Ab-initio Calculations $-138-$
Apppendix IV Model Coordinates for Chapter 2 -139-
Apppendix V. Models of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$used in Chapter 4) -142-
Apppendix VI Reprint of Acta Cryst. Paper -144-
Apppendix VII Reprint of Dalton Paper

Chapter 1

Charge Deformation Density : Concepts and History

1.1. Synopsis

A detailed description of the methods used to measure, and terms to describe, deformation electron density, together with a catalogue of previous experimental results in this field is beyond the scope of this chapter. Therefore this chapter, together with the glossary, can only provide an outline of the development of this recent branch of crystallography and some of its concepts. There exist several good introductory articles ${ }^{4,5,6}$ as well as some comprehensive texts ${ }^{1,2,3}$ for those more familiar with XRD. Reviews of progress in the field have also appeared ${ }^{7}$. Papers relating to deformation density are now published regularly, particularly in Acta Crystallographica The quality of published work has improved with advances in the refinement of deformation density but no work has been subsequently been refuted. There has however been criticism ${ }^{9}$ of overly-optimistic interpretations of some results ${ }^{8}$.

1.2. X-ray Structure Factors and Fourier Transforms

The intensities of the diffracted beams ($\left(I_{\text {hkl }}\right)$ in an X-ray diffraction experiment are proportional to the square of structure factors $\mathrm{F}_{\mathrm{hkl}}$ (or more precisely FF^{*} where F^{*} is the complex conjugate of F). These structure factors are therefore in proportion to the amplitude of the diffracted beam and are related to the electron density $\rho(r)$ by a Fourier Transform (FT) :

$$
F_{\text {calc }}=(1 / N) \int \rho(r) \exp (2 \pi i H . r) d r
$$

where V is the volume of the unit cell, $\rho(r)$ is the electron density (= - charge density) at coordinate $r(x, y, z), H$ is the integer triplet h, k, l for the diffracting plane and $H . r$ is the dot product of vectors H and r equal to ($h x+k y+\mid z$).

For a molecular crystal $\rho(r)$ is very low in most of the unit cell except in
the vicinity of nuclear positions. Since one of the properties of FTs is that the FT of a sum of functions is equal to the sum of the FTs of the individual functions then $\rho(r)$ can be approximated by a sum of isolated atomic densities. Such spherically symmetric atomic densities are simple functions with simple FTs which depend on the magnitude of H but not its orientation. These FTs of atomic density are called free-atom scattering factors (or curves) fand they can be computed from quantum-mechanical calculations on isolated atoms and then tabulated or fitted by functions ${ }^{10}$. The calculation of F_{c} is then simplified to a summation of scattering factors over each atom with consideration of the relative phases introduced by the spread of atomic coordinates in the unit cell.

$$
F_{c}=\sum f_{n}(H) \exp \left(2 \pi i H \cdot r_{n}\right)
$$

where r_{n} is the fractional coordinate of the $n^{\text {th }}$ atom of scattering factor f_{n}. This approximation is used without problems in the routine solution and refinement of crystal structures. The approximation holds well because the perturbation of an atom's electron density upon molecule formation, the deformation density, is very small. Quantitative estimates of the magnitude of the deformation density could only be made with the advent of molecular ab-initio quantum mechanical calculations These calculations confirmed that the molecular electron density was only slightly different from the superimposed atomic densities (promolecular density) just as the total energy of a molecule is only slightly different from the summed electronic energy of each atom. In early experimental work the errors in the measurement of intensities and in corrections for absorption and extinction led to errors in observed structure factors $F_{\text {obs }}$ that were large compared to those in F_{c} by virtue of the free atom model. Where the compound was assumed ionic the
scattering factors of free ions such as Na^{+}or Cl^{-}were substituted. Furthermore the scattering factor for hydrogen was frequently replaced by a sharpened one by scaling the profile to that for a nuclear charge of +1.2 . This last substitution was to account for the observation that the electron density around hydrogen positions was frequently found to be more compact than for an isolated hydrogen atom. To this point these scattering factors were simply substituted and never refined. Serious consideration of the possibility of using still more complicated scattering factors only began when automated 4-circle diffractometers (for the accurate measurement of large data sets) and fast computers (capable of processing the extra calculations associated with the more complex aspherical scattering factors) became available.

1.3. Simple Modification of Scattering Curves

Among the earlier attempts to adapt the scattering factors of atoms to their chemical environment was the inclusion of spherically symmetric functions - effectively modelling a change in the atom's radial electron density distribution curve. Since such modifying functions were even and therefore had non-vanishing integrals their refinement was also a refinement of the atom's charge. This approach was taken by Coppens ${ }^{12}$ with the qualification that since the core electron density is unperturbed it is sufficient for only the valence electron density to be modified ie :

$$
\rho(r)=\rho_{\text {core }}(r)+P_{\text {val }} \rho_{\text {val }}(\kappa, r)
$$

where $P_{\text {val }}$ is a population parameter for the valence density function $\rho_{\text {val }}(\kappa, r)$ and K is an expansion-contraction parameter. The refinements of P and K was known as "Kappa refinement" or more loosely as a "radial refinement"; moreover, since the work was largely confined to atoms with $2 \mathrm{~s} / 2 \mathrm{p}$ valence orbitals the technique was sometimes described as the "I-shell projection"
method ${ }^{11}$. When the highly correlated position, thermal and extinction parameters were simultaneously refined it then became known as the "extended 1 -shell" method ${ }^{13,14}$. These initial results were very encouraging, for although there was no information on the change in angular distribution of electron density the results showed that for a single atom type in a series of compounds a set of charges could be obtained that were in broad agreement with chemical assumptions about oxidation state and the relative electronegativity of bound groups ${ }^{12}$. Furthermore the relationship between charge and size - contracted cations and expanded anions - was in agreement with the theoretical estimates of Slater ${ }^{15}$.

These early refinements still could not model an important change in the atomic density upon molecule formation. This was the shift of the centroid of electron density away from the nuclear position. This asphericity shift is particularly large for hydrogen but it is still observable for other atoms Without due allowance for this aspherical distortion the refinement of atomic positions gives coordinates which are biased towards the centroid of electron density. When this "free-atom bias" is towards the bond the calculated bond lengths are usually too short compared with those from the more accurate (if often less precise) neutron diffraction measurements. The thermal parameters - probability distribution functions of atomic position - may also refine to values which attempt to compensate for the aspherical deformation density. The direction of the centroid shift is not always into a bond but is in some instances is in the opposite direction if, for example, there is a pronounced lone pair.

1.4. $\mathrm{X}-\mathrm{N}$ and $\mathrm{X}-\mathrm{X}$ Maps

These were the first crude attempts to get a 3-dimensional representation of the deformation density. The XRD experiment can give the molecular electron density but not the unbiased atomic coordinates necessary to construct the reference or "promolecular" density. The neutron diffraction experiment does give the nuclear coordinates and their thermal motion free from any bias due to electron distribution. Subtraction of the promolecular density from the molecular density gives the deformation density or to use FTs:

$$
\Delta \rho(r)=(1 / N) \int\left[F_{\text {obs }}(H) / k-F_{\text {c.free-atom }}(H) \exp (-2 \pi i H . r)^{\prime}\right.
$$

Where F_{c} has been prepared using the neutron diffraction results for positional and thermal parameters and k is a scale factor which cannot be that from the neutron diffraction experiment (there are necessarily two experiments) but is ideally estimated such that the integration of the deformation density over the unit cell is zero.

These experimental $\mathrm{X}-\mathrm{N}$ maps showed clearly for the first time zones of excess electron density between chemically bonded atoms and peaks attributable to lone pairs.

Neutron diffraction is not readily available and the requirement for two experiments on two crystals on different machines using different detection techniques resulted in serious problems with systematic errors in at least one data set. The possibility of extracting unbiased atomic positions using X-ray data alone exists because the valence electron density is diffuse, and in the nature of FTs, diffuse functions have compact FTs. Therefore the exclusion or
down-weighting of "low-angle" diffraction data leads to atomic coordinates where the free-atom bias is minimal. The limit for "low-angle" data was initially estimated at $2 \sin \theta / \lambda \cdot 1.3 \AA^{-1}$.because quantum mechanical calculations (on free atoms) suggested that this was the point where the contribution of valence electrons to scattering was only a few percent. This limit was increased over the years towards $1.7 \AA^{-1}$. Substitution of high order (HO) parameters for neutron diffraction derived ones gives " $\mathrm{X}-\mathrm{X}_{\mathrm{HO}}$ " or simply " $\mathrm{X}-\mathrm{X}$ " maps. The scale factor should be that from the HO refinement but systematic r errors frequently alter k and instead it is often re-refined using some or all of the data. Such maps of course show the dynamic deformation density since the XRD experiment gives the time averaged electron distribution. This is not immediately comparable with the results from ab-initio calculations which are for an instantaneous nuclear configuration. There are still other difficulties with $X-X$ maps (see Chapter 2 : the limitations of $X-X$ maps).

1.5. Multipolar Methods

The next advance was therefore the refinement of odd functions on the atoms to model the asphericity shift. This was investigated by Stewart ${ }^{16}$, by Dawson ${ }^{17}$, and by Hirshfeld ${ }^{18}$. The functions now had a third term with an angular dependence:

$$
\rho(r)=\rho_{\text {core }}(r)+P_{\text {valence }} \rho_{\text {valence }}(k, r)+\sum_{1} \sum_{m} P_{l, m} Y_{l, m}(\theta, \phi) R_{1}(r)
$$

where $P_{1, m}$ is the population coefficient of an aspherical function of radial dependence $R_{1}(r)$ and angular dependence $Y_{1, m}(\theta, \phi)$. These extra aspherical functions (describing electron density) were analagous to the p, d, f, g hydrogen atomic orbital functions (which describe the wavefunction). Spherical harmonic functions are by definition mutually orthogonal but while this is an advantage in some applications of least-squares refinement it is not
a necessary condition. Hirshfeld developed a similar approach using simpler non-orthogonal functions ${ }^{18}$ of the form :

$$
\rho_{d e f^{\prime} n}=R_{n}(r) \cos ^{n} \theta_{k} \quad(n=0,1,2,3,4)
$$

where $R_{n}(r)$ is a radial distribution function and θ_{k} is the angle from some specified polar axis, 3 axes for $n=1$ and 15 axes for $n=4$. The programs of Coppens and of Hirshfeld which were developed to apply these functions in the refinement of the molecular electron density became widely available from 1979. Since the deformation density was now neatly parameterised the static deformation density could also then be evaluated and plotted. Multipolar models represented a significant improvement over $X-X$ methods. The maps now had the noise due to random errors in $F_{\text {obs }}$ filtered out and were, for the first time, maps capable of being compared to theoretical results.

1.6. Ab-initio Calculations

The comparison of experimental deformation density studies with results from theoretical calculations of various levels of sophistication showed that the experimental deformation could only be reproduced by ab-initio calculations of at least split valence level (4-31G, 3-21G), with some subtle features reproduced only after expansion of the basis sets to include polarisation functions. This was to be expected since it is only at this level of calculation that theoretical deformation densities converge to within approximately $0.05 \mathrm{e}^{-3}{ }^{-3}$ in the interatomic region ${ }^{19}$. The effect of electron correlation on the electron density is fortunately an order of magnitude smaller than the deformation density and is therefore negligible when making comparisons within experimental results. Nevertheless the size of the basis sets required indicates that for larger molecules /polymers the deformation density may be more accessable from X-ray diffraction than by molecular
orbital or band calculations.

In the early development of multipole refinement the close analogy between the molecular density defined as a series of short range overlapping functions and the density matrix P_{μ}, ν of the LCAO molecular orbital method was exploited ${ }^{20}$. The goal of measuring the X-ray diffraction pattern so accurately that the wavefunction density matrix could be refined (rather than calculated by ab-initio means), and hence all properties predicted by application of the appropriate operator is still remote, but a system of computer programs to acheive this has been tested successfully on lithium and beryllium, admittedly using calculated structure factors ${ }^{21}$.

Charge Deformation Density in CaB_{6}

2.1. Why Study CaB_{6} ?

Calcium hexaboride was first prepared in 1897^{22} and is one of a series of isostructural MB_{6} borides where M is a group lla metal. Other hexaborides are known such as rare-earth hexaborides and $\mathrm{KB}_{6}, \mathrm{SiB}_{6}$ etc. These hexaborides are worthy of an accurate X-ray diffraction study because of the unusual binding of the boron framework. The structure consists of B_{6} octahedra and metal atoms arranged in $8: 8$ (i.e. CsCl) cubic packing. The B_{6} octahedra are sufficiently close for the contacts to be interpreted as bonds. An illustration of part of the polymeric structure is sketched in Fig 1.1.

FIGURE 2.1

Structure of CaB_{6}

Thus the number of connectivities for each boron atom is 4 intra-octahedral and 1 inter-octahedral, which even assuming the transfer of 2 electrons from the Ca to the B_{6} unit allows only $2 / 3$ electrons for each connectivity. This leads to an interpretation of the bonding as involving 2-electron 2-centre bonds only between the octahedra with delocalised bonds within the octahedra.

The latter are of greater interest since their delocalisation makes their "observation" via XRD a challenge. Furthermore, boron polyhedra are a class
of compounds on which relatively few charge deformation density studies have been done.

The bonding pattern of the B_{6} octahedra of CaB_{6} is entirely analagous to that in the hexaborate di-anion $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-} 23$. This can be prepared ${ }^{24}$ and crystallised as its $\left[\mathrm{N}(\mathrm{Me})_{4}\right]^{+}$salt ${ }^{25}$. The latter salt could instead be studied with the same objective and would be more suitable for a charge deformation density study as indicated by its higher Coppens suitability factor ${ }^{26}$.

$$
S_{c}=V / \sum n^{2}
$$

where V is the unit cell volume and n is the number of core electrons, the summation is over all atoms in the unit cell. For $\left[\mathrm{NMe}_{4}\right]_{2}\left[\mathrm{~B}_{6} \mathrm{H}_{6}\right] \mathrm{S}_{\mathrm{c}}=6.48$ (cf. $\mathrm{CaB}_{6} 0.20$). Another advantage of $\left[\mathrm{NMe}_{4}\right]_{2}\left[\mathrm{~B}_{6} \mathrm{H}_{6}\right]$ over CaB_{6} is a smaller absorption coefficient: $\mu\left(\mathrm{Mo}^{-K_{\alpha}}\right)=0.49, \mu\left(\mathrm{Ag}-\mathrm{K}_{\alpha}\right)=0.33 \mathrm{~cm}^{-1}$ (cf. $\mu\left(\mathrm{Mo}_{\mathrm{K}}-\mathrm{K}_{\alpha}\right)$ 17.8, $\left.\mu\left(\mathrm{Ag}-\mathrm{K}_{\alpha}\right)=9.1 \mathrm{~cm}^{-1}\right)$. The $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ ion would also be more immediately comparable with studies in other hydroborate anions (such as $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$) of which there is a greater variety in polyhedral geometry than in the borides. The disadvantages of the tetramethylammonium salt are that tetramethyl ions show some disorder and/or rotation of methyl hydrogens and the synthesis of $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ is potentially hazardous. Moreover the use of alkali metal salts of $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ would result in the absence of a 2-electron 2-centre bond (other than the unsatisfactory $\mathrm{B}-\mathrm{H}$ bond), to act as a check on the quality of the data before interpreting the delocalised deformation density in the B_{6} fragment. The synthesis of CaB_{6} demands extreme conditions but fortunately it is available commercially at little expense. The remaining disadvantages of CaB_{6} are the low suitablity factor (see above) and the extended polymeric lattice. The latter presents difficulties when calculating the theoretical deformation density. However, the same polymeric lattice confers extreme crystallinity and
reduces drastically the thermal vibrations of the boron atoms allowing measurement of Bragg reflections to extraordinary values of $\sin \theta / \lambda$ at room temperature. Finally the unit cell ($4.14 \AA$ cubic P) is smaller (cf. [$\left.\mathrm{NMe}_{4}\right]_{2}\left[\mathrm{~B}_{6} \mathrm{H}_{6}\right]$ $11.84 \AA$ cubic F) and therefore fewer reflections need to be measured to achieve the same resolution.

2.2. Experimental

Two data sets were collected using the same crystal but different X-ray wavelengths. The experimetal details are summarised below.

2.2.1. Data Collection

2.2.1.1. Collection 'RTMO' (Room Temperature Mo- K_{α})

CaB_{6} was obtained from ALFA (99.5%). Black, opaque cuboid block ($\mathrm{P}_{\mathrm{m}} 3 \mathrm{~m}$)
$0.050 \times 0.048 \times 0.035 \mathrm{~cm}$. Space group A and preliminary cell dimensions by Weisenberg photography ; accurate cell parameters using CAD-4 diffractometer, $293 \mathrm{~K}, 25$ centred reflections $\left(12^{\circ}<\theta<56^{\circ}\right)$, graphite monochromated Mo-K $\alpha_{\alpha}\left(\lambda_{\mathrm{av}} 0.71069 \AA\right.$), for data collection $\theta \max =76^{\circ}, \omega-2 \theta$ scans in 96 steps (each reflection scanned twice using 48 alternate steps, profile compared and if not statistically similar twice more, if still dissimilar measurement flagged), ω-scan width $0.45+0.35 \tan \theta$, medium speed prescan after which reflections of $1 \geq 3 \sigma 1$ re-measured such that final net intensity had $1>33 \sigma$ l subject to a maximum measuring time of 90 s . Full sphere of 6239 data measured over $67 x$-ray hours. No detectable crystal decay or movement.

2.2.1.2. Collection 'RTAG' (Room Temperature Ag-K ${ }_{\alpha}$)

Same crystal used, collection as per RTMO except cell based on 24 centred reflections $\left(9^{\circ}<\theta<48^{\circ}\right)$, graphite monochromated $\mathrm{Ag}-\mathrm{K}_{\alpha}$ ($\lambda_{\mathrm{av}} 0.56160 \AA$) for
data collection θ max $=60^{\circ}$, ω-scan width $0.5+0.45 \tan \theta$, medium speed prescan after which reflections of $1 \geq 0.67 \sigma \mathrm{l}$ re-measured such that final net intensity had $\mathrm{I}>33 \sigma$ l subject to a maximum measuring time of 120 s . Full sphere of 11144 data measured over $260 x$-ray hours.

2.2.2. Data Reduction

2.2.2.1. RTMO

.115 reflections with $1<0$ discarded together with reflections flagged as

- overloading the detector counter
- having an irreproducible profile
- being weak with a peak offset from the expected position
- having an uneven background

Total deletions amounted to no more than 10% of data collected. Data corrected for Lorentz and polarisation factors (including terms for monochromator polarisation). Analytical absorption correction using SHELX 76^{27} on six measured 001-type faces, $\mu\left(\mathrm{Mo}^{-} \mathrm{K}_{\alpha}\right) 18.31 \mathrm{~cm}^{-1}$. $\mathrm{T}_{\text {max }} 0.581$, $T_{\text {min }}$ 0.444. Data then merged to give 187 unique data ($R_{\text {merg }} 0.040$), reflections with $\Delta / \sigma>3$ deleted. The two lowest $-\theta$ reflections persistently had Fo $<\mathrm{Fc}$; this was attributed to extinction and these two reflections (001 and 002) were deleted to give a final list of 176 Fobs.

2.2.2.2. RTAG

- as per RTMO except: 757 reflections with $1<0$ discarded, $\mu\left(\mathrm{Ag}-\mathrm{K}_{\alpha}\right)=9.10 \mathrm{~cm}^{-1}, \mathrm{~T}_{\text {max }} 0.746, \mathrm{~T}_{\text {min }} 0.646$. Data merged to give 314 unique data ($R_{\text {merg }} 0.025$). Reflections with $F<5 \sigma F$ omitted together with 001 (Fo<<Fc: attributed to extinction), to give a final list of 297 Fobs.
$\mathrm{CaB}_{6}, \mathrm{Mr}=104.94, \rho_{\mathrm{x}} 2.45 \mathrm{gcm}^{-3}$, cubic, space group Pm3m (No. 221), $a=4.1422(5) \AA$ (averaged) $, \quad V=71.07(2) \AA^{3}, \quad Z=1, \quad \mu\left(M_{0}-K_{\alpha}\right)=18.31 \mathrm{~cm}^{-1}$, $\mu\left(A g-K_{\alpha}\right)=9.10 \mathrm{~cm}^{-1}, F_{000}=50, T=293 K$.

2.3. Refinement of Standard Parameters

The starting point of the refinement was the long established but imprecise positional parameters of Stackelberg and von Neumann ${ }^{28}$ but with an arbitary origin shift such that B is at $(x, 0,0)$ and C is at (1/2,1/2,1/2). Thermal parameters were initially (over)estimated at 0.05 .

There are only 5 standard crystallographic variables of which only one is a positional variable. These were refined using weights of $1 / \sigma^{2} F$, minimising the function $\Delta_{1}=\Sigma \mid$ Fo-kFc $\left.\right|^{2}$. These are listed below in Table 2.3 together with their esd's, in columns (a) and (b) for RTMO and RTAG.

TABLE 2.3

	a	b	c
$\sin \theta / \lambda$	1.37	1.54	1.37,
λ	0.71069	0.5616	0.5616
$N_{\text {obs }}$	176	297	191
Ca u11	$.01254(4)$	$.01237(6)$	$.01238(7)$
B x	$0.29832(9)$	$0.29856(14)$	$0.29858(18)$
B u11	$0.00444(8)$	$0.00458(13)$	$0.00466(18)$
B u22	$0.00624(6)$	$0.00621(9)$	$0.00625(12)$

These two solutions are not significantly different with the possible exception of Ca u11 where the difference is between 2 and 3σ. Excluding data from RTAG of resolution greater than than obtained with Mo-K α measurements, ie using only data of $\sin \theta / \lambda<1.37 \AA^{-1}$, gives the set of parameter in column c. These are broadly similar but with larger esd's.

2.4. Experimental Charge Deformation Density

There are several functions which can be employed to display the charge deformation density determined from X-ray diffraction experiments, as described in the previous chapter. Here $X-X$ maps are presented.

2.4.1. $X-X$ Maps

In preparing an $X-X$ map it is neccessary to divide the data into low and high angle sets and refine a model using only the latter. This model is then fixed and used in conjunction with the low angle set to prepare a difference map which is the deformation density map. The scale factor alone may be or may not be further refined but fixing it at the high order value is preferred.

The division in $S=2 \sin \theta / \lambda$ is however somewhat arbitary because the limit in S at which the contribution of the atom's valence deformation becomes neglig!ble will depend not only on the unit cell composition but also on each atom type. This dependence is demonstrated by refining the CaB_{6} model with various values of $\mathrm{S}_{\min }$. The results for data set RTAG are tabulated below in Table 2.4.1.

TABLE 2.4.1

	0.0	0.8	1.2	1.6	2.0	2.4	2.8
$\mathrm{~S}_{\text {min }}$	297	288	274	248	210	161	90
$\mathrm{~N}_{\text {obs }}$	$297(\mathrm{ull}$	$1237(6)$	$1243(5)$	$1255(4)$	$1222(3)$	$1238(4)$	$1250(6)$
Ca	$1247(18)$						
$\mathrm{B} \quad \mathrm{ull}$	$444(8)$	$457(9)$	$431(6)$	$422(5)$	$429(4)$	$430(6)$	$448(18)$
B u22	$624(6)$	$627(6)$	$611(5)$	$609(4)$	$617(9)$	$621(5)$	$640(18)$
$\mathrm{k}-1$	$.328(2)$	$.333(3)$	$.314(3)$	$.308(4)$	$.328(5)$	$.341(10) .39(4)$	

* thermal parameters $\times 10^{5} \AA^{-2}$

From Table 2.4 .1 it is apparent that the boron parameters plateau at $\mathrm{S}_{\text {min }}>$
$2.0 \AA^{-1}$ while the calcium parameters continue to shift as $S_{\text {min }}$ is raised to $2.4 \AA^{-1}$. All parameters shift as $S_{\text {min }}$ is raised to $2.8 \AA^{-1}$ but this is attributable to the severe correlation of scale and thermal parameters (due to the narrow θ range) and the severely diminished number of reflections. These factors result in increased esd's, the particularly high esd on the scale factor (3\%) makes it unusable for $X-X$ maps.

The limit in S of Fobs contributing to the difference ($X-X$) map need not be the same as that dividing the data into low and high order reflections. The inclusion of reflections from higher angle increases the resolution but the noise becomes worse as shown by Figs 2.4.1(a) and 2.4.1(b) where the parameters are from $S>=1.2$ but $S_{\max }$ of the final ΔF synthesis is respectively 1.0 (16 unique reflections) and 1.4 (35 reflections). The features of these maps are discussed in section 2.7.

2.4.2. The limitations of $X-X$ Maps

$X-X$ maps are unsatisfactory for several reasons:

- The contribution of ($\mathrm{Fo}-\mathrm{Fc}$) to the map is not dependent on the statistical uncertainty associated with Fo. Hence large ΔF terms can have a profound influence on the map even though some may have an appreciable error.
- The formulation of $X-X$ maps is imprecise, ie there is not a universally applicable limit of S for dividing the data into low and high order.
- The scale factor is usually associated with a large esd and correspondingly the absolute sign of much of the map is uncertain. Where it is re-refined prior to preparing the ΔF map various methods have been employed. The ideal of a scale factor such that the integration over the difference map is zero is rarely achieved.
- In non-centrosymmetric structures the ΔF magnitude and phase are particularly sensitive to small changes in Fcalc.

FIGURE 2.4 .1
$X-X$ map for a plane containing
the centres and four edges of B_{6} octahedra.
(a) $S \leq 1.0 \AA^{-1}$
(b) $S \leq 1.4 \AA^{-1}$

- The more higher angle terms included in the ΔF synthesis then the worse the errors associated with features on the map. High resolution and good signal to noise ratio are therefore conflicting requirements.

2.5. Multipolar Refinement

This section describes the refinement of the deformation density of CaB_{6} using the program LSEXP developed by Hirshfeld. The refinement reported is for the data set RTAG only and all subsequent discussion is confined to this collection. (The other data set RTMO was also refined and gave similar results subject to a smaller data/variable ratio and stronger absorption.)

2.5.1. The Multipolar Model

Several programs have been used by various authors for multipole refinement. Some use functions to describe all of the atomic density, others assume a core density profile and describe by functions only the valence density, and finally others assume an atomic density corresponding to a free isolated atom and describe the distortion of the valence density by functions. These functions can be spherical harmonics which are orthogonal but can also be simpler angular functions (which are non-orthogonal), linear combinations of which are spherical harmonics. The radial dependence can be either Slater type ($e^{-\alpha r}$) or Gaussian ($e^{-\gamma r r}$). The multipole refinement reported here (and those in other chapters) was carried out using the program LSEXP developed by F.L.Hirshfeld ${ }^{29}$ which modifies the atomic electron density profile (implied by input standard free atom scattering curves) by electron density terms of the form:

$$
\begin{aligned}
& \rho_{\alpha, 1}(r)=\rho_{n}\left(r_{\alpha}, \theta_{k}\right) \\
& =N_{n} r^{n} \exp \left(-\alpha r_{\alpha}\right) \cos ^{n} \theta_{k}
\end{aligned}
$$

where r_{α} is the distance from the atomic centre α, θ_{k} is the angle between radius vector r_{α} and a specified polar axis k, n is an integer ranging between 0 and 4 and α is the exponent which governs the radial range of the deformation functions. N_{n} is a normalising factor. The 35 functions transform to 3 monopoles, 6 dipoles, 10 quadrupoles, 7 octapoles and 9 hexadecapoles and as such define a highly flexible basis.

2.5.2. Multipolar refinement of CaB_{6}

Symmetry constraints originating from the crystallographic point symmetry (Ca: $\mathrm{O}_{\mathrm{h}}, \mathrm{B}: \mathrm{C}_{4 \mathrm{v}}$) drastically reduce the number of independent deformation coefficients from 35 each to 4 for Ca and 10 for B . The finite expansion of the deformation functions to fourth order results in effective constraint on the Ca deformation basis to spherical point symmetry; however, the cumulative interaction of neighbouring atom's deformation functions means that spherical point symmetry is not reflected in deformation maps at the Ca position. Initial estimates of the deformation coefficients were zero while the exponents were estimated at $5 \AA^{-1}$ for Ca and for B . These exponents were initially fixed. The deformation coefficients and standard parameters were refined by full matrix least squares with initial heavy damping. The function minimised was $\Delta_{2}=$ $\Sigma W_{2}\left(\left|F o^{2}-k^{2} F^{2}\right|\right)^{2}$ rather than $\Delta_{1}=\Sigma W_{1}|F o-k F c|^{2}$ in line with current thought on the relative merit of Δ_{1} and Δ_{2} minimisation ${ }^{30}$.

For data set RTAG the initial weighted R-factor R_{w} for 5 converged standard parameters was 4.108%. The introduction of 14 deformation coefficients and 1 constraint $\left(F_{(000)}=50\right)$ reduced R_{w} to 1.842%. Despite more than trebling the number of variables this is still a significant decrease in the R_{w} factor according to Hamilton's test ${ }^{31}$. The contribution of the 'cusp' or 'spherical' functions ($n=0$) in reducing R_{w} is small, 0.5%. Refinement of the
exponents (in a separate block) slowly reduces R_{w} still further to 1.706% (again significantly) but the exponent on B becomes unreasonably low $\left(3.42 \AA^{-1}\right.$), and consequently the model violates the convolution approximation which requires deformation density to undergo the thermal motion of its nearest neighbour nucleus. (This problem probably only arises because a large component of the deformation density is between symmetry related boron atoms with parallel thermal ellipsoids.) The results with exponents fixed at $5 \AA^{-1}$ were therefore retained. These are set out below in table 2.5.2.

TABLE 2.5 .2

Standard parameters

	x	y	z	$u 11$	$u 22=u 33$
B	$0.29834(7)$	0	0	$0.00420(6)$	$0.00619(7)$
Ca	$1 / 2$	$1 / 2$	$1 / 2$	$0.01226(4)$	

Deformation Parameters

Atom	Order	Axis Coeff	Coefficient (esd)
B	0	-	-0.028(38)
	1	100	0.088(32)
		\{010,001\}	0
	2	(110,1-10,101	
		10-1\}	0.169(44)
		\{011,01-1\}	-0.367(46)
	3	$\begin{gathered} \{110,1-10,101 \\ 10-1\} \end{gathered}$	
			0.556(54)
		(111,1-1-1,-(-11-1),	
		$-(-1-11)\}$	-0.713(56)
		\{011,01-1\}	0
	4	100	-0.297(58)
		\{010,001\}	0.049(28)
		\{all, -all, a-11, a-1l\}	a-11) $0.011(17)$
		$\{1 a l, l l a, 1-a l, l l-a$,	1-a,
		la-1,-1la,-lal,l-1a)	l-la) 0.058(15)
Ca	0	-	0.375 (207)
	2	(110,1-10,101,10-1,	
		011,01-1\}	-0.064(55)
	4	\{100,010,001\}	-0.408(156)
		$\{a l l, 1 a l, 11 a,-a l l$,	11,
		1-al,11-a,a-11, ${ }^{\text {a-l }}$	a-1,

$$
-11 a, a 1-1,-1 a 1,1-1 a\} \quad-0.009(49)
$$

```
R-factor R 0.0134, weighted R-factor }\mp@subsup{R}{w}{}0.0184
```

$a=\sqrt{2}-1$

2.5.2.1. Verification of Thermal Deconvolution

A map of the electron density in a unit cell, such as prepared by direct Fourier synthesis, shows atoms as local concentrations of electron density. These are in general not spherical for two reasons. These are 1) the atoms undergo thermal motion which is usually anisotropic and 2) the electron density of the atom does not remain spherical if the atom forms chemical bonds. These two factors are applied to the free atom scattering, $f_{\text {hkl }, 0}$ in the structure factor calculation by the temperature factor u (strictly a second rank symmetric tensor) and a small F term, f_{m}, which is the transform of the deformation multipoles.

```
    \(f_{h k l}=\left(f_{h k l, 0}+f_{h k l, m}\right) \exp \left[-2 \pi^{2}\left(u_{11} h^{2} a^{* 2}+u_{22} k^{2} b^{* 2}+u_{33} I^{2} c^{* 2}+2 u_{12} h k a^{*} b^{*}+2 u_{13} h l a^{*} c^{*}+\right.\right.\)
\(\left.\left.2 \mathrm{u}_{23} \mathrm{klb}^{*} \mathrm{c}^{*}\right)\right]\)
```

These terms are correlated, since each describes an aspherical electron density, but the correlation is imperfect because their modifications of $f_{h k l}$ as a function of $\sin \theta / \lambda$ have different profiles ${ }^{32}$. Given data covering a large range of S therefore, these contributions can be resolved. This process of thermal deconvolution must be successful if the deformation density determined is to be meaningful.

Verification of thermal deconvolution is done by confirming that the resulting thermal parameters are chemically sensible or agree with independent measurements such as neutron diffraction. Chemically sensible means that the bonds should be nearly rigid since it is well established that the force constants for bond compression/extension are much larger than for
bond angle deformation. This leads to the conclusion that for two bonded atoms the components of the thermal motion parallel to the bond should be very nearly equal ${ }^{32}$. For rigid groups such as phenyl rings this idea can be extended ${ }^{33}$ to the statement that all pairs of atoms in a rigid group (bonded or not) should have near equal amplitudes of vibration along the vector between them. The limit 'near equal' is usually interpreted as an difference in the components of thermal parameters below $0.0001 \AA^{2}$. Where thermal parameters are refined without multipole deformations and especially if the data span only a small range of S, such as for routine structure solution, the thermal parameters do not pass a rigid bond test and almost certainly mask deformation density features. The recent realisation of this means most of the thermal parameters published in the last few decades are not quantitative and perhaps explains the current trend to exclude thermal parameters from the publication of routine structure solutions.

Examination of the thermal parameters to prove thermal deconvolution in CaB_{6} is complicated by the fact that the borons at either end of the inter-octahedral connectivity have symmetry equivalent thermal parameters parallel to the bond $\left(u_{11}\right)$. The intra-octahedral components parallel to the octahedral edges similarly are symmetry equivalent. For the purpose of demonstrating successful thermal deconvolution more subtle methods are needed. Table 2.5.2.1 lists u_{11} and u_{22} for B after refinement with and without deformation functions.

TABLE 2.5.2.1

Boron \& Calcium Thermal Parameters

deformation functions: excluded	$\mathrm{B} \mathrm{u}_{11}$	$\mathrm{~B} \mathrm{u}_{22}$	$\mathrm{Ca} \mathrm{u}_{11}$

Other than a general reduction in the esd's the only difference is that the anisotropy becomes more pronounced. The Raman spectrum of several MB_{6} compounds, including CaB_{6}, has been measured ${ }^{34}$ and assigned. Three bands corresponding to vibrational modes of the B_{6} octahedron of symmetry $\mathrm{A}_{1 \mathrm{~g}}, \mathrm{E}_{\mathrm{g}}$ and $F_{2 g}$ occur at successively lower frequencies $\left(1300,1150,780 \mathrm{~cm}^{-1}\right.$ approximately from Fig. 2 of reference 34). This suggests that the largest amplitude of vibration should be of $\mathrm{F}_{2 \mathrm{~g}}$ type. This mode corresponds to scissoring around the four-fold axis of the octahedron. Given the threefold degeneracy the thermal motion of the rigid octahedron should be large tangential to the inter-octahedral bond and smaller parallel to the bond. This is indeed reproduced in the thermal parameters and is more pronounced after inclusion of valence deformation multipoles. The thermal motion of the Ca atom is less clearly resolved, there being no significant change.

2.5.3. Static Deformation Maps

Fig 2.5.3(a) shows the static deformation density using the parameters from the RTAG refinement with evaluation over a grid of 51×51 points of approximately $0.1 \AA$ divisions. Contours are in intervals of $0.05 e^{-3}$. The zero contour is omitted. The plane is perpendicular to the 001 direction and contains the centre of an octahedron.

Fig 2.5.3(b) - as above but for a parallel plane passing through the centre of an octahedral face.

Fig 2.5.3(c) - as above, passing through a B position.

Fig 2.5.3(d) shows the esd of the static deformation density evaluated for a

FIGURE 2.5.3(A)

Static Deformation Density
for a plane perpendicl $\exists \mathrm{ar}$ to 001 and containing an octahedral centre.

FIGURE 2.5.3(B)

Static Deformation Density
for a plane perpendicular to 001 and passing through the centre of an octahedral face.

FIGURE 2.5.3(C)

Static Deformation Density
for a plane perpendicular to 001 and passing
through a B position on $00 z$.

FIGURE 2.5.3(D)

ESD of Static Deformation Density for the plane in 2:5.3(a).
portion of figure 2.5.3(a) using the least squares covariance matrix and the program DEFEX by Hirshfeld ${ }^{29}$.

2.5.4. Dynamic Deformation Density Maps

These were prepared using Fourier transforms (rather than the tedious convolution of numerically summed deformation functions with the thermal parameters), and are essentially difference maps of two Fcalc's.
$\Delta \rho_{d y n}=1 / N \quad \sum\left(F_{1}-F_{2}\right) \exp (-2 \pi i H \cdot r)$
where $F_{1}=$ Fcalc from a model with full deformation functions and $F_{2}=$ F'calc using structural parameters taken from the multipole model refinement and only free atom scattering factors. Summation was over all indices (observed or not observed in the experiment) to an adequate resolution for the grid employed.

Figs 2.5.4(a) to (c) show sections analagous to Figs 2.5.3(a) to (c.). Contour intervals are unchanged. The thermal amplitudes are so small that the decrease in peak heights is very slight.

2.5.5. Residual Density Maps

Substitution of Fobs for F_{1} (see Section 2.5.4) gives (dynamic density + residual density). Subtraction of the dynamic density grid previously calculated (using only Fc for which an Fobs was measured) leaves the residual density.

Figs 2.5.5(a) to (c) shows the residual density in some of the sections in Figs 2.5.3(a) to (d).

FIGURE 2.5.4(A)

Dynamic Deformation Density
for a plane perpendicular to 001 and containing an octahedral centre .

FIGURE 2.5.4(B)

Dynamic Deformation Density
for a plane perpendicular to 001 and passing
through the centre of an octahiedral face.

FIGURE 2.5.4(C)

Dynamic Deformation Density
for a plane perpendicular to 001 and passing
through a B position on $00 z$.

FIGURE 2.5.4(D)

Dynamic Deformation Density
for a plane perpendicular to 001 and passing
through the Ca position.

FIGURE 2.5.5(A)

Residual Density
for a plane perpendicular to 001 and containing
an octahedral centre.

FIGURE 2.5.5(B)

Residual Density
for a plane perpendicular to 001 and passing through a B position on 002 .

FIGURE 2.5.5(c)

Residual Density
for a plane perpendicular to 001 and passing through the Ca position.

In the plane of the octahedral core (Fig 2.5.5(a)) the largest peaks are only $0.1 e \AA^{-3}$ and while symmetrical are not significant. By contrast the residual at the Ca position (Fig 2.5.5(d)) is sharp but short range. This form cannot be rationalised by an inadequacy of deformation functions - the peaks are much too close to the core. However this form of residual can be interpreted as due to an inadequacy in the temperature factor for the Ca atom. The temperature factor is not inadequate because it is isotropic (that is a point symmetry requirement for a second rank tensor description) but because the displacement potential is anharmonic and needs to be modelled by a more complicated thermal parameter (ie third or higher rank symmetric tensor). This anharmonic behaviour is confirmed by the work of Paderno et al ${ }^{35}$ which showed a non-linear dependence of the cell constant on temperature. Furthermore results of Paderno showed a non-linear increase of $u_{b a r}{ }^{2}$, the rms dynamic displacement. Figs 3 and 4 of reference 35 show that $u_{\text {bar }}{ }^{2}$ as a function of temperature for the Ca atom is more curved than the corresponding one for the B_{6} component. This agrees with the relative magnitudes of the residual density at the $C a$ and B positions.

2.5.6. The Limitations of Multipolar Maps

An analysis of the error in deformation density maps concludes that the errors are at their most serious in the vicinity of nuclear positions $(<0.03 \AA$ distant) and to a lesser extent in proximity to symmetry operators ${ }^{36}$. The esd of the static deformation density can be evaluated from the covariance matrix (see Section 2.5.3) for an example) but the integrations required for the esd of the dynamic density are considerably more time consuming and this is rarely attempted.

Excessive constraints applied to multipoles or the use of a deformation basis of inadequate flexibity will be revealed by the non random residual density in positions other than those of the atomic positions.

Where the static or dynamic deformation density is prepared by using structure factors there is a series termination error and a limit on the resolution obtained determined by the highest value of S used for the Fcalc's employed. The omission of reflections will introduce errors in proportion to their magnitude. These errors can be eliminated by using all reflections to such a high value of S that the resolution is limited by the grid over which the deformation density is evaluated and contoured. While this approach is obvious the manipulation of large structure factor lists, especially in low-symmetry Laue classes, slows computation.

For CaB_{6} the distortions due to structure factor list truncation were therefore evaluated for planes corresponding to Fig 2.5.3(a) using 1) $\mathrm{S}<$ $2.0 \AA^{-1}$ only (Fig 2.5.6(a)) 2) $\mathrm{S}<2.0 \AA^{-1}$ and $|F|>1.5$ (Fig 2.5.6(b)). From these the distortion attributable to the exclusion of reflections of extreme high order is negligible but the exclusion of weak F^{\prime} s is serious (and unpredictable).

