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ABSTRACT 

To better understand the genetic structure of wildlife 

populations, an isozyme study of Scottish red deer and North American 

wapiti was conducted. Tissue samples from 943 individuals 

representing 28 localities were analysed by starch gel 

electrophoresis. The average amount of variation detected in a random 

selection of 28 to 34 enzyme loci did not significantly differ from 

that found in other mammals. There were significant differences 

between localities in both average heterozygosity and gene frequency. 

The results suggest that population subdivision characterizes both 

European red deer and North American wapiti. The polymorphism 

observed could be used in discriminating both populations and 

individuals. Nonetheless, the absolute genetic diversity was less 

than that measured between conspecific deer in Europe and North 

America. By this electrophoretic measure, red deer and North American 

wapiti could be considered a single species, (Cervus elaphus L.) 

though not a panmictic population. 
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Chapter 1 

INTRODUCTION 

1.1 Evolution and classification 

Although evolution is recognized as a far reaching paradigm that 

has increasingly affected all of the life sciences, while taxonomy 

seems to many a mundane corner of biology obsessed with minute 

distinctions, the two fields have become inseparable. Fundamental to 

evolution is the premise that all organisms have a common descent and 

that there is a systematic hierarchy of relatedness. Following from 

this is the assumption that features shared by organisms will also be 

based hierarchically, a reflection of common descent. 

Finding characteristics which are fundamental, and thus an 

accurate reflection of relatedness, is the challenge of 

classification. It has not always been a case of first time right, as 

is demonstrated by European red deer and North American wapiti, the 

subject of this study. Caucasian settlers in North America initially 

encountered two types of deer, one slightly smaller and the other much 

larger than the red deer of Europe. The larger animal, too big and 

dark to be red deer, was called elk after the elk of Scandinavia 

(Merrill, 1916). More subtle distinctions were either unknown or 

forgotten by these pioneers (hunting was not a right but a priviledge 

in the countries from which they came, and many American game laws 

remain a reaction to this). That size and coat colour were not the 

best criteria for close common descent must have been obvious to the 

first systematic observers who found North American moose. 
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Scandinavian elk and North American moose (Alces alces) are today 

considered conspecific (Ellerman and Morrison-Scott, 1951; Hall and 

Kelson, 1959; Whitehead, 1972). It is generally recognized that the 

elk of North America is the closest relative on that continent to the 

European red deer (Cervus elaphus L.). Whether red deer and elk are 

one species or two is still debated, and it is among the questions 

which this study attempts to address. Unfortunately, the common name 

"elk" has survived in North America, although it is a misnomer which 

continues to cause confusion. Many scientists prefer the Shawnee name 

wapiti (light rump) to avoid this confusion with the Scandinavian 

animal. That practice is adopted in this thesis, and moose will refer 

to all Alces alces, abandoning "elk" altogether. 

In postulating natural selection, Darwin and Wallace not only 

provided a mechanism for evolution, but a critical link with taxonomy: 

individuals which were better adapted to their particular environment 

would have more offspring which would carry those adaptive traits. 

The inheritance of locally adaptive characters causally related common 

descent to the common structures on which taxonomy was based. 

Corollaries to natural selection, such as Bergmann's Rule, not 

only helped to explain misadventures in taxonomy, but also affected 

the classification of newly-discovered organisms. Bergmanns Rule 

(Mayr, 1963, p.319-320) maintains that due to increased metabolic 

efficiency, animals in colder climates will have larger body sizes, 

assuming that they can get the resources necessary to maintain them. 

Thus wapiti are not bigger because they come from America, but because 

they came to North America via the Arctic through the Pleistocene. 

Moreover, fossil evidence indicates that Pleistocene red deer 

(Walvius, 1961) and wapiti (Guthrie, 1966) were both larger than 
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Recent forms. Differences in available cover and food quality explain 

why most wapiti have shrunk less than red deer since the Ice Age. 

There is one wapiti subspecies, the "Tule elk," living In poor, open 

habitat which shows a relative size reduction similar to that of 

Scottish red deer (McCullough, 1969). 

The example elaborated above illustrates what Ehrlich (1965) 

called the "comfortable circularity" which pervaded biology for the 

century following the publication of Darwin's (1859) work. Evolution 

was invented to explain the taxonomic order found in nature: the 

taxonomic system in turn was used as positive proof of evolution. In 

recent years, both numerical taxonomy and cladistics have developed to 

divorce taxonomy of its evolutionary bent in evaluating phenotypic 

traits. 

Darwin's work did not explain how adaptive traits passed from 

successful parents to their offspring. Within a decade of the 

publication of On the Origin of Species, the engineering professor at 

Edinburgh pointed out that blending inheritance, the genetics dogma of 

the day, was inconsistent with natural selection (Dunn, 1965). If 

offspring averaged the characteristics of their parents, then adaptive 

advantages would be diluted by half in each generation and soon be 

blended into oblivion. Darwin himself had to resort to the 

inheritance of acquired characters to explain the variation on which 

selection could act. 

It was not until Weismann demonstrated the particulate nature of 

genetic material, and the rediscovery of Mendel's experiments showing 

the segregation of that material in each generation, that there was a 

genetic system consistent with the variation implicit in natural 

selection. The units of genetic material, genes, are located at 
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particular sites, or loci, on chromosomes. The different forms of the 

gene are defined as alleles, and the particular combination of alleles 

in an organism comprise its genotype for each locus. The expression 

of the genotype, as affected by the environment, manifests changes in 

the phenotypes of an organism. If the relationship between the 

frequency of different alleles and phenotypes can be established, the 

differences between individuals, populations, species, etc. could be 

quantified. Thus genetics became a partner with other disciplines in 

the study of common descent and this Huxley (1942) called the Modern 

Synthesis. 

The practical problems of measuring genetic differences in 

natural populations remained formidable, as Lewontin (1974, p.96) 

points out: "For phenotypes of evolutionary interest, like size, 

shape, metabolic rates and probabilities of survival and reproduction, 

the average effects of gene substitution are small compared with the 

variation from environmental fluctuation. The counting of genotypes 

in a population, however, requires that the differences in phenotype 

produced by allelic substitutions be large enough to allow unambiguous 

classification into genetic classes." Among the obstacles were the 

masking of one allele due to dominanace, as well as determining the 

allelic inheritance when many genes contributed to the phenotype. 

Some of these problems were overcome by breakthroughs in 

biochemical genetics. A critical discovery was the one-to-one 

relationship between the nucleotides which make up structural genes 

and the amino acid sequence which codes for enzymes and other 

proteins. A change in the amino acid sequence could therefore be 

generally ascribed to an allelic substitution. Moreover, as some of 

the amino acids have an electrostatic charge, many amino acid 
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substitutions result in a change in the net charge of the enzyme or 

protein for which they code. When net changes in the charge occur, 

they can be used to separate the enzymes or proteins and thus identify 

different alleles of the same gene. The technique of separating 

proteins by observing their migration rates in an electric field is 

called gel electrophoresis (Markert and MØller, 1959). 

Electrophoresis is the method used for assessing common descent 

in this study, and it is detailed further in later sections (1.3, 

2.2). There are related advantages and disadvantages in using this 

technique on red deer and wapiti. The primary benefit is clarity: 

there is much less ambiguity in relating phenotypes determined 

electrophoretically to genotypes and ultimately to allele frequencies 

than by most other methods (for this reason, electrophoretic 

phenotypes are commonly referred to as genotypes in the scientific 

literature). For example, in the case of perfect dominanace, one 

allele would be masked phenotypically, but both forms of the gene are 

visible on an electrophoretic gel. When two forms of the same enzyme 

are observed in the same sample, they are the products of different 

alleles and the individual is heterozygous at that locus. A 

logistical advantage is that enzymes active in somatic cells can be 

analysed from just a small tissue sample, and the whole animal is npt 

required for comparison. 

The cost in making the point of comparison closer to the actual 

genetic material, DNA, is that it takes a step away from the 

structures on which selection likely operates, many of which are 

probably the result of multi-genic effects. Furthermore, the precise 

function of alternate alleles for many of these enzymes and proteins 

is not known, nor has it been proved that they afford any selective 
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benefit. For these reasons it is necessary to survey a wide range of 

enzyme and/or protein loci, regardless of the variation observed, to 

make an objective comparison between organisms. This point is made 

emphatically by Lewontin (1974, p.96), one of the pioneers in applying 

electrophoresis to natural populations, though it has been ignored in 

many subsequent studies. 

These points can be illustrated by assuming, simplistically, that 

there is a single locus which determines the number of legs an animal 

has. Red deer and wapiti are monomorphic for leg number, i.e. they 

show no, or nearly no, variation. One could probably count legs for 

several millennia and see no significant difference between red deer 

and wapiti. This is the premise by which wildlife biologists 

sometimes use legs to count deer when they are tightly grouped. But a 

leg count could tell something quite fundamental about the 

relationship between deer and dolphins. Although deer have an 

unvarying number of legs, as do dolphins, an analysis of the two 

groups together, in evaluation of mammals, would show overall 

polymorphism for this trait. Here the analogy breaks down, and at the 

same time illustrates why electrophoresis was grasped by evolutionary 

biologists as a powerful tool. Since dolphins do not have legs, the 

relationship between dolphins and deer is obscured at this phenotypic 

level; electrophoresis usually records fixed differences regardless of 

their phenotypic expression. However, to prove closer common descent 

between deer and dolphins, than deer and fish, one would have to look 

at more of the genome than the leg locus. 

Despite the drawbacks of electrophoresis or any other method, 

classification is essential not only in academic studies of evolution, 

but in the management of wild populations. Conservation, like 
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classification, begins with the description of unique characters, and 

only if animals can be adequately differentiated can strategies 

sensitive to local conditions be developed. The remaining 

introductory sections describe the study animals in more detail, the 

population genetic principles which were applied, and the previous 

electrophoretic research on deer, particularly red deer and wapiti. 

1.2 European red deer and North American wapiti 

Red deer and wapiti are members of a deer genus which extended 

across the the northern temperate latitudes worldwide at the end of 

the last glaciation. The source of this radiation was probably Asia, 

and it has two major branches (Lydekker, 1898; Cameron, 1923; Murie, 

1951). The eastern extreme is represented by wapiti in North America, 

the western by red deer in Ireland, Britain and Spain. There are 

still eleven recognized subspecies in Asia (Groves and Grubb, in 

press). 

Wapiti, when originally named by Erxleben in 1777, were 

considered a subspecies, Cervus elaphus canadensis. In 1780, however, 

Borowsky decided that the North American animals were a unique 

species, and dropped elaphus (Hall and Kelson, 1959). Through the 

first half of this century, Cervus canadensis was generally recognized 

(Murie, 1951), though there were some detractors in Europe (Ellerman 

and Morrison-Scott, 1951). The recent trend among zoologists and 

wildlife managers has been to eliminate this distinction and consider 

red deer and elk conspecific (McCullough, 1969; Bryant and Maser, 

1982). The primary reason for this relegation has been documented 

evidence of hybridization, both in captivity (Whitehead, 1951) and in 

the wild where animals have been introduced (Murie, 1966; Caughley, 
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1971). This follows Mayr's definition (1963, p.19) of a species as 

"groups of actually or potentially interbreeding individuals which are 

reproductively isolated from other such individuals." 

Though not reproductively isolated, there are obvious differences 

between red deer and North American wapiti (Walker et al., 1975). 

Wapiti are significantly larger, have a more well developed rump patch 

and a relatively smaller tail. Wapiti bulls have more branching 

terminal antler tines and a higher pitched mating "bugle." Red deer, 

on the other hand, have less colour contrast in their reddish coat, 

and the stags have a characteristic "roar" during the rut. 

Hunting and habitat alteration have caused the present highly 

dissected distribution of red deer and wapiti (Figure 1). Though 

found in many rural and reforested areas of Britain, red deer are most 

abundant in Scotland, numbering about a quarter of a million (Red Deer 

Commission, 1979, p.10). Wapiti were once distributed across North 

America, but are now common only in the mountainous regions of the 

western part of the continent, where they number about half a million 

- an estimated 5% of their population size before the arrival of 

European man (Bryant and Maser, 1982, p.1). Their current 

distribution, as with with Scottish red deer, is not necessarily 

evidence of particular adaptation to rugged habitats, but rather a 

reflection of the areas where such large, gregarious animals are 

tolerated. 

There are at present four recognized North American wapiti 

subspecies and at least sever, subspecies of European red deer. These 

subspecies have been differentiated on the basis of pelage differences 

and skeletal measurements (Murie, 1951; Ahien, 1965). More recent 

skull comparisons, however, suggest that the division between 
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0-1-09  
Figure 1. World distribution of red deer and wapiti. Locations of presumed subspecies 

are numbered. Study areas where samples were collected are circled. 



subspecies is not clear-cut, either within red deer (Lowe and 

Gardiner, 1974) or within wapiti (Shonewald-Cox and Bayless, in 

prep.). 

Though red deer and wapiti in particular areas have been 

designated as rare, the genetic characteristics of these animals have 

usually not been investigated. The great expansion in captive 

breeding of deer (Yerex, 1982) has stimulated recent interest in their 

genetics, though progeny tests (Lincoln et al., 1973, 1976; Lincoln 

and Fletcher, 1977) are still uncommon and population genetics 

principles have not generally been used in their management. 

1.3 Applying population genetics 

Ever since Mendel's experiments were rediscovered, and infused 

with mathematics in the 1930's, the knowledge of how genes act in 

populations has grown (Provine, 1971). Initial observations were on 

domestic and laboratory animals, but the advent of biochemical 

methods, particularly electrophoresis, made it possible to measure 

genetic differences in natural populations (Harris, 1966; Lewontin and 

Hubby, 1966). 

Studies in population genetics often begin by describing the 

genotypes present and counting the numbers of each. In the case of 

electrophoresis, genotypes are alternate forms of enzymes or other 

proteins which migrate at different rates depending on their charge, 

size and shape. The different forms of an enzyme are called isozymes 

(Markert and Mçller, 1959) or allozymes (Prakash et al., 1969) when 

specifying that the alternate forms are the product of different 

alleles. They can be visualized as bands on a gel of starch, 

agarose, acrylamide or some other neutral medium when stained with the 
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appropriate co-factor to effect the enzyme reaction. Table 1 lists 

the genotypes and their proportions for the enzyme glucose phosphate 

isomerase (GPI-1), as sampled in one Scottish red deer population. 

Banding patterns observed 	100/100 100/160 	160/160 	Total 

Genotype numbers 	 35 	5 	1 	41 
Frequency 	 0.854 	0.122 	0.024 	1 
Notation 	 P 	H 	Q 	1 

Table 1. Genotype frequencies for GPI-1, Rhum population, 1979. 

The genotype frequencies, however, describe only the static 

characteristics of one population at one time. Because deer are 

diploid, the genotypes are split during meiosis and each parent 

contributes half of the genes to the genotype of their calf. Since 

the changes in a population are transmitted by genes and not 

genotypes, it is the gene frequencies which must be calculated in 

comparing populations. This is done in Table 2 for the same enzyme 

and population. 

	

100/100 	100/160 	160/160 	Total 

Number of individuals 35 5 	1 41 
No. of GPI (100) alleles 70 5 75 
No. 	of GPI (160) alleles 5 	2 7 

82 
Gene frequency of GPI (100) = 75/82 = 0.9146 = p 
Gene frequency of GPI (160) = 	7/82 = 0.0854 = q 

1.00 

Table 2. Gene frequencies calculated from genotypes for Rhum deer. 

From the two previous tables, the general relationship between 

gene and genotype frequencies is evident: p = P + 1/2 H and 

q = Q + 1/2 H. Mutation, migration, selection, small population size, 

gene linkage, non-random mating, and overlapping generations can all 

act to change gene frequencies of sexually reproducing animals such as 
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deer. In the absence of these factors, however, the frequencies will 

remain constant and the genotypes of the next generation can be 

predicted by the gene frequencies of the parental population: 

(p + 	= p2  + 2pq + q 2 . It is the segregation of alleles every 

generation which preserves variation, as mentioned earlier. This 

result was proved independently in 1908 by T. Hardy in England and 

W. Weinberg in Germany and the binomial distribution of alleles is at 

the foundation of population genetics. 

The assumptions of the Hardy-Weinberg Law, when violated, are the 

elements of differentiation between populations. For example, when 

there is not one large random-mating population but many smaller ones 

(as is the probable case with the red deer/wapiti group as shown in 

Figure 1), then the genotypes sampled across populations at the same 

time should differ in a predictable way. 

When population size is restricted, the gene frequencies are no 

longer stable because the gametes of the parents are not necessarily a 

random sample of the population at large. Even in the absence of 

local selection pressures, the gene frequencies of the smaller 

populations, measured separately, may not mirror the gene frequency of 

the larger population. For instance, the gene frequencies given in 

Table 2 for glucose phosphate isomerase on the Isle of Rhum were GPI-1 

(100) = 0.9 and GPI-1 (160) = 0.1. Suppose the Rhurn deer were not a 

single panmictic population (and there is some evidence to support 

this suggestion, McDougall and Lowe, 1968), but several much smaller 

breeding units. By chance some of the subpopulations could be 

composed entirely of GPI-1 (100) homozygotes; others would have a 

higher frequency of heterozygotes and in these the allele frequency 

for GPI-1 (100) would be reduced. Population genetics theory makes 
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several predictions about both gene (or allele) frequencies and 

genotype frequencies when a large randomly-mating population becomes 

subdivided. 

First, the average gene frequency of the subpopulations equals 

that of the original undivided population. On Rhum, p = 0.9 both in 

the original population (p)  and the average of the subpopulations 

(p). Within each subpopulation, the gene frequencies change due to 

sampling differences, and therefore the gene frequencies of the 

subpopulations diverge. However, there is a limit to how far they can 

diverge as alleles either become fixed (the entire subpopulation is 

homozygous, p = 1) or lost (p = 0). Given the original gene 

frequencies on Rhum 
( 0 

= 0.9 and q 0  =0.1), it would be expected that 

in 90% of the subpopulations GPI-1 (100) would become fixed; in 10% of 

the subpopulations GPI-1 (100) would be lost. In this two allele 

system, the proportions for GPI-1 (160) are simply the inverse of 

those for GPI-1 (100). 

As the gene frequency approaches fixation or loss in each 

subpopulation, the proportion of homozygous genotypes increases to the 

detriment of heterozygotes. In the extreme case, each deer would be 

homozygous for one allele and there would be no heterozygous animals; 

if all of the subpopulations were at this limit, each would have 

homozygotes for one allele, though not the same one. As a consequence 

of this tendency towards homozygosity in small populations, when all 

subpopulations are pooled, there is a deficiency of heterozygotes from 

what would be expected given the overall population gene frequency (On 

Rhum, p0 = p = 0.9 therefore 2p 0 q 0  =0.18). It is the deficiency of 

observed heterozygotes from expected binomial proportions which can be 

used to infer whether populations have differentiated due to genetic 
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drift. 

The assumptions for this model of genetic subdivison - 

particularly constant size for each.subpopulation and no migration 

between them - are biologically unrealistic. Researchers on Rhum have 

long noted that a stag often does not rut near his birthplace on the 

island (Lincoln, Albon, pers. com .) However, when population 

subdivision is substantial, a significant deficiency in heterozygotes 

is still observable. This is shown below by pooling red deer and 

wapiti populations at the SOD-1 locus. 

Observed Genotype Frequency 	Gene Frequency 
SOD-1 100/100 100/125 225/225 100 225 

P H Q p q 
Red deer 0.04 0.13 0.83 0.10 0.90 
Wapiti 0.82 0.10 0.07 0.88 0.12 

Pooled 0.43 0.49 0.51 0.12 0.45 

Expeted Genotype Freq9ncy 

P 2pq q 

Red deer 0.011 0.188 0.801 
Wapiti 0.774 0.211 0.014 

Pooled 0.24 0.26 0.50 

Table 3. 	Gene and genotype frequencies for red deer and wapiti 
populations calculated independently and combined. 
The greatest deficiency in heterozygotes is in the 
pooled population (Observed 12%, 	Expected 50%). 

In all of the examples above, the observed frequency of 

heterozygotes is less than the predicted Hardy—Weinberg proportions. 

This is due to the fact that the red deer and wapiti samples also come 

from several populations. By far the largest deficiency in 

heterozygotes, however, is in the red deer and wapiti together. The 

significance of this difference between observed and expected genotype 
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frequencies can be simply tested by chi-square, as is done in Chapters 

4 and 6 for all of the enzyme loci analysed. 

The reduction in heterozygotes is a function of how much the gene 

frequencies in each population have drifted apart since divergence, 

which in turn is affected by the degree of inbreeding within each 

population. Inbreeding, generally, is the number of ancestors that 

two individuals have in common. 

The inevLtablility of common ancestry can be deduced, again 

using the Scottish deer population. Each calf has two parents, four 

grandparents, etc., so that the number of direct ancestors is (2)t 

where t is the number of generations that are being considered. Going 

back twenty generations, a calf is directly descended from 1,048,576 

deer, about four times the current Scottish red deer population, and 

probably even more than that of the population twenty generations ago 

(between 100 and 120 years) when sheep were more prevalent in the 

Highlands (McConnochie, 1923). Thus, there were not enough ancestors 

to go around for each calf born now not to have some in common. 

As a population becomes more genetically isolated from the red 

deer population at large, the rate of inbreeding within the smaller 

population increases concomitantly. In population genetics terms, the 

amount of inbreeding (known as the inbreeding coefficient when 

comparing individuals or the inbreeding inx when comparing 

Populations, and generally symbolized by F) is the probability that 

two genes at any locus are identical by descent. Whereas in the 

population at large the heterozygote frequency is 2pq, in the smaller 

population it is 2pq(1-F) where 1-F measures the reduction in 

heterozygosity due to inbreeding. 
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By comparing the gene frequencies of several smaller populations 

with the average gene frequency for them taken together, the degree of 

inbreeding - and hence the amount of genetic drift at a particular 

locus - can be determined. This is done in Table 4 with three 

Scottish populations for the SOD-1 locus. 

1 - F = 2pq of each smaller population (H) 

2p0 q 0  in the population at large (lit) 

Caithness 	Loch Laggan Strathmashie 
P 	0.86 	0.66 	 0.93 	0.816 

2pq 	0.24 	0.45 	 0.13 	0.273 FI 

2pq = H = (0.24 + 0.45 + 0.13) /3 = 0.273 

2p0q0 = lit = 2 (0.816) (0.184) = 0.299 

1 - F = 0.273 / 0.299 = 0.913 
F = 0.087 

Table 4. Calculation of the inbreeding index (F) for three 
populations of Scottish red deer at the SOD-1 locus, p is the 
average gene frequency for the three populations (q = 1 - p). 
H S  is the average of the heterozygosities for the individual 
populations and Ht  is the total heterozygosity. 

The inbreeding index calculated in Table 4 provides a measure of 

the divergence in gene frequency between these three red deer 

populations at this particular locus. Although originally intended to 

analyse inbreeding, Sewell Wright (1940, 1965, 1978) extended the 

concept and devised a series of F—statistics to measure the genetic 

divergence between natural populations of both plants and animals. 

In analysing many genetic loci, the divergence is measured by 

comparing the average heterozygosity of overall population (He)  with 

the average of the heterozygosities of subpopulations which comprise 

it (H 5 ) to get an overall fixation index (Fat),  also called the 

standardized gene frequency variation among subpopulations (Wright, 

1943). It can be derived directly from the the previous inbreeding 
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coefficient, substituting Fst  for F, and noting that H 5  and Ht are 

calculated from more tha n  one locus: 

1 - Fst = Hs / Ht 
Ht (1 - Fst) = Hs 
Ht - Ht(Fst) = Hs 
-Ht(FSt) = Hs - Ht 
Fst = (Ht - Hs) / Ht 

In Table 5, two more polymorphic enzyme loci are added to the data for 

the three previous Scottish deer populations, and the fixation index 

is calculated using the formula above: F 	= (H - H ) I H St 	t 	5 	t 

CAITHNESS 	LOCHLAGGAN STRATHMASHIE 	Ht  

IDH-2 	0.525 	0.868 	0.577 	0.4054 

GPI-1 	1.00 	 0.882 	0.962 	0.0938 

SOD-1 	0.857 	0.658 	0.929 	0.2757 

0.2838 H 

H 	 0.2480 	0.2958 	0.2311 	0.2583 H 
S 	 S 

F st = 0.2838 - 0.2583) I 0.2838 = 0.090 

Table 5. Relative genetic divergence of three Scottish red deer 
populations calculated using F5t  for three polymorphic loci. 

