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Abstract

Transfer Learning is an emerging framework for learning from data that aims at intel-

ligently transferring information between tasks. This is achieved by developing algo-

rithms that can perform multiple tasks simultaneously, as well as translating previously

acquired knowledge to novel learning problems.

In this thesis, we investigate the application of Gaussian Processes to various forms

of transfer learning with a focus on classification problems. This process initiates

with a thorough introduction to the framework of Transfer learning, providing a clear

taxonomy of the areas of research. Following that, we continue by reviewing the recent

advances on Multi-task learning for regression with Gaussian processes, and compare

the performance of some of these methods on a real data set. This review gives insights

about the strengths and weaknesses of each method, which acts as a point of reference

to apply these methods to other forms of transfer learning.

The main contributions of this thesis are reported in the three following chapters.

The third chapter investigates the application of Multi-task Gaussian processes to clas-

sification problems. We extend a previously proposed model to the classification sce-

nario, providing three inference methods due to the non-Gaussian likelihood the clas-

sification paradigm imposes. The forth chapter extends the multi-task scenario to the

semi-supervised case. Using labeled and unlabeled data, we construct a novel covari-

ance function that is able to capture the geometry of the distribution of each task. This

setup allows unlabeled data to be utilised to infer the level of correlation between the

tasks. Moreover, we also discuss the potential use of this model to situations where no

labeled data are available for certain tasks. The fifth chapter investigates a novel form

of transfer learning called meta-generalising. The question at hand is if, after training

on a sufficient number of tasks, it is possible to make predictions on a novel task. In

this situation, the predictor is embedded in an environment of multiple tasks but has no

information about the origins of the test task. This elevates the concept of generalising

from the level of data to the level of tasks. We employ a model based on a hierarchy

of Gaussian processes, in a mixtures of expert sense, to make predictions based on the

relation between the distributions of the novel and the training tasks. Each chapter is

accompanied with a thorough experimental part giving insights about the potentials

and the limits of the proposed methods.
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Chapter 1

Introduction to Transfer Learning

Machine learning algorithms are typically separated into three main categories, super-

vised, unsupervised and reinforcement learning. This classification depends mostly on

the availability of responses y for input data x. Supervised learning deals with prob-

lems where for each input x an output y is observed, while in the two latter categories

this correspondence does not exist. Unsupervised learning tries to find interesting pat-

terns in the data without explicit supervision, whereas in reinforcement learning the

learning algorithm seeks for the optimal sequence of actions that maximizes a reward

(Bishop, 2006).

An important aspect of all machine learning methods are the assumptions the model

is based on. This can be either due to their mathematical convenience or due to expert

knowledge. Typically, data are assumed to be independent and identically distributed

(i.i.d), or a notion of smoothness is assumed about the data generating mechanism

(Barber, 2011). Most importantly, it is commonly assumed that the distribution that

generated the training and the test data is the same. While this assumption allows to

generalise on unseen data, there are many situations where it is not valid. This might

happen either because the test data comes from a more general population or several

conditions have changed since the training data were acquired. The situations where

the training and test data distributions are different are usually referred to as sample

selection bias (Zadrozny, 2004) or covariate shift (Shimodaira, 2000).

Until recently, given data for a certain problem learning was mostly performed in

isolation of other similar problems. As an example, consider the problem of arrhythmia

classification especially in the case where several patients are involved. The learning

problem here is to have an automated system, a classifier, that is able to predict the

state, normal or arrhythmic, the heart of each patient is in. Arrhythmia is a condi-

1
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tion under which the parts of the heart are stimulated in a different order from that

of the normal operation of the heart, the normal sinus rhythm. Identifying arrhythmia

is performed by experts by ‘reading’ the electrocardiogram, or the ECG signal, that

measures the electrical activity of the heart and reflects which parts of the heart are

stimulated and in which order. Depending on the condition of the heart, normal or

arrhythmic, the order of stimulation of the different parts of the heart of each patient

is the same and is reflected in the ECG signal. Thus, the normal and arrhythmic heart

beats of different subjects, although not exactly the same because of high variations in

the ECG signal, tend to be related. A possible solution to this problem would be to

train a classifier for each patient by using annotated data for that specific patient only.

On the other hand training each classifier in isolation could potentially miss informa-

tion and result into a poor model of limited generalisation ability if for example not all

possible arrhythmia for that specific patient have been identified by the expert, whereas

training all patients together by using information from all patients (tasks) could over-

come this limitation. In this direction, since the pioneering work of Caruana (1997),

multi-task learning has emerged as a setting to handle situations where multiple tasks

are involved, and training of all tasks is performed in parallel.

Another important aspect is that there are many other real world applications where

annotated data are scarce or completely missing, while annotated data from similar

problems are plentiful. Returning to the arrhythmia classification example, consider

the situation where for some patients annotated data are available while we wish to

make predictions on a new patient for which training data are absent. The natural

question that rises is how to exploit or combine information from similar tasks to make

predictions for the task that limited or no annotated data exist. This type of problems

has triggered a lot of research specially in the field of natural language processing

(NLP), where annotating text resources can be very expensive. A solution to this type

of problems would be to resort to semi-supervised learning (Chapelle et al., 2006), that

in addition to labeled data it exploits information stemming from unlabeled data to im-

prove the performance of the model. As the semi-supervised approach would not take

into account the differences between the distributions of the tasks, another approach to

solving this type of problems is known as Domain Adaptation (DA) (Daumé III and

Marcu, 2006).

Over the last ten to fifteen years there has been a lot controversy over the terminol-

ogy for this type of settings and only recently a survey paper by Pan and Yang (2010)
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presented a detailed and justified classification of these problems1. Their perspective

to these problems is adopted and is reviewed later on with some modifications reflect-

ing our angle of view. The name that was given to this new framework is Transfer

Learning (TL) and covers all scenarios where the learning problem is embedded in

an environment of multiple related tasks. It should be noted that the term “transfer

learning” has previously been used to refer to scenarios where there the interest lies

in making predictions in a task where no labels are provided by exploiting other re-

lated annotated tasks (Do and Ng, 2006; Raina et al., 2006, 2007; Yu and Chu, 2008).

Other names that have been given are learning to learn (Baxter, 1997; Thrun and Pratt,

1998), inductive-bias learning (Baxter, 2000), and meta-learning (Vilalta and Drissi,

2002) and the interested reader is referred to those for a comprehensive review.

In the following sections of this chapter, we provide an overview of transfer learn-

ing algorithms by classifying them into three main categories. We continue by dis-

cussing some theoretical and practical issues concerning transfer learning, and finally

in the last section of this chapter we give an overview of the subsequent chapters, as

well as the contributions of this thesis.

1.1 Taxonomy of Transfer Learning Algorithms

Classifying transfer learning algorithms can vary depending on the criteria used. To

proceed further, we now sketch an overall picture of the framework of transfer learning

along with some definitions that will be found useful to identify the criteria that will be

employed to categorize it. The input data X = {x1, . . . ,xn} from each learning problem

have a feature space X , xi ∈ X , and a generating or marginal probability distribution

P(X), and the output data Y = {y1, . . . ,yn} have a label space Y . Given the training set

D = {X ,Y}machine learning algorithms are typically intended for finding a predictive

function f , or p(Y | f ,X)2 from the probabilistic point of view3, that maps the inputs to

the output space, X → Y . Following Pan and Yang (2010), we define the domain D
that consists of the feature space and the marginal distribution, D = {X ,P(X)}, and

the task T that consists of the label space and the predictive function, T = {Y , f}.
For explanatory reasons the description and categorization of transfer learning will

1This reflects strictly the author’s opinion.
2In Pan and Yang (2010) this is written as p(Y |X), it is our opinion that writing p(Y | f ,X) to denote

the likelihood is better suited.
3The predictive function f and conditional distribution of the outputs given the inputs p(Y | f ,X) are

used interchangeably throughout this chapter.
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Figure 1.1: Taxonomy of Transfer learning algorithms.

focus on one learning problem that we wish to make predictions, which we will call

the target task, and one problem that we wish to exploit, which we will refer to as the

source task; note however that the same criteria hold for multiple problems, source or

target. To carry on, we now give a formal definition of “Transfer Learning” (Pan and

Yang, 2010) which will act as the basis for its classification.

Definition 1 (Transfer Learning) Given a source domain Ds and a learning task Ts, a

target domain Dt and a learning task Tt , transfer learning aims to help improve the

learning of the target predictive distribution ft(.) in Dt using the knowledge in Ds and

Ts, where Ds 6= Dt or Ts 6= Tt .

The definition of transfer learning, and the availability of labels Y and input data X

during the training of the model are the two basic criteria that we will use to classify

transfer learning into three main categories, inductive, transductive, and unsupervised

transfer learning.

Notably, this classification is similar to the one employed by Arnold et al. (2007).

The difference between them is that in Arnold et al. (2007) transfer learning is classi-

fied only into inductive and transductive, while unsupervised transfer learning is men-

tioned as an alternative name for transductive transfer learning. Transfer Learning in

reinforcement learning has also received a great amount of attention but since it falls

out of the scope of this work we refer to Taylor and Stone (2009) for a survey on that

subject.
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Figure 1.2: Inductive transfer learning.

