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Abstract 

Stochastic differential inclusions (SDIs) on Rd  have been investigated in this 

thesis, 
d1 

dx(t) e a(t,x(t))dt + 
j=1  

where a is a maximal monotone mapping, b is a Lipschitz continuous function, 

and w is a Wiener process. 

The principal aim of this work is to present some new results on solvability 

and approximations of SDIs. Two methods are adapted to obtain our results: the 

method of minimization and the method of implicit approximation. We interpret 

the method of monotonicity as a method of constructing minimizers to certain 

convex functions. Under the monotonicity condition and the usual linear growth 

condition, the solutions are characterized as the minimizers of convex functionals, 

and are constructed via implicit approximations. Implicit numerical scheme is 

given and the result on the rate of convergence is also presented. The ideas of our 

work are inspired by N.V.Krylov, where stochastic differential equations (SDEs) 

in Rd  are solved by minimizing convex functions via Euler approximations. 

Furthermore, since the linear growth condition is too strong, an approach is 

proposed for truncating maximal monotone functions to get bounded maximal 

monotone functions. It is a technical challenge in this thesis. Thus the existence 

of solutions to SDIs is proved under essentially weaker growth condition than the 

linear growth. 

For a special case of SDEs, a few of recent results from [5] are generalized. 

Some existing results of the convergence by implicit numerical schemes are proved 

under the locally Lipschitz condition. We will show that under certain weaker 

conditions, if the drift coefficient satisfies one-sided Lipschitz condition and the 

diffusion coefficient is Lipschitz continuous, implicit approximations applied to 

SDEs, converge almost surely to the solution of SDEs. The rate of convergence 

we get is 1/4. 

Finally it is shown that SDEs can directly be associated to mini-max problems. 

It is demonstrated that there exists strong solutions which are 'saddle points' of 

mini-max problems. This technique provides a simple proof of the existence 

results. 
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Notations 

R   the Euclidean d-dimensional space 

1XI the norm IxI =x)'/2  for vector x = (x2 ) e Rd 

Ibi the norm JbI = (E i  Ej  b)'/2  for b is a d x d 1  matrix 

zy xy =Ei xji for vectors x = (xi ), y = (y) E 
bz the product of matrices if b is a d x d 1  matrix and z e R° 

notice that bz E Rd and IbzI < IbHz 
C constant, usually without indices that may change line by 

line in the same proof 
C = C(...) C depends only on what are inside the parenthesis 
X := Y X is equal to Y by definition 
8(R ° ) the o—algebra of the Borel subsets of R° 

Br() the closed ball Br  of radius r centered at x: {y E Rd, Ix - yj < r} 

convM convex hull of the set M 
convM closure of convex hull of the set M 
E mathematical expection 
w = {Wt : t > O} d1 —dimensional Wiener Process 
e 1 , e 2 ,••• 	, ed an orthonormal basis in Rd 

a.e. almost surely 
strong convergence 
weak convergence 

SDE stochastic differential equation 
SDI stochastic differential inclusion 

The following assumptions will be adopted throughout this thesis. 

Let (cl, , P) be a complete probability space with natural filtration {}o<t<T 

carrying a d 1 —dimensional Ft—Wiener martingale w = {'wt : t > O}. Fix an 

integer d> 1. 
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Chapter 1 

Introduction 

This thesis is devoted mainly to stochastic differential inclusions (SDIs). SDIs 

represent an important generalization of the notion of stochastic differential equa-

tions (SDEs). In the case of an SDE, one wants to find a stochastic process 

x = x(t), whose stochastic differential dx(t) is given by an equation: 

d1 

	

dx(t) = a(t, x(t))dt + 	b(t, x (t)) dw j  t 
j=1 

with a deterministic drift term a, perturbed by a noisy diffusion term b, where 

a : [0, oc) x Rd , d, b : [0, oo) x R' ' Rdxdl are Borel functions and w is a 

d1 —dimensional Wiener process. For SDIs we require dx(t) belong to the set of 

stochastic differential described by the right-hand side of (1.0.1). In the thesis, 

the following SDI will be investigated on domain of Rd  with a multi-valued drift 

term: 

	

f dx(t) E a(t, x(t))dt + 	b(t, x(t))dw  

1.. x(0) = Xo. 

There is a great variety of motivations that lead us to study SDIs. By the 

classical results of M's SDE (1.0.1) with a specified initial value (independent 

of w), SDE has a unique solution if a and b are Lipschitz continuous in x and 

satisfy linear growth condition. It is shown that under the so-called monotonicity 

condition, the existence and uniqueness of a solution to SDEs is obtained in [20]. 

In many practical problems, several applications are possible like solving SDEs 

with discontinuous right-hand side. In such case the existence of a solution is not 

always guaranteed. For example, let us consider the following M's SDE: 

f dx(t) = a(x)dt + xdw 
x(0)=0 

(1.0.3) 

with a(x) = 1 for x < 0 and a(x) = —1 for x > 0. Obviously, there exists no 

solution. On the other hand, assume that we consider an explicit Euler approxi- 

mation xTh for the SDE (10.3). It is easy to show that Xn  converges almost surely 



to some stochastic process x, but x is not the solution of the given SDE (1.0.3). 

It is both practical and essential to extend SDE to SDI. However, if a is extended 

to be multi-valued and SDE to be a stochastic inclusion, we can show that it is a 

unique solution of the SDI obtained. Nonetheless it can be found that this equa-

tion falls into a general class. Generally, we understand SDIs as an enlargement 

of SDEs. The right-hand side of an SDI is a set rather than a single value. So far 

we can see that SDIs play a crucial role in the theory of SDEs with a discontinues 

right-hand side. 

It is noticed that the nature of the existence and uniqueness solution for SDIs 

problem has been extensively studied for long time by using different methods. 

Articles have appeared recently in which SDIs or SDEs with multi-valued opera-

tors are studied [25], [311. The concept of solutions to SDIs has been introduced 

in these papers. Numerically approximate methods have also been tackled in [31], 

[27], and [8]. There has been a strong desire to produce numerical solutions to 

SDIs. This is also our main interest in this thesis. We shall see that SDIs are 

solved by a minimization method for some convex functionals via implicit ap-

proximations (also known as semi-implicit method or backwark Euler method). 

During our study of implicit method for SDIs, some recent results from SDEs, 

by Higham, D.J., Mao, X. and Stuart,A.M. [5] and Hu, Y. [16] are generalized, 

from where a rate of convergence is derived. It is shown that, the existing proofs 

of the convergence results on such numerical schemes in both of these two papers 

are proved under the locally Lipschitz condition. This is the main reason why 

these work have a better rate of convergence. In this thesis, the local Lipschitz 

condition of the drift term is weaken and replaced by one-sided Lipschitz condition 

comparing with those previous papers. We will show that implicit approximations 

converge almost surely if the drift satisfies one-sided Lipschitz condition and the 

diffusion is Lipschitz continuous. 

In the last chapter of this thesis, it is demonstrated that SDEs can directly be 

associated with mini-max problems in suitable infinite dimensional spaces. This 

adapts an idea of N.V. Krylov. More precisely, if the coefficients of an SDE satisfy 

the so called monotonicity condition, then one can construct a mini-max problem 

such that its saddle point is the solution of the given SDE. 

A brief description of the chapters contained in this thesis is presented as 

follows: 

• Chapter 2: this chapter presents the background material and some results 

that are required in later chapters; 

• Chapter 3: in this chapter, some new results are generalized from SDEs by 
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comparing with the paper [16] and [5]; 

• Chapter 4: this chapter is devoted to the existence and uniqueness of solu-

tions for SDIs by minimization method; 

• Chapter 5: this chapter contains the extension of monotone and maximal 

monotone function that are useful technique needed in the following chapter; 

• Chapter 6: this chapter further studies the existence of solution for SDIs 

by truncation method; 

• Chapter 7: this chapter shows that the solution of a SDE can be considered 

as saddle points of a mini-max problem. 

Me 



Chapter 2 

Preliminaries 

The purpose of this chapter is to present some general background and briefly 

summarize some results from the theory of probability and stochastic differen-

tial equations which we will need in later chapters. Such theory is much more 

extensive than what I present here and can be found in many textbooks. For 

example we refer the reader to books by N.V.Krylov [23], [24], B. øksendal [30]. 

Most definitions and results in this chapter are due from lecture notes [15]. This 

chapter covers: 

. section 2.1: this section gives the background of probability theory; 

. section 2.2: this section gives the definition of stochastic process, and the 

special class Wiener process; 

. section 2.3: this section contains some basic inequalities and statements 

which will be used through whole thesis; 

. section 2.4: in this section we discuss the important theory of monotone 

and maximal monotone mappings. 

2.1 Probability Theory Background 

Definition 2.1.1. Let Il be a set. Then a a-algebra J is a collection of subsets 

of Il such that 

cleJ. 

If A. is a sequence of elements of .T, then U?,=' ,A i  E J. 

IfAEF, then  AcEJ,  where Ac=cl\A. 

Definition 2.1.2. A probability measure defined on a a-algebra of Q is a function 

P : .F - [0, 1] that satisfies the following properties 

7 



P(l) =1. 

If A 1 , A 2 ,• 	is a sequence of elements of F that are pairwise disjoint (i.e. 
00 	 00 

A i  fl Aj  0 for all i j), then P(UAj) = 	P(A). 

Definition 2.1.3. Let (R F, P) be a probability space. Then, a function X 

- R is called a random variable if and only if the set {X E [a, bJ} = {w E Q: 

X() E [a,b]} E J7  for all a < b. 

Definition 2.1.4. The Borel a-algebra 8(R) is defined as the smallest a-algebra 

containing all intervals of the form [a, b], where a and b are real numbers (a < b): 

8(R)=a([a,b] : a < b) 

(in other words, 8(R) is generated by intervals of the above form). 

Definition 2.1.5. If X is a random variable defined on the probability space 

P), then the expected value or mean value of X is 

EX= [XdP. 
Jci 

Expectations satisfy various properties. For example 

It is a linear functional: If EIXI  <oo and EIYI  <oo then EIcX  + 13Y1 = 

aEIXI + I3EIYI for every c 	E R. 

IfX>O, then EX>O. 

Moreover, the following assertions hold: 

Lemma 2.1.1 (Borel-Cantelli Lemma). If A n  are any events with > P(A) < 

oo, then 
P(lim sup A n )  =O. 

If the A n  are independent and En P(A n ) = +oo, then P(limsupAn ) = 1. 

Theorem 2.1.2 (Beppo-Levi's theorem). If {X}>i is a sequence of nonnegative 

increasing sequence of random variables that converges almost surely to a random 

variable X, then 
EX = urn EX. 

fl-HDO 

Lemma 2.1.3 (Fatou's lemma). Let {X}>1 be a sequence of non-negative ran- 

dom variables. Then 

E(liminfX) <liminfEX. 
n-00 	n-00 
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Theorem 2.1.4 (Lebesgue's Dominated Convergence Theorem). Let {X}>1 

be a sequence of random variables, converging(a.s.) to some random variable X. 

Assume that there exists a (non-negative) random variable Y such that JXnJ < Y 

for all n(a.s.) and EIYI <oo, then EXI < oc, and 

EIXI = lim EX. 
n—oo 

If there is an infinite sequence of random variable, then it is necessary to 

know the convergence of sequences. The following are given the different modes 

of convergence: 

Definition 2.1.6. A sequence of random variables {X(w)} converges with prob-

ability one to X(w), if P({w E 1 : lim,0 X() = X(w)}) = 1. This is also 

called almost surely ,  convergence. 

Definition 2.1.7. A sequence of random variable {X(w)} converges in proba-

bility to X if 

lim P(X(w) - X(w)l > ) = 0, V€> 0. 
n—oo 

Definition 2.1.8. Suppose that Xn  and X are real-valued random variables with 

distribution functions F and F respectively. We say that the distribution of X 

converges to the distribution of X as n -f oo, if 

F(X) -* F(X), as n - 00. 

Definition 2.1.9. We say that the sequence X, converges in r-th mean or in 

the Lr norrn  towards X, if r > 1, EIXlT <00, for all n, and 

lim E(IX — Xl T )= 0 . n—*co 

2.2 Stochastic Processes and Wiener Processes 

Definition 2.2.1. A stochastic process X := {X : t e T} is a parameterized 

collection of random variables with index set T. For each fixed w E Q , the function 

t - X t (w); t e T 

is called a trajectory. When T is discrete, then X is called stochastic process in 

discrete time; When T is an interval or half line of the real line, or the whole 

real line, e.g., T = [0, T] or T = D C 1f'1  then X is called stochastic process 

in continuous time. In this case we always assume that the stochastic process 

X : Q x T -* W is measurable in (w, t) with respect to the product a--algebra 



Definition 2.2.2. Let T = [0, T]. Then, X := {X : t e T} is a continuous pro-

cess if the trajectories are continuous, i.e., each w E Q is mapped to a continuous 

function of time defined on [0, T], w -p X. (w) e C([0, T]). 

Definition 2.2.3. A stochastic process X := {X : t E T} is called cadlag, if the 

trajectories are right-continuous with left limits, i.e. for every fixed w E ft X(w) 

is right-continuous and the lim,Tt  X8  exists for every t E [0, T]. 

An important class of stochastic processes is that with independent incre-

ments; that is, where the difference X(tk+1) - X(tk) are independent. 

Definition 2.2.4 (Wiener Process). A standard one-dimensional Wiener process 

(Brownian motion) with respect to {F} is a continuous .T—adapted process 

W = {W : t > 01 defined on (ft F, P) with properties 

W0 =0,a.s; 

for every 0 < s < t, W(t) - W(s) is independent of ..F5  

W(t) - W(s) is normally distributed with mean zero and variance t - s. 

Definition 2.2.5 (Martingale). A stochastic process X t  is called a martingale 

with respect to Ft  if it satisfies the following conditions: 

Xt  is —adapted; 

EIXtl <oo, for all t > 0; 

E(X t X 3 ) = X, for every s,t > 0, such that s <t. 

A stochastic process X t  is called a local martingale with respect to Tt  if there 

exists a sequence of stopping time r,- such that r T 00 a.s. and XtAT is a 

martingale with respect to FtA, for n e N. 

2.3 Fundamental Inequalities and Statements 

Next we present some important inequalities and statements that will be used in 

the following chapters: 

Proposition 2.3.1 (Chebyshev's inequality). If e is a random variable then 

P(leI ~!! .) < 

V\ > 0, a> 0. 
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Lemma 2.3.2 (Young's inequality). If a, b, p, q and ö are positive real number 

with i/p + 11q = 1, then we have 

ab<a'+ 1 

	

p 	qc/P 

Theorem 2.3.3 (The Roger-Holder inequality). For any random variables , i 

E(l) :5 IIpI'7lq,'P >_ 1, 

where q:=-ifp>1 and q_ooifp=l. 

Remark 2.3.1. The special case p = q = 2 of the Roger-HOlder inequality is often 

called the Cauchy- Bunyakovsky inequality. 

Theorem 2.3.4 (Minkowski's inequality). For any random variables e 	and 

for pe  [ 1 , 00 1 

	

e + 17 p 	jp + I111p. 

Theorem 2.3.5 (Jensen's inequality). If f is a convex function then f(E) 

Ef() for every random variable 6, provided E6 is finite. 

Theorem 2.3.6 (Burkholder- Davis- Gundy's inequality). For any p E (0, oo), 

there exists constant C, <00 depending only on p, such that for every T> 0, 

T 
Esup f fdw 3 I CE(I fds) 12 , 

t<T 0  

for every Ft —adapted stochastic process {ft : t E [0, T]}. 

Theorem 2.3.7 (Gronwall's inequality). Let T> 0 and c > 0. Let u be a Borel 

function on [0,T], such that 

ft 
0 < u(t) 	c + I Jo v(s)u(s)ds, 

holds for all 0 < t < T, where v is a non-negative function having finite integral 

over [0,T]. Then 

u(t) cexp( f v(s)ds), 
Jo 

for all 0 <t < T. 

We need the following discrete version from the above Gronwall theorem to 

get some estimates for the discrete time approximations. 
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Lemma 2.3.8 (Discrete Gronwall inequality). Let {a 2 } be a sequence, i = 0, 1, 2, 	, k- 

1. If for k=1,2,- ,n the inequality 

ak < C+Ka 

holds, where C, K > 0 are constants. Then 

1akj <C(1 + K)k. 

Proof. Define bk : = C + K >d b. Th en we claim that 

ak < bk. 

Indeed, 
- - fI - 	 - 	 P 	 - .- uo—uo, ui-t-n.aomn.00=oi; 

we get the claim by induction. Since, 

bk+i - bk = Kbk, bk+i = bk(K + 1). 

So 

bk+i = bk(K + 1) = bk_i (K + 1)2 

= bk_2(K + 1)3 =... = b 0 (K + l)k+1 

Finally, we obtain 

ak+i 	= b0 (K + 1)k+1 C(1 + 

t 

In order to construct (maximal) monotone extensions of (maximal) monotone 

functions, we will make use of the following well-known result: 

Theorem 2.3.9 (Separation of Convex Sets [34]). Suppose A and B are disjoint, 

nonempty, convex sets in a topological vector space X. If A is compact, B is 

closed, and X is locally convex, then there exist a e X", 'xi  e R, 72  E IR, such 

that 

(a, x) <71 <72 < (a, y), 

for every x e A and for every y E B, where (x, x*)  denotes the duality product of 

x E X and x*  E X* - 

2.4 Monotone and Maximal Monotone Mappings 

We devote the last part of this chapter to a very important theory of monotone 

and maximal monotone mappings. The material covered in this part is the base 

for the rest of the thesis. 
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2.4.1 Introduction 

The theory of monotone and maximal monotone mappings play an important 

role in several fields of mathematics such as functional analysis, partial differ-

ential equations. They have turned out to be very useful in the study of the 

existence and uniqueness theory for ordinary differential equations, partial differ-

ential equations, differential inclusions, stochastic Ito's equations. This is a very 

simple but important technique. We have seen in many works, that the property 

of monotonicity and maximal monotonicity make a big contribution to the SDEs 

problems. For the beginning, let us summarize some general sources and concepts 

of the monotone and maximal monotone mappings. Then in chapter 5, we will 

give the extension of monotone and maximal monotone mappings that will lead 

to Our proof. 

We start with some basic definitions: 

2.4.2 Notation and Some Definitions 

Definition 2.4.1. A mapping a: Rd , d is called monotone, if 

(a (x) — a(y))(x — y) < 0, 

for all x,y e 

The definition of monotone mapping can be extended to a multi-valued case. 

A mapping a: Rd  --+2 Rd  is multi-valued, where 21  is all the subsets of Rd,  and 

a will be viewed as the subset of R" x R'. If a C Rd x Rd  we define, 

a(x) = {y E R (x, y) e a} is the image; 

D(a) = {x E Rd: a(x) Ø} is the effective domain of a; 

R(a) = U{a(x),x E D(a)} is called the range of a; 

= {(y,x): (x, y) E a} is the inverse mapping. 

If a is multi-valued then the above definition of monotonicity is replaced by, 

Definition 2.4.2. A mapping a: Rd  —+2 Rd is called monotone, if (x* — 	— 

Y) < 0, for all x,y e Rd, x' E a ( x ), y * e a(y). 

Example 2.4.1. We give an example of a multi-valued monotone function. Let 

a : R —* R; a(x) = 0, if x < 1; a(x) = 1 if x > 1, and let a(1) be any subset 

Of [0,1]. 

In more general case, we give the definition of a K—monotone mapping: 

13 



Definition 2.4.3. A multi-valued mapping a: Rd , R' is called K—monotone 

if 
(x* - y*)(x - y) KIx - y1 2 , 

V x, y E Rd,  x 	a(x), y* e a(y), 

where K is a constant. 

In order to introduce the definition of maximal monotone mapping, we con-

sider their graph first. 

We saythat the set F(a) = (x, y) : x e D(a),y e a(x)} is called the graph of 

a. The map d: R' x Rd  is called an extension of a if F(a) ç r(d). 

Definition 2.4.4. If a : Rd ,S R 2 is a K—monotone mapping, such that it 

does not have a proper K—monotone extension, then it is called a maximal 

K—monotone mapping. 

If K = 0, in Definition 2.4.3 and 2.4.4, we shall call 0—monotone and 0—maximal 

monotone simply monotone and maximal monotone. 

From Zorn's lemma, the graph of every monotone map is contained in the 

graph of a multi-valued maximal monotone map. It shows that monotone map-

ping can get extended to a maximal monotone mapping. 