The fixation index above provides a measure of the difference in 

the gene frequencies for these loci that is due to the breeding 

isolation of these populations. In other words, 9% of the genetic 

variation described is due to differences between populations, and the 

remainder is due to differences between individuals within 

populations. Adding loci which are monomorphic for the same allele in 

all populations will not alter the fixation index, as they do not 

contribute to the between-population variance. 

The inclusion of monomorphic loci would, however, decrease the 

absolute genetic diversity (Dm) among populations, as defined by Nei 
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(1975): Dm = n (H 
t S 
-H ) I (n - 1) where n is the is the number of 

subpopulations. This is because the monomorphic loci reduce both the 

total and subpopulation heterozygosity. Just as with the leg locus 

mentioned earlier, they are necessarily included to make objective 

comparisons with other organisms. 

Finally, gene frequencies can be used to calculate a measure of 

genetic distance and thus indicate which populations have the closest 

common descent, i.e. those populations which have diverged least for 

the loci observed. Noting that most estimates of genetic distance are 

related in some way to the fixation index (Fe), Hartl (1982, j,68) 

suggests the formula F = 2d 2  as a first approximation inst 

constructing trees of relationship between populations. This is done 

in Table 6 for the same three Scottish deer populations. The distance 

(d) between all populations is calculated; those with the shortest 

distance are then paired; their gene frequencies are averaged, and the 

process is repeated. 

Caithness 

~Strathmashie 

Loch Laggan 

Loch Laggan I Caithness 
Loch Laggan / Strathmashie 
Caithness / Strathmashie 

Caithness and Strathmasie/ 
Loch Laggan 

F 	=2d2  d 
.O95 0.213 

0.094 0.217 
0.006 0.057 

0.093 0.216 

Table 6. Genetic distances between three red deer locations in 
Scotland based on isozyme variation at CPI-1, IDH-2 and SOD-1. 

The branching between the populations listed is readily confirmed 

by returning to the gene frequencies listed in Table 5. At each locus 

Loch Loggan has the most different frequency, and in the tree 
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constructed it is the most distant limb. The tree, though providing a 

visual image of the distance between these populations, is inadequate 

in two ways. Because confidence intervals or standard errors are not 

included, there is no means by which to judge the reliability of the 

branch lengths. Also, it lacks an absolute scale. Regardless of how 

accurately the distances reflect the relationship between these deer 

populations, it is a relative measurement which could not be used for 

comparison with other animals, except those measured under the same 

conditions at the same loci. To extend the tree analogy, there is no 

way of knowing whether this is a dwarf alpine fir of the mountain 

ridge (Abies lasiocarpa) or a great Douglas fir in the valley 

(Pseudotsuga menzezeii). For this reason, Felsenstein (1981) refers to 

such trees as "unrooted." To extrapolate from one tree to another, the 

measurement of genetic distance must consider both monomorphic and 

polymorphic loci. 

In analysing the genetic variation within a species, the absolute 

genetic divergence can often be quite small - not surprisingly, the 

morphological similarity by which they were originally grouped is 

certainly genetic - yet the relative divergence can be significant, 

even over small geographic areas (Selander et al., 1969; Manlove et 

al., 1975). The application of these population genetics principles 

depends ultimately on the number of different genotypes that can be 

described and quantified. The tissue and/or blood sample from each 

deer, analysed by electrophoresis, potentially provides information on 

many genetic loci. 

1.4 Electrophoretic studies of deer. 

Since the first reported research more than twenty years ago 
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(Lowe and McDougall, 1961; Gahne and Rendel, 1961), there have been 

more than sixty published studies of deer using electrophoresis or 

related biochemical methods. Although conventional electrophoresis 

detects genetic differences which result in net changes in ionic 

charge, and perhaps gross alteration in size and shape or protein 

molecules (Johnson, 1977), some allelic variation has been observed in 

most studies where more than a few individuals within a species have 

been tested. It should be added, moreover, that even the most 

intensive electrophoretic surveys analyse only a small fraction of the 

genome of any organism. 

As there has been no published summary of the electrophoresis 

literature for deer, a systematic review was conducted in the course 

of this study, and it is included as Appendix 1. Here the findings 

are summarized, and only the studies of the red deer/wapiti group are 

detailed. The proteins analysed in deer have been primarily two 

types: those which are components of blood (i.e. haemoglobin, 

transferrin albumin, etc.) and enzymes which are concentrated in body 

tissues (most commonly striated muscle, liver and kidney). 

Haemoglobin polymorphism has been found in most deer species 

where it has been investigated, and white—tailed deer (Odocoileus 

virginianus) have been most thoroughly studied because the blood of 

this species has a sickling trait similar to that found in humans 

(Kitchen et al., 1964, 1966, 1967; Huisman et al., 1968). Several of 

the more recent haemoglobin studies have been for forensic purposes, 

comparing the blood of captive deer to detect species differences 

(Dilworth and McKenzie, 1970; Bunch et al., 1976; Butcher and Hawkey, 

1977). Transferrin variation has also been found in several species, 

and more alleles have been described for reindeer (Rangifer terandus) 
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transferrin than for any other locus (Braend, 1964b; Zhurkevich and 

Fomicheva, 1976). The deer species in which blood proteins have been 

studied and the number of alleles detected are listed in the table 

below. 

SPECIES BLOOD PROTEINS 
Albumin Haemoglobin Transferrin Myoglobin 

Cervus elaphus 2 2 4 1 
C. duvoceli - 2 - - 

C. 	timorensis - 2 - - 

Elaphurus davidanus 1 - 1 - 

Damadama 1 1 1 - 

Axis axis - 2 - - 

Rangifer terandus 2 1 10 - 

Alces alces 1 1 2 1 
Capriolus capriolus 1 1 1 - 

Odocoileus virginianus 1 7 7 1 
0. hemionus 1 2 - - 

Ozotocerus bezorctus - - 6 - 

Hydropotes inermis - 2 - - 

Muntjac reevesli 1 2 1 - 

Polymorphic species 	22% 	67% 	 56% 	 0 

Table 7. Number of alleles for four commonly studied blood proteins 
and, below the line, the percentage of species which are polymorphic. 

Electrophoretic research on deer enzyme proteins began later 

(Manlove et al., 1975) than blood protein studies, but the work has 

greatly expanded in recent years. There are still only six deer 

species where extensive enzyme studies have been conducted and these 

are all native to the Northern Hemisphere. The lowest level of enzyme 

variation has been recorded in fallow deer (Dama dama) (Pemberton, 

1983) and the highest in white-tailed deer (Smith et al., in press), 

both deer species of intermediate size. 

Some enzyme systems (GPI-1, IDH-2, MDT-I-2, MI'I, 6PGD, PGM-1) 

appear to have higher percentages of polymorphism across deer species. 

This non-random distribution of polymorphic loci has also been 

observed by O'Brien et al. (1980) in a comparison of cats, mice and 
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humans. There is as yet no single satisfactory explanation why some 

enzymes harbour more detectable allelic variation. The observation 

nonetheless provides a starting point if genetic markers are sought in 

an unstudied species or population. 

There has been only one published electrophoretic comparison 

between red deer and wapiti (Johnson, 1968). Though he found no 

general blood protein differences between 64 wapiti and one red deer, 

Johnson concluded: "A word of caution, however, is in order. The 

family Cervidae have been found to contain simple proteins by the 

paper technic (sic). More detailed technics have been found to be 

confusing because of variability of minor protein fractions. Analysis 

of specific proteins may show other distinctions." 

Studying blood samples from Scottish red deer, McDougall and Lowe 

(1968) were the first to find differences in transferrin gene 

frequencies from different populations. McDougall and Stewart (1976) 

have also found polymorphism in the whey proteins of red deer milk. 

The transferrin variation was subsequently confirmed for red deer in 

Germany (Bergmann, 1976) and Scandinavia (Gyllensten et al., 1980). 

Cameron and Vyse (1978), however, found no transferrin variation in 

the Yellowstone wapiti population; screening 24 protein loci, they 

found polymorphism at only one locus on isocitrate dehydrogenase (IDH-

2). In a recent study of single populations of red deer and wapiti, 

Baccus et al. (1983) found polymorphism at MPI as well as IDH-2. 

Despite the plethora of electrophoretic research on deer found in 

a wide range of journals, there have been relatively few studies which 

have used isozymes to examine the structure of populations, 

particularly from a management perspective. The most extensive 

population studies of deer, using both blood proteins and tissue 
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enzymes, have been done on white—tailed deer in the southwestern 

United States (Manlove et al., 1975; Manlove et al., 1976; Johns et 

al., 1977; Ramsey eta l., 1979; Chesser et al., 1982.; Smith et al., 

in press), and on moose in Scandinavia (Ryman et al, 1977; Reuterwall, 

1980; Ryman et al, 1980). The work of these two groups, who have at 

times collaborated, is of particular relevance to the current study, 

especially for comparative purposes. 

The initial purpose of the present project was to survey specific 

protein variation in both red deer and wapiti. Tissue enzymes were 

chosen over blood proteins because they have been less tested 

previously, and a wide range of loci could be studied that were an 

unbiased sample with regard to function or variation. From a 

practical standpoint tissue samples are readily available from culled 

deer, and can be collected and stored in remote areas. 

The primary questions which I have tried to answer in this 

biochemical comparison of red deer and wapiti are threefold. 1) Is 

there significant genetic variation in the tissue enzymes of these 

animals? 2) If so, does this variation differentiate deer from 

different geographic areas, either local populations or recognized 

subspecies? 3) Again, if there is isozyme variation, how is it 

maintained or influenced, and what are the implications for 

conservation and management of these game animals? 
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Chapter 2 

MATERIALS AND METHODS 

2.1 Sampling sites, collection and storage 

Red deer tissue samples were collected during three shooting 

seasons in Scotland, from 1979 to 1981. During 1979, six localities 

were sampled, from Perthshire to Caithness. Four sites were private 

estates, one on adjoining Forestry Commission woodland, and the final 

one on the island of Rhum which is managed by the Nature Conservancy 

Council (Figure 2 shows all Scottish sites and the years they were 

sampled). 

In 1980, the collection area was expanded to include two Forestry 

Commission sites in Galloway with mixed open hill and woodland 

habitats, and three private estates in eastern Scotland. Red deer 

from four enclosed populations in the Netherlands were also tested 

with the cooperation of biologists there. 

In 1981, red deer tissues were taken from six sites previously 

sampled in Scotland, representing different habitats and latitudes. 

These were compared with North American wapiti samples collected the 

same year. Wapiti were from eleven sites throughout the Pacific 

Northwest of the United States (Figure 3 maps the wapiti sampling 

area). 

Samples from 139 red deer were collected in 1979; the sample size 

was increased to 484 deer in 1980; 64 red deer were tested with 254 

wapiti in 1981. Thus a total of 943 animals from 28 localities were 

analysed for between 11 and 34 enzyme systems. When the sample size 
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Figure 2. The locations where Scottish red deer samples were 
collected. Symbols refer to the year, and numbers refer to 
the name of the site as listed in Table 14 (page 62). 
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Figure 3. Collection sites in the Northwest United States for wapiti samples in 1981. 



was increased in 1980, the number of enzymes tested was decreased, and 

three polymorphic enzymes were analysed primarily. The number of 

enzymes tested was again increased, to 28 loci, for the wapiti 

samples. 

Professional stalkers and government rangers took liver, kidney, 

heart and striated muscle samples from each animal in the first year 

of the study. After initial results showed that enzyme variability 

could be ascertained from muscle and kidney samples, only these were 

collected in the subsequent two years. Muscle samples were collected 

from wapiti, plus liver or kidney if these were brought with the 

carcass by individual private hunters. 

Samples were usually bagged and frozen the day the animal was 

shot. Bags were premarked with location numbers. Details of age, 

sex, weight, number of antler points in males and lactation status of 

females were written on the bags when this information was available. 

The samples were generally frozen in conventional domestic freezers at 

the sites until collected; they were kept frozen in an ice chest 

during transport, and were stored at —20 °C or less until analysed by 

electrophoresis. All deer were analysed within eight months of when 

they were shot. 

2.2 Electrophoretic procedure 

In preparation for electrophoresis, approximately 0.5 g of frozen 

tissue was homogenized with an equal volume of distilled water. 

Homogenates were then centrifuged at 2000 rpm for 15 minutes, cooled 

to 10 °C. After use homogenates were frozen at —80 °C and could be 

retested several times if necessary. Sample test tubes were defrosted 

either by soaking in a 36 °C bath or centrifuging for five minutes. 
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Homogenates were discarded after five days, and new ones made from the 

frozen samples if needed. 

Electrophoresis was performed on horizontal starch gels, 

essentially employing the method described by Selander et al. (1971) 

as modified for deer by Manlove et al. (1975). Gels contained 12% 

w/v hydrolyzed potato starch in a buffer solution appropriate for the 

enzymes tested. (Appendix 2 lists the buffers, voltages and stains 

for each enzyme system). The solution was heated to boiling, degassed 

and poured into 6 mm thick gel moulds. 

When gels had formed and cooled for at least 30 minutes, they 

were sliced at the designated cathode end. Between 18 and 24 samples, 

from at least two Sites, were applied along this plane of the gel. 

Samples were applied by dipping 1 mm thick chromatography paper into 

the homogenate, blotting the excess moisture and inserting the paper 

along the cut surface (shown in Figure 4). 

Electric current was applied by extending sponges from buffer 

trays at each end of the gel; the buffer trays were charged from a 

transformer. Figure 5 shows a diagram of the apparatus. The paper 

inserts were removed after 15 minutes at 120 volts. The voltage was 

then adjusted depending on the buffer type and the intended duration 

of the electrophoretic run. Gels were run for either six hours during 

the day, or for fourteen hours overnight at much lower voltages. 

To prevent enzyme denaturation due to overheating, gels were 

sandwiched between copper plates (after inserts were removed) which 

had a circulating water and anti-freeze solution at 5 0C. Non-

enzymatic dye markers of bromophenol blue or phenol red were used to 

track the progress of the run. Enzyme migration and allele separation 
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was similar in both day and night electrophoretic runs. 

When dye markers had migrated to the cathodal sponge, the run was 

terminated. After excess moisture was blotted from the gels, they 

were Cut longitudinally into slices of 1 m to 1.5 m thickness, 

depending on the number of enzymes to be analysed for a particular 

buffer system. 

Enzyme stains were prepared just before the electrophoretic run 

was completed, and photoactive chemicals were added after gel slicing. 

Two staining methods were used: slices were either soaked in a stain 

bath or covered with a 2% agar stain solution which cohered to the gel 

surface as it cooled. The latter method was favoured toward the end 

of the study as it conserved staining chemicals. Most stains were 

i 	
0ncubated at 38 C in the dark, though some enzymes (SOD, 6PGD, PEP) 

required special staining conditions (Harris and Hopkinson, 1976). 

When the enzyme reaction bands had resolved, usually within five 

to thirty minutes of staining, slices were destained in a 10% acetic 

acid Solution. The results were then scored and if electrophoretic 

variants were observed, the gels were either photographed or stored in 

a cold room for comparative purposes. 

2.3 Analysis of data 

Data analysis began with the description of the electrophoretic 

banding pattern for each deer under each enzyme stain. In the case of 

multiple bands, it was necessary to determine whether they were the 

products of more than one locus coding for the same enzyme or allelic 

variants at a single locus. This was inferred from the quaternary 

structure of the enzyme (Darnall and Klotz, 1975) and from banding 
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patterns pictured for other mammals (Harris and Hopkinson, 1976). The 

nomenclature used to describe isozymes followed the system outlined by 

Allendorf and Utter (1979). Necessarily elaborate, if results for 

particular loci are to be extrapolated to other studies, the procedure 

for naming isozymes is detailed in the first section of the next 

chapter. 

The gene frequencies of polymorphic loci were the primary means 

of comparison between red deer and wapiti populations. A locus was 

considered polymorphic if the frequency of the most common allele did 

not exceed 99% (Harti, 1980; Smith et al., in press). At a higher 

frequency than this, the common allele was considered to be at 

fixation, and the particular enzyme locus monomorphic. 

Statistical analysis began simply by counting the genotypes of 

polymorphic loci at each locality and calculating the gene frequency. 

The observed genotype frequencies were then compared with Hardy-

Weinberg expectations by a chi-square test. Genetic differentiation 

among red deer and wapiti populations was determined by testing the 

null hypothesis that gene frequencies between localities were not 

significantly different. Allele frequencies of polymorphic loci were 

compared by two methods: chi-square contingency tables and log-

liklihood ratio tests (Sokal and Rohlf, 1969). 

The amount of differentiation among red deer and wapiti was 

determined by calculating the fixation index (F 5t, Wright, 1943) and 

the coefficient of gene differentiation (G, Nei, 1975); these 

formulae in fact give the same results when there are only two alleles 

at any polymorphic locus, as was the case with wapiti and red deer. 

The absolute genetic differentiation (Dm, Nei, 1975) was initially 

calculated for Scottish red deer populations. When these populations 
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were compared with Continental red deer or North American wapiti, a 

hierarchical gene diversity analysis was used (NEGST, Chakraborty et 

al., 1982) to determine the proportion of variation attributable to 

different levels of social organization - individuals, populations, 

subspecies, etc. 

Three indices are commonly used to compare the amount of genetic 

variation in disparate organisms. The mean heterozygosity (H) is the 

proportion of the population that is heterozygous over all loci 

tested, both polymorphic and monomorphic. P is the percentage of 

polymorphic loci in a population, and A is the average number of 

alleles per locus. A Mann-Whitney U-test was used in comparing these 

indices between populations. To test for evidence of selection on 

particular isozymes, a two way analysis of variance (Harvey, 1960) 

compared enzyme variation with quantitative characters such as weight 

and age, antler points and lactation status. 

Last and least significant, topologies of relationship between 

populations were constructed from the gene frequency data. As with 

most of the statistical analyses, two alternative methods were used. 

Dendrograms employed the measure of genetic distance suggested by Nei 

(1972), as this method considers both monomorphic and polymorphic 

loci, and is thus comparable with previous deer studies. For the same 

data, phylogenetic trees were constructed using the program described 

by Felsenstein (1981), as this second technique includes confidence 

intervals for branch lengths. 
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Chapter 3 

DESCRIPTION OF POLYMORPHIC ENZYMES 

3.1 Interpretation and notation 

The genetic interpretation of electrophoretic patterns of 

isozymes followed the principles outlined by Allendorf et al. (1977). 

It was based on several factors: tissue distribution of the pattern 

and inferred enzyme structure (Darnall and Klotz, 1975); the 

frequencies of different allelic variants and their agreement with 

Hardy-Weinberg expectations; and comparison of isozyme banding 

patterns with other deer species (Ryman et al., 1980; Smith et al., in 

press) and other mammals generally (Harris and Hopkinson, 1976). 

The nomenclature used to designate enzyme loci and alleles 

employs the system proposed by Allendorf and Utter (1979). The common 

abbreviation is used for each enzyme (i.e. Isocitrate dehydrogenase, 

IDJ-I). When more than one locus is analysed for a particular enzyme, a 

hyphenated numeral is added and loci are numbered starting with the 

least anodal form (i.e. IDH-2 denotes the more anodal. or further 

migrating, locus of IDH). In addition to being internally consistent, 

this procedure conforms with many current electrophoretic surveys of 

natural populations. 

In a rapidly developing discipline, however, some nomenclature 

inconsistencies in the literature are inevitable. For example, the 

supernatent form of IDH, designated as IDH-2 in red deer and moose, is 

called IDH-1 in mice, for historical reasons. Similarly, malic enzyme 

is abbreviated ME in most deer studies, though NOD is the notation 
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used in mice. When such discrepancies occur, an abbreviation is not 

used for the animal which is being compared with red deer or wapiti. 

Allelic variants within particular loci are also designated to 

their electrophoretic mobility (Allendorf and Utter, 1979). One 

banding pattern - generally that of the more common allele if the 

enzyme locus has not been previously described - is designated as 100 

and the other alleles are given numerical values representing the 

electrophoretic mobilities of their banding patterns relative to this 

unit distance. For example, the band designated as IDH-2 (125) 

migrates 25% further than IDH-2 (100) for a specified gel buffer. 

Of 34 enzyme loci analysed, eight proved polymorphic in either 

Scottish red deer, North American wapiti, or both. These were GPI-1, 

IDH-2, NE, NFl, PEP-2, PGM-1, PG14-2, and SOD-1. For each polymorphic 

locus, there follows a) the enzyme abbreviation, classification number 

(E.C.) and a brief outline of its metabolic function, b) a description 

of the banding patterns observed, c) the genetic interpretation of the 

banding variation in light of the quaternary structure of the 

molecule, d) evidence of polymorphism at the locus in other deer 

species, and e) confirmation of its genetic inheritance through 

progeny testing and/or pedigree studies in other mammals - mostly 

mouse and man. 

3.2 Isocitrate dehydrogenase, IDH 	(E.C. 1.1.1.42) 

IDH was polymorphic in red deer from all Scottish localities 

sampled. The enzyme is part of the citric acid cycle, and its 

function is to catalyze the oxidative decarboxylation of isocitrate to 

alpha-ketoglutarate (Chen, et al., 1972). There are at least three 

different isocitrate dehydrogenase enzymes in most plants and animals, 
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one of which is dependent on the cofactor NAD for its reaction, the 

other two on NADP (Turner, et al., 1974). The latter form of IDH was 

tested in red deer. (MAD is the conventional abbreviation for 

nicotinamide adenine dinucleotide; NADP stands for nicotinomide 

adenine dinucleotide phosphate.) 

MADP-dependent isocitrate dehydrogenase has two genetic loci 

(Bell and Baron, 1968), one coding for the mitochondrial enzyme (IDH-

1) and the other for the cytoplasmic form (IDH-2). Though both were 

analysed, only IDH-2 (also called the soluble or supernatent locus by 

some authors) showed variation in this study. Henderson (1968) 

analysed supernatent IDH in several mammalian species; he found two 

alleles in mice and confirmed the variation as genetic by progeny 

testing. Two more supernatent IDH alleles have been found 

subsequently, in Japanese wild mice (Minezawa et al., 1976, 1978). 

Three different banding patterns were observed for supernatent 

IDH in red deer (Figure 6). Two were single bands of different 

mobilities, presumed homozygotes IDH-2 (100/100) and IDH-2 (125/125) 

respectively; the other was three-banded, the heterozygote IDH-1 

(100/125). This banding pattern is characteristic of dimeric proteins 

- those with two polypeptide chains in their quaternary structure - 

and the intermediate band, or heterodimer, characterizes enzymes of 

this molecular structure. Recently, a similar fast allele has been 

found in supernatent IDH in white-tailed deer (Smith )  etal., in 

press). 

3.3 Superoxide dismutase, SOD 	 (E.C. 1.15.11) 

Superoxide dismutase was also polymorphic in all Scottish red 

deer populations sampled initially, though when the survey was 
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Figure 6. Variation in Isocitrate dehydorgenase (IDH-2). At 
this dimeric locus, homozygotes are single banded, and 
heterozygotes (IDH-2 100/160) have three bands. 
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Figure 7. Superoxide dismutase (SOD-1) proteins migrate to the 
cathode in acid citrate buffer. Dimeric, with single banded 
hornozygotes: SOD-i (-100) predominates in red deer, and 
SOD-1 (-225) predominates in wapiti. Three banded hets. 



extended to Galloway, the two populations there were at fixation. SOD 

is also dimeric, though It migrates cathodally on the same gel buffer 

as used for IDH, and stains differently. 