1.1.1 Inductive Transfer Learning

In inductive transfer learning, regardless of the nature of the target and source domain,

the target task Tt is different from the source task Ts, Ts 6= Tt . Based on the definition

of the domain D and the task T , in inductive transfer learning the tasks can have either

different predictive functions, fs 6= ft , or different label spaces, Ys 6= Yt . However, note

that as far as we know the requirement that Ts 6= Tt , is not employed in the modeling

process4, in contrast to Covariate Shift and Sample Selection bias form the transductive

category of transfer learning that makes explicit use of these specifications in the train-

ing of the model. Antithetically, if the predictive functions and the label space were

exactly the same then any form of ‘smart’ combination of data from different tasks

would not be needed, since pooling data from all problems together would be suffi-

cient. Most importantly, a basic requirement for a problem to fall into this category is

the presence of annotated data Yt during training to ‘induce’ the predictive function ft
in the target domain. Figure 1.2 shows the individual subsettings of Inductive transfer

learning along with the sources of information involved in each one; Xs and Xt are the

input data of the source and the target task respectively, Ys and Yt are the output data of

the source and the target task and Xu
s and Xu

t are the unlabeled ‘auxiliary’ data of the

tasks.
4By modeling process is meant the development of the algorithm.
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1.1.1.1 Multi-task Learning

The main representative of this category is multi-task learning (MTL), and especially

the case where the focus is to improve the performance of one specific learning prob-

lem. Despite the fact that the majority of the developed multi-task learning algorithms

aim at improving the performance of all learning problems simultaneously, unarguably

most of them can be employed to improve the performance of the target task only. This

issue is specifically addressed in Xue et al. (2007), where multi-task learning is sep-

arated into two cases symmetric and asymmetric. In the first case the goal is to learn

jointly multiple tasks, whereas in the latter the goal is to transfer previously acquired

knowledge from some source tasks to improve the performance of the target task. From

this further separation of multi-task learning it is concluded that the asymmetric case

is more in accordance with the definition of transfer learning.

As in the more general case of transfer learning, transferring information between

learning problems by training them together has been found to be most appropriate and

advantageous in situations where limited annotated data are available for each task.

Due to that reason multi-task learning has triggered a great amount of research over

the last years, and has been approached by several learning frameworks such as neural

networks (NN) (Caruana, 1997; Baxter, 1997; Bakker and Heskes, 2003), deep neural

networks (Collobert and Weston, 2008), conditional random fields (Sutton and McCal-

lum, 2005), support vector machines (SVMs) (Jebara, 2004), regularization networks

(Evgeniou et al., 2006), Gaussian Processes (GPs) (Schwaighofer et al., 2005; Bonilla

et al., 2008), logistic regression with Dirichlet Processes (DPs) (Xue et al., 2007) and

many other.

One of the simplest forms of multi-task learning, which in contrast to the major-

ity of the existing methods does not rely on the development of new algorithms but

is based on the idea of feature augmentation, is the work of Daumé (2007) which is

named EasyAdapt5 (EA). The ease of implementation of EA is that it can simply act as

a preprocessing step and in turn be combined with several standard supervised classi-

fiers such as maximum entropy (MaxEnt) (Nigam et al., 1999), SVMs (Schölkopf et al.,

1999), or logistic regression (Bishop, 2006). In essence, if F is the total number of fea-

tures of both Xs and Xt
6 (x ∈ RF ), then EA acts as a mapping where Φ(x) ∈ RF(m+1),

where m is the number of learning problems. In the augmented space, the first block

of F features is shared between all tasks and is always active, while the other blocks

5Note that Pan and Yang (2010) has included EA in the transductive category of TL.
6We assume that the tasks have the same feature space.
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are task specific and are activated only when the features are extracted by that specific

task. For one source and target task the augmented space will be given by,

Φs(x) =< x,x,0>, Φt(x) =< x,0,x> (1.1)

where 0 is the zero vector of length F . It is worth emphasizing the fact that although

EA was named “Frustratingly Easy Domain Adaptation”, it is our opinion that it fits

better to the inductive category of TL since it requires labeled data in the target task to

work, an opinion that is also shared by Arnold et al. (2007) and Chang et al. (2010).

The term domain adaptation, which was imported from the NLP community, is

separated into supervised, semi-supervised, and unsupervised (Daumé III and Marcu,

2006; Daumé et al., 2010); supervised DA requires labeled data in the target task in

the spirit of asymmetric multi-task learning and will be classified into the inductive

setting of TL; semi-supervised DA makes use of labeled and unlabeled data from both

source and target task and is also classified in the inductive setting as a form of semi-

supervised MTL; finally, in unsupervised DA which falls into the transductive TL cat-

egory, no target task labeled examples are available during training.

Last but not least, the interesting scenario where the learning problems have a dif-

ferent label space, Ys 6= Yt , and more specifically different number of classes, has not

been left unattended. Parameswaran and Weinberger (2010) extends the large mar-

gin nearest neighbor classifiers of Weinberger and Saul (2009) to the multi-task case,

where tasks can have different classes; similarly to the SVM formulation the optimiza-

tion problem is convex providing convergence guarantees, but the use of the kNN rule

inherently allows it to extent to differing number of classes between the tasks.

1.1.1.2 Multi-response Learning

A setting that is closely related to multi-task learning is that of multi-response learning

(MRL), which is also known as multi-output learning. In multi-response learning there

are still several tasks to be learned but all share the same input space, which means that

each input corresponds to several outputs. This is illustrated in figure 1.2 where the

source and the target task share the same set of inputs X , in contrast to MTL where

each task has a separate set of inputs. Thus, multi-response learning can be considered

as a specific instance of inductive transfer learning where the source and target prob-

lems have exactly the same domain Ds = Dt , and the tasks are different Ts 6= Tt . This

situation is most frequent in classification problems where classes are not considered

to be mutually exclusive, which is termed as multi-label classification. For example,
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this scenario has been observed in document classification where a document might

correspond to several topics or in medical diagnosis where patients are diagnosed with

several diseases (Tsoumakas and Katakis, 2007). Multiple response methods in regres-

sion have also found useful applications, for example in chemometrics (Breiman and

Friedman, 1997), or in modeling Robot arm dynamics (Teh et al., 2005; Chai et al.,

2009).

1.1.1.3 Semi-supervised Multi-task Learning

The merits of training multiple tasks together have directed researchers to extend

the multi-task setting to exploit unlabeled data, to give the semi-supervised multi-

task learning framework (SS-MTL). Training multiple tasks together while exploiting

information from unlabeled data has been reported to outperform simple multi-task

learning (Liu et al., 2009; Zhang and Yeung, 2009); Liu et al. (2009) develop a SS-

MTL algorithm for classification problems by employing a variant of the Dirichlet

process with an EM algorithm, whereas the work of Zhang and Yeung (2009) in the

context of Gaussian Processes applies it in regression problems. Although SS-MTL

has not received the attention of MTL, it has successfully been applied in several fields.

Examples of that is the work of Ando and Zhang (2005) on NLP problems employing

a structural learning algorithm, the work of (Quattoni et al., 2008) on image classifi-

cation using the (l1, l∞) regularization, or in bioinformatics by Qi et al. (2010) where

they train a multi-layer perceptron network for predicting protein to protein interac-

tions. The idea of feature augmentation EA (Daumé, 2007), has also been modified in

Daumé et al. (2010) to account for unlabeled data giving the semi-supervised analog

of EA, as EA++. EA++ being applied in the task of sentiment classification presented

superior results than that of EA,verifying the fact that the inclusion of more sources of

information results in improved performance.

1.1.1.4 Self-taught Learning

In contrast to multi-task learning where labeled data are available for all tasks, source

and target, in self-taught learning (SeTL) (Raina et al., 2007) labeled data are available

only for the target problem. Self-taught learning, another setting that falls into the

inductive category intended mainly for classification problems, uses the unlabeled data

from another source task to improve the predictions in the target task for which limited

labeled data are available. A condition that needs to be satisfied for a learning problem
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Figure 1.3: Transductive transfer learning.

to be approached by a SeTL algorithm, and simultaneously differentiates it from semi-

supervised learning, is that data from the source task cannot be assigned to any of the

target tasks classes.

1.1.2 Transductive Transfer Learning

In transductive transfer learning the source and target tasks are the same Ts = Tt , while

the domains are different, Ds 6= Dt . This sub-setting can further be divided to situations

where the feature space between the source and target task are different, Xs 6= Xt , or to

situations where the data generating distributions are different, ps(X) 6= pt(X).

Originally, the term transductive transfer learning was introduced by Arnold et al.

(2007) to refer to scenarios where abundant labeled data for the source task are avail-

able, while no labels are provided for the target task. The learning problem in this type

of scenarios is how to transform or adapt the predictor learned on the source task to

make predictions on the target task. A possible solution to this problem would be to

include the target task unlabeled data during the training of the model on the source

task labeled data in a transductive sense, whilst accounting for the difference in the

distributions. This type of scenarios will be called cross-domain transfer, and will re-

fer to situations where labeled data are absent for the target task and ps(X) 6= pt(X).

Traditionally, the term transductive (Vapnik, 1998; Joachims, 1999) was used to refer

to situations where all test data were used during the learning phase constituting the

model as test data specific, and in case new data arrived the model had to be retrained.

In the transfer learning framework this constraint is relaxed and the term transduc-
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tive is valid for situations where only a part of the target task data set is used during

the training of the model. Differently from transductive learning, in semi-supervised

learning the unlabeled data that are used during training, which are usually referred to

as auxiliary input data, are not considered as part of the test set. The situations where

the feature space between the source and the target task are different will be referred to

as translated learning and will require labeled data from both the source and the target

task. Figure 1.3 illustrates the subsettings of Transductive transfer learning along with

their specifications and the sources of information that are involved during the training

of the model.

1.1.2.1 Translated Learning

Combining tasks with different feature spaces, Xs 6= Xt , is in general a very difficult

problem as a common feature space provides a common metric system to discover

similarities between data objects. As a result, learning in transductive TL with different

feature spaces requires annotated data in both the source and the target task. The term

that will be used to describe this situations is translated learning (Dai et al., 2009).

