Taxonomy and phylogeny of the liverwort genus Mannia (Aytoniaceae, Marchantiales)

Daniela B. Schill

Doctor of Philosophy
The University of Edinburgh
Royal Botanic Garden Edinburgh 2006

Declaration

I hereby declare that the work contained within this thesis is my own, unless otherwise acknowledged and cited, and that this thesis is my own composition. This thesis has not in whole or part been previously presented for any other degree.

> Domiera Rs shill

Abstract

The genus Mannia (Aytoniaceae, Marchantiales) was first described by Opiz in 1829 and it is still not clear how many species it comprises worldwide. The generic and subgeneric division of Mannia has long been confused and several attempts have been made to subdivide it into smaller genera. Morphologically it is typically characterised by a small, rather narrow thallus, cup-shaped involucres and the lack of a pseudoperianth. It includes both xeromorphic and mesomorphic species, which are all drought-tolerant. Mannia occurs almost exclusively in the northern hemisphere with exceptions in Africa and South America. It is found on rock, rocky soil or rock crevices in arctic - alpine and mediterranean climates.

A worldwide revision of the genus has not been previously attempted, and earlier treatments focused on thallus morphology and limited geographic regions.

This study comprises the first worldwide revision of Mannia and about 1600 specimens were studied, including all available type specimens, from both dried and fresh material collected on several field trips. The monographic work is based on reviewed morphological and anatomical characters using dissecting, compound and scanning electron microscopy. Surface ornamentation of spores has been studied and with their relatively large spores reaching up to about 90 $\mu \mathrm{m}$ diameter, the species within Mannia show striking spore ornamentation patterns, which are found to be species-specific and have proved to be a very valuable tool in identification and synonymy. Most spore characters are constant with only size showing large variations though this can nevertheless be diagnostic. The species status of M. sibirica is confirmed and its close relationship to M. californica is contrary to former assumptions.

A total of seven species are recognised from 22 formerly described names: (1) M. androgyna (L.) A. Evans, (2) Mannia sibirica (Müll.Frib.) Frye \& L.Clark, (3) Mannia californica (Gottsche ex Underw.) L.C.Wheeler, (4) Mannia fragrans (Balbis) Frye \& L.Clark, (5) newly described Mannia asiatica Schill \& D.G. Long, (6) Mannia triandra (Scop.) Grolle and (7) Mannia pilosa (Hornem.) Frye \& L.Clark. Eleven excluded or doubtful taxa are listed. Vegetative, generative
and spore keys have been developed and for each species descriptions, illustrations and distribution maps are given along with ecological, taxonomic and nomenclatural notes.
Most species have a wide distribution range except for M. androgyna, which is restricted to areas with a meditereanean climate and M. asiatica, which only occurs in high mountains of the Himalayas along the fringes of the Tibetan plateau. The distribution of M. californica is extended from North America into Europe, Asia, India and Africa. M. fragrans is reported new to India and M. californica new to Austria, although the latter specimen shows some atypical morphological features. Some formerly assumed local endemic species are shown to be conspecific with more widespread taxa.

A parsimony analysis based on morphological characters including all Mannia species and 16 other taxa is inconclusive. A study of character evolution showed that homoplasious characters were a common feature in Mannia and related genera.
Reconstructions of phylogenetic relationships using chloroplast trnL-F and nuclear ribosomal LSU were based on 35 samples. Only five out of the seven accepted Mannia species could be included in the molecular study. Some species are represented multiple times but from different countries. Targionia hypophylla and Athalamia hyalina were used as outgroup taxa. Maximum Parsimony and Bayesian analyses were conducted on individual and combined datasets. All phylogenetic tree topologies showed polytomies but suggest that Mannia has evolved from within its sister genus Asterella and that the genus falls into two main clades. Mannia is paraphyletic with Asterella gracilis a close relative to M. triandra and M. pilosa. Because of incongruent tree topologies morphological and molecular data sets were not combined.
Based on mainly spore characters in combination with molecular results a new infrageneric classification of Mannia is presented.

Acknowledgements

I am immensely grateful to my supervisors for their support, expert advice, time and inspiration during my PhD . David Long for his continual and great support in all aspects of my work. Riclef Grolle for initially suggesting to take up a revision of Mannia, his kind hospitability on a visit to Jena and his constant interest and help until his sad departure. I wish to thank Philip Smith for all his encouragement until his unexpected death and Andrew Hudson for taking me on a as a student thereafter.

Special thanks to my PhD committee who followed me through these years with interest, looked after me and critically assessed my progress: David Mann and Lindsay Sawyer.

It is hard to think of anyone at the Royal Botanic Garden Edinburgh who has not helped me in some way during the course of my PhD: All library staff are thanked for obtaining literature, particularly Graham Hardy. A big thank you to Helen Hoy who dealt with my loans and Adele Smith and Sally Rae in the herbarium office. Excellent SEM support was provided by Frieda Christie. Ruth Hollands always kept an eye on the smooth working of the growth cabinets, Rose Colangeli gave much advice on travel and insurance. I wish to thank the following people for their help with molecular techniques while doing my lab work: Alexandra Clark, Michelle Hollingsworth (also for sequences), Vimi Lomax and Jane Squirrell. Big thanks go to Michael Moeller for much help with data analysis and reviewing Chapter 5, and also to Elspeth Haston, Greg Kenicer and Peter Wilkie for their help with Bayesian analysis. All people in the PhD room are thanked for keeping me company: Jin-Hyub Paik, Estelle Gill, Camilla Martinez, Kanae Nishii, Nazre Saleh and Haja Kader. Others at RBGE helped me in various ways: Sally Rae, Maureen Warwick, Eona Aitken, Liz Kungu, David Chamberlain, Barbara MacKinder, Louise Olley and Gemma Bramley.

Thanks go to Jim Clarke for providing much help in preparing the species distribution maps.

I would like to warmly thank the curators of the following herbaria for loans of specimens: NY, BM, JE, F, S, E, G, BOL, NICH, BE, MO, PRE, TNS, H.
Additionally the curators in JE, G and LWU are thanked for their permission to undertake herbarium visits, in particular Michelle Price is thanked for her kind hospitality on my visit to Geneva.

My field work in various parts of the world would not have been possible without the help of numerous people: Grimaldo Barrios, Jim Clarke, Susanna Fontinha, Eberhard Hegewald, Heribert Köckinger, Carlos Lobo, Jean Paton, Toby Pennington, Michelle Price, Carlos Reynel, Eva Maier, Ulrike Müller, Hans-Joachim Zündorf, Mani the rickshaw driver, and many more.

Many colleagues are thanked for sending me any fresh or dried material of Mannia they might come across in the field: V. Bakalin, T. L. Blockeel, J. Brinda, J. G. Duckett, R. Düll, V. Hugonnot, S. Inoue, M. Itouga, H. Köckinger, S. Laaka-Lindberg, J. Shevock, L. Söderström, Z. Vradilek and others.

I am very grateful to the University of Edinburgh Peter Davis Expedition Fund and the Oleg Polunin Memorial Fund for financial support in field work. I also wish to warmly thank Riclef Grolle for his generous provision of funding from the Oleg Polunin Memorial Fund which partly covered my study fees. Thanks to RBGE and Liz Kungu for employing me throughout most of my PhD and my parents for their financial support.

I would like to thank Jim for his unfailing support and belief in me, my friends and my family for their strong support: Ulrike, Verena, Sarah and Za, my mum and dad for their generous support over the past years. I would not have been able to do this without them.
ABSTRACT III
CHAPTER 1: INTRODUCTION 1
1.1 General introduction 1
1.2 AIMS AND OBJECTIVES 4
1.3 The FAmily Aytoniaceae 5
1.4 Historical review of genus 8
1.4.1 The genus Mannia 8
1.4.2 Infrageneric classification of Mannia 10
1.5 MANNIA SPECIES AND THE SPECIES CONCEPT 12
1.6 Evolutionary age of Mannia 16
CHAPTER 2: TAXONOMIC CHARACTERS 22
2.1 InTRODUCTION 22
2.2 Morphological and anatomical characters in Mannia 22
2.2.1 Vegetative features of gametophyte 22
2.2.2 Reproductive features of gametophyte 29
2.2.3 Features of sporophyte 34
2.2.4 Summary Table of selected morphological characters in Mannia 36
2.3 CuLTIVATION OF LIVING PLANTS IN A GROWTH CABINET 40
2.4 DISCUSSION AND CONCLUSIONS 41
CHAPTER 3: SURVEY OF MANNIA SPORES WITH A SCANNING ELECTRON MICROSCOPE 54
3.1 INTRODUCTION 54
3.2 ObJectives 56
3.3 Material 57
3.4 SCANNING ELECTRON MICROSCOPY METHODS 57
3.4.1 Specimen preparation 57
3.4.2 Critical Point Drying 57
3.4.3 Specimen coating and scanning 57
3.4.4 Character selection 58
3.5 Results 61
3.5.1 Spore characters 61
3.5.2 Key to Mannia species based on spore characters. 65
3.5.3 Spore micrographs of species 66
3.6 Discussion and Conclusion 84
3.6.1 Species delimitation based on spore characters 84
3.6.2 Synonymy 85
3.6.3 Distribution 86
3.6.4 Classification based on spore types 87
3.7 Conclusions 87
CHAPTER 4: TAXONOMIC REVISION 89
4.1 InTRODUCTION 89
4.2 ObJECTIVES 90
4.3 MATERIAL AND METHODS 91
4.3.1 Herbarium material 91
4.3.2 Herbarium methods 92
4.3.3 Living material 93
4.3.4 Field methods 94
4.3.5 Maps of distribution 95
4.4 TAXONOMIC ACCOUNT 96
4.4.1 The genus Mannia 96
4.4.2 Infrageneric subdivision 102
4.4.2.1 Key to Mannia subgenera and sections 103
4.4.3 Species accounts 104
4.4.3.1 Keys to Mannia species without and with ripe spore material 104
4.4.3.2 Descriptions of subgenera, sections and species 107
Subgenus Mannia 107
Section Mannia 107

1. Mannia androgyna 108
Section Arnelliella 117
2. Mannia sibirica 118
3. Mannia californica 123
Section Sindonisce 132
4. Mannia fragrans 132
Section Asiaticae 143
5. Mannia asiatica 144
Subgenus Neesiella 150
6. Mannia triandra 150
7. Mannia pilosa 156
4.4.4 Excluded and doubtful species 163
4.5 Ecology 167
4.6 Distribution and Phytogeography 168
4.7 DISPERSAL 171
4.8 DISCUSSION AND CONCLUSION 176
CHAPTER 5: PHYLOGENETIC RECONSTRUCTION 178
5.1 INTRODUCTION 178
5.2 MATERIAL AND SAMPLING METHODS 180
5.2.1 Taxon sampling 180
5.2.2 Outgroup and Ingroup taxa 181
5.3 MORPHOLOGICAL METHODS 181
5.4 Molecular Methods 182
5.4.1 Molecular markers 182
5.4.2 DNA Extraction 183
5.4.3 PCR amplification 184
5.4.3.1 Primers 184
5.4.3.2 Reaction conditions 186
5.4.4 Cloning techniques 187
5.4.5 Sequencing 188
5.4.5.1 Sequencing Protocol for trnL-F and 26S 188
5.4.5.2 Sequence reaction purification 189
5.4.6 Sequence alignment and gap coding 190
5.4.7 Phylogenetic analyses 190
5.4.7.1 Parsimony analysis 191
5.4.7.2 Bayesian Analysis 192
5.5 RESULTS FROM THE MOLECULAR PHYLOGENETIC RECONSTRUCTION 193
5.5.1 Sequence alignment 193
5.5.2 trnL-F 193
5.5.2.1 Sequence characteristics 193
5.5.2.2 Tree topology 194
5.5.3 26S 199
5.5.3.1 Sequence characteristics 199
5.5.3.2 Tree topology 200
5.5.3.3 Note on Bayesian search settings 204
5.5.4 Combined analysis 205
5.5.4.1 Sequence characteristics 205
5.5.4.2 Tree topology 205
5.5.5 Molecular phylogenetics versus spore types 210
5.6 RESULTS OF THE MORPHOLOGICAL RECONSTRUCTION 210
5.6.1 Morphological phylogeny 210
5.6.1.1 Tree topology 210
5.6.1.2 Character evolution 216
5.7 DIscussion 223
5.7.1 Morphological Phylogeny 223
5.7.1.1 Character selection and coding 223
5.7.1.2 Morphological phylogeny based on parsimony 224
5.7.2 Character evolution 226
5.7.3 Molecular Phylogeny 227
5.7.3.1 Suitability of trnL-F and 26S 227
5.7.3.2 Branch support and posterior probability values 227
5.7.3.3 Sampling 228
5.7.3.4 Paraphyly of Mannia 229
5.7.3.5 Intraspecific relationships within Mannia californica 229
5.7.3.6 Relationships between Mannia and its sister genera 232
5.7.3.7 Classification of Mannia 233
5.7.3.8 Taxonomic implications 234
CHAPTER 6: CONCLUSION 236
BIBLIOGRAPHY 238
APPENDIX I. MANNIA SPECIMENS STUDIED 262
8. Mannia androgyna (L.) A. Evans 262
9. Mannia sibirica (Müll.Frib.) Frye \& L.Clark 270
10. Mannia californica (Gottsche ex Underw.) L.C.Wheeler 272
11. Mannia fragrans (Balbis) Frye \& L.Clark 276
12. Mannia asiatica Schill \& D.G.Long 292
13. Mannia triandra (Scop.) Grolle 293
14. Mannia pilosa (Hornem.) Frye \& L.Clark 298
APPENDIX II. MORPHOLOGICAL PHYLOGENY AND CHARACTER EVOLUTION 304
15. Characters and character state codes used for morphological phylogeny 304
16. Data matrix for morphological phylogeny. 306
17. Characteristics of the morphological matrix 307
18. List of characters, states, steps and the Consistency Index (CI) used in the character evolution 307
19. Character evolution 308
APPENDIX III. MOLECULAR PHYLOGENY 320
20. Liverwort material used for DNA analyses 320
21. Alignment of Mannia and related taxa for trnL-F and $26 S$ 322
22. TrnL-F gap matrix analysed in Chapter 5 346
23. Characteristics of trnL-trnF and 26S sequence matrices 347
24. Model selection results for Bayesian analysis 348

List of Tables:

Table 1.1. Classification of the order Marchantiales based on morphological and molecular evidence 3
Table 1.2. Selected characters showing differences between the genera of Aytoniaceae 7
Table 1.3. Number of species in genera of Aytoniaceae 8
Table 1.4. Past and present subgeneric classifications of Mannia by different authors 11
Table 1.5. Taxa of Mannia described worldwide 13
Table 2.1. Definitions for monoicous conditions in Mannia 31
Table 2.2. Additionally introduced terms for a further subdivision of ventral-autoicous 31
Table 2.3. Summary Table of selected characters for all Mannia species 37
Table 2.4. Summary table for key characters, variable but useful characters and variable characters of little use in Mannia identification 42
Table 3.1. Summary table of spore characters and spore types of Mannia species 63
Table 3.2. Spore types in Mannia 64
Table 4.1. Earlier Revisions of Mannia in different geographic regions with number of species treated 89
Table 4.2. Number of specimens and Mannia types on loan from different herbaria 91
Table 4.3. Synopsis of infrageneric classification of Mannia 102
Table 5.1. Primers used in PCR and sequencing reactions 185
List of Figures:
Fig. 1.1. Pictures of Mannia species (1) 18
Fig. 1.2. Pictures of Mannia species (2) 19
Fig. 1.3. Pictures of Mannia species (3) 20
Fig. 1.4. Pictures of other genera of Aytoniaceae 21
Fig. 2.1. Sexual conditions in Mannia 30
Fig. 2.2. Features of Mannia under LM (1) 48
Fig. 2.3. Features of Mannia under LM (2) 49
Fig. 2.4. Features of Mannia under LM (3) 50
Fig. 2.5. Features of Mannia under LM (4) 51
Fig. 2.6. Features of Mannia under SEM (1) 52
Fig. 2.7. Features of Mannia under SEM (2) 53
Fig. 3.1. Spore characters in Mannia 59
Fig. 3.2. Mannia androgyna spores from distal view 67
Fig. 3.3. Mannia androgyna spores from proximal view 68
Fig. 3.4. Mannia androgyna spores from side view (A-D) and showing fine distal ornamentation (E-H) 69
Fig. 3.5. Mannia sibirica spores from distal view 70
Fig. 3.6. Mannia sibirica spores from proximal view (A-D), side view (E-F) and showing fine distal ornamentation (G-H) 71
Fig. 3.7. Mannia californica spores from distal view 72
Fig. 3.8. Mannia californica spores from distal (A-E) and proximal view (F-H) 73
Fig. 3.9. Mannia californica spores from proximal view (A-B), side view (C-D) and showing fine distal ornamentation (E-H) 74
Fig. 3.10. Mannia fragrans spores from distal view 75
Fig. 3.11. Mannia fragrans spores from proximal view (A-D), side view (E-F) and showing fine distal ornamentation (G-H) 76
Fig. 3.12. Mannia asiatica spores from distal view 77
Fig. 3.13. Mannia asiatica spores from proximal view (A-D), side view (E-F) and showing finedistal ornamentation (G-H)78
Fig. 3.14. Mannia triandra spores from distal view 79
Fig. 3.15. Mannia triandra spores from proximal view 80
Fig. 3.16. Mannia triandra spores from side view (A-B) and showing fine distal ornamentation (C-H) 81
Fig. 3.17. Mannia pilosa spores from distal view 82
Fig. 3.18. Mannia pilosa spores from proximal view (A-D), side view (E-F) and showing fine distal ornamentation (G-H) 83
Fig. 4.1. Worldwide distribution of Mannia based on studied herbarium material 90
Fig. 4.2. Mannia androgyna (1) 111
Fig. 4.3. Mannia androgyna (2) 112
Fig. 4.4. Worldwide distribution of M. androgyna based on herbarium material studied 113
Fig. 4.5. Mannia sibirica 121
Fig. 4.6. Worldwide distribution of M. sibirica based on herbarium material studied 122
Fig. 4.7. Mannia californica 127
Fig. 4.8. Worldwide distribution of M. californica based on herbarium material studied 128
Fig. 4.9. Mannia fragrans 138
Fig. 4.10. Worldwide distribution of M. fragrans based on herbarium material studied 139
Fig. 4.11. Worldwide distribution of M. asiatica based on herbarium material studied 146
Fig. 4.12. Mannia asiatica (1) 147
Fig. 4.13. Mannia asiatica (2) 148
Fig. 4.14. Mannia triandra 154
Fig. 4.15. Worldwide distribution of M. triandra based on herbarium material studied 155
Fig. 4.16. Mannia pilosa 160
Fig. 4.17. Worldwide distribution of M. pilosa based on herbarium material studied 161
Fig. 5.1. Strict consensus tree of two trees based on trnL-F sequences with a heuristic search including gap characters using unweighted maximum parsimony analysis trnL-F data 195
Fig. 5.2. Tree one of two trees based on trnL-F sequences with a heuristic search including gap characters using unweighted maximum parsimony analysis 196
Fig. 5.3. Tree two of two trees based on trnL-F sequences with a heuristic search including gap characters using unweighted maximum parsimony analysis 197
Fig. 5.4. Bayesian majority rule consensus tree obtained from a trnL-F data matrix with the inclusion of gap characters 198
Fig. 5.5. Strict consensus tree of 33 trees based on 26 S sequences with a heuristic search using unweighted maximum parsimony analysis 201
Fig. 5.6. Tree one of 33 most parsimonious trees based on 26 S sequences with a heuristic search using unweighted maximum parsimony analysis of 26 S data 202
Fig, 5.7. Bayesian majority rule consensus tree obtained from a 26 S data matrix 203
Fig. 5.8. Strict consensus tree of 40 trees based on a combined analysis including gapcharacters using unweighted maximum parsimony analysis of trnL-F and 26S data. 207
Fig. 5.9. Tree one of 40 trees based on a combined analysis including gap characters using unweighted maximum parsimony analysis of trnL-F and 26 S data. 208
Fig. 5.10. Bayesian majority rule consensus tree obtained from a combined trnL-F and 26 Sdata matrix with the inclusion of gap characters209
Fig. 5.11. Strict consensus tree of 76 most parsimonious trees (tree length $=142, \mathrm{Cl}=0.53$; $\mathrm{RI}=0.61 ; \mathrm{RC}=0.33$) based on 24 morphological characters for 23 taxa with an exhaustive search using unweighted parsimony 212
Fig. 5.12. Majority rule consensus tree of 76 most parsimonious trees (tree length $=142, \mathrm{Cl}$ $=0.53 ; \mathrm{RI}=0.61 ; \mathrm{RC}=0.33$) based on 24 morphological characters for 23 taxa with an exhaustive search using unweighted parsimony 213

Fig. 5.13. Tree one of 76 most parsimonious trees (tree length $=142, \mathrm{CI}=0.53 ; \mathrm{RI}=0.61$; $R C=0.33$) based on 24 morphological characters for 23 taxa with an exhaustive search using unweighted parsimony

Fig. 5.14. Tree eight of 76 most parsimonious trees (tree length $=142, \mathrm{Cl}=0.53 ; \mathrm{RI}=0.61$;
$R C=0.33$) based on 24 morphological characters for 23 taxa with an exhaustive
search using unweighted parsimony

215

Fig. 5.15. Evolution of character 3 .. 218
Fig. 5.16. Evolution of character 9 219
Fig. 5.17. Evolution of character 15 .. 220
Fig. 5.18. Evolution of character 23 ... 221
Fig. 5.19. Evolution of character 24 ... 222

Chapter 1: Introduction

1.1 General introduction

The liverworts are generally grouped with the mosses and hornworts under the term bryophyte. They are thought to have between 6000 and 8000 species worldwide (CRANDALL-STOTLER \& STOTLER 2000, SCHOFIELD 1985) and include three life forms: leafy, simple thalloid and complex thalloid. The latter two forms do not have leaves but are characterised by a dorsiventrally flattened gametophyte, the so-called thallus.
The class Marchantiopsida consists of two subclasses, Jungermaniidae and Marchantiidae, the latter subdivided into three orders: Marchantiales, Sphaerocarpales and Monocleales (Bischler-Causse et al. 2005). Recent molecular studies have shown that the latter two orders are nested within the Marchantiales (Wheeler 2000, Boisselier et al. 2002, LONG Et AL. 2005, HeNyGRÉN ET AL. 2006).

A new classification of liverworts was presented by HEINRICHS ET AL. (2005) and He-Nygrén et al. (2006). It was based on morphological and molecular evidence that suggested several clades. Both studies propose three liverwort classes: Haplomitriopsida (= Treubiopsida in He-NyGRÉN ET AL. 2006), Marchantiopsida and Jungermanniopsida. The class Marchantiopsida consists of the two subclasses Blasiidae and Marchantiidae, the latter subdivided into Sphaerocarpales and Marchantiales (He-Nygrén et al. 2006).
The order Marchantiales (sometimes also called the 'chambered liverworts' or 'complex thalloids') comprises 14 families with 28 included genera and about 355 species; its genera are regarded as being "separated by sharp morphological discontinuities" and with "each genus lis] unambiguously defined by a number of morphological features"(BISCHLER 1998). The classification of the order is shown in Table 1.1.
The genus Mannia belongs to the family Aytoniaceae within the Marchantiales. The name Mannia was given to the genus by Opiz in honour of his friend Dr. med. W. Mann, who was a "diligent"botanist and lichenologist (CORDA 1829, SChOFIELD 2002). The first description of the genus was made by Opiz in Corda
(1829) over 170 years ago, yet until today it has not been entirely clear how many species it comprises worldwide. According to Engel (1990) there are six species, according to BISCHLER (1998) 15 and according to SCHUSTER (1992b) there are around 18 species. The Index Hepaticarum listed 22 species and two varieties (GEISSLER \& BISCHLER 1985).
A worldwide revision of the genus has never before been attempted.

Mannia has striking spore ornamentation patterns which appear to be speciesspecific (LONG 1999). Some of the taxa are also highly aromatic. Mannia includes both xeromorphic and mesomorphic species, all drought-tolerant with often fragmented ranges with a "nearly worldwide distribution, up to the Arctic, but not recorded from tropical east Asia, Central America and Australasia" (BISCHLER 1998). Its distribution is restricted to the northern hemisphere with exceptions in Africa and South America. The genus grows on rock or rocky soil in arctic-alpine and mediterranean climates.
There have been major gaps in our knowledge of Mannia. Large areas such as India, China, SE Asia and SW Asia have either not been reviewed or revisions are incomplete. Furthermore, an overview and linking of existing treatments as well as a global synthesis of the taxonomy of the genus Mannia has been lacking.

There have been unresolved nomenclatural and taxonomic problems of related species in different continents, for example M. androgyna and M. capensis (the latter exclusively in Africa) might be conspecific (GROLLE, pers. comm.) but have not before been critically compared. PEROLD (1994a) in her treatment of M. capensis in South Africa found it "difficult to come to a definite decision"because M. androgyna could not be examined more closely. She remarked that only a "few authentically named specimens of M. androgyna [could be] examined". Furthermore the existence of local endemics from India (M. indica, M. perssonii and M. foreaui), Japan (M. levigata), Peru (M. hegewaldii) and North America (M. paradoxa) may be genuine or these described species may belong to more widespread taxa. There has been a need to study these more closely and compare them to all related species worldwide. However, most of these are described from very limited material, and often with inadequate descriptions.

Table 1.1. Classification of the order	Class	Subclass	Order	Suborder	Family	Genera
Marchantiales based on morphological and molecular evidence (BISCHLER-CAUSSE ET AL. 2005, BISCHLER 1998, SCHUSTER 1984, GROLLE 1983b)	Marchantiopsida	Marchantidae	Marchantiales	Monocarpineae Ricciineae	Monocarpaceae	Monocarpus Oxymitra Riccia Ricciocarpos
					Oxymitraceae	
					Ricciaceae	
				Corsiniineae	Corsiniaceae	Corsinia Cronisia
				Targioniineae Marchantiineae	Cyathodiaceae Targioniceae Exormothecaceae	Cyathodium
						Targionia
						Aitchisoniella Exormotheca
						Stephensoniell a
					Cleveaceae	Athalamia Peltolepis
						Sauteria
					Monosoleniaceae	Monosolenium Asterella
					Aytoniaceae	
						Cryptomitrium Mannia
						Plagiochasma Reboulia
					Wiesnerellaceae	Reboulia Wiesnerella
					Conocephalaceae	Conocephalum
					Lunulariaceae	Lunularia Bucegia
					Marchantiaceae	Dumortiera
						Marchantia Neohodgsonia Preissia
				Spharocarpineae		
			Sphaerocarpales		Sphaerocarpaceae	Sphaerocarpos
				Riellineae	Riellaeceae Monocleales	Riella Monoclea
			Monocleales			
						3

The classification of Mannia at the subgeneric level is still uncertain, as has been the evolutionary relationship of Mannia to Asterella and other related genera. It has not even been clear whether Mannia is a monophyletic genus or not.

Therefore a great deal has remained to be done to clarify the taxonomy, classification, evolution and phytogeography of Mannia. Even the traditional alpha-taxonomic morphological studies on the genus have been far from complete.

Over the past decades several new techniques in systematics have become available, which have not before been applied to these problems in Mannia, and these have made significant progress possible.

Clearly two major tasks are a priority:
a) to complete a taxonomic study on the genus worldwide
b) to use modern tools to attempt to elucidate the evolutionary relationships within the genus and with related genera
Looking at the genus on a broader scale and with a combination of morphological and molecular methods it is hoped to disentangle the past taxonomic confusion and achieve a well-supported classification.

1.2 Aims and objectives

In order to complete these tasks the present study is based on the following objectives:

1) to give a general introduction to the genus Mannia and related genera, review its taxonomic and nomenclatural history, the species concept used and the evolutionary age of the genus (Chapter 1)
2) to review the morphological characters available within the genus that can be used for a taxonomic treatment (Chapter 2)
3) to present a survey of spores with the scanning electron microscope (SEM) to study spore ornamentation patterns and their potential use in taxonomy and identification of Mannia species (Chapter 3)
4) to produce an alpha-taxonomic revision of Mannia, using herbarium collections and fresh material from field trips, for a world monograph of the
genus, providing keys, revised infrageneric classification, species descriptions, drawings, synonymy, notes on morphology, taxonomic and nomenclatural problems, ecology, a map of distribution and a list of specimens studied for each accepted species (Chapter 4)
5) to attempt to reconstruct the phylogeny of Mannia and related genera using both morphological and molecular analyses to gain better insights into the genus and its character evolution, and to contribute to constructing a stable infrageneric classification of the genus. (Chapter 5)

1.3 The family Aytoniaceae

The name Aytoniaceae was first recognised by CAVERS (1911) and its type genus is Plagiochasma Lehm. et Lindenb.. This genus was formerly named Aytonia or Aitonia by J. R. et G. Forst. in 1775 (Grolle 1983b) and according to UNDERWOOD (1884) the name Aitonia Forst. was given by Forster in honour of William Aiton, a Scottish botanist who lived from 1731 to 1793. The family is clearly defined by the dehiscence of the sporophyte capsule by a lid or operculum (as opposed to valves in other Marchantiales) and by the simple air pores in the thallus and compound pores in the receptacle. The family was first established by LEITGEB (1881) under the name 'Operculatae' based on the existence of a capsule lid as he describes "Ich würde also im Sinne dieser Auseinandersetzungen es für zweckmässiger halten [...] die Gattungen Plagiochasma, Reboulia, Grimmaldia, Duvalia und Fimbriaria, deren Kapseln sämmtlich die Eigenthümlichkeit zeigen, dass der obere Theil der Kapselwand theils in einem Stücke (also deckelfartig) abgeworfen wird, theils in unregelmässige Platten zerfällt, wo aber in jedem Falle der untere Theil als Ganzes (Urne) erhalten bleibt, in eine Gruppe (Marchantieae operculatae) zusammenfassen".

Aytoniaceae has a wide distribution in the northern hemisphere but less so in the southern hemisphere (Schofield 2002). Many species are drought-tolerant (DAMSHOLT 2002) and often occur on rock crevices and rock outcrops, Mannia occurs additionally on rocky soil (BISCHLER 1998).

The delimitation of the genera within Aytoniaceae is much less clear cut and the genera are distinguishable from each other by a combination of morphological characters (LONG 2000). There are five genera (Grolle 1983a): Asterella,

Cryptomitrium, Mannia, Plagiochasma and Reboulia. A genera comparison of selected characters is presented in Table 1.2. and photographs of Mannia species and its sister genera are presented in Figures 1.1 to 1.4.

Mannia is generally distinguished from the other genera of Aytoniaceae by cupshaped involucres and a small and rather narrow thallus. In sterile condition the identification can be problematic as it shows close resemblance to some Asterella species.

The main difference to Asterella is the absence of a pseudoperianth, which is a cage-like structure surrounding the capsule. This character is unique to the genus Asterella. Furthermore, Asterella species often have a fishy smell whereas the odour of Mannia is aromatic. The shape of the receptacle in Mannia is different to the discoid receptacle shape in Cryptomitrium, the more star-like shape in Reboulia or the subspherical shape in Plagiochasma. In the latter genus diagnostic features such as the dorsal stalk position on the thallus and the lack of a rhizoidal furrow is a further difference from Mannia. The number of species belonging to the different genera in the family Aytoniaceae varies (Table 1.3). Asterella is the largest genus followed by Plagiochasma and Mannia. Both Cryptomitrium and Reboulia have only a few species.

Asterella has 16 recognised species in Eurasia (LONG 1999) and approximately 45 to 48 species worldwide (LONG 2006), which are often drought- and/or coldtolerant with a worldwide distribution from the tropics to the Arctic (BISCHLER 1998).

Cryptomitrium has three species with a disjunct distribution in western North America, Central America, southern South America, south-east Africa and the Sino-Himalaya (BISCHLER 1998).
Plagiochasma has 16 species with a worldwide distribution in warm-temperate areas with Mediterranean-type climates and semi-arid areas. It is absent from humid tropical regions and from continental areas with low winter temperatures (BISCHLER 1998).
Reboulia is interpreted as either monospecific (Reboulia hemisphaerica) or as comprising two to three species. It inhabits warmer areas and so is frequent in the Mediterranean but is absent from continental areas with long, cold winters and also from humid tropical regions (BISCHLER 1998, DAMSHOLT 2002).

Morphological characters	Asterella	Cryptomitrium	Mannia	Reboulia	Plagiochasma
Odour	fishy	aromatic	aromatic	aromatic	aromatic
Thallus	small, or large and broad	rather large and broad	small and narrow	large and broad	large and broad
Sexual condition	monoicous or dioicous	monoicous	monoicous or dioicous	monoicous	monoicous
Rhizoidal furrow	one	one	one	none	
Shape of receptacle	hemispherical or discoid	discoid, hardly lobed	hemispheric al or globose	hemispherica I, deeply lobed	subspherical
Position of stalk	terminal or ventral	terminal	terminal or ventral	terminal	dorsal
Air chambers in stalk	absent or present	absent	absent	absent or present	absent
Involucres	entire or bilobed flap	bivalved	cup-shaped	bivalved	bivalved
Pseudoperianth	present	absent	absent	absent	absent

Table 1.3. Number of species in genera of Aytoniaceae according to Bischler (1998)

	Asterella	Cryptomitrium	Mannia	Plagiochasma	Reboulia
Number of species	80	3	15	16	$1-3$

1.4 Historical review of genus

1.4.1 The genus Mannia

Mannia Opiz was first published by Opiz in Corda (1829) as a replacement for the illegitimate Grimaldia Raddi (1818). The genus Grimaldia was based on a single species G. dichotoma ($=M$. androgyna), which was described by RADDI in 1818. The name Grimaldia chosen by Raddi, though, is a later homonym because there is an earlier Grimaldia Schrank, published in 1805 (WheELER 1934, Evans 1938). Evans points out that there was always the "attempt to justify its use by claiming that Grimaldia Schrank had long been included as a synonym under the genus Cassia Tourn." which is a member of the angiosperm family Leguminosae. But in 1930 Grimaldia Schrank was revived when a new legume species from South America was described under it by Britton \& Rose in BAILEY (1930), who recognized its validity.
NEES VON ESENBECK (1818) published Duvalia as a monotypic genus based on a single species Duvalia rupestris. LindBERg (1868) used the orthographic variation 'Düvalia'and in CORDA (1829) 'Duvallia'is used. However, HAWORTH (1812) had already given the name Duvalia to a plant in the angiosperm family Asclepiadaceae so Duvalia is a later homonym as well. Borbás described a new genus Duvaliella for Duvalia rupestris Nees in 1893 but this name had already been used a year earlier by Heim for a genus of Dipterocarpaceae according to GROLLE (1983b) and is therefore illegitimate.
SCHIFFNER (1893) introduced the name Neesiella for Neesiella rupestris (now Mannia triandra) but WHEELER (1934) pointed out that the name Mannia is the "next earliest tenable equivalent for Grimaldia Raddi" and should therefore replace Grimaldia.

However, the separation of Mannia species into two different genera Grimaldia and Neesiella or Duvalia was adhered to by many authors (MASSALONGO 1914, BERGDOLT 1926) based on morphological characters such as assimilation tissue or the thallus being leathery or not.
CORDA (1829) described a new genus Sindonisce for Sindonisce fragrans. But Evans (1938) pointed out that it was considered that S. fragrans is conspecific with Grimaldia dichotoma Raddi, so Sindonisce would be a substitute for Grimaldia Raddi and therefore a homonym as well. However, S. fragrans was based on Balbis's much earlier description of Marchantia fragrans (Corda 1829, BALBIS 1804) and is therefore Mannia fragrans.

Neesia was published in 1825 by Leman based on the species Duvalia rupestris Nees but is an illegitimate name because Sprengel had previously described a genus of Asteraceae under that name according to Grolle (1983b). The name Pleurochiton Corda ex Nees is based on Pleurochiton balbisianum Corda and was synonymised by NEES (1838) under Grimaldia fragrans. It is an invalid name according to GROLLE (1983b).
The genus name Arnelliella was introduced by MASSALONGO (1914) for Grimaldia pilosa var. sibirica Müll.Frib. based on a rather intermediate type of assimilation tissue amongst other morphological characters in comparison to the two genera Grimaldia (compact assimilation tissue) and Neesiella (loose assimilation tissue).
An older legitimate name for the genus Mannia is actually Cyathophora Gray, which is described from a specimen that was collected by the author in Britain and described in 1821. The species was named Cyathophora angustifolia but included the synonym Marchantia androgyna L.. However, Gray's specimen was actually Preissia quadrata (Scop.) Nees based on his description according to Grolle (1981). Furthermore Grolle pointed out that Gray's interpretation of the Linnaean species was wrong and also that the Linnaean species is actually a mixture of two distinct genera (Marchantia androgyna and Marchantia chenopoda). Marchantia androgyna, now Mannia androgyna, was described in 1753 and is therefore older than C. angustifolia, the latter therefore automatically becoming a synonym.
Hence Grolle (1983a, 1983c) proposed to conserve Mannia Opiz 1829 against the name Cyathophora Gray 1821 because the latter from the start "has been
defective (...) through taxonomic and nomenclatural mistakes" as explained by him already in an earlier publication (Grolle 1981) and "has never been used in the sense of Mannia". In 1988 conservation of Mannia Opiz against Cyathophora Gray was accepted by the Committee for Bryophyta (ZIJLSTRA 1989, Nicolson 1993, Greuter et al. 2000).

1.4.2 Infrageneric classification of Mannia

The generic and subgeneric division of Mannia has long been confused and several attempts have been made to subdivide it into smaller genera. The genus was subdivided into two genera, Grimaldia and Neesiella by MÜLLER (19051916) and BERGDOLT (1926) following SCHIFFNER (1893) and also into Grimaldia and Duvalia by NEES vON ESENBECK (1838). Three genera were accepted by MASSALONGO (1914): Grimaldia, Neesiella and Arnelliella, all containing species that are now placed within Mannia.

A total of four infrageneric classifications have been proposed, which are shown in Table 1.4.. The first infrageneric classification of Mannia was published by SHimizu \& Hattori (1954). In this treatment the genus Cryptomitrium was included as a second subgenus under Mannia, which contradicts later taxonomic treatments.

Shimizu and Hattori (1954) subdivided Mannia into two subgenera: Mannia and Cryptomitrium. The subgenus Cryptomitrium was based on a range of morphological characters such as the assimilation tissue being either loose or compact, plants xerophytic or not, epidermal cells thin-or thick-walled, receptacle lobes and shape of involucres.

The subgenus Cryptomitrium was divided into the two sections Cryptomitium and Neesiella based on receptacle shape, involucre shape and position of the antheridia.

The authors suggested that the characters dividing Mannia from the genus Cryptomitrium were not strong enough for accepting Cryptomitrium as a separate genus, so they regarded it as a subgenus of Mannia with the species M. triandra, M. pilosa and M. longiseta (Section Neesiella) closer related to Cryptomitrium (Section Cryptomitrium) than the other species of Mannia. There have been three further attempts at a classification of Mannia by Grolle (1976, 1983b), and recently by GROLLE \& LONG (2000).
Table 1.4. Past and present subgeneric classifications of Mannia by different authors

Author	Year	Subgenus	Section	Species
Shimizu \& Hattori	1954	Mannia	M. fragrans, M. dichotoma, M. sibirica, M. californica, M. indica, M. brachypoda, M. .evigata	
	Cryptomitrium	Neesiella Cryptomitrium M. rupentris, M. pilosa, M. Iongiseta		
Grolle	Arnelliella himalayense			

At subgeneric level Grolle divided Mannia at first into the subgenera Mannia and Arnelliella though it is not clear on which morphological characters that was done (Grolle 1976). Later Grolle (1983b) subdivided the genus into two subgenera (Mannia and Xeromannia), distinguished mainly by the structure of the assimilatory layer of the thallus and the areolation of the upper surface of the thallus. The species in Xeromannia have a compact assimilatory layer and only weak areolation dorsally. This was sharply criticised and not accepted by SCHUSTER (1992a). From his point of view the two sections of the subgenus Xeromannia "are equally useless" and he considered a classification based on the used characters to be in vain. He considered M. fragrans and M. californica "as closely allied" and should in his opinion be in the same section as M. androgyna. He then suggested that the position of the androecia should be adopted as "the most fundamental feature" for a classification but admitted a "considerable variation in the three species (M. androgyna, M. californica and M. fragrans)" and actually did not propose any alternative classification to Grolle's.

Most authors providing regional descriptions of Mannia such as SCHUSTER (1992b) and DAMSHOLT (2002) followed these later classifications and treated Cryptomitrium as a separate genus.
The new infrageneric classification proposed in this study (Table 4.3) is based on a combination of morphological, particularly spore, characters and molecular results as discussed in Chapter 3 (see 3.6.4) and 5 (see 5.7.3.7).

1.5 Mannia species and the species concept

With the introduction of a binary system for plant names by Linnaeus in 1753 the base for plant nomenclature was founded and is still in use today. In his two-volume work 'Species Plantarum' he based his classification of liverworts on earlier work by Micheli, a botanist from Florence (MüLLER 1954). In his work the first Mannia species to be described was Mannia androgyna, then Marchantia androgyna, which was then placed in the genus 'Hepatica' together with Reboulia and Conocephalum according to MüLLER (1954). Since then many more species have been described under Mannia, first under the name Marchantia but also under Duvalia and Grimaldia. A table of Mannia species described worldwide in chronological order can be seen in Table 1.5.

Table 1.5. Taxa of Mannia described worldwide. A chronological list of names
belonging to Mannia described in Duvalia, Grimaldia, Mannia, Marchantia and Neesiella.

Name	Publication Date	Type Locality
Marchantia androgyna L.		
Marchantia triandra Scop.	1753	Italy
Marchantia fragrans Balbis	1772	Slovenia
Marchantia pilosa Hornem.	1804	Italy
Marchantia ludwigii Schwägr.	1810	Norway
Duvalia rupestris Nees	1814	Helvetia?, Germania
Marchantia fasciata Myrin ex Hartm.	1818	Austria
Grimaldia barbifrons Bisch.	1832	Norway
Mannia fragrans var. convoluta Nees	1835	Germany
Mannia ararans var. fimbriata Nees	1838	unknown
Grimaldia inodora Wallr.	1838	Schlesien, Tyrol, Prag, Dahurien
Grimaldia carnica C.Massal.	1840	Germany
Grimaldia californica Gottsche ex Underw.	1886	Italy
Duvalia longiseta Steph.	1888	California
Grimaldia capensis Steph.	1897	Japan
Grimaldia fragrans var. brevipes Kaal.	1898	South Africa
Grimaldia pilosa var. sibirica Müll.Frib.	1907	Norway
Grimaldia indica Steph.	Siberia	
Grimaldia japonica Steph.	1916	N.W. India
Mannia controversa Meylan	1917	Japan
Mannia fragrans var. alpina Meylan	1924	Switzerland
Grimaldia subpilosa Horik.	1924	Switzerland
Grimaldia atlantica Trab.	1934	Taiwan
Mannia aragrans var. inodorata S. Hatt.	1942	Atlas mountains
Mannia barbifrons Shimizu \& S. Hatt.	1944	Japan
Mannia brachypoda Shimizu \& S.Hatt.	1953	Japan
Mannia levigata Shimizu \& S. Hatt.	1953	Japan
Mannia capensis var. pallida S.W.Arnell	1953	Japan
Mannia foreaui Udar \& Chandra	1963	South Africa
Mannia perssonii Udar \& Chandra	1964	South India
Mannia paradoxa R.M.Schust.	1985	North India
Mannia hegewaldii Bischl.	New Mexico	
Mannia asiatica Schill \& D.G.Long	2005	Peru
	2006	China

According to RIDLEY (2004)"a species is the basic unit in classification and in the study of evolution". There are many concepts of how to define a species. One of the earliest concepts in use was probably the typological species concept. It defines a species by morphological characters and distinguishes between species by their appearance, their character differences. Most systematists find this concept weak as it cannot detect cryptic speciation, however it is claimed that "all taxonomists, when classifying the diversity of nature into species, follow the typological method and distinguish 'archetypes"'(MAYR 1957).

The biological species concept has the widest acceptance (RIDLEY 2004). In it a species is defined as "groups of interbreeding natural populations that are reproductively isolated from other such groups"(MAYR 1969).

The difficulties with this approach of defining species is that reproduction can sometimes be asexual or partly asexual and that many closely related species may no longer be in close proximity to each other (BAKER 1970). The latter author also pointed out the practical difficulties of inbreeding experiments that can be undertaken, as there are only a limited number of plants than can be cultivated and hybridized.

In a phylogenetic species concept, species are classified "according to how recently they share a common ancestor"(RIDLEY 2004). Identification of species is based on molecular sequences and their divergence. This approach is claimed by some authors to raise the number of accepted species in comparison to species accepted under a biological species concept (ISAAC ET AL. 2004), and is claimed to be sometimes misleading (CLARKE ET AL. 1996) and raises the question of what to do with paraphyletic genera that form otherwise morphological distinct groups (BRUMMITT 2002, Nordal \& STEDJE 2004). It was summarised by LEVIN (2000) that "any attempt to neatly fit biological diversity into any single species concept is likely to be futile". RUSE (1998) suggested not looking at just a single approach to characterize species but to make a "virtue out of pluralisms" and incorporate many aspects such as morphology, breeding systems, ecology and molecular data etc. into a classification. MANN (1999) in looking for a species concept in diatoms also supports a multidisciplinary approach, the so-called 'Waltonian species concept' that tries to gather all information available in order to see a broader picture and look for a general consensus.

In reviewing species concepts used by former workers on liverworts, many are based on morphology, such as treatments by NEES (1838) or MÜLLER (1954). However he considered that cytological differences in chromosome numbers can sometimes be an important character in distinguishing between species. He rejected descriptions of new species made purely on the basis of geographical parameters. This was also the approach of BISCHLER (1998) who argued that in the lack of morphological and sometimes even genetic differences many species can show a large distribution range and are known from several continents. HEINRICHS (2002), working on the leafy liverwort genus Plagiochila (Plagiochilaceae) explained that in his taxonomic treatment an attempt was made to include both morphology and molecular data in his species concept: "Species are distinguished by their morphology and understood as a group of individuals which represent a continuous spectrum of phenotypes" and that "species should represent monophyletic lineages in the phylogenetic analyses of the molecular data".

BISCHLER (1989) based her revision of the thalloid liverwort genus Marchantia (Marchantiaceae) on morphological differences and also tried to incorporate ecology. However, she added: "Most of the described species are probably comprised of several genetically different components. [...] Structural variations are not the same, but by no means can these different kinds of populations be distinguished on a structural basis. Further subdivision of the taxa as defined here, is not thought likely to contribute to a better understanding of these plants. [...] With these considerations in mind, a broad species concept has been adopted". This concept was again used by BISCHLER (1984) in her revision of Marchantia taxa of the New World:"They [species] have to be morphologically recognisable, even if their structure might be genetically heterogeneous".

The species concept used in the present study is based on a combination of morphological (particularly in regard to spore characters) and molecular evidence. It is hoped that the species are easily distinguishable in the field by their morphological appearance. By no means as complete a picture of the genus Mannia has been achieved in this study as was advocated by RUSE (1998) or MANN (1999), but all available information has been used to make decisions on species delimitation. Further work on Mannia is needed and other aspects such
as breeding system or developmental studies should be added as they might give additional insights into species delimitation in Mannia.

1.6 Evolutionary age of Mannia

Spores that date back to the mid-Ordovician are the earliest fossil evidence for plant colonisation of land. It has been considered that these spores were possibly produced by early relatives of bryophytes as the spore ultrastructure shows liverwort affinities, although this is controversial (WELLMAN ET AL. 2003). The earliest definite fossils of land plants can be attributed to vascular plants amongst other unidentified plants (QIU ET AL. 1998). Therefore definite bryophyte fossils postdate the earliest fossils attributed to vascular plants. However, bryophytes are said to be the first plants to colonise the land based on phylogenetic studies (KENRICK \& CRANE 1997, Kodner \& GRaHAM 2001). There are different hypotheses about bryophyte evolution. Whereas a few molecular studies suggest the three bryophyte lineages form a monophyletic clade (NiShiyama Et AL. 2004, Goremykin \& HELLWIG 2005), sister to the vascular plants, others suggest that they are a paraphyletic group with the liverworts forming a sister group to the hornworts, mosses and higher plants (e.g. KENRICK \& CRANE 1997, QIU ET AL. 2006).

Fossil remains of liverworts were first noted from the Devonian and Lower Carboniferous periods (BISCHLER 1998). It was hypothesized by QIU ET AL. (1998, 2006) that within the bryophytes, liverworts are the earliest land plants; this view is supported by the lack of some mitochondrial introns which are present in virtually all mosses, hornworts, ferns and vascular plants.
It is said that fossil records of bryophytes such as from the order Marchantiales are generally rare because spores or tissue do not preserve well (HECKMANN ET AL. 2001, BISCHLER 1998). This is due to the absence of lignified tissues and the often delicate thallus, particularly in liverworts and hornworts (KODNER \& GRAHAM 2001). Another reason could be that fossil extraction techniques may result in the loss of fragments (MILLER 1984). However, Graham et al. (2004) considered that liverwort fossilization in thalloid liverworts such as Marchantia polymorpha and Conocephalum conicum could be underestimated and that in their experiments gametophyte tissue in these species showed resistance to
degradation and high-temperature acid treatment. They suspect that some fossils identified as belonging to the extinct group of nematophytes are possibly the remains of early marchantoid liverworts.

It is therefore difficult to put a date on the origin of Marchantiales. Their diversification and radiation time is unknown (BISCHLER 1998). Fossil records are mainly found from the Mesozoic Era about 248 to 65 million years ago. The earliest fossils of Marchantiales are known from the Triassic (Krassilov \& SCHUSTER 1984). According to Frahm (2001), the earliest Marchantiales from the Triassic is Marchantites cyathoides from Natal (South Africa). There are early remains of Marchantialean gametophytes with epidermal pores, air chambers and scales reported from the Jurassic and early Cretaceous with a wider range of Marchantioid fossils known from the Cretaceous (Oostendorp 1987, KRASSILOV AND SchUSTER 1984). Therefore it is assumed that genera of the Marchantiales such as Mannia appeared before or during the Cretaceous about 144 to 65 million years ago (KRASSILOV AND SCHUSTER 1984). However, the latter authors regret a "lack of adequate fossil data from the Mesozoic" and a fossil record for Mannia is absent.

Fig. 1.1. Pictures of Mannia species (1). A M. fragrans with archegoniophores (Schill et al. 51, Switzerland); B M. fragrans in dry condition with inrolled thalli showing bearded thallus apices (Switzerland), C M. fragrans showing bleached appendages (Schill \& Clarke 162, North India); D M. fragrans with antheridia on terminal discs (Schill \& Zündorf 3, Germany).

Fig. 1.2. Pictures of Mannia species (2). A M. californica with archegoniophores and antheridia (Schill \& Clarke 144, South India); B M. californica with antheridia (Long 34281, Yunnan); C M. californica with antheridia (Schill \& Clarke 101, California); D M. californica with young archegoniophores and antheridia (Schill \& Clarke 165, North India); E M. californica with antheridia (Schill \& Clarke 133, Namibia); F M. androgyna with young archegoniophores and antheridia (Schill \& Clarke 121, Namibia).

Fig. 1.3. Pictures of Mannia species (3). A M. pilosa with archegoniophores (Schill et al. 83, Austria); B M. triandra with archegoniophores (Schill et al. 79, Austria); C M. triandra, sterile thallus (Schill et al. 81, Austria); D M. androgyna with archegoniophores (Schill \& Lobo 34, Madeira); E M. androgyna with young archegoniophores and antheridia (Schill \& Lobo 31, Madeira).

Fig. 1.4. Pictures of other genera of Aytoniaceae. A Asterella saccata (Schill et al. 43), Switzerland; B Asterella wallichiana (Schill \& Clarke 167), North India; C Reboulia hemisphaerica (Schill et al. 46), Switzerland; D Plagiochasma rupestre (Schill 6), Madeira; E Cryptomitrium spec. (Schill 180), Peru; F Plagiochasma rupestre (Schill 191), Peru.

Chapter 2: Taxonomic characters

2.1 Introduction

In Mannia, as in all of the Marchantiales, the gametophyte is highly elaborate showing a considerable number of different characters in sharp contrast to the sporophyte, which is highly reduced. This contrasts with the mosses and to a lesser extent with the leafy liverworts where the sporophyte shows greater elaboration.

Hence in the complex thalloids such as Mannia there is a rich selection of gametophytic characters available for taxonomic use but the sporophyte offers few characters. However, spore characters have proven to be of immense value in species identification and delimitation. The spore survey is presented in Chapter 3. For methods used in photography and morphological study see Chapters 3 and 4.

2.2 Morphological and anatomical characters in Mannia

The characters used in this study are grouped into vegetative and reproductive feature of the gametophyte and sporophyte characters. A summary table of selected characters is also presented. For a formal description of the genus see Chapter 4.

2.2.1 Vegetative features of gametophyte

Thallus Mannia species are characterized by small and rather narrow thalli, which sometimes broaden considerably towards the thallus apex. In general the thallus is either thick and leathery or rather thin and delicate; however, in some cases, the appearance can be rather intermediate. The plants usually grow intermingled in mats, or spreading and forming loose mats, which can then develop into quite extensive patches. All species have a pleasant aroma, though it is often not very strong. M. fragrans can have a strong cedar oil smell in the field that persists well over many years and is still present when
dried specimens are remoistened. In dry field conditions the species is said to have only a faint smell and this is hard to detect (HUNECK ET AL. 1988). Sometimes M. androgyna shows a strong aroma unlike that of M. fragrans. It disappears once the plants are dried and cannot be detected when remoistened. The thallus is in general of bright green colour above although in some M. triandra specimens it can appear bluish green. The thalli usually have thin dark purple margins. This pigmentation is chemically not fully understood but the pigments are said to be 'localized in cell walls and not dissolved in vacuoles', as is the case in higher plants (Crum 2001).
When plants get older the thalli sometimes starts to disintegrate and become lacunose above. This is most evident in M. pilosa, where the thallus gets a whitish colour, but can also be seen in M. triandra and M. fragrans, though then the thallus colour is rather brownish. In dry conditions the thalli curl up from the margins inwards and appear like blackish threads, which are hard to see in the field. The dark colour of the thallus underside protects the thalli from high light intensities (SCHUSTER 1992b).

Vegetative branching There are several different ways by which Mannia thalli branch. In all species the most common branching pattern is terminal dichotomous. The thallus divides at the apex into two branches. These terminal dichotomies are either symmetrical or asymmetrical. In the asymmetrical case the shorter part of the dichotomy often bears the male part of the plant (androecia, which contain antheridia).
Vegetative branches can also be produced by ventral and terminal innovations. Ventral innovations develop from the ventral side of the thallus along the midline. They can be remote from the thallus apex or very close to it. The base of these branches is stipitate; the branches are usually linear or obovate. The branches of terminal innovations are sometimes obdeltoid with the apex somewhat truncate and tapering to the base (e.g. in M. fragrans). In M. fragrans, M. californica and M. androgyna the dichotomous branches are usually readily identifiable and continue their growth for a time before they branch again. In other species, in particular M. triandra, dichotomous branches at the thallus apex cannot always be clearly seen, and the apex sometimes gives the
impression of being undulate because secondary dichotomies happen quite soon after the initial ones.

Dorsal epidermis A recognizable midrib is absent in Mannia and along the midline of the thallus, the so-called growing zone 'Wachstumszone' (MÜLLER 1954), there is no colouring visible. Species with more leathery thalli like M. fragrans or M. androgyna do not show reticulation dorsally whereas species with more delicate thalli such as M. triandra or M. pilosa usually show a distinctly reticulate dorsal surface (Fig. $2.2 \mathrm{~A}, \mathrm{~B}$).
The dorsal surface often has a purple pigment, particularly at the margins or sometimes in the area around the antheridial ostioles. The purple colouring is said to become lost in herbarium specimens (Whittemore 1991). This could sometimes be observed, but often purple colouring was still present.

The dorsal epidermis consists of one layer of thin- or thick-walled cells with small or big, often convex trigones at the angles. Cell wall thickness is quite variable and can be seen as varying from thin- to thick-walled even when observing only a small part of the epidermal surface on a single specimen. This is most often the case in M. triandra and M. pilosa. Other species seem to have rather consistently thick-walled epidermal cells. SCHUSTER (1992b) suggested that the cell wall thickening might be environmentally induced.

In M. fragrans Damsholt (2002) linked thick-walled epidermal cells to plants from xerophytic habitats and thin-walled epidermal cells to plants from more humid surroundings. The method of study used by different authors for examining cell wall thickness is sometimes unclear, as there are two ways. One is by studying the epidermis in surface view and the other is to examine transverse sections of the thallus. In the latter it is sometimes hard to decide if the cell walls are thin or thick and conclusions can therefore be ambiguous. However, the thickness of the epidermal cell walls has often been seen as a significant character by authors in former studies on Mannia. The genus was formerly subdivided into two different genera, Neesiella and Grimaldia, using this as one of several key characters. Neesiella (containing M. pilosa and M. triandra) was considered to have thin-walled epidermal cells whereas those in Grimaldia (M. androgyna and M. fragrans) were thick-walled (SCHIFFNER 1908). In his treatment of European species MÜLLER (1954) united these genera under

Grimaldia but also described M. pilosa and M. triandra as thin-walled. He actually used epidermal cell wall thickness as the first character in his key to distinguish between M. fragrans (thick-walled) and M. androgyna (thin-walled). In a later treatment SCHUSTER (1992b) described M. pilosa and M. triandra as having thin-walled epidermal cells, but that these species could also become thick-walled in some cases.
A new variety 'Mannia fragrans var. alpina'was described by MEYLAN (1924) based on the very thick-walled epidermal cells of a plant found at high altitudes.

Air pores Mannia is characterised by simple epidermal air pores in the thallus (Fig. 2.3 A). Air pores connect the underlying air chamber with the surrounding atmosphere. Usually each air chamber has one air pore (Fig. 2.2 C). The pores can be inconspicuous or distinct, and are slightly to strongly upraised above each air chamber. In surface view they usually have two to three, occasionally four, concentric cell rings (Fig. 2.2 E, F, Fig. 2.6 C, D, E, F). These rings are usually found to overlap each other at least in part. The radial cell walls are thin or thick. The walls of the innermost ring cells are sometimes found to be collapsed (Fig. 2.2 E). In cultivation experiments on Clevea (now Athalamia in Cleveaceae) it has been shown that in wet environments the walls become thin whereas in dry environments they are thick (MÜLLER 1954).

Assimilation tissue The assimilation tissue appears as a 'green zone' in the thallus and is the main photosynthetic tissue. It is situated between the dorsal epidermis and the basal tissue (Fig. 2.3 B). The proportion of assimilation tissue to basal tissue varies considerably between and within species. The cells contain many chloroplasts responsible for photosynthesis. The assimilation tissue can be either spongy with small densely packed air chambers (M. androgyna, M. californica) or loose with large air chambers (M. fragrans, M. pilosa and M. triandra) (Fig. 2.7 A, B). The air chambers form an irregular layered group and even in cases where the assimilation tissue is thin, there is always more than one layer of chambers, at least in the middle part of the thallus.

In M. fragrans the assimilation tissue often contains one upper band of tall vertical air chambers and smaller more rounded air chambers below. The differences between spongy and loose assimilation tissue can sometimes be
rather unclear as in M. sibirica and M. asiatica. The air chambers sometimes contain free filaments, for example below air pores. Oil cells may be present or absent.

Air chambers are said to develop schizogenously (BARNES \& LAND 1907, EvANS 1918, CRUM 2001). The simple divisions take place just below the growing point of the thallus (Crum 2001). This contradicts Leitgeb's (1881) earlier assertion that air chambers in the Marchantiales develop through sinking of the surface cells followed by parts of the surface becoming overgrown by more rapid growth of neighbouring tissues.

Basal tissue The basal tissue in Mannia is colourless and made up of rounded to oblong thin-walled cells. It is situated between the assimilation tissue and the ventral epidermis. It can form a thinner layer than the assimilation tissue, be the same thickness or sometimes even thicker (Fig. 2.6 B). The cells of the basal tissue contain no or only a few chloroplasts. Oil cells are usually present but scattered and are sometimes inconspicuous. In most species the single oil body is bright yellowish or occasionally greyish. In M. californica they are a good diagnostic taxonomic character being of a conspicuous dark brown colour, in contrast to all other Mannia species (Fig. 2.3 C, D, E, F). The oil cells contain one large oil body and no other organelles such as chloroplasts. They are said to be generally smaller than other cells (CRUM 2001). However, in the present study the oil cells were found to be as big as other cells. The actual oil body contains and stores terpenoids and other aromatic compounds - these essential oils are probably responsible for the aromatic nature of many liverworts (SUTRE et al. 2000, Figueiredo et al. 2002). Oil bodies could possibly support the survival of the plant in dry conditions or offer protection against predators. Their function has been reviewed by SUIRE ET AL. (2000) in a study on the complex thalloid liverwort Marchantia polymorpha (Marchantiaceae). They suggest that oil bodies are not only useful for storage but also important in the cell metabolism cycle as they contain enzymes that are also found in plastids or the cytosol. There are some studies on aromatic compounds in Marchantiales, which include some Mannia species, e.g. Huneck ET AL. (1988) (M. fragrans) or SCHIER (1974) (M. fragrans, M. androgyna and M. capensis).

Ventral epidermis The ventral epidermis in Mannia is not well differentiated. In general the cells are smaller than those of the basal tissue and of darker brownish or purple colour than the latter. Some ventral epidermal cells grow into rhizoids (MÜLLER 1954). In other Marchantiales it is has been shown that the ventral epidermal cells are not able to absorb water (MCCONAHA 1939).

Rhizoids As is the case in most Marchantiales, rhizoids in Mannia are dimorphic (Fig. 2.4 D, F). There are two types of rhizoids present: pegged and smooth. The internally pegged rhizoids are said to have some function in conducting water whereas the smooth rhizoids attach the thallus to the substrate (CRUM 2001, MÜLLER 1954). Another function of the smooth rhizoids is to give endophytic fungi access to the thallus cells as has been demonstrated in some Marchantiales (Kachroo 1954, Pocock \& DUCkett 1985, Ligrone \& LOPES 1989, DUCKETT ET AL. 2000). The entirely intracellular fungal hyphae are thought to be absent from sporophytes as well as the reproductive structures of the gametophyte (POCOCK \& DUCKETT 1985). The fungi in Marchantiales appear morphologically very close to fungi present in vesicular arbuscular mycorrhizas, notably from the family Endogonaceae (Zygomycota) (Pocock \& DUCKETT 1984, DUCKETT 1986) which now belong to the Glomeromycota (SCHÜBLER ET AL. 2001).

CRUM (2001) noted that, in general, smooth rhizoids emerge from the thallus midline and pegged ones from underneath the ventral scales. He also drew attention to their different orientation, the smooth ones being vertical and the pegged ones being horizontal. Rhizoids grow from their tip and can grow to over one cm long and therefore are the longest single cells known in liverworts (MÜLLER 1954). In studies on Conocephalum (Conocephalaceae) it has been found that the average length of pegged rhizoids is more than twice as long as that of the smooth rhizoids (MCCONAHA 1939). Large numbers of rhizoids can be found on a single thallus. In Mannia indica, Kachroo (1954) measured 700 pegged and 1150 smooth rhizoids per cm of thallus length.
Dehydration and in particular long periods of desiccation seem to influence the functioning of smooth rhizoids more than that of pegged ones. Cryo-Scanning Electron Microscopic studies on rhizoids showed that smooth rhizoids remain
flattened after dehydration and do not regain their structure whereas pegged rhizoids revive and regain their function (DUCKETT ET AL. 2000).

Ventral scales

 Ventral scales in Mannia are situated in two rows along each side of the thallus midline and often overlap each other (Fig. 2.6 A). They also commonly overlap the lobe apex to protect the growing point (CRUM 2001). In Mannia each ventral scale comprises a scale body and apical appendages. The scale body is asymmetrical with a semicircular to broadly elongate or oblong-semicircular shape. Its thallus insertion is lunate and decurrently curved. The scales are just one cell thick. They are of purple colour with sometimes paler margins, reflect the light and hence protect the rolled up and dry thalli from desiccation. Along their margins small slime papillae are usually present (Fig. 2.4 C), which sometimes break off easily (M. androgyna) and are hard to find in older specimens.There is usually one, two or occasionally three apical appendages on each ventral scale in Mannia and these are purple or bleached as in M. fragrans. They are subulate to broadly subulate or lingulate and they gradually narrow into an acute tip. Their base is not constricted. They catch moisture out of the air through capillary action.
The ventral scales usually contain oil cells, which are isodiametric (Fig. 2.4 A, B). An exception to this is M. pilosa, where oil cells are commonly absent or only few. They are usually found near the margins of the ventral scale body, sometimes also in their middle (M. asiatica) or at the base of the appendages. MCCONAHA (1939) demonstrated with dye experiments on Conocephalum conicum that the ventral scale appendages together with the rhizoids are solely responsible for water absorption. It was shown that the dye could not enter via the ventral epidermal cells of the thallus. Hence ventral scales play an important role in water uptake and regulation. Together with the rhizoids they build a complex capillary system on the ventral side of the thallus. The evolutionary origin of ventral scales is not known and there is some controversy about their ancestry. SCHUSTER (1992b, c) suggested that ventral scales originated from slime papillae that had evolved into a 'leaflike form', following Goebel (1905), who stated that the scales may have arisen from mucilage hairs or papillae. However, Evans (1939) suggested that scales from
the leaves of leafy liverworts and would therefore be homologous with leaves. This is contradicted by recent molecular research, which suggests that the complex thalloid liverworts arose before the leafy liverworts and mosses.

Vegetative propagules

Vegetative propagules such as gemmae are absent in all Mannia species. Thallus fragments, though, can grow into new plants once distributed by water or wind. This could apply to the vegetative branches that developed from the ventral side of the thallus mid-line. They have a stalk-like insertion and could break off easily. It can be demonstrated experimentally that thallus fragments of other Marchantiales like Marchantia and Lunularia can regenerate and continue their growth in this way (MÜLLER 1954).

2.2.2 Reproductive features of gametophyte

Cytology In Fritsch's (1991) 'Index to bryophyte chromosome counts', chromosome numbers for six Mannia species (M. barbifrons, M. brachypoda, M. fragrans, M. levigata, M. pilosa and M. triandra) are listed. All Mannia species are reported to have nine chromosomes. This was also confirmed by BISCHLER (1998). In distinguishing between different species, chromosome numbers seem to be of little value. For this reason no cytological studies have been undertaken on fresh material of Mannia.

Sexual condition The sexual condition of most species of Mannia is monoicous. In monoicous plants both antheridia and archegonia are found on one plant. The only dioicous species of Mannia is M. fragrans. Here the antheridia and archegonia are always found on separate plants but plants of both sexes are often found intermingled. Mannia species are usually fertile once a year for about one to two months. The fertility time of year depends on the region and often altitude, and is different for each species.
The different types of monoicy that can occur are dorsal-autoicous, male- or female- ventral-autoicous, terminal- autoicous and par-autoicous (Fig. 2.1). In Mannia the androecia can be borne dorsally on the main thallus (dorsalautoicous) with archegoniophore either on reduced ventral branches (female-ventral-autoicous) (M. californica), or archegoniophore on the same thallus or on
a dichotomous furcation of the same thallus (M. androgyna). The antheridia can also be borne on reduced ventral branches of the main, often archegoniophorebearing thallus (male-ventral-autoicous) as it is typical in M. pilosa. They are sometimes found on shorter or equally long branches of a dichotomous furcation (terminal-autoicous) (M. sibirica, M. triandra, M. asiatica) of which the other branch can bear an archegoniophore, or rarely close to the base of the archegoniophore (par-autoicous) (M. triandra).

Fig. 2.1. Sexual conditions in Mannia. A dioicous; B male-ventral-autoicous; C female-ventral-autoicous; D dorsal-autoicous; E par-autoicous; F terminalautoicous.

The sexual condition has been found in this study to be a good and reliable character for each Mannia species. In former revisions (SCHUSTER 1992b, DAMSHOLT 2002) the sexual condition of some Mannia species has sometimes been confused (see Chapter 4.4.3.2: Taxonomic Notes for M. sibirica). LONG (1999, 2000) introduced new terms to distinguish between types of monoicy for the Marchantiales because WYATT \& ANDERSON’s (1984) sexual terminology did not cover the complexity of sexual conditions in this group of liverworts (Table 2.1). So the terms par-autoicous, terminal-autoicous and
ventral-autoicous follow LONG's (1999, 2000) earlier definition. In addition to that the term dorsal-autoicous has been introduced in the present treatment and ventral-autoicous has been further subdivided into male-ventral-autoicous, indicating that only male branches are found on reduced ventral branches and female-ventral-autoicous for plants that bear only archegoniophores on reduced ventral branches (Table 2.2).

Table 2.1. Definitions for monoicous conditions in Mannia (from LONG 1999, 2000), and the new term dorsal-autoicous

Types of monoicy	Definition
Par-autoicous	androecia borne on the main thallus immediately proximal to the base of the archegoniophore
Terminal-autoicous	androecia borne on terminally produced branches of the same thallus that bears an archegoniophore
Ventral-autoicous	androecia and/or archegoniophore borne on a ventrally derived, often reduced, branch of thallus
Dorsal-autoicous	androecia borne dorsally on main thallus, which can also bear an archegoniophore

Table 2.2. Additionally introduced terms for a further subdivision of ventral-autoicous

Types of ventral-autoicous	Definition
Female-ventral-autoicous	only archegoniophore borne on reduced ventral side branches
Male-ventral-autoicous	only androecia borne on reduced ventral side branches

Androecia In Mannia the androecia are sessile (Fig. 2.7 E). The antheridia are embedded in the thallus within the antheridial cavities (Fig. 2.4 E, Fig. 2.7
D) opening to the outside with a pore. The antheridia are said to have bicellular paraphyses (BISCHLER 1998). The development of antheridia does not inhibit the further vegetative growth of the male thallus although in M. pilosa the ventral male branches rarely seem to extend their growth.
Usually several antheridia are developed. They have their openings on the thallus surface by conical shaped and raised ostioles, which have a green colour when young but often turn purple when mature (Fig. $2.7 \mathrm{C}, \mathrm{E}$). The surrounding epidermal tissue also often becomes crimson or purple.

The antheridia are found dorsally scattered along the midline of the thallus or in strongly or weakly upraised clusters dorsally or terminally (M. californica, M. androgyna).

They can also be in terminal poorly defined clusters in slight depressions or slightly upraised (M. sibirica, M. triandra and M. asiatica) or in terminal triangular, elliptic or rounded discs (M. fragrans). In M. pilosa they are found on reduced ventral branches, which have a stipitate base.
In observed Mannia specimens studied, the marginal scales around the antheridia where absent when mature but small purple scales were sometimes present at the start of antheridial development and then presumably later became fugacious. This is confirmed by Bischler (1998) who states that scales are minute or absent.

In the thalloid liverwort Conocephalum conicum it is reported that one antheridium can contain about 250, 000 spermatozoids (BOLLETER 1905). It is stated by Kachroo (1958) that many Mannia species are protandrous and release their spermatozoids before the maturation of the archegoniophore on the same plant.

Archegoniophore The archegoniophore is a highly modified branch of the thallus consisting of a stalk and a head, the so-called receptacle. In Mannia the archegoniophore is said to develop near the thallus apex, just above the growing point (CRUM 2001, MÜLLER 1954). It derives from the terminal notch of the thallus or is borne on a reduced ventral side branch of the thallus and inhibits further growth of the thallus apex.
Fertilization of the archegonia takes place before the stalk elongates and elevates the receptacle upwards for spore maturation (BISCHLER 1998). With the
maturation of the sporophyte it has been noted that the stalk ceases its growth (Kachroo 1956).

Stalk The stalk is of greenish or yellowish colour, sometimes purple at the base or higher up. It is very variable in length. The stalk is either naked or sometimes has scales along its length, which are just one cell layer thick and a few cells across. The scales are of lanceolate to linear shape and occasionally have slime papillae or very rarely oil cells. Scales are often also present at the base of the stalk, though these are occasionally inconspicuous.

In cross section the stalk has a circular to irregularly triangular-ovate shape and is slightly ridged (Fig. 2.5 A). It has a single rhizoidal furrow suggesting evolution from a thallus and demonstrating a branch modification. In all Mannia species studied, air chambers could not be observed in the stalk opposite the rhizoidal furrow, though rhizoids were usually present in the rhizoidal furrow. These rhizoids are part of the capillary conduction system. The outer brownish and small epidermal cells are usually in just one layer (Fig. 2.5 B). The yellowish medulla has bigger rounded cells, which are sometimes incrassate with corners quite thickened. No stalk differences could be made out between the individual species of Mannia.

Receptacle The receptacle in Mannia is usually strongly warted/dimpled and the air chambers of the receptacle are often visible on its dorsal surface (Fig. 2.2 D) with the naked eye or a hand lens. On the ventral side rhizoids and scales can sometimes be found. As is characteristic for the family Aytoniaceae, the air pores of the receptacle are compound (Fig. $2.5 \mathrm{C}, \mathrm{D}$) in contrast to the simple pores present at the dorsal surface of the thallus. The shape of the receptacle is subglobose in M. triandra and M. pilosa but usually hemispherical in all other species.

Some species in Mannia are often bearded with a tuft of white scales at the base of the receptacle. This is usually the case in M. fragrans, M. pilosa and M. sibirica although in some specimens the beard is not very distinctive. In other species the receptacle is usually naked as in M. androgyna and M. californica, but occasionally specimens have a few scales below the receptacle. Although M. triandra has a predominantly naked receptacle, in some specimens the
receptacle was found to be bearded. M. asiatica, usually characterised by a naked receptacle, sometimes appears slightly bearded. This indicates that there is some plasticity in this character although it usually gives a good indication in distinguishing between individual species.

The receptacle is yellowish green when young and turns green and often tarnishing purple when matured. Each receptacle was found to bear between two and four, sometimes five sporophytes. The lobes of the receptacles result from forked branching, the number of lobes depending on the number of divisions of the growing point (KACHROO ET AL. 1977, CRUM 2001). In Mannia a double forking is assumed (KACHROO 1958, CRUM 2001), which produces four lobes, and if an archegonium in each lobe gets fertilized this would result in the development of four sporophytes. BISCHLER (1998) suggests twice- to thricedichotomous branching, which would on average result in the development of six sporophytes. This can be confirmed as in some cases in Mannia specimens five sporophytes have been counted with the remaining one archegonium unfertilized.

Involucre An important character to distinguish Mannia from other genera is the presence of cup-shaped involucres (BISCHLER 1998). They form the end of each receptacle lobe and surround the capsule (Fig. 2.2 D). The involucre is usually two cell layers thick and rather delicate.

Calyptra Each developing sporophyte is at first protected by a calyptra. In Mannia the calyptra is inconspicuous, small, thin and delicate. It is said to be two to three layered after fertilization (BISCHLER 1998). It is rounded shallowly bowl- or cup-shaped and situated at the bottom of each receptacle lobe underneath the capsule. In mature specimens it can only be seen once the capsule is removed. The presence of the calyptra could be observed in all Mannia species.

2.2.3 Features of sporophyte

Capsule Each receptacle lobe can have many archegonia but in general only one archegonium in each lobe is fertilised and develops into a sporophyte.

Usually one to four or sometimes five sporophytes develop on a single archegoniophore. They consist of a capsule and a much reduced short seta, which does not elongate. The capsule is globose and of yellow colour when young (Fig. 2.2 D); it turns brown or black when mature. The capsule wall is just one cell layer thick without any wall thickenings (Fig. 2.4G). The capsule opens with a lid, sometimes also called an operculum, when spores are mature. The lid cells are rounded to rectangular and can have small corner thickenings. The capsule contains spores and elaters in a ratio of four to one (BISCHLER 1998).

Spores \quad Spores are relatively large in Mannia (Fig. 2.5 E). They develop only once a year in the Marchantiales (BISCHLER \& JOVET-AST 1981). The spore diameter in Mannia species is between about 40 and $95 \mu \mathrm{~m}$. Although the spore size can be variable within individual species, they are generally smaller in M. sibirica than in other species and are therefore a good diagnostic character for this species. Within the capsule, spores are produced in tetrads, being first attached to each other at the proximal side, where they show a trilete mark once they break off. However, the trilete mark is sometimes inconspicuous. In general the number of spores per capsule varies with spore size but it is reported that Mannia species have about 1000 (BISCHLER 1998) or 2000 to 3000 spores in each capsule (BISCHLER ET AL. 2005). The colour is yellow, brown, yellowish brown to reddish brown or greyish brown. In M. androgyna and M. californica they can be either brown or yellow; one spore colour often dominates but both spore colours could sometimes be observed on the same specimen. All Mannia spores show elaborate ornamentation, distally saccate, areolate or ridged with papillae and with pits present or absent. The proximal side can possess a disc-like structure and along its equatorial rim, apertures can be present. The ornamentation on distal and proximal sides of the spore can be similar or dissimilar.
In dioicous species two spores in each spore tetrad grow into female plants, the other two into male plants (CRUM 2001). In germination experiments on M. indica it has been shown that spores do not require a rest period to trigger germination, which occurred after 9 days on a medium containing Knop's solution (MEHRA \& KACHROO 1951). It has also been observed in this study that M. indica germinating spores at first become swollen, gaining a greenish colour before a rupturing of the proximal side of the spore takes place and the rhizoid
and germ tube break through at the trilete mark. BISCHLER \& Jovet-AST (1981) stated that spores in Marchantiales can still germinate after one to several years.

Elaters Elaters are of yellowish or brownish colour. They generally have 2 to 3 helical bands (Fig. 2.5 F). The ends of the elaters are mostly 2 -spiral and the middle 3 -spiral. Occasionally some elaters appear branched. This has been observed in M. sibirica and is often the case in M. triandra and M. pilosa. This is due to some spirals breaking through the elater wall and appearing as a pseudobranch. In general the function of elaters is thought to help in releasing the spores once the capsule is open; they act as little springs. However, BISCHLER \& Jovet-Ast (1981) consider their function in loosening the spore mass, allowing better maturation of the spores'within the capsule. The surface of the elaters is smooth or sometimes minutely roughened although this character varies within single species.