Light or achromatic areas in heavily stained starch gels were 

first described by Brewer (1967), and he postulated that this was the 

result of the reduction of tetrazolium catalyzed by light. (The 

enzyme has been called tetrazolium oxidase for this reason, as well as 

Indophenol oxidase.) In a series of experiments on anaerobic and 

aerobic organisms, McCord et al. (1971) concluded that the function of 

SOD was the removal of oxygen-free radicals, which are produced by 

air-breathing organisms and are detrimental to living cells. 

Beckman et al., (1973), examining a variety of human tissues and 

fluids, identified two SOD enzymes, mitochondrial and cytoplasmic. 

Both were tested in tissue samples from red deer, and the cytoplasmic 

locus (SOD-1) was polymorphic, again yielding three banding patterns. 

(Figure 7). Brewer (1967). found similar variation within a human 

family, first suggesting the SOD polymorphism was inherited. The same 

banding pattern, indicating two allele segregation at a dimeric locus, 

was published by Baur et al., (1969), in a random survey of 197 dogs 

at a veterinary clinic. The authors noted significant differences in 

gene frequency between breeds. 

Welch and Mears (1972) found a rare variant of the cytoplasmic 

SOD locus among inhabitants of the island of Westray in the Orkneys of 

Scotland. The three-banded heterozygote occurred in 12 of 406 

islanders, a gene frequency of 1.48% (if both parents were sampled, 

children were not). Noting that the rare allele might have increased 

in frequency by inbreeding on an island with a population of about 

750, they predicted that the variant might also be found, though at a 
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lower frequency, in Scandinavia, the origins of Westray settlers. 

Apparently independently, Beckman et al., (1973) found the rare SOD 

variant in Scandinavia. Sampling 3512 people, the rare allele 

occurred at a frequency of 0.4% in northern Sweden, 1.1% in northern 

Finland and at 2.46% in one valley bordering the two countries. 

3.4 Glucose phosphate isomerase, GPI 	(E.C. 5.3.1.9) 

A rare variant of GPI was found only in Scottish red deer 

populations, and there at low frequency. The enzyme was first 

described by Lohmann (1933) and its function, the reversible 

conversion of glucose-6-phosphate to fructose-6-phosphate, was 

confirmed by Tsuboi et al. (1958). 

Carter and Parr (1967), using hâemolysates and muscle extracts 

from mice, found genetic variation at a single dimeric autosomal 

locus, and DeLorenzo and Ruddle (1969) confirmed the presence of two 

GPI-1 alleles. In wild mice from Somerset, Padua et al. (1978) found 

two more GPI-1 alleles, one migrating faster and the other, slower than 

the two variants previously described. A second GPI locus has also 

been described in mice (Peterson and Wang, 1978). Its postulated 

function is regulatory; the two variants appear to control the 

expression of the structural, GPI-1 locus. 

In red deer, the three banding patterns observed for GPI-1 

suggest similar variation of a dimeric protein (Figure 8). However, 

the banding pattern of GPI is more complex than that of IDH-2 or 

SOD-1, with three-banded homozygotes and the heterozygote having five 

or more bands. Ryman et al. (1977) found the same pattern in 

Scandinavian moose. After further testing (Ryman et al., 1980), they 

suggested that the multiple bands were the product of two overlapping 



GIP 41 YOMPS  

ii Ii 	 I 

401 	 40 1 
1  M 	 44MM d 

Figure B. Polymorphic pattern for Glucose phosphate isomerase. 
Two loci, GPI-1 polymorphic; GPI-2 monomorphic. Three 
banded homozygotes (fast allele, second from left) and 
six banded heterozygotes. 
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Figure 9. Phosphoglucomutage has two loci. PGM-1 is monomeric, 
with a single slow variant shown. PGM-2, the upper bands, 
shows no variation on this gel. 
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autosomal loci and their secondary isozymes - the rare allele of the 

GPI-1 locus having the same migration rate as the allele of 

monomorphic GPI-2 locus. 

The three banding patterns found in Scottish red deer conform 

with this interpretation, as the rare homozygote (GPI-1 160/160) has 

been found in a few individuals and the frequencies from all 

localities concur with Hardy-Weinberg expectations (Chapter 4). 

Whether the triple-banded homozygotes of GPI are due to two 

overlapping loci for the buffer used to analyse the enzyme, or are 

solely secondary enzyme products, it does appear that the variation is 

genetic, with two segregating alleles, GPI-1 (100) and GPI-1 (160). 

Rare allelic variants of GPI (also called PHI, phosphohexose 

isomerase) have been found in several surveys of human populations 

around the world (Detter et al., 1968; Blake et al., 1971; Omoto and 

Blake, 1972). Their occurrence in particular ethnic groups (Fitch et 

al., 1968) and especially pedigree studies on two Japanese families 

(Nakashima, et al., 1973) leave little doubt that GPI variation is 

inherited, and the latter work suggests that rare alleles may be 

associated with GPI deficiency and problems of glucose metabolism. 

3.5Phosphoglucomutase, PGM 	(E.C. 2.7.5.1) 

Phosphoglucomutase is widely distributed in mammalian tissues and 

plays an important role in carbohydrate metabolism, catalyzing the 

transfer of a phosphate group between the 1- and 6- positions of 

glucose (Spencer, et al., 1964). The genetic interpretation of PGM 

variation has been complicated by two factors: different degrees of 

enzymatic activity at each locus in different tissues (McAlpine, et 

al., 1970), and the occurrence of secondary isozymes depending on the 
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age and preservation of the samples (Fisher and Harris, 1972; Green, 

1981). 

Three PGM loci have been documented in humans, and each show 

allelic variation (Harris and Hopkinson, 1976). In mice, two PGM loci 

have been reported: PGM-1 has at least four alleles, while two alleles 

have been found at PGM-2 (Selander et al., 1969; Shows et al., 1969; 

Chapman et al., 1971). 

In red deer, two PGM loci were scorable, and both showed 

variation in Scotland. As PGM has a monomeric quaternary structure 

(the amino acids which constitute the enzyme are in a single 

polypeptide chain), there was no intermediate band in heterozygotes 

(Figure 9). The banding patterns at each locus suggest the 

segregation of two alleles, PGM-1 (100, 90) and PGM-2 (100, 70) 

respectively. 

Selander et al. (1969) found the same pattern of variation in the 

European house mouse (Ntis musculus), with variants occurring at both 

loci in one subspecies (M.rn. musculus) and not in another 

(N.m. domesticus). In deer species, PGM variation has been observed 

in moose (Ryman et al., 1980) and in white-tailed deer (Manlove et 

al., 1976; Ramsey et al., 1979). In white-tails, variation which was 

detected but could not be scored at a second, more anodal locus 

(possibly homologous to red deer PGM- 2) has recently been confirmed 

(Smith et al., in press). 

3.6 Malic enzyme, ME 	 (E.C. 1.1.1.40) 

Malic enzyme, variable in several Scottish localities, catalyzes 

the carboxylation of malate to pyruvate (Ochoa et al., 1947) as well 

as oxalate to pyruvate (Ochoa et al., 1948), again in the presence of 
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NADP. Both mitochondrial and cytoplasmic forms have been identified 

(Frankel, 1971), though only the cytoplasmic enzyme was analysed in 

red deer, as the mitochondrial form was not present in muscle and 

faintly visible in kidney. 

Three ME banding patterns were found in red deer: two 

homozygotes, (ME 100/100) and (ME 125/125), and the presumed 

heterozygote (ME 100/125) with a wide, blurred intermediate band. 

Shows and Ruddle (1968), working with fresh mouse samples, found five 

intermediate bands in heterozygotes indicating a tetrameric quaternary 

structure for cytoplasmic malic enzyme. The same group (Shows et al.. 

1970) also confirmed the inheritance of these variants with progeny 

testing on wild type and inbred strains. Variation at both ME loci 

has been found in macaques (Cohen and Omenn, 1972), with a blurred 

intermediate band for heterozygotes similar to that found in red deer. 

As with IDFI, there is an NAD dependent malic enzyme, though it 

goes by another name, malate dehydrogenase (MDII). Gyllensten et al., 

(1982) have found an 14DH-1 variant in one of sixteen red deer 

populations sampled in continental Europe; no polymorphism at either 

MDII locus was observed at Scottish localities. 

Several factors make interpreting ME banding patterns difficult. 

The presence of ME-2 often depends on how well tissues are homogenized 

and the cell walls broken down. The tetrameric structure of the 

enzyme often causes the tightly packed multiple bands of heterozygotes 

to appear as a blur. Finally, because trace impurities of NAD are 

often present in commercially available NADP, malate dehydrogenase 

sometimes stains on gel slices intended to detect ME, obscuring some 

of the malic enzyme bands. 
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3.7 Mannose phosphate isornerase, M1'I 	(E.C. 5.3.1.8) 

Polymorphism for the enzyme mannose phosphate isomerase was found 

in all wapiti populations, though not in red deer. MPI catalyzes the 

reversible conversion of mannose-6-phosphate to fructose-6-phosphate 

(Slein, 1955), requiring the same substrate and giving the same 

reaction products as GPI. Gottschalk (1947) first suggested that two 

unique enzymes produced the common intermediate fructose-6-phosphate. 

Gray and Noltmann (1968) eventually isolated and measured MPI. 

Unlike GPI, mannose phosphate isomerase is a monomer (McMorris et 

al., 1973). Thus, presumed heterozygotes in wapiti (MPI 100/160) are 

double-banded and homozygotes have single bands (Figure 10). There is 

the possibility of a third, faster migrating band; however, its rarity 

and overlap with a secondary isozyme of the common allele (NFl 100) 

will require further work - perhaps with a large number of fresh 

samples which have fewer secondary isozymes - to confirm whether it is 

an additional allele. Only the two readily identifiable alleles were 

included in the gene frequency analysis. 

Moose and mice both show a similar slow variant for NFl (Ryman et 

al., 1980; Nichols et al., 1973). In white-tailed deer three alleles 

have been described (Smith, et al., in press); the fastest allele was 

most common and the slower alleles had mobilities similar to those of 

moose and wapiti. 

3.8 Peptidase, PEP-2 	(E.C. 3.4.11) 

Lewis and Harris (1967) have described five peptidase enzymes 

which rely on different peptides for their reaction, and Rapley et 

al., (1971) have added two others. One of these peptidase enzymes was 

analysed in red deer and wapiti, using the tripeptide leucyl- 
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Figure 10. Mannose phosphate isomerase is a monomeric locus 
with-single banded homozygotes and two banded heterozygotes. 
Three heterozygotes are shown, one in the center and two at 
the right. IDH-2 variation is shown above on the same gel. 

Figure 11. Peptidase (leu-gly-glycine). Monomeric, with two 
banded homozygotes with three banded heterozygotes 
(PEP-2 100/82) two of which are shown on the gel. 
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glycyl-glycine as the substrate. This peptidase is equivilent to PEP-

2 described in mice (the notation adopted here for deer), and PEP-B in 

man. 

PEP-2 polymorphism was found only in wapiti populations and not 

in red deer. Two alleles were detected in wapiti (PEP-2 100, 80). As 

the enzyme is a monomer (Rapley et al., 1971), there was no 

intermediate band observed in heterozygotes. PEP-B 2-1, pictured by 

Lewis and Harris (1967), closely resembles the banding pattern found 

in wapiti heterozygotes (Figure 11). Polymorphism for the same 

peptidase has also been found in moose (Ryman et al., 1980) and white-

tailed deer (Smith et al., in press), both species also having two 

alleles. 

Six peptidase-B alleles have been detected in humans (Harris et 

al., 1974), most of them rare. Testing the offspring of a mother with 

the common allele and a father homozygous for one of the rare alleles, 

Rapley et al. (1971) found all six children were heterozygous, 

demonstrating the inheritance of the enzyme. 
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Chapter 4 

ELECTROPHORETIC VARIATION IN RED DEER 

4.1 Scottish populations, 1979 

Of the six enzymatic loci which were polymorphic in Scotland, 

three (IDH-2, ME and SOD-1) showed variation at all localities sampled 

in 1979. GPI-1 was polymorphic at every site sampled that year except 

Caithness, and as the overall gene frequency of the less common 

allele, GPI-1 (160), was 7.1% (p = 0.929), its absence was likely the 

result of small sample size (n = 20) that year. When the sample size 

was slightly increased in 1980 (n = 29), the fast allele was found in 

Caithness, though not at Loch Laggan or Strathmashie. At both PGM 

loci, the alternate alleles were quite rare, only exceeding 5% at one 

locality and absent in several. 

The genotypes of all polymorphic loci were first tested for 

agreement with Hardy-Weinberg expectations at each sampling locality. 

This is demonstrated below for two enzymes in the Rhum population, 

with differing results. 

RESULTS FROM DATA SET: GPI RHUM 

GPI-1 (100/100) (100/125) (125/125) Banding pattern mobilities 
35 	 5 	 1 	Observed genotype numbers 

	

0.854 	0.122 	0.024 	Genotype frequencies 
0.915 	0.085 	Gene frequencies 

	

34.299 	6.402 	0.299 	Expected genotype numbers 

	

0.014 	0.307 	1.646 	Deviations from expected 

THE HARDY-WEINBERG CONST = 1.9673 

WITH 1 DEGREE OF FREEDOM (cOR.cOEFF.=3.84) 

IN HARDY-WEINBERG EQUILIBRIUM. 



RESULTS FROM DATA SET: IDH RHUM 

IDH-2 (100/100) (100/125) (125/125) 
12 	13 	16 	N=41 

	

0.293 	0.317 	0.391 	P + H + Q = 1 
0.451 	0.549 	p + q = 1 

	

8.348 	20.305 	12.348 	p2N, 2pqN, q 2 N 

	

1.598 	2.628 	1.080 	(Obs.- Exp.) 2  /Expected 

THE HARDY-WEINBERG CONST = 5.3065 

WITH 1 DEGREE OF FREEDOM (cOR.c0EFF.=3.84) d.f. = 3 - I - 1 = 1 

NOT IN EQUILIBRIUM. 

Table 8. Genotype and gene frequencies for two loci of Rhum deer 
sampled 1979. 

The IDH-2 locus on Rhum was the only case of a polymorphic locus 

significantly different from Hardy-Weinberg proportions in local 

populations (Table 9). By contrast, when the six localities were 

pooled and the Scottish population tested as a single unit, two of the 

six polymorphic loci (ME and SOD) were not in Hardy-Weinberg 

equilibrium, and the difference at two others (GPI-1 and IDH-2) 

approached significance - in all cases due to a deficiency of 

heterozygotes. The results suggested that the Scottish red deer 

population was genetically subdivided, though it remained to be more 

rigorously tested. 

To determine whether the decrease in overall heterozygosity was a 

result of local gene frequency differences, contingency tables for 

polymorphic loci were constructed from the gene frequencies and sample 

sizes at each locality (Appendix 4A). These test the hypothesis that 

the differences in gene frequency at the six sites do not 

significantly differ from proportions of six random samples drawn from 

the overall population. When, in the case of uncommon alleles, there 

were several expected values less than five, the populations with 

11 VA 



similar frequencies were pooled and the degrees of freedom reduced 

accordingly (Sokal and Rohlf, 1969). The results, again in Table 9, 

show significant heterogeneity at four of the six polymorphic loci. 

LOCATION IDH-2 GPI-1 SOD-1 PGM-i PGM-2 ME 

Caithness 0.475 1.0 0.857 0.875 0.950 0.971 
(n = 20) 1.839 0.0 1.037 0.408 0.055 0.016 

Ross-shire 0.177 0.968 0.903 0.984 0.984 0.813 
(n = 	31) 1.442 0.344 0.034 0.008 0.008 1.031 

Loch Laggan 0.132 0.882 0.658 1.0 1.0 0.816 
(n = 	21) 1.815 0.302 0.062 0.0 0.0 0.016 

Strathmashie 0.423 0.962 0.929 1.0 1.0 0.917 
(n = 	14) 0.585 0.021 0.083 0.0 0.0 0.099 

Rhum 0.451 0.915 0.890 1.0 0.988 0.988 
(n = 	41) 5.307* 1.967 0.654 0.0 0.006 0.006 

Perthshire 0.286 0.893 0.857 1.0 1.0 0.760 
(n = 28) 0.070 1.797 2.361Y 0.0 0.0 0.377 

Pooled 
populations 3.391 3.061 5.138 0.061 0.026 5.390 
(d.f.) 	p < (1)ns (1)ns (1)* (1)ns (1)ns (1)* 

Heterogeneity 24.20 5.51 13.04 27.02 5.06 23.06 
(d.f.) 	p < (5)*** (3)ns (5)* (1)*** (i)ns (5)*** 

H 	 0.438 	0.119 	0.256 	0.046 	0.026 	0.215 
Ft 
St 	

8.3% 	3.1% 	6.1% 	9.1% 	2.4% 	6.8% 

Table 9. Gene frequencies for polymorphic loci and beneath each, 
deviations from Hardy-Weinberg expectations. Asterisks denote 

	

level of significance,* p<0.05, ** p<O.Ol, 	p<0.001. 
Y after a chi-square value denotes that Yates' correction for 
continuity was used. Below the line are the heterogeneity and 
fixation index of each locus. 

In calculating the cumulative heterogeneity, chi-square values 

from independent sources may be added together and the degrees of 

freedom corresponding to that sum are equal to the sum of the degrees 

of freedom of the independent comparisons (Sokal and Rohif, 1969). 

Using this procedure (which assumes the enzyme loci chosen randomly 

are independent), the heterogeneity over all polymorphic loci was 

9 

W. 



highly significant (X2=97.89 d.f.=25 p<0.001). The same Scottish 

populations were also compared using a log likelihood ratio (C) test 

(Sokal and Rholf, 1969), with the same highly significant result 

(shown in Table 11, next section). 

To get a better understanding of the genetic structure of the 

subdivided Scottish deer population, the fixation index (F5) was 

calculated at each polymorphic locus. The fixation index technically 

measures the amount of differentiation in the subpopulations relative 

to a hypothetical group of homozygous subpopulations (i.e. fixed at p 

or q), but with the same average gene frequency as measured from the 

actual subpopulations. 

For the 1979 Scottish data, PGM-1 and IDH-2 showed the greatest 

divergence between localities. In the former case this was due to the 

higher gene frequency of the alternate allele (PCM-1 90) at Caithness, 

and in the latter it was due to the wide range of frequencies between 

0.177 and 0.475 across localities. The range in gene frequencies at 

the IDH-2 locus is greater still in red deer over a wider geographic 

area, as will be shown in the next section. The predominant allele 

throughout Scotland (IDH-2 125) is less common in most deer 

populations sampled in continental Europe. For consistency in later 

comparison, the gene frequencies of IDH-2 in Table 9 are for the 

alternate allele (p+ q = 1), and therefore are less than 0.5. 

Finally in Table 9, it is worth noting that the significance of the 

contingency chi-square results for each locus reflect the magnitude of 

the fixation indices immediately below them. Workman and Niswander 

(1970) have pointed out that the two statistics are closely related. 

The summary statistics (Table 10) enable comparison of the 

Scottish red deer population with the gene frequency data from 
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populations of other organisms. Because no more than two alleles were 

observed at any locus in red deer or wapiti populations, the 

relationship between the percentage of polymorphic loci (P) and the 

number of alleles per locus (A) is constant: A = 1 + P. Therefore, 

only P is listed in later comparisons. The two measures of 

heterozygosity are also related: H is measured over all loci, 

regardless of variation, H5  is the subpopulation heterozygosity based 

only on the polymorphic loci. .H is retained here for the calculation 

of the fixation index (Ft). 

LOCATION 	. p A H% Hs 

Caithness 0.147 1.147 3.3 0.1856 

Ross—shire 0.176 1.176 2.6 0.1492 

Loch Laggan 0.118 1.118 3.5 0.1979 

Strathmashie 0.118 1.118. 2.5 0.1409 

Rhum 0.147 1.147 2.6 0.1490 

Perthshire 0.118 1.118 3.6 0.2018 

0.137 3.0 H 1.137 0.1707 
0.1833' HS 

6.87% Ft 
st 

Table 10. 	Summary statistics for 1979 Scottish red deer analysis. 
Ht is the average of the total heterozygosity for polymorphic 
loci in the previous table. 

In a review of electrophoretic studies where fourteen or more 

loci were analysed, Nevo (1978) found - that, among 46 mammal species, H 

and P values averaged 3.6% and 0.147 respectively. The Scottish red 

deer tested in 1979 (H = 3.0% and P = 0.137) thus fall close to the 

average for other mammals. Baccus et al. (1983) have recently 

extended the comparison to 53 mammals, adding several large grazing 

species not previously considered (including bison and several deer 

species), and yielding averages (H = 3.3% and P = 0.128) which even 
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more closely approximate the enzymatic variation found initially for 

red deer in Scotland. 

It must be added, however, that these results may be 

underestimates of the average genetic variation in Scottish red deer 

as blood proteins were not tested. In humans, blood proteins are more 

polymorphic on the average than enzymes (Harris, 1966), though this 

may not be the case in animals generally (Nei, 1975). Anecdotal 

evidence, from blood in muscle and liver tissues, suggest that there 

are at least two haemoglobin banding patterns in these red deer, and 

brief experiments when blood samples were available confirmed that the 

three transferrin alleles found in Scandinavian red deer populations 

(Gyllensten et al., 1980) also occurred in sera of Scottish deer. 

The relative genetic divergence (F st = 0.068) between the six 

Scottish deer populations was moderate by Wright's standards (Hartl, 

1980), whereas the absolute genetic divergence (Dm = .0027) was quite 

low. In other words, 6.8% of the genetic variation detected was due 

to differences between localities, and the remainder was due to 

differences between individuals within localities. This is similar to 

the relative divergence between the three major human races (Negroid, 

Caucasoid, and Mongoloid) as measured over 35 loci (Nei, 1975). When 

both polymorphic and monomorphic loci are considered, these red deer 

varied over only 0.27% of their genome as surveyed 

electrophoretically. Although this difference seems very small, it is 

comparable to that found by Ryman et al. (1980) in Scandinavian moose 

populations (Dm = 0.0021), and it is greater than that found in red 

deer from elsewhere, as shown in the next section. 

4.2 Comparison with other northern-European red deer populations 
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In collaboration with population geneticists in Sweden, the 1979 

Scottish samples were compared with 441 red deer from continental 

Europe. The Continental samples came from sixteen localities in three 

countries (detailed in Appendix 4B), though they were predominantly 

from Sweden. 

Deer from different localities were analysed on the same starch 

gels, so the common migration rates of alleles for all loci could be 

confirmed. (The comparison was undertaken while I was a visiting 

researcher at the University of Stockholm in the summer of 1980). 

Representatives of four presumed subspecies were analysed, as well as 

Swedish red deer thought to be of hybrid stock as a result of 

reintroductions. The red deer were compared at all 34 enzyme loci 

analysed in the Scottish samples. Transferrin was also tested in the 

Scandinavian deer, but as blood samples were not available from 

Scotland or Germany, this protein locus was not included in the direct 

comparison between subspecies. 

Neither PGM locus, polymorphic in Scotland, showed arty variation 

in the continental deer samples. GPI was also monomorphic except for 

one enclosed population in Sweden, and it was subsequently learned 

that the Eriksberg enclosure was partly stocked with red deer from 
o 

Britain (Gyllensten et al., in prep.) Among loci which were 

polymorphic throughout Scotland, all were monomorphic in some of the 

sixteen continental populations: SOD-1 was fixed at eleven localities, 

ME at five, and IDFI-2 at three. The only locus which showed variation 

on the continent but not in Scotland was MDH-2, which was polymorphic 

at just one site, the German national park Bayerische Wald. 

As was the case with the Scottish sampling sites, the gene 
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frequencies from the vast majority of continental localities fell 

within Hardy-Weinberg expectations. Overall, only 6% of 66 genotype 

tests on polymorphic loci significantly differed from the binomial 

distribution. 