2.5.7. Moments and Charges

The refinement of multipolar functions on atoms includes even functions which are therefore associated with charge accumulation or depletion on the atom. For the RTAG refinement these are $B-0.22(1)$ and $\mathrm{Ca} 1.34(1)$. These charges are not usually reliable because the diffuse functions on atoms may maximise between bonded atoms. The deformation density of such functions should therefore be partitioned. An established method is to evaluate the deformation density over divisions of the molecular volume and distribute the

FIGURE 2.5.6(A)

Static Deformation Density
for the plane in $2.5 .3(\mathrm{a})$. $\mathrm{S}<2.0 \AA^{-1}$

FIGURE 2.5.6(B)

Static Deformation Density
for the plane in 2.5.3(a). $S<2.0 \AA^{-1}$ and $|F|>1.5$
deformation density within each division to each atom in proportion to the relative radial density of the neutral spherical atom at that distance. This formula ${ }^{37,39}$ has the advantage that when applied to the pro-molecule density the atomic charges are all zero. Application of the stockholder partitioning recipe, in this case, gives a similar charge distribution of $\mathrm{B}-0.20, \mathrm{Ca} 1.20$. These charges are of course not the classical charges $\mathrm{Ca}^{2+}\left(\mathrm{B}_{\dot{6}}\right)^{2-}$ which might simplistically be expected for a calcium compound. They are however in good agreement with the result obtained using Pauling's electronegativity scale in conjunction with the electro-neutrality principle ${ }^{38}$ with some corrections to the original theory (see Section 2.7.5). The charges according to Pauling's method are $\mathrm{Ca}+1.08$ and $\mathrm{B}-0.18$.

The moments can be deduced directly from the magnitude of the multipolar terms on each atom alone but these are excessive since deformation functions on neighbouring atoms could cancel. Multipoles from partitioned deformation density are therefore minimum values. Unique values are given below in Table 2.5 .7 with respect to the local molecular axes. First and second moments are given in units of $e \AA$ and $e \AA^{2}$ respectively. The integrations were carried out over a cube of edge $5.2 \AA$ centred on each atom type with divisions of $0.2 \AA$.

TABLE 2.5.7

Moments and Charges

Atom	Charge	First	Moment	Second Moment				
	Q	L	M, N	LL	$(M M, N N)$	(LM,LN)	MN	
B	-0.20	0.023	0.005	-0.084	0.022	0		
Ca	1.49	0	-	14.035	-	0	-	

From these moments the quadrupolar moments can be deduced (but not vice versa) $\theta_{N N}=\mu_{N N}-0.5\left(\mu_{L L}+\mu_{M M}\right), \theta_{M N}=(3 / 2) \mu_{M N}$ etc.

The quadrupolar moment for Ca is zero by symmetry while for $\mathrm{B} \theta_{\mathrm{LL}}=$ -0.106, $\theta_{N N}=-0.053$. The interpretation of these values is that B gains electrons (negative q) which are distributed remarkably anisotropically ($\mu_{\mathrm{LL}} \ll$ $\mu_{M M}=\mu_{N N}$ or $\theta_{L L}$ not equal to 0$)$ The negative $\mu_{L L}$ suggests excess electronic charge is concentrated on the 4 -fold symmetry axis while the positive $\mu_{M M} \mu_{N N}$ confirm the depletion of electronic charge in perpendicular directions.

First Moments

The observation of μ_{L} as positive at first sight conflicts with the expected negative sign for negative charge on the +L axis (into the inter-octahedral bond) as shown in the multipole and $X-X$ maps. The positive value indicates that the combined components on intra-octahedral bonding more than cancel the dipole moment from the more obvious inter-octahedral bonding.

2.5.8. Electric Field Gradient Tensor

The EFG tensor is a second rank tensor of zero trace ${ }^{40}$, and can be estimated if the multipolar method is used to examine the deformation density as shown by Schwarzenbach and Thong ${ }^{41}(S \& T)$. These computed values are important because they can be compared not only with ab-initio calculated values but with the magnitudes (and occasionally signs) of the eigenvalues interpreted from Nuclear Quadrupole Resonance (NQR) spectroscopy. Stewart 42 concluded that the EFG of light atoms, despite being a property dependent on inner moments, should be within the resolution of XRD measurements and called for cooperative efforts to confirm this.

However S\&T investigated the (non-centrosymmetric) low quartz structure of aluminium phosphate ${ }^{43}, \mathrm{AlPO}_{4}$, and found that the electron distribution obtained by a standard multipole charge density refinement could not reproduce the correct EFG for the AI site (NQR -3.8, +2.4, +1.4, +0.5; XRD $-0.4,+1.5,-1.1,-4.1$ for $\nabla E_{11}, \nabla E_{22}, \nabla E_{33}$ and ∇E_{23} respectively, units of $10^{14} \mathrm{esu}: 1 \mathrm{au}=3.2414 \times 10^{15} \mathrm{esu} \mathrm{cm}^{-3}$). This very poor result led to employing the NQR results as observations in the least-squares and hence the stabilisation of a difficult refinement. Thereafter a similar experiment was attempted on lithium nitride ${ }^{44}$ where the modulus of the field gradient of both nuclei had been measured by NQR, but the agreement was again poor and frequently the esd's on the derived values for the EFG were similar to their magnitude. Their conclusion was that XRD observations could only infer some of the signs of the EFG eigenvalues and that the EFG, being a function of inner moments, was essentially complementary to XRD which effectively defines outer moments.

There have been several NQR studies of CaB_{6} 45, 46, 47. The site symmetry of the boron (4 mm) means that the EFG tensor is adequately described by just one term $\left(\nabla E_{11}\right)$ along the symmetry axis $\left(\nabla E_{22}=\nabla E_{33}=-0.5 \nabla E_{11}, \nabla E_{12}=\nabla E_{13}\right.$ $=\nabla E_{23}=0$) which is therefore simply called eq. Values for eq are not known precisely since the quadrupolar interaction coupling constant $\left|e^{2} q Q\right|$ is related by the nuclear quadrupole moment eQ which is usually only known to low precision eg ${ }^{11} \mathrm{BeQ}=0.03 \times 10^{24} \mathrm{~cm}^{2}{ }^{48}$.

The probable value for \mid eq | from NOR measurements is between 1.16 and $1.20 \mathrm{e}^{-3}$. The value for the deformation density refinement was calculated as follows. The observed eq can be considered as the sum of two terms. The first is due to the penetration of a nucleus into the spherical electron density
of a neighbouring atom. This term is small and dominated by contributions from near neighbours $(<3 \AA)$. The second term is due to the deformation density of all atoms. In considering the large second term some assumptions have to be made about the degree of correlation of the thermal motions of the nucleus and the neighbouring atoms - information absent from elastic X-ray scattering. The second term is best calculated in reciprocal space ie using the structure factors of the deformation density alone in equation 11 of S\&T.

The first approximation is that all atoms ride on the nucleus of interest, and the evaluation of structure factors is therefore done with the atom at the site static. For all rigidly bonded atoms, (together with those equivalent by translation) the thermal motion is corrected by subtracting out that of the EFG nucleus. Such an approximation reduces the space group rotational symmetry to that of the EFG site. For CaB_{6} and $E F G$ at the B nucleus the space group for structure factor evaluation then reduces to $\mathrm{P} 4 / \mathrm{mmm}$ with two independent borons. Unfortunately this standard procedure is complicated by the fact that, for the boron atom which is not the EFG site, the corrected thermal parameter can not be positive definite.

The calculation of the EFG was therefore carried out making the further assumption that all thermal motion is due to lattice vibrational motion. The EFG tensor was calculated from deformation density structure factors and the computer program TENSOR ${ }^{49}$. The result is fully defined by an eq of +2.09 $e \AA^{-3}$. The dependence on thermal parameter subtraction was investigated by allowing Ca to have a thermal motion relative to the EFG site equivalent to $\mathrm{u}=$ $0.008063 \AA^{2}$. This model gave an eq of $2.01 \mathrm{e}^{-3}$. Before comparing either of these with the NOR values, a term has to be added due to the promolecular
density of neighbours. This was evaluated using the program 'TENSNEB'50 to be eq $=-0.53 \mathrm{e} \AA^{-3}$. The EFG is therefore calculated to be $1.56 \mathrm{e}^{-3}$. The experimental (NQR) value of $1.20 e \AA^{-3}$ is in good agreement with those calculated from the multipole refinement. The value of $1.56 \mathrm{e}^{-3}$ (entirely static) is a maximum value; allowing Ca to have an imperfectly correlated motion gives $1.48 e^{-3}$. Such differences are slight in comparison with the esd of the EFG which (using another version of the multipole program on the same data) is calculated to be ca. 0.2 e \AA^{-3}. The sign and magnitude of the EFG from NOR and XRD measurements is supported by ab-initio calculations on $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ (in a crystal field) where the EFG is estimated at $1.18 \mathrm{e}^{\AA}{ }^{-3}$. That this necessarily static value of $1.18 \mathrm{e}^{3}$ is close to the NQR experimental value is plausible because of the low amplitude of vibration of the atoms in this refractory solid.

2.6. Theoretical Deformation Density

2.6.1. The Method of Calculation

Calculations on isolated molecules can be made to greater accuracy than for periodic systems although substantial progress has been made in work on the latter ${ }^{51}$. The current optimal approach to ab-initio calculations on periodic systems such as CaB_{6} is to identify the unit cell and divide the neighbouring atoms into three types. For those within the asymmetric unit integrations are explicit (as for molecular calculations), those at intermediate range are modelled by a linear combination of multipoles, the order of which is allowed to decrease with increasing range until the final range where point charges are used. Unfortunately the means for such a calculation were not available.

The approximation employed made use of the available package GAMESS (General Atomic \& Molecular Electronic Structure System) where CaB_{6} was successively modelled by

$$
\begin{aligned}
& {\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}} \\
& {\left[\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{4}\right]^{4+}} \\
& {\left[\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{22}\right]^{0}}
\end{aligned}
$$

where X and Y are point integer charges devoid of basis functions.

Values for parameters such as prefactor tolerance for integrals and SCF convergence criterion are listed in Appendix III.

2.6.2. Models for CaB_{6}

The models could not be larger than 2 octahedra for even with recognition of symmetry equivalent integrals the calculations become prohibitively time consuming. While the $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ ion and $\mathrm{B}_{6}{ }^{2-}$ octahedra are electronically similar their geometry is slightly different. The $B-B$ distance in $\left[B_{6} H_{6}\right]^{2-}$ is $1.69(1) \AA$, while that in CaB_{6} is larger at $1.748(1) \AA$. While CaB_{6} was a superior material for an $X R D$ study and was chosen to model $\left[B_{6} H_{6}\right]^{2-}$ the calculations use $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ and the dimer $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}$ not to model $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ but to provide theoretical results for comparison with experimental work. The models are therefore built using the bond distance from preliminary diffraction results on CaB_{6}. Finally, the wavefunctions for $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ were recalculated using a $\mathrm{B}-\mathrm{B}$ distance of $1.69 \AA$ to demonstrate any changes in deformation density associated with a change in the absolute size of the octahedron. Parameters are given below. Coordinates are in Appendix IV.

Model I
$\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{4}: \mathrm{D}_{4 \mathrm{~h}}$ intra-octahedral $\mathrm{B}-\mathrm{B}$ 1.748 \AA, inter-octahedral $\mathrm{B}-\mathrm{B}$
$1.673 \AA, \mathrm{~B}-\mathrm{H} 1.167 \AA$.

Model II
$\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{22}: \mathrm{D}_{2 \mathrm{~h}}$ Bond lengths as per model I.

Model III
$\left[B_{6} \mathrm{H}_{6}\right]^{2-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{23}: \mathrm{C}_{2 \mathrm{~h}}$ Bond lengths as per model I .

Model IV
$\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{23}: \mathrm{C}_{2 \mathrm{~h}}$ intra-octahedral B-B $1.690 \AA$, $\mathrm{B}-\mathrm{H} 1.167 \AA$.

2.6.3. Theoretical Static Deformation Maps

The static deformation density was calculated and plotted using the program MOSCOW ${ }^{52}$. Reference atomic densities were derived from calculations, using the same basis on A_{2} systems with $d(A-A)=17 a u(9 \AA)$ with averaging of atomic states where appropriate.

The maps were calculated using grids of 51×51 points using symmetry where applicable. The absence of an external field in calculations on $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ (or the dimer) gave unbound valence molecular orbitals. The use of only 4 point charges of +2 , in positions corresponding to Ca in CaB_{6} gave a solution where all occupied orbitals of $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}$ were bound. However, the deformation density map showed substantial distortion of the valence density of each of the B_{6} octahedra (Fig 2.6.3(a)). The use of an extended array of 46 point charges gave a map where the density in the vicinity of the octahedron

FIGURE 2.6.3(A)

Theoretical Deformation Density
in $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{4}$
further approached octahedral point symmetry (Fig 2.6.3(b)). The latter point charges were in a $D_{2 h}$ point symmetry - lower than the molecular point symmetry of $D_{4 h}$ - to test the degree of convergence. Examination of similar planes showed no important differences.

The electrostatic potential of the 46 point charges through a symmetry plane of $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}$ is shown in Fig 2.6.3(c). Contours are in intervals of 0.05 au. This is similar to the more precise potential of $482+$ charges and 132 charges of $-1 / 3$ at the neighbouring $C a$ and B positions respectively (Fig 2.6.3(d)). The potentials agree well for B positions if not the H positions of $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}$. The use of integer point charges is therefore adequate (the use of non-integer point charges is not permitted within the ab-initio program GAMESS). The validity of using only 46 point charges is not so easily demonstrated for although the Coulombic potential is easily calculated the series, as a function of distance from the origin, is poorly convergent.

Examination of the map passing through the 8 octahedral edges and both centres shows the following features (Fig 2.6.3(b))

- large accumulation of density on the inter-octahedral connectivity peaking at $0.35-0.40 \mathrm{e}^{-3}$. The density broadens considerably at the midpoint.
- Weak, diffuse surplus electron density along the octahedral edges of $0.05-0.10 \AA^{-3}$. The density is mostly outside the edge.
- Medium deficiency of electron density at the core of each octahedron. The minimum is approximately $-0.15 e \AA^{-3}$. .

A second map, Fig $2.6 .3(e)$, based on the same calculation for a plane rotated 45° from the first about the symmetry axis further reveals :

- Weak, diffuse surplus density over the octahedral faces of $0.10-0.15 e \AA^{-3}$.

FIGURE 2.6.3(B)

Theoretical Deformation Density in $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{22}$

FIGURE 2.6.3(C)

External Electrostatic Potential

tor $\left.\left.\left(x^{2}\right)_{24}\right)^{2}\left(r^{2}\right)\right)_{22}$

FIGURE 2.6.3(D)

External Electrostatic Potential
for $\left(X^{2+}\right)_{48}\left(Y^{-1 / 3}\right)_{132}$

FIGURE 2.6.3(E)

Theoretical Deformation Density in $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{22}$

The overall shape of the surplus deformation density over the octahedra is shown in perspective for the iso-density surface at $0.10 \mathrm{e}^{-3}$ (Fig 2.6.3(f)) and shows clearly how most of the intra-octahedral density is positioned over the faces (rather than the edges) in the form of triangular pyramids in a conformation staggered with respect to the triangular faces.

The negative of the Laplacian function (ie $-\nabla^{2} \rho=-d^{2} \rho / d x^{2}-d^{2} \rho / d y^{2}-$ $d^{2} \rho / d z^{2}$) gives extra insight into the electron density distribution. The Laplacian of the molecular electron density is presented in Figs 2.6.3(g),(h). Contours levels are in a geometric series (0.01,0.02 ... 0.64au) These figures show inter-octahedral $=-0.32 \mathrm{au}$ (intense localisation), intra $\mathrm{B}-\mathrm{B}$ edge $=$ -0.08au (weak localisation) and at the face of an octahedron $=-0.04$ au (very weak localisation). In describing the intra-octahedral density the term 'Iocalisation' should be applied to the octahedral edge and not the face even though the edge density has a smaller deformation density maximum.

2.7. Discussion: Theory and Experiment

0

2.7.1. Which Maps Should be Compared

In comparing the results of theory and experiment there can be two approaches.

The first is to compare the static theoretical density with the static experimental density. The latter density can be calculated only if the experimental diffraction data is fitted using a multipolar model

The second approach is to compare dynamic deformation densities for which the experimental density is prepared by a Fourier transform of the deformation density structure factors (which have been multiplied by a

FIGURE 2.6.3(F)

Theoretical Deformation Density:
Iso-deformation density Surface for $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{22}$

FIGURE 2.6.3(G)

Negative Laplacian of Electron Density
for $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{22}$
for the plane in $2.5 .3(a)$.
for the plane in 2.5.3(a).

FIGURE 2.6.3(H)

Negative Laplacian of Electron Density
for $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{22}$
for the plane in 2.5.3(b).
temperature factor.) The theoretical dynamic density is prepared by using the XRD determined thermal parameters and an algorithm for partitioning the electron density before application of the thermal parameters of the various atoms. This process is well documented but not trivial ${ }^{53,54}$. The electron density can be represented by a density matrix. Diagonal terms are clearly associated with just one atom as are the products of basis orbitals sited on the same atom. The remaining off-diagonal or overlap density must be partitioned between the pair of atoms and the respective atomic thermal parameters applied to each. This partitioning need not simply be division into halves.

The more critical comparison, and more readily executed, is between static deformation densities. If these agree before thermal convolution then they will continue to do so after convolution. Note, however, that differences visible before convolution may be blurred or undetectable afterwards. Also, the static experimental map is a display of information which is not strictly inherent in the data and features in it are dependent on the model being reasonable. The use of subtly different multipolar refinement programs with the same data has been shown to yield almost identical dynamic deformation density maps ${ }^{1}$ but slightly different static maps. Calcium hexaboride and other polymeric solids or minerals have such low amplitudes of vibration that the distinction is less important.

Comparison of the static maps (Figs 2.5.3(a), 2.6.3(b)) shows them to be remarkably similar with the sign and magnitude of the deformation density agreeing over a wide area. Deformation densities at selected points are compared below in Table 2.7.1.

A Comparison of Deformation Densities

Point	$\Delta \rho / e^{\AA-3}$	
	multipole XRD	$4-31 \mathrm{G}$
B_{6} core	$-0.30(2)$	$-0.15(2)$
B_{6} face	$0.10(5)$	$0.10(2)$
B_{6} edge	$0.10(5)$	$0.05(2)$
inter B_{6}	$0.40(5)$	$0.35(2)$

The only point where the values are substantially different is the core of the B_{6} octahedron where the X-ray determined deformation is almost twice that calculated using a 4-31G basis and model II. This difference can only be attributed to an error in an $a_{1 g}$ (with respect to the octahedron) type wavefunction. This symmetry is also one of those possible by linear combination of calcium s-orbitals which are of course absent.

To investigate whether the calculated core deformation could change drastically if the basis functions were extended a further calculation was carried out on model III with split valence s-basis functions (equivalent to those on H in the 4-31G basis) at the core. The deficit remained unchanged and the energy decreased by only 0.04au. Repeating the calculation with 8 basis centres, each at the centre of an octahedral face reduced the energy much more (0.28au) but still did not alter the core deformation.
. Whether the true core electron deformation density is -0.30 or $-0.15 e \AA^{-3}$ is debatable but the sign is certainly negative. The sign is important because there is a popular misconception that in boron polyhedra there is strong intramolecular bonding between non-adjacent boron atoms across the core. This has been reflected in the choice of algorithm for an empirical method, the 'bi-reciprocal potential' to estimate the relative stability of various n-vertex
polyhedra for a given value of n^{55}. This method has been criticised ${ }^{56}$ for encouraging users of the method to believe that the cross-polyhedral binding component is important although the proponents of the method have re-affirmed ${ }^{57}$ that while the application gives weight to these components the method is empirical and that it was never intended that the energies for model compounds could be meaningfully sub-divided. Other authors 59,58 have calculated the total electron density for a hexaboride and mis-interpreted the accumulation of total electron density within the polyhedron as an indication of cross-polyhedral bonding. In fact the mere overlap of six spherical atoms in an octahedral arrangement would alone give higher electron density values within the polyhedron. When the spherical atom (promolecular) density is subtracted (to give the deformation density) the stress on cross-polyhedral bonding is demonstrated to be unfounded.

2.7.2. External Comparisons

Once the experimental electron density distribution has been determined it might be hoped that electrostatic and other properties could be calculated and compared with values deduced from other experimental techniques. Examples of properties would be molecular dipole moments, force constants, and electric field gradients. Comparison of molecular dipole moments using Hirshfeld-type multipole refinements with those determined by experiment or ab-initio calculation are fair ${ }^{60}$ but are dependent on accurately partitioning the deformation density between a molecule and its neighbours in the lattice.

The calculation of force constants is by application of the Hellmann-Feynmann theorem and classical electrostatic arguments.

$$
-F_{\alpha, x}=d E / d x_{\alpha}=\int d V_{n e}(r) / d x \cdot \rho(r) d r
$$

where $V_{n e}$ is the electron - nuclear interaction term, $d E$ is the energy change when nucleus α is moved along the x-direction and $\rho(r)$ describes all the electronic and neighbouring nuclear charge density. Unfortunately this is usually flawed by the fact that calculation of the electric field vector at the nuclear position frequently finds it to be non-zero, in which case the nucleus cannot be at its equilibrium position and $d E / d x$ may be negative. It is for the same reason that ab-initio methods cannot give force constants unless the molecule has first been geometry optimised. This flaw can be overcome by using the certainty that the electric field vector is zero at equilibrium as an observation and, through its dependence on the deformation density and hence the structure factors, be used in the least squares refinement of deformation multipoles. The inclusion of this extra observation has been shown to give little extra information on the deformation density - the zero-field condition is easily fulfilled by a short range deformation function which decays before it reaches the reliable region of bonds.

Molecular dipole moments are not appropriate to CaB_{6} and atomic moments are not observables ie while molecular dipole moments can be deduced from some spectroscopic techniques atomic moments can not.

Finally there is the electric field gradient (EFG) tensor which is calculable (usually at the site of a nucleus) according to:

$$
\nabla E_{m n}=\int \frac{\int x_{m} x_{n}-\delta_{m n}|r|^{2} \rho(r) d^{3} r}{4 \pi \epsilon_{0}|r|^{5}}
$$

where ∇E is a symmetric tensor of rank two and has zero trace (trace $=$ $\left.\nabla E_{11}+\nabla E_{22}+\nabla E_{33}\right), x_{m}$ is the coordinate in the m-direction of volume element $d^{3} r$. The charge density in the volume element is given by $\rho(r)$ and includes
nuclei and electrons (except the nuclear charge of the nucleus for which ∇E is evaluated). EFG terms have proper SI units of $\mathrm{JC}^{-1} \mathrm{~m}^{-2}$ or equivalently Volt m^{-2}. Frequently these are, however, calculated excluding the vacuum permitivity constant $4 \pi \epsilon_{0}$ and therefore reported in Cm^{-3} or em^{-3} or some other expression of charge concentration. For nuclear isotopes of spin not equal to 1/2; then the Nuclear Quadrupole Resonance (NQR) spectra of the solid can give up to 5 quantities 62 viz the quadrupole coupling constant $\left|e Q . \nabla E_{z z} / h\right|$ (where eQ is the nuclear quadrupole moment - a constant for a given nucleus - and h is Plank's constant), the asymmetry parameter $\eta=\left(\nabla E_{x x}-\nabla E_{y y}\right) / \nabla E_{z z}$ where $0 \leq \eta \leq 1$, and finally up to three orientation parameters of the eigenvectors x, y, z with respect to the unitary crystal coordinate system. The two isotopes of boron ${ }^{10} \mathrm{~B},{ }^{11} \mathrm{~B}$ have spins of 3 and $3 / 2$ and abundances of 19.6 and 80.4% respectively.

The NQR spectrum of CaB_{6} and related compounds have been reported several times ${ }^{46,45}$. For CaB_{6} the quadrupolar coupling constant has been found to be $1.26(2) \mathrm{MHz}$ (Sears,1982) and $1.22(1) \mathrm{MHz}$ (Aono,Kawai,1979). This difference does not necessarily mean that the esd's are underestimated or the values imprecise. The lattice parameter of $A \& K_{S}^{\prime}(f r o m$ their Figure 3) was $4.150(5) \AA$, while that of Sear's sample was not stated. This lattice parameter is clearly different from the results of this work $(a=4.1422(5) \AA)$. The OCC value has been demonstrated by A\&K to decrease with increasing lattice parameter and so a value of 1.26 Mhz for $\mathrm{a}=4.14 \AA$ would still fit on A\&K's experimental curve (their Figure 3). This large uncertainty in the OCC translates to an estimation of $|\mathrm{eq}|$ for B of between 1.20 and $1.15 \mathrm{e}^{-3}$. The value calculated from a deformation multipole refinement is $1.56 \mathrm{e}^{-3}$. (See Section 2.5.8 for the method of calculation). The match of the magnitude is good but furthermore the sign is definitely positive in agreement with that computed by

A\&K using Bloch functions ${ }^{45}$ which gave $e q=+1.25 e^{-3}$. The 4-31G ab-initio calculation (model III) gives eq $=+1.18 \mathrm{e}^{-3}$ which confirms the correctness of the positive sign and the limited utility of Huckel-type band calculations in estimating electric field gradients.

2.7.3. Bonding in CaB_{6}

The interesting inability to assign simple 2-electron 2-centre bonds to all $\mathrm{B}-\mathrm{B}$ connectivities in MB_{6}, even assuming charge transfer from electropositive metals, led to an investigation by Longuet-Higgins and Roberts (L-H\&R) which used an LCAO Huckel type approximation in a band calculation with only a B 2 s 2 p basis. The results were not on an absolute energy scale, nevertheless this simple calculation showed the structure could be interpreted as linked closed shell $\left[B_{6}\right]^{2-}$ octahedra. $L-H \& R$ concluded that $M^{2+} B_{6}{ }^{2-}$ should be eitter or serni-conductorr . Metallic insulators \mathcal{L} while $\mathrm{M}^{3+} \mathrm{B}_{6}{ }^{3-}$ should be conductivities were at that time still in some doubt and L-H\&R interpreted the weak reported \mathcal{L} conductivity of bivalent metal hexaborides as attributable to impurities but accepted the reported conductivity of trivalent metal hexaborides as genuine and attributable to the incompletely occupied energy band they had calculated.

The point symmetry of the boron atom suggested to Flodmark that d-orbitals on the boron atom should play an important role in determining the electronic properties. In 1959 Flodmark therefore presented elaborate and detailed work ${ }^{64}$ where 3 s3p3d (ie M-shell functions) were included on boron. Unfortunately the inclusion of these M functions with their long-range ovelaps gave rise to new bands which were of lower energy than occupied bands in the L-shell approximation. The results therefore gave metallic
conductivity in MB_{6} for divalent and trivalent atoms. Flodmark interpreted the then current experimental conductivities for divalent metal hexaborides to be true.

Subsequent investigation by Etourneau et al ${ }^{65}$ on magnetic susceptability, thermoelectric power and specific heat measurements led to the conclusion that ThB_{6} and LaB_{6} were trivalent metallic conductors and that $\mathrm{Ca} / \mathrm{Sr} / \mathrm{YbB}_{6}$ were semiconductors in agreement with L-H\&R. This view now prevails.

All the above at least agreed that the boron acted as an electron acceptor but this opinion was not universal and the use of x-ray Photoelectron spectroscopy (XPS or ESCA) by Aleshin, Serebryakova et al ${ }^{66}$ was helpful in classifying borides with B as either an acceptor or donor. The only hexaboride tested was CaB_{6} for which B was an electron acceptor with the binding energy of the 1 s boron electrons (187.5 eV) less than that for rhombohedral boron (187.8eV).

Another ESCA study ${ }^{67}$ had a B 1 s binding energy nearer 187.0 eV perhaps indicating the importance of avoiding surface oxidation. This study confirmed, via the ESCA profile, the weak covalent bonding between the boron and metal atoms in hexaborides. The profile fitted well that estimated from the model of L-H\&R and did not agree with the alternative model of Yamazaki ${ }^{68}$ where metal-boron overlaps were included in an LCAO method calculation.

2.7.4. Bonding in $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{\mathbf{2 -}}$

The size of the B_{6} octahedron is smaller in $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ than in CaB_{6} with $\mathrm{B}-\mathrm{B}$ $=1.69 \AA$ rather than $1.75 \AA$. It might therefore be expected that the inward pointing sp hybrids on $\mathrm{B}-\mathrm{H}$ fragments should have a greater overlap and
consequently the core deformation density to be less deficient than that observed in CaB_{6} or calculated in the $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ or $\left[\left(\mathrm{B}_{6} \mathrm{H}_{5}\right)_{2}\right]^{4-}$ used to model CaB_{6}.

This expectation is not confirmed by calculations on $\left[B_{6} H_{6}\right]^{2-}$ with $B-B$ $=1.69 \AA$ (Fig 2.7.4(a)) and $B-B=1.75 \AA$ (Fig2.7.4(b)) where the core deformation density remains $-0.15 e^{\AA^{-3}}$ but in the former the edge bonding increases to $0.10 e^{-3}$. The general topology of the deformation density nevertheless remains unchanged.

2.7.5. Pauling's Electroneutrality Principle: Does $\mathrm{Ca}^{2+}\left(\mathrm{B}_{6}\right)^{\mathbf{2 -}}$ Exist?

The charges calculated by stockholder-type partitioning of the deformation density do not correspond to $\mathrm{Ca}^{2+}\left(\mathrm{B}_{6}\right)^{2-}$ as might simplistically be expected for a calcium compound. This section seeks

- to correct the popular misconception of near-integer charges in the solid state of salts.
- to re-interpret Pauling's electroneutrality principle especially in its application to the charges in solid state salts.
- to explain why the more moderate charges of $\mathrm{Ca}^{1.20}\left(\mathrm{~B}_{6}\right)^{-1.20}$ were found and show how application of a corrected version of Pauling's electroneutrality principle can be used to estimate charges where there has been no deformation density study.

The evidence against the integer ionic charges such as are usually written in formulae such as $\mathrm{Na}^{+} \mathrm{Cl}^{-}, \mathrm{Mg}^{2+} \mathrm{O}^{2-},\left(\mathrm{Al}^{3+}\right)_{2}\left(\mathrm{O}^{2-}\right)_{3}$ is the high second and third ionisation potentials (IP's) of metals. For Al the second IP is approximately double the energy released upon oxidation of the metal and the third IP still higher. Evidence for large charges in compounds includes measurements on aqueous solutions which clearly support the existence of $\mathrm{Al}^{3+}{ }_{\text {laq. }}$. However Pauling recognised that there was no evidence for large charges on atoms in

FIGURE 2.7.4(A)

$$
\begin{aligned}
& \text { Theoretical Deformation Density } \\
& \text { in }\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{23} \\
& \mathrm{~B}-\mathrm{B} 1.69 \AA .
\end{aligned}
$$

FIGURE 2.7.4(B)

$$
\begin{aligned}
& \text { Theoretical Deformation Density } \\
& \text { in }\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}\left(\mathrm{X}^{2+}\right)_{24}\left(\mathrm{Y}^{2-}\right)_{23} \\
& \mathrm{~B}-\mathrm{B} 1.75 \AA .
\end{aligned}
$$

chemically bonded molecules. The conductance measurements only confirmed the existence of $\left.\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right)\right]^{3+}$. In 1948 Pauling formulated his postulate of the essential electrical neutrality of atoms. This is fundamental to the following discussion and is reproduced below.

Abstract

... the electronic structure of substances is such as to cause each atom to have essentially zero resultant electrical charge, the amount of leeway being not greater than about $\pm 1 / 2$, and these resultant charges are possessed mainly by the most electropositive and electronegative atoms , and are distributed in such a way as to correspond to electrostatic stability.

Pauling carefully assigned an electronegativity number, x ranging from 0.7 (Cs) to 4.0 (F) and related these to the percentage ionic character of a bond according to:

$$
\%_{\text {ionic }}=16\left|x_{\mathrm{a}}-x_{\mathrm{b}}\right|+3.5\left|x_{\mathrm{a}}-x_{\mathrm{b}}\right|^{2}
$$

Application of this formula gives small atomic charges eg $\left[\mathrm{Al}^{0.24}\left(\mathrm{H}^{0.32}{ }_{2} \mathrm{O}^{-0.18}\right)_{6}\right]$. Does this help explain the XRD determined charges in CaB_{6} ? To some extent it does. Pauling states that charges will not be " greater than about $\pm 1 / 2^{"}$ so Ca^{2+} is not to be expected. However a charge of +1.20 for Ca is still larger than $1 / 2$. The foundation for Pauling's ' $1 / 2$ ' limit appears in the same paper.

The difference in electronegativity, 3.3 , of caesium and fluorine permits the amount of covalent character to be estimated as 9%. It is only to this degree of approximation, then, that the bond in the caesium fluoride molecule can be described as an ionic bond. In the caesium fluoride crystal each caesium atom is surrounded octahedrally by six fluorine atoms. If each of these bonds had 9% covalent character, the total covalency of caesium and of fluorine would be 0.54 , and the crystal could be described as involving, for each atom, a single bond, about 50% covalent and 50% ionic, resonating among the six positions connecting the atom with its six ligates.

This description would assign to the caesium atom in the caesium fluoride crystal a resultant charge $+1 / 2$ and to the
fluorine atom a charge $-1 / 2$. It has seemed to me likely that in general all of the atoms in the complexes that constitute stable chemical substances have resultant electrical charges smaller than those shown by these most electropositive and electronegative atoms in their compounds with one another, and I have accordingly formulated the postulate of the essential electrical neutrality of atoms: namely that the electronic structure....

This calculation on CsF is flawed. Pauling argues that in a CsF molecule the charge is proportional to the difference in the electronegativities and therefore in proportion to the percentage ionic character. In the CsF crystal he argues that the charge (0.54) is now proportional to the degree of covalent character (0.09) and the coordination (6). This flaw is made obvious by applying the same arguments to CsCl . The electronegativity difference of $|0.7-3.0|=2.3$ permits the amount of covalent character to be estimated as 46%. Each Cs atom is surrounded by eight chlorides. If each of the eight bonds had 46% covalent character the total covalency would be 3.28 and this description would assign charges of $\mathrm{Cs}^{3.3} \mathrm{Cl}^{-3.3}$! The error lies in including coordination number (if CsCl were isostructural with NaCl would the degree of electron transfer change?) and similarly in asserting that the extent of electron transfer is different from that in an isolated molecule. The electroneutrality principle is, however, not worthless. Ignoring the coordination number and reverting to the plausable idea that charge is proportional to the percentage ionic character gives for CsF (solid or molecule) $\mathrm{Cs}^{0.81} \mathrm{Cl}^{-0.81}$ and for caesium chloride $\mathrm{Cs}^{0.54} \mathrm{Cl}^{-0.54}$. The electroneutrality principle should therefore be modified to require charges not greater than about ± 0.8. This should be further qualified as the limit in $1: 1$ ie $M X$ compounds. For other ratios the limit may be still higher. For CaB_{6} the electronegativity difference of $|1.0-2.0|=1.0$ equates to 18% ionic character. Therefore for each $\mathrm{Ca}-\mathrm{B}$ 'bond' Ca acquires a charge of 0.18 . For a ratio of six borons to one calcium the
result is $\mathrm{Ca}^{1.08} \mathrm{~B}_{6}{ }^{-1.08}$. This is in good agreement with the XRD results: simple multipole charges $\mathrm{Ca}+1.5, \mathrm{~B}-0.2$, stockholder-partitioned charges $\mathrm{Ca}+1.2 \mathrm{~B}$ -0.2.

Does the evidence for calcium atoms in compounds being nearer to Ca^{+} rather than Ca^{++}matter for routine structural crystallography? The difference is small and will not seriously impede structure determination. More serious is the tabulation of scattering factors for 'chemically significant ions' such as $\mathrm{Fe}^{3+}, \mathrm{U}^{+6}$ in 'International Tables for Crystallography'. This is an invitation to use scattering factors quite inappropriate for any crystallographic study.

Chapter 3

Charge	Deformation \quad Density
	$\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}^{+}\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$

3.1. Why Study $\left[\mathrm{Et}_{3} \mathrm{NH}^{+}{ }_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right]^{2-}\right.$?

The objective of the work presented here was to investigate the charge deformation density in a member of the series of closo- $\left[\mathrm{B}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}\right]^{2-}$ anions such that the extent of electron delocalisation and the relative importance of tangential vs radial (intrapolyhedral) bonding could be assessed.

The $\left[B_{12} H_{12}\right]^{2-}$ anion is an important member of the series being highly symmetrical $\left(I_{h}\right)$. Each boron atom has five equivalent boron connectivities and one $\mathrm{B}-\mathrm{H}$ bond. This anion is therefore interesting to compare with $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$, (and its analogue CaB_{6}), which is also highly symmetrical with each boron atom having four equivalent boron connectivities and one $\mathrm{B}-\mathrm{H}$ bond. The ratio of valence electrons binding the icosahedron (26) to the number of faces (20) and edges (30) is much lower than in CaB_{6} (14 electrons, 6 faces, 12 edges) and consequently observation by X-ray diffraction of any electron density accumulation over the faces/edges is a greater challenge.

The structure of the $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$salt of $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ had been previously established ${ }^{69}$ to have high crystallographic symmetry ($R-3, z=1$). This enables the measurement of sets of equivalent reflections which reduce random or systematic (such as absorption, anisotropic extinction) errors in the data. Moreover, the point symmetries imposed on the anion ($-3, S_{6}$) and cation (3, C_{3}) reduces the number of variables in the refinement.

Other salts such as $\left(M^{+}\right)_{2}\left[B_{12} H_{12}\right]^{2-} \cdot \mathrm{xH}_{2} \mathrm{O}, M=N a, K, C$ and $R b 70.71$ $x=4,0,0,0$, have even higher crystallographic symmetry (space group Fm3, $2=4$) but the M^{+}ion is, compared to $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$, more capable of polarising the $\left[B_{12} \mathrm{H}_{12}\right]^{2-}$ ion and distorting it from icosahedral geometry. This problem is shown to be still worse in the structures of $\mathrm{Ca}\left[\mathrm{B}_{12} \mathrm{H}_{12}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}{ }^{72}$ and $\mathrm{Sr}\left[\mathrm{B}_{12} \mathrm{H}_{12}\right] .7 \mathrm{H}_{2} \mathrm{O}{ }^{73}$. There are further obstacles to using these salts in a
deformation density study when the metals are heavy and have larger absorption coefficients. Absorption is the principle reason for dismissing $\left[\mathrm{Ni}(e n)_{3}\right]^{2+}\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ (en= ethylendiamine), which has also been characterised by X-ray diffraction ${ }^{74}$ and the mixed salt $\left(\mathrm{K}_{3}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right](\mathrm{Br})^{75}\right.$.

The $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$counterion is itself useful. Information on the form and magnitude of simple 2-centre 2-electron bonds has accumulated. Consistency of features in the deformation density of the $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$cation with this body of data serves as an indicator of the quality of the data. Such an indicator is important in interpreting features in the more important $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ anion where there are relatively fewer studies on similar compounds. An alkyl ammonium cation is also used in the study of $\mathrm{B}_{3} \mathrm{H}_{8}{ }^{-}$(see Chapter 4).

3.2. Experimental

3.2.1. Data Collection

Preparation of $\left[\mathrm{Et}_{3} \mathrm{NH}_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right]\right.$ was by a published synthetic route ${ }^{80}$ using decaborane ($\mathrm{B}_{10} \mathrm{H}_{14}$) and triethylamine-borane adduct. The high boiling point solvent "ultrasene" (a kerosene fraction bp $190^{\circ} \mathrm{C}$) proposed was unavailable and instead the inert hydrocarbon decalin was used. This required a reduction in reflux temperature and subsequently this reduction in temperature was identified as the reason for the co-formation of the N -adduct compound $\left[\mathrm{Et}_{3} \mathrm{NB}_{12} \mathrm{H}_{11}\right]^{-}\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$. This was isolated after conversion to the $\left[\mathrm{NMe}_{4}\right]^{+}$salt. The zwitterionic by-product was characterised by X-ray diffraction ${ }^{82, A p p e n d i x}$ vi. The use of the triethylamine borane adduct in the synthesis of $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ is deliberate in its intention to minimise formation of the by-product. Much higher yields of the corresponding N-trimethyl adduct can be obtained by the use of trimethylamine borane.

Large colourless crystalline blocks of $\left[\mathrm{Et}_{3} \mathrm{NH}_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right]\right.$ were obtained by slow evaporation of an acetonitrile solution. The selected crystal was sphericalised to a diameter of 0.4 mm . Preliminary Weisenberg photography confirmed that the crystal had remained singular and was free from powder.

It was considered impractical to collect all independent reflections (1/6 of \{the sphere eg all $-h+k+1$ and also $+h+k+1(h \geq k \geq 1))$ to the required resolution of $S=2 \sin \theta / \lambda=2.60 \AA^{-1}$. Such a large number of data would take too long to collect and long low temperature collections are vulnerable to ice-formation on the crystal. Furthermore a large proportion of the high angle reflections was expected to be too weak to be measured reliably. Instead, previous refinements on data measured at low temperature were used to predict structure factors FC and normalised structure factors Ec to $S=2.6 \AA^{-1}$: These were sorted into decreasing Fc and the lowest 10% discarded. The 4000 highest E values together with all Fc's greater than 10 gave an initial list of 4037 unique reflections. This list was subsequently shortened to the top 2000 by F. It is more important that the selected indices are evenly distributed in reciprocal space (hence the use of E and F) rather than that they are accurately selected. A simple check on the distribution showed that the $+\mathrm{h}+\mathrm{k}$ +1 indices accounted for 22% of indices selected (ideal 25%).

The successful use of such a shortened list in deformation density studies has been demonstrated several times ${ }^{76-79}$. While this approach invalidates an $X-X$ map as a means of examining the deformation density (because of the necessary omission of low-angle non-zero structure factors), the multipole approach is unaffected.

Accurate cell parameters were obtained using a CAD-4 diffractometer at $115 \mathrm{~K}, 25$ centred reflections $\left(15^{\circ}<\theta<31^{\circ}\right)$, graphite monochromated Mo-K ${ }_{\alpha}$
($\lambda_{\mathrm{av}}=0.71069 \AA$). For data collection $\theta_{\text {max }}=67.5^{\circ}, \omega-2 \theta$ scans in 96 steps, scan width $(\omega)=0.80+0.35 \tan \theta$. Moderate prescan and for $1 / \sigma \mathrm{l}>0.5$ this was followed by a slow scan such that the final $1 / \sigma$ l ratio was better than 33 subject to a time constraint of 100s. Over 228 hours 7107 data were measured. No detectable crystal decay or movement.