Remark 2.4.1. Notice that monotone (maximal monotone) mapping we defined 

here is based on monotone decreasing, while most of the definitions in textbooks 

are monotone increasing. 

Remark 2.4.2. We can see that maximal monotonicity is a property for continuous 

monotone function, i.e., if a continuous function a : Rd Rd is monotone, it is 

maximal monotone. 

In order to get a better understanding of a maximal monotone function, let 

us give an example. 

Example 2.4.2. We consider a multi-valued function f from R to 2R  If f is 

monotone discreasing but discontinuous at x, where x E R. Then f is monotone 

but not maximal monotone. It is easy to see that the set F(F) = {(x,y) : x 

R, f(x+0) < y < f(x-0)} is a monotone set and that every monotone extension 

of f is contained by it. Such multi-valued function F is maximal monotone if and 

only ifF(x) := [f(x+ 0),f(x -0)]. 

Remark 2.4.3. If a is a K—monotone function, we set a = a(x) - Kx. Then ã(x) 

turns out to be monotone. Furthermore, if a is a maximal K—monotone function, 

then it is easy to see that a is maximal monotone. 

Proposition 2.4.1. A multi-valued map a is monotone (maximal monotone) if 

and only if its inverse a 1  is monotone (maximal monotone). 

14 



Proposition 2.4.2. Let a be maximal monotone. Then its images are closed and 

convex. 

These results are consequences of definition of maximal monotone function. 

We omitted the proofs. 

2.4.3 Known Results 

The property of maximal monotonicity is closely related to the surjectivity of the 

operator I + a, in which I is the unit operator in Rd.  This result is a theorem of 

Minty, (see e.g., Aubin and Cellina[2]) 

Theorem 2.4.3 (Minty). Let a be a monotone set-valued map from X to X. It 

is maximal if and only if 1+ a is surjective. 

Here X denotes Hilbert space. 

For details of proof of the above theorem, we refer to Aubin and Cellina [2]. 

We give some well-known properties of maximal monotone mappings. The 

relevant material can be found in Aubin and Cellina [2] and E. Zeidler [40]. The 

following lemma is sufficient for our later proofs. 

Lemma 2.4.4. Let a be a mapping on Rd,  the following statement are equivalent: 

a is maximal monotone; 

a is monotone, and Im(I + a) = 

(I + )a) 1  is a contraction on Rd. 

A fundamental characterization of maximal monotone mapping is as follows: 

2.4.3.1 Yosida Approximation 

Let A be a maximal monotone map on Rd.  For )> 0, the inclusion y C= x+AA(x) 

has a unique solution x, for any fixed y , denoted by (I + )A)'y = J),y. The 

mapping J, is a contraction from Rd Rd .  We put A ), := I—J,\ . It can be shown 

that A ), is maximal monotone and Lipschitz continuous. Such Lipschitz mapping 

A), is known as Yosida approximation. We state some important properties of 

Yosida approximation without proofs due to Aubin and Cellina [2]. 

Theorem 2.4.5. Let A be a maximal monotone map on R'. Then 

1. For all x E D(A), there exists a unique point A °x such that 1A Oxj = 

min{y : y E Ax}. 
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2. IJAx — JAy 	lx — y, for llA>0 and x , y ERd. 

JA, AA are Lipschitzean with constants 1 and 1/A respectively. 

A. is maximal monotone. 

Ax e AJAx for all A> 0 and x e 

For x E D(A), IA, \xl < IA°xI, and AAx —* A °x as A —* 0. 

For  E D(A), JAx —* x. 

We can see that in particular, a maximal monotone mapping A can be approx-

imated by single-valued Lipschitz mapping AA that are also maximal monotone 

u, some ext 
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Chapter 3 

Implicit Approximation Schemes 
for Stochastic Differential 

Equations 

In this chapter, some resent results on stochastic differential equations from [5] 

are generalized. We will prove that implicit approximations for SDEs on domain 

of Rd  converge almost surely if the drift satisfies one-sided Lipschitz condition 

and the diffusion coefficient is Lipschitz continuous. 

3.1 Introduction 

Let us investigate the following SIDE in this chapter, for x E R', and t E'[0, T], 

d1 

dx(t) = a(t, x(t))dt + L b(t, x(t))dw. 
j=1 

For simplicity, we consider the time-independent case. 

It is well known that numerical methods are extensively applied to solve SDEs 

problems. There are various types of methods to solve numerically SDEs. An 

overview of the existing numerical methods is given in Kloeden and Platen [26]. 

A numerical solution := {x'(t), t E [0, T]} is a stochastic process that approx-

imates the solution x := Ix (t), t e [0, T]} of an SDE. The first step towards the 

development of numerical solutions to SDEs is Euler's polygonal approximation, 

which is the simplest discrete approximation, (it is also known as Euler-Maruyama 

approximations). One can define Euler's polygonal approximations as follows: for 

every integer n > 1, given a partition 

O=to<tl<<tk<T, 

of the time interval [0, T], with a step size At = , it allows us to express the 
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discrete time stochastic process in the form of 

d1 

x(tk) = x(t k _ 1 ) + a(x(tk_1))Lt + 
j=1 

for Lw_ 1  W k  - W kl . 

We notice that the convergence of Euler's approximations is discovered by 

many authors under different conditions. It is worth mentioning that it is first 

known from Maruyama, G. [28] in the case of the Lipschitz continuity of the 

drift and diffusion coefficients. In [19] Krylov, N.V. showed that the existence of 

strong solutions can be constructed under the Euler polygonal line method. Then 

it is shown in [1] that Euler polygonal lines can be used as a new proof of the 

existence of solutions under the monotoniciy and the linear growth condition by 

Alyushina, L.A. . She also obtained an estimate for the speed of convergence. 

Afterward, it is known from Krylov, N.y [20], where a simple proof of solvability 

by Euler's polygonal line method is presented under monotonicity and under a 

condition which is weaker than the usual linear, growth. Later a proof of solvabil-

ity, based on very general conditions by Euler's approximations, can be found in 

[9]. Gyongy, I. and Krylov, N.V. obtained that Euler's approximations converge 

in probability to strong solutions, even if the drift term is only measurable and 

the diffusion term is Lipschtiz, while a description of convergent proof by Euler's 

approximations, based on the monotonicity of the drift and Lipschitz continuity 

of the diffusion can be found in Gyongy, L's paper [10]. Higham, D.J., Mao, X. 

and Stuart,A.M., in [5] gave a strong convergent result for Euler method when 

the drift and diffusion coefficients are locally Lipschitz. As a further extension, 

they showed a more widely used implicit variant of the Euler methods by relating 

two implicit methods. One is split-step extension of the backward Euler method. 

The other, more naturally extends the backward Euler method (we call it im-

plicit approximations). In this chapter we are interested in implicit discretization 

scheme in the forms of: 

di 

	

= af1 (tk_l) + a(x(tk))tt + 	x(tk_1))(w k  - wtkl), 1 <k < n, 
j=1  

	

for T := {tk = kLt}, where At = 	for n > 1. In their work [5], under a 

local Lipschitz condition, and the boundedness of the pth moments of both the 

exact and numerical approximations for any p> 2, combined with a polynomial 

growth condition, they proved that the backward Euler approximations converge 

in mean square with a rate of 1/2. The other published work in this area that we 

are aware of is Hu, Y [16]. He proved the strong convergent result when the drift 
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coefficient satisfies the one-sided Lipschitz condition and exponential growth, the 

diffusion coefficient has the bounded derivative. He obtained that implicit scheme 

has the convergence rate of 1/2. This chapter is influenced by the works [16], [5]. 

Our main result is to prove the convergence of implicit scheme under some-

what weaker conditions. It is worthwhile to compare our work with that in the 

above two papers [5] and [16]. As we can see, the existing proofs of the conver-

gence of such numerical schems in both of these two papers require the locally 

Lipschitz condition. This is the main reason why they have a better rate of con-

vergence. In our work, we obtain boundedness of the qth moments of both the 

exact and numerical approximations for any q > 1, where the diffusion is Lips-

chitz continuous and the drift satisfies a one-sided Lipschitz condition. Further, 

we require the drift behave polynomia.]Iy We show that implicit approximations 

converge almost surely to solutions of SDEs. Moreover, the rate of convergence 

we proved is n for every a < . (See Theorem 3.2.6 and 3.2.7 below.) Our 

results are comparable to the results in [5] and [16]. 

This chapter is organized in the following way: 

• section 3.2: in this section we describe our discretization implicit scheme, 

prove the existence and uniqueness of implicit approximations precisely, and 

state the main results of this chapter; 

• section 3.3: this section gives the preliminary lemmas that will be used 

to establish the main proofs. Boundedness of the implicit approximation 

solutions is given in this section; 

• section 3.4: in this part we provide the main proofs of main theorems. 

3.2 Formulation of the Results 

We consider the stochastic differential equation as follows: 

{

dx(t) a(x(t))dt + 
Ed, 1  b'(x(t))dw,  

X(0) =xo , 

where a(x), b(x) are Borel functions on W taking values in IRd  and W1  respec- 

tively. 

By a solution of SDE (3.2.1) we mean an —adapted R d_va1ued  stochastic 

process x(t) = Xt(W) satisfying equation (3.2.1) on the interval [0, T] for almost 

every w E 

The hypothesis on convergence theory are usually sufficient, but not necessary. 

Some of those are quite strong, but can be weakened in several ways. In what 

follows we list assumptions that are concerned in this chapter: 
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Assumption 3.2.1. Let x0  be an F0—measurable random variable in R' such 

that EIxoI <00. 

Assumption 3.2.2. a is continuous in x e Rd. 

Assumption 3.2.3 (Local Monotonicity of a). For any R > 0, there exists a 

constant LR,  such that 

(x - y)(a(x) - a(y)) < LRX - y1 2 , 

for any x,y e R", with jxj, jyj < R. 

Assumption 3.2.4 (Local Lipschitz of b). For any R> 0, there exists a constant 

T..- such that 

 LRX — y, 

for any x,y e R', with jxj, jyj < R. 

Assumption 3.2.5 (One-sided Linear Growth of a, b). There exist non-negative 

constants C1, C2 , C3 , such that 

xa(x) <Ci Ix 2  + C2 ; 

Ib(x)I < C(1 + xj)- 

Remark 3.2.1. Notice that in the local conditions 3.2.3 and 3.2.4 if LR := L for all 

R and L is a non-negative constant, then we get the global conditions as follows: 

Assumption 3.2.6. There exist constants L 1 , L 2  > 0, such that for all x, y E 

(i) (x - y)(a(x) - a(y)) < L1x - yI 2  

(ii) b(x) - b(y) 	Lx - yI. 

Remark 3.2.2. Inequality (i) in Assumption 3.2.6 is also known as one-sided Lip-

schitz condition. This means, the function a is a K—monotone function. 

Remark 3.2.3. Notice that Assumptions 3.2.6 implies Assumption 3.2.5. 

Assumption 3.2.7 (Polynomial Condition of a). For any integer r > 1, there 

exists a constant C4  > 0, such that 

Ia(x)I <C4 (1 + x ') .  

We now describe implicit discretization schemes. Let n > 1 be any integer, 

and set tk=kLt for 0<k<n. 
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3.2.1 Implicit Approximation Schemes 

Under the above conditions, we approximate the solution x(t) of the equation 

(3.2.1) by the process x'(t) solving the following equation: 

	

5 X(tk) = x(tk_1) + a(x(t k ))At + 	(x(tk_1))(w k  - 4k 1)' 	(3 2 2) 
j XT(t o ) = 

and defined as 

x(t) := x(tk_1), for t e [tk_1, tk), 

for 1 < k < n. Here we denote Wk-1 := Wtk Wtk_1• This scheme is also known as 

backward Euler method [5] or semi-implicit Euler-Maruyama time discretization 

scheme [16]. 

The following statements establish the existence and uniqueness of x(t) for 

this system of stochastic equations (3.2.2): 

3.2.2 Existence and Uniqueness of Solution of the Implicit 
Schemes 

The lemmas below give the existence and uniqueness for the solution to the equa-

tion f(x) = z, which deduce the proof of existence and uniqueness of solutions to 

the implicit schemes. 

Lemma 3.2.1. Let f be a vector field on R' and consider the equation 

f(x) = z 
	

(3.2.3) 

for a given z E W 1 . If  is monotone, i.e., 

(x - y)(f(x) - f()) > 0 	 (3.2.4) 

for all x, y e Rd,  x y, then the equation has at most one solution. 

If  is continuous and it is "coercive", i.e., there exist constants c 1  > 0, and 

E R', such that 

xf(x) > c 1 x +c2, V x E Rd . 	 (3.2.5) 

then for every z E R', the equation has a solution x E Rd,  and 

	

1 	2 	2c2 
- 	Iz - -;- 
	

(3.2.6) 

with constants depending only on c 1  and c2 . 
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Proof If x and y are solutions to equation (3.2.3), then f(x) 
- f(y) = 0. Hence 

(x - y)(f(x) 
- f(y)) = 0 and condition (3.2.4) implies x = y. 

If f is continuous and satisfies the "coercivity condition", then the existence 

of a solution x E R' is a classical result, see, e.g. Zeidler's book [40]. To show 

the estimate (3.2.6) for a solution x of equation (3.2.3), notice that the coercivity 

(3.2.5) implies 

cilxl 2 	 lzl + C2 	 xz < xf(x) = 	
- Cl 

x 2 + 
1 2 —— . 

2 	2c1  

Hence, 
1 	2 	2c2 1 x 12 ~ _Izl -- 
c 	Ci '  

which proves (3.2.6). 	 INK 

Corollary 3.2.2. Let a be a continuous vector field on Rd  satisfying local mono-

tonicity and one-sided linear growth conditions: 3.2.3 and 3.2.5. Then for At 

satisfying C 1 Lt < 1, (where C 1  is the coefficient in one-sided linear growth con-

dition) and for every z E Rd ,  the equation 

x - a(x)/.t = z 	 (3.2.7) 

has a solution x E Rd and 

xl <(1 - CiAt)'lzI. 

If for R := (1 - Cit)lzl, and we have LRLt < 1, then the equation (3.2.7) 

has a unique solution. 

Proof. Notice that f(x) := x - a(x)At is a continuous vector field on Rd,  such 

that 

xf(x) = x12 - xa(x)Lt > I X12 
- CiLtIx12 = cilx12, 

with c1  := 1 - C1 Lt. 

Clearly, for sufficiently small it the constant c 1  is strictly positive and hence 

f is coercive. 

Then by Lemma 3.2.1, (3.2.7) has a solution x and by estimate (3.2.6), 

xl < CIzI, 

with C = (1— C1 t). Let x,y be solutions to (3.2.7), then lxi < R, ii < R, 

with R := C(z), and by the local monotonicity condition 

(x - y)(f(x) 
- 

f(y))> ix - y12 - LRIX - y121t = (1 - LR/t)Ix - 

which implies x = y if LRIt < 1. 	 Li 
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Corollary 3.2.3. Let a be a continuous vector field on Rd satisfying the lo-

cal monotonicity condition 3.2.3 and the one-sided linear growth condition 3.2.5. 

Then for At satisfying C 1 Lt < 1 there is a Borel function p : Rd , ]d such 

that x = pzt(z) is the solution of the equation (3.2.7), for all z e R', and 

- ci/.t) 1 I4 

Proof. If LR = L for all R, i.e., the one-sided Lipschitz condition 3.2.6 holds, then 

for Ltt < 1 and C1 Lt < 1, equation (3.2.7) has a unique solution x := pt(z) 

for all z, which defines the Borel function Pt  If C1 Lt < 1, then there exists a 

solution x for each z E Rd ,  but there may be many solutions. In this case one 

knows that it is possible to pick up a solution pAt(z),  such that the function Pt 

is Borel measurable. From the above corollary, pt(z)I < (1 - Ci t)'z. L 

Under the above preparation, we go back to the system of equations (3.2.2). 

Theorem 3.2.4. Let Assumptions 3.2.1, 3.2.2 and 3.2.6 hold, then the system 

of equations (3.2.2) has a unique solution {x(tk) : k = 1,... , n}, if At is suffi-

ciently small, i.e., if n is sufficiently large. Moreover, x(tk) is .T tk —measurable 

for any k. 

Proof. The system (3.2.2) can be written as 

f(x(tk)) = af(tk) - a(xTh(t k ))Lt = z 

where 
di 

Z := x' (tk_1) + 	x(tk_1))w_ 1 , k = 1,2,•. , n. 
j= 1  

Hence we can get the existence and uniqueness of the sequences {X(tk) : k 

1, 2.. , n} by induction on k from Lemma 3.2.1. Notice that, the random vari-

ables X(tk) are 	—measurable. 

U 

Theorem 3.2.5. Assume Assumptions 3.2.1, 3.2.2, 3.2.3 and 3.2.5 hold, then for 

sufficiently small Lit, the system of equations (3.2.2) admits a solution {X'(tk) 

k= 1, 	, n} such that x(tk) is Fk measurable. 

Proof. Define 

d1 ' 

x(tk) := Pt (x(t k _ 1 ) + 	b3  (x(tk_1))Lw_ l ), 	( 3.2.8) 
j=1 

where Pt is X'(tk) - a(x'(tk))Lt. Corollary 3.2.3 implies the result. 

. 
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Remark 3.2.4. In the proof of the main theorem 3.2.7 given as below, we will 

define implicit approximations as (3.2.8). In the point of my practice, under 

the local conditions Pt  is bounded by an increasing sequence C(R). Further 

explanation is given later in this chapter. 

Our goal is to show that implicit approximations converge to a stochastic 

process, which is the solution of equation (3.2.1). The theorems below are the 

main results of this chapter. Moveover, we obtain a rate of convergence result for 

the implicit method which is a generalization of [5]. 

Theorem 3.2.6. Let r > 1 and q > 1 be any real number. Assume EIxol < 

oo. Then under Assumptions 3.2.2, 3.2.6 and 3.2.7, there exists a constant C 

independent of n, such that 

E max lx(tk) - x(t) I q < 
O<k<n 

We can weaken the assumptions of Theorem 3.2.6 as follows: 

Theorem 3.2.7. Under Assumptions 3.2.1 and 3.2.2, let Assumptions 3.2.3, 

3.2.4 and 3.2.5 hold. Then xTh(t) defined by (3.2.2), converges to x(t) almost 

surely for each t E [0, T]. Moreover, for every a < 1 , there exists a finite random 

variable , such that almost surely 

sup lx(t) - x(t)I < en, 
t<T 

for all n > 1. 

3.3 Preliminary Lemmas 

In order to establish the main results, we shall need to prepare some lemmas. We 

will show that under Assumption 3.2.5, the true solution of SDE (3.2.1) has a 

finite qth moments for each q > 1, and the qth moments of the numerical solutions 

is bounded by some constants independent of n. 

Lemma 3.3.1. Let q ~! 1. Assume EIxo' < 00. Under Assumptions 3.2.2 and 

3.2.5, if x(t) is a solution of SDE (3.2.1), then there exists a constant C, such 

that 

E sup IxtI' < C. 
O<t<T 

This statement is well-known, see e.g. in Krylov [22]. For the convenience of 

the reader, we give a brief proof. 

11 	
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Proof. By Ito's formula, we can derive that for all t E [0, T], 

	

d1 	 d1 

dx(t)I2 = (2z(t)a(x(t)) + 	1'(x(t)) 2 )dt + 	2x (t) b' (x (t)) dw ~t  

	

j=1 	 j=1 

d1 

	

< C(1 + Ix(t)12)dt + 	2x(t)b(x(t))dw, 
j=1 

where C = C(C1 , C2 , C3 ). 

	

Set xR(t) 	x(t A YR),  where 'rR is 	a stopping time defined by 

'rR.:=inf{t>0:Ixt>R} for each R>0. 

Then 

ciip1rR()I2 l  

s<t 

Hence for any q > 1, 

I'tATR 

1 _0 121   ,-i I ii I / ' 2 ' 

VUI TR>1 m J 
J. 1 IX(S)l )U8 

0 

sArR d1 

+2 sup  f 	x(r)b(x(r))dwI. 
st 

j= 1  

E sup 
s<t 

< Cq(Exo Iq + t/2_1Ef (1 +  IXR(S) lq  

	

+E sup I f 	x R( r) (xR (r))dw /2) 	 (3.3.9) 
s<t 	0 

Notice that the right-hand side of the inequality (3.3.9) is finite since lx'(s)I< R 

and 
d1 

I 
 

Esupj f 

	

s~ t 	j1 
di 

< CqE( f j=1 

<00, 

by the Burkholder- Davis- Gundy inequality. 