Considering the predicament of this learning problem, the model that was devel-

oped in Dai et al. (2009), which was based on the language model of Lafferty and Zhai

(2001), was successfully applied in image classification by translating information ob-

tained from text data, and to cross-language classification by using English documents

as source data to classify German documents. Another study that addresses this prob-

lem is the work by (Arnold, 2009, Ch. 3) who applies it to the problem of name entity

recognition (NER).7 Other related settings that combine datasets with different fea-

ture spaces are co-training (Blum and Mitchell, 1998), or multi-view learning (Minton

and Knoblock, 2002), but since they are intended for problems where the same learn-

ing problem has more than one feature representations we decide not to include them

within the transfer learning framework.

1.1.2.2 Cross-domain transfer

Learning settings that specifically address the issue of different distributions between

the source and the target task, ps(X) 6= pt(X), with no access to labeled data from

the target task but with the same feature space Xs = Xt , are sample selection bias

7Note that (Chai, 2010, Ch. 2) also outlines a method to combine tasks of different feature spaces in
the context of multi-task Gaussian Processes.
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(Zadrozny, 2004; Huang et al., 2007), covariate shift (Shimodaira, 2000), and unsu-

pervised domain adaptation (DA) (Arnold et al., 2007). Sample selection bias and

covariate shift are closely related settings, that handle situations where the training and

test data distributions are not the same or the observed (training) data are not a good

representative of the whole population. Conceptually, their difference with domain

adaptation is that the training and the test data distributions are not the same because

of the biased nature of the sampling process, whereas in domain adaptation it is not the

same because it comes from a different domain. For a more in depth discussion about

the differences of covariate shift and sample selection bias we refer to Storkey and

Sugiyama (2007), and to Quiñonero-Candela et al. (2009) about the general problem

of “Dataset shift”.

More formally, given a training/source set Xs originating from ps(X) for which

labels Ys are observed, and a test/target set Xt from pt(X) for which labels are not

observed where ps(X) 6= pt(X) and Xs = Xt , the goal of cross-domain transfer is to

construct a predictor that performs well on the target set by utilizing information from

the source task.

Unsupervised DA has mostly been applied in NLP problems, some examples of this

include the work of: Arnold et al. (2007) who develop a variant of MaxEnt to apply

in the problem of NER, Blitzer et al. (2006) that makes use of the idea of structure

learning of Ando and Zhang (2005) to perform the PoS8 task, and Huang and Yates

(2009) that improves upon the results of Blitzer et al. (2006) by applying a smoothing

technique on top of HMMs. Another approach to unsupervised DA, which tries to

match the source and target distributions by finding a shared latent space is a method

called Transfer Component Analysis by Pan et al. (2009), which compared to other

baselines produced superior performance on a text classification problem and on the

problem of estimating the location of a mobile device based on the signal values from

access points. Finally, concerning the classification of TL it is worth noting that the

description of transductive transfer learning and DA presented here is in agreement

with the one given in Ben-David et al. (2007), where it is said: “Unlike in inductive

transfer, where the tasks we wish to perform may be related but different, in DA we

perform the same task in multiple domains”.

8The acronym PoS is used to denote the task of Part of Speech tagging that aims at tagging the
syntactic role of each word (Collobert and Weston, 2008).
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Figure 1.4: Unsupervised transfer learning.

1.1.3 Unsupervised Transfer Learning

Relatively to the first two categories, unsupervised transfer learning has not received

so much attention. Our perspective of unsupervised transfer learning covers a wider

spectrum of problems than the one given in Pan and Yang (2010). In Pan and Yang

(2010), the transfer learning analog of unsupervised learning deals with problems like

dimensionality reduction, clustering, or density estimation but in scenarios where mul-

tiple tasks are involved. This is the exact analog of unsupervised learning in the TL

case, as it is intended for problems where there are no annotated data involved either

in the source or the target task during training. This type of settings will be referred to

as multi-unsupervised learning (MUL).

In all of the settings that were discussed so far, the input data of the target task XT

were accessible during training, and one of the major differences between them was

the availability of labels either in the source or the target task. A very interesting sce-

nario that is worth investigating, is the case where the learner has no access to any data

from the target domain Dt during training. This feature adds up to the criteria that can

be used to classify TL, since in all of the previous cases the observability of the target

input data Xt was assured and it was giving exploitable information about the target

task. Therefore, this scenario is unsupervised in the transfer learning sense because

there is no supervision at all on the side of the target task. The scenario that has just

been described is inspired by Baxter (2000), who said “... a bias learner generalises

well if, after seeing sufficiently many training tasks it produces a hypothesis space that

with probability contains good solutions to novel tasks”. Additionally, he also com-
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mented that a form of meta-generalisation is possible, where instead of generalising

in the space of data points coming from the same task, the generalisation is performed

in the space of tasks. The situation where no training data from the target task are

available during training, will be referred to as Meta-generalisation.

Therefore, in this work the category of unsupervised transfer learning is intended

for two types of scenarios (figure 1.4):

1. In Multi-Unsupervised learning, where the learning problem is unsupervised like

clustering, dimensionality reduction, or density estimation, but when multiple

tasks are involved (Pan and Yang, 2010).

2. In Meta-Generalisation, where the target input data Xt are not accessible during

training and the learning problem can be regression or classification.

Some examples of unsupervised transfer learning based on the view of Pan and Yang

(2010), is the work of Dai et al. (2008) who proposed a novel method for clustering

when data for the target task are scarce, or the model in Wang et al. (2008) that exploits

labeled data from a similar source task to perform dimensionality reduction in the

target task.

1.2 Theoretical and Practical issues in Transfer Learn-

ing

It is clear that the framework of transfer learning raises many issues involving its limits,

its applicability, and the assumptions that it is based on. First, it is worth spending

a moment to investigate the reasons that have made transfer learning so attractive,

triggering so much research around it.

From our angle of view, there are two motivating reasons for transfer learning.

The first is from the philosophical side of machine learning and the second is from

the practical point of view, inspired by real-world scenarios. Although we have to

be cautious with any direct parallelism and explanation of how human learning takes

place, a widely accepted belief is that humans intelligently apply previously acquired

knowledge to tackle problems that they encounter for the first time, acting as a memory

based learning and decision making machine. Thus, transfer learning is a step closer to

human learning and decision making than conventional machine learning techniques,

since its primary goals are to combine multiple sources of information, and to transfer
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previously acquired knowledge to future tasks. From the practical point of view, as

the world becomes more quantitative day by day large amount of data from different

tasks are being stored, while labeling requires human effort making annotations for

these data expensive and tedious to obtain. Therefore, it would be desireable to have

methods that are able to deal with this inadequacy of labeled data, as well as translating

a previously encountered problem for which labels are provided to new specifications

and learning tasks.

1.2.1 Theoretical analysis

Theoretical work that directly addresses the limit of success of transfer learning is

concerned with the derivation of error bounds on the generalisation performance for

this type of algorithms. This analysis fills the gap for theoretical justification of the

empirical benefits that transfer learning has been reported to deliver.

In inductive transfer learning, Baxter (2000) was the first one to provide gener-

alisation error bounds for multi-task learning based on a generalised version of the

VC-dimension (Blumer et al., 1989; Vapnik, 1999). Baxter’s version of VC-dimension

has been used by Ben-David and Borbely (2008), which extends the main results of

Ben-David et al. (2002), to provide guarantees that the generalisation error of single-

task learning will be larger than multi-task learning in cases of small training sample

sizes. Other theoretical analysis that is based on Baxter’s results is the work of Ando

and Zhang (2005), that derive bounds that the hypothesis space can be estimated more

reliably for increasing numbers of tasks. Chai (2009) provides bounds on the gener-

alisation error for the asymmetric case of the multi-task GP model of Bonilla et al.

(2008), whose analysis is similar to the one given for the multi-task model with the

generalised t-process of Zhang and Yeung (2010). On the feature augmentation frame-

work, Daumé et al. (2010) present theoretical analysis on the generalisation bounds for

EA and EA++, showing that EA++ should perform better than EA. EA has previously

been theoretically analyzed in the work of Chang et al. (2010) who pointed out the

need for combining EA with unlabeled data.

Theoretical analysis for the problem of Domain Adaptation has also received con-

siderable attention. Ben-David et al. (2007) derive bounds on the generalisation perfor-

mance of the target task in the context of unsupervised domain adaptation. In the DA

paradigm, since the goal is to use labeled data from a source task to make predictions

in the target task the bound depends on two quantities; one is the generalisation error
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of the source task and the second is the divergence between the source and target dis-

tributions. Other theoretical work on unsupervised DA is the paper by Mansour et al.

(2009a), that builds on the work of Ben-David et al. (2007) and define a novel dis-

tance measure between distributions, or the work by Blitzer et al. (2008) and Mansour

et al. (2009b) that focus on situations of multiple source tasks. Theoretical analysis in

other settings of transductive TL is the work by Cortes et al. (2010) in sample selec-

tion bias whose analysis is based on a generalised version of the point-based stability

of Bousquet and Elisseeff (2002).

1.2.2 Applicability and task relatedness

Concerning the applicability of transfer learning, in the introduction of this chapter

we gave an example illustrating the necessity for this type of algorithms. This sim-

ple example represents only a fraction of the areas it can be applied, since it has been

found useful in many areas that involve multiple tasks as in sentiment classification

(Blitzer et al., 2007), spam e-mail classification (Bickel and Scheffer, 2007), name

entity recognition (NER) (Arnold, 2009) or in other natural language processing prob-

lems (Daumé III and Marcu, 2006), bioinformatics (Qi et al., 2010), cancer classifica-

tion (Zhang et al., 2010), compiler performance prediction (Bonilla et al., 2007), image

classification (Raina et al., 2007), HIV therapy screening (Bickel et al., 2008), recom-

mendation systems (Dinuzzo et al., 2008), and many others. However, the numerous

examples of the success of transfer learning do not imply that it can applied be in every

situation that involves multiple tasks.