Summary

$\mathrm{H}_{44} \mathrm{~B}_{12} \mathrm{C}_{12} \mathrm{~N}_{2}, \mathrm{Mr}=346.22, \rho_{\mathrm{x}}=0.983 \mathrm{~g} \mathrm{~cm}^{-3}$, Rhombohedral R-3 (No 148), $a=8.8242(16) \AA, \quad \alpha=69.803(15)^{\circ} \quad$ (averaged) $V=584.94 \AA^{3}$, [Hexagonal cell $a=10.098(18), c=19.872(36) \AA], V=1754.9 \AA^{3}, \mu \mathrm{MOK}_{\alpha}=0.46 \mathrm{~cm}^{-1}, \mathrm{~F}_{000}=190, \mathrm{~T}=$ 115K.

3.2.2. Data Reduction

Data which had 1) net I <0 or 2) were flagged as overloading counter or 3) were flagged as weak with a peak offset from the expected position or 4) had an uneven background were deleted to give 5003 data. The data were then corrected for Lorentz and polarisation factors (including terms for monochromator polarisation). The low value of $\mu \mathrm{r}(0.009)$ and the use of a near spherical crystal obviated the need for an absorption correction. The data were merged to give 1854 unique reflections ($R_{\text {merg }} 0.030$), all of which had $\mathrm{F} / \sigma \mathrm{F}$ better than 2.0.

3.3. Standard Refinement

The starting point of the refinement was a set of coordinates previously published. These were refined using weights for the observations of $1 / \sigma^{2} \mathrm{~F}$, minimising the function $\Delta_{1}=\Sigma|F o-k F c|^{2}$. Allowing anisotropic thermal motion for non-H atoms and isotropic motion for the H atoms gave a final R
factor of $0.043\left(R_{w} 0.070\right)$. These results are not presented here since they were subsequently shown to have clear asphericity shifts and modified thermal parameters. For the standard parameters from the multipole refinement see Section 3.4.2.

The global structure is based on a distortion of the cubic anti-fluorite structure ($8: 4$ coordination; cubic and tetrahedral environments eg $\mathrm{K}_{2} \mathrm{~B}_{12} \mathrm{H}_{12}$) along the cubic 111 vector. The resulting array of anions and cations is usually described as the 'anti- CdCl_{2} ' lattice and is substantially rarer than the CdCl_{2} lattice. This structural analogy is however strained since although the hexagonal c-axis and independent z-coordinate are similar (ie the layers perpendicular to the hexagonal c-axis are similarly separated) the rhombohedral α angle in CdCl_{2} is small (33.6 ${ }^{\circ}$) ie the atoms within the layers are much more closely packed. A closer structural analogy is TbFe_{2} with $\alpha=59.6^{\circ} 83$.

The utility of recognising similar anion/cation packing is that when polarisation due to packing is invoked then they should be applicable to all such similar compounds. (See the discussion of charge distribution in in [$\left.\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$and the reported polarisation of the Cs^{+}ion in the anti- CdCl_{2} structure $\mathrm{Cs}_{2} \mathrm{O}$, section 3.6.1.) Another structure with similar packing is $\left[\mathrm{MeNH}_{3}\right]_{2}{ }^{+}\left[\mathrm{SnCl}_{6}\right]^{2-84}$ in which α is 50.3°.

3.4. Experimental Charge Deformation Density

3.4.1. Multipole Model and Refinement

The program LSEXP was used (see Chapter 2, section 2.5.1). Crystallographic point symmetry reduces only the number of deformation functions for N and $H N$ (See Fig 3.4.1a for labelling). This alone would still

Figure 3.4.1(a)
ORTEP dirawing of the structure showing lavelling scheme

Fig 3.4.1(b)
labelling and local axes
for deformation functions

L vector

M vector

$L^{\prime}=(L+M+N) / 3$ for an atom of local 3-fold symmetry

N vector given by LxM
leave too large a number of deformation parameters for a practical full-matrix refinement. Therefore non-crystallographic point symmetry was imposed. These constraints were :

- All hydrogen atoms axially symmetric with respect to their bonded neighbour.
- Only 3 types of hydrogen : HC, HB and HN according to the element type of the bonded atom.
- Atom C2 of point symmetry $\mathrm{C}_{3 \mathrm{v}}$ with respect to the $\mathrm{C} 1-\mathrm{C} 2$ vector.
- Atom C1 of point symmetry C_{s} with respect to the $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ plane.
- Atoms B1 and B2 have equivalent deformation functions and each of $C_{5 v}$ point symmetry with respect to the $B-(0,0,0)$ vector.

The full range in the order of the deformation multipoles was used for C, B and N atoms (ie $\mathrm{n}=0,1,2,3,4$) but for H atoms no fourth order multipoles were refined.

The positions of HB1, HB2, and HN refined to give unreasonably short bond lengths and were highly correlated with H -based deformation functions. This was not unexpected since the 'frozen cusp' model is least appropriate for hydrogen. In the absence of any neutron diffraction data it was necessary to fix the $H B$ hydrogens at positions (initially) calculated to be $1.185 \AA$ from the B position and radial from the polyhedral centre. All deformation density in the $\mathrm{B}-\mathrm{H}$ bonds is therefore only approximated in the refinement.

The local axes for the non-hydrogen atoms are indicated in Figure 3.4.1. The axes for N and C 2 were chosen to have the 3 -fold axis equal to the body diagonal of the orthogonal L,M,N axes.

The exponents were initially fixed at reasonable values (N 5.3; C1,C2 5.28; B
4.47; HC,HB,HN $5.45 \AA^{-1}$). Cusp functions ($n=0$) were refined in a separate block. Refinement of 64 standard parameters and 76 deformation parameters with one constraint ($F_{000}=190$) gave a final R factor of $0.0258\left(R_{w} 0.0259\right)$. The inclusion of the four exponents (in the smaller block) reduced the R factor to $0.0254\left(R_{w} 0.0251\right)$ but the deformation maps are largely unchanged more than $0.4 \AA$ from atom positions and, considering the esd maps, are insignificantly changed more than $0.3 \AA$ from atomic positions.

3.4.2. Multipole Refinement Results

The standard parameters together with their esd's are listed in Table 3.4.2a. Derived bonds and angles are listed in Table 3.4.2b. The deformation coefficients are listed in Table 3.4.2c.

In these tables $X-Y @ n$ refers to Y under symmetry operation n. The symmetry operators are defined to be in the order $x, y, z / y, z, x / z, x, y$ and their inversion related equivalents.

Fractional Coordinates of Atoms with Standard Deviations
$x \quad y \quad z$

N	$0.23506(20)$	$0.23506(0)$	$0.23506(0)$
C 1	$0.10565(8)$	$0.28101(7)$	$0.38798(-8)$
C 2	$-0.05995(8)$	$0.39287(6)$	$0.353: 4(4)$
B 1	$0.17245(5)$	$-0.13686(5)$	$-0.08380(4)$
B 2	$0.18345(5)$	$-0.00703(4)$	$0.02544(3)$
H 1	$0.0908(12)$	$0.162(3)$	$0.479(3)$
H 2	$0.1700(20)$	$0.3344(18)$	$0.4358(18)$
H 3	$-0.154(3)$	$0.3908(12)$	$0.475(3)$
H 4	$-0.1061(19)$	$0.3394(19)$	$0.2882(22)$
H 5	$-0.0497(13)$	$0.519(3)$	$0.2839(22)$
Hb 2	$0.31161(0)$	$-0.01354(0)$	$0.04617(0)$
Hbl	$0.29335(0)$	$-0.23012(0)$	$-0.14434(0)$
Hn 1	$0.171(5)$	$0.171(0)$	$0.171(0)$

Thermal Parameters $\times \AA^{2}$

	ull	422	U33	ul2 u23	ul3
N	.01103(25)		. 00323 (23)		
Cl	.01608(14)	.01588(14)	. $01157(13)$	$-.00257(11)-.00556(10)$	$-.00346(11)$
H1	. 027 (3)				
H2	.043(4)				
C2	. $01552(13)$.01494(11)	. $01510(12)$	-. $00087(11)-.00506(9)$	$-.00144(10)$
H3	. 035 (3)				
H4	. 050 (4)				
H5	. 038 (3)				
B1	.00936(11)	. $01025(10)$. $01116(10)$	$-.00207(8)-.00413(8)$	-.00260(8)
B2	. $00905(11)$. $01059(10)$. $01075(10)$	$-.00301(7)-.00351(7)$	-. $00320(7)$
HB2	. $0251(15)$				
HBl	. $0305(18)$				
HNI	.032(8)				

TABLE 3.4.2(B)

Bond Lengths (\AA) with standard deviations

Angles(degrees) with standard deviations

$B(2)-B(1)-H b(1) \quad 121.75(3) \quad B(1)-B(2)-H b(2) \quad 121.52(3)$

Deformation Coefficients and esd's

N EXPON	$5.108(29)$	N SPYER	-0.126(13)	N LINR1	$0.34(25)$
N QUDRI	0.05(24)	N QUDR2	-0.41(12)	N Cubil	-2.12(37)
N CUBI 2	0.00 (5)	N CUBI 7	0.96 (114)	N Cubir	0.10(12)
N QUR 1	$0.36(17)$	N QUR 4	-0.99(31)	N QUR 7	1.19(24)
N QURIO	-0.19(21)	N QUR12	-1.20(20)	ClEXPON	5.44 (6)
CISPHER	-0.070(7)	Cllinkl	-0.15(5)	CILINR2	-0.18(7)
CIQUDR1	-0.09(7)	CIQUDR2	-0.04(7)	CIQUDR 3	$0.03(6)$
CIQUDR6	0.42 (6)	ClCUBII	1.70(21)	CICUBI2	$0.16(22)$
clcubi 3	0.93 (13)	CICUBI 5	0.47 (14)	ClCUBI 7	-1.72(19)
clcubir	-0.37(14)	ciqur 1	0.20(11)	ClQur 2	$0.29(10)$
CIQUR 3	-0.07(9)	ClQur 4	-0.11(10)	ClQur 5	$0.36(11)$
ClQur 6	-0.15(5)	ClQur 7	-0.24(9)	CIOUR 8	-0.33(10)
CIQUR12	$0.10(8)$	C2EXPON	5.25(7)	C2SPAER	-0.039(7)
C2LINRI	0.04 (3)	C2QUDRI	0.10(4)	C2QUDR2	$0.19(4)$
C2CUBII	-0.40(10)	C2CUBI2	-0.02(4)	C2CUBI 7	1.05(12)
C2CUBI 8	0.15 (6)	C2QUR 1	-0.23(5)	C2QUR 4	$0.00(7)$
C2QUR 7	0.07 (6)	C2OUR10	-0.28(10)	C2QUR12	$0.13(10)$
B EXPON	5.04 (4)	B SPHER	$0.118(4)$	B LINR1	$0.00(3)$
B QUDR 1	$0.023(28)$	B QuDR5	$0.01(3)$	B CUBII	-0.67(15)
B CUBI7	0.93 (13)	B QURTI	-0.01(7)	B QURT 4	$0.061(15)$
B QURT5	-0.035(14)	HCEXPON	$5.26(5)$	HCSPHER	$0.0051(25)$
HCLINRI	$0.37(10)$	HCQUDR1	$0.01(4)$	HCQUDR5	-0.07(5)
HCCUBII	0.04 (6)	HCCUBI7	$0.01(5)$	HBEXPON	$5.21(7)$
HBSPHER	-0.018(6)	HBLINRI	$0.172(28)$	HBQUDR 1	0.07 (4)
HSQUDR5	$0.066(24)$	HBCUBI 1	$0.20(10)$	HBCUBI 7	-0.20(9)
HNEXPON	5.44 (6)	HNSPHER	-0.015(21)	HNLINR1	2.29(43)
HNQUDRI	0.72 (35)	HivQUDR2	-0.18(28)	HNCUBI 1	-0.85(92)
HNCUBI 7	1.19(94)	B QURT2	-0.15(3)		

Orienatations of linear terms	100	010	001			
quadratic terms	110	1-10	101	10-1	011	01-1
cubic terms	110	1-10	101	10-1	011	01-1
	111	1-1-1	-11-1	-1-11		
quartic terms	100	010	001	A11	1 A 1	11A
	-A11.	1-A1	11-A	A-11	1A-1	-11A
	A1-1	- \|A1	1-1A			

The parameter ' A ' is the constant SQRT(2)-1.

A search on the Cambridge Crystallographic Database gave 54 previous records of structure determination on this cation. Of these 24 structures had coordinates of all non-hydrogen atoms and $H N$ deposited. The mean values for the bond lengths are $\mathrm{HN}-\mathrm{N} 0.96(10), \mathrm{N}-\mathrm{C} 1 \quad 1.506(32), \mathrm{C} 1-\mathrm{C} 21.486(49) \AA$.

FIGURE 3.4.2(A)

Conformational Distribution of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$. Data from
Cambridge Crystallographic Database. Presented in the Space Group R32.
Two Stereo Pairs

One low temperature neutron study has been done but unfortunately the cation was disordered over two orientations.

The conformation of the $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$cation in the $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ salt is characterised by the torsion $\mathrm{HN}-\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2\left(-54.5(12)^{\circ}\right)$, and 3 -fold symmetry. This (α, α, α) conformation is rare. It accounts for only 8% of database entries. The principal conformations are $\left(180^{\circ}, 60^{\circ},-60^{\circ}\right)(37 \%)$, and its mirror image $(180,60,-60)$ (also 37%). The distribution is simply illustrated using a unit cell of edge 360° and the space group R32. Figure 3.4.2(a) presents a stereo pair of this 3-D distribution. A large (20%) number of database entries indicated some disorder of the cation. The distribution is clearly clustered and this could be put to use in fitting restrained models to the electron density in disordered sites.

The $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ ion has a mean $\mathrm{B}-\mathrm{B}$ bond length of $1.781(5) \AA$. This is close to the mean in the K^{+}salt $\left(1.775(7) \AA\right.$), the $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$ salt ($1.786 \AA$) and also the earlier structure determination of the $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$salt $(1.781(2) \AA)$. The slight variation in the bond lengths in Table 3.4.2b is due to a slight compression of the icosahedron parallel to the crystallographic 3 -fold (centre-B2) 1.688(1), centre-B1 $1.701(1) \AA$). The crystallographic point symmetry is S_{6} but there is no perceptable distortion from $D_{3 d}$.

3.4.3. Static Deformation Density Maps

These maps were prepared by direct summation using multipole functions rather than by Fourier summation. Consequently only contributions from one unit cell are presented.

FIGURE 3.4.3.1(A)

Static Deformation Density in the $\mathrm{HN}-\mathrm{N}-\mathrm{C} 1$ plane.

FIGURE 3.4.3.1(B)

Static Deformation Density in the $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ plane.

FIGURE 3.4.3.1(C)

ESD of Static Deformation Density in the $\mathrm{HN}-\mathrm{N}-\mathrm{C} 1$ plane.

FIGURE 3.4.3.1(D)

ESD of Static Deformation Density in the $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ plane.

3.4.3.1. The Triethylammonium Cation

Figures 3.4.3.1(a) and (b) show the deformation density in the plane of the atoms $\mathrm{HN}-\mathrm{N}-\mathrm{C} 1$ and $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ respectively. Contours are in intervals of $0.05 e^{-3}$. The esd for the static deformation density in these planes is plotted in Figures 3.4.3.1(c) and (d) respectively. Contours are in intervals of $0.02 \mathrm{e} \AA^{-3}$. Peaks in these maps not between labelled atoms are from other portions of the ion or counterion. The deformation in the $\mathrm{C}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$ bonds should not be given serious interpretation because the H coordinates are almost certainly not those that would be determined by a neutron diffraction experiment.

The deformation peak heights are $\mathrm{N}-\mathrm{C} 1 \quad\left(0.70(5) \mathrm{e}^{-3}\right)$ and $\mathrm{C} 1-\mathrm{C} 2$ $\left(0.60(2) \AA^{-3}\right)$. The C1-C2 bond peak is typical of the deformation density between two sp^{3} carbons but the peak for the $\mathrm{N}-\mathrm{C} 1$ bond, while of reasonable magnitude is curiously off the $\mathrm{N}-\mathrm{C} 1$ vector. The direction of the shift is away from HN . These maps should be compared with ab-initio simulations in Section 3.5.2. For a discussion see Section 3.6.1.
3.4.3.2. The closo- $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ Ion

The high point symmetry of this anion and the constraint on the deformation functions refined on the boron atoms enables the deformation density to be described extensively by only one plot. Figure 3.4.3.2(a) shows the deformation density in a plane through an edge and the inversion centre: contours are in intervals of $0.05 e \AA^{-3}$. This map is required to have approximate mm symmetry and conveniently shows the deformation density for an edge, for a perpendicular bisector to an edge and also for a section perpendicular to a triangular face. Four $\mathrm{B}-\mathrm{H}$ bonds are also in this plane.

FIGURE 3.4.3.2(A)

Static Deformation Density
in a plare containing an edge and an inversion centre.

FIGURE 3.4.3.2(B)

ESD of Static Deformation Density
for the plane of 3.4.3.2(a)

Figure 3.4.3.2(b) shows the associated esd; contours are in intervals of $0.02 \mathrm{e}^{-3}$.

There is a clear electron defficiency at the polyhedral core of $-0.15 \AA^{-3}$. The deformation density is diffuse and nearly spherical maximising ($0.15 e^{-3}$) at a radial distance corresponding to that from the polyhedral centre to the midpoint of the $B-B$ edges. This necessarily requires the deformation density to maximise just outside the polyhedral faces.

For a theoretical comparison see Section 3.5.3, for a discussion see Section 3.6.2.

3.4.4. Dynamic Deformation Density Maps

These were prepared using Fourier transform methods and calculated structure factors. Because of the large number of reflections $S_{\text {max }}$ was limited to $2.0 \AA^{-1}$ (3277 structure factors). Figures 3.4 .4 (a) and (b) are analagous to the static maps (Fig 3.4.3.1(a) and (b)) for the triethyłammonium cation. Figure 3.4.4(c) is analagous to the static map for the anion (Fig 3.4.3.2(a)).

3.4.5. Residual Density Maps

The residual electron density for the planes $\mathrm{H}-\mathrm{N}-\mathrm{C} 1, \mathrm{~N}-\mathrm{C} 1-\mathrm{C} 2$ and B1-centre-B2 are shown in Figures 3.4.5(a), (b) and (c) respectively. These are based on 1854 observed and calculated structure factors. Contours are in intervals of $0.02 \mathrm{e}^{-3}$.

FIGURE 3.4.4(A)

Dynamic Deformation Density in the $\mathrm{HN}-\mathrm{N}-\mathrm{C} 1$ plane.

FIGURE 3.4.4(B)

Dynamic Deformation Density
in the $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ plane.

FIGURE 3.4 I(C)

Dynamic Deformation Density
in the B1-centre-B2 plane.

FIGURE 3.4.5(A)

Residual Density
in the $\mathrm{HN}-\mathrm{N}-\mathrm{C} 1$ plane.

FIGURE 3.4.5(B)

Residual Density
in the $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ plane.

FIGURE 3.4.5(C)

Residual Density
in the B1-centre-B2 plane.

3.4.6. Charges and Moments

Average charges for deformation types obtained by direct interpretation of the refined coefficients of even deformation functions are given in column 1 of Table 3.4.6. Charges obtained by numerical integration and partitioning according to the stockholder recipe are given in column 2. The integration was carried out over a cube of edge $5.2 \AA$ centred on the atom and in divisions of edge $0.2 \AA$. The second moment off-diagonal terms are omitted. For all deformation types these terms had an esd (estimated from the averaging of chemically similar atoms of the same deformation type) similar to their magnitude.

TABLE 3.4.6

Moments and Charges

Atom	Charges	First	Momerit		Second	Moment	
(1)	(2)	L	M	N	LL	MM	NN
$\mathrm{N} \quad 3.7$. $33(-)$. 20 (4)			. $82(7)$		
$\mathrm{Cl}-.38$	-. 15 (-)	-.025(-)	. $194(-)$	-. $116(-)$.614(-)	. $569(-)$.689(-)
C2 . 07	-. 17 (-)	.025(-)	. $037(-)$	-. 039(-)	. $573(-)$. $476(-)$	853(
HC .09	.087(17)	. 003 (14)	.01(14)	. 003 (21)	. 15 (4)	. $125(18)$. $19(3)$
HN -2.5	.071(-)	-.021(-)	£	£	. $031(-)$. 1351	* $155(7)$
B $\quad .13$	-.152(17)	-. $138(6)$. 040 (8)	.007(12)	. 223 (22)	. $089(22)$	155(7)
HB -.40	. 059 (10)	-.050(7)	-.018(10)	. $007(5)$. 112 (3)	. 14 (3)	109(10)
Note : * denctes dependent							
£ denote zero by site symmetry							

The charges from the deformation coefficients, as expected, have an excessive ionic character (the charge on N and HN clearly shows this) but still identifies the anion and cation. The charges from numerical integration are, however, chemically sensible. For example both carbon atoms C1 and C2 have a small negative charge. The difference between the charges in the first and second column is attributable to the excessive assignment of multipolar functions (and
hence charge) to hydrogens in the multipolar refinement. The charge distribution is discussed further in section 3.6.

3.4.7. Electric Field Gradient Tensor

To date there has been no Nuclear Quadrupole Resonance (NQR) study of any $\left[B_{12} \mathrm{H}_{12}\right]^{2-}$ salt. Nevertheless, the EFG tensor is worth calculating to enable a comparison with the EFG for boron sites in decaborane $\left(\mathrm{B}_{10} \mathrm{H}_{14}\right)$ and the the "icosahedral" carborane $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$.

The NQR study ${ }^{85}$ of decaborane gave an $\mathrm{e}^{2} \mathrm{qO} / \mathrm{h}$ value of $1.21(5) \mathrm{MHz}$ for ${ }^{11} \mathrm{~B}\left(2.52(5) \mathrm{MHz}\right.$ for $\left.{ }^{10} \mathrm{~B}\right)$ with the asymmetry parameter $\eta=0$ by approximate site symmetry $\left(\mathrm{C}_{5 v}\right)$. Furthermore this study was able to determine the sign of $\nabla E_{z z}$ to be negative. Therefore eq is estimated \because at $-1.16 e \AA^{-3}$. The sign was attributed by the authors to "more electron density in the boron-hydrogen bond (z-direction of EFG) than in boron-boron bonds which is consistent with the electron-deficient character of $<$ polyhedral $>B-B$ bonds". This statement conflicts with the theoretical $\left(\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}\right.$) and experimental $\left(\mathrm{CaB}_{6}\right)$ results (see Chapter 2) where $\nabla E_{z z}$ has a definite positive sign even though these polyhedral $B-B$ bonds are also electron deficient. In these B_{6} octahedron based compounds the borons make 4 polyhedral connectivities and the $\mathrm{BBH}\left(\mathrm{BB}-\mathrm{B}_{\text {exo }}\right)$ bond angles are 135° rather than $120.4(2)^{\circ}$ in decaborane as determined by a neutron diffraction study ${ }^{86}$.

The second NQR study ${ }^{87}$ on closo $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$ (which has three isomers), gave no signs for the quadrupolar coupling constants, only magnitudes which were (after taking averages) $1.08,0.92$ and 0.80 MHz for ${ }^{11} \mathrm{~B}$ in the $1,2-1,7-$ and 1,12- isomers respectively. Here the geometry, as established by electron diffraction $88,89,90$ is even closer to that of the isoelectronic $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$
icosahedron. The $B-B$ bond length for local $C_{5 v}$ symmetry sites is $1.79(1) \AA \AA$. For these sites the quadrupolar coupling constant is somewhat lower, between 0.71 and 0.92 MHz . This equates to $\left|\nabla \mathrm{E}_{\mathrm{zz}}\right|$ of approximately 0.69 to $0.88 \mathrm{e}^{-3}$.

Application of published formulae for the calculation of ∇E from the deformation density and assuming only lattice vibrations gives an eq of -0.18 and $-0.17 e \AA^{-3}$ respectively. Correction for the contribution from the promolecular density (eq $-0.19 \cap 0.05$) gives eq +0.15 and -0.18 with $\eta 0.77$ and 0.24. No esd on these values is available from the refinement program employed but the poor agreement between B1 and B2, even though the deformation functions on each were constrained to be identical, suggests the precision is so poor as to invalidate any interpretation of these eq and η values. The very large difference between the ∇E tensors for the B1 and B2 sites is not plausable. The contribution of the large (but unjustified - see Section 3.6) deformation on the $\mathrm{H}-\mathrm{N}$ bond of the cation is probably responsible.

3.5. Theoretical Deformation Density Maps

3.5.1. Models for $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$and $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$

These calculations were carried out using a 4-31G basis and the ab-initio program GAMESS. The $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ ion cannot be calculated in isolation because the large negative charge causes some occupied orbitals to be unbound, at least in the early SCF calculation. Furthermore the GAMESS program, while recognising symmetry elements to minimise integral evaluation, is unable to utilise I_{h} point symmetry. Two point charges reduced the point symmetry to $\mathrm{D}_{3 \mathrm{~d}}$. The position of the two point charges cannot be precisely determined from the crystal structure since this would demand certain
preconceptions about the distribution of the positive charge within the triethylammonium ion. The charges were therefore located on a threefold axis each $12 \AA$ from the polyhedral centre. The deformation density was thus calculated without detailed modelling of the solid state electric field. This is not a serious disadvantage since in the experimental refinement of the deformation density the two crystallographically independent boron atoms were equivalenced and assigned ideal point symmetry. This is strictly invalidated by the solid state environment. The theory and experiment are both therefore comparable. The model used a $B-B$ distance of $1.817 \AA$ and $B-H$ bond length of $1.166 \AA$.

The calculation on the triethylammonium ion was carried out without any point charges. The geometry was taken from preliminary X-ray diffraction results which are not substantially different from those after convergence of the multipole refinement.

To explore the charge distribution relative to the free base the same coordinates were used to examine $\mathrm{Et}_{3} \mathrm{~N}$.

3.5.2. The $\left[\mathrm{Et}_{3} \mathrm{NH}^{+}\right.$Cation

Figures 3.5.2(a) and (b) show the deformation density calculated for the $\mathrm{H}-\mathrm{N}-\mathrm{C} 1$ and $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ planes respectively. Contours are again in intervals of $0.05 e^{-3}$. The $N-C$ bond is particularly unusual with no peak midway along the vector but instead a steady decline from an initial large surplus electron density near the N atom to a deficit near the carbon position. The $C 1-C 2$ bond is also unusual with a similar gradient in the deformation density from large at C1 to small at C2.

FIGURE 3.5.2(A)

Theoretical Deformation Density in $\mathrm{H}-\mathrm{N}-\mathrm{C} 1$ plane.

FIGURE 3.5.2(B)

Theoretical Deformation Density
in $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ plane.

FIGURE 3.5.2(C)

Theoretical Deformation Density
for NEt_{3}, plane as for 3.5.2(a)

FIGURE 3.5.2(D)

Theoretical Deformation Density
for NEt_{3}, plane as for 3.5.2(b)

FIGURE 3.5.2(D)

Fragment Deformation Density
$=(a)-(c)$.

Figures 3.5.2(c) and (d) are analagous to (a) and (b) but for the free base $\mathrm{Et}_{3} \mathrm{~N}$. These show the more usual bond peaks midway along the interatomic vectors. Figure 3.5 .2 (d) shows the difference density (a)-(c) (a fragment deformation density) which demonstrates how protonation of the base draws electron density from the lone pair on nitrogen which in turn draws electron density along the σ-bonded alkyl chains.

The theoretical results in Figures 3.5.2(a) and (b) should be compared with experimental results displayed in Figures 3.4.3.1(a), (b). They are discussed in Section 3.6.1.

3.5.3. The $\left[B_{12} \mathrm{H}_{12}\right]^{\mathbf{2 -}}$ Anion

The theoretical deformation density for a plane containing an edge and the inversion centre is presented in Figure 3.5.3. This should be compared with the experimental result in Section 3.4.3.2. The features are discussed in Section 3.6.2.

3.6. Discussion : Theory and Experiment

3.6.1. Charge Distribution in $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$

The positive charge in alkylammonium ions is not simply localised on the nitrogen atom, nor, in the case of $\left[\mathrm{Et}_{3} \mathrm{NH}^{+}\right.$, is it localised on the unique hydrogen. A Mulliken population analysis shows a charge distribution more close to $\mathrm{H}+0.41, \mathrm{~N}-0.83, \mathrm{CH}_{2}+0.32, \mathrm{CH}_{3}+0.15$. However even a Mulliken population analysis is flawed by the simplistic division of overlap density between atoms. This is of course more serious for pairs of atoms of different electronegativity eg C and H. The stockholder recipe (which can be applied to the electron density from an ab-initio calculation) when applied to the

FIGURE 3.5.3

Theoretical Deformation Density for $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$, plane as for 3.4.3.2(a)
experimental charge distribution gives $\mathrm{H} 0.07, \mathrm{~N} 0.33, \mathrm{CH}_{2} 0.03$ and $\mathrm{CH}_{3} 0.10$, (sum for $\mathrm{Et}_{3} \mathrm{NH}+0.79$). All these results and the fragment deformation density (see Section 3.5.2) show that the positive charge is not localised. This is in agreement with Pauling's electroneutrality principle ${ }^{38}$.

The agreement of the deformation density maps with simulations from ab-initio calculations is not good. The N-C bond peak is clearly shifted off the $N-C$ vector in the experimental map but not in the calculated one. Furthermore the profile is markedly different. Comparison of the $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2$ planes is better although again the $\mathrm{C}-\mathrm{C}$ bond deformation density is calculated to be asymmetrical but is 'observed' in the multipole refinement to be approximately symmetrical. Possible sources of discrepancies are

- The basis functions for the multipole refinement are too limited to describe the deformation density
- Errors in the observed structure factors.
- The deformation density for the ion in an ionic solid is genuinely different from that for the isolated ion.
- The basis functions for the ab-initio calculation are inadequate.

The contribution of the first source can be estimated by examining the residual density maps and looking for non-random features. Figures 3.4.5(a) and (b) do not show any such features.

The contribution from the second source can be estimated by examining the esd of the deformation density to determine if the discrepancy is statistically significant. The esd maps (Figs 3.4.3.1(c). (d)) show a very large esd near the symmetry axis which rapidly decays. This suggests that the discrepancy is significant.

The third source could be tested by re-calculating the ab-initio deformation density for the ion in some external electric potential which modelled the potential inside the ionic crystal. This test is demanding. Each neighbouring $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ anion could be effectively modelled by a point charge since for all points outside a spherically symmetric charge distribution the electric field is identical to that generated by the net charge of the distribution at the centre. The anion is sufficiently symmetric for this approximation. The [$\mathrm{Et}_{3} \mathrm{NH}^{+}$is not highly symmetric and can be modelled by integer charges only very crudely. The packing of anions and cations in the unit cell is a complex layer structure $-[(A \gamma B)(C B A)(B \alpha C)]_{n}$ in the conventional notation ' - with each anion having 8 neighbouring cations (6 in a trigonal antiprism at 6.15 \AA, 2 on the threefold axis at $4.67 \AA$) and each cation having 4 neighbouring anions (in a distorted tetrahedron : one at $4.67 \AA$, three at $6.15 \AA$) and 6 neighbouring cations (in a distorted trigonal antiprism, three at $6.43 \AA$, three at $7.02 \AA$). A calculation using a 4-31G basis and a $\left[\mathrm{Me}_{3} \mathrm{NH}^{+}\right.$model both with and without an environment of integer charges $\left(\left(\mathrm{X}^{+}\right)_{53}\left(\mathrm{Y}^{2-}\right)_{27}\right)$ showed no significant distortion of the deformation density due to the point charges.

The above result is in contrast to the effect reported in an X-ray diffraction study of $\mathrm{Cs}_{2} \mathrm{O}{ }^{91}$ (Space group $\mathrm{R}-3 \mathrm{~m}, \mathrm{a}=6.9790 \AA, \alpha=35.93^{\circ}$) where there is an apparent elongation of the charge distribution along the hexagonal c-axis. The elongation is asymmetric with electrons on the Cs^{+}ion drawn towards the adjacent layer of Cs^{+}ions. While expounding that the Cs ions "must be highly polarised in the layer crystal of $\mathrm{Cs}_{2} \mathrm{O}^{\prime \prime}$ the authors also invoke anisotropic extinction attributable to layer -shearing disorder perpendicular to the c-axis. Such disorder has a more severe effect on the alignment of hexagonal ($h, k, 0$) planes than the $(0,0,1)$ planes. This is a notorious feature of CdCl_{2} lattices where polytypes can be generated such as the $2 \mathrm{H}, 4 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{R}, 12 \mathrm{H}$ and $12 \mathrm{R}(\mathrm{R}$

[^0]- rhombohedral, H - hexagonal). An example would be the 12 R modification with the layer structure $[(A \gamma B)(C \alpha B)(C B A)(B \gamma A)(B \alpha C)(A B C)]_{n}$. Where the layer structure flips frequently, disordered structures result. This structural relationship between $\left[\mathrm{Et}_{3} \mathrm{NH}_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right]\right.$ and $\mathrm{Cs}_{2} \mathrm{O}$ is not exact enough for the polarisation (if true) to justify deformation density distortion in the $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$ cation but if proven in $\mathrm{Cs}_{2} \mathrm{O}$ some contribution should be expected in $\left[\mathrm{Et}_{3} \mathrm{NH}_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right], \mathrm{TbFe}_{2}\right.$ and $\left[\mathrm{Me}_{3} \mathrm{NH}_{2}\left[\mathrm{SnCl}_{6}\right]\right.$. It would therefore be interesting to determine the deformation density in another anti- CdCl_{2} lattice structure.

The polarisation of the Cs^{+}ion in $\mathrm{Cs}_{2} \mathrm{O}$ was modelled by $\mathrm{Cs}^{+}\left(\mathrm{X}^{+}\right)_{66}\left(\mathrm{Y}^{2-}\right)_{28}$ using an extensive basis set for Cs 92 augmented with two independent polarisation functions. The difference density $\mathrm{Cs}^{+}-\left[\mathrm{Cs}^{+}\left(\mathrm{X}^{+}\right)_{66}\left(\mathrm{Y}^{2-}\right)_{28}\right]$ for a plane containing the hexagonal c-axis was found to be negligible. The magnitude of the distortion from spherical symmetry was much smaller than the distortion observed in the residual density from the X-ray diffraction experiment. The rationalisation of the difference maps by simple polarisation arguments is therefore not supported. However, expansion of the model to include one oxygen atom (TZVP on O) does alter the calculated result with some deformation density on the internuclear axis. This last calculation, although having only two centres for basis functions, was the largest that could be tackled. This theoretical result supports the residual density features of the X-ray diffraction work but clearly the calculation is grossly inadequate. An analogy with $\mathrm{Cs}_{2} \mathrm{O}$ cannot yet be used to rationalise the shifted $\mathrm{N}-\mathrm{C}$ bond peak in $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$.

The fourth possibility - that the 4-31G basis used is inadequate could only be demonstrated by repeating the calculation with a larger basis set (ideally including polarisation functions). The triethylammonium ion is too large for
this purpose. A smaller model $\left[\mathrm{Me}_{3} \mathrm{NH}\right]^{+}$is still too large but $\left[\mathrm{H}_{3} \mathrm{NMe}\right]^{+}$can be used. The MOSCOW graphical analysis program previously used to display the results from the ab-initio GAMESS program is not capable of using basis sets other than 'STO-nG' or ' $n-(n-1) 1 G^{\prime}$ therefore the calculations including the evaluation of the deformation density were carried out using the ATMOL program package. Figures 3.6 .1 (a) and (b) show the calculated deformation density for an isolated $\left[\mathrm{H}_{3} \mathrm{NMe}\right]^{+}$ion using the $4-31 \mathrm{G}$ and TZV (triple zeta valence) basis sets respectively. The differences are very slight and the 4-31G basis set is concluded to be adequate for the purpose.

The failure to reproduce or explain the the shift of the $\mathrm{N}-\mathrm{C}$ bond deformation off the inter-nuclear axis prompted a more critical analysis of this feature. The dynamic deformation density map using all Fc to a sufficient resolution again shows the anomalous feature. The whole map is, as expected, similar to the static map but with smaller peaks due to thermal smearing. If instead only those Fc corresponding to structure factors which were measured (and used in the refinement) are included in the Fourier summation then Figure 3.6.1(c) is obtained. This map is substantially different and is in much better agreement with the theoretical result. In particular an electron surplus surrounds the $\mathrm{N}-\mathrm{C}$ vector and the asymmetry in the profile (along the interatomic vector) is qualitatively reproduced - subject to the inadequacy of comparing a dynamic and static (theoretical) map. Re-calculation of the static experimental map, again using only Fc calculated in the refinement, gives the result displayed in Figure 3.6.1(d) which should be compared to Figure 3.5.2(a) and contrasted with Fig.3.4.3.1(a).

The important question is how can the experimental maps produced using all Fc's and those using necessarily refined Fc's give such different results?

FIGURE 3.6.1(A)

Theoretical Deformation Density
for $\left[\mathrm{MeNH}_{3}\right]^{+}, ~ 4-31 \mathrm{G}$ basis, mirror plane.

FIGURE 3.6.1(B)

Theoretical Deformation Density for $\left[\mathrm{MeNH}_{3}\right]^{+}, \mathrm{TZV}$ basis, mirror plane.

FIGURE 3.6.1(C)

Dynamic Deformation Density
in $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$, limited Fc terms -see text.

FIGURE 3.6.1(D)

Static Deformation Density
in $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$, limited Fc terms -see text.

Furthermore does this difference invalidate the technique of collecting only a limited portion of the data and using multipolar methods to refine and display it?

The answer to the first question is simple - neither map is inconsistent with the observed data. However, the difference in the maps originates from inclusion of Fc's for which no matching observation was made. Consequently there is in effect no explicit restraint on their value. Another way of explaining the difference, in direct space, is that the model fits the observed density as efficiently as possible but, like any other model, can give a poor fit for interpolated or extrapolated points.

The answer to the second question is clearly important but is not so simple. The two-stage measurement technique is dependent on selected data points being distributed in such a way that all density features are equally well characterised. Consequently it is important that there is an even distribution of data points in reciprocal space. For practical reasons data points with large (estimated) values of $F_{h k l}$ are selected for measurement. The additional use of $E_{h k l}$ in the selection process improves the radial distribution in reciprocal space. However, the angular distribution in reciprocal space is not usually checked before the selected indices are used in data collection. This omission can result in weak characterisation of the deformation density in certain planes. This defect will not be detected in an esd map which only identifies zones where the fit to the observed data is poor.

How might the data distribution in reciprocal space be checked? One method would be to plot each data point (h, k, l) (and those equivalent by symmetry) using the reciprocal cell coordinate axes and examine either a stereo pair or several projections. The resulting plot should be nearly
spherically (circularly) symmetric. This procedure is practical only for small unit cells and/or low resolution data. An alternative method would be to calculate the moments of inertia of the set of selected reciprocal lattice points (and their equivalents). The three moments should be nearly equal for an evenly distributed data set. This test could be applied to shells of lattice points. This 'moments' test will of course not work for cubic unit cells and is of limited use in the uniaxial spacegroups.

The application of such tests may discredit some data set selections but the same tests are difficult to incorporate in an algorithm for the determination of a data set satisfactorily distributed in reciprocal space. The ideal method would be to use the data already collected to refine a multipolar model which would predict which, as yet uncollected data, are most acutely dependent on the deformation density. These data would then be acquired and the iterative process repeated.

Returning to the problem of the shifted $\mathrm{N}-\mathrm{C}$ bond peak, the flaw in the data set which permitted this problem is displayed in Figure 3.6.1(e) - a stereo pair illustration of the distribution of the 97 unique lowest angle data (and their symmetry equivalents). The reciprocal cell is also illustrated but on a different scale. This figure shows a lack of data near the 3 -fold axis. Such a deficiency means the $\mathrm{N}-\mathrm{C}$ bond component along the hexagonal c -axis is ill-characterised. This is the direction of the spurious bond peak shift.

This imbalance in data point distribution becomes less important when the same multipolar basis is used to describe the deformation density for several chemically equivalent (but crystallographically independent) atoms. In such cases refinement of the multipoles is dependent on a larger, more widely distributed set of data. For example, a dipole function orientated at different

FIGURE 3.6.1(E)

Distribution of Data in Reciprocal Space.
angles on two atoms is heavily dependent on data in two directions of the reciprocal lattice. Consequently only if both these directions are relatively deficient in data will there be a divergence of deformation maps using Fc for observed structure factors and direct summation using the multipolar expansion.

3.6.2. Charge Distribution in the $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ Ion

A comparison of the theoretical deformation density (Figure 3.5.3) with the experimental static deformation density (Figure 3.4.3.2(a)) shows good qualitative agreement : electron deficiency inside the polyhedron and a continuous surplus at a fixed radius (ie on edges but over faces). Close inspection, however, reveals differences (other than in the $B-H$ bond where the experimental technique is of limited validity).

The surplus electron density in the theoretical map is diffuse and almost constant over the polyhedral surface at between 0.05 and (briefly) $0.10 e^{-3}$, except in close proximity $(<0.4 \AA)$ to the borons. The largest contour to define a continuous iso-density surface is calculated to be $0.06 e^{-3}$. In contrast the experimental map shows peaks as high as $0.15 e \AA^{-3}$ on the midpoint of the $B-B$ connectivities and a continuous iso-density surface of approximately $0.12 e \AA^{-3}$.