2.2.4 Summary Table of selected morphological characters in Mannia

Table 2.3. Summary Table of selected characters for all Mannia species

Species	M. androgyna	M. sibirica	M. californica	M. fragrans	M. asiatica	M. triandra	M. pilosa
Characters							
Growth form	dense mat	loose mat	dense mat	dense mat	loose mat	loose mat	loose mat
Ecological tolerance	xeromorph	xeromorph	xeromorph	xeromorph	xeromorph	mesomorph	xeromorph
Odour	inconspicuous to sometimes strongly aromatic	inconspicuous	inconspicuous	often conspicuously aromatic (cedar oil)	not observed on fresh material	inconspicuous	inconspicuous
Thallus structure	leathery	leathery to delicate	leathery	leathery	rather leathery	delicate to leathery	leathery to delicate
Thallus reticulation	absent	usually absent	absent	absent	usually absent	usually present	present
Branching type	terminal dichotomous, terminal and ventral innovations	terminal, dichotomous, terminal and ventral innovations	terminal dichotomous, ventral innovations (usually female)	terminal dichotomous, ventral and terminal innovations	terminal dichotomous, terminal innovations	terminal, dichotomous, terminal innovations	terminal dichotomous, terminal or ventral innovations
Assimilation tissue	compact	rather loose to compact	compact	loose	rather loose to compact	loose	loose
Air chambers	small	small to large	small	large	small to large	large	large
No of cell rings of epidermal air pores	2(-3)	2(3)	2-3	2-3	2-3	2-3	2
Colour of oil bodies	bright yellowish	yellowish grey to brownish	dark brown	bright yellowish	yellowish	yellowish brown	greyish brown to yellowish brown

Table 2.3. Summary Table of selected characters for all Mannia species, continued (1)

.............Species Characters	M. androgyna	M. sibirica	M. californica	M. fragrans	M. asiatica	M. triandra	M. pilosa
Size of ventral scales	(0.6)0.8-1.2(1.3)mm long, (0.4)0.5$0.9(1.1) \mathrm{mm}$ broad	$\begin{aligned} & (0.6) 0.7- \\ & 1.6(1.8) \mathrm{mm} \text { long, } \\ & (0.08) 0.4- \\ & 1.0(1.2) \mathrm{mm} \text { broad } \end{aligned}$	$\begin{aligned} & (0.8) 0.9- \\ & 1.6(1.8) \mathrm{mm} \\ & \text { long, }(0.5) 0.6- \\ & 1.2(1.4) \mathrm{mm} \\ & \text { broad } \end{aligned}$	(0.4)0.51.2(1.4)mm long, (0.4)0.51.1(1.2)mm broad	(0.5)0.71.5(1.8)mm long, 0.4$1.1(1.3) \mathrm{mm}$ broad	(0.4)0.51.1(1.8)mm long, (0.2)0.30.9(1)mm broad	$\begin{aligned} & \text { (0.6)0.7- } \\ & 1.4(1.7) \mathrm{mm} \text { long, } \\ & (0.2) 0.4- \\ & 1(1.1) \mathrm{mm} \text { broad } \end{aligned}$
No. of oil-bodies per ventral scale	7-34	(3)6-16(22)	6-22	12-52	6-22(33)	1-19	usually absent, $0-2(4)$
No. of appendages	1-2(3)	1(-2)	1-2	(1)2(3)	1-2(3)	1-2	1(-2)
Bleached appendages	absent	absent	absent	present	occasionally present	absent	absent
Sexual condition	dorsal autoicuous, female-ventralautoicous	terminalautoicous	dorsal autoicous, female-ventralautoicous	dioicous; male and female often intermixed	terminal autoicous	terminalautoicous and occasionally par-autoicous	typically male-ventral-autoicous and rarely terminalautoicous
Position of antheridia	dorsal or terminal along thallus midline, sometimes bifurcate	terminal	dorsal or terminal along thallus midline	terminal	terminal	terminal or behind archegoniophore	reduced ventral branches
Antheridia organisation	clusters or loose aggregations	poorly defined rounded cushions	clusters or loose aggregations	on triangular (rounded or elliptic) discs	poorly defined rounded cushions	poorly defined rounded clusters	poorly defined rounded clusters

Table 2.3. Summary Table of selected characters for all Mannia species, continued (2)

Characters Species	M. androgyna	M. sibirica	M. californica	M. fragrans	M. asiatica	M. triandra	M. pilosa
Position of archegoniophore	usually terminal but also on reduced ventral branches	terminal	usually ventral but also terminal	terminal and ventral	terminal	terminal	usually terminal, rarely on ventral lateral branch
Base of receptacle	naked	bearded	naked	bearded	usually naked	usually naked, sometimes bearded	bearded
Shape of receptacle	hemispherical	hemispherical	hemispherical	hemispherical	hemispherical	subglobose	subglobose
Stalk length	$\begin{aligned} & \hline(4.1) 5.5- \\ & 22.5(24) \mathrm{mm} \end{aligned}$	$\begin{aligned} & \text { (4.6)7.3- } \\ & 17.9(21.4) \mathrm{mm} \end{aligned}$	$\begin{aligned} & (4.3) 5.6- \\ & 10.9(11.5) \mathrm{mm} \\ & \hline \end{aligned}$	$\begin{aligned} & (5.8) 6- \\ & 14.2(16) \mathrm{mm} \end{aligned}$	$\begin{aligned} & (0.9) 1.9- \\ & 18.9(20.8) \mathrm{mm} \end{aligned}$	$\begin{aligned} & (0.9) 2.2- \\ & 17.9(19.8) \mathrm{mm} \end{aligned}$	(4)5.7-26(31) mm
Stalk diameter	$\begin{aligned} & (517.5) 540- \\ & 724(748) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (310.5) 333.5- \\ & 495(563.5) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (517.5) 609.5- \\ & 862.5(908.5) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (290) 330- \\ & 495(530) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (207) 276- \\ & 517.5(529) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (207) 253- \\ & 701.5(910) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & \hline(310.5) 333- \\ & 506(529) \mu \mathrm{m} \end{aligned}$
Elaters	rough	smooth	rough	smooth	smooth to rough	smooth	smooth
Spore diameter	$\begin{aligned} & (60) 63- \\ & 86.1(87.2) \mu \mathrm{m} \end{aligned}$	43.1-56.2(62) $\mu \mathrm{m}$	$\begin{aligned} & (52.5) 58- \\ & 73.8(76) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (54) 57- \\ & 74.3(76.3) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (54.5) 60- \\ & 71.7(74.4) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (45.6) 55.2- \\ & 75(77.7) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & \hline(63) 66.6- \\ & 81.5(85.7) \mu \mathrm{m} \end{aligned}$
Spore colour	yellow or brown	yellow to yellowish brown	yellow or brown	yellow	yellow	yellow or greyish brown	yellow to brownish yellow
Spore type (see Chapter 3)	I	II	II	III	IV	V	V

2.3 Cultivation of living plants in a growth cabinet

There are several cultivation methods for bryophytes available in the literature such as by DUCKEtT ET AL. (2004). Cultivation of living material from collected plants was undertaken in a growth cabinet for morphological study. This has been very useful in the case when sporophytes where not fully mature or in order to see if archegoniophores would develop from sterile material. Thalli were placed on sterile sand in labelled plastic containers with a lid as described by FRAHM \& NORDHORN-RICHTER (1984). The containers were kept closed and the plants were occasionally watered with cold tap water or de-ionised sterile water. The temperature setting in the growth cabinet was $12^{\circ} \mathrm{C}$ with the light permanently on.

The cultivation of living material was successful in the sense that in many cases young immature archegoniophores could be cultivated until the spores matured. Longer cultivation (more than 6 months) often resulted in strong algal overgrowth, which in the end damaged the plants.
In all living specimens it could be observed that the natural appearance of the thallus changed in time as plants etiolated. This has also been observed by LONG (2000). In no instance did sterile material develop antheridia or archegoniophores during the cultivation phase. Mannia species with delicate thalli, notably M. triandra and M. pilosa did not survive the growth cabinet conditions as well as species with more leathery thalli such as M. androgyna and M. fragrans. All plants were cultivated from fresh material and most Mannia species were cultivated. Fresh specimens of M. asiatica and M. sibirica were unfortunately not available.
It also can be noted that in a sterile Mannia fragrans specimen the common cedar oil smell appeared and disappeared so that there were days when the plant smelt characteristically and days when it did not.

2.4 Discussion and conclusions

The characters employed in taxonomy for distinguishing between different species should ideally be reliable characters, independent from whether they are continuous or discontinuous, and not showing a phenotypic plasticity and therefore too much variation.

In Mannia there is a great diversity of gametophytic characters but a more limited range of sporophyte features that can be used for characterising the different species. The sporophyte generation is much reduced and well protected by gametophytic tissue so it is generally assumed that the gametophyte in the Marchantiales is more affected by the environment and therefore evolving more quickly than the more protected sporophyte (BISCHLER 1998).

Despite the fact that there are a great number of morphological characters available in Mannia, many of these characters are unreliable. Some characters show a considerable amount of variation (e.g. thallus width or size of ventral scales) or even in the case of continuous characters (e.g. bearded receptacle), they can sometimes be either present or absent. The difficulties in finding clear differences between Mannia species has often resulted in long keys to distinguish between species as the characters used have probably not been regarded as highly reliable (e.g. SCHUSTER 1992b, DAMSHOLT 2002). In other cases characters have been misinterpreted and regarded as variable when they are not or vice versa. So in studying the range of characters available in Mannia an attempt has been made to categorise characters as follows: key characters that are diagnostic for species identification, characters that may be variable but useful and characters that are not of great use for identification (Tab. 2.4).

Table 2.4. Summary table for key characters, variable but useful characters and variable characters of little use in Mannia identification

Key characters	Useful characters	Variable characters
Spore ornamentation	Structure of assimilation tissue	Thallus length/width
Sexual condition	Thallus reticulation	Epidermal cell wall thickening
	Thallus colour when disintegrating	Width of assimilation tissue
	Thallus apex bearded	Width of compact tissue
	Colour of oil-bodies in thallus	Size of ventral scales
	Number of oil-cells in ventral scales	Number of concentric rings of
	Bleached appendages	epidermal pores
	Receptacle bearded/naked	Stalk length and cross section
	Receptacle shape	Elaters smooth/rough
		Spore colour

Key characters for distinguishing between different species were found to be spore ornamentation pattern and sexual condition. As spore ornamentation patterns are sometimes difficult to observe with a light microscope, former keys and revisions of Mannia have not emphasised spore characters. However, authors like MÜLLER (1954), SChUSTER (1992b) or DAMSHOLT (2002) used spore ornamentation in descriptions and keys but often not as a main character to distinguish between species. MÜLLER (1954) used distal ornamentation in his key to separate M. fragrans and M. androgyna. In species with more similar spore ornamentation patterns, e.g. M. pilosa and M. triandra a clear separation is more difficult since observations under the compound microscopes can often not be interpreted unambiguously. Though the spore size is quite variable in most species, it is a diagnostic feature for M. sibirica, which has in general smaller spores than all the other species. In a revision on Mannia in Southern Africa Perold (1994a) gave a much more detailed account of spore ornamentation in M. capensis as she used the scanning electron microscope to make observations.
The sexual condition of Mannia species has been regarded by many authors as a good character although the terms to describe it were inadequate. The terms monoicous, dioicous, polyoicous and more recently in some cases autoicous were used by many authors (NEES von ESENBECK 1838, STEPHANI 1917, MÜLLER 1954, BISCHLER 1998, DAMSHOLT 2002, SCHUSTER 1992b, BISCHLER ET AL. 2005, Perold 1994a, 1999, UDAR \& CHANDRA 1965). These terms were not found to be
sufficient enough to describe the different types of monoicy in Marchantiales (LONG 1999) so the terms introduced by LONG $(1999,2000)$ have been used in this study to describe the different types of monoicy in Mannia and extended where necessary.
In some Mannia species, the sexual condition has occasionally been misinterpreted. M. fragrans has often been seen as a polyoicous plant being sometimes dioicous and sometimes monoicous (e.g. SCHUSTER 1992b). This cannot be confirmed since if male and female plants of M. fragrans occur intermixed the antheridia and archegonia have never been found on the same thallus in specimens observed, so the term polyoicous cannot be applied. This conclusion also applies to M. californica, which has been described as polyoicous by the same author. Perold (1994a, 1999) understands M. capensis (a synonym of M. androgyna) as being 'dioicous (rarely monoicous, but gametangia on different branches)'. This contrasts with the first description by STEPHANI (1917) and ARNELL's (1963) treatment. Both described M. capensis as a monoicous species. This agrees with the present treatment of M. androgyna though the gametangia were not always found to be borne on the same thalli.
The position of gametangia on the thallus is a good character for identification. In most Mannia species the archegoniophore is usually borne on the main thallus in a terminal position. Exceptions to this are M. californica and M. androgyna, where the archegoniophore can be borne on reduced ventral side branches; this is more often the case in M. californica and has also been noted before for this species by Bischler et al. (2005) and SChUSTER (1992b). The position and organisation of the antheridia is also useful for diagnosis. In M. pilosa they are typically found on reduced ventral branches and only very rarely in a terminal position. The latter was only seen twice in specimens observed. If antheridia were found terminally though, male ventral branches also occurred at the same time. This does not agree with SCHUSTER's (1992b) idea of this species. He finds it very variable in that 'androecia either on short lateroventral branches (...) or at apices of the shorter fork of a dichotomy (...) or similarly situated on short, obcordate branches arising as ventral, terminal innovation from the main thallus'. In M. triandra the antheridia can be found either terminally or very occasionally close behind the archegoniophore. The latter has
not been noted for this species by other authors (MÜLLER 1954, SCHUSTER 1992b).

Although observations on spore characters and sexual condition of Mannia species have usually been included in descriptions by former authors, limitations in the methods of studying them or misinterpretations have influenced the outcome and disguised their value.

Besides these two key characters there are some other characters, which are useful for identification though they occasionally might show some variations. With regards to gametophytic characters the thallus structure can be either leathery and rather thick or delicate and rather thin. In general, species such as M. triandra and M. pilosa belong to latter category but more leathery specimens of M. triandra from high altitude have been seen. The division of compact or loose assimilation tissue with air chambers small or big works quite well although it has been noted that M. fragrans specimens from xeromorphic habitats have thinner assimilation tissue than plants from more humid habitats (DAMSHOLT 2002), which would have influences on the appearance of the assimilation tissue. Therefore environmental factors seem to play in important role in some features of the gametophyte, notably the thallus. Furthermore regarding structure of thallus and assimilation tissue, some species are found to be rather intermediate such as M. sibirica and M. asiatica; this has also been noted by LONG (2000) for some species of Asterella.
The thallus reticulation of Mannia has been long regarded as a good feature for the characterisation of M. pilosa and M. triandra, e.g. in treatments of MÜLLER (1954) or in the identification key by SCHUMACKER \& VÁŇA (2000), where it was seen as an important character. In former classifications where Mannia was still subdivided into the genera Grimaldia and Neesiella the areolation of the thallus has been regarded as one distinctive character amongst others for their separation (SCHIFFNER 1908).
The disintegration of the thallus is a frequent feature but in none of the species is it as apparent as in M. pilosa, where the thallus becomes strongly lacunose and of whitish colour, starting along the usually purple edges.
The colour of the oil bodies in the oil cells of the assimilation and mainly storage tissue has so far been overlooked as a character for species identification in

Mannia although oil bodies are taxonomically important in other liverworts such as Plagiochila (HEINRICHS 2002), where they can be characteristic for classifying species into sections. In the present study the dark brown oil bodies were found to be a good diagnostic feature for M. californica. There were only two cases observed where dark brown oil bodies were also found in M. androgyna.
The number of oil cells present in ventral scales is variable for most species and does not help in distinguishing between them, however it is a good diagnostic feature for M. pilosa. In this species, oil cells are usually absent from the ventral scales and only occasionally a few oil cells can be found. This has been reported by many authors (e. g. MÜLLER 1954, SCHUSTER \& DAMSHOLT 1974, SCHUSTER 1992) and used in species delimitation. It has been found as a constant character for M. pilosa collections from Scandinavia and Greenland in a study by SChUSTER \& DAMSHOLT (1974).

The presence of conspicuously bleached appendages, which often result in a bearded thallus apex in M. fragrans is a unique feature for this species, making it easily recognisable from all other related Mannia species. Occasionally bleached appendages are also found in M. asiatica though they are never very prominent and the thallus apex is never found to be bearded.
The occurrence of scales at the base of the receptacle is a common feature for some Mannia species. In general this is a quite reliable character though in some usually bearded M. pilosa specimens the scales are sometimes rather scarce. In M. triandra the expected absence of scales can sometimes be deceptive since in a considerable number of specimens observed the receptacle has been found to be bearded. This has not been noted for this species before although SCHUSTER (1992b) reported 'a few bractlets at stalk apex'in his description of M. triandra.

The shape of the receptacle being hemispherical (most Mannia species) or subglobose (only M. pilosa and M. triandra) was also found to be beneficial for distinguishing between two groups within Mannia. Although this character can sometimes be difficult to observe in dried herbarium specimens it is quite apparent on fresh plants in the field.

There are many characters that are of little value for distinguishing between different Mannia species. Measurements such as length and width of lobes, as
well as other measurements, showed a considerable amount of variation even within each individual species. This is also the case for the thickness of the ventral tissue or the assimilation tissue. Their proportions can vary notably. This has been previously used in keys for example by MÜLLER (1954), SCHUSTER (1992b) and DAMSHOLT (2002).

The comparison of these variable characters amongst species often shows an overlap, resulting in not very clear species boundaries. This current study finds them to be of little use for species identification.

The size of the ventral scales is also not regarded as a good character in the present study. This is in contrast to earlier work on Mannia where M. triandra was said to have small ventral scales in comparison to e.g. Mannia pilosa as stated by Schiffner (1908), MÜLLER (1954) or SCHUMACKER \& VÁŇA (2000). The scale measurements of these species considerably overlap so that there is no clear distinction between sizes. The number of the appendages on the ventral scales did not prove to be distinct for each of the observed species either.

In the past many authors have emphasised epidermal cell wall thickness. In the present study this character is considered too variable and unreliable. This has also been noted before by DAMSHOLT (2002) for M. fragrans (see under 'Dorsal epidermis') though he and other authors used this character in keys (e.g. SCHUMACKER \& VÁŇA 2000).

Another character previously thought to be of taxonomic value is the number of concentric rings of the epidermal air pores (SCHUSTER 1992b, DAMSHOLT 2002). In all observations little difference was apparent as regards their number. Each species had usually two to occasionally three rings. This was also confirmed by MÜLLER (1954).

Measurements of stalk cross sections did not show any significant differences between individual species. The stalk length is very variable, ranging from less than one mm to two cm within a single species and is therefore not a stable character. A variation of M. fragrans based exclusively on stalk length by KAALAAS (1889) is therefore considered untenable.

The surface of the elaters being smooth or minutely roughened varies within species so it is not considered a useful character. In general elaters associated with yellow spores seemed to be rather smooth whereas elaters associated to
darker coloured spores were found to be minutely roughened. SCHUSTER (1992b) has observed rough elaters for M. californica.
Yellow and brown are the typical colours for Mannia spores, although variations can occur. A single colour is normally typical for a species but in some (M. californica and M. androgyna) both colours occur.

It can be concluded that species identification in Mannia is best undertaken with a combination of characters. Using key characters in combination with other useful characters, species identification can usually be achieved. However, in the absence of reproductive features of the gametophyte, species identification is difficult, because sterile Mannia species have a close resemblance to other species within the Aytoniaceae, notably Asterella.
BISCHLER \& JOVET-AST (1981) see the morphological diversity in Marchantiales as 'an expression of their genetic richness and of a long evolutionary history'. Unfortunately many of these characters are not of particular value for identification purposes.

Fig. 2.2. Features of Mannia under LM (1). A areolate thallus surface; B nonareolate thallus surface; C epidermal air pores; D young plant showing archegoniophores with young, still yellow capsules and involucres; E epidermal air pores from inside with collapsed inner concentric ring; F epidermal air pores. A, C, E M. triandra (Inoue, Japan); B M. androgyna (Schill \& Clarke 122, Namibia); D M. fragrans (Schill et al. 40, Switzerland); F M. californica (Schill \& Clarke 102, California).

Fig. 2.3. Features of Mannia under LM (2). A epidermal pores in t.s.; B thallus t.s.; C, E bright coloured oil bodies in thallus t.s.; D, F dark coloured oil bodies in thallus t.s. A, D, F M. californica (Long 35035, California); B, C, E M. androgyna (Schill \& Lobo 34, Madeira).

Fig. 2.4. Features of Mannia under LM (3). A, B part of ventral scale sections showing oil cells; C slime papilla; D, F dimorphic rhizoids, sm smooth rhizoid, pe pegged rhizoid; E antheridia t.s. showing antheridial chambers; G capsule t.s. showing young spores and elaters. A M. fragrans (Schill et al. 60, Switzerland); B, C M. androgyna (Schill \& Lobo 34, Madeira); D, F M. californica (Schill \& Clarke 164, North India); E M. fragrans (Schill et al. 51, Switzerland); G M. asiatica (Long 25016, China).

Fig. 2.5. Features of Mannia under LM (4). A stalk t.s. showing single rhizoidal furrow; B stalk cells in t.s.; C, D compound pores of carpocephalum in different focusing; E spore with saccate ornamentation; F elater. A, B M. asiatica (Long 25016, China); C, D, E, F M. androgyna (Schill \& Lobo 34, Madeira).

Fig. 2.6. Features of Mannia under SEM (1). A ventral view of thallus showing ventral scales in two rows and rhizoids; B thallus t.s.; C, D epidermal air pores from surface view, close up; E, F dorsal epidermis showing air pores. A, B, C, E M. androgyna (Schill \& Clarke 125, Namibia); D, F M. triandra (Inoue s.n., Japan).

Fig. 2.7. Features of Mannia under SEM (2). A thallus t.s. showing compact assimilation tissue; B thallus t.s. showing loose assimilation tissue; C ostiole of antheridium in side view; D cross section through antheridium showing antheridial chamber; E ostioles of antheridia in surface view. A, C, D, E M. androgyna (Schill \& Clarke 125, Namibia); B M. triandra (Inoue s.n., Japan).

CHAPTER 3: Survey of Mannia spores with a scanning electron microscope

3.1 Introduction

Many works on bryophytes have included detailed descriptions of spores and their potential value in taxonomic studies and spore morphology has always been considered an important aspect in bryophyte taxonomy. Spores in liverworts are said to show less phenotypic plasticity than the gametophyte and are therefore more reliable for taxonomic studies (Clarke 1979).

Early spore observations were usually based on light microscopy (LM). Authors such as Roth (1904-1905) and MÜLLER (1905-1916) gave good accounts of moss or liverwort spores based on their observations with LM. Some bryophyte species were distinguished from each other purely on the basis of spore characters. A classic example is the genus Fossombronia, where species are separable only by a combination of spore characters. Spores are also of taxonomic importance in Sphaerocarpos, where species are separated by spore colour, and in Riella species, where spore size, amongst other characters, is a diagnostic feature (MÜLLER 1954).
An early paper on spore germination and development in Marchantiales was written by INOUE (1960). He suggested that spore sculpturing "may characterize the species or genera" in the Marchantiales. Later other authors (UDAR 1964, ERDTMAN 1965, MIYOSHI 1966) made a more comprehensive study of spore sculpturing and tried to classify spores into groups. All pointed out the large number of spore characters and their possible use for distinguishing species and genera. MIYOSHI (1966) considered spore characters useful in phylogenetic studies and grouped species based on spore characters in an extensive study. For many later authors MIYOSHI's work has been regarded as a landmark paper (Long 2000).

Since the introduction of scanning electron microscopy in the 1960s, it has proven to be an important scientific tool, being applied to many areas of biology (WATT 1985, POSTEK ET AL. 1980). The use of SEM for taxonomic studies has
major advantages over the compound microscope as it gives a more accurate view of morphological surface features. It has been frequently used in higher plant taxonomic studies to examine pollen sculpturing (e.g. VEZEY ET AL. 1991, SCOTLAND 1993) and has given insights into taxonomic relationships of flowering plants (CLARKE 1979). The SEM has also been applied to studies on bryophyte spores, elucidating relationships at generic and species level (DUCKETT 1986).

But whereas spores are species-specific for genera of Marchantiales (TAYLOR ET AL. 1974), in some leafy liverwort genera, such as Anastrophyllum, they are not considered useful in distinguishing between different species within the SinoHimalaya (Schill 2002).

Some authors studied liverwort spores under the SEM from a broad range of taxa (UdAR \& SRIVASTAVA 1983, UDAR \& SRIVASTAVA 1984, NATH \& ASTHANA 1992, Boros ET AL. 1993) others concentrated on a genus level. TAYLOR ET AL. (1974) considered that thorough SEM spore examination of individual liverwort genera would provide valuable information for taxonomic studies.

In a SEM study on spores of the moss Polytrichum, the British species could be distinguished by spore characters (DICKSON 1969). In Marchantiales the earliest comprehensive studies focusing on species within one genus were done by Perold (1989, 1994b, 1995) on Riccia, Cryptomitrium and Plagiochasma, and Bischler (1977, 1978, 1979a,b, 1984) and BiSCHLER-CAUSSE (1989) the latter author working on Marchantia and Plagiochasma. The most recent monographic work which utilized spore ornamentation as a diagnostic feature for taxonomic studies, was on the genus Asterella (LONG 1998, 1999, 2000). Spore characters in Asterella were shown to be constant and species-specific. Hence species were grouped based on spore characters and the groups used for an infrageneric classification of the genus.
There are only a few publications which included SEM micrographs of Mannia species: M. androgyna (LONG 2000, BISCHLER 1998), M. capensis (PEROLD 1994a) and M. fragrans (Bischler 1989, YU ET AL. 1999). Although the range of species is limited, the images show that the spores are very different from each other, which suggests that Mannia, like closely related genera such as Asterella, might have species-specific spores. This was also proposed by LONG (pers. com.)
and could give new insights into species delimitation and the troubled infrageneric classification of Mannia.

Whereas SEM examines the surface ornamentation of spores, the transmission electron microscope (TEM) can be utilised to study the organisation of cells. It could therefore provide insight into cell function and developmental processes (DUCKETT 1986).

A TEM study comparing the cell wall layers in spores was not done in present study due to time constraints and the large number of specimens. There is also a known difficulty in embedding the thick-walled Marchantiales spores in resin for a TEM study (LONG 2000). It should be however noted that similar spore ornamentations might have different developmental origins and their apparent similarity should be therefore interpreted with caution (DUCKETT 1986). He pointed out that SEM and TEM study should be combined when possible. In bryophytes TEM has been applied mostly in studies on spore wall layering, e.g. by HECKMAN (1970) on a study on Jungermanniales, or by THAITHONG (1982) on species of Riccia. A combination of SEM and TEM studies on individual liverwort species such as Plagiochasma rupestre, Athalamia spathysii and some Fossombronia species was done by Gambardella (1986, 1987a,b) and on M. androgyna by GAMBARDELLA \& DE LUCIA Sposito (1984).

3.2 Objectives

The main objectives of the SEM survey of spores were

1. to assess if spore ornamentation patterns are species-specific and therefore useful for species delimitation and synonymy in Mannia
2. to evaluate which spore characters are constant and which are variable
3. to develop a key to Mannia species based on spore characters
4. to group spores for an infrageneric classification of Mannia
5. to compare this classification with former Mannia classifications

A discussion of the infrageneric classification in comparison to the molecular evidence is presented in Chapter 5.

3.3 Material

Dried herbarium material was used to study spores with the scanning electron microscope (SEM). A survey of about 280 specimens, including some type specimens, was undertaken following the methodology for preparation of spores by LONG (1998, 2000). All species that are accepted in the taxonomic treatment were included in the SEM survey and are listed in Appendix I. The specimens were first examined under a stereo microscope for mature capsules with ripe spore material. Spores were only used when capsules were already dehisced. In some cases where no capsules remained a few spores could be found mixed with soil or debris.

3.4 Scanning electron microscopy methods

3.4.1 Specimen preparation

Using the stereo microscope spores of all Mannia species were selected and transferred by fine forceps and a fine moistened brush to 12 mm carbon discs mounted on 12.5 mm aluminium pin stubs to study the surface ornamentation and wall structure of spores. Spore colour was noted for each specimen observed.

3.4.2 Critical Point Drying

Critical point drying of fresh specimens was carried out according to COHEN (1979) to remove any water that would cause heat damage to the specimens. With this method specimens can be dried whilst avoiding the damaging effects of surface tensions.

3.4.3 Specimen coating and scanning

After placing the stubs in the chamber of a K575x sputter coater (Emitech), the chamber was vacuumed. After 3 min 'High Vacuum Status' was reached upon which argon gas was delivered at approximately $2 \times 10^{-2} \mathrm{mbar}$ for 20 seconds to evacuate the chamber.
The specimens were coated with gold palladium at a deposition of approximately 12 nm and at a rate of 25 mA for one minute and then studied under a LEO supra 55 VP digital scanning electron microscope. Stubs were first scanned at low magnification to select suitable spores. The working distance was between 5
and 9 mm and the scanning voltage (EHT) set to 5 kV . Aperture alignment and correction of astigmatism had to be checked at higher magnifications because of difficulties in focusing the small spores.

Scanning was done at 1024×768 resolution with 'pixel average noise reduction'. Selected images of spores, elaters and capsule valves were than saved at different magnifications (between about 1.8 KX and 13.4 KX). Images were printed out for spore measurements and edited for size, brightness, contrast and sharpness in Adobe Photoshop 7.0.1 (AdOBE SYSTEMS Incorporated 2003).

3.4.4 Character selection

The spore characters used in earlier work on Mannia were limited to those observed by LM observations. Early authors (NEES vON ESENBECK 1838, SCHIFFNER 1908) used basic characters such as spore colour and size (spore diameter), and only very rarely ornamentation to describe Mannia spores. MÜLLER (1954) and Udar \& Chandra (1965) added ornamentation and the equatorial rim as characters. SHIMIZU \& HATTORI (1953a, b) distinguished between distal and proximal sides with the latter showing a trilete mark and SCHUSTER (1992) made observations on fine ornamentation of spores such as granules. MIYOSHI (1966) gave the most detailed spore descriptions within LM studies and separated the distal and proximal side of spores.

Based on SEM studies BISCHLER $(1998,2005)$ also distinguished between distal and proximal faces of spores. PEROLD (1994a) used a wide range of Mannia spore characters: size, colour, shape, distal and proximal ornamentation and their similarity, fine ornamentation, presence of a wing, presence of equatorial pores and formation of a trilete mark. This extended range of characters was also adopted by LONG $(1999,2000)$ in a study on the sister genus Asterella.

The choice of characters used for the present study was guided by previous SEM work on Marchantiales by the authors mentioned above. The spore terminology follows LONG (1999, 2000). A picture of a spore and the characters used is presented in Fig. 3.1.

Fig. 3.1. Spore characters in Mannia. EA = equatorial aperture; $\mathrm{ER}=$ equatorial rim; $\mathrm{Pi}=$ pit; $\mathrm{PA}=$ papilla; $\mathrm{PD}=$ proximal disc; $\mathrm{S}=$ sac; $\mathrm{TM}=$ trilete mark.

Colour

The colour of spores was observed under light microscope and grouped into mainly brown and yellow.

Size

The equatorial diameter of spores was measured with the LM and SEM viewing the spore from the distal side. At least 50 measurements were taken from different specimens. For spore measurements using SEM, print-outs of pictures taken were used and the spores were measured with a small ruler using the scale bar from the image.

Shape

Spore shape is a direct result of spore development in the capsule during meiosis. Mannia spores, as is typical for all Marchantiales, form tetrads and break apart just before they reach maturity (BISCHLER 1998). Their shape is rounded triangular to globular. Distal and proximal sides are readily distinguishable. The proximal side usually has a trilete mark, which is only weakly developed in some species; this mark is where the spores were formerly attached to each other in the tetrad during their development.

Spore ornamentation Mannia spores show elaborate ornamentations, which can be classified into primary and fine ornamentation. No secondary ornamentations are present in Mannia. Primary ornamentations are obvious features e.g. areolae or sacs, whereas fine ornamentation regards the structure of the wall surface, e.g. small papillae or pits (Fig. 3.1). A secondary ornamentation would be the presence of small areolae within one areola for example. Secondary ornamentations can be found in some species of Asterella (LONG 2000).

The proximal and distal ornamentation of spores can either be similar or dissimilar. Dissimilarity in Mannia is due to the presence of a proximal disc.

> Proximal disc A proximal disc can be either present or absent in Mannia. It is a large triangular, rounded or more undulate to crenate structure that can be found on the proximal side of spores (Fig. 3.1).

Equatorial rim The equatorial rim or wing (Fig. 3.1) is located

 between the proximal and distal spore side and "represents a slightly thickened junction between the proximal and distal surfaces" (LONG 2000). When conspicuous it can easily be seen with a light microscope. It can often bear the equatorial apertures.Equatorial apertures Equatorial apertures or pores in liverwort spores are said to be less complex and show less variation than apertures in pollen of higher plants (MIYOSHI 1966). They are situated between the proximal and distal spore side along the equator and if an equatorial rim exists, the apertures are found on, or just underneath it (Fig. 3.1). They are usually only visible when viewing the spore from the proximal side or in side view. It is said that they are regularly found in liverwort spores but that "their role is still unclear" (GAMBARDELLA \& DE LUCIA Sposito 1984).

3.5 Results

3.5.1 Spore characters

The results for spore colour and spore size were presented in Chapter 2 and are also summarised in Table 3.1.

Shape All Mannia species have either a triangular or globose spore shape with a weak to strong trilete mark. The trilete mark is generally more distinctive when a proximal disc is present, e.g. in M. androgyna, M. californica and M. sibirica (Fig. 3.3, 3.6, 3.8-3.9).

Spore ornamentation Spores in Mannia are either saccate (M. androgyna) (Fig. 3.2), ridged (M. californica, M. sibirica) or areolate (M. californica, M. sibirica and remaining species). M. californica and M. sibirica spores can be either ridged or areolate (Fig. 3.5, 3.7-3.8). In M. sibirica the ridges are rather short, whereas in M. californica they can be quite long and wavy. The spores of M. triandra and M. pilosa can look very similar (Fig.3.14, 3.17); as regards fine ornamentation both species have a spongy interwoven surface but in M. triandra the surface is usually smoother and denser than in M. pilosa (Fig.3.16, 3.18). The fine ornamentation in all other species is minutely papillate (e.g. 3.11). Pits on the surface are lacking in M. californica and M. sibirica (Fig. 3.6, 3.9). The distal and proximal spore ornamentation pattern is dissimilar in M. androgyna, M. californica and M. sibirica; it is similar in the remaining four species (e.g. Fig. 3.10, 3.11, 3.12, 3.13).

Proximal disc In species where a proximal disc is present (M. androgyna, M. californica and M. sibirica), the shape is usually rounded triangular with straight to weakly undulating margins. In M. androgyna the proximal disc can sometimes be strongly undulate to sinuate, e.g. in specimens from Cyprus, Turkey and Italy. In other specimens (e.g. Switzerland, Canary Islands, Madeira, Tanzania and Namibia) the disc margin is only weakly undulate (Fig. 3.3).

Equatorial rim

The equatorial rim is most conspicuous in M. androgyna, where it can often be broad and swollen and sometimes irregularly interrupted (Fig. 3.3, 3.4). In M. sibirica and M. californica the rim is generally less swollen but usually present (Fig. 3.6, 3.8-3.9). In the remaining species the rim is inconspicuous.

Equatorial apertures Readily noticeable apertures or pores are present in M. androgyna, M. californica, M. sibirica and M. fragrans. Usually each spore has three apertures roughly equidistant from each other. Occasionally two apertures can occur close to each other or apertures are found in between two equidistant apertures (Fig. 3.3). In some spores of M. asiatica and M. triandra the apertures are hardly noticeable, this is more often the case in M. triandra (Fig. 3.13, 3.15). Apertures can rarely be seen in M. pilosa (Fig. 3.18).

A summary table comparing the different spore characters in all Mannia species is presented in Table 3.1.

Based on the observed spore characters in Mannia a classification into five different spore types can be made (Table 3.2).

Species Spore Characters	M. androgyna	M. sibirica	M. californica	M. fragrans	M. asiatica	M. triandra	M. pilosa
Spore colour	yellow or brown	yellow	yellow or brown	yellow	yellow	yellow	yellow
Spore diameter	$\begin{aligned} & (60) 63- \\ & 86.1(87.2) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & \text { 43.1-56.2(62) } \\ & \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (52.5) 58- \\ & 77.5(80) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & \hline(54) 57- \\ & 74.3(76.3) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & \hline(54.5) 60- \\ & 71.7(74.4) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (45.6) 55.2- \\ & 75(77.7) \mu \mathrm{m} \end{aligned}$	$\begin{aligned} & (63) 66.6- \\ & 81.5(85.7) \mu \mathrm{m} \end{aligned}$
Distal / proximal surface ornamentation affinity	dissimilar	dissimilar	dissimilar	similar	similar	similar	similar
Primary distal ornamentation	saccate	irregular short ridges/ irregular areolae	irregular short or long wavy ridges to irregular areolae		irregular deep areolae	incomplete to regular areolae	incomplete areolae
Fine distal ornamentation	minutely papillate and pits	minutely papillate	minutely papillate	minutely papillate and pits	minutely papillate with pits	spongy, smoother and sometimes less pits	spongy, many pits
Proximal ornamentation	small areolae	small areolae	small areolae	regular areolae	irregular areolae	incomplete areolae	incomplete areolae
Proximal disc	present	present	present	absent	absent	absent	absent
Equatorial apertures	conspicuous	conspicuous	conspicuous	inconspicuous	inconspicuous	inconspicuous to sometimes conspicuous	inconspicuous
Equatorial rim	conspicuous	conspicuous	conspicuous	inconspicuous	inconspicuous	inconspicuous	inconspicuous
Spore Type	I	II	II	III	IV	V	V

Table 3.2. Spore types in Mannia

Spore type	Primary ornamentation	Fine ornamentation	Distal/proximal ornamentation affinity	Proximal disc	Equatorial Pores	Species
1	saccate	papillate, pits	dissimilar	present	conspicuous	M. androgyna
II	ridges or irregular areolae	papillate	dissimilar	present	conspicuous	M. sibirica M. californica
III	regular shallow areolae	papillate, pits	similar	absent	conspicuous	M. fragrans
IV	irregular deep areolae	papillate, pits	similar	absent	inconspicuous	M. asiatica
V	incomplete to regular areolae	spongy, pits	similar	absent	inconspicuous	M. triandra M. pilosa

3.5.2 Key to Mannia species based on spore characters

$$
\begin{aligned}
& 1 \quad \text { Spores with similar sculpturing on distal and proximal side, proximal } \\
& \text { disc absent; equatorial rim inconspicuous .. } 2
\end{aligned}
$$

$1^{*} \quad$ Spores with dissimilar sculpturing on distal and proximal sides, proximal disc present; equatorial rim conspicuous 5
2 Fine distal ornamentation minutely papillate 3
2* Fine distal ornamentation spongy 4

3 Distal ornamentation regularly areolate (6 to 8 areolae across), muri of areolae not deep; equatorial apertures conspicuous \qquad
\qquadM. fragrans
3* Distal ornamentation often deeply incompletely areolate ((6)7-10 areolaeacross); muri of areolae deep; equatorial apertures conspicuous tosometimes inconspicuous.......Spore type IVM. asiatica

4 Areolae irregular, distal surface with many pits, equatorial apertures inconspicuous.....................Spore type V..................................M. pilosa
4* Areolae rather regular, distal surface smoother with sometimes less pits, equatorial apertures inconspicuous to sometimes conspicuous \qquadSpore type VM. triandra

5 Primary distal ornamentation saccate, pits present but not spongy .Spore type I M. androgyna

5* Primary distal ornamentation irregularly long ridges, short wavy ridges or areolate5
6 Spores large, (52)58-77(80) $\mu \mathrm{m}$ in diameter; distally with irregularly long wavy ridges or areolate......Spore type II M. californica
6* Spores small, 43-56(62) $\mu \mathrm{m}$ in diameter; distally areolate Spore type II M. sibirica

3.5.3 Spore micrographs of species

The spore micrographs of species are presented in Figure 3.2 to 3.18 .
Scale bars of spores in distal, proximal and side view are $10 \mu \mathrm{~m}$; scale bars showing fine distal ornamentation of spores are $2 \mu \mathrm{~m}$ unless otherwise stated.

Fig. 3.2. Mannia androgyna spores from distal view. A Portugal, Madeira, Schill \& Lobo 32 (E); B Turkey, Nyholm 300 (JE); C Isotype, Italy, Raddi s.n. (E); D Pretoria, Bosman 199 (NY); E South Africa, Arnell 795 (BOL); F Namibia, Schill \& Clarke 127 (E); G Tanzania, Pocs 6902 (JE); H Cyprus, Blockeel s.n. (E).

Fig. 3.3. Mannia androgyna spores from proximal view. A Portugal, Madeira, Schill \& Lobo 32 (E); B Cyprus, Blockeel s.n. (E); C Namibia, Schill \& Clarke 124 (E); D Tanzania, Pocs 6902 (JE); E Portugal, Madeira, Schill \& Lobo 34 (E);
F Turkey, Nyholm 300 (JE); G Switzerland, Ticino, Vautier 620 (JE); H Isotype, Italy, Raddi s.n. (E).

Fig. 3.4. Mannia androgyna spores from side view (A-D) and showing fine distal ornamentation (E-H). A, F Portugal, Madeira, Schill \& Lobo 32 (E); B Turkey, Nyholm 300 (JE); C, H Portugal, Madeira, Schill \& Lobo 35 (E); D, G Cyprus, Blockeel s.n. (E); E Namibia, Volk WIN77 (JE).

Fig. 3.5. Mannia sibirica spores from distal view. A Minnesota, Schuster 14227 (F); B Canada, Conklin 2554 (F); C Finland, Laine s.n. (S- B74863); D Holotype of Grimaldia pilosa var. sibirica, Siberia, Arnell s.n. (S-B24528); E Minnesota, Schuster 18009 (JE); F Isotype of M. pilosa var. sibirica, Siberia, Arnell s.n. (JEH1306); G Minnesota, Schuster 14315 (F); H Alaska, Steere \& Iwatsuki 74-29 (JE).

Fig. 3.6. Mannia sibirica spores from proximal view (A-D), side view (E-F) and showing fine distal ornamentation (G-H). A, H Minnesota, Schuster 14227 (F); B Alaska, Steere \& Iwatsuki 74-25 (NY); C Canada, Conklin 2554 (F); D Minnesota, Schuster s.n. (F-1133340); E Minnesota, Schuster 18009 (F); F Holotype of Grimaldia pilosa var. sibirica, Siberia, Arnell s.n. (S-B24528); G Alaska, Steere \& Iwatsuki 74-29 (JE).

Fig. 3.7. Mannia californica spores from distal view. A China, Yunnan, Shevock 24912 (E); B Lebanon, Davis 5247 (E); C Tanzania, Pocs 6561/q (JE); D Isotype of Grimaldia californica, California, Bolander s.n. (NY-575647); E Canada, Underwood Herbarium s.n. (NY-268874); F Lesotho, Duckett \& Matcham 5149a (E); G, H India, Uttaranchal, Schill \& Clarke 165 (E).

Fig. 3.8. Mannia californica spores from distal (A-E) and proximal view (F-H). A India, Tamil Nadu, Schill \& Clarke 146 (E); B France, Hugonnot s.n. (E); C Holotype of M. levigata, Japan, Shimizu 52818 (NICH); D Tennessee, Sharp \& Robinson 563 (JE); E Austria, Köckinger s.n. (private herbarium); F California, Doyle 2744 (NY); G Holotype of Grimaldia californica, California, Bolander s.n. (NY575639); H China, Yunnan, Shevock 24925 (E).

Fig. 3.9. Mannia californica spores from proximal view (A-B), side view (C-D) and showing fine distal ornamentation (E-H). A, H India, Uttaranchal, Schill \& Clarke 165 (E); B France, Hugonnot s.n. (E); C Holotype of Grimaldia californica, California, Bolander s.n. (NY-575639); D Lesotho, Duckett \& Matcham 5149a (E); E Isotype of Grimaldia californica, California, Bolander s.n. (NY-575647); F China, Yunnan, Shevock 24925 (E); G Arizona, Little 4507 (JE).

Fig. 3.10. Mannia fragrans spores from distal view. A Switzerland, Schill et al. 47 (E); B Type of M. fragrans var. inodorata, Japan, Hattori 6202 (TNS); C Type of M. brachypoda, Japan, Shimizu 6202 (NICH); D China, Rev. Jos. Giraldi s.n. (det. Massalongo 148) (BM); E Type of M. barbifrons, Japan, Shimizu 52809 (NICH); F Siberia, Arnell s.n. (JE-H4337); G Kansas, McGregor 5331 (NY); H Hungary, Pócs s.n. (JE-H1433).

Fig. 3.11. Mannia fragrans spores from proximal view (A-D), side view (E-F) and showing fine distal ornamentation (G-H). A, F, H Hungary, Pócs s.n. (JE-H1433); B China, Rev. Jos. Giraldi s.n. (det. Massalongo 148) (BM); C, G Switzerland, Schill et. al 47 (E); D Siberia, Arnell s.n. (JE-H4337); E Norway, Kaalaas 1189 (NY).

Fig. 3.12. Mannia asiatica spores from distal view. A-F Qinghai Province, China; G Uttaranchal, India; H Tajikistan. A Long 27016 (E); B Long 27260 (E); C Long 26924 (E); D Holotype, Long 27032 (E); E Long 26964 (E); F Long 26951 (E); G Duthie 3757 (BM); H Boboradzchabov 802 (JE).

Fig. 3.13. Mannia asiatica spores from proximal view (A-D), side view (E-F) and showing fine distal ornamentation (G-H). A-C, G-H Qinghai Province, China; D-F Uttaranchal, India. A, G Holotype, Long 27032 (E); B Long 27217 (E); C Long 26951 (E); D-E Duthie 311 (G); F Duthie 3757 (BM); H Long 27260 (E).

Fig. 3.14. Mannia triandra spores from distal view. A Austria, Schill et al. 79 (E); B Siberia, Andrejewa s.n. (JE); C Japan, Inoue s.n. (E); D Austria, Loitlesberger 1192 (JE); E Iowa, Conard 7-166 (NY); F Slovenia, Deschmann 1138 (G); G Germany, Stephani s.n. (BM-669301); H Japan, Sasaki \& Kudo 932 (F).

Fig. 3.15. Mannia triandra spores from proximal view. A Illinois, Harper s.n. (JEH1296); B Japan, Inoue s.n. (E); C unclear locality, 12 Aug. 56, Molander s.n. (JE); D Austria, Loitlesberger 1192 (JE); E Riesengebirge, Futschig s.n. (SB74794); F Japan, Kobayashi s.n. (S-B74813); G Japan, Sasaki \& Kudo 932 (F); H Germany, Stephani s.n. (BM-669301).

Fig. 3.16. Mannia triandra spores from side view (A-B) and showing fine distal ornamentation (C-H). A, F Austria, Loitlesberger 1192 (JE); B Austria, Schill et al. 79 (E); C Germany, Meinunger 7108 (JE); D Siberia, Andrejewa 144 (JE); E unclear locality, 12 Aug. 56, Molander s.n. (JE); G Japan, Kobayashi s.n. (SB74813); H Germany, Stephani s.n. (BM-669301).

Fig. 3.17. Mannia pilosa spores from distal view. A Sweden, Öland, Hülphers s.n. (S-B74880); B Sweden, 21 v 1944, Arnell \& Persson s.n. (S-B74890); C Austria, Schill et al. 83 (E); D unclear locality, Quelle s.n. (JE); E Switzerland, Müller s.n. (JE-H1307); F Germany, D.V. s.n. (JE); G Siberia, Arnell s.n. (JE-H1301); H Neesiella carnica, Slowakia, I. Györffy s.n. (BM-000725087).

Fig. 3.18. Mannia pilosa spores from proximal view (A-D), side view (E-F) and showing fine distal ornamentation (G-H). A Sweden, Samuelsson s.n. (S-B74900); B, E Austria, Schill et al. 83 (E); C, F Germany, D.V. s.n. (JE); D, H Sweden, Hülphers s.n. (JE-H1302); G Sweden, Uggla s.n. (JE-H1304).

3.6 Discussion and Conclusion

3.6.1 Species delimitation based on spore characters

Spore characters were found to have an important role and are useful for species identification and taxonomy in Mannia. This has also been concluded in a SEM study for the sister genus Asterella by LONG (1998, 2000). The ornamentation patterns were found to be constant and species-specific for each species. However, in some species there are small variations present. The primary ornamentation pattern in M. californica is in some specimens more ridged and in others rather areolate (Fig. 3.7-3.8). The specimen Schill 165 from North India, which was put in the growth cabinet for spore maturation, had both ridged and areolate spores (Fig. $3.7 \mathrm{G}, \mathrm{H}$) . The spores of a ripe receptacle were observed with the SEM and they showed a ridged ornamentation in December 2004, whereas in February 2005 a different receptacle showed areolate spores. This could suggest a certain plasticity in ornamentation patterns of M. californica. In general the North Indian and French M. californica specimens studied had more areolate ornamentations whereas spores in the North American, South Indian, Chinese and Japanese specimens observed were more ridged. In the Chinese specimens there were fewer ridges with less denser spacing. The ornamentation of some spores appears halfway between ridges and areolae (Fig. 3.7 A). However, all plants grouped under the name M. californica show close morphological affinities even though their spore distal ornamentation shows slight variations (see also taxonomic notes in Chapter 4.4.3.2 under this species).

For M. androgyna development of the proximal disc can vary (Fig. 3.3). In some specimens the margin is strongly undulate to crenate. This is not correlated with distinct geographical entities though.

The spores of M. pilosa and M. triandra can sometimes look very similar. In general M. triandra shows regular areolae in distal ornamentation (Fig. 3.14) whereas the areolae in M. pilosa are incomplete and often sunken or collapsed (Fig. 3.17). The two species however can clearly be separated by other morphological characters e.g. sexual condition.

Mannia sibirica is undoubtedly accepted as a species. It was formerly suspected by some authors to be conspecific with (MÅRTENSSON 1955, SCHUSTER 1953) or
closely similar to M. pilosa (MÜLLER 1954, SChUSTER \& DAMSHOLT 1974, DAMSHOLT 2002). However, this can be ruled out; the spores show M. sibirica is quite distinct from M. pilosa, the spores having unexpected close affinities with the spores of M. californica.
Out of all spore characters, colour and size were the most variable. Most species have yellow spores or have brown and also yellow spores. This contrasts with a spore study by LONG (1998) that found spore colour to be of taxonomic value for Asterella species.

The spore size in individual Mannia species varies considerably. Spore size is not a good character for species identification, with the exception of M. sibirica, which generally has smaller spores than all other Mannia species. LONG (2000) dismissed spore size in a Asterella classification and pointed out the difference of spore size measurements using SEM in comparison to the LM, the latter giving larger measurements. This can also be confirmed in the present study. Spore measurements with the compound microscope were often slightly higher than with the scanning electron microscope (up to about 11\%) although in some cases SEM measurements were between about 2-10\% higher than LM measurements. LONG (2000) also pointed out that spore size increases with rehydration time. A 16% increase in spore diameter was measured over 90 minutes using a light microscope.

3.6.2 Synonymy

SEM is a useful tool in examining old or only fragmentary specimens and helped in establishing correct synonymy. From a former total of 22 Mannia names, spore ornamentation, amongst other morphological characters, was used to reduce the list of names to seven. Accepted species names can be found in Chapter 4.4.3.2.
M. capensis, a species that was believed to be endemic to Africa, consists of two taxa: one is conspecific with M. androgyna and one is M. californica. This is clearly demonstrated in the SEM survey.
M. levigata, a Japanese endemic, M. foreaui and M. indica, both Indian endemics, can all be synonymised under M. californica (Fig. 3.7-3.8). Spores of Mannia brachypoda, M. barbifrons and Grimaldia inodora are similar to M.
fragrans spores and are also congruent in other morphological key features (Fig.
3.10). These species sink into M. fragans.

A new Mannia species, M. asiatica, is described, its distinctness being based on spore ornamentation amongst other characters.

Duvalia longiseta, a species described from Japan by STEPHANI (1897) and later put into Mannia is found to be a synonym of M. triandra.

No type specimen of M. controversa has been seen, which was described by MEYLAN (1924) but spores from specimens examined under this name from Austria and France show a clear similarity to M. fragrans spores. Yet other morphological characters such as sexual condition indicate clear differences between the two. Because there was only a very limited amount of material available for study, an extended spore survey and morphological study is desirable.

The Peruvian endemic M. hegewaldii shows close affinities to M. triandra. Only two specimens were observed for this species and collections were only made from two localities in total (BISCHLER-CAUSSE ET AL. 2005). The spore ornamentation of M. hegewaldii is areolate but with fewer areolae, which also appear slightly bigger than in typical M. triandra specimens. It is possible that the spores are immature or fall into a normal range variation of M. triandra spores. It was observed that a specimen of M. triandra from Japan showed striking similarities to the spores of M. hegewaldii.

3.6.3 Distribution

The distribution range of most species could be confirmed through the SEM survey of spores. Most Mannia species show a wide distribution and are present in many continents.

A range extension could be noted for M. androgyna, which was mostly known from countries with Mediterranean climate (BISCHLER 2004) and now extends into the African continent. It is absent though from America and most parts of Asia. The most easterly part of its range based on observed herbarium specimens is in Turkey, Cyprus and Albania. However, in comparison to the other Mannia species, M. androgyna has the most limited and localised distribution range.

One of the most dramatic distribution changes is demonstrated for M. californica. This species was formerly thought to be endemic to the United States. Its distribution can now be extended into France (HUGONNOT \& SCHILL 2006), Austria, Africa, India, China and Japan.

3.6.4 Classification based on spore types

It is assumed that the gametophyte in the Marchantiales is more subject to selection pressure by the environment and therefore has evolved faster than the more protected sporophyte (BISCHLER 1998); this suggests spore characters are more conserved and display a strong phylogenetic signal. So spore ornamentation could provide insights into evolutionary relationships in Mannia and could be used in creating a stable infrageneric classification of Mannia, former classifications being in conflict (Shimizu \& Hattori 1954, Grolle 1976, 1983b, GROLLE \& LONG 2000). Recent classifications were mainly based on thallus characters but this was strongly criticised by SCHUSTER (1992a). For an infrageneric classification in Asterella, LONG (1998, 2000) used spore characters and also showed that they correlate well with molecular evidence (LONG ET AL. 2000).
Following LONG (2000) Mannia spores were grouped into spore types, which were used for a new infrageneric classification. In Chapter 5 (see 5.7.3.7) it is shown that these spore types are also partly reflected in the molecular results based on two markers. Both spore characters and molecular evidence were used for a new infrageneric classification of Mannia. The classification is presented in Chapter 4 (see 4.4.2). In contrast to all recent classifications is the position of M. sibirica close to M. californica. M. sibirica has always been previously considered to be a close relative to M. pilosa and M. triandra.

3.7 Conclusions

As has been the case with other Marchantiales, spore characters were found to have an important role for species identification and taxonomy in Mannia.
The spore ornamentation patterns were found to be species specific and constant for each species. However, there were some variations in the primary ornamentation of M. californica and in the proximal disc of M. androgyna. From
all characters observed spore size was the most variable and spore colour showed little difference for individual species.
SEM has proven to be of great value in establishing correct synonymy in the genus.

A classification into five different spore types was undertaken and provided new insights.

The spore patterns of M. sibirica showed close affinities to M. californica and both were grouped together in spore type II. The position of M. sibirica is contrary to all recent classifications, in which it was assumed to be closely related to M. pilosa and M. triandra. The latter two species show strong spore similarities and were grouped in spore type V . The spore ornamentation of M. fragrans, M. androgyna and M. asiatica are so different from each other and from groups II and III that each remains in its own separate spore groups.

Chapter 4: Taxonomic Revision

4.1 Introduction

An alpha-taxonomic revision of the genus Mannia on a worldwide scale has been undertaken, the first attempted for this genus. Former taxonomic studies on the genus have focused on narrower geographic regions. Examples of theses are shown in Table 4.1.

Table 4.1. Earlier Revisions of Mannia in different geographic regions with number of species treated

Author (Year)	Geographic Region	Number of species treated
SHIMIZU \& HATTORI (1953a, b)	Japan	$2-3$
HATTORI (1954)	Japan	1
MÜLLER (1954)	Europe	5
UDAR \& CHANDRA (1965)	India	4
SCHUSTER (1992b)	North America	6
PEROLD (1994a)	Southern Africa	1
IWATSUKI (2001)	Japan	1
DAMSHOLT (2002)	Nordic	3
BISCHLER-CAUSSE ET AL. (2005)	Neotropics	2

There are 22 published names for Mannia in the Index Hepaticarum (Geissler \& BISCHLER 1985), of which some are now treated as synonyms of other Mannia species or species in other genera. Some Mannia species have been formerly included in other genera such as Neesiella (6 species), Grimaldia (33 species), Duvalia (5 species), Arnelliella (1 species), Sindonisce (1 species) and Cyathophora (1 species) (BONNER 1965, 1966, GEISSLER \& BISCHLER 1985, 1989, 1990). In other literature fifteen species of Mannia are given by BiSCHLER (1998). In general, the numbers found in the literature vary between six (ENGEL 1990) and eighteen species (SCHUSTER 1992b, DAMSHOLT 2002) worldwide. In the present treatment seven Mannia species are accepted, of which one species is new. But because type material of some species could not be located and material of some described species has not been available this treatment could still undergo further changes in the future. Furthermore as will be later
discussed in Chapter 5 Mannia is not a monophyletic genus but has evolved from within the related genus Asterella, which could have further consequences for its classification.

The worldwide distribution of Mannia based on herbarium material studied is shown in Fig. 4.1.

Fig. 4.1. Worldwide distribution of Mannia based on studied herbarium material

4.2 Objectives

The main objectives of this study were to revise the genus Mannia on a worldwide scale based on morphological and anatomical characters, with particular emphasis on spore characters observed with the Scanning Electron Microscope (Chapter 3) as well as consideration of molecular evidence (Chapter 5). Keys to subgenera, sections and species along with species descriptions, species lists, synonyms, drawings, maps of distribution, general, ecological and taxonomic notes have been made as part of this study. Two keys are presented, one including characters from fertile plants with ripe spore material, the second based on vegetative characters in combination with sexual condition. New and old synonyms of the treated species have been listed and lectotypification has
been undertaken when possible. The new classification of the genus presented here will be discussed and compared with treatments published in the past.

4.3 Material and Methods

4.3.1 Herbarium material

Mannia specimens from fourteen herbaria were requested on loan (see Table 4.2). Visits to the herbaria in G (Geneva) and Lucknow University Herbarium (LWU) were made and material selected for loan. All (about 1320 in total) specimens borrowed from herbaria have been examined.

Table 4.2. Number of specimens and Mannia types on loan from different herbaria

Herbarium	No. of specimens	Mannia types
NY (New York Botanical Garden)	400	3
BM (British Museum)	201	5
JE (Jena)	184	2
F (Field Museum Chicago)	160	-
S (Stockholm)	107	7
E (Edinburgh)	197	1
G* * (Herbarium Geneva)	36	4
BOL (Bolus Herbarium South Africa)	17	1
NICH (Hattori Botanical Laboratory Japan)	7	3
BG (Bergen Herbarium)	6	1
MO (Herbarium of the Missouri Botanical Garden)	2	1
PRE (Pretoria National Herbarium)	1	-
TNS (Herbarium National Science Museum Tokyo)	1	1
H (Helsinki)	1	1

*includes collections in the herbarium of Patricia Geissler

Material requested from the herbaria of HIRO (Hiroshima University), MPU (Montpellier), LAU (Lausanne) and LWU (Lucknow University) has unfortunately never been received.
Type specimens of some taxa could either not be located or specimens were not available on loan. This resulted in the exclusion of these taxa or their listing as doubtful species.
Types which have not been seen or could not be located are cited as 'n.v.'(non vidi), 'I have not seen'(STEARN 2005).

4.3.2 Herbarium methods

The study of all the herbarium specimens on loan helped to get a much clearer picture of species delimitation and contributed to the species descriptions. Study of the specimens also helped in determining species variability. Many specimens have been studied for each species, ranging from ten for M. asiatica to about 360 for M. fragrans. For the other species the number of specimens was between 32 and about 200. All available types were studied with great care and were observed for key characters, particularly spore characters, where possible. FRAHM (2001) recommends the use of water-soluble embedding media for the making of permanent slides for bryophyte study. So fresh water-mounted slides and semi-permanent slides using Hoyer's Fluid (ANDERSON, 1954) was used for parts of specimens to be studied and drawn later. The latter method is described as an excellent mounting medium for hepatics even though Schofield (1985) mentions that it can distort the leaves of some bryophytes. A side effect is that it also works as a clearing agent because the chloral hydrate in the solution also causes bleaching of the cell contents. This was found to be disadvantageous for the delicate epidermal tissue of the thallus and receptacle and was therefore not used for mounting these. The permanent slides were stored flat in slide folders. Pencil drawings were made using a camera lucida attached to a compound microscope or done freehand. A microscope slide scale was used for exact measurements. After inking and shading on tracing paper, drawings were scanned digitally for editing in Adobe Photoshop CS Version 8 (Adobe Systems INCORPORATED 2003).
Morphological Study Potential useful morphological features were initially assessed using available literature on Marchantiales, particularly by LONG (2000) and BISCHLER (1998) and plants were examined closely for these characters. However, other potentially useful characters were assessed, particularly those of value in distinguishing between species. Initially, at least six different collections of each species were used for detailed dissection, measurement and description (quantitative characters scored as minima and maxima). Species descriptions are based on these observations and measurements.

Specimens were moistened with water for at least half an hour before dissection to allow the thalli to unroll and regain their natural shape. This was problematic with older specimens because the thalli often did not unroll properly and were very brittle. Dissections were carried out under a Stereo microscope using fine forceps and a needle.
Transverse sections of thallus, stalk and receptacle were made freehand under the Stereo microscope on a slide using a razor blade and a needle. They were held in place with a needle, which was slowly rolled backwards allowing a cut of thin sections. Epidermal tissue was pulled away with a needle and fine forceps to view air pores and epidermal wall thickenings. Scales underneath the receptacle, along and on base of the stalk were pulled away with forceps and the ventral scales were pulled away along the whole length of the ventral side of the thallus using fine forceps.

4.3.3 Living material

Eight field trips have been made to places within Europe and other continents to collect living and dried material of Mannia species and related genera. Plants were collected for morphological and anatomical observations, spore studies (Chapter 3) and molecular work (Chapter 5). The possibility of studying and photographing living Mannia species in the field has been extremely valuable because during drying, herbarium specimens can change quite a lot: some do not regain their natural shape when moistened particularly if they are very old and brittle, and others are sometimes too fragmentary to study. So detailed study, including dissection, was undertaken preferentially on my own freshly-collected specimens.

The species previously reported from Europe (M. androgyna, M. fragrans, M. pilosa and M. triandra) were targeted on field trips to Germany (SaxonyAnhalt), Switzerland (Valais), Sweden (Gotland), Austria (Styria, Carinthia) and Portugal (Madeira). The so-called endemic species (M. californica, M. paradoxa, M.capensis, M. indica, M. foreaui, M. perssonii and M. hegewaldii) were searched for in the U.S. (California, Arizona, New Mexico), Namibia, North- and South-India (Uttaranchal, Tamil Nadu) and Northern Peru (La Libertad).

Due to this extensive field work, most of the species were seen in the living condition except for Mannia sibirica and M. asiatica. Some taxa unfortunately could not been found in the field such as M. paradoxa, M. perssonii and M. hegewaldii. In some cases where Mannia species could only be collected with immature archegoniophores these specimens were cultivated in a growth cabinet until spore maturity.
Requests for living material resulted in receipt of several different Mannia specimens from colleagues in Japan, Czech Republic, Sweden, Finland, France, Germany and Austria. The specimens included in the study are listed in Appendix I.

4.3.4 Field methods

Specimen labels of herbarium loans and literature reports of species gave a good indication as to which countries and localities and which season to visit in order to collect the desired species, particularly with regard to collecting specimens with sporophytes and ripe spore material for the SEM survey (Chapter 3). Contacts were sought beforehand wherever possible but many field trips were made without local help. Usually collecting and export permits had to be applied for a few month before the field trip took place and after completion of the field work reports were written up.
For specimens collected, notes were made directly in the field on smell, morphological appearance such as colour and texture, reproduction and shape of receptacle. Measurements of thallus width, thallus length and stalk length were partly made in the field using a small ruler. Specimens were collected with a knife. Soil was removed as much as possible before specimens were placed in prepared paper packets (dry soil in the packet can easily damage the specimen). Packets were given temporary reference numbers in the field. Data was recorded using a portable Garmin 12XL Global Positioning System navigator (GPS) for altitude, longitude and latitude. Detailed notes on locality were made as well as notes on substrate, ecology and vegetation.

Observations in the field and collection of fresh material is particularly useful as after drying some features of specimens can be lost and old herbarium specimen are often too fragmentary or small for detailed study. Cultivation of living
material from collected plants was undertaken in a growth cabinet for morphological study, especially for specimens with immature sporophytes to see if archegoniophores would develop from sterile material (see Chapter 2.3). Photographic images of plants and habitats were taken with a Nikon COOLPIX4500 Digital Camera on a small field tripod or were hand-held. Images were then edited in Adobe Photoshop CS Version 8 (ADOBE Systems INCORPORATED 2003).

4.3.5 Maps of distribution

Maps of species distribution were created starting from a base map of countries and regions of the world. In this base map, large countries such as Russia, USA, Canada and China are represented by their smaller administrative regions (e.g. USA states). This helps to avoid single species records for large countries being over-emphasised in the maps. To create the maps, a tabular list of countries and regions were made for each species, and then matched to the base map using GIS software. So each filled region on the map corresponds to one or more records within that region. This method of map production was preferred to the alternative of representing each record by a point on the map because of the large number of individual records and the difficulty of placing the point on the map with any degree of confidence. Records can be more reliably assigned to a geographic region than have their latitude and longitude determined.

4.4 Taxonomic account

4.4.1 The genus Mannia

Mannia Opiz, Beiträge zur Naturgeschichte 12: 646. Prag. 1829. nom. cons. for Grimaldia Raddi 1818 nom. illeg. non Schrank 1805

> Lectotype: \quad M. michelii Opiz, nom. illeg. (= Grimaldia dichotoma Raddi, nom. illeg., Marchantia androgyna L., Mannia androgyna (L.) A.Evans (ZIJLSTRA 1990))

Synonyms: Duvalia Nees, Gesellschaft naturforschender Freunde Berlin Magazin für die neuesten Entdeckungen in der gesamten Naturkunde 8: 269. 1818, nom. illeg., non Duvalia Haworth 1812 (Grolle 1983b), Type: Duvalia rupestris Nees (= Mannia triandra (Scop.) Grolle).

Grimaldia Raddi, Opuscoli Scientifici Bologna 2: 356. 1818. nom. illeg., non Schrank 1805 (Grolle 1983b), Type: G. dichotoma Raddi, nom. illeg. (= Mannia androgyna (L.) A.Evans).

Cyathophora Gray, A Natural Arrangement of British Plants 1: 683. 1821. nom. rej. Type: Cyathophora angustifolia Gray (Grolle 1981, 1983b, ZiЛLTtra 1990) (= Mannia androgyna (L.) A.Evans).

Neesia Leman, Dictionaire des sciences naturelles 34: 337, 1825, nom. illeg., non Spreng 1818 (Grolle 1983b), Type: Duvalia rupestris Nees (= Mannia triandra (Scop.) Grolle)

Sindonisce Corda, in: Opiz (ed.) Beiträge zur Naturgeschichte 12: 648, 1829, Type: Sindonisce fragrans (Balb.) Corda, 1804. (Grolle 1983b) (= Mannia fragrans (Balbis) Frye \& L.Clark).

Pleurochiton Corda ex Nees, Naturgeschichte der Europäischen Lebermoose 4: 225, 1838. nom. inval. (Grolle 1983b), Type: Pleurochiton balbisianum Corda ex Nees (= Mannia fragrans (Balbis) Frye \& L.Clark).

Duvaliella Borbás, Pallas Nagy Lexikona 5: 632. 1893, nom. illeg., non F.Heim 1892 (Grolle 1983b), Type: Duvalia rupestris Nees. (= Mannia triandra (Scop.) Grolle).

Neesiella Schiffn., in Engler \& Prantl, Die Natürlichen Pflanzenfamilien 1(3): 32, 1893. Type: N. rupestris (Nees) Schiffn. (Grolle 1983b) (= Mannia triandra (Scop.) Grolle) .

Arnelliella C.Massal., Atti del reale instituto veneto di scienze, lettere ed arti Venice 73(2): 927. 1914. Type: Arnelliella sibirica (K. Müll.) C.Massal. (Grimaldia pilosa var. sibirica Müll.Frib.) (Grolle 1983b) (= Mannia sibirica (Müll.Frib.) Frye \& L.Clark)

Description

Plants xeromorphic or mesomorphic; aromatic and sometimes strongly fragrant (cedar smell in M. fragrans or aromatic smell in some specimens of M. androgyna); thalli small, growing intermingled in mats or spreading and forming loose mats (extensive patches), linear and leathery or broadening towards thallus apex and rather flat and more delicate, sometimes with slightly wavy margins; midrib not defined dorsally; vegetative branches dorsally bright green, becoming brown or whitish (M. pilosa, M. triandra) in older parts, sometimes strongly lacunose when disintegrating; vegetative branching in terminal symmetrical or asymmetrical dichotomies or with ventral or terminal innovations; margins dark purple or blackish, occasionally white (M. pilosa); ventrally purplish-black; when dry, thallus margins usually completely inrolled, tubular and black or sometimes only weakly inrolled (M. pilosa, M. triandra, M. sibirica, M. californica); surface areolate or not areolate; lobe apex rounded and middle often notched where archegoniophores develop; thallus in t.s. usually broadly concave or triangular, occasionally almost flat, divided into an upper
epidermis with air pores, photosynthetic assimilation tissue, storage tissue and poorly differentiated lower epidermis; dorsal epidermis unistratose with thin-or thick-walled cells with convex trigones; air pores inconspicuous to distinct, simple, sometimes slightly to strongly upraised above each chamber, in surface view with 2-3(4) concentric rings of cells, rings usually partly overlapping each other, radial cell walls of innermost ring sometimes collapsed, outer ring of 5-10 cells, inner ring of 5-9 cells, radial cell walls thin or thick; assimilation tissue green, either spongy with small densely packed air chambers or loose with big air chambers in an irregular layered arrangement, sometimes with one upper band of tall vertical air chambers and smaller more rounded air chambers below (2-4 above each other), occasionally rather intermediate, air chambers sometimes with free filaments, oil cells present or absent; basal tissue colourless; cells rounded to oblong; with scattered bright to dark brown coloured oil cells and often mycorrhizal, (sometimes assimilation tissue more extensive, sometimes storage tissue).
Rhizoids hyaline and occasionally purplish or brownish towards base, arising from ventral epidermis along the midline of the thallus, of two types, smooth and pegged with peg-like wall thickenings.
Ventral scales in two rows on each side of thallus midline, sometimes overlapping each other and midline of thallus, usually overlapping lobe apex and sometimes lobe margin, purple with sometimes paler margins, or colourless, asymmetric, unistratose, semicircular to broadly elongate or oblongsemicircular, lunate and curved decurrent at insertion, small slime papillae present on margins, often abundant, sometimes easily breaking off (M. androgyna), oil cells usually present and several, in some species only a few or absent (M. pilosa), isodiametric, usually marginal but occasionally also found in middle of ventral scales or in appendages; appendages $1-2(3)$, usually purple or bleached (M. fragrans), base not constricted, subulate to broadly subulate or lingulate, gradually narrowing into acute tip.
Specialised asexual reproduction absent.

Androecia and gynoecia usually borne on different thalli of the same plant (monoicous) or on separate plants (dioicous).

Sexual condition dorsal-autoicous, male- or female-ventral-autoicous, terminalautoicous, par-autoicous, or dioicous. Androecia borne dorsally on main thallus (dorsal- autoicous) with archegoniophore either on reduced ventral branches (female-ventral-autoicous), or archegoniophore on the same thallus or on a dichotomous furcation of the same thallus, on reduced ventral branches of the main, often archegoniophore-bearing thallus (male-ventral-autoicous), or androecia on shorter or equally long branch of a dichotomous furcation (terminal-autoicous) of which the other branch can bear an archegoniophore, or close to base of archegoniophore (par-autoicous) or plants dioicous with androecia and gynoecia always borne on different thalli but plants of both sexes often intermingled.
Androecia sessile, usually several, ostioles \pm conical and raised, scattered along midline of thallus or in strongly or weakly upraised clusters, or in terminal poorly defined clusters in slight depressions or slightly upraised, without marginal scales when mature but scales sometimes present at start of antheridial development but later fugacious, green when young, gradually becoming purplish-black when mature and with sometimes purplish coloured surrounding epidermal tissue; male branches continuing vegetative growth.

Gynoecia in form of archegoniophores deriving from terminal notch of the main vegetative thallus as a modified continuation of the branch and inhibiting further growth of thallus or borne on a reduced ventral branch, surrounded by scales; archegoniophore consisting of a stalk (peduncle) and receptacle; stalk greenish or yellowish, sometimes purple at base or higher up, variable in length, usually with scales around its base, naked or with scales along its length, scales lanceolate to linear, with slime papillae, stalk t. s. circular to irregularly triangular-ovate, with single rhizoidal furrow, without air chambers, in t. s. with low ridges when dry, epidermal cells in one layer, brownish, small, medullar cells of rounded bigger cells, incrassate with corners quite thickened, yellowish or brownish.
Receptacle warted, with compound pores on the upper surface, hemispherical or subglobose, yellowish-green when young, maturing green and often tarnishing purple, bearded below or naked; calyptra inconspicuous, small and rounded shallowly bowl- or cup-shaped, thin-layered and delicate, situated at the base of
each receptacle lobe underneath the capsule; pseudoperianth absent; involucres forming the end of each receptacle lobe surrounding the capsule, cup-shaped, narrow to broad, usually bistratose and thin; receptacle bearing (1)2-4(5) sporophytes each with very short reduced seta; capsule rounded, yellow when young and turning brown or black when mature, wall unistratose, annular thickenings absent; lid brown, irregularly rounded to circular, shed complete and not fragmenting, lid cells rounded to rectangular, with small corner thickenings, cells often overlapping each other.

Spores yellow, brown, yellowish brown to reddish brown or greyish brown (LM), with elaborate ornamentations, distally saccate, areolate or ridged with papillae and pits, proximal side sometimes with proximal disc, weak to strong trilete mark, equatorial apertures inconspicuous or conspicuous.

Elaters yellowish or brownish, with 2-3-spiral thickenings, middle often 3 -spiral and ends 2 -spiral.

Chromosome number not known or mostly $\mathrm{n}=9$.

Distribution

Mannia is a relatively small genus with about 7 accepted species worldwide. It has a nearly worldwide distribution north to the Arctic but is not recorded from tropical East Asia, Central America and Australasia (BISCHLER 1998). Its main distribution lies in the northern hemisphere but it is also found on the African and South American continents. The worldwide distribution based on herbarium specimens studied can be seen above in Fig. 4.1.

Ecology

The genus comprises both xeromorphic and mesomorphic taxa, all droughttolerant with often fragmented ranges (BISCHLER 1998) growing on rocky soil or rock crevices in arctic -alpine to Mediterranean climates.

Taxonomic Notes

The delimitation of Mannia from related genera is not clearly defined. It is characterized by a small narrow thallus and cup-shaped involucres. The lack of a pseudoperianth is the main difference from Asterella. Besides, it has an aromatic smell whereas many Asterella species are characterised by a fishy
smell. The position of archegonia and antheridia as well as the shape of the receptacle differs from Reboulia, Cryptomitrium and Plagiochasma together with the smaller size, the colour and texture of the thallus. An important characteristic in species-level taxonomy is the spore ornamentation pattern.

Nomenclatural Notes

Mannia was published by OPIZ in 1829 as a new name (nom. nov.) for the illegitimate Grimaldia Raddi 1818.

According to the International Code of Botanical Nomenclature (ICBN) Mannia must be typified by the type of Grimaldia. Grimaldia when published by Raddi had one constituent species Grimaldia dichotoma. However, G. dichotoma Raddi was based on two different elements, which are a) Marchantia triandra Scop. 1772 and b) a Micheli (1729) polynomial.
In 1983b, c GROLLE proposed that Marchantia triandra Scop. (= Mannia triandra (Scop.) Grolle) be the lectotype of Grimaldia dichotoma Raddi but the Nomenclature Committee (ZILJSTRA 1990) rejected this and chose the Micheli element (as the older one) as lectotype of G. dichotoma. The Micheli element is well established as being Mannia androgyna (L.) Evans and was formally lectotypified by Grolle in 1968. Therefore Grimaldia dichotoma Raddi is a synonym of Mannia androgyna and is the type of both the genera Mannia Opiz and Grimaldia Raddi and not Mannia triandra as Grolle (1983b,c) had earlier proposed.

4.4.2 Infrageneric subdivision

The following classification (summary in Table 4.3) is based on morphological evidence, the spore survey using SEM and also on the molecular phylogenetic data based on two molecular markers (chloroplast and nuclear) as discussed in 1.4.2, 3.6.4 and 5.7.3.7. As a result it is concluded that two subgenera, Neesiella and Mannia should be recognized, and within subg. Mannia, four sections are recognized, sect. Mannia, Sect. Arnelliella, sect. Sindonisce and sect. Asiaticae. Keys to subgenera and sections are given below; descriptions and nomenclatural details are given in the taxonomic account (see 4.4.3).

Table 4.3. Synopsis of infrageneric classification of Mannia

Subgenus	Section	Species
Mannia	Mannia	Mannia androgyna
	Arnelliella	Mannia sibirica Mannia californica
Neesiella	Sindonisce	Mannia fragrans Asiaticae
		Mannia asiatica Mannia triandra Mannia pilosa

4.4.2.1 Key to Mannia subgenera and sections

1 Spores spongy in fine distal ornamentation, with minute pits; with similar sculpturing on proximal and distal surfaces; distally incompletely areolate; proximal disc absent; equatorial pores inconspicuous; receptacle subglobose \qquad subgenus Neesiella (page 150)
1* Spores not spongy in fine distal ornamentation, minutely papillate, with or without minute pits; with similar or dissimilar sculpturing on proximal and distal surfaces; distally saccate, regularly or irregularly areolate or ridged; proximal disc present or absent; equatorial pores conspicuous; receptacle hemispherical..subgenus Mannia (page 107).. 2

2 Spores with proximal disc... 3
2* Spores without proximal disc.. 4

3 Spores saccate .. section Mannia (page 107)
3* Spores areolate or ridged .section Arnelliella (page 117)

4 Plants dioicous; spores regularly areolate; antheridia rather conspicuous, borne terminally on separate (not archegoniophore-bearing) thallus, forming a defined triangular (sometimes rounded or elliptic), sometimes slightly upraised disc; thallus apex bearded; ventral scale appendages bleached; receptacle usually bearded
\qquad section Sindonisce (page 132)

4* Plants monoicous; spores deeply areolate; antheridia inconspicuous, forming a poorly defined, slightly upraised rounded cushion or terminal slight depression or notch; thallus apex not bearded; ventral scale appendages not bleached; receptacle usually naked

4.4.3 Species accounts

4.4.3.1 Keys to Mannia species without and with ripe spore material

Key to Mannia species without ripe spore material
1 Plants dioicous; antheridia borne terminally on separate (not archegoniophore-bearing) thallus, forming a defined triangular (sometimes elliptic or rounded) disc; thallus apex bearded with conspicuous ventral scales; ventral scale appendages bleached; receptacle bearded; thallus leathery; usually aromatic (cedar oil smell)...
\qquad
1* Plants dorsal-autoicous, terminal-autoicous, ventral-autoicous or parautoicous; antheridia often on same thallus as archegoniophore or on separate thalli; thallus apex not bearded with conspicuous ventral scales; ventral scale appendages not bleached; receptacle bearded or naked; thallus leathery or delicate; aromatic or not

2 Plants male-ventral-autoicous (antheridia borne on reduced ventral branches); oil cells in ventral scales often absent or only a few (0-2(4)); receptacle bearded; upper surface of thallus whitish when disintegrating, strongly lacunose 7. M. pilosa (page 156)

2* Plants dorsal-autoicous, terminal-autoicous or par-autoicous; oil cells in ventral scales several; receptacle bearded or naked; upper surface of thallus brownish when disintegrating, weakly lacunose

3 Antheridia borne dorsally on thallus, in loosely or densely aggregated clusters, sometimes upraised; assimilation tissue compact with small air chambers; thallus thick and leathery, upper surface not reticulate; receptacle naked4

3* Antheridia borne terminally on main thallus or close to base of archegoniophore; assimilation tissue rather loose with large air chambers; thallus rather thin and delicate or leathery, upper surface reticulate or not; receptacle bearded or naked . 5

4 Archegoniophores predominantly borne on main thallus; storage and
assimilation tissue with pale-coloured oil-bodies; male and female gametangia sometimes borne on the same thallus.