Undoubtedly, the applicability and most importantly the success of transfer learn-

ing is intimately connected with the notion of task relatedness. The concept behind

this is that, if two tasks are not related then any transfer of information between them

would at the very least not make any difference than training in isolation, while in the

worst scenario would even produce an adverse effect in the tasks performance, known

as negative transfer. Due to that reason several authors have specifically addressed the

issue of task relatedness, where for example in Silver and Mercer (2001) task relat-

edness is defined as the utility of using the samples of the source and target task to

develop an effective hypothesis for the target task. Although the definition that was

given was rather abstract they also provided and empirically compared several com-

putable measures of task relatedness that could be used in practice. Ben-David and

Schuller (2003) take a more theoretical approach to that subject by defining task re-
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latedness in terms of the data generating mechanism, where they say that two task are

F -related if the input data of these tasks are generated by applying a function f ∈ F
on a fixed probability distribution. Another definition that has also been proposed is

that of Chai (2010) who says that “two tasks are related to each other when they benefit

mutually under metalearning”, also providing a thorough discussion about the differ-

ent approaches and concepts about the notion of task relatedness that demonstrates the

diversity on that subject.

Clearly, none of the interpretations of task relatedness is right or wrong but it de-

pends on the way you look at the problem. The approach that will be followed here

is more from the practical point of view and is based on the available information that

can be exploited and on quantities that can be computed. Ideally, it would be desirable

to have algorithms that are able to automatically determine which tasks are related and

only then transfer knowledge from one task to the other. Without doubt, the process of

automatically determining which tasks are related is highly dependent on the available

information and more specifically on the level of supervision on the target task.

From the three categories of TL the only one that provides the required level of in-

formation to infer which tasks are related without compelling us to make any explicit

assumptions is the inductive setting, that is fully supervised in the TL sense. Specifi-

cally, in the multi-task and multi-response settings the observability of the inputs and

outputs in both the source and target tasks allows to model their predictive functions

fs and ft , as well as the prior probability distribution of the inputs ps(X) and pt(X)

independently of the information in the other task. So, a solution to the determina-

tion of whether a source and a target task are related, would be to test if the predictive

functions fs and ft give similar solutions for the same set of points. Therefore, given

source and target task training data Xs = {xs
i}ns

i=1 and Xt = {xt
i}nt

i=1 respectively, with

the same feature spaces Xs = Xt , and denoting the union of these sets as X = Xs∪Xt

with N = ns +nt , task relatedness can be computed as,

λ =
N

∑
i=1
| ft(xi)− fs(xi)|, (1.2)

where xi ∈ X , and λ is the parameter that quantifies the relatedness between those

two tasks. Note that the sum over the differences of the two predictive functions in

equation 5.1, bears some resemblance with the measure used to compute the error of

a classifier that discriminates samples from different distributions in Ben-David et al.

(2007). This simple example shows that in the case of multi-task/response learning the

available information allows to determine which tasks are related before applying any
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algorithm that combines them.

In the other two categories of transfer learning the available information is insuf-

ficient to perform this test. In the case of transductive and unsupervised TL where

the only exploitable information from the side of the target task is the input distribu-

tion pt(X), it has to be assumed (e.g. through expert knowledge) that the source tasks

contain beneficial information about the learning of the target task.

1.2.3 Assumptions in Transfer Learning

An important aspect of transfer learning are the assumptions that it is based on. In con-

trast with the standard machine learning problems, the TL algorithms require stronger

assumptions to be satisfied in order for them to be successful. The reason is that the

nature of the problem is more complicated since it involves different sources of infor-

mation to be combined which in turn imposes more constraints. For example the lack

of labels on the target task in the transductive category of cross-domain transfer com-

pels us to assume that the predictive functions between the source and the target task

will be same. By assuming that, the predictive function acts as an information bridge

between the two tasks allowing to make predictions based on the labels of the source

task.

Clearly, depending on the setting and the specifications of the problem these as-

sumptions change. However, in order to allow the different tasks to interact with each

other so that they can mutually benefit from the information contained in the other

tasks, it is common practice to allow them to share a certain structure. Sharing a struc-

ture can take the form of an implicit assumption when constructing the model, for

example sharing the hidden units of a NN (Caruana, 1997), a common hierarchical

prior (Yu et al., 2005) or hyperparameters of a GP (Lawrence and Platt, 2004), similar

sparsity patterns (Argyriou et al., 2008; Obozinski et al., 2009) and others. Finally, it

is worth saying that if this type of assumptions are enforced in inductive TL then they

take a weaker form, because the labels on the target task act as a safeguard to avoid

negative transfer if they are not met. On the other hand if they are employed in trans-

ductive and unsupervised TL then they are considered stronger since it is usually hard

in practice to check their consistency.

An example of an explicit assumption is that of the covariate shift which pre-

sumes that the joint probability distribution of the inputs and outputs of the source task

ps(Y,X) differs from the joint of the target task pt(Y,X) only in the prior of the inputs
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(Shimodaira, 2000; Huang et al., 2007). This means that the conditional probabilities

Y |X of the target and the source tasks are the same ps(Y |X) = pt(Y |X) = p(Y |X):

ps(Y,X) = p(Y |X)ps(X)

pt(Y,X) = p(Y |X)pt(X).

The importance of the covariate shift assumption, and more specifically that ps(X) 6=
pt(X), is highlighted by the fact that it acts as one of the basic features of transductive

TL, differentiating it from the inductive category. The lack of labels in the target task

is the main reason for imposing this assumption, as without it training in the target

task would be unsupervised since there is no information about the distribution of the

target labels Y . In a more recent work, Ben-David et al. (2010) provide an analysis on

the assumptions needed for domain adaptation to be successfull. The tools used for

this analysis are based on the PAC framework (Valiant, 1984). Loosely speaking these

assumptions are, i) the well studied covariate shift, ii) the similarity of the unlabeled

distributions, which can be a distance measure between the two distributions originally

introduced in Kifer et al. (2004), and iii) the existence of a classifier with low prediction

error in both the source and target task. The last assumption, which was first defined

in Ben-David et al. (2007), can be interpreted as the agreement between the labels of

the source and target task with the simultaneous existence of a low error predictor in

both tasks. In conclusion, it is obvious that the assumptions needed for the transductive

and unsupervised TL to succeed are a lot stronger and failure to meet them can have

an unpredictable effect on the performance of the target task.

1.3 Scope and Summary

This chapter presented an overview of the framework of Transfer Learning, covering

its most important aspects. A precise and thorough classification was presented which

extends and partially differs from the survey paper of Pan and Yang (2010). This

taxonomy was dictated mostly by the notions of the domain, D = {X ,P(X)}, and the

task T = {Y , f}, resulting into three major categories of TL. The first category is

the Inductive setting, where Ts 6= Tt and includes the subsettings of multi-task, multi-

response, semi-supervised multi-task and self-taught learning. The second category

is the Transductive setting, where Ds 6= Dt , consisting of the subsettings of translated

learning and cross-domain transfer. The last category is the Unsupervised setting,

which does not rely on the notions of the domain and the task. In contrast this category
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is intended for learning in multiple unsupervised tasks, the exact analog unsupervised

learning in the TL case, and the novel setting of meta-generalising, a situation where

the learner has no exploitable information during training about the target task. Finally,

theoretical issues involving the generalisation performance of TL, the assumptions TL

is based on, and the issue of task relatedness have also been discussed.

The framework of Transfer Learning poses many new challenges to the machine

learning community. Among them is the development of intelligent ways of multi-

source data integration, the estimation of optimal cross-task latent representations, and

last but not least the estimation of the level and type of correlation between tasks. In

strong connection to these are the situations where there are heterogeneous sources

of information with different marginals distributions, but also the most commonly en-

countered problem of predicting in an undersampled task by using informations ex-

tracted from another yet related task.

In this thesis we will take a Bayesian approach to Transfer Learning and exam-

ine the application of Gaussian processes, a non-parametric Bayesian method, to three

different forms of transfer learning: Multi-task learning, Semi-supervised Multi-task

learning and Meta-generalisation. Bayesian methods allow the encoding of expert

knowledge in the form of prior probability distributions, as well as to explicitly in-

clude assumptions into the model. Moreover, in most of the cases the estimated pos-

terior distributions over model parameters and hyperparameters have an interpretable

character, allowing the identification of the model. These characteristics can be benefi-

cial in settings where there are not enough data to adequately model a complex system

as in the case of Transfer learning which involves the combination of multiple sources

of information and the inclusion of assumptions in the modeling process.

1.4 Thesis Structure

The rest of this thesis in relation to the taxonomy introduced in section 1.1 is organized

as follows. Chapters 2 and 3 are concerned with the problem of Multi-task learning

from the Inductive category. The subject of Chapter 4 is Semi-supervised Multi-task

learning again from the Inductive category, although a model is proposed that can be

applied to Self-taught and unsupervised Domain adaptation problems from the Trans-

ductive category. Finally, Chapter 5 is concerned with the Unsupervised category of

Transfer Learning investigating the scenario of Meta-generalising.

In Chapter 2, we provide a brief introduction to Gaussian Process prediction, and
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we review the existing approaches to multi-task GP regression. These approaches

are classified into two main categories based on the level of transfer of information

between the tasks. This classification sheds light on the reasons that have made us

choose this model for solving classification problems. We close this chapter by empir-

ically comparing some of the reviewed methods on a real data set.