This difference is significant because the discrepancy $\left(0.10 e \AA^{-3}\right.$ on the midpoint of the $B-B$ vector) is much more than the esd $\left(0.01 e \AA^{-3}\right.$; Figure 3.4.3.2(b)) or the residual density $\left(0.03 \mathrm{e}^{-3}\right.$; Figure 3.4.5(c)). Ab-initio calculations at the 4-31G level are not necessarily the 'correct' result. There was a significant change in the deformation density when the basis was improved from 3-21G and it is quite probable that further changes would
occur if the basis set was increased again (for example by the inclusion of bond-centre functions and/or polarisation functions). Like $\left[\mathrm{Et}_{3} \mathrm{NH}^{+}\right.$the $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ ion is too large for an ab-initio calculation using an extended basis but unlike the cation there is not a smaller model of the anion to demonstrate the limit of the deformation density. A crude approximation would be the 5-fold sites in closo- $\left[\mathrm{B}_{7} \mathrm{H}_{7}\right]^{2-}\left(\mathrm{D}_{5 h}\right)$ which is the smallest of the $\left[\mathrm{B}_{n} \mathrm{H}_{n}\right]^{2-}$ series to have a six (five B, one H) connected boron. This small model is unsatisfactory because of the short $B-B$ distance on the five fold axis. This would result in a quite different electron distribution inside the polyhedron. (The structure of $\left[\mathrm{B}_{7} \mathrm{H}_{7}\right]^{2-}$ has not been determined by X-ray diffraction but carborane analogues have been characterised by microwave spectroscopy ${ }^{93}$ and electron diffraction ${ }^{94}$.)

3.6.3. Related Deformation Density Studies

Other boron polyhedra which have been studied are $\operatorname{LiAlB}_{14}{ }^{95}$ and $\alpha-$ AlB $_{12}$ 96 each of which contains a B_{12} icosahedron. Although these examinations were recent (1983 and 1979 respectively) they used only the primitive $\mathrm{X}-\mathrm{X}$ method to display the deformation density (although charges were refined using the extended L -shell method). In LiAlB_{14} the B_{12} icosahedra are substantially distorted and while each B has an external B contact these contacts are not all chemically similar (some are contacts with neighbouring icosahedra, others are with boron atoms which are in turn coordinated to Li and AI). Not all the deformation density maps for crystallographically independent planes were published for LiAlB $_{14}$ but the following features were observed:

- Electron deficiency at the core of $-0.20 e^{-3}$.
- Large peaks $\left(0.15 e^{-3}\right)$ bordering the midpoint of $B-B$ connectivities.
- Diffuse electron surplus $\left(0.10 e \AA^{-3}\right)$ external to the faces.

The fact that the latter peaks are external to the faces is not stressed by the authors and a second figure presents the deformation density for a plane containing a triangular face rather than one over it. The authors do stress that there were " accumulation of charges at the centres of the faces which is characteristic feature of delocalised 3 centre bonds." All these features are in good agreement with those in $\left[\mathrm{Et}_{3} \mathrm{NH}_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right]\right.$ but are woefully ill-characterised in $X-X$ maps. The structure factors for LiAlB_{14} should be utilised in a multipolar-expansion program to increase the resolution and filter out the random noise. Only this would allow a proper comparison - and perhaps enable the interpretation of any differences in terms of the short range polarisation.

The $\alpha-\mathrm{AlB}_{12}$ structure contains B_{12} and B_{19} units (two icosahedra fused face to face and each icosahedron missing one vertex) as well as single borons. This work was not a deliberate study of the deformation density but a careful examination of the non-random residual density from a conventional structure solution data set. The data extended to only $S=1.56$ e $\AA^{-1}\left(\theta=34^{\circ}\right.$ for Mo-K ${ }_{\alpha}$) but the successful mapping of the deformation density using the weak $X-X$ technique was made possible by averaging the 120 original residual densities for the B_{12} triangular face and 60 original densities for the bisecting plane through two opposite edges.

The results were impressive with a clear deficiency at the core $\left(-0.18 e^{-3}\right)$, and surplus density maximised over the faces $\left(0.10 \AA^{\AA^{-3}}\right)$ which decreased towards the $B-B$ edges $\left(0.05 e^{-3}\right)$ with a local maximum slightly inside the $B-B$
connectivity. The relatively massive peaks on the exo-polyhedral B-B contacts
$\left(0.20 \mathrm{e} \AA^{-3}\right)$ were interpreted by authors h as evidence of two-centre two-electron bonds. The authors therefore recognised the close similarity in the electronic structure of the icosahedral unit in $\alpha-$ AlB $_{12}$ with the $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ molecular ion. Their calculation of the deformation density using CNDO/2 bears little more than a simple qualitative resemblance to that calculated at the 4-31G level or experimental results on $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ or their own results on $\alpha-A / B_{12}$. Such a map serves only to confirm the inadequacy of the semi-empirical MO methods in providing a comparison for X-ray diffraction deformation density studies. Again the information which could be obtained from the $\alpha-$ AlB $_{12}$ structure factors would be greatly improved if multipolar refinement methods were employed.

The last related compound which has been the subject of a deformation density study is decaborane $\left(\mathrm{B}_{10} \mathrm{H}_{14}\right)$. This is the only other hydroborate to have been studied. The first study ${ }^{97}$ in 1971 used X-ray and neutron data in a crude refinement of the deformation density using fractions of hydrogen atoms with variable temperature factors. This model was expanded 98 in 1978 to refine some 55 independent deformation parameters. Typical surplus electron deformation densities in the plane of independent B_{3} triangles are $0.15 e \AA^{-3}$. This is slightly larger than those in $\left[\mathrm{Et}_{3} \mathrm{NH}^{+}{ }_{2}\left[\mathrm{~B}_{12} \mathrm{H}_{12}\right]^{2-}\right.$. These crude results also agree in the form of the surplus deformation density being triangular pyramids staggered with respect to the B_{3} coordinates and positioned slightly outside the polyhedral surface (elevations $0.12(4), 0.01(3)$ and $0.05(3) \AA$ cf $\left.\left[B_{12} \mathrm{H}_{12}\right]^{2-} 0.10(2) \AA\right)$. The question of edge vs face localisation is not resolved since this option was not permitted for all independent faces and edges. In the same paper comparisons were made with the theoretical result for $\mathrm{B}_{10} \mathrm{H}_{14}$ using a minimal basis set ${ }^{99}$. These maps bear scant
resemblance to the experimental results for $\mathrm{B}_{10} \mathrm{H}_{14}$ or to the experimental or calculated maps for $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$. This again demonstrates how the minimal basis sets are useless for even qualitative estimation of the deformation density.

3.7. $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ and $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$: Similarities and Contrasts

The icosahedral $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ ion and the octahedral $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ ion are both examples of ions which have more connectivities than pairs of electrons. Initially these geometries were rationalised by introducing bond types other than the familiar two-electron two-centre bonds. These were the 3-centre 2-electron bonds such as BBB and (for the rationalisation of other hydroborates) BHB. For $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$, which has 12 connectivities and is bound by 7 pairs of electrons, one topologically allowed description would be 3 BBB bonds and 4 BB bonds. However, just one such description would not give octahedral symmetry and therefore averaging over symmetry related resonance forms needs to be invoked. There are still other topologies of 3 $\mathrm{BBB} / 4 \mathrm{BB}$ bonds and even others with different ratios of two- and three-centre bonds. For $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ the number of symmetry independent resonance forms is very large and can only be generated with the aid of a computer. Such topological arguments were superceded by Wade's Rules which relate the geometry of polyhedra to the number of electron pairs needed to bind the polyhedral skeleton (PSEP's). The foundation of Wade's Rules was MO theory which had established that for closed triangulated polyhedra with n-vertices, with each atom having s and p-orbitals, there are exactly $(n+1)$ bonding molecular orbitals. Only numerical calculation can finally determine the number of bound orbitals.

Both the above ions belong to the closo-class in Wade's classification and
the B_{n} frameworks are therefore bound by $(n+1)$ pairs of electrons. The $4-31 G$ calculations on these ions (Figs 2.7.4(a) and 3.5.3) reveal the same qualitative features : electron deficiency at the core and surplus electron density extending from just inside the polyhedral surface outwards. The largest deformation density feature is always associated with the exo-polyhedral σ-type bond (ie $B-H$). Any bonding through the core of the polyhedron should be a maximum for $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ which has the shorter B -(core)-B distance ($2.39 \AA$). However, the deformation density at the core is calculated to be negative $\left(-0.15 e^{-3}\right)$, exactly the same as for $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$. Therefore the stress on the importance of electron density accumulation inside the B_{6} octahedron of CaB_{6} 59,58 (analagous to $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ - see Chapter 2) is unfounded. Similarly the empirical bi-reciprocal relationship ${ }^{55-57}$ between $B-B$ distances and potential energy, (which for $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ assigns 53% of the energy to internal interactions and for $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-} 19 \%$) over emphasises the importance of cross-polyhedral interactions. (See chapter 2 - section 2.7.1)

The 3 -dimensional shape of the deformation density in $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ is in the form of triangular pyramids extending from the triangular faces but staggered with respect to these faces. That calculated for $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ is much more diffuse. Figure 3.7 presents a stereo pair of an iso-density surface ($\rho=0.05 e \AA^{-3}$) evaluated for a thick slice through the icosahedron.

FIGURE 3.7

Theoretical Deformation Density:
Iso-deformation density Surface for $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$.

From this figure the topology is seen to be different to that of $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ and is better described as a set of 12 fused toroids with 12 projecting cones on the $B-H$ vectors. The face and edge deformation densities are not sufficiently different for them to be meaningfully ordered.

3.8. Chemical Reactivity and Deformation Density

It ought to be possible to correlate the topology of the deformation density with the chemical reactivity of a substance, in particular electrophilic or nucleophilic reactivity. The protonation of $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ to give $\left[\mathrm{B}_{6} \mathrm{H}_{7}\right]^{-}$is one reaction which has recently been studied. Application of the Huckel method suggested an edged-bridged structure ${ }^{100}$ for $\left[\mathrm{B}_{6} \mathrm{H}_{7}\right]^{-}$. Application of MNDO and ab-initio techniques ${ }^{101}$ in which the core of the boron cluster was not constrained predicted the disruption of the octahedron on protonation and the loss of any defineable cluster geometry. Still more work using MNDO with an octahedral constraint on the boron framework gave a μ_{3} (face bridging) geometry 102 which was rationalised using localised 2- and 3-centre bond descriptions. The structure of the $\left[\mathrm{B}_{6} \mathrm{H}_{7}\right]^{-}$anion was recently determined by X-ray diffraction ${ }^{103}$ and the protonation site was found to be over a face. The topology of the deformation density in CaB_{6} with electron density accumulation over the faces - rather than the edges - is in agreement with the structural study in identifying the face as the most probable site for electrophilic attack. Furthermore the extremely diffuse topology of the deformation density in $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ may explain the stability of the acid in contrast to $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$ which is steadily degraded in acid conditions.

Charge Deformation Density of Benzyltrimethylammonium Octahydrotriborate

4.1. Why Study $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NMe}_{3}\right]^{+}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$?

The $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ion is, after diborane h_{1} the smallest and simplest borohydride known. The structure was first determined by X-ray diffraction in 1960104 although the positions of the bridging hydrogens (or any other atoms) were not published but assigned to peaks in an illustration of a superimposed electron density map. Another structure of an un-coordinated [$\mathrm{B}_{3} \mathrm{H}_{8}$] ion was determined more recently ${ }^{105}$. The structure is another example where the number of connectivities (13) exceeds the number of pairs of valence electrons (9). The topology can be explained in terms of two-centre two-electron $(2 c-2 e)$ bonds and two-electron three-centre bonds $(2 c-3 e)$ as shown in Figure 4.1(1).

(I)

(II)

FIGURE 4.1

Topological Forms for $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$.

Other bonds descriptions can be written eg (II) but only (I) is topologically allowed with each B participating in exactly 4 bonds and each H only 1 . There are as many bonds as pairs of valence electrons.

The special interest in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$is the possibility that the topologically forbidden form (II) may make a substantial contribution. This has been suggested by Lipscomb 106 in order to explain the asymmetric hydrogen bridges and the shorter lengths of the bridged $B-B$ connectivities. The previously forbidden 5-coordinate boron has been rationalised by invoking fractionality ${ }^{107}$. Form (II) explains the B-B shortening because the the bridged borons are bound twice by a $3 \mathrm{c}-2 \mathrm{e}$ BHB bond and a $3 \mathrm{c}-2 \mathrm{e}$ BBB bond. If the latter really does make an important contribution then this should be observable in a charge deformation density refinement.

Calculation of the deformation density alone is not a solution to the question of the contribution of (II) to the electronic structure because ab-initio calculations, at least at the 4-31G or 6-31G level can not reproduce a geometry optimised structure with bonds and angles near those that have been determined crystallographically - certainly not values as accurate as geometry optimised values for compounds with only $2 \mathrm{c}-2 \mathrm{e}$ bonds. This defect is also worth investigating. The deformation density in $\mathrm{B}-\mathrm{H}$ bonds (bridged or terminal) remains inaccessable and while the deformation density in these bonds has been refined the results in this portion of the anion are not reliable.
$\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$presents a challenge because of the large ratio of hydrogen to boron and the large amplitude of vibration of these hydrogens. In the solution state there is strong evidence that the molecule is fluxional. The importance of low temperatures in the X-ray diffraction study of substituted triboranes $\left[\mathrm{B}_{3} \mathrm{H}_{7} \mathrm{~L}\right]^{1-}, \mathrm{L}=\mathrm{NCS}, \mathrm{NCSe}$, has been demonstrated ${ }^{108}$.

The benzyltrimethylammonium ion (BTMA) was selected because an ion of poor polarising power was needed if the deformation density in the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ion was not to be perturbed. The choice of cation was further limited because the
$\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ion can act as a ligand as shown by the X-ray determined structures of $\mathrm{Be}\left(\mathrm{B}_{3} \mathrm{H}_{8}\right)_{2}{ }^{109}$ and $\left[(\mathrm{CO})_{4} \mathrm{CrB}_{3} \mathrm{H}_{8}\right]^{-}{ }^{110}$. When $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$acts as a ligand the geometry is perturbed. Several other salts were prepared ($\mathrm{PNP}^{+}, \mathrm{NPr}_{4}{ }^{+}, \mathrm{NEt}_{4}{ }^{+}$) but these produced crystals of sub-standard diffraction quality or, on preliminary structure determination, showed some disorder in the alkyl groups or $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ion. The BTMA ion is large but has some symmetry and could therefore be refined with a modest number of deformation functions. The deformation density in BTMA is easily measured and refined because of the rigid C -skeleton of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ group and the inherent nature of the curvature of the electron density (ie Laplacian electron density) in aromatic rings.

Finally, as is always important when investigating new bond deformation types, BTMA is useful as an internal standard to check the quality of the data. The phenyl group has been a component in other deformation density studies 111.112

4.2. Experimental

4.2.1. Preparation of the Crystal

[BTMA] $\left.]^{+}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$was prepared by the quantitative reaction of $\mathrm{TI}^{+}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$and $\mathrm{BTMA}^{+} \mathrm{Br}^{-}$. The thallium salt was in turn prepared from commercially supplied [$\left.\mathrm{NMe}_{4}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ via a published synthetic route ${ }^{113}$. The [BTMA] $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ was finally crystallised by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. A colourless regular block was sphericalised (diameter $0.40(4) \mathrm{mm}$) and examined by oscillation photography to confirm that the crystal had remained singular and free from powder.

4.2.2. Data Collection

A preliminary X-ray diffraction experiment gave a model structure which was used to prepare a list of structure factors F and normalised structure factors E extending to $S=2 \sin \theta / \lambda=2.6 \AA^{-1}$. From this a reduced list of indices estimated worthy for collection (ie with above average E values and reasonably large F values) was prepared. The first asymmetric unit was collected (ASU1), the results used to further refine the model and prepare a slightly revised list of indices for collection in a second asymmetric unit (ASU2). This second collection was prematurely terminated after approximately 60% of selected indices had been collected when the crystal was damaged. The details of each collection are summarised below.

ASU1

Accurate cell parameters were obtained using a CAD-4 diffractometer at 113 K using 25 centred reflections $\left(9^{\circ}<\theta<32^{\circ}\right)$, graphite monochromated Mo $K_{\alpha}\left(\lambda_{\mathrm{av}} 0.71069 \AA\right)$. For data collection $\theta_{\max }=70^{\circ}, \omega-2 \theta$ scan in 96 steps. Each scan done twice using 48 alternate steps and profiles compared. If the profiles were not statistically similar then the reflection scanned twice more, if still dissimilar reflection flagged for subsequent deletion. Scan width $(\omega)=0.80$ $+0.35 \tan \theta$. Moderate prescan and for $1 / \sigma 1>1$ this was followed by a slow scan such that the final $1 / \sigma I$ ratio was better than 33 subject to a maximum time constraint of 120 s . Over 197 hours 6586 acceptable data were measured. No detectable crystal decay or movement.

ASU2

- as per ASU1 except cell calculated from 25 centred reflections $\left(9^{\circ}<\theta<34^{\circ}\right) .4170$ data measured over 164 hours.
$\mathrm{H}_{24} \mathrm{~B}_{3} \mathrm{C}_{10} \mathrm{~N}_{1}, \mathrm{Mr}=190.74$, Monoclinic $\mathrm{P} 2{ }_{1} / \mathrm{c}$ (No 14), $\mathrm{Z}=4, \rho_{\mathrm{x}}=0.979 \mathrm{gcm}^{-3}$, averaged cell $a=11.293(5), b=9.384(4), c=13.118(5) \AA, \quad B=111.46(2)^{\circ}, V=1293.8 \AA^{3}$, μ MoK $_{\alpha}=0.49 \mathrm{~cm}^{-1}, \mathrm{~F}_{(000)}=424, \mathrm{~T}=-162^{\circ} \mathrm{C}(111 \mathrm{~K})$

4.2.3. Data Reduction

Data which had 1) net $1<0$, or 2) were flagged as overloading counter or 3) were flagged as weak with a peak centre offset from the expected position or 4) had an uneven background were deleted to leave 5637 (ASU1) and 4045 (ASU2) data. These were corrected for Lorentz and polarisation factors (including monochromator polarisation). The low value of μ and the use of a near spherical crystal eliminated the need for an absorption correction. The data were merged to give 5990 unique reflections ($\mathrm{R}_{\text {merg }} 0.0510$, batch scale factor 1.000) of which 5717 had F> $3 \sigma F$. A further two reflections (110 and 102) repeatedly had Fo $\ll \mathrm{Fc}$ in the subsequent standard refinements (which was attributed to extinction) and were deleted. A final list of 5715 Fobs was used in the deformation density refinement program.

4.3. Standard Parameter Refinement

The starting point for the refinement was a set of coordinates established from an earlier X-ray diffraction experiment which in turn had been solved by direct methods (B, C, N) and iterative least-squares and ΔF syntheses (H). These refined rapidly to convergence. The function minimised was $\Delta_{1}=\sum \mid$ Fo-kFc $\left.\right|^{2}$ with weights for the observations of $1 / \sigma^{2} \mathrm{~F}$. Thermal parameters were anisotropic for B, C and N atoms but isotropic for H atoms. No constraint was imposed on the phenyl group. Refinement of 224 standard parameters (5715 observations) gave a final R factor of 0.0803 ($R_{w} 0.0845$). These results are not listed because they are superceded by values from the

FIGURE 4.3(A)

Ortep drawing
refinement including multipole functions (see section 4.4.2 for tables).

Figure 4.3(a) shows an ORTEP drawing of the anion and cation respectively and the labelling scheme adopted. The parameters used in the preparation of Figure $4.3(a)$ are those from the converged multipole result.

4.4. Experimental Charge Deformation Density

4.4.1. Multipole Model and Refinement

The program LSEXP was used (see Chapter 2 section 2.5.1). There are no crystallographic symmetry constraints on any part of the anion or cation. To bring the number of refined parameters down to a size which enabled a least-squares refinement cycle to be achieved with a reasonable demand on computer resources, non crystallographic local point symmetry was imposed. This alone still gave an excessive number of independent deformation coefficients and therefore further, chemically plausible, equivalences were made. The final constraints were

- Only 9 atomic deformation types $N\{N\}, C_{m e t h y l}\{C 8, C 9$, $C 10\}, C_{\text {aromatic }}\{C 1-C 6$ inclusive $\}, B_{\text {unique }}\{B 1\}, B_{\text {basal }}\{B 2, B 3\}$, $C_{\text {benzyl }}\{C 7\} . H_{c}\{a l l H$ bonded to $C\}, H_{B}\{6 H$ terminally bonded to $B\}, H_{\mu}$ \{both bridging H -atoms in $\left.\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}\right\}$.
- Point symmetries for the atomic deformation types : $N\left(C_{3 v}\right)$, $C_{\text {methyl }}\left(C_{3 v}\right), C_{\text {aromatic }}\left(C_{2 v}\right) B_{\text {unique }}\left(C_{2 v}\right), B_{\text {basal }}\left(C_{s}\right), C_{\text {benzyl }}\left(C_{s}\right)$, $H_{C}\left(C_{\infty}\right), H_{\mu}\left(C_{s}\right)$.
- Basis functions : spherical $(n=0)$ to quartic $(n=4)$ for non-H, spherical to cubic ($n=3$) for H atoms.
- Exponents fixed at plausible values $N 5.3 \AA^{-1} ; C_{M e}, C_{\text {arom }}$, $C_{\text {benzyl }} 5.28 \AA^{-1} ; B_{\text {un }}, B_{\text {bas }} 4.47 \AA^{-1}$; all H $5.45 \AA^{-1}$.
- F_{000} restrained to 424.

Refinement was in three blocks : cation parameters, anion parameters and spherical deformation coefficients (228, 110 and 9 parameters respectively).

The function minimised was $\Delta_{2}=\Sigma\left|\mathrm{Fo}^{2}-(\mathrm{kFc})^{2}\right|^{2}$. Over 20 cycles the R factor was reduced (standard parameters only) to $R 0.05504\left(R_{w} 0.05142\right)$ (with deformation multipoles). The R-factor decrease per cycle was then only 0.00007. Examination of the deformation density maps showed no significant changes over the last few cycles and refinement was therefore terminated.

4.4.2. Multipole refinement results

The standard parameters together with their esd's are listed in Table 4.4.2(a). Derived bonds and angles are listed in Table 4.4.2(b). The deformation coefficients are listed in Table 4.4.2(c)

Fractional Coordinates of Atoms with Standard Deviations

	x	y	z
N	$0.80964(16)$	$0.16728(18)$	$0.52232(13)$
$\mathrm{C}(1)$	$0.59327(20)$	$0.20216(23)$	$0.64303(18)$
$\mathrm{C}(2)$	$0.51036(23)$	$0.13593(24)$	$0.68544(19)$
$\mathrm{C}(3)$	$0.55331(23)$	$0.02188(24)$	$0.75814(19)$
$\mathrm{C}(4)$	$0.67783(22)$	$-0.0258(3)$	$0.78787(18)$
$\mathrm{C}(5)$	$0.76061(24)$	$0.04063(22)$	$0.74564(17)$
$\mathrm{C}(6)$	$0.71906(18)$	$0.15484(20)$	$0.67309(14)$
$\mathrm{C}(7)$	$0.80882(21)$	$0.22754(23)$	$0.62956(16)$
$\mathrm{C}(8)$	$0.90549(25)$	$0.2503(3)$	$0.49182(21)$
$\mathrm{C}(9)$	$0.68259(24)$	$0.1824(4)$	$0.43376(19)$
$\mathrm{C}(10)$	$0.8475(3)$	$0.01386(24)$	$0.53572(23)$
$\mathrm{B}(1)$	$0.29715(24)$	$0.1321(3)$	$0.89834(21)$
$\mathrm{B}(2)$	$0.13007(23)$	$0.1421(3)$	$0.86472(20)$
$\mathrm{B}(3)$	$0.1946(3)$	$0.0942(3)$	$0.76123(19)$

Fractional Coordinates of Hydrogen Atoms

	x	Y	z
H(1)	$0.567(4)$	$0.260(4)$	0.605 (3)
H(2)	0.452(4)	0.160(4)	$0.674(3)$
H(3)	0.511 (5)	-0.005 (5)	0.776(3)
H(4)	0.696(4)	-0.084 (5)	0.820(3)
H(5)	$0.819(4)$	0.020(4)	0.760(3)
H(71)	$0.796(3)$	0.305 (4)	$0.621(3)$
H(72)	$0.877(3)$	0.229(4)	$0.671(3)$
H(81)	$0.904(4)$	$0.226(5)$	0.440(4)
H(82)	0.970(4)	0.238(4)	0.534(3)
H(83)	0.888(3)	$0.323(5)$	0.486(3)
H(91)	$0.667(4)$	0.257 (5)	$0.433(3)$
H(92)	0.637(3)	$0.138(4)$	$0.449(3)$
H(93)	0.690(4)	0.166 (5)	$0.384(4)$
H(11)	0.913(4)	0.011 (5)	0.584(4)
H(12)	0.801(4)	-0.017(4)	0.544(3)
H(13)	0.853(3)	-0.012(4)	0.485(3)
H(1B)	0.345 (5)	0.018(5)	$0.965(4)$
H(2B)	0.360(5)	$0.253(6)$	0.919(4)
H(3B)	0.054(6)	0.027 (6)	$0.885(5)$
H(4B)	$0.067(4)$	0.279 (5)	$0.837(4)$
H(5B)	$0.152(4)$	0.200(5)	0.684(4)
H(6B)	$0.172(6)$	-0.044 (6)	$0.714(5)$
H(7B)	0.212(8)	0.195 (9)	$0.970(7)$
H(8B)	$0.319(6)$	0.084(8)	$0.783(6)$

Thermal Parameters $x \AA^{-2}$

	ull	422	433	ul2	u23	ul3
N	. $0191(7)$. 0142 (7)	.0118(6)	. $0005(6)$. 0003 (5)	. 0062 (5)
C(1)	.0198(10)	. 0167 (9)	. $0197(9)$. $00013(7)$	-.0003(7)	. 0084 (8)
C(2)	.0194(10)	. 0203 (9)	. 0271 (10)	-. 0003 (8)	-.0017(8)	.0115(8)
C(3)	.0265(11)	. 0191 (9)	. $0244(10)$	-. 00051 (8)	-. 0021 (8)	.0135(9)
C(4)	.0290(11)	.0180(9)	.0196(9)	. 0005 (8)	. 0029 (8)	.0116(8)
C(5)	. $0207(10)$. 0193 (9)	. 0153 (8)	. $0022(8)$. 0023 (7)	. $0070(7)$
C(6)	. $0186(9)$. 0144 (8)	. $0134(7)$. 0002 (7)	-.0018(6)	.0060(7)
H(1)	. 041 (10)					
H(2)	.046(10)					
H(3)	.051(11)					
H(4)	.047(11)					
H(5)	. $035(10)$		-			
C(7)	. $0190(9)$. 0151 (8)	. $0135(8)$	-. $0031(7)$	$-.0026(6)$. 0069 (7)
H(71)	. $030(8)$					
H(72)	. 035 (9)					
C(8)	. 0246 (11)	.0236(11)	.0217(10)	-. 0025 (9)	. 0034 (9)	.0124(9)
H(81)	. $054(12)$					
H(82)	. 048 (11)					
H(83)	.039(10)					
C(9)	.0229(11)	. 0367 (15)	. $0130(8)$	-.0038(10)	. 0013 (9)	. 0025 (7)
H(91)	.048(12)					
H(92)	. 036 (9)					
H(93)	.058(11)					
$\mathrm{C}(10)$. $0377(14)$.0138(9)	. 0291 (11)	. 0031 (9)	-.0006(8)	.0210(11)
H(11)	. $052(12)$					
H(12)	. 045 (11)				-	
H(13)	. 041 (9)					
B(1)	. $0202(10)$.0250(12)	.0234(10)	$-.0004(9)$. 0015 (9)	. 0025 (9)
B(2)	. $0230(11)$.0212(11)	.0249(10)	. 0019 (9)	-.0015(9)	. 0107 (9)
B(3)	.0308(13)	.0218(11)	. 0167 (9)	. 0026 (9)	. 00017 (8)	. 0093 (9)
H(1)	. 078 (14)					
H(2)	.086(15)					
H(3)	.097(17)					
H(4)	.077(14)					
H(5)	. $067(13)$					
H(6)	. $108(20)$					
H(7)	.149(29)					
H(8)	.119(22)					

TABLE 4.4.2(B)

Cation Bond Lengths (\AA) with standard deviations

$\mathrm{N} \quad-\mathrm{C}(7)$	$1.519(3)$	$\mathrm{C}(5)-\mathrm{H}(5)$	$0.65(4)$
$\mathrm{N} \quad-\mathrm{C}(8)$	$1.502(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	1.498(3)
$\mathrm{N}-\mathrm{C}(3)$	$1.486(3)$	$\mathrm{C}(7)-\mathrm{H}(71)$	$0.74(3)$
$N \quad-\mathrm{C}(10)$	$1.494(4)$	$\mathrm{C}(7)-\mathrm{H}(72)$	$0.76(4)$
$C(1)-C(2)$	$1.398(3)$	$\mathrm{C}(8)-\mathrm{H}(81)$	$0.71(5)$
$c(1)-c(6)$	$1.400(3)$	$\mathrm{C}(8)-\mathrm{H}(82)$	$0.75(4)$
$\mathrm{C}(1)-\mathrm{H}(1)$	$0.72(4)$	$\mathrm{C}(8)-\mathrm{H}(83)$	$0.70(4)$
$c(2)-c(3)$	$1.397(4)$	C(9) - $\mathrm{H}(91)$	$0.72(4)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.66 (4)	$\mathrm{C}(9)-\mathrm{H}(92)$	$0.74(4)$
$C(3)-C(4)$	$1.389(3)$	$\mathrm{C}(9)-\mathrm{H}(93)$	0.71 (5)
$C(3)-H(3)$	0.65 (4)	$\mathrm{C}(10)-\mathrm{H}(11)$	$0.78(4)$
$C(4)-C(5)$	$1.396(3)$	$\mathrm{C}(10)-\mathrm{H}(12)$	$0.64(4)$
$C(4)-H(4)$	0.67 (4)	$\mathrm{C}(10)-\mathrm{H}(13)$	$0.73(4)$
$C(5)-C(6)$. 3961		

Cation Bond Angles $\left({ }^{\circ}\right)$ with standard deviations

$C(7)$	N	C(8)	$107.61(17)$	N	- C(7)	$-\mathrm{C}(6)$	114.69(17)
C(7)	N	- C(9)	110.92(17)	N	- C(7)	$-\mathrm{H}(71)$	106.7(26)
$C(7)$	N	-C(10)	110.38(18)	N	-C(7)	$-\mathrm{H}(72)$	109.0(27)
$\mathrm{C}(8)$	N	- C(9)	109.01(18)	C(6)	- C(7)	-H(71)	112.5(26)
$C(8)$	$=N$	-C(10)	109.15(19)	C(6)	- $\mathrm{C}(7)$	-H(72)	112.3(27)
$\mathrm{C}(9)$	N	-C(10)	109.71(19)	H(71)	$-C(7)$	- $\mathrm{H}(72$)	100.6(37)
C(2)	- C(1)	- $\mathrm{C}(6)$	120.34(20)	N	- C(8)	- $\mathrm{H}(81)$	108.7(37)
C(2)	- C(1)	- H(1)	116.5(30)	N	- C(8)	-H(82)	108.9(32)
$\mathrm{C}(6)$	- C(1)	- H(1)	123.2(30)	N	- C(8)	$-\mathrm{H}(83)$	108.7(32)
C(1)	- C (2)	- C(3)	119.77(22)	H(81)	- $\mathrm{C}(8)$	-H(82)	109.5(49)
C(1)	- C (2)	- H(2)	121.3(34)	H(81)	$-C(8)$	- $\mathrm{H}(83)$	108.0(49)
C(3)	$-C(2)$	- H(2)	118.8(34)	H(82)	$-\mathrm{C}(8)$	$-\mathrm{H}(83)$	112.9(45)
C(2)	- C(3)	- C(4)	120.11(22)	N	- C(9)	-H(91)	105.4(34)
C(2)	- C (3)	- H(3)	$114.8(38)$	N	- C(9)	-H(92)	107.1(27)
C(4)	- C (3)	- H(3)	125.1(38)	N	- C(9)	- $\mathrm{H}(93)$	107.5(37)
C(3)	$=C(4)$	- $C(5)$	120.06(22)	H(91)	- C(9)	-H(92)	111.7(44)
C(3)	- C(4)	- H(4)	118.3(35)	H(91)	- $\mathrm{C}(9)$	- $\mathrm{H}(93)$	108.1(51)
C(5)	- $C(4)$	- H(4)	121.5(35)	H(92)	- C(9)	- $\mathrm{H}(93)$	116.4(46)
C(4)	- C (5)	- $C(6)$	120.45(21)	N	-C(10)	- $\mathrm{H}(11)$	106.0(32)
C(4)	- C (5)	- H(5)	121.0(33)	N	-C(10)	-H(12)	103.9(36)
C(6)	$-C(5)$	- H(5)	118.6(33)	N	-C(10)	- $\mathrm{H}(13)$	109.0(30)
C(1)	- $C(6)$	$-C(5)$	119.27(19)	H(11)	-C(10)	-H(12)	115.4(48)
C(1)	- $C(6)$	$-c(7)$	120.44(18)	H(11)	-C(10)	-H(13)	111.3(44)
C(5)	$=c(6)$	- $C(7)$	120.28(18)	H(12)	-C(10)	-H(13)	110.6(46)

Cation Torsion angles (${ }^{\circ}$) with standard deviations
$C(8)-N-C(7)-C(6)-179.12(18) \quad C(9)-N \quad-C(10)-H(11)-177.5(34)$

C(8)-	$N-C(7)$	- H (71)	55.6(27)	C(9)- N	-C(10)	- $\mathrm{H}(12)$	-55.5(37)
$\mathrm{C}(8)$ -	$\mathrm{N}-\mathrm{C}(7)$	-H(72)	-52.2(28)	$\mathrm{C}(9)-\mathrm{N}$	-C(10)	-H(13)	62.5(32)
C(9)-	$\mathrm{N}-\mathrm{C}(7)$	- C(6)	61.73(23)	$\mathrm{C}(6)-\mathrm{C}(1)$	- C(2)	- C(3)	0.0(3)
C(9)-	$\mathrm{N}-\mathrm{C}(7)$	-H(71)	-63.5(27)	$\mathrm{C}(6)-\mathrm{C}(1)$	- C (2)	- H(2)	175.7(39)
C(9) -	$\mathrm{N}-\mathrm{C}(7)$	-H(72)	-171.4(28)	$\mathrm{H}(1)-\mathrm{C}(1)$	- C(2)	- C(3)	179.2(34)
C(10)-	$\mathrm{N}-\mathrm{C}(7)$	- C(6)	-60.10(24)	H(1)-C(1)	- C(2)	- H(2)	-5.0(52)
C(10)-	$\mathrm{N}-\mathrm{C}(7)$	$-\mathrm{H}(71)$	174.6(27)	$\mathrm{C}(2)-\mathrm{C}(1)$	$-\mathrm{C}(6)$	- C(5)	$0.2(3)$
C(10)-	$\mathrm{N}-\mathrm{C}(7)$	- $\mathrm{B}(72)$	$66.8(28)$	$c(2)-c(1)$	- $C(6)$	- C(7)	-178.74(20)
C(7)-	$N-C(8)$	-H(81)	-176.8(39)	H(1)-C(1)	- $C(6)$	- $\mathrm{c}(5)$	179.1(36)
$\mathrm{C}(7)-$	$\mathrm{N}-\mathrm{C}(8)$	$-\mathrm{H}(82)$	64.4(33)	H(1)-C(1)	- C(6)	- C(7)	$2.0(36)$
C(7)-	$\mathrm{N}-\mathrm{C}(8)$	- $\mathrm{H}(83)$	-59.4(34)	$\mathrm{C}(1)-\mathrm{c}(2)$	- C(3)	- C(4)	-0.2(4)
C(9)-	$\mathrm{N}-\mathrm{C}(8)$	$-\mathrm{H}(81)$	-56.4(39)	$c(1)-C(2)$	- C(3)	- H(3)	179.8(42)
C(9)-	$\mathrm{N}-\mathrm{C}(8)$	-H(82)	-175.6(33)	$\mathrm{H}(2)-\mathrm{C}(2)$	- C(3)	- C(4)	-176.1-38)
C(9)-	$\mathrm{N}-\mathrm{C}(8)$	-H(83)	61.0(34)	H(2)-C(2)	- C(3)	- H(3)	3.9(57)
C(10)-	$\mathrm{N}-\mathrm{C}(8)$	- $\mathrm{H}(81)$	63.4(39)	$\mathrm{C}(2)-\mathrm{C}(3)$	- $C(4)$	- C(5)	$0.4(4)$
C(10)-	N-C(8)	- $\mathrm{H}(82)$	-55.8(33)	$C(2)-C(3)$	- C(4)	- H(4)	$-175.8(40)$
C(10)-	$\mathrm{N}-\mathrm{C}(8)$	$-\mathrm{H}(83)$	-179.2(34)	H(3)-C(3)	- C(4)	- C(5)	179.6(47)
C(7)-	$\mathrm{N}-\mathrm{C}(9)$	- $\mathrm{H}(91)$	54.5(35)	H(3)-C(3)	- $C(4)$	- H(4)	4.2(62)
C(7)-	$N-C(9)$	-H(92)	-64.6(29)	$\mathrm{C}(3)-\mathrm{C}(4)$	- $C(5)$	- C(6)	-0.2(3)
C(7)-	$N-C(9)$	- $\mathrm{H}(93)$	169.6(39)	c(3)-C(4)	$-C(5)$	- H(5)	178.5(38)
C(8)-	$\mathrm{N}-\mathrm{C}(9)$	-H(91)	-63.8(35)	$\mathrm{H}(4)-\mathrm{C}(4)$	$-C(5)$	- C(6)	175.8(41)
C(8)-	$\mathrm{N}-\mathrm{C}(9)$	-H(92)	177.1(29)	$\mathrm{H}(4)-\mathrm{C}(4)$	$-C(5)$	- H(5)	-5.4(56)
C(8)-	$N-C(9)$	-H(93)	51.3(39)	C(4)-C(5)	$-C(6)$	- C(1)	0.0 (3)
C(10)-	N - C(9)	- $\mathrm{H}(91)$	176.7(35)	$C(4)-C(5)$	- $C(6)$	$-c(7)$	178.88(20)
$\mathrm{C}(10)-$	$\mathrm{N}-\mathrm{C}(9)$	- $\mathrm{H}(92)$	57.6(29)	H(5)-C(5)	$-c(6)$	$-c(1)$	-178.8(37)
C(10)-	$N-C(9)$	$-\mathrm{H}(93)$	-68.2(39)	H(5)-C(5)	- $C(6)$	$-c(7)$	0.1 (37)
C(7)-	N -C(10)	-H(11)	-55.-(34)	C(1)-C(6)	- $C(7)$	- N	-89.62(23)
C(7)-	N -C(10)	-H(12)	67.0(37)	c(1)-C(6)	$-C(7)$	-H(71)	32.6 (28)
C(7)-	$\mathrm{N}-\mathrm{C}(10)$	- $\mathrm{H}(13)$	-175.0(32)	$C(1)-C(6)$	$-C(7)$	$-\mathrm{H}(72)$	145.2(29)
C(8)-	$\mathrm{N}-\mathrm{C}(10)$	-H(11)	63.1 (34)	$c(5)-C(6)$	$-c(7)$	- N	91.51(23)
C(8)-	N -C(10)	-H(12)	-174.9(37)	$C(5)-C(6)$	- C (7)	$-\mathrm{H}(71)$	-146.3(28)
C(8)-	N -C(10)	-H(13)	-56.9(32)	$C(5)-C(6)$	- $C(7)$	$-\mathrm{H}(72)$	-33.7(29)

Arion Bond Lengths (\AA) with standard deviations

$B(1)-B(2)$	$1.776(4)$	$B(2)-H(3 B)$	$1.47(6)$
$B(1)-B(3)$	$1.783(4)$	$B(2)-H(4 B)$	$1.45(5)$
$B(1)-H(1 B)$	$1.36(5)$	$B(2)-H(7 B)$	$1.44(9)$
$B(1)-H(2 B)$	$1.31(5)$	$B(3)-H(5 B)$	$1.37(.5)$
$B(1)-H(7 B)$	$1.68(9)$	$B(3)-H(6 B)$	$1.42(6)$
$B(1)-H(8 B)$	$1.68(7)$	$B(3)-H(8 B)$	$1.33(7)$
$B(2)-B(3)$	$1.817(4)$		

Anion Bond Angles (${ }^{\circ}$) with standard deviations

| $\mathrm{B}(2)-\mathrm{B}(1)-\mathrm{B}(3)$ | $61.38(15)$ | $\mathrm{B}(3)-\mathrm{B}(2)-\mathrm{H}(7 \mathrm{~B})$ | $120.5(34)$ |
| ---: | ---: | ---: | ---: | ---: |
| $\mathrm{B}(2)-\mathrm{B}(1)-\mathrm{H}(1 \mathrm{~B})$ | $109.5(21)$ | $\mathrm{H}(3 \mathrm{~B})-\mathrm{B}(2)-\mathrm{H}(4 \mathrm{~B})$ | $115.7(31)$ |
| $\mathrm{B}(2)-\mathrm{B}(1)-\mathrm{H}(2 \mathrm{~B})$ | $116.9(24)$ | $\mathrm{H}(3 \mathrm{~B})-\mathrm{B}(2)-\mathrm{H}(7 \mathrm{~B})$ | $106.8(42)$ |
| $\mathrm{B}(2)-\mathrm{B}(1)-\mathrm{H}(7 \mathrm{~B})$ | $49.3(29)$ | $\mathrm{H}(4 \mathrm{~B})-\mathrm{B}(2)-\mathrm{H}(7 \mathrm{~B})$ | $91.4(39)$ |
| $\mathrm{B}(2)-\mathrm{B}(1)-\mathrm{H}(8 \mathrm{~B})$ | $106.5(25)$ | $\mathrm{B}(1)-\mathrm{B}(3)-\mathrm{B}(2)$ | $59.12(15)$ |