Moveover, by the Cauchy-Schwarz and the Young's inequalities, also let Cq  

Cq (Ci, C2 , C3 , q) be a constant that may change line by line 

I < CqE(  sup  xR(s)I34(f(1 + I X R (r)I)dr) 4 ) 

+ Cqt Ef (1 + 

<00. 
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Thus, with (3.3.9), we have 

t 

Esup IxR(S)l>0 CqEX + Cqt  + cqtq-1E 
sup X1TR>odr, 

I 4 s<t 	 r<s 

for every t E [0, T]. 

By applying the Gronwall's inequality 2.3.7, we get 

E sup 	 Cq (EIX 	 (3.3.10) 
O:cs<t 

Hence 

E sup I xR(s)I1 < E sup R(5)11>0  + Elxol". 	(3.3.11) 
O<s<t 	 O<s<t 

Since TR 	oo for R ' oo, we have xR(s) 
,' x(s), then consequently, 

sup IX(S) I q 
= sup lim inf  I x R(S) I q < liminf sup 

o<s<t 	O<s<t Roc 	 R%D O<a<t 

Hence, by Fatou's Lemma, together with (3.3.10), (3.3.11) 

E sup (s) I q < E(liminf sup 
o<t 	

R—oo O<s<t 

• liminfE( sup xR(s)l)lTR>o  + Ex0  Iq 

	

R~ oo 	O<s<t 

•  Cq , 

where Cq  := Cq (q, EIxol", C1, C2, C3 , T). The assertion is proved. 	 D 

The next lemma provides important bound for implicit approximations. 

Lemma 3.3.2. Let Assumptions 3.2.2 and 3.2.5 hold. Let q> 1 be any real num-

ber, and assume that Exol1' < oo. Then there exists a constant C independent of 

n, such that the solutions of the system of equations (3.2.2) satisfy 

E max Ix(tk) Iq <C, 
O<k<n 

for all sufficiently large integer n. 

Proof. Step 1. First we prove that 	 < oo for each n and k. 

For fixed n we proceed with the proof by induction in k = 0, 1,... , n. For 

k = 0, we have EIx0N < oo by assumption. Assume that <oo , for 

1 < k < n. We want to show that 

EIx"(tk)' <00 . 
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Take a constant K > 0, for I = 1, 2,••• , ri, and notice that 

e_I<t1 Ix(ti)l2 - e_Ktj_1 lx(ti_i)I2 

= e_KtL_1 (lx(ti) 2 - lx(t) 2) + (e_Ktl - e_Ktl_1 ) Ix(ti) 12 

< 	(Ix(tz)I2 - Ix(tt_1)I2) - Cn Ke_KtL_ 1  lx(tj)l 2 At, 

where 
1 - e_J<t 

:= 	 > , for sufficiently small t. 
Kt  

Then 
' 

e_ItL lx(tj) 12 - e_1t1_1 Ix(ti_u 2 
 

<e_Ktl_1 (lx(ti)l2 - IxTh(ti_ui ) - Ket1_1 1 x(tj)I2t. 

Notice that from (3.2.2) we have 

d1 

xTh(ti) - af(tj_i) = a(f ( t, )) At+  
j=1  

Furthermore, by using the formula b2  - a2  = 2b(b - a) - (b - a) 2 , we get, 

- 

= 2xTh (tj)(x'(tj) - af(ti_i)) - IxTh(ti) - 
d1 

= 2x(t 1 )a(xTh(ti))1t + 	2f (tj)&(x(t1_1))iw_1 - la(x"(ti))l2ltI2 
j=1 

d1 	 d1 

- 	l&(x'(t1_1))l2lw_1I2 - 	2a(xTh(tj))li(xTh(tl_i))LtLw_i 

j=1 	 j=1 

d1 

= 2x Th (t1)a(x(tj))Lt + 	2(x(ti) - 
j=1 

d1 

+E 2x(t1_i)&'(x(t1_1))w1_1 - la(x(ti))l 2 ItI 2  
j=1 

d1 	 d1 

- 	& (f(t1_i)) 2 lw 	2  - 
j=1 	 j=1 

d1 

= 2x(tj)a(x(ti))t + 	2x(tj_1)&(x(ti_1))Lwf_1 - Ia(x(ti))12ItI2 
j=1  

di 

+ 	l(x(tii))l 2 lwil 2  1   

d1 

< 2f(t1)a(x(ti))Lt + 	2f (t 1 _ 1 )& (f(ti_i))/w1_ 1  
j=1 
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d1 

+ :i: &(x(ti..i))I21Lw_1I2. 

j=1  

Then 

e_It1 x(ti)2 - e_I<t_1 x(ti_i)I2 
di 

< 	{ (2x(ti)a(x(tj))t + 

di 

+ 	(xn(tii))2Iw_1I2)} - K: t11 x(tj)12t 

di 
< eKLCi(1 + If'(t1)I 2)Lt + eI<tl_1 > 

j=1 

+e_Ktt_1 	 - Ke_Kt1_1 Ix(tj)I2t, 

by making use of Assumption 3.2.5. For K > 2C1, we obtain 

e_t1Ixn(ti)I2 - e_I<t1 Ix(tz_i)2 
d1 

< Cie' Lt + 
j=1 

d1 

+ 	 1i'(x(ti_i)) 2Lw1_1 2 

j=1  

M.  
k 

eKtk x(tk) 2 - e_t0 Ix(to) 2 = 	
(e_Itl Ix (ti) 

1 2 - e_Jt1_1 x(tji) 12), 
 

1=1 

summing up, we deduce that 

e_<txn(tk ) 2  

k 	 d1 	k. 

	

x0 1 2 + C1 	e_Kt1_1t + 	 Ib(f(t j _ i )) I 2 ILw1_ 1 I 2  
1=1 	 j=1 1=1 

d1 	k 

+2 
j=1 1=1 

e_to 	d1 k 

< Xo + C1Lt1 - e1<- 
+ E 	 1_112 

j=1 1=1 

d1 	k 

	

+2 	e_ tl _ 1 xn (tj_l)&2 (x n (tl_l))Lwi_ i . 	 (3.3.12) 
j=1 1=1 

W. 



e 
For sufficientlysmall Lit, 0 < _

tO
1_e_I<t 

—* 2e—t0 = 2, hence 

e_Ktk x(tk)l2 
d1 

< 	x(tk_1)I 2  + 
j=1  

d1 

+ 	2e_Kt k1 fl  (tk_l)b3  (x(tk_1))/.w_ 1 . 

j=1 

Then raising both sides to the power q/2, we take expectations to give 

Cq{E(e_Ktk_1 xTh(t_1)) 

d1 

	

Ee" lb (x(t,_)) 	 q 

j=1 

d1 
3 	iq/2 

+ 	 x(tk_1) 	 1 I 	j 
j=1  

Notice that, by the linear growth condition of b, 

d1 

j= 1  

di 

j= 1  

C3 (1 + 

ITS  

d1 

j= 1  

C3(1 + 

Both are finite by assumption Ex(tk_1)V' <00, which proves that 

Ef i (t) J q <00, 

for k = 1, 2,••• , ri and finish the induction proof. 

Step 2 Now we would like to prove the statement of Emaxk< z ( tk) Iq < C. 

From (3.3.12), we raise to the power q/2, for k < i <n, then take expectations 

to get 

E max e_ 	 Cq {Exo + (2C 1 Lt) 2 
 + + 2q/2j} 	(3.3.13) 

O<k<i 

AM 



with 
d1 	 k 

I := 	max (et1_hl&(xn(ti_i))l2l/ j 2 q/2 wi _ i l ) 
0<k<i 

j=i  

and 
d1 	 k 

12:= EE max ( 
0<k<i 

j=i 	-- 1=1 

Notice that I 	Cq (I + Ii'), with 

d1 	 k 

1':= LE max ( 	e_Ktl_1 lbi(xm(tii))l2 
At) 

 2; 
0<k<i 

j=1  

d1 	 k 

I' : 	max (Y' e_Ktt_1 &(x(t 1 _ 1  I 2 (ILw J2 - 
tJ<k<i

£-1I 	 /1 

j=i  

Estimation of I: 

di 	i 

I <  ET 	2_Kqti 

< 	 _Kt11 E(1 + x'(ti_i)) 2 ) 2 t 

< 	+ CT 	E max e_ Kt xn(t k)It. 
- 	 0<k<1 

	

1=0 	-- 

Estimation of Ii': 

di 	 k 

I := 	 - 
k<i 

j=i 	- 	1=1 

To estimate I' we define a stochastic process {m(t) : t e [0, T]} by 

m(t) = 
	t fgfl(s)dw,  

j=i 0 

for each n > 1, where g(t) := 2(wt - wt , - ,) for t e [t1_ 1 , t1], I = 1, 2,- 	, n. Then 

m is an F—martingale for each n, and 

d1 

m(ti) - m(t i_ i ) = i lLw2 '2 
- 1_il  

j=1 

Set ic i (t) := t1_1 , when t e [t1_ 1 , t 1 ]. Then 

k 	 d1 	tk 
e t 	b(x(t i _ i ))l 2 (lwi _ i I 2 —t) = 	f e_1(t(xn(i(t)))l2gn(t)dw. 

1=1 	 j=i 
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Hence by the Burkholder- Davis- Gundy inequality, 
d1 

~ Cq 	E{ in  ti e-2Kni(t) 	 jjIg2 	y/4 

j= 1  
ti 

Cq E{ 	e 

	

2 	i(t)(1 + 
I  

By using Young's inequality: for 1  + = 1, with p = , q = 4, we obtain, 

I ,  

fo

ti  
CqE{ sup e-2 	t)(i + x(ici(t))I)34(e_1(t)(1 +

tti  

< 	 + xTh(1(t))) 

t<ti 
Pti 	

1(t)  (1 +xTh( c 	 44  

	

 (t)))g+CE{ 
	

e_ 	 (t)dt}J  

< 	 + n(t))  + 
- 4 k<i 

with ti 

J := EI e_ 	1(t)(1 + 
0 

where 
ti 

J 	
Tq-1E 	

e_ q'dl(t)(l + Ix (kl(t)))g 
I 	

(t)dt 

di ti 

	

cTq1EI 
e_ 	1(t)(1 + x(ici(t))w - W k (t)dt 

0 
j= 1  

	

d1 	 i 

	

cTq1 	

It'- 1  

E_t1(1 + x(ti_i)Iw - w 1 dt. 

	

j=1 	 1=1  

Since 

	

d1 	t1 

I Ew _ w1 1 2dt < 
j=1 	il 

	

J 	C 	_Kqt1_i 	+ c 	_Kqti_i 
Ix(ti_i) 

1=1 	 1=1 

Hence we get 

i' < Emaxe_tk(1  + n(t)) 
4 

Ee t At + 	_Kqtzi 
Ix(ti_i) zt) 

	

1=1 	 1=1 
i—i 

	

< Emax 	 + 	Emax 
4 	k<i 	 4 	 k<1 

1=0 	- 

_Ce 1 t0 .  
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where C is a constant changing line by line. 

Combining I, Ii', we obtain 

i—i 

'1 < 	 + —
Kt + 

4 	k<i 	 k<1 

	

1=0 	- 

where C = C(q, T, Elxo I q, C1, C2 , C3). 

Estimation of 12: Also, by applying the Burkholder- D avis- Gundy and Young's 

inequalities, we get 

d1 	 k 

12 = 	E max ( 	
e_Ktl_1xn(tii)&1(xn(tii))Lw3)(/2 

k<i 
j=1 	- 	1=1 

ti 
•f 	_9(t\ q/4 qEi 

 J
e -- 	'i + xcit))j 4 )dt) 

0 

1 (t)( i  + xn( 	 f
ti 

1 (t))) 
 

	

K)< Esupe_ 	 + c{ 	 e 	(l  + 
4 	tt. 

i—i 

• 	max 	f 	
—qKto 

(t k) q + 
7 	+ C 	E 	 Ix Th (tk) 

- 4 k<i 	 k<1 
1=0 	- 

Together with I, putting into (3.3.13), again with a possible different constant 

C:= C(q,T,Exo ',Ci , C2,C3), we obtain, 

E max _qKtk 
k<i 

i—i 

< C + C> 
k<1 

1=0 	- 

Consequently by the discrete Gronwall's Lemma (See Theorem 2.3.8), we have 

E maxe_tk n(t) Iq 
ki 

•  C(l+CLt 

CT 

So for sufficiently small Lit, we get Emaxk<  e Kt klX n (tk)I c1  < CeCT, where C 

is a constant dependent of q, T, C1 , C2 , C3  and 	independent of n. 

Hence e_! IT Emaxk<j x(tk)' < Ce, 'i.e., Emaxk< 2  xTh(tk)1 	Cec2', 

where c 1  = ci (q, K). 	 El 

Remark 3.3.1. In the work of Higham, Mao and Stuart [5], when they begin to 

bound the moments of the numerical solutions by the split-step backward Euler 

method, they firstly deal with the estimates of the discrete approximations, (see 

Lemma 3.7, [5]). They acquire a fine boundedness i.e., E 5uPO<N<M YN 2  
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CCCT, where C := C(p, T). These estimate seems right to us, but in fact here 

the constant C depends on M as well. So this result is not useful. Indeed, in the 

proof of their lemma, (see P1052, line 4, [5]) they apply an inequality of 

( 	
g(*)2)P < N' 	g(y*)2P 

This is not accurate, since N goes to infinity as At —* 0. In our proof, I is 

not a well-defined stochastic integral, which means Burkholder- D avis- Gundy's 

inequality can not be applied directly. In order to overcome this problem, we split 

kwtI2 into two terms, i.e., At and LwtI2 - t. Obviously, At part I is easy to 

estimate, while regarding iç part, it is natural for us to define a stochastic process 

rri.. Apparently rn is an T—martingale for each n. Therefore, (i1e problem can 

be solved. 

Recall that for 0 < k < n and t E [tj_i, tk), we set 

tk_1, and K2 (t) := tk, for tE [tk_1,tk). 

Then equation (3.2.2) can be cast in the integer form 

x(t) = x(t o ) + f a(x 2 (s)))ds + 	f (x i (s)))dw. 	(3.3.14) 

We also give the following useful estimates that will lead to the proof of our 

main theorem. 

Lemma 3.3.3. Let q > 1 and r > 1 be any real number. Assume Ex0  < oo. 

Then under Assumptions 3.2.5 and 3.2.7, there exists a constant C independent 

of n, such that 

Ex(t) — x(ic i (t)) <Cn 2  

Proof. By the inequality ja + bjq < 2_1(a1 + 	it is easy to see that 

t 	 d1 	 t 

Ex(t) — x(k i (t)) <2E / a(x(s))ds + 	2'E / 	
(x(s))dw. 

(t) 	 J'ci(t) 

Using the Burkholder- Davis- Gundy's inequality, one can derive that 

EIx(t) — x(ic1(t))' < Il + 1
2, 

with 
t 

I := 2 _1A t 1E1
, 
	a( x ( s))ds;  
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and 
d1 	 t 

12 := 	
cq2_1E(f 	l(x(s))2ds)2. 

Clearly, 

11 :!~ 
C42_1t_1Ef  (1 + IX(8)1,)qds 

kl(t) 

f (1 + 
kl(t) 

by the boundedness of Ex(t)T, where C : C(r, q, C4 , T). 

Now 

f t 
 

12 	C3cq 2 1 E( 	(1 + 
l(t) 

+ CE( 
Pt

J
x(s)I 2ds). 

kl(t) 

Note that 

E( 
t 	

x(s)2ds)2 1 i (t) 

t 
< E{sup Ix(s) 

/2 (f 	x(s) ds) 2 } 
s~t 

t 
< E(sup x(s)) 112{E( 

L(t) 
x(5)ds)}112 

s<t 

< C(t)1_ 1)'2 {EJ 	x (,$)ds }h/2 
kl(t) 

q)1/2 

Hence we obtain 

Ex(t) - 

where C is a constant independent of n. 	 FOR 

Remark 3.3.2. By using the similar method, we can get the following estimates 

as well: 

Ex(t) - x(,c2(t)) 

EIx(t) - 	
< 

Ex(t) - xn ( ,c2 (t)) I q  < 
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3.4 Proof of the Main Results 

Now under the assumptions described above and the additional assumption that 

a is polynomial, it is possible to prove the main result of Theorem 3.2.6. 

Proof of Theorem 3.2.6. Step 1. The first step of proving the theorem is to 

find a formula for I x(t) - x(t)I 2 . We would like to use the formula b2  - a2  = 

2b(b - a) (b - a) 2  again. 

For the equation (3.2.1), it is natural to define x(t) on [t 1 _ 1 , t1), which is given 

by: 

	

tI 	 di 	
1 x(ti) = x(ti_ i ) + 	a(x(s))ds + 	

J. 11-1 	 j=1 ti_i 

With equation (3.2.2), we get the difference, 

x(ti) - xTh(ti) 

ti 	 di  
= x(t11)_x n (t11)+j

t '-1  
(a(x(s))—a(x(ti)))ds+ 	

f 
((x(s))— (x(ti i )))dw 

 j=1 	ii 

(3.4.15) 

Notice that, 

X (ti) - x(ti) 2  - x(ti_ i ) - 

= 2(x(t j ) - x(tj)){(x(ti) - xTh(ti)) - (x(t1 1 ) - 

—{(x(tj) - xTh(ti)) - (x(t1 1 ) - 

Putting equation (3.4.15) into it, after simple arithmetic computation, we could 

get 

X (t i ) - x(ti) 2  - x411 ) - 

di 	1.j 

= 2(x(tj ) - x(ti)) (J (a(x(s)) - a(xTh(ti)))ds + Ej (b(x(s)) - 
j=1 

(Jti 
(a(x(s)) - a(x(ti)))ds + 	((X(S)) - 

j=1 

= 2(x(tj) - xTh(ti)) 
f 

(a(x(s)) - a(x(ti)))ds 

di 	 tj 
+ E 2(x(tj) - x(ti)) 	(O (x(s)) - 

j=1 	 11-1 

	

di 	

1 i 

ft1 (a(x(s)) - a ( xn(ti )))ds 2  - 
	11-1 

	

((x(s)) -
ti_ 	 j=1  

_2ft'-1 
(a(x(s)) 

- a(xn(t l)))dsf ti ((x(s)) - 
 j=1 ii 
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= 2(x(tj ) - x(tj)) [ (a(x(s)) - a(xn(t i )))ds 

+2(x(ti1 ) - 	 f' - I  
((x(s)) - (zn(t ii )))dw

j=1   
dl 	t 

+2((x(ti) - 	 - (x(t11) - x(tii ))) 	I ((x(s)) -
j=1 i 

   (t1 ))) 2  - 
 di 

 I f 	((x(s) 	(xTh(tji)))dwI2 

- f (a(x(s)) - a(xm 	ds    

	

ti i 	 j-1 	I i 

_2f t'  (a(x(s)) - a(xn(tt)))dsf (O(x(s))  - ) dwi 

	

i_i 	 3=1 	ii 

pti 	/ 

= 2(x(tz ) - xTh (tj))  j Xn(a(x(s)) - a((tz)))ds 

di 	tj 

+2(x(tii) - x(tji)) 	(b~ (x(s)) -  b,,(Xn(tl_,)) ) dwi 
j=1  jt'-1 

di  
I II (b~ (x(s)) - (xn(tii)))dwI2 

- L1 (a(x(s)) - a(xTh (ti)))dsI 2  

VA 

- x(tk)I 2  = 	(Ix(ti) - x(tj )I 2  - x(tji) - 

summing up, when I = 1,2,-•• , k, we obtain 

- 

j
tk 

2(x(2(8)) - 	 - a(x( 2 (s)))ds 

di j t
k(x(s)) 

- 

,J(S))) ) dw, 
di 

+ 	f 2(x( i (s)) - x(ki(s))) (b~ (x (s)) - 

Raising both sides to the power q/2 and taking expectations, for k <i < n, we 

have 

Emax Ix(tk) —x(tk)I' < Cq (Ii +12+13), 	(3.4.16) 
O<k<i 

with 

I := E max ( / 2(x(k2(s)) - f(k 2 (s)))(a(x(s)) - a(x(k2(s)))ds) 2 ; 
O<k<i 
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d1 

12= E max 	(f ( b~ (x(s)) - 
O<k<i Li 

- - j= 1  

di  
I3 := E max 	

(ftk 

2(x((s)) - xci(s)))((x(s)) -
j') q/2

0<k<i 
- - j= 1  

Step 2. Estimation of Ii: 

<t/2_12/2Ef 
ti 

((X( r,2(8)) - z(k2(s 	
q/2 

)))(a(x(s)) - a(xn (2(s)))) ds 

Let C be a constant, C := C(T, q, r, L 1 , L 2 , C4 ) that may change line by line, by 

one-sided Lipschitz condition (i) of Assumption 3.3.11, 

fti 
f 	 - 

I < CE] (ix(s) - x'(ic2 (s)) 2  + I) ds, 

with I := (x(s'c2(s) - x(s))(a(x(s)) - a(x(/c2(s))I, 

Pti 	 q/2 

Ii < CE I (IX (r,2(S ))  - X (/c 2 (8)) 2  + x(s) - x(2(s))2 
+ I 	

ds 
Jo 
 

< CEmaxx(t k ) 
k<l 

1=0 	-
ti 

+CE fo 
x(s) - x(k 2 (s))ds + CE

10) 
 I2ds. 