Gene frequency heterogeneity was evaluated hierarchically using a 

log likelihood (G) test (Sokal and Rohif, 1969). Comparisons were 

made between localities within each subspecies, between native Swedish 

red deer and presumed hybrids, and between the four presumed 

subspecies (Table 11). The cumulative results (summed over all 

polymorphic loci, as done previously in the chi-square tests) showed 

significant heterogeneity between localities within the Cervus elaphus 

elaphus subspecies, as was found within C.e. scoticus. The Swedish 

hybrid populations showed the same highly significant result, as might 

be expected for animals recently established from different sources. 

In contrast, there was no difference between the two sites sampled 

from Norway Me. atlanticus), and only one C.e. germanicus was 

analysed. 
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LEVEL OF COMPARISON 
Cervus elaphus 

scoticus 	elaphus 	atlanticus Hybrids 	Subspecies 

d.f. 	5 	 6 	 1 	5 	3 

GPI-1 10.35 0 0 55.65*** 41.02*** 

IDH-2 25.45*** 31.22*** 0 15.69* 464.89*** 

ME 26.88*** 8.70 0 19.34** 52.99*** 

MDH-2 0 0 0 0 23.95*** 

PGM-1 18.84** 0 0 0 12.76** 

PGM-2 5.83 0 0 0 8.49* 

SOD-1 12.35* 39.06*** 0 61.06*** 49.38*** 

Transferrin - 23.39*** 0 22.28*** - 

d.f. 30 24 25 21 
G 100.20***  0 174.14*** 53.48*** 

Table 11. Log likelihood ratio tests for gene frequency heterogeneity. 
Degrees of freedom depend on number of groups compared 
(d.f.= n -1 ), where n is the number of populations in the 
first four columns and number of subspecies in the final column. 
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When all C.e. elaphus localities were treated as a single 

population (sites A-G) and compared with all presumed hybrid 

populations (sites H-M) the difference in gene frequencies was again 

highly significant. Lastly, when the localities for each presumed 

subspecies were pooled, the heterogeneity between subspecies was also 

highly significant. As can be seen in the body of Table 10, in each 

case where cumulative heterogeneity was found, the frequencies of the 

majority of polymorphic loci were also significantly different. These 

results indicate that the genetic subdivision detected in Scottish red 

deer characterizes these continental deer populations as well. 

As with the gene frequency heterogeneity, the relative genetic 

diversity could also be treated hierarchically (Nei, 1975; 

Chakraborty, 1982). As Nei points out, his measure of relative gene 

diversity (Ge) is the same as Wright's fixation index (F5t), when 

there are only two alleles at a polymorphic locus (Nei, 1975, p.151), 

as was the case with these red deer. The G 5  results, detailed for 

each polymorphic locus in Table 12, cumulatively approximate the 

source of the gene frequency variation: 73% between individuals within 

sampling localities, 5% between localities within subspecies, and 22% 

between subspecies. 

This suggests that, although deer from local populations are not 

homogenous, these differences are outweighed over larger geographic 

areas. The absolute genetic divergence between the European red deer 

sampled remains low (Dm = 0.0028), as expected with only one 

additional polymorphic locus at one locality. However, the genetic 

subdivjson found between local red deer populations appears to be 

magnified between subspecies. 
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RELATIVE GENE DIVERSITY (G5) 

Between Between Within 
subspecies populations populations 

GPI-1 3.3 3.0 93.7 
IDH-2 39.1 4.6 56.2 
ME 2.4 5.3 92.3 
PGM-1 1.2 9.0 89.8 
PGM-2 0.7 2.4 96.9 
SOD-1 4.5 6.0 89.5 

Mean+SE 	21.9 ± 11.1 	4.9 ± 0.3 	73.2 ± 10.9 

ABSOLUTE GENE DIVERSITY (Din) 

0.006+0.006 	0.001+0.001 	0.020+0.010 

Total (Din) = 0.028+0.016 

Table 12. Absolute and relative gene diversity (Nei, 1975) at 
different taxonomic levels in European red deer. Possible 
hybrid populations or those with very small sample sizes 
(n < 10) were not included. 
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The relationship between subspecies was further explored by 

constructing both dendrograms and phylogenetic trees. Both procedures 

employ the pair group method, combining sites where the gene 

frequencies are most similiar, subsequently treating them as a single 

unit, and repeating the process until all sampling sites or groups of 

sites are incorporated. The dendrograms were constructed by 

calculating a genetic distance (Nei,, 1972) from the gene frequencies 

of all loci, and clustering localities by the unweighted pair group 

method (UPGMA, Sneath and Sokal, 1973). The phylogenetic trees used a 

Continuous maximum liklihood program (CONTML, Felsenstein, 1981) on 

polymorphic loci. 

Examples of both types of topologies are shown in Appendix 4C. 

Although the structure of the diagrams differ and there are some 

differences in the relationship between particular localities, the 

general pattern of divergence is the same by both methods. C.e. 

elaphus populations cluster together, as do those of g.e. scoticus. 

The major branching is between these subspecies in both diagrams, with 

C.e. germanicus more closely associated with the former and 

C.e. atlanticus with the latter. The hybrid populations were more 

scattered, though most were positioned to C.e. elaphus. An exception 

to this in both the dendrogram and tree was Ankarsrum (site H). As 

this population was established from just three individuals, and only 

eleven deer were analysed, the pattern of relationship is more likely 

the result of a founder effect or sampling error than common descent 

with Scottish red deer. In order to eliminate the confounding effects 

of possible hybrid populations and those from which very few samples 

were obtained (n < 10) another dendrogram was constructed (Figure 12) 

eliminating these localities, though yielding the same general 

pattern. 
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Figure 12. Dendrogram of genetic distance (Nei, 1972) of three European red deer subspecies. 



The robustness of these topologies was tested in two different 

ways. 	Phylogefletic trees of this type are affected by the order in 

which populations were considered, so the gene frequencies from each 

site were altered until the tree with the highest log-normal 

likelihood came up repeatedly. The dendrogram was tested by 

selectively removing each polymorphic from the algorithm. Though each 

locus caused minor changes in the relationship of particular 

locations, only the removal of IDH-2 altered the major branching 

pattern between elaphus on the one side and scoticus and atlanticus on 

the other. 

The reason for this is evident from the gene frequency data. At 

101-1-2, the slow allele predominates in all C.e. elaphus populations 

and is fixed in two of them, whereas the fast allele (IDH-2 125) 

predominates in all C.e. scoticus and is fixed for the two of 

C.e. atlanticus. Although rare alleles at other loci (GPI-1, PGM-1, 

PGM-2) contribute to the bifurcation between these groups, IDH-2 alone 

is diagnostic of this genetic differentiation. 

TAXONOMIC UNIT 	 Groups 	Loci 	P 	H 

Red deer subspecies 	4 	 34 	0.077 	2.2 

Red deer populations 
C. e. elaphus 7 35 0.082 2.3 
C.e. scoticus 6 34 0.138 3.0 
C.e. atlanticus 2 35 0.000 0.0 
C.e. germanicus 1 34 0.088 3.5 
C.e. hybrids 6 35 0.081 2.8 

Scandanavian moose 18 23 0.094 2.0 

TThite-tailed deer 8 20 0.358 7.4 

Fallow deer 25 0.000 0.0 

Table 13. General indices of genetic variation comparing different 
taxonomic units of red deer and other cervid species. 

The final comparison between subspecies was of the general 
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indices of variability (Table 13). Although the deer populations from 

Scotland and Norway were most closely related of the subspecies, the 

percentage of polymorphic loci and average heterozygosity were lowest 

in C.e. atlanticus (P = 0, H = 0), while those of C.e. scoticus 

(P = 0.013, H = 3.07.) were the highest. The average heterozygcsity of 

Scottish red deer populations was significantly higher than the other 

populations (Mann-Whitney U- test, p < 0.005). Compared with the 

other two deer species in which several wild populations have been 

surveyed electrophoretically, European red deer showed an intermediate 

level of genetic variability. 

4.3 Retesting red deer from Scotland, 1980 

To check whether the genetic subdivison found initially among 

Scottish red deer was repeatable, as well as to try to test how that 

variation might be maintained, the electrophoretic survey was extended 

to thirteen populations (404 individuals) in 1980. Also, a visiting 

biologist brought 80 red deer samples from the Netherlands 

Me. hippelaphus) and these were analysed with the Scottish samples 

on the same starch gels. 

In tripling the sample size, finite resources meant reducing 

accordingly the number of loci analysed. This was especially 

necessary as five of the six polymorphic loci in Scotland were 

dependent on the cofactor NADP for their enzymatic reaction, which is 

much more costly than NAD. Because part of the research project's 

purpose was to determine if electrophoretic analysis of culled red 

deer was applicable to management problems, where funds are often 

limited, it was considered appropriate to find out how much 

information could be gained by focusing on relatively few polymorphic 



enzymes. Information on quantitative characters was collected for the 

deer sampled in 1980, and their correlation with isozyme variation is 

discussed in Chapter 5. 

Eleven loci were tested in 1980, though the concentration was on 

three loci where polymorphism had been previously detected: IDH- 2, 

GPI-]. and SOD-1. The SOD-1 locus was scorable on the cathode portion 

of IDH stained gels. None of the other eight loci showed variation 

even with the increased sample size. The gene frequencies of 

polymorphic loci are listed in Table 14. Significant heterogeneity 

between populations was again observed, at all three polymorphic loci 

as well as for their cumulative effect. The relative genetic 

diversity (F 	11.4%) increased with more populations sampled, 

despite the reduction in the number of polymporphic loci analysed. 
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LOCATION IDH-2 GPI-1 SOD-1 H% 

1. 	Caithness 2 	19 12 28 1 0 26 7 0 6.1 27 
0.348 0.983 0.894 

2. 	Strathconon 0 	8 32 36 1 0 17 	19 4 6.0 27 
0.100 0.986 0.662 

3. Fairburn 0 	7 12 16 3 0 19 0 0 4.0 18 
0.184 0.921 1.0 

4. Glen Fiddich 3 	7 16 25 1 0 15 6 5 7.6 27 
0.250 0.981 0.692 

5. 	Strathmashie 2 	14 19 34 0 0 17 	13 	5 7.5 18 
(F.C.) 0.257 1.0 0.671 

6. Loch Laggan 3 	9 27 38 0 0 17 20 2 6.7 27 
0.192 1.0 0.692 

7. Rhum 6 24 	8 30 9 0 38 1 0 6.6 27 
0.474 0.885 0.987 

8. Glen Tannar 1 	11 	11 20 3 0 12 8 3 8.6 27 
0.283 0.935 0.696 

9. 	Strathyre 5 35 24 59 3 0 41 	19 4 7.6 27 
(F,(,.) 0.352 0.976 0.789 

10. Glen Artney 1 	4 	5 9 	1 0 10 0 0 4.7 18 
0.300 0.950 1.0 

11. 	Glen Esk 1 	7 	16 23 	1 0 12 7 5 8.8 27 
0.375 0.979 0.646 

12. Newton 3 	19 5 32 5 0 36 0 0 5.5 18 
Stewart 	(F.C.)0.608 0.932 1.0 

13. 	Clattering- 8 5 3 11 	4 	1 16 0 0 6.9 18 
shaws (F.C.) 0.656 0.812 1.0 

Chi-square 
contingency test 87.36 32.91 100.07 220.34 

d.f. 	p< (12)* (12)** (12)*** (12)*** 

Fixation index H 	0,2444 
0.4468 0.0964 0.2884 H 	0.2772 

F 11.7% 5.5% 15.8% Total F 	1.1.83% St St 

Table 14. 	The observed genotype and gene frequencies for three 
polymorphic loci sampled in 1980. Generi indices of variation 
are at the right. 	Heterogeneity test (X ) and fixation indices 
(Fr) 	are at the bottom. 
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The fewer number of loci tested did inflate the other indices of 

genetic variability, and these cannot be considered typical of 

Scottish red deer. Both the relative and absolute genetic diversity 

of the Scottish populations was higher than that of those from the 

Netherlands. As with other Continental red deer populations tested 

the previous year, GPI-1 was polymorphic only in Scottish populations. 

The common allele at IDH-2, however, was the same in most Dutch and 

Scottish populations, so there was not the clear division as found 

between Scotland and Sweden the previous year. Moreover, the two 

Scottish populations sampled in Galloway had the same common allele as 

previously found in Sweden. 

Interestingly, both measures of genetic distance indicated that 

the two Galloway localities were most closely related to deer from 

Rhum. All three of these present populations were the result of 

nineteenth century reintroductions, with some of the animals coming 

from English deer parks. Phylogenetic trees were constructed from the 

1980 results (Appendix 4D). Because they are based on so few 

polymorphic loci, however, the confidence intervals of estimated 

branch lengths overlap, so these relationships must be considered 

tentative. 

M. 



Chapter 5 

ENZYME POLYMORPHISM, ADAPTATION and QUANTITATIVE TRAITS 

Variations, however slight and from whatever cause 
proceeding, if they be in any way profitable to a species, 
in their infinitely complex relations to other organic beings 
and to their physical conditions of life, will tend to the 
preservation of such individuals, and will generally be 
inherited by their offspring. 

Charles Darwin 
On the Origin of Species 

5.1 Neutrality vs. selection hypotheses 

In addition to testing whether the genetic subdivision found in 

red deer populations was repeatable, in the second year of the study 

an attempt was made to determine whether natural selection was acting 

on the electrophoretic variants detected. Generally, random genetic 

drift and inbreeding promote subpopulation divergence, whereas 

migration thwarts it. Selection, as mentioned earlier, could act in 

either direction, and thus cannot be ignored in a study which uses 

genetic variation to characterize population structure. 

Though evidence of selection on multi—genic phenotypic traits 

abounds in natural populations, the case for selection on specific 

electrophoretic variants is much less compelling. For this reason, 

combined with the ever—increasing amount of protein variation detected 

(Jones, 1980), it has been hypothesized that isozymes are selectively 

neutral (Kimura, 1968). Because the problem is crucial for the 

application of electrophoresis to evolutionary questions, it has been 

vigorously debated (Lewontin, 1974 and Ayala, 1976 offer discussions) 

and much less successfully tested; Harti (1980) describes several 



approaches yielding ambiguous results. 

The greatest obstacle to testing the selection and neutrality 

hypotheses is in associating fitness values to characteristics which 

can be recognized and quantified in Individuals or populations. The 

problem is that fitness is a phenotypic measurement, albeit a complex 

one, yet it is the genetic variation for fitness that is important on 

an evolutionary scale. On the other hand, while there is considerable 

understanding of the genetic behaviour of allozymes, their phenotypic 

effects remain largely unknown. Falconer (1983, p.301) addressed this 

problem by delineating the components of fitness and outlining how 

genetic correlations with those components could be tested. Two 

approaches were used in this study to test selection in red deer, the 

first focusing on populations and habitat types, the second on 

correlation with quantitative characters of individuals. 

5.2 Local adaptation 

If selection is acting at the molecular level and particular 

isozymes are contributing to local adaptation, this should be most 

readily observable where environments are most different. The 

converse of this idea is testable, by grouping similar environments. 

If such a grouping accounts for more of the between-location. 

variation, then again selection is implicated. The difficulty arises 

in choosing which environments are most similar, in the "infinitely 

complex relations" between red deer and habitat. 

The primary criterion used in grouping Scottish red deer habitats 

was tree cover. Red deer are primarily an animal of the forest edge: 

Staines (1976) found that shelter was a limiting factor in the winter 

movement of deer in the northest Highlands, and Grace and Easterbee 
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(1979) calculated that there would be nearly twice the heatloss in 

deer on open hillside than in woodland. To test whether this factor 

affected isozyme frequencies, wherever possible open hill habitats 

were sampled with neighboring forested land in 1980 (Figure 2, Chapter 

2). 

Nested gene diversity analysis (Charkraborty et al., 1982) was 

employed to evaluate levels of organization hierarchically, as used 

previously to compare red deer populations across northern Europe. In 

this case, however, habitat type was substituted for geographic or 

taxonomic units. The relative genetic diversities (G5) at each level 

are listed below, with standard errors in parentheses. 

INDIVIDUALS 
	

LOCALITIES 
	

HABITATS 
87.9% (0.9%) 
	

10.6% (1.6%) 
	

1.5% (0.9%) 
RANDOM 

87.9% (0.9%) 
	

11.0% (1.4%) 
	

1.1% (0.6%) 

The results show that open hill vs. forested habitats account for 

very little of the gene frequency differences between localities; the 

difference between using this environmental criterion and grouping the 

localities randomly into two classes was insignificant. Thus isozyme 

variants for GPI-1, IDH-2 or SOD-1 in red deer do not appear selected 

for open hill or forested habitats. 

When localities were grouped by latitude and longitude, more of 

the relative genetic diversity was accounted for: 6.8% (±1.5%) and 

7.0% (±0.6%) respectively. However, these tests were confounded by 

sampling paired localities for the previous habitat selection 

analysis. Since the paired localities were classed in the same 

latitude and longitude, the results could as readily be attributable 

to inbreeding or genetic drift as the environmental effects they 

sought to measure. This drawback seems inherent to field studies 



attempting directly to measure selective effects in diverse 

environments; in trying to isolate one effect, others will usually be 

biased if the same localities are used. The focus of the selection 

experiments was therefore shifted to individual deer, testing the 

correlation of genotypes with characters which might be causally 

related to reproductive success. 

5.3 Correlation with quantitative characters 

To test the neutrality hypothesis for electrophoretic variants in 

individuals, data on the sex, age and gralloch weight was collected 

for deer sampled in 1980, as well as the number of antler points in 

stags and the lactation status of hinds. Their genotypes at GPI-1, 

IDH-2 and SOD-1 were recorded, and the percentage of heterozygotes in 

each individual was subsequently calculated. Individual 

heterozygosity has been associated with components of fitness, from 

aggressive and exploratory behaviour in mice (Garten, 1976, 1977) to 

growth rates in oysters (Singh and Zouros, 1978) and productivity in 

deer (Johns et al., 1977). Correlations between the quantitative 

characters and genotypes or heterozygosity were evaluated by two-way 

analysis of variance, using the least squares program developed by 

Harvey (1960) and modified in 1980 by the Animal Breeding Research 

Organization. 

The relationship between the quantitative traits recorded and 

components of fitness is not known in most large non-domestic 

vertebrates, but since the pioneering ethological work of Darling 

(1937), red deer in Britain are among the most extensively studied of 

large mammals, and fortunately some of the most recent research 

focuses on lifetime reproductive success (Clutton-Brock et al., 1982, 
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pp. 152-156). Unfortunately, the data obtained for these carcasses, 

though related to immediate fitness, are but a few of many factors 

that contribute to lifetime reproductive success. 

In Glen Feshie hinds, for example, Mitchell and Brown (1974) 

found that fertility was primarily related to carcass weight and age, 

and secondarily to lactation status - having a calf at foot reduced 

the probability of breeding. It is generally, recognized that hinds 

living on farms or in forests have higher pregnancy rates than those 

on the open hill. Fecundity, a hind's ability to both conceive and 

carry a calf to parturition, is however only one element of 

reproductive success. On the Isle of Rhuni, calf survival accounted 

for 75.1% of the variance in hind reproductive success, whereas 

fecundity accounted for only 20.7% (Clutton-Brocketal., 1982, p.83). 

Calf survival may be more important on Rhum, where both weather 

conditions are harsh and deer density is high in the absence of 

culling, but the results point out the complexities incurred in 

measuring lifetime reproductive success indirectly. 

Nonetheless, heterozygosity did not significantly affect either 

hind weight (F=2.05 d.f.=3 p>O.l) or lactation status (F=0.95 d.f.=3 

nor did any enzyme locus (detailed analysis of variance 

results are compiled in Appendix 5). The factors which did affect 

weight and lactation status were location and age. Both the linear 

and quadratic regression of age were highly significant (p<O.00I), 

indicating that lighter weight and lower fecundity characterize both 

young and old hinds. This supports the observations both on Rhum and 

Glen Feshie, where few hinds bred successfully before age 3 or after 

age 10. 

In stags, holding hinds by fighting or intimidating opponents is 



crucial to reproductive success, and this in turn is related to body 

weight and condition (Clutton—Brock et al., 1982). However, as harem—

holders eat seldom during the rut, probably due to both vigilance and 

hormonal changes (Kay, 1978), stags can lose up to 20% of their body 

weight during that time (Mitchell et al., 1976). Because the shooting 

season overlaps with the rut, stag weight thus would not be an 

adequate reflection of breeding success without the date the animal 

was shot. Noting this limitation of the data, weight was not 

significantly correlated with either particular isozymes or overall 

heterozygosity. As with hinds, the effect of age and locality on stag 

weight was highly significant (p<0.001). The relationship between 

weight and age for both hinds and stags is shown graphically in 

Figure 13. 

The only significant effect found for overall heterozygosity was 

on the number of antler points (F=3.34 d.f.=2 p<0.05). The most 

heterozygous stags had the most antler points (independent of age and 

location), though stags with no heterozygotes had more points than 

those which were heterozygous at only one locus, and the standard 

errors of all three classes overlapped (detailed in Appendix 5). 

Antler point number, though probably a more crude gauge of 

reproductive success, is not subject to the bias of weight loss on 

successful rutters (stags which lose part of their antlers also tend 

to lose fights). Also, antler points are a selective criteria for 

many stalkers who prefer to let some stags with "good heads" live and 

breed, while shooting hummels, switches and animals which are "going 

back tt , i.e. losing points with advanced age. 

The only significant single locus effect found was on age. As 

none of these deer died of natural causes, age should more properly be 
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Figure 13. Regression of weight on age in stags (above) and hinds 
sampled throughout Scotland in 1981. 
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called survivorship - the ability to survive successive culls. There 

was a significant relationship between SOD-1 genotypes and 

survivorship (F=4.55 d.f.=2 p<0.02) and again it was the heterozygotes 

at SOD-1 which, of the three genotypes, lived the longest. As 

mentioned in Chapter 3, the function of this enzyme is to remove 

oxygen—free radicals from the blood, and the accumulation of these 

radicals has been associated with aging (Comfort, 1978, P.  276). 

However, it is unknown how being a heterozygous SOD helped deer of 

both sexes to survive longer. The effect of locality on survivorship 

was highly significant (F=9.36 d.f.=15 p<0.001); deer on Forestry 

Commission sites were shot an average of two years earlier than those 

at the other nine localities. 

There is little evidence of correlation between the isozyme 

variants scored in the lab and the quantitative traits measured by 

stalkers in these red deer. As it was heterozygotes which were 

favoured in the two cases when significant effects were found, these 

could as likely be the result of heterosis - particularly as 

population subdivision has been demonstrated— as any selective benefit 

conferred by these isozymes. 

In contrast to the isozymes, locality had a highly significant 

effect on the quantitative characters, as predicted by Mutch et al. 

(1976): "When the animal we see on the hill is so much a fortuitous 

product of its particular part of the range, selection by appearance 

(phenotype) cannot be very effective." 

This idea was pursued by repeating some of the analyses, treating 

locality as a fixed rather than a random effect so that differences in 

quantitative characters at particular locations could be assessed. 

Looking at weight independent of age, for example, Rhum stags were the 

71 



lightest of those tested (28.6 ±5.1 lbs. below the mean) and Glen 

Tanner stags the heaviest (33.4 ±8 . 1  lbs above the mean). The culling 

season bias should, if anything, favour heavier Rhum stags as most 

were shot before or early in the rut; the author accompanied the 

stalkers during the latter stages of the cull. Rhum is among the most 

exposed of the localities tested and Glen Tanner still has a large 

contiguous pinewood; moreover, Glen Esk, adjoining Glen Tanner to the 

south, but lacking cover, had stags averaging 4.6 ( ± 7.3 lbs.) below 

the mean. Although tree cover does not exert selective pressure on 

the isozymes, it does appear to affect stag body weights. 

Since locality had such a significant effect on phenotypic 

characters, and differences in gene frequency across localities had 

been found, the final analysis of variance was of locality on 

heterozygosity. However, neither location (F1.04 d.f.=15 p>0.4) nor 

sex (F0.87 d.f.1 p>0.3) had a significant effect on heterozygosity 

in the 1980 red deer samples. 