$B(3)-B(1)-H(1 B)$	$116.7(21)$	
$B(3)-B(1)-H(2 B)$	$119.0(24)$	
$B(3)-B(1)-H(7 B)$	$110.1(29)$	
$B(3)-B(1)$	$-H(8 B)$	$45.1(25)$
$H(1 B)-B(1)-H(2 B)$	$119.1(32)$	
$B(1)-B(2)-B(3)$	$59.49(15)$	
$B(1)-B(2)$	$-H(3 B)$	$123.8(24)$
$B(1)-B(2)-H(4 B)$	$119.2(20)$	
$B(1)-B(2)-H(7 B)$	$61.7(34)$	
$B(3)-B(2)$	$-H(3 B)$	$112.3(24)$
$B(3)-B(2)$	$-H(4 B)$	$108.9(20)$

| $B(1)-B(3)-H(5 B)$ | $121.6(19)$ |
| ---: | ---: | ---: |
| $B(1)-B(3)-H(6 B)$ | $124.7(26)$ |
| $B(1)-B(3)-H(8 B)$ | $63.2(31)$ |
| $B(2)-B(3)-H(5 B)$ | $104.3(19)$ |
| $B(2)-B(3)-H(6 B)$ | $1.19 .5(26)$ |
| $B(2)-B(3)-H(8 B)$ | $122.4(31)$ |
| $H(5 B)-B(3)-H(6 B)$ | $112.2(33)$ |
| $H(5 B)-B(3)-H(8 B)$ | $105.5(37)$ |
| $H(6 B)-B(3)-H(8 B)$ | $92.4(41)$ |
| $B(1)-H(7 B)-B(2)$ | $69.0(36)$ |
| $B(1)-H(8 B)-B(3)$ | $71.7(33)$ |

Anion Torsion angles $\left({ }^{\circ}\right)$ with standard deviations

| $H(1 B)-B(1)-B(2)-B(3)$ | $-110.5(23)$ |
| ---: | ---: | ---: |
| $H(2 B)-B(1)-B(2)-B(3) r$ | $110.1(27)$ |
| $H(8 B)-B(1)-B(2)-B(3)$ | $-0.5(26)$ |
| $B(3)-B(1)-B(2)-H(3 B)$ | $97.8(29)$ |
| $B(3)-B(1)-B(2)-H(4 B)$ | $-95.8(23)$ |
| $B(3)-B(1)-B(2)-H(7 B)$ | $-170.3(39)$ |
| $H(1 B)-B(1)-B(2)-H(3 B)$ | $-12.7(37)$ |
| $H(1 B)-B(1)-B(2)-H(4 B)$ | $153.7(32)$ |
| $H(1 B)-B(1)-B(2)-H(7 B)$ | $79.3(45)$ |
| $H(2 B)-B(1)-B(2)-H(3 B)$ | $-152.2(39)$ |
| $H(2 B)-B(1)-B(2)-H(4 B) r$ | $14.2(35)$ |
| $H(2 B)-B(1)-B(2)-H(7 B)$ | $-60.2(47)$ |
| $H(1 B)-B(1)-B(3)-B(2)$ | $98.7(24)$ |
| $H(2 B)-B(1)-B(3)-B(2)$ | $-106.7(27)$ |
| $H(7 B)-B(1)-B(3)-B(2)$ | $-7.9(31)$ |
| $B(2)-B(1)-B(3)-H(5 B)$ | $88.3(23)$ |
| $B(2)-B(1)-B(3)-H(6 B)$ | $-106.5(32)$ |
| $B(2)-B(1)-B(3)-H(8 B)$ | $-179.4(35)$ |
| $H(1 B)-B(1)-B(3)-H(5 B)$ | $-173.0(33)$ |
| $H(1 B)-B(1)-B(3)-H(6 B)$ | $-7.7(40)$ |
| $H(18)-B(1)-B(3)-H(8 B)$ | $-80.7(42)$ |
| $H(2 B)-B(1)-B(3)-H(5 B)$ | $-18.4(35)$ |

$H(2 B)-B(1)-B(3)-H(6 B)$	$146.9(42)$	
$H(2 B)-B(1)-B(3)-H(8 B)$	$73.9(44)$	
$B(3)-B(1)-H(7 B)-B(2)$	$9.1(36)$	
$B(2)-B(1)-H(8 B)-B(3)$	$0.6(32)$	
$H(3 B)-B(2)-B(3)-B(1)$	$-117.2(26)$	
$H(4 B)-B(2)-B(3)-B(1)$	$113.4(21)$	
$H(78)-B(2)-B(3)-B(1)$	$10.0(40)$	
$B(1)-B(2)-B(3)-H(5 B)$	$-118.5(20)$	
$B(1)-B(2)-B(3)-H(6 B)$	$115.1(30)$	
$B(1)-B(2)-B(3)-H(8 B)$	$0.6(37)$	
$H(3 B)-B(2)-B(3)-H(5 B)$	$124.3(33)$	
$H(3 B)-B(2)-B(3)-H(6 B)$	$-2.0(40)$	
$H(3 B)-B(2)-B(3)-H(8 B)$	$-116.5(45)$	
$H(4 B)-B(2)-B(3)-H(5 B)$	$-5.1(29)$	
$H(4 B)-B(2)-B(3)-H(6 B)$	$-131.5(37)$	
$H(4 B)-B(2)-B(3)-H(8 B)$	$114.0(43)$	
$H(7 B)-B(2)-B(3)-H(5 B)$	$-108.5(44)$	
$H(7 B)-B(2)-B(3)$	$-H(6 B)$	$125.1(50)$
$H(7 B)-B(2)-B(3)-H(8 B)$	$10.6(54)$	
$B(3)-B(2)-H(7 B)-B(1)$	$-9.7(38)$	
$B(2)-B(3)-H(8 B)-B(1)$	$-0.6(36)$	

Deformation Coefficients and esd's

N EXPON	5.108(29)	N SPHER	-0.126(13)	N LINR1	$0.34(25)$
N EXPON	5.30(-)	N SPHER	$0.0200(-)$	N LINRI	0.19(3)
N QUDRI	0.20(5)	N QUDR2	0.05(5)	N CUBIl	-2.30(31)
N CUBI2	0.09 (3)	N CUBI7	2.91(43)	N CUBI 8	-1.19(16)
N QUR 1	0.02 (9)	N QUR 4	-0.58(8)	N QUR 7	0.04(9)
N QURI0	0.09(12)	N QUR12	0.28(11)	CMEXPOC	5.28(-)
CMSPHER	$0.007(-)$	CMLINR1	$0.010(21)$	CMQUDR 1	0.09(3)
CMQUDR2	-0.06(3)	CMCUBII	-0.56(9)	CMCUBI 2	-0.094(20)
CMCUBI 7	0.93 (15)	CMCUBI 8	-0.12(5)	CMQUR 1	-0.45(4)
CMQUR 4	-0.10(5)	CMQUR 7	-0.20(5)	CMQUR10	$0.12(7)$
CMQUR12	-0.11(7)	CAEXPOC	5.28(-)	CASPHER	0.0184(-)
CALINR1	0.063(24)	CAQUDR1	0.23(3)	CAQUDR 3	-0.13(3)
CAQUDR5	-0.18(3)	CACUBII	-0.12(5)	CACUBI 3	-0.91(5)
CACUBI7	0.78 (5)	CAQUR 1	-0.15(3)	CAQUR 2	0.26 (7)
CAQUR 3	0.092(29)	CAQUR 4	-0.048(13)	CAQUR 5	-0.131(14)
CAQUR 6	0.048(27)	BuEXPOC	4.470 (-)	BuSPHER	$0.1624(-)$
BuLINRI	-0.25(7)	BuQUDR1	-0.40(9)	BuQUDR 3	-0.27(11)
BuQUDR5	0.27 (9)	Bucubil	1.06 (29)	BuCUBI 3	1.17(27)
BuCUBI 7	-0.94(24)	BuQUR 1	-0.31(21)	BuQUR 2	-2.89(32)
BuQur 3	-1.34(13)	BuQUR 4	-0.26(7)	BuQUR 5	0.00 (6)
BuQUR 6	0.41(10)	BbEXPOC	4.47(-)	BbSPHER	$0.1619(-)$
BbLINR1	0.04(5)	BbLINR2	0.01 (4)	BbQUDR 1	-0.68(8)
BbQUDR2	-1.00(8)	BbQUDR 3	-0.05 (7)	BbQUDR5	-0.09 (6)
BbCUBII	0.69(26)	BbCUBI2	-0.85(27)	BbCUBI 3	-0.56(21)
BbCUBI5	-0.17(17)	BbCUBI 7	0.00 (25)	BbCUBI 8	-0.31(21)
BbQUR 1	-0.25(15)	BbQUR 2	0.60(14)	BbQUR 3	-0.32(9)
BbQUR 4	0.03(14)	BbQUR 5	-1.06(15)	BbQUR 6	0.45 (7)
BbQUR 7	-0.17(15)	BbQUR 8	0.30(14)	BbQURI2	-0.95(9)
CbEXPOC	5.28(-)	CbSPHER	$0.0277(-)$	CbLINR1	-0.40(4)
CbLINR2	-0.97(5)	CbQUDRI	0.46(7)	CbQUDR2	0.26(8)
CbQUDR 3	0.21 (6)	CbQUDR5	-0.11(6)	CbCUBII	3.52(22)
CbCUBI 2	-1.41(25)	CbCUBI 3	1.75(11)	CbCUBI 5	1.83(18)
CbCUBI 7	-2.95(21)	CbCUBI8	0.23(16)	CbQUR 1	0.07(10)
CbQUR 2	0.87(13)	CbQUR 3	0.55 (9)	CbQUR 4	-0.22(12)
CbQUR 5	0.13 (13)	CbQUR 6	0.15 (5)	CbQUR 7	-0.31(11)
CbQUR 8	0.00(13)	CbQUR12	0.75 (8)	HmEXPOC	5.45(-)
HmSPHER	$0.0051(-)$	HmLINR1	-0.634(19)	HmQudrl	0.117 (9)
HmQUDR 5	-0.055(23)	HmCUBI 1	0.120(29)	HmCUBI 7	-0.06(3)
HbEXPOC	5.45(-)	HbSPHER	0.1144 (-)	HbLINR1	1.13(4)
HbQUDR1	0.461(29)	HbQUDR5	-0.26(4)	HbCUBI 1	-0.29(11)
HbCUBI 7	0.24(11)	MuEXPOC	5.45(-)	MUSPHER	$0.1067(-)$
MuLINR1	1.09(13)	MuLINR2	1.61(14)	MuQUDRI	2.79(17)
MuQUDR2	0.54(14)	MuQUDR3	0.44(13)	MuQUDR5	-0.55(13)
MuCUBII	0.92 (32)	MuCUBI2	3.40(41)	MuCUBI 3	0.52(27)
MuCUBI5	-1.52(26)	MuCUBI7	0.91(34)	MuCUBI 8	-2.38(39)

Orienatations of the polar axes follow the sequence : linear terms 100010001

quadratic terms	110	$1-10$	101	$10-1$	011	$01-1$
cubic terms	110	$1-10$	101	$10-1$	011	$01-1$
	111	$1-1-1$	$-11-1$	$-1-11$		
quartic terms	100	010	001	$A 11$	$1 A 1$	$11 A$
	$-A 11$	$1-A 1$	$11-A$	$A-11$	$1 A-1$	$-11 A$

The parameter ' A ' is the constant $\sqrt{2-1}$.

The bond distances involving hydrogen atoms bonded to C are all too short (for example the mean $\mathrm{C}-\mathrm{H}$ on the phenyl ring is $0.672 \AA$). In contrast the $\mathrm{B}-\mathrm{H}$ bonds are too long with B-H (terminal) 1.399£. Such short distances are not realistic and the deformation density in $\mathrm{C}-\mathrm{H}$ (and $\mathrm{B}-\mathrm{H}$) bonds should not be given even a qualitative interpretation. The bond distances in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$confirm that the bridged $\mathrm{B}-\mathrm{B}$ connectivities are shorter than the unbridged one. This anomalous behaviour is the subject of Chapter 5. The bond distances in BTMA are unexceptional. The conformation of the BTMA ion, defined by the torsion $\mathrm{C}_{\text {methyl }}-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$, is the prevalent one in a compilation of BTMA geometries prepared from a search of the Cambridge Crystallographic Database.

4.4.3. Static Deformation Density Maps

The maps were prepared by direct summation using the multipolar functions rather than Fourier methods. Contributions from symmetry generated molecules are therefore absent.

4.4.3.1. The Benzyltrimethylammonium Cation

Figs 4.4.3.1(a) shows the static deformation density in the plane of the phenyl ring. Fig 4.4.3.1(b) similarly shows a plane perpendicular to the ring containing the $\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$ bonds. The respective esd's for the deformation density are plotted in Figs 4.4.3.1(c) and (d). The deformation peak heights are particularly large, consequently the contours are in intervals of $0.1 e \AA^{-3}$. In the aromatic ring there are six peaks $\left(0.7 e \AA^{-3}\right)$, each centred on the midpoint of a

FIGURE 4.4.3.1(A)

Static Deformation Density
in the plane of the phenyl ring.

FIGURE 44.3.1(B)

Static Deformation Density in the $\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$ plane.

FIGURE 4.4.3.1(C)

ESD of Static Deformation Density in the plane of the phenyl ring.

FIGURE 4.4.3.1(D)

ESD of Static Deformation Density in the $\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$ plane.

FIGURE 44.3.2(A)
Static Deformation Density in the 81-82-83 plane:

FIGURE 4.4.3.2 (B)
ESD of Static Deformation Density in the B1-B2-B3 plane.
$\mathrm{C}-\mathrm{C}$ bond. The peak height on $\mathrm{C} 6-\mathrm{C} 7$ is similar $\left(0.70 \AA^{-3}\right)$ but $\mathrm{N}-\mathrm{C} 8$ is smaller $\left(0.5 e^{-3}\right)$. On either side of the ring centre is a diffuse electron deficient zone $\left(-0.20 e^{-3}\right)$.

4.4.3.2. The $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$Anion

Figure 4.4.3.2(a) shows the static deformation density in the plane of the three borons. Contours are in intervals of $0.1 e^{-3}$. The zero contour is again omitted. The esd for this plane is shown in Fig 4.4.3.2(b)

The deformation in the plane is dominated by functions based on the bridging hydrogen atoms. This feature is unreliable as shown by the esd and almost vanishes after thermal smearing. Of much greater importance is the strong peak on the midpoint of the $B 2-B 3$ vector. Curiously the peak profile is almost circular. Between the apical boron and the triangle centre is a small region of electron deficiency $\left(-0.20 e^{-3}\right)$.

4.4.4. Dynamic Deformation Density Maps

These maps were prepared by Fourier transform and calculated structure factors for which $S_{\max }$ was limited to $1.7 \AA^{-1}$ (7145 reflections). Figure 4.4.4(a) and (b) for the cation are analagous to figs 4.4.3.1(a) and (b). Figure 4.4.4(c) for the anion is analagous to Figure 4.4.3.2(a).

4.4.5. Residual Density Maps

The residual density associated with the dynamic deformation densities in the previous section are shown in Figures 4.4.5(a) to (c). They were calculated using observed and calculated structure factors with $S<1.7 \AA^{-1}(3767$ reflections).

FIGURE 4.4.4(A)

> Dynamic Deformation Density in the plane of the phenyl ring.

FIGURE 4.4.4(B)

Dynamic Deformation Density
 in the $\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$ plane.

FIGURE 4.4.4(C)
Dynamic Deformation Density
in the 81-82-83 plane.

FIGURE 4.4.5(A)

Residual Density
in the plane of the phenyl ring.

FIGURE 4.4.5(8)

Residual Density
in the $\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$ plane.

4.4.6. Charges and moments

Charges obtained by interpretation of the refined deformation coefficients are given in column 1 of table 4.4.6. Charges obtained by application of the stockholder partitioning formula and numerical integration over a cube of edge $6 \AA$ centred on each atom and with divisions of $0.1 \AA$ are given in column 2 . The stockholder recipe charges are averaged over atoms constrained with the same deformation functions.

TABLE 4.4.6

	1	
N	-0.196	-0.207
C_{ar}	0.483	$0.001(26)$
C_{Me}	2.089	$0.197(15)$
C_{bz}	-3.382	-0.316
H_{C}	-0.367	$-0.005(11)$
$\mathrm{B}_{\text {un }}$	4.735	-0.317
$\mathrm{~B}_{\text {bas }}$	4.600	$-0.65(17)$
H_{μ}	-3.136	$0.061(9)$
H_{B}	-1.231	$-0.003(25)$

The charges in column 1 have no utility other than to indicate which atoms in the refinement have even multipole functions with large coefficients. There would seem to be a tendency for the best fit of the deformation density to be obtained by adjacent atoms having even functions of opposite sign.

The charges in column 2 are chemically sensible - although these values produce a formula charge of $[B T M A]^{-0.38}\left[\mathrm{~B}_{3} \mathrm{H}_{8}\right]^{-1.52}$ (because of rounding error in the numerical integration) they still indicate the anion and cation. The charge distribution within the ions is plausible. Within the BTMA ion the bulk of the positive charge is localised on the three methyl groups attached to the quaternary nitrogen atom. The difference in the electronegativity between N
and C is sufficient for N to acquire a small negative charge within the cation. The difference in charge between the N and C of the methyls (0.40) is similar to that between N and C 1 in $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}$(0.48) (see Chapter 3).

Within the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ion the charge distribution among the borons is such that the unique boron has fewer associated electrons. This observation is consistent with the type (I) topology (see section 4.1). The forbidden type (II) topology with the unique boron forming 5 bonds would predict the reverse.

The first moments interpreted from the multipolar coefficients are, like the charges, chemically ridiculous. First moments were calculated for the 38 independent atoms in the structure using numerical integration and the stockholder partitioning formula but these give no extra insight. Furthermore, after averaging over atoms constrained to have similar deformation functions most terms had values smaller than twice the estimated standard deviation. Consequently no meaningful interpretation can be given to the results for the 9 deformation types used. The second moments were similarly calculated for the 38 atoms in the structure. However, after averaging those atoms which were constrained to have similar deformation functions the number of second moment terms with values greater than twice the standard deviation was again too small to justify an interpretation. The large standard deviations in the integrated moments (for each of the nine deformation types employed in the refinement) are attributable to the different chemical environment of each of the 38 atoms.

The problem is least serious for the methyl carbons- which although crystallographically independent do have very similar chemical environments. The problem is most serious for the carbon atoms in the phenyl ring and if more powerful computer processing were available these carbons would have
been refined using two or possibly even three or four deformation types

4.5. Theoretical Deformation density Maps

4.5.1. Models for $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NMe}_{3}\right]^{+}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$

Each ion was modelled in isolation. The geometry for the BTMA cation was based on preliminary X-ray diffraction results but idealised to a C_{s} point symmetry with the phenyl ring exactly hexagonal and planar. Torsions were idealised to $0^{\circ}, 120^{\circ}$ or 180° as appropriate and chemically equivalent bond angles were averaged. Idealised bond distances for $\mathrm{C}-\mathrm{H}(1.08 \AA)$ were also used. Unique bonds and angles for the model are:

```
Bond distances
C6-C7 1.498\AA, C7-N 1.507\AA, N-C8/9/10 1.490\AA
Bond Angles
H-C8-N etc l08., H7l-C7-C6 110., N-C7-C6 114
Bond Torsions
H7l-C7-C6-Cl 150., all others staggered.
```

The atom labelling is the same as for the crystallographic refinement (indicated in Figure 4.3).

The geometry for the $\left[B_{3} H_{8}\right]^{-}$anion was also obtained by idealising the geometry from preliminary X-ray diffraction results. This experimental geometry model (EXPT) was supplemented by another from geometry optimisation at the split valence 4-31G level (SVOPT).

Parameters defining both models are listed in listed in Appendix V .

4.5.2. The $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NMe}_{3}\right]^{+}$Cation

For this large model the calculation was done at the 4-31G level only. Figures $4.5 .2(a)$ and (b) show the deformation density in the plane of the phenyl ring and in the perpendicular plane containing $\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$ (mirror plane).

FIGURE 4.5.2(A)

Theoretical Deformation Density in the plane of the phenyl ring.

FIGURE 4.5.2(B)

Theoretical Deformation Density in the $\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$ plane.

The deformation density in the phenyl ring is in the form of cylinders parallel to the $\mathrm{C}-\mathrm{C}$ bonds (rather than ellipsoids) with an elliptical cross section. There is, in the plane of the ring, a narrow strip like maximum of $0.5 e \AA^{-3}$. The peak on the $N-C 7$ vector is smaller at $0.4 e \AA^{-3}$ but the deformation along the $C 7-N$ vector is smaller and remarkably asymmetric. (This feature has also been seen in theoretical calculations on $\mathrm{N}-\mathrm{C}$ in $\left[\mathrm{HNMe}_{3}\right]^{+}$ and $\left[\mathrm{HNEt}_{3}\right]^{+}$see Chapter 3). The $\mathrm{N}-\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10$ bond deformation densities are all similar to each other and $\mathrm{N}-\mathrm{C} 7$ with only a small surplus of $0.3 \mathrm{e}^{-3}$ near the nitrogen atom which rapidly decays to $-0.1 e \AA^{-3}$ near the carbon.

4.5.3. The $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$Anion

This small model was examined at two levels of calculation (4-31G and TZV) and at two geometries (EXPT and SVOPT). The deformation densities in each of the mirror planes of these models of $C_{2 v}$ point symmetry are presented in Figures $4.5 .3(\mathrm{a})$ (EXPT) and (b) (SVOPT) for the 4-31G level and similarly in Figures $4.5 .3(c)$ and (d) for the TZV basis.

The EXPT and SVOPT geometries lead to strikingly different deformation densities. One is not a slight distortion of the other. They represent two different electron density topologies. This is the probable reason for the failure to adequately reproduce the experimental geometry at the 4-31G level.

The difference between the use of the $4-31 \mathrm{G}$ basis and the more flexible TZV basis is less profound than the difference caused by a change in geometry. The SVOPT geometry is calculated (in the TZV basis) to be more stable than the EXPT geometry.

Theoretical Deformation Density
in the B1-B2-83 plane, EXPT geometry, 4-31G basis.

Theoretical Deformation Density
in the B1-B2-B3 plane, SVOPT geometry, 4-31G basis.

FIGURE 4.5.3(C)

Theoretical Deformation Density
in the B1-B2-B3 plane, EXPT geometry, TZV basis.

FIGURE 4.5.3(D)
Theoretical Deformation Density
in the B1-82-83 plane, SVOPT geometry, TZV basis.

4.6. Discussion : Theory and Experiment

4.6.1. BTMA Charge Distribution

The deformation density in BTMA, particularly in the phenyl ring, refined rapidly and smoothly to give a large feature in the deformation map $\left(0.7 e \AA^{-3}\right.$ to good precision (esd ca $0.02 e^{-3}$). This is, as explained below, not accidental. Non-random peaks in phenyl rings are so common, even in data sets of only routine quality and resolution, that it is worth explaining this phenomenon.

The first systematic investigation of residual peaks in aromatic rings was early (1966) in the study of deformation electron density ${ }^{114}$. By averaging residual density maps using non-crystallographic point symmetry and further averaging over several structures definite systematic features were observed, if only to low resolution.

The phenyl ring is extraordinarily rigid and invariable and the geometry is known to good precision and accuracy from neutron diffraction measurements. This has led to the use of rigid group refinement. In such circumstances the positions of atoms are not subject to an asphericity shift and, where the thermal motion is described by motion of the group, thermal parameters cannot be distorted to absorb the deformation electron density. This alone, however, is not responsible for the observation of bond peaks. Omission or relaxation of these restraints still leaves residual peaks which can be interpreted after averaging. Consideration of the Laplacian of the electron density, or more precisely its negative ($-\nabla^{2} \rho=-d^{2} \rho / d x^{2}-d^{2} \rho / d y^{2}-d^{2} \rho / d z^{2}$) is useful ${ }^{115,116 . ~ T h i s ~ f u n c t i o n ~ i s ~ l a r g e ~ a n d ~ p o s i t i v e ~ f o r ~ r e g i o n s ~ o f ~ s p a c e ~ w h i c h ~}$ have a much higher electron density than the immediate environment. It measures the degree of localisation (not the magnitude) of electron density.

FIGURE 4.6.1(A)

Negative Laplacian of Electron Density
for phenyl ring plane.

FIGURE 4.6.1(B)

Negative Laplacian of Electron Density
for the $\mathrm{N}-\mathrm{C} 7-\mathrm{C} 6$ plane.

Figures $4.6 .1(a)$ and (b) show the negative Laplacian for two planes in BTMA. On phenyl ring $\mathrm{C}-\mathrm{C}$ bonds it reaches the extraordinary value of 0.8 au (cf C6-C7 0.4au, C7-N 0.2au, N-C8 0.2au and also N-C 0.2au, C-C 0.4au in $\left[\mathrm{Et}_{3} \mathrm{NH}\right]^{+}, \mathrm{B}-\mathrm{B} 0.1 \mathrm{au}$ in $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$ and $\mathrm{B}-\mathrm{B} 0.2 \mathrm{au}$ in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$). This large value of 0.8au means that the $C-C$ interatomic electron density is intensely localised and, in the nature of Fourier transforms, this results in a modification of the X-ray diffraction pattern (relative to that calculated using the free-atom model) extending out to a high value of $\sin (\theta) / \lambda$. Therefore, information on the deformation density is contained in a large number of structure factors - not merely the low-angle data. This results in the poor ability of positional or temperature factor parameters to mask the deformation. The utility of the Laplacian function in estimating the ease with which deformation electron density of a compound can be studied has so far not been exploited. In particular, this function could prove useful in determining the feasibility of studies of transition metal compounds where the interesting valence density is the product of diffuse d-orbitals.

Another application of the Laplacian is to clearly identify chemically bonded atoms. The deformation density alone is not always the most useful indicator. Between bound atoms (ie atoms closer than the sum of their Van der Waals radii) there can be a deficit of electron density along a substantial fraction of the interatomic vector (as in $C 7-N$ in BTMA above or the example of $\mathrm{Cr}_{2}\left(\mathrm{OOCH}_{3}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}{ }^{117}$). This presents a conceptual problem (the negative results are genuine) because the bond in dihydrogen has previously been taken as the archetypal sigma bond and there is electron density accumulation on the internuclear axis in dihydrogen. In fact the bond in dihydrogen is not typical because it has no p-orbitals. Several papers have been published affirming the authenticity of some negative or zero internuclear deformation
densities and the resulting insight into the electron redistribution associated with chemical bonding. The function $-\nabla^{2} \rho$ is useful because, even when the deformation density is negative, a positive peak in $-\nabla^{2} \rho$ is found between bonded atoms - even if it is not on the internuclear axis.

A comparison of the experimental and calculated deformation densities shows some inconsistencies. These are :

- Aromatic C-C peaks are curved in the plane of the ring but calculated to be almost straight edged.
- These ring peaks are larger in the X-ray diffraction result ($0.70(2) \mathrm{e} \AA^{-3}$) than calculated ($0.5 e \AA^{-3}$).
- The calculated electron deficiency at the C7 end of the N-C7 vector $\left(-0.1 e \AA^{-3}\right)$ is replaced by a definite density surplus in the X-ray diffraction result ($0.60(5)$ e \AA^{-3}).
- The calculated surplus at the N end of the $N-C_{\text {methyl }}$ vector ($0.30 e \AA^{-3}$) is underestimated relative to the X-ray diffraction result $\left(0.50(5) \mathrm{e} \AA^{-3}\right)$.

The interpretation of these differences depends on their significance and origin. Examination of the esd maps suggest that all four inconsistencies are significant. The possible origins for the differences are :

- The multipole expansion is not sufficiently flexible.
- A hole in reciprocal space data points at low angle (see Chapter 3).
- the basis set used for the calculation is too small.

The first can be tested by looking for non-random residual peaks in the final difference Fourier maps. Examination of these maps shows a scattering of sharp but small $\left(0.10 e \AA^{-3}\right)$ peaks with larger $\left(0.20 e^{-3}\right)$ sharp peaks at the atomic positions. The random nature of the diffuse peaks is hard to prove but, for example, averaging of the map for the residual density in the plane of the

FIGURE 4.6.1(C)

Residual Density
in phenyl ring plane after averaging.

FIGURE 4.6.1(D)

Distribution of Data in Reciprocal Space.
phenyl ring using hexagonal symmetry about the ring centre produces a map (Fig $4.6 .1(\mathrm{c})$) without systematic residual features in the bond region, only peaks at the atom positions where the deformation density is ill-defined anyway.

The second source of error can be dismissed by examining Fig 4.6.1(d) which is a stereo pair of the distribution in a hemisphere of reciprocal space of low angle data points (including those equivalent by symmetry). There is no sizeable gap.

Assessment of the error in the calculated deformation density depends on the estimation of the limit of the deformation density as the basis is extended towards the Hartree-Fock limit. This is impractical for a whole BTMA model but small portions can be further examined.

Unfortunately the most interesting inconsistency (the profile of the $\mathrm{N}-\mathrm{C}$ deformation) is difficult to examine. The most obvious model $\left[\mathrm{NMe}_{4}\right]^{+}$is too large to be suitable. However $\left[\mathrm{H}_{3} \mathrm{NMe}\right]^{+}$is a practical size. A calculation at the TZV (not TZVP) level shows minimal changes with respect to 4-31G (see chapter 3). There is only a trend towards more circular bond peaks. This trend may explain the contrast in the curvature of deformation density contours in the phenyl ring. Benzene is too large a model for this trend to be verified by calculation at the TZV level.

4.6.2. $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ Charge Distribution

The static deformation density map gives no support for a contribution from the topologically forbidden form (II) (see Fig 4.1(a)), but the map can be interpreted in terms of form (I). The basal bond peak is underestimated in the calculation (4-31G: $0.14 \mathrm{e} \AA^{-3}$) relative to the X-ray diffraction result ($0.32 e^{\AA^{-3}}$).

FIGURE 4.6.2(A)

Negative Laplacian of Electron Density for B1-B2-B3 plane, EXPT geometry, 4-31G basis

Negative Laplacian of Electron Density
for the B1-B2-B3 plane, SVOPT geometry, 4-31G basis.

The calculation is however extremely sensitive to the geometry. For example there is a switch to another topology - more similar to (II) - if the geometry is optimised at the 4-31G level. This latter form has very little surplus deformation density on the basal (B2-B3) vector.

Inspection of the negative Laplacian of electron density makes the contrast in topology more clearly visible (see Figures 4.6.2(a),(b)). This shows the domination of the $2 \mathrm{c}-2 \mathrm{e}$ B2-B3 bond in the expt geometry with a type (II) topology. The distinction in topologies is proven by the different number and form of 'bond critical points' 115, 116.

In conclusion the poor agreement between the X-ray diffraction and calculated maps is probably attributable to an excess weight assigned to (II)-type topology in the calculation. This result casts doubt on the importance of (II) and therefore suggests that the invocation of (II) as an explanation for the observation of H-bridging leading to $B-B$ shortening in $\left[B_{3} H_{8}\right]^{-}$is unfounded. An alternative explanation is given in Chapter 5 and in a recent paper by the author and A.J.Welch ${ }^{119}$.

The Effect of Edge-bridging Hydrogen Atoms on the Lengths of B-B and Metal-Metal Bonds in Cluster Compounds

5.1. Introduction

A charge deformation density analysis on the salt benzyltrimethylammonium octahydrotriborate $\left[\mathrm{PhCH}_{2} \mathrm{NMe}_{3}\right]^{+}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$re-affirmed the finding of a much earlier XRD study on another $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$salt, which was that the bridged $B-B$ lengths are shorter than the un-bridged one (see Chapter 4). This shortening of an H -bridged bond is extremely rare and may be unique.

The explanation previously proposed - that the shortening is attributable to a contribution of a topologically forbidden canonical form - has been shown, by a deformation density study (Chapter 4), to be unfounded. An alternative rationalisation of the shortening has been proposed in a recent paper by the author and A.J.Welch ${ }^{119}$. The paper forms Appendix VII. The same arguments are not entirely repeated in this chapter. Instead, the method employed is justified and demonstrated (with reference to the examples of Appendix VII). Finally, the merits of this approach to rationalising the effect of edge-bridging hydrogen atoms on the lengths of bonds are assessed.

5.2. The Problem Addressed

To determine the effect of edge-bridging hydrogen on the bond lengths of $B-B$ (or $M-M$) bonds in cluster compounds it is necessary to have two measurements. These are the bridged bond length and, for reference, the length of the same bond in the absence of a bridging hydrogen. This strict requirement is necessary because, for example, in an asymmetric molecule with an H -bridged bond the length of the bond is dependent on factors other than the presence or absence of the bridging hydrogen(s). The problem addressed is therefore to be one of rationalisation of the relative bond lengths
of two bonds whose only difference is the presence or absence of bridging hydrogens. There are several compounds where such bond lengths have been determined simultaneously in an XRD study. These are:

$\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$	119,105
$\left[\mathrm{~B}_{11} \mathrm{H}_{13}\right]^{-}$	120
$\left[\mathrm{H}_{2} \mathrm{Os}_{4}(\mathrm{CO})_{12}\right]^{2-}$	121
$\left[\mathrm{HRe}_{3}(\mathrm{CO})_{12}\right]^{2-}$	122
$\left[\mathrm{H}_{2} \mathrm{Re}_{3}(\mathrm{CO})_{12}\right]^{-}$	123

The hydrogens were not directly located in the transition metal compounds but were confidently assigned positions from the dispositions of the carbonyl ligands.

5.3. Rationalisation via FMO Occupation

The rationalisation of the bond lengths in the five structures listed above depends on the the fragmentation of each complex into bridging proton(s) and the complementary anion eg.

$$
\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-} \Rightarrow\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{3-}+[\mathrm{H} . . \mathrm{H}]^{2+}
$$

The anion is then idealised to have a geometry where all chemically similar bonds have equivalent lengths. In the above example a model of $\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{3-}$ has point symmetry $D_{3 h}$ and similarly $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}\right]^{4-}$ would have point symmetry T_{d}. The Molecular Orbitals '(MO's) for the original anion and its constituent protonated and deprotonated fragments are then calculated using the empirical Extended Huckel MO (EHMO) theory. The deprotonated anion fragment MO's (FMO's) include degenerate sets. The occupation of the members of a set are necessarily equal. There is (by symmetry) no unbalanced force to distort the anion from its point group symmetry. When the anion and bridging proton(s) are brought together the interaction of members of the formerly degenerate
sets with the (empty) proton s-orbitals are NOT equal - some may have exactly zero overlap, others not. Since the resulting wavefunction contains orbitals which are linear combinations of (occupied) anion FMO's with (unoccupied) FMO's of the proton(s) then the occupation of the anion FMO's in the molecule is modified. This process is neatly expressed in terms of the density matrix.

The wavefunction for a polyatomic molecule with a basis set of N orbitals can always be expressed as a density matrix. The density matrix is a square symmetric matrix of $N \times N$ elements $D_{i j}$ where $D_{i j}$ is defined as

$$
D_{i j}=\sum n_{\alpha} C_{i \alpha} C_{i \alpha}
$$

where the summation is over all orbitals " α " with occupation n_{α} where each molecular orbital is defined in terms of atomic orbitals ϕ_{i}

$$
\psi_{\mathrm{a}}=\sum \mathrm{C}_{\mathrm{i} \alpha} \phi_{\mathrm{i}}
$$

When two fragments interact the resulting wavefunction can be expressed as a larger density matrix $:(n+m) \times(n+m)$. This molecular density matrix can therefore be considered as made up of 3 parts as shown below.

- the anion density matrix ($n \times n$)
- the bridging hydrogen(s) density matrix (m $\times \mathrm{m}$)
- the overlap density matrix ($\mathrm{n} \times \mathrm{m}$)

If, in addition, the fragment components are calculated for each fragment in isolation the difference between the fragment density matrices (FDM's) will contain all the information about changes to be expected in that fragment upon molecule formation. This might initially appear a complex source of such information - an $n \times n$ symmetric matrix each element of which is a difference
between corresponding elements of two matrices - but if the density matrices are expressed in an FMO basis set the FDM's are diagonal and $\triangle(F D M)$ is simply a set of n numbers. A numerical example is given below for the system $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-} /\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{3-} /[\mathrm{H} . . \mathrm{H}]^{2+}$ with a geometry corresponding to asymmetric bridging ($\sigma=0.6$, see Appendix VI). FMO's are presented in order of increasing energy with degenerate FMO's grouped in brackets.

```
[\mp@subsup{\textrm{B}}{3}{}\mp@subsup{\textrm{H}}{6}{}\mp@subsup{]}{}{3-}}\mathrm{ isolated 2.00{ 2.00 2.00} 2.00{ 2.00 2.00} 2.00{ 2.00 2.00}
[ }\mp@subsup{\textrm{B}}{3}{}\mp@subsup{\textrm{H}}{6}{}] in [\mp@subsup{\textrm{B}}{3}{}\mp@subsup{\textrm{H}}{8}{\prime}\mp@subsup{]}{}{-}1.85{ 1.73 1.99} 2.00{ 2.00 2.00} 2.00{ 1.15 1.14}
\Delta -0.15{-0.27-0.01} 0.00{ 0.00 0.00} 0.00{-0.85-0.86}
[H...H] 2+ isolated 0.00 0.00
[H...H] in [B3H8] [- 0.98 1.06
\Delta 0.98 1.06
```

As expected only a small proportion of the elements of the FDM's change appreciably. Interatomic forces are now created and inspection of the wavefunctions of those members of degenerate sets (where one component is preferentially de-occupied) gives the direction of those forces. For example, de-occupation of a previously occupied FMO which is bonding between a pair of atoms will cause a lengthening of that bond. Conversely the partial occupation of a previously unoccupied FMO which is bonding between a pair of atoms leads to a shortening of that bond. Application of these arguments explains the lengthening upon symmetric edge-bridging in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$(predicted), $\mathrm{H}_{2} \mathrm{Re}_{3}(\mathrm{CO})_{12}$ and $\mathrm{HRe}_{3}(\mathrm{CO})_{12}$. The changes in the FDM can, however, be dependent on the whether or not the hydrogens bridge symmetrically. In the case of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$the asymmetrisation of the hydrogen bridges (such that $\mathrm{B}-\mu \mathrm{H}$ to the unique B is longer) gives a ranking by occupation of the $2 E^{\prime}$ of $\left[B_{3} H_{6}\right]^{3-}$ which is the reverse of the order when the hydrogens bridge symmetrically. This dependence on fine geometry is a property more easily investigated by FMO and FDM's than by other approaches (see below).

5.4. Advantages of using FMO Occupations and FDM's

The above rationalisation of the changes in bond length upon molecule formation can be achieved using the same EHMO calculations but interpreting the results by other, more familiar matrices such as the energy matrix

$$
\begin{aligned}
E_{i i} & =\sum N_{\alpha} C^{2}{ }_{i \alpha} H_{i i} \\
E_{i j} & =\sum N_{\alpha} C_{i \alpha} C_{j \alpha} H_{i j}
\end{aligned}
$$

This energy matrix can be further reduced to a matrix whose elements are now related to inter-atomic energy interactions. The advantage of FMO occupation changes are:

- the interacting orbitals of each of the fragments are readily identifiable.
- having identified the active FMO's the dependence of the interaction on the position of the fragments relative to each other can be quickly estimated.

For example the $\triangle F D M$ shows that in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-} /\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{3-} /[\mathrm{H} \ldots \mathrm{H}]^{2+}$ it is the $2 \mathrm{E}^{\prime}$ which are important in the distortion of the triangle. Having identified the $2 \mathrm{E}^{\prime}$ the dependence of the distortion on the H atom coordinates can be estimated without resorting to a tedious evaluation of the molecular wavefunction for each possible coordinate of the hydrogens. Instead it is sufficient to estimate the component of the $2 \mathrm{E}^{\prime}$ which will have the dominant interaction with the hydrogen orbital(s). In EHMO this interaction H_{ij} is defined to be dependent on the average atomic energy $\left(\mathrm{H}_{\mathrm{ij}}+\mathrm{H}_{\mathrm{ij}}\right)$ and the overlap function S_{ij} according to:

$$
\mathrm{H}_{\mathrm{ij}}=0.5 \mathrm{~K} \mathrm{~S} \mathrm{~S}_{\mathrm{ij}}\left(\mathrm{H}_{\mathrm{ij}}+\mathrm{H}_{\mathrm{jj}}\right)
$$

where K is the Huckel constant (usually 1.75). The competing components are

FIGURE 5.4(A)
$\Delta \rho$ for $\left[B_{3} \mathrm{H}_{6}\right]^{3-}$

FIGURE 5.4(B)
$\Delta \rho$ for $\left[\mathrm{Re}_{3}(\mathrm{CO})_{12}\right]^{3-}$
necessarily at the same energy and in the case of $\left[H \ldots H\right.$ the $\Sigma_{u}{ }^{+}$and $\Sigma_{g}{ }^{+}$are at similar energies if $H \ldots . . H$ is long $(>2 \AA)$. The estimation of the dominant interaction can then be approximated by the function

$$
\Delta \rho=\left(\Psi_{2 E^{\prime} \cdot}\right)^{2}-\left(\Psi_{2 E^{\prime} b}\right)^{2}
$$

This function is mapped, in the plane of the triangle, in Figure 5.4(a). The overlap would be even better approximated by the convolution of $\Delta \rho$ with the Gaussian function $\exp \left(-\alpha r^{2}\right)\left(\alpha=2.6 \mathrm{au}^{-2}\right)$ since the H is orbitals are of finite size. Nevertheless $\Delta \rho$ shows the expected domains of bridged bond shortening (dashed contours) and bridged bond lengthening (solid contours). The black diamond on the figure indicates the domain where $\mathrm{B}-\mathrm{H}$ is between 1.4 and $1.7 \AA$.