From the known estimate from Lemma 3.3.3, it is easy to get 

CEJ
ti  

x(s) - x(k2(s))ds < Cri 2  

Then polynomial condition on a shows that, 

CE  f ti 
q12,4. 

. 	 .11' 

• CE f x(2(s) - x(s)I 2 ( 1  + x(s)I 2  + 

• 
 Cf

ti  
E(lx(2(s) - x(s)I{E(1 + I

X(8) 1,r + xn(s)T)}d s  

•  Cn 4 . 

Hence 

11  < C 	E max Ix(t k ) - 	 + 	+ 	 (3.4.17) 

Step 3. Estimation of 12: 
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By Burkholder-Davis-Gundy's inequality, 

d1 

12 :!~ CE(f 	(x(s)) — (f(ki(s))I 2 ds) 2  
0 

fti 

< CE( 	x(s)_x(ic i (s)) 2 ds) 2  

 ti 	 ti 

< CE( f x(1(s)) - xn (k1(s))I 2 ds) 2  + CE( f xki(s)) - x(s) 1 2ds)2 
0 	 0 

i—i 	
qA 	

ti 

CEmax 
k<1 

 Z(tk) - x(tk)lt + CE(f Ix(i(s)) - z(s)l2ds)2, 

1=0 	- 

note that 
ti

I 	/ 	 / 

11iIJ
IxIclS)) - XS)IaS) 

O 
ti  

< E{sup X(i(S)) 
- x(s)/2(10 

lx(kl(s)) - 

ti 

< (Esup X(Ki(S)) 
- x(s)I)1/2{E(f x(i(s)) - x(s) Ids) q j 112 

  x ( s))l/ 2  :5 C(Esup Ix(ki(s)) - 	 {E( I 	-  X(S) Iq  
t<ti 

Then 

12 :5 CE max X(tk) - x(tk)lt + Cn 2 	(3.4.18) 

Step 4. Estimation of 13 : 

Finally, 

ti 

13 	CE(f Ix(ki(s)) - x(ic1(s))I2I(x(s)) - 

CE{ sup Ix(i (t)) - x (' (t)) I 
q/2 f 	(x (s))  - (x 	ds (i (s))) 

2 	q/4 

0 	
) } 

< 	Emax Ix(tk) 
- n(t) + CE(

I 
 Ix(s) - xn(l(s))I2ds)2

2 k<i  

i-i 

<E max Ix(tk) 
- xn(t) + C 	Emax Ix(tk) - xn(t)Lt + CriI2  (3.4.19) 

2 	k<i 	 k<1 
1=0 	- 

Finally combining 3.4.17, 3.4.18, and 3.4.19, putting into 3.4.16, we obtain 

E max Ix(tk) 
- 

0<k<i 

i—i 

Emax X(tk) 
- 	 + Cn 2  + 

k<1 
1=0 	- 



Consequently, by discrete Gronwall's lemma (see Theorem 2.3.8), we obtain 

E max X(tk) 
- 

O<k<i 

< (Cn_ + Cn/4)(1  + C/t) 

CeC7'n'4 ,  

where C depends on the coefficients in the assumptions, and T, q, r, Exol",  but 

independent of n. 	 D 

We begin to prove Theorem 3.2.7: 

Proof of Theorem 3.2.7. Remember in (3.2.8) that {xTh(t) : t E [0, T]} satisfies 

xTh (t) = x(tk_1) + a(pt(x(tk_1) + 

d1 

+ :i: 1i'(x(tk_1))wk1, 

j= 1  

for t = tk, k = 1,2,•-• , n. Hence 

d1 

xTh (t) = x(tk_l)+a(Ofl (f(tk_1)), wk_l)) / t+ 	(x(tk_1))wkl, (3.4.20) 
j=1 

for t = tk, where 9, : R d  x R di _+ R  is defined by O(x, y) = pt(x + b(x)y), for 

x  Rd, y  Rd1. 

Notice that 

:!~ (1— Cit)'(xI + Ib(x)IIyD 	(3.4.21) 

(1— Cit)1(xI  + C3 (1 + x)IyI), 

by Corollary 3.2.3, where C3  is the constant from the linear growth condition 

3.2.5 on b. Fix €> 0 and let no ~! 1 be an integer such that 1 - CiT/n o  > e. Then 

by (3.4.21) there exists an increasing sequence {(C(R))} 1 , such that C(R) T 00 

and 

C(R), 

for all n > n0, Ix I , j yj <R. Such a sequence can be defined for example by 

C(R) := R+ sup sup sup I9(x, y)L 
n2!no IxI<R jyj<R 

Then from the truncation result of functions (a, b), (see, e.g., [13]), for each R 

there exist bounded Borel functions aR : R' --4 R  d  , bR: JRd * R'< 01  such that 

aR(x) = a(x), bR(x) = 
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for all x E W1 , IxI < C(R), and for some constant L = LR, 

(x - y)(aR(x) - aR(y)) Lix - yi 2 ; 

bR(x) - bR(y)1 2 < Lix - y1 2 , 

for all x,y E Rd  

Consider the problem 

d1 

dxR(t) = aR(xR(t))dt + :i: b(xR(t))dw 
j= 1  

(3.4.22) 

with the initial condition xR(0) = XolIxoI<R_! and let {4(t), t e [0, T]} denote 

its implicit approximation defined on the interval [0, T]. They applying Theorem 

3.2.6 to equation (3.4.22), for every q ~ 1 we have a constant C = Cq R such that 

- 

Emax 	 4, 
O<j<n 

then by Lemma 3.3.3, 

E sup XR(t) - x(t) <Cn 
	

(3.4.23) 
O<t<T 

holds for all sufficiently large integers ii > i, where x is the implicit approx-

imation, and XR is the solution of equation (3.4.22). Hence by virtue of the 

Borel-Cantelli lemma (see Lemma 2.1.1) for every 0 < a < , there exists a finite 

random variable 71R  such that 

sup 4(t) - XR(t)i 	ilRn(a.s.) 	 (3.4.24) 
t<T 

for all n > 1. 

Define the stopping times 

= inf{t E [0, T] Ix(t) - xTh(t)l > 

= inf{t e [0,7] : 2 Fwfl±Ix(t)i ~ R 
- 

for all R > 1, where x(t) is the solution of 

I dx(t) = a(x(t))dt + >II 	&3(x(t))dw, 
X(0) 

and x(t) is its implicit approximation on [0,T]. Then x(t) satisfies equation 

(3.4.22) on [0,oA TJ, w E [YR > 0] = [xo < R 
- 

E .T0. Let us denote 

AR := [xo < R— ]. Hence 

X(t) = xR(t), for t E [0, a AT), 



for almost all w E AR. 

By virtue of (3.4.20) and the definition of aR, bR 

xTh(t) = x(t), on t E [0, a A T) 

for almost all w E AR. Hence by (3.4.24), we have a random variable 77R,  such 

that for almost every w E AR, 

	

sup I  xTh(t A o) - x(t A a 	17Rfl, 	 (3.4.25) 
teT 

for all n>no . SincerRlooasR —*oo, 

	

ci = UciR, 	 (3.4.26) 

where ciR= {w : TR > T}. 

Notice also that 

QR CAR. 

Therefore (3.4.25)-(3.4.27) imply that almost surely 

sup I x(tAT)—X(tAY 
tE [O,T] 

for all n> n0 , where is a finite random variable defined by 

e(w) := ei(w), for w E ci 1 ; 

and 

(w) := 11R(W), for w e ciR\I1R_1, R > 2. 

(3.4.27) 

Hence by using Lemma A.0.2 in Appendix, we get a finite random variable ij such 

that almost surely 

sup I  x(t) - X(t)j <in 
te [O,T] 

for all n > n0 . The proof of the theorem is complete. 

Theorem 3.4.1. Let the assumptions of the previous theorem be satisfied. As-

sume moreover that EIxoI' < oo, for some q > 1. Then for every 0 <p < q, 

Esup I x"' (t) — x(t)l —p 0, 
t<T 

as n —* 00. 

Proof. From the fact above that x(t) converges a.s. to x(t) , when n —* oo 

Also from the boundedness of E SIIPt<T I x(t) Iq  and E 5UPt<T 
I x(t), we know that 

both 5UPt<T Ix(t) IP and supt<T Ix(t)V' are uniformly integrable. So SUPt<T  x(t)-

x(t) P  is also uniformly integrable. Then one can interchange the limit with the 

expectation, which proves tile theorem. Eli 
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Chapter 4 

Solutions of Stochastic 
Differential Inclusions 

In the next few chapters stochastic differential inclusions (SDIs) on domain of R' 

have been investigated as follows: 

d1 

dx(t) e a(t, x(t))dt + 	b' (t, x(t))dw, x(0) = x o , 
j=1  

where a is a maximal monotone mapping, b is a Lipschitz continuous function 

and w is: a Wiener process. 

In this chapter we are concerned with the existence and uniqueness of solutions 

for SDIs. The existence of solutions is proved by monotonicity method in terms of 

minimizing certain convex functionals and in this way solutions are approximated 

by implicit schemes. Moreover a result on the rate of convergence is presented. 

4.1 Introduction 

There are a variety of motivations that lead us to study such class of SDIs. If we 

deal with an SDE, in many practical problems, the existence of a solution is not 

always guaranteed. There are many cases when there is no solution to the SDEs, 

even though the Euler approximations converge. For example, let us consider the 

following Ito's stochastic differential equation on 

f dx(t) = a(x(t))dt + x(t)dw  
X(0) =O 

with a(x)=1 for xO and a(x)-1 for x>O. 

In order to prove the existence for such problems, assume that we consider 

an explicit Euler approximation for the SDE (4.1.1). Then it is easy to show 

that Xn  converges almost surely to some stochastic process x. On the other 

hand it does not have any solution of SDE (4.1.1). This may be inconvenient 
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in certain applications. Nonetheless we shall see that this equation falls into a 

general class. If we extend however, a to be multi-valued and the SDE to be a 

stochastic inclusion, it can be proved that there exists a unique solution of the 

SDI obtained. Therefore the equation is no longer a usual SDE type, but the one 

with a multi-valued drift term. Generally, the right hand side of an SDI is a set 

of values rather than a single value. So far we can see that SDIs play a crucial 

role in the theory of SDEs with a discontinues right-hand side. 

In the last ten years, it is noticed that existence and approximation of solutions 

to SDIs have received broad attention. Existence and numerical approximation 

methods have been tackled in several papers. P. Kréè introduced the notion 

of multi-valued stochastic differential equations in his paper [25] (we call it as 

stochastic differential inclusions). In his type, he showed SDI in the form as: 

d1 

dx(t) e a(t, x(t))dt - A(x(t))dt + 	&(t, x(t))dB, 	(4.1.2) 
j=1 

where A is a so-called multi-valued 'maximal monotone' map, (Bt ) t>0  is the stan-

dard Brownian motion on R". Krée's work presented the existence of a solu-

tion to (4.1.2) in a product situation. This indicates that a composition of Rd ,  

Rd = RP x R' can be made so that for x E D(A), the pth first components of 

Ax is  and bij  = 0 for i = p+ 1,... ,d and all j. Such type of SDIs has also 

been developed by other authors. Pettersson in [31] defined approximate solutions 

when the maximal monotone map A is replaced by Yosida approximation A. He 

proved convergence and acquired the existence of a solution to the multi-valued 

stochastic differential equations under suitable conditions. It is well known that 

such technique of Yosida approximation was employed before on differential inclu-

sions problems. Aubin defined approximation solutions by replacing the maximal 

multi-valued monotone map by the Yosida approximation, and proved the exis-

tence and uniqueness of solutions to differential inclusions (as we can see in the 

book [2]). In [38] Y.S.Yong consider the SDIs associated with following form: 

d1 

dx(t) E a(t, x(t))dt + > b(t, x(t))dB, 
j= 1  

where B is a Brownian motion. He proved the existence of solution for SDIs 

under the condition that the drift and diffusion terms satisfy the local Lipschitz 

property and linear growth condition. Our aim is to prove the existences and 

uniqueness of solutions to the SDIs on R'1  as follows: 

dx(t) E a(t, x(t))dt + Ed, 1  &(t, 	 dwtj 	
(4.1.3) 

X(0) = x o . 
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We will use the method of monotonicity, which is interpreted as a method 

of minimizing certain convex functionals. The idea of our results is inspired by 

N.V. Krylov [19], where SDEs in Rd  solved by minimizing convex functionals 

via Euler approximations. It provides the basis for a promising adaption. Such 

technique is a straightforward method to obtain the existence results, which are 

also developed by Gyongy, I. and Millet, A. in [12]. They made use of such 

corresponding construction for stochastic partial differential equations to obtain 

the solution via Euler-Galerkin approximation. 

Before we move on, we recall the minimization method for convex functionals. 

A brief explanation on SDEs is given as follows. The main source of information 

for this part is [19]. 

4.1.1 Minimization method 

Krylov characterized the solutions to stochastic differential equations 

d1 

dx(t) = a(t, x(t))dt + 	&(t, x(t))dw, x(0) =xo 	(4.1.4) 
j=1 

as the minimizers of a suitable convex functional C. Let fl be the space of 

pairs (a,,3) of Fe —adapted stochastic processes, i.e., a = {at  : t E [0,T]} is 

Rd valued, and 13 = {/3 : t e [0,T]} j dxd1_ valued with Ef Ia 2ds < 

oo, Ef ' Ej 1=1 1 0,3 1 2 ds < oc, and such that 

xt(a,)= xo+jasds+f13dw 	 (4.1.5) 

is an —adapted stochastic process, where x 0  is an F0 —measurable random 

variable in 'H. Let us define x(t) := xt(a, 13) as in (4.1.5) and set functional 

 d1

C(a, 13) sup EfT  2(x(t)—y(t))(a t —a(t, y(t)))+ 	13—(t,  y(t)) 2dt, (4.1.6) 
yEY 	 j=i 

for 	
T 

Y = {y(t) E 	Iy(t)I 2 dt < oo}. J
r
O  

We say that 

= xo+jsds+fdw 

is a generalized solution of equation (4.1.4) in the sense of extremals, if C attains 

its minimum at (o, 4 



Our aim in this chapter is to formulate the method of monotonicity in terms 

of finding extremals of convex functionals. We construct the solutions to SDIs via 

implicit approximations. Implicit approximate schemes are presented for SDEs 

in the previous chapter. We will show that implicit approximations defined by 

x(t) converge almost surely to a stochastic process x(t), given as the unique 

solution of inclusion (4.1.3). Finally, we establish the existence and uniqueness 

of a solution to SDIs. The convergence of the approximations to the solutions of 

SDIs is proved, moreover the rate of convergence is also presented. 

This chapter is organized as follows: 

• section 4.2: this section defines the SDIs, gives the definition of solution to 

stochastic differential inclusions and states the main results of this chapter; 

• section 4.3: this section links the minimization methods to SDIs, defines 

the implicit approximations, and discusses the existence and uniqueness of 

solutions to the implicit schemes; 

• section 4.4: this section proves the existence of a solution to SDIs via implicit 

method, and shows the rate of convergence. 

4.2 Stochastic Differential Inclusions 

We first introduce some notions used in this chapter. Let T be a fixed positive 

constant. Let a: [0, oo) x Rd _ 21R' be a multi-valued function. Let b: [0, oc) x 

Rd Rci<d1 be a Borel function. Consider the following SDI in Rd  on the time 

interval [0,T]: 

	

f dx(t) E a(t, x(t))dt + >I 	b'(t, x(t))dw 	
(4.2.7) 

1 x(0) = 

Definition 4.2.1 (Definition of a solution to stochastic differential in-

clusions). We say that x(t) := xt(a,13) = {x(t) : t E [0,T]} is a solution 

to stochastic differential inclusion (4.2.7), if there exist Ft —adapted Rd —valued 

stochastic process a = {a t  : t E [0, T]}, and Rd>1  —valued stochastic process 

0 = 1I3 : t E [0, T]} such that 

 di 	t 

	

X(t) = x0  +f a3 ds + 	f 3,3  dW 3  

holds almost surely for all t E [0, T], and at (w) E a(t, x(t)) for dt x dP—almost 

every (t, w) e [0, T] x Q , where 13t  = b(t, x(t)) for almost every (t, w) e [0, T] x ft 

The following assumptions are needed. 
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Assumption 4.2.1. Let x o  be an F0 —measurable random variable in Rd,  such 

that E j x o j <cxi 

Assumption 4.2.2. Let a be a maximal K—monotone (multi-valued) function 

in x E Rd for t e [0, T], and b be a Lipschitz continuous function. 

It can be seen that maximal monotonicity of a together with the Lipschitz 

continuity of b imply the following monotonicity condition of pair (a, b). 

Assumption 4.2.3 (Monotonicity of (a, b)). There exists a constant K, such 

that 
d1 

2(x - y)(a(t, x) - a(t, y)) + E jb~ (t, x) - b(t, y) 2  < KIx - yI 2  
j=1 

for all x, y E Rd 
, and t G [0, T] 

Assumption 4.2.4 (Linear growth of (a, b)). There exists a constant L 1 , such 

that for dP x dt almost every (w, t) E Q x [0, T], 

di 

a(t, x)12 + j2 b(t, x)1 2  < L 1 (1 + 1 x 1 2 ), 
j=1 

for all x E Rd. 

Sometimes the following weaker condition is considered: 

Assumption 4.2.5 (Growth condition of (a, b)). There exists a constant L 2 , such 

that almost surely 

d1 

2xa(t, x) + i: 10 
 (t, x)12 < L 2 (1 + x 2 ) 

j=1 

for all x E Rd, and t e [0, T], 

Remark 4.2.1. It can be seen that monotonicity condition 4.2.3 implies that dif-

fusion term b must be single-valued and continuous in x e Rd. 

Remark 4.2.2. Without loss of generality, we may assume K = 0 in Assumptions 

4.2.2 and 4.2.3. Notice that, if x is a solution to (4.2.7), and (t) = e_tI2 x (t), 

then by Ito's formula, x exists if and only if the process ± solves (4.2.7) with (a, b) 

instead of (a, b), where 

ã(t, x) = e_Jt /2a(t ,  et/'2x) 
- 

K 

(t, x) = e_I<t/2 b(t, e t/ 2x ) ,  

K is the constant in the monotonicity condition. Therefore we will assume K = 0. 

The following monotonicity assumption will be used throughout this chapter. 
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Assumption 4.2.6 (Monotonicity of (a, b) ). For all x,y e R", for t e [0, T] 

such that 

d1 

	

2(x - y) (a(t, x) - a(t, y)) + 
	(t,  X) —b(t,y)I 2  < 0. 

j=1  

For simplicity of presentation, we assume that a and b are time-independent. 

In this chapter, we aim to prove the existence of a solution to the SDI (4.2.7) on 

the interval [0, T] under certain assumptions . The following theorem is the main 

theorem of this chapter. 

Theorem 4.2.1. Under Assumptions 4.2.1, 4.2.2, 4.2.4 and 4.2.6, stochastic 

differential inclusion (4.2.7) has one and only one solution. 

Proof. Now we are going to prove the uniqueness of the solution. Suppose there 

exist x 1 (t) and x 2 (t) two possible solutions of inclusions (4.2.7), i.e. 