1. M. androgyna (page 108)

4* Archegoniophores predominantly borne on reduced ventral branches;
storage and assimilation tissue with several dark brown oil-bodies; male
and female gametangia not borne on the same thallus.. (page 123)

5 Receptacle subglobose, usually naked; thallus usually rather delicate or sometimes leathery ..6. M. triandra* (page 150)
5* Receptacle hemispherical, bearded or naked; thallus rather leathery 6

6 Receptacle usually bearded; antheridia often on equally long branch of a dichotomy of which the other branch bears an archegoniophore...............
..2. M. sibirica*(page 118)
6* Receptacle usually naked; antheridia often on shorter branch of a dichotomy of which the other branch bears an archegoniophore \qquad
5. M. asiatica* (page 144)
*M. triandra, and particularly M. sibirica and M. asiatica can only be identified for sure with ripe spore material

Key to Mannia species with ripe spore material
1 Antheridia borne on reduced ventral branches; ventral scales with 0-2(4) oil cells; receptacle bearded; upper surface of thallus whitish when disintegrating, strongly lacunose
7. M. pilosa (page 156)

1* Antheridia not borne on reduced ventral branches; ventral scales with usually several (up to 52) oil cells; receptacle bearded or not bearded; upper surface of thallus brownish when disintegrating, not strongly lacunose .2

2 Thallus apex bearded with conspicuous ventral scales; ventral scale appendages bleached; antheridia borne terminally on separate (not archegoniophore-bearing) thallus, forming a defined triangular
(sometimes elliptic or rounded) disc; plants dioicous, usually aromatic (cedar oil smell); thallus leathery... 4. M. fragrans (page 132)

2* Thallus apex not bearded with conspicuous ventral scales; ventral scale appendages not bleached; antheridia often on same thallus as archegoniophore or on separate thalli; plants monoicous, aromatic or not; thallus leathery or delicate. 3

3 Antheridia borne terminally on main thallus or close to base of archegoniophore; assimilation tissue rather loose with large air chambers; thallus rather thin and delicate, upper surface reticulate; receptacle bearded or naked 4
3* Antheridia borne dorsally on thallus, in loosely or densely aggregated clusters, sometimes upraised; assimilation tissue compact with small air chambers; thallus thick and leathery, upper surface not reticulate; receptacle naked

4 Spores small, 43-56(62) $\mu \mathrm{m}$, with dissimilar sculpturing on proximal and distal surfaces, with proximal disc; receptacle bearded and hemispherical; thallus rather leathery 2. M. sibirica (page 118)

4* Spores large, (45.6)55-75(77.7) $\mu \mathrm{m}$, with similar sculpturing on proximal and distal surfaces, without proximal disc; receptacle usually naked, hemispherical or subglobose; thallus rather delicate or leathery .5

5 Spore surface minutely papillate, with 6-10 areolae across distal surface, equatorial apertures rather conspicuous; receptacle hemispherical; thallus leathery 5. M. asiatica (page 144)

5* Spore surface spongy, with 4-7 areolae across distal surface, equatorial apertures rather inconspicuous; receptacle subglobose; thallus rather delicate 6. M. triandra (page 150)

6 Spores distally saccate; archegoniophores usually borne on main thallus; storage and assimilation tissue with pale-coloured oil-bodies; male and female gametangia sometimes borne on the same thallus

6* Spores distally areolate or ridged; archegoniophores usually borne on reduced ventral branches; storage and assimilation tissue with several dark brown oil-bodies; male and female gametangia not borne on the same thallus
3. M. californica (page 123)

4.4.3.2 Descriptions of subgenera, sections and species

Subgenus Mannia

Type: as for Mannia Opiz
Synonym: subgenus Xeromannia Grolle, Journal of Bryology 12: 405.
1983. Type: Mannia androgyna (L.) A.Evans

Description

Receptacle hemispherical; spores with similar or dissimilar sculpturing on proximal and distal surface; distally saccate, regularly areolate, irregularly areolate or ridged; on surface minutely papillate with or without pits, not spongy; proximal disc present or absent; equatorial pores conspicuous.

Nomenclatural note

The type of subg. Mannia and sect. Mannia automatically has to follow the typification of the generic name, which has changed over the years (Grolle 1976, 1983b,c, ZILJSTRA 1990, GRoLle 2000). It is now Mannia androgyna (L.) Evans as discussed in 4.4.1 under Nomenclatural Notes.

Section Mannia

Type as for Mannia Opiz

Description

Thallus apex not bearded; sexual condition dorsal-autoicous; antheridia conspicuous, scattered dorsally along midline of thallus or in terminal position, sometimes bifurcate with lobes sometimes almost parallel, often in clusters and slightly to strongly upraised along the midline of thallus or loosely scattered,
sometimes found on the same thallus as the female archegoniophore; receptacle naked; spores saccate; proximal disc present.

Type: Mannia androgyna (L.) Evans

1. Mannia androgyna (L.) A. Evans, Chronica Botanica 4: 225. 1938

Basionym: Marchantia androgyna L. Species Plantarum ed. 1: 1138. 1753. Type citation: [Italy, Florence] 'Florentia non procul'; Type specimen: FI (herb. Micheli, n.v.) (Grolle 1968).

Synonym: Cyathophora angustifolia Gray. A Natural Arrangement of British Plants 1: 683. 1821. Type citation: [British Isles] 'on damp places'; Type specimen: n.v. (Grolle 1981,1983b).

Synonym: Grimaldia dichotoma Raddi nom. illeg. (Grolle 1968, 1976) (Isotype E-11693).
Synonym: Grimaldia capensis Steph., Species Hepaticarum 1: 90. 1898. syn. nov. Type citation: 'Transvaal, Bloemfontein (Rehmann)'; Type specimen: [South Africa] Bloemfontein, s.d., Rehmann 144 (G, holotype, fide Perold (1994a), n.v.). syn. nov.

Synonym: Mannia capensis (Steph.) S. W. Arnell, Mitteilungen der Botanischen Staatssammlung München 16: 263. 1957.

Synonym: Mannia capensis var. pallida S. W. Arnell, Hepaticae of South Africa: 72. 1963. Type citation: 'Montagu, Cogmans Kloof'; Type specimen: [South Africa] Cogmans Kloof, 19.9.1951, Arnell 798 (BOL, lectotype selected here) syn. nov.

Description

Thalli forming large and closely intermingled patches, small, linear and narrow, leathery, dorsally bright green, becoming yellowish-brown or brown in older parts, strongly xeromorphic, sometimes fragrant; vegetative branches usually terminal, often dichotomous, with terminal or ventral innovations; lobes (1.6) $3.2-14.4$ (15.1) mm long, (1.1) $1.6-3.8(5.8) \mathrm{mm}$ wide, if bearing archegoniophore then often becoming broader towards apex, margins dark purple or blackish, ventrally purplish-black when dry, margins usually completely inrolled, tubular and black; lobe apex rounded and middle often
grooved; thallus in t.s. (0.2)0.3-0.5(0.6)mm thick, shape usually broadly concave, occasionally almost flat in section; dorsal epidermis cells (29)31.9-40.6(46.4) $\mu \mathrm{m}$ long, (11.6) $13-29(33.4) \mu \mathrm{m}$ broad, cell walls of dorsal epidermis rather thickwalled, showing corner thickenings (trigones) when focusing; air pores slightly raised, (8.7) $11.6-24.7(29) \mu \mathrm{m}$ in diameter, with $2(-3)$ concentric rings of cells, outer ring of (6) $7-8$ cells, cells (11.6)17.4-37.7(43.5) $\mu \mathrm{m}$ long, (8.7) $10.15-$ $20.3(23.2) \mu \mathrm{m}$ wide, inner ring of $6-7$ cells, (11.6)14.4-26.1(34.5) $\mu \mathrm{m}$ long, (5.8)8.7-14.5(17.4) $\mu \mathrm{m}$ wide, pore visible with hand-lens, of whitish colour; assimilation tissue spongy, irregular, (37.7)57.5-150(184) $\mu \mathrm{m}$ high in t.s., with small air chambers, in several layers (can be as thick as basal tissue); basal tissue (149.5) 180-300(322) $\mu \mathrm{m}$ high in t.s., with many to only a few brightcoloured oil-bodies (very rarely a few dark-coloured oil-bodies) mainly in centre of basal tissue.

Rhizoids arising from ventral epidermis, smooth or pegged.
Ventral scales in two rows, overlapping each other and midline of thallus, purple, overlapping lobe apex and lobe margin and folding slightly upwards over edge of thallus, purple with sometimes paler margins, (0.6) $0.8-1.2(1.3) \mathrm{mm}$ long, (0.4)0.5-0.9(1.1) mm broad, elongate-semicircular, small slime papillae present, which easily break off, oil cells from base upwards, occasionally in appendages, only marginal, 7-34, in t.s. (14.5)17-38(47) $\mu \mathrm{m}$; appendages $1-2(3)$, purple, (0.13)0.31-0.66(0.84) $\mu \mathrm{m}$ long, (0.06)0.07-0.2(0.26) $\mu \mathrm{m}$ broad, subulate or sometimes lingulate, gradually narrowing in acute tip.
Sexual condition dorsal-autoicous with androecia borne on main, sometimes also archegoniophore-bearing thallus, and occasionally female-ventral-autoicous with androecia situated on main thallus with archegoniophore on ventral side branch.

Androecia sessile, usually several, dorsal along midline of thallus or in terminal position, sometimes bifurcate with lobes sometimes almost parallel; ostioles tconical, often in clusters and slightly to strongly upraised along the mid-line of thallus or loosely aggregated (scattered), green when young, gradually becoming purplish-black when mature.
Gynoecia with archegoniophores usually borne terminal, sometimes borne on reduced ventral heart-shaped branches or on a terminal innovation, surrounded by scales; receptacle hemispherical, warty, yellowish-green when young, mature
turning into green and often tarnishing purple at margins, stalk brownish green, sometimes purple at base or higher up, $0.5-0.7(0.8) \mathrm{mm}$ in diameter, irregularly triangular-ovate in t. s., low ridged when dry, very variable in length, (4.1) $5.5-22.5(24) \mathrm{mm}$ long, with single rhizoidal furrow, in t.s. with one outer row of brown smaller cells and inner cells bigger, yellowish, incrassate with corners quite thickened; receptacle bearing 3-4 sporophytes; capsule black when mature, yellow when young, lid irregularly rounded, $0.7-1.1 \mathrm{~mm}$ in diameter, annular thickenings absent, cells (14.5)20-58(64) $\mu \mathrm{m}$ long, (11.6)20.3$37.7(40.6) \mu \mathrm{m}$ broad, rounded to rectangular, with corner thickenings, overlapping each other.

Spores type I, yellow or brown to reddish-brown, (55.1)60.9-95.7(97.75) $\mu \mathrm{m}$ in diameter (LM), (60)63-86.1(87.2) $\mu \mathrm{m}$ in diameter (SEM); trilete; with dissimilar sculpturing on proximal and distal surface; distally saccate (with 8-13 sacs; and 3-6 sacs across); sacs large, rounded or ellipsoid, on surface minutely papillate with pits; on proximal side with small areolae in centre of disc; proximal disc present, triangular or flowerlike shape; equatorial apertures conspicuous, typically three or sometimes some doubled up to six; equatorial rim conspicuous, margins triangular or undulate to sinuate.

Elaters yellowish-brownish, smooth or rough, (182)237.8-281.3(319) $\mu \mathrm{m}$ long, (7.25)8.7-11.6(14.5) $\mu \mathrm{m}$ broad at middle, $5.8-7.25(8.7) \mu \mathrm{m}$ broad at tip, $2-3$-spiral. Chromosome number not known.

Illustrations (Fig. 4.2, 4.3)

Distribution (Fig. 4.4)

The distribution of Mannia androgyna is based on confirmed herbarium specimens from Italy, Portugal, Spain, Austria, Switzerland, Madeira, Canary Islands, Azores, Cape Verde Islands, France, Croatia, Montenegro, Greece, Turkey, Cyprus, Albania, Algeria, Tanzania, Namibia, South Africa and Zimbabwe. It is a Mediterranean and African species.
Based on literature reports it is additionally reported from Bulgaria (PETROV 1975); former Yugoslavia (PaVLETIĆ 1955); Corsica, Sardinia, Sicily, former Yugoslavia, Lebanon, Israel, Egypt, Tunisia, Morocco (BISchLER \& Jovet-Ast 1973); Tunisia (Bischler \& Jovet-Ast 1971); India (West Himalaya, Punjab),

Fig. 4.2. Mannia androgyna (1). A thallus showing androecium and archegoniophore; B transverse section of stalk; C air pore of receptacle, dorsal view; D air pore of receptacle, ventral view; E transverse section of antheridium; F cells of capsule wall; G capsule lid; H transverse section of thallus; I transverse section of thallus showing androecium. A-I Portugal, Schill \& Lobo 36 (E).

Fig. 4.3. Mannia androgyna (2). A thallus, dorsal view; B air pores from ventral epidermis of thallus; C thallus, ventral view; D ventral scale appendage; E, F ventral scales showing oil cells; G ventral scale, margin; H transverse section of thallus. A-H Portugal, Schill \& Lobos 36 (E).

Pakistan, Germany, Ethiopia, Caucasus (Kachroo, Bapna \& DHAR 1977); Arabian Peninsula and Socotra (Saudi-Arabia, Yemen Republic, United Arab Emirates) (KÜRSCHNER 2000, 2001); Yemen (AL-GIFRI \& KÜRSCHNER 1996); Israel (Frey \& KÜRSCHNER 1991); Austria (Gams1938); Baleares, Corsica, Sardinia, Yugoslovia, Bosnia, Romania, Bulgaria, N Africa, NE Tropical Africa, Transcaucasus, W Asia, Arabian Peninsula, Indian subcontinent (SÖdERSTRÖM,URMI \& VÁÑA 2002); Balearic Islands, Bulgaria, Caucasus (Russian part only), Romania, Sardinia, Sicily (SChumacker \& VÁÑa 2000, 2005); Ethiopia, Eritrea (Gola 1914, Wiggington 2004); Chad, Cape Verde Islands (ARNELL 1961, WigGington 2004).

Former records of M. androgyna from the Arabian Peninsula (LONG 1987) actually belong to M. californica.

Fig. 4.4. Worldwide distribution of M. androgyna based on herbarium material studied

Ecology

Mannia androgyna is a strongly xeromorphic species and well adapted to dry conditions and is hence found in more exposed sites. It likes mediterranean to temperate climates (BISCHLER 2004). It is found on cliffs, rocky slopes
(sometimes near the sea), valley slopes, earthy ledges, stream banks, old dry walls, cultivation terraces and sometimes in open pine forests. It grows on soil and soil-covered rock (limestone and granite).
It has a typical S - or SW -exposure and is rarely N -exposed.
Altitude: c. 20-1400m in Europe and Macaronesia, (457)1407-1910m in Southern Africa.

Taxonomic Notes

Mannia androgyna has a thick and leathery thallus very similar to that of M. fragrans and M. californica. In cross section it has compact assimilation tissue with only small air chambers in comparison to the loose assimilation tissue of M. fragrans with big air chambers. The sexual condition in M. fragrans is dioicous whereas M. androgyna is dorsal-autoicous.
It further differs from M. fragrans in having a naked receptacle and purple ventral scale appendages. A few appendages often overlap the lobe apex but the lobe apex is not bearded as in M. fragrans. The slime papillae in M. androgyna are more delicate than in M. fragrans and fall off quite easily.
When sterile, M. androgyna is quite difficult to distinguish from M. californica. The colour of the oil-bodies in assimilation and storage tissues is a quite reliable character for distinguishing these two species. In M. androgyna the oil-bodies usually have a pale colour whereas in M. californica there are several darkbrown oil-bodies present. Of about 300 observed herbarium specimens only two specimens of Mannia androgyna (Canary Islands, C.C. Townsend 78/188 (E) and France, Frere Heribaud-Joseph, (BM-72508)) had a few dark coloured oil-bodies while the spores of these specimens were clearly saccate. Both species are dorsal autoicous with antheridial chambers situated in clusters, which can be slightly to strongly upraised or more scattered along the midline of the thallus.

Mannia androgyna usually has the archegoniophores in a terminal position and in M. californica they are usually found on reduced heart-shaped ventro-lateral branches, although in both species both positions can be found.
Occasionally in Mannia androgyna the antheridia are positioned on the same thallus as the archegoniophores; this has not been observed in M. californica. In the fertile condition the spores are a reliable character for diagnosis- they can be observed under a light microscope with high magnification. The spores in M.
androgyna are saccate whereas in M. californica they are ridged to areolate. However, if spores are immature or collapsed, diagnosis can be difficult. A specimen from Madeira (Schill 11, E) was found to be fragrant but with a smell unlike that of M. fragrans. There are also notes indicating an aromatic smell for some specimens collected in Namibia by Volk, 'duftend'(Volk 685, JE) and 'wohlriechend'(Volk 862, JE).

Spores can be either of yellow or brownish colour and both colours can often be found together in one single collection though one colour is often dominant. The Madeiran specimens are predominantly found to be yellow whereas the spores in the African specimens are of brownish colour.

The proximal disc of the spores can sometimes show variations. It has either a triangular rounded shape as observed on some specimens from Switzerland, Canary Islands, Madeira, Tanzania and Namibia or a flower-like shape (Turkey, Italy or Cyprus).
Spores are ripe in Macaronesia in January, in Africa from March to June, in Europe from February to June.

Nomenclatural Notes

Southern Africa was formerly assumed to have only one (endemic) Mannia species, Mannia capensis (Perold 1994a, Arnell 1963). In North Africa Mannia records were mainly accredited to M. androgyna (BISCHLER \& JOVETASt 1971, SöDERSTRÖM, URMI \& VÁÑA 2002). In Zimbabwe, collected Mannia specimens were identified as cf. capensis (BEST 1990) or in Ethiopia and Eritrea as Grimaldia dichotoma (a synonym of M. androgyna) (GOLA 1914). Through study of herbarium material it became apparent that African specimens could be clearly divided into two distinct species based on morphology, particularly spore ornamentation:
A) Mannia capensis which is conspecific with Mannia androgyna, and
B) African collections identified as Mannia capensis clearly consist of two distinct species, M. androgyna and M. californica.

In the literature possible synonymy of M. capensis with M. androgyna has already been discussed by PEROLD (1994a) following a personal comment from Grolle that they might be identical. However, she found it difficult to come to a
definite decision'about it because of the only very limited number of M. androgyna specimens she had available for study.
PEROLD (1994a) considers M. capensis as dioicous and only rarely monoicous, which is in contrast to the present treatment. A reason for this could be that in the specimens of M. capensis she observed the antheridia disappear before maturation of the archegoniophores. However, in the specimen collected by Volk 828 (JE) (listed by her under M. capensis specimens examined) a dichotomous thallus could be observed which bears antheridia and an archegoniophore at the same time.

ARNELL (1963) described a variety of M. capensis from Cogmans Kloof based on spore colour. He called the variety pallida, with reference to the pale yellow colour of the spores ('sulphuric yellow). PEROLD (1994a) did not accept it as a variety in her treatment of Southern African Mannia and attributed it in her SEM study to the fact that the spores were only immature. She also emphasised a note by Garside (Arnell 798, BOL-54675), who saw Arnell's preparation and stated that the spores were immature. In some cases the yellow spore colour might be attributed to immaturity but in some specimens a mixture of brown and yellow spores can sometimes be found together. The specimen Bosman 199 from Pretoria (NY) has yellow spores, which under the SEM looked mature. In the African specimens the brown spore colour dominates but in European specimens the yellow spore colour is found more frequently. This could be due to the generally higher altitude of the African localities in comparison to the European and Macaronesian localities, and hence be an adaptation to higher light intensity.

ARNELL (1963) did not designate a type for his new variety 'pallida'. In the 'Hepaticae of South Africa' he refered to the locality 'Montagu, Cogmans Kloof' but did not give any information on date or on which specimen he based his new variety. His own collections deposited in the Bolus Herbarium (BOL) and the Pretoria National Herbarium (PRE), both in South Africa, were therefore borrowed in order to select a lectotype.

The specimen Arnell 798 (BOL-54675 and BOL-54727), here chosen as lectotype, had a note on the packet saying 'spec.nov.'. S. Garside notes in the packet:
'This is not a "new species" Dr S. Arnell, thought it'll be so because spores are bright yellow, but they proved to be merely immature. The bullae of the spore coat were also open at apex- perhaps by mounting in glycerine, they have burst. I saw Dr Arnell's preparation (at Sea Point where he stayed). S.G.'
The specimens show immature archegoniophores but no spores could be found.
The specimen BOL-54675 is mostly Exormotheca pustulosa as noted by S.
Perold on the packet and the duplicate BOL- 54727 is also intermixed with Targionia hypophylla.

The type specimen of Marchantia androgyna was not available for study; however it was studied by Grolle (1968) who cited it as 'lectotype'.

Section Arnelliella (C. Massal.) Schill stat. nov.

Basionym: Arnelliella C. Massal., Atti del Reale Veneto di Scienze, Lettere ed Arti 73(2): 927. 1914. Type: Arnellilla sibirica Müll.Frib. Synonym: Neesiella subgenus Arnelliella (C. Massal.) C. Massal., Atti del Reale Veneto di Scienze, Lettere ed Arti 73(2): 927. 1914. nom. inval. (Art. 34, 2) (Grolle 1976).
Mannia subgenus Arnelliella (C.Massal.) Grolle, Feddes Repertorium 87(3-4): 245. 1976.
Mannia subgenus Mannia sensu Grolle, Journal of Bryology 12: 405. 1983.

Type: Mannia sibirica (K. Müll.) Frye \& L.Clark

Description
Thallus apex bearded or not bearded; sexual condition dorsal-autoicous or terminal-autoicous; antheridia conspicuous, scattered dorsally along midline of main thallus or in clusters, which can be slightly or strongly upraised or inconspicuous, forming a poorly defined, slightly upraised rounded cushion or terminal slight depression or notch; receptacle bearded or naked; spores regularly areolate or ridged; proximal disc present.

2. Mannia sibirica (Müll.Frib.) Frye \& L.Clark, University of Washington Publications in Biology 6: 66. 1937.

Basionym: Grimaldia pilosa var. sibirica Müll.Frib., Rabenhorsts KryptogamenFlora von Deutschland, Österreich und der Schweiz, Auflage 2, 6(1): 265. 1907. Type citation: ,Sibirien, Zwischen Krasnojarsk und Jeniseik beim Dorfe Makokovo (1876 Arnell)! Original!'; Type specimen: Sibirien, Jenisei, inter Krasnojarsk, Jenisseisk prope pagum Makokovo, 18.6.1876, H. W. Arnell; (S, Holotype (B24528) and isotypes (B24526, B24527); JE, isotype (H1306)).

Synonym: Grimaldia sibirica (Müll.Frib.) Müll.Frib., Rabenhorsts Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Auflage 2, 6: 721. 1916.
 Synonym: Neesiella sibirica (Müll.Frib.) C.Massal., Atti del Reale Veneto di Scienze, Lettere ed Arti 73: 928. 1914.
 Synonym: Arnelliella sibirica (Müll.Frib.) C.Massal., Atti del Reale Veneto di Scienze, Lettere ed Arti 73(2): 927. 1914.

Description

Thalli spreading and forming extensive patches, small, narrow and flat, rather leathery, thin to delicate, dorsally green, occasionally purplish, areolae usually not visible, in older parts becoming brown when disintegrating, xeromorphic; vegetative branches of terminal dichotomies or with terminal and occasionally ventral innovations; lobes (2.4)3.5-12.6(14.7)mm long, (0.4)1.1-2.1(3.9)mm wide, margins dark purple or green, sometimes undulate; ventrally green or purple, when dry, margins slightly to strongly inrolled, tubular and black or not strongly inrolled; lobe apex rounded and middle often grooved; thallus in t.s. (127.5) $322-586.5(690) \mu \mathrm{m}$ thick, shape usually flat or concave to triangular in section; dorsal epidermis cells (17.4)20.3-31.9(34.8) $\mu \mathrm{m}$ long, (11.6)13.05-26.1(31.9) $\mu \mathrm{m}$ broad, cell walls of dorsal epidermis rather thickwalled, showing corner thickenings (trigones) when focusing; air pores (8.7)11.6$23.2(29) \mu \mathrm{m}$ in diameter, with $2(3)$ concentric rings of cells, outer ring of (5)6-7(8) cells, cells (14.5) $17.4-31.9$ (40.6) $\mu \mathrm{m}$ long, (11.6) 14.5-20.3 (29) $\mu \mathrm{m}$ wide, inner ring of $6-7(8)$ cells, (8.7)11.6-17.4(23.2) $\mu \mathrm{m}$ long, (8.7)11.6-14.5(17.4) $\mu \mathrm{m}$ wide, pores
visible with hand-lens, of whitish colour; assimilation tissue rather loose to sometimes slightly compact, as big as or up to 2 times the size of those of basal tissue, air chambers 2-3(4) in t.s., somewhat rounded, often subdivided, (126.5) 149-276(403) $\mu \mathrm{m}$ high in t. s.; basal tissue (126.5)172-310.5(380) $\mu \mathrm{m}$ high in t.s., with inconspicuous yellowish grey or occasionally brownish oil cells in assimilation and storage tissue.

Rhizoids arising from ventral epidermis, smooth or pegged, hyaline or purplish/brownish towards base.

Ventral scales in two rows, sometimes only sparse, overlapping each other and midline of thallus, purple with sometimes paler margins, (0.6)0.7-1.6(1.8)mm long, (0.08) $0.4-1.0(1.2) \mathrm{mm}$ broad, oblong semicircular, small slime papillae present on margin, oil cells (3)6-16(22), often marginal, not present in appendages; appendages $1(-2)$, occasionally unequally bifid, $(0.1) 0.2-0.5(0.7) \mathrm{mm}$ long, (0.01) $0.05-0.2(0.3) \mathrm{mm}$, subulate, margins irregularly serrate, gradually narrowing into acute tip, overlapping mainly lobe apex and only rarely lobe margin and folding upwards over edge of thallus.

Sexual condition terminal-autoicous with androecia and gynoecia often borne on equally long or shorter dichotomous branch of a thallus or androecia situated on sometimes shorter branch of a dichotomy, of which the other dichotomous branch bears an archegoniophore; most fertile branches bearing both sexes or occasionally only one.

Androecia inconspicuous or forming a poorly defined, slightly upraised rounded cushion or terminal slight depression or notch with purplish ostioles, usually several ostioles per cushion.
Gynoecia with archegoniophores deriving from terminal notch of mid-thallus or occasionally ventral branch of thallus, surrounded by whitish bleached scales; receptacle hemispherical, nodular/warty, usually conspicuously bearded, sometimes only inconspicuously (e. g. Schuster 18009), yellowish-green when young, when mature turning green and often tarnishing purple at margins; stalk brownish green, sometimes brownish at base or below receptacle, $0.3-$ $0.5(0.6) \mathrm{mm}$ in diameter, irregularly triangular-ovate, ridged when dry, variable in length, (4.6)7.3-17.9(21.4) mm long, with single rhizoidal furrow, in t.s. one outer brown smaller strongly incrassate thick-walled cell row and inner cells
thin-walled, bigger, colourless, incrassate with minute to convex trigones; receptacle bearing mostly (1)2-3 capsules; sporophytes/capsules, capsule black when mature, yellow when young, cells yellowish brown, irregularly hexagonal, incrassate with minute trigones; lid irregularly rounded, (0.7) $0.8-1(1.2) \mathrm{mm}$ in diameter annular thickenings absent, cells incrassate, irregular hexagonal or rounded to rectangular, often strongly overlapping each other.

Spores type II, yellow to yellowish brown, (34.5)37.7-55.1(58) $\mu \mathrm{m}$ in diameter (LM), 43.1-56.5(62) $\mu \mathrm{m}$ in diameter (SEM); trilete; with dissimilar sculpturing on proximal and distal surfaces; distally irregularly areolate sometimes with short ridges, 6-9 areolae across, on surface minutely papillate; on proximal side with small areolae in centre of disc; proximal disc present, equatorial apertures conspicuous, usually three; equatorial rim conspicuous.
Elaters yellow to brownish yellow, (255)284-365.4(411.8) $\mu \mathrm{m}$ long, $8.7-$
11.6(14.5) $\mu \mathrm{m}$ broad at middle, $5.8-8.7 \mu \mathrm{~m}$ broad at tip, 2-3-spiral.

Chromosome number unknown.

Illustrations (Fig. 4.5)

Distribution (Fig. 4.6)

The distribution of Mannia sibirica based on confirmed herbarium specimens is S-Norway, Finland, Russia (Siberia), U.S. (Iowa, Minnesota, Michigan, Arctic Alaska), Canada.
Based on literature it is also reported from N-Norway (SCHUSTER 1958);
Greenland (SJÖdin 1980); China (GAO \& ZHANG 1981); Intramongolia (XuELIANG
\& Zuntian 1996); Turkey, China, Subarctic America (SöDERSTRÖM, URMI \&
VÁÑa 2002); Russian Arctic (Konstantinova, N. A. \& A. D. Potemkin 1996) and Estonia (Ingerpuu \& VElLak 2000a, b).

Fig. 4.6. Worldwide distribution of M. sibirica based on herbarium material studied

Ecology

M. sibirica is found in calcareous rock crevices and ledges, on cliffs and bluffs, on walls, often along rivers and occasionally in wet tundra where it grows on soil or soil-covered rock (limestone and sandstone) with E- or S-exposure.
It has been classed as a probably threatened species of unknown status in Europe and Macaronesia (Schumacker \& VÁŇA 2000, 2005).

Taxonomic Notes

At first glance Mannia sibirica could be confused with Mannia pilosa, which also has a bearded receptacle. They can be easily separated by the position of the antheridia and the generally smaller spore size in M. sibirica. In fact M. sibirica can be distinguished from all other Mannia species by its smaller spores. In M. pilosa the antheridia are borne on reduced heart-shaped ventral branches whereas in M. sibirica the antheridia are borne terminally on the main thallus. The thalli in M. sibirica do not get strongly lacunose and white with spore maturity, the assimilation tissue does not consist of big air-chambers and is rather intermediate. Furthermore the ventral scales in M. sibirica contain
several oil-bodies whereas in M. pilosa oil-bodies are usually absent or sparse. For differentiation from M. triandra see Taxonomic Notes under that species. In Canada and Arctic Alaska the spores mature in June and July; in other parts of the U.S., Finland, Norway and Siberia spores mature in May and June.

Mannia sibirica was first described by K. Müller as a variety of Mannia pilosa. Its taxonomic status has often been regarded as doubtful and MÅRTENSSON (1955) and SCHUSTER (1953) considered it to be conspecific with M. pilosa whereas other authors only pointed out a close resemblance between the two species (MÜLLER 1954, Schuster \& Damsholt 1974, Damsholt 2002). According to SCHUSTER \& DAMSHOLT (1974) 'there is no absolute way in which we can separate M. sibirica from M. pilosa in the field'. In fact both authors confused M. sibirica in separate later publications with either M. pilosa or M. fragrans. In his book 'The hepaticae and anthocerotae of North America' SCHUSTER (1992b) shows on page 216 an illustration of M. pilosa, which is in fact M. sibirica clearly identifiable from the shown sexual condition, the antheridia being in a terminal position on the main thallus typical for M. sibirica. Schuster does not specify which specimen has been used for the illustration but only says from plants from Lake City, Minnesota, May 14, 1947.

In the book on 'The illustrated flora of Nordic liverworts and hornworts' by DAMSHOLT (2002) M. sibirica was mistaken for M. fragrans. Illustrating ' M. fragrans', the thallus, receptacle and spores of M. sibirica are shown. The specimen observed has been cited from Finland, collected by T. Laine. The morphological characters, in particular the sexual condition in combination with the spore ornamentation pattern clearly identify the illustrations as M. sibirica. The extensive morphological study on these two species in combination with results from the SEM, leave no doubt about the valid status of M. sibirica.
3. Mannia californica (Gottsche ex Underw.) L.C.Wheeler, Bryologist 37: 88. "1934" 1935.
Basionym: Grimaldia californica Gottsche ex Underw., Botanical Gazette 13: 114. 1888. Type citation: 'Yosemite valley, California, on rocks in the spray of Bridal Veil Fall, June, 1866, Bolander'; Type specimen: Yosemite

Valley, Cal., vi 1866, H.N. Bolander (Holotype, NY-575639 with slide 575641, isotypes, NY- 575640 , NY- 575648 , NY- 575647 with slides 575642 to 575646).

Synonym: Grimaldia indica Steph. ex Kashyap, Journal Bombay Natural History Society 24(2): 345. 1916. Type citation: 'occurs in Mussoorie, Pathankote, rarely in Lahore in winter along the river bank'; Type specimen: n.v.. syn. nov.

Synonym: Mannia indica Kachroo, Journal of the Hattori Botanical Laboratory 12: 34. 1954. nom. inval. (Art. 33.2)

Synonym: Mannia levigata Shimizu \& S.Hatt., Journal of the Hattori Botanical Laboratory 10: 49. 1953. Type citation: 'Rock crevices in exposed places, 750 m alt., Kaminakao, Chichibu, Saitama Prefecture, September 2, 1952, coll. D. Shimizu'; Type specimen: Japan, Saitama Prefecture: Chichibu Ootakimula, Kamimakao, ca. 750 m, 2 ix 1952, D. Shimizu 52818 (holotype in NICH). syn. nov.

Synonym: Mannia foreaui Udar \& Chandra, Bryologist 67: 55, 1964. nom. inval. (Art. 36.1) ex Udar \& Chandra, Canadian Journal of Botany 43: 148. 1965. Type citation: [South India] 'on slopes and rocks in xerophytic habitat in Kodaikanal; Beruliar: Coll. Vinod Chandra and Satish Chandra. September, 1962'; Type specimen: South India, Railway track, near Beruliar Rl. St. [Railway Station], 1.9.62, S. \& V. Chandra (holotype B5745 and isotypes B5746-B5748, LWG). syn. nov.

Description

Thalli forming large and closely interwoven patches/mats, small, linear and narrow, leathery, dorsally bright green to purplish, becoming purplish brown or greyish in older parts, strongly xeromorphic; vegetative branches mostly terminal dichotomous and sometimes ventrally; lobes (4.1)5.1-14.7(17.9) mm long, (1.1) 1.6-3.2(4) mm wide, margins wide, dark purple to blackish; ventrally purplish-black, when dry, margins usually completely inrolled, tubular and black or slightly inrolled with thallus surface visible; lobe apex rounded or middle often grooved; thallus in t.s. (0.4)0.5-0.8 (0.9) $\mu \mathrm{m}$ thick, shape usually concave to triangular in section; dorsal epidermis cells (17.4)20.3-34.8(37.7) $\mu \mathrm{m}$ long, (8.7) 11.6-20.3(23.2) $\mu \mathrm{m}$ broad, cell wall of dorsal epidermis rather thick-
walled, showing corner thickenings (trigones) when focusing, air pores slightly raised, (8.7) $11.6-23.2(32) \mu \mathrm{m}$ in diameter, with $2-3$ concentric rings of cells, outer ring of (6)7-9 cells, cells (11.6)17.4-26.1(34.8) $\mu \mathrm{m}$ long, (8.7)11.620.3 (34.8) $\mu \mathrm{m}$ wide, inner ring of (6)7(8) cells, 11.6-17.4(20.3) $\mu \mathrm{m}$ long, (5.8)8.7$11.6 \mu \mathrm{~m}$ wide, pore visible with hand-lens, of whitish colour, assimilation tissue spongy, irregular, $0.1-0.4(0.5) \mathrm{mm}$ high in t.s., generally smaller than basal tissue, with small air chambers, in several layers; basal tissue $0.2-0.6(0.7) \mathrm{mm}$ high in t.s., usually with several dark brown oil-bodies. Rhizoids arising from ventral epidermis, smooth and pegged. Ventral scales in two rows, overlapping each other and midline of thallus, purple with sometimes paler margins, (0.8) $0.9-1.6(1.8) \mathrm{mm}$ long, (0.5) $0.6-1.2(1.4) \mathrm{mm}$ broad, semicircular to oblong semicircular, small slime papillae present on margins, oil cells abundant, $6-22$, from base up to tip, predominantly marginal but also in middle and at base of appendage; appendages $1-2,(0.1) 0.2-$ 0.7 (0.9) mm long, (0.08) $0.1-0.4 \mathrm{~mm}$ broad, broadly subulate with irregularly sinuate margins, with broad to very broad base, overlapping mainly lobe apex.

Sexual condition female-ventral-autoicous with androecia commonly situated dorsally on main thallus and archegoniophore usually on heart-shaped or rounded reduced ventral branches, arising from narrow stipitate base from ventral side of thallus or rarely dorsal-autoicous with androecia on main thallus bearing archegoniophore.
Androecia sessile, usually several, scattered dorsally along midline of main thallus or in clusters, which can be slightly or strongly upraised, sometimes found terminally (Indian specimen); ostioles \pm conical, green when young, gradually becoming purplish-black when mature, 218.5-345 $\mu \mathrm{m}$ high, surrounding thallus surface sometimes of purplish colour.
Gynoecia with archegoniophores deriving from terminal notch of main thallus or more often from typically small, heart-shaped ventral branch of often androecia bearing main thallus, surrounded by a few or tufts of long brownish or purplish scales; receptacle hemispherical, nodular/warty, yellowish-green when young, mature turning green and often tarnishing purple, naked or with only a few hyaline scales below; stalk brownish green, sometimes purple at base or higher up, with very few long hyaline scales, (0.5)0.6-0.9(1.0) mm in diameter,
irregularly triangular-ovate, in t . s. low ridged when dry, (4.3) $5.6-10.9$ (11.5) mm long, with single rhizoidal furrow, in t.s. one outer brown smaller cell row and inner cells bigger, yellowish-brownish, incrassate with corners quite thickened, receptacle bearing $1-4$ sporophytes, capsule brown to brownish black when mature, yellow when young, cells yellowish brown, irregularly hexagonal, incrassate with minute trigones, lid irregularly rounded, $1.1-1.6(1.7) \mathrm{mm}$ diameter, annular thickenings absent, cells rounded to rectangular, with corner thickenings, overlapping each other.

Spores type II, yellowish brown and reddish-brown (but predominantly brown (specimen Long 27577 has the two types on the same receptacle, (58)60.9$75.4(78.3) \mu \mathrm{m}$ in diameter (LM), (52.5)58-73.8(76) $\mu \mathrm{m}$ in diameter (SEM); trilete; with dissimilar sculpturing on proximal and distal surfaces; distally with long irregularly joined, wavy ridges or more regularly ridged to sometimes areolate (Indian specimens), (3)5-6 ridges across, 5-8 areolae across, minutely papillate; on proximal side with small areolae; proximal disc present; equatorial apertures conspicuous, usually three; equatorial rim conspicuous.
Elaters yellowish to brownish, (156.5)220.4-322(365.9) $\mu \mathrm{m}$ long, $8.7-14.5 \mu \mathrm{~m}$ broad at middle, (4.3)5.8-8.7 $\mu \mathrm{m}$ broad at tip, $2-3$-spiral, rough (with little granules or longish granules on surface) in yellow spores not as rough as in brown spores.
Chromosome number $\mathrm{n}=9$ (for M. levigata) (Fritsch 1991).

Illustrations (Fig. 4.7)

Distribution (Fig. 4.8)

The distribution of Mannia californica based on confirmed herbarium specimens from France, Austria, Namibia, Uganda, South Africa, Lesotho, India, Pakistan, Yemen, Lebanon, Japan, China, U.S.A. (Tennessee, Arizona, California, North Carolina, Texas).
Based on literature it has also been reported from Arkansas (SCHUS'TER 1992b) and Utah (Flowers 1961). Former records of M. androgyna from the Arabian Peninsula (LONG 1987) actually belong to M. californica.
Mannia californica was formerly considered to be an endemic species restricted to the U.S.A. but has recently been found in France (HUgonnot \& SCHILL 2006).

$100 \mu \mathrm{~m}$

Fig. 4.7. Mannia californica. A, D transverse section of thallus; B thallus showing androecium and young archegoniophore; C ventral scales showing oil cells; E ventral scale appendage; F air pores from ventral epidermis of thallus; G ventral scale, margin. A, D-F California, Schill \& Clarke 102 (E); B, C, G California, Long 27577 (E).

Through extensive spore ornamentation survey and field trips to Austria, India and Namibia the distribution of the plant has now been considerately expanded into Europe, Africa, Asia, China and Japan. The species has a mainly Northern Hemispheric distribution with outliers in Africa.

Ecology
M. californica is found either in moist and partly shaded places or strongly exposed and sunny localities, though having enough water supply during the year. This xeromorphic species is found on banks or ledges in valleys, often near rivers or waterfalls, in crevices, on cliffs and occasionally in gullies. It grows on both calcareous (sandstone, quartzite) and siliceous rock and rocky soil. It often has an E or W facing exposure.

Altitude: 150-3335 m.
M. californica is considered as rare in Europe (HUGONNOT \& SCHILL 2006).

Fig. 4.8. Worldwide distribution of M. californica based on herbarium material studied

Taxonomic Notes

In the fertile condition, Mannia californica is easily identified by the position of the archegoniophores, which are typically and predominantly found on small heart-shaped side thalli deriving from the main (often male) thallus. The receptacle is not bearded but can sometimes have a few scales. The antheridial chambers in American material are found to be either dorsally scattered or in slightly to strongly prominent clusters. In the Indian specimen observed the antheridial chambers are more often found in slightly upraised clusters but also scattered antheridial chambers (particularly if only a few) are present. The appearance of the antheridial clusters might be dependent on environmental conditions such as the light intensity of the thallus or the number and proximity of the ostioles. Both conditions can sometimes be found on the same specimen. In North America Mannia californica could be confused with the similar looking Asterella bolanderi when immature and without developed pseudoperianths, which also has the archegoniophores on ventral heart-shaped side branches. In A. bolanderi the antheridia are also found on small ventral side branches and not on the main thallus as is typical for M. californica. In the sterile condition A. bolanderi has a fishy smell and a paler green leathery thallus.
M. californica has a more pleasant aromatic smell and a very narrow and leathery bright green thallus. The large zone of storage tissue usually contains a high number of dark oil-bodies and the assimilation tissue is irregular, spongy and in several layers.
In the similar-looking M. androgyna (see under that species) the archegoniophores and antheridia are typically found together on the main thallus and there are only very few light oil-bodies in the thallus cross section. Through spores the two species can be easily kept apart. The spore colour in M. californica can be either yellowish or brownish, with sometimes both colours on a single specimen. Usually a brownish spore colour is found to predominate. In the present revision a broad species concept has been adopted for Mannia californica. M. californica is probably a group of cryptic species, showing high sequence divergences in the molecular analysis without clear geographic entities (Chapter 5.7.3.5). However, different groups cannot be reliably distinguished from each other by morphological characters, so a further subdivision is not likely to contribute to an easier identification.

The synonyms do not show any notable morphological differences relating to the key characters such as the position of antheridia and gynoecia, naked receptacles, compact assimilation tissue and dark oil-bodies in thallus cross section.

There is however a variation in the distal ornamentation of the spores, which is more areolate in some Indian specimens (formerly M. indica) and French material than in the North American, Austrian, Japanese (formerly M. levigata) and S-Indian (formerly M. foreaui) material, which show ridges distally. The distal ridges in the Chinese specimens however shows intergradations to the former as well. They are fewer with a less denser spacing.

The Austrian specimen shows morphological variations from the other specimens but has distal ridges. Unfortunately only rather immature material from a single locality could be observed. In this specimen, both gynoecia and androecia were borne on the main thallus with sometimes the male branch extending its growth so the archegoniophore is situated on a shorter furcation of the thallus. Only one mature archegoniophore was seen, which had a bearded receptacle. In thallus cross section dark coloured oil bodies were present though. In November 2004, recently-collected Indian material with immature archegoniophores was cultivated in a growth cabinet. The spores were observed under the SEM and it could
be noted that the distal spore ornamentation in Schill 165 appeared rather ridged in December 2004 whereas in February 2005 the same sample had spores with areolate ornamentations. Hence a division based on one character, that seems to vary with maturity is not considered very useful.

Based on morphology no clear differences could be found between M. californica and the former M. foreaui and M. indica, nor the Chinese specimens. Further morphological and molecular study using isozyme analyses or microsatellites and more widespread detailed sampling of populations would be necessary to elucidate the scale of cryptic speciation in M. californica and consider its possible separation into sibling species.

Nomenclatural Notes

The name Grimaldia californica was coined by Gottsche who sent a manuscript description in Latin to Underwood who published it in a footnote under his own new English description. It is however not a direct translation of Gottsche's. Therefore Underwood's description is considered to be the validating one and the author citation is Gottsche ex Underw.. The holotype in Underwood's herbarium (NY) is annotated 'comm. Dr. C. Gottsche July 1887’. This species is localised 'Yosemite Valley, leg. Bolander, June 1866'. A number of other specimens and preserved slides lack detail but are presumably isotypes.

Although Stephani coined the name 'Grimaldia indica'there is no evidence that he wrote the validating description. This was almost certainly written by Kashyap. The specimen of this species studied and annotated by Stephani were from the herbarium of E.Levier. These were not cited by Kashyap and cannot be considered as types (as wrongly annotated by Grolle in 1972). Kashyap specimens have not been studied and a lectotype cannot therefore be selected. However the existence of specimens from Cawnpore and Saharanpur determined as Grimaldia indica by Stephani which match Mannia californica is good evidence that these can be treated as synonyms. Unfortunately no Kashyap specimen appears to have been deposited in Stephani's herbarium in G.
M. indica, M. foreaui and M. levigata are now considered synonyms of Mannia californica. The last is the oldest published in 1935 ('1934').

In literature R.M. Schuster considered M. levigata to be 'almost surely identical' with M. californica (SchuSTER 1992b) based on the drawing by SHIMIZU \& Hattori (1953b: plate VIII). He considered the spore ornamentation similar, pointed out that both species have rough elaters and considered that the thallus, ventral scales and archegoniophores were very similar.

The type locality of M. foreaui as given in the protologe is confusing in the sense that it actually cites two different localities in South India: Kodaikanal and Beruliar, which are hundreds of kilometres apart from each other. However, on the packet containing the holotype in the herbarium at Lucknow University it is
only noted 'Beruliar' so that it can be concluded that 'Beruliar' and not 'Kodaikanal' is the type locality.

On a visit to the type locality in South India it became apparent that the place name has now changed to 'Barliaru' and that the former station has been closed down. Nevertheless when walking along the railway line three populations were refound.

Section Sindonisce (Corda) Grolle, Feddes Repertorium 87, Heft 3-4: 245. 1976.

Basionym: Sindonisce Corda in Opiz (ed.) Beiträge zur Naturgeschichte 12: 648. 1829.

Type: Mannia fragrans (Balbis) Frye \& L.Clark

Description

Thallus apex bearded; sexual condition terminal- autoicous; antheridia rather conspicuous, borne terminally on separate (not archegoniophore-bearing) thallus, forming a defined triangular (sometimes rounded or elliptic) sometimes slightly upraised disc; receptacle bearded; spores regularly areolate; proximal disc absent.
4. Mannia fragrans (Balbis) Frye \& L.Clark, University of Washington Publications in Biology 6: 62. 1937.

Basionym: Marchantia fragrans Balbis, Mémoires de l'Académie des Sciences
Littérature et Beaux-arts de Turin. Sciences Physiques et
Mathématiques 7: 76. "ann. 12". 1804. Type citation: 'Molineri l'avait déjà observée à Aoste dans une masure près de roche taillée'; Type specimen:

Italien, det. Balbis (isotype in S-B36643).
Synonym: Fimbriaria fragrans (Balbis) Nees; Horae Physicae Berolinenses 45. 1820.

Synonym: Sindonisce fragrans Corda; In: Opiz (ed.) Beiträge zur Naturgeschichte 12: 648. 1829.
Synonym: Grimaldia fragrans (Balbis) Corda ex Nees; Naturgeschichte Europäischer Lebermoose 4: 225. 1838.

Synonym: Duvalia fragrans (Balbis) Lindb.; Notiser Sällskapets pro Fauna et Flora Fennica 9: 285. 1868.

Synonym: Grimaldia barbifrons Bisch.; Nova Acta Academiae Caesareae Leopoldino-Carolinae Germanicae Naturae Curiosorum 17: 1028. 1835. Type citation: 'Habitat in regionibus montanis ad terram et super saxa; certo in Germaniae mediae pluribus locis occurrit. In ditione florae Heidelbergensis primo prope Schriesheim in valle Ludwigsthal ab amiciss. Al. Braun me comite autumno a. 1826 absque fructibus detecta, dein ab illo prope Weinheim in valle Birkenauer-Thal, serius a me quoque in valle urbis nostrae ad ripam Nicri dextram capitulis fructiferis onusta super rupes graniticas reperta, quibus omnibus locis in deiectu meridiem spectante crescit.'; Type specimen: n.v.
Synonym: Pleurochiton balbisianum Corda ex Nees, Naturgeschichte Europäischer Lebermoose 4: 225. 1838. Type citation: [patria ignota] 'fide iconis ad specimen Herbarii Brideliani, ab ipso Balbisio nomine Marchantiae fragrantis inscriptum, factae'; Type specimen: n.v..

Synonym: Grimaldia inodora Wallr., Linnaea 14: 686. 1840. Type citation: [Germany] 'An schroff abgedachten Bänken eines Gypshügels am südlichen Harze stellenweise sehr häufig'; Type specimen: n.v. syn. nov. Synonym: Mannia fragrans var. inodora (Wallr.) Hampe; Flora Hercynica, Halle: 373. 1873.

Synonym: Mannia brachypoda Shimizu \& S.Hatt.; Journal of the Hattori Botanical Laboratory 9: 32. 1953. Type citation: 'on rock crevices, stone walls and on soil, 700-800 m alt., Tochimoto, Chichibu Mts., Saitama Prefecture, Sept. 9, 1952, D.Shimizu, cultured'; Type specimen: Hab. Japan, Saitama Prefecture: Chichibu Mts., Tochimoto, ca. 700-800m, Sept. 9, 1952, coll. D. Shimizu 52808 (NICH, holotype). syn. nov.
Synonym: Mannia barbifrons Shimizu \& S.Hatt.; Journal of the Hattori Botanical Laboratory 10: 49. 1953. Type citation: ‘Rock crevices in exposed places, 780 m alt., Tochimoto, Saitama Prefecture, August 27, 1952, D.Shimizu'; Type specimen: [Japan] Hab. Rock crevices in exposed places, 780 m alt., Tochimoto, Chichibu, Saitama Prefecture, August 27, 1952, D. Shimizu 52809 (NICH, holotype). syn.nov.

Synonym: Mannia fragrans var. convoluta Nees; Naturgeschichte Europäischer Lebermoose 4: 226. 1838. Type citation: ?. Type specimen: n.v.. syn. nov. Synonym: Mannia fragrans var. fimbriata Nees; Naturgeschichte Europäischer Lebermoose 4: 226. 1838. Type citation: ‘Schlesien, Mosig s.n.; Felsen bei Kals und Martell in Tyrol; Funck s.n.; Podbarla bei Prag, Corda s.n.; Dahurien, von Fischer s.n.'; Type specimen: ?, n.v. (type in ?). syn. nov. Synonym: Grimaldia fragrans var. brevipes Kaal., Videnskabsselskabets Skrifter Christiana. I. Mathematisk-Naturvitenskapelig Klasse (9): 3. 1898. Type citation: An mehreren Orten auf der Insel Hovedöen bei Cristiana aud dürren, sonnigen Hügeln dicht am Meeresufer, April 1892; Type specimen: Norwegen, Hovedö bei Christiana, an sonnigen Abhängen, steht am Fjörufer, 24.4.1892, leg. Kaalaas s.n. (BG, lectotype (selected here); BG, 2 syntypes. syn. nov.

Synonym: Mannia fragrans var. brevipes (Kaal.) Damsholt; Illustrated Flora of Nordic Liverworts and Hornworts: 717. 2002.

Synonym: Mannia fragrans var. alpina Meyl., Beiträge zur Kryptogamenflora der Schweiz VI, Heft 1: 86. 1924. Type citation: `Valais, Col du Jorat, 2300 m , en plein soleil sur la terre humifère décalcifiée, devant un petit rocher, Gams et Meylan'; Type specimen: [Switzerland] Col du Jorat, Valais, 2300 m, Juin 1917, f. Gams et Meylan s.n. (S B24523, isotype fide Grolle 1972 in sched.). syn. nov.

Synonym: Mannia fragrans var. inodorata S.Hatt., Botanical Magazine (Tokyo) 58: 42. 1944. Type citation: "Tokyoः Kaisikawa-ku, Hakusangoten-mati, Nov. 1940, S.Hattori, no. 6202'; Type specimen: [Japan] Koishikawa, in Hort. Bot. Univ. Imp.Tokyo, Japan, S.Hattori no. 6202 (TNS No.2248, holotype). syn. nov.
Synonym: Mannia fragrans var. orientalis R.M.Schust.; Hepaticae and Anthocerotae of North America VI: 201. 1992. nom. nov. for Mannia barbifrons Shimizu \& S.Hatt. syn. nov.

Description

Thalli forming large and closely intermingled patches or mats, small, linear and narrow, leathery, dorsally bright or dark green, sometimes purplish; becoming brownish or greyish in older parts, strongly xeromorphic, when fresh usually aromatic (cedar oil); vegetative branches terminal dichotomous and occasionally ventral, often with terminal innovations on thallus bearing male gametangia, branches broadening towards apex; lobes (3.5)4.4-15.5(18)mm long, (0.8)0.9$2.3(2.9) \mathrm{mm}$ wide, margins dark purple to blackish, ventrally purplish-black; when dry, margins usually strongly inrolled with thallus becoming tubular and black with conspicuous whitish ventral scale appendages; thallus apex bearded, rounded and middle often grooved; thallus in t.s. (0.4)0.5-0.9 (1.2)mm thick, shape usually concave to triangular in section, dorsal epidermis cells (17)20.3$29(32) \mu \mathrm{m}$ long, (8.7)11.6-17.4(20.3) $\mu \mathrm{m}$ broad, cell walls of dorsal epidermis rather thick-walled, with small to large trigones; air pores slightly raised, (7.5)8.7-17.4(20.3) $\mu \mathrm{m}$ in diameter, with $2-3$ concentric rings of cells, outer ring of (5) $6-7(10)$ cells, cells (10.1)11.6-20.3(26.1) $\mu \mathrm{m}$ long, (13)20.3-32(34.8) $\mu \mathrm{m}$ wide, inner ring of (5)6-7(9) cells, (10.1)11.6-17.4(23.2) $\mu \mathrm{m}$ long, (5.8) $10-14.5(17.4) \mu \mathrm{m}$ wide, pores visible with hand lens, of whitish colour, assimilation tissue loose, with one upper row of big vertical orientated air chambers and smaller more rounded air chambers below (1-2 layers), (138) 149-334(552) $\mu \mathrm{m}$ high in t.s., basal tissue (205) $280-440(483) \mu \mathrm{m}$ high in t.s., with bright oil bodies in assimilation and storage tissue.
Rhizoids arising from ventral epidermis, smooth and pegged.
Ventral scales in two rows, overlapping each other and mid-line of thallus, purple with sometimes paler margins, (0.4)0.5-1.2(1.4)mm long, (0.4)0.51.1(1.2)mm broad (largest towards apex), semicircular, small slime papillae present on margins, oil cells several, 12-52, predominantly along margin; appendages (1)2(3), bleached, (0.2)0.3-1.5(1.9) $\mu \mathrm{m}$ long, (0.05) $0.1-0.3(0.6) \mathrm{mm}$ broad, subulate, gradually narrowing into acute tip, tip often of a single row of cells, margins irregularly serrate, folding upwards over edge of thallus and overlapping lobe apex in tufts.

Sexual condition dioicous with male and female plants often growing intermixed or in separate patches, vegetatively dissimilar with apex of archegoniophorebearing thallus bearded with conspicuous ventral scales. Androecia sessile, usually several, borne terminally on separate (not archegoniophore-bearing) thallus, forming a defined triangular (sometimes rounded or elliptic) disc, disc sometimes slightly upraised and often of purplish colour, occasionally some antheridia are found scattered below disc; ostioles \pm conical, green when young, gradually becoming purplish-black when mature.
Gynoecia with archegoniophores deriving from terminal notch of thallus or from long ventral side branch of main thallus, base of stalk surrounded by tufts of long bleached scales; receptacle hemispherical, warty, strongly bearded, yellowish-green when young, mature turning green and often tarnishing purple, bearing 3-4 sporophytes; stalk brownish green, sometimes purplish at base or below receptacle, in t. s. rounded to ovate, weakly ridged when dry, variable in length, (5.8)6-14.2(16) mm long, with single rhizoidal furrow, in t.s. one outer brown smaller cell row and inner cells yellowish, bigger, incrassate with corners quite thickened, involucres cup-shaped, cells yellowish-brown with slightly overlapping cell walls, with long bleached single appendages, (0.2)0.3-0.5(0.6) mm in diameter, capsule black when mature, yellow when young, lid irregularly rounded, (0.6) $0.7-1.3(1.5) \mathrm{mm}$ in diameter, annular thickenings absent, cells rounded to rectangular, with corner thickenings, overlapping each other. Spores type III, yellow, (46.4)55.1-66.7(70) $\mu \mathrm{m}$ in diameter (LM), (54)5774.3(76.3) $\mu \mathrm{m}$ in diameter (SEM); weakly trilete; with similar sculpturing on proximal and distal surfaces; distally regularly areolate (6 to 8 areolae across), areolae shallow, minutely papillate with pits; on proximal side regularly areolate; proximal disc absent; equatorial apertures conspicuous, usually three; equatorial rim inconspicuous.

Elaters yellowish brown, (150)165-220(260) $\mu \mathrm{m}$ long, (7.2)8.7-11.6(14.5) $\mu \mathrm{m}$ broad at middle, $5.8-8.7 \mu \mathrm{~m}$ broad at tip, 3 -spiral.

Chromosome number $\mathrm{n}=9$ or $\mathrm{n}=8+\mathrm{m}$ (FRITSCH 1991).

Distribution (Fig. 4.10)
The distribution of Mannia fragrans based on confirmed herbarium specimens is Switzerland, Germany, Austria, Hungary, France, Italy, Romania, Czechoslowakia, Poland, Finland, Norway, Sweden, Russia, China, Japan, U.S.A., Arctic Alaska, Greenland, Canada and India.

Based on literature it is also reported from Czech Republic, Slovakia, Estonia, Sicily, Slovenia, Croatia, Bosnia, Macedonia, Bulgaria, Ukraine, Crimia, Madeira, Siberia, Middle Asia, Transcaucasus, Western Asia, Mongolia, Eastern Asia, Indian Subcontinent (SÖDERSTRÖM, URMI \& VÁÑA 2002); Bulgaria, Caucasus, Czech Republic, Slovakia, Spain, Jugoslavia, Madeira, Crimea (to Ukraine), northern part of European Russia (excl. Novaya Zemlya), central part of European Russia (incl. Estonia, Latvia, Lithuania, Belarus, the main part of Ukraine, Moldavia and the European part of Kazakhstan), Sicily (SChUMACkER \& VÁÑA 2000, 2005); former Jugoslavia (PaVLETIĆ 1955); Czech Repulic (DUDA \& VÁÑA 1974a,b); Yemen (Al-GIFRI \& KÜRSChner 1996); Nepal (Chopra 1943, Grolle 1966); Asia, Himalaya, Baltic (Pettersson 1946); North Africa (SJödin 1980); Intramongolicae (XUELIANG \& ZUNTIAN 1996); SE Siberia (VÁÑA \& Ignatov 1995); S Siberia (Konstantinova \& VaSilsev 1994); and the Russian Arctic (Konstantinova \& Potemkin 1996).

Fig. 4.9. Mannia fragrans. A, B scales from stalk, one showing slime papilla; C thallus showing androecium and archegoniophore; D air pores from ventral epidermis of thallus; E, G transverse section of thallus; F ventral scale, middle; H ventral scale margin with slime papillae; I ventral scale appendage; J ventral scales showing oil cells. A, B Switzerland, Schill et al. 51; C, E,G Switzerland, Schill et al. 55; D Switzerland, Schill et al. 60; F, H-J Switzerland, Schill et al. 48 (E).

Fig. 4.10. Worldwide distribution of M. fragrans based on herbarium material studied

Ecology
Mannia fragrans is found in open grassland, steppes or prairies, on slopes and hillsides in vineyard regions or openly wooded and then often associated with oak or cedar, in damp crevices or on banks, sometimes near rivers. It grows on grassy and rocky soil or on rock (granite, limestone, dolomite, quartzite and schist).

The species is usually growing exposed but sometimes also found in more shaded locations.

It has typically S, SW or SE exposed position.
Altitude: 100-2200m, in India from 3200-3330m.

Taxonomic Notes

M. fragrans is easily distinguished from all other Mannia species by its bleached ventral scale appendages and bearded thallus apex. It also is the only dioicous species within the genus Mannia. Male and female gametangia are always borne on separate thalli. In previous literature M. fragrans has often been described as polyoicous. In the present study male and female plants were predominantly
found to grow intermixed but sometimes also in separate patches. The antheridia are borne terminally, typically forming a defined triangular (sometimes elliptic or rounded) disc. Gynoecia are found on the main thallus or on long ventral branches and the receptacle is bearded. When fresh, Mannia fragrans usually has a characteristic intense smell of cedar oil, which in some cases even remains in old herbarium specimens. Sometimes, however it is found to lack the characteristic smell in the field.

Mannia fragrans could be confused with the very similar looking Asterella saccata. In the fertile condition A. saccata is easily distinguished by its pseudoperianth, although this could be mistaken for a bearded receptacle. Additionally A. saccata has a faint fishy smell or is found to be not aromatic. A good character for differentiating between the two species is the position of the antheridia. A. saccata is par-autoicous or terminal-autoicous while in M. fragrans the antheridia are never found on an archegoniophore-bearing thallus. In M. fragans the antheridia are also borne terminally but are situated on a triangular (sometimes rounded or elliptic) disc while in A. saccata the antheridia form a 'weakly defined elliptic to elongate cushion with the antheridia often widely spaced' (LONG 2000).
The spores of M. fragrans are ripe in April and May in central Europe and the U.S.A., in July in Russia (Abramov 71 (E, S)) and in August and September in Japan.

Evans (1920) noted that Grimaldia fragrans can sometimes lack the typical cedar oil smell. Specimens without smell in the field have often been considered as an odourless and hence chemotaxonomical variety. The chemical compounds responsible for the smell might though just be present in a pre-stage or their structure undergoes syntheses or decomposition while the plant does not show the characteristic smell. This might have seasonal reasons or be to do with the natural life cycle of the plants. That would explain an observation made on an odourless Mannia fragrans specimen put into a growth cabinet. A distinct smell of cedar oil became apparent after a few days and consequently disappeared and appeared again a few times.
When observing dried herbarium specimens, NEES VON ESENBECK (1838) mentioned that after soaking the specimens repeatedly the smell would be lost
and that the water would gain yellowish colour. He also noticed that dried specimens usually keep their characteristic smell. This is even the case in some very old herbarium specimen, in which the cedar oil smell is still noticable after sprinkling the specimen with water.

Sometimes a smell or only faint smell could be noticed in apparently odourless specimens after sprinkling with water.

Nomenclatural notes

In 1804 BALBIS used the name Marchantia fragrans to describe a plant he found in northern Italy. Unfortunately later the same name was applied again to a different plant collected by Schleicher in Switzerland, which is now known as Asterella saccata (LONG 2000). For the latter NeES Von Esenbeck (1820) proposed the new name Fimbriaria fragrans, which he based on the Swiss specimens (LONG 2000). In his publication though, he unfortunately assumed Marchantia fragrans to be a synonym of Fimbriaria fragrans. The name Fimbriaria fragrans has then been subsequently applied to two different taxa, sometimes Asterella saccata and sometimes Mannia fragrans. For more than 100 years this has caused confusion, not least not because the two plants share some distinctive morphological features and look very much alike in sterile condition. Evans (1920) showed that Fimbriaria fragans could be interpreted as a synonym for Mannia fragrans but it took as long as 1976 until this was generally accepted through a publication by GROLLE (1976).

Shimizu \& Hattori (1953b) described a new synonym from Japan under the name Mannia barbifrons. This seemed to be done independently and without any reference to the earlier Grimaldia barbifrons described by BISCHOFF (1835). The authors probably were not aware of this earlier publication and applied the same name to the Japanes plant. As morphological differences they noted their plant being odourless amongst others in differentiation to M. fragrans.

Notes on variation within Mannia fragrans

In the past many varieties have been described for Mannia fragrans based on different morphological features, which are not accepted in the present revision. The characters used for the described varieties are considered to be variable and
deviations lie within a natural range, often depending on environmental or habitat conditions or directly resulting from them. In many cases they also cannot unambiguously be applied to a single specimen as even a single population will show natural variations.

KAALAAS (1898) did not designate a type for his new variety of M. fragrans he described as Grimaldia fragrans var. brevipes in 'Beiträge zur Lebermoosflora Norwegens' in 1898. He attributed the type locality to several places along the seashore on the Norwegian Island of Hovedöen near Christiana (Oslo). His own herbarium is located in the herbarium in Bergen (BG) (Stafleu \& Cowan 1979). The specimen M5823 (BG) has been selected as a lectotype because it is material from his private herbarium, has been collected on the day mentioned in the literature and has the most information on the packet relating to the type locality that is mentioned in the literature. The specimen M5828 (BG) and M5829 (BG) are both syntypes.
The lectotype and the syntypes actually have immature archegoniophores but specimens collected by Kaalaas a month later in May show the characteristic short stalk Kaalaas refers to in literature. As many Mannia fragrans specimens show variations in stalk length even within a single specimen, the variety is not accepted in the present revision since specimens cannot be clearly assigned to the variety or the normal form.

The var. alpina was described by MEYLAN (1924) and it is characterised by airpores that are only surrounded by one or two concentric rings and thicker epidermal cell walls with an irregular starlike lumen. An isotype specimen of this variety was seen in this study.

According to NEES VON ESENBECK (1838) the var. convoluta is dorsally of brownish colour, the thallus smaller and strongly keeled, and the thallus margins have less overlapping scales.

The described var. fimbriata has strongly overlapping scales at the thallus margin and apex but a relatively weakly bearded receptacle (NEES VON EsEnbeck 1838).

These described characters are all within the normal range of M. fragrans and are not very distinct variations. In general the thallus is known to show a certain variability depending to its locality and environmental conditions. A brownish colour instead of the usually greenish one could just indicate an adaptation of the plant to a higher light intensity.
Nees von Esenbeck did not designate a type in 1838 for either two of these new varieties. Unfortunately lectotypification could not be made because the specimens, on which he based his descriptions on could not be located. Hence a future lectotypification is desirable.

Three varieties have been described relating to the absence of the typical cedar oil smell in Mannia fragrans. The described variety 'inodora' was based on WALLROTH's earlier description of the species Grimaldia inodora in 1840. He did not mention there its differences from Grimaldia barbifrons Bisch. or that the plant is odourless, though the name does not leave any doubt. HAMPE (1873) retained the name as a variety of Mannia fragrans and applied it to a specimen without smell he collected in the Harz mountains in Germany. Lindberg in LINDBERG \& ARNELL (1889) used the same name for a non-fragrant Mannia fragrans he collected in Siberia.

Hattori (1944) described a new variety inodorata for a Japanese Mannia fragrans plant without smell. The herbarium specimen on loan however showed a faint smell of cedar oil when moistened with water.

Section Asiaticae Schill sect. nov.
Type: Mannia asiatica Schill \& D.G.Long

Description

Thallus apex not bearded; sexual condition terminal-autoicous; antheridia inconspicuous, forming a poorly defined, slightly upraised rounded cushion or terminal slight depression or notch; receptacle usually naked; spores deeply irregularly areolate; proximal disc absent.

Type: China, Qinghai Prov., Henan County, Dousong Xiang, Zhilong, $34^{\circ} 23^{\prime} 47^{\prime \prime} \mathrm{N}, 101^{\circ} 28^{\prime} 10^{\prime \prime} \mathrm{E}$, c. 3830 m , limestone hillside, soil clefts at foot of limestone cliff, 15 vii 1997, D.G.Long 27032. (E holotype; NY, PE, isotypes).

Description

Thalli spreading and forming extensive patches, small, narrow and flat, rather leathery, thin, dorsally green to brownish green or sometimes purplish, areolae sometimes visible, brownish or whitish lacunose, in older parts becoming brownish when disintegrating, xeromorphic; vegetative branches of terminal dichotomies or with terminal innovations; lobes (3.8)4.2-19.5(25.9)mm long, (1.1) $1.2-4.8(8.3) \mathrm{mm}$ wide, margins dark purple or only slightly purple, margins sometimes slightly undulate; ventrally purple; when dry, margins slightly to strongly inrolled, tubular and black or not strongly inrolled; lobe apex rounded and middle often grooved; thallus in t.s. (0.1)0.2-0.6(0.7)mm thick, shape usually flat or concave to triangular in section; dorsal epidermis cells (20.3)23.2-32(34.8) $\mu \mathrm{m}$ long, (11.6)13.05-23.2(26.1) $\mu \mathrm{m}$ broad, cell walls of dorsal epidermis rather thick-walled, showing usually big corner thickenings (trigones) when focusing; air pores (11.6) 14.5-31.9(43.5) $\mu \mathrm{m}$ in diameter, with $2-3$ concentric rings of cells, outer ring of $6-8(10)$ cells, cells $17.4-26.1(29) \mu \mathrm{m}$ long, $11.6-20.3$ (23.2) $\mu \mathrm{m}$ wide, inner of $6-7$ cells, (11.6) $13.05-17.4(20.3) \mu \mathrm{m}$ long, (5.8)8.7-14.5(26.1) $\mu \mathrm{m}$ wide, pores visible with hand-lens, of whitish colour; assimilation tissue rather loose to sometimes slightly compact, (103.5)115$437(471.5) \mu \mathrm{m}$ high in t . s., as thick as or up to 2 times the size of basal tissue, $3-$ 4 somewhat rounded small or big air chambers; basal tissue (80.5)103.5299(345) $\mu \mathrm{m}$ high in t . s. with inconspicuous yellowish oil cells in assimilation and storage tissue.
Rhizoids arising from ventral epidermis, smooth and pegged, hyaline or purplish/brownish towards base.
Ventral scales in two rows, overlapping each other and midline of thallus, purple with sometimes paler margins or light purple, (0.5) $0.7-1.5$ (1.8) mm long, $0.4-$ $1.1(1.3) \mathrm{mm}$ broad, oblong semicircular to broad semicircular, small slime
papillae present on margin, oil cells 6-22(33), marginal and central, occasionally also present in appendages; appendages $1-2(3)$ unlobed or occasionally unequally bifid, sometimes bleached, $0.2-0.8(0.9) \mathrm{mm}$ long, (0.07)0.09$3.0(3.2) \mathrm{mm}$ broad at base, subulate, margins irregularly weakly crenulate, gradually narrowing into acute tip, overlapping mainly lobe apex and only rarely lobe margin and folding upwards over edge of thallus.

Sexual condition terminal-autoicous with androecia often borne on shorter branch of a dichotomy, of which the other branch often bears an archegoniophore, or androecia borne terminally without associated gynoecia. Androecia inconspicuous or forming a poorly defined, slightly upraised rounded cushion or terminal slight depression or notch with purplish ostioles, usually several.

Gynoecia with archegoniophores deriving from terminal notch of mid-thallus, surrounded by whitish scales; receptacle hemispherical, nodular/warty, usually naked to sometimes slightly bearded, yellowish-green when young, mature turning into green and often tarnishing purple at margins; stalk brownish green, sometimes brownish at base or below receptacle, $0.2-5.1(5.3) \mathrm{mm}$ in diameter, irregularly triangular-ovate, ridged when dry, variable in length, (0.9) 1.9-18.9(20.8) mm long, with single rhizoidal furrow, in t.s. one outer brown smaller strongly incrassate thick-walled cell row and inner cells thin-walled, bigger, colourless, incrassate with minute to convex trigones; receptacle bearing 1-4 capsules; sporophytes/capsules, capsule black when mature, yellow when young, cells yellowish brown, irregularly hexagonal, incrassate with minute trigones; lid irregularly rounded, $1.2-1.7 \mathrm{~mm}$ in diameter annular thickenings absent, cells incrassate, irregular hexagonal or rounded to rectangular, often strongly overlapping each other.
Spores type IV, yellow (43.5)46.4-78.3(84.1) $\mu \mathrm{m}$ in diameter (LM), (54.5)6071.7(74.4) $\mu \mathrm{m}$ in diameter (SEM); weakly trilete; with similar sculpturing on proximal and distal surfaces; distally often deeply incompletely areolate, (6)7-10 areolae across, on surface minutely papillate with pits; on proximal side deeply irregularly areolate; proximal disc absent, equatorial apertures conspicuous to sometimes only inconspicuous, usually three; inconspicuous equatorial rim.

Elaters yellowish brown, surface slightly minutely roughened, (156.6)200324.8(402) $\mu \mathrm{m}$ long, (8.7)10.15-13.05(14.5) $\mu \mathrm{m}$ broad at middle, (2.9)5.88.7 (10.2) $\mu \mathrm{m}$ broad at tip, $2-3$-spiral.

Chromosome number unknown.

Illustrations (Fig. 4.12, 4.13)

Distribution (Fig. 4.11)
Based on confirmed herbarium specimens:
China, India, Tajikistan

Fig. 4.11. Worldwide distribution of M. asiatica based on herbarium material studied

Fig. 4.12. Mania asiatica (1). A transverse cection of thallus; B air pores of dorsal epidermis; C ventral scale appendage; D thallus showing androecium and archegoniophores; E receptacle from below, F transverse section of thallus. A-C, F China, Long 27016 (E); D, E China, Long 26952-b (E).

Fig. 4.13. Mannia asiatica (2). A side view of empty capsule; B transverse section of stalk; C compound pores of receptacle; D ventral scale appendage; E section of capsule margin, F ventral scale, margin. A, E China, Long 27270 (E); B-D, F China, Long 27016(E).

Ecology

Mannia asiatica grows in the high mountains around the fringes of the Tibetan plateau, Himalayas. It is possibly endemic to the Kunlun mountain range, one of the longest mountain chains in Asia, extending more than 3000 km from east to west. It can be found on steep slopes or hillsides below cliffs, on ledges, on banks near streams and is sometimes associated with Picea/Juniperus and Betula/Juniperus woodland or with Salix.

It grows on soil and rock (often limestone) and has S or NW exposure.
Altitude: ca. 2735-4200m

Taxonomic Notes

M. asiatica can be confused with M. sibirica because of thallus similarity and sexual condition. Both are terminal-autoicous though in M. asiatica the antheridia are more often found on the shorter branch of a dichotomy of which the other branch bears an archegoniophore, whereas in M. sibirica the thallus often branches symmetrically. In M. sibirica the receptacle is usually strongly bearded whereas in M. asiatica the receptacle is naked or only very slightly bearded. Spores have quite good distinguishing characters- in M. asiatica the spores are bigger and do not have a proximal disc, which is present in M. sibirica- this can even be seen under a stereo light microscope with x 50 magnification.

Using spore characters M. asiatica is also easy to distinguish from M. triandra, which has a spongy surface of the spore, rather inconspicuous equatorial apertures and only 4-7 areolae across the distal surface, the areolae being quite flat. In M. asiatica the spores are minutely papillate, the equatorial apertures rather conspicuous and it has typically more areolae across the distal face (610), the areolae being much deeper. M. asiatica has a more leathery thallus than M. triandra and a hemispherical shaped receptacle, whereas in M. triandra the receptacle is globose.
In China the spores are ripe in July, in India and Tajikistan in August.

Subgenus Neesiella (Schiffn.) Schill stat. nov.
Basionym: Neesiella Schiffn., in Engler und Prantl, Natürliche Pflanzenfamilien 1(3): 32. 1893.

Synonym: Mannia Subgenus Cryptomitrium Section Neesiella (Schiffn.)
Shimizu \& Hattori, Journal of the Hattori Botanical Laboratory 12: 7173. 1954.

Type: Mannia triandra (Scop.) Grolle

Description

Receptacle globose; spores with similar sculpturing on proximal and distal surface; distally incompletely areolate, spongy in fine distal ornamentations with pits; proximal disc absent; equatorial pores inconspicuous.

6. Mannia triandra (Scop.) Grolle, Journal of Bryology 8: 487. 1975.

Basionym: Marchantia triandra Scop., Flora Carniolica ed. 2. 2: 354. no. 1356. tab. 63. 1772. Type citation: 'Habitat in humo, fub radicibus arborum, inter Idriam fuper. et inferiorem.'; Type specimen: [Slovenia] Carniolia, in rupestribus prope Zwischenwassern et Idria, solo calc., 328 m , s.m., Deschmann 1138 (FH, Neotype designated by Grolle (1976) n.v.; G17010, NY, BM-725021, BM-669305, isoneotypes; BM-725002 isosyntype; S-B22547 and S-B22546 probably isosyntypes fide Grolle 1972 in sched.).

Synonym: Duvalia rupestris Nees, Berlinisches Magazin 8: 271. 1818. Type citation: 'Detegi hanc plantulam Mense Julio 1810 ad rupes arenosocalcareos der Riesenburg prope Muggendorf, capsules jam effoetis. Tum alia vidi specimina ab Amicissimo Funckio jam pridem in Alpibus salisburgensibus lecta, quae fructus omni numero perfectissimos ferebant, quibus generic fundamenta superstrui possent'; Type specimen: by [bei] Pottenstein nächst Muggendorf, by [bei] Salzburg fand ich sie 1793 in den Höhlungen der Stadtwand. Funck. (BM725002, S-B22546, SB22547 Isosyntypes).
Synonym: Grimaldia rupestris (Nees) Lindenberg, Nova Acta Academiae (suppl.): 108. 1829.
Synonym: Neesiella rupestris (Nees) Schiffn., in Engler \& Prantl, Die Natürlichen Pflanzenfamilien 1(3): 33. 1893.
Synonym: Marchantia ludwigii Schwägr., Historiae Muscorum Hepaticarum Prodromus 33, 1814. Type citation: 'Helvetia?, Germania, Hb. Kaulf.[uss]'; Type specimen: in Sudeticis legit et mihi communicavit, L910, 287-188 (Lectotype selected by GRoLLE (1975: 487)).
Synonym: Asterella ludwigii (Schwägr.) Underw. ex A. Evans, Bulletin of the Torrey Botanical Club 46: 469. 1919.

Synonym: Fimbriaria ludwigii (Schwägr.) Limpr. ex Müll.Frib. in Rabenhorsts Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Auflage 2, 6: 243. 1940.
Synonym: Duvalia longiseta Steph., Bulletin de l'Herbier Boissier 5: 88. 1897. Type citation: 'Nemuro, Faurie 5552'; Type specimen: Japan, Yézo, foréts de Nemuro, 8.7.1820, Faurie 5552. (Holotype in G-17152, Isotype in BM669266) syn.nov.

Synonym: Neesiella longiseta (Steph.) Steph., Bulletin de l'Herbier Boissier 6: 798. 1898.

Synonym: Mannia longiseta (Steph.) Horik., Hikobia 1: 85.1951.