Although $\left[R e_{3}(C O)_{12}\right]^{3-}$ and $\left[B_{3} H_{6}\right]^{3-}$ are composed of isolobal vertices, the dibridged structure $\left[\mathrm{H}_{2} \mathrm{Re}_{3}(\mathrm{CO})_{12}\right]^{-}$has bridged $\mathrm{Re}-\mathrm{Re}$ bonds longer. The corresponding $\Delta \rho$ function for an idealised model of $\left[\operatorname{Re}_{3}(\mathrm{CO})_{12}\right]^{3-}$ / $\left[\mathrm{H}_{2} \mathrm{Re}_{3}(\mathrm{CO})_{12}\right]^{-} /[\mathrm{H} \ldots \mathrm{H}]^{2+}$ is presented in Figure $5.4(\mathrm{~b})$. This shows there are again two domains but the domain for bridge bond shortening (dashed contours) is largely excluded by the van der Waals radii (C $1.7 \AA, 01.5 \AA$) , and bond restrictions $(1.6 \AA<H-R e<1.9 \AA)$ indicated by the black diamond on the Figure. The bridging hydrogens are constrained to be near symmetric positions and hence, unlike in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$, bridged bonds are lengthened.
5.5. LMO Approximations: FDM's for Low Symmetry Species

At the beginning of this chapter the problem addressed was defined as the rationalisation of the structures of a very small class of compounds - those
where in a single structural determination there were bonds whose only difference was the presence or absence of a bridging hydrogen. The methods used to solve this problem and the conclusions from the solution can be adapted to the more general case.

In $\left[\mathrm{Re}_{3}(\mathrm{CO})_{12}\right]^{3-}$ and $\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{3-}$ the orthogonalisation of the wavefunction into fragment molecular orbitals conveniently produces a set of degenerate orbitals where one of the three connectivities is strongly bound by one member of the set but not by the others. In these examples bond length changes are correlated with just a pair of elements from the $\triangle F D M$. This need not be the case for $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}\right]^{4-}$ or $1,6-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$. For these species the bond lengths are correlated with several elements of the FDM and the orthogonalisation of the -wavefunction is, for these high symmetry anions, not unique. It is more convenient to transform the FDM using a basis set of localised molecular orbitals (LMO's). After this transformation predicted changes in bond length upon protonation would, as for $\left[\mathrm{Re}_{3}(\mathrm{CO})_{12}\right]^{3-}$ and $\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{3-}$, be correlated to only a few elements of the $\triangle F D M$. In the absence of a LMO transformation program the localisation can be improved by a small perturbation of the geometry eg for $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}\right]^{4-}$ from point symmetry T_{d} to $D_{2 d}$.

The recognition that bond length changes can be rationalised by an inequality in occupations of formerly degenerate LMO's permits an extension of this method to low symmetry species. This is described below. The first step is, as before, to idealise the geometry such that similar bonds (bridged or not) are made equal in length. The second step is, using this model species, a calculation of the wavefunction for the parent molecule and its component proton(s) and deprotonated form. Next the FDM's are transformed to an LMO basis. Now chemically similar (but distinguishable) bonds in the deprotonated
fragment will each be correlated to a single FDM diagonal element. The change in the occupation of each of these diagonal elements upon protonation will be an indicator of the degree to which each of the bonds will lengthen or shorten as a result of protonation. By plotting the difference density function

$$
\Delta \rho=\left(\Psi_{x}\right)^{2}-\left(\Psi_{y}\right)^{2}
$$

for pairs of LMO's centred on bonds x and y the domains within which x is lengthened relative to y can be quickly explored. The ultimate test of this new approach will be to identify the second compound for which a bridging hydrogen causes bond shortening. It may even be possible to modify an existing cluster compound by, for example, substituting ligands in such a way as to force -by van der Waals contacts- a bridging hydrogen into a domain where the previous effect on the bridged bond is cancelled or inverted.

Hydride Location in Transition Metal Clusters

6.1. The Need for Empirical Methods

The location of hydrides in transition metal compounds by X-ray diffraction (XRD) is difficult because not only is the contribution to X-ray scattering from the hydride a very small fraction of the total scattering but the hydride is of the order of $2 \AA$ from a heavy metal atom and to resolve this requires data of at least medium resolution - but unfortunately hydrogen only weakly scatters at such angles. Consequently the least-squares refinement of hydrogen coordinates is rarely attempted in these circumstances as the minimisation of $\left|F_{o}-k F_{c}\right|$ is insensitive to the change in hydrogen coordinates. The problem can be overcome by using neutron diffraction where the scattering power of elements is approximately proportional to $Z^{1 / 3}$ rather than $Z(Z$ is the atomic number). Disadvantages to using neutron diffraction are that the intensity measurements are typically of lower precision, the crystal size required is much larger and the expense of using a neutron source is considerable.

The observation that where hydrides have been located the metal-metal bond, if bridged, is usually lengthened led to the practice of assigning hydride positions using only XRD determined metal-metal bond lengths. Moreover, this method is flawed by the assumption that there are no other origins for a small change from the mean bond length - such as the pattern of ligands around the metal. This method could be used only to assign the topology of the hydride and not it's coordinates with respect to the other atoms.

6.2. The "HYDEX" Computer program by A.G. Orpen

This program was designed to estimate the coordinates of the hydride ligands. The approach adopted by Orpen ${ }^{124}$ was to take the non-hydride
atom coordinates as found by XRD (supplemented with calculated hydrogen coordinates on the non-hydride ligands if necessary) and optimise the coordinate(s) of the hydride(s) (from an initial guess) using a potential energy function of the form:

$$
M=\sum_{i} V\left(r_{i}\right)+\sum_{k}\left|\left(R_{k}-R\right) / S\right|^{2}
$$

where $V(r)$ is the potential energy attributable to non-bonded contacts within approximately $3.5 \AA$ and is of the form :

$$
V(r)=a \cdot e^{-b r} \cdot r^{-d}-c \cdot r^{-6}
$$

where a, b, c, and d are numerical constants dependent on the atom type of the second atom in the H...X contact. These constants were taken from work on earlier empirical molecular mechanics work ${ }^{125}$. The second summation term in M is a penalty function which operates on all $\mathrm{M}-\mathrm{H}$ bonds. The number, k, and length, R_{k} of these bonds must be specified in the input to Orpen's program. This penalty function limits the domain for hydride coordinates to the intersection of the surface of k spheres of radius R_{k}. The reproduction of neutron determined hydride coordinates was found by Orpen to be good for 17 of 18 test cases. The case where the fit was poor was $\mathrm{Rh}_{3} \mathrm{H}_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{6}$. Orpen identified the source of this failure to be that, in this compound unlike the others, there was not a close packed arrangement of ligands with only one gap-site for the hydride. The potential function M is dominated by the repulsive V -terms and the hydride site can therefore only be well defined if there is a dense arrangement of ligands excluding the hydride probe from anywhere else. In view of this defect Orpen did not apply the program to polyhydride complexes such as $\left[\mathrm{Re}_{2} \mathrm{H}_{8} \mathrm{~L}_{4}\right]$, $\left[\mathrm{OsH}_{4} \mathrm{~L}_{3}\right]$, $\left[\mathrm{MoH}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ or $\left[\mathrm{TaH}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right.$].

This chapter describes a successful attempt to devise a method for identifying hydride sites even for an open transition metal-ligand framework. A potential energy function is again employed but it is based on the use of EHMO calculations together with classical electrostatics. Such a potential has the advantage of the appearance, when the hydride is in a chemically plausable bonding site, of a large favourable energy term. Consequently it is not necessary to specify the topology of the hydride nor the $M-H$ bond lengths.

6.3. Anderson's EHMO Method : ASED

EHMO calculations have been widely used for the rationalisation of conformations of molecules and ions. The method is successful because the sum of one-electron energies for occupied orbitals as calculated by this semi-empirical method is sensitive to the angular overlap of the orbitals of the atoms which make up the molecule. The radial coordinates of pairs of atoms also influence the energy but cannot be used to refine bond lengths because in simple EHMO methodology no terms for the electrostatic repulsion between positive nuclei are included in the energy calculation. Without these terms the result of refining bond lengths is a set of very short distances at which inter-atomic orbital overlaps have been maximised. A modification of the EHMO method with a sensible interatomic distance dependence was first proposed by A.B.Anderson and R.Hoffmann in $1974{ }^{126}$. This was the basis of what was in subsequent papers called the ASED method: Atom Superposition /Electron Delocalisation.

For a homonuclear diatomic the exact potential energy as a function of internuclear distance R can be considered as two exact terms $W_{\beta}(R)$ and
$W_{\text {NPF }}(R)$. Of these terms $W_{B}(R)$ is dependent only on the elements involved and their separation. $W_{B}(R)$ is always positive, and is the electrostatic potential energy of the interaction of nucleus α, charge Z_{α}, with the 'free-atom', spherically symmetric neutral atom B. Analytical formulae can be used to evaluate $W_{B}(R)$. The other term, $W_{N P F}(R)$ is specific to a given molecule and represents the electrostatic potential energy due to the interaction of nucleus α with the "non-perfectly following" (NPF) electron density - which is another name for the charge deformation density :

$$
\rho_{\mathrm{NPF}}=\rho_{\mathrm{mol}}-\sum \rho_{\text {atom }}
$$

This second term is extremely difficult to evaluate numerically but must be negative (bonding) for bound molecules. Fortunately, when a molecule is near its equilibrium separation $W_{\text {NPF }}(R)$ can be replaced, to within a constant, by $W_{E H}(R)$ which is the sum of occupied orbital energies from an EHMO calculation. The potential is now:

$$
W^{*}(R)=W_{B}(R)+W_{E H}(R)
$$

which, although no longer exact or on a correct absolute energy scale, should still be a minimum for a molecule at its equilibrium geometry.

In the extension to heteronuclear diatomics the W_{B} term could be evaluated using the nuclei of either atom and the net neutral density of the other. The convention adopted by Anderson and Hoffmann was to use the neutral density of the more electronegative atom. The further extension to polyatomics simply requires the pairwise summation of the $W_{B}(R)$ terms.

The W_{B} function is dependent on the valence orbital exponent of the neutral atom or more precisely γ which is twice the orbital exponent and
describes the decay of the electron density. Equations $A 1$ and $A 2$ of $A \& H^{\prime} s$ paper give W_{B} in atomic units for an $I-s h e l l(2 s 2 p$) and M-shell (3s3p) atom respectively. The function for hydrogen is not published but is obviously important to hydride location and is derived below.

Derivation of $W B$ for a K-shell atom.

The force is given by Coulomb's law :

$$
F_{E N C}=Z_{\alpha} Z_{E N C} / r^{2}
$$

where $Z_{E N C}$ is the effective nuclear charge of atom B as seen by nucleus α.

$$
Z_{E N C}=Z_{B}-\int_{0}^{r} 4 \pi r^{2} \rho_{B}(r) d r
$$

For a hydrogen atom the Slater orbital is of the form

$$
\phi=\downarrow\left(\zeta^{3} / \pi\right) e^{-\zeta r}
$$

where $\checkmark\left(\zeta^{3} / \pi\right)$ is a tabulated normalisation factor.

$$
\Rightarrow \rho_{b}(r)=\phi^{2}=\left(\zeta^{3} / \pi\right) e^{-2 \zeta r}
$$

substituting $\gamma=2 \zeta$

$$
\begin{aligned}
& \Rightarrow \rho_{b}(r)=\left(\gamma^{3} / 8 \pi\right) e^{-\gamma r} \\
& \Rightarrow Z_{E N C}=Z_{B}-\int_{0}^{r} 4 \pi r^{2} \cdot\left(\gamma^{3} / 8 \pi\right) e^{-\gamma r d r} \\
& \Rightarrow Z_{E N C}=Z_{B}-\int_{0}^{r}\left(\gamma^{3} / 2\right) \cdot r^{2} e^{-\gamma r d r}
\end{aligned}
$$

For a neutral atom :

$$
Z_{\beta}=\int_{0}^{\infty}\left(\gamma^{3} / 2\right) \cdot r^{2} e^{-\gamma r} d r
$$

And using this substitution :

$$
\begin{aligned}
& \Rightarrow Z_{E N C}=\int_{r}^{\infty}\left(\gamma^{3} / 2\right) \cdot r^{2} e^{-\gamma r_{r} d r} \\
& Z_{E N C}=\left(\gamma^{3} / 2\right)\left[(-1 / \gamma) e^{\left.-\gamma r_{r}{ }^{2}+\int_{r}^{\infty}(1 / \gamma) e^{-\gamma r} \cdot 2 r\right]_{r}^{\infty}}\right. \\
& Z_{E N C}=\left(\gamma^{3} / 2\right)\left[(-1 / \gamma) e^{\left.-\gamma r_{r}{ }^{2}-\left(1 / \gamma^{2}\right) e^{-\gamma r} \cdot 2 r-\left(2 / \gamma^{3}\right) e^{-\gamma r}\right]_{r}^{\infty}}\right. \\
& Z_{E N C}=\left(\gamma^{3} / 2\right) e^{-\gamma r}\left(r^{2} / 2+2 r / \gamma^{2}+2 / \gamma^{3}\right)
\end{aligned}
$$

The force per unit Z_{α} is now given by:

$$
\begin{aligned}
& F_{E N C}(R)=Z_{E N C}(R) / R^{2} \\
& F_{E N C}(R)=\left(\gamma^{3} / 2\right) e^{-\gamma R}\left[1 / \gamma+2 /\left(R \gamma^{2}\right)+2 /\left(R^{2} \gamma^{3}\right)\right]
\end{aligned}
$$

\Rightarrow Potential energy :

$$
\begin{aligned}
& W_{B}(R)=-\int \infty^{R} F_{E N C}(R) d R \\
& W_{B}(R)=-\int \infty^{R}\left(\gamma^{2} / 2+\gamma / R+1 / R^{2}\right) e^{-\gamma R} d R \\
& W_{B}(R)=\int_{R}^{\infty} e^{-\gamma R} \cdot\left(\gamma^{2} / 2\right) \cdot d R+\int_{R} e^{-\gamma R} \cdot(\gamma / R) \cdot d R+\int_{R} e^{\infty} e^{-\gamma R}\left(1 / R^{2}\right) \cdot d R \\
& W_{B}(R)=(\gamma / 2) \cdot e^{-\gamma R}+\left((1 / R) \cdot e^{-\gamma R}-\int_{R}^{\infty} e^{-\gamma R} / R^{2} \cdot d R\right)+\int_{R} R^{\infty} e^{-\gamma R} / R^{2} \cdot d R \\
& W_{B}(R)=e^{-\gamma R}[\gamma / 2+1 / R]
\end{aligned}
$$

The units of the above equation are atomic ie R is measured in bohr (1 bohr $=0.529 . . \AA$), Y is in bohr ${ }^{-1}$ and W_{B} is in hartrees (1 hartree $=27.2117 \mathrm{eV}$). A typical value for γ for hydrogen is between 2.0 and 2.6 bohr $^{-1}$. This formula generates the W_{β} curve in Figure 1 of A\&H's paper.

6.4. Hydride Location using the ASED Method

6.4.1. Implementation of the Formula

The foundation computer program was the widely available EHMO program ICON ${ }^{127}$. This was incorporated together with a simple routine to evaluate the W_{B} function in a new program CCCP (Cluster Coordinate Convergence Program) which utilises the numerical analysis method of simplex minimisation as present in a NAG library function. The simplex method is slow but robust and is preferred to finite gradient analysis which is confused by the appearance of discontinuities which are generated by the iteration to a finite tolerance in calculation of interatomic overlaps.

The minimised geometry is slightly dependent on two parameters used to describe the hydride atom viz the Coulson potential COULH and the exponent ZETA. Using the $\mathrm{HMn}(\mathrm{CO})_{5}$ structure alone as a guide suitable values for these terms were found to be either $-12.6 \mathrm{eV} / 0.85 \mathrm{au}^{-1}$ or $-14.6 \mathrm{eV} / 1.0 \mathrm{au}^{-1}$. In view of the assumed polarity of $\mathrm{M}^{\delta+}-\mathrm{H}^{\delta-}$ the former parameters were adopted and fixed.

6.4.2. Examples

Neutron test cases
a) $\mathrm{HMn}(\mathrm{CO})_{5}{ }^{128}$ This model served as a means of tuning the exponent of the probe hydride and the potential H_{i}. Using values of 0.85 and -12.6 an $\mathrm{Mn}-\mathrm{H}$ bond length of $1.61 \AA$ was obtained. This is within $0.01 \AA$ of the distance determined in the neutron diffraction study.
b) $\left(\mu_{2} \mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right.$

		Neutron	
		Os2	Os3
Neutron	H1	1.840	1.843
	H 2	1.845	1.852
CCCP	H 1	1.733	1.725
	H 2	1.741	1.836

c) $\left(\mu_{2} \mathrm{H}\right)_{3} \mathrm{Rh}_{3}\left(\mathrm{PH}_{3}\right)_{6}$ a model for $(\mu \mathrm{H})_{3} \mathrm{Rh}_{3}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{6}$

	Neutron ${ }^{130}$			
		Rh1	Rh2	Rh3
Neutron H1	1.838	-	1.748	
	H2	1.733	1.731	-
	H3	-	1.752	1.784
	H1	1.732	-	1.721
	H2	1.621	1.623	-
	H3	-	1.691	1.726

d) $\left(\mu_{2} \mathrm{H}\right)_{2}\left(\mu_{2} \mathrm{CH}_{2}\right) \mathrm{Os}_{3}(\mathrm{CO})_{10}$

		Neutron ${ }^{131}$				
		Os 1	Os2	Os3	H3	H4
Neutron	H3	1.883	-	1.755	-	-
	H4	1.834	1.808	-		
CCCP	H3	1.760	-	1.672	0.21	-
	H4	1.767	1.769	-	-	0.10

e) $\mathrm{H}_{2} \mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ This compound has exact two-fold symmetry.

		Neutron ${ }^{132}$	
	Mo	H	
Neutron	H	1.684	2.063
CCCP	H	1.546	0.151

f) $\left[\mathrm{HRu}_{6}(\mathrm{CO})_{18}\right]^{-}$

Neutron	H	2.035	2.031	2.055	2.038	2.034	2.026	-
CCCP	H	2.045	2.017	2.028	2.059	2.049	2.018	

g) $\left[\mathrm{HOs}_{6}(\mathrm{CO})_{18}\right]^{-}$

Neutron ${ }^{134}$
Os 1 Os2 Os3
Neutron H -No coordinates available$\begin{array}{lllll}\text { CCCP } & H & 1.715 & 1.964 & 1.742\end{array}$
h) $\left[\mathrm{HCO}_{6}(\mathrm{CO})_{15}\right]^{-}$

		Neutron						
		Co1	Co2	Co3	Co4	Co5	Co6	H
		Neutron	H	1.811	1.855	1.872	1.804	1.799
CCCP	H	1.929	1.923	1.759	1.748	1.808	1.790	-

j) $\mathrm{H}_{3} \mathrm{Ta}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$

X-ray Diffraction Examples
i) $\left(\mu_{2} \mathrm{H}\right)_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{PH}_{3}$

	X-ray ${ }^{137}$			
		Os1	Os2	Os3
CCCP	H	1.855	1.710	2.918
CCCP	H^{\prime}	1.814	1.707	2.925

k) $\left(\mu_{2} \mathrm{H}\right) \mathrm{HOs}_{3}(\mathrm{CO})_{10} \mathrm{PH}_{3}$ a model for $(\mu \mathrm{H})_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$

${ }^{c}$-ray 138					
		Os1	Os2	$\mu \mathrm{H}$	H
X-ray	H	-	1.517	-	-
X-ray	$\mu \mathrm{H}$	1.741	1.996	-	-
CCCP	H	-	1.569	0.131	-
CCCP	$\mu \mathrm{H}$	1.645	1.720	-	0.339

I) $\mathrm{H}_{2} \mathrm{Fe}\left[(\mathrm{MeC})_{2} \mathrm{~B}_{4} \mathrm{H}_{4}\right]_{2}$ This compound has exact two-fold symmetry.

		${ }^{\prime}$-ray	
		Fe	B
CCCP	H	1.543	1.4397

m) $\left(\mu_{2} \mathrm{H}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{9} \mathrm{SC}_{6} \mathrm{H}_{11}$

	X-ray ${ }^{140}$				
		Fe1	Fe2	Fe3	$\mu \mathrm{H}$
\boldsymbol{X}-ray	$\mu \mathrm{H}$	-	1.609	1.862	-
CCCP	$\mu \mathrm{H}$	2.944	1.670	1.679	0.391

n) $\left(\mu_{3} \mathrm{H}\right)_{4} \mathrm{Co}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}$ This model was too complex (12 dimensional minimisation) to be exhaustively minimised. After 106 iterations starting from the diffraction determined hydride coordinates the program had produced the result below as the most stable.

	X-ray 141				
		Co1	Co2	Co3	Co4
CCCP	H	-	1.642	1.638	1.617
	H2	1.709	-	1.698	1.673
	H3	1.641	1.646	-	1.620
	H 4	1.626	1.632	1.642	-
		X-ray			
		H 1	H 2	H 3	H 4
CCCP	H	0	-	-	-

H 2	-	0.126	-	-
H 3	-	-	0.014	-
H 4	-	-	-	0

6.5. Assessment of Results

The results are very encouraging. Although at first sight the absolute error in the coordinates, where neutron coordinates are available, is large (0.10-0.30 \AA) all true solutions are paralleled by at least local minima in the energy function. More important is the conclusion that relationships in the lengths of $\mathrm{M}-\mathrm{H}$ bonds are reproduced by the CCCP program. For example in $\mathrm{H}_{3} \mathrm{Rh}_{3}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{6}$ the $\mathrm{Rh}-\mathrm{H}$ bonds are in order of increasing length $\mathrm{Rh} 2-\mathrm{H}_{2}$ $\mathrm{RH} 2-\mathrm{H} 1$ RH2-H3 RH3-H6 RH3-H3 RH1-H1 The full range spans $0.10 \AA$. The order given by CCCP is identical except for an interchange of the first two which differ by only $0.02 \AA$. The ability of the ASED method employed by the CCCP program to reproduce the asymmetry of most $\mu_{2} \mathrm{H}$ bridges is further proven by an example $\left(\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10} \mathrm{CH}_{2}\right]\right)$ where the asymmetry has been determined by neutron diffraction to be very large : one $\mu_{2} \mathrm{H}$ binds symmetrically $(\Delta=0.03 \AA)$ the other asymmetrically $(\Delta=0.13 \AA)$. The CCCP program gives differences of $0.00 \AA$ and $0.09 \AA$ respectively. This is the first advantage of CCCP over the HYDEX program.

The second advantage is that CCCP can be successfully used to identify clusters with interstitial hydrides. In the ions $\left[\mathrm{HRu}_{6}(\mathrm{CO})_{18}\right]^{-}$and $\left[\mathrm{HCo}_{6}(\mathrm{CO})_{15}\right]^{-}$ the interstitial site is certainly a local minimum. In contrast for the ion $\left[\mathrm{HOs}_{6}(\mathrm{CO})_{18}\right]^{-}$the correct solution of $a \mu_{3} \mathrm{H}$ capping an octahedral face is found very rapidly - even if the starting point is the interstitial site.

The third advantage of CCCP is demonstrated by the success of the program in finding a solution for compounds where the non-hydrogen
framework around the metal atom is sparse. For example $\left[\mathrm{MoH}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, [$\mathrm{TaH}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$] and $\mathrm{H}_{2} \mathrm{Fe}\left[(\mathrm{MeC})_{2} \mathrm{~B}_{4} \mathrm{H}_{4}\right]_{2}$ as well as the previously discussed $\mathrm{H}_{3} \mathrm{Rh}_{3}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{6}$.

6.6. Proposed Improvements to the Program

The CCCP test program has confirmed the utility of combining Anderson's W_{B} function with EHMO to predict hydride atom positions. There are many more X-ray diffraction determined structures where the hydride position could be predicted using CCCP and many more neutron diffraction determined structures where the accuracy of CCCP could be tested. This has not yet been attempted. Before this task can be begun the CCCP must first be rewritten in order that it makes efficient use of computer resources. This rewriting should recognise that there is a large degree of repetition in calculating the wavefunction for a model in which only one or a few atoms have changed position. This task is left to others.

The minimisation method employed could be further improved by a combination of grid point evaluation, finite iteration, clustering and exhaustive simplex searching. Such an approach would be more reliable in producing the global minimum as the solution. Briefly the method is to begin with a series of regularly spaced points spanning the whole plausable domain. For a finite number of steps each grid point in turn is optimised using short steps. After all of the grid points have been processed the result is a set of points some of which are isolated but in which others form tracks in the variable coordinate space each converging on a local minimum. Cluster analysis identifies these tracks. Filtering (such as retaining only the best 50% of points) further sharpens these tracks to highlight the local minima. Lengthy iterations at each
of these minima give precise function values for each. The final step is to rank these function values to determine the global minimum.

1. "Electron Distributions and the Chemical Bond", P.Coppens and M.B.Hall (Eds.). Plenum Press, New York (1982), 479 pages. Proceedings of a symposium on Electron Distributions and the Chemical Bond for the national meeting of the American Chemical Society held March 28-April 2, 1981 in Atlanta, Georgia.
2. Israeli Journal Of Chemistry, (1977), 16. 29 articles by numerous authors, 229 pages.
3. "Proceedings of NATO Advanced Study Institute on Electronic and Magnetic Distributions in Molecules and Crystals, Arles", Plenum Press, New York.
4. "X-ray Analysis and the Structure of Molecules" J.D.Dunitz, Cornell Univ. Press Ltd., (1979). Chapter 8: 'Electron Density Distributions in Molecules', pp391-497.
5. ref 1 : 'Concepts of Charge Density Analysis, the Experimental Approach ', P.Coppens, pp61-92.
6. K.Angermund, K.Claus, R.Goddard and C.Kruger, Angew.Chem.(Int.ed), (1985), 24(4), 237-356.
7. P.Coppens, Angew.Chem.(Int.Ed), (1977), 16, 32.
8. F.WudI, D.Nalewajek, J.M.Troup and M.W.Extine, Science, (1983) 222, 415.
9. J.D.Dunitz, Science, (1985), 228, 353-354.
10. International Tables For Crystallography, Volume IV, (1974), Kynoch Press, Birmingham, England.
11. R.F.Stewart, J.Chem.Phys, (1970), 53, 2070.
12. P.Coppens, T.N.Guru-Row, P.Leung, E.D.Stevens, P.J.Becker and Y.W.Yang, Acta Crystallogr, (1979), A35, 63. or see ref 5 pp 66-67.
13. P.Coppens, D.Pautler and J.F.Griffin, J.Amer.Chem.Soc, (1971), 93, (5), 1051-1058.
14. P.Coppens, W.F.Cooper and F.K.Larsen, Science, (1972), 176, 165-166.
15. C.A.Coulson, "Valence", Oxford Univ.Press, Oxford, (1961).
16. R.F.Stewart, J.Chem.Phys, (1969), 51, 4569.
17. B.Dawson, Proc.Roy.Soc.(London), (1967), A298, 63.
18. see ref 2, F.L.Hirshfeld, pp226.
19. V.H.Smith, 'Concepts of Charge Density Analysis: The Theoretical Approach', ref 1, pp3-59.
20. R.F.Stewart, J.Chem.Phys, (1969), 51, 4569-4577.
21. C.A.Frishberg, L.J.Masa, M.J.Goldberg, ref 1, pp101-110; C.A.Frishberg and L.J.Masa, Phys.Rev.B(Condensed Matter), (1981), 24, (12), 7018-7024; idem, Acta Crystallogr. (1982), A38, (1), 98-102; L.J.Masa, M.J.Goldberg, C.A.Frishberg, R.F.Boehme and S.J.LaPlaca, Phys.Rev.Lett (1985), 55, (6), 622-625.
22. H.Moissan and P.Williams, C.R.Acad.Sci, (1897), 125, 629.
23. I.R.Epstein and W.N.Lipscomb, Inorg. Chem, (1971), 10, (9). 1921-1928.
24. J.L.Boone, J.Amer.Chem.Soc, (1964), 86, 5036-5036.
25. R.Schaeffer, O.Johnson and G.S.Smith, Inorg. Chem. (1965), 4, (6), 917-8.
26. P.Coppens, /sr.J.Chem, (1977), 16, 144-148.
27. G.M.Sheldrick, (1976), SHELX76. Program for Crystal structure determination. Univ.Cambridge, England.
28. M.vonStackelberg and F.Neumann, Zeit.Phys.Chem, (1932), 19, 314-320.
29. F.L.Hirshfeld, Isr.J.Chem, (1977), 16, 226-229.
30. V.Schomaker, Program \& Abstracts, Amer.Cryst.Assoc.Summer Meet., San Diego, (1982), Ca., 15-19 Aug, p21.
31. W.C.Hamilton, Acta Crystallogr, (1965), 18, 502-510.
32. F.L.Hirshfeld, Acta Crystallogr, (1976), A32, 239-244.
33. R.E.Rosenfield, K.N.Trueblood and J.D.Dunitz, Acta Crystallogr. (1978), A34, 828-829.
34. M.Aono, M.Ishii, S.Muranaka and S.Kawai, Solid State Commun. (1976), 20, 437-440.
35. Ya.l.Dutchak, Ya.I.Fedyshin, Yu.B.Paderno, D.I.Vadets and Izv.Ucheb.Zaved.Fiz. (1973), 1, 154-156. = Soviet Physics Journal, (1973), 16, 133-136.
36. B.Rees, Acta Crystallogr, (1976), A32, 483-488.
37. F.L.Hirshfeld, /sr.J.Chem. (1977), 16, 198-201.
38. "General Chemistry : An Introduction to Descriptive Chemistry and Modern Chemical Theory", L.Pauling. Published by W.H.Freeman, San Francisco, (1953)pp236.
39. F.L.Hirshfeld, Theor.Chim.Acta, (1977), 44, 129-138.
40. S.Vega, /sr.J.Chem, (1977), 16, 213-219.
41. D.Schwarzenbach and N.Thong, Acta Crystallogr. (1979), A35, 652-658.
42. R.F.Stewart, Chem.Phys.Lett. (1977), 49(2), 281-284.
43. N.Thong and D.Schwarzenbach, Acta Crystallogr, (1979), A35, 658-664.
44. J.Lewis and D.Schwarzenbach, Acta Crystallogr. (1981), A37, 507-510.
45. M.Aono and S.Kawai, J.Phys.Chem.Solids, (1979), 40, 797-802.
46. R.E.J.Sears, J.Chem.Phys, (1982), 76, (11), 5651-5652.
47. T.Kushida, N.Laurance and A.H.Silver, Bull.Amer.Chem.Soc, (1962), 7, 226.
48. N.F.Ramsay, "Nuclear Moments", Wiley, New York (1953).
49. G.F.Mitchell 'TENSOR' a computer program to evaluate the electric field gradient from deformation density structure factors, Edinburgh, (1986).
50. G.F.Mitchell 'TENSNEB', a computer program to evaluate the electric field gradient due to promolecular charge density, Edinburgh, (1986).
51. V.R.Saunders, Faraday Symp.Chem.Soc. (1984), 19, 79-84.
52. G.F.Mitchell, 'MOSCOW', a computer program for the display of wavefunctions, electron density, deformation electron density, and Laplacian of electron density, Edinburgh(1986).
53. R.B.Helmholdt and A.Vos, Acta Crystallogr, (1977), A33, 456-465.
54. H-L.Hase, H.Reitz and A.Schweig, Chem.Phys.Lett, (1976), 39, 157-159.
55. D.J.Fuller and D.L.Kepert, Inorganic Chemistry, (1982), 21, 163-167.
56. C.E.Housecroft and K.Wade, Inorganic Chemistry, (1983), 22, 1391-1393.
57. D.J.Fuller and D.L.Kepert, Polyhedron, (1983), 2, 749-759.
58. PG.Perkins, J.J.P.Stewart and D.R.Armstrong , J.Chem.Soc. Dalton Trans,(1975), 8, 627-632.
59. PG.Perkins, D.R.Armstrong and A.Breeze, J.Physics C, (1975), 8, 3558.
60. G.Moss in 'Electron Distributions and the Chemical Bond', (ref. 1) pp383-411.
61. I.G.Czismadia, "Theory and Practice of MO Calculations", Elsevier, (1976), pp257.
62. D.Schwarzenbach, J.Lewis in 'Electron Distributions and the Chemical Bond' (ref. 1) pp 413-429.
63. H.C.Longuet-Higgins and M.deV.Roberts, Proc.Roy.Soc. (1954), 224, 336.
64. S.Flodmark, Arkiv fur Fysik, (1959), 14, 513-550.
65. J.Etourneau, J-P.Mercurio, R.Naslain and P.Hagenmuller, J.Solid State Chem, (1976), 2, 332-342.
66. V.G.Aleshin, T.Ya.Kosolapova, V.V.Nemoshkalenko, T.I.Serebryakova and N.G.Chudinov, J.Less Common Metals, (1979), 67(1), 173-177.
67. M.Aono, S.Kawai, S.Kono, M.Okusawa, T.Sagawa and T.Takehana, J.Phys.Chem, (1976), 37, 215-219.
68. M.Yamazaki, J.Phys. Soc. Japan, (1957), 12, 1.
69. G.Shoham, D.Schomburg and W.N.Lipscomb, Cryst.Struct.Commun. (1980), 9, 429.
70. K.A.Solntsev, N.T.Kuznetsov and V.I.Ponomarev, Dokl.Akad.Nauk SSSR (1976), 228, (4), 853.
71. S.I.Uspenskaya, K.A.Solntsev and N.T.Kuznetsov, Zhurnal Strukturnoii Khimii, (1975), 16, (3), 482-484.
72. K.A.Solntsev, N.T.Kuznetsov and V.I.Ponomarev, Izvest.Akad.Nauk SSSR Ser. Neorg. Materialy, (1972), 12, (6), 1044-1047.
73. K.A.Solntsev, N.T.Kuznetsov, N.V. Raneev and V.E.Zavodnik, Dokl.Akad.Nauk SSSR (1977), 232, (6), 1366.
74. Z.Cai, K.Pan and L.Zhang, Jiegou Huaxue, (1984), 3, (3),
75. K.A.Solntsev, N.T.Kuznetsov, V.K.Trunov, O.G.Karpinsky, G.S.Klimchuk, S.I.Uspenskaya and Yu.V.Oboznenko, Zhurnal Neorg.Khim, (1977), 22, 3200-7.
76. F.L.Hirshfeld and H.Hope, Acta Crystallogr, (1980), B36, 406-415.
77. M.Harel and F.L.Hirshfeld, Acta Crystallogr, (1975), B31, 162-172.
78. E.D.Stevens and H.Hope, Acta Crystallogr, (1977), A33, 723-729.
79. E.D.Stevens and H.Hope, Acta Crystallogr, (1977), A31, 494-498.
80. H.G.Miller and E.L.Muetterties, Inorganic Syntheses, (1967), 10, 81.
81. F.R.Scholer and L.J.Todd in Preparative Inorganic Chemistry, W.L.Jolly (Ed.), Wiley-Interscience (Publ.), (1971), 7, chapter 1: "Polyhedral Boranes and Heteroatom Boranes", pp13-14.
82. G.F.Mitchell and A.J.Welch, Acta Crystallogr, (1986), C42, 101-103.
83. A.E.Dwight and C.W.Kimball, Acta Crystallogr (1974), B30, 2791.
84. K.Kitihama, H.Kiriyama and Y.Baba, Bull.Chem.Soc.Japan, (1979), 52, 324.
85. Y.Higama, L.G.Butler and T.L.Brown, J.Magn.Reson, (1975), 60, 472-480.
86. R.Brill, H.Dietrich and H.Dierks, Acta Crystallogr, (1971), B27, 2003.
87. A.J.Leffler, J.Chem.Phys, (1984), 81, (6), 2574.
88. R.K.Bohn and M.D.Bohn, Inorg.Chem, (1971), 10, 350.
89. L.V.Vilkov, V.S.Mastryukov, A.F.Zhigach and V.N.Siryatskaya, Zhurnal Struktur.Khim? (1966), 7, 5.
90. idem, ibid, (1969), 10, 136.
91. K.-R.Tsai, P.M.Harris and E.N.Lasettre, J.Phys.Chem, (1956), 60, 338-344.
92. S.Huzinaga (Ed.) "Gaussian Basis Sets for Molecular Calculations", Elsevier, (1976), Amsterdam.
93. R.A.Beaudet and R.L.Poynter, J.Chem.Phys, (1965), 43, 2166.
94. E.A.McNeil and F.R.Scholer, J.Mol.Struct, (1975), 27, 151-159.
95. T.Ito and I.Higashi, Acta Crystallogr, (1983), B39, 239-243.
96. T.Ito, I.Higashi and T.Sakurai, J.Solid State Chem, (1979), 28, 171-184.
97. R.Brill, H.Dietrich and H.Dierks, Acta Crystallogr, (1971), B27, 2003.
98. H.Dietrich and C.Scheringer, Acta Crystallogr. (1978), B34, 54-63.
99. E.A.Laws, R.M.Stevens and W.N.Lipscomb, J.Amer.Chem.Soc, (1972), 94, 4467-4474.
100. J.Evans, J.Chem.Soc. Dalton Trans, (1978), 25.
101. P.Brint, E.F.Healey, T.R.Spalding and T.Whelan, J.Chem.Soc. Dalton Trans, (1981), 2515.
102. M.A.Cavenaugh, T.P.FehIner, R.Stramel, M.E.O'Neil and K.Wade, Polyhedron, (1985), 4, 687-695.
103. I.Yu.Kuznetsov, D.M.Vinitskii, K.A.SoIntsev, N.T.Kuznetsov and L.A.Butman, Dokl.Akad.Nauk SSSR, (1985), 287, (4), 873-7.
104. C.R.Peters and C.E.Nordmann, J.Amer.Chem.SoC, (1960), 82, 5758.
105. F.Zhuji, P.Kezhen, L.Jiaxi, Z.Guomin and Z.Hong, J.Struct.Chem, (1982), 1, 57-2.
106. I.M.Pepperburg, D.A.Dixon, W.N.Lipscomb and T.A.Halgren, /norg.Chem, (1978), 17, 587.
107. T.A.Halgren, L.D.Brown, D.A.Klier and W.N.Lipscomb, J.Amer.Chem.Soc. (1977), 99, 6793.
108. S.J.Andrews and A.J.Welch, Inorg.Chim.Acta, (1984), 88, 153-160.
109. J.C.Calabrese, D.F.Davies, S.J.Hildebrandt and J.H.Morris, J.Amer.Chem.Soc. (1976), 98, (4), 5489.
110. S.J.Lippard and K.M.Melmed, Inorg. Chem, (1969), 8, 2755.
111. Yu.Wang, M.J.Chen and C.H.Wu, Acta Crystallogr, (1988), B44, 179-182.
112. Y.Wang, K.Angermund, K.Goddard and C.Kruger,
J.Amer.Chem.Soc. (1987), 109, 587-589.
113. E.Amberger and E. Gut, Chem.Ber. (1968), 101, 1200.
114. A.M.O'Connell, A.I.M.Rae and E.N.Maslen, Acta Crystallogr, (1966), 21, 208.
115. R.F.W.Bader, P.J.MacDougall and C.D.H.Lau, J.Amer.Chem.Soc. (1984), 106, 1594- 1605.
116. D.Cremer and E.Krafka, J.Amer.Chem.Soc, (1985), 107, 3800-3810.
117. M.Benard, P.Coppens and J.Muller, J.Solid State Comm, (1976), 19, 29.
118. J.D.Dunitz and P.Seiler, J.Amer.Chem.Soc, (1983), 105, 7056-7058.
119. G.F.Mitchell and A.J.Welch, J.Chem.Soc Dalton Trans, (1987), 1017-1025 (Appendix VI).
120. C.J.Fritchie, Inorg.Chem, (1967), 6, 1199.
121. B.F.G.Johnson, J.Lewis, P.R.Raithby, G.M.Sheldrick and G.Suss, J.Organomet.Chem. (1978), 162, 179.
122. M.R.Churchill in "Transition Metal Hydrides", ed R.Bau, Adv. Chem.Ser., American Chemical Society, (1978), 167. pp38-39.
123. M.R.Churchill, P.H.Bird. H.D.Kaesz, R.Bau and B.Fontal, J.Amer.Chem.Soc. (1968), 90, 7135.
124. A.G.Orpen, J.Chem.Soc. Dalton Trans, (1980), 2509-2516.
125. N.Pavel, C.Quagliata and N.Scarcelli, Z.Krist, (1976), 144, 64.
126. A.B.Anderson and R.Hoffmann J.Chem.Phys (1974), 60, 4271-4273.
127. J.Howell, A.Rossi, D.Wallace, K.Haraki and R.Hoffmann, "ICON", Quantum Chemistry Program Exchange, University of Indiana, (1977), No. 344.
128. S.J.LaPlaca, W.C.Hamilton, J.A.lbers and A.Davison, /norg.Chem. (1969), 8, 1928.
129. A.G.Orpen, A.V.Rivera, E.G.Bryan, D.Pippard, G.M.Sheldrick and K.D.Rouse, J.Chem.Soc. Chem.Comm, (1978), 723; R.W.Broach and J.H.Williams, Inorg. Chem. (1979), 18, 314.
130. R.K.Brown, J.M.Williams, A.J.Sivak and E.L.Muetterties, Inorg.Chem, (1980), 19, 370.
131. A.J.Shultz, J.M.Williams, R.B.Calvert, J.R.Shapley and G.D.Stucky, Inorg.Chem, (1979), 18, 319.
132. A.J.Shultz, K.L.Stearley, J.M.Williams, R.Mink and G.D.Stucky, Inorg.Chem. (1977), 16, 3303.
133. a) C.R.Eady, P.F.Jackson, B.F.G.Johnson, J.lewis, M.C.Malatesta, M. McPartlin and W.J.H.Nelson, J.Chem.Soc. Dalton.Trans, (1980), 383. b) P.F.Jackson, B.F.G.Johnson, J.Lewis, P.R.Raithby, M.McPartlin, W.J.H.Nelson, K.D.Rouse, J.Allibon and S.A.Mason, J.Chem.Soc., Chem.Comm, (1980), 295. c) C.R.Eady, B.F.G.Johnson, J.Lewis, M.C.Malatesta, P.Machin and M.McPartlin, idem, (1976), 945.
134. M.McPartlin, C.R.Eady, B.F.G.Johnson and J.Lewis, J.Chem.Soc. Chem.Comm, (1976), 883.
135. a) D.W.Hart, R.G.Teller, C.Y.Wei, R.Bau, G.Longoni, S.Campanella, P.Chini and T.F.Koetzle, Angew.Chem.Int.Edn. (1979), 18, $80 . \quad$ b) D.W.Hart, R.G.Teller, C.-Y.Wei, R.Bau, G.Longoni, S.Campanella, P.Chini and T.F.Koetzle, J.Amer.Chem.Soc, (1981), 103, 1458.
136. R.D.Wilson, T.F.Koetzle, D.W.Hart, A.Kvick, D.L.Tipton and R.Bau, J.Amer.Chem.Soc. (1977), 99, 1775.
137. R.E.Benfield, B.F.G.Johnson, J.Lewis, P.R.Raithby, C.Zuccaro and K.Henrick, Acta Crystallogr., Sect.B, (1979), 35, 2210.
138. M.R.Churchill and B.G.DeBoer, Inorg.Chem, (1977), 16, 2397.
139. J.R.Pipal and R.N.Grimes, /norg.Chem, (1979), 18, 263.
140. A.Winter, L.Zsolnai and G.Huttner, Chem.Ber, (1982), 115, 1286.
141. G.Huttner and H.Lorenz, Chem.Ber. (1975), 108, 973.