	

di 	t 
X 	 x0  + J ads + 1

0 	57 

j=1 

d1 

X 	x 0  +  JO 
ads + JO 3'dw 

 j=1 

and al  E a(x 1 (t)), c E a(x 2 (t)), where 3'= &'(x'(t)), /3 23  = bi(x2 (t)). There-

fore, from the monotonicity assumption, by Ito's formula, we obtain 

d(etlx'(t) - 

d1 

= et(2(x'(t) - x 2 (t))(a - c) + 	Ib(x'(t)) - (x 2 (t)) 2) dt 
j=1 

e"tkIx1(t) - x2(t)I2dt 

d1 

+ 	e'2(x(t) - x2(t))(b(x1(t)) - b(x 2 (t))) dw 
j=1 

Thus we get, 

- x 2 (t)1 2  

= 	s(2( 1 (5) - x2(s))(a - 	) + 
	

(x'(s)) - (x 2 (s)) 2  

—klx'(s) - x 2 (s)1 2)ds + m (a.s.), 

where 	 t 
m = f 

e2(x1(s) - x2(8))((x1(s)) - ( x 2 (s)))dw 3  
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is a non-negative local martingale, starting from 0. Hence, 

0 < e'tx'(t) - x 2 (t)1 2  — m, 

which implies m = 0. Thus almost surely x 1 (t) = X2 (t) and the uniqueness of 

the solution is proved. 
The existence of the solution will be followed after some preliminary lemmas: 

D 

4.3 Preliminary Results 

4.3.1 Solutions as Extremals 

We make the following natural construction. 

Let us consider 7-1 be the space of pairs (a, ,3) of J r —adapted stochastic pro-

cesses such that a = {at : t E [0, T]} is R'—valued, 3 = 1/3  : t e [0, T]} is 

Rdxdl_ valued with Ef' a3I 2 ds <oo,Ef ' > i I3ds < oo. For (a,13) e 7-1, 

we define the process 

xt(a, /3) = x0 
 + JO 

a8 ds + 	
f 

/3dw, t [0, T]. 	(4.3.8) 

Let us consider also the space of processes 

Y = {y(t) : Ft  - adapted process, l y l y  := (E- 
JO 
 y(t) 2 dt)"2  <oo}. 

Jo 

Let us define x(t) := xt (a,)3) as in (4.3.8), and the functional 

C(a,)3) = sup F(a,i3), 	 (4.3.9) 
yEY 

where 

T 	 di 

F(a,/3) = Ef 2(x(t) - y(t))(at  - a(y(t))) + 
	

- (y(t))dt. 

This section contains preliminary results that are needed in constructive proof 

of the existence of solutions. First, we explore the properties of maximal monotone 

operators. 

Lemma 4.3.1. Let a = a(x) be maximal monotone on Rd.  Define the multi-

valued operator A on Y as follows: For y e Y, z E Y belongs to A(y), if 

Zt(W) e a(yt()) for dt x P— almostevery (t, w) e [0, T], then A is a maxi-

mal monotone operator on Y, with respect to the inner product on Y defined by 

(u,v) := Efu(t)v(t)dt, for u,v e Y. 



Proof Obviously, A is monotone. If zt,  E A(yt), i = 1, 2, then 

EI
T  (Zt, 

- zt2)(yti - yt2 )dt 	0. 

In order to prove that A is maximal, we only need to prove that for each A > 0, 

and z E Y, there is a solution y e Y of the equation 

Ay — Ay=z. 	 (4.3.10) 

Since a is maximal monotone, so ay - Ay = Zt(W) has a unique solution y = yt (w), 

for every w E ft Because of the uniqueness, Yt  is an T7t  —measurable in (t, w). In 

this way we get an .7—adapted stochastic process {y t (w) : t e [0, T]}, such that 

ayt() - Ay t (w) = Zt((.)) holds for all t e [0, T] and w E I, which means equation 

(4.3.10) holds. It remains to Show that {yt  t [0,T ]} E Y. 

Since (1 - Aa) 1  is lipschiz continuous, we could get 

- (1 - Aa)'(0)l 	y (t) - (1— Aa) 1 (0)I :!~ Iz(t)l. 

Hence Iy(t)I < jz(t) I + 1(1 - Aa)'(0)I, which implies 

Effly(t)I 2 dt C+Efz(t)l 2 dt <00. It means y  Y. 	 El 

The method to prove the existence consist in characterizing the solutions of 

SDI (4.2.7) as the extremal values of a suitable convex functional. Below we 

interpret this method. 

Lemma 4.3.2. C is a convex function, and C> 0. 

Proof. Notice that, the functional G defined in (4.3.9) can be transformed as 

T 	 di 

C(,/3) = Ef(2x(t)at+l/3fl2)dt+ SUP f(a,13), 
 j=1 	

YEY 

where 

(- 

2y(t)at  - 2x(t)a(y(t)) 

di  
+2y(t)a(y(t)) + 	(y (t)) - 	 20(y(t)))dt. 	(4.3.11) 

In this case, from Ito's formula, 

G(c, 3) = EIx(T) 1 2 
 - E1x012 + sup f(a, 1:3 ). 

yEY 

Then it remains to note that x(o,/3) is a linear function of (x o ,a,/3), while IxI2 
is a convex function. Clearly from the expression above, f(a, 3) is a convex 

function. Hence C(a, 3) is convex. Since one can take y(t) {x(t) : t E [0, T]} 

in calculating the supremum, we get G(a, /3) > 0. 
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In the following part we summarize the solution of SDI (4.2.7) in terms of 

extremals of the functional C. 

Proposition 4.3.3. The following statements hold: 

Let Assumptions 4.2.1, 4.2.2, 4.2.4, and 4.2.6 hold, if the stochastic process 

x = x(ã, ,) is a solution to SDI (4.2.7) for some (d , ,3) G N, then C(ö, i) = 

0. 

Let Assumptions 4.2.1, 4.2.2, 4.2.5, and 4.2.6 hold, if for some 	EN, 

C(, $) 	0, then x(t) = xt(a, ) is a solution of SDI (4.2.7). 

Proof. (1) Let x = x(ã, ) be a solution to SDI (4.2.7), i.e., by the definition of a 

solution, we say that there exist ã, 8, which are —adapted stochastic processes, 

such that a t  E a(x(t)), where = bL( x (t)), and almost surely 

X(t) = xo  + fds5  + JO 
holds for all 0 < t <T. Then by monotonicity condition 4.2.6, 

fT 2(x(t) - y(t)) (a t  - a(y(t))) + 
 di 

I 	-7 (y(t)) 2dt < 0. 

Hence, 

Ef0
T di 	

b~ 1 2(x(t) - y(t))  (at  - a(y())) + 	- (y(t)) 2 dt  <  0. 	(4.3.12) 
 j=1 

Since one can take y := {x(t) : t e [0,T]} in calculating the supremum, 

1T 

C(o., 3) >  sup E / 2(x(t) - y(t))(a - a(y(t)))dt 
yEY Jo 

>0. 

Consequently, by (4.3.12) 

G() =0. 

(2) If C(, ) <0 hold forsome (o, 3) E N, then we have 

 d1 

Ef
T 

2(x(t) - y(t))( - a(y(t)) + 	- (y(t))I 2 dt 	0, 
 j=1 

for all y E Y. For y 	{x(t) : t E [0, T]}, this gives 	= b(x(t)), for dt x 

dP—almost every (t, w) e [0, T] x ft 
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Obviously, 
p 

EJ
T 

2(x(t) - 	- a(y(t)))dt 0. 
0 

Hence by Lemma 4.3.1 at E a(x(t)) dtxdP a.e., and the proposition is proved. U 

By the above proposition, in order to get the existence result, we need to find 

the existence of (, /3) E h, such that C(, i) < 0. The method is to generate a 

sequence of solutions to SDI (4.2.7) by implicit schemes, and obtain weak limits 

from this sequence to make sure that the functional C is non-positive. By the 

end of this section, the implicit time discretization schemes will be described. We 

will extend the technique of implicit methods introduced in the previous chapter 

to SDIs. 

4.3.2 Implicit Approximation Schemes 

For every integer ri > 1, we approximate the solution x(t) of the SDI (4.2.7) by 

the process xTh(t) solving the following stochastic inclusions: 

f X' (tk) Gx(tk_1) + a(x'(tk))Zt + x(tk_1))(w k  - wtkl) 	(4 3 13) 
n 	

j=
X(to) = x 0  

for tk := kLt, k = 1, 2,•.. , n. The process xTh(t) are defined on the partition 

[tk_1, tk) as stepwise constant adapted stochastic process, i.e. 

xTh(t) := x' (tk_l), for 1 < k < n. 	 (4.3.14) 

Here we denote Lw_ 1  := W - Wkl. 

4.3.3 Existence and Uniqueness of Solutions to the Im-
plicit Schemes 

The fi5llowing theorem gives the existence and uniqueness of solutions x' (t) to 

(4.3.13) for sufficiently large n: 

Theorem 4.3.4. Let Assumptions 4.2.1, 4.2.2 and 4.2.6 hold, then the system 

of inclusions (4.3.18) has a unique solution {x(tk) : k = 1,... , n} if n is suffi-

ciëntly large. This means there exist sequences of random vectors {x(t k ) : k = 

1,2,... , n}, and {ak : k = 1,. . n}, such that 

d1 

X(tk) = x 2(t k _ 1 ) ± akAt + L 13_ l L0k _ 1 , 	 (4.3.15) 
j=1  

and ak E a(x'(tk)), where /3k-1 = b(x'(tk_ 1 )), for all w E 1, k = 1,2,.. , n. 
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Proof. First we prove the uniqueness. We fix n > 1, and use the notation k = 

x'nl (t k ), for k = 1, 2,••• ,n. Then the system (4.3.13) can be written as 

Y E 	k + a(k)Lt, 

where 
d1 

Y 	k-1 - 	 &(ek_l)LW_l, k = 1, 2,••• , ri. 
j= 1  

Let ek, be two solutions, such that 

Y = k + akLt 	+ 

where 

ak e a(k), e a(). 

We note that {ak : k = 1, 2. .. , n} with 

1 	
d1 

ak 	(~k 	k-1 - 	&kl)(w(tk) - w(tkl)). 
j=1 

Obviously, 

G — e= /.t(ak — a,). 

- 'skI = t(ak - a)(ek —c). 
By the monotonicity condition, we deduce that 

i'2 - 'skI < 0, that is, ek 

and hence ak = a',,, which proves that ek  are uniquely determined for any given 

y; Moreover by induction we get the uniqueness of the sequences {3f(tk) k = 

1, 2, ,n}. 

We now claim that the system of inclusions has a solution {k  k = 1,... , n}. 

We shall show this by induction on k. For k = 1, we have 
d1 

y E — i + a(j)Lt, where y = —xo - 	b(xo)/w is fixed. 
j= 1  

Because a is maximal monotone, so Lta is maximal monotone in the usual sense. 

By Minty Theorem 2.4.3, we know that —I+1ta is surjective, i.e., lm(—I+Lta) = 

lRd .  Hence for any given y, there exists a solution i  such that y = — i + a( 1 )/.t. 

Set a 1  := So 61  satisfy inclusion (4.3.13) for k = 1. Assume it holds when 
At 

1 < k < n. Then y = —ek 
_  Ed, 1  b(6k)AWk is given since solution ek  exists, 

and by Lemma 2.4.4 the inclusion y E k+1 + a(k+1)t admits a solution ek+1. 

That is, the assumption holds for k + 1. Hence by induction on k, the system of 

inclusions has a solution {x(tk) : k = 1, 2, 
, 
n}. 

111 
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4.3.4 Estimates of the Implicit Approximations 

From now on, we reformulated the stochastic inclusion (4.3.13) in an integral 

form. Recall that for any fixed integer n > 1, for 0 < k < n, set tk := kLt, we 

define 

:= tk_1, K2 	tk, for t E [tk_1, tk). 

Then the pair of processes (&, /3n)  on each interval is defined as 

an 	n 	a(x(,c(t))), and 	 = b(xTh(ic i (t))). 

Let us define xTh(t) for t E [tk_1,tk) as follows, 

d1 

x Th (t) = x(tk_1) 	
+_,n 
k_1)a ± 	 - wtkl). 

j=1  

Then it is easy to see that {xTh(t) t e [0, T]} satisfies the following equation 

X (t) = x' (to) + f 
d1 	t 

ands ±> I /3'dw 1  
J 

j=1 
o  

(4.3.16) 

i.e. x(t) := 
The following lemma provides important estimates for the approximations. 

Lemma 4.3.5. Let Assumptions 42.1, 	and 4.2.5 hold, then the following 

estimates hold: 

(i) The solutions of the system of stochastic inclusions (.3.18) satisfy 

E max lX n (tk)I 2  <— C, O<k<n 

where C is a constant independent of n. 

(ii)Assume moreover that Assumption 4.2.4  hold, then the pair {(&, 37)}  is 

in a ball of 7-(, i.e., 
T 	d1 

E [ ( I a I 2  + 	lot 'I 2 )dt < R, 
JO 

for some constant R. 

(iii) 

sup sup Elx(t)I2 
< 00. 

n t<T 

Proof. (i) Lemma 3.3.2 in Chapter 3 implies this result. 
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By using linear growth condition 4.2.4, we get 

E
fT 

	

	d1 

(I 
 n'2 

j=1 

d1 

= >Eft'-1 
(IaI2+l/32)dt 

k=1 	j=1 

fl 	 tJ 
< 2L 	E [ 	+ lx(tk) 2  + Ix(tk_1)I 2 )dt 

k=1 	Jtk_l 

< 2LT + 4L1tt 	EIx(tk_1)I 2 . 

Hence by the first statement, 

E 
IT 
	± E l' 2 )dt < 2L1 T + 4L 1 C 

where C is the constant from the first estimate. The first assertion is proved when 

we let R :=2L1 T + 4L 1 C. 
From the definition of the approximations of 	repeating the steps in 

lemma 3.3.2, we are able to obtain 

- 

d1 	 d1 

2x'(t,)aLt +2 	x(tk_1))/ 3 lw k _ l  + i 3'1 Wtkl 2 
j=1 	 j=1 

k = 1,2,--- , m. When adding these inequations and taking expectations, we get 

1  d 

Elx(ti)2 <EIx(to ) 2  + 2E 	a 2 ()x Th (2(s))ds + Ef 1 0 

with I = 1,2,-•- ,n. Growth condition 4.2.5 implies 

EIx(ti)l 2  
itt 	 I-ti 

< Ex(to) 2  + 2L2E I (1 + x(,c2(s)) 2 )ds + L2E I (1 + f(ici(s))1 2 )ds 
Jo 	 Jo 

fo
t1  

< Ef(to) 2  + 3L 2T + 3L 2 Ex12 (,c2 (s))l 2 ds. 
 

Hence by discrete Gronwall inequality 2.3.8, we can get the existence of a constant 

C> 0 such that 

sup sup Elx'(tj)I2 <C <00, 
n 1<1<n 

where C depends on T, Ejx o j, and coefficient in the growth condition. 
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4.4 Proof of the Main Results 

We begin to prove the last part of Theorem 4.2.1. 

Proof of Theorem 4.2.1. To prove the existence of a solution to SDI (4.2.7), it 

remains to show the existence of (, /) E 7( such that G(a, /) <0. 

Observe that (&, 13n)  is in a bounded set of 7-(, is bounded in Y and 

x'(T) is bounded in L2(; R0).  Thus, by Banach-Alaoglu Theorem (see book [71) 

each of their subsequence has a weakly convergent subsequence. Let us denote 

their subsequences in the same way as the sequences themselves, and their limits 

denoted by 

	

(0Zn,)3Th) - (a°°,/3°°), in 7-1 ; 	 (4.4.17) 

x, in Y; 	 (4.4.18) 

	

- x ,,,, (T), in L2(1; W) . 	 (4.4.19) 

Here "-i"  denotes the weak convergence. 
t 	d1 	t 

Let us define operator I(a, /3)(t) : J0 a8 ds + >I1 j 1 f0 /3dw. It is easy to see 

that I is a bounded linear operator from 7 -1 into Y. Indeed, for (a,,3) E 7-1, 

I(a,/3)1 2  = Effasds+/3dwl 2dt 

 di 

< TsupE f adds + 1: f 3~ dwj, 12, 

T 	 di 	T 

	

< 2T(Ef 	 1  a8 2ds + E 
1  

T 	di 

< 2TE10(as2+0l2)ds 

<00, 

where 1/31 	(s.. /32)1/2 is the Hubert Schmidt norm for matrix 3. Hence, we 

have that 

 t 	di 	t 

	

t 	di 

J0 	j=1 	 j=1 in 

	

ads + f 3'dw 	ads + 

We define 

x(t) := x 0  +j a°ds + 

Then clearly x°°(t) = x(t) for dt x dP—almost all (t, w) E [0,T] X ft It is easy 

to see that x°°(T) = x(T) (a-s.). 
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The final part of is to prove for fixed y E Y, 

F(c°°,f3 00) < 1iminfF(a,On ) <0. 	 (4.4.20) 
n-00 

We consider the function G(a00,  3°°) = sup F(o°°, i3°°), where x(t) = x t (a°°, 000 ). 
yEY 

For the first inequality of (4.4.20), observe that 

= EIx(T)I2 - If(t 0 )I 2  + Ef (_ 2y(t)a - 2f(t)a(y(t)) 

di 	 di 

+2y(t)a(y(t)) + 	 - 	2'b(y(t)))dt. 

When n - oo, due to (4.4.16) - (4.4.18) we know that 

E j 
oT 

	

EJ

EfT 
 2x(t)a(y(t))dt 	E  

2y(t)a'°dt; 

2x°°(t)a(y(t))dt; 

f
T 

EJ2/3'3 1'(y(t))dt --+ E 	23 ° '3 b'(y(t))dt. 
0 

For the term EIx(T)2, since x(T) converges weakly to x 00 (T) = x°°(T) in 

L2(; R'), 
liminfEx(T)I 2 > Elx°° (T)1 2 . 

n-*00 

Thus, for some constant d > 0, 

lim inf EIx(T)l2 = d + Ex 00 (T)I 2  
fl-* 00 

Hence, we get the first inequality of (4.4.20) 

F(c°°, 18°°) <liminf F(c,/3Th). 
n-00 

For the second inequality, we know that, 

T 	 di 

F(a) = Ef 2(x(t) - y(t))(a - a(y(t))) + 	- (y(t)) 2dt, 

and c4 E a(x(ic2 (t))), where I3 = b(x'(ic 1 (t))). By monotonicity condition 4.2.3, 

we get 

F(a, /3Th) 

di 

< Ef2(x(t)) —y(t)) ( an — a(y(t))) +I(x(ic2(t))) —(y(t))I 2 dt 

+11 + 12 

< 11+12, 
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with 	
T 

I, := Ef 2(x(t) - x(ic2(t)))(a - a(y(t)))dt; 
0 

di 	T 

'2= L Ef I(x(kl(t))) - (x(ic 2 (t))) 2 dt. 

Now we estimate each term: 

CfT

I
iCf

T 	K2 (t) 

(Ef 

k2(t)  
(E J[ 

Cn 2 ; 

and 

x' (r) I 2dr) 2 (EIy(t) 1 2 ) 112dt 

d1 	 r, (t) 1/2 
aI2dr + 	dtE 

it 	

n,j 12 	1/2 
 (Ely(t) 2 ) 112dt 

j=1 

1k2(t) 

12 	GTE! 
Jici(t) 

tk2(t) 

CTEI 
Jici(t) 

< Cn', 

f(r)I 2dr 

d1 	ic2(t) 

aI 2dr+>E I 	I/3'I 2 dr.rn  

where C is a constant. Combining both estimates, we find that 

F(a'2, 3fl) 	Cn*2, 

where C is a constant depending on y E Y. 

Hence, F(a°°, °°) 	0, which implies G(a°°, /3°°) = sup,, F(a°°, 13°°) < 0. 

Consequently by Part (ii) of Proposition (4.3.3), we conclude that {x°°(t) : t e 

[0, T]} is a solution of stochastic inclusion (4.2.7). 	 E 

We can thus conclude that from the proofs presented above, there exists sub-

sequence of the implicit approximation x' which converges weakly in Y to a 

solution x°° of the stochastic differential inclusion (4.2.7), and x'(T) converges 

strongly in L 2  (Q; R'1) to x°°(T) with the same sequence. Since the solution to 

SDI (4.2.7) is unique, we get the convergence results hold for any sequences of 

approximations x(t) and x' (T) as ri —f 00. 

The following theorem is given the rate of convergence result: 

Theorem 4.4.1. Let q > 1 be any real number and assume that E x0  Iq 
< 00. 

Let Assumptions 4.2.2, 4.2.4 and 4.2.6 hold. Then there exists a constant C 

independent of n, such that 

E sup Ix(t) 
- fl(t) < 

O<t<T 
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for all sufficiently large integers n, where x' (t) defined by (4.3.15) and x(t) is a 

solution to SDI (4.2.7). 

Proof. We can easily check that we can repeat the proof of Theorem 3.2.6 in the 

chapter 3. Remember that for t E [0, T], the implicit approximations x(t) satisfy 

d1 	t 
Xn = x0  + f ads + j 

  0 	 j=1 

and c4 e a(x'(ic2 (t))), where /3 = b(x(ic i (t))). Then by using the formula 

- a2  2b(b - a) - (b - a) 2 , for ti  = iLt and for any i = 1,2,••• , n, we get 

lx(t) - x(t)l2 
(tj 

 2(x(2(s)) - x2(s)))(s - K2 ( 5 ) 
JO 

	

d1 	t 2 

+ i: I (/3i 
_'8 fl 

) 

dw 
S Pti(S) 

j=1  

	

d1 	t 

+fo  
2(x(ti(s)) - xi(s)))(3 - 

j=1  

and a(t) e a(x(t)), c2()  E a(x(i.c 2 (t))), where 13t = b(x(t)), 13k1(t) = b(x(i(t))). 

When raising both side to the power q/2 and taking expectations, for i < m < 

n, we obtain 

E max I x(t) -  X , (t i ) 	+ 12 + 13 ), 
0<i<rn 

with 

ti  
I := E max (JO  

2(x(2(s)) - x(k2(s)))(a(s) - 
0<i<rn  

d1 	ti 	 q 

	

12 := E max 	(10 (p (s) - 
O<i<rn 

j -- = 1  

d1 q/2 

13  := E max 	(f 2(x(k i (s)) - xi(s)))((s) - 
0<i<m 	\. 0 

By making use of assumptions, we can finish the proof in exactly the same meth-

ods as we completed the proof of Theorem 3.2.6, 

rn-i 

Ii < C E Emax Ix(t2) - x'2  (t2 ) ''It'+ Cn 2  + Cn"4 , 
i<k 

	

k=0 	- 

rn-i 

12 ~ C 	Emax Ix(t2) - af(t)I'1 Lt + Cn 2 , 
i<k 

k=O I - 



rn-i 

13  < Emax z(t) 
- n(t) + C 	Emax x(t) - f(t)Lt + Cn 2  

2 i<k 	 i<m 
k=O 	- 

Thus by discrete Gronwall's lemma 2.3.8, 

E max x(t2) - 
O<i<m 

where C is a constant which does not depend on n. Then by Lemma 3.3.3, we 

obtain 

E sup x(t) - 	<Cn4 
O<tT 

holds for all sufficiently large integers n > 1. 	 LEI 
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Chapter 5 

Extension of Monotone and 
Maximal Monotone Mappings 

The purpose of this chapter is to discover more information about monotone 

and maximal monotone mappings, which is required for the later proofs. The 

theory developed in this chapter plays an important role in weakening the linear 

growth condition when proving the existence of solutions for stochastic differential 

inclusions. The complete proof will be given in the later chapter. 

Our motivation for extending monotone and maximal monotone mappings 

comes from the Krylov [21]. He further studied the properties of monotone map-

pings of a finite dimension space. 

This chapter covers: 

• section 5.1: this section states some properties of monotone mappings. This 

results generalize an extension of monotone functions obtained by N.V. 

Krylov [21], by using the similar techniques. 

• section 5.2: this section gives the further concept of maximal monotone 

functions. 

5.1 Extension of Monotone Mappings 

A general local boundedness result for multi-valued monotone functions will be 

established, khich implies the boundedness of monotone function on every ball 

in R d 

Remark 5.1.1. In what follows we note that for convenience we remain to use the 

definition of monotonicity function from [21].  A multi-valued function a defined 

on some set D(a) C Rd with values in Rd,  is called monotone, if 

(x—y)(a(x) - a(y)) ~: 0, for any x,y E D(a) 



We shall assume that D is a fixed bounded convex domain on Rd 

Theorem 5.1.1. Let a be a multi-valued monotone function on R'. Then a is 

bounded on every ball of radius r. 

In proving of this theorem, we will state some useful lemmas which are the 

main ingredients of the proof for this theorem. 

Lemma 5.1.2. Let r > 0, xo  E D(a). Then there exists an E > 0, depending 

only on d, such that if Y±i, Y±2," , Y±d E D(a), satisfying the conditions: 

the angles between Y±i - x o  and ±ej  are smaller than E, 

r < ly±j  - x o l <2r, 

where lil 	1,2,••• ,d, then 

Esup{IzI : z e a(x o)} < max inf{v : v e a(y2 )}. 
- 1<i<d 

Remark 5.1.2. For this proof, it is sufficient for us to show that if lal = 1, 

2Er < max{c(y j  —x0) :IiI = 1,2,• ..d}, 

for some E> 0. So we first prove the following lemma. 

Lemma 5.1.3. Let r > 0 and x0  E Rd .  Then there exists an e > 0 depending 

only on d, such that if Y±i, Y±2,• , 
Y±d are vectors from Rd  satisfying 

the angle between Y±i - x0  and ±ej  is smaller than E, 	 - 

r < ly±j - XO < 2r, 

where li l = 1,2,••• ,d, then 

2Er < max{a(y - x 0 ) : lil = 1,2,• . . d} 	 (5.1.1) 

for any ci E Rd  with lal = I. 

Proof. We may assume that x 0  = 0, since we can consider y - x 0  in place of yj . 

Indeed, let c = 	 ad = max{IaiI,... , a4}, where J ai l > i//i. 

Then 

ay1 =(ajej )yz =aiezyi+ 
i=1 	 i1,i=1 

It is easy to see that, 

ayi = 	 aj ejy1 ~: ai(eiyi) - 	 Iaj(ejyj)I. 	 (5.1.2) 
i=1 	 i01 ,i= 1  

Since e 1 , 	, ed is an orthonormal basis, 

(ejyl)1 2  = 	I(ejyi)1 2  + I(ejyi)1 2  = m1 2 , 
i=1 	 i~1 ,i=1  
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so for fixed 1, if the angle between el and yi  is smaller than E, and E > 0, 

d 

:i: (ey1)l 2  = yil2 - (eiyi)1 2  : 	2 lyzl ,  
ij41 ,i=1  

Since 

(eiyl) 2  > j yj 2  c0s2 E = lyd2(1 - sin' E)> lYil(1 - E2 ). 

Hence 

i541 ,i=1  

According to (5.1.2), we get that 

aYl > IaiiiyiM(1 
-- E2) - 	illyi 

i541 ,i=1  

>- E 2 ) - 2rv" €. 

Let 2E < =/(i - E2 ) - 2v", then we get that E is a fixed constant depending 

only on d, i.e. E = E(d), this implies (5.1.1). 

D 

Proof of Lemma 5.1.2. Apply the result of Lemma 5.1.3 with a := 	, where IZI 
0 z E a(xo), and together with the monotonicity condition, we get 

2Erizi < max Z(yj -x0) < max Vj(yj - x0) < max Ivillyi - xoi 
1 IiId 	 1 IiI<d 	 1 <IiI<d 

<2r max lvii, 
1< Iii <d 

for any vi E a(yj ). 

Hence 

Elzl < max inf{lvi : v E a(y 2 )j. 
1<Ii<d 

Thus we get 

sup{z 	
1 

: z e a(xo)} < - max inf{ lvi : v E 
E 1 <IiI<d 

where iii E {1,2,.d}. 	 El 

This lemma immediately allows us to conclude the following statement: 

Lemma 5.1.4. Let D be a fixed bounded convex set of Tl d  such that D(a) is 

everywhere dense in D. Then for every compact F C D, the function a is bounded 

onFflD(a). 
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Proof. Let Y be a set of the form {y±1, Y±2, 	, y±d}, where y±j  E D(a)}. For 

r> 0 and fixed €, let 

Ur,y = {x E Rd : x satisfies the conditions (i) and (ii) in Lemma 5.1.2},i.e., 

<Iy±i - x <2r, and 

the angles between Y±i - x and ±ej  are smaller than E, 

then Ur,Y is an open set, F C Ur,YUr,Y. For the compactness of F, every open 

covering of F has finite subcovering, i.e. -  , F C UiYiUrj,. Hence for all x E F, 

from the above lemma, we may get that a is bounded on F fl D(a). U 

Proof of Theorem 5.1.1. This theorem follows immediately from the application 

of the above lemmas. 	 U 

The main sources for the following part is in [21]. We present some results that 

we will use in our later chapters. From now on we study the monotone function 

a defined on D bounded on D instead of on the dense subset of D. Lemma 5.1.4 

allows us to extend the monotone function a defined on a dense subset D(a) in 

D to the D, taking as a(x) for x E D \ D(a) any limit point of a(x), where 

Xn  -* x, Xn  E D(a). Since the so-extended function remains monotone and will 

be locally bounded in D, one can reduce the study of an arbitrary monotone 

function defined on a dense subset of D to a monotone function bounded on 

defined on D. 

The following functions will be useful in studying the properties of monotone 

functions. 

Let 

R(a, x, y) = sup{(a(x') - y)(x - x ') + xy, x' E F} 

= sup{ (x - x')a(x') + x'y, x' E F}, 	 (5.1.3) 
x l  

where F is a dense subset defined on D. Let set Z C Rd x  Rd := {(x,y)} be 

monotone. 

Lemma 5.1.5. Let a be a bounded monotone function on D. Then 

R(a,x,y) is afunction of(x,y) on Rd  x Rd. 

R(a, x, y) > xy on D x Rd  R(a, x, a(x)) = xa(x) on 

8. R does not change if in (5.1.3) one replaces F by D. 
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Set Z(a) = {(x,y) : x  D, R(a,x,y) = xy}. If the integer n> 1, c j  > 0, 

(X j ,yj ) E Z(a),i = 1,... ,n, E i  ai  = 1, then 

ajxjyj 	ajxjajyj. 	 (5.1.4) 

The set Z(a) is closed and monotone. 

If (x, y,) -+ (x, y), Xn E D, and bounded monotone function a n  is defined 

on D with an - a on F, then 

liminfR(a,x,y) > R(a,x,y). 
n—toO 

For any x e D, the .et Z(a,x) = {y : (x,y) E Z(a)} is the convex hull of 

the set of partial limits of a(x) as x, - x. 

{x ED: R(u,x,y) = xy} 0, for any  e Rd. 

We refer to Appendix for the detailed proofs. 

5.2 Properties of Maximal Monotone Mappings 

We have seen that Lemma 5.1.4 allows us to extend the monotone function a 

defined on a dense subset D(a) in D to the D, taking as the convex hull of 

partial limits of a(x) (see result 7 in Lemma 5.1.5.) Such so-extended function 

remains monotone and will be locally bounded in D. Hence we can extend the 

result concerning monotone mappings into maximal monotone. A main goal of 

this section is to examine the consequence of the monotone set Z(a). An easy 

consequence of the following version of the lemma states that Z(a) is a maximal 

monotone set. 

We make the following observation on the maximal monotone mappings. 

Lemma 5.2.1. From the result 7 in Lemma 5.1.5, Z(a) is the convex hull of the 

set of partial limits of a(x) as x -* x, then Z(a) is a maximal monotone set 

when x is restricted to D. 

Proof. The monotonicity of Z(a) is obtained from result 5 in the previous Lemma, 

when one takes n = 2, a1 = a2  = in (5.1.4). 

To show that Z(a) is maximal monotone, assume that for some set (x,y),x E 

D, such that Z(a) U {x, y} is monotone, this means, in particular, that 

(a(x') - y)(x - x') < 0,V x' E F. 



This gives sup{(a(x') - y)(x - x'),V xI  e F} = 0. 

Then we get R(a, x, y) = xy. From result 4 in the above lemma, it shows 

(x, y) E Z(a). In other words, Z(a) is a maximal monotone set. El 

Definition 5.2.1. We say that a multi-valued function a is maximal monotone 

on a set D, if it does not have a proper extension to a monotone function defined 

on D. 

The following Theorem shows how to establish a maximal monotone function 

from a monotone function. 

Theorem 5.2.2. Let a(x) : x e Rd  be a monotone function. Define a(x) is convex 

hull of the partial limits a(x), when x -+ x. Then a is a maximal monotone 

function. 

Proof. First, we prove the monotonicity. We have to check that for any x, y E Rd, 

(x - y)(a(x) - ã(y)) > 0. 

Let us take a ball BR for some sufficiently large R, such that x, y e BR. Then 

by the previous result &IBR  is a maximal monotone function restricted to BR. 

Then we show that a is a maximal monotone function. Take x, y E W, such 

that a U {(x, y)} is monotone. Then its restriction to any ball BR containing x is 

monotone, and it is contained in a maximal monotone set restricted to BR.  Hence 

y e conv{lim(a(x)) : for x -f x}, which means a is maximal monotone. 0 
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Chapter 6 

Solution of Stochastic Differential 
Inclusion without the Linear 

Growth Condition 

It is the intention of this chapter to keep concentrating on the existence of solu-

tions to stochastic differential inclusions. In chapter 4, the linear growth condition 

to ensure the existence of solutions are quite strong, but can be weakened in this 

chapter. The properties of (maximal) monotone functions, applied with trun-

cation methods, yield the existence of solution while under a growth condition 

which is weaker than the usual linear growth condition. 

6.1 Introduction 

In this chapter we still consider stochastic differential inclusions: 

d1 

dx(t) e a(t, x(t)dt + E &(t, x(t))dw,  
j=1  

with a multi-valued drift term. Hence the existence and uniqueness of solutions 

taking values in R d  is proved in chapter 4 under some strong conditions for the 

coefficients a, b. a, b are required to satisfy the usual linear growth condition of 

the type 

a(t,x)1 2  + b(t,x)12  <K(1 + 

together with the monotonicity condition. In chapter 4 we approximate the so-

lution by implicit approximation schemes. In that case, linear growth condition 

ensures that the drift term f of implicit approximation solutions is still in a 

bounded set (see, lemma 4.3.5 in chapter 4). Then the SDI admits one and only 

one solution by means of minimization method. In chapter 5, we further study 

the extension of monotone functions. It is shown that (multi-valued) monotone 



function is bounded in the ball over TRd.  Here is our motivation for continuous 

exploring the existence of solutions to SDIs. Our idea is based on the technique 

of truncating a maximal monotone function. If we can prove that there exists a 

maximal monotone function aR such that aR = a on the ball BR,  then our restric-

tion on growth is essentially weaker. We will make use of the special structure of 

maximal monotone functions to overcome the lack of boundedness. 

Showing the existence of solutions to SDIs stems from N. V. Krylov's paper 

[19], where he employed truncation method on the monotone pair. This tech-

nique provide the inspiration to apply it to maximal monotone functions. It is 

known that such technique has already been used by many authors such as I. 

Gyöngy and N.V.Krylov in [13], where they gave a way for truncating monotonic 

pairs but did not preserve monotonicity afterwards. Later proof in N.V. Krylov 

[19] indicated truncation method for monotonicity functions, which leads to the 

monotonicity functions being bounded and still monotonic. In this paper, N.V. 

Krylov solved the truncation problem under the conditions that if a is a mono-

tone and continuous function, then there exists a continuous bounded monotone 

function function aR,  such that aR = a on the ball BR.  Here we can already see 

the similarity to our situation. Hence our proofs are mainly based on this method 

used by Krylov. Influenced by his work, we will make use of this approach on 

truncating the possibly discontinuous maximal monotone drift term, then get the 

existence of the solution for the SDI. Our assumptions are similar to those in 

chapter 4, but it should be mentioned that if we apply the truncation method to 

the maximal monotone function a, then growth condition can be weaker than the 

usual linear growth condition. 

This chapter is organized as follows: 

• section 6.2: this section formulates the main theorem and necessary condi-

tions; 

• section 6.3: this section presents some preliminary lemmas about the trun-

cation methods; 

• section 6.4: this section gives the proof of the main theorem. 

6.2 Formulation of the Results 

Once again we consider stochastic differential inclusion (SDI) of the following 

form on domain Rl 

r dx(t) c a(t, x(t)dt +&(t, x(t))dw, 	
(6.2.2) 

X(0) = 
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where z 0  is an J 0 —measurable random vector with values in Rd ,  and EIxo2 < 

00, a : [0, +oo) x Rd 	2 R
d

is a multi-valued function, b is a Borel function 

on [0, +oo) x R' taking values in TRdxd1  and continuous in x, with norm Ib = 
1-d 	-d1  b• '1/2 
'L_ii=1 L_ij=1 23) 

We use the following assumptions from [9]: 

Assumption 6.2.1. Let D be a domain in Rd.  Assume there exist an increasing 

sequence of bounded sub-domains D1  C D C and a non-negative function 

V e C" 2 ([0, +oo) x D; R) such that the following conditions hold: 

U 1 Dk = D, and for every k, t e [0, k] 

sup a(t,x)I < Mk, sup Ib(t,x)1 2  < M, 
XEDk 	 XEDk 

where Mk is a constant; 

 

LV(t,x) < MV(t,x), V  e [0,T], x 

Vk(T) := 	inf 	V(t, x) —* 00 

xEDk, t<T 

as k —* oo for every finite T, where M = M(T) is a constant, aDk denotes 

the boundary of Dk and L is the differential operator 

d 	
x  L:=-+>aj(t, —  09t ax 

2 	 2,3 

P(xo  e D) = I. 

Under our assumptions above the solutions of SDI (6.2:2) will never leave D, 

therefore the values of a, b outside D are irrelevant and for convenience, we define 

a(t,x) = 0, b(t,x) = 0 for x D,t>0. 

Definition 6.2.1. By solution of the SDI (6.2.2) we mean an —adapted process 

x(t) lives in D, in other words, it does not leave D and satisfies SDI (6.2.2). 

An explanation of the definition can be found in the following statement from 

Lemma 6.2.1. Let x(t) be an it —adapted process defined for all t > 0. Assume 

that x(t) satisfies SDI (6.2.2) for t < r := inf{t : x(t) D}, and assume (i) 

though (iii). Then r = 00 (a.s.). 



Proof. Define T   as the first exit time of x (t) from Dk.  Obviously T k T -r. Therefore 

to prove the lemma it suffices to show that for any k and 5, T> 0 we have 

T 
l p(k  <T) P(xo  Dk) + P(V(0, x0) ~ log 	

1 
 exp + 

SV(T) 	0 

Indeed, 

p(k  <T) 	P(TC <T,x0  E Dk)+P(xo V Dk) 

< p(k <T,x0  E Dk ,exp(—V(0,xo)) <5) 

M(t)dt. 

(6.2.3) 

+P(-F' <T, xo e Dk, exp(—V(0, x 0 )) > 5) + P(xo  V D,). 	(6.2.4) 

Now the first term of right-hand side of (6.2.4) 

P(exp(—V(0,xo )) <5) = P(—V(0,xo) log 5) = P(V(0,xo) log) 

To estimate the second term on the right-hand side of (6.2.4), we use assumption 

(ii) and apply Ito's formula to 'y(t)V(t, x(t)) where 

:= exp[— & (s)ds  - V(0, x 0 )}. 

Then it follows that for all t < T, 

	

(t)V(t A k  x(t A rk))xT k >o 	(0)V(0, x 0) + mk(t), 

where m'(t) is a continuous local martingale starting from 0. Hence for any R> 0 

	

P{sup(t)V(t,x(t))Xk >o > R} 	E((0)v(O,x o )) 
t<rk 

As a result, we obtain 

p(k  <T,x0  E D,exp(—V(0,x o )) >5) 

P

( 

 sup 7(t)V(t, x(t)) ~! Vk(T)5  exp(— 
1T 

 M(t)dt)) 
t<r 1' 	 0 

T 
< exp(j' M(t)dt) 

- 	 Vk(T)5 

which implies (6.2.3). 

Notice that P(IF  < T) —* 0 as k —* oo. Indeed since V(0, x 0 ) < oo, and 

log-! oo as 5 —* 0, this gives P(V(0, x0 ) ~: log! ) —* 0; by assumption (ii) 

Vk(T) —* oo as k —poo , this gives (ovk'(T)  exp f" M(t)dt) —* 0; together with the 

fact P(x o  Dk) = 0, we obtain the assertion of the lemma. 0 
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Assumption 6.2.2. Assume that a is a maximal K-monotone function such that 

for each k its restriction to Dk has a maximal monotone extension ak to the whole 
d  which satisfies the linear growth condition. 

Remark 6.2.1. If Dk is a ball then we have proved (see chapter 4) that the ex-

tension ak regenerated in the above Assumption exists. In the later part of this 

chapter we consider the situation when the set Dk contains a ball. 

Assumption 6.2.3 (Local Lipschitz of b). There exists a constant Lk > 0, such 

that 

b(t,x) - b(t,y)I < L k  IX - 

fort > O,x, y  E Dk. 

Theorem 6.2.2. Assume that a is a maximal K-monotone function defined on 

D, and b is locally Lipschitz defined on D. Let Assumption 6.2.2 hold. Then SDI 

(6.2.2) has a unique solution x(t) which lives in D for all t > 0. 

Proof. Since b is locally Lipschitz in D for every k, we have a bounded measurable 

function bk on the whole [0, +oo) x R d,  such that b and bk are agree on [0, TI x Dk, 

and bk is locally Lipschitz on W. Define the stopping time 

:= inf{t > 0,xk(t) 0 Dk}AT. 

From the proof of Theorem 4.2.1, we can get that for t < T  

x k (t)lT k >o  = x0 + 
j 

a,ds + E f 
where at E a(t, x'(t)). 

Let 1, k be integers, such that k < 1. Set -r k1 := T  A r1 . Then by using Ito's 

formula, 
exp(_Lt)(xIc - x t )(t A rk1)21kl 	< m11(t), 

where L is a sufficiently large constant, and mdt  is a local martingale starting 

from 0. Hence xc(t) = x 1  (t) for t <rdl.  Since k < 1, then Tk < TI . There exists a 

stopping time r with 

T 	urn T  = inf{t> 0,x(t) D} AT, 
k—.co 

such that x(t) := 1imk ,o xIc(t), satisfies the SDI (6.2.2). Thus by Lemma 6.2.1, 

we know that = T. The uniqueness can be achieved in the same way as Theorem 

4.2.1. The proof is completed. 	 U 
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Notice that taking V(t,x) := e(_Mt)(1 + x12) in the case of D := R', Dk 

{x e Rd :  jxj <k}, condition (ii) in Assumption 6.2.2 can be restated as follows: 

Assumption 6.2.4 (Growth Condition). There exists a constant M, such that 

2xa(t,x) + b(t,x)12 < M(1 + x12), 	 (6.2.5) 

fort? 0, x,y e R'. 

Our goal is to present the existence of solution to SDI without the linear 

growth condition. More precisely, if the linear growth condition is weakened by 

Assumption 6.2.4, the SDI is still solvable by means of truncating on the maximal 

monotone drift term a. Below is the main theorem in this chapter. 

Theorem 6.2.3. Assume that a is a maximal K—monotone function defined 

on R°, b is locally Lipschitz defined on R'. Under Assumption 6.2.4, stochastic 

differential inclusion (6.2.2) has one and only one solution. 

The uniqueness of the solution can be obtained in the usual way. The existence 

of the solution will be followed after some preliminary lemmas. For simplicity, we 

consider time-independent case. 

6.3 Preliminary Lemmas 

Before we prove the main Theorem 6.2.3, let us give the truncation procedure. 

This is the most technically hard part in this chapter. We will discuss the method 

of truncating the maximal monotone function a, which leads to be bounded and 

again maximal monotone. For this purpose we require several propositions, which 

carry out the facts that will make the realization of truncation method. 

Let BR be the closed ball. 

Proposition 6.3.1. If a is a (possibly multi-valued) monotone function defined 

on the ball BR,  then for every a E Rd, there exists x E BR, such that 

(x—y)(a—a(y)) <0. 

Proof. It follows directly from the last statement in the Lemma 5.1.5, which is 

equivalent to the statement {x E BR : R(a, x, a) = xã} 	0, for any a e 

with R(a, x, a) = sup{ (—a - a(y))(x - y) + xã, y E BR} by applying y := —ã in 

Lemma 5.1.5. We leave the proof to Lemma 5.1.5 in the Appendix. 	D 

Proposition 6.3.2. Assume that x E R' is a non-zero vector. Set Z = { z e 

Rd : zx < 01. Let h : Rd be a bounded function such that h(z)z < 0 for 

every z e Z. Then the closure Ti of the convex hull of {h(z) : z E Z,:  I contains 

x for some ji > ü. 
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Proof Assume that C := {x : p > 0} and H are disjoint. Then C and H are 

disjoint convex sets, C is closed and H is compact. Therefore by the theorem 

of "strong" separation of convex sets (as we can see Theorem 2.3.9), there exist 

numbers Yi < Y2 and a continuous linear functional on Rd,  i.e., a vector a E Rd 

such that 

ay <Yi <'Y2 <aw, 

for all y E C and w E H. In particular, ax < 'yi < 	< aw for every w E Rd. 

Hence ax < 0, because otherwise pax > 'yl for sufficiently large i. Hence we have 

ay0<'y1 <'y2 <aw 	 (6.3.6) 

for allyE C and wE H. 

Leta, 	 a - cx for c > 0. Then ax = ax - €1x12 < 0, and from (6.3.6), we 

obtain 

aw = (a—€x)w = aw —€xw > 'Y2 —€Kx > -yi  >0, 	(6.3.7) 

for all w E H and for sufficient small c> 0, where K = sup{w : w E H} < 00. 

On the other hand, since a fx <0, then for a e Zx  and h(a€ ) e i[, we have 

h(af )aE  < 0, 

which contradicts (6.3.7). Consequently, H contains px for some ji ~: ü. 	E 

These two propositions motivates the following lemma. The next two lemmas 

extend Lemma 3 and Lemma 4 by N.V: Krylov [19] to possibly discontinuous 

maximal monotone function. 

Lemma 6.3.3. Let 'y,  R> 0 and let a(x) be a maximal monotone function defined 

on the ball BR =: {x e Rd : J xJ < R}. Assume that a(x)1 2  - la(0)1 2  > 2 if 

xl = R. Then {a(x) - Jxl  <R} j B. 

Proof. Let us take any a E 	From Proposition 6.3.1, there exists an x E BR, 

such that 

(x - y)(a - a(y)) 0, for y E BR. 

We want to show that JxJ <R and a E a(x). To this end we define 

Zx- := {z E Rd:  zx < 01 

and 
Z : ={z ERd :  —zx<0}. 

Then for sufficiently small A > 0, for every z E Z; we have lx + AzI E BR, and 

for every z E Z, we have lx - Azl E BR. 
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For all z E Z;, taking y := x + Az above, Az(a(x + Az) - a) < 0. This 

yields z(a(x + Az) - a) < 0,. Then there exists a subsequence A -* 0, such that 

a(x + Az) -* ã-. Because a is maximal monotone on BR, - 
e a(x) and 

- a) < 0, this is true for any z E Z 

Then by the proposition (6.3.2) above, let H be the closed convex hull of the 

vectors {a-}, then there exists i ~ 0, such that /1X E J. Hence ã- - a = iix, 

i.e., 

Therefore repeating the above augments with Z in place of Z;, we get ã± E a(x) 

and there exists v > 0, such that —vx E H, where H is the closed convex hull of 

the vectors {a+} i.e., 

= z;++l1X. 

Define a = aã2± +i3a-, with a = 	, and 3 = 4, we see that a a, where a
14+V 

is the linear combination of (a±, 
The last step is to show that lxi < R. Because of the monotonicity, xaz- < 

xa(0). Assume that ixi = R then 

2 >  lãi2=iãz;12-2az;lix+li21x12 

> d2_ -2lixa(0)+li2ix12 zX  

= kiz; i - ia(0)1 2  + lix - a(0)1 2  

> ,y2 , 

which is impossible. Consequently lxi < R. We conclude that if j al < 'y, then 

a E {a(x): lxi <R}. 

Now we can see how the truncation method is applied to maximal monotone 

function to get bounded maximal monotone functions. Notice that the second 

assumption of the following lemma is needed to ensure that I di <—  -/- 

Lemma 6.3.4. Let 'y,  R> 0, and a(x) be a maximal monotone function defined 

on BR. Assume the following conditions hold: 

(i)(x—y)(a(x)—a(y)) < —€x—yI 2 , Vx,y E BR with a fixed e>0. 

(ii) ia(x)12 - ia(0)i 2  > y2 , if lxi = R, where y 0 is a fixed number. 

We introduce 

F(a, x) = sup (x - y)(a - a(y)), 
yED 

where D = {x: la(x)l < 'Y} n BR. Then, 
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F(ã, x) is continuous in (d, x), F(ã, x) >0 for all Idl <'y, where a E W. 

for each x e Rd,  there exists y(x) E D, such that F(â, x) = 0, where 

a(x) E a(y(x)); here if F(a,x) = 0, IFiI <'y, then a = a(x). 

a is monotonic in R", and y(x) = x for all x e D. 

Proof. First, by Lemma 6.3.3, we have B y  C {a(x): I xI <R}. Hence, 

for 1ô1 <ny, we can find y, such that jyj < R, a e a(y). So 

F(a, x) = sup(x - y)(ã - a(y)) > 0. 
yED 

Due to the boundedness of D and of the function a = a(y) on D, F is continuous 

in (ã,x). 

Fix x, set 	= (a(y) : y E D), F = conv. We prove the solvability of 

F(a, x) = 0 on F. Since a = a(y) is maximal monotone, for each y e D, the set 

a(y) is convex and closed. Consequently, D is compact. Further we know that F 

is compact. Since F > 0, it suffices to show that 

min F(ã,x) <0. 	 (6.3.8) 
aEF 

Take in D a countable everywhere dense subset x i  and define 

max 	(x—y)(a—a(y)). 
yE{xj,x2," ,x,} 

Clearly, 1111  is continuous in (a, x), F(a, x) is a bounded convex function on ev-

ery bounded convex set. Hence it is continuous. By Dini's theorem, 1J!n —* F 

uniformly on F. So in order to prove (6.3.8), it suffices for us to prove that 

min IF' (ã,x) <0,V n. 
ÜEF 

(6.3.9) 

For p e P 	{p = (pi,... ,p,) : p, ~
! 0,  En 

1  p = 11, consider the functions 

(p,a,x) = 	 pi (x — x2 )(ã — a(x)). 

Obviously, W' = max{ : p E P}. By the minimax theorem the left side of 

(6.3.9) is equal to 

max min (p, a, x). 
PEP aEF 

(6.3.10) 

Noting that for I Ô4 < 'y, F(a, x) > 0. F(a(x), x) = sup, (x — y)(a(x) — a(y)) = 0, 

for IxI < R. Then by using the same method as in Lemma 5.1.5, we deduce that 

>pxa(xj) <pjx j pja(xj ). 	 (6.3.11) 
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Hence we get /'(p, a, x) 	0. Consequently, (6.3. 10) is negative, inequality (6.3.9) 

is proved, and we get the existence of a solution of the equation F(ã, x) = 0 on 

F. 

Next step is to show that this solution lies in L. For it, obviously, (x - y, a - 
a(y)) < 0, for all y E D. From Lemma 6.3.3, a e a(y) for some y E D, we see 

that a E i, let y = y(x) denote such y. 

Now let us prove the uniqueness of the solution of F(a, x) = 0 and the unique-

ness of y such that a e a(y) on U = JI&I < 'y} x £(H,W 1 ). Let F(a,x) = 0, 

i = 0, 1, 1& -Y '  ö = ãi s + o (1 - s). Since F is the sup of functions that 

are convex in (a, x). But F > 0 on the convex set U and (a 9 , x) e U, therefore 

F(ã, x) = 0 for s E 10, 1}. We know that a5  e a(ys ) for some y e D and 

(x - y, a - a(y)) 0 for all y E D. s E [0, 11. This in particular implies that for 

every s e [0, 11, the function 

(x — y s )(ar  - a(y5 )) 	 (6.3.12) 

is convex in r on [0, 1], is non positive on [0, 11 and equal to 0 at r = s. This 

is possible only if the function (6.3.12) is'O for all r E [0, 1]. The derivative of 

(6.3.12) with respect to r is 0. Since we have 

(x - ys )(ar - a(ys )) = (x - ys)(ai - a(y5 ))r + (x - ys)(ao - a(y5 ))(1 - r) 

= (x - y3 )(ãi - ã o)r + (x - y.,) (do - a(y5 )), 

which gives 

(x - YS) (a, - do) = 0, and (x - y.,) (do  - a(ys )) = 0. 

Hence for S, 8 1 , S 2 e (0, 1), one has 

(x - ys)(asi - a 52 ) = 0 1  (y1 - y82 )(as i  - a32 ) = 0, 

and 

(Ysi - ys2)(a(ysi) - a(y52 )) = 0. 

Finally, we conclude that y.1 = Ys2, a , E a(ysi ) = a(y52 ) öo, &0 = a 1 . 

(c) The equalities y(x) = x comes from the uniqueness of the solution of 

E a(y) on D. The monotonicity of a follows from (6.3.11), if we take i = 2, and 

P1P21/2 	 U 

Theorem 6.3.5. Let 'y,  R> 0 be constants and let a(x) be a maximal monotone 

function defined on 	Assume the following conditions hold: 

(i)(x—y)(a(x)—a(y)) 	—€Ix—y1 2 ,Vx,yE BR with a fixed e>0. 
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(ii) Ia(x)12 - a(0)1 2  > y 2 , such that jxj = R, where 'y / 0 be a fixed number. 

Then there exists a maximal monotone bounded function aR on Rd  such that 

aR(x) = a(x), for all x e D, 

where D = {x: Ia(x)I < 'y} n BR. 

Proof. From the above lemma, we define that 

aR(x) as the maximal monotone extension of {a(y(x)) : x E Rd}. 

Then for x eD, a(y(x)) = a(x) is a consequence of the uniqueness of the solution 

of F(a, x) 0 on BR,  and y(x) = x on D follows from the uniqueness of solution 

of the equation a e a(y). The theorem is proved. 

LI 

Remark 6.3.1. We will apply this theorem in a situation when the set D defined 

above contains a ball B 7  for a given -y> 0. 

Lemma 6.3.6. Let a be a maximal K—monotone function defined on the Rd. 

Then there exists a maximal K—monotone function aR such that aR = a on the 

closed ball BR and aR satisfies the linear growth condition. 

Proof. First, we define ã(x) := a(x) - Lx, where L is a constant. Notice that 

a(x) satisfies the conditions of TheOrem 6.3.5 if L is sufficiently large. Indeed (i) 

clearly holds. To show (ii) we notice that for jxj = R we have 

ã(x)2 - a(0)2 = a(x) - Lx 12 - Ia(0)12 

> Ia(x)I + ILxI 2  - 2Lxa(x) - a(0)12 

• ~: I a(x) 12 + L  2  R  2 - 2LRIa(x)I - la(0)1 2  

L 2 R 2  
> a(x) + L  2  R  2 

- 	

2 + 21a(x)1 2  - a(0)12) 

> 	
- 274, 

where MR := SUPXEBR Ia(x)I. Clearly, for L large enough (ii) is satisfied with 
72 := L 2 R 2  - M. Moreover, for R large enough, 'y> MR,  which means D = BR 

for such R. By Theorem 6.3.5 there exists a maximal monotone bounded function 

aR on Rd  such that ãR = a on D. Hence there exists aR aR + Lx on Rd such 

that aR = a on D. Linear growth condition is clearly satisfied. LI 

76 



6.4 Proof of Theorem 6.2.3 

Now we are going to finish the proof of the Theorem 6.2.3. 

Proof For every n > 1, for sufficiently large L = L(n), by applying the above 

lemma, we obtain that there exists a bounded maximal monotone function a 7  (x) 

on W1 , such that a' (x) = a(x) on D B. 

We now consider SDI 

d1 

dx(t) e a(x(t))dt + L V (x(t))dw. 
j=1  

Moreover by virtue of Theorem 6.2.2, for every n there exists a unique process 

x, such that 

= xo + j ads + f 
fljj 

and c41  e a(x) = a(x), where 	= b(x(t)). Let us define the stopping time 

:= inf{t > 0: x(t)I > n} 

and nm := -,n A T' . Then x(t), x-(t)  are in the ball of radius n, m. It follows 

that the processes xTh(t A ynm),  xm(t A ?flm)  satisfy the same SDI 

d1  

dx(t) e a(x(t))1t<r mdt + 	b2 (X(t))1 t<i-nmdW t , 	(6.4.13) 
j=1 

X(0) = x 0 . 

The uniqueness of the solution of (6.4.13) implies that xTh(t) = xm(t) until 'r7 m. 

Let in be an integer larger than n, then T  	-rm a.s. and there exists a stopping 

time T with r := lim 	r1  a.s. on [0, T], such that 

at := lim a' 

I3 := urn 
n—*oo 

X(t) := lirn xTh(t), 
n—*oo 

satisfies the SDI (6.2.2). Hence, 

 di  

x(tAr)xo+flo
l 	

asds+  f  tAr] 	0, tAr] j=1 

hold. Finally by Lemma 6.2.1, we know that T = 00. x(t) is the solution of our 

SDI. The proof the theorem is completed. 	 El 
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Let us conclude the proof of the main theorem 6.2.3. As we can see also in 

[19] and [13], such proofs usually involves two parts. The first part is to show the 

existence of a solution before the first exit from D; The second part is to deduce 

the time of departure to infinity of the solution is equal to infinity. 

in 



Chapter 7 

Solving SDEs via Mini-Max 
Theorems 

It is shown that SDEs can be demonstrated related to mini-max problems in cer-

tain infinite dimensional spaces. We will show that the proper mini-max theorem 

provides a simple proof of the existence of strong solutions to SDEs. 

7.1 Introduction 

Mini-max theorems are useful and important tools in various fields of mathe-

matics. It is the fundamental theorem of game theory, and was first proved by 

von Neumann in 1928. We are going to study the connection between SDEs and 

mini-max problems. Adapting an idea of N.V. Krylov, we show that SDEs can 

be associated with mini-max problems in suitable infinite dimensional spaces. 

Specifically, if the coefficients of an SDE satisfy the so called monotonicity con-

dition, then one can construct a mini-max problem such that its saddle point is 

a solution of the given SDE. This connection between SDEs and mini-max prob-

lems can be applicable in many ways. In this chapter, we will give a constructive 

theorem of mini-max problems, inspired by the well-known mini-max theorem 

from Fan [6]. This theorem is then applied to give an alternative proof of the 

existence of (strong) solutions to SDEs. We will combine this with minimization 

method. Such method has been introduced in chapter 4 on SDIs problems. We 

would like to present that the suitable mini-max theorem can be applied to give 

a very simple proof of the traditional SDEs problems. 

The organization of this chapter is given as follows: 

. section 7.2: this section formulates the problem and the main result; 

. section 7.3: this section constructs mini-max theorem, which will be used 

in the main proof; 
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. section 7.4: this section gives the finial proof by application of mini-max 

theorem. 

7.2 Formulation of the Results 

We consider the following stochastic differential equation: 

I dx(t) = a(t, x(t))dt + Edi 
1  &(t, z(t))dw,  

< x(0) = 

where a: [0, oo) x Rd ,. d and b: [0, oo) x Rd 
 --4 
	are measurable functions, 

and x0  is an .Ft —measurable random variable with values in Rd,  independent of 

w, and such that E1x012 <00. 

We first introduce the conditions we will be placing on the drift and diffusion 

coefficients. 

Assumption 7.2.1 (Monotonicity of (a, b)). The pair (a, b) satisfies 

d1 

2(x - y)(a(t,x) - a(t,y)) + 	&(t, x) - b(t,y) 2  < M(t)IX - y1 2  
j=1  

for all x, y E Rd ,  t > 0, where M is an Ft —adapted non negative process such 

that f' M(t)dt <00 a.s., for every T> 0. 

Assumption 7.2.2 (Boundedness of (a, b)). There is an .Ft —adapted process R 

such that 
d1 

Ia(t,x)1 2  + 	b(t,x) 12 < R(t) (a. s.), 
j=1 

for all t > 0, x E Rd, and f R(t)dt < K, for some deterministic constant K. 

Assumption 7.2.3 (Continuity). a(t, x) is continuous in x for all t> 0. 

Remark 7.2.1. Notice that by taking x(t) - x 0  in place of x(t) we may and will 

assume that x 0  = 0. 

The following theorem is well-known: 

Theorem 7.2.1. Let Assumptions 7.2.1, 7.2.2 and 7.2.3 hold. Then stochastic 

differential equation (7.2.1) has a unique solution on [0,T]. 

This theorem was first proved in [18] and then it is generalized in [13]. As 

we shall see, the proofs given in these two papers are rather complicated. Later 

Krylov gave a simple proof of the existence of a solution in [20]. We shall give 

another simple proof based on our extremal approach and on the mini-max the-

orem. It is the purpose of this chapter to display the connection between SDEs 

and mini-max problems. 



Proof of Theorem 7.2.1. The uniqueness of solution to SDE (7.2. 1) follows from 

monotonicity condition (7.2. 1) by Ito's formula. Indeed, if x 1  (t) and x 2  (t) are two 

possible solutions of SDE (7.2.1), then we obtain 

d(eMtlx1(t) - x 2 (t)1 2 ) 

d1 

= eMt(2(x'(t) - x 2 (t))(a(t, x'(t) - a(t, x 2 (t)) + 	b(t, x'(t)) - Li(t, x 2 (t))1 2) dt 
j=1 

_e_MtMxl(t) - x 2 (t)I 2 dt 

d1 

+ 	eMt2(xl(t) - x 2  (t))(b(t, X 1 (t)) - (t, X2  (t))) d4 
j=1 

Thus we get, 

0 	 - 

t
di 

=e
Ms(2(x 1 (s)_x 2 (s))(a(s, x1 (s) — a ( x2(s))+ 	I(s, x 1 ( 8))_(s , x 2 (s))1 2  

—Mx'(s) - x 2  (8) 2 )ds + m < m (a.s.), 

where 

 di 

m 
= f >eMs2(x1(s) - x2(s))(&i(s,x1(8)) - b1 (s,x 2 (s)))dw 

j=1 

is a non-negative local martingale, starting from 0. Hence, x 1  (t) = x2  (t) almost 

surely. 
To prove the existence we will use the following well-known mini-max theorem. 

D 

7.3 Mini-Max Theorems 

Let V and U be convex subsets of some metric vector spaces, such that they 

are compact metric spaces with respect to some metrics. In the application V 

and U will be closed balls in some separable Hilbert spaces considered in the 

weak topologies. Notice that bounded closed balls in Hilbert spaces are compact 

sets in the weak topology and that the weak topology restricted onto any ball is 

metriczable. Then the mini-max theorem of Fan [6] reads as follows: 

Theorem 7.3.1. Let L : V x U -p R be a function which satisfies the following 

conditions: 

(i) L is convex and lower semi-continuous in v E V for each u e U. 
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(ii) L is concave and upper semi-continuous in u e U for each v E V. 

Then 

min max L(u,v) = max min L(v, u). 
vEV uU 	 uEU vEV 

For the proof we refer to [17]. 

We will develop a mini-max theorem which leads to our proof. It is a gener-

alization of the above well-known mini-max theorem. 

Theorem 7.3.2 (Mini-Max Theorem). Let L: V x U -* R satisfy the following 

conditions: 

L is lower semi-continuous and convex in v e V for each u e U. 

L is upper semi-continuous in u e U for each v E V, and there is a countable 

dense subset M = {u 2  i = 1, 	, n} of U such that for every integer 

ii > 1, 

pL(v,u) < L(v,pu) 

for all u1 , - - - Un e M and p e P := {(pl,p2, -  ,p) e R n : p. > 
0,  Enpi = 1} 

Then 

min max L(u,v) < max min L(v, u), 
vEV uM 	uEU vEV 

where M is the closure of M. 

Proof. Let us define 

L(v,p) := 

for v E V and p e P. Then Ln  satisfies the condition of Theorem 7.3.1. Hence 

for some V(n)  e V and p(fl) E Rn  we have 

L,, (V (n) , 
 p) = min max L(v, p) = max min L(v, p) 

	

vEV pEP, 	 PEP, vEV 

n 

< max min L(v,pu) < max min L(v, u) =: a < 00. 	(7.3.2) 
pEP, vEV 	 u€U vEV  

i=1 

The sequence {v ()  } contains a subsequence, denoted also by {v ()  } such that 

converges to some element 13 E V. By (7.3.2) and the definition of L, 

a> L(v,p) = max L(v,p) = max L(v,u). 

	

PEP, 	. 	1<i<n 



Hence 
a > 

for each i < n. Consequently, by the lower semi-continuity of L 

L('J,u) < 1iminfL(v,'u) <a, 
n-00  

for all i > 1. Therefore 

min max L(v,u) < max L(1,u) < a = max min L (v, u). 
vEV eM 	- uM 	- 	uEU vEV 

U 

To apply the above theorem we need to introduce the following objects: 

Let V denote the set of .T—adapted processes v = (a, /3) on the interval [0, T] 

such that a is Tlf'—va1ued, 0 is R1  —valued and 

T 

v 2  := E 	a(t) 2 dt + E 
1 	

/3(t)I2dt K. 

Let Y denote the set of T1"—valued —adapted processes y = {y(t) : t e [0, T]} 

such that 

=  EJ y(t)I 2dt 4TK 
0 

Define also the following functionals: 

IT 

	

L(v, u) := L((a, /3), (y, 'y, )) := E 	e Mt {2(x(t) - y(t))(a(t) - 'y(t)) 

d1 

+ E /3(t) - 8(t)I2 - M(t) I X(t) - y(t)1 2 1dt 	 (7.3.3) 
j=1 

for (a,13) e V and (y,'y,ö)  e Y X  =: U, where 

	

t 	 di 

X(t) := Xap(t) := JO a(s)ds + 	/3(s)dw. 

Let u(y) := (y, a(y), b(y)) for y e Y, where a(y), b(y) are the processes 

{a(t,y(t)) : t e [0,T]}, {b(t,y(t)) : t E [0,T]}. 

Define 

fo
T  

F(v,y) = F(a, )3,y) := L(v,u(y)) = E e Mt {2(x(t) - y(t))(a(t) - a(y(t))) 

d1 +E I /3(t) - b(y(t))2 - M(t)Ix(t) - y(t)1 2 }dt. 	(7.3.4) 
j=1 



Notice that 

sup F(a,/3,y) > 0, 
YEY 

for every (a, 0) E V. Indeed if (a, 0) E V, then it is easy to see that 

EIx(t)1 2 <oo, Vt<T, 

and 

t 	 di 

EIx(t)2 <E(f 2z(s)a(s)ds + 	/3(s)ds) 
0 	 j=1 

< EJ 
Ix(s)I 2ds + 2Ef Ia(s)I2ds + Ef 

j=1 

which gives 

E 	I x(t) 2dt < 4TEf a(t)I 2dt + 2T 	 12 dt 

<4TK2  

Consequently, for (a, 0) E V, we can take y := x E Y, which gives 

F(v,y) = 0. 

The method to prove the existence consists in characterizing the solutions of 

equation (7.2. 1) in terms of extremals of the functional F. Moreover, the following 

theorem holds, 

Theorem 7.3.3. Assume Assumption 7.2.1, 7.2.2 and 7.2.3 hold. Then the 

following assertions hold: 

If x = {x(t) : t e [0,T]} is a solution to SDE (7.2.1), then 

sup F(,/3,y) = 0 
yEY 

for (d,,3) e V, where (t) := a(t, x(t)), (t) = b(t, x(t)). 

If for some 	E V, 

sup F(,/3,y) = 0, 	 (7.3.5) 
yEY 

then 

X(t) = fd(s)ds + fi()di t E [0,T] 

is a solution to SDE (7.2. 1) on [0,T]. 



Proof Assume that x = x(, /3) is a solution to equation (7.2.1). Then by mono-

tonicity condition 7.2.1, we have 

F(, /3, y) = E I e Mt {2(x(t) - y(t))((t) - a(y(t))) 
Jo 

d1 

+ 	- 	- M(t)IX(t) - y(t)12}dt .0, 
j=1  

thus supYEY F(, I,  y) = 0. 

Now we prove part (ii). Let (7.3.5) hold for some (o, 3, y) E V, we have that 

F(, /3,y) < 0, 

for any y e Y. Hence it is sufficient for us to show that if F < 0 for some a , /3, t, w, 

then dt  = a(t,x), and./13t  = b(t,x). For these a, /3,x and any y  Y, we have 

E I e Mt {2(x(t) - y(t))((t) - a(t,y(t))) 
Jo 

d1 

+ 	(t) - &(t,y(t)) 2  - M(t)Ix(t) —y(t)12}dt < 0. 
j=1  

In particular, taking y(t) := x(t), this gives (t) = b(t, x(t)) for dt x P—almost 

every (t, w) E [0, T] x ft Now, let y = x - €z, where € > 0 and small enough, for 

z E Y. We get 

2€E 
 f

T 

z((t) - a(t, x(t) - €z(t))) - M(t)€IzI 2dt < 0, 

then divided by 2€ and let € -+ 0. By the continuity of a(t, y) in y, we get 

1T 

E I z((t) - a(t,x(t)) dt <0. 
Jo 

This is true for all z E Y. Therefore ã(t) = a(t, x(t)) dt x P—a.e., which, together 

with 3(t) = b(t, x(t)), imply that 

t 
X(t) 

= L 

	+ Lt 

	

is a solution to SDE (7.2.1). 	 . 



7.4 Proof Theorem 7.2.1 

It is also important to notice the following properties of the functional L = L(v, u), 

for v E V, u E U, defined by (7.3.3). 

We equip V with the weak topology of the Hilbert space defined by the inner 

product 

(V1, V2) = EJ (ai (t)a2 (t) + /31 (t)i3(t))dt 
0 

for v 1  = (al, 01), v2  = (a2 , 132).  We consider U with the product topology, with 

the topology introduced by the norm jyj = (E j'0
T I y(s) 2 ds) 112  on Y and with the 

weak topology on V. 

Definition 7.4.1. We say that a sequence un = (yn , 	8n)  converges to u = 

(y, 'y, 6) in U if yfl 	y strongly in Y, yfl - 'y and 6' - 6 weakly in V. 

Before proving the theorem, we will state a theorem which introduce the idea 

that will lead to the proof of Theorem 7.2.1. The following statements will be 

crucial for applying mini-max theorem. 

Theorem 7.4.1. Under Assumptions 7.2.1, 7.2.2 and 7.2.3, the following prop-

erties hold: 

L(v, u) is convex and lower semi-continuous in v = (a,,3) e V for fixed 

u E U; 

L(v, u) is continuous in u E U for fixed v E V; 

For 79 := {(y, a(y), b(y)) : y E Y} C U, it has a dense subset M := {u : i = 

1,2,••• ,n} 

For every integer n > 1, 

L(v,>pu) > 1 L(v,u) 

for every u i , 	,uEM and for all pEP, where P{(p1,P2, 	,p)e 

R :pj  > 	= 1}. 

Proof. (1) Recall that L(v, u) is defined by 

T 	 di 

L(v,u) = Ef eMt{2(x(t) - y(t))(a(t) - (t)) + 
	

I13(t) - 

—M(t)x(t) - y(t) 2 }dt, 
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where v = (a, 3) e V, u = (y, 'y, ö) E Y x V = U. It follows from Ito's 

formula that for fixed u E U, 

L(v,u) = e_ Mt EIx(T) 2  + H(a,/3), 

where 

H(a, 3) = E J e_Mt{_2y(t)a(t) - 2x(t)7(t) + 2y(t)'y(t)+ 
0 

d1 	 d1 
1 6j (t

) 12 - 2 > /3i(t)ö(t) - 2M(t)y(t) 2  + 
j=1 	 j=1 

From the expression above, the function L(v, u) is convex in v = (a, 3) E V, 

and is lower semi-continuous of (a,,3) E V in the weak topology. 

(2) Let uTh - u in U. By definition (7.4.1), that is, yfl - y strongly in Y, 

'y, and 5Th 
 —s S weakly in V. Then, 

(7.4.6) 

it goes to 0 as n -f 00, with 

Mt 2(y(t) - y(t))(a(t) - yTh(t))dt 

- y(t))(yTh(t) - 'y(t)))dt, 

13  := Ef e _Mt >(5n3(t)I2 - 

14  := Ef 2e_Mt/33(t)(5Th3(t) - 5(t))dt, 

15  := 
EJO 2e_MtM(t)(yTh(t)2 - y(t)12)dt, 

 

16 	E/ 2e_MtM(t)x(t)(yTh(t) - y(t))dt. 
Jo 

Indeed for n -p oo, the first term clearly goes to 0 by Holder inequality; 

12 < 8TK2
Efo 

 yTh(t)_'y(t))Idt_-*O; 
• 

13 < KEf 	 5i(t))(5'i(t) +:i(t))dt 

< K(EJ S'(t) - 6i(t)I2 dt) 1 /2 (Ef 5'(t) + 

- 0, 
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since 6 converges to 5 weakly. 

Similarly, we can get 

14  —*0; 15  —*0; 16 ,' 0. 

First, we can easily see that there exists countable everywhere dense subset 

{yj : i = 1, 2,--• , } of Y. Then for all y e Y, there exists subsequences 

denoted by y j converging to y. Since yj —* y strongly in Y, we have a(yj ) 

a(y) and b(y2 ) -s  b(y) weakly in V, i.e., there exists subset M := {u i = 

1, 2, 	.,n}, where ui  = {y,a(y),b(y) : y  Y} 

It is sufficient to prove 

n 	T 	 d1 

•E 1 e_Mt1, 1a 	+ 	I\\I2  — 	I$\I f4\I21Js 

i 	
1'-.9i') k.'.iik")) 

	
'' 'JJiY))I 	lvi t()IYjk&)I J-' 

i=1 	 j=1 

 d1 

E
f T

e Mt [2(t)a(y(t)) + 	b(y(t)) - M(t)(t)2]dt, 
 3=1 

where := >i1y2, a 	>ipja(yj), := 

Let us define 

sup L(v,u(y)) - Ef e Mt [2x(t)a(x(t)) 
YGY  

+ 	- M(t)Ix(t)12]dt. 

Notice that, sup 	L(v, u(y)) > 0 and 

sup L(a(t, x), b(t, x), u(y)) = 0, 
yEY 

where (a(t, x), b(t, x)) E V, because of the monotonicity condition of (a, b). 

Then 

T 	 d1 

f(a,) ~ _EJ
O 
	

j=1 

e Mt [2x(t)a(x(t)) + 	(t) - M(t)x(t) 2]dt, 

and 	 T 

f(a(x),b(x)) = _Ef e Mt [2x(t)a(x(t)) 

d1 

+ 	/3(t) 12 - P4(t)Ix(t)l2Idt 

j=1 



Furthermore, f is a convex function. Hence we get 

f(a(y(t)), ROM 

<pj fu (a(yj (t)),b(y j (t))), 

where := 	1 p2y2 , a := En 1 pj a(yj ), := 	 1 pb(y). 

From above we can obtain that 

T 	 d1 

-EI e Mt [2(t)ã(y(t)) + 	l(y(t))I - 2M(t)I(t)2]dt 
0 j=1  

f(a(y(t)),b(y(t))) 

and we also have 

pf(a(y(t)), b(y(t))) 

= - 	piEf e Mt [2yj (t)a(yj (t)) + - 2M(t)y(t) 2]dt. 

The theorem is proved. 
MMI 

Now we are in the position to show that the existence of a solution is a 

consequence of Theorem 7.3.2. 

Proof of the existence. By virtue of the previous theorem we can apply Theorem 

7.3.2 to L,F,U,V,M. Recall that L = L(v,u) := L((c,/3),(y,'y,6)) is defined 

in (7.3.3) and F(v, y) is given in (7.3.4); V is defined as .F—adapted processes 

v = (aj3) on the interval [0, T]; U is defined by Y x V, where Y is the set of 

Rd—adapted processes y = { y(t) : t e [O,T]}. 

Consequently, for 

F(v,y) = L(v,u(y)) 

we have 

o < minmaxF(v,y)=minmaxL(v,u(y)) 
vEV yEY 	 vEV uEM 

< max min L(v,u). 
uEU vEV 

Notice that for each u = (y, 'y, 6) e U we can choose 

:= ('y, 6) E V, 

EME 



which gives L(v3, u) = 0. Consequently, 

min L(v,u) < 0, 
vEV 

for every u E U. Hence 

min max F(v,y) = 0 
vEV yEY 

which proves the existence of a solution to SDE (7.2.1) by virtue of Theorem 

7.3.3. 

!II 



Appendix A 

The follow lemma is from the version of Lemma 3.5 from [14]. 

Lemma A.0.2. If Z,, 	{Z(t) : t E [0, T]} is a sequence of cadlag stochastic 

processes. For a fixed e> 0 define 

inf{t e [0,T] : Z(t) I > e.} 

Then the following statements hold: 

If Z = {Z(t A T n)  : t e [0, T]} converges in probability to 0, uniformly in 

t e [0, T], then Z converges to 0 in probability uniformly in t E [0, T]. 

If almost surely Z n, converges to 0, uniformly in t E [0, T], then almost 

surely Z converges to 0, uniformly in t e [0, T]. 

If for some sequence 0 < a(n) —+ 0, there is a finite random variable i,  such 

that almost surely 

sup IZ € (t) 	ia(n),Vn, 
t<T 

then there is a finite random variable such that 

sup I Z(t)I  <c (n). 
t<T 

For the proof we refer to [14]. 

Now we give the proof of of Lemma 5.1.5: 

Proof of Lemma 5.1.5. 	1. Easy to see that R is finite, convex and continuous. 

2. If we take the limit point a(x) of any sequence a(x) in (5.1.3), when x —* 

ED (a),  then we get 

sup(a(x') — y)(x — x') > 0. 
x l  
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Hence, R(a, x, y) > xy is obtained. 

The equality is a consequence of the monotonicity of a, that is, 

R(a, x, a(x)) = sup{(a(x') - a(x))(x - x') + xa(x) : x' e D} = xa(x). 
xl  

From above R> zy on D x Rd,  we see that the graph of R lies above the 

tangent plane of zy for any z' e D, i.e., R(a, x, y) ~! (x - x')a(x') + x'y for 

any x' E D. 

From the convexity of R(a, x, y), by virtue of the second result, 

,ajx jyj  = 	'aR(a,x,y) ~ 1   

> 	ajx j cEjyj. 

The monotonicity is obtained from the result above if one takes n = 2, 

= 1/2, and make simple transformations. The closedness of Z(a) 

is from the continuous of function R. 

Using the rule for passaging to the limit under limsup sign. 

We denote the convex hull mentioned by P(a, x). We want to show that 

P(a, x) = Z(a, x). The set P(a, x) is closed, as the convex hull of a closed 

set. Since R(a, x, y) - xy for fixed x is a nonnegative convex function of 

y, Z(a, x) is a convex set. From the boundedness a, there exist bounded 

subsequence a , and (z,-, y) -* (x, y) for any x, y e D, such that a -* a 

on D. Then urn inf R(a, x, y) > R(a, x, y). So any partial limit of a(z) 

as x -p x lies in Z(a,x). hence P(a,x) C Z(a,x). 

Now we want to show P(a, x) = Z(a, x). Assume there exists y e Z(a, x) \ 
P(a, x), then one can find 0 E Rd and numbers a < b such that çty = 

b, lim sup, a(x') < a as x' goes to x. Moreover, R(a, x, y) = xy and 

(a (x) - y)(x - x') < 0 for all x' e D. Choosing x' -* x, so that x - x' and q 

have the same direction, we conclude that 0 < limsup(a(x') - y)çb < a - b. 

which is impossible. 

We may assume that y = 0, since we can take a - y instead of a. From 

the fact in result 2, we know that R(a, x, 0) ~: 0. Hence it suffices for us to 

prove that 

min R(a,x,0) < 0. 	 (A.0.1) 
xED 

Wi 



From (5.1.3), it is easy to see that 

min R(a,x,O) = min sup(xa(x') - x'a(x')). 
xED 	 xED x'ED 

Let L be the convex hull of {a(x'), —x'a(x') : 	D} := {(p, q) E L}, then 

sup (xa(x') - x'a(x')) = sup {xp + q}. 
x'ED 	 (p,q)EL 

By using the Mini-Max theorem, we can prove (A.0.1) by showing that 

sup min{xp + q} < 0. 
(p,q)EL rED 

Any point (p, q) E L admits a form 	o jyj , 	cvx jy j ), where c > 

0, E c = 1, y2  = a(x). We apply result 4 to get 

min xa2y - 	cx jyj  <0. 
xED 

Consequently, inequality (A.0.1) is proved. 

ID 
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