Description

Thalli forming loose patches, small and rather thin, delicate, dorsally green or of greyish-blueish colour, mesomorphic; edges purplish; areolae visible, in older parts becoming brown and lacunose; vegetative branches arising as terminal dichotomies, sometimes with terminal innovations or arising from ventral surface of thallus, branches broadening towards apex; dichotomously branched; lobes (2)3.2-13.5(16.7)mm long, (0.3)0.9-2.8(4.9) mm wide, margins sometimes weakly crispate and hyaline with age, purple or green; ventrally green, sometimes purple when dry, margins still broad and not strongly inrolled or slightly to strongly inrolled, tubular and black; lobe apex rounded and middle often grooved; thallus in t.s. (0.2)0.3-0.6(0.8)mm thick, shape usually flat or slightly concave to triangular in section; dorsal epidermis cells (17.4)20.334.8 (37.7) $\mu \mathrm{m}$ long, (11.6) $16.1-34.8(40.6) \mu \mathrm{m}$ broad, cell walls of dorsal epidermis
thin- or thick-walled, showing corner thickenings (trigones) when focusing; air pores variable in size, (8.7)11.6-34.8(46.4) $\mu \mathrm{m}$ in diameter, with $2-3$ concentric rings of cells, outer ring of $6-8$ cells, cells (14.5)17.4-37.7(46.5) $\mu \mathrm{m}$ long, (8.7)11.6-17.4(23.2) $\mu \mathrm{m}$ wide, inner ring of (6) $7-8$ cells, (11.6)14.5-20.3 (26.1) $\mu \mathrm{m}$ long, $8.7-14.5$ (17.4) $\mu \mathrm{m}$ wide, thickening of radial walls rather thin; assimilation tissue loose, with big air chambers ($2-3$ layers), (116)172.5-495(541) $\mu \mathrm{m}$ high in t. s., up to 2 times the height of basal tissue; basal tissue (92)115-356(403) $\mu \mathrm{m}$ high in t. s., with inconspicuous yellowish brown oil bodies in assimilation and storage tissue.

Rhizoids arising from ventral epidermis, smooth and pegged, hyaline and often purplish or brownish towards base.

Ventral scales in two rows, sometimes only sparse or absent, overlapping each other and midline of thallus, purple with sometimes paler margins, (0.4)0.5$1.1(1.8) \mathrm{mm}$ long, (0.2) $0.3-0.9$ (1) mm broad, semicircular to oblong semicircular, small slime papillae present on margin, abundant, oil cells 1-19, marginal and middle, not present in appendages; appendages 1-2, (161)184-380(495) mm long, (17.2)23-103(126.5) $\mu \mathrm{m}$ broad, subulate, margins irregularly serrate, on base sometimes fimbriate, overlapping lobe apex and only rarely lobe margin and folding upwards over edge of thallus.

Sexual condition terminal-autoicous and par-autoicous with androecia terminal on short or equally long dichotomous branch, sometimes par-autoicous with androecia close to base of archegoniophore.

Androecia sessile, usually several, slightly upraised in poorly defined slightly raised rounded clusters or depressions; ostioles \pm conical, green when young, gradually becoming purplish-black when mature.

Gynoecia with archegoniophores deriving from terminal notch of mid-thallus, surrounded by few hyaline scales; receptacle subglobose, nodular/warty, yellowish-green when young, mature green and often tarnishing purple at margins, stalk brownish green, sometimes brownish at base or below receptacle, $0.2-0.8(1) \mathrm{mm}$ in diameter, irregularly triangular-ovate, in t . s low ridged when dry, variable in length, (0.9)2.2-17.9(19.8)mm long, with single rhizoidal furrow, in t.s. one outer brown smaller cell row and inner cells bigger, colourless or yellowish, incrassate with minute to convex trigones, white scales bearing slime
papillae on stalk, usually not bearded though occasionally found a little to conspicuously strongly bearded, receptacle bearing (1)2-3(up to 5) sporophytes/capsules, capsule black when mature, yellow when young, cells irregularly hexagonal, incrassate with minute trigones, lid irregularly rounded, $0.7-1(1.2) \mathrm{mm}$ in diameter, annular thickenings absent, cells rounded to rectangular, with corner thickenings, overlapping each other.

Spores type V, yellow, sometimes greyish brown (Harper Je-H1296), (52.2)55.1$70(78.3) \mu \mathrm{m}$ in diameter (LM), (45.6)55.2-75(77.7) $\mu \mathrm{m}$ in diameter (SEM); trilete; with similar sculpturing on proximal and distal surfaces, distally incompletely to regularly areolate, 4-7 areolae across, surface densely spongy with pits, often smooth; on proximal side incompletely areolate; proximal disc absent; equatorial apertures rather inconspicuous, usually three; equatorial rim inconspicuous.

Elaters yellowish brownish, (49)98.6-282(319) $\mu \mathrm{m}$ long, (5.8)8.7-11.6(14.5) $\mu \mathrm{m}$ broad at middle, (2.9)4.3-7.3(11.6) $\mu \mathrm{m}$ broad at tip, $2-4$-spiral.
Chromosome number $\mathrm{n}=9$ (FRITSCH 1991).

Illustrations (Fig. 4.14)

Distribution (Fig. 4.15)
The distribution of Mannia triandra based on confirmed herbarium specimens is
Sweden, Austria, Slovenia, Slovakia, Germany, France, Switzerland, Italy,
Croatia, Poland, Russia, U.S., Canada, China and Japan.
Based on literature it is also reported from Hungary (Siller 1979); Czech
Republic (HRadiLeK 2001); Intramongolicae (XuELIANG \& Zuntian 1996); Czech
Republic, Hungary, Bosnia, Macedonia, Romania, Bulgaria, Albania, Ukraine, Siberia, Russian Far East, Middle Asia (SöDErström, Urmi \& VÁÑa 2002);
Albania, Bulgaria, Czech Republic, Algeria, Hungary, Romania, central part of European Russia (Schumacker \& VÁÑA 2000, 2005); Russian Arctic
(Konstantinova, N. A. \& A. D. Potemkin 1996); Bulgaria (Petrov 1975); Czech Republic (SJÖdin 1980) and Colorado, (HERMANN 1987).

Fig. 4.14. Mannia triandra. A air pores from ventral epidermis of thallus; B, G transverse section of thallus; \mathbf{C} thallus showing androiceum and archegoniophore; \mathbf{D} ventral scale appendage; \mathbf{E} ventral scale, margin; \mathbf{F} ventral scales showing oil cells. A, D, E Austria, Schill et al. 87 (E); B Italy, Gardasee, Mihs? s.n. (JE); C Austria, Schill et al. 79 (E); F, G Austria, Schill et al. 81 (E).

Fig. 4.15. Worldwide distribution of M. triandra based on herbarium material studied

Ecology
M. triandra seems to be an ephemeral (short-lived) plant and sometimes disappears in some habitats from one year to the next depending on climatic conditions. The thallus seems to disintegrate with spore maturity.
It is found in more shady and sheltered habitats than the other more xeromorphic Mannia species. It occurs on damp ledges, rock crevices, open or wooded slopes and in ravines. It grows on open, rocky soil or on rock (limestone, sandstone, slate) with N or E exposure.
Altitude: c. $40-2200 \mathrm{~m}$, in China found up to 3450 m (where the thalli become quite leathery).
M. triandra has been classed as a rare species in Europe and Macaronesia (SChUMACKER \& MARTIGNY 1995).

Taxonomic Notes

M. triandra has rather thin and delicate thalli in contrast to the other more xeromorphic Mannia species and is often described as mesomorphic. It has big
air chambers similar to those of M. pilosa and M. fragrans. The assimilation tissue can reach up to two times the height of storage tissue, and is often found to collapse in sectioning. Thalli start to disintegrate with spore maturity and become brown and lacunose but not as strongly or as whitish as in M. pilosa. For differentiation with M. pilosa see that species.

It can be distinguished from M. sibirica by the usually naked receptacle (although occasionally M. triandra is found to be bearded) and the usually more delicate thalli though this is also variable. In some M. triandra specimens from higher altitudes, e. g. from China, the thallus is somewhat leathery. The spore ornamentation and spore size are good characters to distinguish between the two species. In M. triandra spores are usually much bigger than in M. sibirica. Furthermore, spores of M. triandra lack a proximal disc, which is present in M. sibirica.

In Europe, Japan, China, Canada and the U.S.A. spores are mature from May to July, in Siberia from July to September.

Mannia triandra specimens with bearded receptacles:
(For full localities of bearded or slightly bearded M. triandra specimens see specimens marked with * in Appendix I)

Japan: Sasaki \& Kudo 10524 (NICH), Takida 569 (NICH), Kobayashi s.n. (S), Sasaki 932 (S), Sasaki \& Kudo 932 (F, G), Kobayashi s.n. (S) B74813. Austria: Breidler s.n. (S) B74805, Breidler s.n. (S) B74802. Switzerland: Winter s.n. (b) (BM) BM-669298, Stephani s.n. (BM) BM-669299. Germany: Gauckler s.n. (S) B74791. Russia: E.N.Andrejeva 144 (JE). U.S.A.: Brewer s.n. (NY) NY-268816. Unknown locality: Molander s.n. (JE), Futschig s.n. (S) B74794.
7. Mannia pilosa (Hornem.) Frye \& L.Clark, University of Washington Publications in Biology 6: 64. 1937.
Basionym: Marchantia pilosa Hornem., Flora Danica 8: 7. tab. 1426. 1810.
Type citation: [Norwegen, Telemarken] 'in fissuris rupium prope Stuedalen in Tyedalen Norvegiae reperi'; Type specimen: Duvalia pilosa Hornemann, Norvegia, leg. Hornemann (ex Herb. Schraderi) 'specimen authenticum' (H-SOL, Isotype-2293012)

Synonym: Neesiella pilosa (Hornem.) Schiffn., Hedwigia 47: 314. 1810.
Synonym: Duvalia pilosa (Hornem.) Lindb., Notiser Sällskapets pro Fauna et Flora Fennica 9: 280. 1868.
Synonym: Grimaldia pilosa (Hornem.) Lindb., Musci Scandinavici, Upsala: 1. 1879.

Synonym: Grimaldia carnica C.Massal., Annuario del Istituto Botanico di Roma 2: $150 \& 162$ ($54 \& 66$). 1886. Type citation: [Italy] ‘declivi muscosi del mt. Pelmo nella regione alpine fra la Sauteria alpine, nella prov. di Belluno, C. Massalongo.' Type specimen: Italien, Mt. Pelmo, prov. Belluno, C. Massalongo. (Isotype in S B24386)
Synonym: Neesiella carnica (C.Massal.) Schiffn., Hedwigia 47: 314. 1908.
Synonym: Marchantia fasciata Myrin ex Hartm., Handbok i Skandinaviens Flora Ed. 2, 366. 1832. Type citation: [Norway] ‘Lpl.- N. Nordl.'; Type specimen: Ad cataractam Baroafosfen in Malangerdalen Nordlandia Norwegiae, Lacta mecho Junis 1831, leg. Dr.A.F.Regnell. BM-725065, G (n.v.) fide Grolle ms. (Long 2000)

Synonym: Reboulia fasciata (Myrin ex C.Hartm.) Ångstr., Summa Vegetabilium Scandinaviae 102. 1845.
Synonym: Asterella fasciata (Myrin ex C.Hartm.) Trevis, Memoire del'Instituto Lombardo di Scienze e Lettere 4: 439. 1877.

Description

Thalli forming loose patches, small, narrow or broad, sometimes broadening towards apex, rather leathery thin, or sometimes more delicate, dorsally green with purple margins when young, sometimes shiny, occasionally purplish, areolate, in older parts becoming typically white when disintegrating and weakly to usually strongly lacunose with collapsing air chambers, xeromorphic; vegetative branches often dichotomous or in terminal or ventral innovations; lobes (1.6)2.5-8.8(12.6)mm long, (0.6)0.8-3.2(4.2) mm wide, margins purple or green or often white edged; ventrally green or purplish; when dry, margins slightly to strongly inrolled, tubular and black or still broad and not strongly inrolled; Lobe apex rounded and middle often grooved; thallus in t.s. 0.3-

1(1.2) $\mu \mathrm{m}$ thick, shape usually flat or concave to triangular in section; dorsal epidermis cells (14.5) 17.4-29(34.8) $\mu \mathrm{m}$ long, (14.5) 17.4-34.8(43.5) $\mu \mathrm{m}$ broad, cell walls of dorsal epidermis thin- or thick-walled, showing small to big corner thickenings (trigones) when focusing; air pores 16.5-14.5(17.4) $\mu \mathrm{m}$ in diameter, with 2 concentric rings of cells, outer ring of (6)7-8 cells, cells (14.5)17.4$23.2(26.1) \mu \mathrm{m}$ long, (8.7)11.6-17.4(20.3) $\mu \mathrm{m}$ wide, inner ring of $6-7$ cells, $11.6-$ $14.5(17.4) \mu \mathrm{m}$ long, (5.8)7.2-11.6(14.5) $\mu \mathrm{m}$ wide, pores visible with hand-lens, of whitish colour; assimilation tissue loose, divided in one row of upper bigger vertical orientated air chambers and smaller more rounded air chambers below, in $2-4$ layers, (170)230-702(760) $\mu \mathrm{m}$ high in t . s., up to 2 times the height of basal tissue; basal tissue (135) 160-460(752) $\mu \mathrm{m}$ high in t. s., with only a few rather inconspicuous greyish brown to yellowish brown oil-bodies in assimilation and storage tissue.
Rhizoids arising from ventral epidermis, smooth and pegged, hyaline or purplish/brownish towards base.
Ventral scales in two rows, sometimes only sparse, overlapping each other and midline of thallus, purple with sometimes paler margins, (0.6) $0.7-1.4(1.7) \mathrm{mm}$ long, (0.2) $0.4-1(1.1) \mathrm{mm}$ broad, semicircular, small slime papillae present on margin, oil cells often absent or 0-3 (4), often marginal, seen in appendages; appendages $1(-2), 0.1-0.5 \mathrm{~mm}$ long, $0.04-0.2 \mathrm{~mm}$ broad, subulate, irregularly serrate margins, gradually narrowing into acute tip, overlapping lobe apex, only rarely folding upwards over edge of thallus.

Sexual condition typically male-ventral-autoicous and very rarely terminal-

 autoicous and then found together on same plant.Androecia typically borne on reduced ventral branches of main thallus, arising from narrow stipitate base, situated on little slightly heart-shaped or more often rounded thalli that occasionally extend and grow longer (originating often lateral-ventrally or sometimes apical-ventrally from underside of thallus) or rarely situated on the shorter branch of a dichotomous furcation (terminalautoicous) (looking like a pseudo-ventral branch of the main thallus as the longer branch of the dichotomous furcation can again be dichotomously branched). Most fertile branches bearing both sexes or occasionally only male or only female.

Androecia rather inconspicuous, forming a rounded slightly upraised or slightly depressed ill-defined cluster with inconspicuous or rather conspicuous greenish to purplish ostioles, usually several, if on a length extended ventral branch they can appear in rows of one or two.

Gynoecia with archegoniophores deriving from terminal notch of mid-thallus and inhibiting further growth or very rarely from ventral side branch of main thallus, typically bearded with hyaline scales; receptacle subglobose, nodular/warty, yellowish-green when young, mature turning green and often tarnishing purple at margins, with numerous hyaline scales below; stalk brownish green, sometimes brownish at base or below receptacle, $0.3-0.6 \mathrm{~mm}$ in diameter, irregularly triangular-ovate, in t. s. low ridged when dry, variable in length, (4)5.7-26(31) mm long, with single rhizoidal furrow, in t.s. one outer brown smaller cell row and inner cells bigger, colourless or yellowish, incrassate with minute to convex trigones, receptacle bearing (1)2-3(up to 5) sporophytes/capsules, capsule yellow when young, turning black when mature, cells yellowish brown, irregularly hexagonal, incrassate with minute trigones, lid irregularly rounded, (0.6) $1.0-1.5(1.6) \mathrm{mm}$ in diameter, annular thickenings absent, cells incrassate with minute to convex trigones, irregular hexagonal or rounded to rectangular, often strongly overlapping each other.

Spores type V, yellow to brownish yellow, (63.8)65.2-84.1(87) $\mu \mathrm{m}$ in diameter (LM), (63)66.6-81.5(85.7) $\mu \mathrm{m}$ in diameter (SEM); weakly trilete; with similar sculpturing on proximal and distal surfaces; distally incompletely areolate, 5-8 areolae across, surface forming a loose spongy interwoven network with pits; on proximal side incompletely areolate; proximal disc absent; equatorial apertures inconspicuous, usually three; inconspicuous equatorial rim; spore.
Elaters yellowish to brownish, (165)174-339.5(377) $\mu \mathrm{m}$ long, (10.1)11.6$14.5(16) \mu \mathrm{m}$ broad at middle, $5.8-8.7(11.6) \mu \mathrm{m}$ broad at tip, $2-3$-spiral.

Chromosome number $\mathrm{n}=9$ (FRITSCH 1991).

Illustrations (Fig. 4.16)

Fig. 4.16. Mannia pilosa. A thallus showing androecium and archegoniophore; B, C scales of stalk with slime papillae; D ventral scales; E ventral scale, margin; F thallus, dorsal view; G air pores from ventral epidermis of thallus; H thallus, ventral view; I, K transverse section of thallus; J ventral scale appendage. A Austria, Schill et al. 83; B, C, I Austria, Schill et al. 85 (E); D, J Greenland, Schuster F66-045 (F); E Sweden, Albertson B74869 (S); F-H, K Austria, Schill et al. 84 (E).

Distribution (Fig. 4.17)
The distribution of Mannia pilosa based on confirmed herbarium specimens is Norway, Sweden, Finland, Estonia, Germany, Austria, France, Switzerland, Italy, Slovakia, Siberia, West Greenland, Alaska, Canada.
Based on literature it is also reported from Czechoslovakia (DUDA \& VÁÑA 1967);
Bulgaria (Petrov 1975); Poland (Szweykowski 1958); Ellesmere Island (Schuster 1958); North America, Czechoslowakia, W Asia (SJöDIN 1980); Ural, Tatra (GAMS 1938); Slowakia, Slovenia, Romania, Bulgaria, Ukraine, N and E Russia, Russian Far East, Mongolia, N central and N eastern USA (Söderström, Urmi \& VÁÑa 2002); Czech Republic, Slovakia, Jugoslavia in its former extent, Romania, northern part of European Russia (excl. Novaya Zemlya), central part of European Russia (Schumacker \& VÁÑa 2000, 2005); Russian Arctic (Konstantinova, N. A. \& A. D. POTEMKIN 1996).

Fig. 4.17. Worldwide distribution of M. pilosa based on herbarium material studied

Ecology

The species occurs on mountain ridges, on stony, grassy slopes, in tundras and on peaty or silt banks. It grows on rocky soil and rock (limestone, dolomite). It often has N, W or S exposure.

Altitude: 140-2900m.

Taxonomic Notes

M. pilosa is the only species of Mannia that has antheridia borne on reduced and usually rounded, ventral branches. The ostioles can be quite inconspicuous. The thallus has large air chambers similar to those of M. fragrans but lacks the bearded thallus apex. Assimilation tissue can be up to two times the thickness of the storage tissue. The thallus edges are often found to be whitish. On spore maturity the thalli typically start to disintegrate and air chambers collapse, the thallus surface becoming strongly lacunose and whitish. The receptacle is bearded with white scales also around stalk and base of stalk. The bearded receptacle differentiates this species from M. triandra in which the receptacle is usually naked although M. triandra can occasionally be bearded as well. A better difference of M. pilosa with M. triandra and M. sibirica is the position of the antheridia- both are terminal- autoicous or par-autoicous in those species. The thallus in M. pilosa is areolate and rather leathery. Thalli often considerably broaden towards the apex and are rather flat and thin. Ventral scales do not overlap the margins of the thallus, but are visible at the tip where they are reflexed. Oil-bodies in ventral scales are either absent or very sparse, whereas in both M. triandra and M. sibirica, oil-bodies are several. In Europe, Siberia and the U.S.A. the spores are usually ripe in July and August.

Nomenclatural Notes

GROLLE (1976) points out that in older literature, M. pilosa, then known under the name Marchantia pilosa Hornem., was often misidentified for the similar looking Asterella gracilis. This, Grolle assumes, is partly based on Hornemann himself. The latter identified a specimen (deposited in G-15260) as Marchantia pilosa, which in fact is Asterella gracilis according to Grolle.

4.4.4 Excluded and doubtful species

1. Mannia subpilosa (Horik.) Horik., Hikobia 1: 85. 1951.

Basionym: Grimaldia subpilosa Horik., Monographia Hepaticarum Australi-Japonicarum. Journal of Science of the Hiroshima University 2. Series B. Div. 2. Art.2: 112-113. 1934. Type citation: 'Mt. Morrison (Taikwan-Tonbo), prov. Taichû (Y. Horikawa), no. 9251-Typus, Aug. 1932'; Type specimen: n.v. (Holotype in Herbarium of Hiroshima University (HIRO) and since 1994 on loan to Komarov Botanical Institute with Elena N. Andrejeva)

This is likely to be a synonym of Cryptomitrium himalayense from the illustration shown in HORIKAWA (1951). The receptacle is flat and not hemispherical or globose as it is typical for Mannia. The spores have a conspicuous and broad equatorial rim. The type material has not been seen. However, Cryptomitrium himalayense has not been recorded from Taiwan (PiIPPo 1990).
2. Mannia paradoxa R.M. Schust., Phytologia 57 (6): 408-414. 1985.

Type citation: 'Carlsbad Caverns National Park, New Mexico RMS 82201'. Type specimen: n.v. (Holotype in private herbarium of R.M.Schuster)

This species is likely to be either M. californica or Reboulia hemisphaerica. Unfortunately SCHUSTER's description (1985, 1992b) is based on young plants with immature archegoniophores. He mentions that the antheridia are also quite young and hardly defined. They are situated on the same thallus as the archegoniophore, which is sometimes the case with M. californica, though not commonly. No specimens of M. paradoxa were available for study and on a field trip to New Mexico the plant could not been found.
3. Mannia hegewaldii Bischl., Flora Neotropica Monograph 97: 182-187. 2005. Type citation: 'Peru, La Libertad: Otuzco, Huancamarca, Quebrada Hornillo, Hegewald 5168'; Type specimen: [Peru] Depto. La Libertad,

Prov. Otuzco, Huancamarca, Quebrada Hornillo, Fels, 2690 m, 20.4.1973, leg. P. \& E. Hegewald 5168 (holotype MO-5142197, isotype JE).

With regards to morphology and spore characters this species is very close to M. triandra. It has only been collected in two localities in Peru so there is little material available for study. On a field trip to Peru the plant could unfortunately not be refound in the two known localities. It is uncertain if the species is significantly different from M. triandra. According to BISCHLERCAUSSE ET AL. (2005) the thallus in M. hegewaldii shows no areolation and the thallus margins are purplish and not hyaline as in M. triandra. She further notes that M. hegewaldii has a broader base in the appendages of the ventral scales and the spores have smaller and less areolae across with fine and not coarsely tuberculate distal ornamentation. With regards to thallus areolation the Peruvian material seems to differ from the majority of specimens observed, though the Chinese material of M. triandra shows a quite leathery thallus with less areolation as well. However in the available material studied purplish thallus margins are found to be common in M. triandra and the base of the appendages often show variations relating to its width. M. hegewaldii is weakly bearded below the receptacle, which can also be observed in some M. triandra specimens. Observations with the SEM have shown that in general spores of M. triandra have smaller and more numerous areolae than the two specimens of M. hegewaldii observed, though one M. triandra specimen from Japan (Inoue s.n.) showed a similar areolation to the spores seen in M. hegewaldii. However, spores of M. hegewaldii are possibly immature as can be seen in BISCHLERCAUSSE (2005), Fig 160A.

Further collections and observations on living material are needed to elucidate its status.
4. Mannia atlantica (Trab.) Jelenc, 1955, Muscinées de l'Afrique du Nord: 39. nom inval. (Art. 36.1).

Basionym: Grimaldia atlantica Trab., Revue Bryologique et Lichénologique 12: 6.1942, nom. nud. (without latin diagnosis). Type citation: 'Atlas, Fort National'; Type specimen: n.v. (Isotype, MPU (fide Jovet-Ast in literature) (Grolle 1976)).

This is possibly a synonym of M. androgyna or M. californica. There are records from JOVET-AST \& BISCHLER (1971) for M. androgyna in Tunisia and they also note Algeria amongst other localities in this paper. The two specimens on loan collected by Trabut in Algeria were determined as M. androgyna.
5. Mannia japonica (Steph.) Horik. 1951. Hikobia 1:85

Basionym: Grimaldia japonica Steph., Species Hepaticarum 6 (Complément au Bulletin de l'Herbier Boissier): 10. 1917. Type citation: 'Hab. Japonia, Morioka. (Sawada legit.); Japan, Morioka, 19 v 1907, K. Sawada 30'; Type specimen: Morioka, May 19, 1907, K.Sawada 30 (Holotype in G-17019). syn. nov.

This is a new synonym for Reboulia hemisphaerica (L.) Raddi.
6. Mannia perssonii Udar \& Chandra, Canadian Journal of Botany 43: 150. 1965.

Type citation: 'On moist shady rocks in Gangotri, Western Himalayas, October 1960, R. Udar'; Type specimen: [India] Western Himalayas (Gangotri), 9000 ft , coll. Ram Udar (holotype B5741 and isotypes B5742B5744 in LWU).

This is possibly a synonym of Mannia sibirica. The spores belong to spore type II. The antheridial position is similar to M. sibirica, though the spores seem to be more ridged.
7. Asterella calciatii (Gola) Pandé et al. [Journal of the Hattori Botanical Laboratory 11:9, 1954, comb. inval. Art.33.2] ex Kachroo \& Bapna, in Kachroo, Bapna \& Dhar, Journal of the Indian Botanical Society 56: 74, 1977.

Basionym: Fimbriaria calciatii Gola, Atti dell'Accademia della Scienze Torino 49: 758, 1914. Type citation: [Pakistan] 'Kashmir: Valle Sind, prima catena a partire da Srinagar: Gund-Sonamarg: 21 v $1913 \mathrm{~m} .2100-$ 2600 sm, L. Borelli No. 3'; Type specimen: as above, Sped. Piacenza,

Borelli 3 as 'Fimbriaria kashmirensis n. sp., G. Gola det. (Type in TO, n.v.) (LONG 2000)

Fide Grolle in LONG (2000) Asterella calciatii is noted as a synonym for Mannia androgyna. Because M. androgyna has its distribution range in Africa and Mediterranean Europe this is thought to be unlikely. This species is probably either a synonym of M. californica or M. asiatica.
8. Mannia controversa Meyl., Beiträge zur Kryptogamenflora der Schweiz VI, Heft 1: 87. 1924.

Type citation: 'Suisse, Vaud: Alpes d'Alesse, 2200m. (Gams). Près du Glacier des Martinets, 2200m. (Meylan). Berne: Col du Rawyl, 2400m. (Gilomen).Grisons: Piz Fuorn, 2400m.; Piz Nair, 2600m.; Forcletta del Val del Botsch, 2500m.; Val Ftur, 2600m.; Mount la Scherra, 2500m.; Val Tavrü, 2300m.; Schambrina près Scarl, 2300m. (Meylan).'; Type specimen: n.v.

Meylan did not designate a type specimen in his description and the original material was not availbale for study from Lausanne. Meylan characterises this species by its thin-walled epidermal cells, bearded receptacle and with many scales around base of stalk. The spores are of dark brownish yellow colour, 50$65 \mu \mathrm{~m}$ across, $7-8$ areoloae across and the species is found exclusively in the alpine zone. It shows thallus similarity to M. androgyna and sporophyte similarity to M. sibirica.
9. Grimaldia debilis Bisch., Synopsis Hepaticarum 552. 1846.

Type citation: Habitat ad terram in pascuis locis glareosis in Monte la Leona in Chili, ubi Sept. Mense a. 1828 a Bertero sub n. 354 lecta est.; Type specimen: Chili, herb. Bischoff,1848, No. 4 (isotypes in S-B24521 and B24522)

This is a synonym of Sauteria berteroana Mont. fide Grolle 1972 in sched..
10. Grimaldia chilensis Lindenb. ex Mont., in Orbigny, Voyage Amérique Méridionale 7(2): 53. 1839.

Type citation: ad terram locis humidis prope Quillota, praesertim loco Cerro de Mallaca dicto exeunte Septembri legit Bertero, misitque sub no. 1129; Type specimen: n.v. (Isotypes in BM, G, STR fide Grolle 1975)

This is a synonym of Sauteria berteroana Mont. according to GroLLE (1975).
11. Grimaldia stellaris Müll.Frib., Feddes Repertorium 58: 61. 1955.

Type citation: 'Argentina, prov. Jujuy, Dep. Tilcara, arriba de San Gregorio, ca. 4050 m (27.12.52, H. Sleumer Nr. 3596)'; Type specimen: Prov. Jujuy, Dep. Tilcara, loc. Tilcara: arriba de San Gregorio, ca. 4050 m, 27.12.52, haud raro inter rupestr., H. Sleumer 3596 (Lectotype SB24529 fide Grolle 1972 in sched.)

This is a synonym of Targionia stellaris (Müll.Frib.) Hässel fide Grolle 1972 in sched. He also notes on the packet (S-B24529): 'stellata in sched. wurde durch stellaris in der Veröffentlichung ersetzt .

4.5 Ecology

According to LONGTON (1997) the life history model of thalloid liverworts comes closest to the long-lived shuttle strategists. It is characterised by large spores, medium reproductive effort and relatively long-lived gametophytes. A further characteristic is that the capsule is raised on an archegoniophore in the absence of gemmae.
The genus Mannia is mainly found on rock, rocky soil or in rock crevices, often calcareous, gypsum or limestone. BISCHLER (2004) describes the soil type for M. androgyna and M. triandra as clay, sandy clay or sand. The species are mostly xeromorphic and hence well adapted to direct sunlight and long periods of desiccation, though between periods of drought, water supply is usually plentiful. They are dependent on water for their sexual reproduction and in
particular fertilisation, which makes Mannia species 'temporary hygrophytes' (BISChLER \& Jovet-Ast 1981)

In general they show a leathery thallus, though M. triandra is sometimes found to be more delicate and rather mesomorphic in its moisture requirements. M. triandra is in general found in more shady or protected places that are not likely to undergo prolonged periods of desiccation. BISCHLER (2004) points out that it is often found in more 'humid zones'. Sometimes the thallus in M. triandra can indeed become quite leathery. This could be observed for specimens found in higher altitudes in China.

Both M. californica and M. androgyna have similar habitat requirements and are typically found in more exposed places. BISCHLER (2004) considers the ecological tolerance of M. androgyna between $\mathrm{pH} 4-8$ and M. californica is known from both calcareous and acidic sites (SCHUSTER 1992b, HUGONNOT \& SCHILL 2006). They have in common a rather spongy assimilation tissue of the thallus. The other species have rather loose assimilation tissues but often also grow in exposed places (e.g. M. fragrans) or are found in more protected localities such as crevices or ledges underneath rock outcrops (M. pilosa, M. triandra). M. fragrans is said to be found in both siliceous and calcareous habitats (SUZA 1938, SCHUSTER 1992b).

Whereas there exist many accounts on ecology for most Mannia species (MÜLLER 1954, Schuster 1992b, DIERßEN 2001, DAMSHOLT 2002, BISCHLER 2004) not much is yet known for M. asiatica. It can be noted though, that it often occurs in similar habitats to the other Mannia species and is found on limestone on banks along streams or on ledges.

4.6 Distribution and Phytogeography

Mannia has a mainly northern-hemispheric distribution with exceptions in South America and Africa (BISCHLER 1998). BISCHLER also remarks its absence from tropical East Asia and Australasia. This is likely to be a genuine absence as collections of Marchantiales, and in particular collections of the closely related genus Asterella, have been well sampled in these areas and any Mannia populations would have therefore not likely gone unnoticed (LONG, pers. com.). The scattered distribution of the genus that can be seen on some maps in the
literature might reflect either a true picture but could also be possibly due to undercollecting, particularly in remoter parts of Asia.
The distribution pattern of Mannia could be explained by either ancient vicariance or recent dispersal events and requires future study.
However, MCDANIEL \& SHAW (2005) noted that many recent floristic and molecular studies on mosses suggest that a broad distribution of species might arise through dispersal rather than ancient vicariance. In a molecular study on the simple thalloid liverwort Jensenia (Pallaviciniaceae) by Forrest et al. (2005) it was concluded that although the genus shows a "classic Godwanan distribution"its distribution pattern is more likely caused by recent dispersal than long geographical isolation. VANDERPOORTEN \& LONG (2006) hypothesized that a big proportion of the endemic Macaronesian bryophytes might not be a relict "from tertiary periods but involves fairly recent long-distance dispersal". In a phylogenetic study on the biogeography of the liverwort Plagiochila (Plagiochilaceae) HEINRICHS ET AL (2006) came to the conclusion that the present-day distribution of the genus could only be explained by a mixture of dispersal events (short and long distance), extinction and reestablishment based on climatic changes over time.

All Mannia species prefer either an arctic-alpine or temperate to mediterranean environment (BISCHLER 2004). The arctic-alpine species are found usually in the high mountainous areas above the forest line (such as M. pilosa, M. asiatica) whereas the Mediterranean species (e.g. M. androgyna, M. californica) prefer mild, moist winters and hot, dry summers. M. androgyna is according to Frey \& KÜRSCHNER (1988) a circum-tethyan element including 'xerothermic regions of the Holarctic and the arid Northern American region'. M. triandra is found in more sheltered and humid parts in temperate to Mediterranean climate (Bischler 2004). M. fragrans has a circumpolar but rather southern continental distribution (FRAHM \& FREY 1992). M. sibirica has a northerly distribution pattern; it is found in Siberia, Finland, Norway, Canada, Arctic Alaska and the U.S.A., where it is collected in the north eastern States. SCHUSTER (1992b) describes M. sibirica as an 'amphizonal'species whereas MÜLLER (1954) just describes it as 'nordic'. Most species are found in a wider range of altitudes and are not restricted to altitudinal zonation. They usually occur from not much
above sea level to higher elevations. M. triandra has a range from ca. $40-2200 \mathrm{~m}$ but can grow up to an altitude of 3450 m in China, M. pilosa ranges from 1402900 m and M. californica from $150-3335 \mathrm{~m}$. M. androgyna is found from $20-$ 1400 m in Europe and the Mediterranean, though in Africa the altitude rises to 1407-1910 m. M. fragrans is found at higher elevations in the Indian Himalaya ($3200-3330 \mathrm{~m}$) than in the other continents ($100-2200 \mathrm{~m}$) though in literature it is said to occur in the Alps at 3000 m (MÜLLER 1954). M. asiatica seems to be restricted to even higher altitudes ($2735-4200$ m). For M. sibirica no information was available on the altitude from the herbarium specimen labels or in literature.

Eight local endemic species have previously been described, notably from Northand South-India (M. indica, M. perssonii, M. foreaui) but also from Japan (M. levigata), Africa (M. capensis), the United States (M. californica, M. paradoxa) and South America (M. hegewaldii). These so-called endemics were either found to belong to already known taxa and then reduced to synonyms or are considered doubtful (M. perssonii, M. paradoxa, M. hegewaldii).
M. capensis is conspecific with M. androgyna. This has already been suspected by Grolle (per. com.) and by Perold (1994a). But because of the only limited amount of M. androgyna material available, she found it 'difficult to come to a definite decision about this'. In fact the African material of M. capensis consists of two species (M. androgyna and M. californica), which have been formerly confused on the African continent as well as possibly in India. Records of M. androgyna from India by UDAR \& CHANDRA (1965) are likely to be misidentifications of M. californica.
M. androgyna has a distribution comprising Africa, Macaronesia and Mediterranean Europe. The most northerly point of occurrence is southern Switzerland and Italy (Meran), the most easterly point Turkey and Cyprus. The species is well adapted to dry mediterranean-to-temperate climates (BISCHLER 2004).
M. californica, formerly thought to be endemic to the North American continent, with records only from the United States (Crum \& Steere 1959, Flowers 1961,

Schuster 1992b), Canada (Hicks 1992) and Mexico (Bischler-Causse et al. 2005), is much more widespread than formerly assumed. Its distribution extends into the European, African and Asian continents. It has only recently been discovered in Europe (HUGONNOT \& SCHILL 2006) and has also been newly found in Austria and China. The SEM survey on spores showed that the species is a widespread but highly localised species in warm temperate and tropical regions of the Northern hemisphere and can also be found in Japan, India and Africa. The former narrow distribution pattern of this species is due to both undersampling and misidentification and the lack of a global evaluation and comparison of this plant. M. californica could possibly consist of several cryptic species (see Chapter 5).

Within the seven treated Mannia species, one is described as a new species. All plants have a more or less wide ranging distribution, usually found at least in two continents except for the newly described endemic.
Of the wider distributed species one is only found in Europe, Africa and Asia (M. androgyna), one in North-America, Europe, Africa and Asia (M. californica) and four in North-America, Europe and Asia (Mannia fragrans, M. pilosa, M. sibirica and M. triandra). Due to field work Mannia fragrans can be recorded new to India.

The assumed endemic species (M. asiatica) is so far only found in the high Kunlun mountain ranges in Asia, where it has been collected on the Tibetan plateau, the Indian Himalayas in Uttaranchal and the Aschger mountain in Tajikistan and grows in an arctic-alpine environment.

All species except for M. californica and M. androgyna (both occurring in Africa) have their main distribution in the Northern hemisphere.

4.7 Dispersal

Dispersal in bryophytes can occur via spores, asexual propagules, such as gemmae or via gametophyte fragments (LONGTON 1997).

Mannia dispersal is mainly driven by spores. In some cases thalli might break off from established populations after disturbances by wind and rain but because of the heavier weight of the thallus relative to a spore, this is considered to have only minor effects on distribution patterns on a wider scale.
The spores in Mannia, as is common for other Marchantiales, are quite big with elaborate wall ornamentations. They are yellow, brown, reddish brown or grey and their size in this study ranged between $43-86 \mu \mathrm{~m}$ in diameter. This agrees with BISCHLER (1998), who gives a range between $50-90 \mu \mathrm{~m}$. She also states that there are 2000-3000 spores found in one capsule. The spore diameter in Mannia and other Marchantiales is considerably larger than in leafy liverworts or mosses, which are $7-40 \mu \mathrm{~m}$ in diameter (FRAHM \& FREY 1992).
SHAW (2000a) suggests most spores get dispersed within one or two metres of the capsule.
In dispersal experiments on Riccia, which has relatively big spores (BISCHLER 1998: 40-200 $\mu \mathrm{m}$), BERRIE (1975) collected some spores in a Petri dish, which had been placed 50 cm away and 10 cm above a colony, after a night of heavy rainfall.

There is a general assumption that spores exceeding $60 \mu \mathrm{~m}$ in diameter are not suited for long-distance dispersal and this would only be possible for spores under $30 \mu \mathrm{~m}$ (Frahm \& Frey 1992). In van Zanten \& Gradstein (1988) spores below $25 \mu \mathrm{~m}$ are considered best for dispersal over long distances by wind. VAN ZANTEN (1984) also suggests that Marchantiales spores are too large for transport over long distances.
This would indicate that Mannia with its relatively large spores would not likely be dispersed over long distances driven by wind. Larger spores are said to be more successful in stepwise dispersal although the possibility of their transport over longer distances is not excluded'(VAN ZANTEN \& GRADSTEIN 1988). The latter authors suggest that they would disperse through moist air currents in lower altitudes because their findings indicate that dispersal at higher altitudes is rather unlikely due to strong UV-exposure, which bryophyte spores would not survive. This was tested on experimental studies by attaching spores to an airplane across the Atlantic at jet stream altitudes (VAN ZANTEN \& GRADSTEIN 1988).

BERRIE (1975) also suggests that dispersal in Riccia is most likely to take place over short land distances during periods of rainfall.

FRAHM \& FREY (1992) however, consider that very strong winds would be able to lift up even big sized spores and point out that dust storms in the Sahara can reach Europe or the Caribbean Islands. They also consider that even if happening only on very rare occasions (once in several thousand years) establishment could be possible. MUÑOZ (pers.com.) agrees with this as he does not see spore size as a constraint for long-distance dispersal and points out that sand and dust particles can be carried over wide distances. Most Mannia species are monoicous and could establish themselves with one single spore if they self-fertilize, but in the case of the dioicous M. fragrans two spores, one male and one female, would be needed for a successful establishment and sexual reproduction. They would possibly need to land within short distance of each other. Experiments on measuring distances from the sporophyte to the nearest male plant in mosses indicated between 2.5 cm to about 3.6 metres (LONGTON 1976, 1997). In studies on antherozoid movements he has also shown that sperm can swim about one to two metres (LONGTON 1997). This makes an establishment by rare long-distance dispersal events for this particular species more unlikely. Although M. fragrans is sometimes described as being polyoicous with either male or female colonies present (DAMSHOLT 2002, SCHUSTER 1992b), in the many M. fragrans herbarium specimens observed both male and female plants were often found in a single collection.

Elaborate spore ornamentations such as in Marchantiales seem to be of disadvantage for dispersal over long distances according to VAN ZANTEN \& GRADSTEIN (1988) as verrucose and smooth spores may be 'more effectively suspended in air'. They indicate that an elaborate spore sculpturing might play an important role for short distance dispersal over land in periods of heavy rainfall.

Spores in Marchantiales can survive long periods of desiccation. This is due to the large size of the spores, which contain a high content of food reserves to retain viability (CRUM 2001) and the spore sculpturing (BISCHLER \& JOVET-AST
1981). Germination experiments showed that spores of Marchantiales such as Mannia are still 100% viable after drying for six months (INOUE 1960). The germination rate decreases after twelve months to 76% and spores were no longer germinating after eighteen months. VAN ZANTEN (1984) suggested that spores of thalloid liverworts were 'probably in general resistant to desiccation for periods of two years and more', BISCHLER \& JOVET-AST (1981) consider 'one to several years'. SUSSMAN \& HALVORSON (1966) give a longevity of 20 to 25 years in some bryophyte spores. Furthermore, the spore colour in Mannia, which is usually yellow or brown, seems to be of advantage for wind dispersal as MUÑOZ ET. AL. (2004) state that spores that are not green show a higher viability and are more tolerant to travel in wind currents than green spores.

DALEN \& SÖDERSTRÖM (1999) performed experiments on moss dispersal along streams and rivers. Their results indicated that in general the germination frequency of water-borne spores decreases over time but some species, such as the aquatic moss Schistidium rivulare, have spores with longer viability in water. They point out its short seta might be an adaptation to its dispersal mechanism and suggest that species with long setae might be adapted to dispersal by wind.

Only a few Mannia species occur occasionally along banks of streams, so a common dispersal via streams does not seem to be very likely. In general the stalks in Mannia species are quite long, which would indicate wind-dispersal, though occasionally the stalk is found to be short. BISCHLER \& JOVET-AST (1981) consider the thick exine coat of spores good for dispersal by flowing water.

There is not much known about the possibility of spore dispersal via animals such as small insects or birds in Mannia. In dung mosses e. g. Splachnum, small sticky spores attach well to insect hairs. Though the spores in Mannia show elaborate sculpturing, it does not seem to be of special advantage in spore attachment other than the thick coating shows a good 'resistance against injury and desiccation'(BISCHLER \& JOVET-AST 1981). Spore dispersal via moving animals would so be possible.

Dispersal via human influence is assumed by Ingerpud \& VELLAK (2000b). They suggest that diaspores of M. sibirica have recently been introduced to Estonia from Russia by Russian military vehicles 'during the Soviet time'. As its main distribution area is seen to be in North America and Siberia (SChUSTER 1992b) they consider the Estonian locality to remote and isolated. As M. sibirica is also recorded from Norway and Finland though, their theory seems less plausible. In fact the known Finnish locality is on an undisturbed and uninhabited small island. The Norwegian record is from 1881 and the plant has not been found since, either due to difficulties in identification or quite likely habitat change over time through human disturbances or intervention. In addition many liverworts are known to have disjunct distributions.

There exist many different hypotheses about spore dispersal in bryophytes and though there are many papers investigating dispersal mechanisms (SHAW ET. aL. 2003, HEINRICHS ET. AL. 2004) little is known about the dispersal of the spores in Mannia, what function the elaborate ornamentation has and an explanation for Mannia's distribution pattern.

A range fragmentation or a disjunctive distribution pattern could as well be due to undercollection (BISCHLER \& JOVET-AST 1981, BISCHLER 1998) in the case of Mannia, particularly in parts of Asia and Africa.

BISCHLER \& JOVET-AST (1981) conclude that flowing water plays a major role in spore dispersal in Marchantiales together with animal trampling and maybe sometimes wind.

Stepwise spore dispersal over short-distances via low altitude winds in combination with rainfalls seems to be the most likely process unless one argues the old evolutionary age of liverworts indicates ancient vicariance.
Further study on a population level like that one done by Squirrell Et al. (in prep.) using molecular markers such as microsatellites or isozyme analyses would be desirable and necessary for a better understanding of dispersal patterns in Mannia species. In addition a broader and more complete sampling of species from different parts of the world for a molecular analysis would be elementary.

It might then be possible to predict if in the genus Mannia long-distance dispersal events, stepwise dispersal over land or ancient vicariance and its
resulting in a range reduction over time, were the reason for its distribution pattern and how the spores got around.

4.8 Discussion and conclusion

Seven taxa of Mannia, of the formerly twenty-two published species (GEISSLER \& BISCHLER 1985), have been accepted, of which one is a new species. The other names are considered to be synonyms or listed under doubtful species. Many herbarium specimens have been studied for each species so a good geographical overview of each species could be seen and variations within each taxon could be assessed.

In the present treatment the genus is divided into two subgenera based on morphological characters, in particular spore ornamentation characters (Chapter 3); this was later tested by molecular methods (Chapter 5). One of the subgenera has four sections, of which one is new. Three of the sections are monotypic containing only one species. The justification for monotypic sections is possibly best explained by the evolutionary age of the genus. LONG (pers. com.) thinks that the taxa left are only relicts of a formerly more representative group with many of its members having gone extinct. The Marchantiales are known to contain many monotypic genera (BISCHLER \& JOVET-AST 1981, CRUM 2001).

A worldwide revision of Mannia considering all species within the genus has been of advantage as the species delimitation is now more precise since all described species belonging to the genus have been observed in one study. Former regional studies have not included close relatives of the species being revised since the relatives might occur in different geographical areas. Consequently these studies have in some cases resulted in the formation of several confusing geographically localised taxa. Several described endemics were found to belong to more widespread taxa and hence synonymised. Furthermore, variations within species are now defined more clearly and key characters and differences have been clarified to distinguish between different species as previously many species have been confused with each other in literature and field identification.

It also became apparent that due to the past taxonomic uncertainties about 17% of the examined herbarium specimens were either misidentified for another species of Mannia or mistaken for a species within a related genus such as Asterella, Reboulia, Plagiochasma, Targionia, Athalamia, Riccia or Marchantia.

As mentioned before, it is understood that some Mannia species can show distinct genetic differentiation when morphologically they are not distinct. In this case a broad species concept has been followed as a further subdivision is of no advantage in contributing to a better identification of these species.
Morphological variations, which are believed to vary within taxa depending on habitat or environmental conditions, are not considered to be good characters for a further subdivision of species or justifying the formation of new species. These structural variations are considered to fall within a natural range.

It is now thought that many gametophytic characters are quite plastic. In particular the assimilation tissue of the thallus can appear quite different dependent on environmental conditions (LONG 2000). Therefore the present classification was initially based on spore ornamentation characters, which are thought to be more conserved (LONG pers. com.) and backed up by the molecular data (a chloroplast and a nuclear marker). The inclusion of spore characters in classifications of the Marchantiales has only been adopted in recent years, mainly by LONG (1998, 2000), LONG ET AL. (2000), BISCHLER (1989) and BISCHLER-CAUSSE (1989). For the sister genus Asterella, in the recent revision by LONG (2000) the classification was based on spore characters and was later also confirmed by a molecular analysis of two chloroplast markers (LONG ET AL. 2000).

Because not every species could be included in the molecular study in Chapter 5, some of the subgenera or sections may need to be amended but it is believed any resulting change to the main structure will be minor.

During the course of the taxonomic revision most morphological characters were found to be too variable and conflicting to take into account; an infrageneric classification of the genus based on morphological characters would have only been weak. The spore ornamentation was regarded as most useful to distinguish units.

Chapter 5: Phylogenetic Reconstruction

5.1 Introduction

Between the years 1985 and 2000 Goffinet \& HAX (2001) listed ninety molecular studies on bryophytes though the majority of these were on mosses. In recent years phylogenetic studies on liverworts have dramatically increased (e.g. Davis 2004, He-Nygrén Et al. 2004, 2006, Forrest \& Crandall-Stotler 2004, Wilson et al. 2004, SChill Et al. 2004) and have brought much more insight as to how the different groups of liverworts are related to each other. In general molecular work is nowadays much more integrated into studies on bryophytes. Molecular studies on the phylogeny of complex thalloid liverworts, though, have been rare but were addressed at first by Boisselier-Dubayle et AL. (1997) in a combined molecular and morphological study on Marchantiales and in the quite comprehensive study by WHEELER (2000) on the marchantioid liverwort radiation. Only recently phylogenetic relationships of the complex thalloid liverworts at the species level were addressed by LONG ET AL. (2005). Recent molecular work on Marchantiales, though, included only one to two species of Mannia in their analysis. LONG ET AL. (2000) included two Mannia species, M. capensis and M. californica in their study on the sister genus Asterella. In a study on the subclass Marchantiidae, Boisselier-Dubayle et AL. (2002) included M. fragrans and LONG ET AL. (2005) have made a more extensive study on a wide range of complex thalloid liverworts (class Marchantiopsida) containing M. fragrans and M. androgyna. Although the smaller scale study elucidated that Mannia has evolved from within its sister genus Asterella (LONG ET AL. 2000), this and the above mentioned phylogenetic studies gave only very limited information as to whether Mannia is a monophyletic genus because the sampling was very restricted. It is also not clear how the different species within Mannia have evolved and relate to each other. Hence a more detailed study including all Mannia species is necessary to elucidate phylogenetic relationships within the genus.

In the past there has been a lot of controversy about Mannia classification on a subgeneric and sectional level, which has so far only been tackled on a traditional morphological basis resulting in three different classifications of Mannia (e.g. Shimizu \& Hattori 1954, Grolle 1976, Grolle 1983b, Grolle \& LONG 2000). In even earlier treatments the species now belonging to the genus Mannia were assigned to two or three different genera, for example in classifications by
MASSALONGO (1914), SCHIFFNER (1893) and MÜLLER (1954), before there were united under Mannia.
These different Mannia classifications based on traditional morphological characters have never been tested by a molecular approach. Molecular tools such as DNA sequencing offer a new source of characters for testing hypotheses that previously could be inferred only from analyses of morphological characters. They provide, therefore, a different base to deal with former classification issues as it is known that morphological characters can show much phenotypic plasticity in the Marchantiales as the gametophyte is assumed to be greatly affected by the environment (BISCHLER 1998). This is often reflected by strongly incongruent tree topologies from morphological and molecular datasets (e.g. Boisselier-Dubayle et al. 1997).

A phylogenetic study based on morphological characters aimed to increase the understanding of character evolution in Mannia, to compare the morphological results with phylogenetic hypotheses resulting from molecular data and if possible combine them to see if the resulting trees are congruent. The Mannia classification based on spore types from Chapter 4.4.2 can also be tested. A correlation of spore types with clades derived from molecular tree topologies have been successfully demonstrated in Asterella by LONG ET AL. (2000).

As such Mannia is also critical to an understanding of relationships within the Aytoniaceae. Former molecular studies (LONG ET AL. 2000, LONG ET AL. 2005) implied that Asterella is a paraphyletic genus and its sister genera Mannia, Reboulia, Plagiochasma and Cryptomitrium are nested within Asterella.

This raises the possible scenario of sinking Mannia and its sister genera into Asterella, from which they all derived or a change in the current generic delimitation within the Aytoniaceae.

A combination of morphological characters, in particular spore ornamentation characters together with the molecular study should contribute to a more stable classification of Mannia and elucidate its evolution from within Asterella.

Morphological characters were scored for a phylogenetic reconstruction and the tracing of character evolution in the genus. Molecular techniques were used to reconstruct phylogenetic relationships within Mannia and related genera of the Aytoniaceae. A non-coding region of the chloroplast DNA, the trnL-F region and partial nuclear ribosomal 26S were isolated. Phylogenetic analyses were performed for single and combined data sets using Parsimony Analysis and Bayesian Analysis and the results compared with the morphological tree.

5.2 Material and sampling methods

5.2.1 Taxon sampling

Plant material for DNA analysis was either collected on field trips to Germany, Portugal (Madeira), Austria, Sweden (Gotland), North America, Namibia, India and Peru by myself, and on field trips by D.G. Long to Nepal, China and Mexico or kindly provided by international collectors from the U.S.A., Austria, France and Japan. The plant material used was dried and stored in silica gel for later molecular study. All plant specimens used for the molecular analysis are listed in Appendix III. A total of thirty-six specimens were included in the molecular study, including twenty-two species from seven genera. The collection of plant material for DNA extraction in silica gel is a commonly used method for field preservation of plant samples (CHASE \& HILLIS 1991). A voucher specimen for each DNA sample is kept in the Herbarium in Edinburgh (E).

5.2.2 Outgroup and Ingroup taxa

Outgroup selection followed the most recent molecular study on the Marchantiales by LONG ET AL. (2005) and therefore two taxa, Targionia hypophylla and Athalamia hyalina were chosen us outgroup taxa. A total of three outgroup samples were included: A. hyalina (1) and two samples of T. hypophylla from different countries. T. hypophylla has also been previously used as outgroup taxon in a molecular study on the sister genus Asterella by LONG ET AL. (2000). The trees were rooted on A. hyalina and T. hypophylla.
The ingroup taxa consisted of selected species within the family Aytoniaceae: Asterella (8), Plagiochasma (3), Reboulia (1), Cryptomitrium (3) and all available Mannia species (5). A total of 32 samples for 20 species were included in the ingroup, some species are represented by multiple samples but were from different countries. As became apparent from LONG ET AL. (2000) all genera of Aytoniaceae should be treated as ingroup because Asterella is a paraphyletic genus and its sister genera were found to be nested within it. Five out of seven Mannia species could be included in the molecular study as well as an unidentified Mannia specimen from North India and the dubious M. controversa. No material was available for M. sibirica and M. asiatica. The total number of included samples was 35 .

5.3 Morphological methods

The morphological matrix was compiled using mostly the same taxa as in the molecular analysis. A total of 23 taxa were included. Additionally Mannia sibirica and M. asiatica were included, of which no fresh material was available for the molecular study. A total of twenty four morphological characters were coded for twenty three species. These characters comprised seven vegetative and nine reproductive characters of the gametophyte and eight sporophyte characters, which were discussed in Chapter 2.2. The coding for all Mannia species was based on own observations whereas the data for the other taxa was obtained from literature (e.g. Abrams 1899, Howe 1899, KASHYAP 1915, HaUPT 1942, Shimizu \& Hattori 1954, Kachroo \& KaUl 1971, Mehra \& Sokhi 1977, SCHUSTER 1992b, PEROLD 1994b, BISCHLER 1998, LONG 1998, 1999, 2000, Paton 1999, Bischler-CAUSSE et al. 2005).

The spore characters for Cryptomitrium tenerum, C. oreades, Plagiochasma rupestre and P. wrightii are based on my own observations from the SEM study. For coding, qualitative characters were given favour over quantitative characters as the latter show often an overlap and cannot be scored unambiguously. When quantitative characters were used (e.g. character 5: Scale appendage number and 12: Number of rhizoidal furrows) they were subdivided at stated intervals and arranged in groups to make scoring possible. Characters were either coded with absence/presence (binary coding) or were multistate characters. Certain characters of taxa occasionally show polymorphism. In this case the taxon was given both character states e.g. ' $1 ; 2$ '. Unknown character states were coded as '?'. All morphological characters used in the analysis, their states and the complete character matrix are given in Appendix II. Character mapping was done on a single most parsimonious tree based on a weighted molecular parsimony analysis of combined $t r n \mathrm{~L}-\mathrm{F}$ and 26 S sequences with the inclusion of the gap character matrix.

5.4 Molecular Methods

5.4.1 Molecular markers

The choice of markers for this study was guided by previous molecular studies on Marchantiales (LONG ET AL. 2000, BoisSELIER-DUBAYLE ET AL. 1998). In both studies the chosen markers provided phylogenetic resolution at lower taxonomic levels and provided insights into evolutionary processes.
Therefore sequence data was generated for the chloroplast region $\operatorname{trnL} \mathrm{L}-\mathrm{F}$ and for part of the nuclear ribosomal LSU (Large Subunit), a segment of the 26S gene. The $t r n \mathrm{~L}-\mathrm{F}$ consists of a non-coding intron in the trnL gene and an intergenic spacer between the trnL and trnF genes. The intron is one of the most commonly used markers in bryophyte phylogenetic studies (QUANDT \& STECH 2005). The size of the intron ranges from $350-600$ base pairs (bp) and the spacer from about 120-350 bp in higher plants (Soltis \& Soltis 1992), while in leafy liverworts the intron size ranged between $305-372 \mathrm{bp}$ (SCHILL ET AL. 2004). The intron is considered to be an ancient region, which became immobilized in the course of time (WHEELER 2000). It belongs to the group I introns and is distinguished by
the possession of catalytic activities and by the formation of secondary structures and for these reasons the intron is expected to be less variable than the spacer (KUHSEL ET AL. 1990). It is evolving about two times slower than the spacer in Gesneriaceae (MOELLER, pers. com.).

The 26 S is a coding region of about $3300-3500 \mathrm{bp}$ and consists of the large ribosomal subunit (Soltis \& Soltis 1992, Hershkovitz et al. 1999). The entire 26 S region is hence relatively large and is composed of conserved regions, which are interspersed by twelve variable regions, known as expansion segments or divergent domains (ca. 1 kb) (KuZOFF et al. 1998, SolTIS \& SOLTIS 1992, HERSHKOVITZ ET AL. 1999).

5.4.2 DNA Extraction

Fresh plant material, collected in the field, was preliminarily cleaned using forceps to remove soil contamination before being placed in silica gel filled bags. Once in the lab, samples were cleaned more thoroughly using a Stereo microscope. Samples were then stored in silica gel until required for DNA extraction.
DNA from liverwort tissues was either extracted using a modification of the CTAB (cetyl-triethyl-ammonium-bromide) method of DOYLE and DoyLE (1990) or using a DNeasy Plant Mini Kit (Qiagen Ltd., Crawley, West Sussex, UK) following the manufactures protocol, except that elution was performed in $35 \mu \mathrm{l}$ buffer AE only.

DNA Extraction Protocol (modified from DOYLE \& DOYLE (1990)):
A small amount (ca. 6 thalli) of silica dried liverwort material was placed in a 1.5 ml eppendorf tube with one spatula each of sand and PVP (polyvinylpyrollidine). The tissue was ground to a fine powder using either a Mixer mill (1 minute at 30/sec frequency), or the tube was immersed in liquid nitrogen for a few seconds and the thallus tissue ground using a glass pestle. $700 \mu \mathrm{l}$ of $65^{\circ} \mathrm{C}$ preheated CTAB buffer ($2 \% \mathrm{CTAB}, 20 \mathrm{mM}$ EDTA, 100 mM tris ${ }^{-}$ $\mathrm{HCl} \mathrm{pH} 8.0,1.4 \mathrm{M} \mathrm{NaCl}$ and 0.2% mercaptoethanol) was added to each sample and incubated at $65^{\circ} \mathrm{C}$ for 30 minutes. During incubation the tubes were
agitated, for about three times. After incubation the tubes were cooled to ambient temperature.
$700 \mu \mathrm{l}$ of chloroform isomyl alcohol (24:1) was added to each sample and mixed on an orbital shaker for 15 minutes at medium speed.

Samples were centrifuged for 15 minutes at 13000 revolutions per minute (rpm) to separate into two phases. Ca. $600 \mu \mathrm{l}$ of the supernatant (aqueous upper layer) was removed to a clean 1.5 ml eppendorf tube. The chloroform extraction was repeated. Finally ca. $500 \mu \mathrm{l}$ of the supernatant was transferred to another clean 1.5 ml eppendorf tube and the DNA precipitated by adding $350 \mu \mathrm{l}$ of cold isopropanol (about $2 / 3$ volume) and mixed gently.

The samples were left overnight at $-20^{\circ} \mathrm{C}$ to allow maximal DNA precipitation.

The tubes were then centrifuged at $13000 \mathrm{rpm}(5 \mathrm{~min})$ to pellet the DNA. The supernatant was discarded and the resultant DNA pellet was washed in 70% cold ethanol.

The samples were then centrifuged again for 5 minutes at 13000 rpm and the supernatant removed. Resulant pellets were dried, using a vacuum centrifuge for 3 to 5 minutes at a medium or low dry rate. The DNA was finally resuspended in 30 to 40μ l of distilled, sterile water.

5.4.3 PCR amplification

5.4.3.1 Primers

The following primers were used to amplify the 26 S and $\operatorname{trnL} \mathrm{L}-\mathrm{F}$ regions. Details are given in Table 5.1.
Table 5.1. Primers used in PCR and sequencing reactions

Region	Primer	Direction	Sequence	Reference
$t r n \mathrm{~L}-\mathrm{F}$	$t r n \mathrm{~L}-\mathrm{c}$ $t r n$ L-cAyto $t r n \mathrm{~L}-\mathrm{d}$ trnL-f	forward forward reverse reverse	5'-CGA AAT TGG TAG ACG CTG CG-3' 5^{\prime}-AT TGG TAG ACG CTG CG GAC TT-3' 5'-GGG GGT AGA GGG ACT TGA AC-3' 5'-ATT TGA ACT GGT GAC ACG AG-3'	FREY ETAL. 1999 Schill (designed for this study) FREY ET AL. 1999 TABERLET ET AL. 1991
26 S	OF 12R 316F 920R	forward reverse forward reverse	5'-ACC CGC TGT TTA AGC ATA T-3 5'-ATC GCC AGT TCT GCT TAC CA-3 5'-AAG TAC CGC GAG GGA AAG AT-'3 5'-AGT ATC GCT ACG AGC CTC CA-'3	Shaw 2000b Shaw 2000b LONG ET AL. 2005 LONG ET AL. 2005

5.4.3.2 Reaction conditions

Polymerase Chain Reaction (PCR) was used to amplify the chloroplast region trnL-F and 26S ribosomal DNA region.

Polymerase chain reaction (PCR) protocol for trnL-F

PCR reactions were performed in 25μ using the following reagents:

Reagents	Quantity
10x Reaction buffer (10x: 160mM (NH4)2SO4, 670mM Tris-HCL (pH	$2.5 \mu \mathrm{l}$
8.8 at $25^{\circ} \mathrm{C}$) 0.1 \% Tween-20) (Bioline, London, UK)	
MgCl2 (50 mM) (Bioline, London, UK)	$1.25 \mu \mathrm{l}$
dNTPs (0.2 mM) (Sigma Chemicals, Pool, Dorset, UK)	$1.25 \mu \mathrm{l}$
forward primer: trnL-c (10mM) (MWG-Biotech AG, UK)	$2 \mu \mathrm{l}$
reverse primer: trnL-f (10mM) (MWG-Biotech AG, UK)	$2 \mu \mathrm{l}$
sterile, distilled water	$7.9-15.6 \mathrm{l}$
DNA polymerase ($5 \mathrm{U} / \mathrm{ll}$) (Bioline, London, UK)	$0.125 \mu \mathrm{l}$
DNA	$0.25-8 \mu \mathrm{l}$

The PCR cycling conditions used to amplify the region were:

Temperature	Time	Number of cycles
$94^{\circ} \mathrm{C}$	3 min	$x 1$
$94^{\circ} \mathrm{C}$	1 min	
$52^{\circ} \mathrm{C}$	1 min	$x 40$
$72^{\circ} \mathrm{C}$	2 min	
$72^{\circ} \mathrm{C}$	2 min	$x 1$

PCR amplification was assessed using 1% agarose gels. Resultant products were purified using either Qiaquick MinElute PCR purification kit (Qiagen Ltd., Crawley, West Sussex, UK) or GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences, UK).
The purified products were assessed again on a 1% agarose gel.

Compounds of 1\% Agarose gel:

Reagents	Quantity
Agarose	0.4 g
TBE (1\%)	40 ml
Ethydiumbromide	$1 \mu \mathrm{l}$

PCR reactions were performed in 25μ l using the following reagents:

Reagents	Quantity
10x Reaction buffer ($10 \mathrm{x}: 160 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 670 \mathrm{mM}$ Tris-HCL (pH 8.8 at $25^{\circ} \mathrm{C}$) 0.1% Tween- 20) (Bioline, London, UK)	2.5 I
$\mathrm{MgCl}_{2}(50 \mathrm{mM})$ (Bioline, London, UK)	1.25 /
dNTPs (0.2 mM) (Sigma Chemicals, Poole, Dorset, UK)	1.25μ
forward primer: OF (10 mM) (MWG-Biotech AG, UK)	2μ
reverse primer: 12 R (10 mM) (MWG-Biotech AG, UK)	$2 \mu \mathrm{l}$
DMSO (Dimethyl Sulfoxide) (>99.9\%) (Sigma-Aldrich Chemie GmbH,	2.5μ
Germany)	
sterile, distilled water	5.4-9.4 ${ }^{\text {l }}$
DNA polymerase ($5 \mathrm{U} / \mathrm{\mu l}$) (Bioline, London, UK) DNA	$0.125 \mu \mathrm{i}$

The PCR cycling conditions used to amplify the region were:

Temperature	Time	Number of cycles
$94^{\circ} \mathrm{C}$	4 min	$x 1$
$93^{\circ} \mathrm{C}$	1 min	
$52^{\circ} \mathrm{C}$	1 min	$x 35$
$72^{\circ} \mathrm{C}$	3 min	
$72^{\circ} \mathrm{C}$	10 min	$x 1$

5.4.4 Cloning techniques

PCR product reactions for some 26 S and trnL-F were cloned because sequencing reactions had repeatedly failed. From subsequent sequence analyses it became clear that fungal contamination was the problem.
PCR products were cloned using the TOPO-TA cloning kit (Invitrogen, UK) using the bacterial plasmid vector system pCR4-TOPO and the host strain E. coli TOP10. The manufacturer's protocol was followed using $1 \mu \mathrm{l}$ fresh PCR product for the TOPO cloning reaction. The bacterial colonies were grown on agar plates (25 g Luria-Bertani (LB) mix and 15 g agar per litre) containing the antibiotic ampicillin at $37^{\circ} \mathrm{C}$ overnight. The clones were screened for insert using PCR (following the same protocol as in 5.4.3.2). Eight to 24 positve colonies per species were transferred and cultured in a glass tube containing 2 ml LB broth and $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin at $37^{\circ} \mathrm{C}$ in an orbital shaker overnight.

Plasmids were purified, before sequencing, using the QIAprep Spin Miniprep
Kit (QiagenLtd., Crawley, West Sussex) following the manufacturer's protocol.

5.4.5 Sequencing

Sequencing PCRs were performed and purified following the sequencing protocol in 5.4.5.1. For the 26 S the primer pair from before, as well as two internal primers 316F and 920R (LONG ET AL. 2005) were used for the sequencing PCR because there was often no overlap with the external primers and editing ambiguities could also be avoided. For trnL-F, both the forward primer developed by Frey et al. (1999) and the universal reverse primer trnL-f (TABERLET ET AL. 1991) were not specific enough for sequencing and a new forward primer was developed for this study (trnL-cAyto). The internal reverse primer trnL-d (FREY ET AL. 1999) was used to cover the intron in reverse but the short spacer sequence was obtained with forward primer trnL-cAyto only.

5.4.5.1 Sequencing Protocol for trnL-F and 265

The sequencing reactions were performed using the purified PCR products and were carried out in $10 \mu \mathrm{l}$ reactions.

Reagents	Quantity (trnL-F)	Quantity (26S)
Distilled sterile water	$0.5-5.25$	$0.5-3.25$
Betaine (99\%) (Sigma-Aldrich Chemie GmbH, Germany)	-	$2 \mu \mathrm{l}$
DNA template	$0.25-5 \mu \mathrm{l}$	$0.25-3 \mu \mathrm{l}$
Primer (10mM)	$1 \mu \mathrm{l}$	$1 \mu \mathrm{l}$
CEQ buffer*	$1.5 \mu \mathrm{l}$	$1.5 \mu \mathrm{l}$
DTCS Quickstart mix* (Dye Terminator Cycle Sequencing)	$2 \mu \mathrm{l}$	$2 \mu \mathrm{l}$

*CEQ reagents from Beckmann Coulter Ltd., U.S., primers trnL-cAyto, 316F and 920R from TAGN Ltd., Gateshead, UK, other primers from MWG-Biotech AG, UK.

Sequence amplifications were achieved using a Perkin Elmer Thermocycler PTC-200 PCR machine using the following conditions:

Temperature	Time	Number of cycles
$96^{\circ} \mathrm{C}$	2 min	
$50^{\circ} \mathrm{C}$	20 sec	35 x
$60^{\circ} \mathrm{C}$	4 min	

5.4.5.2 Sequence reaction purification

The sequence reactions were purified as follows:
Reactions were made up to 20μ l with $\mathrm{dH}_{2} \mathrm{O}$ and transferred to a fresh 0.5 ml microfuge tube. To each tube $5 \mu \mathrm{l}$ of stop solution (stock B) (see below) and $60 \mu \mathrm{l}$ of 100% ice cold ethanol were added.

Stock B	Volume per reaction
0.5M EDTA (Beckmann Coulter Ltd., UK)	$0.4 \mu \mathrm{l}$
Sigma water (Beckmann Coulter Ltd., UK)	$1.6 \mu \mathrm{l}$
3M NaOAc pH 5.2 (Beckmann Coulter Ltd., UK)	$2 \mu \mathrm{l}$
Glycogen (Beckmann Coulter Ltd., UK)	$1 \mu \mathrm{l}$

The samples were mixed using a vortex mixer and centrifuged for 15 minutes at $4^{\circ} \mathrm{C}$ at 14000 rpm . The supernatant was carefully removed and discarded. 200 $\mu \mathrm{l}$ of 70% ice cold ethanol was added and the samples centrifuged at $4^{\circ} \mathrm{C}$ at 14 000 rpm . The supernatant was carefully removed again and discarded. The last step was repeated and the supernatant was removed and discarded again. The remaining pellet was vacuum dried on a low drying rate for 2 to 5 minutes until no trace of ethanol remained. Each pellet was then resuspended in $40 \mu \mathrm{l}$ of sample loading solution (SLS) (Beckmann Coulter Ltd., UK) and mixed using a vortex mixer. Samples were stored at $-20^{\circ} \mathrm{C}$ for storage and analysed using a Beckmann Coulter CEQ ${ }^{\text {TM }} 8000$ Analysis System DNA Sequencer (Beckmann Coulter Ltd., UK) by staff at RBGE.
Analysed sequences were edited using CEQ ${ }^{\text {TM }} 8000$ Genetic Analysis System Version 7.0 Software (Beckmann Coulter Ltd., US) and aligned in Sequencher ${ }^{\text {TM }}$ Version 4.5 (Gene Codes Corporation, Ann Arbor, Michigan, US). The contig sequences were exported as text files for phylogenetic analysis. Sequences obtained from the cloning analysis were BLAST (Basic Local Alignment Search Tool) searched in GenBank (National Centre of Biotechnology Information (NCBI)). Results indicated that some obtained sequences were from fungal contaminants, mostly the filamentous fungi species Phoma herbarum Westendorp (family Pleosporaceae).

Additional 26S sequences were carried out by Michelle Hollingsworth, RBGE (M. fragans, M. androgyna, A. africana, A. grollei, A. wallichiana, C. himalayense, P. rupestre, P. wrightii).

5.4.6 Sequence alignment and gap coding

The alignment of both datasets, trnL intron and adjacent spacer and 26S was initially performed using ClustalW (European Bioinformatics Institute, UK). Alignments were achieved using the default settings and were later manually adjusted by eye. Some hypervariable or ambiguous regions were excluded from both datasets as they could not be aligned unambiguously (Appendix III). Regions with incomplete sequences (the beginnings and ends of sequenced regions) were also excluded from further analyses. The start (11 to 16 base pairs (bp) for $t r n \mathrm{~L}-\mathrm{F} / 26 \mathrm{~S}$) and the end (29 to 42 bp for $t r n \mathrm{~L}-\mathrm{F} / 26 \mathrm{~S}$) were left out. Nine gaps were coded from the trnL-F matrix using simple indel coding and the multistate gap region method (Simmons \& Ochoterena 2000, Simmons Et al. 2001, FREUDENSTEIN \& CHASE 2001). The gaps present in the 26S matrix were considered too variable for indel coding. Separate analyses for both the trnL-F and 26 S region, and a combined analysis were performed. The influence of the gap coding was investigated for both the $t r n \mathrm{~L}-\mathrm{F}$ and combined data matrices through exclusion and inclusion of coded gap characters in both Parsimony and Bayesian analyses.

5.4.7 Phylogenetic analyses

For the phylogenetic reconstruction two different types of analyses were performed: Maximum Parsimony (MP) and Bayesian Analysis (BA). They were run on each of the three data sets with and without the inclusion of the gap matrix.

The MP method is based on the assumption that evolution takes place by the simplest way (Crawford 1990). In MP the most parsimonious tree(s) is the tree that requires the minimum number of evolutionary changes to explain the data. But assumptions of minimal evolution are disputed by many cladists as it could underestimate the true number of changes. In MP it is assumed that a character state shared by two taxa is more likely to have been inherited from a common ancestor than that this character state has evolved more than once due to homoplasy (due to reversals, convergences, parallelisms) (HALL 2004). BA tries to find the most probable tree(s) given the sequence data and the model of evolution (HALL 2004). BA considers that characters could have evolved more than once due to homoplasy and can allow for such changes. It compensates for
these and is therefore considered to be superior in calculating distances compared to MP. It is a Likelihood method based on the concept of posterior probabilities. A tree search will look for the best set of trees and the same tree will often be considered several times during that process. In a BA it is possible to include information about evolutionary processes by different evolutionary models.

5.4.7.1 Parsimony analysis

Reconstruction of phylogenetic relationships based on the Maximum Parsimony Method (Felsenstein 1983) was done in PAUP version 4.0b10 (SWOFFORD 2002). Phylogenetic trees were generated as phylograms, strict consensus and majority rule consensus trees.

Descriptive tree statistics were given by the consistency index (CI), homoplasy index (HI), retention index (RI) and rescaled consistency index (RC) (FARRIS 1989).

All trees were obtained from unweighted, unordered characters. Multistate characters were interpreted as uncertain and gaps were treated as missing. In the trnL-F matrix nine indels events were coded as additional characters. For character optimisation the option 'accelerated transformation (ACCTRAN)' was used, which favours reversals. Starting trees were obtained via stepwise addition. Heuristic searches were performed for all analyses with 10000 RANDOM addition sequence replicates using TBR with MULTREES on, STEEPEST DESCENT off and branches collapse if minimum branch length is zero.

For the morphological dataset multistate taxa were interpreted as polymorphism and 'delayed transformation (DELTRAN)' was used for character optimisation, which favours parallelisms. With these exceptions the analyses were done with the same settings as above.
Branch support analyses were carried out using Bootstrap (FELSENSTEIN 1985) and Decay Indices (BREMER 1988). Bootstrap values were calculated on 10000 replicates with the same settings as above except with only 1 RANDOM addition replicate.
Sequence characteristics and tree statistics (see Appendix III) were calculated using PAUP and McClade version 4.06 OS X (MADDISON \& MADDISON 1992).

Decay Index was calculated with default settings in AutoDecay v4.0 (ERIKSSON 1999)

To test combinability of datasets the Partition Homogeneity Test was performed in PAUP on 10000 replicates of 1 RANDOM addition sequence replicate using the same heuristic search settings as for the molecular analyses before.

5.4.7.2 Bayesian Analysis

Parameters and the evolutionary model used in the BA were selected using the program Modeltest 3.6 (Posada \& CRANDALL 1998) and are based on the Akaike Information Criterion (AIC). The AIC selects not only the evolutionary model that fits the data set best like the hierarchical Likelihood Ratio Tests (hLRTs) does. It also tries to measure the information, which is lost when a model is used to full reality in taking an increasing number of parameters into account and estimating their variation (POSADA \& BUCKLEY 2004, POSADA \& CRANDALL 2001). It is therefore said to have "important advantages" over hLRTs (POSADA \& BUCKLEY 2004). However, both AIC and hLRTs analyses have been carried out. Parameters utilized for the BA are shown in Appendix III. The AIC selected model for the trnL-F dataset was TVM $+\mathrm{I}+\mathrm{G}$ (Transversional Model) and for the 26S dataset $\operatorname{Tr} \mathrm{N}+\mathrm{I}+\mathrm{G}$ (TAMURA \& NEI 1993 Model). The hLRTs selected the model $\mathrm{F} 81+\mathrm{G}$ (FELSENSTEIN 1981) for the $\operatorname{trnL}-\mathrm{F}$ dataset and for the 26 S data the same model as in AIC was selected. For the analyses four independent Monte Carlo Markov Chains (MCMC) were run simultaneously for 5 Mio generations, starting with a random tree and with one tree saved every 100 generations. The analyses were done with the inclusion of the gap matrix. Each dataset (26S, trnL-F, gap matrix) was treated as separate partition in the combined and the trnL-F analyses. For the 26S data set the MCMC temperature setting for the three heated chains was lowered from the default setting of 0.2 to 0.05 in a second run to observe the effect on the cold chain. The burn-in for each run was determined by plotting the log likelihood of the cold chain versus the number of generations in Microsoft Excel and the first 5000 trees were discarded. A majority rule consensus tree for the remaining trees was generated using PAUP. For each clade a confidence measure is given as a clade credibility or posterior probability value, which is the proportion of trees in which this clade is present.

5.5 Results from the molecular phylogenetic reconstruction

5.5.1 Sequence alignment

The aligned trnL-F matrix was of much shorter length (684 bp) than the 26 S sequences (1229 bp). The aligned length of the combined dataset had a total of 1913 bp with an addition of nine gap characters when included.
Although the tree topologies from both analyses (exclusion and inclusion of gaps) were fully congruent, the analysis with the inclusion of gap characters was preferred as it allowed the inclusion of informative sites resulting in more highly resolved tree topologies and in some cases slightly higher branch support. This was particularly the case for the single analysis of $t r n L-F$.

All statistical results are based on analyses with exclusion of gap characters. The characteristic features of the matrix (matrix and tree statistics) are summarised in Appendix III.

5.5.2 trnL-F

5.5.2.1 Sequence characteristics

The total length of the individual sequences ranged between 516 and 606 base pairs for the included 35 samples. Due to indel events (insertions/deletions) several gaps had to be inserted in the matrix and ambiguous parts were also excluded from the analysis. A gap matrix of nine additional characters was added to the alignment. Of the included 581 unambiguously aligned sites, 68% were constant. Of 32% variable sites, 13% were autapomorphies and therefore parsimony uninformative and 19% were informative characters. The transition to transversion ratio is 0.75 clarifying that transversion events are more frequent than transition, which is generally assumed. Sequence divergences in pairwise comparison were between 0 (e.g. Mannia californica (France) and M. californica (China)) and 10.5% (Asterella lateralis and A. grollei) among the Aytoniaceae; 0 (e.g. M. californica (North India) and M. californica (France)) and 6.5% (M. pilosa and M. californica France/India 104/India 105) among Mannia; 0 (e.g. M. californica 104 (North India) and M. californica 105 (North India)) and
3.9 \% (Austria and France/North India 104/North India 105) among included M. californica species.

5.5.2.2 Tree topology (Fig. 5.1-5.4)

Maximum Parsimony

The parsimony analysis resulted in two most parsimonious trees of 386 steps if gap characters were included. The exclusion of nine gap characters resulted in nine trees (386 steps). The CI including uninformative characters was 0.69 , the RI 0.78 and RC 0.53 . The values are relatively low indicating that many characters were homoplastic. Branch support values were between one and 24 steps for the decay index and 53 to 100% for bootstrap values. The strict consensus tree is not fully resolved but shows better resolution when gap characters were included in the analysis (Fig. 5.1). Some branch support values also increased as a result. In the strict consensus tree of the two most parsimonious trees the ingroup consists of two main clades: clade A and clade B. Clade A consists of Asterella grollei and all Cryptomitrium species (bootstrap 60, $d=1$). Clade B has high support (bootstrap $82, d=3$). Within it three supported remaining clades (B1-B3) fall on a polytomy sister to A. californica. However, when gaps are excluded A. californica, Clade B1, B2 and B3 rest on a polytomy. Clades B1, B2 and B3 do not have high or any branch support values and all rest on a polytomy. Clade B1 consists of Reboulia hemisphaerica as sister to all Plagiochasma species (bootstrap 63, $\mathrm{d}=1$), clade B 2 is not supported and contains exclusively Asterella species (bootstrap $<50 \%, \mathrm{~d}=1$) and clade B3 consists of all included Mannia species and Asterella gracilis (bootstrap 67\%, d= 2). Asterella is thus polyphyletic with its sister genera Reboulia, Cryptomitrium, Plagiochasma and Mannia nesting within it; the monophyly of the ingroup (Aytoniaceae) is supported by high branch support values (bootstrap 96\%, $\mathrm{d}=8$). There is moderate support for monophyly of the included Mannia samples and A. gracilis (bootstrap $67 \%, \mathrm{~d}=2$).

Fig. 5.1. Strict consensus tree of two trees based on trnL-F sequences with a heuristic search including gap characters using unweighted maximum parsimony analysis trnL-F data. (Tree length $=386$ steps $; \mathrm{CI}=0.69 ; \mathrm{RI}=0.78 ; \mathrm{RC}=0.53$). Numbers above branches indicate bootstrap support; *asterisk indicate bootstrap $<50 \%$; numbers below branches indicate decay indices.

Fig. 5.2. Tree one of two trees based on trnL-F sequences with a heuristic search including gap characters using unweighted maximum parsimony analysis. (Tree length $=386$ steps $; \mathrm{CI}=0.69 ; \mathrm{RI}=0.78 ; \mathrm{RC}=0.53$).

Fig. 5.3. Tree two of two trees based on trnL-F sequences with a heuristic search including gap characters using unweighted maximum parsimony analysis. (Tree length $=386$ steps $; \mathrm{CI}=0.69 ; \mathrm{RI}=0.78 ; \mathrm{RC}=0.53$).

Fig. 5.4. Bayesian majority rule consensus tree obtained from a trnL-F data matrix with the inclusion of gap characters. Figures above branches are estimated posterior probability values.

There is high support for the genus Mannia falling into two main clades (bootstrap $95 \%, \mathrm{~d}=3$ and $91 \%, \mathrm{~d}=4$). One Mannia clade (Mannia I) contains M. pilosa as sister to M. triandra and A. gracilis, which shows high branch support (bootstrap $95 \%, \mathrm{~d}=3$) suggesting paraphyly of Mannia. The second Mannia clade (Mannia II) (bootstrap 91, $\mathrm{d}=4$) is a 'pure' Mannia clade containing M. fragrans species (bootstrap $100 \%, \mathrm{~d}=9$) as sister to the remaining Mannia species (bootstrap 73, d=1).

The remaining Mannia species are on a polytomy, M. androgyna
Madeira/Namibia (bootstrap 93, $\mathrm{d}=3$), Mannia controversa/M. spec.
Austria/North India (bootstrap 73, $\mathrm{d}=1$) and one strongly supported clade with all M. californica specimens (bootstrap $100 \%, d=10$) with the exception of the Austrian M. californica, which remains on the polytomy.

Bayesian analysis

The topology of the Bayesian AIC majority rule consensus tree (Fig. 5.4) resulting from an analysis with inclusion of gaps was almost identical to the MP analysis. It showed a fully resolved clade B2 unlike the MP strict consensus tree. The posterior probability values (pp) for different clades were generally higher than the bootstrap or decay supports. It ranged from $0.57-1.00$. The tree topology based on hLRTs was fully congruent with similar pp values.

5.5.3 26 S

5.5.3.1 Sequence characteristics

The total length of the individual sequences was between 1059 and 1136 bp . Several gaps were inserted in the matrix and ambiguous regions were excluded from the analysis. The mean $\mathrm{G}+\mathrm{C}$ content of 57.75% is higher than the chloroplast data set which is common for nuclear regions.
The aligned region included 1076 unambiguous characters of which 87% were constant. Of 13% variable sites, 5% were uninformative and 8% were informative characters. The relation of transitions to transversions was 0.8 and so only slightly higher than in the trnL-F dataset.

Sequence divergence in pairwise comparison was between 0 (Mannia californica 105 India and M. californica France/ M. californica South India) and 4.3\% (M.
californica 104 North India and Asterella africana) among the Aytoniaceae and 0 (Mannia californica 105 India and M. californica France/ M. californica South India) and 3.1\% (M. californica 104 North India and M. californica Austria) among Mannia. The latter figures also apply to the sequence divergences among M. californica specimens.

5.5.3.2 Tree topology (Fig. 5.5-5.7)

Maximum Parsimony
The analysis resulted in 33 most parsimonious trees with a tree length of 315 steps. CI including uninformative characters was 0.58 , RI 0.74 and RC 0.43 and therefore all lower than in the trnL-F analysis. The decay indices for clades ranged between 1 and 26 steps; the bootstrap values were between 53 and 100%. The strict consensus tree of the 26S data set (Fig. 5.5) is also not fully resolved but shows a similar topology to the trnL-F strict consensus with a few exceptions. The branch support values are generally lower than in the trnL-F analysis.

Clade A fell on a polytomy which also contains A. californica. Within clade A A. grollei is no longer sister to the clade of all Cryptomitrium species. The Cryptomitrium clade has strong branch support as in the trnL-F analysis (bootstrap 99, d=6). R. hemisphaerica is no longer within Clade B1. The Plagiochasma species are now sister to Mannia I and Mannia II though this is not supported (bootstrap $<50 \%, \mathrm{~d}=1$).
Branch support values for the monophyly of Mannia and A. gracilis is higher than in the trnL-F analysis (bootstrap $84 \%, d=5$). Mannia II is highly supported (bootstrap 87, d=4). In Mannia II the M. fragrans group is no longer at the base of the clade but rests on a polytomy with the M. controversal M. spec. species pair and a clade bearing the other Mannia species. This was well supported in the trnL-F analysis, but not with 26S. All M. californica specimens are now clustering together (bootstrap $73 \%, \mathrm{~d}=1$) with the Austrian specimen being sister to the other M. californica specimens, which form a well supported clade (bootstrap 98\%, d=5).

Fig. 5.5. Strict consensus tree of 33 trees based on 26 S sequences with a heuristic search using unweighted maximum parsimony analysis. (Tree length $=315$ steps; $\mathrm{CI}=0.58 ; \mathrm{RI}=0.74 ; \mathrm{RC}=0.43$). Numbers above branches indicate bootstrap support; *asterisk indicate bootstrap support < 50%; numbers below branches indicate decay indices.

- 10 changes

Fig. 5.6. Tree one of 33 most parsimonious trees based on 26 S sequences with a heuristic search using unweighted maximum parsimony analysis of 26S data. (Tree length $=315$ steps $; \mathrm{CI}=0.58 ; \mathrm{RI}=0.74 ; \mathrm{RC}=0.43$).

Fig, 5.7. Bayesian majority rule consensus tree obtained from a 26 S data matrix. Temp $=0.05$. Figures above branches are estimated posterior probability values.

Bayesian Analysis

The topology of the majority rule consensus tree of the BA (Fig. 5.7) was in parts not fully congruent to the MP strict consensus tree. The main difference was that clade B2 and clade A swapped places (pp 0.69, pp 0.88). Clade B2 was now found sister to the rest of the ingroup. In the latter A. californica is now sister to A. grollei and the Cryptomitrium clade. The position of A. californica, A. grollei and the Cryptomitrium clade was formerly unresolved and they were on a polytomy with clade B.

The relation between the three Cryptomitrium species is here fully resolved as well. In Mannia I Asterella gracilis, M. triandra and M. pilosa form a well supported clade (pp 1.00). The M. fragrans clade is here sister to the M. controversa/M. spec. clade though this is only weakly supported (pp 0.58). Within M. californica the Californian and North Indian specimen form a species pair and are sister to a weakly supported clade (pp 0.61), in which the Chinese specimen is now sister to the remaining M. californica specimens, which are resting on a polytomy as before in the MP strict consensus tree. The tree topology based on hLRTs was fully congruent with similar pp values.

5.5.3.3 Note on Bayesian search settings

In the first run of the 26S data set in the BA it became apparent that the cold chain did not change column position any more after the first 1000 generations and got stuck in one of the columns. The Metropolis coupling is said to be inefficient if the heated chains do not successfully swap states with the cold chain during the search. In that case RoNQUIST ET AL. (2005) suggested lowering the temperature difference between the chains resulting in an increase of swapping states. A second run with a lowered temperature parameter was therefore conducted but the same thing could be observed though the proportion of successful exchanges was twice as high. The tree topologies and posterior probabilities were compared and found to be congruent with insignificantly higher posterior probability values for the default setting. A possible reason for the unchanging position of the cold chain could lie in the not very variable 26 S data matrix.

5.5.4 Combined analysis

The Partition Homogeneity Test showed no significant incongruence between the two molecular data sets (0.447), so the trnL-F and 26 S dataset could be combined. However, the combined molecular dataset was incongruent with the morphological data (0.001) so molecular and morphological datasets were not combined.

5.5.4.1 Sequence characteristics

The aligned length of the combined dataset was 1922 characters with nine gap characters included. The total length of the individual sequences was 1582 to 1712 basepairs.
After exclusion of ambiguous sites the aligned region included 1657 characters (excl. gap characters), 80% were constant characters. Of 20% variable sites, 8% were uninformative and 12% informative sites. The transition/transversion ratio in the combined analysis was with 0.81 only slightly higher than in the single analyses.

Sequence divergence in pairwise comparison was between 0 (M. californica 105 North India and M. californica France) and 5.7\% (Asterella grollei and M. pilosa/M. californica 104 North India) among the Aytoniaceae and 0 (M. californica 105 North India and M. californica France) and 4.3\% (M. californica 104 North India and M. pilosa) among Mannia; sequence divergences among M. californica species were between 0 (M. californica 105 North India and M. californica France) and 2.9% (M. californica Namibia and M. californica Austria).

5.5.4.2 Tree topology (Fig. 5.8-5.10)

Maximum Parsimony
The combined analysis resulted in 20 most parsimonious trees of 697 steps if gap characters were excluded. Their inclusion resulted in 40 trees of 709 steps. For the latter the CI was 0.63 , RI 0.75 and RC 0.48 . Branch support values were between 59 and 100% and the decay indices ranged between 1 and 50 steps for different clades. They were slightly higher when gaps were included in the analysis.

The strict consensus tree of the combined analysis is not fully resolved. Both consensus trees were fully congruent with the exception that there is better resolution of Mannia II when gap characters were excluded (data not shown). This has only weak support though ($\mathrm{d}=1$, bootstrap $<50 \%$). The strict consensus of the combined analysis (Fig. 5.8) shows a more similar topology to the consensus of the trnL-F analysis. An exception to this is that R. hemisphaerica is no longer sister to the Plagiochasma species in clade B1 from the trnL-F analysis but rests on a polytomy. The genus Asterella is polyphyletic with its sister genera nesting within them. Both Plagiochasma and Cryptomitrium form well-supported clades with high branch support values. However, the relationship of Reboulia hemisphaerica to the other samples is not clear and it resides on a large polytomy.
As before, Mannia separated into two main clades (Mannia I and Mannia II) with Asterella gracilis nesting in Mannia I (bootstrap $100 \%, d=6$). In Mannia II the M. fragrans group is no longer sister to the rest of the Mannia species. It forms a well-supported clade (100% bootstrap, $d=9$) but rests on a polytomy together with a well-supported species pair M. spec./M. controversa (99% bootstrap, $\mathrm{d}=5$) and a clade containing the rest of the Mannia species (75% bootstrap, $d=2$).

The topology in the remaining clade is similar to the 26S MP tree but has higher branch support values. All M. californica species are found together in one clade (79% bootstrap, $\mathrm{d}=1$) as before in the 26 S tree topology but their positions vary slightly. The Austrian specimen is still sister to the rest of the specimens. This clade forms a polytomy though. It contains the Chinese specimen, the wellsupported species pair from Namibia/South India (bootstrap 96, d=3) and a weakly-supported clade with the rest of the specimens forming a polytomy.

Bayesian analysis

The Bayesian majority rule consensus tree (Fig. 5.10) resulting from an analysis with the inclusion of gaps was fully congruent to the strict consensus tree of the combined analysis with two exceptions. The position of Reboulia hemisphaerica as sister to the Plagiochasma clade has high clade credibility values (pp 0.99) in the BA. The deeper nodes of some M. californica specimens,

Fig. 5.8. Strict consensus tree of 40 trees based on a combined analysis including gap characters using unweighted maximum parsimony analysis of trnL-F and 26S data. (Tree length $=709$ steps; $\mathrm{CI}=0.63 ; \mathrm{RI}=0.75 ; \mathrm{RC}=0.48$). Numbers above branches indicate bootstrap support; numbers below branches indicate decay indices.

Fig. 5.9. Tree one of 40 trees based on a combined analysis including gap characters using unweighted maximum parsimony analysis of trnL-F and 26S data (Tree length $=709$ steps; $\mathrm{CI}=0.63 ; \mathrm{RI}=0.75 ; \mathrm{RC}=0.48$).

Fig. 5.10. Bayesian majority rule consensus tree obtained from a combined trnL-F and 26S data matrix with the inclusion of gap characters. Figures above branches are estimated posterior probability values.
which were formerly resting on a polytomy with low branch support (bootstrap $59, d=1$) in the MP have high clade credibility values in the BA (pp 1.00). The two species pairs (California/ North India 104 with pp 0.62 and France/North India 105 with pp 0.98) are forming sister clades with low to high clade credibility values. The clade probability values in BA were generally higher than the MP branch support values, ranging between 0.52 and 1.00 .

5.5.5 Molecular phylogenetics versus spore types

The classification of Mannia based on different spore types as presented in Chapter 3 is reflected in the molecular results. However, M. sibirica and M. asiatica are not included in the molecular analysis, which may influence the molecular phylogeny. Nevertheless, at present there is no conflict between the molecular results and the classification based on spore characters.

5.6 Results of the morphological reconstruction

5.6.1 Morphological phylogeny

5.6.1.1 Tree topology (Fig. 5.11-5.14)

A heuristic search was performed with 23 taxa using Targionia hypophylla and Athalamia hyalina as outgroup taxa. The analysis resulted in 76 most parsimonious trees. The length of the trees was 142 steps. All 24 characters were parsimony informative. The Consistency Index (CI) was 0.54 , Homoplasy Index (HI) 0.62, Retention Index (RI) 0.61 and the Rescaled Consistency Index (RC) was 0.33 . The bootstrap values ranged between 55 and 96%, decay index between 1 and 2 .

The strict consensus tree (Fig. 5.11) of the morphological analysis is not well resolved with most of the ingroup taxa resting on a large polytomy. Although A. hyalina was defined as an outgroup taxon it is also found nesting in the ingroup. Two ingroup taxa (A. africana and A. lateralis) are situated outside the main group at the base of the tree. Most ingroup taxa are resting on a large polytomy of a weakly supported clade (bootstrap $55 \%, d=1$). Within this clade two species
pairs (Cryptomitrium himalayense and C. tenerum; Mannia pilosa and M. triandra) are building separate clades with good branch support (96% and 82% respectively, both $d=2$).
In the majority rule consensus tree (Fig. 5.12) most ingroup taxa are still resting on a polytomy sister to Asterella lateralis but form four clades (A-D). M. asiatica and M. fragrans remain on the polytomy. Clade A consists of M. pilosa and M. triandra, B has Reboulia hemisphaerica sister to the Plagiochasma species and C has M. sibirica sister to a M. androgyna/M. californica clade. Clade D consists of three clades (D1-D3): the species pair A. californica and A. wallichiana (D1), A. hyalina sister to the Cryptomitrium species (D2) and in the third clade A. grollei is sister to A. palmeri and A. tenella (D3).
In indivual phylograms (Tree one and tree eight) the seven included Mannia species are either monophyletic or paraphyletic (Fig. 5.13 and Fig. 5.14).

Strict

Fig. 5.11. Strict consensus tree of 76 most parsimonious trees (tree length $=142, \mathrm{Cl}=$ $0.53 ; \mathrm{RI}=0.61 ; \mathrm{RC}=0.33$) based on 24 morphological characters for 23 taxa with an exhaustive search using unweighted parsimony. Numbers above branches indicate bootstrap support; * asterisk indicate bootstrap support $<50 \%$, numbers below branches indicate decay indices.

Fig. 5.12. Majority rule consensus tree of 76 most parsimonious trees (tree length $=$ 142, $\mathrm{Cl}=0.53$; $\mathrm{RI}=0.61 ; \mathrm{RC}=0.33$) based on 24 morphological characters for 23 taxa with an exhaustive search using unweighted parsimony. Figures above branches indicate percentage of trees in which branch occurs.

- 1 change

Fig. 5.13. Tree one of 76 most parsimonious trees (tree length $=142, \mathrm{Cl}=0.53 ; \mathrm{RI}=$ $0.61 ; R C=0.33$) based on 24 morphological characters for 23 taxa with an exhaustive search using unweighted parsimony

- 1 change

Fig. 5.14. Tree eight of 76 most parsimonious trees (tree length $=142, \mathrm{CI}=0.53 ; \mathrm{RI}=$ 0.61 ; RC = 0.33) based on 24 morphological characters for 23 taxa with an exhaustive search using unweighted parsimony

5.6.1.2 Character evolution

In all trees the shown morphological characters appear predominantly homoplasious. They are mostly shared over a wide range of ingroup and outgroup taxa and most are not found to be a unique feature for just one clade. All results for the tracing of state changes of the 24 morphological characters can be found in Appendix II. The evolution of characters 3, 9, 15, 23 and 24 is presented in Fig. 5.15 to 5.19.
Assimilation tissue was found to be a homoplasious character (character 3) (Fig. 5.15). Loose assimilation tissue is the ancestral state in Mannia and the Aytoniaceae. A state change to compact assimilation tissue can be noted for the clade containing M. androgyna and M. californica and for the Plagiochasma clade, R. hemisphaerica, A. africana and A. lateralis.

Only in two cases, clades of the molecular reweighted combined tree could be defined by a synapomorphy. This was the case for the androecium type (character 9) of Mannia fragrans (Fig.5.16). Having antheridia in weak cushions or clusters on the thallus is the plesiomorphic state in character 9 (androecium type) for the included taxa. Defined cushions have evolved from weak cushions or clusters three times in parallel. This was the case in the Plagiochasma clade with R. hemisphaerica, A. wallichiana and A. californica. Diffuse or scattered antheridia have evolved in parallel three times in Athalamia, A. gracilis and the clade C. tenerum and C. himalayense. The M. fragrans clade shows a unique synapomorphy in having antheridia organised on a disc-like structure. This is not shared by any other species included in this analysis.
A unique feature of the genus Mannia is the cup-shaped involucres (character
15) (Fig. 5.17). All included Mannia species share this character which supports the Mannia clade in the tree (except A. gracilis). Having involucres as an entire flap appears to be the ancestral state for the included taxa, which has the subsequently been lost in some Asterella species.
The fine distal ornamentation of spores (character 23, state2: spongy) is shared only by M. pilosa and M. triandra (Fig. 5.18). In some Asterella gracilis specimen spores are found to be spongy but sometimes they can also be smooth, making this character polymorphic. Smooth spores are characteristic for C. himalayense and C. tenerum. Most Mannia spores have spores papillate in fine distal ornamentation, which have evolved from an areolate or alveolate origin.

The ancestral state of primary distal spore ornamentation (character 24) in Mannia and the family Aytoniaceae is not clear (Fig. 5.19). The M. fragrans clade has regularly areolate spores as is also the case for the included Targionia hypophylla. The presence of saccate spores is a synapomorphy for the two samples of the M. androgyna clade and has only evolved once, therefore a unique feature for this species. Because of the different distal spore ornamentation patterns occurring in M. californica, the character tracing for this species clade as well as for P. wrightii became uncertain. Further uncertainty in M. spec. and M. controversa is a result of missing data for these two species. The same is valid for C. spec. and P. japonicum. The occurrence of incompletely areolate spores has evolved three times in parallel in Athalamia, A. tenella and the clade out of A. gracilis, M. triandra and M. pilosa. Lamellate spores have evolved only once in the species pair C. tenerum and C. himalayense.

Fig. 5.15. Evolution of character 3: Assimilation tissue, mapped onto a single most parsimonious tree from the combined trnL and 26S molecular analysis based on a weighted Maximum Parsimony. $0=$ compact; $1=$ loose.

Fig. 5.16. Evolution of character 9: Androecium type, mapped onto a single most parsimonious tree from the combined trnL and 26S molecular analysis based on weighted Maximum Parsimony. $0=$ diffuse, scattered; $1=$ weak cushion or cluster; $2=$ defined cushion; $3=$ disc.

Fig. 5.17. Evolution of character 15: Involucre, mapped onto a single most parsimonious tree from the combined trnL and 26S molecular analysis based on weighted Maximum Parsimony. $0=$ cup-shaped; $1=$ flap; $2=$ entire flap; $3=$ bilabiate or bivalved; $4=$ tubular.

Fig. 5.18. Evolution of character 23: Fine distal ornamentation of spores, mapped onto a single most parsimonious tree from the combined trnL and 26S molecular analysis based on weighted Maximum Parsimony. $0=$ papillate; $1=$ areolate/alveolate; $2=$ spongy; $3=$ smooth.

Fig. 5.19. Evolution of character 24: Primary distal ornamentation of spores, mapped onto a single most parsimonious tree from the combined trnL and 26S molecular analysis based on weighted Maximum Parsimony. $0=$ saccate, $1=$ ridges; 2 = regularly areolate; 3 = incompletely areolate; $4=$ lamellate; 5 = papillate.

5.7 Discussion

5.7.1 Morphological Phylogeny

5.7.1.1 Character selection and coding

In phylogenetic studies using DNA sequence data as characters, the delimitation between the different states is easy to determine as these characters are "different, discrete and there exist no intermediate states" (PENNINGTON 2000). However, in using morphological data "different methods of coding may lead to different phylogenetic conclusions" according to FOREY \& Kitching (2000). This has been demonstrated on a combination of different coding methods for multistate characters in combination with binary characters (Forey \& Kitching 2000). Therefore morphological results have to be interpreted with caution as the way of coding characters can be quite subjective and adds more interpretation to any phylogenetic estimate.

In Mannia as it is typical for Marchantiales, the gametophyte is highly elaborate showing a large number of characters that can be observed and measured. However, a lot of characters are often of quantitative nature and hence difficult to score unambiguously. The different measurements show in most cases a significant overlap and no clear discontinuities between different states. Hence many measured characters had to be left out of the analysis, such as thallus length, stalk cross section or the number of oil bodies in ventral scales. However, some authors subdivided quantitative characters into states where discontinuities between intervals could be seen (BISCHLER 1998, CRANDALLSTOTLER \& STOTLER 2000). In general, quantitative characters were found difficult to score because there is often an overlap or they vary to a large extent within a species. Although quantitative characters were therefore generally left out of the present study, in one case the character could be subdivided into states and the most frequent case for this species has been applied (character 5: scale appendage number).
Furthermore, some characters were excluded as they might be dependent on each other and would therefore represent groupings disproportionately and consequently receiving too much weight in an analysis (e.g. thallus width might depend on thallus length, width and length of ventral scales).

Additionally only a limited number of characters could be found that were present in in- and outgroup taxa. The presence in both, in- and outgroup, is though necessary to determine character polarity by outgroup comparison (LONG 2000).

When two different states of one character were present in one species and equally observed, it was assumed to be polymorphic and both character states were scored e.g. the position of androecium in Mannia triandra can be either at the base of the stalk or terminal.

Problems in coding characters unambiguously resulted in a reduced number of morphological characters that could be used for the analysis. The number of characters that should be included in an analysis is a controversial issue. Whereas some authors think that a large number of characters is of advantage others say that an increasing number of characters did not necessarily contribute to a clearer phylogenetic picture and actually also correlated with an increase of ambiguous or problematic characters (SCOTLAND ET AL. 2003). The latter authors suggest that the quality of the data is the most important and the integration of fewer but critically observed morphological characters into a molecular dataset for better resolution and accuracy is of more advantage for a phylogenetic estimate.

Hence only a limited number of characters were scored, and their selection and way of coding may have had an effect on the parsimony analysis and the results should therefore be interpreted with caution.

5.7.1.2 Morphological phylogeny based on parsimony

In general the branch support values in the present morphological study are very low with a weakly supported ingroup clade and only two moderately to well-supported species pairs in the ingroup. Low branch support is a common feature of morphological studies where the number of characters is low. Bootstrap values commonly increase with the number of characters used in the morphological study (BREMER ET AL. 1999).
The strict consensus tree topology resulting from the morphological phylogenetic analysis based on Maximum Parsimony is inconclusive. It is difficult to come to any conclusion about the phylogenetic relationships within Mannia. It is not clear whether the genus is monophyletic or paraphyletic and the positions of

Mannia species were different in individual phylograms (Fig. 5.13 and Fig. 5.14).

Its affinity to related sister genera is also uncertain. Based on morphology, two species pairs, Mannia triandral M. pilosa and Cryptomitrium himalayensel C. tenerum are found closely related, which can also be confirmed by molecular work. Though the latter species pair is possibly conspecific and has identical features in the morphological analysis, this is probably due to the limited number of available characters or their way of coding.

Athalamia hyalina, originally selected as an outgroup taxon, is found nested within the ingroup, indicating that its position based on the selected morphological characters is closer to the rest of the ingroup than Targionia hypophylla. However, it has a very long terminal branch showing its difference. The nesting of Athalamia in the ingroup is unexpected as molecular work clearly indicated that its phylogenetic position is outside the Aytoniaceae (LONG ET AL. 2005). However, it is said that tree topologies from morphological and molecular data are often incongruent (Boisselier-Dubayle et al. 1997). The reason for the close ingroup affinity of Athalamia lays in the large number of shared characters with others members of the ingroup. The selection of characters used or their coding therefore has a big influence.
Asterella africana and A. lateralis, considered to be part of the ingroup, are found outside the big ingroup clade close to T. hypophylla. In a study by LONG (2000) A. africana and a few other Asterella species which are not included in present study, were sister to A. wallichiana in a majority rule consensus tree, though this has only been the case in 69% of all 52 most parsimonious trees and can not be confirmed in the majority rule consensus tree here (Fig. 5.12). In the majority rule consensus tree of LONG (2000) M. androgyna and A. gracilis formed a sister pair in 96% of all most parsimonious trees. This is also not reflected in the present study where A. gracilis is found in 68% of 76 most parsimonious trees in clade D on a polytomy with A. saccata, other Asterella species (clade D1 and D3) and clade D2 with Athalamia sister to the two Cryptomitrium species. The position of Reboulia hemisphaerica was in both majority rule consensus trees close to Plagiochasma species.

5.7.2 Character evolution

The evolution of the studied characters used for character tracing in Mannia and related genera is generally marked by homoplasy. Homoplasious characters were found to be a common feature in the studied species. They are defined as similar characters shared by species, which do not share a common ancestor, but have developed independently either by parallel or convergent evolution or a secondary loss (PAGE \& HOLMES 1998). The presence of many homoplasious characters was also the reason for the difficulties in the above morphological phylogenetic reconstruction and point to the hidden homoplasies in the phylogenetic analysis.

Because of the presence of homoplasy, clades could only be defined in a few cases by apomorphies, which then were diagnostic for species groups or species. In general the traced characters did contribute to a better understanding of the changes over time of key characters and made clear that clades are best defined by a combination of characters. The occurrence of mostly homoplasious characters in character tracing was also reported in a morphological study on the sister genus Asterella by LONG (2000). In this study no major clades could be defined by unique apomorphies but only through a combination of different characters.

A well established fact for the genus delimitation in Mannia is the presence of cup-shaped involucres, which are typical for all Mannia species (BISCHLER 1998). This is reflected in character 15 (Fig. 5.17) where Mannia stands out from related species as a group through this unique feature.

However, character tracing was sometimes uncertain because of missing data for some of the taxa. The reason for this was the application of a tree from the molecular combined analysis onto the morphological data set, in which taxa such as M. controversa, M. spec., Plagiochasma japonicum or Cryptomitrium spec. were not coded and therefore resulted in uncertainties that influenced the character tracing. Another reason was that the character state was unknown for a species.

Future work should concentrate on finding additional informative characters and a wider range of ingroup sampling would be of advantage.

5.7.3 Molecular Phylogeny

5.7.3.1 Suitability of trnL-F and 26S

The suitability of the chloroplast region trnL-F and the nuclear region 26S has already been successfully tested in a range of other studies on bryophyte phylogeny (Boisselier-Dubayle 1997, LONG ET AL. 2000, SHAW 2000b, WHEELER 2000). In these studies both regions have been proven to show a good resolution of phylogenetic relationships down to species level. However, in both data sets ambiguous regions were present that were therefore excluded before the analysis. The single 26S analysis resulted in several hypotheses of possible tree topologies, which did not elucidate phylogenetic relationships very well. The single trnL-F resulted in only a few trees but still showed two unresolved polytomies.

The 26 S matrix showed a lower number of informative characters in comparison to the trnL-F despite its longer length. The number of informative sites was twice as high in the $t r n \mathrm{~L}-\mathrm{F}$ dataset (16.4\%) than in the 26 S data set (8.1\%) and therefore indicating a higher rate of evolution in the former.

Sequence divergences for the trnL-F were generally higher than for the 26S region.

The amount of phylogenetic signal in the analyses is reflected by descriptive tree statistics. CI indices were generally lower in the 26S data set, indicating therefore a higher amount of homoplasy than in the trnL-F region.

A better resolution of tree topologies and the present polytomies could possibly be achieved by increasing the number of markers and combining multiple regions (WORTLEY ET AL. 2005).

5.7.3.2 Branch support and posterior probability values

The branch support values in tree topologies of Maximum Parsimony are found to be generally lower for the same clades than the posterior probabilities in the BA. This was also frequently observed for other studies (SIMMONS ET AL. 2004, Randle et Al. 2005).

The bootstrap test is a widely used statistical method to test how well branches in phylogenetic trees are supported (LI \& ZHARKIKH 1994). It randomly resamples the data to build up a new data set, which is identical in size to the original set. In this process characters may get used once, several times or not at
all. Therefore bootstrap values are calculated on the basis of a resampled data set. Posterior probabilities values in BA reflect the percentage in which a clade occurs in all the trees sampled based on prior calculated parameters. The clade credibility values are hence based on the actual sampled trees.

There is no broad consensus about how posterior probabilities should be interpreted in relation to bootstrap values (ALFARO ET AL. 2003). A study by SUZUKI ET AL. (2002) indicated that bootstrap values are a more reliable measure to assess the reliability of clades in phylogenetic trees than posterior probabilities. There is also the concern that Bayesian support measures are more likely to strongly support false phylogenetic hypotheses and give higher support values particularly for short internodes, that are in other analyses not well supported (DOUADY ET AL. 2003, ALFARO ET AL. 2003). It has been suggested that posterior probability values overestimate support and "should not be interpreted as probabilities that clades are correctly resolved" as their information is based on prior parameters and that they mainly show how well a phylogenetic model-based tree is supported by the data (CUMMINGS ET AL. 2003, Simmons et al. 2004, Alfaro Et AL. 2003).

However, DOUADY ET AL. (2003) conclude that bootstrap and Bayesian support values "cannot directly be compared" and suggest treating them as lower and upper limits for the reliability of individual nodes.

5.7.3.3 Sampling

The molecular results presented here can only give a preliminary idea about the molecular relationships in Mannia and its relationship to other genera. This is due to the limited number of samples that were included in the molecular study. For the two remaining Mannia species no material was unfortunately available. From a total of seven accepted Mannia species only five could be included and there was also only a limited number of other Aytoniaceae that could be incorporated, leaving gaps in the resulting tree topologies. Therefore the limited species selection might result in a biased picture of Mannia phylogeny and be influenced by the gaps in sampling. Therefore the molecular results should be seen against this background and interpreted with caution. A denser sampling strategy from a very broad range of Aytoniaceae would be highly desirable with the inclusion of the remaining Mannia species.

5.7.3.4 Paraphyly of Mannia

The results from the combined analysis have shown that Mannia is not a monophyletic but a paraphyletic genus due to the nesting of Asterella gracilis within it. There are two main clades present in Mannia, which are well supported by branch support values from the Parsimony analysis and posterior probability values from the Bayesian analysis.

One clade (Mannia I) is represented by M. pilosa and M. triandra. Asterella gracilis is nested within this clade showing close affinities to M. triandra. It has already been noted by LONG (2000) and LONG ET AL. (2000) that within the genus Asterella, A. gracilis is most similar to Mannia based on spore characters and molecular observations. This can be confirmed in the present study as A. gracilis is the only Asterella species included in this study that is found nesting within Mannia.
The second clade (Mannia II) contains only Mannia species but it is not entirely clear how the different species of this clade relate to each other as a large part of Mannia II is forming a polytomy.

5.7.3.5 Intraspecific relationships within Mannia californica

Eight different specimens of M. californica were used to study sequence variation on a worldwide scale. The distribution of M. californica is mainly in the Northern hemisphere with exceptions in Africa. Specimens from California, France, Austria, Africa, India and China were included. This range and number of specimens is limited as M. californica also occurs in other places in the world (e.g. Japan, Pakistan, Yemen, Lebanon, Canada based on herbarium specimens), with some populations only recently discovered in Europe (Hugonnot \& Schill 2006), China by J. Shevock and D.G. Long and on a field trip to Africa. Several described 'endemic' species e.g. from India or Japan, were synonymised under this name based on spore characters and other morphological evidence (see Chapter 3.6.2 and Chapter 4.4.3.2 under M. californica). The distribution of M. californica is in need of a worldwide reassessment and presently known and possible localities should be targeted by intense sampling strategies. Therefore the sample density of the M. californica specimens in the present study only allows a very limited insight into
relationships within this species and the results might be biased by gaps in the sampling.

As the M. californica clade is not well resolved but contains a polytomy, the relationships between specimens from different geographical regions remain rather unclear. However, the position of the Austrian specimen is somewhat surprising. It has the most distant position to the rest of the M. californica specimens and is not closely related to the other European specimen from France, which shows closer affinities to a North Indian specimen. In the trnL analysis the sequence divergence between these two specimens from Austria and France is, amongst others, highest with 3.9%. They differed in 18 substitutions. Morphologically the Austrian specimen shows some differences to the typical M. californica morphology but also shares some key features such as spore ornamentation pattern or the presence of dark-coloured oil-bodies in thallus cross section. Based on the present morphological evidence the Austrian specimen was therefore included in this group. However, this is somewhat contrasting with the molecular results as genetically the Austrian specimen is quite different from the other M. californica specimens, maybe representing a relict from an early ancestor split.

In the analysis of the combined dataset a divide can be observed in the included Indian specimens with the South Indian specimen being closer to the Namibian and the North Indian specimens closer to specimens from France and California. Based on molecular evidence, no clear geographical boundaries can be found to explain the position of the different M. californica specimens to each other. The included specimens do not assemble in a distinct phylogeographic orientation, which might possibly be due to several dispersal events. A more intensive sampling is desirable and could shed more light on the molecular affinities of geographical different specimens.
As the branch lengths of the different M. californica specimens are only short, the explanation that different populations have been isolated from each other for a long time and have evolved since without any evident morphological differences is not very likely. Therefore it is concluded that different populations within M. californica are more likely to have dispersed recently rather than individual populations being of old age. As the spores are rather big a stepwise
dispersal over short-distances via low altitude winds in combination with rainfalls seems to be the most likely explanation.
More intensive sampling of M. californica specimens around the world might shed more light on the phylogeography of this species. Furthermore the distribution patterns and dispersal mechanism of M. californica could be targeted in a study at the population level to find out if these dispersal events were recent or if the distribution is due to ancient vicariance, which is considered unlikely based on present (though only limited) study. The observed sequence divergence in M. californica is higher ($0-3.9 \%$ in $\operatorname{trnL} \mathrm{L}-\mathrm{F}$) than within the species Asterella wallichiana (1.2-1.4 \%) though only three specimens have been included in that study by LONG ET AL. (2000).
However, all divergences were higher than within M. androgyna and M. fragrans. Two M. androgyna specimens from Madeira and Namibia differed only by 0.2% (3 bp) from each other and in the three M. fragrans specimens (Switzerland, Japan, India) a sequence divergence of 0.3-0.6 \% (4-9 bp) was observed. As to what level of genetic diversity can be expected to be found within individual species is unclear (HARRIS \& FROUFE 2005). A high molecular divergence within a species generally indicates genetic differentiation over a long period of time without any speciation events taking place (FERGUSON 2002). Therefore despite the presence of a high number of molecular changes, the morphological appearance can remain the same. BATEMAN (1999) described morphological evolution as long periods of stasis followed by short periods of morphological change.

The M. californica specimens included in this study show a lower sequence divergence if the Austrian specimen is excluded ($0-2 \%$ in the $t r n \mathrm{~L}-\mathrm{F}$ analysis). However, they then still show a higher sequence divergence than within other Mannia species based on included samples. AVISE ET AL. (1998) noted in a study of vertebrate species that sequence divergence between separated populations can be higher than those between different species.
M. californica is therefore understood to consist of several cryptic species which show variable sequences but similar morphological characters. Based on spore morphology and other morphological characters the Austrian specimen is included in the M. californica group despite its genetic isolated position and some morphological differences (see 4.4.3.2 under M. californica).

Cryptic speciation has been observed before in both mosses and liverworts (SHAW 2001). There have also been studies on thalloid Marchantiales (ODRZYKOSKI \& SzWEYKOWSKI 1991, BoISSELIER-DUBAYLE ET. AL. 1998) showing the occurrence of cryptic speciation. ODRZYKOSKI \& SzWEYKOWSKI (1991) are the opinion that they might be of common occurrence in the Marchantiales as 'morphologically defined species often have very wide, cosmopolitan distributions'.

Further morphological and molecular study using isozyme analyses or microsatellites and more widespread detailed sampling of populations particularly in Austria and other countries would be necessary to elucidate the scale of cryptic speciation in M. californica and consider its possible separation into sibling species.

5.7.3.6 Relationships between Mannia and its sister genera

The molecular results of Maximum Parsimony and Bayesian analyses showed that Mannia as well as the sister genera Cryptomitrium, Reboulia and Plagiochasma are nested within Asterella and have evolved from within it in independent evolutionary events. This has already been stated by LONG ET AL. (2000, 2005) in earlier molecular work.
The traditional division of the two subfamilies Aytonioideae (Plagiochasma) and Reboulioideae (Reboulia, Asterella, Mannia, Cryptomitrium) based on classifications by Grolle (1976, 1983b) and Grolle \& LONG (2000) can also not be supported. This is in agreement to a molecular study by LONG ET AL. (2000). A close relationship between Asterella gracilis and Mannia was only weakly supported in previous studies by LONG ET AL. (2000). However, the present study showed well supported branch and high posterior probability values in both Maximum Parsimony and Bayesian analyses. This could be due to a broader sampling of Mannia species in the present study and the inclusion of M. triandra and M. pilosa, which are close relatives of A. gracilis.

The results from the molecular study indicate that the pseudoperianth, typical for the genus Asterella and probably a plesiomorphic feature for the whole of the Aytoniaceae (LONG ET AL. 2000) has been lost in Mannia and its sister genera but subsequently regained again in Asterella gracilis.

5.7.3.7 Classification of Mannia

The species sampling was not fully comprehensive as from a total of seven Mannia species only five were included in the molecular analysis. Therefore molecular results have to be interpreted with caution.

However, former subgeneric classifications of Mannia were only based on morphological characters such as thallus structure and have been the subject to criticism in the past (SCHUSTER 1992b). A classification of SHIMIZU \& HATTORI (1954) treated Mannia as a subgenus under Cryptomitrium. This cannot be supported by present molecular study. A classification of Mannia based on molecular data with the Mannia samples included would clearly suggest two subgenera of Mannia based on the presence of two well supported clades:
Mannia and Neesiella. One of these clades (subgenus Neesiella) is actually the former subgenus Arnelliella (C.Massal.) Grolle (Grolle 1976, Grolle \& LONG 2000) or Mannia respectively (Grolle 1983b) represented by M. pilosa and M. triandra but with the exclusion of M. sibirica.

The second Mannia clade (subgenus Mannia) rests on a polytomy so the relationship of the different species is not clear. However, the individual species pairs are well supported and the second clade was subdivided into the Sections Mannia (M. androgyna), Arnelliella (M. californica) and Sindonisce (M. fragrans) based on spore characters.
M. androgyna and M. californica have been formerly treated in the same section Mannia (Grolle 1976, Grolle \& LoNG 2000) or Xeromannia (Grolle 1983b). However, their monophyly is only moderately supported in the combined strict consensus tree of the PA (bootstrap 75, $\mathrm{d}=2$) and their spore characters proved to be very different. Therefore they were subdivided into individual sections in the present treatment: sect. Arnelliella (M. sibirica and M. californica) and sect. Mannia (M. androgyna).
The main difference with former classifications of Mannia is the position of M. sibirica.
Its relationship could unfortunately not be tested in the molecular study but the spore ornamentation strongly indicated close affinities to M. californica rather than M. pilosa and M. triandra. This could be possibly due to parallelism but spore types and their correlation to molecular phylogenetic analysis were successfully tested before by LONG ET AL. (2000) in Asterella. Therefore spore
characters might also give also a good indication of phylogenetic relationships and classification within Mannia.

The present classification of Mannia based on spore ornamentation patterns remains not in conflict with the molecular study. The division into two subgenera is well supported by the molecular data based on the included Mannia samples. A future inclusion of M. sibirica into the dataset would be highly desirable to test if its close spore affinity to M. californica is supported by the molecular data, therefore establishing if their position in section Arnelliella is justifiable or if it is possibly due to parallelisms.

The presence of a well-supported clade containing M. controversa and M. spec. indicate that the status of M. controversa has to be reconsidered and needs further careful morphological and molecular study. The Indian unidentified specimen shows close affinities to it and a wider sampling in that area would be desirable to evaluate its status and relationship. The newly described species M. asiatica could also not be tested by molecular analysis. Its spore patterns are similar to M. fragrans, but because of some spore characteristics and the sexual condition, M. asiatica was placed in its own Section Asiaticae.

5.7.3.8 Taxonomic implications

The traditional classification of the family Aytoniaceae into five different genera based on formerly used morphological characters is in contrast to recent molecular work on Aytoniaceae (LONG ET AL. 2000, LONG 2005) and is also reflected in the present molecular study. With Asterella being a paraphyletic genus and its sister genera nested within it, the concept that phylogenetic classification systems consist of monophyletic genera is not expressed. The delimitation of Mannia and Asterella is not clear cut, with Asterella gracilis nesting in Mannia and the latter therefore also becoming paraphyletic. The inclusion of A. gracilis into Mannia would achieve monophyly of the genus. However, this would conflict with the traditional understanding since Mannia differs from Asterella by the absence of a pseudoperianth. Further the presence of a pseudoperianth as a character diagnostic to Asterella would become meaningless. Therefore a change in the generic boundaries of Mannia has implications for generic delimitation in Asterella and can therefore not be considered in isolation.

Whereas many people believe that classification should be based on phylogeny and comprise monophyletic entities (POTTER \& FREUDENSTEIN 2005), others argue that paraphyletic genera should be accepted because phylogenetic analysis and taxonomy should not necessarily be linked (NORDAL \& STEDJE 2005, BRUMMITT 2002). BRUMMITT (2002) thinks that about $20-30 \%$ of recognised taxa might be paraphyletic. Therefore a case by case evaluation is desirable. Although Plagiochasma and Cryptomitrium come out on separate well supported clades this could also be due to the limited amount of sampling in these genera and an increase in sampling might give a different picture. The genus Plagiochasma has about 16 species worldwide (BISCHLER 1998) and is only represented by three species in the present molecular analyses. There is also the need for a taxonomic revision of Cryptomitrium.

Although the molecular evidence clearly shows Mannia to be paraphyletic, on the basis of the samples included, the genus is morphologically distinct by the lack of a pseudoperianth and its cup-shaped involucres. Although these are only a few characters they work well for genus delimitation and are reliable. However, based on the present molecular evidence Asterella gracilis should be included in the genus Mannia. It is more closely related to M. triandra and M. pilosa than to any Asterella species based on present molecular study. This change would also make Mannia a monophyletic group. There would however be a consequence for the genus Asterella, which is defined by the presence of a pseudoperianth.

A possible sinking of Mannia into Asterella could be considered on the basis of molecular evidence. However, a wider sampling of the remaining taxa in Mannia and other Aytoniaceae, particularly Asterella would be necessary in order to assess the situation more thoroughly and possibly to define clear groups based on morphological characters, which have support from molecular data. Although the molecular results clearly indicate that A. gracilis belongs to Mannia, the delimitation of Mannia is linked with the generic delimitation of Asterella and the other remaining genera within Aytoniaceae. Therefore the generic limits of Mannia should be re-examined in the near future.

Chapter 6: Conclusion

The genus Mannia has never before been the subject of a worldwide taxonomic revision so a monograph with evaluation of all species was badly needed. The extensive study of herbarium material and literature showed that many species were misidentified or misunderstood and therefore further study of more herbarium specimens would be desirable.
Based on the observed material most species of Mannia have a widespread distribution with some taxa such as M. californica extending much more than their previously assumed distribution range. Several formerly assumed endemic taxa were synonymised as they belong to more widespread taxa. More field work is necessary to get a clearer picture of the distribution range of individual taxa as some taxa has only been recently discovered in both well surveyed places (such as M. californica in Europe) and poorly known places (such as M. fragrans in India). Future field work would also be desirable to find out if the here newly described species M. asiatica is endemic to Asia or more widespread. Some excluded taxa such as M. controversa and M. hegewaldii should undergo further research to resolve their status. A careful study of the type specimen of M. controversa is needed as this long-forgotten taxon might have a valid status. There is also the need to study fresh material of M. hegewaldii and include it in a molecular study.
The spore survey using SEM has contributed a great deal towards species delimitation and a new infrageneric classification of Mannia and has shown the importance of spore characters in the genus. The position of M. sibirica close to M. californica in the infrageneric classification as indicated by spore characters is in contradiction to all recent classifications on Mannia. Further molecular phylogenetic work should include this species and test if it shows close molecular affinity to M. californica.

Phylogenetic reconstruction based on morphology was inconclusive and character evolution in the genus and related genera was characterised by homoplasy. Future work could concentrate on a wider sampling of taxa and on finding more characters.

The molecular phylogenetic reconstruction of Mannia is incomplete in that some species such as M. sibirica and M. asiatica could not be included. Therefore molecular results of this study should only be seen as preliminary. All phylogenetic tree topologies from Maximum Parsimony and Bayesian analysis of individual and combined data sets showed polytomies so further molecular work is needed to resolve relationships.

To confirm paraphyly of the genus a broader sampling and sequencing of all species of the genus and closely related ones is necessary. Future field work should concentrate on sampling these taxa so they can be included in the phylogenetic analysis. Future molecular study might suggest some modification of the results gained here or lend stronger support to them.

In general the combination of alpha taxonomic work, spore survey with the SEM and morphological and molecular phylogenetic construction worked well in addressing different problems in Mannia and contributed to a new approach for an infrageneric classification of the genus. However, further work is needed to fill gaps and other aspects such as breeding systems or spore dispersal should be subjected in future research.

Bibliography

Adobe Systems Incorporated 2003. Adobe Photoshop CS Version 8. California, United States.

ABRAMS L. R. 1899. The structure and development of Cryptomitrium tenerum.
Botanical Gazette 28: 110-121.
ALfaro M.E., ZoLLER S. \& F. LUTZONI 2003. Bayes or bootstrap? A simultation study comparing th performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution 20(2): 255-266.

AL-GIFRI A.N. \& H. Kürschner 1996. First records of bryophytes from the Hadramout and Abyan Governorate, Southern Yemen. Studies in Arabian bryophytes 20. Nova Hedwigia 62 (1-2): 137-146.

ANDERSON L.E. 1954. Hoyer's solution as a rapid permanent mounting medium for bryophytes. The Bryologist 57: 242-244.

Arnell S. 1961. Hepatics collected in the Cape Verde Island by Byström. Botaniska Notiser 114(2): 176-180.

ARNELL S. 1963. Hepaticae of South Africa. Kungl. Boktryckeriet P. A. Norstedt \& Söner. Stockholm.

AVISE J.C., WALKER, D. \& G.C. Johns 1998. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society of London B 265: 1707-1712.

Bailey L.H. 1930. South American Novelties. Gentes Herbarum 2: 203-204.
BAKER H.G. 1970. Taxonomy and the biological species concept in cultivated plants. In: Slobodchikoff C.N. (ed) 1976. Concepts of species. Benchmark papers in Systematic and Evolutionary Biology/3. Dowden, Hutchinson \& Ross, Inc.. Stroudsburg, Pennsylvania.

BALBIS J.-B. 1804. Sur trois nouvelles espèces d'hépatique a ajouter á la flore du Piémont. Memorie della Reale Accademia della Scienze di Torino 7: 7377.

BARNES C.R. \& W.J.G. LAND 1907. The origin of air chambers. Contributions from the Hull Botanical Laboratory, 100. Botanical Gazette 44: 197-213.
BATEMAN R.M. 1999. Integrating molecular and morphological evidence of
evolutionary radiations. In: Hollingsworth P.M., Bateman R.M. \& R.J.
Gondall (eds). Molecular systematics and plant evolution. Taylor and Francis, London.

Bergdolt E. 1926. Untersuchungen über Marchantiaceen. Botanische Abhandlungen Heft 10. Verlag von Gustav Fischer. Jena.

Berrie G.K. 1975. The biology of a West African species of Riccia L.. Journal of Bryology 8: 443-454.

Best E.B. 1990. The Bryophyta of Zimbabwe. An annotated check-list. Kirkia 13 (2): 1990

Bischler H. \& S. Jovet-Ast 1973. Les hépatiques de Corse. Revue Bryologique et Lichénologique XXXIX. Fasc.1: 56-57.

Bischler H. 1977. Plagiochasma Lehm. et Lindenb. I. Le genre et ses subdivisions. Revue Bryologique et Lichénologique 43: 67-109.

Bischler H. 1978. Plagiochasma Lehm. et Lindenb. II. Les taxa européens et africains. Revue Bryologique et Lichénologique 44: 223-300.

Bischler H. 1979a. Plagiochasma Lehm. et Lindenb. III. Les taxa d'Asie et d'Oceanie. Journal of the Hattori Botanical Laboratory 45: 25-79.

BISCHLER H. 1979b. Plagiochasma Lehm. et Lindenb. IV. Les taxa américains. Revue Bryologique et Lichénologique 45: 255-333.

BISCHLER H. \& S. JOVET-AST 1981. The biological significance of morphological characters in Marchantiales (Hepaticae). The Bryologist 84(2): 208-215.

Bischler H. 1984. Marchantia L.. The new world species. Bryophytorum Bibliotheca 62: 1-228.

Bischler H. 1998. Systematics and Evolution of the Genera of the Marchantiales. Bryophytorum Bibliotheca. Band 51. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung. Berlin, Stuttgart.

BISCHLER H. 2004. Liverworts of the Mediterranean. Ecology, diversity and distribution. Band 61. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung. Berlin, Stuttgart.
BISCHLER-CAUSSE H. 1998. Marchantia L. The Asiatic and Oceanic taxa. Bryophytorum Bibliotheca. Band 38. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung. Berlin, Stuttgart.

Bischler-Causse H., Gradstein S.R., Jovet-Ast S., LONG D.G. \& N.S. Allen 2005. Marchantiidae. Flora Neotropica Monograph 97: 182-187.

Bischoff G.W. 1835. de Hepaticis imprimis Tribuum Marchantiearum et Ricciearum, Commentatio. Heidelberg.
Boisselier-Dubayle M.-C., Lambourdiere J., Leclerc M.-C. \& H. Bischler 1997. Phylogenetic relationships in the Marchantiales (Hepaticae). Apparent incongruence between morphological and molecular data. Comptes Rendus de l'Académie des Sciences Série III. Sciences de la VieLife 320(12): 1013-1020.

Boisselier-Dubayle M.-C., Lambourdiere J. \& H. Bischler 1998. Taxa delimitation in Reboulia investigated with morphological, cytological, and isozyme markers. The Bryologist 101: 61-69.

Boisselier-Dubayle M.-C., Lambourdière J. \& H. Bischler 2002. Molecular phylogenies support multiple morphological reductions in the liverwort subclass Marchantiidae (Bryophyta). Molecular Phylogeny and Evolution 24: 66-77.

Bolleter E. 1905. Fegetella conica (L.) Corda. Eine morphologischphysiologische Monographie. Beihefte zum Botanischen Centralblatt 18(1): 327-405.
Bonner C.E.B. 1965. Index Hepaticarum. V. Delavayella to Geothallus. J. Cramer Verlag, Weinheim.
Bonner C.E.B. 1966. Index Heparicarum. VI. Goebeliella to Jubula. J. Cramer Verlag, Weinheim.

Boros A. \& K. Rouppert 1941. Die Verbreitung der Fimbriaria fragrans und Grimaldia fragrans in Ungarn und Polen. Botanikai Közlemények 38: 49-55.

Boros A., JÁrai-Komlódi M., Tóth Z. \& S. Nilson 1993. An Atlas of recent European bryophyte spores. Academic Press Budapest, Hungary.

BREMER K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795-803.
Bremer B., Jansen R.K., Oxelman B., Backlund M., Lantz H. \& K.-J. Kim 1999. More characters or more taxa for a robust phylogeny-case study from the coffee family (Rubiaceae). Systematic Biology 48(3): 413-435.
BRUMMITT R.K. 2002. How to chop a tree. Taxon 52(1): 31-41.
Cavers F. 1911. X. The classification of the bryophyta. New Phytologist 10: 4244.

Chase M.W. \& H.H. Hillis 1991. Silica Gel: An ideal material for field preservation of leaf samples for DNA studies. Taxon 40: 215-220.

Chopra R.S. 1943. A census of Indian hepatics. Journal of the Indian Botanical Society 22: 237-260.

Clarke B.C., Johnson M.S. \& J. Murray 1996. Clines in the genetic distance between two species of island land snails: how 'molecular leakage' can mislead us about speciation. Philosphical Transactions of the Royal Society of London B 351: 773-784.

CLARKE G.C.S. 1979. Spore morphology and bryophyte systematics. In: Clarke G.C.S \& J.G. Duckett 1979. Bryophyte systematics. Sytematics Association Special Volume No. 14. Academic Press. London, New York.

Cohen A.L. 1979. Critical Point Drying- Principles and procedures. Electron Microscopy II: 303-324.
Corda A.J.C. 1829. Genera Hepaticarum. Die Gattungen der Lebermoose. In OPIZ (ed) 1829. Naturalientausch 12. Beiträge zur Naturgeschichte 1: 645-655. Republished "1937" 1938 in Annales Bryologici 10: 9-15..

Crandall-Stotler B. \& R.E. Stotler 2000. Morphology and classification of the Marchantiophyta. In: Shaw A.J. \& B. Goffinet (eds) 2000.

Bryophyte Biology. Cambridge University Press. Cambridge, United Kingdom.

CRAWFORD D.J. 1990. Plant Molecular Systematics-Macromolecular approaches. John Wiley \& Sons. New York.

CRUM H. \& W.C. STEERE '1958' (1959). Some bryophytes from Baja California. The Southwestern Naturalist 3: 114-123.

CRUM H. 2001. Structural diversity of bryophytes. The University of Michigan Herbarium,United States.
Cummings M.P., Handley S.A., Myers D.S., Reed D.L., Rokas A. \& K. Winka 2003. Comparing bootstrap and posterior probability values in the fourtaxon case. Systematic Biology 52(4): 477-487.

DALEN L. \& L. SÖDERSTRÖM 1999. Survival ability of moss diasporas in water-an experimental study. Lindbergia 24: 49-58.

Damsholt K. 2002. Illustated Flora of Nordic Liverworts and Hornworts. Nordic Bryological Society, Lund.

DAVIS E.C. 2004. A molecular phylogeny of leafy liverworts (Jungermanniidae:

Marchantiophyta). In: Goffinet, B., Hollowell, V. \& R. Magill (eds). Molecular Systematics of bryophytes. Monographs in Systematic Botany from the Missouri Botanical Garden 98: 61-86.
DICKSON J.H. 1969. Scanning reflexion microscopy of bryophyte spores with special reference to Polytrichum [Abstract]. Transactions of the British Bryological Society 5: 902.

DIERBEN K. 2001. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophytorum Bibliotheca Band 56. J. Cramer. Berlin. Stuttgart.

Douady C.J., Delsuc F., Boucher Y., Doolittle W.F. \& E.J.P. Douzery 2003. Comparison of Bayesian and Maximum Likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution 20(2): 248-254.
Doyle J. J. \& J. L. Doyle (1990). Isolation of plant DNA from fresh tissue. Focus 12(1): 13-15.

DUCKETT J.G. 1986. Ultrastructure in bryophyte systematics and evolution: an evaluation.Journal of Bryology 14: 25-42.

Duckett J.G., Ligrone R., Andrews N. \& K.S. Renzaglia 2000. The enigma of pegged and smooth rhizoids in marchantialean hepatics; a functional explanation. American Journal of Botany 87S: 6-7.

Duckett J., Burch J., Fletcher P.W., Matcham H.W., Read D.J., Russell A.J. \& S. Pressel (2004) In vitro cultivation of bryophytes: a review of practicalities, problems, progress and promise. Journal of Bryology, 26 (1), 3-20.

Duda J. \& VÁŇA, J. 1967. Die Verbreitung der Lebermoose in der Tschechoslowakei (Einleitung). Acta Musei Silesiae. Series A, XVI: 97133.

DUDA J. \& VÁŇA, J. 1974a. Die Verbreitung der Lebermoose in der Tschechoslowakei XV. Acta Musei Silesiae. Series A, XXIII: 17-36.

DUdA J. \& VÁŇA, J. 1974b. Die Verbreitung der Lebermoose in der Tschechoslowakei XVI. Acta Musei Silesiae. Series A, XXIII: 153-172.
Engel J.J. 1990. Falkland Islands (Islas Malvinas) Hepaticae and Anthocerotophyta: A taxonomic and phytogeographic study. Fieldiana, Botany New Series 25: 1-209.

Erdtman G. 1965. Pollen and spore morphology/Plant taxonomy.

Gymnospermae, bryophyte (text). (An introduction to Palynologie. III.). Almqvist \& Wiksell, Stockholm.

Eriksson T. 1999. AutoDecay version 4.0. Bergius Foundation, Royal Swedish Academy of Sciences, Stockholm.

Evans A.W. 1918. The air chambers of Grimaldia fragrans. Bulletin of the Torrey Botanical Club 45: 235-251.

Evans A.W. 1920. The North American species of Asterella. Contributions from the United States National Herbarium 20: 247-312.

Evans A.W. 1938. The invalidity of the genus Grimaldia of Raddi. Chronica
Botanica 4(3): 223-225.
Evans A.W. 1939. The classification of the Hepaticae. Botanical Review 5: 4996.

Farris J.S. 1989. The Retention Index and the Rescaled Consistency Index. Cladistics 5: 417-419.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17: 368-376.

Felsenstein J. 1983. Parsimony in systematics: Biological and statistical issues. Annual Review of Ecology and Systematics 14: 313-333.

FELSENSTEIN J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783-791.

FERGUSON J.W.H. 2002. On the use of genetic divergence for identifying species.
Biological Journal of the Linnean Society 75: 509-516.
Figueiredo A.C., Sim-Sim M., Barroso J.G., Pedro L.G., Santos P.A.G., Fontinha S.S., Schripsema J., Deans S.G. \& J.J.C.Scheffer 2002. Composition of the essential oil from the liverwort Marchesinia mackaii (Hook.) S. F. Gray grown in Portugal. Journal of Essential Oil Research 14: 439-442.

FLowers S. 1961. The Hepaticae of Utah. University of Utah Biological Series 12(2): 36-41.

Forey P.L. \& I.J. Kitching 2000. Experiments in coding multistate characters.
In Scotland R. \& R.T. Pennington (eds). Homology and Systematics.
Coding charaters for phylogenetic analysis. The Systematics Association
Special Volume. Series 58. Taylor \& Francis, London, New York.
Forrest L.L. \& B.J. Crandall-Stotler 2004. A phylogeny of the simple
thalloid liverworts (Jungermanniopsida, Metzgeriidae) as inferred from five chloroplast genes. In: Goffinet B., Hollowell V. \& R. MAgill (eds). Molecular Systematics of bryophytes. Monographs in Systematic Botany from the Missouri Botanical Garden 98: 61-86.

Forrest L.L. ,Schuette S.W., Crandall-Stotler B.J. \& R.E. Stotler 2005. A molecular study of the simple thalloid liverwort Jensenia (Marchantiophyta, Pallaviciniaceae). The Bryologist 108(2): 204-211.

Frahm J.-P. \& G. Nordhorn-Richter 1984. A standardized method for cultivating bryophytes. The Bryological Times 28: 3-5.

Frahm J.-P.\& W. Frey 1992. Moosflora. 3. Auflage. Eugen Ulmer GmbH \& Co, Stuttgart.

Frahm J.-P. 2001. Biologie der Moose. Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin.

Freudenstein J.V. \& M.W. Chase 2001. Analysis of mitochondrial nad1b-c intron sequences in Orchidaceae: Utility and coding of length-change characters. Systematic Botany 26(3): 643-657.

Frey W. \& H. KÜrschner 1988. Bryophytes of the Arabian Peninsula and Socotra. Floristics, phytogeography and definition of the Xerothermic Pangaean element. Studies in Arabian bryophytes 12. Nova Hedwigia 46(1-2): 37-120.

Frey W. \& H. KÜrschner 1991. Conspectus Bryophytorum Orientalum et Arabicorum. An annotated catalogue of the bryophytes of Southwest Asia. Bryophytorum Bibliotheca. Band 39. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung. Berlin. Stuttgart.

Frey W., Stech M. \& K. Meissner 1999. Chloroplast DNA-relationship in palaeoaustral Lopidium concinnum (Hypopteygiaceae, Musci). An example of stenoevolution in mosses. Studies in austral temperate rain forest bryophytes 2. Plant Systematics and Evolution 218: 67-75.
FRITSCH R. 1991. Index to bryophyte chromosome counts. Bryothorum
Bibliotheca Band 40. Gebr. Bornträger Verlagsbuchhandlung, Berlin, Stuttgart, Germany.

Gambardella R. \& M.L. de Lucia Sposito 1984. Sporoderm unltrastructure in the liverwort Mannia androgyna. Giornale Botanico Italiano 118(1-2): 100-102.

GAMBARDELLA R. 1986. Sporoderm unltrastructure in the liverwort Plagiochasma rupestre. Giornale Botanico Italiano 120(1-6): 87-89.

GAMBARDELLA R. 1987a. Sporoderm unltrastructure in four species of the liverwort Fossombronia. Giornale Botanico Italiano 121 (1-2): 55-68.

GAMBARDELLA R. 1986b. Sporoderm unltrastructure in the liverwort Athalamia spathysii. Giornale Botanico Italiano 120(1-6): 93-95.

GAMS H. 1938. Zur Verbreitung und Verwandschaft einiger europäischer Marchantiales. Annales Bryologici XI: 58-67.

GAO C. \& G.-C. ZHANG 1981. Flora Hepaticarum Chinae boreali-orientalis. Science Publisher, Beijing.

Geissler P. \& H. Bischler 1985. Index Hepaticarum. 10. Lembidium to Mytilopsis. J. Cramer Verlag. Vaduz.

GEisSLER P. \& H. BISChLER 1989. Index Hepaticarum. 11. Naiadea to Pycnoscenus. J. Cramer, Berlin, Stuttgart.

Geissler P. \& H. Bischler 1990. Index Hepaticarum. 12. Racemigemma to Zoopsis. J. Cramer, Berlin, Stuttgart.

GOEBEL K. VON 1905. Organography of plants especially of the archegoniatae and spermatophyte. Part II. Translated by I. B. Balfour. Clarendon Press. Oxford.

Goffinet B. \& N.P. HAX 2001. Bibliography of 'molecular systematic' studies of bryophytes. I. 1985-2000. Cryptogamie, Bryologie-Lichénologie 22(2): 149-155.

Gola G. 1914. Epatiche dell'Abissinia. Annales Botanici 13: 59-74.
Goremykin V. V. \& F. H. Hellwig 2005. Evidence for the most basal split in land plants dividing bryophyte and tracheophyte lineages. Plant Systematic and Evololution 254: 93-103.
Graham L.E., Wilcox L.W., Cook M.E. \& P.G. GEnsel 2004. Resistant tissues of modern marchantioid liverworts resemble enigmatic Early Paleozoic micrfossils. Proceedings of the National Academy of Sciences of the United States of America 101(30): 11025-11029.
Greuter W., McNeill J., Barrie F.R., Burdet H.M., Demoulin V., Filgueiras T.S., Nicolson D.H., Silva P.C., Skog J.E., Trehane P., TURLAND N.J. \& D.L. HAWKsworth 2000. International Code of

Botanical Nomenclature (Saint Luis Code). Koeltz Scientific Books. Königstein. Germany.
Grolle R. 1966. Die Lebermoose Nepals. Ergebnisse Forschungs-Unternehmen Nepal Himalaya 1: 262-298.
Grolle R. 1968. Miscellanea Hepaticologica 81-90, Transactions of the British Bryological Society 5: 541-547.

Grolle R. 1975. Miscellanea Hepaticologica 141-150. Journal of Bryology 8: 483-492.

Grolle R. 1976. Verzeichnis der Lebermoose Europas und benachbarter Gebiete. Feddes Repertorium 87, 3-4: 171-279.

Grolle R. 1981. Proposal to conserve Preissia Corda 1829 against Cyathophora S.Gray 1821 (Hepaticopsida). Taxon 30: 495-496.

Grolle R. 1983a. Hepatics of Europe including the Azores: An annotated list of species, with synonyms from the recent literature. Journal of Bryology 12: 403-459.

GROLLE R. 1983b. Nomina generica Hepaticarum; references, types \& synonyms. Acta Botanica Fennica 121.
Grolle R. 1983c. Proposals to conserve Mannia and Pellia (Hepaticopsida). Taxon 32: 135.

Grolle R. \& D.G. LONG 2000. Bryological Monograph. An annotated check-list of the Hepaticae and Anthocerotae of Europe and Macaronesia. Journal of Bryology 22: 103-140.
HALL B.G. 2004. Phylogenetic trees made easy. A how-to manual. $2^{\text {nd }}$ edition. Sinauer Associates Inc.. Sunderlan, Massachusetts, U.S.A.

Hampe E. 1873. Flora Hercynica. Hepaticae. Nachdruck vom Botanischen Arbeitskreis Nordharz e.V., Quedlinburg.
HARRIS D.J. \& E. Froufe 2005. Taxonomic inflation: species concept or historical geopolitical bias? Trends in Ecology and Evolution 20(1): 6-7.
HATTORI S. 1944. Hepaticarum species novae et minus cognitae nipponenses III. The Botanical Magazine 58 (686): 42-44.
Hattori S. 1954. Hepaticae Japonicae Exsiccatae Ser. 1-6. Alphabetical list of species. The Journal of the Hattori Botanical Laboratory 12: 81.
HAUPT A. W. 1942. Studies in Californian Hepaticae. III Cryptomitrium tenerum. Botanical Gazette 104: 264-272.

HAWORTH A.H. 1812. Synopsis Plantarum Succulentarum cum descriptionibus, synonymis, locis, observationibus anglicanis, culturaque. Typis Richardi Taylor et Socii. Londini.
Heckmann C.A. 1970. Spore wall structure in the Jungermanniales. Grana 10: 109-119.

Heckmann D.S., Geiser D.M., Eidell B.R., Stauffer R.L., Kardos N.L. \& S.B. HEDGES 2001. Molecular evidence for the early colonization of plants by fungi and plants. Science 293: 1129-1133.

HEINRICHS J. 2002. A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine lineages. Bryophytorum Bibliotheca 58. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung. Berlin, Stuttgart.
Heinrichs J., Groth H., Lindner M., Renker C., Pócs T. \& T. PröSchold 2004. Intercontinental distribution of Plagiochila corrugata (Plagiochilaceae, Hepaticae) inferred from nrDNA ITS sequences and morphology. Botanical Journal of the Linnean Society 146: 469-481.
Heinrichs J., Gradstein S. R., Wilson R. \& H. Schneider 2005. Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL. Cryptogamie, Bryologie 26: 131-150.

Heinrichs J., Lindner M., Groth H., Hentschel J., Feldberg K., Renker C., Engel J.J., von Konrat M., Long D.G. \& H. Schneider 2006. Goodbye or welcome Gondwana? - insights into the phylogenetic biogeography of the leafy liverwort Plagiochila with a description of Proskauera, ge. nov. (Plagiochilaceae, Jungermanniales). Plant Systematics and Evolution 258: 227-250.

He-Nygrén X., Ahonen I., Juslén A., Glenny D. \& S. Piippo 2004. Phylogeny of liverworts - beyond a leaf and a thallus. In: Goffinet, B., Hollowell, V. \& R. MAGILL (eds). Molecular Systematics of bryophytes. Monographs in Systematic Botany from the Missouri Botanical Garden 98: 61-86.

He-Nygrén X., Ahonen I., Juslén A., Glenny D. \& S. Pitppo 2006. Illuminating the evolutionary history of liverworts (Marchantiophyta)towards a natural classification. Cladistics 22: 1-31.

Hermann F.J. 1969. The Bryophytes of Glacier National Park, Montana. The

Hershkovitz M.A., Zimmer E.A. \& W.J. Hahn 1999. Ribosomal DNA sequences and angiosperm systematics. In: HOLLINGSWORTH, P.M., BatEMAN, R.M. \& R.J. Gornall (edts) 1999. Molecular Systematics and Plant Evolution. Taylor \& Francis. London and New York.
HiCKs M.L. 1992. Guide to the Liverworts of North Carolina. Duke University Press, Durham and London.
Howe M.A. 1899. The Hepaticae and Anthocerotes of California. Marchantiaceae. Memoirs of the Torrey Botanical Club 7: 1-208.
HRADÍLEK Z. 2001. Současný stav populace játrovky Mannia triandra (Scop.) Grolle na lokalitě Šumárník v Hrubém Jeseníku. Časopsis slezkého musea. Série A, historia naturalis. Opava, 50 (supl.): 20-21.
HUGONNOT V. AND D.B. SChill (2006). Mannia californica (Gottsche ex Underw.) L.C.Wheeler (Aytoniaceae, Marchantiales) in Ardèche (France), new to Europe. Crytogamie, Bryologie 27(1): 181-189.
Huneck S., Connolly J.D., Freer A.A. \& D.S. Rycroft 1988. Grimaldone, a tricyclic Sesquiterpenoid from Mannia fragrans. Crystal structure analysis. Phytochemistry 27(5): 1405-1407.
Ingerpuu N. \& K. Vellak 2000a. Bryologically important sites in Estonia. Lindbergia 25: 106-110.
Ingerpuu N. \& K. Vellak 2000b. Species of the Red Data Book of European bryophytes in Estonia. Lindbergia 25: 111-115.
INOUE H. 1960. Studies in spore germination and the earlier stages of gametophyte development in the Marchantiales. Journal of the Hattori Botanical Laboratory 23: 148-191.

IsaAc N.J.B, Mallet J. \& G.M. Mace 2004. Taxonomic inflation: its influence on macroecology and conservation. Trends in Ecology and Evolution 19(9): 464-469.

Iwatsuki M. 2001. Mosses and Liverworts of Japan. Heibonsha Ltd. Publishers. Tokyo.
Jovet-Ast S. \& Bischler H. 1971. Les hépatiques deTunisie. Enumération, notes écologiques et biogéographiques. Revue Bryologique et Lichénologique XXXVIII. Fasc. 3-4: 28-29.
KAALAAS B. 1898. Beiträge zur Lebermoosflora Norwegens. Naturvitenskapelig Klasse 9: 1-28.

Kachroo P. 1954. Morphology of Rebouliaceae II. On some species of Mannia Corda, Asterella Beauv. and Plagiochasma L. et L. Journal of the Hattori Botanical Laboratory 12: 34-52.

KACHROO P. 1956. Probable factors responsible for formation of sporogonia in Mannia indica St. and Asterella pathankotensis Kash. Journal of the Indian Botanical Society 35: 120.

Kachroo P. 1958. Morphology of the Rebouliaceae III. Development of sex organs, sporogonium and interrelationships of the various genera. Journal of the Hattori Botanical Laboratory 19: 1-24.

Kachroo P. \& R. KaUl 1971. Morphology of Rebouliaceae IV. The generic validity of Cryptomitrium Austin. Hikobia 6 (1-2): 9-17.

Kachroo P., Bapna K.R. \& G.L. Dhar 1977. Hepaticae of India. A taxonomic survey and census. Journal of the Indian Botanical Society 56: 62-86.

KASHYAP S.R. 1915. Morphological and biological notes on new and little known West-Himalayan liverworts III. The New Phytologist 14(1): 1-18.

Kenrick P. \& P.R. CRANE 1997. The origin and early evolution of plants on earth. Nature 389: 33-39.

Kodner R.B. \& L.E. Graham 2001. High-temperature, acid-hydrolyzed remains of Polytrichum (Musci, Polytrichaceae) resemble enigmatic SilurianDevonian tubular microfossils. American Journal of Botany 88(3): 462466.

Konstantinova N.A. \& A.N. VASILJEV 1994. On the hepatic flora of Sayan Mountains (South Siberia). Arctoa 3: 123-132.

Konstantinova N.A. \& A.D. Potemkin 1996. Liverworts of the Russian Arctic: an annotated check-list and bibliography. Arctoa 6: 125-150.

Krassilov V.A. \& R.M. Schuster 1984. Paleozoic and mesozoic fossils. In: SChUSTER, R.M. (ed.). New manual of Bryology. Volume 2. The Hattori Botanical Laboratory, Nichinan, Miyazaki, Japan.
KUHSEL M.G., STRICKLAND R. \& J.D. PALMER 1990. An ancient group I intron shared by eubacteria and chloroplasts. Science 250: 1570-1573.

KÜrschner H. 2000. Bryophyte Flora of the Arabian Peninsula and Socotra.

Bryophytorum Bibliotheca. Band 55. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung. Berlin. Stuttgart.

KÜRSCHNER H. 2001. Two tropical species new to the bryophyte flora of the Arabian Peninsula. Additions to the bryophyte Flora of the Arabian Peninsula and Socotra 2. Nova Hedwigia 73 (1-2): 253-259.
Kuzoff R.K., Sweere J.A., Soltis D.E., Soltis P.S. \& E.A. Zimmer 1998. The phylogenetic potential of entire 26SrDNA sequences in plants. Molecular Biology and Evolution 15(3): 251-263.

Leitgeb H. 1881. Untersuchungen über die Lebermoose VI. Die Marchantieen und allgemeine Bemerkungen über Lebermoose. Verlag von Leuschner \& Lubensky. Graz.

LEVIN D.A. 2000.The origin, expansion, and demise of plant species. Oxford University Press, New York.

LI W.-H. \& A. Zharkikh 1994. What is the bootstrap technique? Systematic Biology 43(3): 424-430.

Ligrone R. \& C. LOPES 1989. Cytology and development of a mycorrhiza-like infection in the gametophyte of Conocephalum conicum (1.) Dum. (Marchantiales, Hepatophyta). New Phytologist 111: 423-433.

Lindberg, S.O. 1868. Musci Novi Scandinavici. Notiser Sällskapets pro Fauna et Flora Fennica 9: 280-286.

Lindberg S.O. \& H.W. Arnell 1889. Musci Asiae Borealis. Beschreibung der von den schwedischen Expeditionen nach Sibirien in den Jahren 1875 und 1876 gesammelten Moose mit Berücksichtigung aller früheren bryologischen Angaben für das russische Nord-Asien. Erster Theil: Lebermoose. Kongelike Svenska Vetenskaps-Akademiens Handlingar 23 (5): 11-12

Long D.G. 1987. Hepaticae and Anthorerothae of the Arabian Peninsula. Studies in Arabian bryophytes 10. Nova Hedwigia 45(1-2): 175-195.

LONG D.G. 1998. Spore colour and ornamentation in the taxonomy of Asterella (Marchantiales, Aytoniaceae), pp. 99-112. In BATES J.W., ASHTON N.W. \& J.G. Duckett (eds). Bryology of the Twenty-first Century. Maney, Leeds.

LONG D.G. 1999. Studies on the genus Asterella. IV. Asterella grollei sp. nov., a
new species from Eastern Asia related to the American A. palmeri. The Bryologist 102(2): 169-178.

LONG D.G. 2000. PhD Thesis: Revision of the Liverwort Genus Asterella P.Beauv. (Marchantiales, Aytoniaceae) in Continental Eurasia, Malesia and Japan. Trinity College Dublin.

LONG D.G.., MÖLLER M. \& J. Preston 2000. Phylogenetic Relationships of Asterella (Aytoniaceae, Marchantiopsida) inferred from chloroplast DNA sequences. The Bryologist 103(4): 625-644.

LONg D.G., Forrest L.L., Hollingsworth M.L., Clark A. \& D.B. Schill 2005. The complex thalloids - evolving simply. Abstracts XVII International Botanical Congress. 450.

LONG D.G. 2006. Revision of the genus Asterella P.Beauv. in Eurasia. Bryophytorum Bibliotheca. Band 63. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung. Berlin, Stuttgart.

LONGTON R.E. 1976. Reproductive biology and evolutionary potential in bryophytes. Journal of the Hattori Botanical Laboratory 41: 205-223.

LONGTON R.E. 1997. Reproductive biology and life-history strategies. Advances in Bryology 6: 65-101.
MADDISON W.P. \& D.R. MADDISON 1992. MacClade. Analysis of Phylogeny and Character Evolution. Version 4.06 OS X . Sinauer, Sunderland, Massachusetts.

MANN D.G. 1999. The species concept in diatoms (Phycological Reviews 18). Phycologia 38: 437-495

MÅRTENSSON O. 1955. Bryophytes of the Torneträsk area, Northern Swedish Lappland. I Hepaticae. Kungliga Svenska Vetenskapsakademiens Avhandlingar i Naturskyddsärenden Nr. 12. Almqvist \& Wiksells Boktryckeri AB, Stockholm.

MASSALONGO, C. 1914. Intorno alla Grimaldia pilosa var. sibirica. Atti del Reale Veneto di Scienze, Lettere ed Arti 73(2): 925-930.

MAYR E. 1957. Species concepts and definitions. In: SlobodChikoff, C.N. (ed) 1976. Concepts of species. Benchmark papers in Systematic and Evolutionary Biology/3. Dowden, Hutchinson \& Ross, Inc.. Stroudsburg, Pennsylvania.
MAYR E. 1969. The biological meaning of species. In: SlobodChikoff, C.N. (ed)
1976. Concepts of species. Benchmark papers in Systematic and Evolutionary Biology/3. Dowden, Hutchinson \& Ross, Inc.. Stroudsburg, Pennsylvania.
MCCONAHA M. 1939. Ventral surface specializations of Conocephalum conicum. American Journal of Botany 26 (6): 353-355.

MCDANIEL S. \& A.J. SHAW 2005. Selective sweeps and intercontinental migration in the sosmopolitan moss Ceratodon purpureus (Hedw.) Brid.. Molecular Ecology 14: 1121-1132.

MEHRA P.N. \& P. KACHROO 1951. Sporeling germination studies in Marchantiales. I Rebouliaceae. The Bryologist 54(1): 1-16.

MEHRA P.N. \& J. Sokhi 1977. Embryology of Cryptomitrium himalayense Kash. Journal of the Hattori Botanical Laboratory 43: 157-190.

MEyLAN Ch. 1924. Les hépatiques de la Suisse. Beiträge zur Kryptogamenflora der Schweiz. Band VI. Heft 1. Verlag von Gebr. Fretz A.G.
MILLER N.G. 1984. Tertiary and quaternary fossils. In: SCHUSTER, R.M. (ed.) 1984. New Manual of Bryology. Volume 2. The Hattori Botanical Laboratory, Nichinan, Myazaki, Japan.
MIYOSHI N. 1966. Spore morphology of Hepaticae in Japan. Bulletin of the Okayama College of Science 2: 1-46.
MÜLLER K. 1905-1916. Die Lebermoose Europas. In: Rabenhorst's Kryptogamenflora von Deutschland, Österreich und der Schweiz. 2. Auflage. Band 6. Verlag von Eduard Kummer, Leipzig.

MÜLLER K. 1954. Die Lebermoose Europas. In: Rabenhorst's Kryptogamenflora von Deutschland, Österreich und der Schweiz. 3. Auflage. Volume VI. Part 1. Leipzig, Akademische Verlagsgesellschaft Geest \& Portig K.-G., Johnson Reprint Corporation (1971), New York, London.

Muñoz J., Felicísimo Á.M., Cabezas F., Burgaz A.R. \& I. Martínex 2004. Wind as a long-distance dispersal vehicle in the southern hemisphere. Science 304: 1144-1147.
NATH V. \& A.K. ASTHANA 1992. Scanning Electron Microscopic Studies on spores of some Indian Marchantiales. Journal of the Hattori Botanical Laboratory 72: 97-103.
Nees von Esenbeck C.G. 1818. Duvalia novum Genus ex ordine Hepaticorum cum Hepaticis elateratis comparatum. Berlinisches Magazin 8: 271.

Nees von Esenbeck C.G. 1820. Sylloge Observationum Botanicarum. Horae Physicae Berolinenses 39-54. A. Marcus, Bonn.

NEES von EsENBECK C.G. 1838. Naturgeschichte der Europäischen Lebermoose. 4. Band, Grass, Barth und Comp., Breslau.

NICOLSON D.H. 1993. General Committee Report 4. Taxon 42: 110-111.
NORDAL I. \& B. STEDJE 2005. Paraphyletic taxa should be accepted. Taxon 54: 5-6.

Nishiyama T., Wolf P. G., Kugita M., Sinclair R. B., Sugita M., Sugiura C. Wakasugi T., Yamada K., Yoshinaga K., Yamaguchi K., Ueda K. \& M.HASEBE 2004. Chloroplast phylogeny indicates that bryophytes are monophyletic. Molecular Biolology and Evolution 21: 1813-1819.

OdRZYKOSkI I.J. \& J. SzwEYKOWSki 1991. Genetic differentiation without concordant morphological divergence in the thallose liverwort Conecephalum conicum. Plant Systematics and Evolution 178: 135-151.

Oostendorp C. 1987. The bryophytes of the Paleozoic and the Mesozoic. Bryophytorum Bibliotheca 34. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung. Berlin, Stuttgart, Germany.
Page R.D.M. \& E.C. Holmes 2005. Molecular Evolution. A phylogenetic approach. Blackwell Publishing. Oxford, U.K..
Paton J.A. 1999. The Liverwort Flora of the British Isles. Harley Books, England.

PavLetić Z. 1955. Prodomus Flore Briofita Jugoslavije. Jugoslavenska Akademija Znanosti I Umjetnosti. Zagreb

Pennington R.T. 2000 Introduction. In Scotland R. \& R.T. Pennington (eds). Homology and Systematics. Coding charaters for phylogenetic analysis. The Systematics Association Special Volume. Series 58. Taylor \& Francis, London, New York.

PEROLD S.M. 1989. Spore-wall ornamentation as an aid in identifying the Southern African species of Riccia (Hepaticae). Journal of the Hattori Botanical Laboratory 67: 109-201.
Perold S.M. 1994a. Studies in the Marchantiales (Hepaticae) from southern Africa. 4. Mannia capensis, section and subgenus Xeromannia (Aytoniaceae). Bothalia 24, 1: 9-14.
Perold S.M. 1994b. Studies in the Marchantiales (Hepaticae) from Southern

Africa. 7. The genus Cryptomitrium (Aytoniaceae) and C. oreades sp . nov.. Bothalia 24(2): 149-152.

Perold S.M. 1995. Studies in the Marchantiales (Hepaticae) from Southern Africa. 8. The genus Plagiochasma (Aytoniaceae, Aytonioideae) and six local taxa. Bothalia 25: 13-29.
Perold S. M. 1999. Flora of Southern Africa. Hepaticophyta Part I:
Marchantiopsida. Fascicule 1: Marchantiidae: 64-67. Pretoria.
Petterson B. 1946. Mannia fragrans (Balbis) Frye et Clark. Ett Nvtt Tillskott Till Den Svenska Marchantiacé-Floran. Svensk Botanisk tidskrift 40: 31-54.

Petrov S. 1975. Bryophyta Bulgarica Clavis Diagnostica. Academia Scientiarum Bulgarica. Sofia.

PIIPPO S. 1990. Annotated catalogue of Chinese hepaticae and anthocerotae. The Journal of the Hattori Botanical Laboratory 68: 1-192.
Pocock K \& J.G. Duckett 1984. A comparative ultrastructural analysis of the fungal endophytes in Cryptothallus mirabilis Malm. and other British thalloid liverworts. Journal of Bryology 13: 227-233.
Pocock K \& J.G. Duckett 1985. Fungi in hepatics. The Bryological Times 31: 2-3.
Posada D. \& K.A. Crandall 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 490-500.
Posada D. \& K.A. CRANDALL 2001. Selecting the best-fit model of nucleotide substitutions. Systematic Biology 50(4): 580-601.
POSADA D. \& T.R. BUCKLEY 2004. Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over Likelihood Ratio Tests. Systematic Biology 53(5): 793808.

Postek M.T., Howard K.S., Johnson A.H. \& K.L. McMichael 1980. Scanning electron microscopy. A student's handbook. M.T. Postek \& Ladd Research Industries, Inc.
Potter D. \& J.V. Freudenstein 2005. Character-based phylogenetic Linnaean classification: taxa should be both ranked and monophyletic. Taxon 54(4): 1033-1035
Quand t D. \& M. Stech 2005. Molecular evolution of the trnLuat intron in
bryophytes. Molecular Phylogenetics and Evolution 36: 429-443.
Qiu Y.-L., Cho Y., Cox J.C. \& J.D. Palmer 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394: 671-674.

Qiu Y.-L., Li L., Wang B., Chen Z., Knoop V., Groth-Malonek M., Dombrovska O., Lee J., Kent L., Rest J., Estabrook G.F., Hendry T.A., Taylor D.W., Testa C.M., Ambros M., Crandall-Stotler B., Duff R.J., Stech M., Frey W., Quandt D. \& C.C. Davis 2006. The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences of the United States of America 103(42): 15511-15516.

RADDI G. 1818. Novarum vel rariorum ex cryptogamia Stirpium in agro Florentino collectarum. Decades duae. Opuscoli Scientifici Bologna VI. Decas 2: 355-361.

Randle C.P., Mort M.E. \& D.J. Crawford 2005. Bayesian inference of phylogenetics revisited: developments and concerns. Taxon 54(1): 9-15.

RIDLEY M. (ed.). 2004. Evolution. 3rd edition. Online tutorial. Blackwell Publishing Company Oxford, U.K.
http://www.blackwellpublishing.com/ridley/tutorials/The_idea_of_a_species1.asp
Ronquist F., HuElSEnbeck J.P. \& P. van der Mark 2005. MrBayes 3.1 Manual. Florida State University and University of California at San Diego, USA.

Roth G. 1904-1905. Die Europäischen Laubmoose. W. Engelmann Verlag, Leipzig.

RUSE M. 1998. All my love is towards individuals. Evolution 52(1): 283-288.
Schier W. 1974. Untersuchungen zur Chemotaxonomie der Marchantiales. Nova Hedwigia 25: 549-566.

SChiffner V. 1893. Hapaticae. In: Engler, A. \& K. Prantl (eds). Die natürlichen Pflanzenfamilien. Vol.1. Part 3. Engelmann. Leipzig.

SCHIFFNER V. 1908. Morphologische und biologische Untersuchungen über die Gattungen Grimaldia und Neesiella. Hedwigia 47: 306-320.
SCHILL D.B. 2002. Revision of the liverwort genus Anastrophyllum (Spruce) Steph. (Jungermanniales, Lophoziaceae) in the Sino-Himalayan mountain range. Diplomarbeit. Philipps University Marburg, Germany.

Schill D.B., Long D.G., Moeller M. \& J. Squirrell 2004. Phylogenetic relationships between Lophoziaceae and Scapaniaceae based on chloroplast sequences. In: Goffinet B., Hollowell V. \& R. Magill (eds). Molecular Systematics of bryophytes. Monographs in Systematic Botany from the Missouri Botanical Garden 98: 61-86.
SCHOFIELD W.B. 1985. Introduction to bryology. Macmillan Publishing Company. New York, U.S.
Schofield W.B. 2002. Field Guide to Liverwort Genera of Pacific North America. University of Washington Press. Seattle and London.
SCHUMACKER R. \& P. MARTIGNY 1995. Threatened bryophyte in Europe including Macaronesia, pp. 29-193. In: Stewart, N. F. Et AL. (eds). Red data book of European bryophytes. European Committee for the conservation of bryophytes, Trondheim.
SCHUMACKER R. \& J. VÁŇA 2000. Identification Keys to the Liverworts and Hornworts of Europe and Macaronesia (Distribution and Status). $1^{\text {st }}$ Edition. [Documents de la Station scientifique des Hautes-Fagnes no. 31]
SCHUMACKER R. \& J. VÁŇA 2005. Identification Keys to the Liverworts and Hornworts of Europe and Macaronesia (Distribution and Status). $2^{\text {nd }}$ Edition. Poznan, Sorus ed.
SChÜßler A., SChwarzott D. \& C. Walker 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105(12): 1413-1421.

Schuster R.M. 1953. Boreal Hepaticae. America Midland Naturalist 49(2): 594-614, 665.

Schuster R.M. 1958. Notes on Nearctic Hepaticae VI. Phytogeographical relationships of critical species in Minnesota and adjacent areas of the Great Lakes. Rhodora 60, No. 71 \& No. 717: 209-256.

Schuster R.M. \& K. Damsholt 1974. The Hepaticae of East Greenland from ca. $66^{\circ} \mathrm{N}$ to $72^{\circ} \mathrm{N}$. Meddelelser om Grønland. Bd. 199. Nr. 1. C. A. Reitzels Forlag. København.
SCHUSTER R.M. 1984. Evolution, phylogeny and classification of the hepaticae. In: Schuster, R.M. (ed.). New Manual of Bryology. Volume II. The Hattori Botanical Laboratory. Nichinan, Miyazaki, Japan.
SChUSTER R.M. 1985. Some new taxa of Hepaticae. Phytologia 57 (6): 408-414.

SChUSTER R.M. 1992a. Studies on Marchantiales, I-III. Journal of the Hattori Botanical Laboratory 71: 147-150, 267-287.

SChUSTER R.M. 1992b. The hepaticae and anthocerotae of North Amercia. Volume VI. Field Museum of Natural History, Chicago.
SCHUSTER R.M. 1992c. The hepaticae and anthocerotae of North Amercia.
Volume V. Field Museum of Natural History, Chicago.
Scotland R.W. 1993. Pollen morphology of Contortae (Acanthaceae). Botanical Journal of the Linnean Society 111: 471-504.
Scotland R.W., Olmstead R.G. \& J.R. Bennett 2003. Phylogeny reconstruction: The role of morphology. Systematic Biology 52(4): 539-548.

SHAW A.J. 2000a. Population ecology, population genetics, and microevolution. In: SHAW, A.J. \& B. GOFFINET (eds.) 2000. Bryophyte Biology, Cambridge University Press, Cambridge, U.K.

SHAW A. J. 2000b. Phylogeny of the Sphagnopsida based on chloroplast and nuclear DNA sequences. The Bryologist 103(2): 277-306.
SHAW A.J. 2001. Biogeographic patterns and cryptic speciation in bryophytes. Journal of biogeography 28: 253-261.
Shaw A.J., Werner O. \& R.M. Ros 2003. Intercontinental Mediterranean disjunct mosses:morphological and molecular patterns. American Journal of Botany 90: 540-550.

Shimizu D. \& S. Hattori 1953a. Marchantiales of Japan I. Journal of the Hattori Botanical Laboratory 9: 32-44.

Shimizu D. \& S. Hattori 1953b. Marchantiales of Japan II. Journal of the Hattori Botanical Laboratory 10: 49-55.

Shimizu D. \& S. Hattori 1954. Marchantiales of Japan III. Journal of the Hattori Botanical Laboratory 12: 53-75.

Siller I. 1979. Mannia triandra (Scop.) Grolle in Hungary. Acta Botanica Scientiarum Hungaricae. Tomus 25 (1-2): 139-142.
Simmons M. P. \& H. Ochoterena 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49(2): 369-381.

Simmons M. P., Ochoterena H. \& T.G. Carr 2001. Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Systematic Biology 50(3): 454-462.

Simmons M. P., Pickett K.M. \& M. Miya 2004. How meaningful are Bayesian support values? Molecular Biology and Evolution 21(1): 188-199.
SJÖDIN Å. 1980. Index to distribution maps of bryophytes 1887-1975. II. Hepaticae. Växtekologiska studier 12. Svenska Växtgeografiska Sällskapet. Uppsala.
Söderström L.; URMI E. \& VÁŇA, J. 2002. Distribution of Hepaticae and Anthocerotae in Europe and Macaronesia. Linbergia 27: 3-47.
Soltis D.E \& P.S. SoLTIS 1992. Choosing an approach and an appropriate gene For phylogenetic analysis. In: Soltis, P.S., Soltis, D.E. \& J.J. Doyle (eds) 1992. Molecular Systematics of Plants. Chapman \& Hall. New York.

Stafleu F.A. \& R.S. Cowan 1979. Taxonomic literature. A selective guide to botanical publications and collections with dates, commentaries and types. Volume II: H-Le. Bohn, Scheltema \& Holkema, Utrect, dr. W. Junk b.v., Publishers, The Hague.

Stearn W.T. 2005. Botanical Latin. David \& Charles, U. K. Reprinted by The Timber Press, U. S.
STEPHANI F. 1897. Énumération des Hépatiques récoltées par M. L'abbé Faurie au Japon et déterminées par M. Stephani. Revue Bryologique 1: 26.
Stephani F. 1917. Species Hepaticarum. Vol. VI. Complement au Bulletin de l'Herbier Boissier.

Suire C., Bouvier F., Backhaus R.A., Bégu D., Bonneu M. \& B. Camera 2000. Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polynorpha. Uncovering a new role of oil bodies. Plant Physiology 124: 971-978.

SUSSMAN A.S. \& H.O. HALVORSON 1966. Spores: Their dormancy and germination. Harper \& Row, New York, London, page: 54.

SUZA J. 1938. Denkwürdige Lebermoose des xerothermen Gebietes in der Tschecho-Slowakei. Act Botanica Bohemica 12: 3-69.

SUZUKI Y., GLAZKO G.V. \& M. NEI 2002. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences of the United States of America 99(25): 1613816143.

SWOFFORD D.L. 2002. PAUP: Phylogenetic analysis using parsimony (and other methods). Version 4.0b10. Sinauer, Sunderland, Massachusetts.

Szweykowski J. 1958. Prodomus Florae Hepaticarum Poloniae. Tom XIX (Plantae Cryptogamae). Państwowe Wydawnictwo Naukowe. Poznań.
taberlet P., Gielly L., Pautou G. \& J. Bouvet 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109.
TAMURA K. \& M. NEI 1993. Estimation of the number of nucleotide substitution in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526.

TAYLor J., Hollingsworth P.J. \& W.C. Bigelow 1974. Scanning Electron Microscopy of Liverwort spores and elaters. The Bryologist 77(3): 281327.

Thaithong O. 1982. Fine structure of spore wall in fourteen species of Riccia. Journal of the Hattori Botanical Laboratory 53: 133-146.
UDAR R. 1964. Palynology of bryophytes. In: NAIR, P.K.K. (ed.).Advances in Palynology. National Botanic Gardens Lucknow, India.
UDAR R. \& V.ChANDRA 1965. On two new species of Mannia, M. foreaui Udar et Chandra and M. personii Udar et Chandra, with a note on the genus and its Indian species. Canadian Journal of Botany 43: 147-160.
UDAR R. \& S.C. SRIVASTAVA. 1983. Scanning electron microscopy of spores of Targionia and Cyathodium from India. Journal of the Indian Botanical Society 62: 434-436.
UDAR R. \& S.C. SRIVASTAVA. 1984. Scanning electron microscopy of spores of some Indian liverworts. Journal of the Indian Botanical Society 56: 97103.

UnDERWOOD L.M. 1884. Hepaticae of North America. Illinois State Laboratory of Natural History: 39-43.

VÁÑa J. \& M.S. Ignatov 1995. Bryophytes of Altai Mountains. V. Preliminary list of Altaian hepatics. Arctoa 5: 1-13.
VANDERPOORTEN A. \& D.G. LONG 2006. Budding speciation and neotropical origin of the Azorean endemic liverwort, Leptoscyphus azoricus. Molecular Phylogenetics and Evolution 40: 73-83.
VAN ZANTEN B.O. 1984. Some considerations on the feasibility of long-distance transport in bryophytes. Acta Botanica Neerlandica 33(2): 231-232.
VAN ZANTEN B.O. \& S.R. GRADSTEIN 1988. Experimental dispersal geography of
neotropical liverworts. Nova Hedwigia 90: 41-94.
VEzey E.L., Skvarla J.J. \& S.S. VANDERPOOL 1991. Characterizing pollen sculpture of three closely related Capparaceae species using quantitative image analysis of scanning electron micrographs. In: BLACKMORE, S. \& S.H. BARNES (eds.) 1991. Pollen and spores. Systematic Association Special Volume 44: 291-300. Clarendon Press, Oxford.
Wallroth C.F.W 1840. EXOAION zu Hampe's Prodomus Florae Hercyniae. Ein Sendeschreiben an den Apotheker Hrn. Ernst Hampe zu Blankenburg, von dem Hofrathe Dr. Wallroth. Fortsetzung des Sendeschreibens. Linnaea 14: 686.

WATt I.A. 1985. The principles and practice of electron microscopy. Cambidge University Press, U.K.

Wellman C.H., Osterloff P.L. \& U. Mohiuddin 2003. Fragments of the earliest land plants. Nature 425: 282-285.

Wheeler L.C. 1934. The Genus Grimaldia. The Bryologist 37: 87-88.
Wheeler J. A. 2000. Molecular Phylogenetic Reconstructions of the Marchantioid liverwort radiation. The Bryologist 103(2): 314-333.

Whittemore A.T. 1991. The secondary chemistry of the Marchantiales. Advances in Bryology 4: 75-102.
Wiggington M.J. 2004. Checklist and distribution of the liverworts and hornworts of Sub-Saharan Africa, including the East African Islands. Tropical Bryology Research Reports 5: 1-102.

Wilson R., Gradstein S.R., Heinrichs J., Groth H., Ilkiu-Borges A.L. \& F.A. HARTMANN 2004. Phylogeny of Lejeuneaceae: a cladistic analysis of chloroplast gene rbcL sequences and morphology with preliminary comments on the mitochondrial nad4-2 spacer region. In: Goffinet B., HoLLowell V. \& R. Magill (eds). Molecular Systematics of bryophytes. Monographs in Systematic Botany from the Missouri Botanical Garden 98: 61-86.

Wortley A.H., Rudall P.J., Harris D.J. \& R.W. Scotland 2005. How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Systematic Biology 54(5): 697-709.

Wyatt R. \& L.E. ANDERSON 1984. Breeding Systems in bryophytes. pp. 39-51.

In Dyer A.F. \& J.G. Duckett (eds.). The Experimental Biology of Bryophytes. Academic Press, London.

Xueliang B. \& Z. Zuntian 1996. Flora Bryophytarum Intramongolicarum 1925-1979. Typis Universitatis Intramongolicae.
Yu, Z. Mei-Zhi, W. \& E N. ANDREJEVA 1999. Observations on spore morphology of the liverworts of China. Chenia 6: 63-71.

ZIJLSTRA G. 1989. Progress in nomina conservanda et rejicienda. The Bryological Times 51: 7-8.

ZIJSTRA G. 1990. Report of the Committee for Bryophyta I. Taxon 39: 289-292.

Appendix I. Mannia specimens studied

1. Mannia androgyna (L.) A. Evans

ALBANIA, [Gjirokastër County], Mali I Murzines, kleine Schlucht an der Strasse (Tal) zwischen Gjirokaster und Delvinë, 19 vi 1959, F.K.Meyer 2978 (JE). [Tiranë County], Tirana, 15 km sued-oestlich, c. 350 m , Felsen an der Burg Petrele, 3 vii 1959, F.K.Meyer 3429 (JE).

BOSNIA-HERZEGOVINA, [Herzegovina-Neretva Canton], Herzegowinia, Ravno, lem Tunnelberg gegen Zavala, 10 iii 1912, Latzel 611 (S).

CROATIA, [Dubrovnik-Neretva County], Dalmatica, Ragusa, Lapad, in fissures murorum, 60 m , terra calc., 16 ii 1908, A.Latzel s.n. (JE); Dalmatica, Ragusa, Lapad, in fissures murorum, 60m, terra calc., 10 ii 1908, A.Latzel s.n. (JE); Dalmatia, Ragusa, Lapad, ca. 40m, 11 ii 1910, Latzel 531 (S); Dalmatia, Ragusa, Laprona, in fisouris murorum, 60 m , terra calc., 11 ii 1908, Latzel s.n. (S); Dalmatia, Insel Meleda, südlich Babino Polje, ca. 100m, 16 ii 1908, Latzel 518 (S).

FRANCE, Dep. Pyrenées, Bachboeschung oberhalb Peyrefite,c. 150m, 19 iv 1965, Duell II B (JE). [Auvergne], Balur du chemin de St Vieillerie (Cantal), 28 iv 1897, Heribaud s.n. (BM). [Languedoc-Roussillon], Pyren. Orient., Banyuls, 150-200m, nahe Grotte de Pouade, 1969, van Zanten \& During 5152 (JE); Somène (Gard), 18 ii 83, Heribaud s.n. (BM); Südfrankreich, Béziers, kultiviert im Botanischen Garten in München, K. Grebel s.n. (B74446) (S). [Provence-Alpes-Côte d'Azur], Riviera, bei Biot auf Erde an einem Rinnsal in einer Macchie, iv 1998, Huneck s.n. (JE); Marseille, Favreau s.n. (BM); Alpes Maritimes, env. de Grasse, petit vallon au Nord d'Auribeau, 100m, 26 iii 1951, Vautier 565 (S);Petit vallon au nord d'Auribeau environs de Grasse, Alpes maritime, 100m, sur murets d'oliveraie, 26 iii 1951, Vautier 566 (F, NY, S).
[Rhône-Alpes], Vals, Ardêche, France orientale, 21×1879, Philibert s.n. (S); Ardéche, iv 1878, Philibert s.n. (S).

GREECE, [Attica], Athen, v. Heldreich (BM). Crete, Rethimnon, Ida-Gebirge (Oros Idi), 1 km oberhalb Anogia in der montanen Dornpolsterstufe, Kalk, c. 850m, auf Erde and an Felsen, 3 iv 1972, Duell 104 (JE); Pigaidhari in insula Creta, 29 iii 1921, Samuelsson s.n. (S); Lakki, 7 iv 1921, Samuelsson s.n. (S); Lakki, 7 iv 1921, Samuelsson s.n. (S); Lakki, 7 iv 1921, Samuelsson s.n. (S); NE von Khonos, 6 iv 1921, Samuelsson s.n. (S).

ITALY, Raddi s.n. (BM); Wikström s.n. (S); Herbarium Castromi, Raddi s.n. (B74437) (S); Garovaglis s.n. (B74425) (S); Italia, Nemi I Latium, 18 iii 1948, Uggla s.n. (S). Campania, Napoli, Boccarini s.n. (669104) (BM); Neapel, Nyman s.n. (B74415) (S); South Italy, Amalfi, limestone rocks, iv 1910, Nicholson s.n. (BM); On banks, road from Sarrento to Analfio, Italy, iii 1895, A.W.E. s.n. (NY). Liguria, sulla terra al margine dei campi ad Albissola marina, iii 1865, A. Piccone 368 (JE, NY, BM, S); Sulla terra, ad Albissola marina, i 1865, Piccone 218 (1218) (BM); Liguria genuensis, Arenzana, i 1953, Sbarbaro s.n. (F).
Lombardy, Alfi Lepontine, Rossis.n. (S); Oberitalien, Provinz Como, Sartirana (Brianza), an Felsmauern, 6 i 1899, Artaria s.n. (JE); Prov. Comensis, Lammago, volta presso Como, 8 xii 1898, F.A.Artaria s.n. (E); Provinz Como, Lipomo bei Como, an erdbedeckten Mauern, 26 xii 1899, F.A.Artaria 11 (JE, BM, S, E, NY);Prov. Comensis, Camnago-Valda pres Come, hauts des champs?, 24 ii 1898, Artaria s.n. (NY); Prov. Comensis, Cammago valda pr. Comum, 24 xi 1898, Artaria s.n. (S); Commago-Volta, prope Comum, ca. 350m, 8 xii 1898, Artaria s.n. (S); Como, 7 xii 1898, Artaria s.n. (S); Comenses, iv 1908, Müller s.n. (S); Prov. Como, Sardirana, an Felsmauern, 381m, 6 i 1899, Artaria s.n. (S).

Piedmont, Vercellis, Cesati 65 (BM, NY); Thomas s.n. (669092) (BM). Sardinia, Giaconini s.n. (JE). Sicily, Ätna, de Notaris s.n. (S) Pantellaria, south of Sicily, auf Erde an einer steinigen Nord-exponierten Böschung, 200 m, 18 iii 2003, K.F. Günther s.n. (H4397) (E); Pantellaria, south of Sicily, auf Nord-exponierten Fels-Podesten, 20 iii 2003, K.-F. Günther s.n. (H4398) (E). Trentino-South Tyrol, Meran, Milde s.n. (JE); Meran, Bamberger s.n. (BM); Meran, Tirol, 28 viii 1909, Glowacki s.n. (S). Tuscany, Italia media, ad terram in Trancitauorum salter
prope Tetulas Tiesole, 28 ii 1876, s.n. (NY); Etraria, Pozzolatico ad emenid Florentiae, 16 I 1888, Bacci s.n. (NY); Florence, Italy, Raddi s.n. (E); Florence, Levier s.n. (669103) (BM); In colle Fiscole ad setentr. Florentiae jupta coenobium Franciscanorum, 29 xii 1888, Levier s.n. (BM); Villa Pozzolatico ad merid. Florentiae, 14 i 1888, Levier s.n. (BM); Toscana, suedlich von Florenz (locus classicus!) bei der Villa Pozzolatico auf blosser Erde und auf alten Mauern, 14 i 1888, E. Levier 12 (JE, BM, NY); Florenz, in muro pr. Villam Pozzolatus, ad merid. Florentiac, 16 i 1888, Levier s.n. (S); Florenz, Fiesole, neben dem Fransiskanerkloster Belvedere, 10 iii 1906, Levier s.n. (S); Toscana, Etrurien, juxta villam Pozzolatico, ad merid. Florentiae in murorum fissures, 14 i 1888, Levier s.n. (H4333) (JE); Juxto villam Pozzolatico, ad merid. Florentiae, 14 i 1888, Levier s.n. (B74445) (S); Etrusia, juxto villam Pozzolatico ad merid. Florentia, 14 i 1888, Levier s.n. (B74436) (S); Toscana, com Korstik, Herb. H.Schmidt Freiburg, s.n. (JE). Veneto, in rimis rupium cum Opuntia nana, supra Montegrotto e collibus Euganeis, 20 ii 1879, Massalongo 97 (BM, F, NY); Montegrotto, Massalongo s.n. (BM); ad rupes in collibus Euganeis supra pagum Montegretto, ii 1879, Massalongo s.n. (S); ad terram muscosam in Euganeis circum Padova, Vere 1876, Massalongo 9 (BM, NY).

MONTENEGRO, Dalmatia, Borche-Baošie, Mauer oberhalb des Mogilicafalles, 31 xii 1916, Latzel 438 (S); Dalmatia, Borche- Baošie, bei einer Quelle, oberhalb Sa. Nicola, 6 viii 1916, Latzel 443 (S); Dalmatien, Borche- Baošie, Stützmauer oberhalb des Mogilicafalles, 31 xii 1916, Latzel 445 (S); Dalmatia, BorcheBaošie, Stützmauer nächst des Mogilicafalles, 31 xii 1916, Latzel 201 (S); Dalmatia, Paštrovići, Bachmauer bei Rafailović, 19 iv 1911, Latzel 439 (S). [Herceg Novi Region], Sued-Dalmatien, Bocche di Cattaro, Gartenmauer laengs der Kueste zwischen Castelnuovo und Savina, Ende iii 1904, K.Loitlesberger 1186 (NY, S, E); Dalmatia, ad vinearum muros prope Castelnuovo ditionis "Bocche di Cattaro", iv (1830?), C.Loitlesberger 1261 (JE, BM, NY); Dalmatia, Borche-Castelonova, ca. 50m, Terrassenmauer in Savina, 21 xi 1916, Latzel 446 (S); Dalmatia, Borche-Castelonova, Südhang des Podi-Zalanika-Rückens, ca. 150m, 15 ii 1915, Latzel 442 (S); Dalmatia, Borche-Castelnova, nächst dem Celabach bei Podi, ca. 200m, 4 iv 1915, Latzel 122 (S); Dalmatia, BorcheKumbur, Hohlweg nächst der serb. Kirche, 11 iv 1915, Latzel 202 (S); Dalmatia,

Borche-Kumbur, Stützmauer oberhalb der Kirche, 1 ii 1915, Latzel 206 (S); Dalmatia, Borche-Kumbur, an einer Terrasse oberhalb K., 8 i 1917, Latzel 208 (S); Dalmatia, Borche-Kumbur, Hohlwegrandes oberhalb K., 25 xii 1916, Latzel 440 (S); Dalmatia, Borche-Kumbur, Waldplatz oberhalb der Kirche, 1 ii 1915, Latzel 444 (S); Dalmatia, Borche-Kumbur, Mauer oberhalb der Kirche, 1 ii 1915, Latzel 437 (S); Dalmatia, Borche-Zelanika, beim Wasserfall jenseits der Schiessstätte im Kutital, ca. 200m, 15 xii 1914, Latzel 153 (S); Dalmatia, Borche-Zelenika, Katikal zwischen Sa. Fure und Rotplattestal?, ca. 140m, 4 i 1915, Latzel 441 (S); Dalmatia, Borche-Zelenika, bei Wasserfall oberhalb der Schiessstätte, ca. 200m, 25 xii 1914, Latzel 209 (S).

PORTUGAL, Algarve, Rocha de Pena, W of Salir, c. 300 m , stony limestone slope on old cultivation terraces, 28 iii 1989, Long 16008 (E); Caldas de Monchique, wooded valley below town, c. 230 m , on crumbling rocky sunny bank, 27 iii 1989, Long 15958 (E); Caldas de Monchique, village square, c. 270 m , on wall overlooking square, 27 iii 1989, Long 15940 (E); Monchique, fissures terreuses des murettes en blocs siliceux (syénite), ca. 470m, Allorge 131 (F); Caldas de Monchique, on rocks by the stream from Monchique, 28 iii 1954, A. C. Crundwell 184 (E); Monchique, on side of wall, 25 iii 1954, A. C. Crundwell 67 (E). Azores, San Jorge, Urzelina, 220 ft ., on rocky ground, 27 vii 65 , Smookler 2 (BM).
[Centro Region], Coimbra, Moller s.n. (BM). Madeira, Rosario, above Sao
Vincente, c. 360 m , open valley slopes; on damp vertical rock face by road, 22 i 1994, Long 25170 (E); Serra de Agua, c. 520 m , valley with open pine forest; on damp cutting by road, 22 i 1994, Long 25151 (E); Between Serra de Agua and Vinhaticos, below Pousada dos Vinhaticos, just below sight-seeing spot by road, c. $630 \mathrm{~m}, 32^{\circ} 43^{\prime} 52.9^{\prime \prime} \mathrm{N}, 17^{\circ} 01^{\prime} 32.7^{\prime \prime} \mathrm{W}$, on damp rock cutting, 24 i 2003 , D.B.Schill \& C.Lobo $34(\mathrm{E}) ; 3.5 \mathrm{~km}$ above Ribeira Brava, steep rocky river valley, c. 140 m , on shady volcanic cliffs by road, 22 i 1994, Long 25144 (E); Miradouro da Ribeira Brava, $109 \mathrm{~m}, 32^{\circ} 40^{\prime} 10.2^{\prime \prime} \mathrm{N}, 17^{\circ} 03^{\prime} 47.2^{\prime \prime} \mathrm{W}$, on soil on exposed rock, 24 i 2003 , D.B.Schill \& C.Lobo 30 (E); Miradouro da Ribeira Brava, $112 \mathrm{~m}, 32^{\circ} 40^{\prime} 12.4{ }^{\prime \prime} \mathrm{N}$, $17^{\circ} 03^{\prime} 43.9^{\prime} \mathrm{W}$, on soil next boulder, very exposed with hardly vegetation cover, 24 i 2003, D.B.Schill \& C.Lobo 31 (E).; Ca. 3km above Ribeira Brava, steep rocky river valley, next to road, opposite waterfall and big supermarket, 121 m , $32^{\circ} 41^{\prime} 39.2^{\prime \prime} \mathrm{N}, 17^{\circ} 02^{\prime} 47.6^{\prime \prime} \mathrm{W}$, on steep vertical volcanic rock, 24 i 2003 , D.B.Schill
\& C.Lobo $32(\mathrm{E})$; Between Ribeiro Frio and Faial, 1 km below Faja turn-off of road cutting open pine forest on steep rocky slope, c. 400 m , on soil covered rocks, 20 i 1994, Long 25074 (E); Ribeira do Porto Novo above Rochao, terraced cultivated valley, c. 750 m , on rocks by road, 23 i 1994, Long 25182 (E); Pico de Facho, next to path on way up, $324 \mathrm{~m}, 32^{\circ} 43^{\prime} 26.6^{\prime \prime} \mathrm{N}, 16^{\circ} 45^{\prime} 32.6^{\prime \prime} \mathrm{W}$, on soil on exposed rock with Globularia salicina and Opuntia tuna, S-exposure, 22 i 2003, D.B.Schill \& C.Lobo 7(E); Pico de Facho, $333 \mathrm{~m}, 32^{\circ} 43^{\prime} 27.1^{\prime \prime} \mathrm{N}, 16^{\circ} 45^{\prime} 31.7^{\prime \prime} \mathrm{W}$, on soil on exposed rock, South facing, 22 i 2003, D.B.Schill \& C.Lobo 11 (E); Porto Santo I., Pico de Facho, 19 I 1954, Nóbrega s.n. (S); Encumerada, below Restaurant of Encumerada to Jardim da Serre, just above car turning place by road, c. 990 m , on shady steep rock cutting, 24 i 2003, D.B.Schill \& C.Lobo 35 (E); Between Encumerada and Pousada do Vinhages, above hotel in road turning, c. 860 m , on steep rock cutting, 24 i 2003, D.B.Schill \& C.Lobo 36 (E); Ponta do Sol, Miradouro do Madaleno do Mar, $374 \mathrm{~m}, 32^{\circ} 42^{\prime} 23.1^{\prime \prime} \mathrm{N}, 17^{\circ} 08^{\prime} 24.3^{\prime \prime} \mathrm{W}$, on dry wall, S-exposed, 24 i 2003, D.B.Schill \& C.Lobo $37(\mathrm{E})$; Ponta do Sol, Moledos, Miradouro do Madalena do Mar, $377 \mathrm{~m}, 32^{\circ} 42^{\prime} 25.4^{\prime \prime} \mathrm{N}, 17^{\circ} 08^{\prime} 21.2^{\prime \prime} \mathrm{W}$, on exposed rocks, S-exposure, 24 i 2003, D.B.Schill \& C.Lobo $38(\mathrm{E})$; Camara de Lobos, Cabo Girão, 100 m away from Miradouro by road, open Eucalyptus/Pine/Mimosaforest, $629 \mathrm{~m}, 32^{\circ} 39^{\prime} 31.6^{\prime \prime} \mathrm{N}, 17^{\circ} 00^{\prime} 16.0^{\prime \prime} \mathrm{W}$, on soil on large S -facing boulder, 24 i 2003, D.B.Schill \& C.Lobo 39 (E); Bäckravin mellan Fonte och Choupana ovanför Funchal, 26 iv 1952, Gillis 44 (S). [Norte Region], Lusitania, Oporto, 1880, Newton s.n. (S); Caminha, Minho, murettes en blocs granitiques, ca. 25 m , Allorge 151B (F) ; Lusitamia, Oporto, 1880, Newton s.n. (BM).

SPAIN, [Andalucia], Malaga, Artola, bäckravin, 3 v 1960, Arnell s.n. (S); Granada, on damp rocks in the Genil? Valley, towards the Sierra Nevada Hotel, 12 v 1926, Ellman \& Sandwith 832 (BM); Granada, Maitena, ca. 1000m, 6 v 1960, Arnell s.n. (S); By road, Berchiules to Mecina Bombaron, s. side Sierra Nevada, Prov. Granada, 20 v 1977, Wallace s.n. (BM). Canary Islands, Gran Canaria, La Calzada, el barranco, 1 iii 1959, Arnell s.n. (S); Cruz de Tejeda, 1400m, 10 iii 1959, S.Arnell s.n. (H4335) (JE); Vega San Matteo, 13 iii 1959, Arnell s.n. (S); Vega San Matteo, ca. 1000m, 13 iii 1959, Arnell s.n. (S); Tafira Alta, Montaxna de Tafira, berghäll, ca. 450m, 20 iii 1959, Arnell s.n. (S); Tafira Alta, bergvägg vid Los Frailes, 20 iii 1959, Arnell s.n. (S); Tafira Alta, Los

Frailes, 12 iii 1959, Arnell s.n. (S); Montana de Tafira, 4 iii 1959, Arnell s.n. (S); Montana, de Tafira, 5 iii 1959, Arnell s.n. (S); Lagunetas, 10 iii 1959, Arnell s.n. (B74505) (S). Canary Islands, La Palma, Roadside 2 km SW of Los Sauces, c. 250 m , on soil on sloping rocks, 30 xi 1978, Long 7256 (E); Santa Cruz, Brena Alta road, c. 20 m , shaded soil on roadside rocks, 29 xi 1978, Long 7227 (E); Side of track 2 km north of El Granel, $410 \mathrm{~m}, 13$ xi 1990, A. C. Crundwell 1257 (E). Canary Islands, Tenerife, Krause s. n. (669264) (BM); Laguna, ad rupes, xii 1844, Bourgeau 295 (BM); Bougeaux c (BM); Aguamansa, Oratora valley, c. 1000m, dry rock crevices in barranco by village, 31 iii 1977, Long 5698 (E); Above Los Organos, Aguamonsa, Barranco, in pine forest, c. 1100m, on rock face, 6 iv 1977, Long 5890 (JE); Laguna, ad rupes, Bourgeau 299 (NY); Adeje, Boco del Infierno, 23 iii 1962, Stork s.n. (S); Mercedes, 27 iii 1958, Arnell s.n. (S); El bosque de Mercedes, 18 iii 1958, Arnell s.n. (S); Div. Buenavista del Norte, Montana del Taco, 2 km E of Buenavista, on soil on N rim of crater, c. 340 m , GR. c.323398, 6 iv 1978, C.C. Townsend 78/577 (E); 2 km E of Puerto de la Cruz, c. 30 m , dry rock crevices in small barranco, 3 iv 1977, Long 5808 (E); Prov. Santa Cruz, on dry, friable-surfaced rocks by the road to Bailadero just outside San Andres, 7 km NE of Santa Cruz, c. $50 \mathrm{~m}, 27$ iii 1978, C.C. Townsend 78/188 (E); Div.Puerto de la Cruz, on dry soil beneath a rock, Barranco de la Arena, just E of Puerto de la Cruz, GR. c.510443, 1 iii 1978, C.C. Townsend 78/331 (E). Catalonia, Serria Barrimona, iv 1873, Bolós s.n. (S). Extremadura, In anpeatribus? de serra de Monsanto Extrema. Hepertissima?, iii 1840, Welwitsch 22 (NY); Inter prommenosis aharmagne plantarum cuspitas in montveis aficois, prope Malhache Extremadura, Welwitsch 23 (NY).

SWITZERLAND, Ticino, Locarno, auf Mauern, 1857, s.n. (BM); Locarno, in mur., 1818, Herbarium Hampe, s.n. (669097) (BM); Ad Verbanum p. Locarno, Duthys.n. (NY); Route Morcote-Melide, de Preabella a la bifurcation pour Vicomorcote, 290m, 1951, S. Vautier 620 (JE, S); Route Morcote-Melide, entre Morcote et la ville Ersilia, 290m, 11 iv 1951, Vautier 602 (S, F).

TURKEY, Adana Province, dist. Bahçe (N. Amanus), Dumanli Dağ above Haruniye, c. 800m, moist bank, 19 iv 1957, Davis \& Hedge 26822 (E). Antalya
Province, in rock-crevice near the sea at Kaş, 11 iv 1972, Crundwell, Nyholm \&

Saenger 718a/72 (S). Giresun Province, on moist rock cave on hill in the town Giresun, ca. 100m, 4 xi 1974, Engelmark \& Nyholm L54, 634/74 (S). Izmir Province, earthy bank 10 km west of Ödemis, $50 \mathrm{~m}, 7 \mathrm{iv} 1971$, E. Nyholm \& A. C. Crundwell 622 (E); East side of Mt Yamanlar, c. 50 m , moist soil among Proterium spinosum, 21 iv 1970, Elsa Nyholm 300 (JE); Lydia, Sinus, Smyrnaeus supra Thomaso, 1 v 1906, Bornmüller s.n. (S); Lydia, Smyrna, prope pagum Thomaso, 1 v 1906, J.Bornmueller 9973 (E, JE, BM, S).

ALGERIA, Trabut s.n. (Herbarium Stephani) (725092) (BM);1848, Montague 3 (B74432) (S). [Blida Province], Blida c., 26 iii 1908, Trabut s.n. (S).

CAPE VERDE, Santo Antao Island, inside Cova, ca. 1200m, 4 xi 1958, Byström H35 (S); Santo Antao Island, insideCova, ca. 1200m, 1958, Byström H26 (S).

NAMIBIA, 1963, Leippert 5349/WIN85 (JE); 1957, Volk WIN77 (JE); Nevdamm, Glimmerschieferüberhänge, schattig, pH 7.8 , Carpophore bis 25 mm lang, in Rasen, 14 iv 1974, Volk 948/WIN 63 (JE, BM); SW-Afrika, am Rivier bei Nevdamm, Glimmerschiefer-Ueberhaenge, (duftend), 11 xii 1973, Volk 685 (JE); SW-Afrika, an Rivier Nevdamm, Glimmerschiefer-Ueberhang, 11 xii 1973, Volk 686 (JE); Frauenstein, Glimmerschiefer-Ueberhang, Ufer, schattig, wohlriechend, 3 iii 1974, Volk 862 (JE). Hardap Region, near Rehoboth, next to road C24, $1475 \mathrm{~m}, 23^{\circ} 21^{\prime} 18.8^{\prime \prime} \mathrm{S}, 17^{\circ} 4^{\prime} 4.7^{\prime \prime} \mathrm{E}$, on rock, 21 iii 2004, D.B.Schill \& J.Clarke 138 (E). Khomas Region, South-West Africa, Windhoek 77, 23 ix 1957, Volk 11400 (BOL); South Africa, Windhoek, 1 xi 1971, Volk 00554 (BM); SouthWest Africa, Windhoek 68, 14 iv 1974, O.H.Volk 00948 (BOL); Matchless Mine, Khomas, Glimmerschiefer-Felsrippe, haeufig, 30 xi 1973, Volk 677 (JE); Windhoek, on road to Matchless Mine, little river valley, on banks, 1910 m , $22^{\circ} 40^{\prime} 31.7^{\prime \prime} \mathrm{S}, 16^{\circ} 51^{\prime} 4.8^{\prime \prime} \mathrm{E}$, on soil under big boulder, 10 iii 2004, D.B.Schill \& J.Clarke 118 (E); Windhoek, on road to Matchless Mine, little river valley, on banks, $1889 \mathrm{~m}, 22^{\circ} 40^{\prime} 37.3^{\prime \prime} \mathrm{S}, 16^{\circ} 51^{\prime} 3.7^{\prime \prime} \mathrm{E}$, S-facing, in crevice by stream bed, 10 iii 2004, D.B.Schill \& J.Clarke 121 (E); Windhoek, on road to Matchless Mine, little river valley, on banks, $1889 \mathrm{~m}, 22^{\circ} 40^{\prime} 37.4^{\prime \prime} \mathrm{S}, 16^{\circ} 51^{\prime} 3.3^{\prime \prime} \mathrm{E}$, on soil, 10 iii 2004, D.B.Schill \& J.Clarke 122 (E). [Omaheke Region], 10km östl. Windhoek, Tälchen an der Strasse nach Gobabis, schattige Glimmerschiefer- Überhänge
und -Treppen, Boden sehr humos, dunkel, Staubboden, 1974, Volk 905 (JE); Otjozondjupa Region, auf Granitzersatz, schattige Überhänge, Farm Quelldamm bei Kalkfeld, Otjiwarongo Nr.110, 1973, Volk 467 (JE); 10km westlich Okahandja, Granitkuppe, Granitblockhalde, Ueberhaenge, SW-exponiert, 17 ii 1974, Volk 828 (JE); 10 km west of Okahandja (B2), prominent granite hill next to rest stop, $1407 \mathrm{~m}, 21^{\circ} 57^{\prime} 33.6^{\prime \prime} \mathrm{S}, 16^{\circ} 50^{\prime} 29.7^{\prime \prime} \mathrm{E}$, under boulder on thin soil layer on granite stone, 11 iii 2004, D.B.Schill \& J.Clarke 124 (E); 10 km west of Okahandja (B2), prominent granite hill next to rest stop, $1411 \mathrm{~m}, 21^{\circ} 57^{\prime} 33.3^{\prime \prime} \mathrm{S}$, $16^{\circ} 50^{\prime} 30^{\prime \prime} \mathrm{E}$, on granite, 11 iii 2004, D.B.Schill \& J.Clarke 125 (E); Waterberg Plateau Park, on trail to viewpoint, rocky hillside, $1567 \mathrm{~m}, 20^{\circ} 30^{\prime} 15.4^{\prime \prime} \mathrm{S}$, $17^{\circ} 14^{\prime} 33.6^{\prime \prime} \mathrm{E}$, on soil under stone, 11 iii 2004, D.B.Schill \& J.Clarke 127 (E).

SOUTH AFRICA, SW-Afrika, sine loco speciali, 1974, Volk s.n. (H1256) (JE). Free State Province, Oranje Frijstaat, Bloemfontein, 29×1963, K.H. Rechinger 5369 (B74548) (S); Botanical Garden Bloemfontein, not cultivated part on hill, with stomata, 4 xii 1980, O.H.Volk 81/062 (BOL); Eaglesnest, Bloemfontein, 5.3. 29, Potts 1266 (F); O.F.S., Prov. Trompsberg, around boulders, base on S. aspect of outcrop, Ranoid Veld, 4 mls S of Trompsberg, 14 ii 1955, E. Schelpe 5282 (BOL). Gauteng Province, Pretoria, amongst rocks, Magaliesberg range Wanderboom, 20 iv 1929, M.Bosman 199 (NY, F). [Kwa Zulu-Natal Province], South-East Africa, Mountains near Mooi River, viii 1880, W. Nelson 339 p.p. (BM). [Mpumalanga Province], Transvaal, Prov. Lydenberg, 15 miles N.E. of Lydenberg, D.E.Schelpe 5906 (BOL). [Northern Cape Province], Kap-Provinz (an der Grenze zu Namibia), Augrabies-Faelle des Oranje, Granitfelsen, Ueberhaenge, pH 5.8, 29 vi 1973, Volk 554 (JE); Cape Province, Kuruman division, just east of Brethy Mine, 5500ft., in damp rock crevices and under overhanging rocks in kloof, 3 vii 1961, E.G.H.Oliver 1450 (BM, S, BOL); Kanoo, Three Sisters, D.E.Schelpe 5860 (BOL). [North-West Province], Magalis-Gebirge (Transvaal), Rustenburgklook (Schlucht), 28 xi 1954, B.J.Cholnoky (B74545) (S). [Western Cape Province], Kap-Provinz, Montagu, Cogmans Kloof, 19 ix 1951, S.Arnell 791 (JE, S, BOL); Kap-Provinz, Montagu, Cogmans Kloof, 19 ix 1951, S.Arnell 795 (F, JE, BOL); Cape Province, Montagu, Cogmans Kloof, 19 ix 1951, S.Arnell 798 (BOL); Cape Provinz, Montagu, Kam Kloof, 20 ix 1951, S.Arnell 825 (S); Cape Provinz, Montagu, Cogmans Kloof, 19 ix 1951, S.Arnell 806 (S);

Clanwilliam, on Farm Mertenhof, Bidouw Valley, on slope facing east below a Bushman Cave, 1500 ft., 24 vii 1961, E.G.H. Oliver 1465 (BOL).

TANZANIA, Uluguru Mountains, 1480 m , on dry open rocks near Hululu Falls, S of Bunduki, 25 iii1973, T. Pocs 6902/A (JE).

ZIMBABWE, S.Rhodesia, Khami Ruins, near Bulawayo, locally common on shelterd earthly ledges, 5000 ft., 30 vi 1953, E.Schelpe 3926 (BM, BOL).

CYPRUS, near Ayia, on the road from Kannaviou to Stavros, western Troodos, 21 vi 2003, T. L. Blockeel s.n. (E).

PROBABLY ERRONEOUS LOCALITIES: Brasil, 1874, Raddi s.n. (BM); Brasil, Raddi s.n. (BM).

UNKNOWN LOCALITIES: Wasserfall, Kumakala, 24, s.n. (669239) (BM); In agris olyvifonervis?, Welwitsch s.n. (NY); Veri 1844, Messano s.n. (S); Herbarium Lehmann s.n. (B7422) (S); Savis.n. (B74423) (S); Savi s.n. (B74421) (S); Ex-Herbarium A. de Mercey (669090) (BM).

2. Mannia sibirica (Müll.Frib.) Frye \& L.Clark

FINLAND, [Finland Proper Region], Varsinais-Suomi, Velkua, Pohjakylä, Mustaluoto, in calcareous rock crevice, 29 v 1962, T. Laine s.n. (S).

NORWAY, [Buskerud County], Drammen, Mai 1881, N. Brylen s.n. (B74915) (S).

RUSSIA, Siberia, [Krasnoyarsk Territory], Jenisei, inter Krasnojarsk, Jenisseisk prope pagum Makokovo, 18.6.1876, H. W. Arnell s.n. (B24528) (S); Jenissei, inter Krasnojarsk et Jeniseisk, prope pagum Makokovo, 18 vi 1876, H.W.Arnell s.n. (H1306) (JE); Jenisei, inter Krasnojarsk et Jeniseisk, prope pagum Makokovo, 18 vi 1876, Arnell s.n. (B24527) (S); Jenisei, Makakovo, 18 vi

1876, Arnell s.n. (B24526) (S); Jenisei, Futjanova, 23 ix 1876, Arnell s.n. (B74776) (S); Jenisei, Fatjanova, $64^{\circ} 5^{\circ}$ n.lat., 25 ix 1976, Arnell s.n. (S); Jenisei, Arnell s.n. (BM); Jenisei, Futjanova, 23 ix 1876, Arnell s.n. (B74778) (S).
U.S.A., Alaska, [North Slope Borough]: Arctic Alaska, Umiat and vicinity, Colville River, $69^{\circ} 22^{\prime} \mathrm{N}, 152^{\circ} 08^{\prime} \mathrm{W}$, in wet tundra and on ridges, on soil, steep south-facing ridge, 30 vi - 6 vii 1974, W.C. Steere \& Z. Iwatsuki 74-29 (JE, NY); Colville River, $69^{\circ} 22^{\prime} \mathrm{N}, 152^{\circ} 08^{\prime} \mathrm{W}$, on soil, steep south-facing ridge, in wet tundra and on ridges, 30 vi -6 vii 1974, Steere, Inoue \& Iwatsuki 74-29 (NY). Iowa, Allamakee County: 3 miles south of Harpers Ferry, over moist thin soil on face of bluff, with Woodsia obtusa and Reboulia, 14 v 1950, Schuster 18059 (F). Michigan, Machnide Kelt., on limestone cliff, 6 vii 99, Harper s.n. (1040238)(F). Minnesota, Houston County: 3.4 miles S of Brownsville, over rather dry, exposed, east-facing, soil-covered sandstone ledges, with mature carpocephala, pH 7.3 , spores $55-60 \mathrm{u}$ at time of dehiscence of capsule, thallus sections with ventral tissue high, keeled, ventral scales with oil-cells, 31 v 1949, Schuster 14326 (F); 3 miles N of Reno, on thin sandy calcareous soil over talus and crevices at bases of east facing bluffs, occurring with Mannia rupestris, 14 v 1947, Schuster 6754 (F). Lake County: N-America, Carubou Falls, 6 vii 1926, G. H. Conklin 2554 (F). Wabasha County: two miles S of Lake City, on bluff, 19 v 1950, Schuster s.n. (1133340)(F); 1 mile south of Lake City, on moist sandstone bluffs, in shade, 15 v 1947, Schuster 13516 (F); 1 miles S of Lake City, on thin soil over E-facing calcareous bluffs, with immature carpocephala, occurring with Cryptogramma stelleri, Corydalus areus, near Clevea hyalina and Mannia rupestris, Conocephalum, 9 v 1948, Schuster 4672 (F). Washington County: Nearctic, over sandstone wall, about 1 mile s. of Stillwater, occurring with Pellaea glabella, 11 vi 1950, Schuster 18130 (NY, F); Along narrow cut going into St. Croix River, circa 3.5 miles N of Stillwater, over moist thin soil, mature carpocephala and spores, 11 vi 1950, Schuster 18136 (F); Over sandy, moist soil over sandstone cliffs, 3 miles north of Stillwater, with mature carpocephala, v 1947, Schuster 14051 (F). Winona County: Winona, wet ground, 19 vi 1888, Holzinger s.n. (268657) (NY); Over crest of sandstone bluff, below "The needle", near S.Lake Winona, Winona, occurring with carpocephala and spores (rare), with Preissia quadrata, 7 v 1948, Schuster 17254 (F); Over friable moist, sunny
sandstone ledges, along Whitewater River in Whitewater State Park, capsules, Spores areolate, 52-58-60u, Antheridial disks terminal, 15 v 1950, Schuster 18009 (JE, NY, S, F); Whitewater State Park, across Whitewater River, from picknick area, over moist, rather exposed, friable sandstone cliffs and ledges, pH7.8, a few carpocephala, spores and capsules on slide, 29 v 1949, Schuster 14225 (F); Whitewater State Park, over moist, exposed friable sandstone cliffs (Jordan sandstone), at end of trail 5, pH , two measurements, 7.6 and 7.9, occurring with Preissia quadrata, 30 v 1949, Schuster 14315 (F); Whitewater State Park, over moist sandstone bluff, along Whitewater R., 15 v 1950, Schuster 18009b (F); Whitewater State Park, over Jordan sandstone along Whitewater River, near end of trail 5, with carpocephala, 17 v 1949 , Moore 19958 (F); Whitewater State Park, over exposed, somewhat sunny, relatively dry rapidly disintegrating, friable sandstone faces of cliff along Whitewater River, pH7.6, occurring with Preissia commutata intermingled, with carpocephala mature, 29 v 1949, Schuster 14227 (F); Witewater R. in Whitewater State Park, over moist sunny sandstone, with M. triandra, 15 v 1950, Schuster 18009a (1124472) (F).

CANADA, Yukon Territory, along Duncan Creek near Keno Hill about 30 miles northeast of Mauo, ledge on bank, common, 5 vii 1949, Calder \& Billard 4265 (NY). On earth at the summit of the Rocky and Selkirk Mountains, 7500 ft ., Underwood Herbarium, s.n. (268874) (NY).

3. Mannia californica (Gottsche ex Underw.) L.C.Wheeler

AUSTRIA, Styria, Central Alps, Knittelfeld, Rachau, Rachaugraben, next to path, c. 800 m , on rocks in crevices, S-W- exposure, 23 vii 2003, D.B.Schill, H.Köckinger \& U.Müller 77 (E), Central Alps, Knittelfeld, Rachau, Rachaugraben, next to path, c. 800 m , on rocks in crevices, $\mathrm{S}-\mathrm{W}$ - exposure, 23 vii 2003, D.B.Schill, H.Köckinger \& U.Müller 78 (E).

FRANCE, [Rhône-Alpes], Ardèche, Banne, Pont du Granzon, fissures de tables calcaires, 21 iii 2005, V. Hugonnot s.n. (E); France, Ardèche, Labeaume,

Peyroche, dans les joints des couches calcaires, en position verticale, sur des terrasses surplombant le cours de la Beaume, avec Timmiella, Weissia, Reboulia, $150 \mathrm{~m}, 18$ iv 2004, Hugonnot s.n. (E).
U.S.A., Arizona, [Gila County]: Sierra Ancha, 1550m, Parker Creek Experimental Forest, natural drainages, oak chaparral zone, common on quartzite ledges, 1937, Little 4507 (JE). Mohave County: Pipe Spring, 4500ft., red sandstone ledges, very dry, 29 v 1944, Flowers 2729 (NY). [Pima County]: Molino Basin, Sta. Catalina Mts., Coronado Natl. Forest, above Tucson, 4300 ft , thin soil over rocks, oak woodland zone, 22 iii 1979, Schuster 79-211 (F); Mt. Lemon, 1 km above Molino Canyon, Sta. Catalina Mts., in quebrada, soil over exposed rocks, pine-oak zone, 27 xii 1981, Schuster 81-302 (F). [Santa Cruz County]: Pajarita Mountains, 12 miles west of Nogales, 19 iii 1941, Gross s.n. (NY); Sycamore Canyon, on moist shaded place, 29 viii 1938, Goodding 131 (NY). California, Fresno County: Tollhouse Road between Tollhouse and MT-Rest Guard Station, 2800ft. (840m), soil, base of granite outcrop, 26 iv 1980, T. Doyle 2744 (NY, F). [Los Angeles County]: Pasadena, West?side, 4000ft., trail to Wilson's Peak, iv 1893, McClatchie s.n. (NY); Pasadena, 21 iv 1893, McClatchie \#316 (NY); Trail to Wilson's Peak, at 4000ft., McClatchie s.n. (575651) (NY). [Mariposa County]: Yosemite valley, 1866, Bolander s.n. (575639) (NY); Yosemite valley region, 1896, Cooke Jr. s.n. (5755653) (NY); Bolander s.n. (575640) (NY); Bolander s.n. (575647) (NY); 1864-70, Bolander s.n. (575648) (NY). Tulare County: Sequoia National Park, below Amphitheater Point, $36^{\circ} 31^{\prime} 43^{\prime \prime} \mathrm{N}, 118^{\circ} 46^{\prime} 30^{\prime} \mathrm{W}$, c. 1190 m , steep wooded hillside, on wet banks by small waterfall, 4 iv 1998, Long 27577 (E). North Carolina, Jackson County: Cedar Cliff Mountain, East Fork of Tuckaseegee R., ca. 4600 ft., along NC rte 281, thin soil over partly sunny dry ledges, with Cheilanthese lanosa, occurring with Reboulia hemispherica, sterile, 1 ix 1953, Schuster 29498 (F); Cedar Cliff Mt., East Fork of the Tuckaseegee River, exposed rock outcrop, 5 vi 1951, Anderson 9896 (F); Cedar Cliff Mt., East Fork of the Tuckaseegee River, along Rte 281, thin soil over partly sunny dry ledges, occurring with Cheilanthes lanosa and tomentosa, Woodsia obtusa, Talinum teretrifolium, 1 ix 1953, Schuster 29498a (F). [Polk County]: Tryon, N.C., White Oak Mountain, on earth among rocks, 5 iv 1929, Evans s.n. (268682), F). Tennessee, Polk County: 300m, crevices of
siliceous bluff, 1956, Sharp \& Robinson 563 (JE, NY, F); Moist crevice on shale cliff, 19 iii 1939, Sharp s.n. (268687) (NY). Texas, Gillespie County: Enchanted Rock, growing on thin soil over granite, 18 ii 1961, Ellison 151 (268765) (NY).

CANADA, [British Columbia], on earth at the summit of the Rocky and Selkirk Mountains, 7500 ft., Underwood Herbarium, s.n. (268874) (NY).

LESOTHO, Maseru District, above the Liphiring River near the village of Mahlabatheng, 7 km north-west of Roma, Maseru District, $1600 \mathrm{~m}, 29^{\circ} 25^{\prime} \mathrm{S}$, $27^{\circ} 40^{\prime} \mathrm{E}$, shaded by shrubs under a low sandstone ledge, E-facing, 24 iv 1997, J.G.Duckett \& W.Matcham 5149a (E).

NAMIBIA, Frauenstein, Glimmerschiefer, Ueberhang Ufer, schattig, 16 ix 1974, Volk 862 (JE). Khomas Region, Windhoek, 10 km E of Windhoek on road to Gobabis, little valley, overhang, $1788 \mathrm{~m}, 22^{\circ} 34^{\prime} 26.4^{\prime \prime} \mathrm{S}, 17^{\circ} 10^{\prime} 4.8^{\prime \prime} \mathrm{E}$, on soil on ledge below rock, 9 iii 2004, D.B.Schill \& J.Clarke 112 (E); Windhoek, 10 km E of Windhoek on road to Gobabis, little valley, overhang, $1788 \mathrm{~m}, 22^{\circ} 34^{\prime} 26.8^{\prime \prime} \mathrm{S}$, $17^{\circ} 10^{\prime} 4.5^{\prime \prime} \mathrm{E}$, on ledge on rocky bank, 9 iii 2004, D.B.Schill \& J.Clarke 114 (E); Windhoek, on road to Matchless Mine, little river valley, on banks, 1920 m , $22^{\circ} 40^{\prime} 30^{\prime \prime} \mathrm{S}, 16^{\circ} 51^{\prime} 5.9^{\prime \prime} \mathrm{E}$, on soil under big boulder, 10 iii 2004, D.B.Schill \& J.Clarke 119 (E); Windhoek, on road to Matchless Mine, little river valley, on banks, $1891 \mathrm{~m}, 22^{\circ} 40^{\prime} 37.1^{\prime \prime} \mathrm{S}, 16^{\circ} 51^{\prime} 4.1^{\prime \prime} \mathrm{E}$, in rock crevice on big boulder, 10 iii 2004, D.B.Schill \& J.Clarke 120 (E). Otjozondjupa Region, Otavi-Bergland, Rietfontin, Dolomitfelsen, Ueberhaenge, schattig, 11 iv 1974, Volk 943 (JE); Otjiwarongo, Farm Oros, on hillside behind farm, W-facing, 1574 m , $20^{\circ} 14^{\prime} 2.3^{\prime \prime} \mathrm{S}, 17^{\circ} 7^{\prime} 42.7^{\prime \prime} \mathrm{E}$, under rock, 13 iii 2004, D.B.Schill \& J.Clarke 128 (E); Otjiwarongo, Farm Oros, on hillside behind farm, W-facing, 1577 m , $20^{\circ} 14^{\prime} 2.3^{\prime \prime} \mathrm{S}, 17^{\circ} 7^{\prime} 42.7^{\prime \prime} \mathrm{E}$, under rock, 13 iii 2004, D.B.Schill \& J.Clarke 130 (E); Otjiwarongo, Farm Oros, on hillside behind farm, W-facing, 1576 m , $20^{\circ} 14^{\prime} 2.3^{\prime \prime} \mathrm{S}, 17^{\circ} 7^{\prime} 42.6^{\prime \prime} \mathrm{E}$, on soil under rock, 13 iii 2004, D.B.Schill \& J.Clarke 131 (E); Otjiwarongo, Farm Oros, on hillside behind farm, W-facing, 1573 m , $20^{\circ} 14^{\prime} 1.3^{\prime \prime} \mathrm{S}, 17^{\circ} 7^{\prime} 43^{\prime \prime} \mathrm{E}$, under pile of rocks on soil, 13 iii 2004, D.B.Schill \& J.Clarke 133 (E).

SOUTH AFRICA, [Gauteng Province], Pretoria district, Hennops River Valley 23 i 1955, Meeuse 9621 (F, BOL).

TANZANIA, [Morogoro Region], Uluguru Mt., 1240m, on shady rocks near waterfalls, Morningside, 17 v 1972, T.Pocs 6571/B (JE); Uluguru Mt. near Morogoro, riverine forest, rocky type, near Bahati Camp, along the Morogoro river, 600 m , on stony soil, 1 v 1972, T.Pocs $6561 / \mathrm{q}$ (JE)

CHINA, Yunnan, Fugong County, CN, Gaoligong Shan Range, southern end of the Hengduan Shan, Nu Jiang (Salween River) watershed, above dirt road about $2-3 \mathrm{~km}$ south of Fugong near Guqian and Mugujia Village, 1275 m , $26^{\circ} 51^{\prime} 54.5^{\prime \prime} \mathrm{N}, 98^{\circ} 52^{\prime} 00.6^{\prime \prime} \mathrm{E}$, along flume on steep hillside, ruderal vegetation with remnants of secondary hardwood forest, on filtered marble boulders, 21 iv 2004, J. R. Shevock 24912 (E); Fugong County, CN, Gaoligong Shan Range, southern end of the Hengduan Shan, Nu Jiang (Salween River) watershed, above dirt road about 2-3 km south of Fugong near Guqian and Mugujia Village, $1275 \mathrm{~m}, 26^{\circ} 51^{\prime} 54.5^{\prime \prime} \mathrm{N}, 98^{\circ} 52^{\prime} 00.6^{\prime \prime} \mathrm{E}$, along flume on steep hillside, ruderal vegetation with remnants of secondary hardwood forest, on filtered marble boulders, 21 iv 2004, J. R. Shevock 24925 (E).

JAPAN, [Honshu Island, Kanto Region], Saitama Prefecture, Chichibu District, Otakimura, Kami-nakao, c. 700m, on soil among rocks of hedge, 4 viii 1958, Inoue 38/66 (NICH); Chichibu District, Ootakimura, Kaminkao, c. 750m, sunny crevice..., sandstone, 2 ix 1952, s.n. (52817) (NICH); Saitama Prefecture, Chichibu District, Ootakimura, Kaminkao, c. 750m, 2 ix 1952, Shimizu 52818 (NICH).

LEBANON, Antelias, holes on hard limestone boulder, 7 ii 1943, P.H.Davis 5247 (E, BM).

INDIA, Stewart s.n. (NY); Stewart s.n. (NY); Ind. Orient, Stewart s.n. (NY). [Himachal Pradesh], Himalaya occ., Kyelang, ad rupes, xerophila, photophila, c. 3000m, vii 1933, P.N.Mehra 345 (JE, NY, BM, G, S); Chenab valley, regio temp., 8000 ft , Thomson 1680 (BM, NY). Uttaranchal, Gangotri, on path to Gomukh,
$3335 \mathrm{~m}, 30^{\circ} 59^{\prime} 37.7^{\prime \prime} \mathrm{N}, 78^{\circ} 59^{\prime} 22.6^{\prime \prime} \mathrm{E}$, in hollow at bottom of cliff, 13 xi 2004, D. B. Schill \& J. Clarke 164 (E); Road from Uttarkashi to Rishikesh, next to roadside, $1032 \mathrm{~m}, 30^{\circ} 43^{\prime} 53.5^{\prime \prime} \mathrm{N}, 78^{\circ} 21^{\prime} 02.3^{\prime \prime} \mathrm{E}$, on rock, 14 xi 2004, D. B. Schill \& J. Clarke 165 (E). [Uttar Pradesh], Saharanpur (N.W.India), Gor. Botan. Gardens, on rockwork in open air, 990ft., 13 ii 1901, W.Gollan 3214 (JE, BM, G, S); Saharanpur (N.W.India), Gor. Botan. Gardens, on rockwork in open air, 990ft., 13 ii 1901, W.Gollan 3214b (BM); Cawnpore (Allahabad), Ind. Or., from rockwork in Memorial Garden, c.fr., 23 ii 1903, Giel 4213 (010540) (G).

PAKISTAN, [North-West Frontier Province], NW-Himalaya, Chitral, Jambatai, 4000’ ft, 6 v 1895, Harries 16939 (G, BM); Jambatai, 4000 ft., 6 v 95, Harries 16939 (BM). [Panjab Province], Panjab, Lahore, ad fossae lapides, nunc xerophila, nunc subhygrophila, xi 1929, R.S.Chopra 3 (JE, G, BM, S, NY); Vorder-Indien, Lahore, Panjab, 1929, Chopra s.n. (B74740) (S).

YEMEN ARAB REPUBLIC, Towillah, c. 2530 m , soil in shady gully on sandstone cliffs, 31 iii 1981, Long \& Miller 10169 (E, JE). [Ibb governorate], Jibla, wadi in town, c. 2100 m , on shaded soil by wadi, 10 iv 1981, Long \& Miller 10261 (E).

4. Mannia fragrans (Balbis) Frye \& L.Clark

AUSTRIA, Hutweidenboden, 1 iv 1956, Froehlich s.n. (S). Carinthia, Austrian Alps, Kärnten, Breidler s.n. (725042) (BM). Lower Austria, sonnige Haenge in der Weinbergregion (Schiefer) oberhalb Stein an der Donau, 250-300m, iv 1900, J. Baumgartner 1187a (E, NY, S, JE); Sonnige Haenge in der Weinbergregion (Schiefer) oberhalb Stein an der Donau, 250-300m, 19 xi 1901, J. Baumgartner 1187b (E, NY, S, JE); Rothenhof nächst Stein an der Donau, 300 m, 1897, J. Baumgartner s.n. (H1296) (JE); Sonniger Hügel bei Rothenhof nächst Stein/Donau, Schiefer, ca. 300 m, 4 iv 1897, J. Baumgartner s.n. (E); Sonnige Hügel bei Rothenhof nächst Stein, 300m, 4 iv 1897, Baumgartner s.n. (S); Wachau, nördlich von Rotenhof ca. 300m auf Erde, 19 ii 1939, Froehlich s.n. (S); Bei Rotenhof an der Wachau, ca. 300m, auf Erde, 19 iii 1939, Froehlich s.n. (S);

Bei Rotenhof an der Wachau, ca. 300m, auf Erde, 12 iii 1939, Froehlich s.n. (S); Südlich von Hundsheim, Spitzerberg, 250-290m auf Erde, 26 viii 1956, Froehlich s.n. (S); Nordwestlich von Hundsheim auf dem Südwestrücken des Hexenberges ca. 300m auf der Erde im steinigen, pannonischen Heideboden, 1 v 1956, Froehlich s.n. (S); Spitzer Berg, südlich von Hundsheim, ca. 250m, auf Erde, 24 iv 1938, Froehlich s.n. (S); Südlich von Hundsheim, Südwesthang des Spitzberges, ca. 275m auf Erde, 22 iv 1956, Froehlich s.n. (S); Braunsberg bei Hainburg, Quarzitriff auf der Südseite auf Erde, 5 iv 1941, Froehlich s.n. (S); Braunsberg bei Hainburg auf Erde, 24 iv 1938, Froehlich s.n. (S); Westlich von Pulkau, ca. 375m, auf Erde, 20 iv 1939, Froehlich s.n. (S); Göttweiher-Berg, 1871, Erdingern s.n. (B74582) (S). Salzburg, Lungau, sonnseitiger Abhang bei Mur, ca. 1200m, 24 viii 1880, Breidler s.n. (S); Sonnseitiger Abhang bei Mur in Lungau, 1200m, 25 viii 1878, Breidler s.n. (S); Im Lungau, Abhaenge bei Mur, ca. 1200 m, 24 viii 1878, Breidler s.n. (JE). Styria, ex Herbarium Stephani s.n. (NY); In einem ..bei Graz, iv 1875, Breidler s.n. (NY); Graz, Flurufer an einem Wiesenrain, 250 m, April 1875, Breidler s.n. (669107) (BM); An einem Wiesenrain bei Graz, 27 iv 1875, Hb. S.O. Lindberg, s.n. (S). Tyrol, Sauter s.n. (NY); Windisch Matrei, 1877, G.D./ Herbarium H Pearson, s.n. (725079) (BM); Windisch Matrei, s.n. (725046) (BM); Auf Kalkboden des Blaser (Matrei in Tirol), auf Kalkboden eines begrasten Abhanges auf dem Blaser in einer Hoehe von 6500 Fuss, 24 xiii 1871, Arnold 517 (JE); Tirolia australis, ad terram aridam collium apricorum montis Guntschna prope Bolzanum, solo porphyraceo, Sauter 1139 (BM, NY, S, F, E). Upper Austria, Steyr, Schimper s.n. (725062) (BM); Auf verwitterter feuchter Erde der Nagelfluh-Huegel bei Steyr, Sauter 332 (JE); Linz, an Wärmeplätzen am St. Martin mit Pulsatilla, Carex humilis, Globularia etc., 16 iii 1951, Barikant? s.n. (JE). Vienna, Nördling nächst Wien, 14 iv 1822, Juratzka s.n. (725049) (BM); Abhänge bei Mädling nächst Wien, 14 iv 1890, Juratzka s.n. (S).

CZECH REPUBLIC, Central Bohemia Region, distr. Doutnáč, in clivo stepposo, c. $200 \mathrm{~m}, 16$ v 1967, J.Váňa s.n. (JE); Distr. Benešov, collis Hláska supra flumen Horní Sázava, 2 vii 1935, Suza 2 (S). [Prague], Podbaba bei Prag, 13 iii 1884, Schiffner s.n. (B74703) (S). [South Moravia Region], Moravia occid., Tišnov (p.
vicum Drásov), in solo calcareo in cumulo Drásovský kopeček, c. $310 \mathrm{~m}, 2$ v 1937, Šmarda 82 (S); Mähren, Heiligen Berg pr Mikulov, v 1913, Podpera s.n. (S).

FRANCE, [Rhône-Alpes], Lyon, s.n. (725066) (BM); Bessans (Savoie), vallée de la Lombarde, 2450 m , sur la terre sèche (schistes lustrés), 10 viii 1952, L. Castelli 9 (S).

FINLAND, [Southern Finland, Tavastia Proper Region], South Häme province, Lammi, Lamminjärvi-Halila Natura 2000-area, F10325008, Halilankallio SE/Sfacing steep rock crevice with dry herb meadow vegetation, on road terraces, $27^{\circ} \mathrm{E}$ 6776000: 3395061, on shallow soil on rock terraces, often on base of ferns such as Asplenium septentrionale, fairly abundant, 24×2005, S. LaakaLindberg 22-2005 (E).

GERMANY, Baden-Württemberg, Bilstein im Hoellental, bei Albungen a.d. Werra, 9 vii 1956, K. Meyer s.n. (JE); Bilstein bei Albungen, schoener Rasen, 2 x 1904, F. Quelle s.n. (JE); Baden, Kaiserstuhl, am Schneckenberg bei Achkauen?, Sommer 37, G.Herzog s.n. (JE); Baden, auf humosen Stellen des Hohentwiel, c. fr., iv 1898, Herzog s.n. (S); Baden, bei Heidelberg, 1844, Buhse s.n. (S); Baden, Heidelberg, 1844, Buhre s.n. (JE); Baden, Heidelberg, 1844, Buhse s.n. (NY); Baden, Heidelberg, in valle Ludwigsthal prope Schriesheim, 1845, Bischoff s.n. (BM); Heidelberg, Buhse s.n. (S); Heidelberg, 1836, Buehinger s.n. (S); Heidelberg, Funck s.n. (72508) (BM); Heidelberg, 22 ix 84, Schimper s.n. (E); Heidelberg, ..., Trevirauns?, 1830 , Bischoffs s.n. (BM); Heidelberg, 1830, Bischoff s.n. (725017) (BM); Heidelberg, s.n. (725072) (BM); Heidelberg, 1861, Mettenius s.n. (NY); Circa Heidelberg, Bischoff s.n. (725075) (BM); Prope
Heidelberg, Bischoff s.n. (S); Baden, bei Schriesheim, G. W. Bischoff s.n. (725082) (BM); Eboulis granitiques des côtes incultes dans la vallée Ludwigsthal près de Schriesheim aux environs de Heidelberg, iii1849, Arnold 1388 (BM); Bei Schriesheim im Ludwigsthal, an felsigen Abhängen, Hb. Schimper, s.n. (725059) (BM); In valle Ludwigsthal prope Schriesheim, x 1835, s.n. (JE); Schriesheim, Ludwigsthal, Bischoff s.n. (725073) (BM); Ludwigsthal, Bischoffs.n. (BM); Im Ludwigsthale bei Schriesheim, iii 1850, G. W. Bischoff 473 (BM, NY); Im Ludwigsthale bei Schriesheim, an Granit in der Gessellschaft von Riccia
bischoffii, iv 1836, Herb. Hampe s.n. (BM); Vom Eingang in das Ludwigsthal, auf Granit, iii 1828, Hirtz? s.n. (JE). Bavaria, Herbarium Helmgren s.n. (S); Eichstätt, iv 62, Arnold s.n. (BM); Bei Eichstaett in Mittelfranken, Arnold 83 (JE, BM, NY, F, S); Eichstätt, iv 1862, Arnold s.n. (BM); Auf steinigem, karg begrastem Boden der Bergabhänge zwischen Eichstätt und dem Tiefenthale, c.fr., 15 v 1860, Arnold 83b (S); Schwabelweisser Berghaenge bei Regensburg, 370m, auf Humus ueber Dolomit, 9 iv 1907 and 1909, Familler 1190 (JE, S, NY); Regensburg, Dolomit bei SchwabelweiB, 380m, iv 1907, Familler s.n. (S); Regensburg, auf Dolomithumus der Schwabelweisser Berghänge, 370m, 9 iv 1907, Familler 606 (S); Regensburg, auf Dolomithumus der Schwabelweiser Hänge, 370 m , iv 1907, Familler s.n. (S); Bayrischer Jura, Felshänge ober Neuessing im Altmühltale, vi 1907, Familler s.n. (S); Niederbayern, auf Granit unter Passau-Ilzstadt, ix 1912, Familler 606b (S). Lower Saxony, Niedersachsen, Harz Mountains, Einhornhöhle, Brandkopfe, NE of Schwarzfeld, $51^{\circ} 38^{\prime} \mathrm{N}$, $10^{\circ} 25^{\prime} \mathrm{E}, \mathrm{S}$-facing dolomite cliff overlooking lake, on friable soil, $28 \times 2005, J . G$. Ducketts.n. (E). Saxony, Dresden, s.n. (E); Sachsen, Hb. Hugo Dahl, Schmalkalden, Krieger s.n. (JE). Saxony-Anhalt, near Nebra, west of Wangen, NSG Steinklöbe, south-east slopes, c. 200 m , on thin soil layer of open, exposed boulders, 20 xi 2002, D.B.Schill \& H.-J. Zündorf 2 (E); Near Nebra, west of Wangen, NSG Steinklöbe, south-east slopes, c. 201m, on thin soil layer of open, exposed boulders, 20 xi 2002, D.B.Schill \& H. -J. Zündorf 3(E); Bezirk Halle, Unteres Unstruttal, Nebra, auf Felspodesten ca. 3km nordwestl. Klein Wangen, am Suedhang der Steinkloebe (am westl. Ende des Steilhanges), 8 v 1966, K.-F. Guenther s.n. (E). Thuringia, Ex-DDR, Heinrichstein im Oberen Saaletal, 1970, Meinunger s.n. (JE); Auf Detritus der Steinkloebe bei Nebra, 23 v 1970, J.Hueneck s.n. (JE); Bezirk Erfurt, suedl. Vorland des Harzes, Nordhausen, Kalk-Berg nordoestl. Krimderode, flachgruendiger, suedexponierter Rasen am Hangfuss, 6 v 1975, K.-F. Guenther s.n. (E).