Items marked \dagger are taken from reference 1.

Asphericity shift ${ }^{\dagger}$ The difference between the atomic positions derived by least-squares refinement of X-ray data using the free-atom model and the unbiased position from, for example, neutron diffraction or refinement of very high order X-ray data.

Deformation density ${ }^{\dagger}$ The difference between the total electron density and the promolecule or procrystal density. Sometimes this is referred to as the "non-perfectly following density".

Dynamic < Deformation> Density ${ }^{\dagger}$ The <deformation> charge density smeared by the vibrational motions of the atoms in the crystal.

High-order data ${ }^{\dagger}$ The X-ray diffraction data measured above a value of $\sin \theta / \lambda$ at which the contribution of valence electron scattering is estimated to be small.

Abstract

Hirshfeld refinement ${ }^{\dagger}$ Least-squares refinement of all structural parameters, exponents and population parameters of Hirshfeld-type $r^{n} \cos ^{n} \theta_{k} \exp (-\varepsilon r)$ functions on all atoms.

Kappa parameter ${ }^{\dagger}$. A factor multiplying the radial coordinate of the atomic valence density, allowing expansion or contraction of the valence shell with variation of atomic charge.

Kappa refinement ${ }^{\dagger}$ Least-sqares refinement of all structural parameters, kappa, and spherical valence shell population parameters on all atoms.

Abstract

Multipole Deformation Map ${ }^{\dagger}$ The difference between the total charge density calculated using the multipole model parameters and the charge density calculated from Hartree-Fock atomic X-ray form factors and multipole model positional and thermal parameters.

Multipole refinement ${ }^{\dagger}$ Least-sqares refinement of all structural parameters, kappa, spherical valence shell population parameters, and multipole population parameters on all atoms.

Procrystal density ${ }^{\dagger}$ - as for promolecule density but the superposition of spherical free atoms at their position s in the crystal.

Promolecule density ${ }^{\dagger}$ The charge density prior to the formation of bonds ie the superposition of the spherical free-atoms each centred at its position in the molecule.

Pseudoatom ${ }^{\dagger}$ All the charge density described by functions centred at the position of the nucleus.

Pseudomolecule ${ }^{\dagger}$ All the charge dnsity attributed to the pseudoatoms which constitute the molecule.

Residual Map ${ }^{\dagger}$ The difference between the total charge density and the charge density calculated with the scattering factors and paramaters of a least-sqares refinement, ie the remnant of the density not decribed by the refinement model.

Static <Deformation> Density ${ }^{\dagger}$ The <deformation> charge density of an atom, promolecule or molecule at rest.

Stockholder formula/concept ${ }^{\dagger}$ A way of partitioning the charge density
such that each atom is assigned a fraction of the charge at a point in the crystal proportional to its contribution to the procrystal density at that point.

Valence density ${ }^{\dagger}$ The difference between the total electron density and the the superposition of free-atom atomic core densities.
$\mathbf{X}-\mathbf{N} \mathrm{Map}^{+}$The difference between the experimental total charge density and the charge density calculated from Hartree-Fock atomic X-ray form factors and neutron-diffraction determined positional and thermal parameters.

X-X Map ${ }^{\dagger}$ The difference between the experimental total charge density and the charge density calculated from Hartree-Fock atomic X-ray form factors and high order X-ray diffraction determined positional and thermal parameters.

|Apppendix III Parameters used in Ab-initio Calculations

The program employed the General and Molecular Electronic Structure System (GAMESS).

MAXCYC maximum number of SCF cycles.
the default of 50 was used.

THRESHOLD : The maximum difference in density matrix elements below which convergence is assumed. The default of 10^{-5} was used.

LEVEL : The defaults of an occupied-virtual shifter of 1.0 applied for 5 iterations followed by a occupied-virtual shifter of 0.3 were used.

Apppendix IV Model Coordinates for Chapter 2

Model I

Model II
(B6H5.)2 4- CHG , EXTENDED XTAL FIELD $24(\mathrm{X}++$), $22(\mathrm{X}-\mathrm{-})$
Net model charge $=0$
z-matrix construction :
-as for model I above

Variables :
-as for model I above
COORDINATES for point charges :
BQCA -2.0536056 2.07110 .875
2.0

BQCA	-2.0536056	-2.0711	0.875	2.0
BQCA	0.875	2.0711	-2.0536056	2.0
BQCA	0.875	-2.0711	-2.0536056	2.0
BQCA	3.804350	2.0711	0.875	2.0
BQCA	3.804350	-2.0711	0.875	2.0
BQCA	0.875	2.0711	3.804350	2.0
BQCA	0.875	-2.0711	3.804350	2.0
BQCA	-2.0536056	2.0711	-4.9829554	2.0
BQCA	-2.0536056	-2.0711	-4.9829554	2.0
BQCA	-4.9829554	2.0711	-2.0536056	2.0
BQCA	-4.9829554	-2.0711	-2.0536056	2.0
BQCA	-4.9829554	2.0711	3.804350	2.0
BQCA	-4.9829554	-2.0711	3.804350	2.0
BQCA	3.804350	2.0711	-4.9829554	2.0
BQCA	3.804350	-2.0711	-4.9829554	2.0
BQCA	-2.0536056	6.2133	0.875	2.0
BQCA	-2.0536056	-6.2133	0.875	2.0
BQCA	0.875	6.2133	-2.0536056	2.0
BQCA	0.875	-6.2133	-2.0536056	2.0
BQCA	-4.9829554	6.2133	3.804350	2.0
BQCA	-4.9829554	-6.2133	3.804350	2.0
BQCA	3.804350	6.2133	-4.9829554	2.0
BQCA	3.804350	-6.2133	-4.9829554	2.0
BQOX	0.875	4.1422	0.875	-2.0
BQOX	0.875	-4.1422	0.875	-2.0
BQOX	-2.0536056	4.1422	-2.0536056	-2.0
BQOX	-2.0536056	-4.1422	-2.0536056	-2.0
BQOX	3.804350	4.1422	-2.0536056	-2.0
BQOX	3.804350	-4.1422	-2.0536056	-2.0
BQOX	-2.0536056	4.1422	3.804350	-2.0
BQOX	-2.0536056	-4.1422	3.804350	-2.0
BQOX	0.875	4.1422	-4.9829554	-2.0
BQOX	0.875	-4.1422	-4.9829554	-2.0
BQOX	-4.9829554	4.1422	0.875	-2.0
BQOX	-4.9829554	-4.1422	0.875	-2.0
BQOX	3.804350	4.1422	3.804350	-2.0
BQOX	3.804350	-4.1422	3.804350	-2.0
BQOX	-4.9829554	4.1422	-4.9829554	-2.0
BQOX	-4.9829554	-4.1422	-4.9829554	-2.0
BQOX	3.804350	0.0000	-2.0536056	-2.0
BQOX	-2.0536056	0.0000	3.804350	-2.0
BQOX	0.875	0.0000	-4.9829554	-2.0
BQOX	-4.9829554	3.804350	0.0000	0.875
BQOX	-4.9829554	0.0000	3.804350	-2.0
B	-4.9829554	-2.0		

Model III

B6H6 EXTENDED XTAL FIELD $24(\mathrm{X}++$), $23(\mathrm{X}-\mathrm{-})$
NET MODEL CHARGE $=00$
z-matrix construction :
B
B $\quad 1 \quad$ RBB

B	$\mathbf{2}$	RBB	1	90.0			
B	3	RBB	2	90.0	1	0.0	0
B	2	RBB	1	60.0	3	60.0	-1
B	4	RBB	1	60.0	3	60.0	-1
H	2	RBH	3	135.0	4	180.0	0
H	3	RBH	2	135.0	1	180.0	0
H	4	RBH	3	135.0	2	180.0	0
H	5	RBH	1	135.0	6	180.0	0
H	6	RBH	1	135.0	5	180.0	0
H	1	RBH	2	135.0	3	180.0	0

Coordinates of point charges:
-as for model II but with the extra point anion
below
BQOX -2.0536056 $0.0000 \quad 3.804350 \quad-2.0$
Parameters RBB and RBH as for Models I and II

Model IV
B6H6 EXTENDED XTAL FIELD $24(\mathrm{X}++$), $23(\mathrm{X}-\mathrm{-})$
NET MODEL CHARGE $=00$

- as for Model III but with the following parameter values:

VARIABLES
$\begin{array}{ll}\text { RBB } & 1.690 \\ \text { RBH } & 1.167183\end{array}$

```
CHARGE -1
ZMAT ANGSTROM
B
B}11\quad\mathrm{ Rl2
B 1 Rl2 2 A312
H 1 Rl4 2 A412 3 A412 l
H 1 Rl4 3 A412 2 A412 l
H 2 R62 3 A623 1 . T6231
H 3 R62 2 A623 1 T6231
H
H
H 1 RMU 2 AMl2 3 180.
H 1 RMU 3 AM12 2 180.
Values of Variables for the EXPT geometry
R12 1.782
R14 1.08
R62 1.14
RMU 1.415
A312 61.2
A412 114.
A623 109.47
AMl2 40.2
T6231 114.
END
Values of Variables for the SVOPT (OPTIMISED) geometry
R12 1.810
R14 1.20
R62 1.20
RMU 1.577
A312 64.1
A412 117.
A623 106.3
AM12 42.7
T6231 118.
END
```


The Structure of Tetramethylammonium Undecahydro(triethylamine)[I_{h-} (1551)- $\mathbf{4}^{20}$-closoldodecaborate(1-)*

By Gary F. Mitchell and Alan J. Welch
Department of Chemistry, University of Edinburgh. Edinburgh EH9 3JJ. Scotland

(Received 16July 1985: accepted 27 September 1985)

Abstract

C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} . \mathrm{C}_{6} \mathrm{H}_{26} \mathrm{~B}_{12} \mathrm{~N}^{-}, \quad M_{r}=316.15\), monoclinic, $P 2_{1} / c, \quad a=10.620$ (4), $\quad b=14.558$ (5), $c=13.244$ (4) A. $\beta=90.40(3)^{\circ} . \quad U=2047.6 \dot{\mathrm{~A}}^{3} . Z$ $=4$ ion pairs, $D_{x}=1.025 \mathrm{Mg} \mathrm{m}^{-3}$. Mo Ka. $\lambda=$ $0.71093 \AA . \quad \mu=0.047 \mathrm{~mm}^{-1}, \quad F(000)=688 . \quad T=$ 295 K . final $R=0.0695$ for 965 observed reflections. $\left|\mathrm{NMe}_{4} \| \mathrm{Et}_{3} \mathrm{NB}_{12} \mathrm{H}_{11}\right|$ forms as well separated ion pairs. In the anion the B_{12} fragment is not significantly distorted from an icosahedral geometry. and the $\mathrm{B}-\mathrm{N}$ bond length. 1.632 (11) \dot{A}. compares favourably with that found in the previously studied potassium salt. The B_{12} framework is less distorted than that in the potassium salt.

Introduction. There has recently been some controversy concerning the relative importance of radial (crosspolyhedral) versus tangential $\mathrm{B}-\mathrm{B}$ bonding in the series of closo-borane dianions $\left|\mathrm{B}_{n} \mathrm{H}_{n}\right|^{2-}$ (Fuller \& Keppert. 1984: Housecroft \& Wade. 1983). One potential method of quantifying the electron densities associated with these two kinds of interaction is through a series of deformation density studies.

In attempting to synthesize $\left|\mathrm{NMe}_{4}\right|_{2}\left|\mathrm{~B}_{12} \mathrm{H}_{12}\right|$ for this purpose we have serendipitously isolated a small amount of the compound $\left.\left(\mathrm{NMe}_{4}\right) \mid \mathrm{Et}_{3} \mathrm{NB}_{12} \mathrm{H}_{11}\right]$, characterized by the single-crystal X-ray diffraction study described herein. Shortly after completion of this work we became aware that the synthesis of | $\mathrm{NMe}_{4} \mid$ $\left|\mathrm{Et}_{3} \mathrm{NB}_{12} \mathrm{H}_{11}\right|$ had previously been reported. as had a crystallographic study of the potassium salt (Agafonov, Butman, Solntsev, Vinokurov, Zhukova \& Kuznetsov. 1982).

[^1]Experimental. To the solid product of an attempted synthesis of $\left|\mathrm{HNEt}_{3}\right|_{2} \mid \mathrm{B}_{12} \mathrm{H}_{12} \mathrm{l}$, prepared according to Miller \& Muetterties (1967) but at somewhat reduced temperature (448 K). was added. dropwise. 0.2M NaOH with constant boiling. The resulting solution was couled to room temperature. and an excess of aqueous $\left|\mathrm{NMe}_{\mathrm{j}}\right| \mathrm{Cl}$ was added. On cooling to 276 K colourless crystals were deposited, which were collected. washed with cold water and recrystallized by slow evaporation of a solution in 2-methoxyethanol:water, 1:1. Clear colourless blocks. $0.03 \times 0.02 \times 0.02 \mathrm{~cm}$. mounted on a glass fibre: preliminary Weissenberg photography: CAD-4 diffractometer: lattice parameters from 25 centred reflections, $9<\theta<12^{\circ}$; graphite-monochromated Mo $K a$; for data collection $\theta_{\text {max }}=20^{\circ}$; $\omega-2 \theta$ scan in 96 steps; ω-scan width $(0.8+$ $0.35 \tan \theta)^{\circ}$, rapid prescan. following which reflections with $I \geq 0.33 \sigma(l)$ remeasured such that final net intensity had $I \geqq 50 \sigma(I)$, subject to a maximum measuring time of 100 s : no significant crystal movement or decay: 2039 data measured ($h 0 \rightarrow 10 . k 0 \rightarrow 14$. $1-12 \rightarrow 12$) over ca 53 h . X-ray exposure yielding 1902 unique data on merging ($R_{\mathrm{int}}=0.0361$): for structure solution and refinement 967 amplitudes used $|F \geq 2.0 \sigma(F)|:$ automatic direct methods (Sheldrick. 1984) and iterative refinement $/ d F$ syntheses (Sheldrick. 1976): full-matrix least squares $(F) \vdots w^{-1}=\mid \sigma^{2}(F)+$ $0.00268(F)^{2}$: anisotropic thermal parameters for all non- H atoms: borane H atoms located from ΔF synthesis and positionally refined: methylene H atoms set in idealized positions, allowed to ride on respective C atoms: methyl functions treated as rigid groups allowed full rotation about C atom pivots. with chemical sense of resulting $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles checked: all

Table 1．Fractional coordinates of refined atoms with standard detiations

	x	\cdots	：	$U_{\text {go }}\left(A^{\prime}\right)$
N11	1）：54216	（） 41.515		0.1494
（いい	11．Khat 13）	1）．1897151	（1）（ram ini	0.15529
1012			（0．（1）31）（ x ）	0.6710
（1）${ }^{\prime \prime}$			10．14．31）1	1）． 6 （n＋3：
1．14		15．887016）	15．2573141	1）．1msy
vil	H．7．3．sth	13．tathisil	15．5．476141	0.010 .97
（1）${ }^{\text {a }}$	f）		0．5202131	（1）．6m1：
1923	＂S 1\％ay		0．5サッで方	0）． 11954
＇（1），		1）．hates，	0． 4 S（x） 1 （f）	0.4593
（13）	（0． $3 \times(6,1)$		9． $3 \mathrm{HO}(\mathrm{Cl}$	0.07 kb
（－4，${ }^{\text {a }}$		か－312！	（1）．5774（t）	0.0548
＇H3？	（1）．4．159（x）	（－7．4に）	0．Shke 181	0.01051
Hil，		11． 5 thenthl	0．6．4x131	0.0374
Hİ	（1）．60119\％	iJ．S0sulty		0.0453
H1：${ }^{\text {a }}$	1） $\operatorname{los+5}(\mathrm{x})$	0．561517\％	0．7543171	0.0427
Hid，	11． 4.5 ¢．499	9．53101：	0． $3143(x)$	0.0514
B1S ${ }^{\text {c }}$	0． 56.5×14	9．${ }^{\text {（4）5 }}$ ： 71	9． 6388 （8）	0.0448
His．）	0．7！（\％）	0．450 tha	13．819171	0.14 ch
$\mathrm{Hr}^{\text {i }}$	1）．0．31： 4 （4）	0）． 735410	（1）．21947 ${ }^{\text {（8）}}$	0.0 Hhn
HiN）	0．ixiosm	0）． $515:(n)$		0.0491
H14	4． 54.2 LkI	11．4SMEth	（） 7653 （\％）	0.04 ck
H．11］，	4）＊1こ1年）		6．6832（ x ）	0．05：34
Bill：	（0）． $\mathrm{h}+\mathrm{St}$＋ 100	0．145こ6，		0.0537
412		（）． $34 \times \mathrm{b}$ ？	O．Rass（4）	0.0504
H（2B）	19．sousiet	（）．52： 11	0．645（4）	
H6：B		（1）． $\mathrm{h}+\mathrm{K}$（1）${ }^{\text {a }}$	0．785（4）	
Hath，	13． 415151	（1）．his ${ }^{\text {a }}$	0.757141	
H：SR1	19．43：${ }^{\text {a }}$ ，	0． 14714	0．54．45	
Hinti	dotan	0.42 14，	0.532151	
$\mathrm{HI} / \mathrm{RH}$	10．5n715，	0.470141	0．868（4）	
HISH，	10．815	0.514 （1）	（0．917（4）	
HIMHI		（1）．442（－1）	0.792141	
： 11 ldHa	$0 \cdot 50051$	0．31414	$0 \cdot 66414$	
HIIAB，	（1）Sch is	0.33548	0.710 （\％）	
H12\％	（1）．7n：151	0.14414	$0.868(4)$	

 $0.10191 \AA^{2}\left(\mathrm{NMe}_{3}\right) . \quad 0.07802 \AA^{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $0.11726 \AA^{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right):$ max．Δ / σ in final cycle 0.056 ； max．peak and min．trough in final ΔF synthesis 0.2131 and -0.2304 e \AA^{-3} ：goodness－of－fit parameter 0.985 ； neutral－atom scattering factors for $\mathrm{C}, \mathrm{N}, \mathrm{B}$ and H inlaid in SHELX76；computer programs：SHELX76（Shel－ drick．1976）．SHELX84（Sheldrick，1984）．CALC （Gould \＆Taylor．1983）and ORTEPII（Johnson． 1976）．

Discussion．Table 1 lists fractional coordinates of refined atoms．and Fig． 1 illustrates a perspective view of the zwitterionic anion $\left|\mathrm{Et}_{3} \mathrm{NB}_{12} \mathrm{H}_{11}\right|^{-}$．In Table 2 are contained interatomic distances．${ }^{+}$

The crystallographic analysis reveals the species to be the salt $\left|\mathrm{NMe}_{4} \| \mathrm{Et}_{3} \mathrm{NB}_{12} \mathrm{H}_{11}\right|$ ．It is probable that the $\left|\mathrm{Et}_{3} \mathrm{NB}_{12} \mathrm{H}_{11}\right|^{-}$ion is formed（as its $\left|\mathrm{HNEt}_{3}\right|^{+}$salt）as a minor impurity in the preparation of $\left|\mathrm{HNEt}_{3}\right|_{2}\left|\mathrm{~B}_{12} \mathrm{H}_{12}\right|$

[^2]from $\mathrm{B}_{10} \mathrm{H}_{14}$ and $\mathrm{El}_{3} \mathrm{NBH}_{1}$ ．since a temperature of only 448 K was used and it has been suggested（Agafonov et al．．1982）that the predissociation of $\mathrm{Et}_{3} \mathrm{NBH}_{3}$ is incomplete below 463 K ．

Distances and angles within the $\left\{\left.\mathrm{Et}_{3} \mathrm{NB}_{2} \mathrm{H}_{1}\right|^{-}\right.$anion studied herein are in broad agreement with those reported for the potassium salt．Thus，there is no systematic variation in $\mathrm{B}-\mathrm{B}$ lengths involving the boron atom． $\mathrm{B}(1)$ ．that carries the $\mathrm{NEt}^{\text {，}}$ ，substituent compared with those that do not．The B－N bond lengths in the K^{+}and $\left|N M e_{1}\right|^{+}$salts are identical， 1.646 （13）and $1-635(12) A$（two independent ion pairs in the asym－ metric unit）tersus 1.632 （11）\AA respectively．All these distances are marginally longer than that． 1.600 （4）\AA ． in arachno－9－Et ${ }_{3} \mathrm{~N}-6-\mathrm{SB}_{9} \mathrm{H}_{11}$（Hilty \＆Rudolph，1979）， probably a consequence of the greater coordination number of \mathbf{B} in the icosahedron．Moreover，the

Fig．1．View of the $\left[\mathrm{Et}_{3} \mathrm{NB}_{12} \mathrm{H}_{11}\right]^{-}$anion as its NMe_{6} salt．Thermal ellipsoids are drawn at the 50% level，except for H atoms（radius 0.1 A）．

Table 2．Interatomic distances（ \AA ）

vil Cilit	1．54）（101	B（t）－B（\％）	1．751（14）
Nill clls	1．502111	B（4）B（4）	1．754（14）
Vib Cus	1．axx（1）	B（A）H／4B）	8.13 （th）
Nill Cils	1.1441111	B（ $51-\mathrm{B}(\mathrm{h})$	1．7931841
Nil cill	$1.51 \leq(10)$	B（s）Bi4）	1．7541141
Vに）Cい3）	1.524 （10）	B（S）B4， 010	1．776（14）
心以（1a）	1.515110	BISI．HISBI	1.03 （h）
Vi）Hell	1．0．23（11）	8（a）B（10）	1．746（14）
（12）（122）	1．527：121	8（h）－Bill）	1．750（14）
C（1）Ci32）	1．530112）	$\mathrm{B}(\mathrm{h}) \mathrm{H}(\mathrm{HB})$	$1.04(6)$
Cidi Citer	1．516112）	B（i）． $\mathrm{B}(\mathrm{s})$	1．762 1141
Hill Hel）	1．7751131	8（7）－8（1）	1.750 （14）
Bil，Ho．l）	1．752（1．3）	B（7）－8（12）	1．76S（14）
H／I） HCH	1．754（1．3）	B（3）－H（38）	1.04 （t）
Hill BIS	1．774113）	$\mathrm{B}(\mathrm{K}) . \mathrm{B}(9)$	1.745 （14）
Hith miti	1．764（13）	B（8）－81121	1．784（14）
HiS）80．3）	1．771 113）	$\mathrm{B}(\mathrm{X})$－ $\mathrm{H}(88)$	1.13 （t）
$\mathrm{H}_{1} \mathrm{~S}$ H Hin）	1．760）（14）	$\mathrm{B}(4)-\mathrm{BClO}$	1.7311141
Hi？HiF\％	1．7n6）131	$\mathrm{B}(4) \mathrm{BH} 121$	1．772（14）
HiS）Hilli	1．7．10（15）	B（9）Hi4bi	1．20（6）
Hig Hish，	1．14（6）	Belot bell	1．777（14）
Hi？ $\mathrm{H}_{\text {（4）}}$	1．754（14）	B（10）B（1）	1．772（14）
	1．753613		1.15 （th）
His，Hix，	1．7（N）（14）	B4t1）812）	1．774（14）
B4．＇，11．1H1	1．10（b）	B（12）H（128）	1．0S（6）
H／di HISI	1.79×1141		

conformation of the pendant NEt, function in the |NMes|' salt, defined by the three $\mathrm{B}(1)-\mathrm{N}(2)-\mathrm{C}(i)-$ $\mathrm{C}(i 2)$ torsion angles. 73.4 (9). 176.2 (9) and $81.9(10)^{\circ}$ $(i=1-3)$. closely corresponds to one of the two distinct conformations observed in the. K ' salt.

There is. however, slight indication that the icosahedral B_{12} framework of the $\left|\mathrm{N} \mathrm{Me}_{1}\right|^{+}$salt is somewhat less distorted. Thus, the range of $\mathbf{B}-\mathbf{B}$ connectivity lengths determined herein is 1.738 (14)-1.796 (14) \dot{A}. c.f. $1.74-1.83 \AA$ for the K^{+}salt. This may be a consequence of the weaker polarizing power of the quarternary ammonium cation versus the group $1 A$ cation. and is consistent with less observed distortion in $\left|\mathrm{HNEt}_{3} \mathrm{I}_{2}\right| \mathrm{B}_{12} \mathrm{H}_{12} \mid$ (Shoham, Schomburg \& Lipscomb. 1980) than in $\mathrm{Cal}_{12} \mathrm{H}_{12} \mathrm{I}$ (Sointsev. Kuznetsov \& Ponomarev, 1976).
The $\mid \mathrm{NMe}_{4}{ }^{\dagger}{ }^{+}$cation has effective T_{d} point symmetry, and the conformation about each $\mathrm{N}-\mathrm{C}$ bond is close to staggered. There are no serious contacts within or between ions, and a crystal packing diagram, as seen along the a axis, has been deposited.

We thank the SERC for support.

References

Agafonof. A. V.. Bitiman. L. A.. Solinisev. K. A. Viniokleron, A. A.. Zhukova. N. A. \& Kuznetsov, N. T. (1982). Zh. Veorg. Khim. 27. 6, 7 -70.
Casfy. J. B.. Evans. W. J. \& Powkll W. H. (1981). Inorg. Chem. 22.2228-2235.

Fuller. D. J. \& Keppert. D. L. (1984). Inorg. Chem. 23. 3273-3274.
Gould. R. O. \& Taylor. P. (1483). Cil.C. Program for cryvallographic calculations. Univ. of Edinhurgh. Scottand.
Hiluty. T. \& Rudol.ph. R. W. (1979). Imorg. Chem. I8. 1106-1108.
Housecroft. C. E. \& Wade. K. (1983). Inorg. Chem. 22. 1391-1393.
JOHNSON. C. K. (1976). ORTEPII. Report ORNL.5138. Oak Ridge National Laboratory. Tennessce.
Miller. H. C. \& Muetterties, E. L. (1967). Inorg. Simh. 10. 88-41.
Shelorick. G. M. 11976). SHEL.X76. Program for crysial structure determination. Univ. of Cambridge. England.
Sileldrick. G. M. (1984). SHEL.Y84. Program for crystal structure determination. Univ. of Göttingen. Federal Republic of Germany.
Shoham. G.. Schomburg. D. \& Lipscomb, W. N. (1980). Cryst. Siruc\%. Commun. 9. $429-434$
Solntsev. K. A.. Kuznetsov. N. T. \& Ponomarev. V. 1. (1976). Ize. Akad. Nauk SSSR. Ser. Veorg. Lfater. 12. 1044-1047.

Extended Hückel Molecular Orbital Study of the Effects of Edge-bridging Hydrogen Atoms on the Lengths of Boron-Boron and Metal-Metal Bonds in Cluster Compounds, and the Crystal Structure of Benzyltrimethylammonium Octahydrotriborate(1-) \dagger

Gary F. Mitchell and Alan J. Welch•
Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ

Abstract

The origin of the lengthening of $B-B$ and $M-M$ ($M=$ transition metal) connectivities in borane and transition-metal cluster compounds as a consequence of edge H -bridging is traced, via EHMOFMO calculations on $\left[\mathrm{B}_{1}, \mathrm{H}_{13}\right]^{2-}$. $\left[\mathrm{Os}_{4} \mathrm{H}_{2}(\mathrm{CO})_{12}\right]^{2-}$. $\left[\mathrm{Re}_{3} \mathrm{H}(\mathrm{CO})_{12}\right]^{2-}$ and $\left[\mathrm{Re}_{3} \mathrm{H}_{2}(\mathrm{CO})_{12}\right]^{-}$, to asymmetry in the occupation of formerly degenerate orbitals of the cluster upon protonation. The unusual relative shortening of the bridged $\mathrm{B}-\mathrm{B}$ connectivities in $\left[\mathrm{B}_{3} \mathrm{H}_{\mathrm{B}}\right]^{-}$is confirmed by an accurate. low temperature crystallographic study of the ion as its $\left[\mathrm{PhCH}_{2} \mathrm{NMe}_{3}\right]^{*}$ salt. Crystals are monoclinic, space group $P 2, / c$ with four ion pairs in a cell of dimensions a $=11.225(4)$. $b=9.483(3), c=13.218(4) \AA, \beta=111.70(3)^{\prime} ; R=0.0569$ for 2903 data measured at 185 K . EHMO-FMO calculations show that the $B-8$ edge shortening in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$is strongly correlated with the asymmetric nature of the H-bridges, and that these two distortions are mutually selfregulating. A combined EHMO-FMO and MNDO study of the B-B edge protonation of 1,6$\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ suggests that the edge shortening which has previously been predicted may be incorrect.

It is widely held that the effect of a hydrogen bridge is to cause lengthening (by ca. $0.1-0.15 \AA$) of a $\mathrm{B}-\mathrm{B}$ or $\mathrm{M}-\mathrm{M}$ ($M=$ transition metal) connectivity in a polyhedral borane or transition-metal cluster compound. ${ }^{1-3 .+}$ This principle is now so well established that it has become fairly standard practice in X-ray crystallographic studies of such species to make use of the lengthening to assume H -atom positions when they are not directly located. ${ }^{3}$
Surprisingly, no theoretical explanation of the cause of this lengthening has. to our knowledge, ever been offered. One simplistic approach would be to invole polarisation of the electron density in a three-centre B-H-B or M-H-M bond towards the H atom. but this explanation fails to account for the known structures of apparent anomalies such as $\left[\mathrm{B}_{3} \mathrm{H}_{y}\right]^{-}{ }^{6}$ in which H-bridging is associated with shortening of the appropriate bond.

The structure of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$is particularly interesting in that. in addition to the $\mu-\mathrm{H}$ atoms residing on short $\mathrm{B}-\mathrm{B}$ connectivities. the $\mathrm{B}-\mu \cdot \mathrm{H}$ bond lengths are unusually asymmetric. Although both these features of the structure have been reproduced by high-level geometry-optimised molecular orbita! (m.o.) calculations.' no rationalisation has been advanced.

In this paper we use the results of extended Hüskel molecular orbital (EHMO) calculations to identify the cause of the general lengthening of $\mathrm{B}-\mathrm{B}$ and $\mathrm{M}-\mathrm{M}$ connectivities in clusters as a consequence of H -bridging. We also identify the asymmetry of the H-bridges in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right.$] as the origin of the unusual shortening of the bridged B-B bonds. Moreover, since the structure of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$was determined many years ago we have confirmed the important features of the structure by an accurate. low-temperature crystallographic study of the ion as a

[^3]different salt. Finally. we have critically reinvestigated [ria EHMO and modified neglect of diatomic overlap (MNDO) calculations] the $\mathrm{B}-\mathrm{B}$ edge protonation of closo-1.6-C, $\mathrm{B}_{4} \mathrm{H}_{6}$ Here an earlier MNDO study ${ }^{8}$ had predicted shortening of the protonated edge, and this unusual result had been explained by polarisation arguments.

Experimental

Symeses.-A number of salts of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$were prepared by the general method of reaction of $\mathrm{Tl}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{9}$ with the chloride or bromide of an appropriate cation. In a typical reaction $\left[\mathrm{PhCH}_{2} \mathrm{NMe}_{3}\right] \mathrm{Br}(0.6334 \mathrm{~g} .2 .75 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(3: 1$. $10 \mathrm{~cm}^{3}$) was added with stirring to $\mathrm{T}\left[\mathrm{B}_{3} \mathrm{H}_{8}\right](0.6739 \mathrm{~g} .2 .75$ mmol) in the same solvent mixture ($10 \mathrm{~cm}^{3}$). The precipitate of TIBr was filtered off and the filtrate evaporated in cacuo to afford $\left[\mathrm{PhCH}_{2} \mathrm{NMe}_{3}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ (1) as a colourless solid in almost quantitative yield (Found: C. 62.8: H, 12.65: N. 7.30. $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~B}_{3} \mathrm{~N}$ requires $\mathrm{C} .63 .0: \mathrm{H}, 12.7: \mathrm{N} .7 .35 \% \%$.

The compounds [$\left.\mathrm{NE}_{4}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ (2). [$\left.\mathrm{NPr}_{4}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ (3). and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{B}_{3} \mathrm{H}_{8}\right](4)$. were prepared similarly.
$X \cdot$ Ray Crystallography:-Numerous crystallisations of (I)(4) and of commercially-supplied [NMe_{4}] $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right.$] (5) were attempted. Although diffraction data were collected from the best samples of all species, those from (2)-(5) could not be either solved or satisfactorily refined because of poor crystal quality and'or disorder that could not be adequately modelled. Preliminary data for these salts are given in Table 1 .
In contrast, (1) forms as diffraction-quality crystals by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. A single crystal 10.4 $\times 0.4 \times 0.3 \mathrm{~mm}$) was mounted on a glass fibre with lowtemperature epoxy-resin adhesice and, after preliminary Weissenberg photography, slowly cooled to 185 K on an EnrafNonius CAD4 diffractometer fitted with a ULT-1 attachment.

Cristal data. $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~B}_{3} \mathrm{~N} . M=190.7$. monoclinic, $a=$ $11.225(4), h=9.483(3) . c=13.218(4) \mathrm{A}, \beta=111.70(3) .\langle=$ $1307.4 A^{3}$ by the least-squares refinement of 25 centred reflections. $14<0<15 . \lambda=0.71069 \mathrm{~A} . T=185 \mathrm{~K}$. space

Table i. Preliminary crystallographic data* for 12 -(5)

 for H atoms which have an arificial radius of 0.1 A for clarit!
group $P_{-1}^{2} \cdot c \cdot Z=4 \cdot D_{6}=0.970 \mathrm{~g} \mathrm{~cm}^{-3} \cdot \mu\left(\mathrm{Mo}-K_{1}\right)=0.49 \mathrm{~cm}^{-1}$. $F(000)=424$.

Dota collection and processing. $\omega 2 \theta$ scans in 96 steps with ω scan width $10.8+0.35 \tan \theta)$. Variable scan speeds dependent upon innial prescan. Graphite-monochromated Mo- $K_{3} X$. radiation. 4183 reflections measured $11<\theta<30,+h+k+1$ and $-h+k+11.3791$ unique data. $R_{\text {mets }}=0.0256: 2903$ data with $F_{0}>2.001 F_{0}$) retained. No detectable erystal decay or movement throughout the data collection period.

Siructure solution and refinement. Solved by direct methods (C and N atoms) and iterative full-matrix least-squares refinement and ΔF synheses (B and H atomst. All non- H atoms allowed anisotropic thermal motion. Hydrozen atoms freely refined with individual isotropic thermal parameters. Weighting scherme. $n^{-1}=\left[\sigma^{2}\left(F_{0}\right)+0.001128 F_{0}^{{ }^{2}}\right]: R=0.0569 . R^{\prime}=$ 0.0773. $S=1.396:^{\circ}$ data: variables ratio 13:1. Maximum residue and mınimum trough in final ΔF map 0.25 and -0.20 e A^{-3}. Coefficients for analytical approximations to the atomic scattering factor curves were those inlard in SHELX $76 .^{10}$ Computer programs used: CADABS. ' ${ }^{1 /}$ SHELX 84.' ${ }^{\text {SHELX }}$

[^4]76. CALC. ${ }^{13}$ and ORTEP.II ${ }^{14} \mathrm{Co}$-ordinates of refined atoms are listed in Table?.

Molecular Orhital Caliulations.-For EMHO calculations. locally modified version of ICON8.FMO" using the weighied $H_{1 ;}$ formula ${ }^{10}$ and orbital expenents and H_{11} values histed in Table 3 Orthegonalised A ce-ordinates of each of the medels used are in SUP 56667. For MNDO calcuiamons the package was used as supplied. ${ }^{17}$ Orbital plotting rio ORBIT ! ${ }^{\text {a }}$ and a locally modified version of PSI 77.19

Results and Discussion

Cristal Structure of $\left[\mathrm{PhCH}_{2} \mathrm{NMe} \mathrm{Me}_{3}\right]\left[\mathrm{B}, \mathrm{H}_{\mathrm{a}}\right]$ (1)- A perspectuve vies of an ion pair of (1) is shewin in Figure 1 which also shous the atomic numbering scheme adopted Bond lengths and angles in the $\left[B, H_{8}\right]$ anion only are given in Table 4.