Old 



Chapter 

ELECTROPHORETIC VARIATION IN WAPITI 

6.1 Why wapiti were tested 

In contrast to the considerable electrophoretic variation 

detected in most European red deer populations, the general indices of 

genetic variation were low in the only published isozyme study of 

North American wapiti (P = 0.041, H = 1.2%, Cameron and Vyse, 1978). 

As mentioned earlier, it is generally recognized that red deer and 

wapiti are closely related, if not the same, species. 

Assuming that the electrophoretic methods were similar in both 

studies (and there was good reason to expect the latter as I learned 

electrophoresis from Drs. Cameron and Vyse), several hypotheses might 

explain the low level of variation previously reported. 

The wapiti samples could have denatured, either before they were 

collected or before electrophoretic analysis, and allelic variants 

for less stable enzymes could have gone undetected. 

North American wapiti could have generally lower electrophoretic 

variation than red deer, perhaps as a result of a founder effect in 

the Pleistocene radiation of wapiti over the Bering Land Bridge. If 

the low variation was consistent for wapiti throughout their North 

American range, the genetic distance between red deer and wapiti 

would likely be larger than that between Cervus elaphus 

subspecies in Europe. 

The Yellowstone population which was sampled might not typify 

North American wapiti. Just as the more than 100 red deer sampled 
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in Norway were monomorphic at all 34 enzyme loci analysed, there 

could be significant genetic differences between wapiti populations, 

particularly those from different geographic areas or representing 

different recognized subspecies. 

To test these hypotheses, 253 wapiti samples were collected from 

thirteen localities in the northwest United States. They were run on 

the same electrophoretic gels with 66 red deer from Scotland, to 

confirm the common migration rates of shared alleles. Fifty of the 

Scottish sample were collected from six localities in 1981, within a 

month of travelling to the United States. The remaining sixteen, 

which had been collected and analysed in 1980, were included to test 

the effects of extended freezing on isozyme denaturation. 

The denaturation experiment was enhanced by the United States 

Department of Agriculture Animal and Plant Health Inspection Service. 

The red deer samples were held in the freezer compartment of.a 

conventional refrigerator (approximately 0 °C) for four months until a 

ban on meat imports from the U.K. to the U.S. was lifted in January, 

1982. Of 48 trials (16 samples at three polymorphic loci), three 

samples scored differently and five were unscorable after sixteen 

months. Mercapto ethenol added to the homogenates improved the 

resolution of some samples. Banding patterns from kidney homogenates 

had better resolution after storage than those from muscle, 

particularly at I.DH-2 and SOD-1, probably due to higher concentration 

of the enzymes. The percentage of unscorable samples for each of the 

three groups are listed below. 
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Scorable 
	

Unscorable 	% 
1980 Red deer 	43 
	

5 	 10.4 
1981 Red deer 	145 
	

5 	 3.3 
1981 Wapiti 	654 
	

15 	 2.2 

Table 15. Percentage of samples which were unscorable at three 
enzyme loci (GPI-1, IDR-2, SOD-1) after eighteen, five and 
three months of freezing. 

Though the trend was for a higher percentage of scorable loci in 

more recently collected samples, neither the difference between red 

deer of different years (X 2=3.80 d.f.1 p>O.OS) nor between red deer 

2 
and wapiti (X =3.77 d.f.=i p>O.OS) was significant. There was a 

significant difference between the 1980 red deer and the wapiti 

samples (X 2=11.03 d.f.1 p<0.001). Unless the Yellowstone wapiti 

sample denatured prior to freezing as a result of carcass overheating, 

it seems unlikely that the low heterozygosity found in that wapiti 

population was an experimental artifact. 

6.2 Heterogeneity in Northwest wapiti populations, 1981 

Wapiti were analysed for most of the same enzyme systems tested 

previously in red deer. Six loci were omitted (EST-1,2,3, MDH—I,2 and 

ME) as the banding patterns could not be read clearly in many samples. 

In contrast to the single polymorphic locus found previously in 

Yellowstone wapiti, 5 of the 28 enzyme loci which were analysed from 

Northwest populations showed allelic variation (Table 16). Two of 

these, MPI and PEP-2, were not polymorphic in the red deer run on the 

same starch gels. 

Mannose phosphate isomerase (I) was the only locus which was 

polymorphic at all wapiti localities. IDH-2 was polymorphic at all 

sites except the Olympic Peninsula, Washington, whereas SOD-1 was 

monomorphic at Mt. St. Helens, Washington and two of the four Idaho 
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localities. For both PGM-1 and PEP-2, wapiti sampling sites west of 

the Cascade Mountains generally showed variation and those east of the 

mountains did not. The Cascade crest has historically been considered 

the boundary between the Rocky Mountain and Roosevelt subspecies of 

wapiti, though the Boone and Crocket Club, which registers trophy 

animals, has recently made its boundary Interstate Highway 5, west of 

the mountains. 
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LOCATION LOCUS 
IDH-2 NFl PEP-2 PGM-1 SOD-1 

Yakima, WA 0.083 0.929 1.0 1.0 0.071 
(6) (7) (7) (7) (7) 

Mt. Ranier, WA 0.031 0.967 1.0 / 	0.969 0.036 
 (14) (12) (16)  

Mt. St Helens, WA 0.180 0.839 0.912 0.964 1.0 
(25) (28)  (28)  

Olympic, WA 0.0 0.913 0.905 0.813 0.383 
(24) (23) (21) (24) (24) 

Pacific, WA 0.192 0.808 0.958 0.917 0.269 
(13) (13) (12) (12) (13) 

N. Ukiah, OR 0.250 0.917 1.0 1.0 0.250 
(6) (6) (6) (6) (6) 

S. Ukiah, OR 0.250 0.938 0.900 0.944 0.100 
(10) (8) (10) (10) (10) 

Region 4, ID 0.100 0.855 1.0 1.0 0.0 
(30) (31) (30) (30) (31) 

Region 6, ID 0.040 0.847 1.0 1.0 0.048Y 
(62) (62) (62) (61) (62) 

Region 7, ID 0.029 0.843 1.0 1.0 0.014 
(34) (35) (35) (34) (35) 

Region 9, ID 0.167 0.944 1.0 	1.0 0.0 
(9) (9) (9) (9) (9) 

Chi-square 30.24 7.76 29.74 	49.51 81.66 
contingency test 

(d.f.) (10)*** (10)ns  (10)*** (10)*** (10)** 

Log-likelihood 29.67 8.99 27.42 	39.00 71.75 
ratio test 

7.2% 2.6% 6.0% 	7.4% 16.8% 

Table 16. 	Gene frequencies for five polymorphic loci in Northwest 
wapiti. 	Number of samples tested at locus are in parentheses for 
each population. Ft  is the relative genetic diversity for each 
locus. 	Asterisks denote level of significance. 

As with the Scottish populations the previous year, no wapiti 

loci significantly deviated from Hardy-Weinberg expectations. Also as 

in red deer, the gene frequency data indicated highly significant 

heterogeneity between populations - at four of the five polymorphic 
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loci (Table 16) and cumulatively (X 2 198.91 d.f.=50 p0.001). The 

same level of significance was found using a log-likelihood ratio test 

(G=176.83 d.f.=50 p<0.001). Ten percent of the variation detected is 

due to differences between rather than within populations (H 5  = 0.132 

Ht  = 0.147 F st = 10.2%). 

The general indices of genetic variation (Table 17) suggest the 

source of differences between this wapiti survey and the previous 

study. The number of polymorphic loci varied between two (Idaho 

Regions 4 and 9) and five (Pacific County, Washington). The 

percentage of polymorphic loci was significantly higher in Washington 

localities than those from Idaho (Mann-Whitney U test, nl=5, n2=4 

U = 19 0.025< p <0.05). NPI and IDH-2 were the only loci which were 

consistently polymorphic throughout Idaho. Cameron and Vyse (1978) 

found variation at the former in Yellowstone wapiti, and did not, test 

the latter. Recent work by Baccus et al. (1983) confirm wapiti NPI 

variation in Montana, which neighbors Idaho and Yellowstone. 
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LOCATION P H(%) H 

Yakima, WA 0.107 1,49 0.083 
Mt. Ranier, WA 0.143 1.12 0.051 
Mt. 	St. Helens, WA 0.143 2.84 0.159 
Pacific County, WA 0.178 4.45 0.249 
Olympic Peninsula, WA 0.143 3.91 0.222 

North Ukiah, OR 0.107 3.22 0.180 
South Ukiah, OR 0.178 3.42 0.191 

Region 4, ID 0.071 1.53 0.086 
Region 6, ID 0.107 1.53 0.085 
Region 7, ID 0.107 1.25 0.070 
Region 9, ID 0.071 1.37 0.077 

0.124 	2.34 	0.132 H 
0.147 H5  
10.22% Ft 

st 

Table 17. The percentage of polymorphic loci (P) and average hetero- 
zygosity including and excluding monomorphic loci (H and I -i5 ) 
for thirteen wapiti locations in three states. F 	is the 
relative genetic diversity for the five polymorph!c loci. 

Comparison of average heterozygosity (H) between populations is 

more instructive, considering the history of western Washington 

wapiti. The difference in H values is not significant between 

Washington and Idaho (Mann-Whitney U = 5 p  >0.1) or in other 

comparisons between states. However, wapiti from two of the 

Washington localities sampled have grown out of translocations from 

Yellowstone, as have the Idaho wapiti (Bryant and Maser, 1982). If 

Mt. Ranier and Yakima wapiti are grouped with those from Idaho and 

compared with the remaining western Washington sites, the difference 

in heterozygosity is significant (Mann-Whitney U = 18 p  <0.025). 

Thus, it appears that the low average heterozygosity which Cameron and 

Vyse reported in the Yellowstone National Park population, though not 

typical of all wapiti, still characterizes animals introduced from 

Yellowstone fifty years ago. 

Why do the Mt. Ranier wapiti not also have a lower percentage of 
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polymorphic loci than other populations around Puget Sound? The lower 

heterozygosity at Mt. Ranier is not the result of a few polymorphic 

loci, but of rare alleles at the loci which are polymorphic (see Table 

16). There were recorded sightings of wapiti prior to the 

translocation from Yellowstone (National Park Research Biologist James 

Agee, pers. corn.). Perhaps the current Mt. Ranier population has been 

built from those introduced animals and the small number of endemic 

wapiti which remained, with the consequent loss of heterozygosity. 

6.3 Comparison with red deer 

Just as two of the isozyme variants found in 1981 were unique to 

wapiti, one (GPI-1) was polymorphic only in red deer. At PGM-1 rare 

alleles occurred in both red deer and wapiti populations, whereas 

PGM-2 was polymorphic in neither. The fast allele of isocitrate 

dehydrogenase (IDH-2, 125) was the more common in the Scottish red 

deer populations (p = 0.656) as it had been in the two previous years. 

This allele was even more predominant in the Northwest wapiti- 

(p = 0.883); it was fixed on the Olympic Peninsula, as it had been in 

Norway. 

Superoxide dismutase (SOD-1) was the most diagnostic locus in 

differentiating wapiti and red deer. At this cathodal locus (in acid 

citrate buffer), the slower (SOD-1, -100) allele predominated in red 

deer populations (p = 0.875) as it had in all European red deer 

populations tested previously. The faster allele (SOD-1, -225) was 

much more common in all Northwest wapiti populations, with the gene 

frequency of nearly ninety percent (p = 0.102). Sampling fewer 

animals, Baccus et al. (1983) found a comparable though even more 

dramatic difference at SOD-2: one allele was fixed for wapiti, the 
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other for red deer. The contribution of each locus to the difference 

between red deer and wapiti is shown Is the hierarchical gene 

diversity analysis (Chakraborty et al., 1982) below. 

LOCUS INDIVIDUALS LOCATIONS RED DEER/WAPITI 
IDH-2 0.849 0.081 0.070 
NFl 0.937 0.026 0.037 
SOD-1 0.405 0.065 0.530 
PCN-1 0.899 0.086 0.014 
PEP-2 0.931 0.059 0.009 
GPI-1 0.198 0.650 0.152 

62.7% 	 12.7% 	 24.6% 

	

0.627 (0.134) 	0.127 (0.068) 	0.246 (0.136) 

	

0.026 (0.012) 	0.005 (0.003) 	0.010 (0.008) 

	

Table 18. Relative gene diversity (G 	evaluated at each poly- 
morphic locus. Below the line, t?te total relative and absolute 
gene diversities, with standard errors in parentheses. 

As is apparent from the table, SOD-1 is responsible for most of 

the divergence detected between red deer and wapiti. Although NFl, 

PEP-2 and GPI-1 variants characterize one group or the other, because 

the alternate alleles generally have low frequencies, they contribute 

much less than SOD-1 which has different predominant alleles for the 

two groups. 

The overall relative genetic diversity changed markedly when red 

deer and wapiti were considered together. The amount of variation 

attributable to populations was only 8.5% in wapiti - similar to that 

found in previous years in Scottish red deer. When red deer and 

wapiti were tested together, the source of non- individual variation 

totals 37.3%. Nearly twice as much of this variation is due to 

differences between red deer and wapiti (24.6%), than due to 

differences between populations within the two groups (12.7%), though 

the large standard errors decrease the significance of this gap. The 

absolute genetic diversity increases only slightly when red deer are 



added (from 0.026 to 0.041), with only one more polymorphic locus at 

two of five red deer localities. 

The number of red deer samples brought for direct comparison was 

quite small, and virtually all stags, a necessary consequence of 

leaving in the middle of the shooting season to organize wapiti sample 

collection in November of the same year. Moreover, the reintroduced 

Galloway red deer made up a larger proportion of the 1981 samples than 

previously, resulting in a much higher relative gene diversity between 

Scottish populations (G 5t = 27.9%) than in the surveys of the two 

previous years. To check whether the division between red deer and 

wapiti still held with a more representative Scottish red deer sample, 

the gene diversity analysis was repeated substituting the 1979 

Scottish population gene frequencies at the same 28 loci. 

INDIVIDUALS 
	

LOCATIONS 
	

RED DEER/WAPITI 
67.9% 
	

5.8% 
	

26.3% 
0.679 (0.15) 
	

0.058 (0.01) 
	

0.263 (0.15) 
0.026 (0.01) 
	

0.002 (0.001) 
	

0.010 (0.009) 

Table 19. Relative and absolute gene diversity combining Scottish 
red deer (1979) and Northwest wapiti (1981) samples. 

The pattern of gene diversity attributable to different levels of 

organization thus persist when more Scottish red deer, mostly from 

different localities, are analysed with wapiti. The total absolute 

gene diversity changed only slightly (reduced from 0.041 to 0.038) is 

still only a small percentage of the genome tested. Looking at the 

relative genetic diversity, the proportion of variation due to 

individual differences increased (from 62.7% to 67.9%) as did that 

between wapiti and red deer (from 24.6% to 26.3%). The reduction in 

variation between locations (from 12.7% to 5.8%) is not unexpected, as 

the reintroduced Galloway population was not sampled in 1979. It 



results in a significant division between the variation attributable 

to local populations and that due to red deer—wapiti differences. 

The division between red deer and wapiti is also reflected in the 

dendrogram of Nei's (1972) genetic distances (Figure 14).  The 

distance separating these groups is an order of magnitude greaterthan 

that separating localities within Scottish red deer or Northwest 

wapiti. Moreover, this bifurcation is derived from the total wapiti 

and red deer sample (n = 253 and 153 respectively), so is less subject 

to sampling error than locality relationships. An even larger 

divergence was determined independently (Baccus et al., 1983) running 

Swedish red deer and Montana wapiti on the same gels. 

Several of the relationships between wapiti localities in the 

dendrogram tempt speculation. Mt. Ranier and Yakima, the most closely 

related of localities, were both sites of translocations from 

Yellowstone National Park, which was also the source of much of the 

present Idaho population. The Mt. St. Helens population may also have 

received Yellowstone wapiti, and the instability of the mountain may 

have resulted in several periods of immigration. It is estimated that 

2000 wapiti were killed in the 1980 eruption, and a population on the 

devastated northeast side of the volcano has already become 

re—established (personal observation, August 1982; Evelyn Merrill, 

pers. corn.). Pacific County, WA. borders Oregon, though is not 

particularly close to the Ukiah, OR. sampling localities. Finally, 

the Olympic Peninsula wapiti, which are the most genetically distinct 

of the localities sampled, is the type locality of the Roosevelt 

wapiti subspecies. There are no recorded transplants to the 

peninsula, and immigration from the east is blocked by Puget Sound. 

However, any conclusions about these relationships must be 
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Figure 14. Dendrogram of genetic distance (Nei, 1972) between populations of Scottish red deer 
and North American wapiti. 



tempered by looking at the red deer section of the topology, and 

recalling that the Strathmashle (n = 14) divergence was not repeatable 

in 1980 when the sample size was increased and the number of 

polymorphic loci tested was reduced. Sample sizes from several of the 

Northwest locations are the same or less than that from Strathrnashie 

(Table 16). The goal of the 1981 wapiti study was to survey as many 

different populations as possible rather than many individuals in a 

single population, as had been done previously. Conclusions about the 

genetic relationship between localities in such close proximity (both 

in geographic and genetic distance) will require substantiation, 

analysing more individuals at more ioci, perhaps over several years. 

The final gene diversity analysis incorporated continental 

European red deer populations as well, and the levels of organization 

were treated first geographically and then according to current 

taxonomy. In the geographic comparison, all localities with a sample 

size greater than ten, which had been tested electrophoretically at 

the same 28 loci, were included. In the taxonomic comparison, the 

same minimum sample size was imposed, and animals of known hybrid 

origin were omitted. One exception was allowed in both cases: 

although there were only nine samples from Nationalpark Bayerische 

Wald, because it was the only locality from Germany and the only 

representative of the Cervus elaphus germanicus subspecies it was 

included. 



INDIVIDUALS 
625 

54.8% (0.09) 
0.022 

INDIVIDUALS 
551 

54.2% (0.09) 
0.022  

LOCALITIES 
28 

6.0% (0.01) 
0.002 

POPULATIONS 
23 

3.5% (0.003) 
0.001  

STATES, COUNTRIES 
7 

9.5% (0.06) 
0.003 

SUBSPECIES 
6 

11.6% (0.07) 
0.005  

CONTINENTS 
2 

29.7% (0.14) 
0.012 

RED DEER/WAPITI 
2 

30.6% (0.14) 
0.013 

Table 20. Genetic diversity of European red deer and North American 
wapiti over 28 enzyme loci (8 polymorphic). Beneath the number 
comprising each level of organization is the relative genic 
diversity with the associated standard error in parentheses: The 
bottom row is the absolute diversity - including monomorphic loci. 

Whether broken down geographically or taxonomically, the 

proportion of variation attributable to different levels of 

organization is very similar. The addition of continental deer 

further increased the percentage of variation accounted for by the red 

deer/wapiti division. Present subspecies account for slightly more of 

the variation than do states and countries, but the comparison is not 

a direct one, as hybrids were not included in the taxonomic 

comparison. If the red deer/wapiti distinction is removed in the 

taxonomic analysis (i.e. Cervus canadensis is discarded, as is the 

trend) all of that variation falls to the next lower level of 

organization, and 42.3% (+ 0.09) is attributable to subspecies. 

The absolute genetic diversity in both geographic and taxonomic 

breakdowns totals 0.041 (i- 0.02). This small absolute figure, less 

than 5% of the genome, is understandable when considering that 20 of 

the 28 loci tested were monomorphic, and half of the polymorphic loci 

(DH-1, PGM-1, PGM-2, PEP-2) had quite rare allelic variants, and only 

at a few of the localities. Although the red deer and wapiti which 

were sampled do have largely a common genome (at least as it was 

surveyed here by starch gel electrophoresis), the variation which was 

detected does substantiate the relationship between different groups. 



This is reflected in the final phylogenetic tree, which used the 

same data as the taxonomic gene diversity analysis (Figure 15 ). The 

major separation is between red deer and wapiti. Within the wapiti 

line, the Olympic Peninsula population is most divergent. The 

Scottish red deer all group together as do the Swedish red deer. The 

deer from Norway are the most distant branch of the Scottish line, as 

is the German locality from Sweden. The confidence intervals for most 

of the branch lengths are large and are a result of the limited number 

of polymorphic loci used to compare such closely related animals. 
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Figure 15a. An unrooted phylogenetic tree of European red deer and 
North American wapiti constructed according to Felsenstein (1981). 



Between And Length Approx. Confidence Limits 

Pacific,WA 22 0.00000 (-0.00687, 0.01120) 
22 28 0.01108 (-0.00990 31  0.04526) 
28 Olympic,WA 0.02391 (-0.00051, 0.06371) 
28 31 0.06694 ( 	 0.01248, 0.15571) 
31 Strmash,Sc 0.00000 (-0.00735, 0.01199) 
31 34 0.01099 ( 	 0.00249, 0.02484) 
34 37 0.00901 ( 	 0.00195, 0.02053) 
37 36 0.00000 (-0.00580 )  0.00945) 
36 Caith,Sc 0.02608 ( 	 0.00702, 0.05714) 
36 Ross,SC 0.00000 (-0.00444 )  0.00724) 
37 Hitra,NG 0.04417 ( 	 0.01188, 0.09679) 
34 30 0.00069 (-0.00343, 0.00741) 
30 Perth,Sc 0.00000 (-0.00196, 0.00319) 
30 29 0.00438 ( 	 0.00065, 0.01044) 
29 32 0.00060 (-0.00126, 0.00363) 
32 Gallowy,SC 0.00166 ( 	 0.00011, 0.00419) 
32 Rhum,SC 0.00060 (-0.00052, 0.00241) 
29 38 0.00230 ( 	 0.00001, 0.00603) 
38 Lochlag,SC 0.00000 (-0.00204, 0.00332) 
38 33 0.02438 ( 	 0.00614, 0.05409) 
33 35 0.00104 (-0.00060, 0.00372) 
35 Chrsthf,SW 0.00000 (-0.00126, 0.00206) 
35 40 0.00690 ( 	 0.00136, 0.01593) 
40 Bayer,Gm 0.02862 ( 	 0.00724, 0.06347) 
40 39 0.00069 (-0.00388 )  0.00814) 
39 Hunnbrg,SW 0.02357 ( 	 0.00634, 0.05164) 
39 Skane,SW 0.00000 (-0.00361, 0.00589) 
33 Reserve,SW 0.00126 (-0.00039, 0.00395) 
22 23 0.01398 ( 	 0.00376, 0.03063) 
23 25 0.01745 ( 	 0.00470, 0.03824) 
25 St.Hel,WA 0.00000 (-0.00641, 0.01045) 
25 24 0.01765 ( 	 0.00475, 0.03867) 
24 27 0.00463 ( 	 0.00125, 0.01015) 
27 Region7,l1) 0.00000 (-0.00079, 0.00129) 
27 26 0.00110 ( 	 0.00007, 0.00279) 
26 Region6,ID 0.00033 (-0.00064, 0.00189) 
26 Ranier,14A 0.00978 ( 	 0.00245, 0.02174) 
24 Region4,ID 0.00000 (-0.00268, 0.00437) 
23 S.Ukiah,OR 0.00000 (-0.00567, 0.00925) 

Figure 15b. Branch lengths and confidence limits for the phylogenetic 
tree in Figure iSa. 741 trees examined, Ln Likelihood = 278.76 
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Chapter 7 

DISCUSSION 

Not only does extensive variation take place among 
individual deer exposed to the same conditions of life,. 
but persistent differences in the condition of life 
become registered in the deer of a district by variation 
on some determinate line. 

A.G. Cameron, 1923 
The Wild Red Deer of Scotland 

The results in this isozyme study of red deer and wapiti present 

a contrasting picture. On the one hand the polymorphic loci, six 

found in Scottish red deer and five in Northwest wapiti, indicated 

highly significant differences between locations. As the sampling 

area was expanded, the relative amount of variation which was due to 

differences between individuals dwindled, and that attributable to 

groups - locations, subspecies, etc. - steadily grew. When the final 

analysis incorporated both red deer and wapiti, the relative gene 

diversity of populations nearly equalled that of individuals. These 

results suggest not a homogenous gene pool, but many small 

populations, with subtle but distinct differences which are 

significant. 

On the other hand, the absolute gene diversity, which is measured 

from the total random sample of electrophoretic loci, both polymorphic 

and monomorphic, remains small regardless from how far afield the 

samples come. (Recall one of the original reasons for comparing 

Scottish red deer and North American wapiti was that they represent 

not only morphOlogical extremes but also the geographical extremes in 



the present distribution of these animals.) The genetic distances 

which include all loci also show that red deer and wapiti are very 

similar, sharing at least 95% of the genome as sampled at this random 

selection of enzyme loci. With both red deer and wapiti, the general 

indices of electrophoretic variation are typical of mammals, but 

mammals have lower values than all other animal and plant groups 

(Nevo, 1978). Moreover, significant differences in average 

heterozygosity were found between red deer populations, and again 

between wapiti populations. 

These have been perplexing results for one who began by simply 

watching wapiti (then called elk), strongly suspecting that there were 

differences between herds, and wanting to try and measure those 

differences systematically so that management might be more sensitive 

to local changes in populations. Enthusiasm at finding variation that 

could be counted and predicted, genotypes at polymorphic loci in 

Hardy-Weinberg equilibrium, was replaced with reflection on how this 

variation related to phenotypes, whole animals, and the behaviour of 

deer populations. The major points previously mentioned are discussed 

in turn, though not in sections as in earlier chapters, as the attempt 

here is to integrate them. 

The evidence for genetic subdivision in red deer and wapiti came 

from three different though related sources. First, the observed 

genotype frequencies at most localities did not significantly deviate 

from Hardy-Weinberg proportions at any enzyme locus. In three years 

of sampling, there was only one locus in one population (SOD-1, Isle 

of Rhum, 1979) which did not meet Hardy- Weinberg prediction. When 

populations were combined, however, the two most variable loci (SOD-1 

and IDH-2) were no longer in binomial proportions, in each case due to 
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a paucity of heterozygotes. Considering the strong evidence in other 

mammals that the alleles of these enzyme loci are inherited, the 

simplest explanation for the relative reduction in heterozygotes as 

the sampling area widened was that the deer sampled did not comprise a 

panmictic population, i.e. a common gene pool. 

Secondly, the gene frequencies of polymorphic loci differed 

significantly across populations. Whether analysed using chi-square 

contingency tables or log-likelihood ratio tests, the frequencies for 

the same allele were significantly different at the majority of 

polymorphic loci. As these tests are additive, the cumulative results 

indicated highly significant heterogeneity between populations across 

all loci where variation was detected. 

Thirdly, the relative measures of population subdivision 

suggested by Wright (1943) and Nei (1975) showed that an increasing 

amount of the variation observed was due to differences between 

populations as the animals sampled came from further afield. The 

lowest level of genetic differentiation recorded in Scottish red deer 

(F5t = 6.8%) is similar to that separating human races (F st  = 6.9%, 

Harti, 1980, p.163). The relative genetic diversity increased to 22% 

when continental red deer were included in the analysis, and to 46% 

when wapiti and the same red deer were analysed together. 

Qualitatively, Hartl (1980, p.164) considered Fst  values of 5-15% as 

moderate differentiation, and averages above 25% "very great 

differentiation." By this relative standard, the differentiation 

between red deer and wapiti is substantial. 

Finding genetic subdivision in red deer and wapiti is not 

surprising. If inherited as well as environmental "conditions of 

life" are implied in the epigram which opens this chapter, Cameron had 



essentially the same idea sixty years ago. Darling (1937, p.104-106) 

was more explicit in including social structure among the critical 

factors which have shaped red deer. With the advent of protein 

electrophoresis, McDougall and Lowe (1968) and Bergmann (1976) each 

found transferrin gene frequency differences in different red deer 

populations. Moreover, enzyme polymorphism - at some of the same loci 

which were polymorphic in this study - has been used to demonstrate 

genetic subdivision in other deer species in both North America and 

Europe (Manlove et al., 1976; Ryman et al., 1980). 

Is the substantial genetic differentiation found between red deer 

and wapiti a sufficient argument for considering them to be separate 

species? It cannot be, for relative measures of population subdivision 

ignore the monomorphic loci (as they do not contribute to the 

between-population variance) and the polymorphic loci alone are not a 

random sample of the genome, one of the premises for using 

electrophoretic data to objectively compare different organisms 

(Lewontin, 1974). The absolute gene diversity, which takes all loci 

into account, is quite low for red deer and wapiti (Dm= 4.1%+2.3). In 

other words, although nearly half of the variation detected was due to 

differences between populations (or higher levels of organizations 

when the data was analysed hierarchically), all of the variation 

occurred in less than five percent of the genome sampled. 

The reason for the low absolute gene diversity is apparent from a 

review of the gene frequency data. No fixed allele differences neatly 

divided the populations into two groups; SOD-1 came closest with the 

fast allele averaging 90% in wapiti and 12% in red deer. Only 7 of 28 

loci sampled in all animals were polymorphic, and only 3 of these were 

polymorphic is both red deer and wapiti. Finally, only two alleles 
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were identified at each polymorphic locus, and the alternate allele 

was often rare with a frequency of less than 10% in most populations. 

The genetic distance (Nei, 1972) separating red deer and wapiti 

is also low (D = 0.025), though four times the distance separating the 

most distinct Scottish red deer populations (D= 0.006) or those of 

Northwest wapiti (D = .005). Despite the small absolute distances, 

the pattern of branching in both dendrograms and phylogenetic trees 

was consistent with previous morphometric relationships. In addition 

to the division between red deer and wapiti (Lydekker, 1898; Cameron, 

1923), the grouping of red deer from Scotland with those from Norway 

concurs with the findings of Ahien (1965) and Gyllensten et 

al. (1982). The division of Roosevelt and Rocky Mountain wapiti has 

also long been recognized (Bailey, 1935; Murie, 1951). However, the 

confidence intervals for the branch lengths of thee trees are large, 

and would be reduced in such closely related animals by substantially 

increasing the number of loci (Nei and Roychoudhury, 1974). 

The genetic distance separating red deer and wapiti is less than 

that which divides European and North American moose (D= = 0.060, 

Reuterwall, 1980), which are considered conspecific. It is more than 

an order of magnitude less than the average genetic distance 

separating "operational taxonomic units" of other large grazing 

mammals (D = 0.849, Baccus et al., 1983, use this term to avoid the 

issue of what constitutes a species). Though about a third fewer loci 

were analysed in these cases, they were a random selection. By this 

comparative criterion then, red deer and wapiti should be considered a 

single species, Cervus elaphus L. 

It should be added that the close relationship found between red 

deer and wapiti is not a result of an abnormally low level of 
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electrophoretic variation. At the outset of this study, the 

prevailing view was that large animals - particularly mammals - 

exhibited much lower levels of intraspecific genetic variation than 

other organisms, as measured in electrophoretic surveys. This view is 

supported by low heterozygosities recorded in several species: for 

example, two seal species (Mirounga angustirostris, M. leonina) 

(McDermid et al., 1972; Bonnel and Selander, 1974) at least two 

primate species (Pan troglodytes, Macaque fuscata) (King and Wilson, 

1975; Nozawa et al., 1975) alligators (Alligator mississippiensis) 

(Gartside et al., 1977) and polar bears (Thalarctos maritinus) 

(Allendorf et al., 1979), The first enzyme studies on two deer 

species, moose (Ryman et al., 1977; Wilhelmson et al., 1978) and 

wapiti (Cameron and Vyse, 1978) were. also in accord with this view. 

Several theories have developed to explain the differences in the 

amount of isozyme variation in different animal groups. Selander and 

Kaufman (1973) applied Levins' (1968) theory of environmental 

amplitude: smaller, less mobile animals should experience habitats as 

alternatives and thus be more locally adapted. Sampling across 

habitats, different alleles would be favoured. In contrast, large 

mobile animals, which would encounter diverse habitats, would 

experience such differences as fine-grained, and thus be more 

generally adapted and have fewer allelic differences. Selection 

acting on enzyme variants is fundamental to their argument, as the 

authors state in concluding: "at least a major proportion of the 

allozymic variation in natural populations is maintained by natural 

selection." King and Wilson (1975) present another view, that 

variation at structural loci, such as enzyme and blood proteins , may be 

irrelevant to speciation. Finding that the genetic distance 

separating chimpanzees and humans is very small whether measured by 
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electrophoretic, immunological or amino acid sequencing techniques, 

they maintained that organismic and molecular evolution are 

independent, and that only a few substitutions in regulatory genes 

could account for large adaptive differences. 

The variation found in this study of red deer and wapiti did not 

support the first contention that large mammals are more monomorphic 

at electrophoretic loci than either small mammals or other 

vertebrates. The general indices of genetic variation for Scottish 

red deer (H = 3.0%, P =0.137) and Northwest wapiti (H =2.5%, 

P = 0.124) fall close to average levels which Nevo (1978) and Baccus 

et al. (1983) found for mammals. These are conservative estimates, as 

the unweighted averages of all populations. If the red deer and 

wapiti sampled are treated as a single unit, the percentage of 

polymorphic loci (P = 0.178) is higher than the average found in 

mammals (P = 0.147, Nevo, 1978; P =0.128, Baccus et al., 1983), 

However, such lumping seemed unwarranted, favouring populations where 

more samples were collected. As analysis of enzyme proteins in culled 

animals has increased the number of large mammals for which these 

indices have been measured - particularly species that are not 

endangered - the environmental amplitude theory has been undermined 

(Rymanetal., 1980; Baccus et al., 1983). Furthermore, no evidence 

was found in Scottish red deer to sustain the foundation of the 

hypothesis, that selection is acting on electrophoretic loci. 

The variation found in red deer and wapiti is consistent with the 

second hypothesis, that speciation events are decoupled from gene 

frequency differences at structural loci, and are instead due to 

changes in regulatory genes and/or chromosomal rearrangements 

(Goldschmidt, 1940; Britten and Davidson, 1969, 1971; Wilson 
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1977). Typical of mammals, red deer and wapiti do have lower 

heterozygosities than other animal classes. Speciation will be 

related to reproductive isolation, whether it is the cause or effect 

of genetic subdivision. Perhaps the slower, more regular clocks of 

structural gene loci have not caught up with the relatively recent 

proliferation of mammal species. Gould (1980), though not an 

originator of this view, states it succinctly: "The modern synthesis, 

as an exclusive proposition, has broken down on both of its 

fundamental claims: extrapolationism (gradual allelic substitution as 

a model for all evolutionary change) and nearly exclusive reliance on 

selection leading to adaptation. Evolution is a hierarchical process 

with complementary, but different, modes of change at its three major 

levels: variation within populations, speciation, and patterns of 

macroevolution. Speciation is not always an extension of gradual, 

adaptive allelic substitution to greater effect, but may represent as 

Coldschmidt argued, a different style of genetic change - rapid 

reorganization of the genome, perhaps non— adaptive." 

Gould perhaps overstates the demise of the modern synthesis. It 

has been recognized for decades that evolutionary rates are not 

constant (Simpson, 1944) and that speciation can occur from small, 

isolated populations (Mayr, 1963), not only from the gradual 

transformation of large established lines. Stanley (1979) suggests 

that quantum speciation is not a new paradigm but a different emphasis 

in looking at the gaps in the fossil record, as well as gene frequency 

differences at structural loci in extant species. 

It does provide one plausible explanation for the great 

difference between the relative and absolute gene diversity in red 

deer and wapiti. The isozyme variation detected reflects the breeding 
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patterns of these deer, but is only indirectly - and probably 

retroactively - related to morphological variation, adaptation or 

speciation. This view also makes intuitive sense to anyone who has 

looked at evidence of convergent evolution in a wide range of animals. 

In an example such as Bergmann's Rule (Mayr, 1963), a regulatory gene 

(or gene complex) for homeothermy suggests a more straightforward and 

hence widespread response to the colder climate than each Holarctic 

species body—building locus by locus. 

If this is the case, then electrophoresis, at least of structural 

loci such as the enzymes analysed in this study, probably has far 

fewer taxonomic applications than its original promise suggested. It 

provides a no more absolute answer to whether wapiti or red deer are 

one species or two than the older minimal criterion of interbreeding 

(Mayr, 1963). And for those who follow the dictum of Medawar (1979) 

that "quantification has no merit as such except insofar as it helps 

solve problems," it raises the more general question of how applicable 

is the method to problems in deer biology. 

Where the focus in wildlife management and animal behaviour is on 

intraspecific differences, i.e. those between individuals and/or 

populations, there are still several applications of electrophoresis. 

The conservation of both red deer and wapiti depends critically on the 

control of human predation - whether it be increasing culls in some 

areas or reducing them in others. The most obvious use of isozyme 

markers is in discriminating deer in the enforcement of game laws. 

This ought not be underestimated if the other uses are to eventually 

become commmon practice, as catching poachers is as high a priority 

for many game and estate managers as dispatching deer is for stalkers 

or hunters. It is a fortunate coincidence that the same freezer which 



preserves game for the table preserves it for electrophoretic analysis 

as well. Once a deer had been skinned and boned it would, until 

recently, have been difficult to distinguish from other meat - except 

perhaps by tasting. 

Frozen deer and beef muscle are readily differentiated by 

electrophoresis (Baccus et al., 1983), and similar differences have 

been found for blood proteins between deer and other domestic animals 

(Bunch etal., 1976). It is the monomorphic loci which are of 

particular importance in this type of forensic test, as it is only 

absolute differences rather than those of probability which would be 

beyond reasonable doubt and thus admissable as evidence (England: R. 

v. Murtagh and Kennedy, (1955); Scotland: McKenzie v. H.M. 

Advocate, 1959). There are fixed differences between red deer/wapiti 

and cattle at three of the loci in this study: G-6-PD, LDH-1, and 6-

PGD. Polymorphic loci such as MDII-1 and PEP-2 which have no common 

alleles between these deer and domestic beef might also be used to 

make an expost facto case for poaching. There are also fixed 

differences between red and roe deer, as well as between wapiti and 

white-tail or black-tail deer (Baccus et al., 1983). 

The second forensic application found for electrophoresis, though 

less pertinent to Scotland, is a tool that game managers in the United 

States have long sought to combat commercial poaching. Such poaching 

is sometimes done by taking one legal animal, and using the severed 

head of that animal to get several more illegally shot wapiti Out of 

the woods and past the roadway checking stations which are used to 

monitor carcasses during the hunting season. Specifically, it is 

females which are usually shot and quartered so that the sex is 

obscured, and then brought out with the head of a young male. It is 



the polymorphic loci which are useful in this case: if a muscle sample 

from the neck has a different genotype than one from the body, then 

there is strong evidence that the hunter has parts of two animals, 

though licensed only to shoot one. The only major assumption is that 

the isozymes are inherited. 

But what is the likelihood of finding heads and tails that do 

differ electrophoretically, in different animals? This was calculated 

using the gene frequencies of wapiti on the Olympic Peninsula, where 

poaching is an acknowledged problem . The frequencies for SOD-1 at 

that locality were p = 0.383 and q = 0.617. Listed below are the 

corresponding genotype frequencies and the probability of two 

different wapiti from that area sharing the same genotype, simply the 

genotype- frequency squared. 

AA x AA = (p2  x p2 ) = (0.1467) x (0.1467) = 0.0215 

Aa x Aa = (2pq x 2pq) = (0.4726) x (0.4726) = 0.2233 

aa x aa = (q 2  x q 2  ) = (0.3807) x (0.3807) = 0.1449 

TOTAL 0.3898 

The likelihood of two wapiti having the same genotype for SOD-1 

is the sum of the three separate genotypes, or39%, and the chance of 

them being different. is thus 61%. As four polymorphic enzyme loci 

were detected on the Olympic Peninsula (SOD-1, MPI, PGM-1, PEP-2), the 

number of potential genotypes in any individual goes up dramatically 

(34 = 81).., as does the probability of ...finding a genotypic difference 

in two wapiti. The calculations for each of the 81 genotypes are 

listed in Appendix 7. The resulting probability of finding a 

difference between two wapiti being passed off as one is 90%, so the 

chances of catching poachers who are using this technique is high 

indeed, and would only improve if other polymorphic proteins were 
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found. 

The genetic variation found in red deer and wapiti has other, 

constructive uses beyond poacher detection. Significant differences 

in gene frequency could provide a rationale for management policies 

which closely reflect the biological units of red deer and wapiti. 

Genetic information in combination with data on population dynamics, 

which are also obtainable from culled samples, could make wildlife 

management more sensitive to local conditions. If carried Out 

routinely for forensic purposes, electrophoresis could detect changes 

in population structure, as well as helping to answer fundamental 

questions in large mammal population genetics. For example, an 

estimated 2000 wapiti were killed by the 1980 eruption of 

Mt. St. Helens. Most biologists expected that the population on the 

north slope of the mountain would be decades rebuilding, considering 

the conservative home—range pattern of neighboring wapiti (Jenkins, 

1980) and red deer. However, wapiti have already returned in numbers 

to St. Helens (Evelyn Merrill pers.com .; personal observation, July, 

1983) and the game department has recently re—opened the hunting 

season there. It would be valuable to know where these animals came 

from and, ultimately, what made them change their usual ranging 

behaviour. 

In addition to differences in gene frequency, significant 

differences were found in the amount of genetic variation between 

localities. Scottish red deer had significantly higher average 

heterozygosities than Continental populations (especially those from 

Norway where no variation was detected at 34 loci) and Northwest 

wapiti had higher heterozygosities than populations from the Rocky 

Mountains. 
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The most obvious genetic explanation for these differences is 

bottlenecks and/or founder effects - both mechanisms by which genetic 

variation is reduced during a constriction in population size. Nei 

(1975) and Motro and Thomson (1982) have shown theoretically that the 

increase in genetic variability will lag behind a return of animal 

abundance. Bottlenecks have been cited to explain low levels of 

electrophoretic variation in large mammals which have been hunted to 

near extinction, such as elephant seals (Bonnel and Selander, 1974) 

and cheetah (O'Brien et al., in prep.). 

In highly manipulated deer species, it is tempting to attribute 

the low heterozygosity found in particular localities to human 

actions. The lack of variation in Pere David's deer (Ryder et al., 

1981) which have been bred in captivity for centuries, and fallow deer 

introduced to Britain (Pemberton, 1983) have been explained by 

population reduction. In the case of Rocky Mountain wapiti, however, 

Cameron and Vyse (1978) maintained that the Yellowstone population has 

never numbered fewer than 4000 since Caucasion settlement. 

Acknowledging that overlapping generations, harem breeding and 

population subdivision could contribute to an effective population 

size substantially lower than the actual minimum number, they 

calculate that it still would have been several hundred animals. 

Genetic bottlenecks and founder effects have not been 

systematically studied in large mammals, but it is testable in both 

red deer and wapiti. For example, the wapiti population of Afognak 

Island, Alaska was established with only eight individuals from the 

Olympic Peninsula, whereas the Michigan population was built up from 

23 wapiti from Yellowstone. As mentioned in the previous chapter, the 

average heterozygosity for animals from the Olympic Peninsula is more 
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than twice that of the Yellowstone population (H = 3.9% and 1.2% 

respectively). 

As with differences in gene frequency; differences in 

heterozygosity could also be considered in management policy. The 

case of the Mt. Ranier wapiti has arisen in the course of this study. 

The introduction of these animals from Yellowstone dates from an era 

when it was believed that more was better, especially when it meant 

more game animals (Gabrielson, 1941; Leopold, 1949). The National 

Park Service is now as concerned with protecting rare endemic plants 

as the wapiti, especially if they are not native. But hunting is 

prohibited in the National Parks, and these animals can be controlled 

only if it can be shown that they are exotic. Genetic markers could 

be useful in this regard. Though the sample size was small, the 

results of this study indicate that the Mt. Ranier animals not only 

have similar gene frequencies to their Yellowstone relatives, but they 

have the lower level of genetic variation. Since preserving genetic 

diversity is among the aims of the National Parks, the time may soon 

come to favour rare endemic plants over hungry, introduced wapiti 

which, though they may stray from Mt. Ranier, deem to find their way 

to the Park boundary when the shooting starts in November. 

Electrophoresis might also be used in the management of captive 

deer, especially where breeding records are incomplete. Despite the 

claims that the deleterious effects of inbreeding have been 

exaggerated (Whitehead, 1980; Greig, 1979), researchers at the 

Smithsonian have compiled evidence of higher juvenile mortality in 

highly inbred ungulates (Rails et al., 1979; Rails et al., 1980; 

Ballou and Rails, 1982). Fifteen of 16 ungulate species had higher 

juvenile mortality among highly inbred mating; Pere David's deer were 
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the exception that seems to prove the rule, with their long history in 

captivity (Wood-Jones, 1951-1952). In the absence of adequate 

records, as is often the case with captive deer, it would be prudent 

to breed deer with the highest heterozygosity, or pair individuals 

with the greatest gene frequency differences. 

On the positive side, if there are heterotic effects in deer that 

can be correlated with valuable quantitative characters, then isozyme 

analysis might be utilized where deer now are reared intensively. There 

is only slight evidence of heterosis in this study - the effect of 

individual heterozygosity on antler point number - though the 

conditions in the Scottish Highlands may not be the place to test for 

the effects of heterosis. Smith et al. (!a prep) also found a 

significant relationship between heterozygosity and alter point number 

in young white-tailed deer, though not in older age classes. The case 

for significant correlations between heterozygosity as measured by 

electrophoresis and quantitative characters such as antler points 

remains to be proved. There is, however, great potential for testing 

it in New Zealand, where red deer, wapiti and their hybrids are being 

bred in captivity. 

The final utility of electrophoresis in wildlife management is 

perhaps not testable, but has been an impression which has grown 

stronger in the course of this study. Those responsible for the 

welfare of red deer and wapiti (stalkers, hunters, estate-owners, 

zoo-keepers, et al.) are much more readily persuaded by arguments 

based on data to which they have directly contributed (by providing 

blood samples or bits of tissue) than by biological theory, no matter 

how elegant. Whether electrophoresis will become a tool of 

conservation biology may depend ultimately on how well bands on gels 
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can be explained in terms of the behaviour of deer populations. 
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Chapter •. 

CONCLUSION 

In this study of isozyme variation in over 900 animals, 

polymorphism was detected in 6 of 34 enzyme loci in Scottish red deer 

and 5 of 28 loci in North American wapiti. Both the average 

heterozygosity (H) and the percentage of polymorphic loci (P) did not 

significantly differ from other large grazing mammals (Baccus et al., 

1983) or mammals generally (Mevo, 1978). 

The results do not support the contention that large mammals, 

being adapted to a wide range of habitats, have less isozyme variation 

than small mammals (Selander and Kaufman, 1973). Moreover, there was 

no strong evidence of selection at enzyme loci j  a tenet of that 

hypothesis. The results are in agreement with previous findings 

(Nevo, 1978; Baccus et al., 1983) that mammals show less variation in 

structural loci than other animal classes. 

Genetic subdivision characterizes the population structure of 

both red deer and wapiti. Chi—square and log—likelihood ratio tests 

showed highly significant heterogeneity between populations in both 

groups. There were also differences in average heterozygosity between 

populations: Scottish red deer showed significantly more variation 

than continental red deer, and native Northwest wapiti had 

significantly higher heterozygosities than introduced animals from the 

Rocky Mountains. 

Measures of the standardized gene variation (F 5t, Wright, 1965) 

showed moderate differentiation within Scottish red deer and Northwest 
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wapiti, and very great differentiation when the two groups were 

combined. Analysed hierarchically (Chakraborty et al., 1982) about 

half of the variation detected was due to differences between 

individuals (53.8%), a third due to differences between red deer and 

wapiti (32.2%) and the remainder was attributable to intermediate 

levels of organization (3.6% to populations and 10.4% to recognized 

subspecies). 

Although a significant percentage of the electrophoretic 

variation detected is attributable to differences between red deer and 

wapiti, the absolute gene diversity - including monomorphic loci - 

confirms that these animals are closely related (Dm = 0.041) In other 

words, the red deer and wapiti sampled have more than 95% of their 

genome in common as sampled at 28 randomly selected loci. 

The genetic distance (Nei, 1972) separating red deer and wapiti 

(D = 0.025) is similar to that between European and North American 

moose (D =0.060, Reuterwall, 1980), which are considered conspecific; 

it is more than an order of magnitude less than the average genetic 

distance between large grazing mammal species (D = 0.849, Baccus et 

al., 1983). These comparative results thus support considering red 

deer and wapiti one species, Cervus elaphus L. However, speciation 

may be caused by changes in regulatory genes or chromosomal 

rearrangements (Wilson et al., 1975) rather than the accumulating gene 

frequency differences at structural loci sampled in this study. 

The electrophoretic variation detected hasseveral potential 

applications to wildlife management, in differentiating both 

individuals and populations. In forensic use, deer can be 

distinguished from other meat by fixed allele differences at several 

monomorphic loci, and freezing of meat for later consumption also 
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preserves it for later laboratory analysis. The amount of variation 

typical of red deer and wapiti also makes it highly probable that two 

individuals can be discriminated from two parts of the same animal. 

Significant gene frequency differences could be used to establish 

thanagement units which more closely reflect the breeding pattern of 

subdivided deer populations, and significant differences in 

heterozygosity may distinguish native deer populations deserving 

protection from introduced animals requiring control. Lastly, 

electrophoretic markers may prove useful in developing breeding 

programs in captive deer populations, either where inbreeding 

depression has been documented (Rails et al., 1979) or where wild deer 

are now being domesticated (Yerex, 1982). 

Conservation genetics is still a young discipline (Frankel and 

Soule, 1981) and electrophoresis has only begun to be applied to 

management problems in game animals such as deer (Manlove, 1976). 

Although electrophoresis may have been over—rated as a method of 

measuring large scale evolutionary change, it has been under—utilized 

as a tool in managing wild populations. Whether this potential will 

be realized for red deer and wapiti populations depends largely on the 

public will to preserve not deer numbers, but deer diversity. 
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APPENDIX 1 

In this systematic summary of research in cervid biochemical 

genetics, the papers are organized first according to taxonomic family 

and secondly according to recognized species or semispecies. 

FAMILY CERVINAE 

Cervus elaphus 	 I Red deer 

Red deer are among the most extensively studied of deer species 

and electrophoretic variation has been found in both blood and 

enzymatic proteins. Transferrin polymorphism has been found in most 

red deer populations where it has been studied. Lowe and McDougall 

(1961) identified two transferrin alleles in Scottish red deer and 

subsequently demonstrated gene frequency differences between two 

Scottish populations (McDougall and Lowe, 1968). Bergmann (1976) 

found three transferrin alleles, and significant differences between 

German red deer populations, though several localities were not in 

Hardy-Weinberg equilibrium. 

Analysing 138 Russian red deer, Kravchenko and Kravchenko (1971) 

reported four transferrin alleles in 138 Russian red deer, as well as 

proposing possible variation in three other serum protein systems. 

Wege (1978) found two transferrin alleles on an island population in 

Norway, though a nearby mainland locality was monomorphic. Gyllensten 

et al. (1980) developed an agarose technique which discriminated 

three transferrin alleles in red deer from Sweden, and the authors 

demonstrated significant spatial heterogeneity between populations. 
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Enzymatic loci analysed from tissue samples of culled red deer 

have shown considerable variation. Gyllensten et al (1982), comparing 

populations from four supposed subspecies, found six polymorphic 

enzymes: GPI-1, IDH-2, MDR-1, PGM-1, PGM-2 and SOD-1. Baccus etal. 

(1983) confirmed the IDH and MDH polymorphism and bit (1977) found 

variation at IDT-l-2, PGM-2, as well as MPI. Polymorphism has also been 

found for a whey protein in milk from Scottish red deer (McDougall and 

Stewart, 1976). 

Wapiti 

In contrast to red deer, there has been less evidence of 

variation in blood proteins of North American wapiti. Although 

transferrin polymorphism was reported by Miller et al. (1965), 

subsequent studies (Johnson, 1968; Cameron and Vyse, 1978) have not 

substantiated it from other samples. Both albumin (Cameron and Vyse, 

1978; McClymont et al., 1982) and haemoglobin (Butcher and Hawkey, 

1977; Bunch et al., 1981) have also thus far proved monomorphic. 

Successive enzyme surveys, however, have each found additional 

polymorphic loci. Cameron and Vyse (1978) found variation only at 

IDH-2. J3accus et al. (1983) detected polymorphism at both IDH-2 and 

MPI, sampling at a different locality. Dratch and Gyllensten (in 

press), testing eleven populations, found variation at PEP-2, PG1 1-1-1 

and SOD-1 as well as the two previously described polymorphic loci. 

Sika deer 

Kravchenko et al. (1971) identified.three transferrin alleles in 

yy deer from Russia.. Lowe and McDougall (1961) found no transferrin 

polymorphism in the five yy they tested initially, nor in ten sampled 

later (McDougall and Lowe, 1968). Electrophoresis of 44 yy deer 
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showed no haemoglobin variation (Maughan and Williams, 1967), but two 

isoelectric focusing studies on fewer samples (Butcher and Hawkey, 

1977; Lawton and Sutton, 1981) have found polymorphism. Of seventeen 

enzymatic loci surveyed, Holt (1977) found variation at IDH-2, MPI, 

PG14-2 and PGD. Three of these enzyme loci have shown polymorphism in 

red deer and/or wapiti. 

Elaphurus davidianus 	.Pere David's deer 

No polymorphism has yet been found in this relic species. 

Haemoglobin has been studied in only ten individuals by isoelectric 

focusing (Butcher and Hawkey, 1977; Lawton and Sutton, 1981), and an 

electrophoretic analysis of plasma proteins sampled twenty Pere 

David's deer (Ryder et al., 1981). 

flama dama 	 Fallow deer 

Despite widespread coat colour variation, fallow deer are notable 

Z or their lack of electrophoretic variation. Early work revealed no 

transferrin polymorphism in 77 fallow from British deer parks (Lowe 

and McDougall, 1961; McDougall and Lowe, 1968). A recent survey of 

367 fallow confirmed this finding for transferrin as well as other 

serum proteins (Pemberton, 1983). No haemoglobin polymorphism was 

found by gel electrophoresis of 62 samples (Maughan and Williams, 

1962) or isoelectric focusing of 26 samples (Lawton and Sutton, 1981). 

Among enzyme loci, Munday (1974) found no variation at the LDH locus 

in fifteen fallow deer, and Holt (1977), analysing 17 enzymatic loci, 

found the only possible variation at AK- 2. Screening at least 100 at 

26 loci (including AK-2) Pemberton (1983) again found no variation. 
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Other Cervinae species 

Only haemoglobin has been analysed in four other Cervinae 

species. Listed above are the number of banding patterns observed for 

each species, followed parenthetically by the number of individuals 

tested. Blood samples were taken from captive animals primarily for 

intraspecific comparison. Thus sample sizes are low, and can at best 

suggest haemoglobin variation in several cases (particularly for Axis 

axis). The first two studies in the table employed conventional 

electrophoresis, the latter two used isoelectric focusing. 

Axis 	Barasinga Timor 	Hog 	Reference 
2(4) 	- 	- 	- 	Naiketal., 1964 
10 	1(1) 	- 	- 	Maughan and Williams 1967 
2(3) 	1(7) 	2(3) 	1(1) 	Butcher and Hawkey, 1977 
1(5) 	2(5) 	- 	1(1) 	Lawton and Sutton, 1981 

FAMILY ODOCOILEINAE 

Rangifer tarandus 	Reindeer 

More alleles have been found for reindeer transferrin than at any 

other deer locus. They are summerized chronologically in the table 

below. The number of populations tested is in parentheses following 

the number of individuals sampled. 

Sample size Location 	Trf alleles 
64  Sweden 3 
132  Norway 6 
829 (5) U  8 
182  N.W. Russia 5 
408  5 
502 (1) 7 

1756 (16) Siberia 9 
81 (1) Spitzbergen 2 

Reference 
Gahne Rendel, 1961 
Braend, 1964a 
Braend, 1964b 
Shubin, 1969 
Shubin Turubanov, 1970 
Turubanov Shubin, 1971 
Zhurkevich Fomicheva, 1976 
Storset et al., 1978 

In the only case where alleles were compared between studies, 

the two alleles found in Spitzbergen reindeer by Storset et al. 

(1978) were both of different mobility to all eight alleles found by 
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Braend (1964b). Using the large number of transferrin alleles found 

in Norway and Siberia, Braend (1964b) and Zhurkevich and Fomicheva 

(1976) demonstrated genetic divergence between herds. The latter 

authors also reported evidence for selection acting on transferrin 

phenotypes. 

No polymorphism has yet been observed in serum proteins other 

than transferrin (Gahne Rendel, 1961; Storset et al., 1978); nor was 

haemoglobin variable in the few zoo reindeer examined by Butcher and 

Hawkey (1977) and Lawton Sutton (1981). Storset et al. (1978) 

found no polymorphism among seven enzyme loci screened in Spitzbergen 

reindeer, but Baccus et al. (1983) recently reported one polymorphic 

locus, MPI, of 19 screened in Swedish reindeer. 

Caribou 

Nadler et al. (1967), collecting sera samples from 37 caribou, 

found transferrin polymorphism suggesting three alleles; polymorphism 

for a second serum protein on the same gels was reported but not 

identified. Baccus et al. (1983) found no variation in four Alaskan 

caribou over 19 loci tested, but did report a different fixed albumin 

allele when comparing these caribou with the Swedish reindeer 

mentioned previously. 

Alces alces 	 European moose 

Initial studies of European moose from Scandinavia (Braend, 1962; 

Wilhelmson et al., 1978) and from Russia (Shubin, 1969) failed to 

reveal any serum protein polymorphism, but more recently Gyllensten et 

al (1980), using agarose gels, detected a rare slow transferrin allele 

in moose from six out of 16 Scandinavian sampling sites. 
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Screening enzymes in red blood cells, a low level of genetic 

variation in the European moose (Wilhelmson et al., 1978 ; Ryman et 

al., 1977) was again indicated. Later, more extensive surveys using 

tissue samples, however, described allelic variation at MDH- 2, PEP-B, 

PGI-1, PGM-2 and MI'I in Scandinavian animals (Ryman et al., 1980; 

Baccus et al., 1983). Gene frequency difference at these loci have 

been used to examine genetic divergence of moose populations between 

sample sites (Ryman et al., 1980) and between hunt compartments within 

sample sites (Chesser et al., 1982). 

North American moose 

Several studies of North American moose blood proteins (Nadler et 

al., 1967; Seal and Karns, reported in LeResche et al., 1974; 

Wilhelmson et al., 1978; McClymont et al., 1982) have failed to find 

any variation. Two of the three enzyme studies (Wilhelmson et al., 

1978; Dilworth and Mackenzie, 1970) have shown the same negative 

result. Reuterwall (1980), however, analysed 47 samples from a 

Canadian population and found four polymorphic loci (LDH-1, MDH-2 )  PGD 

and MPI) among 15 loci screened. 

Odocoileus virginianus 	White-tailed deer 

There are more studies reporting electrophoretic research on 

white-tailed deer than on any other species. The pioneering work on 

Odocoileus serum protein variation was conducted by Cowan and Johnston 

(1962) and Van Tets and Cowan (1966), but since the protein bands were 

not identified, indirect comparison with later work is not possible. 

In subsequent studies, listed below, both transferrin and haemoglobin 

have generally proved polymorphic. 
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Haemoglobin has been the subject of intensive investigation in 

white-tailed deer, as sickling is widespread (Wilhelmson, 1964), and 

research has been aimed at relating it to particular haemoglobin 

variants. Two types of haemoglobin polymorphism have, been reported: 

allelic variation at the Beta-haemoglobin locus and non-allelic 

variation in alpha chain expression. The number of transferrin and 

beta-haemoglobin alleles detected in different studies is tabulated in 

the table below; where alpha-chain expression has been noted, an "a" 

follows the number of Beta-haemoglbin alleles. 

Sample size Location Alleles Reference 
(sites) Trf Hb 

647+ (2) Florida - 4 a Kitchen et al.., 	1964 
200 (4) Iowa 2 4 Miller et al., 	1965 

700+ (2) Florida - 6 a Kitchen et al., 	1966, 	1967 
186 (7) S.E. USA - 6 a Huisman et al., 	1968 
146 (1) Minnesota 1 2 Seal and Erickson, 	1969 
88 (1) Iowa 7 - Quinteros and Miller, 1969 
30 (1) Florida - 1 a Taylor et al., 	1972 

421 (24) S.E. USA - 5 a Harris et al., 	1973 
40 (1) Michigan 2 - LeResche eta].., 	1974 

400 (1) S. Carolina 3 4 a Manlove eta].., 	1975 
218 (2) it 

 3 4 Ramsay et al., 1979 
2455 (5) " - 4 Chesser et al., 	1982 
1000+ (8) S.E. USA 3 4 Smith eta].., 	(in Dress) 

In contrast, albumin variants are rare or absent in white- tailed 

deer (Seal and Erickson, 1969; Manlove eta].., 1976; McClyrnont eta].., 

1982; Smith et al., in press), though heterozygote band patterns were 

obtained in putative white-tailed deer x mule deer hybrids (McClymont 

eta].., 1982). One other serum protein polymorphism has been noted, 

for an unnamed foetal protein (Seal and Erickson, 1969). 

Beginning about a decade after the research started on blood 

proteins, several surveys of enzyme loci have also shown abundant 

variation in white-tailed deer (Manlove et al., 1975; Price et al., 

1979; Baccus eta].., 1983). Much of the work on these deer has 

130 



recently been summerized by Smith et al. (in press) reporting 

variation in 27 of 35 loci analysed, a much higher percentage than in 

any other deer species. These higher rates of polymorphism, in both 

blood and enzyme proteins, have stimulated research on ecological and 

reproductive correlates with differences in gene frequency and average 

heterozygosity. 

Ramsey et al. (1979) showed that deer herds in swamp and upland 

habitats differed both genetically and demographically. Baccus et al. 

(1979) analysed data for the four allele SDH locus in seven 

populations and found evidence for selection at certain stages of the 

life cycle. Considering selection from an individual viewpoint, Johns 

et 	. (1977) were able to determine that females carrying twin 

foetusses had significantly higher average heterozygosities than those 

carrying a single foetus. Smith et al. (in press), in a similar 

analysis of 640 males, found that more heterozygous animals had 

significantly greater body weights, kidney fat indices, and more 

antler points. 

Odocoileus hemionus 	Black-tail and mule deer 

As with white-tails, the early studies of Cowan and Johnston 

(1962) and Van Tets and Cowan (1966) suggest variation but did not 

identify the proteins involved. In more recent studies, Bunch et al. 

(1976) found evidence of two haemoglobin alleles in 36 samples, while 

McClymont etal. (1982) found no albumin variation in 100 mule deer. 

Baccus et al. (1983) screening two deer at 19 enzyme loci, claim 

polymorphism for MDH-2, and 6PCD. 
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Capriolis capriolis 	 Roe deer 

Though they have an extenive northern range, there have been very 

few genetic studies of these small deer. Gyllensten et al. (1980) 

found no transferrin polymorphism in 33 Swedish roe deer. In British 

animals, no haemoglobin variation was detected by electrophoresis of 

80 deer (Maughan and Williams, 1967) or by isoelectric focusing seven 

other samples (Lawton. and Sutton, 1981). The only electrophdretic 

variant described in roe deer to date is an enzyme polymorphism at 

locus PGM-1 (Holt, 1977) 

Ozotoceros bezarctus 	Pampas deer 

In a sample of 36 pampas deer, Quinteros et al. (1971) found 

seventeen transferrin phenotypes; the number of alleles responsible 

was not indicated. 

FAMILY HYDROPOTINAE 

Hydropotes inermis 	Chinese water deer 

Maughan and Williams (1967) and Maughan (1969) report the only 

research sampling more than one Hydropotes. A slow haemoglobin 

variant was found in three of 21 feral animals sampled in Britain. 

FAMILY MUNTIACINAE 

Muntiacus reevesii 	Reeve's muntjac 

In the only work sampling more than two muntjac, Maughan and 

Williams (1967) and Maughan (1969) described haemoglobin polymorphism 

in 40 feral Reeve's muntjac, with two alleles showing almost equal 

gene freqencies. Butcher and Hawkey (1977) claim a haemoglobin 
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polymorphism in M. reevsii on the basis of one animal, though they 

were comparing with several other deer species. 

The table on the following page summarises the polymorphism 

detected at specific enzyme loci in the six species where extensive 

surveys have been undertaken. White—tailed deer have the highest 

percentage of polymorphic loci (p) and average number of alleles (A) 

per locus. Fallow deer also of intermediate size have the lowest 

values for both of these general indices of genetic variation. 
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LOCUS 	 SPECIES 
Cervus Dama Alces Rangifer Capriolus Odocoileus 
elaphus dama alces terandus capriolus virginianus 

AP 	1 	1 	1 	1 	 - 	 2 	20 
ACON 	- 	- 	1 	- 	 - 	 - 
ADA-i 	1 	- 	1 	- 	 - 	 - 
ADA-2 	1 	- 	- 	- 	 - 	 - 
ADH 	- 	- 	- 	- 	 - 	 2 
AK-1 	1 	1 	1 	- 	 1 	 - 	0 

AK-2 	1 	2 	- 	- 	 1 	 2 	50 
CA-1 	- 	1 	1 	- 	 - 	 - 
CA-2 	- 	1 	- 	- 	 - 	 - 
CK 	1 	- 	- 	- 	 - 	 - 
DIA 	- 	- 	1 	- 	 - 	 - 
EST-1 	3 	1 	1 	1 	 1 	 2 	33 
EST-2 	1 	1 	1 	- 	 - 	 1 	0 

EST-3 	1 	- 	1 	- 	 - 	 4 	33 
EST-4 	- 	- 	- 	- 	 - 	 1 
EST-D 	- 	- 	1 	1 	 - 	 - 
GAPDH 	1 	- 	- 	- 	 - 	 - 
CDII 	- 	1 	- 	1 	 - 	 - 
GLO 	- 	- 	- 	1 	 - 	 - 
GLUT 	1 	- 	1 	- 	 - 	 2 	33 
GOT-1 	1 	1 	1 	1 	 1 	 2 	16 
GOT-2 	1 	1 	1 	1 	 1 	 3 	16 
GPD-1 	1 	1 	- 	- 	 - 	 3 	33 
GPD-2 	1 	1 	- 	- 	 - 	 3 	33 
G6PDH 	1 	1 	1 	1 	 1 	 2 	16 
GPI-1 	2 	1 	2 	1 	 1 	 1 	33 
GPI-2 	1 	1 	1 	- 	 - 	 1 	0 
GPT 	1 	- 	1 	1 	 - 	 - 	0 
GUS 	1 	- 	- 	- 	 - 	 - 
HK-1 	1 	- 	- 	- 	 - 	 - 
HK-2 	I 	- 	- 	- 	 - 	 - 
IDH-i 	1 	1 	1 	- 	 1 	 2 	25 
IDH-2 	2 	1 	1 	2 	 1 	 3 	50 
LDH-1 	1 	1 	1 	1 	 1 	 2 	16 
LDT-I-2 	1 	1 	2. 	1 	 1 	 3 	33 
MDH-i 	1 	1 	1 	1 	 1 	 1 	16 
MDH-2 	4 	1 	2 	1 	 1 	 3 	50 
ME-i 	2 	- 	1 	1 	 1 	 2 	40 
ME-2 	2 	- 	2 	1 	 1 	 3 	60 
MPI 	3 	1 	4 	2 	 2 	 3 	84 
PEP-A 	- 	- 	2 	- 	 - 	 - 
PEP- 13 	2 	- 	1 	1 	 2 	 2 	60 
PEP-C 	- 	- 	1 	- 	 - 	 - 
PEP-D 	- 	. - 	1 	- 	 - 	 - 
6PGD 	2 	1 	3 	1 	 1 	 2 	50 
PGM-i 	2 	1 	2 	1 	 2 	 4 	60 
PGM-2 	2 	1 	1 	- 	 1 	 3 	40 
PGM-3 	- 	- 	1 	- 	 - 	 - 
PK 	1 	- 	- 	- 	 - 	 - 
SDH 	1 	1 	1 	1 	 1 	 4 	16 

SOD-1 	2 	1 	1 	1 	 1 	 4 	33 
SOD-2 	1 	1 	- 	- 	 i 	 - 	0 

Number of alleles per locus in the six cervid species in 
which isozyme surveys have been conducted. 
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APPENDIX 2 
BUFFER RECIPES 

I. ACID CITRATE (Clayton and Tretiak, 1972) 
Electrode: 	Citric acid 	 5.4g 
PH 6.1 	 Distilled water 	 1.01 

N-(3-Amino propyl)morpyline 	lOml 

Gel: 	 Acid citrate electrode buffer 	200m1 
PH 6.0 	 Distilled water 	 3800m1 
PH adjusted with N-(3-Amino propyl) morphyline 

CONTINUOUS TRIS CITRATE (Selander et al., 1969) 
Electrode: 	Tris 	 83.2g 
PH 8.0 	 Citric acid 	 30.Og 

Distilled water 	 1.01 
PH adjusted with 1.ON Sodium hydroxide 

Gel: 	 Tris Citrate electrode buffer 	200m1 
PH 8.0 	 Distilled water 	 5800m1 

DISCONTINUOUS TRIS CITRATE (Selander et al,. 1969) 
Electrode: 	Boric acid 	 18.55g 
PH 8.2 	 Sodium hydroxide 	 2.40g 

Distilled water 	 1.001 
PH adjusted with 1.0M Sodium hydroxide 

Gel: 	 Tris 	 9.21g 
PH 8.7 	 Citric acid 
	

1.05g 
Distilled water 	 1.001 

TRIS MALEATE (Selander et al,. 1969) 
Electrode: 	Tris 	 12.10g 
PH 7.4 	 Maleic acid 	 11.60g 

Ethylene-diamine tetraacetic acid 3.72g 
Magnesium cloride 	 2.03g 
Distilled water 	 1.001 

Gel: 	 Tris malaeic electrode buffer 	4001 
PH 7.4 	 Distilled water 	 36001 

LITHIUM HYDROXIDE (Ridgeway et al., 1970) 
• 	Electrode: Boric acid 18.54g 

PH 8.5 Lithium hydroxide 2.52g 
Distilled water 800-10001 

Gel: Tris 36.25g 
PH 8.0 Citric acid 10.50g 

Lithium hydroxide electrode 1001 
Distilled water 8001 
Dilute 1:20 with Distilled water 
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ENZYME LOCI ANALYSED 
LOCl/  

ENZYME ABBREVIATION ALLELES BUFFER TISSUE 

Acid phosphatase AP EC 3.1.3.1 1/1 3 M 

Adenosine deaminase ADA EC 3.5.4.4 2/1 0 1 1 M K 

Adenylate kinase AK EC 2.7.7.3 2/1,1 1 M 

Creatine kinase CK EC 2.7.3.2 1/1 5 M 

Esterase EST 3/1,1,1 5 K 

Glucose phosphate GPI EC 5.3.1.9 2/2,1 5 K 
isomerase 

Beta-glucuronidase GUS EC 5.3.1.31 1/1 1 K 

Glutamate GDH EC 1.4.1.2 1/1 1 K 
d ehyd rogenase 

Glutamate pyruvate GPT EC 2.6.1.2 1/1 5 M 
trans am i na s e 

Glyceraldehyde phos- GAPDJ-1 EC 1.2.1.12 1/1 5 M 
phate dehydrogenase 

Glyçerol-3-phosphate GPD EC 1.1.1.8 i/i 5 M 
dehydrogenase 

Hexokinase HK EC 2.7.1.1 2/1,1 3 M K 

isocitrate IDH EC 1.1.1.42 2/1,2 1,2 N K 
d ehydrogenase 

Lactate dehydrogenase LDH EC 1.1.1.27 2/1,1 5 H 

Malate dehydrogenase MDH EC 1.1.1.37 2/2,1 1 N 

Malic enzyme ME EC 1.1.1.40 1/2 5 N 

Mannose phosphate MPh EC 5.3.1.8 1/2 1 M K 
isomerase 

Peptidase PEP-2 EC 1/2 3 M 
Leu-gly-glyc me 

Phosphoglucomutase PGM EC 2.7.5.1 2/2,2 1,4 N K 

Phosphogluconate PGDH EC 1.1.1.44 1/1 1 N K 
dehydrogenase 

Pyruvate kinase PK EC 2.7.1.40 1/1 1 N K 

Sorbitol SDH EC 1.1.1.14 1/1 1 N K 
dehydrogenase 

Superoxide dismutase SOD EC 1.15.1.1 2/2,1 1 N K 
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APPENDIX 4a 

Heterogeneity Tests 

An example of the BMDP program, used to test population 
heterogeneity from allele frequencies. Values are pN and qN. 

BMDP4F 
TWO—WAY FREQUENCY TABLES -- MEASURES OF ASSOCIATION 
MIJLTIWAY FREQUENCY TABLES -- LOGLINEAR MODELS (INCLUDING STRUCTURAL 
ZEROS) 

DEPARTMENT OF BIOMATI-TEMATICS 
UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90024 
PROGRAM REVISED JUNE 1981 
MANUAL REVISED -- 1981 
PLU VERSION 5.0, FEBRUARY 1982 
COPYRIGHT (C) 1981 REGENTS OF UNIVERSITY OF CALIFORNIA 

AUGUST 8, 1983 AT 19:38:40 

PROGRAM CONTROL INFORMATION 

/PROBLEM TITLE IS 'CHISQ I G TESTS'. 
/INPUT VARIABLES ARE 2. 

TABLE IS 2,6. 
FORMAT IS FREE. 
UNIT IS 10. 

/XTAnTADTI? NAMES ARE GENES,POPS. / V L\J.JUL 

/TABLE 	COLUMN IS GENES. 
ROW IS POPS. 

/CATEGORY CODES(1) ARE 1,2. 
NAMES(l) ARE P , Q. 
CODES(2) ARE 1 TO 6. 
NAMES(2) ARE CAITHNESS,ROSS,LAGGAN,STRATHN,RHUM,PERTHS. 

/STATISTICS CHISQ. 
FISH. 
LRCHI. 

/PRINT EXP. 
DIFF. 
CHISQ. 
LRCHI. 

/ END. 
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OBSERVED FREQUENCY TABLE 1 

POPS 	GENES 

P Q TOTAL 

CAITHNES 	19 21 I 40 
ROSS 	 11 51 I 62 
LAGGAN 	5 33 I 38 
STRATHM 	11 15 I 26 
RHUM 	 37 451 82 
PERTHS 	16 40 I 56 

-------------I--------- 
TOTAL 	99 205 I 304 

MINIMUM ESTIMATED EXPECTED VALUE IS 8.47 

STATISTIC VALUE D.F. 	PROB. 

PEARSON CHISQUARE 24.201 5 	0.0002 

STATISTIC VALUE D.F. 	PROB. 

LIKELIHOOD-RATIO CHISQ. 25.449 5 	0.0001 

EXPECTED VALUES 	-- TABLE 	1 

POPS 	GENES 

P Q TOTAL 

CAITHNES 	13.0 27.0 I 40.0 
ROSS 	20.2 41.8 1 62.0 
LAGGAN 	12.4 25.6 I 38.0 
STRATHM 	8.5 17.5 I 26.0 
RHUM 	26.7 55.3 I 82.0 
PERTHS 	18.2 37.8 I 56.0 

-------------I--------- 
TOTAL 	99.0 205.0 I 304.0 

DIFFERENCES = OBSERVED - EXPECTED 	-- TABLE 

POPS 	GENES 

P Q TOTAL 

CAITHNES 6.0 -6.0 I 0.0 
ROSS -9.2 9.2 I 0.0 
LAGGAN -7.4 7.4 I 0.0 
STRATHM 2.5 -2.5 I 0.0 
RHTJM 10.3 -10.3 I 0.0 
PERTT-TS -2.2 2.2 I 0.0 

------------- I--------- 
TOTAL 0.0 0.0 I 0.0 

138 



***** 	COMPONENTS OF CHI SQUARE = (OBS - EXP)**2 /EXP 	-- TABLE 

POPS GENES 

P Q TOTAL 

CAITHNES 2.7 1.3 I 4.1 
ROSS 4.2 2.0 I 6.2 
LAGGAN 4.4 2.1 I 6.5 
STRATHM 0.8 0.4 I 1.1 
RHUM 4.0 1.9 I 5.9 
PERT1-IS 0.3 0.1 I 0.4 

-------------- I--------- 
TOTAL 16.3 7.9 I 24.2 

** COMPONENTS OF LIKELIHOOD-RATIO CHI SQUARE = _2.0*OBS*LN(OBS/EXP) 
POPS 	GENES 

P Q TOTAL 

CAITHNES -14.3 10.5 I -3.8 
ROSS 13.4 -20.3 I -6.9 
LAGGAN 9.1 -16.7 I -7.6 
STRATHM -5.8 4.7 I -1.1 
RHUM -24.1 18.5 I -5.6 
PERTHS 4.2 -4.6 1 -0.4 

-------------- I--------- 
TOTAL -17.6 -7.8 I -25.4 
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APPENDIX 4b. 
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APPENDIX 4b. Location of red deer collection sites for comparison of 
of northern Europe subspecies, 1980. Names of sites and countries 
on the following page. 
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Map Collection site Country Subspecies 
code 

A Red Deer Reserve Sweden C.e. elaphus 
(Vomb, Bellinga, Krageholm, 
Sövde) 

B Chriscinehof 

C Hunneberg 

D Skne Deer Park 'I  

E Skne Deer Park 55 

(central enclosure) 

F SUne, unspecified 

G Oster-Malma 5 

H Ankarsrum Possibly mixed origin 
(C.e. elaphus and possibi 
ocher north European sub- 
species) 

I Eriksberg (enclosure) 11 

J Kolmrden (free ranging) of 

K It (enclosure) It 

L Enköping SI 

Västers if 

N Hitra (island population) Norway C.. atlanticus 

0 Sr Trndelag 	 - " of 

P Rhuin (island population) Great Britain Ce. scoticus 

R Ross—shire It of 

S Caithness of Is 

T Loch Loggan It is 

Ii Scrachmashie of it 

V Perthshire Is is 

X Nationalpark Bayerische Wald West Germany C.e. gernanicus 

APPENDIX 4b. Collections sites for comparison of northern European 
red deer: 
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APPENDIX 4c. 

K 

lB 

III 
I 	I 	I 

I 	IJ 

II 	IL 
I 	I 	I 

Ix 
I 	I 	I 	I 	I 
I 	I 	I 	IM 

I 	I 	I 	I 
I 	I 	I 

I 	I 	I 	I 	I 	I 	I 	I 
I 	I 	I 	I 	I 	24-S 

I 	I 	I 	I 	I 	I 

HHH1 I 
I 	I 	I 	I 	I 	T1 
I 	I 	I 	 I 	I 

I 	I 	I 	I 	I 	"7 

I 	I 	I 	I 	I 	I 	I 	I 	I 
I 	I 	I 	I 	I 	 T.J 

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 
I 	I 	I 	I 	I 	I 	I 

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 
I 26-27-32-28-31-35 ---- 36-40-39-33 ---- R 

I 	I 
III 	 D 
I 	I 

II 	 IC 

H 
I 	I 	I 
I 	I 	I 	 I 	38-25--E 
I 	I 	I 
29-34-23-------------------------------------30-22-------F 

A 

Remember, this is an unrooted tree! 
Ln Likelihood = 	420.02307 
Examined 721 trees 

Appendix 4c. Comparison of genetic distance dendrogram (Nei, 1972) 
with phylogenetic tree using CONTML (Felsenstein, 1981) for 
northern European red deer. 
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WE 

0.008 	 0.004 • 	 0 
I 	 I 	 I 	 I 	 I 

C Hunneberg 

A Red deer reserve 

B Christinehof 

D Skane deer park 

J Ko[mirden (free ranging) 

L Enköping 

I Eriksberg 

K Kotmirden 

X Nat. Park Bayer. Wald 

H Ankarsrum 

V Perthshire 

R Ross-shire 

P Rhum 

T Loch Loggan 

S Caithness 

U Strathmashie 

N Hitra 

0 Sor TrØndetaq 

APPENDIX 4c. Dendrogram of genetic distance (Nei, 1972) .of northern European red deer. 
Letters denote collection sites marked in the previous appendix and following tree. 



APPENDIX 4d 

Continuous character Maximum Likelihood method version 2.3 
Felsenstein (1981). Phenotypes are arcsine square-root 
transformations of gene frequencies. 

13 Populations, 3 Phenotypes 

Caithness. 0.63100 1.44000 1.23920 
Strathcon 0.32180 1.45220 0.95040 
Fairburn 0.44330 1.28590 1.57080 
GlenFiddic 0.52360 1.43250 0.98250 
Strathmash 0.53160 1.57080 0.95990 
LochLaggan 0.45360 1.57080 0.98250 
Rhum 0.75940 1.22480 1.45650 
GlenTannar 0.56090 1.31300 0.98680 
Strathyre 0.63510 1.41530 1.09350 
GlenArtney 0.57960 1.34530 1.57080 
Glen Esk 0.65910 1.42540 0.93360 
NewtonStew 0.89430 1.30700 1.57080 
Clatrngshw 0.94400 1.12230 1.57080 

Strathyre 

Glen Esk 

Glen Tannar 

I Glen Fiddich 

I I Strathmashie 
I 	I 	I 	I 

I 	I 	I 	I Loch Laggan 
I 	I 	I 

20-22-1 9-1 5-16-17-Strathconon 

I 	 Clatteringshaws 

I 	 24-NewtonStew 

I 	 23 ---- Rhum 

I 	 I 	Glen Artney 
I 	I 

14-------------------18-------2 1 -Fairburn 

Caithness 

Remember, this is an unrooted tree! 
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Branch lengths and confidence limits. 

Ln Likelihood = 	67.54187 

Examined 231 trees 

Between And Length Approx. Confidence Limits 

Caithness 14 0.00000 ( -0.00562, 0.01261 ) 

14 20 0.00729 ( 0.00044, 0.02264 ) 

20 Strathyre 0.00000 C -0.00321, 0.00721 ) 

20 22 0.00495 C -0.00110, 0.01853 ) 

22 Glen Esk 0.00380 ( -0.00131, 0.01526 ) 

22 19 0.00121 ( -0.00312, 0.01091 ) 

19 GlenTannar 0.00319 ( -0.00100, 0.01259 ) 

19 15 0.00204 C -0.00141, 0.00979 ) 

15 GlenFiddic 0.00000 ( -0.00221, 0.00495 ) 

15 16 0.00619 ( 0.00008 3, 
0.01990 ) 

16 Strathmash 0.00038 ( -0.00130, 0.00414 ) 

16 17 0.00182 ( -0.00022, 0.00641 ) 

17 LochLaggan 0.00000 ( -0.00170, 0.00382 ) 

17 Strathcori 0.01082 ( 0.00065, 0.03364 ) 

14 18 0.02861 ( -0.00279, 0.09906 ) 

18 23 0.00806 C -0.00741, 0.04278 ) 

23 24 0.00985 ( -0.00144, 0.03518 ) 

24 Clatrngshw 0.00937 ( -0.00150, 0.03375 ) 

24 NewtonStew 0.00283 ( -0.00434, 0.01890 ) 

23 Rhum 0.00000 C -0.00653, 0.01465 ) 

18 21 0.01191 ( -0.00519, 0.05028 ) 

21 GlenArtney 0.00000 ( -0.00493, 0.01106 ) 

21 Fairburn 0.00737 ( 0.00045, 0.02290 ) 

APPENDIX 4d. Branch lengths and confidence intervals for tree 
from the previous page. Data from thirteen localities sampled 
in Scotland in 1980. 
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APPENDIX 5 

LSML76 - MIXED MODEL LEAST SQUARES PROGRAM 
ABRO VERSION - 14 OCTOBER 1980 
ADAPTED FROM HARVEY (1960) 

OVERALL MEANS AND STANDARD DEVIATIONS OF RHM 

WEIGHT 	MEAN= 	161.74129 	 S.D.= 	46.10751 
POINTS 	MEAN= 	4.90050 	 S.D.= 	2.86706 

COMBINED LEAST-SQUARES ANALYSIS OF VARIANCE 

WEIGHT 

SOURCE D.F. SUM OF SQUARES MEAN SQUARES F PROB 

LOCATS 13 52096.02 4007.38 7.916 0.0000 
HET % 2 342.08 171.04 0.338 0.7137 

REGRESSIONS 
AGE 	B 	LINEAR 1 67071.04 67071.04 132.482 0.0000 
AGE 	B 	QUAD 1 25285.20 25285.20 49.945 0.0000 

POINTS 

SOURCE D. F. SUM OF SQUARES MEAN SQUARES F PROB 

LOCATS 13 150.34 11.56 1.755 0.0534 
HET % 2 44.07 22.03 3.344 0.0375 

REGRESSIONS 
AGE 	B 	LINEAR 1 5.22 5.22 0.793 0.3745 
AGE 	B 	QUAD 1 45.85 45.85 6.957 0.0091 
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OVERALL MEANS AND STANDARD DEVIATIONS OF REM 

WEIGHT 	MEAN= 	97.78676 	 S.D.= 	29.76735 
LACTAT 	MEAN= 	1.38235 	 S.D.= 	0.65613 

COMBINED LEAST-SQUARES ANALYSIS OF VARIANCE 

WEIGHT 

SOURCE D.F. SUM OF SQUARES MEAN SQUARES F PROB 

LOCATS 12 41660.44 3471.70 16.932 0.0000 
HET % 3 1262.05 420.68 2.052 0.1104 

REGRESSIONS 
AGE 	B 	LINEAR 1 20868.30 20868.30 01.776 0.0000 
AGE 	B 	QUAD 1 8427.31 8427.31 41.100 0.0000 
REMAINDER 118 24194.91 205.04 

LACTAT 

SOURCE D.F. SUM OF SQUARES MEAN SQUARE F PROB 

LOCATS 12 10.79 0.89 3.407 0.0003 
HET % 3 0.75 0.25 0.955 0.4166 

REGRES S IONS 
AGE 	B 	LINEAR 1 13.79 13.79 52.225 0.0000 
AGE 	B 	QUAD 1 4.07 4.07 15.426 0.0001 
REMAINDER 118 31.16 0.26 
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OVERALL MEANS AND STANDARD DEVIATIONS OF RHM 

AGE 	MEAN= 	5.59718 	 S.D.= 	2.95058 

COMBINED LEAST-SQUARES ANALYSIS OF VARIANCE 

AGE 

SOURCE D.F. SUM OF SQUARES 	MEAN F PROB 
SQUARES 

WEIGHT 151 1380.26 9.14 2.584 0.0000 
IDH-2 2 10.01 5.00 1.416 0.2453 
GPI-1 1 11.08 11.08 3.134 0.0784 
SOD-1 2 25.56 12.78 3.613 0.0289 
SEX 1 52.33 52.33 14.796 0.0002 
LOCAT 15 140.71 9.38 2.652 0.0012 
REMAINDER 182 643.77 3.53 

STANDARD 
RUM ROW INDEPENDENT NO. EFFECTIVE CONSTANT ERROR OF 
NAME CODE VARIABLE OBS. NO. ESTIMATE CONSTANT 

AGE 1 MU 355 52.2 5.985 0.489 
AGE 2 IDH-2 1 172 33.8 0.352 0.218 
AGE 3 IDH-2 2 41 19.5 -0.439 0.295 
AGE 0 IDH-2 3 142 36.8 0.087 0.209 
AGE 4 GPI-1 2 326 52.4 -0.442 0.249 
AGE 0 GPI-1 3 29 18.4 0.442 0.249 
AGE 5 SOD-1 1 23 11.8 -0.473 0.406 
AGE 6 SOD-1 2 251 47.2 -0.217 0.245 
AGE 0 SOD-1 3 81 25.5 0.690 0.290 
AGE 7 SEX 1 137 28.2 0.859 0.223 
AGE 0 SEX 2 218 32.2 -0.859 0.223 
AGE 8 LOCAT 11 4 2.3 -0.289 1.158 
AGE 9 LOCAT 12 5 3.1 -0.346 1.000 
AGE 10 LOCAT 14 7 4.8 -0.043 0.801 
ACE ii LOCAT 21 44 13.2 0.197 0.474 
AGE 12 LOCAT 22 19 7.2 0.860 0.634 
AGE 13 LOCAT 24 22 7.2 0.469 0.676 
AGE 14 LOCAT 31 32 10.5 -0.520 0.539 
AGE 15 LOCAT 32 33 11.0 1.762 0.524 
ACE 16 LOCAT 33 40 13.8 -0.059 0.465 
AGE 17 LOCAT 34 23 5.1 -0.635 0.813 
AGE 18 LOCAT 41 52 13.7 -0.990 0.453 
ACE 19 LOCAT 42 10 3.4 0.950 0.975 
AGE 20 LOCAT 43 24 1.6 2.197 0.519 
AGE 21 LOCAT 51 17 8.5 -1.010 0.602 
AGE 22 LOCAT 52 9 5.2 -0.553 0.783 
AGE 0 LOCAT 53 14 7.3 -1.986 0.663 
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APPENDIX 7. 

Poacher detection probability on the Olympic Peninsula, WA 

MPI 	p = 0.913, q = 0.087 
PGM-i p = 0.813, q = 0.187 

AA  

AA=.8336 Aa=.1589 aa=.0076 
BB=.6610 Bb=.3041 bb=.0350 

Aa 	 aa 

BB 	0.5513 	0.1051 	0.0050 

Bb 	0.2535 	0.0483 	0.0023 

bb 	0.0292 	0.0056 	0.0003 

SOD-1 p = 0.383, q = 0.617 
PEP-2 p = 0.905, q = 0.095 

CC 

CC=.1467 Cc=.4726 cc=.3807 
DD=.8190 Dd=.1720 dd=.0163 

Cc 	 cc 

DD 	0.1201 	0.3871 	0.3118 

Dd 	0.0252 	0.0813 	0.0655 

dd 	0.0013 	0.0043 	0.0034 

Listed above are the gene frequencies for four polymorphic 
enzyme loci on the Olympic Peninsula, WA. The matrices are the 
expected genotype frequencies for MLPI and PGM-1 together, followed 
by those for SOD-1 and PEP-2. On the next page are the 81 possible 
genotype combinations for these loci, the expected frequency of each 
and the probability that two wapiti sampled at random on the 
Peninsula will share that genotype combination - simply the 
frequency squared. Because the probabilities for many of the 
genotypes are so small, they are listed in scientific notation, with 
the exponent in parenthesis. The sum of those probabilities, 
subtracted from 100%, gives the likelihood that two wapiti on the 
Olympic Peninsula, can be differentiated on the basis of 
polymorphism at those four loci. 
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GENOTYPE FREQUENCY PROBABILITY 

AABBCCDD 0.0662 4.4 (-3) AABBccDd 0.0361 1.3 (-3) 
AABbCCDD 0.0304 9.0 (-4) AABbccDd 0.0166 2.7 (-4) 
AAbbCCDD 0.0035 1.2 (-5) AAbbccDd 0.0019 3.6 (-6) 
AaBBCCDI) 0.0126 1.6 (-4) AaBBccDd 0.0069 4.7 (-5) 
AaBbCCDD 0.0058 3.4 (-5) AaBbccDd 0.0032 1.0 (-5) 
AabbCCDD 0.0007 4.5 (-7) AabbccDd 0.00037 1.4 (-7) 
aaBBCCDD 0.0060 3.6 (-5) aaBBccDd 0.00033 1.1 (-7) 
aaBbCCDD 0.00028 7.8 (-8) aaBbccDd 0.00015 2.2 (-8) 
aabbCCDD 0.000036 1.3 (-9) aabbccDd 0.00002 4.0 (-10) 

AABBCcDD 0.2134 4.55 (-2) AABBCCdd 0.00072 5.1 (-7) 
AABbCcDD 0.0981 9.6 (-3) AABbCCdd 0.00033 1.1 (-7) 
AAbbCcDD 0.0113 1.3 (-4) AAbbCCdd 0.000038 1.4 (-9) 
AaRBCcDD 0.0407 1.6 (-3) AaBBCCdd 0.00014 2.0 (-8) 
AaBbCcDr) 0.0186 3.5 (-4) AaBbCCdd 0.000063 3.9 (-9) 
AabbCcDD 0.0022 4.6 (-6) AabbCCdd 0.0000072 5.3 (-11) 
aaBBCcDD 0.0019 3.7 (-6) aaBBCCdd 0.0000065 4.2 (-11) 
aaBbCcDD 0.00089 7.9 (-7) aaBbCCdd 0.0000053 2.8 (-11) 
aabbCcDD 0.00012 1.4 (-8) aabbCCdd 0.0000004 1.5 (-13) 

AABBccDD 0.1719 2.95 (-2) AABBCcdd 0.0024 5.7 (-6) 
AABbccDD 0.0790 6.2 (-3) AABbCcdd 0.0011 1.1 (-6) 
AAbbccDD 0.0091 8.3 (-5) AAbbCcdd 0.00012 1.6 (-8) 
AaBBccDD 0.0327 1.1 (-3) AaBBCcdd 0.00045 2.0 (-7) 
AaBbccDD 0.0151 2.2 (-4) AaBbCcdd 0.00021 4.3 (-8) 
AabbccDD 0.0017 2.9 (-6) AabbCcdd 0.000024 5.8 (-10) 
aaBBccDD 0.0016 2.4 (-6) aaBBCcdd 0.000021 4.6 (-10) 
aaBbccDD 0.00072 5.2 (-7) aaBbCcdd 0.0000099 9.8 (-11) 
aabbccflD 0.000093 8.6 (-9) aabbCcdd 0.0000013 1.7 (-12) 

AABBCCDd 0.0139 1.9 (-4) AABBccdd 0.0019 3.6 (-6) 
AABbCCDd 0.0064 4.1 (-4) AABbccdd 0.00086 7.4 (-7) 
AAbbCCT)d 0.00074 5.5 (-7) AAbbccdd 0.00085 7.2 (-7) 
AaBBCCDd 0.0026 6.8 (-6) AaBBccdd 0.00036 1.3 (-7) 
AaBbCCDd 0.0012 1.4 (-6) AaBbccdd 0.00028 8.0 (-8) 
AabbCCDd 0.00014 2.0 (-8) Aabbccdd 0.000019 3.6 (-10) 
aaBBCCDd 0.00013 1.6 (-8) aaBBccdd 0.000017 2.9 (-10) 
aaBbCCDd 0.000058 3.4 (-9) aaBbccdd 0.0000078 6.1 (-11) 
aabbCCDd 0.0000075 5.6 (-11) aabbccdd 0.0000010 1.0 (-12) 

AABBCcDd 0.0448 2.0 (-3) 
AABbCcDd 0.0206 4.1 (-4) 	TOTAL 
AAbbCcDd 0.0023 5.6 (-6) 
AaBBCcDd 0.0085 7.3 (-5) 
AaBbCcDd 0.0039 1.5 (-5) 
AabbCcDd 0.00046 2.1  
aaBBCcDd 0.00041 1.7 (-7) 
aabbCcDd 0.00019 3.6  
aabbCcDd 0.000024 5.8 (-10) 

1.003 	10.23 (-2) 

100.00% 
- 10.23 

89.77% 	Probability 

.1-50-a- 
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Stalker selects stag for an estate quest to shoot. 
Ghillie is at right. 
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