HUNGARY, Kultivat des Jenaer Botan. Gartens vom 30 iv 1973, 1972, A. Boros et Vadja s.n. (H1295) (JE); M. Synto, Medzi Skalky, 29 viii 1890, A. Kmet s.n. (E); M. Synto, Medzi Skalky, 29 viii 1890, A. Kmet s.n. (JE); M. Synto, Medzi Skalky, 29 viii 1890, A. Kmet s.n. (B74620) (S); M. Synto, Medzi Skalky, 29 viii 1890, A. Kmet 25 (JE). Hungary? Podbabal bei Tray?, xi 84, Schiffner s.n. (E); S-

Ungarn, Villányer Gebirge, Nagyharsányi Berg, Kalkfelsritzen und offener Humus auf Kalk, 350 m, 3 iv 1975, Pócs s.n. (H1433) (JE); Balatonfüred, 18 v 1972, Z. Vajda s.n. (JE); Ungarn, Steingerthal, 22 vii 1879, S. Hochhausen s.n. (S). Borsod[-Abaúj-Zemplén County], 350 m , in humosis inter saxa calc. montis Kisfarkaskö prope Kácsfürdö, 11 vi 1933, A. Boros s.n. (JE); In humosis inter saxa calc. montis Kisfarkaskö prope KÁCSFÜRDÖ, c.350m, 11 vi 1933, A. Boros s.n. (S). Fejér County, in humosis inter saxa dolom. supra "Báracháza" prope Csákvár, $200 \mathrm{~m}, 15$ iv 1934, A. Boros s.n. (S); In humosis inter saxa dolomit. montis Lóingató-hegy prope pagum Óbarok, $250 \mathrm{~m}, 7$ iv 1940, A. Boros s.n. (S). Komárom[-Esztergan County], in humosis inter saxa calc. montis Wallstrichtetö, $380-385 \mathrm{~m}$, prope pagum VÉRTESSOMLÓ, 22 iv 1935, A. Boros s.n. (JE); In humosis inter saxa calc. Montis Wallstrich-tetö, 385 m , prope pagum Vértessomló, $380 \mathrm{~m}, 22$ iv $1935, A$. Boros s.n. (S); In humosis inter saxa calc. montis Wallstrich-tetö, 385 m , prope pagum Vértessomló, $380 \mathrm{~m}, 22$ iv 1935, A. Boros s.n. (S); In humosis inter saxa dolomit. merid. Montis Kecskekö prope Gyermely, c. 250m, 25 iii 1941, A. Boros s.n. (S); In humosis inter saxa dolomit. Merid. montis Kecskekö prope Gyermely, 250m, 25 iii 1941, A. Boros s.n. (F); In humosis inter saxa calc. ad monum, "Turul" in monte Kő'hegy prope Bánhida, c. 300m, 1 v 1938, A. Boros s.n. (E); In humosis inter saxa calc. Montis Gadóz supra pag. Várgesztes, $350 \mathrm{~m}, 29$ iv 1935, A. Boros s.n. (S); In humosis inter saxa dolomit. supra Köhányás-puszta prope pag. Várgesztes, $350 \mathrm{~m}, 14 \mathrm{v} 1933, A$. Boros s.n. (S); In monte Turnhegy supra Barihiola, 12 v 1921, Degen s.n. (S); In humosis inter saxa calcarea montis Öregkö prope BAJÓT, c. 3-375m, 5 iv 1936, A. Boros s.n. (S). [Nógrád County], Filakovo. Ragačské kopce, Tilil, 2 iv 1956, Z. Pilous s.n. (S). Pest County, in humosis inter saxa calc. Montis Ferenchegy, "Vérhalom", ad Budapest, 260m, 23 iv 1933, A. Boros s.n. (S); Centr, in declivibus montis "Kiscsikóvár" supra pag. Pomáz, c. 450 m , solo andes, 10 iii 1934, Szepesfalvi s.n. (S); In humosis montis Kis Csikóvár ad Pomáz, 21 iii 1920, De Degen s.n. (S); Berg Matyashegy bei Budapest, c. 280 m , feuchte Stellen zwischen Kalkfelsen, 25 iii 1926, A.Boros s.n. (JE); Budakalász, Hungariae centr., c. 250 m , in terra humosa calc. versus montem "Ezuesthegy", x 1926, J. Szepesfalvi 926 (E, F, S); In humosis inter saxa calc. montis Pilishegy supra pag. Pilisszántó, c. 600m, 20 iii 1927, A. Boros s.n. (E); In humosis inter saxa calc. Montis Pilishegy supra Pilisszántó, c. $680 \mathrm{~m}, 12$ vi 1932, A. Boros s.n. (BM); In
humosis inter saxa calc. montis Remetehegy ad Máriaremete, $300-400 \mathrm{~m}, 19 \mathrm{iv}$ 1925, A. Boros s.n. (JE); In humosis inter saxa calc. montis, Remetehegy ad Máriareuete, 300-400m, 19 iv 1925, A. Boros s.n. (S); In humosis inter saxa montis Remetehegy ad Mária-Remete, 28 iii 1926, de Degen s.n. (S). Veszprém County, in humosis inter saxa calc. Adv. Montem Vár-hegy pr, CSESZNEK, 320m, 27 iii 1939, A. Boros s.n. (S); In humosis inter saxa calcar. Vallis cuhavölgy pr. Osesznek, $400 \mathrm{~m}, 7$ vi 1928, A. Boros s.n. (E). Zala County, in humiosis inter saxa basalt, "Páholy" montis Badacsony prope Badacsony, c. 400m, 29 iv 1956, A. Boros .n. (E).

ITALY, Balbis s.n. (B36643); N.Italien, Mediolani, Herb.Aongstr., s.n. (S). [Lombardy], ad muror agrorum prope Varese, 25 ix 1878, Marmazell?? s.n. (669111) (BM); Pte. Molinello (près Come), 24 vii 1896, F.A.Artaria s.n. (E); C. 400m, an sonnigen Abhaengen des Castel Baradello bei Como, 4 iii 1902, F.A.Artaria 1188 (E, S, JE, NY); Prov. Comensis, valle di Sa. Martino (Como), 8 i 1848, F.A.Artaria s.n. (E); Prov. Comensis, Castel Bernadetto près de Côme, 1 vi 1902, F. A. Artaria s.n. (669110) (BM); Prov. Comensis, Castel Bernadetto,.., 25 xii 1895, Artaria s.n. (NY); Sulla terra nei luoghi soleggiati presso Como, Primavera 1880 et 1881, Anzi 1118 (F, BM, NY); Auf Erde an dem Weg von Limonta nach Bellagio am Comersee, iv 1908, Müller s.n. (S). Piedmont, à Turin, de la Grand Jardin de Valentin, café T. Le petit...jardin Botaniques sur les rochers, viii 1812, Bernet s.n. (NY); Vercellis (Pedemont.), Cesati 63 (JE). [Trentino-South Tyrol], Meran, Weg zur Naifschlucht, Bäumler 18 (S); Ad terrum humidam prope Meran, Tirol, Bamberger s.n. (725032) (BM); Meran, Mim s.n. (JE); Meran, Schimper s.n. (725067) (BM); Tyrol, Meran, Stephani s.n. (72504) (BM); An sonnigen felsigen Abhaengen auf fettem Humus allgemein verbreitet um Kratsch bei Meran (Tirol), waechst neben Celtis, Colutea, Fraxinus ornus, Sempervivum, Riccia Bischoffi, gesammelt in der Naehe der Villa Maurer, H.Lohse 261 (JE, BM, NY, S, F). Tirol, sonnige Abhaenge bei Gratsich bei Meran, 18 vi 1864, H. Lohse 261 (NY). An sonnigen Abhängen bei Gratsich im Tirol, 18 iii 1864, Lohse s.n. (S); Um Gratsich bei Meran, Tirol, an sonnigen, lockeren Abhängen, mit Riccia ciliata, Oxymitra, 18 iii 1864, Milde s.n. (S). [Varese], entre Ceresio et Pianver Borguana près de Pto. Ceresio, Lac de Lugano, 8 ii 1896, Artaria s.n. (S).

NORWAY, s.n. (725037) (BM). [Østlandet Region], Insel Horedöen bei Kristiana, auf duerrem, sonnigen Huegeln am Meeresufer, 1892, B. Kaalaas 1189 (E, JE, NY, S, BG); In insula Horedöen, ..., ad terram aridane..., solo calcareo, 2 v 1896, Kaalaas s.n. (BM); Horedöen bei Kristiana, 24 iv 1892, Kaalaas s.n. (B74862) (S); Norway, Horedöen bei Kristiana, 24 iv 1892, Kaalaas s.n. (M-5827) (BG); Horedöen bei Kristiana, 24 iv 1892, Kaalaas s.n. (M-5826) (BG); Horedön auf Kristiana, 21 v 1911, Kaalaas s.n. (S); Auf der Hovedøen pr. Christiana, an sonnigen Abhängen (Kalkunterlage), 2 v 1896, Kaalaas s.n. (M-5823) (BG); Horedö bei Christiana, 24 iv 1892, Kaalaas s.n. (M-5828) (BG); Horedö bei Christiana, 24 iv 1892, Kaalaas s.n. (M-5829) (BG).

POLAND, [Lesser Poland], Przegorzaly pod Krakowem, na humusie śród slonecznych skal wapiennych, 21 ii 1910, Zb. M. Raciborski 5 (S).
[Lower Silesia, Swidnica County], Striegauer Berge, Siles?, Hb. Lindberg, (725048) (BM); Striegau, auf Erde, an sonnigen Stellen, 26 iv 1864, J. Zimmermann s.n. (S).

ROMANIA, Cernatal, ca. $500 \mathrm{~m}, 1916$, Herzog s.n. (S). [Alba County], Transsilvania, distr. Alba, ad terram in jugo montis "Piatra" e fissures Cheile Rîmețului, solo calcareo, c. 1250m, 2 xii 1940, Bunea 3146 (BM, S, JE).

SWEDEN, Gotland Island, Torsburgen, 15 v 1957, Å. Hovgard s.n (S);
Nickarvejun, Hejdeby, 15 v 1957, Å. Hovgard s.n. (S); Grogansbergel, 9 vi 1957, A․ Hovgard s.n. (S). Jämtland county, Alsens sn, Rödeberget, 22 vi 1964, Hakelier s.n. (S). [Örebro County], Närke, Glanshammar, c. 300m NO om kyrkan, på jord på kalkklippa, 6 v 1986, Hakelier s.n. (S); Närke, Glanshammar sn, c. 300 m NO om kyrkan, jord på kalkklippa, 22 v 1964, Hakelier s.n. (S).
Östergötland county, V. Tollstads sn, Omberg, Alvastra branter, 17 iv 1964, Hakelier s.n. (S). Södermanland County, Vårdinge socken, Stillens östra strand, 2.4 km SSO om Vårdinge kyrka och 1 km SSO om Ustaggård, Hög, exponerad klippbrant, delvis med urkalkstensinslag, I fuktspricka på jord, 9 xi 1975, Kers 4530 (S); Halla socken, vid Baldersnäs, norr om Hallbosjön, 1.8km ONO om Halla kyrka och 200 m ONO om torpet Baldersnäs, På krönet av
urkalkstensåsen, Öppet parti av hällmark omgivet av gran/tallskog, svagt sluttande hällmark, invid Bovista tomentosa, 9 iii 1975, Kers 4388 (S).
[Stockholm County], Srm. Utö sn, Utö, Kroka strax om vägen nära gården, SOexposition (al semua lokal Clevea hyalina, Mannia pilosa o. Reboulia), 21 v 1944, Arnell \& Persson s.n. (S).

SWITZERLAND, [Canton Vaud], Roche (Cant. Waacht), Hausknecht s.n. (JE); Aigle (Cant. Waacht), Hausknecht s.n. (JE). [Graubünden], an Mauern bei Flims, 1858, Killian s.n. (725031) (BM). Valais, Commun dans les vignes près de Martigny, 475m, 12 iv 1887, Bernet s.n. (F); Martigny, H. Bernet s.n. (669113) (BM); Commun dans les vignes près de Martigny, 475m, 12 iv 1887, H. Bernet s.n. (S, NY); Follateres, near Branson N of Martigny, c. 480 m , sunny rocky slopes with vineyards, on bark, 11 viii 1994, Long 25677 (E); Follateres, near Branson N of Martigny, c.480m, sunny rocky slopes with vineyards, on bark, 11 viii 1994, Long 25664 (E); La Bâtiaz et Branson, 475m, 12 iv 1887, H. Bernet s.n. (S, NY); La Bâtiaz et Branson, 475m, 12 iv 1887, Bernet s.n. (F); Martigny, La Bâtiaz, $550 \mathrm{~m}, 46^{\circ} 06^{\prime} 20.6^{\prime \prime} \mathrm{N}, 07^{\circ} 04^{\prime} 09.9^{\prime \prime} \mathrm{E}$, on S -facing grassland slope, on ground next to path, 17 iii 2003, D.B.Schill \& M.Price 57(E); Martigny, La Bâtiaz, $550 \mathrm{~m}, 46^{\circ} 06^{\prime} 20.2^{\prime \prime} \mathrm{N}, 07^{\circ} 04^{\prime} 09.8^{\prime \prime} \mathrm{E}$, on S-facing grassland slope, on ground, 17 iii 2003, D.B.Schill \& M.Price 59 (E); Follatères, terre nue dans pelouse à annuelles, 490m, 5721/10805, 12 iii 1991, P. Geissler 15648 (G); Fully, Follatères, talus (transecte I, S), 5724/10805, 500m, 12 iii 1991, P. Geissler 15647 (G); Follatères, Steppe, 700m, 5726/1087, 20 vi 1990, P. Geissler 15301 (G); Fully, Follatères, Steppe, transecte 2, 10, 520m, 5725/11085, 10 vi 1989, P. Geissler 13873 (G); Fully, Follatères, Les Taches, transecte II, sous 11, sol, steppe rocheuse, 620m, 5724/1084, 4 ii 1990, P. Geissler 15205 (G); Fully, Les Follatères, $470 \mathrm{~m}, 46^{\circ} 07^{\prime} 30.9^{\prime \prime} \mathrm{N}, 07^{\circ} 05^{\prime} 05.5^{\prime \prime} \mathrm{E}$, next to path, on S -facing vertical rock face with thin soil layer, 17 iii 2003, D.B.Schill, M.Price \& E.Maier $40(\mathrm{E})$; Fully, Les Follatères, $472 \mathrm{~m}, 46^{\circ} 07^{\prime} 30.9^{\prime} \mathrm{N}, 07^{\circ} 05^{\prime} 05.5^{\prime \prime} \mathrm{E}$, on big boulder with thin soil layer, S-exposed, dry, 17 iii 2003, D.B.Schill, M.Price \& E.Maier 42 (E); Fully, Les Follatères, $473 \mathrm{~m}, 46^{\circ} 07^{\prime} 30.9^{\prime \prime} \mathrm{N}, 07^{\circ} 05^{\prime} 05.5^{\prime \prime} \mathrm{E}$, next to path, on grassy ground, 17 iii 2003, D.B.Schill, M.Price \& E.Maier 44 (E); Fully, Les Follatères, $480 \mathrm{~m}, 46^{\circ} 07^{\prime} 30.9^{\prime \prime} \mathrm{N}, 07^{\circ} 05^{\prime} 05.5^{\prime \prime} \mathrm{E}$, next to path, on way up, on grassy ground, S^{-} facing and exposed, 17 iii 2003, D.B.Schill, M.Price \& E.Maier 47(E); Fully, Les

Follatères, $475 \mathrm{~m}, 46^{\circ} 07^{\prime} 30.8^{\prime \prime} \mathrm{N}, 07^{\circ} 04^{\prime} 59.7^{\prime \prime} \mathrm{E}$, next to path, on grassy ground, S^{-} facing and exposed, 17 iii 2003, D.B.Schill, M.Price \& E.Maier 48 (E); Fully, Les Follatères, $597 \mathrm{~m}, 46^{\circ} 07^{\prime} 30.4^{\prime \prime} \mathrm{N}, 07^{\circ} 04^{\prime} 41.4^{\prime \prime} \mathrm{E}$, next to path, on way up, on soil on grassy slope, S-facing, 17 iii 2003, D.B.Schill, M.Price \& E.Maier 50 (E); Fully, Les Follatères, $632 \mathrm{~m}, 46^{\circ} 07^{\prime} 33.8^{\prime \prime} \mathrm{N}, 07^{\circ} 04^{\prime} 47.2^{\prime \prime} \mathrm{E}$, on grassland slope, on ground, S-facing, 17 iii 2003, D.B.Schill, M.Price \& E.Maier 51 (E); Fully, Les Follatères, $645 \mathrm{~m}, 46^{\circ} 07^{\prime} 40.5^{\prime \prime} \mathrm{N}, 07^{\circ} 05^{\prime} 00.4^{\prime \prime} \mathrm{E}$, on grassland slope, on boulder with thin soil layer, S-facing, 17 iii 2003, D.B.Schill, M.Price \& E.Maier 55 (E); Fully, Valais, Follatères, pelouse à Stipa chevelue, 5723/1833 (Tr. II, 16), 630m, 12 iii 1991, P. Geissler 15661 (G); Follatères, La Forcla, Steppe dans chinaie pubescente, 910m, 5720/1087, 20 vi 1990, P. Geissler 15284-15286 (G); Fully, Branson, Follatères, 600m, 13 iii 1983, P. Geissler 8948 (G); Fully, Planches de Mazembros, Steppe, 540m, 5772/1117, 14 iv 1991, P. Geissler 15691 (G); Fully, Valais, Les Planches, balme, (II 10+), 630m, 57252/10842, 5 v 1990, P. Geissler 15270 (G); Fully, Les Planches, sol nu, 630 m, 5724/1084, 1 v 1990, P. Geissler 15261 (G); Fully, Corbassière, Saxifrago-Stipetum, 1040m, 5729/1096, 19×1990, P. Geissler 15618-15619 (G); Fully, Valais, Forèt de la Lui, pelouse à annuelles, 580m, 5721/10815, P. Geissler 15653 (G); Sion, Mont d'Orge, Steppe, 750m, 21 iii 1983, P. Geissler 8955 (G); Sion, Mont d'Orge, Steppe, 700m, 5921/1198, 22 ii 1992, P. Geissler 16334 (G); Mont d'Orge, $742 \mathrm{~m}, 46^{\circ} 13^{\prime} 55^{\prime \prime} \mathrm{N}, 07^{\circ} 20^{\prime} 16^{\prime \prime} \mathrm{E}$, on grassy slope, open dry grassland with Opuntia nana, S-facing, 18 iii 2003, D.B.Schill \& M.Price $62(\mathrm{E})$; Sion, Mont d'Orge, $701 \mathrm{~m}, 46^{\circ} 13^{\prime} 55^{\prime \prime} \mathrm{N}, 07^{\circ} 20^{\prime} 16^{\prime \prime} \mathrm{E}$, open dry grassland slope, on ground, S-facing, 18 iii 2003, D.B.Schill \& M.Price $64(\mathrm{E})$; Sion, Chateauneuvre, $556 \mathrm{~m}, 46^{\circ} 13^{\prime} 15.9^{\prime \prime} \mathrm{N}, 07^{\circ} 18^{\prime} 52.5^{\prime \prime} \mathrm{E}$, on grassy slope, amongst grasses, on ground, S-facing, 18 iii 2003, D.B.Schill \& M.Price 60 (E); Ob Granges, Trockenhang, 600m, 18 iv 1972, P. Geissler 0159 (G); Grengiols, Valais, Blaws Egg, Trockenrasen, 1050m, 6491/1365, 16 vi 1985, P. Geissler 11151 (G). [Ticino], alle pendici soleggiate nei dintorno di Locarno, al Lago Maggiore, Spring 1859, Daldini 268 (669115) (BM); Pr. Locarno, ad Verbanum, Duthy? s.n. (NY).
U.S.A., Forchiels?, 5 miles n. Dr. Colino colo.?, 5 iii 1896, Baker 6 (NY); Springfield, Mis., limestone rocks, 4 ii 1891, Weller s.n. (NY). Alaska, [North Slope Borough]: Arctic Alaska, Philip Smith Mountains Quad, lower W slope of

Mt Steere, Brooks Range, c. $1050 \mathrm{~m}, 68^{\circ} 29^{\prime}, 149^{\circ} 25^{\prime}$, on soil on dry rocky slope, 30 vii 1982, Long 11262 (E); Philip Smith Mountain Quad, W ridge of Mt Steere, Brooks Range, $68^{\circ} 29^{\prime}, 149^{\circ} 25^{\prime}$, c. 1250 m , on damp cliff ledge, 30 vii 1982, Long 11277 (E); [Fairbanks North Star Borough]: Big Delta Quad, Munson's Slough, Mi 39.2, Richardson Hwy., $64^{\circ} 28^{\prime}$ N, $146^{\circ} 59^{\prime} \mathrm{W}, 20$ vii 1991, A. R. Perry \& B. M. Murray 8007 (E); [Yukon-Koyukuk Census Area]: Black River Quad, second tier bluffs on Porcupine River, $66^{\circ} 59^{\prime} 10^{\prime \prime} \mathrm{N}, 142^{\circ} 49^{\prime} 20^{\prime} \mathrm{W}, 4$ vi 1996, B. M. Murray 96^{-} 132 (E). Colorado, J. S. Brandegee s.n. (268775) (NY). [La Plata County]: Southern Colorado, upper La Plata River wooft?, 13 vii 1898, C. F. Baker, F. S. Earle \& S. M. Tracy s.n. (268776) (NY). Georgia, Columbia County: Appling, mossy edge of pool, on granite outcrop, 8 miles E., 13 iii 1939, Hermann 10115 (NY, F). Illinois, Lermont, on thin soil of limestone rocks, iii 1903, E. J. Hill s.n. (223450) (F); Loes Bluff, Sangamon, Ill., Hall s.n. (F). [Rock Island County]: Arsenal at Rock Island, 25 iv 1899, T. E. Savage s.n. (NY); Arsenal at Rock Island, 25 iv 1899, T. E. Savage 7297 (NY); Rock Island Arsenal, 25 iv 1899, T. E. Savage s.n. (1136288) (F). Iowa, Muscatine, x 1896, B.S. s.n. (NY); Blue Mts., Otis, C. R. Barnes 3235 (F); Faguette, on wooded hillside, 28×1902, B. Fink \& C. Green s.n. (268740) (NY). Dubuque County: hill back of Dubuque County, 17 iv 1937, Conard s.n. (268741) (NY); Hills back of Dubuque, 17 iv 1937, H. S. Conard s.n. (F). Emmet County: 6 m S of Estherville, on a prairie knoll in Emmet County, 19 iv 1942, B. O. Wolden s.n. (268773) (NY); 6 m S of Estherville, on a prairie knoll in Emmet County, 19 iv 1942, B. O. Wolden s.n. (268783) (NY). Jackson County: iv 1909, A. O. Thomas 7228 (NY); iv 1909, A. O. Thomas s.n. (268735) (NY). Linn County: Palisades State Park, 27 v 1933, Conard s.n. (NY); Palisadess State Park, 27 v 1933, H. S. Conard s.n. (1173581) (F). Lyon County: Gitchie Manitou State Preserve, extreme NW corner of Iowa, bordered by South Dakota to N \& W, NE $1 / 4$, Sec. 11, T100N, R48W, $43^{\circ} 30^{\prime} \mathrm{N}$, $96^{\circ} 36^{\prime} \mathrm{W}, 1290 \mathrm{ft}$., Sioux quartzite outcrops with occasional Quercus macrocarpa \& Fraxinus pennsylvanicalSymphoricarpos, Rhus/Andropogon spp., Bromus inermis, Setaria, Bouteloua gracilis, Artemisia spp., Woodsia, abundant Opuntia \& Selaginella rupestris/Mannia fragrans, Schistidium, Hedwigia, Tortula, Ceratodon on soil and rocks in exposed habitats, 23 ix 1989, D. Horton, L. Hunter, T. O'Brien \& P.-Z. Zheng 30033 (F). Winneshiek County: Kendalville, upper Iowa River, Iowa-Minn line, 25 vi 1936, Conard s.n. (NY). Kansas,

Chautauqua County: $1^{1 ⁄ 2} \mathrm{mi}$ NE Sedan, shallow sandy soil, open oak wooded, prairie hillside, 5 iv 1952, R. L. McGregor 5340 (NY); 3 mi NE Sedan, oak woods, shady soil, 26 iii 1948, R. L. McGregor 1216 (NY). Coffey County: 2 miles SW Le Roy, sandy soil, 4 xi 1948, R. L. McGregor 1239 (NY). Douglas County: 3 miles SE Baldwin City, sandy soil, 4 ii 48, R. L. McGregor 1225 (NY); 12 mi of Lawrence, hole in the rock, on sandy soil, $13 \times 1951, R$. L. McGregor 5246 (NY); 12 miles south of Lawrence, Area known as Hole-in-the-Rock, soil in oak-hickory prairie, 18×1959, H. L. Smith 85 (NY). Elk County: 10 miles of Busby, edge of oak woods, sandy soil, 4×1948, R. L. McGregor 1283 (NY). Ellsworth County: 6 miles southeast of Kanopolis, growing on high ground, on thin soil over sandstone, abundant, 27 vi 1962, Ellison 1430 (NY); 6 miles southeast of Kanopolis, growing on high ground over thin soil on sandstone, abundant, 27 vi 1962, Ellison 1432 (NY); 6 miles southeast of Kanopolis, growing on high ground on thin soil over sandstone, among grass, abundant, 27 vi 1962, Ellison 1435 (NY); 2 mi. E. 6 mi. S. Kanapolis, Kansas Area of Dakota sandstone outcrops, shaded banks, 3 v 1952, R. L. McGregor 5454 (NY); 3 Mi NE Senesco, moist sandstone rock, 13 iv 1948, R. L. McGregor 1309 (NY); $2 \mathrm{mi} . \mathrm{N} ., 41 / 4 \mathrm{mi}$. W. Langley, Kansas Area of Dakota Sandstone outcrop, on shaded sandy banks, 3 v 1952, R. L. McGregor 5447 (NY); 5 mi E Carneiro, sandy soil below sandstone outcrop, 30 iv 1949, R. L. McGregor 2782 (NY). Greenwood County: 1 mile NE Fall River, , margin of sandstone outcrop, oak woods, 4×1948, R. L. McGregor 1293 (NY). Jefferson County: 1 mile W Medina, oak woods, sandy soil, 4 ii 1948, R. L. McGregor 1235 (NY). Labette County: 5 miles SW Dennis, sandy soil, roadside bank, 4×1948, R. L. McGregor 1265 (NY). McPhersons County: 2 Mi., NW Lindsborg, Kansa Area of Dakota Sandstone outcrop, shaded moist banks, 3 v 1952, R. L. McGregor 5457 (NY). Montgomery County: Elk City, sandstone country and soil, R. H. Thompson 35 (NY); 6 mi of Elk City, oak woods, sandy soil, R. L. McGregor 1181 (NY). Reosho County: 2 miles E, $1 / 2$ miles N Chanate, sandy soil, 4 ix 1948, R. L. McGregor 1257 (NY). Rice County: 1 mi. E Senesco, sandy soil, Prairie, 30 iv 1949, R. L. McGregor 2714 (NY). Saline County: 2 miles NW Brookville, sandy soil, prairie, 30 iv 1949, R. L. McGregor 2694 (NY). Wilson County: 1 mi. NE Neodesha, on shallow sandy soil over sandstone outcrop, a few small colonies, 5 iv 1952, R. L. McGregor 5331 (NY); 1 mile NE Reodesha, Wilson County, oak wood, on sandy soil at margin of sandstone outcrop, 4 x

1948, R. L. McGregor 1271 (NY). Woodson County: 2 mi , NW Yates Center, sandy soil, pasture, 4 ix 1948, R. L. McGregor 1242 (NY); 2 miles NW Yates, sandy soil, pasture, 4 ix 1948, R. L. McGregor 1242 (NY); 5 miles east of Toronto, Fegan Lake, Woodson County State Park, soil in oak forest, 10×1959, H. L. Smith 49 (NY). Minnesota, Chippewa County: on Sioux quartzite, 6 miles east of Montevideo, 29 vi 1952, Gier 5402 (NY). Cottonwood County: c. 2 mi W of US 71 , c. 14.5 mi N of Windom, c. $400 \mathrm{~m}, 44^{\circ} 05^{\prime} 40^{\prime \prime} \mathrm{N}, 95^{\circ} 04^{\prime} 30^{\prime \prime} \mathrm{W}$, seasonally dry, flat, Sioux quartzite outcrop on N side of road, 28 ix 1991, Buck 20875 (NY). Hennepin County: over sandy exposed hillside terrace overlooking Minnesota River, near Ninemile Creek, occurring with androecia and capsules, 1-8 v 1950, Schuster 18020 (NY); On exposed, dry, sunny, shady knolls above the Minnesota R., near Ninemile Cr., with Pasque Flower, Bryum argenteum, v 1947, Schuster 1001 (F); Near Ninemile Creek, over sandy exposed hillside terrace overlooking Minnesota River, occurring with androecia and capsules, 1-8 v 1950, Schuster 18020 (F). Winona County: Laird's, sand rock, in shade moist, 31 v 1890, Holzinger 14 (NY); Winona, Beck's, sand cliff, 29 v 1890, Holzinger 18 (NY); Whitewater State Park, over exposed, rather dry soil at crest of bluff, with prairy plants, occurring with androecia, apparently plants male and dioecious, 15 v 1950, Schuster 18028 (F). Missouri, Clay County: on wooded slope, east of Oldham's mine, N4S26 TS1N R31W, 12 viii 1951, Gier 5092 (NY). Franklin County: St Peter sandstone bluffs and open cedar glades, Pacific, NE $1 / 4$ sec. 12, T. 43 N, R. 2E, abundant on open soil in glade, Redfearn, Jr. 20766 (NY). Jefferson County: on soil in limestone outcrops in exposed places along Bark Creek, 15 xi 1941, Meyer 106 (NY); On soil on limestone outcrops in exposed places along Bark Creek, 15 xi 1941, Meyer 106 (NY). LaClede County: "Indian Grave", high west-facing bluff above Niangua River, SW $1 / 4$ SW 114 sect. 32, T.36N, R.17W, open soil, top of bluff, common, 2 i 1975, Redfearn Jr. 29775 (F). St. Louis: Eggert s.n. (669246) (BM). Nebraska, s.n. (268792) (NY). Cass County: South Bend. Nebr., ix 1889, H. J. Webber 11 (268659) (NY). Lancaster County: Lincoln, 4 ml . South, 1240 ft ., $41^{\circ} \mathrm{N}$, thin soil on rocky ground, 16 iv 1943, Kiener 13784 (NY). Sarpy County: on broken soil of bluffs, 1100 ft , S of Gretna, 6 v 1945, Kiener 18908 (F). New Jersey, Woodbridge, Ct., on black soil in crevices of trap rock, iv 1891, A. W. Evans 121 (BM, NY, F). Pallisades, 1871, Austin s.n. (268650) (NY); On wet rocks, Palisades, v 1858, C.F.Austin (268671) (NY).

Bergen County: Rocky places, near Closter, also in Illinois, Hall 133 (BM, NY, F); Closter on rocks in hilly places, 1858, Hall s.n. (NY). New Mexico, Galleries baûon, 15 ii 1927, Frère G. Arsène 19069 (BM).Nouveau Mexique, Gallinas Canon S. puits pétrole, 15 ii 1927, Arsène 19070 (S, F). [Santa Fe County]: Santa Fe, Fendler 136b (NY); Santa Fe, Arroyo Horcho?, 2200m, 12 x 1936, Arsène 23284 (NY, F). [Sierra County]: New Mexico, Hot Springs, 9 miles from Las Vegas, xi 1926, Arsène 19093 (NY, S). New York, Adirondack Mts., on sunny moderately moist, west and south-facing slopes of hill nw. of Pea leeville, associated with Preissia quadrata and Selaginella rupestris, etc., 28-30 iii 1945, Schuster s.n. (NY, F). Albany County: Ravena, on thin soil over massive limestone, old field, c. 300 ft., 28 x 1970, Smith \& Dean 46141 (NY); Vic. Clarksville, c. 450 ft., thin soil over massive limestone, 10 iii 1973, Smith \& Herrick 49144 (NY); Clarksville, 1 xi 1975, Smith \& Starck 51854 (NY, S); Albany Schoharie, Peck \& R. Wateburg (268673) (NY). [Bronx County]: New York, Bronx, Plott Haven?, ii 1897, Saniab s.n. (268806) (NY). [New York County]: Stephani s.n. (BM), New York City, on rocks in a sunny field, Jerome Ave, near Fleetwood, 20 iii 1896, Saniab s.n. (NY); N.Y.City, Jerome Avenue, near Fleetwood, on rocks in a sunny field, 20 iii 1896, Saniab 14 (2688020) (NY). Montgomery County: fields, southeast side of Nelliston, c. 380 ft ., thin soil over massive limestone, 7 v 1960, Smith \& Carr 30062 (NY). Saratoga County: Lester Park, c. 325 ft., thin soil over massive limestone, 22 v 1976, S. J. Smith \& D. J. Starck 52299 (NY, S). Westir County: Mott Harven, Westir Co. N. Y., loose ground on top of rocks, M. S. Saniab (268649) (NY). North Carolina, Burke County: Schw., Salem, Torrey Hb., s.n. (268667) (NY). Conneticut, Litchfield County: New Milford, Ct., moist bank, 24 iii 1910, Nichols 68 (BM); Conneticut to Iowa and Texas, also in Europe, thin soil on rocks, s.n. (NY). Oklahoma, Cadelo County: Floor?, Devil's Canyon, 22 ii 1958, Z. Z. Wellbourne 2 (F). Comanche County: Wichita Wild Life Refuge, on sandy soil over granite, 10 iv 1963, Ellison 1580 (NY). Pennsylvania, Rau s.n. (669244) (BM). Lancaster County: Lancaster, 1861, J. C. Porter s.n. (268648) (NY). Tennessee, Rutherford County: Murfreesboro, Snail Shell Cave, 31 iii 1934, Sharp 34294 (NY, S, F). Texas, Burnet Country: sandy soil, over granite, 1 mi. E of Marble Falls, 23 i 1982, R. M. Schuster 82-231 (F); Granite Mountain, 1 mi. west of Marble Falls, growing on thin dry sandy soil over granite rock, dry and rolled up when
collected, common in this area, 3 iv 1962, Ellison 1107 (NY). Denton County: Post Oak Belt, south of Denton about 5 miles, $1 / 2$ mile west of Highway 77, 7 iii 1948, Whitehouse 19363 (NY). Hood County: Post Oak B lt., 2 miles northwest of Granbury on bluff above Barzos River, sandy soil, 16 iii 1947, Whitehouse 17858 (NY). Travis County: Eastern North America, Texas, , Brackenridge Tract, Austin, on Lake Austin Bolvd., well drained soil, opening in woods, 8 ii 1982, R. M. Schuster 82-423 (F). Utah, San Juan County: Devils Canyon, ca. 6500 ft , on dry soil under overhanging sandstone rocks, oak and yellow pine belt, 25 vi 1952, Flowers 8060 (NY). West Virginia, Grant County: Petersburg, W. Va., on thin soil over sloping rock, Gray 7458 (NY). Wisconsin, Dane County: near Mazomanie, rather dry hillside, 5×1936, P. Snure s.n. (NY); Madison, on dry hills, 1 vi 1891, Cheney 6 (NY). Dodge County: 2 miles S of Mayville, T11N, R16E, Sect. 1, $\mathrm{SW}^{1} / 4, \mathrm{NW} 1 / 4$, on limestone outcrops, open pasture at top of Niagara Dolomite escarpment, 29 iii 1973, Nee \& Hansen 5639 (NY). Grant County: 3 miles N of Mt Ida, T6N, R3W, Sect. 6, SW¼, NW¼, with Selaginella rupestris in open sandy pasture on S facing slope below Pinus banksiana stand, 7 iv 1973, Nee 5680 (NY). St Croix County: over strongly insulated, s. facing talus slopes, on soil at the bases of clumps of Prairie grasses, Apple River Canyon, near Somerset, occurring with a few androecia (terminal at this stage), Bryum argenteum, Viola pedatifida, etc., 26 vi 1949, R. M. Schuster 15011 (NY); Apple River Canyon, near Somerset, over strongly insolated, s. facing talus slopes, on soil at the bases of clumps of Prairie grasses, occurring with a few androecia (terminal at this stage), Bryum argenteum, Viola pedatifida, 26 vi 1949, R. M. Schuster 15011 (F, NY).

CANADA, Alberta, Red Deer Area, Dry Island Buffalo Jump Provincial Park, along Red Deer River, in xeric prairie of Artemisia- Festuca scabrella-AgropyronStipa comata with Eleagnus angustata-E. commutata-Symphocarpus alba shrubs along banks of steep gully, 23 ix 1978, Vitt 24013 (NY). Ontario, Durham County: sandy soil in poor hilly pasture, abundant, Cavan Twshp. LA6, 1.5 miles W of Millbrook, 17 iii 1957, H. Williams 871 (F); South slope of sandy knoll, between tufts of thin grass, fully exposed, hilly pastureland, never ploughed, 1.5 miles W of Millbrook, 17 iii 1957, H. Williams 878 (F); On dry sandy soil in open pasture, W. of Millbrook, 24 v 1958, R. F. Cain \& H. Williams 5122 (F); 1.5 miles

W of Millbrook, dry open soil of poor pasture gravely under. Cavan Twshp., v 1957, H. Williams 954 (F).

GREENLAND, West Greenland, Søndre Strømfjord, on south facing steep slope, N. of the air strip, along a small temporary rill, 3 ix 1970, Schuster 70-3201 (F); Søndre Strømfjord, on south facing steep slope, N. of the air strip, along a small temporary rill, 3 ix 1970, Schuster 70-3204 (F).

CHINA, [Beijing Region], Beijing, Mutianyu 'Great Wall', ca. 90 km NE Beijing, $530 \mathrm{~m}, 40^{\circ} 25^{\prime} 52.5^{\prime \prime} \mathrm{N}, 116^{\circ} 33^{\prime} 52.2^{\prime \prime} \mathrm{E}$, auf Lehmblößen im Laubwald (Quercus liatungensis, Quercus mongolica), 15 viii 2004, H. Kürschner \& D. Wagner 04858 (E). [Shaanxi Region], China interior, provincia Schensi septentr., in alveo arenoso amnis San-huo prope Sche-kin-tsuen, 3 iv 1897, Rev. Jos. Giraldi s.n. (det. Massalongo 148) (JE, BM, NY).

INDIA, Uttaranchal, Gangotri, on path to Kedartal, on bank next to path, ca. 3200 m , on ground, 11 xi 2004, D. B. Schill \& J. Clarke 157 (E); Gangotri, on path to Kedartal, on bank next to path, ca. 3200 m , on ground, 11 xi 2004, D. B. Schill \& J. Clarke 158 (E); Gangotri, on path to Kedartal, on vegetated bank below juniper bushes to the right of path, ca. 3300 m , on soil, 11 xi 2004, D. B. Schill \& J. Clarke 159 (E); Gangotri, on path to Kedartal, on bank next to path, ca. $3330 \mathrm{~m}, 30^{\circ} 59^{\prime} 11.8^{\prime \prime} \mathrm{N}, 78^{\circ} 56^{\prime} 13.7^{\prime \prime} \mathrm{E}$, on ground, 11 xi $2004, D$. B. Schill \& J. Clarke 160 (E); Gangotri, on path to Kedartal, on vegetated bank next to path, ca. $3330 \mathrm{~m}, 30^{\circ} 59^{\prime} 11.8^{\prime \prime} \mathrm{N}, 78^{\circ} 56^{\prime} 13.7^{\prime \prime} \mathrm{E}$, on ground, 11 xi $2004, D$. B. Schill \& J. Clarke 161 (E); Gangotri, on path to Kedartal, next to path, 3341 m , $30^{\circ} 59^{\prime} 10.8^{\prime \prime} \mathrm{N}, 78^{\circ} 56^{\prime} 13.4^{\prime \prime} \mathrm{E}$, on soily bank, fragrant, 11 xi $2004, D . B$. Schill \& J. Clarke 162 (E).

JAPAN, Chubu Region, Aichi Prefeture: cervices of stone-walls in exposed places, c. 300 m , Tomiyama in Kita-shidara District, Aichi County, 25 iv 1954, N.Takaki 274 (JE, BM, NY, S). [Honshu, Kanto Region], Saitama Prefecture: Chichibu, Tochimoto, 780 m , rock crevices in exposed places, 27 viii 1952, Shimizu 52809 (NICH). Chichibu Mts, Tochimoto, c. 700-800m, 9 ix 1952, Shimizu 52808 (NICH); Saitama-shi, Midori-ku, Nakao, 26×2003, M. Itouga
s.n. (E); Tokyo, Koisigawa-ku, 15 xi 1940, Hattori 6202 (TNS); Tokyo, 1897, Miyake 71 (NY).

MONGOLIA, Chubsugul-Aimak bei Alag-Endene in Felsritzen, 1900m ue. M., 12 vii 1983, S.Huneck s.n. (JE); Chubsugul-Aimak, bei Alag-Erdene am EgiinGol, zwischen Felsbloecken, 1900m ue. M., 12 vii 1983, S.Huneck s.n. (H2673) (JE); Zezerleg (Stadt), in Felsspalten zwischen Granitbloecken, 27 vi 1978, Huneck MVR-2 (JE); Chögnö-Tarna-Uul, vi 1988, S.Huneck s.n. (JE).

RUSSIA, Siberia, [Chita Province], Rossia asiatica, Transbaikalia, Regio Czitaënsis, distr. Nerczinskij-Zavod, prope vicum Ivanovka, in terra declivitatis lapidosae siccae, in umbra arborum (Ulmus scabra), 9 vii 1956, I.I. Abramov 71 (E, S). [Krasnoyarsk Territory], Jenissei, Antsiferova, $59^{\circ} 10^{\prime}$ N, 1876, H.W.Arnell s.n. (H4337) (JE); Jenisei, Antsiferova, $59^{\circ} 10^{\prime}$ N, 27 vi 1876, Arnell s.n. (B74729) (S); Jenisei, Antsiferova, $59^{\circ} 10^{\prime} \mathrm{N}, 27$ vi 1876, Arnell s.n. (B74730) (S); Jenisei, Antsiferova, $59^{\circ} 10^{\prime}$ N, 27 vi 1876, Arnell 6a (S); Jenisei, Antsiferova, $59^{\circ} 10^{\prime}$ n.lat., 27 vi 1876, Arnell s.n. (BM); Jenisei, Antsiferova, $59^{\circ} 10^{\prime}$ n.lat., 27 vi 1876, Arnell s.n. (NY); Jenisei, Antsiferova, $59^{\circ} 10^{\prime}$ n.lat., 27 vi 1876, Arnell 49 (NY). [Karelia Republic], Karelia ladog., Farfielala?, Pullinvuori, ad terr. in fissuris rufium, viii 1876, Brotherus s.n. (B74864) (S). [Saratov Province], URSS, Regio ciswolgensis, distr. Saratov. Montes dysyj, in silva, 8 v 1927, Janischevskij s.n. (S).

UNKNOWN LOCALITIES, Siniplow?, 1860-62, Gagliardi s.n. (669114) (BM); Lohse s.n. (669108) (BM); Bischoff L53, 793 (JE); De Notaris s.n. (725076) (BM); De Notaris s.n. (725033) (BM); De Notaris s.n. (725071) (BM); Bischoffs.n. (725084) (BM); Hookera optono, s.n. (669279) (BM); Grimaldia dichotoma (no data), s.n. (E).

5. Mannia asiatica Schill \& D.G.Long

INDIA, [Uttaranchal], NW-India, Kumaun, Ralan Valley, 13000-14000', 24 viii 1884, Duthie 311 (G); NW-India, Kumaun, Ralan Valley, 13-14000', 24 viii 1884, Duthie 3757 (BM).

CHINA, Qinghai Province, Henan County: Xiawate, Zhihoumao Xiang S of Henan, $34^{\circ} 31^{\prime} 20^{\prime \prime} \mathrm{N}, 101^{\circ} 31^{\prime} 13^{\prime \prime} \mathrm{E}$, ca. 3800 m , steep slopes below limestone cliffs, on soil ledges, 15 vii 1997, D.G. Long 27016 (E); Dousong Xiang, Zhilong, $34^{\circ} 23^{\prime} 47^{\prime \prime} \mathrm{N}, 101^{\circ} 28^{\prime} 10^{\prime \prime} \mathrm{E}$, ca. 3830 m , limestone hillside, soil clefts at foot of kimestone cliff, 15 vii 1997, D.G. Long 27032 (E). Huzhu County: near Nanzhangzhagon Village, upper Zhalonggou Valley, $36^{\circ} 46^{\prime} 17^{\prime \prime} \mathrm{N}, 102^{\circ} 32^{\prime} 44^{\prime \prime} \mathrm{E}$, ca. 2735 m, Betula/Juniperus woodland on limestone, on shady NW-facing banks, 24 vii 1997, D.G. Long 27217 (E); Jiading Xiang, Gangzigou Valley, $36^{\circ} 45^{\prime} 05^{\prime \prime} \mathrm{N}$, $102^{\circ} 37^{\prime} 49^{\prime \prime} \mathrm{E}$, ca. 2820 m, Juniperus/Betula woodland, on bank of stream on limestone, 25 vii 1997, D.G. Long 27260 (E). Maqin County: Yangkao, $34^{\circ} 42^{\prime} 58^{\prime \prime} \mathrm{N}, 99^{\circ} 40^{\prime} 34^{\prime \prime} \mathrm{E}$, ca. 3835 m , steep limestone side valley, on bank under Salix, 9 vii 1997, D.G. Long 26924 (E); Jungun Naichong, between Dawu and Huang He, $34^{\circ} 38^{\prime} 50^{\prime \prime} \mathrm{N}, 100^{\circ} 36^{\prime} 41^{\prime \prime} \mathrm{E}$, ca. 3585 m , valley with Picea and Juniperus woddland, on S-facing soil on limestone bank under Juniperus, 9 vii 1997, D.G. Long 26964-b (E); North of Jungun Naichong, $34^{\circ} 33^{\prime} 48^{\prime \prime} \mathrm{N}$, $100^{\circ} 33^{\prime} 28^{\prime \prime}$ E, ca. 3570 m , steep limestone side valley, on bank under Salix, 10 vii 1997, D.G. Long 26951-b (E). Tongren County: Shuangpenxi Xiang, Kuohelongwa Valley, $35^{\circ} 31^{\prime} 42^{\prime \prime} \mathrm{N}$, $102^{\circ} 14^{\prime} 32^{\prime \prime} \mathrm{E}$, ca. 3200 m , degraded scrubby Picea woodland, on shady bank, 24 vii 1997, D.G. Long 27126 (E).

TAJIKISTAN, S-Aschger Mountain, Zorkul Lake, along stream, 4200m, 13 viii 1970, Boboradzchabov 802 (JE).

6. Mannia triandra (Scop.) Grolle

*indicates bearded or slightly bearded M. triandra specimens

AUSTRIA, Austria/Italy, auf Trockenmauern unter dem Brenner beim Klarerhof, iv 1942, Gams s.n. (S). Carinthia, Gutschekogel, SW Eberstein, Sslope, c. $800 \mathrm{~m}, 46^{\circ} 47^{\prime} 36.7^{\prime \prime} \mathrm{N}, 14^{\circ} 33^{\prime} 07.3^{\prime \prime} \mathrm{E}$, in calcareous shaded rock crevice in conifer forest, 25 vii 2003, D.B.Schill, H.Köckinger \& U.Müller 87 (E);

Nockberge, west of Erlacher Hütte, c. 1670m, 13 vii 2003, H.Köckinger s.n. (E).
Lower Austria, Schneeberg, unter dem Kaiserstein, ca. 2000m, auf Erde über Kalkgestein, 21 ix 1940, Froehlich s.n. (S); Schneeberg, unter dem Kaiserstein, ca. 2000m, auf Kalkgestein, 25 ix 1938, Froehlich s.n. (S); Auf dem Hochkar südwestlich der Hütte, ca. 1550m, auf Humus über Kalk, 5 x 1930, Froehlich s.n. (S); Wiesenbachtal am noerdlichen Fusse der Reisalpe, c. 550m, Erdbrueche am Wege, Kalk, 14 vi 1906 and 1908, J.Baumgartner 1193 (E, JE, S, NY).
Salzburg, s.n. (BM); Braun s.n. (BM); Schimper s.n. (BM); Hampe s.n. (S); In muris, Schimper s.n. (BM); Austrian Alps, Stephani s.n. (g) (BM); Obertauern, SE Hundskogel, Ca-Schneeboden, 2100m, 19 vii 1988, Geissler 13268 (G); Pottenstein nächst Muggendorf bei Salzburg, 1793, in den Höhlungen der Stadtwand, Funck s.n. (c) (BM); 'Ad ipso' Herbarium Lehmannium, s.n. (SB22546) (S); 'Ad ipso' Herbarium Lehmannium, s.n. (S-B22547) (S); mur cerb. Salisburgia ad Sazach, Schimper s.n. (f) (BM); Felsspalten Pinzgau, Sauter s.n. (i) (BM). Styria, Breidler s.n.* (B74802) (S); Ex-Herbarium Stephani, s.n. (NY); 1879, Breidler s.n.* (B74805) (S); Australian Alps, Breidler s.n. (BM);

Schlossberg in Weilenstein, c. 400m, 18 v 1879, Breidler s.n. (JE); Schlossberg in Weitenstein, 18 v 1879, Breidler s.n. (S); Bei Weitenstein, 9 vi 1908, Glowacki s.n. (S); Sonnige Abhänge bei Weihenstein, c. 400 m , auf Kalk, v 1879, Breidler s.n. (BM); Flumberg bei Triffes, 25 v 1897, Glowaki s.n. (S); Stockluken bei Wildalpe, 1892, Breidler s.n. (H1297) (JE); Trofaiach, Tragöß-Oberort, Haringgraben (Hochschwab), beginning of Marienklamm, c. 850 m , in calcareous rock crevices, 23 vii 2003, D.B.Schill, H.Köckinger \& U.Müller 79 (E); Eisenerzer Alps, Vordernberger Mauern, Krumpen, above the 'Hirnalm', next to path, $1037 \mathrm{~m}, 47^{\circ} 28^{\prime} 46.6^{\prime \prime} \mathrm{N}, 14^{\circ} 58^{\prime} 06.1^{\prime \prime} \mathrm{E}$, on ground on grassy, stony slope, 23 vii 2003, D.B.Schill, H.Köckinger \& U.Müller 81 (E). Tyrol, Kaisergebirge bei Kufstein, an Kalkfelsen, ca. 1980m, 9 viii 1905, Schinnerk s.n. (S); Nord-Tirol,

Gschnitztal, Martartal bei Gschnitz, in Felsspalten, Kalk, ca. 1800m, viii 1902, Schiffner \& Patzelt 1191b (S). Upper Austria, Steyr, Sauter s.n. (BM); Auf Kalkgrus bei Steyr, gesellig mit Grimaldia fragrans, Sauter 26 (JE, BM, NY); An schattigen Nagelfluhfelsen und Huegeln bei Steyr in Tyrol, Sauter 85 (JE, S).

CROATIA, [Dubrovnik-Neretva County], Dalmatien, Ragusa, v 1911, Bäumler s.n. (S); Dalmatien, Ragusa, an der Eisenbahn S.Stefano- Ćajković, ca. 40m, 23 iv 1912, Latzel 569 (S).

CZECH REPUBLIC, [Hradek Ksálové Region], Riesengebirge, Oberlangenau, Kr. Hohenelbe, SO-Hang des Stimmesberges, bei 500m, auf Urkalk, 1 vi 1942, Futschig s.n.* (B74794) (S).

FRANCE, [Auvergne], Cantal, Gazilien, s.n. (b) (BM). [Provence-Alpes-Côte d'Azur], Alpes maritime, Au de Grasse, Canton de Bar, $1 / 2 \mathrm{~km}$ en Pont du Louge, 23 vii 1953, Arnell s.n. (S); Alpes Maritimes, Saint Vallier de Thiey, Col de la Lèque, peloux rases à Genista villarsii sur calcaire dolomitique, $695 \mathrm{~m}, V$. Hugonnot VH03353 (E).

GERMANY, Bavaria, Auf feuchter Erde unter Dolomitwaenden bei Beyniz? in Oberfranken, 26 v 1861, Arnold 182 (JE, BM, NY); Beyniz in Oberfranken, Dolomitfelsen, 2 v 1866, Herb. Hampe s.n. (c) (BM); Fränkische Alb, Dolomitfelsen bei Pottenstein, 390m, 4 v 1941, Gauckler s.n.* (B74791) (S); Dolomit bei Pottenstein, 1863, Arnold s.n. (S); München, b. Einzieol?, 12 viii 56, Molander s.n.* (JE); Weichenfeld?, 1 vi? 55, Arnold s.n. (d) (BM); Bavarian Alps, Königsee, Stephani s.n. (e) (669301) (BM); Almbachklam bei Berchtesgarden, 400-500m, viii 1910, Familler s.n. (S). Thuringia, Kreis Schleiz, Bleilochfelsen N Saalestausee, 26 vi 1978, L.Meinunger 7108 (JE).

ITALY, Gardasee, Mihs? s.n. (JE).[Trentino-South Tyrol], Tirol, in Mauerritzen neben der Ponalestrane bei Riva am Gardasee, iv 1908, Müller s.n. (S); Südtirol, Prentino, S.Marco, in den Ritzen von Steinmauern (Kalk) bei der Slavini di Marco, ca. 180m, 23 vii 1911, Kern s.n. (S); Südtirol, Prentino, Serravalle, an der

Deike einer Felshöhle (Kalk) mit Soligeria und Eucladium, ca. 150m, 23 vii 1911, Kern s.n. (S).

POLAND, [Lower Silesia], Schlesien, Riesengebirge, Kerrateh? s.n. (NY).

SLOVAKIA, Slovenský Ráj, pag. Ztratená, vallis Čierná dolinka, 580 m , vi 1978 , Pilous s.n. (NY);

SLOVENIA, Carniolia, solo calcareo in valle Kanker, 500 m , Robič s.n. (BM). [Goriška Region], Küstenland, Čepovan, 700-800m, auf Humus und Sandboden ueber Dolomit, v 1905, K.Loitlesberger 1192 (JE, S, NY). [Inner Carniolia Region], Austro-Hungarica, Carniolia, in rupestribus prope Zwischenwassern et Idria, solo calc., 328m, Deschmann 1138 (BM, NY, S, G).

SWEDEN, Jämtland County, Offerdals sn, Riseberget, 31 viii 1964, Hakelier s.n. (S). [Örebro County], Västmanland, Grythyttans sn, kalkberget Ö om Brunnsjön, östra stupet på jord på avsats i starkt skuggigt läge, 11 vii 1964, Hakelier s.n. (S).

SWITZERLAND, Glarus, Winter s.n.* (b) (669298) (BM); Tödi, Stephani s.n.* (669299) (BM). [Ticino], Nelle commessure di un muro vetusto eposto a tramontana a Locarno, Lago Maggiore, 6 iv 1857, Cesati s.n. (d) (BM); A. Carorescio, pascolo, 2200m, 7012/1553, 8 viii 1985, Geissler 11383 (G).
U.S.A., North America, Bethlehem, Rau s.n. (S); On slate and limestone rocks in ravines, New York and Canada, Peck, Macoun 134 (F). Illinois, [Cook County]: Lemont, crevices of limestone cliff, 6 v 1903, Hill 10 (F). Jackson County: bluffs near north entrance to Giant City State Park, 20-22 viii 1958, Miller 5689 (NY). Rock Island County: Port Byron, 28 v 1897, Harper s.n. (H1296) (JE); Port Bryon, 28 v 1897, Harper s.n. (NY); Port Byron, 28 v 1897, E. \& T. Harper s.n. (F); Port Byron, Barber's Creek, on cliffs in crevasses in rock, 23 v 1904, E. \& T. Harper s.n. (268812) (NY); Port Byron, on cliffs in crevasses in rocks, 23 v 1904, E. \& T. Harper s.n. (F). Indiana, Putnam County: Fern cliff, sandstone exposure, 1958, Miller 5760 (NY). Michigan, Ontonagon County: Porcupine Mountains, at
base of cliff above talus? Slope, Carp Lake, 20-27 viii 1935, Nichols \& Steere s.n. (268808) (NY). Minnesota, s.n. (268818) (NY); s.n. (268819) (NY); Bear breek, 6 vii 1896, Holzinger s.n. (268830) (NY). Goodhue County: over moist soil on exposed bluff south of Wacouta, 15 v 1950, Schuster 18007 (F). Houston County: Over rather dry soil on steep, strongly insulated sandy soil at crest of bluff, 1.5 miles south of Brownsville, xeromorphic extreme, mature carpocephala, pH 8 , occurring with Mannia rupestris intermixed, Oxalis violaceae, Liothospermum canescens, Viola pedatifida, 9 v 1948, Schuster 13480a (S); Over rather dry soil on steep, strongly insolated sandy soil at crest of bluff, 1.5 miles S of Brownsville, mature carpocephala, M. rupestris intermixed, Oxalis violaceae, Liothospermum canescens, Viola pedatifida, 9 v 1948, Schuster 13480 (F); 3.4 miles S of Brownsville, over rather shaded, rather moist talus slopes and ledges, on thin soil over sandstone, 31 v 1949, Schuster 14327 (F); 3 miles south of La Crescent, on moist, shaded sandstone wall, one or two intermingled plants of M. pilosa, 15 v 1947, Schuster 13544 (F); 3 miles N of Reno, on thin calcareous soil over east facing talus and bases of bluffs, occurring with M. pilosa, 14 v 1947, Schuster 6754a (F). Washaba County: on shaded, moist, thin soil over narrow sandstone ledges, at foot of large bluffs south of Lake City, pH 7.5, occuring with carpocephala, 9 v 1948, Schuster 10063 (S). Washington County: Over shaded moist thin soil in crevices of sandstone cliffs, 3 miles N of Stillwater, along St Croix R., with carpocephala, v 1947, Schuster 14055 (F); Nearctic, over thin soil on marrow, moist ledges, and in sheltered cavities in moist limy sandstone ledges, along St. Croix River, circa 3 miles north of Stillwater, 11 vi 1950, Schuster 18139 (NY, S); In crevices and moist cavities, on shaded, high sandstone bluffs at edge of St. Croix R., 2-3 miles north of Stillwater, 30 v 1947, Schuster 14825 (NY, S); On moist, shaded calcareous sandstone, about 3 miles N. of Stillwater, 2 v 1947, Schuster 10009a (S, F); Over thin soil on narrow, moist ledges and in sheltered cavities in moist limey sandstone ledges, along St. Croix R., ca. 3 miles N of Stillwater, mature capsules, 11 viii 1950, Schuster 18139 (F); Sandstone bluffs 2-3 miles N of Stillwater, along St Croix R., in shally shaded depressions of rock wall, c. capsules, v 1949, Schuster 14825 (F). Winona County: "Mt. Faith", John Latch State Park, over moist soil over bluff, 12 v 1950, Schuster 18058 (F); Whitewater River in Whitewater State Park, over moist exposed sandstone ledges, with capsules, 15 v 1950 , Schuster 18010 (F).

New Jersey, Bergen County: Closter, New Jersey, 1873, Austin 134 (NY). New York, Athaea ?, Rocks, west bank of Fall br. at free hollow, just below falls, 1888, Boville s.n. (268825) (NY). Schuyler Country: Watkins Glen, 26 vi 1857, Brewer s.n.* (268816) (NY). North Carolina, McDowell County: Eastern United States, damp rocks, near waterfall above Linville Caverns, just W. of Route 221, 9 vii 1958, Schuster 40369 (S); Linville Taverns, over thin moist humus, on limestone ledges, just above entrance to the caverns, occurring with very few capsules, 1 v 1955, Schuster 34741 (F); On soil over shaded damp calcareous ledges, just to the right of the entrance to Linville Caverns, ca. 2800 ft ., Route 221, sterile, 27 vii 1953, Schuster 29061 (F); At Linville Caverns, Rte 221, in small patches, with Gymnostomum aeruginosum, over shaded limestone bluff, with old carpocephala, spores typical, 27 vii 1953, Schuster 28800 (F); Damp rocks, at mouth of Linville Caverns, just W of Route 221, 9 vii 1958, Schuster 40370 (F); Damp rocks, at mouth of Linville Caverns, just W of Route 221, 9 vii 1958, Schuster 40371 (F). Ohio, [Clark County]: Austin 189 (268829) (NY); Leroy s.n. (NY); Biddle s.n. (NY); 1878, Biddlecome s.n. (268834) (NY); Springfield, 12 v 1877, Pearson s.n. (BM); Springfield, 12 v 1899, Biddlecome s.n. (NY); Springfield, 15 vi 1886, Spence 118 (NY); Near Springfield, 5 vi 1877, Haines s.n. (93043) (NY); Springfield, 15 vi 1886, Spence s.n. (F); Springfield, 15 vi 1886, Spence 118 (F). Pennsylvania, Rau s.n. (b) (BM). Vermont,Willoughby, 1500 ft ., on limestone, on the Bluffs, where it was somewhat damp and shady, 16-18 vii 1913, Evans \& Lorenz s.n. (268817) (NY).

CANADA, On slate and limestone rocks in ravines, New York and Canada, Peck \&Macoun 134 (BM, NY). Ontario, Lake region and Ontario, vi 1876, Macoun 2532 (NY); Lake region and Ontario, vi 1869, Macoun 13 (NY); Belville, on calcareous rocks, vi 1869, Macoun 187 (NY); Belville, 1873, Macoun s.n. (109379) (NY); Crevices of wet limestone rocks along the Moira above Belleville, rare, 6 vi 1862, Macoun 145 (NY). Yukon Territory, Dawson, slope of Moosehide Mtn., along side of path, wet sandy gravel, rare but common locally, 1 vii 1949, Calder \& Billard 3443 (NY).

CHINA, Qinghai Province, Henan County: Ningmute Xiang, Ningmute, $34^{\circ} 29^{\prime} 40^{\prime \prime} \mathrm{N}, 101^{\circ} 10^{\prime} 09^{\prime \prime} \mathrm{E}$, ca. 3450 m , steep river bank with Juniperus, under

Sibiraea, 16 vii 1997, D.G. Long 27056 (E). Zeku County: below Maixiu Forestry Centre, Langzhang Valley, $35^{\circ} 15^{\prime} 52^{\prime \prime} \mathrm{N}, 101^{\circ} 53^{\prime} 37^{\prime \prime} \mathrm{E}$, ca. 3180 m , steep rocky valley with Picea and Juniperus forest, on stream bank under shrubs, 17 vii 1997, D.G. Long 27059 (E).

JAPAN, Hokkaido Region, Faurie 5552 (BM); Hidako, Samani-cho, Tashirozawa, on soil, 29 v 1970, Kobayashi s.n. (S); Hidaka, Samani-cho, Tashirozawa, on soil, 23 v 1970, Kobayashis.n.* (B74813) (S); In crevices of andesite cliff, ca. 250 m above sea-level, Sankaku-yama, Sapporo-shi, Hokkaido, Sasaki \& Kudo 932* (F, G, S); Sapporo-shi, Sankakuc. 250m, in crevice of andesite, sunny place, 15 v 1972, Sasaki \& Kudo 10524* (NICH); Tokachishicho, Onbetsucho, Satonbetsu, 300m, on humus, 31 v 1981, Takida 569* (NICH).

RUSSIA, NW of Europes part of Russia, Bychegda, composite forest, in puddle, 8 ix 1930, M. Vlasov s.n. (JE). [Krasnoyarsk Territory], Sibiria, Jenisei, Mjelnitsa, $65^{\circ} 50^{\prime} \mathrm{N}$ lat., 12 vii 1876, H. W. Arnell s.n. (B74772) (S). [Murmansk Province], Murmansk Region, Lapland Reserve, Salnyc tundras, 10 viii 1986, E.N.Andrejeva s.n. (JE). [Taymyr Autonomous Okrug], Northern Sibiria, Putorana Plateau, vii 1980, E.N.Andrejeva 144* (JE); Northern Siberia, Norilsk Region, Tundra belt of Talnach Mt., 5 viii 1993, E.N.Andrejeva s.n. (JE).

UNKNOWN LOCALITIES, Neesiella rupestris, ex Schimper, per Stirton, vii 1884, s.n. (E); De not? (BM); Sauter s.n. (BM); Nees s.n. (BM); Nees s.n. (b) (BM); Grimaldia, Hb. W. Mitten 1906, Kumam 3757 (NY).

7. Mannia pilosa (Hornem.) Frye \& L.Clark

AUSTRIA, Carinthia, Völkermarkt, Bleiburg, Petzen, Knieps, N-side of summit, $2014 \mathrm{~m}, 46^{\circ} 30^{\prime} 14.1^{\prime \prime} \mathrm{N}, 14^{\circ} 45^{\prime} 45.3 " \mathrm{E}$, in calcareous rock crevice, 24 vii 2003, D.B.Schill, H.Köckinger \& U.Müller 83 (E); Völkermarkt, Bleiburg, Petzen, east of Kniepssattel, $2016 \mathrm{~m}, 46^{\circ} 30^{\prime} 19.2^{\prime \prime} \mathrm{N}, 14^{\circ} 46^{\prime} 12.2^{\prime \prime} \mathrm{E}$, in calcareous rock crevice on stony, grassy slope, 24 vii 2003, D.B.Schill, H.Köckinger \& U.Müller 84 (E);

Völkermarkt, Bleiburg, Petzen, east of Kniepssattel, $2016 \mathrm{~m}, 46^{\circ} 30^{\prime} 19.1^{\prime \prime} \mathrm{N}$, $14^{\circ} 46^{\prime} 12.3^{\prime \prime} \mathrm{E}$, in calcareous rock crevice on stony, grassy slope, 24 vii 2003, D.B.Schill, H.Köckinger \& U.Müller 85 (E); Karnische Alpen, Friaul, Felshaenge des Monte Canale, 2200 m, 10 vii 08, Kern s.n. (B74762) (S). Tyrol, Gschnitztal, Martartal bei Gschnitz, in Felsspalten, Kalk, c. 1800 m , viii 1902, V.Schiffner \& V. Patzelt 1191a. (E, NY); Gschnitztal, Martartal bei Gschnitz, in Felsspalten, Kalk, ca. 1800m, viii 1902, Schiffner \& Patzelt 1191a (S); Innsbruck, Hafelekan, ca. 2300 m , Kalkvegetation, 4 viii 1951, Gams \& Sjörs s.n. (S); N-Tiroler Alpen, Grethenweg am Hafelekar, 2300m, 4 viii 1951, H. Gams s.n. (B74761) (S). [Vorarlberg], An der Douglashütte bei der Scesaplana, 1924, K. Müller s.n. (H1307) (JE); Bei der Douglashütte bei der Scesaplana, auf Kalkfelsen, viii 1924, K. Müller s.n. (B74751) (S).

ESTONIA, Saaremaa County, Estonian SSR, Lōo, alvar, 13 vi 1989, L. Hedenäs E-18 (B74763) (S).

FINLAND, [Lapland Province], Pohjois-Pohjanmaa, Tornio, Kalkkimaa, W end of the cliffs on SW side of Tuppivaara, $\mathrm{Q}=7312: 520$, c. 30 m , amongst other bryophytes in moss mat on thin layer of mixed humus and mineral soil over exposed sloping face of dolomite-bearing rock, 18 vi $1972, E . \&$ M. Ohenoja s.n. (S).

FRANCE, [Rhône-Alpes], Bessans (Savoie), vallée de Ribon, sur schistes lustrés, 2900m, 6 viii 1952, L. Castelli 10A (B74769) (S); Bessans (Savoie), vallée de Ribon, sur schistes lustrés, 2600m, 4 vii 1952, L. Castelli 10C (B74769) (S).

GERMANY, Bavaria, Oberbayern, Watzmann, 3 viii, D. V.s.n. (JE).

ITALY, [Trentino-South Tyrol], Nord-Italien, Suedtirol, bei Sulden, 15 viii 1902, Quelle s.n. (H1305) (JE); Mt Pelmo, Prov. Bellamo, Massalongo s.n. (B24386).

NORWAY, 1833, Regnell s.n. (BM); Nordlandis, ad interactam Bardofossen in mulangendalea Nordlandia Norveg. Jun., A.F. Regnell s.n. (B74904) (S).
[Finnmark County], Finnmark, earth-covered limestone rocks, west side of Altafjord, ca. 8 km north of Kåfjord, 2 viii 1976, E. Nyholm \& A. C. Crundwell s.n. (E). [Nordland County], Nordlands, amt Salten, Fauske, Lägäflun, $67^{\circ} / 0^{\prime}$ lat. bor., 26 viii 1893, J. Hagen (F); Nordlands amt Salten, Förfolden, Dyperik, $67^{\circ}{ }^{\circ}$ ' lat. bor., 19 viii 1893, Hagen s.n. (S); Nordf. Salten, Boodfjelt?, 27 viii 1869, Schlegel \& Arnell s.n. (S); N. Helgl., Dunderlandsdalen, 4 viii 1870, Blytt \& Arnell s.n. (S); N.Helgl. Mo, Selfordfied ?, 19 vii 1870, Blytt \& Arnell s.n. (S). [Oppland County], Dovre, vii 1857, Hirlen s.n. (g) (BM); Dovre, Kongsvolt, 1872, Rok.Hu s.n. (NY); Dovre, Kongsvolt, Rok. Hu (NY); Kongsvolt, 1873, Brandes s.n. (S); Drinftuen ask Kongsvold, 1834, Rok. Hu s.n. (B74912) (S). [Troms County], Tromsoe amt, Tromsoe, 11 vii 1891, Arnell s.n. (NY); Tromsö amt, Bardo, Bergkletten i tallneg, 9 viii 1891, Arnells.n. (S); Tromsö amt, Nordreizen?, Tavrovive? I videreg, 18 viii 1891, Arnell s.n. (S).

SLOVAKIA, Hohe Tatra, Beläer Kalkalpen beim ,Eisernen Tore', sehr spärlich, $1603 \mathrm{~m}, 27$ vii 1910, I. Györffy s.n. (725087) (BM).

SWEDEN, Srm?, bagnhäred, Fãnsåker, 20 v 1946, Arnell s.n. (S).
Gotland County, Nickarvejun, Hejdeby, 15 v 1957, Å.Hovgard s.n. (S); Hejdeby, 1957, ÅHovgard s.n. (H1299) (JE); Nickarve prom. Hejdeby, 14 v 1957, Å.Hovgard s.n. (S); Kräklingbo sn, Torsburgen, 1957, Hakelier s.n. (H1303) (JE); Kräklingbo sn, Torsburgen, 15 v 1957, Hakelier s.n. (S); St. Karlsö, Röjserhajd, 10 viii 1943, Persson s.n. (S); Follingbo sn, vid Storvidemeyr, 13 v 1957, Hakelier s.n. (S); Östergarns sn, Grogarnsberget, Lammbetad mark, 17 v 1946, Pettersson s.n. (S); Visby, Langähage PåFollingbo, 16 v 1952, s.n. (S); Strovidemyr pron. Follingbo, 27 v 1955, Å. Hovgard s.n. (B74832) S. Jämtland County, Haerjedalen, Taennaes sn, Froestsjoeberget, soedra sidan, 15 viii 1964, Hakelier s.n. (NY); Häredalen, Tännäs, Skenörsfjället, södra sidan, 31 viii 1975, Hakelier s.n. (S); Häredalen, Tännäs sn, Hamrafället, östra sidan, 12 viii 1965, Hakelier s.n. (S); Häredalen, Tännäs sn, Fröstsjöberget, södra sidan, 15 viii 1964, Hakelier s.n. (S).Undersåkers sn, ca. 500 m Ö om Säterråvallen nära vägen till Vålådalen, kalkklippa, 25 vi 1964, Hakelier s.n. (S); Jämtland, Åre sn, Ulvsberget, södra sidan, 22 viii 1964, Hakelier s.n. (S); Lyle. Tärna sn, Mieskatfjället, 25 vii 1934, Uggla s.n. (S). [Kalmar County], Öland, Resmo sn,
alvaret strax O om kyrkbyn, mellan tuvor i alvarstepp, 7 vi 1942, Albertson s.n. (S); Bei Resmo, 24 v 1865, Lindberg s.n. (S); Resmo sn, 17 vi 1928, Hülphers s.n. (S); Resmo alvar, på Kalkhallar nud grund jordhetåckning, 18 vi 1928, Hülphers s.n. (S); Resmo alvar, 12 vi 1920, Medelius s.n. (S); Resmo alvar, 17 vi 1928, Medelius s.n. (S); Borgby alvar, 10 vi 1920, Medelius s.n. (S); Borgby alvar, 1920, Medelius s.n. (H1298) (JE); Böda sn, Lalngaloaud?, 2 v 1944, Albertson s.n. (S); Böda sn, Strandtorps, 14 vi 1928, Hülphers s.n. (S); Hullenstad sn, Gösslunche alvar, 9 vi 1920, Medelius s.n. (S); Hartlösa sn, Bjärby alvar, 18 vi 1920, Medelius s.n. (S); Högsrum asvar sogn, Karums alvar, 22 v 1983, Hallingbäck s.n. (E). [Norbotten County], Torne Lappmark, Jukkasjärvi socken, Abisko nationalpark, Nuolja, nordsluttningen (12a), 29 vii 1944, Persson s.n. (S); Torne Lappmark, Jukkasjärvi socken, Torneträskområdet, Nissonjåkks kanjon, 4 viii 1944, Persson s.n. (S); Torne Lappmark, Jukkasjärvi socken, Abisko nationalpark, Slåttatjåkko, O-sluttningen, reg. Alp., 15 viii 1944, Persson \& Gjaerevoll s.n. (S); Torne Lappmark, Jukkasjärvi socken, Abisko nationalpark, Kårsavaggejåkk, S:a sidan, 29 vii 1944, Arnell \& Persson s.n. (S); Jukkasjärvi, Rodlofriano s.n. (S); Torne Lappmark, Torneträsk-området, Vassitjakko, bravt ca. 700m, 12 viii 1927, Samuelsson s.n. (S); Lapponia tornensis, in reg. Lacus Torneträsk, Låktatjakko, in supikes? Schistosis, 2 vii 1927, Samuelsson \& Zander s.n. (S); Torne Lappmark, Björkliden, 19 vii 1941, Hülphers s.n. (S); Torne Lappmark, Tjasinnjarkatjåkko, skifferbrant, ca. 800m, 1 viii 1916, Samuelsson, s.n. (S); Torne Lappmark, Nuolja, 16 vii 1944, Hülphers s.n. (S); Torne lappmark, par. Jukkasjaervi, Tjasinnjaskatjåkko, 1 viii 1916, Samuelsson s.n. (NY); Pite Lappmark, Silbotjåkkå, rock crevices near the river, $500-575 \mathrm{~m}$, $16^{\circ} 15^{\prime} \mathrm{E}, 66^{\circ} 31^{\prime} \mathrm{N}, 5$ viii 1998, Thingsgaard \& Damsholt 98-150 (E); Pite Lappmark, Vuoggatjålmejaure, Reti, ostrikan?, 16 vii 1932, Arwidsson s.n. (S); Pite Lappmark, Sulitelma, vii 1938, Uggla s.n. (S); Lule lappm., Njammats pr. Krikkjokk, 15 vii 1891, Nyman s.n. (S); Pite Lappland, Arjeplog s:n Sulitelma, 1938, Uggla s.n. (H1304) (JE). [Stockholm County], Upland, Djurö, Munkön, kalkhällar, 28 v 1916, Samuelsson s.n. (S); Upland, Djurö, Runmarö, Kalkeberg nãra Hvittrãsk, 26 v 1927, Larsson s.n. (S); Uppland, Djurö socken, Runmarö, Kalkberg norr om Kila, provet innehåller Mannia fragrans åtminstone som inblandning, 28 vii 1976, Johansson s.n. (S); Södermanland, Bälinge parish, 1.5 km NE Nynäs, among mosses on limestone, 8 vi 1980, Thor 1712 (S). [Västra

Götaland County], Västergötland, Karleby sn, 1944, Hülphers s.n. (H1302) (JE); Västergötland, Karleby, 15 v 1944, Albertson s.n. (S); Västergötland, Karleby sn, Djupedalen, mydla påckalkhãllar, 12×1937, Larsson s.n. (S); Västergötland, Karleby sn, Karlbg hed, 1 vi 1944, Albertsson s.n. (S); Värtugull., Karleby kalkkea jordtäckt kalkhull, 19 vi 1944, Hülphers s.n. (S).

SWITZERLAND, Valais, Bernice, Mte. Gemmi, Herb. Shuttleworth 1877 (BM).

GREENLAND, West Greenland, Sonděstrom Fjord, sunny south facing slopes, near air strip, $66^{\circ} 50^{\prime} \mathrm{N}$, ca. $50^{\circ} 30^{\circ} \mathrm{W}$, at head of Fjord, with Solenostoma polaris, 23 vi 1966, Schuster 66-041 (F); Sonděstrom Fjord, sunny south facing slopes, near air strip, $66^{\circ} 50^{\prime} \mathrm{N}$, ca. $50^{\circ} 30^{\prime} \mathrm{W}$, at head of Fjord, 23 vi 1966, Schuster 66-047 (F); Sonděstrom Fjord, sunny south facing slopes, near air strip, $66^{\circ} 50^{\prime} \mathrm{N}$, ca. $50^{\circ} 30^{\prime} \mathrm{W}$, at head of Fjord, 23 vi 1966, Schuster $66-045$ (F); SW corner of Anap nunâ NW of Niaqornarssuag, $69^{\circ} 55^{\prime} \mathrm{N}, 50^{\circ} 33^{\prime} \mathrm{W}$, 21 vii 1970 , Schuster $70-2404$ (F).
U.S.A., Alaska, [Nome Census Area], Bendeleben Quad., Darby Mts., Mt. Omilak, saddle on E shoulder, $65^{\circ} 01^{\prime} 07^{\prime \prime} \mathrm{N}, 162^{\circ} 34^{\prime} 05^{\prime \prime} \mathrm{W}, \pm$ flat saddle, on ground, 1 vii 1997, B. M. Murray s.n. (E). [North Slope Borough], Arctic Alaska, in vicinity of Ogoturuk Creek and its mouth, south of Cape Thompson, Chukchi Sea, near southwest end of Brooks Range, $68^{\circ} 07^{\prime} \mathrm{N}, 165^{\circ} 55^{\prime} \mathrm{W}$, on side of frost hummock in tundra, 21 vii 1963, W. C. Steere 63-526 (NY); Driftwood Camp, near headwaters of the Utukok River, north slope of De Long Mountains, Brooks Range, approx. $68^{\circ} 53^{\prime} \mathrm{N}, 161^{\circ} 10^{\prime} \mathrm{W}$, on soil, frost boil, 12 viii 1951, W. C. Steere 16805 (NY); Driftwood Camp, near headwaters of the Utukok River, north slope of De Long Mountains, Brooks Range, approx. $68^{\circ} 53^{\prime} \mathrm{N}, 161^{\circ} 10^{\prime} \mathrm{W}, 4$ viii -6 viii 1951, W. C. Steere 16525 (NY); Lupine River, Brooks Range ($68^{\circ} 45^{\prime} \mathrm{N}, 148^{\circ} 20^{\prime} \mathrm{W}$), in headwater area of Sagavanirktok River, south of Prudhoe Bay, 500-1500m, 26 vii 1973, Iwatsuki 1166 (NY); Vicinity of Umiat, Colville River ($69^{\circ} 22^{\prime} \mathrm{N}$, $152^{\circ} 10^{\prime}$ W), North side of Umiat Mountains, $140-250 \mathrm{~m}, 25$ vi 1973, W. C. Steere, Inoue \& Iwatsuki 323 (NY); Gubic and vicinity, near the confluence of the Chandler and Colville Rivers, approx. $69^{\circ} 28^{\prime} \mathrm{N}, 151^{\circ} 30^{\prime} \mathrm{W}$, hillside, 23 vii 1951 , W. C. Steere 16145 (NY); East Oumalik and vicinity, approx. $69^{\circ} 48^{\prime} \mathrm{N}, 155^{\circ} 23^{\prime} \mathrm{W}$,
on bare frost boil, high tundra, 3-10 vii 1951, W. C. Steere 15373-3d (NY); East Oumalik and vicinity, approx. $68^{\circ} 48^{\prime} \mathrm{N}, 161^{\circ} 10^{\prime} \mathrm{W}$, on bare frost boil, high tundra, 3-10 vii 1951, W. C. Steere 15272 (NY); Liberator Lake, north slope of De Long Mountains, Brooks Range, $68^{\circ} 52^{\prime} \mathrm{N}, 158^{\circ} 22^{\prime} \mathrm{W}$, on north-facing ridge south of lake, 19 vii - 25 vii 1961, W. C. Steere 610725-12 (NY); Liberator Lake, north slope of De Long Mountains, Brooks Range, $68^{\circ} 52^{\prime} \mathrm{N}, 158^{\circ} 22^{\prime} \mathrm{W}$, on silt in frost boil, north slope of Liberator Ridge, 19 vii - 25 vii 1961, W. C. Steere 610725-19 (NY). Firth River Basin, near mouth of Mancha Creek, $68^{\circ} 40^{\prime} \mathrm{N}, 141^{\circ} \mathrm{W}$, in crevices of rock outcrop, lower Mancha Creek, 5 viii 1958, Sharp MC-58144U (NY); Firth River Basin, near mouth of Mancha Creek, $68^{\circ} 40^{\prime} \mathrm{N}, 141^{\circ} \mathrm{W}$, crevices of soil in bluff, 11 viii 1958, Sharp MC-58222a (NY); Firth River Basin, near mouth of Mancha Creek, $68^{\circ} 40^{\prime} \mathrm{N}, 141^{\circ} \mathrm{W}$, peaty bank of Firth River near Mancha Creek, 9 viii 1958, Sharp MC-58185b (NY). [Northwest Arctic Borough], Boreal Alaska, Ambler River Region, moist slatey limestone rock pile, 1000', north facing slope west of waterfall, Mountains E. of Ruby Creek, 1.5 miles S. of Bornite, ca. $67^{\circ} 03^{\prime} \mathrm{N}, 156^{\circ} 54^{\prime} \mathrm{W}, 25$ vi 1976, Lewis 1537 (F).

CANADA, North-West Territories, Banks Island, Bernard River, a few miles south of its aprupt turn southward, $73^{\circ} 23^{\prime} \mathrm{N}, 121^{\circ} 50^{\prime} \mathrm{W}$, on vertical silt bank above Bernard River, 1 viii -4 viii 1963, W. C. Steere 63-908 (NY).

RUSSIA, [Krasnoyarsk Territory], Siberia, Jenissei, inter Krasnojarsk et Jeniseisk, prope pagum Makokovo, $58^{\circ} \mathrm{N}, 1876$, H.W.Arnell s.n. (H1300) (JE); Jenissei, Dudinka, $69^{\circ} 35^{\prime}$ N, 27-30 vii 1876, H.W.Arnell s.n. (H1301) (JE). [Sakha Republic] Siberia, In valle flum. Lena, Kumachsur, $70^{\circ} 30^{\prime}$ lat.bor., 31 vii 1898, Nilsson-Ehle s.n. (S, NY).

UNKNOWN LOCALITIES, 6 viii, Schneibstein, Quelle s.n. (JE); Oben an Aggarstein, Schneilstein? 6.8., F.Quelle s.n. (JE).

Appendix II. Morphological phylogeny and character evolution

1. Characters and character state codes used for morphological phylogeny

Vegetative characters of gametophyte

1 Thallus margin ($0=$ narrow and rather parallel; $1=$ sinuate; $2=$ undulate, crenate, wavy)
2 Thallus areolation ($0=$ absent; $1=$ present)
3 Assimilation tissue ($0=$ compact; $1=$ loose)
4 Oil bodies in ventral scales ($0=$ present; $1=$ absent)
5 Scale appendage Number ($0=$ predominately $1 ; 1=1$ or $2 ; 2=2,3$ and 4)
6 Appendage constriction ($0=$ absent; $1=$ present)
7 Aromatic ($0=$ weakly aromatic; $1=$ strongly aromatic)

Reproductive characters of gametophyte

8 Sexual condition ($0=$ par-autoicous; $1=$ terminal autoicous; $2=$ male• ventral autoicous; $3=$ female-ventral-autoicous; $4=$ dorsal autoicous; $5=$ dioicous)

9 Androecium type ($0=$ diffuse, scattered; $1=$ weak cushion or cluster; $2=$ defined cushion; 3 = disc)

10 Position of androecium ($0=$ dorsal; $1=$ base of stalk; $2=$ ventral; $3=$ terminal $)$
11 Peduncle position ($0=$ terminal on main thallus; $1=$ terminal on ventral thallus, 2 = dorsal; $3=$ absent)
12 No of rhizoidal furrows ($0=$ none; $1=$ one; $2=$ two; $3=$ not applicable)
13 Carpocephala head ($0=$ naked; $1=$ inconspicuously bearded; $2=$ conspicuously bearded; $3=$ not applicable)

14 Shape of carpocephalum ($0=$ hemispherical; $1=$ umbrella-shaped; $2=$ conical; $3=$ discoid; 4 = subglobose to globose; $5=$ absent)

15 Involucre ($0=$ cup-shaped; $1=$ flap; $2=$ entire flap; $3=$ bilabiate or bivalved; $4=$ tubular)

16 Pseudoperianth ($0=$ absent: $1=$ present $)$

Sporophyte characters

17 Capsule dehiscence ($0=$ entire/regular lid; $1=$ fragmenting/decaying/irregular lid; $2=$ valves)

18 Spore shape ($0=$ alete; $1=$ weakly trilete; $2=$ strongly trilete)
19 Proximal/distal ornamentation ($0=$ isopolar; $1=$ anisopolar)
20 Proximal disc ($0=$ present; $1=$ absent)
21 Equatorial pores ($0=$ absent; $1=$ inconspicuous, $2=$ conspicuous)
22 Fine distal ornamentation ($0=$ pits; $1=$ without pits)
23 Fine distal ornamentation ($0=$ papillate; $1=$ areolate/alveolate; $2=$ spongy; $3=$ smooth)

24 Primary distal ornamentation ($0=$ saccate, $1=$ ridges; $2=$ regularly areolate; $3=$ incompletely areolate; 4 = lamellate)
2. Data matrix for morphological phylogeny

Taxon Character	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Mannia androgyna	0	0	0	0	1	0	0;1	3;4	0;1	0	0;1	1	0	0	0	0	0	1	1	0	2	0	0	0
Mannia asiatica	0	0	1	0	1	0	0	1	1	3	0	1	0;1	0	0	0	0	1	0	1	1;2	0	1	3
Mannia californica	0	0	0	0	1	0	0	3;4	0;1	0	0;1	1	0	0	0	0	0	1	1	0	2	1	0	1;3
Mannia fragrans	0	0	1	0	1	0	1	5	3	3	0	1	2	0	0	0	0	0	0	1	2	0	0	2
Mannia pilosa	1	1	1	1	1	0	0	2	1	2	0	1	2	4	0	0	0	0	0	1	1	0	2	3
Mannia sibirica	0	1	0;1	0	1	0	0	1	1	3	0	1	2	0	0	0	0	1	1	0	2	1	0	1;2
Mannia triandra	1	1	1	0	1	0	0	0;1	1	1;3	0	1	0	4	0	0	0	0	0	1	1	0	2	3
Asterella africana	1	1	0	0	0	0	0	0	1	1	0	1	2	1	2	1	1	2	1	1	0	0	1	2
Asterella californica	2	0	1	0	2	0	1	5	2	0	0	1	0	0	1	1	1	2	0	1	0	0	1	1
Asterella gracilis	2	0	1	0	0	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1;3	3
Asterella grollei	?	0	1	0	0	0	1	1	1	3	0	1	1	2	1	1	1	2	0	1	2	1	0	1
Asterella lateralis	?	0	0	0	1	0	?	2;3	1	2	1	1	1	1	2	1	1	2	0	1	0	0	1	2
Asterella palmeri	2	0	0	0	0	0	?	0	1	1	1	1	0	2	2	1	0	2	0	1	2	1	0	1
Asterella saccata	0	0	1	0	1	1	0	0;1	1	1	0	1	0	2	1	1	1	2	0	1	0	1	1	1
Asterella tenella	1	0	1	0	1	0	1	0	1	1	0	1	0	2	2	1	0	2	0	1	2	1	0	3
Asterella wallichiana	2	0	1	0	0	0;1	1	5	2	0	0	1	1	0	2	1	1	2	0	1	0	1	0	1
Cryptomitrium himalayense	2	1	1	0	0	0	0	0	0	1	0	1	0	3	3	0	0	2	0	1	0	1	3	4
Cryptomitrium tenerum	2	1	1	0	0	0	0	0	0	1	0	1	0	3	3	0	0	2	0	1	0	1	3	4
Plagiochasma rupestre	2	0	0	0	1	1	0	1	2	0	2	0	2	0	3	0	1	2	0	1	1	1	0	2
Plagiochasma wrightii	2	0	0;1	0	0	1	0	1	2	0;2	2	0	2	0	3	0	1	2	0	1	1	1	0	1;3
Reboulia hemisphaerica	2	0	0	0	2	0	0	0;1	2	1;3	0	1	2	0	3	0	1	2	0	1	2	1	0	2
Athalamia hyalina	2	1	1	1	0	0	0	5	0	0	2	0	0	0	4	0	2	1	0	1	0	0	0	3
Targionia hypophylla	0	0	0	0	0	0	1	2	1	2	3	3	3	5	2	0	2	0	1	0	0	0	1	2

3. Characteristics of the morphological matrix

Parameter	Morphological dataset
Number of taxa	23
Length of most parsimonious trees, steps	142
Number of most parsimonious trees	76
Consistency Index (CI)	0.54
Homoplasy Index (HI)	0.62
Retention Index (RI)	0.61
Rescaled consistency Index (RC)	0.33

4. List of characters, states, steps and the Consistency Index (Cl) used in the character evolution

Character	States	Steps	Cl
1	3	6	0.33
2	2	5	0.20
3	2	5	0.20
4	2	2	0.50
5	3	7	0.29
6	2	2	0.50
7	2	6	0.17
8	6	10	0.40
9	4	7	0.43
10	4	10	0.30
11	4	4	0.75
12	4	3	0.67
13	5	8	0.38
14	2	8	0.56
15	3	4	0.50
16	3	3	0.25
17	2	3	0.67
18	2	2	0.33
19	3	6	0.50
20	2	6	0.33
21	4	7	0.17
22	5	11	0.33
23			

5．Character evolution

Targionia hypophylla Madeira
Targionia hypophylla California
 Cryptomitrium himalayense
Cryptomitrium spec
Asterella grollei

 Asterella lateralis
 Plagiochasma wrightii
Reboulia hemisphaerica Asterella gracilis
Mannia triandra \square Mannia triandra
Mannia pilosa
Mannia fragrans Swit
QMannia fragrans
OMannia fragrans Japan
Mannia fragrans Japan Mannia androgyna Namibia
 YロMannia californica Namibia

1םMannia californica California
口Mannia californica 104 North India
口Mannia californica France
\square Mannia californica 105 North India
Character
unordered
\square 0
1
2
equivoca

Targionia hypophylla Madeira
Targionia hypophylla California
Targionia hypophylla Californial
Athalamia hyalina
Cryptomitrium tenerum

Cryptomitrium spec
Vasterella grollei
Asterella californica

Asterella anella
Asterella tenella lateralis
Asterella latera
10 Plagiochasma rupestre
Plagiochasmasma wrightii
Reboulia hemisphaerica
QAsterella gracilis
Mannia triandra
\square Mannia pilosa
\square Mannia fragrans Switzerland
\square Mannia fragrans India
\square Mannia fragrans Japan
Mannia controversa Austria
Mannia spec 128 North India
Mannia androgyna Namibia
Mannia androgyna Namibia
Mannia androgyna Madeira
Mannia californica Austria

е!ри। чมON +01

th India
Character 5
unordered

 VMannia calfornica

Character 6
Character
\square
귝ㄱㄱㅇ uncertain
Targionia hypophylla Madeira
Cryptomitrium tenerum

 Asterella saccata Plagiochasma rupestre Plagiochasma japonicum
Plagiochasma wrightii \square Plagiochasma wrightiI
Reboulia hemisphaerica \square Asterella gracilis VMannia triandra
Mannia pilosa
Mannia fragrans Switzerland
Mannia fragrans India
Mannia fragrans Japan ueder suen据\& e! eluuew Mannia controversa Austria Mannia androgyna Namibia MMannia californica Austria Mannia californica Austria
Mannia californica Namibia
Mannia californica South India
MMannia californica China
1םMannia californica California MMannia californica 104 North India
1 Mannia californica France
Character 7
Targionia hypophylla Madeira

TOTargionia hypophylla Madeira
 Co Cryptomitrium himalayense
Cryptomitrium spec
Cryptomitrium spec
asterella grollei
Asterella californica EAsterella californica

Asterella saccata
 Plagiochasma Japonicum
Plagiochasma wrigtii
Reboulia hemisphoerica
RReboulia hemisphaerica
Rasterella gracilis

Mannia pilosa
MMnnia aragrans Switzerland
MMnnia fragrans India

- anninia fragrans Japan
Mannia controversa Austria Mannia controversa Austria
Mannia spec 128 North India Mannia spec 128 North India
MMnnia androgyna Namibia
MMannia androgyna Madeira Mannia androgyna Madeira
Mannia californica Austria Mannia califorrica Austria
Mannia californica Namibia
 Mannia callfornica China
Mannia cailifornica Cailifo Mannia californica 104 North India
MEMannia caifornica France
Kalifornica 105 North India
Character 9
unordered品

Character 11
unordered

\square	0
\square	1
2	
\square	

 Plagiochasma japonic um
\square Plagiochasma wrightii $\square \square$ Plagiochasma
\square Reboulia hemisphaerica MAsterella gracilis

 Mannia controversa Austria
Mannia spec 128 North Mannia spec 128 North India
Mannia androgyna Namibia Mannia androgyna Namibira
Mannia androgyna Madeira
Mannia californica Austria Mannia californica Austria

 4.JoN $七 01$
elusot!!ej
 N
วəds un!ut!mozdKı Asterella grollei
 \square Asterella africana
\square Asterella tenella Asterella lateralis

-2
Cryptomitrium tenerum
 ?

Character 14
unordered

\square
\square

Character

Mannia pilosa

Mannia controversa Austria
Mannia spec 128 North India
Mannia androgyna Namibia
Mannia androgyna Madeira
Mannia californica Austria

105 No
orth India

TaTargionia hypophylla Madeira Targionia hypophylla Madeira Athalamia hyalina
Cryptomitrium ten
Cryptomitrium tenerum
Cryptomitrium himalayense Cryptomitrium spec Asterella californica Asterella wallichiana

Asterelia africana
Asterella tenella Asterelia tenella
Asterella a lateralis
Asterella saccata Astagiochasma rupestre Plagiochasma japonicum Plagiochasma wrightii
Reboulia hemisphaerica Reboulia hemispha
Asterella gracilis
Mannia triandra

$$
\begin{aligned}
& \begin{array}{l}
\text { Astria triandra } \\
\text { Mannia pilosa }
\end{array} \\
& \begin{array}{l}
\text { gMannia californica California } \\
\text { 10Mannia californica } 104 \text { North India }
\end{array} \\
& \text { VMannia californica } 105 \text { North India }
\end{aligned}
$$

Character 20
unordered
$\square 0$
equivocal

Targionia hypophylla Madeira
\square Targionia hypophylla California
Targionia hypophylla California
唯 Cryptomitrium tenerum Cryptomitrium spec Cryptomitrium sperella grollei Asterella californica $1 \square$ Asterella africana
\square Asterella tenella Asterella lateralis
Asterella saccata Plagiochasma rupestre
Plagiochasma japonicum पPlagiochasma wrightii OReboulia hemisphaerica Asterella gracilis
Mannia triandra \qquad Nannia fragrans India Mannia controversa Austria
Mannia spec 128 North India Mannia androgyna Namibia Mannia androgyna Madeira Mannia californica Austria JoMannia californica South India
Mannia californica China
 JMannia californica 104 North India $1 \square$ Mannia californica France
\square Mannia californica 105 Nor

[^0]Character 23
Character 24
Targionia hypophylla Madeira
Asterella gracilis
Mannia triandra
Mannia triandra
Mannia pilosa
Mannia fragran

Mannia fragrans India
Mannia fragrans Japan
Mannia controversa Austria Mannia spec 128 North India
Mannia androgyna Madeira Mannia californica Austria e!pulytinos eगuup!!feo eluuew VMannia californica California

unordered

Appendix III. Molecular phylogeny

1. Liverwort material used for DNA analyses. Voucher specimens are deposited in E.

Taxon	DNA sample No.	Locality	Collection
Aytoniaceae			
Asterella africana (Mont.) A.Evans	Schill 18	Portugal, Madeira	Schill \& Lobos 29
Asterella californica (Hampe) Underw.	Schill 74	U.S.A., California	Schill \& Clarke 104
Asterella gracilis (F.Weber) Underw.	HUGO 2	France, Haute-Loire	V. Hugonnot s.n.
Asterella grollei D.G.Long	H37	China, Qinghai	Long 27203
Asterella lateralis M. Howe	H257	Mexico, Dist. Federal	Long 29598
Asterella saccata (Wahlenb.) A.Evans	Schill 41	Switzerland, Valais	Schill, Price \& Maier 58
Asterella tenella (L.) P.Beauv.	H363	U.S.A., Connecticut	Goffinet 8750
Asterella wallichiana (Lehm.) Grolle	H317	Nepal, Lalitpur Distr.	Long 30251
Cryptomitrium himalayense Kashyap	H346	Nepal, Rasuwa Distr.	Long 30559
Cryptomitrium tenerum (Hook.) Austin ex Underw.	H276	Mexico, Querétaro	Long 29748
Cryptomitrium spec.	Schill 116	Peru, La Libertad	Schill \& Clarke 180
Mannia androgyna (L.) A.Evans	Schill 20	Portugal, Madeira	Schill \& Lobos 29
Mannia androgyna (L.) A.Evans	Schill 87	Namibia, Otjozondjupa	Schill \& Clarke 124
Mannia californica (Gottsche) L.C.Wheeler	H639	China, Yunnan	Long 35035
Mannia californica (Gottsche) L.C.Wheeler	Schill 72	U.S.A., California	Schill \& Clarke 102
Mannia californica (Gottsche) L.C.Wheeler	Schill 91	Namibia, Otjozondjupa	Schill \& Clarke 131
Mannia californica (Gottsche) L.C.Wheeler	Schill 55	Austria, Styria	Schill, Köckinger \& Müller 77
Mannia californica (Gottsche) L.C.Wheeler	Schill 95	India, Tamil Nadu	Schill \& Clarke 144
Mannia californica (Gottsche) L.C.Wheeler	Schill 105	India, Uttaranchal	Schill \& Clarke 165
Mannia californica (Gottsche) L.C.Wheeler	HUGO	France, Ardèche	V. Hugonnot s.n.
Mannia californica (Gottsche) L.C.Wheeler	Schill 104	India, Uttaranchal	Schill \& Clarke 164
Mannia californica (Gottsche) L.C.Wheeler	KOE	Austria, Carinthia	Köckinger s.n.
Mannia controversa Meyl.	DUE	Austria, Carinthia	Duell s.n.
Mannia fragrans (Balbis) Frye \& L.Clark	Schill 34	Switzerland, Valais	Schill, Price \& Maier 58

249－
 2．Alignment of Mannia and related taxa for trnL－F and 26S

\square 옹 웅 $\begin{array}{ll}5 & 5 \\ \infty & 0 \\ \infty & \infty\end{array}$
脑㐫㐫 － ふだふ
可
 우을䆠
．
？？？CCATAA－TTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCAACTAAATGATTGTTTTCAAA ？ ？？？？TCGAAA－TTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCCACTAAATGACTGTTTTCAAA ？ ？？？？？？？？？？？：ATTGGGAGACGCCTGCGGACTTAATTTAAATTGAGCTTTAGGCGAAAAAACAACTAAATGATTGTTTTAAAA ？？？？？？？？？？ATTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCCACTAAATGATTGTTTTCAAA ？？？？TCGAAA－TTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCTACTAAATGATTGTTTTCAAA ？？？？TCGATA－TTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCTACTAAATGATTGTTTTCAAA ？？？？？？？？？AA－TTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCTACTAAATGATTGTTTTCAAA准 ？？？？？TCGATATTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCCACTAAATGATTGTTTTCAAA ？？？？？？？？？？ATTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCAACTAAATGATTGTTTTCAAA ？？？？？？？？？？ATTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCAACTAAATGATTGTTTTCAAA AAAAATCCTTATTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTCGAGAAATCAACTAAAGGATTGTTTTCAAA ？？？？？？？？？？？？？？GGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATCAACTAAATGATTGTTTTCAAA ？？AATCGTTA－TTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATCAACTAAATGATTGTTTTCAAA ？？？？？？？？？A－TTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATCAATTAAATGATTGTTTTCAAA ？？？？？TCGATATTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATCAACTAAATGATTGTTTTCAAA ？？？？？？？？？ ATTTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATCAACTAAATGATTGTTTTCAAA ？？？？？？？？？？ATTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATCAACTAAATGATTGTTTTCAAA
 KZ AAAGTCGATATTGGTAGACGCTGCGGACTCAATTTAATTGAGCTTTAGTTGAGAAATCAACTAAATGATTGTTTTCAAA ？？？？？？？？？？ATTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATTAACTAAATGATTGTTTTCAAA信 ？？？？？？？？？ATTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATTAACTAAATGATTGTTTTCAAA ？？？？？？？？？？？TTGGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATTAACTAAATGATTGTTTTCAAA ？？？？？？？？？？？？？GGTAGACGCTGCGGACTTAATTTAATTGAGCTTTAGTTGAGAAATTAACTAAATGATTGTTTTCAAA
Targionia＿hypophylla＿Madeira Targionia＿hypophylla＿California Athalamia＿hyalina Plagiochasma＿rupestre
Plagiochasma＿wrightii Plagiochasma－japonicum Cryptomī̄rium＿tenerum Cryptomitrium＿himalayense Cryptomitrium＿spec＿Peru Asterella＿grollei Asterella＿californica Asterella＿africana Asterella＿tenella Asterella＿saccata Asterella＿gracilis Mannia＿pilosa Mannia＿triandra
Mannia fragrans Mannia＿fragrans＿Switzerland Mannia＿fragrans＿India Mannia＿fragrans＿Japan
Mannia androgyna Namibi Mannia＿androgyna＿Madeira Mannia＿controversa＿Austria Mannia＿spec＿128＿North＿India Mannia＿californica＿California Mannia＿californica＿Namibia Mannia＿californica＿France
Mannia＿californica＿104＿North＿India
Mannia＿californica＿104＿North＿India
Mannia＿californica＿105＿North＿India
Mannia＿californica＿South＿India
［157］

국

 rTTTGTGTACTAAAACAAAATAGGTTTTGTGTGCTAAAACAAAATAGG TTTTGTGTGCTAAAACAAAATAGG TTTGTATGCTAAAACAAAATAGG TTTTGTGTGCTAAAACAAAATAGG

 ЭЭ甘

 TCAGGGAAACCTTGGATGAAAAAAAA－GAAAAAGATTAGGTAATCCTGAGCCAAATTTTGTATGCTAAAACAAAATAGG

 TTCAGGGAAACATTGGATGAAAAAAAA－GATAAAGATTAGGTAATCTTGAGCCAATTTTTGTATGCTAAAACAAAATAGG

 TTCAGGGAAACCTTTGATGAAAAAAAA－GAGAAAGATTAGGCAATCCTGAGCCAATTTTTGTATGTTAAAACAAAATAGG
．
．
8
ㅇ．

岕 氐 足 念 U U

 GATAAATATTAGGTAATTCTGA CAGGGAAACCTAGGATGAAAAAAA－－GAAAA－－GATAAATATTAGGTAATTCTGAGCCAAA TTCAGGGAAACCTAGGATGAAAAAAA－－GATAAATATTAGGTAATTCTGAGCCAA TTCAGGGAAACCTTGGATGAAAAAAAA－GATAAAGATTAGGTAATCCTGAGCCAA TTCAGGGAAACCTTGGATGAAAAAAA－－GATAAAGATTAGGTAATCCTGAGCCAA TTCAGGGAAACCTTCTATGAAAAAAAA－GATAAAGATTAGGTAATCCTGAGCCAAA TTCAGGGAAACCTTGGATGAACAAAAAA－－－－AAGATTAGGTAATCCTGAGCCAAA TTCAGGGAAACCTTGGATGAACAAAAAA－ ${ }_{\mathrm{H}}^{\mathrm{H}}$ Asterella＿saccata
Asterella＿gracilis
Mannia＿pilosa
Mannia＿triandra
Mannia＿fragrans＿Switzerland
Mannia＿fragrans＿India
Mannia＿fragrans＿Japan
Mannia＿androgyna＿Namibia
Mannia＿androgyna＿Madeira
Mannia＿controversa＿Austria
Mannia＿spec＿128＿North＿India
Mannia＿californica＿Austria
Mannia＿californica＿California
Mannia＿californica＿Namibia
Mannia＿californica＿France
Mannia＿californica＿China
Mannia＿californica＿104＿North＿India
Mannia＿californica＿105＿North＿India
Mannia＿californica＿South＿India Targionia＿hypophylla＿Madeira Targionia＿hypophyl Plagiochasma＿rupestre Plagiochasma＿wrightii Plagiochasma＿japonicum
Reboulia hemisphaerica Cryptomitrium＿tenerum Cryptomitrium＿himalayense
Cryptomitrium spec Peru Asterella＿grollei Asterella＿californica Asterella africana Asterella＿tenella Asterella＿lateralis Asterella＿saccata

N্ত N્ડ N 웅
N

N
$\stackrel{\circ}{N}$ TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTAT-TATAAA------AAAAAATG-ATTAAATTAA--AAATGAA-T TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTAT-TATAAAGATGA-AAAGAATC-GTGAAAAATT--GTATTAA-T TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTAT-TATAAAGATGA-AAAGAATC-GTGAAAAATT--GTATTAA-T TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTAT-TCTCAAAATGA-AAAGAATC-ATGAAAAATT--GTACTAA-T TGCAGAGACTCAAAGAAAACTATCCTAACGTAATTTT-TATAAAAATGAGAAAAAATG-ATTAAAAATA--GTATTAA-T

 fGCAGAGACTCAAAGAAAACTATCCTAACGAAATTCT-TATCAAAATTAAAAAAAATG-ATGAAAAATG-GTACMA TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTAT-TATCAAAATGA-AAAAAATG-ATGAAAAATT--ATACTAA-T TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTAT-TATCAAACTGA-AAAAAATG-ATGAAAAATT--GTACTAA-T
 TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTCT-TATCAAAATG--AAAAAATG-ATGAAAAATT--GTACTAA-T

 TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTCT-TATCAAAATG--AAAAATTGTACTAATAATTTAATACTAA-T TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTCT-TATCAAAATG--AAAAATTGTACTAATAATTTAATACTAA-T GCAGAGACTCAAAGAAAACTATCCTAACGAAATTCT-TATCAAAATG--AAAAAATG-ATAAAAAATT--GTACTAA-T GGCAGAGACTCAAAGAAAACTATCCTAACGAAATTCT-TATCAAAATG--AAAAAATG-ATAAAAAATT--GTACTAA-T GCAGAGACTCAAAGAAAACTATCCTAACGAAATTCT-TATCAAAATG--AAAAAATG-ATGAAAAATT--GTACTAA-T TGCAGAGACTCAAAGAAAACTATCCTAACGAAATTCT-TATCAAAATG--AAAAAATG-ATGAAAAATT--GTACTAA-T TGCAGAGACTCAAAGAAAACTATTCTAACGAAATTAT-TATCAAAATG--AAAAAATT-TTGAAAAATT--GTACTAA-T TGCAGAGACTCAAAGAAAACTATTCTAACGAAATTAT-TATCAAAATG--AAAAAATG-TTGAAAAATT--GTACTAA-G TGCAGAGACTCAAAGAAAACTATTCTAACGAAATTAT-TATCAAAATG--AAAAAATT-TTTAAAAATT--GTACTAA-T TGCAGAGACTCAAAGAAAACTATTCTAACGAAATTAT-TATCAAAATG--AAAAAATG-TTCAAAAATT--GTACTAA-T TGCAGAGACTCAAAGAAAACTATTCTAACGAAATTAT-TATCAAAATG--AAAAAATT-TTTAAAAATT--GTACTAA-T tGCAGAGACTCAAAGAAAACTATTCTAACGAAATAT-TATCAAAATG--AAAAATG-TTGAAAATT--GTACTAA-G
ndia Targionia_hypophylla_Madeira Athalamia hyalina Plagiochasma_rupestre Plagiochasma-icum Reboulia_hemisphaerica Cryptomitrium tenerum Cryptomitrium_himalayense
Cryptomitrium spec Peru Cryptomitrium side Asterella_californica Asterella_wallichiana Asterella_africana Asterella_lateralis Asterella-saccata Mannia_pilosa Mannia_triandra Mannia_fragrans_Switzerland Mannia_fragrans_India Mannia androgynā_Namibia Mannia_androgyna_Madeira Mannia_controversa_Austria
Mannia spec 128 North India Mannia_spec_128_North_India Mannia_californica_California Mannia_californica_Namibia Mannia_californica_France Mannia_californica_China
 Mannia_californica_South
 저ㅈㅓㅓ ${ }^{\top}{ }_{0}^{\sim} \stackrel{N}{U}^{\infty}$

 $\stackrel{\text { N }}{\substack{~ \\ ~}}$ N $\stackrel{n}{\sim} \stackrel{\sim}{\sim}$

 CTACTAATTAGTAGTAATAGATTAATTACTA--A-TAAATCT-AT

 AATATAATATTAATAGATTAGTAATA--------------------ATTAGTACTAATAGATTAATTAGTA--G-TAAATAT-AT
AATTTAATCTAAATAGATTAGTAGTATT-----AGTATAGTACTAATCAATTAATTACTA-G-TAAATAT-AT

 AGTTTAATACTAATAGTTTA--.-....-.-.-.-.-GTACTAATTTAGTACTAGTAGATTAATGACTA--G-TAAATAT-AT AGTTTAATACTAATAGTTTAATACTAATAGTTTAGTACTAATTTAGTACTAGTAGATTAATGACTA--G-TAAATAT-AT AGTTTAATACTAATAGTTTA--------------GTACTAATTTAGTACTAGTAGATTAATGACTA--G-TAAATAT-AT AATTTAATATTAATAGTTTA----------------GTACTAATTTAGTACTACTAGATTAATTACTAATTAGTACTACTAGATTAATTACTA--G-TAAAATATAT-AT ААТТТААТАСТААТАGTTTA---------------GTACTAATTTAATATTACTAGATTAATTACTA--G-TAAATAT-AT
 ААТТТААТАСТААТ--TTTA---------------GTACTAATTTAAGACTACTAGATTAATTACTA--G-TAAATAT-AT АААТТААТАСТААТ--TTTA---------------GTACTAATTTAAGACTACTAGATTAATTACTA--G-TAAATAT-AT

Targionia_hypophylla_Madeira
Targionia_hypophylla_California
Athalamia_hyalina
Plagiochasma_rupestre
Plagiochasma_wrightím
Plagiochasma_japonicum
Cryptomit̄rium_tenerum
Cryptomitrium_himalayense
Cryptomitrium_spec_Peru
Asterella_groillei Asterella_wallichiana Asterella-africana Asterella_lateralis Asterella_saccata Asterella_gracilis Mannia_pilosa Mannia-triandra Mannia_fragrans_Switzerland Mannia_fragrans-Japan Mannia_androgyna_Namibia Mannia_controversa_Austria Mannia_spec_128_North_India Mannia_californica_Austria Mannia_californica_Namibia Mannia_californica_France Mannia_californica_104_North_India Mannia_californica_104_North_India
Mannia_californica_105_North_India
Mannia_californica_South_India

$\stackrel{-1}{-1}$$\vec{m}_{0}^{\infty}$ テ－
 ज $\stackrel{N}{\mathrm{~N}} \stackrel{n}{\mathrm{~m}} \stackrel{n}{0}$ $\stackrel{n}{2} \stackrel{\sim}{n}$ $\stackrel{\sim}{n} \stackrel{\sim}{c} \stackrel{\sim}{\sim}$
 둘 － 구N N $\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$ N．
 テ্ত 웅 으N $\stackrel{N}{\sim}{ }_{\sim}^{\sim}$ Na

昏

4
4
4
0
0
0
0

 U

 －tAATAGACGAGGATAA

[^1]
Targionia＿hypophylla＿MadeiraAthalamia＿hyalinaPlagiochasma＿rupestrePlagiochasma＿wrightiiPlagiochasma japonicum
Reboulia hemisphaerica
\[

$$
\begin{aligned}
& \text { Cryptomitrium_tenerum } \\
& \text { Cryptomitrium_himalayense } \\
& \text { Cryptomitrium spec Peru }
\end{aligned}
$$
\]

Asterella_grollei
Asterella_grollel
Asterella_wallichiana
Asterella_africana

$$
\begin{aligned}
& \text { Asterella_tenella } \\
& \text { Asterella_lateralis }
\end{aligned}
$$

Asterella_dateralis

$$
\begin{aligned}
& \text { Asterella_saccata } \\
& \text { Asterella_gracilis }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mannia_pilosa } \\
& \text { Mannia triandra }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mannia_triandra } \\
& \text { Mannia_fragrans_Switzerland }
\end{aligned}
$$

Mannia_fragrans_India

$$
\begin{aligned}
& \text { Mannla_rragrans_lnala } \\
& \text { Mannia_fragrans_Japan }
\end{aligned}
$$

Mannia_androgynáNamibia
Mannia_androgyna Madeira

$$
\begin{aligned}
& \text { Mannia_controversa_Austria } \\
& \text { Mannia spec } 128 \text { North India }
\end{aligned}
$$

$$
\text { Mannia_spec } 128 \text { Nor̄th_India }
$$

$$
\begin{aligned}
& \text { Mannia_californica_Austria } \\
& \text { Mannia_californica_California } \\
& \text { Mannia_californica_Namibia }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mannia_californica_France } \\
& \text { Mannia_californica_China }
\end{aligned}
$$

Mannia_californica_France

$$
\begin{aligned}
& \text { Mannia_californica_104_North_India } \\
& \text { Mannia_californica_105_North_India }
\end{aligned}
$$

Mannia_californica_South_India －TAATAGACGAGGATAA TAAAMTTAA－－AGAGTAATAAAATAATTTAAAA TAATTATTGAA－－AGAGTATTAAAATCATTTAATA TCATTATTTAA－－ATAGTAATAAAATCATTTAATA TAATTATTTAAT－ATAGTAATAAAATCATTTAATG TAATTATTTAA－－ATAATAATAAAATTATTTAATG TAATTATTTATTAGTAATAATAAAATCATTTAATG－
 TATTTATTTAA－－ATAGTAATAAAATCATTGAATA TAATTATTTAA－－ATAGTAATAAAAATCATTTAA－－ATAGTAATAAAATCATTTAATA
 TAATTATTTAA－－ATAGTAATAAAATCATTTAATA TAATTATTTAA－－ATAGTAATAAAATCATITAATA TAATTATTTAA－－ATAGTAATAAAATCATTTAATA TAATTATTTCA－－ATTAA－－ATAGTAATAAAAATCATTTAATC TAATTATTTAA－－ATAATTATAAAATCATTTAATC TAATTATTTAA－－ATAGTAATAAAATCATTTAATC AATTATTTAA－－ATAGTAATAAAATCATTTAATC TAATTATTTAA－－ATAGTAATAAAATCATTTAATC
TAATTATTTAA－－ATAATTATAAAATCATTTAATC

$\stackrel{-}{\circ}$
-
$\stackrel{\odot}{\square}$

\square

 -tTG-TAGTAAAATGAAAATCCGTTGGCTTTAAAG

 TG-TAGTAAAATGAAAATCCGTTGGCTTTAAAG TG-TAGTAAAATGAAAATCCGTTGGCTTTAAAG TTG-CAGTAAAATGAAAATCCGTTGGCTTTAAAG | Y |
| :--- |
| 4 |
| 4 |
| 4 |
| 0 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |

 -TTG-TAGTAAAATGAAAATCCGTGGGCTTTAAAG -TTG-TAGTAAAATGAAAATCCGTTGGCTTTAAAG宏呂 -TTG-TAGTAAAATGAAAATCCGTTGGCTTTAAAG
-TTG-TAGTAAAATGAAAATCCGTGGCTTTAAAG

 TTG-TAGTAAAATGAAAATCCGTTGGCTTTAAAG
TTG-TAGTAAAATGAAAATCCGTTGGCTTTAAAG
 TTG-TAGTAAAATGAAAATCCGTTGGCTTTAAAG
TTG-TAGTAAAATGAAAATCCGTTGGCTTTAAAG TTG-TAGTAAAATGAAAACCCGTTGGCTTTAAAG $-T T G$-TAGTAAAATGAAAATCCGTTGGCTTTAAAG
\qquad AGATAGAGTCCATTTTTACAAGTTAAATTTAACAACAATGCAAA AGATAGAGTCCGTTTTTACAAGTTAATTTGAGCAACAATGAAAA AGATAGAGTCCGTTTTTACAAGTTAAATTTAGCAACAATGAAAA AGATAGAGTCCGTTTTTACAAGTTA-TTTTAACAACAAGGCAAA AGATAGAGTCCATTTT-ACAAGTTAATTTTPACTACAATGCAAA AGATAGAGTCCATTTTTACAAGTTAATTTTAACAACAATGCAAA AGATAGAGTCCATTTTTACAAGTTAAARTTTAACAACAATGCAAA AGATAGAGTCCATTTTTACAAGTTAATTTTAATACAAAGCAAAAGATAGAGTCCATTTTTACAAGTTAATTTGAACAACAATGCAAA AGATAGAGTCCATTTTTACAAGTTAATTTTAACAACAATACAAA AGATAGAGTCCATTTTTACAAGTTAATT TTAACAACAATGCAAA AGATAGAGTCCATTTTTACAAGTTAATTTTAACAACAATGCAAA AGATAGAGTCCGTTTTTACAAGTTAATT TTAACAACAATGCAAA AGATAGAGTCCGTTTTTACAAGTTAATT TTAACAACAATGCAAA AGAATAGAGTCCGTTTTTTACAAGTTAATTTTAACAACAATGCAAAAGATAGAGTCCGTTTTTACAAGTTAATTTTAACAACAATGCAAA AGATAGAGTCCGTTT TTACAAGTTAAATTTAACACACATGCAAA AGATAGAGTCCGTTTTTACAAGTTAATTTTAACAACAATGCAAA
 GATAGAGTCCGTTTTTACAAGTTAAATTTAACAACAATGCAAA AGATAGAGTCCGTTTTTACAAGTTAATTTTAACAACAATGCAAA
Targionia_hypophylla_Madeira
Targionia_hypophylla_California Athalamia hyalina Plagiochasma_rupestre Plagiochasma_wrightii Plagiochasma_japonicum Cryptomitrium_tenerum Cryptomitrium_himalayense Asterella_grollei Asterella_californica Asterella_wallichiana Asterella_tenella Asterella_lateralis
Asterella saccata Asterella_saccata Mannia_pilosa ManniaMannia fragrans India Mannia_fragrans_Japan Mannia_androgyna_Namibia Mannia_androgyna_Madeira Mannia_controversa_Austria
Mannia spec 128 North India Mannia_spec-1.ornica Austria Mannia_californica_California Mannia_californica_Namibia Mannia_californica_France
Mannia californica_China
Mannia_californica_104_North_India Mannia_californica_105_North-India Mannia_californica_South_India
8 ず ボ $\stackrel{-1}{6}$ $\stackrel{N}{\circ}$岕 $\overbrace{0}^{\infty}$ ふু ぶ心「プ 궁合年
 481］ नु 궁
 N ぶの ぶヲぶ

ぶ

56
6
6

\qquad
 GTAGATAAACTT GTTGACAAACTT

 GTtGACACATTT
 GTTGACACTTTT
 LLLLOHOUSLL9

TTGACACTTTT

－ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTAAGAA－AAATTGAATAAAAAA－－－ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTTATAA－AAATTGAATAAA－－－－ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTGGATTTTGAACC－AAGTTGAATAAAAAA－ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTGAACC－AAGTTGAATAAAAAAACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTGATCA－AAATTGAATAAAGAAAA－ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTGATCA－AAATTGAATAAAAAAA－ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTGATCA－AAATTGAATAAAAAAA－ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTCATCA－AAATTGAA－－－－－－ ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTCATCA－AAATTGAATAAAGAAAA ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTGATCA－AAATTGAATAAAAAAA－ ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTGATTA－AAATTGAATAAAAAA ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGCTCAATTTTGATTA－AAATTGAATAAAAAA－ ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGCTCAATTTTGATTA－AAATTGAATAARAAA ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGCTCAATTTTGATTA－AAATTGAATAARAAA－ ACCGTGAGGGTTCAAGTCCCTCTACCCCCAGTTCAATTTTGATTA－AAATTGAATAARAAA－
Targionia＿hypophylla＿Madeira
Targionia＿hypophylla＿California Athalamia hyalina Plagiochasma＿rupestre Plagiochasma＿wrightion Reboulia＿hemisphaerica
Cryptomitrium tenerum
Cryptomitrium＿spec＿Peru
Asterella－californica
Asterella wallichiana
Asterella＿africana
Asterella＿tenella
Asterella＿saccata
Asterella＿gracilis
Mannia＿pilosa
Mannia＿triandra
Mannia－fragrans India
Mannia＿fragrans＿Japan
Mannia＿androgyna＿Namibia
Mannia controversa Austria
Mannia＿spec 128 Nōrth＿India
Mannia＿californica＿Austria
Mannia＿californica＿Namibia
Mannia＿californica＿France
Mannia californica－104 North India
Mannia＿californica＿104＿North＿India
Mannia＿californica＿Soū̄h＿India
 앙 -
 ATTGCCGGGATAGCTCAGT
 L. AT-GCCGGGATAGCTCAGT
 AT-GCCGGAATACCTCAGT

 AT-GCCGGGATAGCTCAGT

8 | 0 |
| :--- |
| \rightarrow |
| 1 |

\circ

$\underset{0}{2}$
응.

> ---------------GTAATA-ATAATTAAAA TAAAATAATCA-AAAGTAAAA-ATA-GTAAAA-TAAAATAATCATAAAGTAAAA-ATA-GTAAAA TAAAATAATAA-AAAATAAAA-ATA-GTAAAA-TAAAATAACGA-AAAGTCAAA-
TAAAATCATGA-AAAGTAAAA
TAAAATAATCA-AAATAAAAA-
TAAAATAATCA-AAATAAAAA
TAAAATGATCA-AAATAAAAA TAAAATGATCA-AAATAAAAA-
TAAAATAATCA-AAATAAAAA-
TAAAATAATCA-AAATAAAAA-
TAAAATAATCA-AAATAAAAA
TAAAATAATCA-AAATAAAAA TAAAATAATCA-AAATAAAAA
∞
ㅇ.

TTTATT-ATTATTTTTTT-TTTTT-
TTTATT-ATTATTTTTTT-T
TTTCTT-TTTATGT-

曷

昆

TTTATT-TTGATGT-
TTTATT-TTTATGT-
TTTATT-TTTATGT-
TTTATT-TTTATGT-
TTTATT-TTTATGT-
TTTATT-TTTATGT-
TTTATT-TTTATGT-
TTTATT-TTTATGT-
TTTATT-TTTATGT
Targionia_hypophylla_Madeira
Targionia hypophylla_California Athalamia_hyalina Plagiochasma_rupestre Plagiochasma_japonicum Reboulia_hemisphaerica Cryptomitrium_himalayense
Cryptomitrium_himalayen Asterella_grollei
Asterella_californica Asterella_africana
Asterella_tenella
Asterella-saccata
Asterella_gracilis
Mannia_pilosa
Mannia_fragrans Switzerland
Mannia_fragrans_India
Mannia_fragrans_-_Napan
Mannia-androgyna-Madeira
Mannia_controversa_Austria
Mannia_spec-128-North-India
Mannia_californica_California
ibia
Mannia_californica_France
Mannia_californica_104_North_India
Mannia_californica_105_North_India Mannia_californica_South_India
웅
高够 웅 ${ }_{3}^{3}$ $\stackrel{7}{-7}$ תু 옹今
 ${ }_{0}^{\stackrel{\sim}{e}}$ $\begin{array}{ll}6 & \infty \\ \cdots & 0 \\ 6 & \\ 6\end{array}$
 n
7
6
6
6

 \begin{tabular}{lll}
\sim \& 0 \& 0

-1 \& 0 \& 1

0 \& 6

\hline \& 6

\circ

0

0

0

0

\hline

m

\multirow{3}{*}{}

6

6
\end{tabular}

 \begin{tabular}{l}
n o

$\underset{\sim}{6}$

\multirow{2}{c}{}

\circ

\hline 1

M

6

6

\hline
\end{tabular}

 $\begin{array}{ll}0 & 0 \\ \text { n } & 0 \\ 0 \\ 0 & m \\ 0 & 6\end{array}$
G
昏芯昏 ？？？？？？？？？？ AACTAACAAGGAGGATTCCCCTTA ？？？？？？？AACTAACAAGGATTCCCTTA ？？？？？？AACTAACAAGGATTCCCTTA TGGTAGAGCAGAGGACTGAAAATCCACGTGTCACCAGT？？？？？？110110111？？？AAGAAACTAACAAGGATTCCCTTA
 TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTCA？？？？110110110？？？？AAGAGCTAACAAGGATTCCCTTA
\qquad

匹

$$
\begin{aligned}
& \text { Targionia_hypophylla_Madeira } \\
& \text { Targionia_hypophylla_California }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Targionia_hypophyl. } \\
& \text { Athalamia_hyalina }
\end{aligned}
$$

Plagiochasma_rupestre
Plagiochasma-wrightii

$$
\begin{aligned}
& \text { Plagiochasma_japonicum } \\
& \text { Reboulia_hemisphaerica }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Reboulia_hemisphaerica } \\
& \text { Cryptomitrium tenerum }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cryptomitrium_tenerum } \\
& \text { Cryptomitrium_himalayense }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cryptomitrium_himalayens } \\
& \text { Cryptomitrium_spec_Peru }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Asterella_grollei } \\
& \text { Asterella_californica }
\end{aligned}
$$

Asterella_californica

$$
\begin{aligned}
& \text { Asterella_wallicnlal } \\
& \text { Asterella_africana }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Asterella_tenella } \\
& \text { Asterella lateralis }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Asterella_lateralis } \\
& \text { Asterella_saccata }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Asterella_saccata } \\
& \text { Asterella_gracilis }
\end{aligned}
$$

Mannia_pilosa

$$
\begin{aligned}
& \text { Mannia_triandra } \\
& \text { Mannia fragrans Switzerland }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mannia_fragrans_Switz } \\
& \text { Mannia fragrans India }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mannia_fragrans_India } \\
& \text { Mannia_fragrans Japan }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mannia_androgyna_Namibia } \\
& \text { Mannia_androgyna_Madeira }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mannia_fragrans_Japan } \\
& \text { Mannia_androgyna_Namibia }
\end{aligned}
$$ GGTAAAGCAAAGGACTGAAAATCCTCATGTCACCAGTTC？？？？010110101？？？？？？？？？？？AACAAGGATTCCCCTA TGGTAGAGCAGACGACTGAAAATCCTCGTGTCACCAGTTCAAAT000110101？？？？？GAAACTAACAAGGATTCCCCTA TGGTAGAGCAGACGACTGAAAATCCTCGTGTCACCAGTCAAA？？010110111？？？？AAGAACTAACAAGGATTCCCCTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGT？？？？？？010110111？？？？？？？？？？？？ACAAGGATTCCCCTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGICACCAGTACAAA1010110111？？？？？？GAACTAACAAGGATCCCCTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTAAAAT？010110111TAGAAAGAACTAACAAGGATTCCCTTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTTAAA？？110110111？？？？？？GAACTAACAAGGATTCCCTTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTTCA？？？110110111？？？？？？？？？？？？？CAAGGATTCCCTTA TGGTAGAGCAGA？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？110000111？？？？AGAAACTAACAAGGATTCCCTTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTTCAATT110000111？？？？？AGAACTAACAAGGATTCCCTTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTC？？？？？110000111？？？？？？？AACTAACAAGGATTCCCTTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTACAAAT110110010？？？？AAGAACAGAGAGAGGACTGAAAATCCTCGTGTCACCAGTCA？？？110110010？？？？？？？？？？？？？AGGATTCCCTTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTTCAAAT110110110？？？？ TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGT？？？？？？110110110？？？？AGAAACTAACAAGGATTCCCTTA TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTC？？？？？110110110？？？？？？？？？？TAACAAGGATTCCCTTA TGGTAGAGC？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？

 $* *$
TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGT？？？？？？？？？1 ？10101 TGGTAGAGCAGARGAMTGAAAATCCTCGCTGGTTACCCAAGTTT？？1？10101
 TGGTA？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？？010111
 TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTTCAAAT010110101 TGGTAGAGCAGAGGACTGAAAATCCTCGTGTCACCAGTTCAAAT000110101 Mannia＿controversa＿Austria Mannia＿spec＿128－North＿India Mannia－californica＿California Mannia＿californica＿Namibia Mannia＿californica＿France Mannia＿californica＿China Mannia＿californica＿105＿North＿In
Mannia＿californica＿South＿India
7
6
6
6 응 om ${ }_{0}^{\infty}$
 ．
 ${ }_{6}^{4}{ }_{0}^{\circ}$ 묵 큭

 $\stackrel{\pi}{0}$ 줓
⿹ㅡ듣 곧옹 웅⽿ㅜㄹ․․

 \circ
$\underset{\sim}{r}$
 อษอ TAGTCGATTTGCGGCGGGAGTTGTAGTCTGGAG

 T－－－－－－TCGGGCGAGCGCGAGTTGTAGTCTGGAG GT－－－－－－－TCTGCGGCGCGAGTTGTAGTCTGGAG －TCTGCGGCGCGAGTTGTAGTCTGGAG
 TCCGCGGCGCGAGTTGTAGTCTGGAG
 TTCGCGGCGCGAGTTGTAGTCTGGAG －－－－－－TCTGCGGCGCGAGTTGTAGTCTGGAG
 －－－－－TTCCGCGGCGCGAGTTGTAGTCTGGAG TTCCGCGGCGCgAGTGGTATTCTGGAA

 ．

1
H

 E

景

H
0
0
H
4
4
4

 AAGTGTCCTCTGCGGCGGACCTGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCAGGAC AAGTGTCCTCTGCGGCGGACCTGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCAGGAC AAGTGTCCTCTGCAGCGGACCTGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAG AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTTCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTTCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTCAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTTCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAaGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAgTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCTTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC AAGTGTCCTCTGCGGCGGACCCGGCCTAAGTCCCCTGGAAAGGGGCGTCAGAGAGGGTGAGAACCCCGTCGGGCCGGGAC | 0 |
| :--- |
| 4 |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

Targionia_hypophylla_Madeira
Targionia_hypophylla_California
Athalamia_hyalina
Plagiochasma_rupestre
Plagiochasma_wrightii
Plagiochasma_japonicum
Reboulia_hemisphaerica
Cryptomitrium_tenerum
Cryptomitrium_himalayense
Cryptomitrium_spec_Peru
Asterella_grollei
Asterella_californica
Asterella_wallichiana
Asterella_africana
Asterella_tenella
Asterella_lateralis
Asterella_saccata
Asterella_gracilis
Mannia_pilosa
Mannia_triandra
Mannia_fragrans_Switzerland
Mannia_fragrans_India
Mannia_fragrans_Japan
Mannia_androgyna_Namibia
Mannia_androgyna_Madeira
Mannia_controversa_Austria
Mannia_spec_l28_North_India
Mannia_californica_Austria
Mannia_californica_California
Mannia_californica_Namibia
Mannia_californica_France
Mannia_californica_China
Mannia_californica_104_North_India
Mannia_californica_105_North_India
Mannia_californica_South_India

$\stackrel{\rightharpoonup}{\circ}-$
응

Targionia_hypophylla_Madeira
Targionia_hypophylla_California
Athalamia_hyalina
Plagiochasma_rupestre
Plagiochasma_wrightii
Plagiochasma_japonicum
Reboulia_hemisphaerica
Cryptomitrium_tenerum
Cryptomitrium_himalayense
Cryptomitrium_spec_Peru
Asterella_grollei
Asterella_californica
Asterella_wallichiana
Asterella_africana
Asterella_tenella
Asterella_lateralis
Asterella_saccata
Asterella_gracilis
Mannia_pilosa
Mannia_triandra
Mannia_fragrans_Switzerland
Mannia_fragrans_India
Mannia_fragrans_Japan
Mannia_androgyna_Namibia
Mannia_androgyna_Madeira
Mannia_controversa_Austria
Mannia_spec_lo8_North_India
Mannia_californica_Austria
Mannia_californica_California
Mannia_californica_Namibia
Mannia_californica_France
Mannia_californica_China
Mannia_californica_lo4_North_India
Mannia_californica_105_North_India
Mannia_californica_South_India
Ma_-
 નのぶ CTAAATACTGGCGGGAGACCGATAGCAAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAGA GCTAAATACGGGCGGGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACAGGCGGGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA甘甘甘Z甘 L
 GCTAAATACGGGCGGGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACGGGCGGGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACGGGCGGGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACCGGCGAGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACGGGCGGGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACGGGCGGGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACGGGCGGGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACAGGCGGGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA

 GCTAAATACAGGCGAGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACAGGCGAGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA G甘甘甘甘宸

 GCTAAATACAGGCGAGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA
 GCTAAATACAGGCGAGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA GCTAAATACAGGCGAGAGACCGATAGCGAACAAGTACCGCGAGGGAAAGATGAAAAGGACTTTGAAAAGAGAGTTAAAAA昏

○

\circ $\stackrel{\circ}{\sigma}$ の

0 0 - -1

1010
Targionia＿hypophylla＿Madeira
Targionia＿hypophylla＿California
Athalamia＿hyalina
Plagiochasma＿rupestre
Plagiochasma＿wrightii
Plagiochasma＿japonicum
Reboulia＿hemisphaerica
Cryptomitrium＿tenerum
Cryptomitrium＿himalayense
Cryptomitrium＿spec＿Peru
Asterella＿grollei
Asterella＿californica
Asterella＿wallichiana
Asterella＿africana
Asterella＿tenella
Asterella＿lateralis
Asterella＿saccata
Asterella＿gracilis
Mannia＿pilosa
Mannia＿triandra
Mannia＿fragrans＿Switzerland
Mannia＿fragrans＿India
Mannia＿fragrans＿Japan
Mannia＿androgyna＿Namibia
Mannia＿androgyna＿Madeira
Mannia＿controversa＿Austria
Mannia＿spec＿l28＿North＿India
Mannia＿californica＿Austria
Mannia＿californica＿California
Mannia＿californica＿Namibia
Mannia＿californica＿France
Mannia＿californica＿China
Mannia＿californica＿104＿North＿India
Mannia＿californica＿lo5＿North＿India
Mannia＿californica＿South＿India

GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTGGTGTGCGCCCCGGTCGGATGCGGAACGGCGTA-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTGGTGTGCGCCCCGGTCGGATGCGGAACGGCGTA-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGTTCAGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGAG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGGGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGGCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCA-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGCG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGCCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGGCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGGCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGGCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGGCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGGCCCGGTCGGATGCGGGACGGCGTG-AGCCGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGGCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
GTGCTTGAAATTGCTGGGAGGGAAGCGAATGGAGGCCTCGTGTGCGGCCCGGTCGGATGCGGAACGGCGTG-AGCTGGTC
Targionia_hypophylla_Madeira Athalamia_hyalina Plagiochassma rupestre Plagiochasma_wrightii Reboulia_hemisphaerica Cryptomitrium_tenerum Cryptomitrium_spec_Peru Asterella_grollei Asterella_wallichiana Asterella_africana Asterella_tenella
Asterella lateralis Asterella_saccata Asterella-gracilis
Mannia_pilosiandra
Mannia-fragrans Switzerland
Mannia_fragrans_India
Mannia androgyna Namibia
Mannia_androgyna_Madeira
Mannia_controversa_Austria
Mannia_californica_Austria
Mannia_californica_California
Mannia_californica_Namibia
Mannia californica_France
Mannia_californica_Erance
Mannia_californica_104_North_India Mannia_californica_105-North_India Mannia_californica_South_India
 $\stackrel{\rightharpoonup}{\sim}$
$\underset{\sim}{7}$?

 Targionia_hypophylla_California Athalamia hyalina
Targionia_hypophylla_Madeira
Targionia_hypophylla_California
Athalamia_hyalina
Plagiochasma_rupestre
Plagiochasma_wrightii
Plagiochasma_japonicum
Reboulia_hemisphaerica
Cryptomitrium_tenerum
Cryptomitrium_himalayense
Cryptomitrium_spec_Peru
Asterella_grollei
Asterella_californica
Asterella_wallichiana
Asterella_africana
Asterella_tenella
Asterella_lateralis
Asterella_saccata
Asterella_gracilis
Mannia_pilosa
Mannia_triandra
Mannia_fragrans_Switzerland
Mannia_fragrans_India
Mannia_fragrans_Japan
Mannia_androgyna_Namibia
Mannia_androgyna_Madeira
Mannia_controversa_Austria
Mannia_spec_l28_North_India
Mannia_californica_Austria
Mannia_californica_California
Mannia_californica_Namibia
Mannia_californica_France
Mannia_californica_China
Mannia_californica_104_North_India
Mannia_californica_Io5 North India
Mannia_californica-104_North_India Mannia_californica_South_India
Plagiochasma_japonicum
Cryptomitrium_tenerum Cryptomitrium_himalayense Asterella_grollei Asterella californica Asterella_wallichiana Asterella_africana Asterella_lateralis
Asterella_saccata
Mannia_pilosa
Mannia triandra
Mannia_fragrans_Switzerland
Mannia_fragrans_India
Mannia-androgyna Namibia
Mannia androgyna-Madeira
Mannia_controversa_Austria
Mannia_spec-128-No Austria Mannia_californica_California
Mannia_californica_Namibia
Mannia_californica_France
Mannia_californica_China
Mannia_californica_104_North_India Mannia_californica_105_North_Ind

Targionia_hypophylla_Madeira
Targionia_hypophylla_California Athalamia hyalina
plagiochasma_rupestre
Plagiochasma_wrightic Reboulia_hemisphaerica
Cryptomitrium_tenerumense
Cryptomitrium_himalayense
Cryptomitrium_spec_Peru
Asterella_grollei
Asterella_californica
Asterella_wallichiana
Asterella_africana
Asterella_lateralis
Asterella_saccata
Mannia_pilosa
Mannia_triandra Switzerland
Mannia_fragrans_India
Mannia-androgyna Namibia
Mannia_androgyna_Madeira
Mannia_controversa_Austria
Mannia_californīca_Austria
Mannia_californica_California
Mannia_californica_Namibia
Mannia_californica_China
Mannia_californica_104_North_India
Mannia_californica_South_Indía

 $\underset{\underset{-}{\square}}{\stackrel{\rightharpoonup}{\square}}$ $\begin{array}{lll}1370 & 1380 & 1390 \quad 1400 \\ \text { TCATCCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCATGCGAGCCGGTGGGCGGCAAACCCACGT----1 }\end{array}$

$$
\begin{aligned}
& \text { Targionia_hypophylla_Madeira } \\
& \text { Targionia_hypophylla_California } \\
& \text { Athalamia_hyalina } \\
& \text { Plagiochasma_rupestre } \\
& \text { Plagiochasma_wrightii } \\
& \text { Plagiochasma_japonicum } \\
& \text { Reboulia_hemisphaerica } \\
& \text { Cryptomitrium_tenerum } \\
& \text { Cryptomitrium_himalayense } \\
& \text { Cryptomitrium_spec_Peru } \\
& \text { Asterella_grollei } \\
& \text { Asterella_californica } \\
& \text { Asterella_wallichiana } \\
& \text { Asterella_africana } \\
& \text { Asterella_tenella } \\
& \text { Asterella_lateralis } \\
& \text { Asterella_saccata } \\
& \text { Asterella_gracilis } \\
& \text { Mannia_pilosa } \\
& \text { Mannia_triandra } \\
& \text { Mannia_fragrans_Switzerland } \\
& \text { Mannia_fragrans_India } \\
& \text { Mannia_fragrans_Japan } \\
& \text { Mannia_androgyna_Namibia } \\
& \text { Mannia_androgyna_Madeira } \\
& \text { Mannia_controversa_Austria } \\
& \text { Mannia_spec_I28_North_India } \\
& \text { Mannia_californica_Austria } \\
& \text { Mannia_californica_California } \\
& \text { Mannia_californica_Namibia } \\
& \text { Mannia_californica_France } \\
& \text { Mannia_californica_China } \\
& \text { Mannia_californica_104_North_India } \\
& \text { Mannia_californica_105_North_India } \\
& \text { Mannia_californica_South_India }
\end{aligned}
$$

Targionia_hypophylla_Madeira
Targionia hypophylla California
Athalamia_hyalina
Plagiochas̄ma_rupestre Plagiochasma_wrightil Plagiochasma_japonicum
Cryptomitrium_tenerum
Cryptomitrium_himalayense
Cryptomitrium_spe
Asterella_californica
Asterella_wallichiana
Asterella_africana
Asterella lateralis
Asterella_saccata
Mannia pilosa
Mannia_triandra
Mannia_fragrans_India
Mannia_fragrans_Japan
Mannia_androgyna_Namibia Mannia_controversa_Austria Manni-spec-128- Austria Mannia_californica_California Mannia_californica_Namibia
Mannia_californica_France
Mannia_californica_104 North_India Mannia_californica_105_North_I
$\underset{\sim}{7}$
$\underset{\sim}{7}$
$\underset{\sim}{\square}$

 흘 すW

 Wo可気
 たす する －i
 ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC

 ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTAIGCCTMTGATCTTGTGAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCIGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC
ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC
ACCATGATCTTCTGTGAAAGGTTCGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGCAGGGC

1590
1580
Targionia＿hypophylla＿Madeira
Targionia＿hypophylla＿California
Athalamia＿hyalina
Plagiochasma＿rupestre
Plagiochasma＿wrightii
Plagiochasma＿japonicum
Reboulia＿hemisphaerica
Cryptomitrium＿tenerum
Cryptomitrium＿himalayense
Cryptomitrium－spec＿Peru
Asterella＿grollei
Asterella＿californica
Asterella＿wallichiana
Asterella＿africana
Asterella＿tenella
Asterella＿lateralis
Asterella＿saccata
Asterella＿gracilis
Mannia＿pilosa
Mannia＿triandra
Mannia＿fragrans＿Switzerland
Mannia＿fragrans＿India
Mannia＿fragrans＿Japan
Mannia＿androgyna＿Namibia
Mannia＿androgyna＿Madeira
Mannia＿controversa＿Austria
Mannia＿spec＿l28＿North＿India
Mannia＿californica＿Austria
Mannia＿californica＿California
Mannia＿californica＿Namibia
Mannia＿californica＿France
Mannia＿californica＿China
Mannia＿californica＿104＿North＿India
Mannia＿californica＿105＿North＿India
Mannia＿californica＿South＿India

[^2]

$$
4
$$1730

 AAAGACTAACGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATGGCTGGAGCA-CGA-GGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCYTCCGAAGTTTCCCTCAGGATAGCTGGAGCAGCGA-GGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGA-GGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGA-GGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGA-GGAGTTTCATC
 AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGA-GGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGA-GGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGA-GGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGA-GGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CAAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCYTCCGAAGTTTCCCTCAGgATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGGA-CGAAGGAGTTTCATC AAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCA-CGAAGGAGTTTCATC
Targionia_hypophylla_Madeira
Targionia_hypophylla_California Athalamia_hyalina Plagiochasma_rupestre Plagiochasma_rupestre Plagiochasma japonicum
Reboulia hemisphaerica Cryptomitrium_tenerum Cryptomitrium_himalayense Asterella_grolle Asterella_californica Asterella_wallichiana Asterella_africana Asterella_lateralis Asterella_saccata Mannia pilosa
Mannia_pilosa Mannia_fragrans_Switzerland Mannia_fragrans_India Mannia androgyna Namibia Mannia_androgyna_Madeira Mannia_controversa_Austria Mannia_spec_128_Nor̄th_India Mannia_californica_California Mannia_californica_Namibia Mannia_californica_France Mannia_californica-China Mannia_californica_104_North_India
Mannia_californica_105_North_India Mannia-californica_South_India

 AGGTA-AAGCGAATGATTAGAGGCAT-CGGGGGTGAAA--CACCCTCG-AC-CT-ATTCTCAAACTTTAAATAGGT-GAG AGGTA-AAGCGAATGATTAGAGGCAT-CGGGGATGAAA--CATCCTCG-AC-CT-ATTCTCAAACTTTAAATAGGT-GAG
 AGGTA-AAGCGAATGATTAGAGGCATgCGGGGGTGACA--CACTCTCG-AC-CTtATTCTCAAACTTTAAATAGGTAGAG

 อV, AGGTA-AAGCGAATGATTAGAGGCAT-CGGGGGTGAAA--CACCCTCG-AC-CT-ATTCTCAAACTTTAAATAGGT-GAG AGGTA-AAGCGAATGATTAGAGGCAT-CGGGGGTGAAA--CACCCTCG-AC-CT-ATTCTCAAACTTTAAATAGGT-GAG
 AGGTA-AAGCGAATGATTAGAGGCAT-CGGGGGTGAAA--CACCCTCG-AC-CT-ATTCTCAAACTTTAAATAGGT-GAG AGGTA-AAGCGAATGATTAGAGGCAT-CGGGGGTGAAA--CACCTTCG-AC-tT-ATTCTCAAACTTTAAATAGGT-GAG AGGTA-AAGCGAATGATTAGAGGCAT-CGGGGGTGAAA--CACCCTCG-AC-CT-ATTCTCAAACTTTAAATAGGT-GAG
 AGGTA-AAGCGAATGATTAGAGGCAT-CGGGGGTGAAA--CACCCTCG-AC-CT-ATTCTCAAACTTTAAATAGGT-GAG AGGTA-AAGCGAATGATTAGAGGCAT-CGGGGGTGAAA--CACCCTCG-AC-MT-ATTCTCAAACTTTAAATAGGT-GAG
Targionia_hypophylla_Madeira
Targionia hypophylla_California Argalamia hyalina Plagiochasma_rupestre Plagiochasma_wrightii Reboulia_hemisphaerica
Cryptomitrium_tenerum
Cryptomitrium_himalayense
Cryptomitrium spec Peru Asterela_grolifornica
Asterella wallichiana
Asterella_africana
Asterella_teneralis
Asterella_saccata
Mannia_pilosa
Mannia_triandra
Mannia fragrans India
Mannia_ragrans Namibia
Mannia_androgyna_Namibia
Mannia androgyna-Madeira
Mannia_controversa_Austria
Mannia_spec_128_North_India
Mannia_californica_Austria
Mannia californica_Namibia
Mannia_californica_France
Mannia_californica_China
Mannia_californica_104_North_India
Mannia_californica_105_North_India
Mannia_californica_South_India

Targionia_hypophylla_Madeira
Targionia_hypophylla_California
Athalamia_hyalina
Plagiochasma_rupestre
Plagiochasma_wrightii
Plagiochasma_japonicum
Reboulia_hemisphaerica
Cryptomitrium_tenerum
Cryptomitrium_himalayense
Cryptomitrium_spec_Peru
Asterella_grollei
Asterella_californica
Asterella_wallichiana
Asterella_africana
Asterella_tenella
Asterella_lateralis
Asterella_saccata
Asterella_gracilis
Mannia_pilosa
Mannia_triandra
Mannia_fragrans_Switzerland
Mannia_fragrans_India
Mannia_fragrans_Japan
Mannia_androgyna_Namibia
Mannia_androgyna_Madeira
Mannia_controversa_Austria
Mannia_spec_I28_North_India
Mannia_californica_Austria
Mannia_californica_California
Mannia_californica_Namibia
Mannia_californica_France
Mannia_californica_China
Mannia_californica_lo4_North_India
Mannia_californica_lo5_North_India
Mannia_californica_South_India

3. TrnL-F gap matrix analysed in Chapter 5

	Position
Species	123456789
Targionia hypophylla Madeira	$? ? 1 ? 10101$
Targionia hypophylla California	$? ? 1 ? 10101$
Athalamia hyalina	$? ? 0110101$
Plagiochasma rupestre	$010111 ? ? ?$
Plagiochasma wrightii	$010111 ? ? ?$
Plagiochasma japonicum	$010111 ? ? ?$
Reboulia hemisphaerica	010110111
Cryptomitrium tenerum	010110101
Cryptomitrium himalayense	000110101
Cryptomitrium spec. Peru	000110101
Asterella grollei	010110101
Asterella californica	000110101
Asterella wallichiana	010110111
Asterella africana	010110111
Asterella tenella	010110111
Asterella lateralis	$01011011 ?$
Asterella saccata	010110111
Asterella gracilis	110110111
Mannia pilosa	110110111
Mannia triandra	110110111
Mannia fragrans Switzerland	110000111
Mannia fragrans India	110000111
Mannia fragrans Japan	110000111
Mannia androgyna Namibia	110110010
Mannia androgyna Madeira	110110010
Mannia controversa Austria	110110110
Mannia spec. 128 North India	110110110
Mannia californica Austria	110110110
Mannia californica California	110110110
Mannia californica Namibia	110110110
Mannia californica France	110110110
Mannia californica China	110110110
Mannia californica 104 North India	110110110
Mannia californica 105 North India	110110110
Mannia californica South India	110110110

Gap position
$1=209$
$2=210$
$3=217-218$
$4=219$
$5=230-231$
$6=337-355$
$7=356-365$
$8=368-372$
$9=384$

4. Characteristics of trnL-trnF and 265 sequence matrices

* based on alignment matrix excluding ambiguous regions.

Parameter	Program	trnL-trnF	26 S	Combined
Number of taxa	PAUP	35	35	35
Length range (total)(bp)	PAUP	516-606	1059-1136	1582-1712
Length mean (total)(bp)	PAUP	571.7	1084	1655.7
Length range (ingroup)(bp)	PAUP	516-606	1106-1059	1582-1712
Length mean (ingroup)(bp)	PAUP	573.1	1080.8	1653.9
Length range (outgroup)(bp)	PAUP	548-572	1109-1136	1657-1688
Length mean (outgroup)(bp)	PAUP	557.3	1118	1675.3
Aligned length (bp)	PAUP	684	1229	1913
Aligned length (bp)-ambiguous	PAUP	581	1076	1657
G + C content, mean (\%)	PAUP	28.14	57.75	47.52
Sequence divergence (Asterella) (bp)*	PAUP	13-53	7-32	21-84
Sequence divergence (Asterella) (\%)*	PAUP	2.5-10.5	0.7-3.2	1.4-5.6
Sequence divergence (Plagiochasma) (bp)*	PaUP	10-12	6-10	18-21
Sequence divergence (Plagiochasma) (\%)*	PaUP	2.1-2.5	0.6-0.9	1.2-1.4
Sequence divergence (Cryptomitrium) (bp)*	PaUP	4-12	2-5	6-17
Sequence divergence (Cryptomitrium) (\%)*	PAUP	0.8-2.3	0.2-0.5	0.4-1.1
Sequence divergence (Mannia) (bp) *	PAUP	0-33	0-32	0-66
Sequence divergence (Mannia) (\%)*	PAUP	0-6.5	0-3.2	0-4.3
Sequence divergence (M. californica) (bp) *	PaUP	0-18	0-32	0-43
Sequence divergence (M. californica) (\%)*	PaUP	0-3.9	0-3.2	0-2.9
Sequence divergence (ingroup) (bp) *	PAUP	0-53	0-44	0-85
Sequence divergence (ingroup) (\%)*	PAUP	0-10.5	0-4.3	0-5.7
Sequence divergence (outgroup) (bp)*	PAUP	20-62	15-54	35-116
Sequence divergence (outgroup) (\%)*	PAUP	3.9-12.2	1.5-5.3	2.3-7.6
Sequence divergence (in/outgroup) (bp)*	PAUP	43-71	33-69	82-133
Sequence divergence (in/outgroup) (\%)*	PAUP	9-14.5	3.3-6.8	5.5-8.8
Number of variable sites (bp)*	PAUP	184	142	326
Number of variable sites (\%)*	PAUP	32	13	20
Number of constant sites (bp)*	PAUP	406	933	1339
Number of constant sites (\%)*	PAUP	68	87	80
Number of informative sites (bp)*	PAUP	112	88	200
Number of informative sites (\%)*	PAUP	19	8	12
Number of uninformative sites (bp)*	PAUP	72	54	126
Number of uninformative sites (\%)*	PAUP	13	5	8
Transitions (minimum) *	MacClade	389	452	458
Transversions (minimum)*	MacClade	517	562	555
Transitions/Transversions*	MacClade	0.75	0.8	0.81
Length of most parsimonious trees, steps*	PAUP	375	315	697
Number of most parsimonious trees*	PAUP	9	33	20
Average number of steps per character	PAUP	0.65	0.29	0.42
Consistency Index (Cl), including uninformative characters*	PAUP	0.69	0.58	0.62
Homoplasy Index (HI), including uninformative characters*	PAUP	0.31	0.42	0.37
Retention Index (RI)*	PAUP	0.76	0.74	0.74
Rescaled consistency Index (RC) *	PAUP	0.52	0.43	0:47

5. Model selection results for Bayesian analysis

Based on the Akaike Information Criterion (AIC) and the hLRTs (hierachical
Likelihood Ratio Tests) in the program Modeltest (Posada \& Crandall 1998), with $-\ln$ likelihood and parameters for each partition in the data matrix given.

Partition	Modeltest	-In likelihood	Parameter values
$t r n \mathrm{~L}-\mathrm{F}$ (AIC)	TVM $+1+\mathrm{G}$	2833.51	$\begin{aligned} & \text { statefreq }=(0.4182,0.1166,0.1391,0.3261), \\ & \text { revmatpr }=\text { fixed }(1.1970,1.1576,0.6562,1.4212, \\ & 1.1576,1.000) \text {, ratepr }=\text { variable, nst }=6, \text { rates }= \\ & \text { invgamma, pinvar }=0.4448, \text { shape }=1.0741 \end{aligned}$
trnL-F (hLRTs)	F81+G	2842.68	```statefreq = (0.4071, 0.1334,0.1526,0.3069), revmatpr = fixed (1, 1, 1, 1, 1, 1), ratepr = variable, nst = 1, rates = invgamma, pinvar =0, shape = 0.2930```
trnL-F gap	-	-	statefreq $=$ fixed $(0.1,0.1,0.1,0.1,0.1,0.1,0.1$, $0.1,0.1,0.1)$, revmatpr $=$ fixed $(1.0,1.0,1.0,1.0$, $1.0,1.0)$, ratepr $=$ variable, $\mathrm{nst}=2$, rates $=$ invgamma
26S	TrN+I+G	3243.0432	$\begin{aligned} & \text { statefreq }=(0.2287,0.2307,0.3382,0.2024), \\ & \text { revmatpr }=\text { fixed }(1.000,3.2367,1.000,1.000, \\ & 9.6107,1.000) \text {, ratepr }=\text { variable, nst }=6, \text { rates }= \\ & \text { invgamma, pinvar }=0.7395, \text { shape }=0.5253 \end{aligned}$

TVG = Tamurei Nei Model
F81 = Felsenstein 1981 Model
$\mathrm{TrN}=$ Transversional model
I = proportion of invariable (static, unchanging) sites in a dataset
$\mathrm{G}=$ Gamma distributed site-to-site rate variation
statefreq $=$ base frequencies (A, C, G, T)
revmat $=$ for the six substitution rates of the rate matrix (AC, AG, AT, CG, CT,
GT)
ratepr $=$ prior for site-specific rate models
nst $=$ number of states
rates $=$ model of gamma shaped rate variation across sites
pinvar $=$ the proportion of invariable sites
shape $=$ gamma distribution shape parameter.

[^0]: 05 North India

[^1]: 1
 \qquad

[^2]: Targionia_hypophylla_Madeira Athalamia_hyalina

 Plagiochasma rupestre Plagiochasma_wrightii Plagiochasma_japonicum Cryptomitrium_tenerum Cryptomitrium_himalayense Cryptomitrium_spec_Peru Asterella_grollei

 Asterella_californica Asterella-wallichiana Asterella_tenella Asterella-lateralis Asterella_saccata Mannia pilosa

 Mannia_triandra
 Mannia_triandra
 Mannia_fragrans_India
 Mannia_fragrans_Japan
 Mannia_androgyna_Madeira
 Mannia_controversa_Austria
 Mannia_californica_Austria
 Mannia_californica_California Mannia_californica_Namibia Mannia_californica_France

 Mannia_californica_104_North_India Mannia_californica_105_Nornialia