The species crystallises as well separated ion pairs with no significani inter-ion contacts. A unit-cell packing diagram is given in SUP 5666 . The cation has effective C, molecular symmetr! and staggered conformations about all N-C bonds. Dimenstons within the cation are unexceptional.
The $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ anion of (1) is characterised b) the presence of two bridging hydrogen aloms. $\mathrm{H}(7 \mathrm{~B}$) and $\mathrm{H}(8 \mathrm{~B})$. lying within 0.1 A of the plane of the B_{3} triangle. The amon has appronmate

4：0m	1	$\stackrel{\square}{ }$	：	fiom	\checkmark	v	$=$
\checkmark	O． $\mathrm{KO}^{-1020103}$	$01+891111$	$0 \leq 221191$	H： H_{1}	0.91 .415	0.318 del 191	0．6159131
Cil	0．59388（13）	$0.2001+3141$	Ox－90612）	$\mathrm{H}_{1}{ }^{-2}$	0．89：318：	$0.21-319)$	068：8115，
Cli	0．51： 081141	0134 5101	0 6xis 59，131	H／81）	0．902 311x；	02.17017	04547181
（1．）	0.55524161	$1002=50 \times 161$	0． $59.991+1$	Hix：	0.984 （18）	$0: 2888191$	0．54：2151
Clij	0.07979161	－0．029 491161	0：8：8513）	H_{1} \＆ I_{1}	0×8831101	$0.2+10001$	04854141
Cis）	$0.76158(19)$	$0.029: 64151$	0.744 4S1111	H：911	$0.66011: 81$	0.2806 6r29	0 ＋45＋ 1151
（10）	0.71970121	9）15：5？131	$06: 348101$	H192）	$06.0+1161$	0129×301	$0.4 \leq 39143$
C（T）	$0.809: 5131\}$	0.20497151	0.6 .0002111	H931	0.68 .4 （20）	0．143131	0.1062181
C（8）	$0.90385(16)$	0．247 43191	0.49113141	Hill）	$0.9308(19)$	0.00031211	0.594×181
C（9）	0.67854161	0.18650×221	$0.43 \leq 85131$	Hila	0.777 （418）	－0．0364221	0.5574131
Cill	0.84235181	0.014 40（16）	0.532260151	H（13）	0．845 8（20）	－0．0130224）	$04860.20)$
B（1）	$0.29978(16)$	0.12904211	0．897 78115）	H11B）	$0.1501(!?)$	0.03891201	0.9438151
$B(2)$	$0.133: 91171$	$0.141=31201$	$0.86806016)$	$\left.\mathrm{H}_{2} 2 \mathrm{~B}\right)$	$0.3555(21)$	$0.2213)$	0.9112191
B（3）	$0.192+4191$	$00909: 1191$	0．76：211141	$\mathrm{H}_{1} \mathrm{BB}_{1}$	$0.0850 .1 ?$	0.0524611	$0.3706(15)$
Hill	0.5653141	0.1781117	0．59531131	$\left.\mathrm{H}_{1}+8\right)$	$0.0 \times 10 \times 19)$	0.238 3こ4）	0.84711881
H_{12}	$0.4 \div 5119)$	0.1662191	$006: 31151$	H_{1} ：B，	0.164111^{-1}	0.1685×201	$0.08985!51$
H（3）	0.4995161	－0．01 3191	$0: 9 ? 31141$	H （6B）	$0.1 \leq 52021$	－0．0．0．31	0． 3 ？ 31211
Hi＋1	$0.90: 9161$	－0．111 3.201	0.5357151	$\mathrm{H}^{*}{ }^{-8}$ ，	0214 m2？	016841231	$0.4 \leq 91191$
$\mathrm{H}(5)$	0．84：01\％）	0.0080×91	9．：014151	H：3B1	Q．29131	0082131	0.79791231

Table 3．Parameters used in EHMO calculations

Orbital	$H_{1,} \mathrm{CV}^{\prime}$	\％	\vdots	＇：	\therefore
H11．1	－1：00	1.0			
BiEs）	-1520	1.30			
Bupl	－ 8.50	130			
Cils	-21.40	1.6 .5			
Clan	－11．40	10.5			
Of：s）	－ 3.2 .30	ここ：			
O（zp）	-14.90				
Ossdy	-12.42	5.0 .50	2.117	11．5680	0.5885
Osibsi	－10．36	2.450			
Os（op）	－ 5.23	2.286			
Re（Sd）	－12．06	5.343	2．277	0．606：	0.5910
Re（0．s）	－9．36	2．398			
Reropl	－ 5.96	2.372			

$C_{2,}$ symmetry about the unique boren B ill．The imporiant results of the structure determanation in the context of our interest in the effects of H －bridging are that fit ihe H －bridges are markedly assmmetric．and $f i i$ the bndged $B-B$ bonds． $\mathrm{B} 11-\mathrm{Bi} 2) \quad 1.760(3)$ and $\mathrm{B}(1)-\mathrm{B}(3) 1.77(3)$ A．are boin sutsianially shorter than the unbridged one．E（J）B（3） 1．8（4）3）A．

The C_{2} ，arrangement ill of $\left[\mathrm{B}_{3} \mathrm{H}_{3}\right]^{-}$has been shown by geometry－oplimised ah ininom．o．calculations to be only ia． 4 WJ mol ${ }^{-1}$ more stabie than an alternative monubridged C_{1} form ills．and the equivalence of all eight hydrogen aloms in solvtion． at least on the n．m．t time－scale．is well decumented．${ }^{20}$ Such a small energy difference is well within the normal range of intermolecular forces in the solid state．and thus．whilst an earlier ${ }^{\circ}$ crystallographic study of $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ as its $\left[\mathrm{H}_{2}\right.$ ． $\left.\mathrm{Bi} \mathrm{NH}_{3} \mathrm{I}_{2}\right]^{\circ}$ salt also indicated the dibridged C_{21} structure．the monobridged form may yet be characierised by X－ray diffraction．

The structures of a number of derivatives of $\left[\mathrm{B}_{3} \mathrm{H}_{2}\right]^{-}$have been determined in this laboratory and elsewhere．Examples exist of mono．${ }^{21,22}$ and di－bridged ${ }^{23}$ forms and．in addition． some siructures are found to be best described as intermediate， having one full and one partial hydrogen bridge．${ }^{24-26}$ Boron－ boron bond lengths for these derivatives are given in Table S ． The pattern which clearly emerges from this compilation is one of H －bridging being associated with the shortest $\mathrm{B}-\mathrm{B}$ connect－ ivity，and this is fully consistent with the optimised siructures for
（I）

（11）

4
\vdots
1
$8+$

（III）
$\left[8, H_{s}\right]$ in mono－and di－bridged forms of Nckee and Lipsiomb．

In $11, \mathrm{Hi}^{-} \mathrm{Bi}$ and H SBI each bridge their respective $\mathrm{B}-\mathrm{B}$ connectivities asymmetrically，being 1.38 and 1.36 ．from $\mathrm{B}(1)$ ． and 1.12 and 1.0 ？ 4 from $B(2)$ and $B(3)$ ． $1.1 .05-1.17$ A for the sin terminal $\mathrm{B}-\mathrm{H}$ hond lengths．To accommodate the relawely shor： $\mathrm{Bi}, 2^{2}-\mathrm{H}_{1}-\mathrm{B} .3 \mathrm{~B}$ i honds the H atoms terminal to Bi I and Bi_{i} are tent iowards each other，resulting in aarrower H ：
 affords the extreme vies of the $\left[\mathrm{B}_{3} \mathrm{H}_{\mathrm{g}}\right]$ anion 3 s ：llli．an adduci belueen eclipsed $\left[\mathrm{B}_{:} \mathrm{H}_{\mathrm{A}}\right]^{-}$and angular $[\mathrm{BH}]^{-}$．the latier approaching along one of the C ：axes of the former to make only two short B－H zoniacts．Although this simple descripuon is in accord with the relative charges salsulated：－ for the two kinds of boron atom it dees not easily lead to an understanding of the relative lengths of bridged rersus unbridged $\mathrm{B}-\mathrm{B}$ bonds．

Therefore we have adopted an aliernative method of fragmenting the $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$ion to understand the effects of H ． bridging．and have used the same approach for other bridged borane and transtion－metal clusters，as described in the follow ing section．
．Molecular Orhiral Calculations．－To rationalise the con－ sequences of H －bridging on $\mathrm{B}-\mathrm{B}$ and $\mathrm{M}-\mathrm{M}$ lengits one must

Table S. Buron buron distances A, A in $[B, H,]^{-}$and is dernatices $[B, H . X]$ -

V	Bridged B-B	Ints:mediate B-B	Untridged B-B	Ref
\% 0	$1-511$		1531. 18001)	21
\CBH.	1. ${ }^{18171}$		1.533?1.1.840k:1	こ
NCB, H - or CNB, H	1:10.101		1.304101.1313191	\because
	: 151101		1.51510).1.353111	
VCAgCNB, H:				:2
	1.683:24,	1:15, 2],	1.8091121	
$\backslash \mathrm{H}_{3}$	1. - $^{(4051}$	1 susiol	1.320×61	I4
\checkmark CS	1 -otsi	$1^{-0.501}$	1.80: 1.51	: 5
\cdots CSe	1. 6.3681	! -nsul	1.94(8)	35
$\mathrm{CH}_{\text {P }} \mathrm{PP}_{5} \cdot$	1.76891	1.29591	1.81699)	36
H	177		1.50	6
H			1.304,31	$\stackrel{i}{2}$
Cl:	1. $.^{-}+161.1 .203101$		1.804131	23

(IV)

(V)
(VIf)

Figure 2. Some examples of clusters in wheh H-bridging is associated with a lengthening of the bridged bond (distances in A)
consider melecules in which the presence or absence of H . bridges represents the only difference between otherwise equivalent connectivities. Thus. although the bridged conneclivity of (II) is shorter than the unbridged connectivities, this species is not a strictly valid example of a structure in which H.
bridging can be said to be associated with a difference in edge length. $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$in the $\mathrm{C}_{2 \text {. }}$ form (1) is a suitable candidate. whose X-ray siructure. confirmed above, shows that H -bridging is associated with shartaning of the bridged B-B bonds.
In contrast. $\left[\mathrm{B}_{1}, \mathrm{H}_{1},\right]^{-\quad}$ (IV) displays: ${ }^{8}$ tengthening of the bridged connectivities relative to otheruise equivalent ones (Figure 2) Many iransition-metal cluster compounds also have edge-bridging H atoms whose effect seems to be a lengthening of the bridged bond, and Figure ? shows line diagrams and important bond lengths averaged over equivalent connectivates where appropriate) for some lypical examples. Hydrogen atoms were not located in crystallographic studies of
 (CO1,: $]^{-2}$ (Wil)," but analy sis of the disposition of the carbonyl ligands allowed confiden: prediction of the H -atom location(s) in each case. These molecules are sultable for this sludy since. again. bridged and unbridged bonds are otherulse chemically equivalent.
In all cases we have approached the problem by considering the perturbation of a high-symmetry anion as a consequence of protonation. For example, in the case of (1) we have doubly edge-protonated the $D_{3 n}$ species $\left[B_{3} H_{6}\right]^{2}$ and traced the origins of is subsequent deformation. This approach is particularly rewarding in a comparison of (I) with (VI), since the anions $\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{3-}$ and $\left[\mathrm{Re},(\mathrm{CO})_{12}\right]^{3-}$ are composed of isolobalisoelectronic C_{2} : $\left.\mathrm{BH}_{2}\right]^{-}$and C_{4} : $:$ RelCO) $)^{\prime}$ fragments, yet double protonation of the former trianion results in B-B bond shortening whilst similar protonation of the latter trianion results in $\mathrm{Re}-\mathrm{Re}$ bond lengthening.
Finally, we have re-examined the B-B edge protonation of

(vill)
closo-1.6-C: $\mathrm{B}_{4} \mathrm{H}_{\mathrm{b}}$ (HIll) at the (geometry-optimised) MNDO level of calculation. This system is less altractive than those discussed above in that no experimental proof of the effest of protonation is available to check the validity of the theoretical arguments. It nevertheless aroused our interest since DeK oek and Jasperse ${ }^{\beta}$ report that symmertic \mathbf{H}-bridging is predicted to result. unusually. in a contraction of the bridged $\mathrm{B}-\mathrm{B}$ edge.

$$
\left.\left[B_{: 1} H_{11}\right]^{4}\left(C_{s 1}\right)-2 H^{+} \longrightarrow\left[B_{1} ; H_{i 3}\right]^{:-}\left(C_{1}\right) \quad 11\right)
$$

The orbitals of the ; $\mathrm{B}_{4}, \mathrm{H}_{1}$, ; fragment have been described previcusly. ${ }^{3:}$ A partial interaction diagram for equation (11 is shown in Figure S. For the sake of clatit! consurvations are only draun if the coefficient of the frasment molecular ortitalif mo.) in the m.o. is >0.3. Interfrigment veriap integrals >02 are $<\Sigma E_{1} \Sigma_{v}>0.4958 .<54_{1} \Sigma_{p}^{;}>0.2741 .<2 E_{1} \Sigma_{0}>0.2634$. $<2.1_{1} \Sigma_{q}>0.3596$ < $1 E_{1} \Sigma_{0}>0.2951$. and $<1 A_{1} \Sigma_{g}$ $=0.3099$.

On passing from $C_{1,}\left[B_{1}, H_{11}\right]^{4}$ to $C_{1}\left[B_{11} H_{13}\right]^{2}$ the f.m.o.s of the cage which are of A_{1} symmetry interact with the \sum_{0}^{-} combination of the $[\mathrm{H} \cdots \mathrm{H}]^{\text {: }}$ fragment The degeneracies of the E_{1} pairs of $\left[\mathrm{B}_{1}, \mathrm{H}_{1},\right]^{4}$ are lifted with that component having a nodal plane close to the protons being effectively unaltered in the dianion. The other component interacts with $\Sigma_{:}$to afford A^{*} m.o.s. The E_{2} orbitais of $\left[B_{1,} H_{1}\right]^{\text {c- effecrively }}$ have zeto net overlap with the $[\mathrm{H} \cdots \mathrm{H}]^{:}$group orbitals since the protons are close to one of their nedal planes. Figure 3 clearly show's a three-vrbital interaction with components of $5 E_{1}$ and $3 E_{2}$ miting with Σ_{0} to give the occupied m.o.s 6.4° and 5.4 in $\left[B_{1}, H_{13}\right]^{*}$. The strongly antibonding combination 10.4^{-} is high lying and uncweupied. The $\leq E_{1}$ and. to a lesser extent. the $\therefore E_{1}$ orbital of $\left[\mathrm{B}_{12} \mathrm{H}_{1,}\right\}^{4}$ are localised on. and are outpointing from. the peniseonal pulyhedral face. ${ }^{3}$:

Examination of the cage fmo occupations in the dianion reveals the essential reason for the relative lengthening of the bridged connectlities $\mathrm{Br}(1-\mathrm{B}(8)$ and $\mathrm{Bi} 101 \mathrm{~B}(11)$. Ocoupations of all the prevously filled orbitals are >1.8 e except for 6.4 , (14.5eland one component of $\leq E_{:} 11.15$ el Deaccupation of the former would not be expected to reduce the symmetry of the ; $B_{i 1}$; fragment in the dianion. In contrast. asymmetris xecupation of a formall: equally sceupled E_{1} pair must lead to a molecular fahn-Teller disturtion. The orbitals $\leq E_{1}$, the highest eccupied molecular orbitals (h.om.o.s) of $\left[B_{11} H_{11}\right]^{4}$. are drawn in Figure 4. The component. (b). which becomes preferenially decocupied in $\left[B_{1}, H_{1},\right]^{\text {:- }}$ is π-bonding along $\left.\mathrm{B}_{1} 7\right)-\mathrm{B}(8)$ and $\mathrm{B}(10)-\mathrm{B}(11)$ and π-antitonding between $\mathrm{B}(7)$ $B(11)$ and $B(8) \cdots B(10)$. The effect of its deoccupation will clearly be to lengthen the former pair of connectivities relative to the latter pair, and this is in full accord with the structure of (IV) determined crystallographically. ${ }^{28}$

$$
\left[\mathrm{Os}(\mathrm{CO})_{1: 2}\right]^{\alpha}\left(\mathrm{T}_{d}\right)+2 \mathrm{H}^{-} \rightarrow \underset{\left[\mathrm{Os}_{2} \mathrm{H}_{2}(\mathrm{CO})_{12}\right]^{2 \cdot}\left(D_{2 d}\right)}{ }
$$

Interaction diagrams for the protonations (2)-44) are very crouded due to intense concentrations of f.m.o.s and m.o.s

Figure 3. Interation diagram for the double protorision of $\left[B_{1} H_{1}\right\}^{*}$. Onty filled orbitals of this and the produc: $\left\{B_{:}, H_{1,}\right\}^{2}$ are showntet $=1.60=10^{: *} \mathrm{~J}$
arising from the d orbinals of the transition-metal atoms. and are therefore largely uninformative for the present purposes. However. an understanding of the observed lengthening of the bridged Os-Os bonds relative in unbridged ones in (VIl) is afforded. agas. by following the occupations of the f.m.o.s of the tetra-anion as it is protonated.

Upon simultaneous Osi 1 -Osi2) and Ost3-Ost4) edge protonation the f.m.o.s of $\left[\mathrm{Os}_{4}\left(\mathrm{COI}_{1}:\right]^{4-}\right.$ that are devicupied by $>0.2 \mathrm{e}$ are one component each of $6 E$ ioccupation $1.79 \mathrm{e}:$ IIT: (1.02 e). and $7 E$ (second h.om.o.. 1.37 e . All these fragment orbitals have $>? 0^{\circ}$ ometal sharacter.

Viens of the tetra-anion fmeos for which decacupation is the mosi marked are presented in Figure 5 |at is the actue component of ${ }^{\prime} E$ and (d) that of $12 T_{2}$. Both are strongly σ bonding along the Osil1-Osi2) and Os(3-Ost (4) edges. and consequently their demespation would be expected to result in the bridged-bond lengthening that is abserved ${ }^{31}$ In iontrast. pont-group symmetry demands that the other component of ?E. Figure $S(h)$. and ather components of 127. . he noded at $\mu_{1.2} \cdot \mathrm{H}$ and $\mu_{3.4} \cdot \mathrm{H}$ positions. and must therefore remain fully ociupied in the protenated complex.
$\left[\operatorname{Re}_{j}\left(\mathrm{CO}_{1}:\right]^{3}\left(D_{3 n}\right)-\mathrm{H}^{+} \longrightarrow\right.$
$\left.\left[R_{e}, H_{1}(C O):,\right]:\left(C_{2}\right) \quad 13\right)$
A single μ - H atom can only interact by symmetry with those f.m.os of $\left[\mathrm{Re}_{\mathrm{l}}\left(\mathrm{CO}_{12}\right]^{3}\right.$ that are of A_{1} symmetry and those components of E pairs that are not noded through the H -atom position.

EHMO calculations show that the only filled f.m.o. of the trianion whose accupation changes by $>0.2 \mathrm{e}$ on protonation of the Re(2)-Re(3) edge is the appropriate component. Figure $6(a)$, of $1 S E$. the occupation decreasing to 1.30 e . The $1 S E$ orbitals. which lie only slighly below $10 A_{1}$ ithe h.om.o. of [Re_{3} -$\left(\mathrm{CO}_{1}\right]^{3-1}$, are plotted in Figure 6, with (a) relevant to (V). The component in Figure $6(\omega)$ is strongly σ-bonding belween Re(2)

1022

Figure 4．Compments of the $\leq E_{1}$ set of $\left[\mathrm{B}_{1}, \mathrm{H}_{11}\right]^{4}$ ．whewed from a point direcily above the open pelyhedral face．Only B atoms in the unen face．and no H aloms．are shown

Table 6．Varmation of the $\left\{2 E(a) \Sigma ;\right.$ and $: I E(b) \Sigma_{*}$ ：overlap tniegrals with shif io of the $\mu-\mathrm{H}$ atoms in $\left[\mathrm{B}, \mathrm{H}_{4}\right]$

J A	0.00	0.20	0.40	0.60
こEが，－	10．39：3	1）．4511	10．490：	0.5050
$\therefore E(b)=$	0．${ }^{-12}$	9.0558	0．5704	0．4：70

and $R e(: 1)$ ，and therefore single protonation of $\left[\mathrm{Re}_{3}(\mathrm{CO})_{1}\right]^{3-}$ results in the lengthening of the bridged bond that is observed ersstallogranhicalls：${ }^{\circ}$
$\left[\mathrm{Re}_{3}\left(\mathrm{COI}_{1}\right]^{3-}\left(D_{3 n}\right)-2 \mathrm{H}^{\cdot} \longrightarrow\right.$

$$
\begin{equation*}
\left[\mathrm{Re}_{3} \mathrm{H}_{2}\left(\mathrm{CO}_{12}\right]^{\prime}\left(C_{2}\right)\right. \tag{t}
\end{equation*}
$$

The only orbitals of $\left[\mathrm{Re}_{1} 1 \mathrm{CO}_{12}\right]^{3-}$ that undergo a substanial change in occupation upon double protonation ［Rellt－Rei2）and Re（1）－Re（3）edges］are 10．4，thomo．． $2.00 \mathrm{e}-1.60 \mathrm{e}$ ）and $1 \leq E$（second h．om．o．． 2×2.00 $\mathrm{e} \longrightarrow 1.63 \mathrm{c}$ and 1.01 ef ．Again．reduction in fragment symmetry will only result from the latter uneven occupation． This time the component of $15 E$ which becomes the less occupied is Figure $6(b)$ ．This orbtal is σ－bonding in character along the Reilt－Rei？）and Re（1）－Re（3）bonds．and is π－ antibonding belween Rei2）and Rei3）．Consequently．the effect of protonation of the $\operatorname{Re}(1+\operatorname{Re}(2)$ and $\operatorname{Re}(1)-\operatorname{Re}(3)$ adges will be to cause their lengthening relative to the unbridged Rel：－Re（3）．as determined by the crystallographic study ${ }^{31}$ of NO．

$$
\begin{equation*}
\left[B_{3} H_{0}\right]^{3-}\left(D_{3 k}\right)-2 H^{-} \longrightarrow\left[B_{3} H_{5}\right]^{-}\left(C_{2 .}\right) \tag{5}
\end{equation*}
$$

A partial interaction diagram for this system．in which the μ ． H aloms simmetricall bridge the $\mathrm{B}(1)-\mathrm{B}(2)$ and $\mathrm{B}(1)-\mathrm{B}(3)$ connectivities，is given in Figure ？．Again fim o．s and moos are linked only if the soefferent of the former in the latter is >0.3 ． The interfragment overlap integrals are $<\Sigma E \Sigma ;>0.3923$.
 $<1 E \Sigma^{*}>0.2458$ ．and＜14 $\Sigma_{9}>0.5559$

On passing from $D_{3 n}\left[B_{3} H_{0}\right]^{3 /}$ to $C_{2 r}\left[B_{3} H_{3}\right]^{-}$［equation （ ς_{1} ］there is substantial mixing of the $2 E$ and 2.4 f．m．o． 10 aflord 6.4° ． 5.4^{\prime} ．and $3.4^{\circ} \mathrm{m}$ ． o ．the last iwo also involving large components of the symmetric and antisymmetric $[\mathrm{H} \cdots \mathrm{H}]^{2-}$ group orbitals respecturely．The $2 E$ f．m．o．s are sketched in Figure 8．Note their resemblance to $1 S E$ of $\left[\operatorname{Re}_{3}(\mathrm{CO})_{12}\right]^{3-}$ ． （Figure 6）．

Inspection of the occupancies of the f．m．o．s of $\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{3 \cdot}$ in ［ $\left.\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$reveals that symmerric H－bridging causes both components of $2 E$ to be substantially deoccupied，component （a）falling to 1.30 e and（ b ）to 0.94 e ．Clearly，the consequence of this asymmetric occupation would be to cause the bridged connectivities to lengithen relative to the unbridged one，as in the related species $\left[\mathrm{Re}_{3} \mathrm{H}_{2}\left(\mathrm{CO}_{12}\right]^{-}\right.$．This is in disagreement with

Figure 5．Three－dimensional plots of selecied erbitals of ！Os © $\left.\mathrm{CO} 1_{1,2}\right]^{\circ}$ ：Ost 11 and Osi 2 iare on the upper edere of the teltahedion． and Os（3）and Ost4）are on the lower edge．（4）．（h）ion．ponents of ${ }^{*} E$ ： （i）one somponent of $12 T$ ．
the observed asymmetry in the $B-B$ lengits determined in the above ors stallocraphic study
Houever．a fundamental difterence berueen the X．ras determined structure and the theoretical madel used atone is that in the former the $\mu \cdot \mathrm{H}$ noms elearl do not symmetricall bridge the $B-B$ edges from the form of the $=E$ orbitals in Figure 8 it is apparent that movement of the $\mu \cdot \mathrm{H}$ dinms parallel to the bridged edges．touards $B(2)$ and $B(3)$ ，will eesult in increasing interaction beineen $\Sigma_{;}$and $I E^{-}(\alpha)$ at the expense of the I： $2 E^{\prime}(b)$ interaction．This is confirmed by the relevant overlap integrals in Table 6．where σ is the shift of the $\mu \cdot \mathrm{H}$ atoms from their symmetric positions．
Increasing interaction of the ifilled）$\sum E^{\prime}(a)$ orbital of $\left[\mathrm{B}_{3} \mathrm{H}_{0}\right]^{\text {s．}}$ with the（empty）$\Sigma_{:}$group orbital of $[\mathrm{H} \cdots \mathrm{H}]^{\text {：}}$ leads to the decreasing occupation of the former in the molecule． and a switch in the relative occupations of components (a) and （b）would lead naturally 10 bridged bond shoriening compared to the unbadged bond．Figure 9 plots the f．m．o．occupation of $2 E$ of $\left[\mathrm{B}_{3} \mathrm{H}_{0}\right]^{3-}$ in $\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{-}$tersus σ ．The switch occurs at σ ca． 0.6 A．which corresponds to $\mathrm{B}(1)-\mu \cdot \mathrm{H}=1.74$ and $\mathrm{B}(2) \cdot \mathrm{B}(3)-\mu \cdot \mathrm{H}=0.94 \mathrm{~A}$ ．Although the discrepancy in $\mathrm{B}-\mu \cdot \mathrm{H}$ lengths here is obviously greater than that actually observed，the

 ihe basal atums

Figure 7. Inceraction diagram for symmeine $\mathrm{H} \cdot \mathrm{brdging}$ in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$] Only filled $\left[\mathrm{B}, \mathrm{H}_{3}\right]^{3}$ and $\left[\mathrm{B}_{3} \mathrm{H}_{1}\right]^{-}$orbutals are shoun
correlation that is suggested between the asymmetry in the H bridges and the asymmetry in the B-B iengths is in yualitutite agreement with that noted in the experimentally determined structure. Given the inadequacies of the EHMO meihod and the assumptions in the models employed in the calculations. imprecise agreement is not serious. One important point is that we have used an equilateral B_{3} triangle. Once the triangle begins to diston to C_{2}, isosceles $[B(1)-B(2), B(1)-B(3)<B(2)-B(3)]$ the B_{1} f.m.o. derived from $2 E(\alpha)$ lies a: higher energy than the B_{2} orbital derived from $2 E(b)$ and would therefore have reduced overlap with $\Sigma_{;}$. reducing the driving force towards further asymmetry in the H -bridges. Thus, not only are the two notable asymmerries in $\left[\mathrm{B}_{3} \mathrm{H}_{0}\right]^{-}$($\mathrm{B}-\mathrm{B}$ connectivities and the position of the $\mu \cdot \mathrm{H}$ atoms) highly correlated. but the) are also mutually self-regulating.

Finally. we note that shifting the $\mu \cdot \mathrm{H}$ atoms $10 \sigma=0.6 \mathrm{~A}$ in $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]^{-}$also results in a difference in occupation between the components of $1 E$ of $\left[B, H_{6}\right]^{3-}$. These are essentially $B-H_{\text {tetmi }}$

(a)

(0)

Figure 8. The $\mathcal{=} E$ orbiats of $\left[\mathrm{B}_{3} \mathrm{H}_{0}\right]^{3}$. with H aioms omited
bonding orbitals. and are sketched in Figure 10. Component (h). antibonding be:ween the : $\mathrm{B}(2) \mathrm{H}_{3} ;$ and ; $\left.\mathrm{B}_{1} 3\right) \mathrm{H}_{3} ;$ fragments. becomes partially decoccupied (i.73 e) at $\sigma=0.6 \mathrm{~A}$ [f . componens ($a, 1.99 \mathrm{e}$]. This specific decccupation of $1 E(b)$ will tend to oppose the relative shortening of the $\mathrm{B}(1)-\mathrm{B}(\Omega)$ and $\mathrm{B}(1)-\mathrm{B}(3)$ bonds upon μ - H shift, but its eflect in this sense will be relatively small. It dees, however, nicely account for the bending towards each other of the H atoms terminal to $B(2)$ and $B(3)$ that is observed in the crystallographic stud).

$$
1.6-C_{2} B_{4} H_{0}\left(D_{ \pm N}\right)-H^{-} \longrightarrow\left[C_{:} B_{4} H_{-}\right]^{-}\left(C_{2}\right)(6
$$

Dekock and Jasperse" have carned out a theoretical study of this edge protonation. They report. using geometry-optimised MNDO calculations. that $\mu_{2.3}$ protonation of $1,6-C_{2} B_{4} H_{0}$ [equation (6i) results in a structure in which the bridzed $B-B$ connectivity 1166 A) is shorer than the adjacent [$\mathrm{B}(3)-\mathrm{B}(4)$ and $\left.B(2)-B_{1}(5) .1 .84 A\right]$ and opposite $[B(4)-B 151.1 .91 . A]$ edges. and they discuss this unusual result in terms of the specific interaction between $\mathrm{H}^{\text {- }}$ and the h.o.m.o of 1.6-C: $\mathrm{B}_{4} \mathrm{H}_{0}$ (B_{1}. bonding with respeet to all $\mathrm{B}-\mathrm{B}$ edges).

EHMO-FMO calculations on $\left[\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}-\right]^{\circ}$ show that the only f.m.o.s of $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ whose ocrupancy changes by $>0.05 \mathrm{e}$ on $\mathrm{B}(2)-\mathrm{B}(3)$ edge protonation are $1 B_{1}$, (the h.o.mo., occupancy 1.01 e) and component (a) of $1 E_{1}$ (occupancy 1.87 e).

The $1 E_{v}(a)$ orbital is sketched in Figure $11(a)$. It is composed of $B(2 s)$ and $H(1 s)$ character, being net $B-B$ non-bonding but bonding with respect to all B-H lermanal $^{\text {interactions. Importanily }}$ it is bonding between $B(2)$ and $B(3)$. However, it's deoocupation in the protonated complex is small compared to typical deoccupations noted above, and we would therefore expect a slight lengthening of $B(2)-B(3)$ [and $B(4)-B(5)]$ upon edge protonation. Since this is the opposite prediction to that of

Figure 9. Changes in the occupation of the $2 E$ urbulats of $\left[\mathrm{B}_{3} \mathrm{H}_{n}\right]^{3}$ in $\left[B_{3} H_{3}\right]^{\circ}$ as a function of σ. the shift of the $\mu-\mathrm{H}$ atoms of the titier

Figure 10. The 15 arbitals aif $\left[\mathrm{B}_{3} \mathrm{H}_{3}\right]^{\text {t- }}$

Dekock and Jasperses we have reinestigated both $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{0}$ and [C: $\left.\mathrm{B}_{4} \mathrm{H}.\right]^{\text {r }}$ ria M NDO calculations. Note that in our calculations $C_{:}$symmetry only was imposed on both species.

Optimised orthogonalised A co-ordinates for both species are in SL'P 56667. We sgree with Dek onh and Jasperse that the apparent equilitrium geometry of the protsnated form is asymmetric with $B(3)-B(3)<B(3)-B(4) . \quad B(3)-B(5)<$ $\mathrm{B}(4)-\mathrm{B}(\mathrm{s})$ and we reproduce their hond lengths almost exatily. However. the geometry-optimised ealculation on $\mathrm{C}_{:} \mathrm{B}_{4} \mathrm{H}_{3}$ comited from the work of Dekwok and lasperse ${ }^{3}$, affords an equilibnum geometry a hich is similarly assmmetric. hut more so Sperificall. in this species $B(2) B(3)=1.52$. $B(i)-B(4)$. $B(2) B(S)=1.94$ and $B(4+B(5)=1.90 .4$.
The compound $1.6-C_{:} B_{1} H_{0}$ is known ${ }^{3}$ to hate a $D_{A *}$ (fseudo-metahedralt geometry. Clearly the MNDO-optimised structure in which only C_{2} symmatry is imposed is ineorrect. the reasons for this are well dow umented. " 30 Unfortunately Dekoik and Jasperse have compared the $C_{\text {re }}$-uptimised structure of $\left[\mathrm{C}, \mathrm{Ba}_{4} \mathrm{H}_{-}\right]^{\circ}$ with a D_{44}-Optimised structure of $C_{2} B_{4} H_{0}$. Given the inadequacies of the MNDO method for melecules with multicentre bonding a comparison between optimised structures so derived is clearly inappropriate since the structural "changes" in $\left[\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{-}\right]$' are largely allributable 10 the decreased 5ymmetry constraints. However, it is still valid to compare the structures of neutral and protonated analogues optimised by MNDO in the same point group. In this case the only real structural change is a lengthening (0.14 A) of the protonated B-B edge.

Reduced overiap pupulations in [$\left.\mathrm{C}, \mathrm{B}_{4} \mathrm{H}.\right]^{-}$calculated by the EHMO method are shown in Figure $11(b)$. They are clearly consistent with $B(2)-B(3)$ teing the longest $B-B$ connectivity in the protonated form. In $C_{2}\left[C_{2} B_{4} H_{3}\right]^{\circ}, B(2)-B(3)$ is no longer sy mentry-equivalent to $B(4)-B(5)$. but this is not reflected in the

Figure 11. (a) Component $1 E_{0}$ (u) orbital of $C_{:} B_{4} H_{6}$. iA: reduced overlap populatoons in $\left[\mathrm{C}: \mathrm{B}_{\mathbf{i}} \mathrm{H}-\right]^{\text {P }}$ [the $\mu \cdot \mathrm{H}$ atom brides the $\mathrm{B}(2)-\mathrm{B}(3)$ hond): (c). Id lineas cembinations of $\left(E_{0}, a\right)$ and 2.1_{1}, of $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{0}$
simple depopulation analysis reported above. which suggests only a rectangular and net a trapezoidal distortion of the B_{4} square.

The overlap populations of $\left[\mathrm{C}_{;} \mathrm{B}_{4} \mathrm{H}_{-}\right]^{-}$are best understood b) constructing localised orbitals from the m.o.s of $C_{:} B_{4} H_{0}$. On fassing from $D_{4 n} C_{2} B_{4} H_{9}$ to $C_{21}\left[C_{2} B_{4} H-\right]^{*}, 1 E_{4}(0)$ and $2 A_{19}$ of the former mix to produce in-phase and out-of-phase (. A_{1}) icmbinations. Figure $1 / f(c)$ and (d) respectively, of which only the former is subsiantiall! deoccupied upon $B(?)-B(3)$ edge protonation.

Conclusions

Structures are known for a number of clusters in which H bridging is the only difference between otherwise shemically equivalent connecivitues. In all of these except $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$. H-bridging is symmetric and is associated with relative lengthening of the bridged bond. We have shoun that this results from an unequal necupation of degenerate urbitals* of the deprotonated form upon protonation.
In $\left[\mathrm{B}_{3} \mathrm{H}_{8}\right]$ the H -bridges are markedly asymmetric. Asymmetric double pretonation causes a reversal in the dececupations of the $2 E$ orbicals of $\left[\mathrm{B}_{3} \mathrm{H}_{6}\right]^{3-}$ ielative to that if the bridges were symmelnc. The reversal results in bridged bend shortemng.
The last majorisy of dusters containing H-bridges unfortunataly do not contain connectivities whose onl difference is the presence or absence of the bridge. and so lack a suitabie built-in reference. In such cases it is clear that one cannol be certain that any observed differences in the lengths of bridged and unbridged bonds are targely due to the H-bridge. Consequently the value of the assignment of $\mu \cdot \mathrm{H}$ atom positions on

- In some cases. e.g $\left[\mathrm{Re},(\mathrm{CO})_{12}\right]^{3-}$, the aclive components of the degenerate sets of fmo.s are alteady sufficientl) localised for the effects of protenation to be obvious. In uthers the canonical mos.s are not adequately localised on the bonds to be contrasted, and in these cases it is necessary to construct linear combinations of the former. Thus for deprotonated molecules such as $\left[\mathrm{Os}, \mathrm{H}_{1} \mathrm{CH}_{2} \mathrm{KCO}_{10}\right]^{\circ} \cdot{ }^{3}$ in which the point group is non-degenerate. this procedure is required to produce the necessary degeneracy and localisation. In cases like $\mathrm{C}_{2} \mathbf{B}_{\mathbf{4}} \mathrm{H}_{6}$ partial distinction be:ween bridged and unbridged tonds can be made immediately. but the construction of linear combinations is then needed to conirast. e.g. the $\mathrm{B}(2) \mathrm{B}(3)$ and $\mathrm{B}(4)-\mathrm{B}(5)$ connectivities.
the basts of relatue lengths alone is doublfut in dusters of this ispe. It as nesertheless sall ressonable :0 attempt io ansuer the question of the influence of H -bridging virithe length of a $\mathrm{B}-\mathrm{B}$ or M- M bond in such molecules. A precise answer depends. however, on a rather more precise question. since there are in principle three ways of "adding a symmetric $\mu \cdot \mathrm{H}$ function to such a bond (i) Addition of H^{\cdot} mest cause a localised twocentre, iuo-electron B-B or M-M bonding fmo to become partially deoccupied in forming a bonding three.centre. twoelectron interaction. and would therefore result in bond lengthening. (ii) Addition of H converts a two-sentre. oneelectron bond into a three-centre. two-electron boind. Its effect on bond length is expected to be small. (iii) Addition of H^{-}will partially occupy an orbital of the cluster that was prevously B-B or M-M bonding but emply. Thes must cause bond shortening.
In chemical reactio.is μ-H atoms are invariably added to. or atestrac:ed from. clusters as protons. Therefore the only compar:son that is feasible in cases a here otherwise chemically equivalent bridged and unbridged connectivities do nol exisul is that between $B-B$ or $M-M$ toind lengths in protonated and deprotonated analogues. assuming no grass structural thanges. ${ }^{38}$ In such eases the arailable evidence is that simmetom $\mu-\mathrm{H}^{\circ}$ addrion causes the bridged bond to lengthen

Achnowkedgemeas

We thanh the S.E.R.C. for a postgraduate studentship 110 G. F. M.) and Dr. J. H. Morms for orstals of the $\mathrm{CH}_{2} \mathrm{Cl}_{\text {: }}$ solvate of $\left.\left[\mathrm{NiPPH}_{3}\right)_{2}\right]\left[\mathrm{B}_{3} \mathrm{H}_{9}\right]$.

References

I M. R. Churchill. B. G. DeBier. and F J. Ruella. /norg. Chem., 1976. 15. 1843

2 P. R. Ranthbs. in 'Transiton Metal Clusiers.' ed. B. F. G. Johnson. Wils. Chishester 1980. pp s-19:
: L. Barion. Tipp. Curr Chem., 1982. 100. 169.
4 R Bau. B Don. R. Greatrex. R. J. Haines. R A. Love. and R D. Wison. Inurg. Chrm. 1975. 14. 3021
: See for exampie. P D. Bovle. B J Johnson. A Buthler, and L. H. Pignolet. Inure Cham. 1980. 25.

- U L Mcker and W. N. Lipsommb. Inorg Chem.. 198. 21. S\$40.
\$R. L. Dekoch and C P lasperse. Inure Chem. 198.. 22. 3843

11 R. O Gould. CADABS. C'nversiry wi Eunturgh. :9s!
1: G M. Sheldnck. SHELX 34 . Vnuersuly of Gutungen. Federal Republic of Germans. :984.
13 R. O Gould and P Taylor. CALC. Linversmy of Fdinturgh. 19ab
if C. K. Johnson. ORTEP.ll. Report ORNL.Slis. Oai Ridee Natonal Latoratars. Tennessec. L.S.A.. 1976
15 J. Howell. A. Rossi. D. Wallave. K Haraki. and R Hoffmann. ICON. Quantum Chemistry Program Exchange. L'niversity of Indiana. 1977. no. 344.

16 J. H. Ammeter. H.B. Burgı. J. C. Thiteault. and R. Hoffmann. J. . mm . Chem. Sor. 198: 100. 3686.
17 W. Thiel. MNDO. Quantum Chemisiry Program Exchange. L'nverstly of Indiana. 197\%. no. 353.
18 G. F. Mitchell. ORBIT. Liniversus of Edinburgh. 1983.
19 W. L. Jorgensen. PSI :7. Quantum Chemisiry Pregram Exihange. L'niversity of Indiana. 19^{7}. no. 340 .
20 W. C Phillips. H. C. Mille: and E. L. Muetterties. J. Im Chem. Soc. 1955. 81. 4990

21 J. D. Glore. J. W Rathke. ind R. Sihaelter. Inorg. Chem.. 19:3. 12. : 135
2 S. J. Andrews and A. J. Welch. Inorg. Chim. trio. 1985. 105.89
23 M Aiunchava. J. H. Morris. S. J. Andrews. D A. Weich. and A. J Welch. J. Chem. Six: Dulion Truns.. 1984. 2s?s.
It C. E. Nordman and C. Re:mann. J. Am. Chem. Ser.. 19:9.81. 3538
25 5 J Andrexs dnd A. J Wehh. Interg Chim. fitd. 1954. 38. 159
26 S J. Andrews and A. J Weich. Anio Crimalligr. Sei: C. 198s. 41 1496
\therefore L. D. Brown and $\mathbf{N} . \therefore$ Lipsiomb. Inorg. Cheni. 19^{-7}. 16. 1.
Is C J. Fritche. Inurg. Chem.. 196:. 6. 1199.
29 M R Churchill. in Transimon Meral Hydides. ed. R. Bau. Ads Chem. Ser.. Amencan Chemical Soce!s. $19^{\circ} 8$, ol. 16°. pf $38-39$
30 M. R. Churchill. P H. Bird. H. D. Kaesz. R. Bau. and B. Fontal. J 4m. Chem. Sor. 1968, 90. 7135.
31 B. F. G. Johnson. J. Lewis. P. R. Ranthby. G. M. Sheidrich. and G Suss. J. Orgunomet. Chem.. 1978. 162. 179.
32 D. M. P. Mingos. J. Chem. Suc.. Dchon Trans.. 1977. 602
33 E. A MeNeill. K L. Gallaher. F. R. Siholer. and S. H. Baver. Inorg. Chem. 1973. 12. 2108.
34 M.J. S. Dewar and M. L. MiKee. J. An. Chem Soc.. 197:.99. 5231
35 M J. S. Dewar and M. L. Mikkee. Inorg. Chem.. 1978. 17. 1569.
so M.J.S Dewar and M L. Mikiee. Inurg. Chem.. 1980. 19. 2062.
37 A. J. Schultz J M. Williams. R. B Calvert. J. R. Shaples. and G. D. Siuck: Inurg Chem.. 1979. 18. 319.
38 M. VisPartin. C. R Eady. B. F. G Johnson and J. Lewis. J Chim Sor Chem. Cummum.. 19:6. 883

Rectited 23ra June 198e: Puptr o IES8
"Non-crystallographic Least-Squares" J.Tellinghausen
"Numerical Methods" K.P.Lawley
"Powder Diffraction" A.J.Blake, R.O.Gould, B.Lowe
"Diffraction Studies of DNA Fragments and Introduction
to the Cambridge Crystallographic Database" T.Brown,
O.Kennard, F.H.Allen, S.R.Bellard, D.G.Watson
"Microcomputers in the Laboratory" A.G.Rowley, Mr.A.King
"VSEPR Theory" C.Glidewell
Crystallography Group Meetings
Inorganic Chemistry Group Meetings
Intraboron Meeting, Durham
European Crystallographic Meeting, Turin (1985)
Scottish Universities Summer School in Physics -
"Synchrotron Radiation", Aberdeen (1985)
British Crytallographic Association Winter School
on Crystallography, Aston (1987)

[^0]: 'A.R.Verma and P.Krishna, "Polymorphism in Crystals", Wiley, New York(1966)

[^1]: - Nomenclature according to Casey. Evans \& Powell (1983).

 0108-2701/86/010101-03\$01.50

[^2]: ＊The isotropic temperature factor defined as $\exp \left\{-8 \pi^{*} U\left(\sin ^{2} \theta\right) /\right.$ λ^{2} ．

 + Lists of structure factors，anisotropic thermal parameters． calculated H －atom coordinates．interbond angles and a packing diagram have been deposited with the British Library Lending Division as Supplementary Publication No．SUP $42536^{(13 ~ p p .)}$ ． Copies may be obtained through The Executive Secretary， International Union of Crystallography． 5 Abbey Square．Chester CHI 2HU，England．

[^3]: + Supplemarnary dara ardiluhle (No. SUP 56667.7 pp.): atomic coordinates used in EHMO calculations. MNDO-optimised co-ordinates. unit-cell paching diagram. See Instructions for Authors. J. Chem. Suc.. Dalion Trans.. 1987. Issue I. pp. xvii-xa.
 ; However. there are exceptions: in $\left[\mathrm{Fe}_{3} \mathrm{H}\left(\mathrm{CO}_{4}\left(\mathrm{SC}_{3} \mathrm{H}_{7}\right)\right]\right.$ the facecapping $S C, H$ group restrains the metal triangle to be essentially equatorial ${ }^{*}$

[^4]: F.ino-nvi]: in.o $=$ no of sbservations. nt $=$ no of vatubles:

