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Abstract 

The detection performance of a new syntactic pattern recognition (PR) system based 

on an augmented programmed grammar (APG) is investigated. APGs are a general-

isation of programmed grammars where each production rule has a label, a core and 

two associated lists of labels stating which rule is to apply next. The core of an APG, 

provided by core-functions, allows functions additional to the regular phrase structure 

productions to be implemented. The ability to manipulate grammar variables with true 

functions adds intelligence and flexibility to the parser formulation. 

This investigation uses an improved APG recogniser developed from a prior design 

to achieve an enhanced noise tolerance capability. It is able to correctly recognise one-

dimensional (1-D) waveforms with a wide range of sizes or scale factors using a single 

grammatical representation. Parser recognition performance is obtained by applying 

Monte Carlo tests at various values of signal-to-noise ratio (SNR) and different opera-

tion parameter settings. The acquired detection statistics reveal both the recognition 

response for different constitutions of input signal and the influence on performance 

due to the various operation parameters. An idea for modifying the transmitted wave-

form design to suppress the formation of false waveforms is subsequently developed. 

The detection statistics are endorsed by a theoretical analysis. Finally, the provision 

of a waveform-deviation tolerance capability is shown to improve the recognition of 

quadratic and linear waveform segments. 



Abbreviations 

Al Artificial intelligence 
APG Augmented programmed grammar 
dB Decibels 
ECG Electrocardiogram 
EEG Electroencephalogram 
GSP General syntactic processor 
MSE Minimum-squared-error (line fitting technique) 
max Maximum 
mm. Minimum 
NN Nearest neighbour (classifier) 
PR Pattern recognition 
pdf Probability density function 
SNR Signal-to-noise ratio 
[SNR]dB SNR in decibels 

1-D 	One-dimensional 
2-D 	Two-dimensional 
1-NN 	A NN classifier which assigns an unknown pattern to the class of its 

nearest sample pattern of known classification 
q-NN 	A NN classifier which assigns an unknown pattern to the class of the 

majority of its q nearest sample patterns of known classification 
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Principal Symbols 

c, /3, ij and -y 	Non-null strings of elements of VN U VT 
The set of values {-2tol,...,-1,0,1,...,2tol} 

z.y 	 Noise threshold: a certain magnitude of the background 
signal noise 

[ö]dB 	 The difference between [SNR]dB  and  [SNR']dB  due to 
quantisation 

€ 	 The quantisation error 
€2 	 The mean-square quantisation noise 
a 	 The standard deviation of a probability distribution 
a 2 	 The variance of a probability distribution 
or 2 	 The variance or the second moment of a random variable X 

The estimate of ar2  

0"0 
2 	 The estimate of the variance of X 0  

A o (V) and A 1 (V) The synthesised and inherited attributes associated with 
grammar symbol V 

C The class membership space 
di (x) The discriminant function for evaluating the suitability of 

assigning x to pattern class i 
E The dissipated energy 
e(t) A signal of voltage 
F The feature space 
F(W) The failed goto-next field 

1k A (noise-free) discrete signal 
Sample k of the signal 

f  The function of a continuous signal 
GA An attributed grammar 

GAPG An augmented programmed grammar 
GF The set of APG core-functions 
Gp A programmed grammar 
GS A string grammar 
Gv The set of grammar variables in GAPG 

gk A discrete signal of the desired SNR formed by adding 
noise-free signal fk  with noise signal nk 

grad The gradient of a (linear) waveform segment 
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hm 	Representation of a set of acceptable deviation-tolerated waveform models 
i(t) 	A signal of current 
J 	The set of production labels 

Lij 	The loss or cost incurred in incorrectly deciding that x came from w3  
when it in fact came from w 

L(G) 	The language generated by grammar C 
L(w 3 /x) 	The average expected loss or cost when assigning x to class w3  
M 	The total number of amplitude sequences used in calculating 

feasibility of recognition 
M 	 (i) The total number of pattern classes 

The mean of a probability distribution 
The factor describing the acceptable waveform deviation 

mwh 	The value of the minimum waveform height 
N 	The total number of samples of a discrete signal 
n 	 (i) The total number of feature measurements 

(ii) The total number of quantisation levels 

nk 	 (i) 	A discrete noise signal 
(ii) Sample k of the signal 

k0 	 (i) A discrete noise signal produced from a random noise generator 
- 	(ii) Sample k of the resultant noise signal 

k 2 	The mean-square value of a discrete signal nk 

ni 2 	The estimate of nk 2  
P 	The set of grammar production rules 
Pa 	The average power dissipated in a length of time 

Pa 	The estimate of Pa  
Pe 	The difference in the expected noise power due to quantisation error 

The maximum Fe  

P(C) 	 The probability density function of quantisation error given a 
uniform distribution 

F, 	The instantaneous power dissipated 

Pms 	The mean-square signal 

Pn 	The estimate of the average power of a discrete signal nk 

The resultant modified estimate of noise power after quantisation 

Pno 	The estimate of the average power of the discrete signal nk,, 

The estimate of the average power C times P 0  
The estimate of the average signal power of a discrete noise-free 

signal 1k 
P{Y < k} The cumulative distribution function of a continuous Gaussian pdf 
p 	The probability that the amplitude of a signal sample falls within a 

reference pattern waveform window 

Pa 	The probability of finding the amplitude of a noise-induced turning 
point within a reference pattern waveform window 

p(w j ) 	The a priori probability of transmitting a pattern sample of class w 
p(wj/X) 	The a posteriori probability that a pattern sample of class w 1  was 

transmitted on receiving x 

P(X) 	The a priori probability of receiving x 

P(X) 	A Gaussian probability density function 
p(X/Wj) 	The conditional probability of receiving x given that a pattern sample 

of class w 2  was transmitted 
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P(Y) 	The amplitude probability density function of a uniform distribution 

p(y)discrete The discrete Gaussian probability density function of noise 

Pi (Yj) 	The probability of sample xi exhibiting the amplitude value y, 
R 	The resistance 
r 	 A production rule label 
S 	The start symbol of a grammar 
SNR' 	The modified SNR due to quantisation error 
S(U) 	The success goto-next field 
s(t) 	An unprocessed input signal 
s' (t) 	An input signal after preprocessing 
ti 	 A particular instance of time 
tol 	The value of the (single-sided) amplitude tolerance 
U 	The list of production labels in S(U) 
V 	A grammar symbol E VN U VT 
VN 	The set of nonterminal vocabulary of a grammar 
VT 	The set of terminal vocabulary of a grammar 
W 	The list of production labels in F(W) 
w 2 	(i) 	A pattern class i 

(ii) An intermediate waveform 
w l  and w, The lower and upper waveform distribution boundaries 
X 	A random variable 
X0 	A random variable representing the output of a random noise generator 
X 	 The feature vector measurement representing an input data 
x2 	The feature vector measurement representing the ith input data 
Xi 	 (i) The ith pattern waveform constituent 

The ith signal sample 
x, in a waveform combination denotes that the ith signal 

sample is a selected waveform constituent 
in a waveform combination denotes that the ith signal sample is 
not a selected waveform constituent 

Xij 	 The jth constituting sample on Segment i 
Y 	A random variable 

Y 	The integer-value shift in the sample amplitude due to noise 

Yi 	The amplitude of sample x 2  

Yi app arnt 	The apparent values of yj due to amplitude tolerance being given 

Yii.terai 	The literal value of y j  without amplitude tolerance being given 

Yi,nax 	 The resultant upper summation limit of y2  

Yim,n 	 The resultant lower summation limit of y 

Ymi 	A waveform model of acceptable deviation parametrically represented 
by the value m 

Yo 	The noise-free amplitude of a sample 

a -+ 3 Rewrite 3 string with a string 
Vi For all values of i 

Is defined as 
Is a member of 

U Set union 
== Is equal 
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Chapter 1 

Introduction 

1.1 Thesis Synopsis 

Pattern recognition (PR) addresses the classification and interpretation of objects. 

The participation by such disciplines as artificial intelligence (AT), communication sci-

ence, computer science and linguistics have directed the study of PR to applications 

such as speech and text recognition, natural language translation and machine vision. 

Decision-theoretic and syntactic methods, the original approaches to PR, utilise pat-

terns' statistical and structural properties to conduct recognition. Alternative paradigms 

from Al reason about the decision making process. Whilst an artificial neural network 

performs pattern association by using training data. Each approach has its limitations, 

e.g., a statistical approach in expressing structural information; a syntactic approach in 

inferring structural rules and a neural network in providing semantic information. The 

limitations are often circumvented using a hybrid approach making distinctions between 

approaches increasingly difficult to define. 

Pattern distortion, a fundamental problem in PR, corrupts 1-D sampled data signals 

by natural or man-made noise and attenuation. Remedial actions utilise distortion-

invariant pattern features; statistical nature of noise to minimise the cost of misde-

tection; modulation and encoding to optimise waveform detection and error correction 

algorithms to restore impairment. PR system design is also influenced by the desired 

accuracy and speed; the required operational parameters such as bandwidth, SNR, cost 

of system operation, sampling rate, continuity of pattern waveform and, most funda-

mentally, the nature of the patterns. 
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The syntactic approach allows patterns with a wide structural diversity to be suc-

cinctly described in either a grammar or relational description such as a graph. Analysing 

an unknown input by parsing with the grammar or matching with the relational graph 

establishes its structural similarity and class membership. However a parser designed to 

accept noise distortion may be complex and may not be easily modified to incorporate 

new patterns or noise coping mechanisms. 

This study considers a syntactic PR technique which uses an augmented programmed 

grammar (APG) to provide a noise tolerance capability for 1-D sampled data signal 

recognition focusing on the time-domain description of patterns. The motivation of the 

research is to develop a new pattern recognition technique in applications such as pulse 

detection and condition monitoring to detect well-structured patterns where a large 

structural variation may require to be accommodated. An APG extends a programmed 

grammar by replacing phrase structure rewrite rules by core-functions to allow true func-

tions to be operated on the grammar variables thus adding flexibility to the production 

rules' construction resulting in a powerful and easily modifiable grammar. Irregularly 

sampled signals may be used and the recognition performance may be significantly as-

sisted if additional samples are taken at key structural regions. Despite some promising 

preliminary results of the APG parser in recognising complex patterns in a high noise 

environment, where the signal is heavily distorted with large noise spikes [1][2], a more 

quantitative assessment was never attempted. Moreover the previous parser design was 

inadequate to (i) detect waveforms where noise was coincident on all waveform sam-

ples; (ii) reject noise-induced false waveforms and (iii) recognise waveform patterns with 

missing turning points. 

The aims of this thesis are to enhance the parser design and to conduct a case-specific 

study to quantitatively assess an APG's noise tolerance capability. The recognition of a 

simple generic pattern of variable dimension and aspect ratio was devised to illustrate 

the structural diversity of a pattern class which could be accommodated. The resultant 

parser parses input samples as pattern constituents if they fall within the expected 

pattern envelope, otherwise they are rejected as noise. In the subsequent performance 

analysis, input signal noise is simulated with a Gaussian noise generator. Given a 

specified amount of tolerance, the design is demonstrated to allow the rejection of false 

waveforms. In order to quantify accurately the parser's tolerance to noise, its various 

operational characteristics are determined by computer simulations. This thesis also 
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establishes mechanisms for correct and misdetected recognition based on the operational 

characteristics profiles. 

1.2 Organisation of Thesis 

Chapter 2 introduces the APG with an introduction to PR followed by an overview 

of the various PR approaches and their limitations, a brief look at syntactic parsing, an 

examination of some generalised grammar formalisms and a description of an APC. 

Chapter 3 formulates an APG for a case-specific study beginning with a look at the 

nature of patterns as 1-D sampled data signals, continuing with the recognition task 

specification and ending with an exposition of the resultant solution. 

The first half of Chapter 4 illustrates the operation of the APO recogniser from Chap-

ter 3. The second half demonstrates the operational characteristics of the recogniser; 

assesses the impact on recognition performance by the different parameters and proposes 

waveform formation mechanisms basing on the operational characteristics plots. 

Chapter 5 investigates the theoretical comparison against the APG parser's recog-

nition results. The first half presents the theoretical analysis calculation starting with a 

look at the effect of quantisation using integer representation followed by a brief intro-

duction of the method itself; its comparison with probability of detection; a description 

of the sample space of the recognition problem and ending with a more detailed descrip-

tion of the exact and approximate methods for calculating the theoretical recognition 

performance. The second half presents the theoretical analysis and comparison examin-

ing the basic recognition characteristics; the proposed waveform formation mechanisms 

asserted in the previous chapter and the different parameters' influence on the recogni-

tion performance. 

Chapter 6 describes the provision of waveform-deviation tolerance to enhance the 

recognition of patterns which represent waveform approximation models. This provision 

allows the actual waveforms to deviate from the approximation models in some orderly 

manner. The solution and the recognition demonstrations for linear and quadratic 

waveform models are subsequently presented. 

Finally Chapter 7 concludes the work and suggests areas of further research. 
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Chapter 2 

APG and Pattern Recognition 

PR concerns not only with separating pattern data into classes [3] but also with 

estimating pattern attributes [4]. A waveform recogniser analyses or interprets 1-D 

signals based on models of the underlying physical system [5]. This chapter outlines the 

prevalent PR techniques and describes in simple terms the operation of the APG. 

2.1 Introduction to Pattern Recognition 

2.1.1 History of Pattern Recognition 

The study of automatic PR began in the early 1950's when the digital computer was 

first used as an automatic decision making tool for information processing [6]. Statisti-

cal decision theory and threshold logic principles [7] were then the primary approaches 

applied. The inherent complexity in deriving numerical characteristic pattern features 

was soon apparent. The development in programming languages was meanwhile leading 

to a better understanding of how a language can be succinctly described by a grammar 

[8]-[13] and how compilers can be written [14]. The syntactic approach was introduced 

in the mid-1960's utilising the resemblance of PR with language analysis, by applying 

symbolic features as language primitives and both formal languages and their higher 

dimensional generalisations for pattern description [15][16]. Later a distinction between 

syntactic techniques based on mathematical linguistics and other structural representa-

tions was made. The latter category is often termed structural methods [17]. In recent 

years new recognition techniques have been offered by Al [18] and artificial neural net-

works [4]. Each PR method has its strength and limitations. A mixed approach [19]-[21] 

is often applied to overcome the limitations of a single approach. 
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2.1.2 Patterns, Features and Pattern Recognition 

A pattern can be simply a set of measurements or observations such as a waveform, 

a 2-D image, a temporal or spatial sequence of events, etc. Features are (extractable) 

attributes of patterns. Features may be numeric, symbolic or both, and may be 'low 

level' (e.g., the frequency components of waveforms) or 'higher level' entities (e.g., con-

cepts expressed in predicate logic formulae). Some patterns (e.g., a coastline's outline) 

are essentially invariant to known deviations. In which case a straightforward template 

matching or correlation solution to recognition may suffice. In other cases, patterns of 

the same class may exhibit gross variation from a single class exemplar (such as in hand-

writing). Here recognition may require the knowledge of the patterns' generic structure 

(e.g., a descriptive grammar) or invariant features 1 . 

Figure 2.1 illustrates the operation of a PR system. All pattern classes concerned 

constitute the class membership space C [22]. The domain of selected feature mea-

surements defines the feature space F [25]. A PR system partitions F into regions or 

subspaces for each class w. An input data x2  is classified according to within which 

pattern subspace it falls [26]. However the task of feature selection and pattern class 

assignment may be non-trivial, e.g., non-disjointed subspaces will cause ambiguous clas-

sification and the application of direct recognition approaches may be compounded by 

the enormity of feature vector dimensions. 

es 1  
'class wj  

o— 

class w2  o 
class w3  

Class Memb 
Space C 

x j k 
-Jfl 

spaces3  

spaces2  

Feature Space F 

Figure 2.1: Mapping between feature space and class membership space. 

'An example is the use of normalised central moments of 2-D figures to achieve rotation, scale and 
translation invariance [22]. The use of Fourier transform coefficients [23] is another example which 
provides translation invariant since only the associated phase information but not the power spectrum 
(of a 2-D image) is altered when the input pattern is shifted [24]. 



Most PR techniques are based on the concept of pattern similarity, that patterns 

of the same class should be very similar to each other. However measures to quantify 

similarity may often be difficult to determine [22]. Where a significant overlap exists in 

F the focus of PR becomes one of estimating beliefs rather than similarity [4]. 

2.1.3 Typical Pattern Recognition System 

Figure 2.2 shows the structure of a typical PR system [5][22]. 

Possible Feedback or Interaction 

 -- — — — — — — — — -- — — — — — — — — 
I 

	

I 	 I 

I 	 I 	I 	 I 
Input Data 	, 	 String of 	 Semantic 

DescriPtors> 1 	Pattern 	I s'(t) 	I Feature 	
Message S (t) 

> Preprocessingf 	 Extraction 	 Interpretation I 

Learning 

Figure 2.2: A typical PR system. 

The essential operations being performed are: 

Preprocessing: Noise and unwanted distortions in the input s(t) may be removed 

by means of analogue and digital filtering, segmentation techniques, etc. 

Feature extraction: Features contained in s'(t) are extracted' and presented as 

strings of descriptors [5] which may be numeric (e.g., from numeric transforma-

tion), symbolic (e.g., representing textual information by labels) or both. 

Interpretation: The string of descriptors are interpreted to generate an appropri-

ate semantic message. Interpretation represents classification, if the vocabulary of 

the semantic messages is small, or understanding. Semantic messages may include 

vocabulary to indicate: "unclassifiable", "can't decide" or "don't know". 

2 1f the costs of taking feature measurements are important sequential decision procedures [7] such 
as the general sequential probability test [27] may be applied so that the extracting of features may be 
terminated as soon as a sufficient or desirable accuracy of classification has been achieved. 
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Learning: Also known as model parameter estimation [25] and knowledge acqui-

sition [18], learning refers to the (semi)automatic acquisition of descriptive infor-

mation or a priori models of a pattern (for determining appropriate partitioning 

of F) from training data, or training set, which may include both positive and neg-

ative pattern exemplars. In supervised learning the training set is class-labelled. 

In unsupervised learning the 'natural' partitioning is determined by the system. 

In non-trainable systems, these models are supplied by the designer. 

Learning in Al [18] is achieved through: successive discrimination of training sam-

ples; knowledge about generalisation (i.e., acquiring new interpretive knowledge 

from the existing knowledge database); analogous reasoning; learning about con-

cepts; etc. In statistical methods learning is achieved though error-correction 

based iterative parameter estimation [6][22]. In the syntactic approach this is ac-

complished through grammatical inference [22]. For patterns with non-numeric 

features efficient discrimination trees and classification rules may be inferred through, 

for example, the 1D3 approach and the Pao-Hu method [4]. 

Feedback: The feedback channel may be implemented to enable feature extrac-

tion to be partially guided; to permit iterative refinement of partial interpretation 

results (e.g., to perform pattern completion in a neural network [18]); etc. 

2.2 Overview of Syntactic and Other Techniques 

This section introduces three families of techniques (i) decision-theoretic, (ii) struc-

tural and syntactic and (iii) Al methods and examines their limitations. 

2.2.1 Decision-Theoretic Approach 

The decision-theoretic (or statistical) approach [6][28]-[30] utilises the quantifiable 

statistical basis of patterns to perform classification. Input data is represented as a 

vector x comprising n feature measurements in n-dimensional feature space. For in 

pattern classes, m representative (sets of) decision regions are defined in F, Figure 2.1, 

by means of discriminant functions. Recognition involves assigning the feature vector 

x to the correct decision region. Unique assignment requires the decision regions to be 

disjointed. Some methods of partitioning may engender indeterminate regions within 
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F. This approach relies on truly characteristic features to be obtained such that ho-

mogeneous class patterns may form distinct clusters in F. Factors such as entropy may 

be considered in feature selection in order to reduce the dimensionality of F and to 

respectively maximise and minimise the interset and the intraset distances3 . 

Discriminant (or decision) functions, denoted d2 (x), i = 1,2,. . ., m, partition F such 

that, for instance, x is assigned to class j if d3  (x) > di (x), Vi = 1, 2,. . ., m, and i 

Other methods of partitioning also exist'. 

As classifiers, pattern recognisers are categorised as either deterministic (non para-

metric) or parametric statistical, dependent on the nature of the implemented discrimi-

nant function. Other potential discriminant functions exist, e.g., as functions presented 

by the arrangements of artificial neurons 5  [4][22] in the multilayer perceptron [31]. 

Deterministic classifiers perform minimum-distance pattern classification applying 

the proximity6  of an unknown pattern to the prototypes of a class. Class representations, 

which use a single class exemplar, deploy the perpendicular bisector between these 

prototypes as a decision hyperplane. In systems where a class is represented with several 

prototypes, the distance between an input vector x and a class wi is taken as the smallest 

of the distances between x and each of the prototypes of w 2 . The most important subset 

of deterministic classifiers is the nearest neighbour (NN) classifier. A 1-NN classifier 

assigns an unknown pattern to the class of its nearest prototype of known classification. 

In a q-NN classifier the assignment is made to the class of the majority of its q nearest 

neighbours. The 1-NN classifier is superior to the q-NN classifier  and has (given a large 

prototype size) an error probability at most twice the Bayes probability of errors [25]. 

Parametric statistical classifiers minimise the expected classification error (or in 

decision theory terminology) the conditional average risk or loss. The most important 

3The distances between pattern vectors in different and in the same pattern class clusters respectively. 
"Assuming the system is linearly separable, then other linear decision functions may be used [6], 

e.g., decision planes for where each pattern is separable from the other by a single decision surface and 
decision surfaces for where each pattern class is separable from every other individual class by a distinct 
decision surface, i.e., the classes being pair-wise separable. 

'Artificial neural networks provide a model-free approach to estimate discriminant functions using 
the training set to identify parameters in the neural estimator to bring its input-output response close 
to that of the unknown estimand. However whether neural PR should be accepted as a novel concept or 
as alternative technique for implementing the statistical or syntactic approaches remains unclear [22]. 

6 Which can be measured as Euclidian distance, Mahalanobis distance (to utilise statistical proper-
ties), non-metric similarity functions (e.g., the angular deviation from some principle axes), etc. 

T This assumes all the interset distances of prototypes are greater than their intraset distances. 
8 Which describes the lowest achievable error on an average basis. 



subset, the Bayes classifier [6], implements the decision function: 

d2 (x) =p(X/Wj)p(Wt), i =1,2 .. ..,m 

where p(X/Wj) is the conditional probability of receiving x given that w, was sent and 

p(w2 ) the a priori probability of sending w. An input x is assigned to class w, if for 

that class d(x) > d3 (x) for all j i. The Bayes classifier uses a priori probabilities 

to minimise the total expected loss in misclassification and can operate with unequal 

losses. The average expected loss incurred when assigning x to class w3  is: 

L(w/x) = 	L1 p(Wj/X) 
	

(2.1) 

where Lij is the loss in deciding that x came from w 3  when it in fact came from w, and 

p(wj/x) the a posteriori probability that wi is sent on receiving x. Equation 2.1 can be 

re-expressed by substituting p(w 2 /x) using Bayes rule, p(w 2 /x) = p(X/Wj)p(W z)/p(X), 

and then dropping the common factor 1/p(x) to give: 

L(w/x) 	Lij p(x/wj)p(wj). 

A Bayes classifier assigns x to w3  where L(w 3 /x) is the minimum for j = 1, 2,. . ., m. 

However if both the a priori probabilities and loss information are unavailable 9 , a 

Bayes classifier can still be used by assigning them separately to equal values 1°  resulting 

in a maximum likelihood design maximising the probability of observing the received 

signal. The Neyman-Pearson criterion [32] which uses a posteriori probabilities may 

also be used. Alternatively when the a priori probabilities are unavailable the minimax 

criterion [32] can be used, which uses the worst case a priori probabilities for which 

the Bayes average loss is maximal to minimise the maximum error. Thus the Bayes, 

Neyman-Pearson and minimax classifiers differ in the form of the decision threshold [6]. 

The decision-theoretic methods, though generally more computationally inexpen-

sive, have a number of limitations [25]: 

1. The performance is dependent on the possibility of extracting a sufficiently large 

number of correct features. Using an insufficient number results in unclear par- 

'The unavailability of a priori probabilities and the inability to provide for subjective measures of 
belief constitute the major criticisms of the Bayes relationship [4]. 

' ° i.e., assign the value of losses Lij to any positive non-zero value and the a priori values to 1/M. 
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titioning of F and in ambiguous classification. The inclusion of excess features 

degrades the performance. Inclusion of redundant features may incur massive 

computational and memory overheads and obscure the clustering effect. 

The implementation can be extremely complicated if the number of both the 

classes and the features required is high. Face recognition, for instance, requires a 

large number of identification features and, if each face is treated as an individual 

class, this expands into an enormous set of pattern classes. 

This approach may not readily utilise essential structural information in patterns 

nor describe aspects of a pattern which make it eligible for assignment to a class 

nor apply the mechanism for generating patterns of the same class. Possible 

relationships between the chosen features are also ignored. 

2.2.2 Structural and Syntactic Approach 

Structural and syntactic methods [33]-[39] use structural information (modelled by 

formal grammars [16][40] and structural prototypes [34]) to describe patterns as a hi-

erarchical composition of simpler subpatterns and to define the various relationships 

between the subpatterns and pattern primitives. It requires means to extract and quan-

tify structural information and to assess structural similarities. 

Syntactic methods, based on formal language theories [41][42], use formal grammars 

for pattern class representation. The grammar terminals correspond to pattern primi-

tives and the nonterminals to subpatterns of greater complexity, hierarchically built up 

from the primitives. (Sub)patterns are described recursively through production rules. 

The language of a grammar, i.e., all the terminal structures which can be derived or gen-

erated, defines the patterns of one class. By performing syntactic analysis (or parsing) 

according to a grammar, an input pattern's class membership is verified. 

Grammars for a wide variety of applications have been proposed. Grammars are 

categorised according to the type of structures they generate, e.g., string grammars 

generate strings of finite alphabet; matrix and array grammars generate 2-D arrays 

and graph and tree grammars graphs and trees. A number of generalised grammar 

formalisms exist. Some provide increased descriptive power (e.g., programmed and 

attributed grammars), others incorporate measures to cope with noisy patterns (e.g., 
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error-correcting and stochastic grammars). 

The formal grammar representation has a number of limitations [20]: (i) its descrip-

tive power is limited to simple patterns; (ii) grammars may not be easily and optimally 

inferred; (iii) existing grammars may not be easily modified to incorporate new patterns 

and (iv) capacity for error correction is required to cope with noisy distorted patterns. 

In prototype representation structural information of a finite number of pattern 

prototypes is stored in the structure of strings, trees or graphs, instead of a grammar. 

An unknown input is matched against the prototypes to identify the prototype pat-

tern (class) it most closely resembles. Structural prototype representation is an useful 

alternative to formal grammar if only a small number of sample patterns are available. 

Disadvantages of prototype representation include: (i) if the number of patterns 

is high (or infinite) their representation may not be possible; (ii) the computational 

complexity for matching is high for representations such as graphs; (iii) the approach is 

inefficient to describe patterns containing variable structures and where the structures 

are related through a grammar and (iv) capacity for error-correction is also required. 

2.2.3 Al Approach 

Encompassing knowledge- based" or expert systems, Al based methods consider pat-

terns as instances of abstract concepts and a pattern class as a storage of knowledge 

describing the concepts. Knowledge is characterised as statements about the relation-

ships between facts, especially how new facts can be derived from known ones. Facts are 

statements about the relationships between objects which are any unit of information. 

Typically new knowledge may be incorporated without having to alter the entire knowl-

edge database. Based on the knowledge database, recognition is achieved by drawing 

domain specific inference or logical conclusions on the measurements of the unknown 

input. These methods have a major application in diagnostic classification [43]-[45]. 

"They are so called since they capture human knowledge and attempt to provide it comprehensibly 
to both machine and human being [18]. They are therefore heuristic in nature and differ from an 
ordinary computer program in that, rather than being inextricably absorbed in the programming code, 
the knowledge is held as a discrete entity separated from the control or reasoning mechanism. 
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Basic knowledge representation methods are: frames12 , object-orientated programs13 , 

formal logic, production systems, semantic nets and hybrid techniques. 

As a family of formal logic [46], first order predicate calculus [47]-[49] infers class 

labels or performs structural interpretation by drawing logical conclusions from a set 

of axioms which represents the a priori knowledge of patterns. Knowledge is expressed 

in predicate calculus formulae and may easily be implemented in logic programming 

languages such as PROLOG 14 , LISP [50] and ML [51]. Logic programming may then be 

applied to control or manipulate the meta-knowledge. However shortcomings inherent 

to predicate logic itself (e.g., the property of monotony") makes it unsuitable for certain 

tasks. Other logic systems may be used to overcome these drawbacks. However some 

meta-properties (e.g., completeness 16)  will be lost with predicate logic extensions such 

as the logic of types. Other logic systems though may be greater in descriptive power 

may not exceed the limits of logical semantics in expressing meaning [47]. 

Production systems [40][53] support knowledge representation by means of produc-

tion rules or actions of the form IF CONDITION THEN CONCLUSION. Facts are contained 

in a short-term buffer-like data structure called CONTEXT. The CONDITION part of each 

production rule in the rule base represents a condition that must be present in the CON-

TEXT before the production can be fired (i.e., executed). Logical conclusions are derived 

by successively applying these rules and may subsequently be used as new facts. Conclu-

sions are established involving cycles of: selecting an appropriate action; instantiating 

the actions' preconditions and initiating the firing of the action. Production systems are 

suitable for expressing situation-action knowledge (i.e., what to do in predetermined sit-

uations). Knowledge stored under the uniform structure of production rules are highly 

modular since they can independently be added, deleted or changed. However because 

12 A frame [40] is a record type data structure where each record field is assigned to the attribute of a 
concept or to a sequence of events or is used to establish relations by means of a pointer to another frame. 
In the canonical object frames each concept is described by (i) its range, (ii) its default and inherited 
values and (iii) an attached procedure specifying how to determine the attribute value if necessary. 

"Through treating knowledge as objects the object-orientated approach aims to simplify the controller 
design by freeing the controller from having to know and manage all aspects of a knowledge. 

' 4 1t should be noted that although automated reasoning systems such as PROLOG have mecha-
nisms which exhaustively explore partial proofs and determine the consistency (or soundness) of meta-
knowledge statements [18], Church's theorem [47] indicates that the validity of argument schema in 
predicate logic cannot be guaranteed to be ascertained in finite time for every argument schema. 

15 A system of reasoning is monotonic [52] if it requires consistent facts and knowledge bases, so that 
new statements may only be successfully introduced if they do not invalidate the theorems that have 
already been established. Incompleteness of the knowledge base is often the cause of non-monotonicity. 

"Completeness: the fact that if an argument schema is valid then its conclusions can be derived from 
its arguments. 
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all information is conveyed by means of the CONTEXT data structure and that the firing 

of every action requires the "match-action" cycle to be performed, production systems 

are inefficient to represent algorithmic knowledge where long predetermined sequences 

of actions may be involved. 

Semantic nets [40] are graphs where the nodes and edges (called concepts and rela-

tions respectively) are complex structures consisting of a number of sub-units. A concept 

may consist of a name and a number of conditions and attributes. The relations express 

the various inter-relationships (e.g., the inheritance property) between concepts. As a 

feature of semantic nets, direct insights into the spatial organisation of a design may 

be offered if the spatial relations between components are depicted by a semantic net 

[18]. Inference is based on matching or search methods. Problems with implementing 

semantic nets include the difficulties in (i) obtaining, managing and visualising an effec-

tive data structure representation since the knowledge attributes may be numerous and 

complex and (ii) expressing certain concepts (e.g., the idea of alternatives; the notion 

of time and the distance between individual objects and a class of objects). 

Expert systems are knowledge-based systems which embody domain-specific knowl-

edge. They emulate the performance of experts without necessarily modelling their 

reasoning process. Their main components [40] are shown in Figure 2.3. 

Expert System Shell 

I Interface Facility 

Explanation 	Interface 	I Knowledge-AcquisitFn 

Facility 	Mechanism L 	Facility 

I 	 I 

Facts Base 	I I 	Knowledge Base 

Figure 2.3: Component of an expert system. 

The explanation facility enables an expert system to explain or justify its conclu-

sions. Working systems empty of both facts and knowledge bases are called expert 

system shells whose role provides (domain-knowledge-independent) control and support 
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of information. The task of reasoning is associated with: (i) fuzzy reasoning 17 , plausible 

factors evaluation's  and assumption-based reasoning19  to overcome inconsistency and 

conflict problems inherent in abductive reasoning and (ii) constraint propagation 20  as 

means of removing redundant knowledge in both abductive and deductive reasonings. 

2.3 Syntactic Parsing 

This section describes in more detail the theoretical basis of syntactic PR. 

2.3.1 Generation and Parsing of Patterns 

A grammar is a formalised set of production rules which describes the structure of 

a pattern class. The primitive (symbolic) features, which are directly extractable from 

the input by means of preprocessing and segmentation, form the grammar terminals. 

The most fundamental model is the string grammar which operates on sequences 

of finite symbols. A string grammar is a four-tuple G5 (VN, VT,  5, P) where VN 

and VT are the nonterrninal and terminal vocabularies of Gs consisting of non-empty, 

finite set of symbols; S e VN is the start symbol and P is a non-empty, finite set of 

productions (i.e., rewrite rules) denote by a -+ 3, where a and 0 are non-null strings of 

elements of VN U VT. A string i can be generated or derived from another string y if by 

progressively modifying 7, through applying the production substitutions, 77 is obtained. 

The language of Gs, L(Gs), comprises all strings derivable from S by applying P. A 

grammar is ambiguous if a string has more than one derivation. 

Parsing, the reverse of generation, is the analysing of the unknown input accord-

ing to the grammar productions. Parsing methods can be divided into (i) grammar 

parsers [36][41][54] and (ii) error-correcting parsers [55]-[57]. The former verify if a 

17 Knowledge propositions are expressed with varying degree of commitment or evidential support 
which is re-evaluated for each inferred facts by means of fuzzy logic [18]. 

"Knowledge predicates are viewed as hypotheses. Weights or evidential support which a knowledge 
proposition contributes towards a hypothesis is calculated as measures of belief. Such plausibility factors 
[18] are calculated for all evidential propositions and hypotheses. 

19 1(nowledge propositions are separated as beliefs (i.e., assumptions) and facts. The truth status of 
derived facts are recorded allowing contradictory assumptions to be identified. Inconsistency is resolved 
by, e.g., deleting beliefs that contribute to the contradiction with those facts that depend on them. 

20 Constraints of a proposition A are all the knowledge statements which have bearings on its truth. 
Constraint propagation transforms the constraints into a form that makes their influence on A more 
explicit and succinct thereby leading to a better understanding of the knowledge space and possibly the 
required inference solution. 
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(sub)structure belongs to the language of a grammar. The latter incorporate edit func-

tions into the productions to enable similarity measure between an unknown input 

pattern and the pattern grammar to be calculated in terms of the minimum number of 

modifications required to derive the unknown structure. 

2.4 Application of Syntactic Methods 

Recent application areas of syntactic PR include: automated visual inspection; 

biomedical engineering (including the analysis of electrocardiogram (ECG) and elec-

troencephalogram (EEG)); cursive script recognition; document analysis; fault diagno-

sis; grammatical inference; etc. A list of these applications is included in Appendix A. 

2.5 Generalised Grammar Formalisations 

This section outlines some grammar formalisations which allow grammars of greater 

descriptive power to be formulated [16]. 

2.5.1 Attributed Grammars 

Attributed (or semantic) grammars [38] are a powerful extension which incorporate 

semantic information in the form of numerical value parameters (or attributes). At-

tributes may be inherited or synthesised. The former describes aspects of meaning that 

come from the context within the pattern. The latter describes meanings that are built 

up from within the pattern. 

An attributed grammar is a four-tuple GA 	(VN, VT,  P, S). Associated with each 

symbol V E VN U VT are two finite disjoint sets of attributes: the synthesised set Ao(V) 

and the inherited set A, (V). Terminal tokens have no synthesised attributes and the 

start symbol S has no inherited attributes. Each production of P is associated with 

"semantic rules" defining the evaluation of the inherited and the synthesised attributes 

of the nonterminals on the right and on the left side of the production respectively. 
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2.5.2 Indexed Grammars 

Indexed grammars [36] incorporate a set of flags in the grammar. A list of flags 

may appear following the terminals on the right side of a production. If in a string a 

nonterminal with flags following is replaced by one or more terminals, the flags following 

each nonterminal are generated. If a nonterminal is replaced by terminals, the flags are 

removed. An indexed grammar has sufficient power to describe a proper subset of the 

context-sensitive features of programming languages. 

2.5.3 Stochastic Grammars 

In a stochastic grammar each production is assigned a probability of application 

which allows the grammar itself to generate noisy patterns. The probability associated 

with the derivation of a string is the product of the probabilities associated with the 

sequences of stochastic productions used in the derivation. The grammar is subsequently 

used to recognise distorted and noisy patterns. 

2.5.4 Programmed Grammars 

In a programmed grammar [141] each production is labelled and assigned specific 

production rule(s) which may be applied next. A programmed grammar is a five-

tuple Gp (VN, VT,  J, P, S) where S, VN and VT are the start symbol and the sets 

of nonterminals and terminals respectively. J is the finite set of production labels. 

Each production of P has a label; a core field (comprising a regular phrase structure 

production rule referred to as the core) and two associated "goto-next" fields - S(U) 

(success field) indicating the next production (s) to be applied, and F(W) (failure field) 

indicating the alternative(s) if S(U) cannot be used. Productions in P take the form: 

Label Core Field Success Field Failure Field 

r U W 

where c - @ is a regular phase structure production; a, 0 E VN U VT; r is the label; U 

the success field and W the failure field. r, U and W are subsets of J. The operation 

of Gp begins with production 1. In general when a production rule r is applied, if its 

core field may be used to rewrite a string a of the current string ij, then a -* /3 is 

applied and the next production is selected from U. Otherwise the production is not 
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used and the next production is selected from W. The derivation process ends when the 

goto-next field is found to be 0. Termination with S(0) and F(0) indicate acceptance 

and rejection of the input pattern respectively. A Gp which fully utilises both S(U) 

and F(W) is termed type UW. Type U describes where only S(U) is used. 

2.6 APG and the Programmed Grammar 

An APG [1][2] is a generalisation of a Gp developed to provide a parser which 

is powerful, flexible, easily modifiable and could cope with patterns overlaid with high 

levels of noise. Their basic structure and operation are essentially identical. An APG is a 

- five-tuple GAPG (GF, Cv, VT, J, F). VT and J are the sets of terminals and production 

labels respectively. Gv is the set of grammar variables consisting of (i) parameter 

variables (which are passed to the grammar or to the derived parser); (ii) computed 

variables (which are evaluated by grammar productions) and (iii) constants. CF is 

the set of grammar core-functions corresponding to the core field of a Gp production. 

The structural schemata of GAPG  and Gp differ in two aspects: (i) instead of being 

confined to phrase structure re-write rules, APG core-functions allow true functions to 

be operated on the grammar variables and (ii) the assigning of the goto-next field is not 

necessarily determined by the success in executing the core-function but rather by the 

core-function itself. Productions of GAPG  take the form: 

Label Core-Functions Success Field Failure Field 

r Operations on Cv and VT U W 

A core-function may be described by three logical parts: (i) an entry condition; (ii) 

a variable manipulation section and (iii) a value field which describes the value to 

be returned or output. Nevertheless different core-function constitutions may be used 

instead 21 . The APG core-functions, in addition, are allowed to utilise externally defined 

functions (as separate modules) which may be used in more than one production. 

21 1n this respect an APG's core-function is to a programmed grammar's core field as the maxims of 
conversational iniplicatures[47] of the pragmatic approach are to the syntax of predicate logic (for the 
understanding of meanings in natural languages), i.e., prior to some specific usage being defined the 
constitution of core-functions and conversational maxims may not respectively be given precisely and 
exhaustively. In addition, core-functions and conversational maxims are alike in that (i) they can 
formulate rules informally allowing concepts and functions appearing in these rules to be expanded or 
provided elsewhere, e.g., as (sub)maxims or external functions, and (ii) they both allow the operational 
domain of their constituting parts to overlap. 
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The features of an APG include the following: 

The core-functions may be as powerful as required. APCs can emulate any of the 

grammar categories 22  mentioned in Section 2.5. The use of grammar variables 

can (i) provide a completely flexible history mechanism; (ii) support the manipu-

lation of semantic, stochastic and other types of information and (iii) facilitate the 

evaluation of the structural similarity between an unknown input and a pattern 

class. In addition, the behaviour of a resultant parser may be controlled since 

parameters may be passed to the grammar. Thus, e.g., a parser can be produced 

which can be either error-correcting or non-error-correcting as required. 

By placing much of the power of an APG in functions which can be developed as 

separate modules, new features can be incorporated easily without affecting the 

entire parser structure. 

2.7 Conclusion 

This chapter presented an outline of a typical PR system; an overview of syntactic 

and other PR techniques and an introduction to the APG as a generalised grammar 

formalism. An APG, capable of emulating other categories of grammars since its core-

functions are not restricted to phrase structure re-write rules, may also implement struc-

tural prototypes (by allowing the structures of strings, trees and graphs to be embodied 

in its production rules) and construct a decision-theoretic solution (through using an 

attributed grammar [123]). Similarly the knowledge database as well as the reasoning 

mechanism of an expert system may also be implemented. 

In the remainder of this thesis Chapter 3 presents the design of an APG parser 

focusing on the aspect of pattern interpretation (Figure 2.2). The development of suit-

able preprocessing, feature extraction and grammatical inference mechanisms are not 

considered. The developed parser provides sample-amplitude tolerance to recognise 

noisy signals. The parser's operation demonstrations and performance characteristics 

are given in Chapter 4. A theoretical analysis of recognition performance is detailed in 

Chapter 5. Finally two improved parser designs are presented in Chapter 6. 

"The versatility of an APG is comparable to that of a General Syntactic Processor (GSP) [40] for the 
parsing and generation of natural-language strings. Although, like an APG, a GSP is not a grammar per 
se GSPs are capable of emulating other syntactic processors such as an Augmented Transition Network 
grammar [40] by providing a generalised data structure. 



Chapter 3 

Recognition of 1-D Sampled Data 
Signal Waveforms Using APG 

This chapter examines the application of APG to recognise waveform patterns in 

1-D sampled data signals. Since an APG is a structural schema, which allows the 

establishment of pattern analysis techniques, the performance of the resultant parser 

depends on the soundness of the technique implemented. Therefore a performance 

investigation of the APG needs to be conducted as a case-specific study with a definite 

recognition task clearly defined at the outset. This chapter defines the nature of the 

input data and describes an APG solution to a case-specific recognition task. 

3.1 Definition of 1-D Sampled Data Signals 

This section clarifies the definition of a 1-D sampled data signal; explains the nature 

of waveform patterns in this context and discusses the desired error tolerance capacity. 

3.1.1 Definition of Sampled Data Signals 

A signal to be recognised comprises a sequence of received impulses. The 1-D qualifi-

cation implies a time history of samples received from a single sensor, in contrast to 2-D 

signals obtained from an antenna array or imaging camera system. A (signal) waveform 

refers to the temporal outline of a signal's sampled amplitude values. A sampled data 

signal is regarded as a collection of discrete data points with each point registering the 

signal amplitude at a specific sampling instance. A signal is regularly sampled if the 

sampled data encompass a series of 'equally-spaced' time components. 
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3.1.2 Definition of Waveform Patterns 

Syntactic patterns are specified by the inter-relationship between the pattern prim-

itives. A 1-D sampled data signal pattern may manifest in a variety of manners - e.g., 

as a modulated analogue waveform or as a simple geometric (e.g., triangular), polyno-

mial or sinusoidal waveform - and it may be described at different levels of abstraction. 

The lowest level may use the signal samples as primitives; the next level composite 

features such as lines and curves extracted from the signal waveform and the highest 

level may define how composite features repeat and inter-relate. Despite its variety of 

representation, a pattern (or a class of patterns) is viewed as a series of samples whose 

temporal relationship falls within an envelope which is succinctly described by mathe-

matical functions. A syntactic recogniser can be constructed provided these functions 

and the requisite primitives may be obtained and utilised. 

3.1.3 Allowance for Corruption to Patterns 

Signals are assumed susceptible to extraneous noise. As the syntactic approach 

constitutes an expectation-driven analysis tool, noise and channel distortions need to 

be compensated. The desired allowances for noise impairment are: (i) to allow additive-

(and deductive-) error of a prescribed level for all the signal data, i.e., to 'widen' a 

pattern's descriptive envelope and (ii) to permit a recognised pattern deviating from its 

characteristic descriptions to cope with, e.g., temporary propagation speed variations 

in the transmission such that a partially 'stretched' or 'contracted' pattern is received. 

3.2 Specification of an Example Pattern Recognition Task 

This section describes the recognition task and the reasons for choosing the task. 

3.2.1 Task Specification 

The chosen pattern is a three-segment waveform (Figure 3.1) whose envelope corn-

prises an initial rising segment (with +45° gradient), a level segment followed by a 

final falling segment (with —45° gradient). Each segment length is undefined but must 

be finite. A valid segment requires at least three non-identical constituting samples. 
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A minimum valid pattern would have seven samples present - i.e., with one point be-

ing shared by Segments 1 and 2 and with another by Segments 2 and 3 (Figure 3.1). 

Successful recognition requires all the pattern constituting samples to be identified'. 

Amplitude 
of 
Sampled 
Data 
Points 

Segment I 	Segment 	Segment  

I>1< 	 >1 Key: 

• 	A sampled 

data point 

Pattern 

pe 

Xi 	
i th waveform 

constituent 

 

xl  x2 	x3  x4 	x5  x6  x7 	Time 

Figure 3.1: A minimum of seven sampled data points representing a valid pattern. 

3.2.2 Rationale for selecting the Task 

The need for a specific task was explained at the beginning of this chapter. Segment 

lengths are undefined to avoid the specification resembling a template matching problem, 

to emphasis an APG as a syntactic method which allows patterns assuming a generic 

nature. A minimum of three samples per segment is used since a representation which 

uses only two samples is ambiguous, e.g., a pattern comprises Segments 1, 2 and 3 and 

one comprises Segment 1 followed by Segment 3 could not be distinguished (Figure 3.2). 

To locate all the relevant samples is needed to ensure the analysis process does not 

terminate prematurely when only a subset of the pattern constituents is obtained. 

In addition, the generic pattern was chosen as it may easily be modified to approx-

imate a rectangular pulse or to represent a piece-wise approximation of a more general 

waveform. 

that the definition of a pattern as indispensable segments and the minimum number of segment 
samples requirement are only particular to this example. In practice a pattern's partitioning may be 
difficult and its recognition criteria may not be to test that its segments are present, but rather to 
determine if its constituting samples exceeds a certain temporal distribution threshold. Hence the 
core-function design can only proceed once the precise pattern details are known. 
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Figure 3.2: Ambiguity arises if only two data points per segment are used. 

3.3 Analysis Technique for formulating APG Solution 

This section outlines the method used in devising coherent core-functions. 

3.3.1 Basic Choices in Strategies for Core-Functions 

Core-function solutions may be categorised into global and local approaches. 

The global approach utilises features common to groups of pattern samples, e.g., 

the samples of a horizontal line would have a similar amplitude. These features may 

be depicted as transformed parameters, e.g., via Hough transform [23], the individual 

representation of all the samples which fall on a straight line would intersect at one 

point in the parameter space. Axial representations [23] provide another method for 

describing global geometric features. A global method may commence by obtaining the 

parametric representation and then determine if a substantial number of samples exists 

to support the various pattern features. Thus a pattern's existence is affirmed if the 

required configuration of its features is assured. A different global method develops the 

features as templates and performs feature detection by convolution [22][24]. 

The local method utilises the preciseness of specifying mathematically the relation-

ship of adjacent pattern samples. It starts with a seed sample and then jumps from 

this to the next suitable one, within a specific scan-ahead distance. This is repeated 

until the complete pattern description is traversed, thus simultaneously validated the 

presence of the pattern. However, since the scan-ahead distance has to be chosen first 

and be completely replied upon, the approach is only suitable if the maximum separa- 
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tion between adjacent pattern samples is known. Otherwise a large scan-ahead distance 

may be required resulting in a significant increase in the search space and effort. 

The global approach, on the other hand, requires the complete pattern description 

phrased as a succession of features. The Hough transform, for instance, provides no 

information regarding the connectivity of recognised features. The approach's practi-

cability further depends on the feasibility of composing suitable core-functions. Since 

no adequate method to incorporate error tolerance for the global approach was devised 

within the development phase of this project the local approach was pursued. 

3.3.2 Provision of Error Tolerance 

The two techniques, embodying the local approach, originally considered 2  were error-

correcting and stochastic parsers [37][36]. The former provides a similarity measure 

between the input and the grammar patterns by including edit operations into the pro-

ductions to calculate the minimum number of corrections to transform one into the 

other. The latter assigns each production its likelihood of being applied in the gener-

ation of an output structure, to allow the parsing process to evaluate the probability 

of generation. Both techniques were rejected as, in order to fully utilise the similarity 

measure and the probability of generation, the input signal needs to comprise largely of 

the original waveform. Otherwise the parsing may return a meaningless result. 

The implemented method made use of progressive re-evaluation of waveform dis-

tribution boundaries (Section 3.4.2), which, to a small extent, is similar to con-

straint propagation3 . The method progressively re-evaluates an upper and a lower 

limit, accompanying the parsing of potential pattern-contributing samples, basing on 

the permissible amplitude values of the samples. These limits define where valid pat-

tern waveforms (constituted by all the previously identified contributing samples) are 

at any sampling instance. As a result, they provide a mechanism for nominating further 

waveform constituents and giving amplitude tolerance to all samples. 

'Another method is to use syntax-directed translation. However, like the stochastic parsers, they are 
only suitable when considering only the most probable distortions [33]. 

3 1n constraint propagation [142] [143], some local constraints are propagated amongst the neighbour 
nodes to any given node, so that the present state of a node, e.g., its label, probabilities, etc., is adjusted 
depending on the information received from all the attached neighbours. 
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3.4 High-Level Parser Implementation Description 

This section presents a clear description of the productions and core-functions be-

ginning with a rudimentary introduction to the role of the productions for parsing the 

pattern samples, continuing with the explanation of waveform distribution bound-

aries and minimum segment length constraint and ending with a more detailed 

description of the production core-functions. 

3.4.1 The Role of Productions in Parsing Contributing Samples 

This subsection describes the format of the APG solution and outlines how each 

production rule verifies the validity of the waveform contributing samples. Note that 

the APG solution described here is the Version 3 parser. The history of the parser 

development is given in Section 3.5. 

I Introduction of APG solution I 

The pattern waveform's existence is ascertained by assessing if a given sequence of 

samples is derivable from the APG. Since a pattern may commence from any input 

sample, each sample is successively tried as a potential start point. Each pattern sample 

is parsed by an appropriate production. When a production is called it is presented with 

an input sample. Each production makes an assumption of the position in the pattern 

waveform of the sample and thereupon obtains nominees for the next waveform sample 

to initiate the subsequent parsing. 

Introduction to the structure of production rules 

The APG comprises nine productions. Its simplified portrayal, Figure 3.3, describes 

each core-function in three parts: (i) Entry assumption: the assumed position in the 

pattern of the current point; (ii) Objective to accomplish: how the next waveform point is 

nominated and (iii) How to proceed: how to process a possible next waveform point. Take 

production 23 as an example. Figure 3.3 indicates that, when called, the production 

assumes that the current sample is at the end of Segment 1 and is distinct from the start 

of Segment 2. The core-function then nominates the possible start point to Segment 2 

as all the ensuing samples inside the projection (or the extrapolation) of the waveform 
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Figure 3.3: Description of the APG with simplified core-function outline. 
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distribution boundaries 4,  situated within a specified scanning distance. Lastly the core-

function dictates that the parsing process apply each candidate sample found to all the 

productions listed in the success-goto-next list, i.e., production 3. The code for these 

core-functions etc., associated with Figure 3.3, is contained in Appendix B. 

I Commencement and termination of parsing process 

Parsing commences with production 1. The label 0, denoting when the parsing process 

may terminate, is located in the success-goto-next list of production rule 7. Hence a 

successful recognition is inferred if the course of traversal of the APG's productions 

embarks upon production 7 and there encounters label 0. 

Association between productions and waveform contributing points 

Figure 3.4 shows how the individual productions are responsible for parsing the wave-

form contributing samples. The number of segment samples are i, j and k, where i,j, k > 

3. Segment 1, 2 and 3 comprise x 11  , x 12 ,.. ., x 1 ; X21, x,. . ., xj and X31,  x,. . . , 

respectively. If the last sample of Segment 1 is the first of Segment 2, x 12  will be identical 

to x 21 . Similarly, x2j and x 31  are identical if the last two segments meet at the turning 

point. Figure 3.5(a) shows the list of rule labels and the associated success-goto-next 

rules of the APG. Figure 3.5(b) describes all possible production rule traversals and the 

associated waveform contributing samples identified by each production. 

Parsing of Segment 1 

Figure 3.6 shows the roles of the rules at different stages of parsing. When parsing 

commences with x 11  (Figure 3.6(a)) Rule 1 assumes x 11  is the start of Segment 1, 

obtains x 12  as the possible second point and presents it to rule 2. Rule 2 (Figure 3.6(b)) 

identifies x 15  as the third point and submits it to rules 2, 3 and 23 according to the 

rule's success-goto-next list. By repetitively applying rule 2, all the Segment 1 points 

are extracted (Figure 3.6(c)). After the penultimate Segment 1 sample, X1(j_1), is 

presented to rule 2, x 11  is subsequently identified and presented to rules 2, 3 and 23. 

But because x 11  is the last on the segment, subsequent parsing process following rule 2 

will fail. Continuing with rules 3 and 23 now commences the parsing of Segment 2. 

'The waveform distribution boundaries (Section 3.4.2) represent the scope within which plausible 
pattern waveforms as may be substantiated by all the samples so far parsed are located. Thus all the 
subsequent samples found inside the projection of the waveform distribution boundaries would constitute 
potential waveform contributing samples which the ensuing parsing process should examine. 
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Parsing of Segment 2 

Rule 3 assumes the current point is the start of Segment 2 and sets out to find a possible 

second point. Thus the transition from rule 2 to 3 is only proper if xj, the last of Seg-

ment 1, is the start of Segment 2, x 21  (Figure 3.6(d)). Otherwise the subsequent parsing 

will fail. This is remedied however by the call to rule 23 from rule 2 (Figure 3.6(e)) 

enabling x 21 , the correct start of Segment 2, to be identified before properly pursuing 

rule 3 (Figure 3.6(f)). Rule 3 identifies x 22 , the second point on Segment 2. And in 

the same way as rule 1 initiates the iterative application of rule 2 to extract all the 

remaining Segment 1 points, rule 3 initiates rule 4 to parse Segment 2 (Figure 3.6(g)). 

Parsing of Segment 3 

Segment 3 is parsed like Segment 2 beginning with the transition from rule 4 to 5 

(Figure 3.6(h)), if the last Segment 2 point, x 21 , is also the beginning of Segment 3, 

X31, otherwise with an indirect transition via rule 45 (Figure 3.6(i)). Rule 5 assumes 

the current point is the start of Segment 3, x 31 , finds x 32  and passes it to rule 6 

(Figure 3.6(j)). Rule 6 locates X33  and dispatches it to rule 7 (Figure 3.6(k)). Since rule 

7's success-goto-next list contains label 0, X11, X12, - . ., x 33  can thereby be returned as 

the identified pattern. However, because label 7 coexists with label 0 in the success-goto-

next list, rule 7 will be repeatedly called to obtain the possible fourth and later segment 

points (Figure 3.6(1)). When eventually Xsk,  the last Segment 3 point, is identified, 

x JJ ,x 12 ,. . -, X3k are then returned as the identified waveform with the largest number 

of constituents (Figure 3.6(m)). 

3.4.2 Waveform Distribution Boundaries 

The following illustration explains the use of waveform distribution boundaries to 

nominate waveform contributing samples. 

Given amplitude tolerance, a set of samples may fit not just one but a whole band 

of possible pattern waveforms. To parse successive waveform samples thus requires 

monitoring the distribution (or the overall band) of possible pattern waveforms. The 

waveform distribution boundaries describe the limits of this distribution such that all 

samples which fall within the projection of these boundaries constitute further potential 

waveform samples. Figure 3.7 illustrates their application showing parsing commenced 
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at sample x 3 5  , depicting each sample with an amount of amplitude tolerance. 

The initial waveform distribution boundaries are set to the extremes of x 3  's tolerance 

values (Figure 3.7(a)). By projecting the boundaries forward along the Segment 1 

locus (of gradient +1), production 1 identifies x 5  as a second potential sample. To 

accept x 5  the boundaries are re-evaluated by intersecting the waveform distribution-

range projected to x 5  with its tolerance values. Production 2 then projects the resultant 

boundaries from x 5  (Figure 3.7(b)), locates x 7  and re-evaluates the boundaries by 

intersecting, as before, with the tolerance values of the located sample. The search for 

Segment 1 samples ends (Figure 3.7(c)) as the projection from x- along the Segment 1 

locus fails to encounter further samples. 

Production 3 initiates the parsing for Segment 2 (Figure 3.7(d)) projecting the same 

boundaries along the segment's horizontal locus, but this also fails to encounter further 

samples indicating that x 7  is not the beginning of Segment 2. Production 23 then 

attempts to nominate a new start to Segment 2, in the region centred about the last 

Segment 1 point and delimited by the loci for Segments 1 and 2 as shown by the triangle  

in Figure 3.7(e), resulting in x 8  being chosen and a new set of boundaries obtained. 

Through productions 3 and 4, x 9  and x 10  are chosen as the ensuing Segment 2 

samples (Figure 3.7(f)). Using x 10  as the start of Segment 3 (Figure 3.7(g)) productions 

5, 6 and 7 then successfully parsed the remaining waveform samples. By extrapolating 

the final boundaries backwards, the final band of possible pattern waveforms is obtained 

(Figure 3.7(h)). Thus all the waveform constituents deviate less than the specified 

tolerance level from the identified band of pattern waveforms and, in this way, the 

continuity in the pattern waveform is attained. 

The boundaries may progressively 'converge' (or narrow) as new waveform samples 

are parsed, e.g., Figure 3.7(c) and (f). An exception is at the turning points; if the last 

sample of the first segment is not the start of the next segment, new boundaries need 

to be evaluated. Consequently the resultant segment widths (i.e., the vertical cross 

section) may differ, e.g., since the convergence is broken between Segments 1 and 2 

(Figure 3.7(e)) Segment l's width differs from the others (Figure 3.7(h)). 

'Although z2 and x 4  are valid points on a gradient +1 segment, they cannot be associated with a 
third point to substantiate a segment. 

'The shape looks like a triangle but is actually a trapezium. 
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3.4.3 Minimum Segment Length Constraint 

In the original specification, unconstrain segment lengths means that when amplitude 

tolerance is provided there exist potentially innumerable acceptable waveforms consist-

ing purely of noise impulses. To provide a more realistic specification an additional 

constraint specifying the minimum segment length is required to enable a real wave-

form, corrupted with noise, to be distinguished from a false noise-induced waveform 7 . 

The minimum segment length is defined as follows: 

Minimum Segment Length = 

tol+iy + 1 	 , if tol+i.y isa 
Igradl 	 igradi 

whole number, 

Rounding up to the 

nearest integer of 	
') 

, otherwise 

where grad is the segment's gradient; tol the single-sided amplitude tolerance and Ay, 

called the noise threshold, is a certain magnitude of the background signal noise. The 

optimum value of Ay requires further investigation. For the following illustration to 

demonstrate the constraint's usage apply Ay as the maximum signal noise amplitude. 

This means that pattern waveforms have to be tol units above /y and that grad may 

not be too close to zero 8 . By thus defining an upper bound for the dimension of noise-

induced waveforms provides a method which is able (i) to avoid spending unnecessary 

effort on their parsing and (ii) to extract the portions of a genuine waveform 'submerged' 

in noise without hindering unduely the parsing process. 

Figure 3.8 illustrates the application of the constraint. Figure 3.8(a) shows an input 

signal containing only noise whose maximum amplitude, Ay, equals half of the total volt-

age range. Given an amplitude tolerance of +tol units, this implies that a noise impulse 

may present a maximum magnitude of Ay + tol units. Without applying the constraint 

the signal presents a large number of potential waveforms (Figure 3.8(c)). Consequently 

the recogniser will parse all these and will eventually return a false waveform. However 

by applying the constraint the corresponding recognition result (Figure 3.8(e)) shows 

that there is correctly no waveform of interest present. Figure 3.8(b) shows another 

7 Note that if no amplitude tolerance is allowed this constraint is unnecessary since the formation 
likelihood of false waveforms will be considerably smaller. 

8 So for Segment 2, which has a zero gradient, let a minimum length of 2 units be specified since a 
valid segment needs to contain at least three samples. 
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the constraint (Figure 3.8(d)) the genuine waveform is parsed as just one of the many 

waveforms residing in the input. In contrast when the constraint is enforced the genuine 
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3.4.4 More Detailed Description of Production Rules 

Figures 3.9'-.-' 3.17 present a more detailed description of each production providing 

the following information (additional to Figure 3.3): 
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The minimum segment length each production applies. 

Where the minimum segment length checks are required. These checks are used to 

justify the parsing of a new segment by verifying that the previous segment has a 

sufficient length coverage. These checks are performed at productions 1, 3 and 5 

(Figures 3.9, 3.12 and 3.15 respectively). 

How the coverage of waveform segments is monitored. To facilitate minimum 

segment length checks requires a continuous monitoring of the segment length 

coverage substantiated by its contributing samples. A segment's coverage requires 

initialising when its parsing begins and updating when new contributing samples 

are found. Thus all the productions have to perform the updating of either the 

previous or the current segment's coverage. Productions 23 and 45 in addition 

have to initialise the recording of a new segment's coverage (Figures 3.11 and 

3.14). 

How the identified waveform contributing data points are returned. 
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Figure 3.10: A more detailed description of the APG recogniser - Production 2. 
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Figure 3.11: A more detailed description of the APG recogniser - Production 23. 

RR 



APC represented by testfunO - from veislon 3progrann 

Core-function Operations "Success. 
joto-next'lgoto-nest 

"Fail 

<Assumption> <Objective to Accomplish> <Direction to Fut her Parsing> List IList 

3 Assume the current data point is the start Perform minimum segment length 10io 	Apply each nominated point 
4 nil 

of Segment 2. cheek on Segment l's coverage, with its accompanying 

SegmentI 
Proceed only if the check is satisfactory. wavcf,cu distribution boundaries 

Signal 	 Sennirnl 2 Find possible second point to all the productions listed 
Aanptitodr 

on Segment 2. in the 'success-gOtO-next' list. 
Segnsent3 

Data Point 

of the 
	a 	as 

I 
If further parsing is successful. 

Douadsnea then return the current data point 
Samptmg lnstsjaae, with the largest set of data points 

found. 

Else if the 'success-next' 

CPoin 
lboconodmwlekbelO&the 

Range) minimum segment length for 
Assume Segment 2 is of gradient 0. So b Segement 2 is fulfilled, then 
accordingly set minimum segment length Boo. 	Work out the wavefonu 	 2 

return the current data point 
constniant so that the segment must extends distribution boundaries for all as pan of Segment 2. 
at least over two units of sampling duration, nominated data points. Otherwise return 'NULL'. 

E.g.. 	Pn,iaw ortlin 
Wavrfnnn (Pthw I 

Disnitsatinn Busuidariro 

A Ninninatud 
Data Paint 

Cmum Poin 

Calculate the updated coverage on 
Segment 2 for all nominated samples.  

Figure 3.12: A more detailed description of the APG recogniser - Production 3. 
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Figure 3.13: A more detailed description of the APG recogniser - Production 4. 
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Figure 3.14: A more detailed description of the APG recogniser - Production 45. 
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Figure 3.15: A more detailed description of the APG recogniser - Production 5. 
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Figure 3.16: A more detailed description of the APG recogniser - Production 6. 
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Figure 3.17: A more detailed description of the APG recogniser - Production 7. 
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3.5 Program Versions 

This section outlines the history of the parser's development. The initial research, 

carried out in the University of Edinburgh by Mr. Robert J. Hamilton between 1989 and 

1992, developed several APG solutions (mostly written in the programming language 

LISP) for a number of recognition problems. Some solutions, tested with real-life data, 

were found to be highly robust against noise [2]. 

The current investigation, aimed to quantify an APG's performance in noise, chose 

the recognition task based on a grammatical inference problem and adopted an in-

ferred solution to curtail parser development time. (An extract of the parser program, 

subsequently fully commented, is shown in Appendix C.) The parser, given the refer-

ence Version 1, comprised no transitional productions (i.e., productions 23 and 45) nor 

means to suppress the recognition of noise-induced waveforms, was unable to recognise 

waveforms containing missing turning points and it needed the background noise to be 

sparsely distributed across the signal. In addition amplitude tolerance was not equally 

ascribed to all samples and was only given to the potential first sample of every segment. 

Succeeding samples within the resultant amplitude tolerance 'windows' were identified 

as the remaining waveform constituents. Figure 3.18(a) illustrates x 1 , x 2  and x 3  chosen 

as samples on Segment 1 for parsing which commenced at x 0 . Subsequent parsing was 

unsuccessful as no later sample lies within the search space for Segment 2 from x 2  and 

x 9 . Correct recognition, however, would comprise all the signal samples, Figure 3.18(b). 

The parser was then modified (Appendix K) utilising waveform distribution bound-

aries to identify waveform constituents. The modified (Version 2) parser was able to 

correctly ascribe amplitude tolerance to all signal samples. To enable the parsing with 

missing waveform turning points the two transitional production rules were then in-

corporated, yielding parser Version 3 (Appendix B). This version also implemented 

the minimum segment length constraint to reduce dissipating parsing effort on noise-

induced waveforms. The design of the Version 3 parser is as described in this chapter. 

This parser was used to obtain the various parser recognition performance plots in 

9 1n [2] the developed parsers, compared with a FIR filter, were shown to be more robust in detecting 
waveforms corrupted by tall noise spikes. This comparison disclosed some of the problems of local feature 
detectors (such as the FIR filter) which use convolution masks [24], i.e., (i) a convolution mask responds 
to non-target features whose shape is of the same relative proportion to these features if they are present 
in combination with the correct target features and (ii) the correct response degrades if some samples 
of the target features are missing and also if the proportion and size of the features are altered. 
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Figure 3.18: (a) The failure of recognition according to the Version 1 parser. (h) A 
waveform which may be inferred including all samples. 

Chapter 4. 

The next version produced was for the recognition of waveforms with different de-

scriptions. The gradients of Segments 1 and 3 were able to be determined by the user. 

However, in order to avoid too many changes, Segment 2 remained at gradient 0 and the 

gradients of Segments 1 and 3 had to be > 0 and < 0 respectively. Also the parser was 

changed to represent signal amplitude with a floating points number representation. 

3.6 Conclusion 

The APG parser parses waveform contributing samples by verifying their assIlnIe(l 

position on the pattern waveform. Each production nominates the possible next wave-

form sample by means of waveform distribution boundaries. Minimum segment length 

checks are used (i) as a prerequisite condition for both starting the parsing of a seg-

ment and completing that of the pattern waveform and (ii) to minimise the parsing of 

noise-induced waveforms. 

The recognition task is only partially fulfilled; the parser implementation requires 
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the knowledge of the maximum distance between two adjacent pattern samples and it 

does not permit patterns to deviate from their characteristic description. In addition, 

it was necessary to introduce the minimum segment length constraint to make the 

recognition task more meaningful. To upgrade the parser the provision of waveform-

deviation tolerance is presented in Chapter 6. 
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Chapter 4 

Demonstration of Parser 
Operation 

This chapter demonstrates the Version 3 parser's operation (Section 4.1) and oper-

ational characteristics (Section 4.2). 

4.1 Pattern Recognition Results 

The following demonstrations selected the possible next waveform sample from the 

immediately ensuing 15 sampling instances, using signals with +200 units voltage range, 

and applied ±5 units amplitude tolerance to recognise amplitude-distorted waveforms. 

4.1.1 Recognition of Distortion-Free Waveforms 

The recognition of distortion-free waveforms, where the background signal noise does 

not superimpose upon the original waveform data, is simple and fast since the extra 

search space associated with amplitude tolerance needs not be considered. Figures 4.1(a) 

and (b) show respectively a clean pattern waveform signal' comprising the minimum 

samples for a valid pattern and the identified waveform comprising, as expected, all the 

input samples. Allowing no amplitude tolerance considerably reduces the formation of 

noise-induced distortion-free waveforms 2 . Figures 4.1(d) and (f) illustrate a distortion-

free waveform being recognised when accompanied by a low- and high-level background 

noise (Figures 4.1(c) and (e)). Figure 4.1(f) also shows a noise sample at sample 315 

one which is not accompanied by extraneous noise. 
2 Note this probability is significantly reduced but not eliminated. 
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being correctly incorporated as part of the recognised waveform because it falls on the 

pattern envelope. 
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Figure 4.1: The recognition of distortion-free waveforms. 

4.1.2 Recognition of Amplitude-Distorted Waveforms 

Distortion complicates waveforms' recognition. Figure 4.2(a) shows a clean waveform 

corrupted with up to 5 units amplitude distortion. By permitting +5 units tolerance 

this waveform is recognised (Figure 4.2(b)). Figures 4.2(c), (d), (e) and (f) demonstrate 
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Figure 4.2: The recognition of waveforms with amplitude distortion. 
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the diversity of waveform shapes this parser design recognises. 

Figures 4.2(g) and (h) show the recognition of an amplitude-distorted waveform 

accompanied by extraneous noise. The original waveform in Figure 4.2(g) is that of 

Figure 4.2(a). The recognition outcome (Figure 4.2(h)) demonstrates the consequences 

of amplitude tolerance enforcement enabling an amplitude-distorted waveform's con-

stituents to be extracted and noise-induced false waveforms to be formed. These spu-

rious waveforms, which may comprise the original waveform samples, become a rival 

to the original waveform at the final decision-making stage of the recognition process. 

Thus dependent on the selection strategy the ultimate waveform chosen can be wholly 

or partially incorrect. Furthermore, despite comprising all the original waveform sam-

ples, a recognised waveform may only partially include and can even totally exclude the 

original waveform! Thus the authenticity of the recognised waveforms must judge the 

inclusion of original waveform samples and its structural correspondence. 

4.1.3 Demonstrating the use of Minimum Segment Length Measure 

The application of the minimum segment length checks (Section 3.4.3), to min-

imise the unnecessary parsing of spurious noise-induced waveforms, can be demon-

strated by considering a recogniser which excludes these checks. Such a recogniser 

will correctly recognise a waveform provided that the signal noise is sparsely distributed 

(Figures 4.3(a) and (b)). However when a signal is heavily contaminated with even low-

amplitude noise, the recognition is valueless (Figures 4.3(c) and (d)) since the recognised 

waveform with the largest constituents will inevitably be noise induced because every 

possible pattern waveforms in the noise will be parsed. Moreover, even if no genuine 

waveform is present, a noise-induced false waveform will be returned. 

In contrast, when implementing the minimum segment length measure the recogniser 

can terminate a particular parsing attempt as soon as its infringement is detected. 

Figures 4.3(e), (f), (g) and (h) show two input signals correctly recognised using a 

minimum segment length measure of 10 units and ±5 units amplitude tolerance. As the 

maximum background noise amplitude in Figure 4.3(e) is 5 units the desired waveform 

is identified, Figure 4.3(f). In Figure 4.3(g) the background noise exceeds the tolerance 

hence correct recognition is not guaranteed. However, because no false waveforms have 

more samples than the original waveform, the genuine waveform is identified. 
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Figures 4.4(a), (b), (c) and (d) exemplify the application of the transitional pro-

duction rules, i.e., productions 23 and 45. The same input waveform has missing key 

waveform turning-points, i.e., the last samples of Segments 1 and 2 are distinct from the 

first samples on Segments 2 and 3. The parameters used guarantee correct recognition if 

the maximum noise amplitude does not exceed 5 units. Figure 4.4(b) shows the correct 

recognition of the pattern in Figure 4.4(a). However because of the large number of 

high noise impulses in Figure 4.4(c) the flawed result of Figure 4.4(d) is obtained. 
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Figure 4.4: Demonstrating the use of the transitional production rules whilst applying 
the minimum segment length constraint. 

4.1.4 Improving the Speed of the Parsing Process 

In its original setup, the APG recogniser explores the parsing combinations exhaus-

tively by having each production rule feeding all the nominated next waveform points 

to all the productions in its success-goto-next list. However to test so exhaustively is 

not always necessary. For instance, to verify if a number of consecutive samples lie on a 

straight line requires only the first instance of parsing (which examines the combination 
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including all the input samples). 

The parsing mechanism was improved by two modifications. Firstly, parse with only 

the minimum nominated samples required to reach a successful result. Since the pattern 

specification's directive is to obtain the maximum constituents, the samples closest to 

the current sample should consequently be parsed first. Secondly, disallow the parsing 

with alternative production options in a success-goto-next list, unless the parsing with 

the starting options of the list fails. These two modifications in some trial examples 

considerably reduces the recognition time from a couple of minutes to a fraction of a 

minute on the Sun 4/25 computer. 
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Figure 4.5: The effects of the modifications applied to reduce the recognition time. 

However there is a draw-back. The recognition becomes dependent on the order of 

applying the rule entries in a success-goto-next list. Figures 4.5(a) and (c) show two 

identical signals. Employing the productions in the beginning of the success-goto-next 

list first (Figure 3.3) obtains Figure 4.5(b) 3  since the entries in the s u ccess-goto- next 

T Note that here the recogniser was allowed to search 50 sampling instances forward to nominate 
samples for ensuing parsing. 
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list of productions 2 and 4 caused the recogniser to obtain the current segment's con-

stituents first. If this ordering is reversed, prioritising the parsing of the next waveform 

segment, some samples of the proper pattern may be omitted in the recognised waveform 

(Figure 4.5(d)). 

4.1.5 Summary 

A genuine pattern waveform embedded in signal noise may correctly be detected 

provided it is distortion free. When amplitude tolerance and minimum segment length 

checks are introduced, correct recognition needs the height of the actual waveform to 

exceed the sum of the amplitude tolerance and the maximum background noise am-

plitude. Although the parsing process may be accelerated, the recognition outcome is 

dependent on the order the entries in a production's success-goto-next list are applied. 

4.2 Operational Characteristics 

The following parser's operational characteristics show the recognition response for 

input signals of varied constitutions and the effects of the parser's control parameters. 

The performance influencing factors and parameters were studied independently. The 

parameters considered are: amplitude tolerance, noise threshold and scan-ahead dis-

tance. Constraints on both computing resources and time allowed only the operational 

performance of amplitude tolerance and noise threshold to be examined jointly. 

4.2.1 Method of assessing APG's Operational Characteristics 

The method of assessment is shown in Figure 4.6. The results shown in this section 

are the average of the parser's recognition outcome using 1000 noisy signals for each 

examined value of SNR. Figure 4.6 shows how one instance of the recognition results is 

obtained. The derivation of the noise signal b from the original noise-free waveform a is 

described in Appendix D. Two noise corrupted signals, c and d, are also created. Signal 

c is formed by superimposing the noise signal b with the original waveform exclusively at 

the contributing samples of the original waveform. The value of the remaining samples 

of c is left undefined'. Noisy signal d, on the other hand, is generated by superimposing 

4 1n fact these samples are assigned the minimum signal channel amplitude so that they will not affect 
the recognition results. 
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Figure 4.6: Method of assessing the APG's operational characteristics with three dif-
ferent input signals. 	 - 

the noise signal b with the original waveform a at all sampling instances. These three 

noisy signals are then applied in turn as individual inputs to the APG parser. 

The subsequent recognition may be either successful (e) or, if no waveform is found, 

a failure (f). A recognised waveform is checked for authenticity against the original 

waveform. If it is certified as authentic the recognition is assured both successful and 

correct (g), i.e., the recognised waveform is correctly identified as the original transmit-

ted waveform. Otherwise misdetection (h) is concluded. 

The authenticity check must verify that the recognised waveform consists of some 

samples of the original waveform and that there is a structural correspondence to the 

original waveform. The criteria subsequently implemented considered a recognised wave-

form as authentic if at least one sample from each segment of the recognised waveform 

was found in the original waveform. This allows a reasonable degree of structural 

deviation for the recognised waveform about the location of the original transmitted 

waveform. Samples which reside at the turning points of the recognised waveform are 

taken as advocating the presence of two segments. 

These authenticity check criteria may seem over lenient as they would accept wave-

forms which offer little overlap with the original waveform and that the corresponding 
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segments (of the original and the recognised waveforms) may not coincide in time. How-

ever, it would be unlikely for a waveform degraded by noise to retain all the original 

waveform structure - both in its location in time and the configuration of its segments. 

It may seem sensible to enforce stricter authenticity check criteria in order to discard 

recognised waveforms which structurally deviate significantly from the original. How-

ever, this would seriously undermine the parser's performance since, in high noise, this 

deliberate provision to compensate for the high degree of distortion would subsequently 

be removed. Adjustment through employing, for instance, a segment correspondence 

check (i.e., to confirm that the waveform segments in a recognised waveform are identical 

to the original waveform which the same samples associate with) would necessarily jeop-

ardise recognition where ample amplitude tolerance is applied. Firstly, this is because 

the more generous amplitude tolerance is deployed, the more numerous extraneous noise 

samples will be adopted into the recognised waveform. Hence there will be a greater 

degree of mismatch from the original waveform (due to the formation of false parts) and 

consequently, even if the level of noise is low, the likelihood of a recognised waveform 

not being authentic increases. Secondly, the addition of noise would inevitably distort 

the original waveform's dimension and its segments' proportions. 

The original noise-free waveform a used, Figure 4.7(a), is constituted by 15 samples 

with a magnitude of 20 25 amplitude units. Figure 4.7(b), (c) and (d) exemplify 

noisy signals b, c and d for SNR of 0 dB. To moderate simulation processing time the 

input signal is limited to 50 sampling instances (0 to 49). 

The purpose to recognise signals b and c is in order to investigate the following 

effects or occurrences: (i) the effect of noise on a signal whose samples are entirely 

(or almost entirely) that of the original waveform; (ii) the recognition outcome when 

noise alone is present in the input; (iii) the contribution of noise samples towards the 

parsing of authentic waveforms at regions where protraction of the waveform segments 

draws close to 0; (iv) the contribution of noise samples towards the parsing of authentic 

waveforms in the vicinity of the original waveform samples and (v) the contribution 

of original waveform samples towards the formation of misdetected waveforms whose 

realisation depends on a multitude of signal samples existing outwith the range of the 

original waveform. 
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Figure 4.7: (a) The original noise-free waveform used for the experiments. (b, c and d) 
Examples of noisy signals b, c and d (of Figure 4.6) at 0 dB SNR. 

4.2.2 Basic Recognition Characteristics 

SNR 
in dB 

Amplitude 
Tolerance 

Noise 
Threshold 

Scan-Ahead 
Distance 

-5, -2.5,..., 17.5 ±3 21 5 

Table 4.1: The parameters values used to obtain the basic recognition characteristics. 

To obtain the basic recognition characteristics plots of Figure 4.8 the parameter 

values in Table 4.1 were used. With reference to Figure 4.6, the basic plot Figure 4.8(a) 

shows the relationship between input signal d with the three possible outcomes f, g 

and h. The relationship between input signal c with recognition outcome e and f is 

displayed in Figure 4.8(b). And lastly the recognition characteristics with the noise 

signal b as the input is exhibited in Figure 4.8(c). 
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Figure 4.8: Basic APG recognition characteristics plots (a) for signals with noise samples 
superimposed on all input signal samples; (b) for signals with noise superimposed on 
the original waveform samples only and (c) for noise alone. 

It should be emphasised that in Figure 4.8 and in the subsequent figures in this 

thesis the SNR labelling on the recognition performance plots for signals with noise 

imposed only on the original waveform samples and for noise-only signals refers, as 

indicated, to where noise is superimposed on all samples of the input signal which 

contains the original noise-free waveform (i.e., Figure 4.6(d)). Hence the SNR labelling 

on, for example, Figures 4.8(b) and (c) should not be inferred as the ratio of the signal 

power to the noise power of the noise signal b or the noisy signal c in Figure 4.6 but as 

a reference to the source of the signal noise. 

Figure 4.8(a) shows the expected reduction in the percentage of successful and cor- 
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rect recognition accompanying the decrease of SNR. Misdetected recognition was also 

observed although the particular parameter values used appeared to have prevented a 

sharp rise in its occurrence as the noise level is increased. 

In addition the following observations were made: 

The presence of noise improves the recognition of authentic waveforms. At high 

values of SNR (> 5dB) there is a high resemblance between the characteristic plot 

for the successful and correct recognition of Figure 4.8(a) and the plot for success-

ful recognition in Figure 4.8(b) as well as between the plots of failed recognition of 

both. However at low values of SNR (< 5 dB) the percentage of successful recog-

nition of signal c (Figure 4.8(b)) shows a faster decline than its counterpart in 

Figure 4.8(a). It may be inferred from this that although the increase in the level 

of background noise is associated with the decline of recognition performance, the 

presence of extraneous noise samples also slowed down the degree of degradation. 

Since the amount of scan-ahead distance employed here is small it may be con-

jectured that the phenomenon would solely be attributed to the samples of noise 

adjacent to those of the authentic waveform. 

In high noise the presence of original waveform samples increases the formation 

of false waveforms. In Figure 4.8(c) no recognition of false waveform was made 

until a low level of SNR (< 0 dB) was reached. These false waveforms are at-

tributed totally to noise samples where a high level of noise enabled the minimum 

segment length constraint to be overcome and consequently for some recognition 

to be achieved. (This is a good demonstration of the successful application of the 

minimum segment length constraint in curtailing the recognition of false wave-

forms.) Suppose now that these false waveforms are the sole cause of misdetected 

recognition. At the SNRs where the false waveforms are found in Figure 4.8(c), 

Figure 4.8(b) shows that there is a much higher probability of authentic waveforms 

being recognised. Therefore the plot for misdetected recognition in Figure 4.8(a) 

should be less prominent than the plot for the successful recognition of false wave-

forms of Figure 4.8(c). As this is not the case it suggests that at low SNR (< 3 

dB) the source of misdetected recognition may (at least initially) be attributed due 

to the formations of false waveforms encouraged by the presence of the original 

waveform samples. 
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4.2.3 Performance with different values of Amplitude Tolerance 

The effect of imparting amplitude tolerance to recognition was examined with the 

parameter values in Table 4.2. The performance plots for successful and correct and for 

misdetected recognitions are shown in Figure 4.9(a) and (b) respectively. The following 

observations were made: 

1. The recognition performance in noise (Figure 4.9(a)) improves as expected with 

the provision of increased amplitude tolerance. For example, with atolerance of +2 

units, 90% recognition was achieved at around 12 dB SNR. This improves to only 

a 7.5 dB requirement with an increased tolerance of ±4 units. This is expected 

since the provision of more tolerance would counteract some of the distortions 

caused by noise. 

2. There exists an optimum value (or range of values) whereby further increase in the 

allowed tolerance results in a decline in performance. For example, at 15 dB SNR 

an increase in tolerance from ±3 to ±5 results in a decrease of 8% in detection 

performance. This reversion in performance trend is explained by: 

The number of authentic waveforms which pass the minimum segment length 

constraint decreases with the increase in tolerance. Under this constraint for 

recognition, the height of a waveform needs to exceed the sum of tolerance 

and noise threshold. In our example, with noise threshold and the maximum 

height of the original waveform being 21 and 25 respectively, one can therefore 

only expect the increase in performance to continue up to tolerance of ±3 

units. 

The introduction of tolerance permits the formation of more false waveforms. 

In our example this effect plays only a minor role. This is evident in Fig-

ure 4.10, which shows that at high noise the increase in tolerance is accom-

panied by an increase in the percentage of "successful" recognition of false 

waveforms. Figure 4.9(b) shows the provision of tolerance at high noise also 

increases the likelihood of misdetected recognition. 

3. For optimum performance at high SNR (> 8 dB in Figure 4.9(a)) the value of 

tolerance used should be such that its sum with the value of noise threshold is 
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SNR 
in dB 

Amplitude 
Tolerance 

Noise 
Threshold 

Scan-Ahead 
Distance 

5, -2.5, ..., 17.5 ±0, ±1, ..., ±5 21 5 

Table 4.2: The values of the parameters used to obtain the recognition characteristics 
for different values of amplitude tolerance. 
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Figure 4.9: The recognition performance plots with different values of amplitude tol-
erance for signals with noise superimposed on all input signal samples. The contours 
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about the maximum height of the original waveform. At lower values of SNR the 

optimum performance is obtained with higher values of amplitude tolerance. 

(The performance plot for signals with noise superimposed only on the original waveform 

samples is shown in Appendix E - Figure E.1.) 
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Figure 4.10: The recognition performance plot with different values of amplitude tol-
erance for noise-only signals. Here successful recognition implies the failed rejection of 
noise-induced false waveforms. The step size on the recognition percentage contours is 
1%. 

4.2.4 Performance with different values of Noise Threshold 

SNR 
in dB 

Amplitude 
Tolerance 

Noise 
Threshold 

Scan-Ahead 
Distance 

-5, -2.5,..., 	17.5 ±3 7, 9, ..., 35 5 

Table 4.3: The values of the parameters used to obtain the recognition characteristics 
for different values of noise threshold. 

To examine the effect of enforcing the noise threshold (a variable used in defining 

the minimum waveform length constraint), the parameter values in Table 4.3 were 

used. Figure 4.11 shows the recognition performance plots, with different values of noise 

threshold for signals with noise superimposed on all input signal samples. Figure 4.11(a) 

also illustrates the effect of the minimum segment length constraint: it shows that when 
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Figure 4.11: The recognition performance plots with different values of noise thresh-
old for signals with noise superimposed on all input signal samples. The step size on 
the recognition percentage contours is again 1%. In plot (b) the contours show the 
recognition percentages from 1% to 21%. 



the value of the minimum waveform height (implemented as the sum of tolerance and 

noise threshold) approaches the height of the original waveform, a sharp decline in 

recognition performance is observed. Take the performance at 10 units noise threshold 

for instance, here the sum of noise threshold and tolerance is 10+3=13 which is well 

below the height of the original waveform at 20 to 25 units. As a result the recognition 

performance is little affected by the noise threshold values used. However at a noise 

threshold value of 21, we see that the performance even at high SNR (> 10 dB) begins 

to degrade. This is not surprising since the sum of noise threshold and tolerance is 

21+3=24 which is just below the maximum height of the original waveform. And as the 

tolerance applied in this example was small (only ±3 units) the recognition performance 

for noise thresholds greater than 25 was observed to decay rapidly at high values of 

SNR, for example, at 17.5 dB SNR recognition becomes virtually impossible at noise 

thresholds greater than 26 units. The equivalent decay at low SNR was slightly more 

moderate since at these values of noise threshold the presence of high noise was still 

able to raise portions of authentic waveforms above the minimum waveform height. 
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Figure 4.12: The recognition performance plot with different values of noise threshold 
for noise-only signals. Here successful recognition implies the failed rejection of noise-
induced false waveforms. The step size on the recognition percentage contours is again 
1%. The contours show the recognition percentages from 1% to 33%. 
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Figure 4.12 illustrates the importance of applying the minimum segment length 

constraint that without a sufficiently high magnitude of noise threshold considerable 

erroneous recognition of false waveforms will result. Similarly in a noisy signal which 

contains the original waveform, substantial misdetected recognition would follow (Fig-

ure 4.11(b)). (The performance plot with different noise thresholds with noise superim-

posed only on the original waveform samples is shown in Appendix E - Figure E.2.) 

4.2.5 Performance with different values of Scan-Ahead Distance 

SNR 
in dB 

Amplitude 
Tolerance 

Noise 
Threshold 

Scan-Ahead 
Distance 

-5, -2.5,..., 17.5 ±3 21 1, 2,..., 10, 15, 20, 25 

Table 4.4: The values of the parameters used to obtain the recognition characteristics 
for different values of scan-ahead distance. 
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Figure 4.13: The recognition performance plot with different values of scan-ahead dis-
tance for signals with noise superimposed only on original waveform samples. The step 
size on the recognition percentage contours is again 1%. 

To examine the effect using a different scan-ahead distance value, the parameter 

values in Table 4.4 were used. The recognition performance plot with different values 
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of scan-ahead distance for signals with noise superimposed only on samples of the orig-

inal waveform is shown in Figure 4.13. Without extraneous noise samples present the 

recognition performance seems very much independent of the scan-ahead distance value 

beyond a certain magnitude (which in our example is around 5). 
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Figure 4.14: The recognition performance plots with different values of scan-ahead 
distance for noise-only signals where successful recognition implies the failed rejection 
of noise-induced false waveforms. The contour step size is again 1%. The contours show 
the recognition percentages from 1% to 28%. 

Figure 4.14 shows that for noise-only signals in high noise the provision of abundant 

scan-ahead distance is associated with an increase of failed rejection of false waveforms. 

Figure 4.15 shows the effect of noise which is superimposed on all input signal samples. 

The presence of noise has the following effects: 

1. It distorts the independence towards the variation of scan-ahead distance. Unlike 

Figure 4.13 where above a certain scan-ahead distance the recognition performance 

remained constant, a variation is evident in the performance profile for all values of 

scan-ahead distance in Figure 4.15(a). Nevertheless at large values of scan-ahead 

distance and low SNR this variation is small. 
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Figure 4.15: The recognition performance plots with different values of scan-ahead 
distance for signals with noise superimposed on all input signal samples. The step size 
on the recognition percentage contours is again 1%. 
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2. It enhances the formation of false waveforms. In our example this effect is quite 

pronounced. Figure 4.15(b) shows that, especially for signals contaminated with 

high noise, operating with increased value of scan-ahead distance raises consider-

ably the likelihood of misdetected recognition compared to Figure 4.14. 

4.2.6 Effect of changing rule order of Goto-Next lists 

The parser for deriving the preceding recognition characteristics used the suggested 

modifications (Section 4.1.4) to reduce the operation time. The parsing process (com-

menced from any signal sample) was allowed to terminate as soon as a waveform was 

detected. This avoided the compulsory parsing of all of a production's goto-next rules. 

Likewise, the pursuing of all potential waveform points found at a production was not 

obligatory. One consequence of this compromise is that the order in which a produc-

tion rule's goto-next rules are followed, subjects both the dimension and structure of 

recognised waveform to bias the recognition result. Operating with the entries of the 

success-goto-next list shown in Figure 3.3, thus favours the recognition of waveforms 

with the largest number of segment constituents. 

This subsection experiments with the parsing using three different rule orderings. 

The parameter values used are the same as for acquiring the basic recognition char-

acteristics plots (Table 4.1, page 52). The first test favoured parsing to commence on 

Segment 2. Here the entry of the success-goto-next list for production rule 2 is altered 

to : 23, 3 and then 2 (as opposed to 2, 3 and then 23 shown in Figure 3.3). The 

recognition characteristics plots are shown in Figure 4.16. The second test favoured 

parsing to commence on Segment 3. Here the entry of the success-goto-next list for 

production rule 4 is altered to: 45, 5 and then 4 (as opposed to 4, 5 and then 45 shown 

in Figure 3.3). Lastly, the third test favoured parsing to commence on Segments 2 and 

3. Here the entry of the success-goto-next list for production rule 2 is altered to : 23, 3 

and then 2 and that for production rule 4 is altered to : 45, 5 and then 4. This facili-

tates the earliest commencement for the parsing of Segments 2 and 3. The recognition 

characteristics plots for the second and third tests (Appendix E - Figures E.3 and E.4) 

were almost identical to that of Figure 4.16. 

The corresponding plots between these figures and Figure 4.8, page 53, being almost 

identical indicates that although different rule orders are capable of delivering a bias 

63 



in the dimension of recognised waveforms the effect on the recognition performance is 

small. 
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Figure 4.16: Recognition characteristics plots for when the success-goto-next list for 
production rule 2 is altered to : 23, 3 and then 2. (a) For signals with noise samples 
superimposed on all input signal samples; (b) for signals with noise superimposed on 
the original waveform samples only and (c) for noise alone. 

4.2.7 Effect of parsing all Goto-Next rules 

The recognition characteristics when all of a production's goto-next rules are parsed 

(Appendix E - Figure E.5) were again found to be almost identical to Figure 4.8. The 

need to parse all goto-next rules thus also seems unnecessary. 
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4.2.8 Effect of parsing all potential points 

The recognition characteristics where the parsing process is required to parse all 

potential waveform points found at a production were examined (Appendix E - Fig-

ure E.6). These also showed close similarity with the basic recognition characteristics 

of Figure 4.8. Parsing all potential points thus also appears to have no apparent gain. 

4.2.9 Parsing a reduced set of original waveform samples 

SNR Amplitude Noise Scan-Ahead Number of Original 
in dB Tolerance Threshold Distance Waveform samples 

deleted 
-5, -2.5, ..., 17.5 ±3 21 5 0, 1, ..., 8, 	10, 11 

Table 4.5: The values of the parameters used to obtain the recognition characteristics 
for the parsing of a varied number of original waveform samples. 

Recognition Performance for 
Successful Recognition 
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samples deleted 
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Figure 4.17: The recognition performance plot for different quantity of original waveform 
samples being removed from the input with noise superimposed only on the original 
waveform samples. The performance is found using signals with noise superimposed 
only on original waveform samples. The step size on the recognition percentage contours 
is again 1%. 

The parameter values in Table 4.5 were used to study the parsing of a reduced (or 

an incomplete) set of original waveform samples. To obtain the recognition performance 

plots, the original waveform of the input signal (Figure 4.6(a)) was first modified by 
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Figure 4.18: The recognition performance plots with different quantity of original wave-
form samples being removed. The performance is found using signals with noise su-
perimposed on all input signal samples. The step size on the recognition percentage 
contours is again 1%. In plot (b) the percentage of misdetected recognition increases 
with the decrease in both the SNR and the number of original samples deleted. 
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deleting randomly the specified number of samples. Figure 4.17 shows a continuous 

degradation in performance with the reduction of original waveform samples for the case 

where noise occurs on the pattern samples only. The degradation becomes severe when > 

30% of the samples are deleted as now only the minimum number of samples required for 

correct pattern recognition remains on each segment. Figure 4.18(a) supports this and 

also shows that in high noise there is a small degree of improvement in the recognition 

performance. Both plots show that there is a minimum number of original waveform 

samples which are required to be present in the input. Below this number, recognition 

was shown to be virtually impossible. 

Figure 4.18(b) shows misdetected recognition decreases with the increase in SNR 

and in the number of original waveform samples being deleted. This is expected since 

decreasing the number of pattern samples in the input signal reduces the contribution of 

these samples to the formation of false waveforms. However the reader is reminded that 

the performance is measured in terms of the SNR. Decreasing the number of original 

waveform samples would also reduce the absolute noise power required to achieve the 

same SNR. Subsequently the noise samples would be of lesser magnitude and hence the 

likelihood of misdetected recognition should decrease as well. (The performance plot 

for noise only plot is shown in Appendix E - Figure E.7.) 

4.2.10 Performance with different values of Amplitude Tolerance and 
Noise Threshold 

SNR 
in dB 

Amplitude 
Tolerance 

Noise 
Threshold 

Scan-Ahead 
Distance 

0 ±0, ±1, ..., ±6 16, 17,..., 29 5 

Table 4.6: The values of the parameters used to obtain the recognition characteristics 
with different values of amplitude tolerance and noise threshold. 

The parameter values in Table 4.6 were used to examine the effect of varying ampli-

tude tolerance and noise threshold jointly. The recognition plot for signals with noise 

superimposed only on samples of the original waveform is shown in Figure 4.19. The 

performance plots for signals with noise superimposed on all input signal samples are 

shown in Figure 4.20 and for signals with noise alone in Figure 4.21. 

The results of this particular examination confirm the observations of Sections 4.2.3 

and 4.2.4. In addition Figures 4.19 and 4.20(a) show: 
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Figure 4.19: The recognition performance plot (at 0 dB) with different values of ampli-
tude tolerance and noise threshold for signals with noise superimposed only on original 
waveform samples. The step size on the recognition percentage contours is again 1%. 
The contours show the recognition percentages from 1% to 68%. The 0 dB measurement 
refers to the SNR where noise is superimposed on all input signal samples. 

The recognition performance is improved by increasing amplitude tolerance and 

decreasing noise threshold. 

Provided the noise threshold is below the maximum waveform height (of 25 units) 

an increase in amplitude tolerance gives a greater improvement to the recognition 

performance than by lowering the value of noise threshold, i.e., the recognition 

performance is more sensitive to the variation of amplitude tolerance than is to 

noise threshold. 

In the tolerance range examined, Figure 4.19 shows that the increase in ampli-

tude tolerance yields steady performance improvement. Figure 4.20(a) on the other 

hand, shows the degree of this improvement to gradually reduce. For instance, in Fig-

ure 4.20(a), at a noise threshold of 16, the degree of the improvement in performance 

declines as the tolerance increases from ±3 to ±4, and from ±4 to +5 and declines 

further as tolerance is increased to +6. This effect was observed and discussed in Sec-

tion 4.2.3. 
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Figure 4.20: The recognition performance plots (at 0 dB) with different values of am-
plitude tolerance and noise threshold for signals with noise superimposed on all input 
signal samples. The step size on the recognition percentage contours is again 1%. The 
contours of plot (a) show the recognition percentages from 1% to 77%. 
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Recognition Performance (at 0 dB SNR) for 
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Figure 4.21: The recognition performance plot with different values of amplitude toler-
ance and noise threshold for noise only signals. Here successful recognition implies the 
failed rejection of noise-induced false waveforms. The contour step size is 1%. The 0 dB 
SNR measurement refers to where noise is superimposed on all input signal samples. 

The increase in the misdetected recognition (Figure 4.20(b)) and failed rejection of 

false waveforms (Figure 4.21) with an increase in amplitude tolerance on a decrease in 

noise threshold, is in accordance with the observation made in Sections 4.2.3 and 4.2.4. 

However what is interesting in these two plots is that they show: 

Misdetected recognition and failed rejection of false waveforms largely occur when 

the value of noise threshold applied does not exceed the maximum height of the 

original waveform. 

At high values of amplitude tolerance (> +4 units), the increase in misdetected 

recognition and failed rejection of false waveforms is less sensitive to the increase 

in amplitude tolerance than to the decrease of noise threshold. 
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4.2.11 Conclusion 

Some final observations on the parser's operational characteristics are: 

The measures applied to speed up the parsing process (Section 4.1.4) were shown 

to have no adverse effects on the recognition performance. 

The study of the parsing of a reduced set of original waveform samples (Sec-

tion 4.2.9) indicated that it is possible to further speed up the parsing process 

by deliberately discarding a proportion of the input samples. Although this does 

incur a loss in performance, this loss can be small provided the total number of 

original waveform samples in the input signal is sufficiently large. 

The study on the recognition performance with different values of amplitude tol-

erance and noise threshold (Section 4.2.10) suggests that high recognition perfor-

mance (> 90%) may be achieved at high noise ( 0 dB) by using an appropriate 

combination of these parameter values. Figure 4.22 shows a speculated recognition 

performance profile for a more extensive range of amplitude tolerance and noise 

threshold for the case where the noise is only superimposed on samples of the orig-

inal waveform. Provided the background noise is low (> 0 dB SNR) the region of 

global maximum E would be at values of noise threshold less than the maximum 

original waveform height. The recognition profile for where noise is superimposed 

on all input signal samples is anticipated to be similar to Figure 4.22 except that 

at low noise threshold values the performance would be reduced. Recognition 

should apply the parameters operating at the global maximum. 

To maximise recognition performance some attempts must be made to reduce the 

degree of misdetected recognition. A suggestion for suppressing the formation of 

false waveforms is to modify the structure of the original waveform. For exam-

ple, instead of the original waveform Figure 4.23(a) a modified waveform such as 

Figure 4.23(b) can be transmitted which utilises the parsing parameter - scan-

ahead distance - to (i) stop the samples of the original waveform (at locations 

A and E in Figure 4.23(b)) contributing to the formation of noise-induced false 

waveforms and (ii) assist the structure within the original pattern to be correctly 

parsed (see samples at location C in Figure 4.23(b)). The structures at A and 

E would prevent false waveforms finding constituents from the original waveform 
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samples. The structure at C should encourage the parsing of the second segment 

to terminate and of the last segment to commence. 

Recognition 
Performance 

Amplitude 
Toleranc 

Noise Threshold 

Maximum height of 
Original Waveform 

Figure 4.22: Speculated recognition performance profile for different values of ampli-
tude tolerance and noise threshold for signals with noise superimposed only on original 
waveform samples. 
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Figure 4.23: (a) An original waveform without modification. (b) The waveform modified 
to reduce misdetected recognition. 
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Chapter 5 

Theoretical Analysis of Parser 
Operation 

The theoretical detection performance provided by probability of detection and feasi-

bility of recognition evaluates the recognition of a single pattern waveform and a class (or 

a set) of pattern waveforms respectively. An approximate method to calculate the latter 

approach is used here. This chapter begins by commenting on the effect of quantisation 

using integer representation and the difference between the approaches and showing 

that the former approach is not applicable for the current recognition problem. Next, 

the sample space of the recognition problem; the exact and approximate methods for 

calculating feasibility of recognition and the theoretical analysis are presented. 

5.1 Reasons for and viability of using integer data type 

The feasibility of recognition is evaluated using the integer type for signal sample 

amplitude representation as the solution which uses real (floating point) numbers is 

complicated. Its justification are: (i) the quantisation noise introduced by the integer 

type signal representation may be reduced by using signals with generally high sample 

amplitudes (Appendix F.1); (ii) the magnitude of SNR distortion due to quantisation 

may be tolerably small for appropriate signal power and SNR values (Appendix F.2) and 

more importantly, (iii) although these errors are not negligible, provided the actual APG 

recognition exercise also uses the integer type, it is valid to compare the theoretical and 

the actual recognition performances since they apply the same discrete noise probability 

distribution. (Two corresponding sets of characteristics plots for the parser operating 

with integer and floating point arithmetic are illustrated in Appendix F.2.3.) 
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5.2 Distinction between Probability of Detection and Fea-
sibility of Recognition 

This section outlines the individual application area of the two approaches and shows 

that for our recognition problem the probability of detection approach is unsuitable. 

5.2.1 Application area of Probability of Detection 

Probability of detection evaluates the likelihood of detecting a specific deterministic 

waveform 1  as the combined probability that the sample amplitude of all (or the com-

bination of the various subsets of) the signal samples occurs within a certain tolerance 

band (or range) from the locus of the pattern waveform [146]. Consequently it best 

suits the recognition of deterministic pattern waveforms. 

5.2.2 Application area of Feasibility of Recognition 

Define a generic waveform as a waveform (or a set of possible waveforms) whose 

constituting samples relate to one another under the temporal relationship of the wave-

form pattern. All the non-constituents must be foreign to the temporal relationship 

- i.e., their amplitudes must fall outwith it. A recognised generic waveform therefore 

comprises a list of samples which are explicitly identified as the waveform constituents 2 . 

Since the pattern waveform of our recognition task is generic and not determinis 

tic, probability of detection consequently may not afford the best theoretical analysis 

solution as it in essence addresses the recognition of a different pattern waveform. The 

problems in calculating the probability of recognising a generic waveform include: 

Given a noise probability distribution, a large number of probable sequences of 

signal sample amplitudes (or amplitude sequences for short) may exist with each 

having its own probability of occurrence. 

For each amplitude sequence a huge number of signal sample combinations which 

are capable of supporting the formation of the generic waveform may be found. 

'A deterministic [144], or non-random [145], signal is one about which there is no uncertainty in 
its value before it actually occurs and in almost all cases an explicit mathematical expression can be 
written for it. 

2This is in contrast to a fuzzy set [4] viewpoint where the waveform constituents may comprise all 
the signal samples each being assigned a certain grade of membership. 

74 



3. For different signal sample combinations the total number of ways a generic wave-

form can be recognised may differ. 

To assess the likelihood of recognising a generic pattern waveform, feasibility of 

recognition evaluates the extent of it being recognised in all the possible signal sample 

combinations in all amplitude sequences, taking into account each amplitude sequence's 

own probability of occurrence. On the premise that, for a given amplitude sequence, the 

different recognition outcome is proportional to the success in detecting the waveform 

pattern amongst the signal sample combinations (see Section 5.3 for detail), feasibility 

of recognition would be a better theoretical analysis method. 

5.2.3 Application comparison 

This section demonstrates that feasibility of recognition provides a better recognition 

likelihood assessment of our generic pattern by comparing the theoretical and actual 

APG parser performance using two noise-free signals shown in Figure 5.1. Noise-free 

signal 1 (Figure 5.1(a)) is a 15 sample waveform with samples 0 to 4 resting on Segment 

1; 6 to 8 on Segment 2; 10 to 14 on Segment 3 and with samples 5 and 9 being at 

the waveform's turning points. Noise-free signal 2 (Figure 5.1(b)) is a similar waveform 

except for the absence of samples at the turning points, i.e., at the locations of the 

turning points two zero amplitude samples are inserted in noise-free signal 2 modifying 

it to a 17-sample waveform. 

(a) Noise-free signal 1 
	

(b) Noise-free signal 2 

24 

20 

0 	4 5 	9 10 	14 	
>- 

Sampling instances 

24 
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20 

0 	4 	6 	10 	12 	16 
Sampling instances 

Figure 5.1: The samples of two noise-free signals. 

The results were obtained from the average of 1000 signals for each value of SNR. 

The derivation of the recognition likelihood from probability of detection is described in 

Appendix G. The parser parameters used are shown in Table 5.1. Feasibility of recog- 
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nition, evaluated by the approximate method (Section 5.3.3), applied the parameters 

shown in Table 5.2. 

Amplitude 
Tolerance 

Noise 
Threshold 

Scan-Ahead 
Distance 

±3 18 5 

Table 5.1: Values of APG parser parameters used. 

Amplitude 
Tolerance 

Minimum Waveform Height 
= Noise Threshold + single-sided Amplitude Tolerance 

Scan-Ahead 
Distance 

±3 21 5 

Table 5.2: Parameter values used to calculate approximate feasibility of detection. 

Figure 5.2 compares the APG recognition characteristics of successful and correct 

recognition with the likelihood of successful recognition evaluated according to the two 

approaches showing (i) the APG parser's performance significantly exceeds the probabil-

ity of detection result and (ii) when a noise-free waveform's turning points are displaced 

by the addition of noise samples (in noise-free signal 2) the APG parser performed 

better (i.e., "the recognition curve shifted leftward") but the probability of detection 

predicted the contrary! This strongly suggests that the generic waveform's recognition 

mechanism may not be satisfactorily modelled by probability of detection 3 . 

5.3 Method for calculating Feasibility of Recognition 

The exact method for calculating feasibility of recognition is very computationally 

intensive potentially involving evaluating the generic waveform recognition probability 

for all the possible ways the waveform can be constructed in all the possible signal 

samples combinations for all the possible amplitude sequences which are occasioned by 

the required SNR. To reduce the computational overhead an approximate method uses 

only a given subset of the amplitude sequences. This section describes the sample space 

of the amplitude sequences and the exact and approximate calculation methods. 

'The unsuitability of applying probability of detection corresponds to a short-coming in employing 
parametric models to estimate the error rate of a classifier (Section 3.9 of [25]). A parametric model 
may not reveal characteristics which make the design samples peculiar or unrepresentative. Probability 
of detection, on the other hand, is unable to take into account patterns of variable dimension and aspect 
ratio as to correctly estimate the recognition performance when sample-amplitude tolerance is allowed. 
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Figure 5.2: Comparison between the APG recognition characteristics of successful and 
correct recognition with recognition likelihood of successful recognition evaluated ac-
cording to both feasibility of recognition and probability of detection. Their associated 
noise-free waveforms are shown at the top of the page. 
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5.3.1 Sample space of Amplitude Sequences 

A sample space, in probability theory, means the set of all possible outcomes. The 

sample space of amplitude sequences refers to the set of all possible amplitude sequences. 
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Figure 5.3: (a) The samples of a noise-free signal. (b) An example of the discrete 
amplitude probability distribution of noise. (c) The subsequent discrete amplitude 
probability distribution of the noise-added signal. 

A basic (noise-free) signal may be as shown in Figure 5.3(a). Noisy signals of the de-

sired SNRS are generated by superimposing appropriate Gaussian noise signals onto the 

noise-free signal. Given signal amplitudes are of type integer, each resultant noisy signal 

sample has therefore a likely integer amplitude shift y (about the noise-free value) de-

termined by the discrete Gaussian probability density function (pdf), p(y)discrete,  of the 

noise. Applying quantisation thresholds equidistant from two consecutive quantisation 

levels gives P(Y)discrete  as: 

P(Y)discrete = P{Y < y + 0.5} - P{Y < y - 0.5) 	 (5.1) 

where P{Y < k}, the cumulative distribution function of the corresponding continuous 

W. 



Gaussian pdf, being: 

k 	1 
P{Y <  k} 

= Lm 	
e_(m)2/22dz (5.2) 

with m being the noise-free amplitude of the specific sample; a 2  the variance and a the 

standard deviation of the pdf. Figures 5.3(b) and (c) 4  exemplify the amplitude proba- 

bility distribution of noise and of the subsequent noise-superimposed signal respectively. 

The sample space of amplitude sequences in a noisy signal therefore comprises all 

possible sequences of sample amplitudes each having a probability of occurrence given 

by the product of the individual probability of occurrence of the constituting sample 

amplitudes. The probabilities of occurrence of all amplitude sequences sums to 1. 

5.3.2 Method for calculating Exact Feasibility of Recognition 

The method for calculating the exact feasibility of recognition, Figure 5.4, shows 

that the samples of a noise-free signal (A) when subjected to noise will each acquire a 

discrete amplitude probability distribution profile (B) thus creating a sample space of 

amplitude sequences (C) each carrying a probability of occurrence (J) which is > 0. 

In this thesis, a waveform combination, referring to a combination of signal 

samples specifying a generic waveform's constituents, is legal if it satisfies our pattern 

specification, i.e., the maximum scan-ahead distance for parsing and the minimum req-

uisite number of signal segment samples. (x, x, x-, . . . , X(s_i) )  X()grad=1 

(X a ,Xb,. . .,X(n_l),x n,,. . ., J) grad=O (xp,xq,. . ., X(r_1),Xr,,. . .,7)gra_i exem- 

plifies a waveform combination referring to a three-segment waveform with the segments 

having gradients 1, 0 and -1 where the total number of samples in the combination equals 

the total N in the input signal. Let x 2  in a waveform combination denote that sample 

i is a waveform constituent and denote the contrary. 

All the legal waveform combinations are classified according to whether they repre-

sent an authentic waveform or not (D and E 5 ). For each legal waveform combination 

'Note that for a Gaussian distribution, the probability of occurrence either greater than 3o or less 
than —3i is small. For example, for a distribution with 0 mean and a = 1 the probability greater 
than 3a or less than —3o is 0.00135. The present discussion thereby considers the amplitude range of a 
Gaussian-noise-added sample as ranging effectively from (yo + 3) to (yo - 3o) where yo is the noise-free 
amplitude of a sample. This is what is depicted in Figure 5.3(c). 

'Note the legal waveform combinations shown at D and E are just examples. 
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the likelihood of generic waveform recognition is tested taking into account the pat-

tern's characteristic description, amplitude tolerance and minimum waveform height. 

Recognition is possible if its probability is > 0. The equation calculating the prob-

ability of generic waveform recognition for any given legal waveform combination is 

derived in Appendix H 6 . Subsequently, for each amplitude sequence, four categories 

of recognition results (termed recognition feasibilities) may be obtained: success-

ful recognition of correct (i.e., authentic) waveforms (F); failed recognition of correct 

waveforms (G); failed rejection (i.e., successful recognition) of false waveforms (H) and 

successful rejection (i.e., failed recognition) of false waveforms (I). 

Define partial probabilities of an amplitude sequence as some probabilities as 

sociated with the amplitude sequence multiplied by its probability of occurrence. So 

then by multiplying individually the four categories of recognition feasibilities with the 

probability of occurrence of the originating amplitude sequence (J) the respective par-

tial probabilities (K, L, M, N) may be obtained. Once the partial probabilities for all 

amplitude sequences are obtained, the probability of recognising the generic waveform 

pattern in the input signal is found by summing all the individual partial probabilities 

according to the respective categories of recognition feasibilities. 

5.3.3 Method for calculating Approximate Feasibility of Recognition 

Instead of using the entire sample space of amplitude sequences, the approximate 

method operates with only given instances of noisy input signals. Provided their noise 

component is obtained randomly, the fact that they may be obtained shows them to 

be elements which have high probability of occurrence and whose associated partial 

probabilities have a predominance in that of the entire sample space. Consequently 

faster execution is achieved by simply considering these instances of noisy signals alone. 

However an implementation applying only given instances of singular or unique am-

plitude sequences such that the overall probability of occurrence of the input sequences 

is sufficiently high (e.g., > 0.5) may still require a high number of input signals as with 

a large input signal size or a low SNR. A more practical solution is to specify a total 

number of unique amplitude sequences that may be computed in a reasonable time and 

evaluate their probability of occurrence on the amplitude probability distribution of 

'The derivation is obtained by explaining how the recognition of waveform in parts is calculated. 
Because of its size, in order to avoid causing too much distraction, it is placed in the appendix. 

EIl 



noise defined by the requisite SNR value (assuming a perfectly Gaussian noise profile). 

However, since all the noisy signals are generated with the same random noise generator 

which may not be perfectly Gaussian it may be satisfactory to assign all noisy signals 

the same probability of occurrence. Hence in its final scheme, instead of evaluating the 

actual probability of occurrence of an amplitude sequence at J, the approximate method 

applies 11M where M is the total number of amplitude sequences used at C. 

5.3.4 Output adjustment 

Figure 5.4 shows that the evaluation of feasibility of recognition obtains four cate-

gories of partial probability. Since the successful recognition of correct waveforms and 

the failed rejection of false waveforms constitute recognition and that the latter con-

tributes the sole source of waveform misdetection, the comparison with the parser's 

recognition performance requires output adjustment shown in Figure 5.5. 
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Figure 5.5: Adjustment to enable coherent comparison with parser's operational char-
acteristics. 

In Figure 5.5, E indicates if the partial probability for either the successful recog-

nition of correct waveform A or the failed rejection of false waveform C is greater than 

0 and H indicates the contrary. F and G are the values of A and C respectively if E 

is 1. I is 1 if H is 1. The resultant theoretical percentages of recognition P, Q and R 

associated with any given instance of input amplitude sequence are obtained with J, K 

and L. 
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5.4 Comparison with APG Parser performance 

Despite the enormous computations in evaluating feasibility of recognition, by em-

ploying signals of reduced sampling duration, the comparison with some aspects of the 

basic recognition characteristics and waveform formation mechanisms examined in Sec-

tion 4.2 can be obtained. The parameter values in Table 5.3 are used in all the following 

plots. The test signals, in the following analysis, use the same 7  number of samples as 

the original pattern waveform (Figure 4.7(a), page 52) and 159.78  units signal power. 

This meant that the following analysis of the basic recognition characteristics can only 

investigate the recognition on: (i) signals with noise superimposed only on original 

waveform samples and (ii) noise-only signals (i.e., only the comparison to signals b and 

e of Figure 4.6, page 50, can be provided). 

SNR 
in dB 

Amplitude 
Tolerance 

Minimum Waveform 
Height9  

Scan-Ahead 
Distance 

-5, -2.5,..., 15 ±3 24 5 

Table 5.3: The values used to obtain the theoretical basic recognition characteristics 

5.4.1 Basic Recognition Characteristics Comparison (1): Recognition 
on signals with noise superimposed only on original waveform 
samples 

The noise-free waveform used for obtaining different instances of input amplitude se-

quences is shown in Figure 5.6, as in Figure 5.1(a), page 75. The theoretical recognition 

plot for successful recognition and its corresponding APG recognition performance plot 

(Figure 4.8(b), page 53) are shown in Figure 5.7. Figure 5.7 shows that the plots are 

very close. A marginally superior performance against noise is predicted by the theory. 

7 Note that the adjustment shown in Figure 5.5 for modifying A and C can also be applied to B and 
D. This will enable the sources of failed recognition to be identified. However unless longer duration 
test signals are used this information can not be obtained. 

8 Since the noise-free signal shown in Figure 4.7(a) has a signal power of 159.7 units, the same signal 
power is needed in order to acquire the same factor to scale the output of the noise generator in order 
to obtain results which correctly correspond to the APG counterpart. 

9The term minimum waveform height is introduced in Section 11.6 of Appendix H. It is the sum of 
the single-sided amplitude tolerance plus noise threshold. So, given amplitude tolerance of ±3 units, 
minimum waveform height of 24 units would correspond to 21 units of noise threshold (cf. Table 4.1, 
page 52). 
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Figure 5.6: The noise-free waveform used for conducting theoretical likelihood of recog-
nition to provide a comparison with the performance of the APG parser operating on 
signals with noise superimposed only on samples of the original waveform. 
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Figure 5.7: The theoretical and the actual APG parser recognition characteristic plots of 
successful recognition for signals with noise superimposed on original waveform samples. 
The SNR refers to where the input signal contains extra 35 non-original waveform 
samples, i.e., in deriving the theoretical plot, the signal power of the noise-free waveform 
is assumed to be 159.7 units. 



5.4.2 Basic Recognition Characteristics Comparison (2): Recognition 
on signals with noise-only signals 
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Figure 5.8: The noise-free signal used for calculating the theoretical recognition likeli-
hood to provide comparison to the performance of the APG parser operating on signals 
with noise only in the input. 

The noise-free waveform used for obtaining different instances of input amplitude 

sequences is shown in Figure 5.8. The theoretical recognition plot for failed recognition 

(i.e., successful rejection) of false noise-induced waveforms and its corresponding APG 

recognition performance plot (Figure 4.8(c), page 53) are shown in Figure 5.9. Again 

a close correspondence between the plots is observed. The theory predicts a better 

rejection of false waveforms. However one should bear in mind that the APC recognition 

plot is obtained with input signals of longer sampling duration so that this may have 

an influence on the resultant theoretical plot. 

5.4.3 Waveform Formation Mechanism Demonstration (1): False wave-
form formation assisted by original waveform samples 

The two noise-free waveforms Figures 5.10 and 5.11, contain individually two seg-

ments of the original waveform (Figure 5.6), are used to obtain the input amplitude 

sequences. Therefore subsequent waveform recognition would be attributed solely to 

the formation of false waveforms assisted by the presence of the front segments (Fig-

ures 5.10) and of the rear segments (Figure 5.11) of the original waveform. 

The resultant theoretical recognition plots for the successful recognition (i.e., failed 

rejection) of false noise-induced waveforms are shown in Figure 5.12. In contrast to 

Figure 5.9, which shows that virtually no recognition is possible for a noise signal, 
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Figure 5.9: The theoretical and the actual APG parser recognition characteristic plots 
of failed recognition (i.e., successful rejection) of false waveforms for noise signal only 
in the input. The SNR is applied using signal power of 159.7 units. 
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Figure 5.10: Noise-free waveform comprising the first two original waveform segments. 

of 



Noise-free Signal 
Key: 

A noise-free 
I 	signal sample 

IrTTTrnTFTC..> 
0 	4 5 	9 10 	14 

Sampling Instances 

Figure 5.11: Noise-free waveform comprising the last two original waveform segments. 
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Figure 5.12: Theoretical plots showing the successful recognition (i.e., failed rejection) 
of false noise-induced waveforms aided by the presence of the original waveform samples. 
Again the SNR applied assumed the signal power of the noise-free waveform is 159.7 
units. 
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Figure 5.12 shows a significant rise in the recognition likelihood especially at high SNR 

values. These plots confirmed the observation made by all the operational characteristics 

examinations in Section 4.2 that the presence of the original samples greatly assists the 

formation of false waveforms 10 . 

5.4.4 Waveform Formation Mechanism Demonstration (2) : Authen-
tic waveform formation assisted by noise samples adjacent to 
original waveform samples 

The noise-free waveform used (Figure 5.13) included one non-original-waveform sam-

ple at sampling instance 0. The theoretical recognition plots of successful recognition for 

Figures 5.13 and 5.6, shown in Figure 5.14, show that the presence of (even one) noise 

sample adjacent to samples of the original waveform assisted the formation of authentic 

waveforms. This waveform formation mechanism was also observed in the Section 4.2's 

operational characteristics examination. 

Noise-free Signal 
Key: 

A noise-free 
I 	signal sample 

IT ftT1JflJIT> 
Sampling Instances 

Figure 5.13: Noise-free waveform with one non-original-waveform sample adjacent to 
the original waveform. 

10 llowever, one should bear in mind that waveform recognition is possible for a reduced set of original 
waveform samples (Section 4.2.9). Hence the recognition likelihood shown in Figure 5.12 is attributed, 
to probably a large extent, to the samples of the original waveform alone. 
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Figure 5.14: Theoretical recognition result showing the presence of noise adjacent to 
original waveform samples helps the formation of an authentic waveform. The plots show 
the successful recognition of authentic waveforms. Again the SNR applied assumed that 
the signal power of the noise-free waveform is 159.7 units. 

5.4.5 Theoretical Performance with different Amplitude Tolerances 

The parameter values in Table 5.4 were used. The theoretical performance plot for 

successful recognition (Figure 5.15) corresponds to the APG performance plot shown 

in Figure E.1, page 159. Note that the SNR range examined in the theoretical plot is 

smaller. Similarity between the plots is observed. Again the theoretical plot exhibits 

generally a marginally better performance against noise (which explains the difference 

in performance at low noise when the amplitude tolerance increases). 

5.4.6 Theoretical Performance with different Noise Threshold values 

The parser parameter noise threshold is examined here in terms of minimum wave- 

form height which is the sum of noise threshold and (single-sided) amplitude tolerance. 

The parameter values in Table 5.5 were used. The theoretical performance plot for 

successful recognition (Figure 5.16) corresponds to the APG performance plot shown 

in Figure E.2, page 159. Note again that the SNR examined in the theoretical plot has 
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SNR 
in dB 

Amplitude 
Tolerance 

Minimum Waveform 
Height 

Scan-Ahead 
Distance 

-5, -2.5, ..., 15 ±0 21 5 
±1 22  
±2 23  
±3 24 
±4 25  
±5 26  

Table 5.4: The parameters used to obtain the theoretical recognition characteristics for 
different values of amplitude tolerance. The table shows that for each value of amplitude 
tolerance a different value of minimum waveform height is used because the latter is 
defined as the sum of the former plus noise threshold (of 21 units). 

Theoretical Performance for 
Successful Recognition 
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Figure 5.15: The theoretical performance plot with different amplitude tolerances. The 
contours, at 1% step size, show the recognition percentages from 1% to 99%. 
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a smaller range. Similarity between the plots is observed. Again the theoretical plot 

shows a marginally superior performance. 

SNR 
in dB 

Amplitude 
Tolerance 

Minimum Waveform 
Height 

Scan-Ahead 
Distance 

-5, -2.5,..., 	15 ±3 10, 12,..., 38 5 

Table 5.5: The parameters used to obtain the theoretical recognition characteristics for 
different values of noise threshold. 

Theoretical Performance for 
Successful Recognition 
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Figure 5.16: The theoretical recognition performance plot with different values of noise 
threshold. The contours show the recognition percentages from 1% to 99%. The contour 
step size is 1%. 
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5.4.7 Theoretical Performance with different Scan-Ahead Distances 

SNR 
in dB 

Amplitude 
Tolerance 

Minimum Waveform 
Height 

Scan-Ahead 
Distance 

-5,-2.5,...,15 ±3 24 1,2,...,5,7,8,9,10,15,20,25 

Table 5.6: The values of the parameters used to obtain the theoretical recognition 
characteristics for different values of scan-ahead distance. 

Theoretical Performance for 
Successful Recognition 
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Figure 5.17: The theoretical recognition performance plot with different values of scan-
ahead distance. The step size on the recognition percentage contours is again 1%. 

The parameter values in Table 5.6 were used. The theoretical performance plot for 

successful recognition (Figure 5.17) corresponds to the APC performance plot shown 

in Figure 4.13, page 60. Note again that the SNR examined in the theoretical plot has 

a shorter range. Similarity between the plots is observed. Again the theoretical plot 

shows a better performance against noise. 
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5.5 Conclusion 

The theoretical analysis shows similar performance curves to the practical APG recog-

niser with marginally superior performance in the recognition accuracy. The theoretical 

analysis also verified some waveform formation mechanisms. 
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Chapter 6 

Improved Waveform 
Approximation Models 

This chapter describes the provision of a variable waveform-deviation tolerance for 

improving waveform approximation patterns or models' by allowing waveforms to de-

viate marginally from their characteristic descriptions in some orderly manner in order 

to achieve a better modelling of more realistic patterns. Waveform-deviation tolerance 

for linear envelope waveform models, similar to those discussed previously in this thesis, 

is implemented via a segment-gradient tolerance, Section 6.1. The case for quadratic 

models is described in Section 6.2. 

6.1 Improved Linear Models 

This section describes the provision of a linear waveform-deviation tolerance to im-

prove the previous parser system. 

6.1.1 Recognition Task Definition 

The recognition task of Section 3.2.1 is re-attempted, incorporating a + 9° tolerance 

onto the specified nominal value of segment gradients, i.e., the solution must recognise 

a three-segment waveform where the segments are of gradients: 450 ± 90, 0' + 9° and 

_450 ± 90, whilst maintaining + tol units sample-amplitude tolerance. 

'The term models is used instead of patterns in a number of places in this chapter to emphasis that 
the pattern waveforms used are approximations to actual waveforms. 
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6.1.2 Parser Design 

The following (Version 5) solution, Appendix K, differs the Version 3 and 4 parsers 

described in Section 3.4 in that it has a much more complex way of implementing wave-

form distribution boundaries 2 . To provide segment-gradient tolerance requires monitor-

ing waveform distribution boundaries which are neither linear nor parallel but divergent. 

Each boundary is described by a set of consecutive linear line segments which are defined 

by their end points called the delimiting (turning) points. The final line segments from 

both the upper and lower boundaries are extrapolated to locate following waveform-

contributing samples. These boundaries are re-evaluated using two further delimiting 

points which record the progressive lowest line of maximum gradient and highest line 

of minimum gradient in the segment. The design is detailed in Appendix I. 

6.1.3 Pattern Recognition Demonstration 

Four examples are provided here. The first three demonstrate the recognition of a 

waveform with linear segments. The last involves a waveform with curved segments. 

Example 6.1: Recognition of a waveform with straight segments allowing a 

small amplitude tolerance. 

This example illustrates the ability to recognise a gradient-distorted three-segment 

waveform. The precise sample amplitudes of the input waveform, Figure 6.1(a), 

are listed in Table 6.1. Since these waveform segments incline at 550, 10 0  and 

_350 slopes, a segment-gradient tolerance of no less than ±10° deviation from 

the nominal values is required. Although no amplitude distortion is imposed on 

the input samples, a small amplitude tolerance is required to overcome precision 

problems related to the floating-point data representation. The parser parameters 

used are listed in Table 6.2. 

The recognised waveform samples and the interpolation of the delimiting points 

on the segment boundaries are shown in Figures 6.1(b), (c) and (d). The plots 

of "seg.1_upper", "seg_iJower", "seg_2_upper", etc., show the interpolations 

of the resultant delimitating points on the upper and lower waveform distribution 

boundaries of the indicated waveform segments. The complete plot of a waveform 

2 The original implementation of waveform distribution boundaries is described in Section 3.4.2. 
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Figure 6.1: Recognition of a waveform with straight segments applying a small am-
plitude tolerance. (a) shows the input signal. (b), (c) and (d) show the samples of 
the recognised waveform and the delimiting points (and their interpolations) on the 
resultant segment boundaries for Segments 1, 2 and 3 respectively. 

Segment 1 Segment 2 Segment 3 
Index Amplitude Index Amplitude Index Amplitude 

6 3 13 11.745215 17 12.4505229 
7 4.428148 16 12.2741959 19 11.0501078 
8 5.856296 17 12.4505229 20 10.3499003 
10 8.712592 22 8.9494852 
11 10.14074  

Table 6.1: The sample amplitudes of the input waveform shown in Figure 6.1(a). Note 
that sample 17 is counted as a part of both Segments 2 and 3. 

Amplitude 
Tolerance 

Noise 
Threshold 

Scan-Ahead 
Distance 

Segment- Gradient 
Tolerance 

±0.0001 0 3 ±10 0  

Table 6.2: The parser parameters applied. 
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segment's boundary requires extrapolating its end delimiting points. The upper 

and lower boundaries are very close together because the amplitude tolerance 

applied in this example is small. Figures 6.1(b) and (d) also show that each 

segment boundary's delimiting points were situated near the ends of the segments. 

Example 6.2: Recognition of a waveform with straight segments allowing a 

moderate amplitude tolerance. 

Amplitude 
Tolerance 

Noise 
Threshold 

Scan-Ahead 
Distance 

Segment-Gradient 
Tolerance 

r 	±3 0 3 ±10° 

Table 6.3: The parser parameters applied. 

This example illustrates the combined effect of allowing amplitude and segment-

gradient tolerances using the Figure 6.2(a) test waveform (the same as Figure 6.1(a)) 

and allowing a segment-gradient tolerance of ±100  and amplitude tolerance of ±3 

units. The parser parameters used are listed in Table 6.3. The plots "seg_1_a_fl", 

"seg2a_f1" and "seg_3_a_fl" show the location of the additional delimiting 

points on the upper boundary of Segments 1, 2 and 3 respectively which when 

extrapolated with the second delimiting point of the associated segment bound-

ary describe the highest line of minimum gradient in that segment. Similarly the 

plots of "seg_1_b_rl", "seg_2_br1" and "seg_3_b.rl" describe the lowest line of 

maximum gradient in segments 1, 2 and 3 respectively. Figures 6.2(b), (c) and (d) 

illustrate that by allowing both amplitude and segment-gradient tolerances the 

resultant upper and lower waveform distribution boundaries for each waveform 

segment will not necessarily be parallel nor will they individually be linear. 

Example 6.3: Recognition of a waveform with straight segments contami-

nated with noise. 

This example demonstrates the ability to extract a gradient-distorted waveform 

from a noisy signal. The input signal Figure 6.3(a), at -0.92 dB SNR, is a noise 

contaminated version of Figure 6.2(a). The parser parameters used are listed in 

Table 6.4. Figure 6.3(b), (c) and (d) show the samples of the recognised waveform; 

the interpolation of the delimiting points on the resultant segment boundaries 

and the original noise-free waveform pattern. This example shows that although 
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Figure 6.2: Recognition of a waveform with straight segments applying a moderate 
amplitude tolerance. (a) shows the input signal. (b), (c) and (d) show the samples 
of the recognised waveform and the delimiting points (and their interpolations) on the 
resultant segment boundaries for Segments 1, 2 and 3 respectively. 

Amplitude 

I 	Tolerance 
Noise 

Threshold 
Scan-Ahead 

Distance 
Segment-Gradient 

Tolerance 

L ±4 14 3 ±100 

Table 6.4: The parser parameters applied. 



gradient-distorted waveform may be recovered the shape of the recognised wave-

form can nevertheless be significantly distorted. 
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Figure 6.3: Recognition of a waveform with straight segments contaminated with noise. 
(a) shows the input signal. (b), (c) and (d) show the samples of the recognised waveform 
and the delimiting points (and their interpolations) on the resultant segment boundaries 
for Segments 1, 2 and 3 respectively. The original noise-free waveform pattern is also 
shown in these plots. 

Example 6.4: Recognition of a waveform with curved segments. 

This example demonstrates the application of segment-gradient tolerance to detect 

contributing samples of approximately linear waveform segments. The same test 

waveform used is shown in Figures 6.4(a) and 6.5(a). The operational parameters 

used are listed in Table 6.5. The samples of the recognised waveform and the 

interpolation of the delimiting points on the resultant segment boundaries shown 

in Figures 6.4(b), (c) and (d) represent the case where no segment-gradient toler-

ance is applied. Figure 6.4(e) shows the resultant segment boundaries. Since no 
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Figure 6.4: Recognition of a waveform with curved segments using no segment-gradient 
tolerance. (a) shows the input signal. (b), (c) and (d) show the samples of the recognised 
waveform and the delimiting points (and their interpolations) on the resultant segment 
boundaries for Segments 1, 2 and 3 respectively. (e) shows final extrapolated top and 
bottom boundaries of the recognised waveform. 
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Figure 6.5: Recognition of a waveform with curved segments using ±100  segment-
gradient tolerance. (a) shows the input signal. (b), (c) and (d) show the samples of 
the recognised waveform and the delimiting points (and their interpolations) on the 
resultant segment boundaries for Segments 1, 2 and 3 respectively. 

Amplitude 
Tolerance 

Noise 
Threshold 

Scan-Ahead 
Distance 

±3 0 3 

Table 6.5: The parser parameters applied. 
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segment-gradient tolerance is applied the parser consequently search for samples 

which best befitted the nominal segment gradients. Thus samples 11, 24, 27 and 

28 which deviate most significantly from the nominal-gradient segments are missed 

out. The plots shown in Figures 6.5(b), (c) and (d) cover the case where +100 

segment-gradient tolerance is employed. By allowing segment-gradient tolerance 

the 'best' segment gradients are applied to accommodate the majority of the input 

waveform samples. Consequently the waveform identified comprises more samples 

of the original signal indicating a better "tracking" of the waveform pattern hence 

a better approximation to curved waveform segments. The recognised waveform 

comprises samples {0r5,8,1012,14} in Segment 1; {14,15,17'-19} in Segment 2 

and {19,21,23,24,27t.29} in Segment 3. 

6.2 Improved Quadratic Models 

This section considers the provision of waveform-deviation tolerance for quadratic 

waveform models as means of approximating curved waveform segments. 

6.2.1 Types of Deviation Tolerance 

Deviations may be divided into two categories as illustrated in Figure 6.6. 

Key: 

J Basic waveform 
model 

J Examples of 
actual waveforms 

Maximum deviation 
envelope 

Figure 6.6: Two categories of waveform deviation. (a) illustrates the first category 
where only the envelopes of maximum deviation are known. (b) illustrates the second 
category where the deviation of the actual waveforms from the waveform model may be 
approximated by simple mathematical functions. 

In the first category, no apparent structural description exists other than the en-

velopes which describe the maximum deviation of the actual waveforms from the wave- 
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form models (Figure 6.6(a)). The minimum recognition requirement is for a waveform 

to be found within these envelopes. The provision of sample-amplitude tolerance is a 

special case when the deviation envelopes define the amplitude tolerance. In general 

deviation tolerance for this category may be provided by (i) treating the recognition 

task as the problem of providing sample-amplitude tolerance to detect the presence of 

plausible waveforms (i.e., applying the maximum required amplitude deviation as the 

required tolerance) and then (ii) testing if the recognised waveforms falls within the 

deviation envelopes. 

In the second category, the structural description of the actual waveforms is available 

(Figure 6.6(b)). The provision of segment-gradient tolerance (Section 6.1) is an exam-

ple of this category. However the given solution, of monitoring waveform distribution 

boundaries, may not be readily extended to quadratic models because: 

For quadratic (and some other non-linear) waveform models, the distribution of 

the set of tolerated waveforms may not be confined between the highest and the 

lowest acceptable waveforms. For example, in between t j  and t2  in Figure 6.7 an 

"intermediate" waveform wi is shown to lie outside the upper and lower waveform 

distribution boundaries w and Wi. 

www 
Ii 	U 

tj t2 	Sampling Instances 

Figure 6.7: Illustrates how, within a set of acceptable waveforms, an intermediate wave-
form wi may exist partially outside the highest and lowest waveforms. 

As will be seen later, unlike in linear waveform models, a set of possible waveforms 

may be distributed in isolated groups. Hence the whole set of acceptable wave-

forms cannot be described by a single set of waveform distribution boundaries. 

- 
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6.2.2 Recognition Task Definition 

The following parser design aims to enable the provision of waveform-deviation tol-

erance for quadratic models and considers a quadratic model of deviation. The main 

challenge is how to monitor the set of all waveforms which conform to a variety of 

quadratic waveform models whilst providing sample-amplitude tolerance. Note that 

the issue on the inference of models is not addressed here. 

6.2.3 Parser Design 

The following (Version 6) solution, Appendix K, differs from the Version 5 parser 

(Section 6.1.2) in that instead of employing waveform distribution boundaries, the mon-

itoring of the entire set of acceptable waveforms is accomplished using representative 

parameters. These parameters are implemented as ranges of values, hm , on the origi-

nating deviation-tolerated waveform models with each value correspond to one unique 

tolerated waveform for a given value of m (see below). The waveform models are given 

by 

Y = ax 2  + bx + c + m(px 2  + qx + r) 

where a, b, c, p, q and r are constants and the variable m defines the acceptable deviation 

range. The initial range of the hm  is derived by mapping the tolerated amplitude of the 

first waveform sample onto the originating models. Subsequent waveform-contributing 

samples are located by means of projecting this initial range along these models. Detail 

of the parser design and a full description of hm  are given in Appendix J. 

6.2.4 Pattern Recognition Demonstration 

The following three examples illustrate aspects related to the recognition of deviation-

tolerated patterns. The pattern 3  is modelled by the following two consecutive quadratic 

waveforms segments: y = 2x 2  - lOx + 0 and y = —x 2  + 8x  + 20 with their respective 

models of deviation given by: y = mi (x 2  + x  + 1) and y = m2 (—x 2  + x + 1). 

3 Note that the variable x, in generating examples of these waveforms, used the integer type repre-
sentation resulting in the (floating-point) values of y being distorted with quantisation. 
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Example 6.5: Comparison between the recognition results with and without 

the provision of waveform-deviation tolerance. 

When deviation tolerance is allowed the result of recognition is dependent on the 

resolutions used for m and h, as illustrated by Figure 6.8. 
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Figure 6.8: Recognition results without and with the provision of waveform-deviation 
tolerance. (a) Recognised waveforms with no deviation tolerance allowed. (b) Recog-
nised waveforms with deviation tolerance. 

Three plots are shown in Figure 6.8(a): 

A noise-free input waveform (input_w) comprised of seventeen samples with 

the first seven samples from 15 to 21 derived from y = 2x 2  - lOx +0 and the 

remainder upto sample 31 from y = —x 2  + 8x + 20. 

The recognised waveform (small_tol_outp) using no waveform-deviation tol-

erance (i.e., setting in to 0) and a small amount (+0.0000001 units) of am-

plitude tolerance. 

The recognised waveform (large.tol_outp) using no waveform-deviation tol-

erance and a large amount (+5 units) of amplitude tolerance. 

These plots show that where waveform-deviation tolerance was not applied almost 

all samples of the original waveform were recovered in the recognised waveforms 

(large..tol_outp). 

Figure 6.8(b) shows three different plots: 

1. A noise-free input waveform (inputw) comprised twenty-four samples with 

the first seven samples from 15 to 21 derived from y = 2x 2 -10x+0-0.5(x 2 + 
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x+1) and the remainder up to sample 38 from y = —x 2 +8x+20-0.4(—x 2 + 
X + 1). 

The recognised waveform (small_tol_outp) using waveform-deviation tol-

erance (i.e., applying values of m from f-0.5,-0.4,...,0.5}) and a small 

amount (±0.0000001 units) of amplitude tolerance. 

The recognised waveform (large_tol_outp) using the above waveform-deviation 

tolerance and a large amount (±5 units) of amplitude tolerance. 

Five values of hm  were used. The quantity of the original waveform samples 

recovered in the recognised waveforms may vary because the recovery is dependent 

on whether the precise pattern description of the waveform will be examined by 

the parser which in turn depends on the choice of the resolutions for m and hm . 

The large_tol_outp plot of Figure 6.8(b) illustrates that with a large amplitude 

tolerance "unsuitable" choice of resolution for m and hm  could result in samples 

of the original waveforms not being recognised. 

Example 6.6: Recognition of deviation-tolerated waveforms. 

To demonstrate the provision of waveform-deviation tolerance a number of differ-

ent input waveforms as shown in Figures 6.9(a) and (b) were used. The wave-

forms shown in Figure 6.9(a) were generated from sample 15 using firstly y = 

2x 2  - lOx + 0 + mi(x2  + x + 1) and then changing to y = —x 2  +8x +20. The values 

of m 1  applied and the length of the first waveform segment are shown in Table 6.6. 

The waveforms shown in Figure 6.9(b) were generated from sample 15 using firstly 

y = 2x 2  - lOx + 0 and then changing to y = —x 2  + 8x + 20 + M2 
(_X2  + x + 1). 

The values of m2  applied and the length of the first waveform segment are shown 

in Table 6.7. 

Reference code wi w2 w3 I w4 w5 w6 
Values of m 1  -0.5 1 -0.6 -0.7 -0.5 -0.5 -0.1 

Total samples in the first segment 7 10 12 8 6 7 

Table 6.6: Details of waveform parameters (i). 
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Table 6.7: Details of waveform parameters (ii). 
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Figure 6.9: Illustrating the recognition of deviation-tolerated waveforms. 

Figures 6.9(c) and (d) show the plots of the recognised waveforms. The recognition 

applied waveform-deviation tolerance (using values of m taken from {-1, —0.999, 

1}) and a small amount of amplitude tolerance (of +0.0000001 units). The 

resolution for hm  of 30 divisions was used. The results demonstrated the wide vari-

ety of waveforms which can be captured with the provision of waveform-deviation 

tolerance. 

Example 6.7: Comparison with a matched filter. 
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Figure 6.10 compares a matched filter [23] with the parser. The matched filter 

performs the convolution of the input data with the stored weights which were 

coded in advance with the noise-free waveform (Figure 6.10(a)) which comprises 

seventeen samples with the first eight samples derived from y - 2x 2  - lOx + 0 and 

the remainder from y = —x 2 +8x+20. The parser operates using a minimum seg-

ment length of 6 time units. Note the parser output are shown in Figures 6.10(a), 

(c), (e) and (g) by the linear interpolations between the waveform samples and 

not by the actual recognised waveforms. The output of the matched filter using 

the noise-free waveform of Figure 6.10(a) as input is shown in Figure 6.10(b) on 

a compressed time scale. The recognition output from the APG parser applying 

±0.0000001 units of amplitude tolerance is shown in Figure 6.10(a). 

Figure 6.10(c) shows an irregularly sampled version of the waveform shown in 

Figure 6.10(a). The output from the matched filter to the waveform is shown in 

Figure 6.10(d). The output from the parser shown in Figure 6.10(c) is obtained by 

applying 3 units scan-ahead distance and +0.0000001 units amplitude tolerance. 

Figure 6.10(e) shows an irregularly sampled input waveform which is derived from 

the same basic model as the noise-free waveform of Figure 6.10(a) but with the 

models being distorted into y = 2x 2 -10x+0-0.98(x 2 +x+1) and  = —x 2 +8x+ 

20+0.8 (_X2 + x  + 1) respectively. The output from the matched filter is shown 

in Figure 6.10(f). Figure 6.10(e) shows the output from the parser which applied: 

5 units scan-ahead distance; +0.0000001 units amplitude tolerance; a waveform-

deviation tolerance using values of m from 1-1, —0.98,..., 1} and resolution for 

hm  of 3 divisions. 

The input waveform shown in Figure 6.10(g) is the Figure 6.10(e) input waveform 

imposed with noise giving a SNR of 0.55 dB. The output from the matched filter 

is shown in Figure 6.10(h). The output from the parser shown in Figure 6.10(g) 

is obtained using: 5 units scan-ahead distance; ±5 units amplitude tolerance; 

a waveform-deviation tolerance using values of m from j-1,-0.98,...,1j and 

resolution for hm  of 5 divisions. 

As expected the performance of the matched filter, as well as the parser, is af-

fected by waveform deviation and noise. The parser's ability to correctly identify 

the original waveform's sampled data points is dependent on the choice of the 

resolutions for m and hm . Although the matched filter's detection response is sig- 
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nificantly reduced by the reduction of the original waveform's sampled data points 

present in the input signal, Figure 6.10 showed that the waveform was correctly 

identified by the maximum peak at around 50 units of convolution time shift. A 

more critical performance comparison of the parser with the matched filter de-

mands at least a further examination of the recognition response for a noise-only 

input signal and obtaining recognition responses at various levels of both noise 

and waveform deviation. Figures 6.10(d), (f) and (h) demonstrated some of the 

already mentioned problems associated with the FIR or matched filter [24] (see 

footnote on Page 39). In addition they illustrate some of the difficulties in select-

ing an optimum threshold value for determining the existence of the target feature 

or pattern: (i) the maximum filter output may be severely reduced in magnitude 

due to noise and an irregularly-sampled waveform constitution and (ii) the result 

of the convolution may give large false outputs in regions close to the position of 

correct recognition. 

6.3 Discussion 

This chapter provided two APG solutions to achieve waveform-deviation tolerance to 

improve the linear and quadratic waveform approximation models. Recognition demon-

stration for each of the solutions was also given. 

Compared with the (standard) Hough transform technique [23] the Version 5 and 6 

parsers offer a line/curve detection method which is expected to be less sensitive to the 

effect of input sample quantisation and correlated noise 4 . However, the performance 

of both the transform and the parser techniques are affected by extraneous noise and 

incomplete pattern data. 

The Version 5 and 6 parsers may be adopted to perform a number of tasks in 2-D 

scene analysis [25] operating on a set of Cartesian coordinates instead of sampled data 

points. In contrast to analytical solutions such as minimum-squared-error (MSE) 5  and 

"Here correlated noise refers to the effect caused by the presence of multiple features in the input 
data. Through the Hough transform each feature derives an associated distribution in the resulting 
transform space. Overlapping distributions due to the presences of multiple features may distort the 
heights peaks representing real features and give rise to false peaks. 

'The MSE line fitting method finds a single line which best fits a segment of a figure such that the 
sum of the squares of the vertical distances from each segment point to the line is the minimum. 
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eigenvector fits' the parser solution can perform the task of line fitting allowing a set 

of best fit lines to be located and distant noise points to be rejected as 'outliners'. The 

Version 5 and 6 parsers may also be adopted to perform the task of line segmentation 7  

and contour following 8 . 

The Version 6 solution, in addition, illustrates the possibility of devising an APG 

solution to a "multi-variable" problem. An example is the problem of inter-symbol 

interference caused by multi-path propagation in spread spectrum applications [148]. 

The mobile radio channel causes transmitted data to be dispersed in time and frequency 

resulting in a series of impulses to be received each at a different time and with its own 

phase and amplitude. Provided the approximate channel impulse response is known, and 

that it remains fairly constant, it may be possible to decode the received signal from 

the time-domain information. The following is a simplified description of a possible 

algorithm: 

Declare an array of n variables to hold the conjectured values of the transmitted 

data signal covering the length of the delay spread. 

Calculate (at an APG production rule) the expected received signal amplitude of 

the set of conjectured values by summing the product of the values of the variables 

with the channel impulse response. 

Compare the hypothetical and the actual received signal amplitudes. If the com-

parison is poor then back-track and try with different hypothetical values. Oth-

erwise update the variable values and goto Step 2 (above) to test with the next 

recieved sampled data. 

6The eigenvector line fitting method defines a 'best fit' line as one which minimises the sum of the 
squares of the perpendicular distances from the points to the line. Like the MSE method only one single 
line is returned. 

7 Line segmentation is the problem of partitioning a figure into sub-sets of, e.g., linear segments. 
'Contour following is a process of extracting the outline of a pictorial figure. One prerequisite for 

successful contour following is that no spurious gaps should occur. The parser solution can alleviate the 
problem caused by the presence of spurious gaps since it uses a scan-ahead mechanism for nominating 
next points for parsing thus it may allow an 'over-detailed' outline to be smoothed out. 
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Chapter 7 

Conclusion 

7.1 Achievements 

The aims of this thesis were to 

enhance the Version 1 parser (Section 3.5) as its fundamental parsing criteria were 

unable to correctly provide a sample-amplitude tolerance capability which permits 

waveforms with missing turning-points to be adequately recognised and eliminates 

the parsing of noise-induced false waveforms and 

quantitatively assess the noise tolerance capacity of the developed APG parser. 

These were achieved by addressing the following issues: 

1. Parser Design. To enable production core-functions to effectively nominate 

waveform-contributing samples the strategy subsequently devised monitored both 

the distribution of all possible pattern waveforms and its variation whenever new 

samples are accepted. This provided the desired sample-amplitude tolerance and 

allowed the set of plausible waveforms to be correctly identified. 

To improve the recognition accuracy additional production rules were constructed 

to correctly recognise patterns with missing key turning-points. 

The provision of sample-amplitude tolerance increased the formation of noise- 

induced false waveforms. With the recognition constraint being deliberately mm- 
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imised and the pattern being generic in both its dimension and aspect-ratio it 

was not possible to judge the merit or accuracy of a recognised waveform 1 : some 

additional assumptions were required. The subsequent assumption that the noise-

free pattern waveform had to be above a certain height did not seriously restrict 

the generic nature of the recognition task and made the task more realistic. This 

noise threshold (or the minimum noise-free waveform height), implemented as the 

minimum segment length constraint, allowed the parsing of noise-attributed false 

waveforms to be rapidly rejected 2. 

The correct operation of the resultant parser was demonstrated in Section 4.1. The 

provision of waveform-deviation tolerance (for both linear and quadratic models) 

was addressed in Chapter 6. 

Operational and Recognition Characteristics Acquisition. Because of the 

lengthy run time required, a number of restrictions (such as on the length of 

test signals) were imposed. The acquisition of the operational and recognition 

characteristics profiles, Section 4.2, is considered a major contribution of this 

thesis. These characteristics revealed (i) the recognition response for different 

types of input signal and (ii) the influence on the recognition performance from the 

various operational parameters and factors. In addition, based on the evidence of 

these characteristics this thesis was able to conjecture (i) the relationship between 

the parsing parameters with the formation of waveforms and (ii) the interactive 

nature which exists between the formation of genuine and false waveforms. These 

insights subsequently enabled a speculated recognition performance profile and a 

waveform design to suppress the formation of false waveforms to be obtained. 

Theoretical Recognition Analysis. A further hurdle was to calculate the 

theoretical recognition accuracy (Chapter 5) taking into account (i) the generic 

pattern structure and (ii) the provision of sample-amplitude tolerance. The faster 

approximate solution applied simplified the calculation of feasibility of recognition 

but required the integer type representation. 

The four categories of theoretical recognition likelihood had to be correctly ma- 

nipulated to facilitate a coherent comparison with the three categories of parser 

'The only measure of merit which we could and did assume was that a recognised waveform is more 
likely to be genuine if it is substantiated by the greatest number of contributing samples. 

2 1t is worth noting that this was not merely implemented by a simple gating function: all signal 
samples were parsed and the portions of a genuine waveform below the noise threshold extracted. 
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recognition outcomes. 

This analysis enabled comparison of the recognition and operational characteristics 

with those of the actual parser and validated the proposed waveform formation 

mechanisms. Close agreement between the plots of the theoretical recognition 

accuracy and the actual parser performance was observed, concluding that the 

parser was indeed operating correctly. The theoretical plots showed a slightly 

better performance against noise. 

7.2 Suggestions for further work 

Some natural developments which would follow on from the present study are as 

follows: 

Obtain more simulation data for certain operational characteristics plots. For 

example the plots in Section 4.2.3 can be enhanced with further simulations. Fur-

ther data acquisition will enable the plots in Section 4.2.10 to test the speculated 

recognition profile of Section 4.2.11. Further insights into the waveform formation 

mechanism can be obtained if a wider range of test patterns and test signals are 

used. The use of longer duration test signals in the theoretical analysis of Sec-

tion 5.4 would enable the effects of the various operational parameters on the failed 

recognition of correct waveforms and the successful rejection of false waveforms to 

be differentiated and discerned more accurately. 

Investigate transmitted waveform designs to suppress the formation of false re-

ceived waveforms. 

More extensively examine the recognition of different types of pattern waveform 

and different waveform deviation models to obtain a library of APG core-functions 

and operational characteristic profiles for each of the models. After this, more 

realistic performance comparisons with other techniques can be attempted. If the 

APG approach is found attractive, a programme for investigating (i) grammatical 

inference and (ii) the inference of waveform and deviation models may be further 

pursued. 

Investigate improvements in the speed of parsing. A possibility is to incorporate 

techniques used in the global approach (Section 3.3.1). The implementation of 
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an APG on a parallel architecture should also be considered. The use of a trellis 

diagram [149] for providing (i) a memory mechanism to reduce the extensive back-

tracking and (ii) a likelihood guidance table to set directions and priority in parsing 

could also usefully be investigated. 

Incorporate statistical considerations. It may be reasonable to assume that the 

samples of pattern waveforms are consecutive, i.e., few are substituted with pure-

noise samples, in which case the statistical properties of noisy signals may be 

used to formulate a measure of merit of the recognised waveforms. This may 

subsequently be utilised to assist the selection of recognised waveforms and to 

guide the direction of parsing. 

Investigate the possibility of incorporating frequency-domain information into the 

parsing design. This is to explore possible associations between frequency distri-

bution and key temporal pattern structures so that complementary information 

may be utilised. For example, for patterns which exhibit known temporal period-

icity the associated frequencies may be utilised to support the syntactic recogni-

tion result. The incorporation of the family Gabor functions (or more generally 

the so-called wavelet transforms) [150] may be investigated. As this family of 

transforms are localised in the amplitude-time space and in the frequency space, 

they should enable joint salient features of pattern waveforms in the time- and 

frequency-domains to be extracted and utilised. 

Apply the APG approach on real-life applications to examine its practicability. 

As mentioned in Chapter 2, no single approach is optimal for all applications 

and the design of an APG is very much dependent on the specific applications 

considered. Hence investigating real-life applications would enable us to acquire 

further understanding of when the use of the APG approach should be advocated. 

However, prior to considering real-life applications, a means of determining the 

parser's optimal control parameters are required. Chapter 4 showed 

(a) the relationships between the control parameters and the recognition perfor 

mance are non-linear; 

[150] uses wavelet transforms for image coding, removing high-frequency noise from the input, 
providing feature extraction which is insensitive to global distortions and subsequently constructing a 
relational graph of 2-D images. 
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there may exist more than one set of optimal parameter values depending on 

the structure of the transmitted waveform and 

the search space of the control parameters is complex in that 

some parameters are more dominant then others (i.e., the recognition 

performance is more sensitive to change in these parameters) and 

the dominance is dependent on the structure of the transmitted waveform 

and on the SNR. 

These factors strongly advocate the use of genetic algorithms [151]. Alternative 

optimisation systems which use targeted algorithms such as gradient methods [25] 

may be unsatisfactory since the search for optimal values may become trapped 

in some local minimum or even at some stationary point, or perhaps oscillate 

between such points [4]. 

It is felt that these suggested areas of investigation should provide a good starting 

point for any follow-up investigation in syntactic pattern recognition. 

4 Here the initial population of genes would consist of pairs of (i) parameter values (given in, say, 
their binary representation) and (ii) the associated recognition performance. In simple terms the genetic 
algorithm optimisation process involves the evolution of the gene population. The following steps are 
used to create a new population of genes: 

choose gene pairs from the current pool of genes under an imposed likelihood of selection given 
by the recognition performance of the genes; 

cross-combine pairs of these genes together at two randomly selected cross-over points and 

replace the chosen genes from the current population with these new genes. 
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Appendix A 

Application of Syntactic Methods 

General Subject Area References 

Automated visual inspection [58] 
Biomedical engineering 

EGG and EEG analysis: 
Others: 

[59]-[68] 
[69]-[76] 

Cursive script recognition [77]-[82] 
Document analysis  
Fault diagnosis  
Fingerprint identification  
Grammatical inference [86][87] 
Information retrieval  
Knowledge-base system 

verification 
[90] 

Land-use classification  
Machine monitoring  
Machine vision [93]-[97] 
Pictorial/image analysis [98]-[103] 
Radar target classification [104]-[106] 
Seismic data analysis 102] [102][107]-[116]_ [107]-[110] 
Speech recognition [111]-[114] 
Sport  
Text-phonetic translation  
Town planning  
Underwater signal and 

image analysis  
 

VLSI architectures for 
syntactic _PR_algorithms  

[119]-[122] 

Others 
Design related: 
Application related: 

[123]-[139] 
[140] 

Table A.1: Recent literature on areas related to syntactic pattern recognition. 
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Appendix B 

Description of Version 3 Parser 

B.1 Simplified APG Description 

The Version 3 parser (Figure 3.3, page 25) parses each pattern waveform segment by 
three production rules: one to locate a segment's start point (if it is distinct from the 
last point of the preceding segment); the second to locate the segment's second sample 
and the third to locate all the remaining constituents. 

B.2 Extracts of Programming Code 

Sections B.2.1 to B.2.6 are extracts of the C-program code representing productions 
1, 2 and 23 of the Version 3 parser showing the following procedures: 

testfunO, Section B.2.1, contains the code for the main body of the APG. 

function-0000, Section B.2.2, locates all subsequent samples which lie within 
the projection of waveform distribution boundaries for Segment 1. 

alt.lunction_000xtO, . . . _ytO, .. . xb() and .. ._ybQ, Section B.2.3, cal-
culates the coordinates of the updated waveform distribution boundaries for Seg-
ment 1 at the next possible segment contributing sample. 

function-003(), Section B.2.4, locates all subsequent samples which lie within 
the projection of waveform distribution boundaries for locating a possible start 
point for Segment 2. 

altlunction.003xtQ, . . . _ytO, .. . 003xb() and . . ...ybO, Section B.2.5, 
calculates the coordinates of the possible segment start point to Segment 2. 

Supplementary type-declarations and functions, Section B.2.6, additional to those 
shown in Section C.2.5, Appendix C. 

B.2.1 testfun() 

f_aug..data_list *testfun 	/*The parser's main body. 	 */ 
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( 

X_VALTYPE xl,Y_VALTYPE yl, 
X_VALTYPE x2, Y_VALTYPE y2, 
jut n, 
jut rule, 
f_data_array *data, 
X_VALTYPE scan, 
Y_VALTYPE maxerr, 

Y_VALTYPE noise, 

/*Current data Pt submitted to the production.*/ 
/*Previous data pt examined by the APG. 
/*Index of current pt in the array 'data'. 	*1 
/*Production rule which (xl,yl) is applied to.*/ 
/*Array of all input data points. 
/*Distance ahead to scan for next waveform pt.*/ 
/*Amoimt of amplitude tolerance required. 	*1 

/*"Absolute" amplitude of background noise. 	*1 

mt pc_seg_len, /*Previous or current segment's coverage 	up *1 
1* 	to (xl,yl). *1 

mt is_pc_seg_len_sufficient, /*Does the previous or current segment *1 
1* 	fulfil its minimum segment length check? *1 

jut cu_seg_len, /*Current or next segment's coverage from *1 
1* 	(xl,yl). *1 

jut is_cn_seg_len_sufficient,/*Does the current or next segment fulfil its *1 
1* 	minimum segment length check? *1 

X_TOLTYPE xt, Y_TOLTYPE yt, /*Coord of max amplitude tolerance allowed at *1 
/* (xl,yl). 	 *1 

X_TOLTYPE xb, Y_TOLTYPE yb, /*Coord of min amplitude tolerance allows at */ 
1* (xl,yl). 	 *1 

mt parse-all-rules, 	/*Set this if a production rule should parse 
• all the subsequent goto-next rules. 
• Else parsing will terminate as soon as a 
• goto-next rule tried obtains a successful 
* parse. 

jnt parse-all-points 	/*Set this if all points nominated at a 
• production rule should be parsed. 
• Else parsing will terminate as 
• soon as a goto-next rule tried obtains 
• a successful parse. I.e., all remaining 
• points nominated will not be submitted to 
• subsequent production rules of the goto-next 
• list of the current production. 

) 

{ 

f_aug_data_list *result=NULL; /*All data points found by this production *1 
f_aug_data_list *tmp; 
single-list *dlistNULL,*dlist_p; 	/*List of productions to be followed *1 
jut *rlist; 	 1* Indicator of which goto-next list to use *1 
mt i_ruleO; 	 1* Pointer to show which goto-next rule is *1 

1* being followed 	 *1 

jut all_rules_flag=1; 	/*Flag for parsing with goto-next list rules 
• at a production. To use in association with 
• parse-all-rules. 

mt all_points_flag=1; 	1* Flag for parsing with nominated points at 
• a production. To use in association with 
• parse-all-points. 

119 



/*Coordjnates of the Waveform Distribution */ 
/*Boundaries at the next possible sample: 	*/ 

X_TOLTYPE xtn; 	 /* 	Coord of max waveform ampl. tolerance */ 
Y_TOLTYPE ytn; 	 1* 	at the next(candidate) data point.*/ 

X_TOLTYPE xbn; 	 /* 	Coord of min waveform ampl. tolerance */ 
Y_TOLTYPE ybn; 	 /* 	at the next(candidate) data point.*/ 

mt updated...c_seg_len; 	/*Updated coverage of the current segment at */ 
1* the next possible waveform data point. 	*/ 

mt updated_n_seg_len; 	/*Updated coverage of the next segment at 	*1 
/* the next possible waveform data point. 	*1 

mt c_seg...min_seg_len; 	/*Minimum segment length of current segment. *1 
mt n_seg_min_seg_len; 	/*Minimum segment length of next segment. 	*/ 

if (n >= data->size) goto back; /*Allow parsing only for data points 	*/ 
/* 0 to data->size-1. 

switch (rule) 
{ 

case 1: 
{ 

/* Assume : 	 */ 
/* 	 SEGMENT 
1* ITEM 	 REFERRED 	USE ASSIGNED 
1* -------------------------------------------------- 
/* pc....seg....len 	 previous 	- 	 */ 
/* is_pc_seg. . . sufficient previous 	Min seg length 	*1 
/s 	 check of previous */ 

segment. 
/* cn....seg..len 	 current 	 - 	 */ 
/s is..cn_seg. . . sufficient current 	Min seg length 	*/ 
1* 	 check for if 
/* 	 rule 0 is found */ 
/* 	 in success- 	*/ 
/* 	 goto-next list. 	*/ 

/*Assign entries to goto-next lists*/ 

static mt rlists[] = { 2 , -1 }; 	 /*Success-goto-next Lists/ 
static mt rlistf[] = { -1 }; 	 /*Failed-goto-next List */ 

!*Perform min segment length check on previous segment's coverage. 	*/ 
/s Proceed with parsing only if check is satisfactory. 

if (! ispcseg.len.sufficient){ 
break; 

:J; 
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/*Set indicator to use success-goto-next list*/ 

rlist= rlist_s; 

/*Check for rule 0 at the beginning of the goto-next list and if 
1* segment coverage is sufficient. If so, may terminate parsing here*/ 
1* so assign current point to the list of points to return. 	*1 

if (rlist [i_rule] ==O){ 
if (! is_cn_seg_len_sufficient){ 
printf("! is_cn_seg_len_sufficient so rule 0 aborted.\n"); 

} 

else{ 
/* REM: use convention that 0 (if occur) MUST be the 1st rule in 
* a production) 

result(f_aug_data_list *)mallow(sizeof (struct f_aug_data_list)); 
if (result == NULL) error("Out of heap space!"); 
result->length=1; 
result->p=NEW_AUG_POINT(&((data->points) [n]), rule, 1, yt, yb); 

i_rule++; 	 /*move rule pointer to the next rule*/ 

/*Assign minimum segment lengths *1 

c_seg_min_seg_len=(noise + maxerr)/1 +1; /*For a gradient 1 segment.*/ 
n_seg_min_seg_len=2; 	 /*For a gradient 0 segluent.*/ 

/*Locate all possible next waveform sample on segment 1 by means of *1 
/* waveform distribution boundaries. 

dlistfunction_000(xl , yl , data , scan , maxerr, xt, yt, xb, yb ); 

/*Attempt to parse each possible next waveform sample 	 *1 

if (dlist!NULL) 
{ 

/*Continue parsing if (i) more rules left in the goto-next list, 	*/ 
1* and (ii) if all rules must be parsed. 	 *1 

while ((rlist[i_rule]>=O) && (all-rules-flag)) 
{ 	 /*REM: irule indexes rlist */ 

mt rul=rlist[i_rule]; 
if (rul == 0) error("Rule 0 not at the beginning of rlist 

found in production '/.i\n",rule); 
all_points_flag=1; 
dlist_pdlist; 

while (dlist_p!=NULL && all-points-flag) 
{ 
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mt i=dlist_p->n; 

/*Update the coordinated of waveform distribution boundaries */ 
/* for each possible next waveform sample. 	 *1 

xtnalt_function_000_xt ( (data->points) [i1 . x, (data->points) Ci] . 
maxerr,xt, yt, xb, yb); 

ytn=alt_function_000_yt ( (data->points) Ci] . x, (data->pomnts) Ci] . y, 
maxerr,xt, yt, xb, yb); 

xbn=alt_funct ion_000_xb ( (data->point s) Ci] . x, (data->point s) Ci] . 
maxerr,xt, yt, xb, yb); 

ybn=alt...function000_yb ( (data->points) Ci] . x, (data->points) Ci] . y, 
maxerr,xt, yt, xb, yb); 

/*Find the associated updated segment lengths */ 
ytn 	 */ 

/* 	/1 
Il 

/ 	I 

/* 
/* <------- 
/* updated_c_seg_.len 	 *1 

updated_c_seg_len=ytn/ 1; 
updated_n....seg_len=0; 

/*Attempt parsing with a possible next waveform sample 	*1 

tmp=testfun((data->points)[i] .x,(data->points) [i] .y,xl,yl,i,rul, 
data, scan,maxerr,noise, 
updated_c_seg_len, 
(updated_c_seg_len>=c_seg....min_seg....len), 
/*updated_n_seg_len, 

(updated_n_seg_len>=n_seg_min_seg_len) , */ 
0,0, 
xtn, ytn, xbn, ybn, 
parse-all-rules, parse-all-points); 

if(('parse_all_points) && (tmp !=NULL)) 
all_points_flag=0; 

if((!parse_all_rules) && (tmp !=NULL)) 
all_rules_f lag=0; 

/* Update the record of the "current data set" found if 	*/ 
/* a new set of data has been found and 
1* either 1) the new set of data has more data points, 
/* 	 then the current set of data held. 
/* or 	2) the new set of data points has equal 	 */ 
/* 	 number of data points and the "width" or 	*/ 
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/* 	 "thickness" of the final waveform 
distribution boundaries at the first 	 *1 

/s 	 point of the newly found set of data 	 *1 
/s 	 points is greater or equal to the first 	*1 
/s 	 point of the current set of data points 	*1 
/s 	 recorded. 	 *1 

if (tmp != NULL && 
(result == NULL I I 
tmp->length >= result->length I 

((tmp->length +1 == result->length) && 
( ((tmp->p)->ylnax - (tmp->p)->ymin) >= 

((result->p)->yma.x - (result->p)->ymin) 

) 

) 

) 

{ 

free_f _aug_data_list (result); 
result(f_aug_data_list *) malloc 

(sizeof (struct f_aug_data_list)); 
if (result == NULL) error("Out of heap space!"); 
result->length 1+ tmp->length; 

/*For each new record made, find the new final 	*1 
1* waveform distribution boundaries at (xl,yl). 	*1 
/s 	 (tmp->p)->ymax *1 

Is 	 /1 

I (tmp->p)->ymin */ 
1* ((tmp->p)->ymax  
/s ((tmp->p)->val.x - xl)*1)  

/* ((tmp->p)-->ymin  
/s ((tmp->p)->val.x xl)*1)  
/s 	 xl 	(tmp->p)-->val.x 5/ 

now insert this point and the rests! 
/s from tmp s/ 
result->pNEW_AUG_POINT(& ( (data->points) [n] ) ,rule, 1, 

((tmp->p)->ymax 
((tmp->p)->val.x 	xl)*l), 
((tmp->p)->ymin 
((tmp->p)->val.x xl)*1) 

); 
(result->p) ->nexttmp->p; 
free(tmp); 

} 

else free_f_aug_data_list(tmp); 

dlist_pdlist_p->next; 

i_rule++; 
} 
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I 
break; 

case 2: 
{ 

/* Assume : 
1* 	 SEGMENT 
1* ITEM 	 REFERRED USE ASSIGNED 
1* --------------------------------------------------*1 
1* pc_seg_len 	 current 	- 	 *1 
1* is-pc-seg... sufficient current Min seg length *1 

check for if rule */ 
rule 0 is found */ 
in success- 

1* 	 goto-next list. 	*1 
/* cn_seg_len 	 next 	 - 	 *1 
1* is_cn_seg. . . sufficient next 	 - 	 *1 

/*Assign entries to goto-next lists*/ 
** * ** ** ****** ** * **** * * * *** * 

static mt rlist_sD = { 2, 3, 23, -1 3.; 	/*Success-goto-next List*/ 
static mt rlist_f 0 = { - 1 3.; 	 /*Failed-goto-next List *1 

if (is_pc_seg_len_sufficient < 0){ 	 /*Just an extra check *1 
printf("is_pc_seg_sufficient <0\n"); 
break; 

3.; 

/*Set indicator to use success-goto-next list*/ 

rlistrlist_s; 

/*Check for rule 0 at the beginning of the goto-next list and if 	*1 
1* segment coverage is sufficient. If so, may terminate parsing here*/ 
1* so assign current point to the list of points to return. 	*1 

if (rust [i_rule] 0){ 
if (! is_pc_seg_len_sufficient){ 
printf("! is_pc_seglen_sufficient so rule 0 aborted.\n"); 

3. 
else{ 

1* REM: use convention that 0 (if occur) MUST be the 1st rule in 
* a production) 

result(f_aug_data_list *)malloc(sizeof (struct f_aug_data_list)); 
if (result == NULL) error("Out of heap space!"); 
result->length=1; 
result->p=NEW_AUG_POINT(&((data->points)[n]), rule, 1, yt, yb); 

3.; 
i_rule++; 	 /*move rule pointer to the next rule*/ 

3.; 
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/*Assign minimum segment lengths *1 

c_seg_min_seg_len(noise+maxerr)/1i-1; 	I*For a gradient 1 segment.*/ 
n_seg_min_seg_len=2; 	 I*For a gradient 0 segment.*/ 

/*Locate all possible next waveform sample on segment 1 by means of *1 
/* waveform distribution boundaries. 

dlistfunction_000(xl , yl , data , scan , maxerr, xt, yt, xb, yb ); 

/*Attempt to parse each possible next waveform sample 	 *1 

if (dlist!=NULL) 
{ 

/*Continue parsing if (i) more rules left in the goto-next list, 	*1 
1* and (ii) if all rules must be parsed. 	 *1 

while ((rlist[i_rule]>=0) && (all-rules-flag)) 
{ 	/* irule indexes rust *1 

mt rulrlist [i_rule] 
if (rul == 0) error("Rule 0 not at the beginning of rlist 

found in production '/,i\n",rule); 
all_points_flagl; 
dlist...p=dlist; 

while (dlist_p!NULL && all-points-flag) 
{ 

mt idlist_p->n; 

/*Update the coordinated of waveform distribution boundaries *1 
1* for each possible next waveform sample. 	 *1 

xtn=alt_function_000_xt((data->points) [i] .x, (data->points) [i] . y, 
maxerr,xt, yt, xb, yb); 

ytn=alt_function_000_yt((data->points) [i] . x, (data->points) [i] .y, 
maxerr,xt, yt, xb, yb); 

xbnalt_function_000_xb((data->points) [i] .x, (data->points) [i] .y, 
maxerr,xt, yt, xb, yb); 

ybn=alt_function_000_yb((data->points) [i] .x, (data->points) [i] .y, 
maxerr,xt, yt, xb, yb); 

/*Find the associated updated segment lengths */ 
ytn 

1* 	/1 
/1 

/ 	I 

1*  
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/* < 	 - > 
1* updated_c_seg_len 	 *1 

updated_c_seg_lenytn/1; 
updated_n_seg_leno; 

/*Attempt parsing with a possible next waveform sample 	*1 

tmp=testfun((data->points)[i] .x,(data->points)[i] .y,xl,yl,i,rul, 
data, scan,maxerr,noise, 
update&.c_seg_len, 
(updated_c_seg_len>c....seg_min_seg_len), 
/*updated_n_seg_len, 

(updated_n_seg_len>=n_seg_min_seg_len) ,*/ 
0,0, 
xtn, ytn, xbn, ybn, 
parse_all_rules ,parse_all_points); 

if((! pars e_all_points) && (tmp !=NULL)) 
all_points_flag=0; 

if((! pars e_all_rules) U (tmp !=NULL)) 
all_rules_flagO; 

1* Update the record of the "current data set" found if *1 
/* a new set of data has been found and 
1* either 	1) 	the new set of data has more data points, 

then the current set of data held. *1 
1* or 	2) 	the new set of data points has equal *1 
1* number of data points and the "width" or *1 

"thickness" of the final waveform 
distribution boundaries at the first *1 

1* point of the newly found set of data *1 
1* points is greater or equal to the first *1 
1* point of the current set of data points *1 
1* recorded. *1 

if (tmp ! 	NULL && 
(result == NULL I I 
tmp->length >= result->length 11 
((tmp->length +1 == result->length) && 

( 	 ((tmp->p)->ymax 	(tmp->p)->ymin) >= 
((result->p)->ymax 	(result->p)->ymin) 

) 

) 

) 

{ 

free_f _aug_data_list(result); 
result= (f_aug_data_list *) malloc 

(sizeof (struct f_aug_data_list)); 
if (result == NULL) error("Out of heap space'"); 
result->length= 1+ tmp->length; 

/*For each new record made, find the new final 
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1* waveform distribution boundaries at (xl,yl). 	*1 
1* 	 (tmp->p)->ymax */ 

/1 
/* 	 /1 

/1 
1* 	 / 	I (tmp->p)->ymin */ 
1* ((tmp->p)-->ymax  
/* ((tmp->p)->val.x - xl)*1)  

1* ((tmp->p)->ymin  
1* ((tmp->p)->val.x - xl)*1)  
1* 	 xl 	(tmp->p)->val.x */ 

1* now insert this point and the rest*/ 
/* from tmp *1 
result->pNEWJkUG_POINT(&((data ->points) [n]) ,rule, 1, 

((tmp->p)->ymax - 
((tmp->p)->val.x - xl)*1), 
((tmp->p)->ymin - 
((tmp->p)->val.x - xl)*l) 

); 
(result->p) ->nexttmp->p; 
free(tmp); 

else free_f _aug_data_list(tmp); 

dlist_pdlist_p->next; 
} 

i_rule++; 
} 

} 

break; 

case 23: 
{ 

1* Assume : 
/* 	 SEGMENT 	 *1 
1* ITEM 	 REFERRED USE ASSIGNED 	*1 
/* -------------------------------------------------- 
1* pc_seg_len 	 current 	- 	 *1 
/* is-pc-seg... sufficient current Min seg length 	*1 
/* 	 check for if rule *1 
/* 	 rule 0 is found *1 
1* 	 in success- 	*1 
1* 	 goto-next list. 	*1 
/* cn_seg..len 	 next 	 - 	 *1 
1* is-cu-seg... sufficient next 	 - 	 *1 

/*Assign entries to goto-next lists*I 

static jut rlist_s[] = { 3 , -1 }; 	 /*Success-goto-next List*/ 
static mt rlist_f[] = { -1 }; 	 I*Failed-goto-next List *1 
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if (is_pc_seg_len_sufficient <0) 	 /*Just an extra check 	i 
{ 

printf("is_pc_seg_sufficient <0\n"); 
break; 

/*Set indicator to use success-goto-next list*/ 

rlist= rlist_s; 

/*Check for rule 0 at the beginning of the goto-next list and if 	*1 
1* segment coverage is sufficient. If so, may terminate parsing here*/ 
1* so assign current point to the list of points to return. 	*1 

if (rust [i_rule] ==0){ 
if (! is_pc_seg_len_sufficient){ 
printf("! is_pc_seg_len_sufficient so rule 0 aborted. \n"); 

} 

else{ 
/* REM: use convention that 0 (if occur) MUST be the 1st rule in 
* a production) 
*1 

rasult=(f_aug_data_list *)malloc(sizeof (struct f_aug_data_list)); 
if (result == NULL) error("Out of heap space!'); 
result->length=1; 
result->p=NEW_AUG_POINT(&((data->points) [n]), rule, 1, yt, yb); 

i_rule++; 	 /*move rule pointer to the next rule*/ 

/*Assign minimum segment lengths *1 

c_seg_min_seg_len=(noise+maxerr)/1+1; 	/*For a gradient 1 segment.*/ 
n_seg_min_seg_len=2; 	 I*For a gradient 0 segment.*/ 

/*Locate all possible next waveform sample as the start of Segment 2 *1 
1* by means of waveform distribution boundaries. 	 *1 

dlist=function_003(xj , yl , data , scan , maxerr, xt, yt, xb, yb ); 

/*Attempt to parse each possible next waveform sample 	 *1 

if (dlist!NULL) 
{ 

/*Continue parsing if (i) more rules left in the goto-next list, 	*1 
1* and (ii) if all rules must be parsed. 	 *1 

while ((rlist[i_rule]>=0) && (all_rules_flag)) 
{ 	1* irule indexes rust */ 

mt rul=rlist [i_rule]; 
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if (rul == 0) error('Rule 0 not at the beginning of rust 
found in production '/,i\n",rule); 

all_points_f lagl; 
dlist_pdlist; 

while (dlist_p!NULL && all-points-flag) 
{ 
mt idlist_p->n; 

/*Update the coordinated of waveform distribution boundaries */ 
/* for each possible next waveform sample. 	 */ 

xtnalt_function_003_xt((data->points) Ci] x, (data->points) Ci] .y, 
maxerr,xt, yt, xb, yb); 

ytn=alt_function_003_yt((data->points) Ci] .x,data->points) Ci] .y, 
maxerr,xt, yt, xb, yb); 

xbnalt_function_003_xb((data->points) Ci] .x,(data->points) Ci] .y, 
maxerr,xt, yt, xb, yb); 

ybn=alt_function_003_yb((data->points) Ci] .x, (data->points) Ci] .y, 
maxerr,xt, yt, xb, yb); 

/*Find the associated updated segment lengths */ 
1* 	 ytn 	(xtn,ytn) *1 

1* 	 / 	____________ I 
(xbn,ybn) */ 

Is (xt,yt)  
.1/ 
I! 	: 

1* 	 (xb,yb) 	: 

/5 

/s 	updated_c_seg_len */ 
updated_n_seg_len 
is the largest of */ 
<-------- > 

ft 	 : 	and 
/s 	 <-----------> 

updated_c_seg_len=ytn/1; 
updated_n_s eg_len=xbn-xb-(ybn-yb) /1; 
if ((xbnxb-(ybn-yb)/1) < (xtn-xt-(ytn-yt)/1)) { 
updated_n_seg_len=xtn-xt-(ytn-yt)/1; 

tmp=testfuu((data->points)Ci] .x,(data->points) [i].y,xl,yl,i,rul, 
data, scan,maxerr,noise, 
updated_c_seg_len, 
(updated_c_seg_len>=c_seg_min_seg_len), 
updated_n_seg_len, 
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(updated_n_seg_len>=n_seg_min_seg_len), 
xtn, ytn, xbn, ybn, 
parse_all_rules ,parse_all_points); 

if((!parse_all_points) && (tmp !=NULL)) 
all_points_flagO; 

if((! pars e_all_rules) && (tmp '=NULL)) 
all_rules_f lag=O; 

1* Update the record of the "current data set" found if *1 
a new set of data has been found and *1 

1* either 	1) 	the new set of data has more data points, *1 
then the current set of data held. 

1* or 	2) 	the new set of data points has equal *1 
1* number of data points and the "width" or *1 

"thickness" of the final waveform 
distribution boundaries at the first *1 

1* point of the newly found set of data *1 
1* points is greater or equal to the first *1 
1* point of the current set of data points *1 
1* recorded. 

if (tmp ! 	NULL && 
(result == NULL I 
tmp->length >= result->length 11 

((tmp->length +1 == result->length) && 

( 	((tmp->p)>ymax 	(tmp->p)->ymin) > 
((result->p)->ymax 	(result->p)->ymin) 

) 

) 
) 

{ 
free_f_aug_data_list (result); 
result= (f_aug_data_list *) malloc 

(sizeof (struct f_aug_data_list)); 
if (result == NULL) error("Out of heap space!"); 
result->length= 1+ tmp->length; 

/*For each new record made, find the new final *1 
1* waveform distribution boundaries at (xl,yl). *1 

*1 

1* . . : ybn *1 

1* . _ ------ :(tmp->p)->yiux *1 
/ 	. I 

. ______ I(tmp->p)->ymin 

1* yt/.. 	/.......... ytn *1 
/* I 
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/* ybl/ 	 . *1 
*/ 

1* xi 	 (tmp->p)->val.x *1 
/* 
1* If at (tmp->p)->val.x, ((tmp->p)->ylnax < ytn) *1 
1* then yt can not be used as ymax. *1 
/* Instead, ymax has to assume the value *1 
1* yt- (ytn- ((tmp->p)->ymax)). *1 
/* 
1* If at (tmp->p)->val.x, ((tmp->p)->ymin > ybn) *1 
1* then yb can not be used as ymin. *1 
1* Instead, ynhin has to assume the value *1 
1* yb+ (((tmp->p)->ymin)-ybn). *1 

1* Check to see if the original yt can be *1 
1* used as ymax. *1 
1* Here, ytn is as shown in diagram. *1 
ytn= yt; 
if (((tmp->p)->ymax) < ytn) { 

1* Here the ytn (on the left-hand */ 
1* 	side) represents the final *1 
/* 	ymax at xl. 
/*ytn 	yt - (ytn - ((tmp->p)->yinax));*/ 
ytn = ((tmp->p)->ymax); 

} 

else 
{ 

/* Here the ytn (on the left-hand */ 
1* 	side) represents the final *1 
1* 	ymax at xl. *1 
ytn 	yt; 

	

/t Check to see if the original yb can be 	*1 
/t used as ymin. 
/t Here, ybn is as shown in diagram. 	 *1 
ybn= (((tmp->p)->val.x) - xl) *1 + Yb; 
if (((tmp->p)->yinin) > yb) 
{ 

/t Here the ybu (on the left-hand 	 *1 
It side) represents the final 	 *1 
It ymin at xl. 	 *1 
ybn= Yb + (((tmp->p)->ymin) - ybn); 

} 

else 
{ 

/* Here the ybn (on the left-hand 	*1 
1* side) represents the final 	*1 
/t ymin at xi. 
ybn= Yb; 

/t now insert this point add the rest*/ 
/t from tmp *1 
result->p=NEW_AUG_POINT(&((data->points) [ii]), rule, 1, 

Ytfl, ybn); 
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(result->p) ->next=tmp->p; 
free(tnip); 

} 
else free_f_aug_data_list(tmp); 

dlist_pdlist_p->next; 

i_rule++; 
} 

} 
break; 

default: error("invalid production rule (%d)', rule); 
} 
back: 
free...single_list(dlist); 
return result; 

B.2.2 function_000() 

* NAME: function_000(X_VALTYPE xi, 	Y_VALTYPE yl, 
* 	 f_data_array *data, X_VALTYPE scan, 
* 	 Y_VALTYPE mazerr, 
* 	 X_TOLTYPE xt, 	Y_TOLTYPE yt, 
* 	 X_TOLTYPE xb, 	Y_TOLTYPE yb 
* 	 ) 
* DESCRIPTION: 
* function-0000 basically looks for and returns all points ahead 
* 	which, as enabled by the amplitude error tolerance, may 
* 	effectively lie on the waveform distribution boundaries projected 
* 	forward along the gradient of 1. I.e., all subsequent data points, 
* 	regarded by their permitted amplitude error tolerance, overlapping 
* 	the following envelope will be nominated: 
* 
* 	 /1 
* 	 /1 
* 	 /1 
* 	(xt, yt) / 	I 
* 	 I 	I 

* 	 I! 
* 	(xb, yb)l/ 
* 
* 	 xl 	xl+scan 
* 
* function-0000 returns at the end, either: 
* 
* 	NULL 	if no suitable point is found, or 
* 
* 	result->next---------- >next ---------- >next=NULL 
* 	->n: x_index ->n: x_index ->n: x_index 
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* 
* 	 - A list of all points found where 
* 	 x_index is the data point number of 
* 	 a point which fits the 
* function-0000's criteria. 
* 
* 	 - The closest point to xl is placed 
* 	 closest to the top of the list 
* 	 'result'. 

*1 
single-list 	* 
function_000( X_VALTYPE xl, Y_VALTYPE yl, f_data_array * data, 

X_VALTYPE scan, Y_VALTYPE maxerr, 
X_TOLTYPE xt, Y_TOLTYPE yt, X_TOLTYPE xb, Y_TOLTYPE yb) 

{ 
static char 	*nocore = "Out of heap space in function-000"; 
single-list 	*result = NULL; 
single-list 	*tmp 	= NULL; 
register point *p = dal ;a->points; 
mt 	 i; 

Y_TOLTYPE tmp_yt; 
	

/*yt projected onto a candidate point*/ 
Y_TOLTYPE tmp_yb; 
	

/*yb projected onto a candidate point*/ 

for (i = scan; i>1 ; i--) 
{ 

/*Check validity of input*/ 
* * * * * ** * * **** *1 

if ((xl+i)>(data->size)) 
continue; 

if ((p[xl+i].y==O) && (p[xl+i].x==O)) 
continue; 

/*Find projected coordinate of current waveform distribution boundaries*/ 
1* for Segment 1 (gradient 1) at a candidate next waveform sample. 	*1 

tmp_ytyt+(pCxl+i] .x-xt); 
tmp_ybyb+(p[xl+i] .x-xb); 

/*Check if the candidate next waveform sample is in the boundaries with*/ 
1* the given amplitude tolerance. 	 *1 

if ((tmp_yb>(p[xl+i] .y+maxerr)) II (tmp_yt<(p[xl+i] .y-maxerr))) 
continue; 

} 

tmp = (single-list *) 
if (tmp == NULL) 
error(nocore); 

tmp->n = xl + i; 
tmp>next = result; 
resulttmp; 

malloc(sizeof(struct single_list)); 
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/*Return all selected possible next waveform sample on Segment 1.*/ 

return result; 

B.2.3 alt.±unction_000xtO, ..._ytO, ..._xbO, ..._yb() 

* NAME: 	alt_function_000_xt( X_VALTYPE xi, Y_VALTYPE yl, 
* 	 Y_VALTYPE maxerr, 
* 	 X_TOLTYPE xt, Y...TOLTYPE yt, 
* 	 X_TOLTYPE xb, Y_TOLTYPE yb 
* 	 ) 
* 	alt.iunction_000_yt( XVALTYPE xl, Y_VALTYPE yl, 
* 	 Y_VALTYPE maxerr, 
* 	 X_TOLTYPE xt, Y_TOLTYPE yt, 
* 	 X_TOLTYPE xb, Y_TOLTYPE yb 
* 	 ) 
* 	alt_function_000_xb( X_VALTYPE xl, Y_VALTYPE yl, 
* 	 Y_VALTYPE maxerr, 
* 	 X_TOLTYPE xt, Y_TOLTYPE yt, 
* 	 X_TOLTYPE xb, Y_TOLTYPE yb 
* 	 ) 
* 	alt_function_000_yb( X_VALTYPE xi, Y_VALTYPE yl, 
* 	 Y_VALTYPE maxerr, 
* 	 X_TOLTYPE xt, Y_TOLTYPE yt, 
* 	 L.TOLTYPE xb, Y_TOLTYPE yb 
* 	 ) 
* DESCRIPTION: 
* 	They evaluate and return the new limits of the waveform 
* 	distribution boundaries at the nominated next waveform date 
* 	point (xl, yl) for a +1 gradient waveform segment. 
* 
* 	 (tmp_xt, tmp_yt) 
* 	 /1 
* 	 Il 
* 	/1 
*(xt, yt) / 	I 
* 	I 	I(tmp_xb, tmp_yb) 

* 	I! 
*(xb, yb)I/ 
* 
* 	 xl 
* 
* 	Where (xt, yt) & (xb, yb) are the limits at the previous 
* 	waveform point, and (tmp_xt, tmp_yt) and (tmp_xb, tmp_yb) are 
* 	the limits projected to xl. 
* maxerr= the amplitude tolerance permitted to all data 
* 	points. 
* 
* 	Therefore: 
* 	new_xt = 	xl; 
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* 
* 	 yl+maxerr - if (tmp_yt > yl+maxerr), 
* 	new_yt = / 
* 	 \ tmp_yt - else. 
* 
* 	new_xb = 	XI; 
* 
* 	 yl-maxerr - if (tmp_yb < yl-maxerr), 
* 	new_yb = / 
* 	 \ tmp_yb - else. 

*1 
X_TOLTYPE alt_function_000_xt( X_VALTYPE xl, Y_VALTYPE yl, 

Y_VALTYPE maxerr, 
X_TOLTYPE xt, Y_TOLTYPE yt, 
X_TOLTYPE xb, Y_TOLTYPE yb 

) 
{ 
return((X_TOLTYPE) xi); 

} 

Y_TULTYPE alt_function_000_yt ( 

) 
{ 

X_VALTYPE xi, Y_VALTYPE yl, 
Y_VAL.TYPE maxerr, 
XTOLTYPE xt, Y_TOLTYPE yt, 
X_TOLTYPE xb, Y_TOLTYPE yb 

/*use tmp_something as the projected amplitude boundaries at xl,yl*/ 
X_TOLTYPE tmp_xt=xl; 
Y_TOLTYPE tmp_ytyt+(xl-xt); 
X_TOLTYPE tmp_xbxl; 
Y_TOLTYPE tmp_ybyb+(xl-xb); 

/*check xl,yl is really properly selected under projected boundaries*/ 
if ( (tmp_yb > (yl+maxerr) ) II (tmp_yt<(yl-maxerr) ) ) 
{ 

error("Boundaries condition broken for 
alt_fuLnction_000_yt (new_x1%i, new_y1/,i, maxerr='/.i, 
old_xt=%f, old_yt'/.f, old_xb=%f, old_yb='/.f", 
xl,yl,maxerr,xt,yt,xb,yb); 

/*set new coords at boundaries extremities of amplitude tolerance*/ 
if (tmp_yt>(yl+maxerr)) { tmp_yt(Y_TOLTYPE) (yli-maxerr);}; 
return(tmp_yt); 

} 

X_TOLTYPE alt_function_000_xb( 

{ 
return((X_TOLTYPE) xl); 

) 

X_VALTYPE xl, Y_VALTYPE yl, 
Y_VALTYPE maxerr, 
X_TOLTYPE xt, Y_TOLTYPE yt, 
X_TOLTYPE xb, Y_TOLTYPE yb 

Y_TOLTYPE alt..fu.nction_000_yb( X_VALTYPE xl, Y_VALTYPE yl, 
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Y_VALTYPE maxerr, 
X_TOLTYPE xt, Y_TOLTYPE yt, 
X_TOLTYPE xb, Y_TOLTYPE yb 

) 
{ 
/*use tmp_something as the projected amplitude boundaries at xl,yl*/ 
X_TOLTYPE tmp_xtxl; 
Y_TOLTYPE tmp_ytyt+(xl-xt); 
X_TOLTYPE tmp_xbxl; 
Y_TOLTYPE tmp_ybyb+(xl-xb); 

/*check xl,yl is really properly selected under projected boundaries*/ 
if ( (tmp_yb > (yl+maxerr) ) II (tmp_yt<(yl-maxerr) ) ) 
{ 
error("Boundaries condition broken for 

alt_f unction_000_yt (new_x1%i, new_yl='/.i, maxerr=%i, 
old_xt%f, old_yt='/.f, old_xb=7.f, old_yb:'/.f", 
xl,yl,maxerr,xt,yt,xb,yb); 

} 

/*set new coords at boundaries extremities of amplitude tolerance*/ 
if (tmp_yb<(yl-maxerr)) { tmp_yb=(Y_TOLTYPE) (yl-maxerr) ; }; 
return(tmp_yb); 

B.2.4 function_003() 

* NAME: function_003( 	X_VALTYPE xl, Y_VALTYPE yl, 
* f_data_array *data, 	X_VALTYPE scan, 
* Y_VALTYPE maxerr, 
* X_TOLTYPE xt, Y_TOLTYPE yt, 
* X_TOLTYPE xb, Y_TOLTYPE yb 
* ) 
* DESCRIPTION: 
* function-0030 assumes the key-turning point from a 
* 	+1 gradient segment to a 0 gradient segment is missing & thus 
* 	finds the first data point for the 0 gradient segment. 
* 	Note: the points nominated are correct and some of 
* 	them may as duplicates to those found by function_000() and 
* 	function_001() but of course, they will be chosen for 
* 	different nomination criteria. 
* 	All subsequent data points, regarded by their 
* 	permitted amplitude error tolerance, overlapping 
* 	the following envelope will be nominated: 
* 
* 	 LI 
* 	 LI 
* 	 /l 
* 	 / 	I 
* 	 / 	I 
* 	 / 	I 
* 	 / 	I 

* 	 / 	.1 



* 	 / 	'pExl+i].y+maxerr 

* 	 / 	Itmp_yt 	I 

*(xt, yt)I ......... Itmp_yb.. .1 
* 	I 	. 	I 	I 
* 	I 	. 	V pExl+i]-maxerr 
* 	I. 	: 	I 
* 	I. 	: 	I 
*(xb, yb)l ------------------- I 
* 
* 
* xl p[xl+i].x p[xl+scan].x 
* 
* function-0030 returns at the end, either: 
* 
* 	NULL 	- if no suitable point is found, or 
* 
* 	result->next ---------- >next ---------- >nextNULL 
* 	 ->n: x_.index ->n: x_index ->n: x_index 
* 
* 	 - A list of all points found where 
* 	 x....index is the data point number of 
* 	 a point which fits the 
* function-0030's criteria. 
* 
* 	 - The closest point to xl is placed 
* 	 closest to the top of the list 
* 	 'result'. 
* 
* 	It is assumed that (xi, yl) is the end of the +1 gradient 
* 	segment and that it can NOT be used as the start of the 
* 	ensuing 0 gradient segment. 
* 	Therefore, the criteria for nominating the next 
* 	waveform point are: 
* 
* 	1. (p[xl+iJ.y - maxerr) must be < tmp...yt, or else the 
* 	nominated point can still be used as a further point to 
* 	the +1 gradient segment. 
* 
* 	2. (p[xl+i].y + maxerr) must be > tmp_yb, or else (xi, yl) 
* 	can still be used as the start point of the ensuing 
* 	0 gradient segment. 

single-list 	* 
function_003( X_VALTYPE xl, Y_VALTYPE yl, 

f_data_array * data, X_VALTYPE scan, Y_VALTYPE maxerr, 
X..TOLTYPE xt, Y_TOLTYPE yt, X_TOLTYPE xb, Y_TOLTYPE yb) 

{ 
static char 	*nocore = "Out of heap space in function-003"; 
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single-list 	*result = NULL; 
single-list 	*tmp 	= NULL; 
register point *p = data->points; 
mt 

Y_TOLTYPE tmp_yt; /*yt projected onto a candidate point*/ 
Y_TOLTYPE tmp_yb; /*yb projected onto a candidate point*/ 

for (i = scan; i>1 ; i-- ) 
{ 

/*Check validity of input*/ 

if ((xl+i)>(data->size)) 
continue; 

if ((p[xl+i].y0) && (pCxl+i].x==O)) 
continue; 

/*Find projected coordinate of current waveform distribution boundaries*/ 
/* from the end of Segment 1 at a candidate Segment 2 start sample. */ 

tmp_ytyb+(p[xl+i] .x-xb); 
tmp...ybyt; 

/*Check if the candidate next waveform sample is in the boundaries with*/ 
/* the given amplitude tolerance. 	 */ 

if ((tmp_yb>(pCxl+i] .y+maxerr)) II (tmp_yt<(p[xl+i] .y-maxerr))) 
continue; 

tmp = (single-list *) malloc(sizeof(struct single_list)); 
if (tmp == NULL) 

error (nocore); 
tmp->n = xi + 
tmp->next = result; 
result=tmp; 

} 

/*Return all selected possible Segment 2 start sample. 	 *1 

return result; 

B.2.5 	alt function_003_xtO, .._ytO, ..._xbO, . . ._yb() 

* NAME: 	alt_function_003_xt( LVALTYPE xl, Y_VALTYPE yl, 
* 	 Y_VALTYPE maxerr, 
* 	 X_TOLTYPE xt, Y_TOLTYPE yt, 
* 	 X_TOLTYPE xb, Y_TOLTYPE yb 
* 	 ) 
* 	alt_function_003_yt( X_VALTYPE xi, Y_VALTYPE yl, 
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* 	 Y_VALTYPE maxerr, 
* 	 X_TOLTYPE xt, Y_TOLTYPE yt, 
* 	 X_TOLTYPE xb, Y_TOLTYPE yb 
* 	 ) 
* 	 alt...function_003_xb( X_VALTYPE xi, Y_VALTYPE yl, 
* 	 Y.JTALTYPE maxerr, 
* 	 X_TOLTYPE xt, Y_TOLTYPE yt, 
* 	 X_TOLTYPE xb, Y_TOLTYPE yb 
* 	 ) 
* 	 alt_function_003_yb( X_VALTYPE xl, Y_VALTYPE yl, 
* 	 Y..VALTYPE maxerr, 
* 	 X_TOLTYPE xt, Y_TOLTYPE yt, 
* 	 X_TOLTYPE xb, Y_TOLTYPE yb 
* 	 ) 
* DESCRIPTION: 
* 	They evaluate and return the new limits of the waveform 
* 	distribution boundaries at the nominated next waveform date 
* 	point (xl, yl) assuming (xl, yl) is the start of a 
* 	0 gradient segment and (xt, yt) & (xb, yb) are the limits 
* 	at the previous waveform point which pertains to a 
* 	+1 gradient segment. 
* maLxerr= the amplitude tolerance permitted to all data 
* 	points. 
* 
* 	 ytn 
* 	 I: 
* 	 I: 
* 	 I: 
* 	 / 	yl+maxerr 

* 	 / 	Itmp_yt 

*(xt, yt) I ......... I .tmp_yb. 
* 	I 	. 	I 
* 	I 	. 	V yl-maxerr 
* 	I. 
* 	I. 
*(xb, yb)I --------- :_ ybn 
* 
* 
* xl 
* 
* 	Therefore: 
* 	new_xt = 	XI; 
* 
* 	 yl+maxerr - if (ytn > yl+maxerr), 
* 	new_yt = / 
* 	 \ ytn 	- else. 
* 
* 	new_xb = 	xi; 
* 
* 	 yl-maxerr - if (ybn < yl-maxerr), 
* 	new_yb = / 
* 	 \ ybn 	- else. 
* 
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* 
**************************************************************************** 

X_TOLTYPE alt_function_003_xt( X_VALTYPE xl, Y....VALTYPE yl, 
Y_VALTYPE maxerr, 
X_TOLTYPE xt, Y_TOLTYPE yt, 
X_TOLTYPE xb, Y_TOLTYPE yb 

{ 

return((X_TQLTYPE) xl); 
} 

Y..TOLTYPE alt_:function_003_yt ( 

) 

11 

X_VALTYPE xi, Y_VALTYPE yl, 
Y_VALTYPE maxerr, 
X_TOLTYPE xt, Y_TOLTYPE yt, 
X_TOLTYPE xb, Y_TOLTYPE yb 

I*use tmp_something as the projected amplitude boundaries at xl,yl*/ 
X_TOLTYPE tmp_xt=xl; 
Y_TOLTYPE tmp_ytyb+(xl-xb); 
X_TOLTYPE tmp_xb=xl; 
Y_TOLTYPE tmp_yb=yt; 
Y_TOLTYPE ytn yt+(xl-xt); 
Y_TOLTYPE ybn =yb; 

/*check xl,yl is really properly selected under projected boundaries*/ 
if ( (tmp_yb > (yl+maxerr) ) I I (tmp_yt<=(yl-maxerr) ) ) 
{ 

error("Boundaries condition broken for 
alt_funct ion...003_yt (new..xl='hi, new....y1%i, maxerr='/.i, 
old_xt:%f, old_yt'/.f, old_xb=%f, old_yb='/.f", 
xl,yl,maxerr,xt,yt,xb,yb); 

} 

/*set new coords at boundaries extremities of amplitude tolerance*/ 
if (ytn>(yl+maxerr)) { ytn=(Y_TOLTYPE) (yl+maxerr);}; 
return(ytn); 

} 

X_TOLTYPE alt_function_003_xb ( 

) 

{ 

return((X_TOLTYPE) xl); 
} 

Y_TOLTYPE alt_function_003_yb( 

) 

X_VALTYPE xl, YVALTYPE yl, 
Y_VALTYPE maxerr, 
X_TOLTYPE xt, Y_TOLTYPE yt, 
X_TOLTYPE xb, Y_TOLTYPE yb 

X_VALTYPE xl, Y_VALTYPE yl, 
Y_VALTYPE maxerr, 
X_TOLTYPE xt, Y_TOLTYPE yt, 
X_TOLTYPE xb, Y_TOLTYPE yb 

/*use tmp_something as the projected amplitude boundaries at xl,yl*/ 
X_TOLTYPE tmp_xt=xl; 
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Y_TOLTYPE tmp_ytyb+(x1-xb); 
X_TOLTYPE tmp_xbxl; 
Y_TOLTYPE tmp_yb=yt; 
Y_TOLTYPE ytn yt+(x1-xt); 
Y_TOLTYPE ybn =yb; 

/*check xl,yl is really properly selected under projected boundaries*/ 
if ( (tmp_yb > (yl+maxerr) ) II (tmp_yt<(yl-maxerr) ) ) 

{ 

error ("Boundaries condition broken for 
alt_function_003_yt(new_xl=%i, new_y1%i, maxerr='/,i, 
old_xt%f, old_yt%f, old_xb=%f, old_yb=Y.f", 
xl,yl,maxerr,xt,yt,xb,yb); 

} 

/*set new coords at boundaries extremities of amplitude tolerance*/ 
if (ybn<(yl-maxerr)) { ybn(Y_TOLTYPE) (yl-maxerr);}; 
return(ybn); 

} 

B.2.6 Supplementary type-declarations and functions 

typedef float Y_TOLTYPE; 
typedef float X_TOLTYPE; 
typedef struct aug_data_list {point val; jut rule; mt seg; Y_VALTYPE ymax; 

Y_VALTYPE ymin; struct aug_data_list *next;} 
aug_data_list; 

aug_data_list * 
NEW_AUG_POINT(point * p, 	 /*A data point. 	 */ 

mt rule-number, /*The production which is presented 	*1 
/*with this data point to parse. 	*/ 

mt segment-number, /*The segment which this point is on. 	*/ 
Y_VALTYPE waveform_max, /*The max and min waveform distribu-*/ 
Y_VALTYPE waveform-min /*tion boundaries at p. 	 */ 

) 

{ 	aug_data_list 	*result; 

if (!p) error("Making NEW_AUG.POINT from an invalide data point 
which could be NULL."); 

result = (aug_data_list *) malloc(sizeof(struct aug_data_list)); 
if (result == NULL) 

error("out of heap space in function NEW_AUG_POINT\n"); 

/*Initialise all parameters to zeros*/ 
(result->val).x = 0; 
(result->val).y = 0; 
result->ruleo; 
result->sego; 
result->ymaxO; 
result->yminO; 

/*Assign parameters*/ 
(result->val).x = p->x; 
(result->val).y = p->y; 
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result->rule=rule_number; 
result->seg=segment_nuinber; 

/*check waveform_max >= waveform_min*/ 
if (waveform-max < waveform_mm) 

error("Assignment of new aug_data_point with waveform-max < 
waveform_mm"); 

result->ymax=waveform_niax; 
result->ymin=waveform_min; 

result->next = NULL; 
return result; 

} 

void free_f_aug_data_list(f_aug_data_list * list) 
{ 	struct aug_data_list *r; 

struct aug_data_list *s; 
if (list == NULL) return; 
r = list->p; 
free(list); 	 1* free base *1 

now free the line *1 
while (r ! NULL) { 

S = r->next; 
free(r); 
r = 

} 

} 
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Appendix C 

Description of Version 1 Parser 

C51 Simplified APG Description 

The Version 1 parser (Figure C.1) parses each pattern waveform segment by a pair 
of production rules: one to establish a segment's reference coordinate and to locate its 
second sample and the other to locate the remaining constituents. 

Córe-Functiàn OpératiOñs 
— Entry assumption 	I  __Objective toaóóompli 'Howop!oCeed 
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Figure C.1: The Version 1 parser described with simplified core-function outline. 
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C.2 Extracts of Programming Code 

Sections C.2.1 to C.2.5 are extracts of the C-program code implementing productions 
1 and 2 of the Version 1 parser showing the following procedures: 

testftmO, Section C.2.1, contains the code for the main body of the APG. 

start_core 0, Section C.2.2, sets the reference coordinate for Segment 1 as the 
current data point (xi, yl) and returns 1 so that rust, which describes which 
production rule list to follow, is set to the success-goto-next list, rust-s [J. 

function-000(), Section C.2.3, locates and returns all subsequent data points 
which lie within the amplitude tolerance window for Segment 1. 

always 0, Section C.2.4, returns 1 so that rust which describes which production 
rule list to follow is set to the success-goto-next list, rlist_s []. 

Supplementary type-declarations and functions, Section C.2.5. 

C.2.1 testfun() 

f_data_list *testfji_s 
( 

X_VALTYPE xl,Y_VALTYPE yl, 
X_VALTYPE x2, Y_VALTYPE y2, 
mt n, 
mt rule, 
f_data_array *data, 
X_VALTYPE scan, 
Y_VALTYPE maxerr 
) 

{ 

/*The parser's main body. 	 */ 

/*Current data pt submitted to the production.*/ 
/*Previous data Pt examined by the APG. 	*/ 
/*Index of current pt in the array 'data'. 	*/ 
/*Which rule is currently been examined. 	*1 
/*Array of all input data points. 	 *1 
/*Distance ahead to scan for next waveform pt.*/ 
/*Amount of amplitude tolerance required. 	*/ 

f_data_list *resultNULL; 	/*All data points found by this production */ 
f_data_list *tmp; 
single-list *dlistNULL,*dlist_p; /*List of productions to be followed *1 
mt dlist_evaledO; 
mt *rlist; 	 1* Indicator of which goto-next list to use *1 
mt i_rule; 	 1* Pointer to show which goto-next rule is *1 

1* being followed 	 *1 

if (n >= data->size) goto back; /*Allow parsing only for data points 	*1 
/* 0 to data->size-1. 

switch (rule) 
{ 

case 1: { 

/*Assign entries to goto-next lists*/ 

static mt rlist_sD = { 2 ,-1 }; 	 /*Success-goto-next List*/ 
static mt rlist_f[] = { 1 }; 	 /*Failed-goto-next List */ 

/*Use xl,yl as the noise-free reference coordinates of the amplitude */ 
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1* tolerance window of Segment 1. And set indicator to use success- *1 
/* goto-next list. 

rlist=(start_core(O ))?rlist_s :rlist_f; 

/*Check for rule 0 at the beginning of the goto-next list. If so, may*/ 
1* terminate parsing here so assign current point to the list of 	*1 
1* points to return. 	 *1 

for (i_ruleO ; rlist [i_rule] >0; i_rule++) { 
mt rulrlist [i_rule]; 
if (rul == 0) { 

/* REM: use convention that 0 (if occur) MUST be the 1st rule in 
* a production) 

result(f_data_list *)malloc(sjzeof (struct f_data_list)); 
if (result == NULL) error("Out of heap space!"); 
result->lengthl; 
result->p=NEV_POINT(k((data->points) En])); 

} 

else { 
if (!dlist_evaled) { 
dlist_evaledTRUE; 

/*Locate all possible next waveform sample on segment 1 by 	*1 
1* means of amplitude tolerance window. 	 *1 

dlistfunction_000(xl , yl , data , scan , maxerr 

} 

/*For all goto-next rules and for all selected next waveform 	*1 
1* points attempt further parsing. 

for(dlist_pdlist ; dlist_p ! =NULL ; dlist_pdlist_p->next) 

{ 

mt i=dlist_p->n; 
tmptestfun((data->points)[i] .x,(data->points)[i] .y,xl,yl,i,rul, 

data,scan,maxerr); 

/* Update the record of the "current data set" found if 
a new set of data has been found and if the new set of data *1 

1* has more data points, then the current set of data held. 	*1 

if (tmp != NULL && (result == NULL II 
tmp->length >= result->length)) { 

free_f_data_list(result); 1* checks for NULL*/ 
result=(f_data_list *)malloc(sjzeof (struct f_data_list)); 
if (result == NULL) error("Out of heap space!"); 
result->length 1+ tmp->length; 
1* now insert this point and the rest from tmp *1 
result->p=NEW_POINT(&((data->points) En])); 
(result->p) ->next=tmp->p; 
free(tmp); 
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I 
else free_f_data_list(tmp); 

3. 
3. 

} 

3. 
break; 

case 2: { 

/*Assign entries to goto-next lists*I 

static mt rust-s[] = { 2 ,3 ,-1 3.; 
static mt rlist_f[] = { -1 3.; 

/*Success-goto--next List*/ 
/*Failed-goto-next List *1 

	

I*Set indicator to use success-goto-next list. 	 *1 

rlist(alwaysO)?rlist_s :rlist_f; 

/*Check for rule 0 at the beginning of the goto-next list. If so, may*/ 
1* terminate parsing here so assign current point to the list of *1 
1* points to return. 

for (i_ruleo;rlist[i_rule]>=0;i_rule++) { /* irule indexes rlist *1 
mt rulrlist [i_rule]; 
if (rul == 0) ( 
/* REM: use convention that 0 (if occur) MUST be the 1st rule in 
* a production) 

result(f_data_list *)malloc(sjzeof (struct f_data_list)); 
if (result == NULL) error("Out of heap space'"); 
result->lengthl; 
result->pNEW_POINT(&((data->points) [n])); 

3. 
else { 

if (!dlist_evaled) { 
dlist_evaledTRUE; 

	

/*Locate all possible next waveform sample on segment 1 by 	*1 

	

1* means of amplitude tolerance window. 	 *1 

dlistfunction_000(xl , yl , data , scan , maxerr ); 
3. 

	

/*For all goto-next rules and for all selected next waveform 	*1 
1* points attempt further parsing. 	 *1 

** ** *************** *** * * ***** *** ** **** 
for(dlist_pdlist ; dlist_p ! =NULL ; dlist_pdlist_p->next) 

{ 

mt idlist_p->n; 
tmp=testfun((data->points)[i] .x,(data>points)[i] .y,xl,yl,i,rul, 

data,scan,maxerr); 
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/* Update the record of the "current data set" found if 
a new set of data has been found and if the new set of data */ 

/* has more data points, then the current set of data held. 	*/ 

if (tmp != NULL && (result == NULL II 
tmp->length >= result->length)) { 

free_f_data_list(result); /4 checks for NULL*/ 
result(f_data_list *)malloc(sjzeof (struct f_data_list)); 
if (result == NULL) error("Out of heap space!"); 
result->length= 1+ tmp->length; 
1* now insert this point and the rest from tmp */ 
result->pNEW_POINT(&((data->points) [nfl); 
(result->p) ->next=tmp->p; 
free(tmp); /* free tmp cell leaves tmp data ok 
* now used in result 
*/ 

} 
else free_f_data_list(tmp); 

} 
} 

} 
} 

break; 
default: error("invalid production rule ('/,d)" ,rule); 

} 
back: 
free_single_list (dlist); 
return result; 

} 

C.2.2 start-core( 

#define start-core(n) (core_starts[(n)] .xxl,core_starts[(n)].y=yl,1) 

C.2.3 function-0000 

* NAME: 	function_000( X_VALTYPE xl, 	Y_VALTYPE yl, 
* 	 f_data_array *data, X_VALTYPE scan, 
* 	 Y_VALTYPE maxerr ) 
* 
* DESCRIPTION: 
* 

 
function-0000 basically looks for the furtherest point ahead 

* 	of xl (but no more than xl+scan) lying either on a straight line 
* 	which passes through (core_start[OJ.x , core_start[O].y) & has a 
* 	gradient of 1, or just off the line by a displacement of maxerr 
* 	in amplitude. 
* 	 /1 
* 	 /1 
* 	 Amplitude tolerance window / I 

maxerr 
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* (core_start [0] .x , core_start[0] .y) ____\ / I! 
* 	 / 
* 
* 
* xl xl+scan 

*1 
single-list 	* 
function_000(X_VALTYPE xl, Y_VALTYPE yl, 

f_data_array * data, X_VALTYPE scan, Y_VALTYPE maxerr) 
{ 

static char 	*nocore = "Out of heap space in function-000"; 
single-list 	*result = NULL; 
register point *p = data->points; 
Y_VALTYPE 	ytmp; 
mt 	 i; 

for (i = 1; i <= scan ; i++) { 

/*Find coordinates of amplitude tolerance window for Segment 1 	*1 
1* (gradient 1) at a candidate next waveform sample. 	 *1 

Y_VALTYPE 	fly; 
X_VALTYPE 	xtmp = p[xl + i].x; 
X_VALTYPE 	x_offset = core_starts[0].x; 
Y_VALTYPE 	y_offset = core_starts[0].y; 
X_VALTYPE 	xtmp2 = xtmp x_offset; 
fly = p[xl + 

if (!ny) 
continue; 

ytmp = 0.000000 + 1.000000 * xtmp2 + 0.000000 * xtmp2 * xtmp2; 
ytmp += y_offset; 

/*Check if the candidate next waveform sample is in the boundaries with*/ 
1* the given amplitude tolerance. 

if (abs(ytmp ny) > maxerr) 
continue; 

result = (single_list *) malloc(sizeof(struct single-list)); 
if (result == NULL) 

error(nocore); 
result->n = xl + i; 
result->next = NULL; 

} 

/*Return all selected possible next waveform sample on Segment 1.41 

return result; 
} 
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C.2.4 always() 

#define always() (1) 

C.2.5 Supplementary type-declarations and functions 

typedef unsigned long Y_VALTYPE; 
typedef unsigned mt X_VALTYPE; 
typedef struct point {X_VALTYPE x; Y_VALTYPE y;} point; 
typedef struct f_data_array {int size; struct point *points;} f_data_array; 
typedef struct data-list {point val; struct data-list *next;} data-list; 
typedef struct f_data_list {int length; struct data_list *p;}  f_data_list; 
typedef struct single-list {int n; struct single-list *next;} single-list; 

void error(char *s,...) 
{ 	va_list args; 
va_start(args, s); 

vfprintf(stderr, s, args); 
fputc( '\n', stderr); 
va_end(args); 
fflush(stdout); 
#ifdef DEBUG 
abort(); 
#else 
exit (-1) 
#endif 
} 

data-list * NEW_POINT(point * p) 

{ data-list 	*result; 
/* Duncan's addition 13/3/93 to allow graceful */ 

/* termination when pNULL. 	 */ 
if (!p) error("Making NEW-POINT from an invalid (NULL) sample."); 
result = (data-list *) malloc(sizeof(struct data-list)); 
if (result == NULL) 
error("out of heap space in function NEW_POINT\n"); 
(result->val).x = p->x; 
(result->val).y = p->y; 
result->next = NULL; 
return result; 
} 

void free_f_data_list(f_data_list * list) 
{ 	struct data-list *r; 
struct data-list *s; 
if (list == NULL) 
return; 
r = list->p; 
free(list); /* free base */ 

now free the line */ 
while (r != NULL) { 
s = r->next; 
free(r); 
r = s; 
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void free_single_list(single_list * 1) 
{ single-list 	*tmp; 

while (1) { 
tmp = l->next; 
free(l); 
1 = tmp; 
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Appendix D 

Generation of Noise Signals 

The following explains the noise signal synthesis at the required SNR. 

D.1 Signal Power of Discrete Signals 

Given a continuous signal which is a current or a voltage, the instantaneous power 
P1  dissipated in a resistor R by a voltage e(t) and a current i(t) is 

P1 = Ie(t)1 2/R = Ii(t)1 2R watts. 

For a 1-Ohm resistance, P1 associated with a given signal 1(t) and the energy E 
dissipated by the signal during a time interval (t1 , t2 ) are therefore 

= f(t)1 2  watts and 	
E = 

£2 If(t)I 2dt joules. 

Subsequently Pa  the average power dissipated (which equals the mean-square value of 
the signal 1(t)), is 

Pa 	
1 	j2 

If(t)I 2 dt watts. 
t2  - tl 

However, for a discrete signal, the exact value of the average power dissipated can 
not be readily evaluated; an estimated value is often used instead. This estimate of the 
average power dissipated by a discrete signal 1k,  which has N samples, is taken here as: 

N 
= 	Ifk I 2 
	

(D.1) 
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D.2 Signal Power of Discrete Random-Noise Signals 

Let nk be a discrete signal which has N samples. The total average signal power 

of nk is equal to the mean-square value nj 2  

= Ink I 2  = nk2 	 (D.2) 

Suppose flk  represents a noise voltage or current such that it can be described by 
a random variable X. In this case, Equation D.2 represents the time average of X. 
Further, supposing X is ergodic, then the ensemble averages of X can be equated to 
the time averages of X. Therefore, the variance or the second moment of X, designated 

by a 2 , equals the mean-square value nk 2 and to the average power P, i.e., 

Pn =flk 2 7=iI Ink I 2 	 (D.3) 

D.3 Scaling of the output of a Random Noise Generator 
to obtain required Signal Power 

Let 	denote the variance of a random variable X o  which represents the output of 

a random noise generator. The total average signal power, P 0 , of the subsequent noise 
signal nk,,  generated is, from Equation D.3, 

Pm0 	 >:1nk0 1 2  

Subsequently, if it is required to obtain a noise signal which has a total average 
signal powerthat is C times that of P 0 , then, 

N 	 N 
C .= C . CrxO= jIflkoI 2  = 	2 C1nk01 2  = TT>2 IVTh ko l 2  Pno  

It follows that if the variance of the random noise generator output is 1, 

12 	 (D.4) 

Therefore, it may be concluded, when it is required to obtain a noise signal by 
means of scaling the output of a random noise generator, then, provided the variance 
of the output is 1, a resultant signal power of P can be contrived by multiplying each 
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generator output (nb) by a multiplier A, where (by substituting P,,, to both P, and C 
in Equation D.4), 

	

A= VP7  .7 
	

(D.5) 

D4 Scaling of the output of Random Noise Generator to 
obtain required SNR 

Suppose a N-sample noise signal nk is required to add to a N-sample noise-free 
discrete signal 1k to achieve a desired SNR which is defined as the ratio of the average 
signal power of the noise-free signal, F3 , to that of the noise signal, P, 

SNR= 
Pn  

where (from Equation D.1), 

N 

P=7fkI 2  >J I  
k=1 

In decibels, SNR is expressed as: 

ri 
[SNR]dB = 10 10910 Li Pn 

Rearrange gives: 

PS  
fl 
- 	[SNRidB  

	

10 	10 

Hence, if the noise signal is generated, based on scaling the output of a noise gen-
erator assumed ergodic and exhibiting an output variance of 1, then from substituting 
Equation D.6 into Equation D.5, the requisite scaling factor A is: 

I 	 > 1 Ifk l 2  
A = VPn = \I ISNRJdB 	[SNRJdR 

Nio 	10 	 10 	10 

(D.7) 

Consequently, the resultant signal 9k,  formed by adding 1k  with  nk,  can be realised 
by the method shown in Figure D.1. 

(D.6) 
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NOISE-FREE 	1k = VI, 12,..., 1N 

SIGNAL, 1k I 
Work out the Signal Power of the Noise-Free Signal: 

N 
A 

P 	N kIS 

Determine the necessary scaling factor, A , to the output 
of the noise generator. 

[SNR ]dB A 

	

REQUIRED 	 A 
- 	([ SNR]dB) 

P 
S 

	

10 	0 

I CURRENT I >[Obtain new seed value using current time: 
CLOCK  seed = - (secs + 60* mins + 60*60* hours) 
TIMEJ  

Generate Noise Signal using: 

nk  = A gasdev(&seed), 	for k= 1 to N. 

where gasdev(&seed) is the output of a Gaussian noise 

generator which has zero mean and unit variance. 

k = t'I, 	2,..., 	N )  

Figure D.1: The method for deriving a noise signal to superimpose on the noise-free 
signal to obtain the desired value of SNR. 

D.5 Examples of Noise-Added Signals 

To illustrate the application of the method shown in Figure D.1, an example 50-
sample noise-free signal, 1k, shown in Figure D.2, is deployed. The signal power given 
by Equation D.1 is: 

1 N 	 N—I 	 49 
=>IIfkI2= 1 	IfkI2=IfkI2 

k=1 	k=O 	k=O 

	

= 	1130 12 + 1321 2  + 1371 2  + 13812  + 1451 2  + 146 12 + 1461 2  + 1461 2 + 146 1 2+ 
50 

461 2  + 1451 2  + 441 2  + 143 12  + 1401 2  + 139 121 

f1  + 

12 + n  

JN+flN I 
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= 525.46 

Noise-Free Input Signal 

50 	 noise-free signal - 

40 

1) 
	30 

0 

20 
a- 
E 
	

10 

0 

-10 

0 	101520253035404550 
Discrete Data Samples 

Figure D.2: A noise-free signal. 

If 1k  is corrupted with noise in the manner outlined in Figure D.1, the required 
scaling factor A, for multiplying the output of the Gaussian noise generator gasdev() 
[147], is described by Equation D.7. 

The associated values of the multiplier A for three example SNR values are: 

For [SNR]dB = 20, I 5 A 
= 	

25.46 = v'5.2546 = 2.29229  V 
For [SNR]dB = 15, A =" 525.46 = 	16.6165 = 4.07633 

io 	10) 

For [SNR]dB = 10, I A 
= 	

525.46 

 / 	c: 	= V'52.546 = 7.24886 

Figures D.3(1a), (2a) and (3a) are examples of noise signals, nk,  which are generated 
for SNR of values 20, 15 and 10 dB. The associated output signals 9k  are displayed in 
Figures D.3(1b), (2b) and (3b). 

D.6 Validating noise generation method 

Since the noise signal is obtained by scaling the output of a Gaussian noise generator, 
the proximity between the theoretical and the actual noise sample distributions can be 
used as for validation. For large N, the distribution of the resultant noise samples of 

k should approach the Gaussian probability density function p(x), viz. 

1 
AX) = 

where m and a 2  are the mean and variance respectively. With zero mean and variance 
given by the noise power P (Equation D.3), and with the noise power P being the 
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(1b) Noise-Added Signal at 20 dB SNR 
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Figure D.3: (la), (2a) and (3a) are examples of background noise signals for generating 
signals at 20, 15 and 10 dB SNRs. (lb), (2b) and (3b) are the noise-contaminated 
signals. 

squared value of the multiplier A (Equation D.5), the distribution of the discrete samples 
of nk would therefore be: 

1 
P  = 	 (x)2/2P 	1 

e(x)2/2A2 

v/ v/  

This distribution curve is displayed in Figure D.4 showing the theoretical plot as 
well as the actual occurrence frequency of the various values of noise signal nk for three 
different values of A, at 10, 15 and 20 dB SNR. Here each record is obtained from 
N = 100, 000 signal output samples. 

Note that in this particular exercise, the values of the output signal are truncated to 
the nearest integer. Consequently, as can be expected, the magnitude of the recorded 
frequency of occurrence for 0 is twice as high as its theoretical counterpart. 
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Figure D.4: Plots of both the recorded and the theoretical frequency distribution of the 
occurrences of the various sample amplitude values of the noise signal. (a), (b) and (c) 
are plots corresponding to 10, 15 and 20 dB SNR. 
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Appendix E 

Supplementary Plots of Parser's 
Operational Characteristics 

The supplementary plots included here are: 

• Figure E.1 : Recognition characteristics with different values of amplitude toler- 
ance for signals with noise superimposed only on original waveform samples. 

• Figure E.2 : Recognition characteristics with different values of noise threshold 
for signals with noise superimposed only on original waveform samples. 

• Figure E.3 : Recognition characteristics when the success-goto-next list entry for 
production rule 4 is altered to : 45, 5 and then 4. 

Figure E.4 : Recognition characteristics when the success-goto-next list entry for 
production rule 2 is altered to : 23, 3 and then 2 and that for production rule 4 
to : 45, 5 and then 4 

• Figure E.5 : Recognition characteristics when the parsing process is required to 
parse all of a production's goto-next rules. 

• Figure E.6 : Recognition characteristics when the parsing process is required to 
parse all potential waveform points found at a production. 

• Figure E.7 : Recognition characteristics, for noise only signals, where the SNR is 
calculated from signals with different numbers of original waveform samples being 
removed. 
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Figure E.1: The recognition performance plot with different values of amplitude toler-
ance for signals with noise superimposed only on original input waveform samples. The 
contours show the recognition percentages from 1% to 99%. The contour step size is 
1%. 
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Figure E.2: The recognition performance plot with different values of noise threshold for 
signals with noise superimposed only on original input waveform samples. The contours 
show the recognition percentages from 1% to 99%. The contour step size is 1%. 
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SNR in dB 

(c) Basic Characteristic Recognition Plot for 
Noise-Only Signals (devoid of 

Original Waveform component) 
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Figure E.3: Recognition characteristics plots for when the success-goto--next list for 
production rule 4 is altered to : 45, 5 and then 4 (as opposed to 4, 5 and then 45 
shown in Figure 3.3), (a) for signals with noise samples superimposed on all input signal 
samples; (b) for signals with noise superimposed on the original waveform samples only 
and (c) for noise alone. 
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Figure E.4: Recognition characteristics plots for when the success-goto-next list for 
production rule 2 is altered to : 23, 3 and then 2 (as opposed to 2, 3 and then 23 
shown in Figure 3.3) and that for production rule 4 is altered to : 45, 5 and then 4 (as 
opposed to 4, 5 and then 45 shown in Figure 3.3), (a) for signals with noise samples 
superimposed on all input signal samples; (b) for signals with noise superimposed on 
the original waveform samples only and (c) for noise alone. 
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Figure E.5: Recognition characteristics plots for when the parsing process is required 
to parse all of a production's goto-next rules, (a) for signals with noise samples super-
imposed on all input signal samples; (b) for signals with noise superimposed on the 
original waveform samples only and (c) for noise alone. 
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Figure E.6: Recognition characteristics plots for when the parsing process is required to 
parse all potential waveform points found at a production, (a) for signals with noise sam-
ples superimposed on all input signal samples; (b) for signals with noise superimposed 
on the original waveform samples only and (c) for noise alone. 
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Figure E.7: The recognition performance plot for noise only signals. The SNR applied 
to where the input signal has different numbers of original waveform samples being 
removed. Here successful recognition implies the failed rejection of noise-induced false 
waveforms. The contours show the recognition percentage 1%. The contour step size is 
1%. The performance increases with the decrease in both the SNR and the quantity of 
original waveforms being deleted. 
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Appendix F 

Evaluation of Quantisation Error 

F.1 Error from quantising input signal samples 

(Section F.1 contains extracts from [144] pages 541 to 543.) 

To illustrate this, let the amplitude range of an input signal lie between —n/2 to 
n/2 (with n/2 being a whole number). As the difference between adjacent quantisation 
levels is 1, if quantisation thresholds are set mid-way between two adjacent levels, there 
will be n quantisation levels situated at +1/2, +3/2, ..., +(n - 1)/2 (see Figure F.1). 

(n-1)/2 

Quantisation 
thresholds 

- 

312 

j
signal 

112 T "-. 
-1/2 

An example 
level 

Quantisation level 
assigned 

-3/2 

/ 
Quantisati 	_______________ 

levels -(n-1)12  

Figure F.1: Quantisation levels. 

Assuming all signal amplitudes are equally probable and the number of quantisation 
levels are even, the probability density function of the continuous signal is: 

() 	{ 	: 	
< 	' 

elsewhere 
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The mean-square signal, Pms, is: 

[y3 l  

f  y 2p(y) dy =

n 
2

y 2p(y) dy = 
 

	

o 	
-  

- 

- 

- 12 

If all signal amplitudes are equally probable then the quantisation error c, which is 
the difference between the signal level and the nearest allowed quantisation level (Fig-
ure F.1), would be equally likely to lie in the range -1/2 to 1/2. Then c can be described 
by the probability density function: 

P(C)—{ 1 
, —~f<, 

- 

	

 0 , 	 elsewhere 

The mean-square quantisation noise is therefore, 

= 
12 

Subsequently the ratio of the mean-square signal (before quantisation) to the mean-
square quantisation noise is: 

SNR=-=n2  

Expressed in decibels this becomes: 

[SNR]dB = 10 log 10  [SNR] = 10 log10  n2  = 20 log10  n 

Therefore, if all signal amplitudes are equally probable, for signals with large ampli-
tudes the mean-square signal to mean-square quantisation noise ratio will increase and 
consequently the effect of quantisation error will be reduced. 

F.2 Error from quantising noise signal samples 

F.2.1 Relationship between standard deviation of noise signals and 
quantisation error 

Q uantisation error has a more significant effect for noise signals with a narrow am-
plitude distribution. Figure F.2 plots the ratio of the maximum quantisation error (i.e., 
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Figure F.2: The ratio of the maximum quantisation error (i.e., 0.5 unit of amplitude) 
to the standard deviation a for various values of signal power and SNR. 

0.5 amplitude unit) to the Gaussian noise standard deviation a for various values of 
signal power and SNR (Equations D.3 and D.6, Appendix D). Figure F.2 gives an in-
tuitive idea of what values of signal power and SNR are more suitable to use in order 
to minimise the effect of quantisation. Where the ratio of the maximum quantisation 
error to a is large (e.g., for values of SNR above 25 dB with signal power less than 50 
units the ratio exceeds 0.7) quantisation error has a more significant effect than regions 
such as those below 10 dB SNR with signal power greater than 100 units where the 
ratio falls below 0.2. 

F.2.2 Distortion of SNR due to quantisation 

This subsection examines the effect of quantisation quantitatively with regard to 
SNR. Suppose a noise-imposed signal is quantised. Assume the original noise-free wave-
form sample amplitudes are whole numbers so that the change to the SNR is attributed 
to the quantising of noise samples alone. The maximum amplitude shift of an individual 

noise sample will be the maximum quantisation error (i.e., 0.5 amplitude unit). Let 

denote the resultant modified noise power and Pe  the difference between TI, and Pa'. 

The maximum Pe,  P,,...,occurs when the amplitude shift of all noise samples is the 

greatest. For a N-sample signal, denoting the amplitude of the kth sample by nk, 
is 

= 	+ Pam  

= 	I(nk+0.5)2 
	

[((fl ) 2 + fl + 025)] 

167 



	

N—i 	 1 N—i 

= 	 (F.1) 

	

k=0 	 k=0 

The second term of Equation F.1 is the mean value of the noise signal. If the noise 
signal has no dc component then Equation F.1 becomes, 

_•, 	1 N-1 
= 	(ni) 2  + 0.25 

k=0 

= P+0.25 
	

(F.2) 

In the quantised signal, the resultant modified SNR, SNR', is related to the resultant 
modified noise power P, by: 

[SNR']dB = 10 10910 
 ( Fj~n 

I 
 ) 

	

(F.3) 

Let {]dB  be the difference between {SNR]dB  and [SNR']dB.  Substitute for [5]dB  in 
Equation F.3 obtains 

[SNR]dB + [6]dB = 10 10910 
(Fnt ) 

Rearranging gives: 

(7 - 18IdB = 10 10910 (z7) - [SNR]dB = 10 10910 	10 log10 
 I 

	

( Pj~n 
/\ 

= 10 log10  Fn I 
Fn 

Substituting P' from Equation F.2 gives: 

(

/ i\ 
[öIldB = 10 log10 	

+ 0.25 

J 	

-- / ) 	
10 log10 ( 	025 I 1 + 

\ 	Pn / 

Finally, substituting P from Equation D.6, Appendix D, gives: 

1 	

(1 	

1 
[5]dB =  1010910 	

+ 

( 

	10 log10 	
[SNR]dB 

+ ) 

1 1_ ;  
0.25 

10 	 ) ) 	

0.25x10 10 

[SNRJp 

Figure F.3 plots [5]dB for various values of SNR and P3  reveals that: 
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Figure F.3: Plot of 16IdB against SNR and signal power. 

[ö}dB decreases with an increase in [SNR]dB. 

Assuming maximum quantisation error exists at all samples, the distortion will 
be less than 1 dB for virtually all values of SNR less than 20 dB with P being 
greater than 100 units of power. 

Consequently if experiments are conducted with suitable values of SNR and ii then 
the quantisation distortion due to the use of integers will only cause a 1 or 2 dB SNR 
degradation and thus will only be a problem at large SNR values. 

F.2.3 Demonstration of quantisation distortion to results of recogni-
tion performance 

Figures F.4(a) and (b) show the basic recognition characteristics plots for the APG 
parser operating with integer and floating point sample amplitude representations. The 
noise-free waveform used is that shown in Figure 4.7(a), page 52. The test signal's total 
sampling instances are 50. The performance results are obtained from the average of 
1000 signals. The parameter values used are the same as those for obtaining the basic 
APG recognition characteristics plots (Table 4.1, page 52). 

The differences between the plots are close to Section F.2.2's estimation. 
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Figure F.4: Basic APG recognition characteristics plots for signals with noise samples 
superimposed on all input signal samples. (a) Using integers for sample amplitude 
representation. (b) Using floating points for sample amplitude representation. 
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Appendix G 

Example evaluation using 
Probability of Detection 

The evaluation for the likelihood of recognising signals using probability of detection 
is explained here. 

(a) Noise-free signal 1 
	

(b) Noise-free signal 2 

24 

E 22 

20 

0 	 4 5 	 9 10 	 14 

Sampling instances 

24 

22 -  

20 

0 	 4 	6 	 10 	12 	16 

Sampling instances 

Figure G.1: The samples of two noise-free signals. 

Noise-free signals 1 and 2 (Figures G.1(a) and (b)) differ at the absence of turning 
point samples in the latter. Their recognition likelihood, according to probability of 
detection, is calculated based on the given amount of amplitude-error tolerance and the 
reference pattern waveform loci defined by the noise-free waveform samples (Figure G.2). 
It uses the probability p, that the amplitude of individual signal sample falls within 
the reference pattern waveform window, which is calculated from the noise-amplitude 
probability distribution profile for specific values of SNR. 

Gd Probability of recognising signal 1 

This recognition probability is derived by considering the following five cases: 

Case 1: When the turning point sample 9 is present. To recognise Segment 3 
requires a minimum of 2 samples out of 5 present from samples {1O, ..., 14}. 
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(a) Noise-free signal 1 
	

(b) Noise-free signal 2 

/ 
24 

22 1UWn1 
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Sampling instances 

Figure G.2: The respective reference pattern waveform loci and windows. 

This probability, C1, is 

Cl 
= (

) P2(1._)5_2+ 
( 

)3(1_)5-3+  ( )4(1_)5-4+ ( ) 1_y- 
 

5 

= lop 2 (1—p) 3 +10p3(1—p) 2 +5p4(1—p)+p5  

Case 2: When the turning point sample 9 is not present. To recognise Segment 
3 requires a minimum of 3 samples out of 5 present from samples 110, ..., 14}. 
This probability, C2 , is 

= ( 
)3(1_)-3+ 

 ( 
)4(1_)5-4+ 

 ( 

)p5p)5_5 

= lop 3(1—p) 2 +5p4 (1—p)+p5  

Case 3: When the turning point sample 5 is present. To recognise Segment 2 
requires a minimum of 2 samples out of 4 present from samples {6, ..., 9}. 
The probability, C3, of detecting at least 2 out of 4 samples on Segment 2 and of 
recognising Segment 3 samples is 

C3  = probabilities when turning point sample 9 is present + 

probabilities when turning point sample 9 is not present 
(3 ) p2( l - P)4-2c, 

 + ()3i_4-3c1+ ( )4(1_)4-4c1+ 

[(4 

 ) - ( 3 
)]p2(l_P)42C2+ [( ) - ( )]3(i_)4-3C2+ 

[() - ( )]P41-P4-4c2 

= [3p2 (1 — p) 2  +3p3 (1 -p) +p4 ] Ci  + [3p2 (1 — p) 2  +p3 (1 — p)] C2  
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Case 4: When the turning point sample 5 is not present. To recognise Segment 
2 requires a minimum of 3 samples out of 4 present from samples 16, ..., 9}. The 
probability, C4, of detecting at least 3 out of 4 samples on Segment 2 and of 
recognising Segment 3 samples is 

C4 = probabilities when turning point sample 9 is present + 

probabilities when turning point sam 

(
)3(i_4-3c1+ 

( 
)1 

[( 4) - ( 
)]P31-P4-3c2+ 

[3p3(1 —p)+p4] Cl + [p3 (1 —p)] C2 

pie 9 is not present 

- p)44C1 + 

4

) - ( 
 )]P4(1-P)4-4c2 

Case 5: The recognition of the entire signal 1. To recognise Segment 1 requires 
a minimum of 3 samples out of 6 present from samples {O, ..., 51. The probabil-
ity, C5, of obtaining at least 3 out of 6 samples on Segment 1 and of recognising 
samples on Segments 2 and 3 is 

C5 = probabilities when turning point sample 5 is present + 

probabilities when turning point sample 5 is not present 

= 	(
)P3(1_P)6_3c3+ 

( 	
)P4(l_P)6_4c3+  

( 
)P5(l_P)6_5C3+ 

( 

5 )p6(j_P)6_6C3+ 

[() - ( 
)]3i_6-3c4+  

[( 	) - ( 	
)]P4(1_P)6-4c4+ 

[() - ( 
)]P5(1P)6-5c4+  

{( 

6) 	(5 
)]P6(1P)664 

= 	{10p3(1 
- p)3  + 10p4(1 

- p) 2  + 5p5(1 
- p) + p6] C3 + 

[10p3 (1 —p)3 +5p4(1 —p)2  +p5 (1 -p)] C4  

G.2 Probability of recognising signal 2 

This derivation is delivered by considering the following five cases in a manner similar 
to the previous cases in this appendix. 

Case 1: When the turning point sample 11 is present. To recognise Segment 3 
requires a minimum of 2 samples out of 5 present from samples 112, ..., 16}. 
This probability, B 1 , is 

B1 
= (

)P2(1_P)52+ 

( 
)3(i_)5-3~ 

 ( 

) p4(l_)5-4+ 
 ( 

)_s_ 

= 10p2 (1 —p)3 + 10p3(1—p)2 +5p4(1—p)+p5  
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Case 2: When the turning point sample 11 is not present. To recognise Segment 
3 requires a minimum of 3 samples out of 5 present from samples 112, ..., 16}. 
This probability, B2, is 

B2 = 
( 

 
5  
)3i_)5-3+ 

( 
)4(i_)5-4+ 

 ( 
)1_- 

= 10p3(1 —p)2  +5p4 (1 —p)+p5  

Case 3: When the turning point sample 5 is present. To recognise Segment 2 
requires a minimum of 2 samples out of 6 present from samples {6, ..., 111. 
Let Pe  be the probability of obtaining a false noise-induced turning point in the 
reference waveform window (see Figure G.3). The probability, B3, of obtaining at 
least 2 out of 6 samples on Segment 2 and of recognising Segment 3 samples is 

B3 = probabilities when turning point sample 11 is present + 

probabilities when turning point sample 11 is not present 

= ( 

5 
)P —  — p)62pB j  + 

( 

)p3-1(1 p)63pe Bi + 

(13
) P4_ 1 (1 P) 6 _ 4P B+ 

(5
)P5 _ 1 (1_P)6 _ 5P B 1 + 

(5 ) p6-1(1  _ P)6-6 p
~ B i  + 

[(6 

 ) - ( 

s )]P2(1P)621(1P)B+ 

[(6 

 ) - (5
)Jp3(1_P)631(1_P)B2+ 

[(6 

 ) - (5
)jp4(1_p)641(1_pe)B2+ 

[() - ( 
)]P5(1_p)651(lPe)B2+ 

[(6 

 ) - (

5 )IP6(l 
- p)661(1 - pe)B2 

= [5p(1 —p) 4pe Bi + 10p2 (1 p)3pe Bi + 10p3(1 p) 2pe Bi+ 
5p4(1—p)pB1 +p5pe Bi] + [1Op2(1_p)3(1_p)B2+ 

10p3(1 - p) 2 (1 - pe )B2 + 5p4(1 
- 

p)(l - p)B2 + p5(1 - pe)B2] 

= [5p(1 — p)4 +1op2(1—p)3 +1op3(1_p)2 +5p4(1_p)+p5]pB1 + 
[10p2(1 

- p)3  + 10p3(1 - p) 2  +5 P4(l  
- p) + p5] (1 - pe)B2 

Case 4: When the turning point sample 5 is not present. To recognise Segment 
2 requires a minimum of 3 samples out of 6 present from samples 16, .., 11). 
The probability, B4, of obtaining at least 3 out of 6 samples on Segment 2 and of 
recognising Segment 3 samples is 

B4  = probabilities when turning point sample 11 is present + 

probabilities when turning point sample 11 is not present 

	

= ( 

5 	

P)6_3PB+ ( 
)p4-'(1_p)64B1+ 

	

( 

5 	
p)65pB+ 

( 
)v6'(1_)66B1+ 
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Figure G.3: Samples of Signal 2. 

1/ 6 [1) - ( )]P3(1_P)631(1_Pe)B2+ 

1/ 6 
4 ) - ( 

)]P4(1_P)641(1_Pe)B2+ 

1/ 6 
5 

) - ( 

)]p5i 
_p)65l ( 1 	pe)B2 + 

6 

ft 6 
 ) - ( 

) fr1 —p)661 (1 	p)B2 

= 	10p2 (1 —p) 3pBi  + 10p3 (1 —p) 2pBi + 5p4 (1 	p)peBi +p5pe Bi + 

10p3 (1 —p) 2 (1 pe)B2 +5p4 (1 —p)(l 	pe )B2 +p5 (l —pe)B2 

= 	[10p2 (1 _p) 3  + 10p3 (1 —p)2  +5p4 (1 —p)+p 5 ] Pe Bi + 

[10p3 (1—p) 2  +5p4 (1—p)+p5 ] (1 	pe )B2 

Case 5: The recognition of the entire signal 2. To recognise Segment 1 requires 
a minimum of 3 samples out of 6 present from samples {O, ..., 5}. The probabil-
ity, B5, of obtaining at least 3 out of 6 samples on Segment 1 and of recognising 
samples on Segments 2 and 3 is 

B5  = probabilities when turning point sample 5 is present + 
probabilities when turning point sample 5 is not present 
(5 = 	

2 
)P3_1(1_P)6_3PB3+ ( 
	

)P4_1(1_P)6_4PB3+ 

(5 )p5-1(l_p)6-5pB3+ 

( 

5 )P6_1(1P)6_6pB+ 

176\ 

R (5 

) - 	
2 
)] p3( l  _ P)6-3-1(1 — p,)B4  + 

116\ /5 
)} P4 (1_ P) 6 _41 (1 _ Pe )B4 + 

f(6\ 

ft 5  
(5 

) - 	
4 )]P5(1_P)651 (1 _Pe)B4+ 

-( 5 1p6(1_p)661(1_pe)B4 

10p2(1 - p) 3pe B3 + 10p3(1 - p) 2pB3 + 5p4(1 - p)pB3 + p5peB3  + 
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1Op3(1p)2 (1pe)B4+5p4 (1_p)(1_pe )B4+p(1_pe )B4  

= [10p2 (1 —p) 3  +10p3 (1 —p) 2  +5p4(1 p)+p5]peB3+ 

[1Op3 (1—p) 2 +5p4 (1—p)---p 5 ] ( 1 pe)B4 
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Appendix H 

Probability of generic waveform 
recognition 

The probability of recognising the generic waveform (of our recognition task) for any 
given legal waveform combination is derived here by evaluating the recognition of the 
waveform segments in the following six scenarios 1 . 

H.1 Scenario 1: Two samples on gradient 1 slope 

A two-sample waveform has a gradient of 1 (with respect to the sampling instances) 
if the amplitudes Yi  and Y2  respectively of the two samples x 1  and x 2  fall within the 
relationship Y2 - = X2 - x 1 . Let P((X1,X2)9rad=1)  denote the probability of x 1  and 

X2 being on the same slope gradient 1 slope and p1 (y3 ) of xi exhibiting the amplitude 
value Yj•  Figure H.1 shows the amplitude probability distribution of two noise-imposed 
samples. 

If no amplitude tolerance is allowed p((x1, X2) grad=1) is the sum of the products of 

Pi(Yi) with P2 (Y2) for all combinations of Yi  and Y2  which satisfy y2 - Yi = X2 - 

p((x1, X2)grad=1Ito1eranc=O) = >p1(y1)p2(x2 - Xi + yi) 	 (H.1) 
Ill 

where p2(x2 - xi + yi) is the probability of obtaining x 2  at (x 2  - x1 + y) amplitude. 
For the Figure H.1 example this probability is: 

p((X1,X2)gradz1Igo1erancezO) = >.:P1(Y1)P2(X2 - x i  + Yl) 

= P1(-3)P2(-2 ) +pl(-2)p2( -1 ) +pl(— l)p2(0) + pl(0)p2(1) +pl(l)p2(2 ) 

'Note that the final equation calculates the recognition probability for an entire sample space of noisy 
signals and not merely for a single amplitude sequence. So to determine if a single amplitude sequence 
may be recognised requires presenting it as the only sequence in the sample space with each sample's 
amplitude assigned the probability of 1. Thence the probability of successful and failed waveform 
recognition will be 1 and 0 respectively. 

177 



C 

'3. •O6 

•024 
<6 

n45 
534  

eor 
3 

0 0.0, I •OflI 
031 

0.24 IM hkthhood 
o 

•O.24 

06 
.3 0.01 .mphsak 

I 	2 	Sampling instan 
I I 

1 	2 

	

Amplitude probability of 	Amplitude probability of 

	

occurrence of X, 	 occurrence 01 13  

038 	 p(y2 ) 	oa 

0.24 	0.24 	 024 	024 

I 	
0.061 
	I 036 	 0.06 	 036 

I°d" I 	I 0.%, 	 I 	I 0.01 

-3-2-10123 	 3456789 
Noisy sample amplitude. Y1 	 Noisy sample amplitude, 

	

E_7771 	 F-7.71 

	

fi t 	i 	LJJ 
Ifrt< 

	

1 	2 	Sampling instances 

	

xl 	x2  

Figure H.1: Amplitude probability distribution of two samples. 

+ p1(2)p2(3) + P1(3)p2(4 ) 

= 0.0012 

Equation H.1 is expressed in terms of the amplitude of Yi  calculating the probability 
for Y2  to be (x2  - x 1  + yi)- The same expressed in terms of Y2  is 

P((X27X1)gradlltolerance0) = 	P2(y2)p1(y2 - X2 +xi) 
	

(H.2) 

where P1 (Y2 - x 2  + xi ) is the probability of obtaining x 1  at (Y2 - x2  + x i ) amplitude. 

However if amplitude tolerance is imposed, all combinations of the resultant implicit 
or apparent (as opposed to the explicit or literal) values  of Y2  and Yi  which satisfy 

Y2apparent - Yiapp oren t = 22 - XI 	 ( H.3) 

should be considered instead. Express Equation H.3 in terms of Y2  gives 

112apparent = 	l + Yi oppar, n 	 ( H.4) 

Since, for +tol units tolerance, Ylapparent comprises { Ylliteral —to!, . . Yl i i terat  1, Y1 tterat  

2 e.g., literal amplitude 3 would result in apparent values 1,2,. . . , 5 given a tolerance of ± 2. 
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Yl isterai  + 1 7 	Yliiterai + tot } Equation 11.4 can be expanded to: 

Y2apparent = X2 - Xi + Yi01 - tot 1 
Y2opporent = X2 - X1 + Y1terai - 1 

Y2apparent = 	- Xi + Yl isterai 	( 	 ( H.5) 

Y2apparent = X2 - Xi + Yl itterai  + 1 	I 

Y2apparent = X2 - Xi + Ylii terai  + tot J 
Now as Y2opparent  comprises: 	 . 	Y2 1 -. z 1  Y2 1terai  I Y21, tera1+ 1  . Y21 tera + 

tol} Equations H.5 can similarly be expanded to: 

Y2 1sterat  = X2 - Xl + Yliiterai - 2tol 

Y2 1 i tera  = X2 - Xi + Yliiterat - 1 

Y2 1iterai  = X2 - Xi + Ylisterai 	
( 

Y2 1terai  = X2 - XI + Y1 iterai  + 1 	I 

Y21 terai = X2 - X1 + Ylii tera i + 2tol I 
These may then be condensed to: 

Y2, terat  = X2 - x 1  + /1jj tera L + A 	 (H.6) 

or in terms of Y2 

Yl uteraj  = Y21iteraL - x 2  + x 1 	A 	 (11.7) 

where A denotes {-2tol, . . ., —1,0, 1, . . ., 2tol}. Therefore, in terms of Yl  (i.e., Yijtteraj) 

the probability for samples x 1  and x 2  being related by Equation H.3 given +tol units 
tolerance is 

Vol 

p((X1,X2)gradlltolerancezr±tol) = 	pi(yi) > 	- xi + Yi + 5) 	(H.8) 

	

Y1 	 S=-2tol 

Note Equation H.1 is consequently a special case of Equation H.8 with tot = 0. With 
the Figure H.1 example, for tot = 3 Equation H.8 gives 

P((1,X2)grad=1Ito1erance=±3) = > I y, pi(yi) >15=_2x3P2(X2 - Xi + Yi + 5) 

= E  Pi(Yi) E P2 (X2 - Xi + Yi + ) 
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= Pi(-3) E P2(-2+6) + pi( -2) 	P2( -1  + 6) +p1(-1)p2(0+6) 

+ p1(0)p2(1+ 6) + p1(

1

) 	p2(2  + 6) 
	

+ pi(2) 	P2(3  + 6) 

+ p1(3)p2(4+ 6) 

= 0.8459 

As a check, Figure H.2 shows all the matches  of Yli.teraj  and Y21iterai  which satisfy 
Equation H.3. The probability of these matches give the same answer 0.8459 as above. 

Figure H.2: Matches between values of Ylisterai  and Y2 1 i tera  

Equation H.8 expressed in terms of Y2  is 

Vol 

p((12) X1)grad=lltolerance=±tol) = 	P2(Y2) 	i 	Pi(Yi - X2 + X1 - 6) 	(H.9) 
Y2 	 S=-2tol 

Therefore, Equation H.2 is a special case of Equation H.9 with tol = 0. With the 
Figure H.1 example, for tol = 3, Equation H.9 gives the same answer 0.8459 as before. 

The probability that the samples x 1  and x 2  are NOT on the same gradient 1 slope 
and hence do not lie within the relationship Y2 — Y1 = x 2 —x 1  can be found by subtracting 
from unity the probability that the samples are on the same slope. For the Figure H.1 
example, this probability given by Equations H.1 and H.2 is 1 - 0.0012 = 0.9988 and 
from Equations H.8 and H.9 1 - 0.8459 = 0.1541 

Alternatively this probability can be found by considering either sample being miss- 
ing. Let p((X1,)grad1)  denote the probability that x 1  is present and is not on the 
same gradient 1 slope as x 2 . If no amplitude tolerance is required then 

P((X1,)grad1Ito1eranceO) = E p1 (y1 )(1 - 	- xi + yi)) 	 (H. 10) 
Y1 

3 Particular values of 	and Y2jzteral are  matched if the intersection between the set of required 

	

target value of Y2pprt  with the set of apparent value 	 derived from y21.1 is not empty. 
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Similarly for x2 being present but not on the same slope as x 1 : 

P((X2 1 i)grad=1Ito1erance=o) = 	p2(y2)(1 - P1(112 - 12 + x 1 )) 	 (H.11) 

With the Figure H.1 example, Equations H.10 and H.11 both give 0.9988 

However, if ±tol units tolerance is required and that x 1  is present but not on the 
same slope as x 2 , 

Vol 

p((x i , X2)grad=11ojerance=±tol) = jpi(yi) 1 - 	p2 (x 2  - x 1  + Yi + 6) 
Yi 	I 	5=-2tol 

 

Similarly for x 2  being present but not on the same slope as x 1 : 

Vol 

p((x2, X1)grad=lltolerance=±tol) = >.p2(y2) 1 - 	p1(112 - X2 + ii - 6) 
Y2 	 S=-2iol 

 

With the Figure H.1 example, suppose +3 units tolerance is again required, Equa-
tions H.12 and H.13 both give 0.1541 

H.2 Scenario 2: Three samples on gradient 1 slope 

A three-sample waveform has a gradient of 1 if the amplitudes Yi, Y2 and 113  respec-
tively of the three samples x 1 , x2 and x3 fall within the relationship 112 - 111 = X2 - 

113 - Y2 = X3 - x2  and 113 - Yi = X3 - x i . Let p((x 17  x 2 , X3)gradl) denote the probability 
that the sequence of samples x 1 , X2  and x3  are on the same gradient 1 slope. Figure H.3 
shows the amplitude probability distribution of three noise-imposed samples. 

If no amplitude tolerance is required p((x 1 , x2, X3)grad=1)  is the sum of the products 
of P1(111)  with p2(y2)  and p(y) for all combinations of Yi, 112 and 113  which satisfy 
112 - 111 = X2 - x 1 ; 113 — Y2 = z3 — x 2  and 113 - 111 = x3 —x 1 . For example, in terms of 111: 

p((x i , X2 X3) gra drr 11to1erancez O) = p((x i , X3, X2) gradzr 1Ij o 1eracezrQ) 

= 	pi(yi)p2(x2 - x i  + y)p3(x - Xl + 111) 
	

(H.14) 

For the Figure H.3 example Equation H.14 gives 0.010068 which is the same as the 
answers given by equations based on x 2  and x3. 
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Figure H.3: Amplitude probability distribution of three samples. 

When +tol units tolerance is applied, one may, by intuition, consider relating x 1  to 
the other two samples (in terms of literal values, Equation H.6) by 

	

Y2 1iterai  =X2 - X1 + Yl i i terai  + i 	and 

Y31,terai = 	- Xl + Y1 terai  + L 	 (H.15) 

However, this is insufficient! Equation H.15 needs also to consider the relative sizes of 

Yl iiterai  and Y2j stero j I i.e., 

if 	Y2 1 , teraz 	X2 — X1 + Yl titerai  

then Y31tera1 = {(x 3  - X2 + Y21jteraj - 2tol), (x3  - X2 + Y21terai — 2tol + 1),  

(x 3  — x 1  + Yl jsteroj  + 2tol)} 
else Y31,terat = {(x3 - x1 + Yliiter& - 2tol), (x 3  — x1 + Yliiterai - 2tol + 1), . . 

(x 3  - X2 + Y2 1 , terag  + 2tol)}. 

This necessity is explained with Figure H.4. When Y21i tera j ~! X2 — X1 + Y1 iterat  
the three samples are on the same gradient 1 slope if Y3apparent  contains any value 
in the range a to b (Figure H.4(a)). Therefore the correct set of Y3iterai  for con- 
templation is {(x 3  - x2 + Y21,terai - 2tol), - . ., (x — x1 + Ylli terat  + 2tol)} rather than 
{(x 3  — x1 +Yliiterai — 2tol), . . ., (x _xi +Yl titerat  +2tol)} as suggested by Equation H.15. 
The case when Y2 isterai  < X2 - X1 + Yl iiterai  requires Y31iteraj  existing in the range 
{(X3  — x1 + Yllit era l - 2tol),. . -, (x3 - x2 + Y2 1iterai  + 2tol)}, i.e., Y3apparent  should en-
croach on the region a to b (Figure H.4(b)). Again the desired range of Y3iteraj  differs 
from that of Equation H.15. Thus the desired probability is 
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T amplitude rang 
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Figure H.4: Illustrating the range of acceptable Y3iiterat  (a) ifY2j s t rcj ~! X2X1+Y11 ttera i• 
(b) if Y2 literat  < X2 - x1 + Y11101 . 

p( (x i , X2, X3)grad=1 tolerance=±tol) 

I x3 — xl+yl+2Lo1, ify2 ~!x2—zi+yi 

x2—xj+yj+2tol 	 X3 - X2 + y2 + Vol, else 

Pi (YO 	E 	P2(1/2) 	 E 	 p3(1/3) 
Y1 	 y2=x2 —XI +yi-2tol 	

y3= 	
- X2 + Y2 - Vol,1, f y2 ~ Z2 - 2;i + Yi 

I 

l x3 — z1+y1 -2101, else 

 

Equation H.16 describes x 1 , x 2  and x3  being on the same slope in that order of 
precedence. Five other precedence combinations exist. To generalise, the probability 
for three samples Xa, xb and x (in that order) being on the same gradient 1 slope is: 

p( (Xa )  Xb, x)  grad=1 Jtoierance=±iol) 

Xb-X0+Yo+2tOl 

=ipa(ya) 	12 	p&(y) 
Ya 	 YbbXa+ya—Vol 

I ZcXa+Ya+Vol, 

l_ ZcXb+yb+2t0l, 

Yc—
_ 

\ 
J_ Zc—Xb+yb- 201, 
IXc - Xa+Yo - 2io1, 

if Yb ~! Zb X. + Ya 

else 

if Yb ~! Zb - X. +  Y. 
else 

Pc (Yc) 
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Figure H.5: (a) Apparent values of yi, Y2 and y3 of the Figure H.3 example given +3 
units tolerance. (b) Matches of Y1 Ljteral  Y21iterai  and Y3iterai  corresponding to x 1 , x 2  and 
X3 being on the same gradient 1 slope at the given tolerance. 

With the Figure H.3 example, for a = 3, b = 2, c = 1 and tol = 3, Equation H.17 gives: 

p((x 3 , X2, X1)yrad=1 ltolerance=±3) 

I x1 — x3+y3+6, ifyz>x2—x3+y3 
x2—x3+y3+6 	 1 X1Z2+y2+6, else 

P3 (Y3) 	>2 	P2 (Y2) 	 Pi(Yi) 
Y3 	Y2=X2—X3+y3-6 	 f xi — z2+y2 —6, if 112 > X2 —X3 +Y3 

= 1 I.. Z1X3+y3 6 , else 

y3 +5 

P3 (Y3) >2 P2 (Y2) 
Y3 	Y2=Y3 7  

= 0.98919 

f Y3+4, ify2 >y3 -1 
j 112+5,  else 

Pi(Yi) 

_f Y2 7 , ify2>y3 -1 

y - 8, else 

As a check, Figure H.5(a) shows the apparent amplitudes of x1, x 2  and x3 . Since the 
probability of all the matches of Y1 lteraj  Y2 terot  and Y3iteraj  attributed to samples x 1 , 
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X2 and x 3  being on the same gradient 1 slope given ±3 units tolerance (Figure H.5(b)) 
gives the same answer 0.98919 as above the answer given by the numerical solution of 
Equation H.17 is thus verified. 

The probability for only two out of three samples being present is: 

p( (X a , Xb, 	)grad=1 Itolerance=±tol) 

/ 

 t 
I x—x0 +y0 +21o1, lfYb ~! XbXo+Ya 

XbXa+Ya+2tOl 	 xc - xb + Yb + 2tol, else 

Pa (Y.) 	 Pb(Yb) 	 Pc(yc) 
Ya 	 Yb=Xb—Xo+Yo-2t0l 	 I 	Xb + Yb - Vol,ol, if Yb ~ Xb - X0 + Ya 	 ) I 1 

 

Yc 
Xc - Xc + Ye - 2tol, else 

(H.18) 

wit. 
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Figure H.6: (a) Apparent values of Yl, Y2 and y3 of the Figure H.3 example given ±2 
units tolerance. (b) Matches of Yii tera i Y2 ittera  and Y3jtrat  corresponding to x 1  and x3  
(but not x 2 ) being on the same gradient 1 slope at the given tolerance. 

With the Figure H.3 example, for a = 1, b = 3, c = 2 and tol = 2, Equation H.18 gives 

p( (x i , x37 	)grad1 to1erance±2) 
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f( 	~ yi+5, ifyayi +2 	\ 
yl+6 	 ( 	

Y3+3, else 

= >pi(yi) 	i 	P3 (Y3 ) 	
- 	

P2(1/2) I 
Y1 	Y3Y1 —2 1 

	

112 	
- , if y ~ Yi + 2 	J 

yi -3 , else 	 I 

= 0.168881 

As a check, Figure H.6(a) again shows the apparent amplitudes of x 1 , x2  and x3 . 
Since the probability of all the matches of Y1 l i teral  Y2 ti terai  and Y3isterat  (Figure H.6(b)) 
gives the same answer 0.168881 as above the answer given by the numerical solution of 
Equation H.18 is thus verified. In addition, the same answer, as expected, is obtained 
by changing the order of the samples used for a and b, i.e., letting a = 3 and b = 1. 
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Figure H.7: (a) Apparent values of Yl, 1/2 and y3 of the Figure H.3 example given +2 
units tolerance. (b) Matches of Y1 i , terai  Y2 jj terj  and Y3jjteraj  corresponding to x 2  (but 
not x 1  nor x3) alone being present on a gradient 1 slope at the given tolerance. 

The probability for only one out of three samples being present is: 

P((X a , Fb , )grad=1Io1erancezr±iol) 

X&Xa+ya+2t0l 	 x—x 0 +y+2to1 

1— 	 Pb(Yb) 1— 	E 	Pc(Yc) 	(H.19) 
Ya 	 YbXbXa+Ya —2tol 	 YcXcXa+Ya —2tol 
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With the Figure H.3 example, for a = 2, b = 1, c = 3 and tol = 2, Equation 11.19 gives: 

p((x2, 	, 5)grad=1Ito1erance=±2) 

Y2+3 	 Y2+5  

= 	P2(Y2) 1 
- > 	Pi(yi) 	1 - 	P3 (Y3 ) 

Y2 	 Y1=Y2 -5 	 Y3Y23 

= 0.024725 

As a check, Figure H.7(a) shows the apparent amplitudes of x 1 , x 2  and x3 . Since 
the probability of all the matches of  Ylliterall Y2 1sterai  and Y31tteraj  (Figure H.7(b)) gives 
the same answer 0.024725 as above the answer given by the numerical solution of Equa-
tion H.19 is thus verified. In addition, the same answer, as expected, is obtained by 
changing the order of the samples used for b and c, i.e., letting b = 3 and c = 1. 

H.3 Scenario 3: Four samples on gradient 1 slope 

The probability that four samples Xa, xb, x and xd lie on a gradient 1 slope, given 
+tol units tolerance, is: 

P( (X., Xb,  Xc, Xd)grad=1 Itolerance=±tol) 

f SX+y , 	IfYb ~!Yb m  

XbXa+Ya+2t01 - 	 b + Yb + 2tol, 	else 

= >JPa(Ya) E 	Pb(Yb) Pc(Yc) 
Ya Yb=XbXa+Yo2i01 _f 5 b + y 	- 2tol;f !Ib ~! Yb m i. 	+ 2toZ 

- 5 b + Ybm,, 	else 

f Ycmax  if yc ~!Ycmse 
xd - X 	+ yc  + 2toI, 	else 

Pd (Yd) (H.20) 
1. 	x 	- x 	+ Yc - 2tol, 	if y 	y 	+ 2toZ 

- Sc + YCm, 	 else  Xd 

where YmaS  and Yimrn  are the values of the upper and lower summation limits of y, 
respectively, e.g., in Equation H.20 Ybmas  is Xb - Z a  + Ya + 2tol and Ycmax  is either 
XC - xb + Ybmax or x - xb + Yb + 2tol depending on whether Yb  is > Ybmax - 2tol. So for y 
and Yd  their own limits of summation are assigned depending on those of the preceding 
samples. 

The fourth sample's summation limits were derived using similar reasoning as was 
applied for the third sample discussed in the previous scenario. Let a = 1, b = 2, c = 3 
and d = 4. Figure H.8 illustrates the assignment of Y4max  and Y4 min  

With the Figure 11.9 example, for a = 1, b = 2, c = 3, d = 4 and tol = 2, 
Equation H.20 gives: 
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p((x1, X2, X3 X4)grad=lljolerance=±2) 

I Y2m+ 1 	if Y2 ~!Y1+ 2  

	

y1+6 	 112 + 5, 	else 

= 

 

	

P1 (YO 	E P2 (Y2) 	 p3(y3) 
Y1 	 Y2Y12 	 _f 312 —3 	 if 312 2!  yi  +2 

	

!1 2 m 	+ 1, 	else 

( 1 	+ 2, if 	 - 4 	

)] I  

	

113+6, 	else 

P4 (N) 
3/3_2, 	 Y3 ~ Y3m,,4 

Y4 	
Y3—in + 2, else 

= 0.003435 
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Figure H.10: (a) Apparent values of Yi, 1/2, 1/3 and y4 of the Figure H.9 example given 
+2 units tolerance. (b) Matches of Y1 1terof  Y2 iitera1  Y3 1 erai and Y4 1 iterai  corresponding to 
the samples x 1 , x 2 , x3  and x4  falling on the same gradient 1 slope at the given tolerance. 
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As the probability of the matches in Figure H.10 also equals 0.003435, this verifies the 
answer given by the numerical solution Equation H.20. As the probability evaluation 
shown here is derived based on the relative positioning of the samples therefore the same 
answer may be obtained with different ordering of samples, e.g., let a = 4, b = 2, c = 1 
and d = 3. 
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Figure H.11: (a) Apparent values of Yi, Y2, y3 and Y4  of the Figure 11.9 example given 
±2 units tolerance. (b) Matches of Y1t teraj Y2 iiterat  Y31steraj and Y41steraj  corresponding 
to the samples x i , x3  and x4  (but not x 2 ) falling on the same gradient 1 slope at the 
given tolerance. 

If one of the four samples is not on the same slope as the rest, this probability is 
resolved by considering the error sample, Xd, being displaced or missing, i.e., 

p((X a , Xb, Xc, 	)grad=1Ito1erance=±to1) 

I r r 	- Xb + Yb m , 	 Yb ~ Ybm, - 

xb v0+y+2tOl 	 Xc - Xb + Yb + 2toZ, e'so 

= 
 

P. (Y.) 	i2 	Pb(Yb) 	 E 	 Pc(Yc) 
Yo ba+Ya2tOl 	I 	— + Yb - 2tol, 	Yb ~ Ybmn + 2tol 

L ' 	Xc_Xb+Ybms 	else 

(a) 
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f Xa Xc+ Ycmsa I 	if Ye? YC m  
Md - X5 + tic + 2toL, else 

1 
- 	 Pd (Yd) 	 (H.21) 

	

I x6—x+y0-2to1, ify ~ y 	+2tai Yd=1 	- x5  + m.c' 	else 

With the Figure H.9 example for a = 3, b = 4, c = 1, d = 2 and tol = 2, Equation H.21 
gives 0.000174 . As the probability of the matches in Figure H.11 also equals 0.000174, 
this verifies the answer given by the numerical solution. Again Equation H.21 can be 
applied with different ordering of samples for Xe, xl, and x, e.g., letting a = 4, b = 1 
and c = 3. 

Amplitude probability of 	Amplitude probability of 	Amplitude probability or 	Amplitude probability of 
occurrence of I, 	 occurrence or X

.
occurrence or X3 occurrence of 

pI (yI ) 	 p2.(y2 ) 	 p3  (y3) 	
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Figure H.12: Amplitude probability distribution of another four samples. 

The probability for only two out of four samples being present is: 

p( (Za )  Xb, 	j)grad=1 I tolerancecz±tol) 

- 5b + Ybms5' 	i f Yb ? Ybmsr —2toi 	 \ 
X+y 2t 01 	[1 	- + Yb + 2tol, else 

Pa(ya)

I 	

Pb(Yb) 	 Pc(!Jc) 

	

Ya 	Yb=_z0+hb0_2t0l 	L \ 	Yc{ 	 ~ 5c - 5 b + Yb - 21o1, f Yb Yb 	+ 2toi 
 Xb - + 	else 	 / 

f dSb+Yb,, 5 ,, 	'tYb ~ Ybm55 —2toZ 

1¼  5 d 5b +Yb+2t01, 	else 

1 
- 	 Pd (Yd) 	 (H.22) 

f d - Xb + Yb - 2tot, if Yb ~ Yb_i n  + 2tol 
Yd=1 d - 5 b + Ybmj,s 	else 

With the Figure H.12 example the probability for x 2  and x3  not being on the same 
gradient 1 slope as the other samples, given tot = 2, is found applying either the 
combination c = 2 and d = 3 or c = 3 and d = 2 and using either a = 1 and b = 4 or 
a = 4 and b = 1. Equation H.22 gives this probability as 0. As a check, Figure H.13 
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shows the apparent amplitudes of the samples from the Figure H.12 example. Since 
the probability of all the matches of Y1iiterai Y2i,terca, Y31iteraj and Y4terai  attributed 
to samples x 2  and x3  occurring not on the same gradient 1 slope as the other samples 
(given +2 units tolerance) also amounts to 0, the answer given by the numerical solution 
Equation H.22 is thus verified. 

Y11111—  T7 rI.we.r 1 1 	 1 '4 wr.1 , p.,ree It2..eI; :I 	 I911- 

I 	I 	I 	I 
1 2 Ito 	411 	I I 1(1 	311 	IL-2 	 0...., 4) J 	1 5  1(3 	711 

1 3 Iti 	511 I 2  Ito 	4i1 I 3 Ii I 	5) 16 114 	81 I 

Figure H.13: Apparent values of yl, Y2, y3 and y (Figure H.12) given ±2 units tolerance. 

The probability for one sample alone to be on a gradient 1 slope is: 

	

p((Xa, 	i)grad=1Ito1erance=±tol) 

I 	Xb—Xa+ya+2t01 

P. (Y-) 	1— 	 Pb(yb) 

1. 	Yb=XbXa+Ya 2t 01  

XdXa+Ya +2toI 

	

1 
- 
	Pd (Yd) 

Yd=Xda+Ya 2 tOl 

XcZa+ya+2tol 

1 
- 
	PC (Y.0 

Yc=XcXa+ya2tol 

(H.23) 

With the Figure H.12 example, Equation H.23 calculates the probability for x 1  alone 
being on a gradient 1 slope (given tol = 2) as 0. Since this probability evaluated from 
matching the apparent values of Figure H.13 amounts to 0 too, the answer given by 
Equation H.23 is verified. 

HA Scenario 4: All samples on gradient 1 slope 

The probabilities of samples being on a gradient 1 slope are as follows. When all 
samples are present on the same slope: 

p((Xa, Xb, xc , . . . , Xm, Xn)gradzzl l tolerance= ±tol) 

I r 
Xe Xb+ Ybm• 	if Yb ~! Ybmer — 2tol 

I 	bo+Ya+2t01 	 I t Xc - Xb + Yb + 2tol, else 

= >Pa(Ya) 	 Pb(Yb) 	 Pc(Yc) 
- x + Yb - 2tol, if Yb ~ Ybmje + 2toZ 

- Xb + 	 else 

.1 	 ym—- 
xn 

 
- X + Ym + 2tol, 

I X 	 Xm + Ye —2toZ, 
Yn1 

Xe - .X + Ym m , 

If Ym > Ymm - 2to( 

else 

if Ym ~! Y--in + 2toI 
else 

Pn(Yn)))  ...  ]} (H.24) 
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When samples {Xa ,. , xh} only are present on the same slope: 

	

Xb, X, . . , X g , Xh, Xj,. . . , 	, 	)grad=1jtoIerance=±tol) 

	

5 b + Ybm 	 if Yb? Ybm —2toi 

Xa+Yo+2tOl 	 Sc - X + Yb + 2toL, else 

= 	Pa(Ya) I 	 - 	 Pb(Yb) I 	 Pc(Yc) 
Ye 	 Yb Xb X0fl0 2tol 	 Sc - + Yb - 2tol, if Yb ? Yb m , + 2t0 

LYc 	
. 

c - 5b + Yb,,, 	else 

{ 5h 'g+Ygms,, 	if  
5 g  + y9  + 2tol, else 

(••• 	

Ph(Yh) 
I Xh-5g+Yg-2t01, lfYg ~ Yg m ,.s + 2 t 01  

5h —g  +Ygm• 	else 

f 	+Yhms 	 if Yb ~!Yhm s , 
Zj - 1h + Yh + 2toI, else 

1— 	 pi(yi) 

	

f 	- 	 + Yb - 2toL, if Yb ~! Yh m i c  + 
Si - 5h + Yh m i e  I 	else 

f 5,s - 5h + 	 if Yb ~! Yh mss, 
 Xh - 	 + ig + 2tol, else 

1 
- 	 pn(yn) 	... (H.25) 

_f 	- 5h + Yh —2toi, if Yh 2: Yhmir +
Sn - 5h + Yh,,, 	else 

When one sample alone is present on a slope: 

p((Xa , 	, . . . , 	)grad=1Itolerance=±tol) 

	

XbXa+Ya+2t0l 	 Zn2a+ye+2tOl 

= >pa(ya) 	1 
- 	

Pb(Yb) ... 1 
- 

	12 	Pn(YTL) I  Va 	 YbXbXe+Ya —2tol 	 Yn=XnXa+Yo —2toI 

(H.26) 

The 6-sample signal of Figure H.14, given ±2 units tolerance, has apparent am-
plitudes shown in Figure H.15. The probability for the samples to exist on the same 
gradient 1 slope may be evaluated in a number of ways by using Equation H.24, e.g., 

p((xi, x2, x3 )  x4 1  x5, X6)gradlItoleraflCe±2) = 0 	and 

p((x4, X6, X1, X3 1  X2 X5)grad=lljolerancezr±2) = 0 

By matching the apparent values of Figure H.15 these answers were verified. 
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Figure H.14: Amplitude probability distribution of six samples. 
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Figure H.15: Apparent values of Yi, Y2, y3, y4, y5 and Y6  of the Figure H.14 example 
given ±2 units tolerance. 
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The probability for only 5 samples (excluding, say, x 1 ) being on the same slope may 
also be evaluated in a number of ways using Equation H.25, e.g., 

X2, X3, X4, X5, i)grad=1Iiolerance=±2) = 0.792, 

p((x 2 , 	X4 1  X5 X6 i)grad=1Ito1erance=±2) = 0.792 and 

x 61  X5, X3 7  X2, i)grad=1Ito1erancezr±2) = 0.792 

Again by evaluating the probability of matching the apparent values shown in Fig-
ure 11.15 these answers were verified. 

This was repeated for 4 out of 6 samples (excluding x 1  and x 2 ) where the probability 
was 0.048; for 3 out of 6 samples (excluding x 1 , x 2  and x4) where the probability was 
0.032; for 2 out of 6 samples (excluding x 1  to x 4 ) and 1 out of 6 samples (excluding x 1  
to x 5 ) where the probabilities were both 0. 

H.5 Scenario 5: samples on gradient 1 and 0 slopes 

The remaining equation derivations apply the convention that segment samples are 
presented (1) ordered with respect to their sampling instances and (2) grouped as to 
whether they are present or missing on the same segment slope, i.e., the samples in each 
segment are listed as follows: 

( 

The sorted list of all samples present The sorted list of all samples NOT 
on the same segment slope, present on the segment slope. 

In addition, let X(j..1) denote the sample immediately preceding x i  in such a list (and 
not the sample of the preceding sampling instance). 

Consider the probability of the missing samples on Segments 1 and 2. In Figure H.16, 
x 2  represents the sample at the end of Segment 1 and x the last sample present on Seg-
ment 2. Locations p and q denote the limits at the end of Segment 1 certify the sample 
x 1 , if it possesses apparent amplitudes within these limits, as a Segment 1 constituent. 

Since all samples present on the ensuing gradient 0 segment must have amplitude 
between pp' and qq' and suppose the final limits of the apparent amplitudes ascertained 
at x, are u and v, then all pattern waveforms which pass through all constituents of 
Segments 1 and 2 will pass at the sampling instance x 2  between u' and v'. Consequently 
samples which are not present on Segment 2 would exhibit amplitude either above un' 
or below vv' and those which are not present on Segment 1 would be either above u'u" 
or below v'v". 

The final limits at x (and hence at x) are: 

Maximum at xi  = Maximum at x 
= 	

if y >  Ym - 2tol

{ Yn+2tol , 

 

else 
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Figure H.16: Max and min heights of waveforms passing through all points present in 
Segments 1 and 2. 

	

> ,., 	Ynm,,s + 2tol Minimum at x = Minimum at x 	Yn-2iol , if y 

= { Yflmin , 	else 

Let k = a if Xa (the first Segment 2 sample which is present) precedes x. (the first 
Segment 2 sample which is NOT present) else let k = u. The probability that more 
then one sample is present on Segment 1 and that some samples on both Segments 1 
and 2 are missing is: 

p((Xa )  XØ X y ,. . . , X(&_i), X6, 	. . , 

(X a , Xfr . . . , X(n_1), Xn,, . . . ,.7)grad=oIio1erance=±to1) 

f 5 y - + 	 if yp ~ y 

	

x—xa+y0+2to1 	 1. S-y - Xp + yp + Vol, else 

= 

 

P", (Y") 	E 	P,:3(Y13) 	 E 	 P_f (Yy) 
yQ 	 yp=x—x0+y-2tol 	 _r 	-5 + y —2tol, if lip ~! Yp,,, 5  + 2tol 

	

{

S - S(o i ) + ( 6 ')me.r 	 Y(s—i) ~ (6. 1 )m 	- 2tol 
55 - 5(5_ I ) + Y(6 1 )  + 2toZ, 	else 

( 	 ( 	
55 

- (51) + Y(5) 

P.5 (YO 
- X(S_j) + li(5_1) - 2toI, 	if Y(o_i) ~ Y(6—i 	+ 2tol 

Xk - 1 - x + y 

I 	k156+y5+2tOl, 

L _r k 1 X5+y5 2 tOl, 

if 116 ~t 6mss, - 2toL 
else 

Pa (Ya) 
if 156 ~! 	+ 2toi 
else 
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I if Ye ~ Yem., - 
Va  + 2tof, 	else 

Pb(Yb) 

fI 
y - Vol, if Ye ~ Ye + 2tol 

Yb else 

I 
Y(.5_1) + Vol, 

I Y(_1) - 2t 

if Y(n-1) ~! l'(sl)mes, - 2tol 
else 

pn(yn 
if Y(e-1) ~! 11("1)mie 

+ 2" 

else 

I XeXk+J+Ys mse 	IfYs~!Ys ms 2 t0l 

1. X5—Xk+1+Yn+2t01, else 

	

1— 	 pE(yf) 
I Xe—Xk+l+Ye-2tOl, ifY ~ Y,,5 ,5 +2toL 

Ye-- 1 	
- +1 	 else  Xk 

f X( 	Xk+l+Y,s nse,,, 	ifYs ~!Ys ms , 
1, X< - ek + 1  + Ye + 2toL, else 

	

1 — 	 pf(yC) 

	

YC  _f X( - Xk + 1  + Ye - 2tot 	if Ye ~ y,5 	+ 2tol 

	

X — Xk + 1  + y.,,5 ., 	else 

5  Ye,,551,, 	if Ye 'e Yemee - 

Yn + 2toL, 	else 

1 — 	 P. (Y.) 
—5yn - 2toi, if y. ~ Ye 	+ 2tol 

Yu-1 
11'mie' 	else 

I Ye, 5 	if Ye > Yemse - 2tc,l 

ye + Vol, else 

1 - 	 Pw(Yw) 	... 	 ... 	 (H.27) 

	

f yn - 2tol, 	if Ye _2 ,e ',e +  Vol 

	

Yw—_ j 
'h5 mie I 	else 

With the Figure H.17 example, for samples x 1 , x3  and x 5  being excluded from 
Segment 1 and x6 , x8  and x 10  from Segment 2 (given tol = 1), Equation H.27 gives 

p((x 2 , x 4 , j, 	grad=1(X7, X9, 	j, i)grad=OIto1erance=r±1) = 0.2240000O691 

From the matching of all possible apparent amplitudes of the waveform sample, the 
solution was calculated manually to be 0.224 

H.6 Scenario 6: samples on gradient 1, 0 and - 1 slopes 

The derivation incorporating Segment 3 applied the same reasoning as for the pre-
vious scenario. Again assign k = a if x a  (the first Segment 2 sample which is present) 

'Result from computer computation. 
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Figure H.17: Amplitude probability distribution of ten samples. 

precedes x (the first Segment 2 sample which is NOT present) else let k = u. Assign 
j = p if x (the first Segment 3 sample which is present) precedes x. (the first Segment 
3 sample which is NOT present) else let j = s. 

	

p((x a , X13, X.. y . . . X(6_1), X, 	. , 	) grad=1(X a, Xb,. .. X(_1), X, 	. . , 	)grad=O 

(xv , X q , . . . X(r_1), Xr, 	, . . , )grad=-1 Itolerance=±tol) 

I z. - Xp 	 Y ~ Yflme.r 
x—z0+y0+2tol 	 -y - X + y + 2to, else 

P." (Y.) 	 p13(y13) 
Vu 	 Y$=xfl—zo+Y-2toI 	 _r -5  — x ,3 + y — 2toL, if y 	y. + 2tol 

- X6 + Yfl,,, 	else 

( 	( 
{X6 - 	 + t(6-1)mee' 	if  Y(6-1) ~ (61)mer -  

S6 — X (5_1) + Y(6_1) + 2toL else 

P6 (Y-5) 

	

Y6=1  55 - X(5_j) + Y(6_i) 	 else 
I 55 -  x(5_1) + Y(6_1) - 2toI, if 

Y(45 - 1) 2: Y05-0- i n + 2toi 

J Xkl_X6+Y5 m , if96?:Y5 m , 

1.. 	Xk-l-55+y5+2t01, else 

Pa(ya) 

1. 	5k - 1 - z 	+ y 	- 2tol, if y 	 + 2tol Ya=1 5k 	X  +  Y6-i n ' 
else 

f Y5mer, 	if y 	Ymer -  
Ye + 2tot, 	else 

Pb(Yb) 

_f 	Ye -  2tol, 	if Ye ~ + Yb - 1 	
min' 	else 
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I 
	

if Y(._1) ~! Y(.._i) 	- 2tol 

Y(,_i) + 2t01, 	else 

pn(yn 

_J Y(,5_ j) - 
	

), 	if li(._i) ~!Y(' — ')—in + 2tol 
else 

I Yms - 
x  + x — 1, 	if Il,. ~! Y'ms - 

1. y5+2to1—z+x1-1, else 

pp(yp) 

_f y,s-2tol—xp+x,-1 	ifYe ~!Ye m.+ 2 t 01  
- 5 p + x, - 1 1 	else 

I Yp,,,,, - Sq + Xp, 	if lip  ~! Yp,,, - 
i Yp+2101S5+Sp, else 

pq(yq) 

	

yq
_f lip - 2tol - 5q + Sp , 	lip ~! Yp 5 ,5  + 

Yp • ,5 	Sq + Xp, 	else 

f Y(r_1),,55 - Sr + 	 if  Y(r—i) ~ Y(r_j)ms, - 

Y(-_i) + 2tof - r + x(,_,),else 

Pr(yr) 
f y(,—  1 ) - 2tol - r + X(r_1) 	If Y(_1) ~ (r— ') 	+ 

- 5 r + 5(r_1), 	else 

I Sr 	+Yrms, 	Yr ~ !Yr,,s r  

	

T. +1!.- +2tot, 	else 

1 
- 	 P., (Y.) 

Sr - 5 t + Yr - 2toL, 	if Yr ~! Yr m  + 2tol 
? 	Sr - S. + Yrmin 	else 

	

I +Yr,, 55 , 	if Yr > Yr mss  
5 r —55  + Yr + 2tol, else 

	

1 — 	 Pt(Yt) 
I Sr 5f +Yr —2tol, 	if Yr ~ Yr 	+2101 

	

- St + 	 else 

I r  —  mi +  1  + Yr max , 	ifYr~!yr,,. s  —2toL 

1. 5r5j+l+Yr+2t01, else 

1 
- 	 P. (Y. 

_f Sr5j+l+Yr2t0l, ifYr ~ Y_ m + 2101  I  

Sr  — xj + I + Yrmin I 	else 

I SrSj+l+Yrm , 	ifYr>Yr mse  
1 Sr 5j+l+Yr+2t01, 	else 

	

1 — 	 Pw(Iw) 

_f SrSj+l+Yr2t01, iflirYr.+2t01 Y _ ~ 

x r  - xj + I  + Yr min 	else 

	

I -  5k + 1  + Sr - 5j + 1  + Yr, s5 , 	if Yr ~ Yrm - 

I 5 e 5k+l+Xr5j+l+Yr+2t01, 	else 

1- 

	

5 k + 1  + X r - 5 j + 1  + Yr - 2toI, 	if Yr ~! Yrj, + 
5 e 5 k + 1  + ' 	Si + I  + Yr 	 else 
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f X - + 1  + X,. - X + 1  + Yrm, 	if Yr ~ Yrm, - 

X(Xk+l+XXj+i+Yr+ 2 tOL, else 

1— 	 Pc(YO 
_f x< - Xj + 1  + Xr - Xj + I  + Yr - 2toi, if Yr ~! Yr., + 

XC - 1 k + 1  + Xr 
- 'i + 1  + Yr m ,, 	 else 

)))) 	.1) 
	

(11.28) 
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Figure 11.18: Amplitude probability distribution of eleven samples. 

With the Figure H.18 example, for x 1  and x 2  being excluded from Segment 1; X7 
from Segment 2 and x 10  from Segment 3 (given tol = 1), Equation H.28 gives 

X4 X5, j, 	)9rad=1 (x6 7  X81 )grad=O(Xg, Xii, i)grad=-1 Itolerance=±1) 

= 0.00048384006 

The solution obtained from the matching of all possible apparent amplitudes of the 
waveform sample was calculated manually to be 0.0004838 

When imposing a minimum waveform height constraint such that the acceptable pat-
tern waveform height is no less than mwh units, the calculation p((x 0 , x 0 ,  x, .. . , 

X, Xe,. 	1Z)9rad=1 (Za,  Xb,. . . X( n l), Xn, 	, . . . , Xw)grad=O (xv)  Xq,. 
., X( r_1), Zr, 

?i)grad=_1 tolerance=±tol, min waveform height=mwh) is obtained by modifying the limits 
Of y0  in Equation H.28 to the following: 

( 

 

11_ 1 _X6+Y6 ms , if Y6~!Y5me_2tO  and  3 k_ 1 _X6+YO ms , ":~ mwh + t o' 

J mwh-2tol IfY6 ~!Y6m_2tOt and Xk_1_X6+y5msr 

) X 	- 1 - 	 6 + Y6 + 2tol, if Yo < - 2tol and xA,  - 1 - x6 + Y 6  + 2toL > mwh +  tot 
1 msh-2to1 ifY5<y5-2tof  and xk_1_xf+yS+2toj<m,h+tot 

Pa(Ya) 
( 	Xk1S6+V5....2t01, if y6 	Yo m , n + 2 tol  and  xk_1_ro+Y6_2t01>mwh_tDZ 

mwh—tol ifY6 ~ Y6,,+2toI  and  xk_1_xö+Yö_2toi<mwh_tot 
Ya= 

- 1 - X5 + Y5m. i f Y5 < + 2tol and Xk - 1 - X5 + Y6m 	mwh - tot 
mwh—tol ' 1 Y6 <Y6 m ,, +2toI and Xk _ 1 _X5+Yô m i n  <mwh — tol 

5 Result from computer computation. 
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Figure H.19: Amplitude probability distribution of nine samples. 

With the Figure H.19 example, for x 2  being excluded from Segment 1; x 4  and x 6  from 
Segment 2 and for all samples on Segment 3 being present (given tol = 2 and mwh = 2), 
this probability would be 

Xi, )grad=1(X3) 51 4, X6)grad=O(X7) X8)grad=-1to1erance=±2, min waveform height=2) 

= 0.133195981386  

The solution obtained from the matching of all possible apparent amplitudes of the 
waveform sample was calculated manually to be 0.133196. 

6 Result from computer computation. 
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Appendix I 

Provision of Segment-Gradient 
Tolerance for Linear Models 

Segment-gradient tolerance uses two groups of delimiting (turning) points {fo, fl, 
.., fm-1, fm} and fro, ri, . . . , rn-1, rn} to describe the upper and lower waveform 

distribution boundaries by the straight lines joining immediately adjacent delimiting 
points. Additional points a and b are used so that the straight lines joining these to fi 
and ri (a-fl and b_ri), when extrapolated, identify the highest and the lowest minimum 
and maximum gradients lines respectively within the delimitated boundaries. 

Figure 1.1 shows a nominal segment gradient inclining at a° against the zero gradient 
line. foul (the initial highest acceptable maximum gradient line) and b_ri incline at 90  

above the nominal segment gradient (Figures 1.1(a) and (b)) whilst a_fl and rU_ri (the 
initial lowest minimum gradient line) incline at 90  below (Figures 1.1(c) and (d)). 

1.1 Start of parsing 

When parsing commences, fi and ri, assigned to a sample's maximum tolerated 
amplitudes pt and pb (Figure 1.1(a)), are used to assign fo, b, a and rO (Figures 1.1(a), 
(b), (c) and (d)) whose temporal placement may be arbitrary. 

1.2 Nomination of next waveform samples 

As with the Version 3 and 4 parsers a candidate next waveform sample's tolerated 
amplitudes must lie inside the projection of the waveform distribution boundaries fm-
1_fm and rn-i_rn (Figure 1.2) where in and n are the progressive totals of the upper and 
lower boundary delimiting points. 



(d) 

ro 	 Nominal Segment 
Gradient 

r; 
.....Zero Gradient Line 

Extrapolation of ro_ri 
Key: 

fo. fi Initial delimiting points on Range of amplitude 
tolerance applied to 	 the UPPER waveform 
a sampled data point. 	 distribution boundary. 

ro ri Initial delimiting points on 
± 00 Allowed segment-gradient 

	the LOWER waveform 
distribution boundary. tolerance in degrees. 	

pt, pb Highest and lowest tolerated a° 	Nominal segment slope 	 amplitudes of a sample. from zero gradient line. 

(c) 
a 	 Nominal Segment 

f 	
Gradient 

Zero Gradient Line 

Extrapolation of a_f i 
(The highest tolerated 
minimum gradient line.) 

(a) 	Extrapolation of fo_fi (b) 
Nominal Segment 
Gradient 

Zero Gradient Line 

fo 
3 p  

ri 

Extrapolation of b_ri 
(The lowest tolerated 

. maximum gradient line.) 

Nominal Segment 
00 	Gradient 

Zero Gradient Line 
ri 

Figure 1.1: Assigning a, b, fo, fl, ro and ri at the commencing of parsing. 

203 



,. Extrapolation of rn-i _rn 

The tolerated amplitude 
of candidate next waveform 
sample must exist in 
this shaded region. 

Extrapolation of fm-1 _fm 
The current upper 
waveform distribution 
boundary 

fm 

Maximum Scan-Ahead Distance: 
rn1 ) 	defines the scope of sampling instances where the 

- \ 	 next waveform sample is to be obtained. 

The current lower 	 The sampling instance of the last sample 

waveform distribution boundary 	being considered. 

Figure 1.2: The criterion for nominating a next waveform sample, where rn-1, rn, fm-1 
and fm are the current last boundary delimiting points. 

1.3 Re-evaluation of waveform distribution boundaries 

When accepting a waveform constituent the waveform distribution boundaries are 
individually re-evaluated by establishing the validity of the other boundary at the outset. 
The following algorithm for the upper boundary accounts for the highest tolerated 
amplitude of the candidate sample. (The algorithm mirrored for the lower boundary is 
needed to complete the re-evaluation.) 

1. Alter {ro,ri,.. ,rn} and b if they do not suit the new sample. Call the extrapo-
lation of b_ri at the sampling instance of the candidate sample d (Figure 1.3(a)). 
If pt, the candidate sample's highest tolerated amplitude, is lower than d (Fig-
ure 1.3(b)), indicating b_ri is no longer valid, then (bear in mind that pt is above 
or on the extrapolation of rn-i_rn): 

Set the variable oneafter.turning..pointr to 0. 

Find the lower boundary delimiting point rone.afterturningpointr marking 
where the preceding delimiting positions unacceptably allow waveforms to 
pass above pt (Figure 1.3(c) 1 ). 

If (oneafter.turning_point_r == 0) then signal error'. 
If (one_after.iurning..poinLr 	1), indicating {ro,ri,.. . ,rn} remain valid 
since the lowest line of maximum gradient may still pass through ri, then 
move b "vertically" 3  so that b_ri passes through pt (Figure 1.3(d)). 
If (oneafter.iurning_point_r > 1) then move all the "offending" delimiting 
points (ro to 	 and b vertically unto the extrapolation 
of roneafterturning..pointi-- i_pt (Figure 1.3(e)). 

1 1n Figures 1.3(c), (d) and (e) s indicates the point of extrapolation of roneafter.1urning.poini.r-
1roneafierrning.poinLr at the sampling instance of the candidate sample. 

2This condition should not happen since pt is above or on the extrapolation of rn-Irn. 
3 i.e., onto a different amplitude value but fixed at the same sampling instance. 
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Figure 1.3: Illustrations of algorithm details (i). 

(( 
Th 
din 
bo 

205 



(a) 	 (b) 
a\ Sampling instance of 

candidate sample 	 f1 " 	4 	- Candidate sample 'I 

Extrapolation of a_fi • Extrapolation of a_fi 
The upper waveform 
distribution 	a ' 
boundary 	

fk+2'l 

Extrapolation of fk+Jfk+2 

\ \\ fk  ... 'Pt 	 (fk fk+l,/ 

- - 	 - - 	 - 	";;- 	

- I 

0 ri' 	y 	 ri 
b/ 	 b/ 

The upper waveform 
distribution 	 Extrapolation of f2 f3 
boundary 	 ' 	 fi, 

fo fj 	
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Key: 
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Figure 1.4: Illustrations of algorithm details (ii). 
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2. Alter {fo,fi,... ,fm} and a if they do not suit the new sample. Call the extrapo-
lation of a_fl at the sampling instance of the candidate sample c (Figure 1.4(a)). 

If pt is above or equal to c (Figure 1.4(b)), indicating a_fl is still valid, then check 
if fo,fi,.. . , fm require changing: Find the delimiting point on the upper boundary 
marking where the succeeding delimiting positions unacceptably allow waveforms 
to pass above pt: 

for k = 1 to m { 

find the point of extrapolation of fk-1_fk at the sampling instance of the 
candidate sample and call it g. 

if pt is lower or equal to g then adjust the upper boundary 4 : 

• if (k > 1) then (Figure 1.4(c)): set fk+i to pt; move fk vertically onto 
the interpolation of fk+1_fk-1; set fk+2 to where fk+l-fk+2 is parallel to 
b_ri5 ; remove fk+s, fc+4, ..., fm; set m to k+2 and jump out of the 
for(k) loop. 

• if (k == 1) then (Figure 1.4(d)): set f2 to pt; move fo vertically onto the 
extrapolation of fl-f2; set f3 to where f2_f3 would be parallel to b_ri6 ; 
remove £4, f5, ..., fm; set m to 3 and jump out of the for(k) loop. 

} 

If pt is below c (Figure 1.4(e)), indicating that a_fl is no longer valid, then new 
delimiting points for the upper boundary are obtained 7by (Figure 1.4(f)): moving 
a vertically to where a-pt is parallel to the current a_c and fo and ft vertically 
onto the extrapolation of a-pt; setting f2 to pt and fs to where f2_f3 is parallel to 
b_ri; removing f4, f5, ..., fm and setting m to 3. 

Figure 1.5 illustrates the progressive re-evaluation of the waveform distribution 
boundaries for a single four-sample waveform segment. Figure 1.5(a) shows the ini-
tial assignment of a, b, fo, Li, rO and ri and Figures 1.5(b), (c) and (d) the delimiting 
points after accepting further waveform samples. 

Finally, to find plausible new beginnings to Segments 2 and 3, whose gradients being 
lower than their immediately preceding segments, entails (i) retaining both the upper 
boundary delimiting points and the current position of b and (ii) creating new lower 
boundary delimiting points and a new position for a as appropriate for the new segment. 

4 Bear in mind that the lowest maximum gradient line, b.r1, is valid at this point 
5 fk+2 should be set as close to fk+i as possible. 
6 f3 should be set as close to f2 as possible. 
T Bear in mind that: 

a_c can be lowered without touching the lower boundary's delimiting points since there must be a 
gap between c and the point of extrapolation of rn-i.rn at the sampling instance of the candidate 
sample; 

all gradients (of the extrapolation of adjacent delimiting samples) on the lower waveform distri-
bution boundary must be > the gradient of a_c and 

therefore, a_c is above all the lower boundary's delimiting points and 

hence, new a_c can be obtained by lowering the current a-c. 
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Key: 
f Candidate next waveform sample 

with given amplitude tolerance. 

or pb Maximum tolerated 
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next waveform sample. 

a fi The extrapolation of a_fi forms the highest 
- 	tolerated line of minimum gradient. 

b ri The extrapolation of b_ri forms the lowest 
tolerated line of maximum gradient. 

fq fi, ... Delimiting points of the upper waveform 
distribution boundary. 

ro, ri, ... Delimiting points of the lower waveform 
distribution boundary. 

Figure 1.5: Demonstration of the re-evaluation of waveform distribution boundaries for 
a single waveform segment. (a) shows the initial assignment of a, b, fo, fl, rO and ri. 
(b), (c) and (d) show the updated set of delimiting points obtained accompanying the 
acceptance of the second, third and fourth candidate next waveform samples. 
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Appendix J 

Provision of Waveform-Deviation 
Tolerance for Quadratic Models 

Let a waveform model and its acceptable deviation be y = ax 2  + bx + c and y = 

m(px 2  + qx + r) respectively where a, b, c, p, q and r are constants and m is a range 
of continuous values (mm jn  :~ m < mmax ) defining the precise deviation. Figure J.1(a) 
illustrates a set of deviation-tolerated waveforms y = ax 2  + bx  + c + m(px2  + qx + r). 

Given ±tol units amplitude tolerance, the first waveform constituent at a sampling 
instance t o  is associated with an initial set of deviation-tolerated waveform models. 
Figure 11(b) illustrates two waveform models w 1  and w 2  showing that the tolerated 
amplitudes at t 0  support the occurrence of only w2 between Xa and Xb and between x 
and xd. To simplify the implementation the first range only is considered. Figure J.1(c) 
shows the set of all possible waveforms upon which subsequent samples may be found. 
Figure J.1(d) shows a sample at t incorporated as the next waveform constituent and 
the values representing the set of all possible waveforms through t o  modified to two 
sub-ranges x a  to XaI  and x' to xb. 

Figures J.1(c) and (d) show that each waveform, substantiated by a set of samples, 
bears a one-to-one relationship to a unique point on the originating waveform model 
indicating that an entire set of tolerated waveforms may be monitored by applying the 
originating models as representative parameters. 

With m at value mi gives the waveform model: 

Ymax 2 +bx+c+mj(px2 +qx+r) 
	

(J.1) 

In Figure 12(a), {Xa ,.. . ,x.,. . . ,xb} represent the following super-set of the waveforms 
of model ymi  which may pass through the sample at t0 : 

ymi  = a(t - t0 + Xa) 2  + b(t - t0 + Xa) + c + m(p(t - t0 + xa ) 2  + q(t - to + xa ) + r) 

ym i  = a(t - to + x)2  + b(t - to + x) + c + m(p(t - to + x) 2  + q(t - to  + x) + r) 

Ym 
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Figure J.1: Representation a set of deviation-tolerated waveforms using an originating 
waveform model. (a) A set of originating waveform models. (b) Illustrating that at 
to  it is possible to support the waveform model w 2  but not w 1 . (c) The initial set of 
all possible waveforms of the deviation-tolerated waveform model w 2  which can pass 
through the sample at to . (d) The incorporation of the sample at t8  as an additional 
waveform contributing point. 

These may be generalised to: 

y = 	a(t—to+hm.) 2 +b(t—to+hm .)+c 
+m2 (p(t - t0 + hmt ) 2  + q(t - t0 + hmi ) + r) 	 (J.2) 

where Xa < hmi  Xb (see the left diagram of Figure 12(a)). 

To incorporate new waveform constituents requires modifying the range of hm ,. The 
middle diagram of Figure 12(b) shows the amplitude required for the sample at t 1  to 
be included as an additional waveform constituent being determined by projecting the 
existing range of h, T  along the specific waveform model for (t 1  - to ) time units. The 
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resultant modified range of hm j  representing all the common waveforms through the two 
samples is shown in the left diagram of Figure J.2(b). In general, from Equation J.2 

 

5 y 

Time (x) Xa X Xb 	
Set of hmj  

k •i 
The initial range and 
the super-set of hm, 

a T 	
Yin1 

L 
x 	x Time  (X)  a 	 set ofhm 1  

The modified range of hm, 
reflecting the incorporation 
of the sample at tj as an 
additional waveform 
contributing sample. 

Figure J.2: Representing a set of deviation-tolerated waveforms. (a) The initial set of 
deviation-tolerated waveforms associated with the model y," j  applying the sample at 
t0  as the first constituent. (b) The modified set of h, j  reflecting the inclusion of the 
additional constituent at t 1 . 

an ensuing sample, say at sampling instance tk, may be incorporated as a waveform 
constituent if it exhibits an amplitude given by: 

Yrn 1  = 	a(tk - to  + h,)2  + b(tk - t o  + hmj ) + C 

+mI(p(tk - to + hm .) 2  + q(tk - to  + hm ) + r) 	 (J.3) 

for any existing values of h,. The set of hm , is then updated removing values which 
do not yield the apparent amplitude of the new sample. 

The parsing of a set of deviation-tolerated waveforms represented by different values 
of m may therefore be achieved through monitoring the set of hm  associated with each 
deviation model. However there are two implementation difficulties: 
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1. The values of the (sub)sets of m and hm  are continuous. To simplify the imple-
mentation procedure we used equally-spaced discrete values of m and hm  instead. 
The choice of the resolution was crucial and it affects: 

the capability of recognising waveforms when, with a low background noise, 
a small amplitude tolerance is allowed; 

the capability to extract waveform-contributing samples especially when, 
with a high background noise, a large amplitude tolerance is allowed and 

the parsing speed. 

2. The production core-function design for finding plausible new beginnings to a 
second segment when the last sample of the previous segment may not be applied is 
not straight forward. As a result a compromised solution allowing extra amplitude 
tolerance was implemented (Figure J.3). 

Samples whose tolerated amplitude 
I 	 exists in this shaded region are 

The last sample of the 	 nominated as a possible start 
previous segment. 	 A X 	sample of the next waveform. X. 

A deviation tolerated 	 A x 
waveform of the 
previous segment. 

Maximum Scan Ahead Distance 
A x in which a possible beginning 

to the next segment is to be found. 

Figure J.3: The solution used for finding plausible new beginnings to a second waveform 
segment when the last sample of the previous segment may not be applied. 
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Appendix K 

Summary of Parser Evolution 

Version 1: Initial parser developed by Mr. R. J. Hamilton (Appendix C) which parses 
each pattern waveform segment by a pair of production rules: one to establish a seg-
ment's reference coordinate and to locate its second sample and the other to locate the 
remaining constituents. The parser was unable to (i) provide the correct amplitude 
tolerance where noise was allowed to coincide on all waveform samples; (ii) reject noise-
induced false waveforms and (iii) recognise waveform patterns with missing turning 
points. 

Version 2: Modified parser which implemented waveform distribution boundaries (Sec-
tion 3.4.2) to allow correct amplitude tolerance to be given to all signal samples. 

Version 3: Modified parser (Appendix B) which implemented minimum segment length 
constraint (Section 3.4.3) to minimise the parsing of noise-induced false waveforms and 
incorporated two transition production rules to enable patterns with missing turning 
points to be recognised. 

Version 4: Modified parser which allowed segment gradients to be specified by the user 
and it adopted a floating point number representation for signal amplitude. 

Version 5: Modified parser which implemented segment gradient tolerance (Section 
6.1) to enhance the recognition of waveform approximating models with linear segments. 

Version 6: Modified parser which implemented waveform deviation tolerance (Sec-
tion 6.2) to enhance the recognition of waveform approximating models with quadratic 
waveform segments. 
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1-D Sampled Data Pattern Recognition with Augmented Programmed Grammar 

PM. Grant, D.T Lin, J. M. Hannah and R.D. Pringle 

Department of Electrical Engineering 
University of Edinburgh, Edinburgh, EH9 ML, Scotland 

Abstract: This syntactic parser for pattern recognition, uses a descriptive grammar to test whether 
data samples fall within an expected shape or envelope. The construction of this recogniser, which 
is based on an augmented programmed grammar (APG), is described and its recognition statistics 
are simulated on irregularly sampled pattern waveforms. It is shown to be able to correctly 
recognise l-D waveforms with a wide range of sizes or scale factors, within a single grammatical 
representation. 

Keywords: pattern recognition, programmed grammar, sampled data signal recognition. 

INTRODUCTION 

We have previously reported on the design of a 
syntactic parser [1] for pattern recognition of sam-
pled data signals. This paper describes further refine-
ments to the parser to extend and quantify the per-
missible tolerance in the signal sample amplitudes 
and also reports on the detection statistics which have 
been achieved with the APG [2] based recogniser. 

PARSER DESIGN 

in Figure!. 

Segment I 	Segment 2 	Segment 3 
Amplitude 	 sjn 	I 	Key 
of 
Sampled 	 • A sampled 
Data 	 . 	 data point 
Points 

Pattern 
envelope 

V 	v 	y v 	p v 	V thsampling 

53  54 	 S 	 Time 	instance 

Our parser has been designed initially to recog-
nise a three segment signal whose envelope com-
prises an initial rising segment (with +45 °  gradient), 
a level segment followed by a falling segment (with 
.450 gradient), Figure 1. A waveform is required to 
have at least three non-identical sample points per 
segment, x 1  x2  etc, to qualify as a valid pattern 
waveform. This implies that a minimum valid pat-
tern would have seven data points present - i.e. with 
one data point being shared by Segments 1 and 2, and 
with another by Segments 2 and 3, Figure 1. 

Here the recognition of a pattern is conclusive 
if all data points which constitute the three segments 
of a pattern are identified from the received set of 
data samples (including noise). 

The previous parser [1] was constructed from a 
set of production rules which rely on core functions 
which are used to recognise the waveform segments 

Figure 1: Valid sampled-data pattern with trapezoidal envelope. 

The APG developed, to recognise the Figure 1 
patterns, comprises nine production rules. Each rule 
comprises a core function and two "goto-next" lists 
of rule labels [3]. Parsing commences with produc-
tion rule 1 and progresses from rule to rule until the 
termination label is reached confirming that a satis-
factory parse has been achieved. 

The main aim of the current investigation was 
to establish quantitatively how effectively an APG 
based recogniser operates in noise. The parser used 
was simplistic: it consisted of no transitional produc-
tion rules nor did it include means to suppress the 
recognition of false noise-induced waveforms. This 
meant that this parser realisation was not able to 
recognise an input waveform which contained miss-
ing turning points. 
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Figure 2: Recognition in (b), (d), (t) & (h) of noise corrupted input waveforms, (a), (c), (e) & (g). 

3. PARSER OPERATION 
	

data points, within a waveform plus noise which has 
a maximum voltage range (i.e. on the y-axis) of 200 

	

This section shows the results of some tests 	units. 
conducted on the new APG recogniser. The exam- 

	

ples shown here illustrate certain operational aspects 	Noise Corrupted Waveform Recognition 
of the recogniser. 

Figure 2(a) shows a clean waveform as the 

	

In all these examples, the possible next data 	input signal. The waveform contains the minimum 

	

point in the pattern waveform at any stage of the 	requisite number of samples. The data points are cor- 

	

parsing is selected from the immediately following 	rupted with up to 5 units of amplitude distortion. By 

	

15 sampled data points. For the recognition of ampli- 	incorporating a permissible amplitude-error tolerance 

	

tude-distorted waveforms, 5 units of amplitude-error 	of 5 or more units into the APG recogniser, it can 

	

tolerance are provided by the recogniser to all the 	subsequently successfully recognise this waveform. 
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Figure 3: Recogniser performance measurement for three distinct input signal types (b), (c) & (d). 

Figures 2(c), (d), (e) and (f) demonstrate the 
successful recognition of two further sets of ampli-
tude-distorted waveforms. They exemplify the diver-
sity of waveform shapes which can be recognised by 
this single parser design. Figures 2(g) and (h) show 
the recognition of another amplitude-distorted 
waveform which is accompanied by extraneous 
noise. The outcome of the recognition, as shown in 
Figure 2(h), demonstrates the consequences of ampli-
tude-error tolerance enforcement. On the one hand, 
it allows all the contributing data points of an ampli-
tude-distorted waveform to be satisfactorily extracted 
from the input signal's noise-induced false 
waveforms. These spurious waveforms, which may 
consist of data points pertaining to the original 
waveform itself, become a rival to the original 
waveform at the final decision-making hurdle of the 
recognition process. Thus, dependent on the selec-
tion strategy which the recogniser exercises, the ulti-
mate waveform chosen can be wholly or partially 
erroneous, even though the chosen waveform is most 
appropriate for the selection criteria. Figure 2(h) fur-
ther shows that the waveform data points finally 
returned by the recogniser often do include data 
points which are part of the signal background noise. 

4. OPERATIONAL CHARACTERISTIC 

Monte Carlo tests were applied to the recog-
niser at various values of SNR testing over 1000 dif-
ferent noisy patterns at each SNR value. These tests 
were conducted with different parser parameters such 
as amplitude tolerance, noise threshold and scan 
ahead distance. The assessment method is illustrated 
in Figure 3. Here signal (b) comprises only noise 
samples with no pattern waveform. Noisy signal c is  

performed by superimposing samples of noise signal 
b with samples of the original waveform exclusively 
at the sampling instances of the pattern. The resul-
tant value of c at sampling instances other than those 
of the original waveform is left undefined. Noisy sig-
nal d, on the other hand is generated by superimpos-
ing the noise signal b with the original waveform a at 
all sampling points. These three noisy signals are 
then applied in turn as individual inputs to the APG 
parser. 

The recognition may subsequently be either 
successful (e) or, if no waveform is found, a failure 
(f). Accompanying successful recognition the 
recognised waveform is checked for authenticity 
against the original waveform. Once certified 
authentic, the recognition is assured both successful 
and correct (g). Otherwise misdetection (h) is con-
cluded. 

The parser was operated with an amplitude tol-
erance of ±3, a noise threshold of 21 and a scan 
ahead distance of 5 time units. The original noise 
free waveform, Figure 3(a), had a peak amplitude of 
25 units. The plots in Figure 4(i) show for the signal 
(d) with the noise on all samples, the three possible 
outcomes, f, g, h of Figure 3. The plots in Figure 
4(u) show the results for input signal (c) of Figure 3 
as the parser input. The plots in Figure 4(iii) show 
the results for the noise only inputs of (b). Both Fig-
ure 4(u) & (iii) use the horozontal SNR scale as cal-
culated for (i). 

Figure 4(i) shows the expected reduction in the 
percentage of successful and correct recognition 
accompanying the decrease of SNR. Misdetected 



recognition was also observed although the particular 
parameter values used appeared to have prevented a 
sharp rise in the percentage of misdetected recogni-
tion as the noise level is increased. 
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being recognised. Therefore the plot for misdetected 
recognition in Figure 4(i) should be less prominent 
than the plot for the successful recognition of false 
waveforms of Figure 4(iii). As this is not the case it 
may be conjectured that at low SNR (< 3 dB) the 
source of misdetected. recognition may be attributed 
partially to the formations of false waveforms which 
are encouraged by some of the original waveform 
samples which themselves have particularly low 
added noise components. 

5. DISCUSSION 

The paper has reported the detailed operational 
performance in noise for a APG based syntactic pat-
tern recogniser [4] with one set of operating parame-
ters. Further detailed analysis of the parser operation 
with different parameters such as amplitude tolerance 
and scan ahead distance has also been conducted [5]. 
In addition a theoretical analysis has been developed 
[5] and this has been shown to agree with the results 
of Figure 4, concluding that the practical parser is 
indeed operating correctly. 

Figure 4: Recogniser performance characteristic in (i),(ii) and (iii) 

for signal types (d), (c) and (b) in Figure 3. 

In addition the following observations were 
made: The presence of noise improves the recogni-
tion of authentic waveforms. At high values of 
SNR (i.e. > 5 dB) there is a close resemblance 
between the characteristic plot for the successful and 
correct recognition of Figure 4(i) to the plot for suc-
cessful recognition in Figure 4(u), as well as between 
the plots of failed recognition of both. However at 
low values of SNR (i.e. <5dB) the percentage of suc-
cessful recognition of signal c (figure 4(u)) shows a 
slightly faster decline than its counterpart in Figure 
4(i). It may be postulated that the increase in the 
level of background noise degrades the recognition 
performance, but the presence of extraneous noise 
samples also slows down the degree of degradation. 
Since the amount of scan-ahead distance employed 
here is small, the differences in recognition are 
attributed to the occurrence of samples of noise close 
to those of the authentic waveform. 

In high noise the presence of original waveform 
samples increases the formation of false 
waveforms. In Figure 4(iii) no recognition of false 
waveform was made until very low level of SNR was 
reached (i.e. < 0 dB). These false waveforms are 
attributed totally to noise samples where high level of 
noise enabled the minimum segment length con-
straint to be overcome and for some spurious recog-
nition to be achieved. Figure 4(u) shows that, at the 
SNRs where the false waveforms are found, there is a 
much higher probability of authentic waveforms 

The parser has also been extended, in subse-
quent versions, to recognise curved in addition to lin-
ear waveform segments [5] enabling a much larger 
set of waveform classes to be identified and recog-
nised. Given the ability of this approach to accom-
modate irregularly sampled patterns with missing 
sample values, and at the same time achieving close 
to theoretical recognition accuracy, it should be found 
to be attractive for a number of pattern recognition 
applications. 
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