In Chapter 3, we adapt the multi-task GP model of Bonilla et al. (2008) to the clas-

sification scenario. Dealing with non Gaussian likelihoods employed in classification

problems, an asymptotically exact inference scheme and two deterministic approxi-

mations are developed. Finally, the deterministic methods are evaluated on one toy

and two real world applications by providing comparisons with other methods that

illustrate their effectiveness.

In Chapter 4, we propose two alternative formulations for Semi-supervised Multi-

task learning with Gaussian processes. The proposed model makes use of the model of

Bonilla et al. (2008) and the model introduced in Sindhwani et al. (2007) to learn from

labeled and unlabeled data for GP classification. One of the key features of the second

formulation is that unlabeled data contribute to the learning of the task similarities,

a formulation which is more a effective in situations where the task similarities are

smaller or there are outlier tasks. Thorough experimental evaluation on two text and

one character classification problem gives more insight about the methods.

In Chapter 5, we formally introduce the setting of meta-generalisation, that is mak-

ing predictions on totally unseen tasks by utilizing the predictors learned from several

but related tasks, and we develop a model based on GPs able to tackle this kind of

situations. The proposed model tackles the meta-generalisation problem by coupling

two GPs, one that learns the task responsibilities through a multi-class classifier, and

one that learns the individual prediction tasks as well as the task similarities through a

multi-task classifier. Thorough experimentation on several data sets provides more in-

sight to the ambitious problem of meta-generalisation. Finally, in Chapter 6 we make

some concluding remarks and we discuss possible avenues that this work could be

furthered.

Chapter 2, 3, 4, 5 are all written in a self-contained manner, such that they can

be read independently of the other. For that reason, except from Chapter 2, all other

chapters give a brief introduction to Gaussian processes and of the multi-task model

of Bonilla et al. (2008). Although Chapter 2 presents GPs in a greater extent than the

other chapters, for a formal introduction to Gaussian Processes for machine learning

we refer to the textbook of Rasmussen and Williams (2005). It should also be noted that
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throughout the thesis all experimental results from different methods were compared

using the t-test, when this was found appropriate and necessary.

1.5 Contributions

The contributions of this thesis are reflected in the following papers:

• Skolidis, G., Clayton, R. H., and Sanguinetti, G. (2008). Automatic classication

of arrhytmic beats using Gaussian processes. In IEEE Transactions on Comput-

ers in Cardiology, 921-924, Bologna, Italy, 2008.

This is the outcome of the work in the early stages of this thesis, which ap-

plies Gaussian Processes to the Arrhythmia classification problem and acts as

the starting point for this thesis. For reasons of completeness we attach this

paper in appendix D

• Skolidis, G., Sanguinetti, G. (2010). Bayesian Multi-task Classication with

Gaussian Process Priors, IEEE Transactions on Neural Networks, 22(12):2011-

2021, Dec. 2011.

The work of this paper is presented in chapter 3.

• Skolidis, G., Sanguinetti, G. (2011). A case study on Meta-Generalising: a

Gaussian Processes approach, The Journal of Machine Learning Research (JMLR),

In Press.

This work is presented in Chapter 5.

Papers Under Review:

• Grigorios Skolidis, Katja Hansen, Guido Sanguinetti, Matthias Rupp. Multi-

task learning for pKa prediction, Journal of Computer-Aided Molecular Design,

Major revisions.

Part of this work is presented in the experimental section of Chapter 2.

• Skolidis, G., Sanguinetti, G. (2011). Semi-Supervised Multi-task learning with

Gaussian Processes, submitted to IEEE Transactions on Neural Networks and

Learning Systems.

Chapter 4 is an extended version of this paper.



Chapter 2

Multi-task Learning with Gaussian

Processes for regression

Gaussian Processes (GPs) is a Bayesian framework for spatial interpolation; work on

GPs dates back in the 1970s in the field of statistics (Matheron, 1973; O’Hagan and

Kingman, 1978). Since the work of Williams and Rasmussen (1996) GPs have become

extremely popular in the machine learning community and have received a consider-

able amount of attention. It could be argued that one of the main reasons for the interest

in GPs from the machine learning community stems from the work of Neal (1996) who

has shown that a GP prior over functions is equivalent to a neural network in the limit

of infinite hidden nodes. Following that, GPs have successfully been applied to classi-

fication problems (Williams and Barber, 1998; Rasmussen and Williams, 2005) or to

different types of learning, as semi-supervised learning (Lawrence and Jordan, 2005;

Sindhwani et al., 2007; Adams and Ghahramani, 2009), to unsupervised learning tasks

such as dimensionality reduction (Lawrence, 2004), density estimation (Adams et al.,

2009), or clustering (Kim and Lee, 2007), as well as in reinforcement learning (Ras-

mussen and Kuss, 2004; Engel et al., 2005). More recently, researchers have started

investigating the application of GPs in the framework of transfer learning (Yu and Chu,

2008) and particularly on multi-task learning (Menzefricke, 2000; Schwaighofer et al.,

2005; Bonilla et al., 2008).

The aim of this chapter is to provide an overview of the existing multi-task (MT)

methods for GP regression. This process initiates with an introduction to Gaussian

Processes for regression covering its most important aspects. This introduction intends

to provide the reader the necessary tools for understanding the various forms of multi-

22
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task learning within the GP framework1. At core of this chapter is section 2.2 that

systematically reviews and classifies the different approaches to Multi-task GP regres-

sion. Based on the level of transfer of information between the tasks this classification

results into two categories, the Parameter transfer, and the Inductive transfer. The last

section is devoted to the empirical comparison of the different forms of multi-task

learning on a real world application, that illustrates the need for these algorithms and

the benefits they offer.

2.1 Non-parametric Bayesian regression

In the standard supervised learning problem we have a data set D that consists of

N input and output pairs, xi and yi respectively, where xi ∈ Rd is a column vector,

X = [x1, . . . ,xN ] ∈ Rd×N is the construction matrix, yi ∈ R, and y = [y1, . . . ,yN ]. If the

observed outputs y are continuous we have a regression problem, whereas if they are

discrete we have a classification problem. This chapter focuses on regression problems.

The objective in the regression learning problem is to estimate a function f (x), that

maps the inputs to the outputs from the data D, and given that function to make pre-

dictions at new (test) points x∗. This situation will be termed as Single task Learning

(STL), to differentiate it from the scenario of learning multiple tasks in parallel. Ad-

ditionally, it would be desirable to be able to include prior knowledge in the model as

well as to obtain an estimate of the confidence in these predictions. Bayesian statistics

have a natural way of quantifying uncertainty at all stages, from uncertainty in prior as-

sumptions to uncertainty in measurements. Moreover, it is possible to use these “prior”

distributions to express certain assumptions about the data generating process, and the

form of the functions it is expected to observe.

The standard assumption in the regression formalism is that the observed outputs

yi are noisy observations of a function f ,

yi = f (xi)+ εi, (2.1)

where εi is the noise term, which is usually assumed to be a zero mean uncorrelated

Gaussian distributed variable with a constant variance, εi ∼ N (0,σ2) ∀ i, a setting

known as homoscedastic regression2 (Silverman, 1985).
1The content of section 2.1 can be found with more details in Rasmussen and Williams (2005); it is

presented here for completeness.
2Situations with input dependent variance noise, termed as heteroscedastic regression, require a

different treatment than the one presented here and we refer to Goldberg et al. (1998) and Lázaro-
Gredilla and Titsias (2011) for approaches based on GPs to this type of problem
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2.1.1 Gaussian Process regression

A non-parametric approach to the regression problem (equation 2.1) can be pursued

by inducing a probability distribution over these functions directly. Gaussian processes

are the natural way of defining probability distributions over functions. A Gaussian

process is a collection of random variables, such that any finite number of which have

the multivariate Gaussian distribution (Rasmussen and Williams, 2005).

A GP is completely specified by its first and second order statistics, the mean m(x)

and the covariance function k(x,x′) (Rasmussen and Williams, 2005),

m(x) = E[ f (x)], k(x,x′) = E[( f (x)−m(x))
(
( f (x′)−m(x′)

)
]. (2.2)

To denote that the random variable f is distributed according to a GP we will write,

f (x)∼ GP (m(x),k(x,x′)). (2.3)

It is assumed that the prior of the latent functions f is given by a GP with zero mean

and covariance matrix KN×N , computed by evaluating any valid covariance function3

between all N points. The likelihood or the noise model will be given by, p(y|f) =

N (f,σ2IN), where IN is the N×N identity matrix. Integrating over the latent functions

the evidence or the marginal likelihood will be given by,

p(y|X) =
Z

p(y|f)p(f|X)df = N (0,K+σ
2IN). (2.4)

Generalisation to new inputs x∗ involves the computation of the predictive density of

the latent at the test point given the training set, p( f∗|y,X ,x∗). The latent functions at

the test point f∗ and the training set f are jointly Gaussian [f, f∗]∼N (0,K∗), with

K∗ =

[
K k∗
kT
∗ k∗∗

]
, (2.5)

where k∗ = k(X ,x∗) is the covariance vector between the training samples X and the

test point x∗, and k∗∗ = k(x∗,x∗) is the marginal variance at the test point. The noise

free predictive distribution is given by p( f∗|y) = N (µ∗,Σ∗) with,

µ∗ = kT
∗ (K+σ

2I)−1y (2.6)

Σ∗ = k∗∗−kT
∗ (K+σ

2I)−1k∗. (2.7)

The noisy version of the predictive distribution p( f∗|y) = N (µ∗,Σ∗), which we will

write as p(y∗|y) is simply given by adding σ2 to the variance Σ∗. The predictive mean

3More information about covariance functions is given in the following section.
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can also be written as

µ∗ =
N

∑
i=1

aik(xi,x∗), (2.8)

where ai is the ith component of a = (K + σ2I)−1y, which allows to view GPs as a

linear predictor of the outputs y, or a linear combination of N kernel functions, one

centered at each training data point.

Equations 2.6 and 2.7 show that making predictions (and optimizing the parameters

of the covariance function as shown in the following section) involves the inversion of

a N×N matrix. This matrix operation has complexity O(N3), and for very large data

sets may be infeasible. Due to that reason many approximation schemes have been

proposed that reduce the complexity at least to O(L2N), where L is a user defined pa-

rameter and L� N ( see e.g., Smola and Bartlett (2001); Williams and Seeger (2001);

Csató and Opper (2002); Lawrence et al. (2003); Snelson and Ghahramani (2006)).

These approximations remove the main limitation of Gaussian processes making them

applicable to large data sets; for a review on these methods see Quinonero-Candela

et al. (2007). Last notice that the complexity remains the same regardless of the dimen-

sions d of the inputs, making GPs an ideal framework to work with high dimensional

data x.

2.1.2 Covariance function

GPs assume that the function f is distributed according to a multivariate Gaussian

distribution whose dependencies are determined by the covariance matrix K. Con-

sequently, at core of the GP prediction is the covariance matrix that captures the in-

formation about the correlation of the random variables at the different inputs x. A

covariance matrix K is constructed by evaluating a parametric family of covariance

functions k(x,x′) between all training data points. A covariance function is valid if

it results in a symmetric positive semi-definite matrix K (Rasmussen and Williams,

2005), vT Kv ≥ 0, ∀v. Employing a parametric family of covariance functions allows

us to infer its parameters from the data. In contrast with the parameters in a linear re-

gression model (Bishop, 2006), these parameters control the distribution of the model

and will be called hyperparameters, and denoted by θ.

Direct inference of the hyperparameter is not possible, but optimal values can be

found in several ways. In a fully Bayesian framework, it is possible to set prior prob-

ability distributions over these parameters and infer the posterior distribution by sam-

pling methods (e.g., Gelman et al. (2004)). Another option is again to set a prior over
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these parameters and optimize the parameters of the prior by maximizing the log of the

posterior probability distribution. This is usually referred to as the Maximum a Pos-

teriori (MAP) approximation, and the concept is to approximate the posterior of the

hyperparameters, p(θ|y,X) ∝ p(y|θ,X)p(θ), with a distribution centered at its mode

where p(θ|y,X) is maximal,

θMAP = argmax
θ

p(θ|y,X) = argmax
θ

p(y|θ,X)p(θ) (2.9)

The simplest way to learn these parameters is make point estimates of them, by maxi-

mizing the log of equation 2.9,

log p(y|X ,θ) =−1
2

yT (K+σ
2I)−1y− 1

2
log |K+σ

2I|− N
2

log2π+ log p(θ), (2.10)

where the gradients over the hyperparameters will be given by:

∂

∂θ j
log p(y|X ,θ) =

1
2

yT (K+σ
2I
)−1 ∂K

∂θ j

(
K+σ

2I
)−1 y− 1

2
tr(
(
K+σ

2I
)−1 ∂K

∂θ j
)

+
∂

∂θ j
log p(θ). (2.11)

Note that the standard practice is to remove the dependence on the prior of the hy-

perparameters and maximize the log of the marginal likelihood given in equation 2.4.

Deriving point estimates of the hyperparameters by maximization of the marginal like-

lihood is usually referred to as type II Maximum Likelihood (ML).

The choice of the covariance function varies depending on the application and the

nature of the features. Covariance functions can be separated into stationary and non-

stationary. Stationary covariance functions are invariant to translations of the input

space and are of the form k(|x− x′|), whereas non-stationary are not (Rasmussen and

Williams, 2005). A widely used stationary covariance function is the Squared expo-

nential (SE), k(xi,x j) = θ2
0 exp

{
−∑

d
k=1

(xik−x jk)2

2θ2
1

}
, where the parameters θ0 and θ1

are the amplitude and the characteristic length scale respectively. A variant of this is

the Automatic Relevance Determination (ARD) (Neal, 1996) covariance function that

can be constructed from the SE by setting a different scale parameter for each input

dimension. As a result of this parameterization, the ARD covariance function can

be employed for the identification of the relevancy or the removal of features proved

to be irrelevant for the problem at hand. Non-stationary covariance function are of-

ten of the dot product form, i.e k(x · x′). An important example is the Linear kernel,

k(xi,x j) = θ2
0 +θ2

1 ∑
d
k=1 xikx jk, with θ0 and θ1 parameters. However, it should be noted

that covariance functions can be constructed by adding, multiplying or by convolving



Chapter 2. Multi-task Learning with Gaussian Processes for regression 27

other valid covariance functions. For a systematic review of covariance functions and

their properties we refer to (Rasmussen and Williams, 2005, Ch. 4).

2.2 Multi-task Gaussian Process Regression

In a multi-task scenario we are interested in learning M functions f j, from data X j =

[x1 j, . . . ,xn j j], X = [X1, . . . ,XM], and targets y j = [y1 j, . . . ,yn j j] with j = 1, . . . ,M and

n1 + . . .+nM = N. Similarly to STL, we assume the following noise model

yi j = f j(xi j)+ ε j, with ε j ∼N (0,σ2
j), (2.12)

where yi j (xi j) denotes the ith output (input) of the jth task, and ε j is task dependent

noise.

The concept behind multi-task learning is that the training of all M models is per-

formed simultaneously in order to intelligently transfer information across tasks. This

is usually achieved by allowing the different tasks to share a certain structure or pa-

rameters. It is expected that in situations of under-sampled tasks4 the inferred com-

mon structures or parameters between tasks will be more meaningful than parameters

inferred from each task individually as in STL. Intuitively, if annotated data for each

task were plentiful then MT learning would not be needed since each task would have

sufficient information to infer the model parameters independently. Another important

issue is the relatedness of the tasks which many of the approaches take for granted

and in practice might not be true. We argue that, since this transfer learning scenario

provides adequate information for the identification of the relatedness of the tasks (see

section 1.2.2), the developed methods should accommodate appropriate mechanisms

of estimating the cross-task correlations automatically.

Moreover, multi-task learning can be seen as a multi-response problem (see sec-

tion 1.1.1.2 and figure 1.2), under which one observes several outputs for the same set

of inputs. The difference between these two learning frameworks is that in multi-task

learning each task has a different set of inputs, while in multi-response all the tasks

share the same set of inputs. In the multi-response (also called multi-output) formula-

tion the output space is a vector valued function, Y = RM. Prediction on vector valued

functions within the GP framework has long been studied in the geostatistics literature

and is known as co-kriging (see e.g., Cressie (1993); Wackernagel (2003)). From an-

other point of view, in multi-response learning we are interested in the distribution over
4The term under-sampled task is used to refer to a task for which limited annotated training data are

available.
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the matrix variate distribution of the latent functions F = [f1 . . . fM], F ∈ RN×M where

f = vec(F), and subsequently the matrix of the outputs Y = [y1 . . .yM], Y ∈ RN×M

where y = vec(Y)5. Considering the matrix variate Normal distribution it is possible

to derive a well studied model by the geostatistics community known as the “Intrinsic

Model of Coregionalization (IMC), or in its more general form as the “Linear Model of

Coregionalization (LMC) (Cressie, 1993; Wackernagel, 2003). The LMC assumes that

the different tasks are linear combinations of independent random functions, while the

correlations between the tasks are modeled though a separate positive definite matrix.

Other approaches to multi-response learning include the use of Convolution Processes

(CP) to construct multi-output covariance functions (Ver Hoef and Barry, 1998; Hig-

don, 2002). Under this setting each output is assumed to be a convolution integral

between a smoothing kernel and latent function, which is taken to be a GP. In both

of these models, the LMC and the CP based approach, the unavailability of outputs

for certain tasks can easily be handled in the GP framework by simply removing the

likelihood terms of the corresponding unobserved outputs. This characteristic makes

the IMC and the CP method applicable to multi-task scenarios.

Other approaches to multi-task learning include the linear mixing of one global and

one task dependent latent function, or assigning the same or common prior distribu-

tions over the parameters of the different tasks. Although the linear mixing of a global

and a task dependent function can be seen as a special case of the LMC model, it is

treated independently because of the way the global latent function is estimated and

its possible extensions (see section 2.2.2.3). A common feature of the methods with

common parameters is that the functions of the different tasks are independent given

the parameters.

On this basis, the existing MT approaches to GP regression will be separated into

two main categories. The first category will be called Parameter transfer, to denote

that the transfer of information between the tasks occurs only by sharing some type

of parameters. The second category will be called Inductive transfer, to cover all

other situations where there is some type of correlation between the functions of the

individual tasks.
5The vec operator concatenates the columns of matrix into a single column
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2.2.1 Parameter Transfer

As in most machine learning algorithms the search for the optimal model parameters

is of paramount importance. Parameters that can be shared by multiple GPs are:

1. the hyperparameters θx of the covariance function,

2. the parameters of the prior of the latent function f, as the mean of the function

and the covariance matrix denoted by θ f .

The basic idea in the parameter transfer is that the latent functions of the tasks are

independent given the parameters,

p(f|θ,X) =
M

∏
j=1

p(f j|θ,X j)p(θ). (2.13)

where we have used θ to refer to both θx and θ f . Dropping the dependence of the

prior on the parameters θ this can simply be written as p(f|θ,X) = N (0,K) where K
is block diagonal to the covariance matrices of each task,

K =




K1 0 0

0 . . . 0

0 0 KM


 , (2.14)

where each K j is the n j×n j covariance matrix between the points in the jth task. This

particular setup implies that a test point will be correlated only with data points from

the same task. Consequently, the prediction phase remains exactly the same as in STL,

e.g for a test point from the jth task the mean will be given by µ∗ j = ∑
n j
i=1 ai jk(xi j,x∗)

with a j = (K j +σ2I)−1y j.

2.2.1.1 Hyperparameter transfer

In the Gaussian process paradigm there are several approaches where the tasks ex-

change information during training by allowing them to have the same hyperparam-

eters or share a common prior distribution over these hyperparameters (Menzefricke,

2000; Lawrence and Platt, 2004; Zhang and Yeung, 2009).

Menzefricke (2000) and Zhang and Yeung (2009) couple the different tasks within

a hierarchical Bayesian framework. The dependencies between the different tasks are

captured by imposing a common prior distribution over the hyperparameters of each
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task θ j. The common prior over the hyperparameters depends on some common pa-

rameters which will be denoted by ω. The posterior distribution of the hyperparameters

of all tasks θ = [θT
1 . . .θ

T
M]T , is given by

p(θ|y,ω) ∝

M

∏
j=1

p(y j|θ j)p(θ j|ω) (2.15)

The difference between those two methods lies in the inference method they employ to

estimate these hyperparameters. In Menzefricke (2000) the posterior probability dis-

tribution of these parameters is estimated by the Hybrid Monte Carlo method (Duane

et al., 1987), by adopting a fully Bayesian inference framework. In Zhang and Ye-

ung (2009) the optimal values of the hyperparameters and the parameters of its prior

probability distribution ω are estimated by maximizing the log of the un-normalised

posterior distribution given in equation 2.15. Additionally, the multi-task setting of

Zhang and Yeung (2009) is extended to utilize unlabeled data in a semi-supervised

fashion by employing the data-dependent norms introduced in Sindhwani et al. (2005,

2007)6.

Lawrence and Platt (2004) extend the Informative Vector Machine (IVM) to the

multi-task case. The IVM is a method for reducing the complexity of GPs that se-

lects a subset of the training data by minimizing the entropy of the posterior pro-

cess. In this approach, the different tasks are coupled by sharing the same hyper-

paramerets which are given point estimates by maximizing the marginal likelihood

p(y|X) = ∏
M
j=1 N

(
y j|0,(K j +σ2In j)

)
, where In j is the identity matrix of length n j,

and it is assumed that the noise variance is the same for all tasks.

2.2.1.2 Latent parameter transfer

The Latent parameter transfer category focuses on placing a common prior over the

mean and the covariance matrix of a Gaussian distribution (Schwaighofer et al., 2005;

Yu et al., 2005; Birlutiu et al., 2010). The conjugate prior distribution for the mean

and the covariance matrix of a multivariate Normal distribution p(u) = N (u|µ,K),

is the Normal-Inverse Wishart distribution that can be parameterized in terms of the

parameters θ f = (µ0,κ0,ν0,C0)(Gelman et al., 2004),

p(µ,K) = N (µ|µ0,
1
κ0

K)I W (K|ν0,C0) (2.16)

6More information about the data dependent norms and semi-supervised learning can be found in
Chapter 4.
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where µ0 is the mean of the prior distribution, 1
κ0

K is the covariance, and κ0 is a scalar.

The covariance matrix K is distributed according to the Inverse Wishart distribution

with ν > 2N degrees of freedom and a positive definite parameter matrix C0 (Gupta

and Nagar, 2000).

Schwaighofer et al. (2005) assumes that each of the M functions share a common

prior distribution. In this case the parameter matrix C0 of the Inverse-Wishart distribu-

tion is set to be any positive definite matrix. Similarly to the Hyperparameter transfer

category the functions are conditionally independent given the parameters of the prior.

Then the joint distribution factorizes as,

p(y, f,µ,K) =
M

∏
j=1

p(y j|f j)p(f j|µ,K)p(µ,K). (2.17)

The first problem they consider in this work is that of predictions on a fixed set of

inputs, hence transductive learning in a multi-task scenario. If there are n j data points

from each task and N in total then the problem is the estimation of the outputs on the

N− n j data points of each task. Inference of model parameters is performed with an

EM algorithm. The E-step computes the expectations over the latent functions f j, and

the M-step maximizes the parameters of the prior, which are the mean µ, the covariance

K, and the noise variance σ2. Predictions of the unobserved locations is performed

in a straightforward manner by utilizing the update equations of the EM-algorithm.

Generalisation on completely new points (beyond transduction) is performed with a

variant of the Generalised Nyström method, where a kernel smoother is employed to

generalise the learned covariance matrix K from the training phase. Yu et al. (2005)

assign a common prior distribution over the parameters a j ∼ N (a j|µ,K) of each out-

put yi j = ∑
N
i=1 ai jk(X,xi)+ ε, extending the Subsets of Regressors idea of Silverman

(1985) (also discussed in Rasmussen and Williams (2005)[Ch. 8.3.1]), to the multi-

task case. In this approach the parameter matrix C0 of the Inverse-Wishart distribution

is computed by a covariance function evaluated between data points from all tasks. Pa-

rameters of the prior and the estimates of a j are learned with an EM algorithm similar

to Schwaighofer et al. (2005).

Recently, Birlutiu et al. (2010) adapted the model of Yu et al. (2005) to non-

Gaussian likelihoods for preference learning (Fürnkranz and Hüllermeier, 2010). A

drawback of the methods presented in Schwaighofer et al. (2005) and Yu et al. (2005)

is that, by sharing the same prior over the mean and the covariance matrix it is assumed

that all tasks are correlated. This can make the models less effective in situations where

some of the tasks are independent or simply do not contain beneficial information for
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the other tasks. Due to that reason in a follow up paper by the same authors in Yu

et al. (2007b), they alleviated this problem by employing a multi-task model based on

t-Processes (TP). In the TP formulation the samples of the functions are assumed to

have been generated by a multivariate t distribution which is known to be more robust

to outlier samples, with “heavier tails” than the Gaussian, and thus can accommodate

outlier tasks.

2.2.2 Inductive Transfer

The main characteristic of the Inductive transfer category is that it requires some form

of correlation between the functions of the different tasks. Other types of transfer, such

as parameter transfer, are also allowed as long as the basic requirement is satisfied. It

is worth noting that this form of transfer is stronger than the parameter transfer, since

by allowing the functions of the tasks to be correlated in essence increases the region

of expertise of the predictor, or decreases its uncertainty or both. By region of exper-

tise is meant the part of the d dimensional space covered by the training data set, and

by uncertainty the variance in the predictions. Additionally, it could be argued that if

this transfer is combined with the parameter transfer then it is the maximal it can be

achieved within the GP framework. On the other hand, the increased flexibility of this

category of models should in principle be accompanied with a relatedness checking

mechanism to avoid adverse effects, as negative transfer. Under the phenomenon of

negative transfer the model’s performance is degraded due to the transfer of informa-

tion between the tasks (see section 1.2.2).

Given these specifications, having knowledge that the tasks are related, it would be

beneficial to allow the mean and the variance of a test point from a certain task to be

influenced by data from other tasks. As an example consider the following form of the

predictive mean of a test point x∗ from the jth task,

µ∗ j =
n j

∑
i=1

ai jk(xi j,x∗)+ ∑
k 6= j

ζ jk

nk

∑
i

aikk(xik,x∗). (2.18)

In this simple example the predictive mean consists of two terms, the first is due the

information contained in the jth task and the second comes from the information in

the other tasks weighted by the parameters ζ, that can be used to quantify the level

of correlation between the tasks. In the next sections we explore different ways of

specifying correlated GPs, which results in making collocated predictions similarly to

equation 2.18.
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2.2.2.1 Intrinsic transfer

The intrinsic transfer category includes models where the covariance matrix K of all

tasks is represented by the product of two separate matrices. The first matrix is used to

model the correlations between the tasks and will be called task covariance matrix and

denoted by Kt . The second matrix captures the dependencies between the data points,

and will be called data covariance matrix and denoted by Kx. In the exposition that

follows, it is assumed that for each input the outputs for all M tasks are observed, as in

multi-response learning.

Assuming that the complete set of responses y is observed, we can define the matrix

F = [f1 . . . fM], with f = vec(F), where f j ∈ RN×1 is the column vector of all function

evaluations of task j. The probability density function of the matrix variate Normal

distribution of F will be given by (Gupta and Nagar, 2000):

(2π)−
1
2 NM|Kt |− 1

2 N |Kx|− 1
2 M exp

{
−1

2
trace

((
Kt)−1 F(Kx)−1 FT

)}
, (2.19)

where Kt ∈ RM×M and Kx ∈ RN×N , and both matrices need to be positive definite. As

mentioned before, this configuration implies that the matrix Kt models the correlations

between the vectors f j, i.e. the outputs of the tasks in the multi-response/task view, and

Kx models the correlations between each element of each vector f j. Then, by using

some matrix algebra involving the Kronecker and the vec operator, equation (2.19) can

be written as

(2π)−
1
2 NM|Kt⊗Kx|− 1

2 exp
{
−1

2
fT (Kt⊗Kx)−1 f

}
, (2.20)

where ⊗ is the Kronecker product. This is the form of the model Bonilla et al. (2008)

proposed to the machine learning community for multi-task learning, and has been

known to the geostatistics community as the Intrinsic Model of Coregionalization

(IMC),

p(f|X) = GP (0,Kt⊗Kx). (2.21)

Additionally, Bonilla et al. (2008) proposes the use of a free form task covari-

ance matrix with hyperparameters θt that can be learned from the data to estimate the

parameters kt
lk reflecting the level of correlation between the tasks. Positive definite

restrictions can be achieved through the Cholesky decomposition by parameterizing a

lower triangular matrix L ∈ RM×M, Kt = LLT . The Cholesky parameterization can be

restrictive for large number of tasks since it involves the estimation of M(M + 1)/2
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parameters. This problem can be alleviated by using the incomplete Cholesky decom-

position as an approximation, Kt = L̃L̃T , where L̃ ∈ RM×P with P the rank of Kt .

Situations where task descriptor features7 t j are available can be handled in the same

setup by employing a parametric task covariance function kt
lk = kt(tl, tk) (Bonilla et al.,

2007). Moreover, for multi-response problems the size of resulting covariance matrix

is MN×MN which for large number of tasks or data points can be restrictive, and ap-

proximation schemes must be employed. For multi-task problems the latent function

evaluations for the unobserved outputs can be marginalized out with no further impli-

cations which results in a N×N covariance matrix. Notice also that marginalizing the

unobserved outputs destroys the Kronecker structure K = Kt ⊗Kx, but the covariance

between two latent functions can still be written as

cov[ fl(x) fk(x′)] = kt
lkkx(x,x′) (2.22)

which effectively induces correlations between the latent functions through the ele-

ments of Kt . Finally, both types of hyperparameters θt and θx, can be learned by

maximizing the marginal likelihood of all tasks via ML II.

2.2.2.1.1 Noise model and Predictions The complete likelihood of the model over

all tasks becomes p(y|f)∼N (f,D⊗ I), with DM×M diagonal with D j j = σ2
j , and IN×N .

The predictive distribution for a test point x∗ from the jth task p(y∗ j| y) is given by

p(y∗ j| y)∼N (my∗ j|y,Σy∗ j|y) where,

Σy∗ j|y = λ∗∗−λ
T

Σ
−1

λ (2.23)

my∗ j|y = λ
T

Σ
−1y (2.24)

where λ∗∗ = kt
j jk

x
x∗,x∗ , λ = kt

j⊗kx
X,x∗ , and

Σ = Kt⊗Kx +D⊗ I, (2.25)

with kt
j j and kt

j are the jth diagonal element and the jth column of Kt respectively,

kx
X,x∗ is the vector of covariances between the test point x∗ and the training points X,

and kx
x∗,x∗ is the variance of the test point. Rewriting the predictive mean in terms of a

linear combination of MN basis functions we have that

my∗ j|y =
MN

∑
i=1

∆i(kt
j⊗kx

X,x∗), (2.26)

7The term task descriptor feature is used to refer to a separate set of features that are informative
about the learning task; task descriptor features can be extracted or computed by the standard input
space using expert knowledge as in Bonilla et al. (2007).
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where the elements of ∆ are computed from ∆ = Σ−1y. Equations 2.24 and 2.26 show

that this setup explicitly allows the transfer of information in the prediction phase. As

an example consider the case where there are two tasks and we wish to make predic-

tions on the first. Here, we will focus on the predictive mean but similar analysis can

be performed for the variance. We define the following block matrices,

λ =

[
kt

11kx
X,x∗

kt
21kx

X,x∗

]
, Σ

−1 =

[
Σ11 Σ12

Σ21 Σ22

]−1

=

[
Ξ11 Ξ12

Ξ21 Ξ22

]
, y =

[
y1

y2

]
, (2.27)

where matrices Ξi j can be computed from the Woodbury formula (see appendix B.3 or

Rasmussen and Williams (2005)). Breaking down equation 2.24 and rearranging gives

that,

my∗1|y = kt
11(k

x
X,x∗)

T
Ξ11y1 +kt

21(k
x
X,x∗)

T
Ξ22y2 +kt

21(k
x
X,x∗)

T
Ξ21y1 +kt

11(k
x
X,x∗)

T
Ξ12y2,

(2.28)

which reveals that the predictive mean is the sum of four terms; the first depends only

on the first task multiplied by kt
11, the second depends only on the second task multi-

plied by the correlation parameter between the two tasks kt
21, and the last two terms

account for the correlations between the two tasks. In the general case of M tasks the

predictive mean for the jth task can be written as the sum of three terms,

my j∗|y = kt
j j(k

x
X,x∗)

T
Ξ j jy j + ∑

l 6= j
kt

l j(k
x
X,x∗)

T
Ξllyl +

M

∑
γ=1

∑
l 6= j

kt
l j(k

x
X,x∗)

T
Ξγlyγ, (2.29)

where the first term depends on the information contained on the jth, the second is a

weighted sum of the information contained in each of the other tasks, and the third that

depends on the cross-task correlations appropriately weighted8. Hence, this model can

intelligently transfer information of the other tasks when generalising to new points,

by weighting appropriately the contribution of the other tasks, and the elements of Kt

are equivalent to the ζ parameters in equation 2.18. As Bonilla et al. (2008) pointed

out though, the noise-free case when the complete set of responses is observed, i.e.

Σ = Kt⊗Kx, results in cancellation of inter-task transfer. Thus, in the noise-free case,

which has been known to the geostatistics literature as autokrigeability, the predic-

tive mean of a task is not affected by information in other tasks and is similar to the

Parameter transfer and STL.
8Note that each of the terms in equation 2.29 has some sort of dependence with information contained

in other tasks since kx
X,x∗ is the covariance vector between all training points and the test point.
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2.2.2.1.2 Linear Model of Coregionalization This type of models have previously

been studied in the field of geostatistics for multi-output models, and they are known as

the Linear Models of Coregionalization (LMC)9. In its general form the LMC assumes

that each of the M outputs is a linear combination of Q independent random functions

u(x) or Q groups of Rq independent random functions with the same covariance func-

tions. The exposition of the LMC that is presented here follows Alvarez and Lawrence

(2011). The latent function of the jth task will be given by (Journel and Huijbregts,

1978),

f j(x) =
Q

∑
q=1

ζ jquq(x) =
Q

∑
q=1

Rq

∑
r=1

ζ
r
jqur

q(x), (2.30)

where we have slightly abused the notation since the ζr parameters used here are not

the same as in equation 2.18. Without loss of generality, it is assumed that each of the

functions for q = 1, . . . ,Q and r = 1, . . . ,Rq are drawn from a GP with zero mean and

covariance cov[ur
q(x),u

r′
q′(x
′)] = kx(x,x′) if q = q′ and r = r′ and zero otherwise. It can

be shown, that the covariance between two functions fl(x) and fk(x′) can be written in

terms of the covariance of the random functions ur
q(x) as (Cressie, 1993)

cov[ fl(x), fk(x′)] =
Q

∑
q=1

Q

∑
q′=1

Rq

∑
r=1

Rq

∑
r′=1

ζ
r
lqζ

r′
kq′cov[ur

q(x),u
r′
q′(x
′)] (2.31)

while taking into consideration that the random functions ur
q(x) are independent the

covariance of the vectors fl and fk reduces to,

cov[fl, fk] =
Q

∑
q=1

Rq

∑
r=1

ζ
r
lqζ

r
kqKx

q =
Q

∑
q=1

bq
lkKx

q (2.32)

where bq
lk = ∑

Rq
r=1 ζr

lqζr
kq, and each Kx

q is computed between all N points, thus Kx
q ∈

RN×N . The joint distribution of all latent functions f j will be given by p(f)= N (0,KLMC)

with,

KLMC =
Q

∑
q=1

ZqZT
q Kx

q =
Q

∑
q=1

Kt
q⊗Kx

q, (2.33)

where Zq ∈ RM×Rq with entries ζr
lk, and the matrix Kt

q = ZqZT
q has elements bq

lk and

is also known as the coregionalization matrix. The model proposed by Bonilla et al.

(2008) is a simplified version of the LMC where Q = 1 (equation 2.21)10. Note that
9In the subsequent analysis it is assumed that the complete set of responses is observed.

10Similar analysis of the LMC and IMC can also be found in Chai (2010) and Alvarez and Lawrence
(2011).
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the LMC is more flexible than the IMC, since it allows to employ multiple covariance

functions, but on the other hand estimating their parameters can be computationally

restrictive for real world applications. Moreover, as it is conjectured in Alvarez and

Lawrence (2011), the rank of each of the matrices Kt
q can be interpreted from the

generative point of view. The elements bq
lk of the matrices Kt

q are given by the sum

of the Rq weights ζr
lq of each function in that group. Hence, the rank of each Kt

q is

determined by the number of the independent functions that share the same covariance

function, that is Rq. Other interpretations of the LMC and the IMC have also been

given and we refer the interested reader to Alvarez et al. (2011b) for a review on that

subject.

Closely related to the LMC is the Semiparametric Latent Factor Model by Teh et al.

(2005). This setup also assumes that each of the outputs is a linear combination of Q

functions. The overall covariance of all outputs is given by K̃ = (Φ⊗ I)Kx(ΦT ⊗ I)

with Kx block diagonal on matrices Kx
q and Φ ∈ RM×Q. The covariance matrix K̃ can

also be written as K̃ = ∑
Q
q=1 φqφT

q ⊗Kx
q which resolves to the LMC model in equation

2.33, with φq ∈ RM×1 and Φ = [φ1 . . .φQ]. Other applications of the IMC include the

work by Osborne et al. (2008) for modeling sensor network data, or for emulating

computer codes in Conti and O’Hagan (2010).

2.2.2.2 Convolutional Transfer

As mentioned before in section 2.1.2, it is known that the convolution of a Gaussian

Process with a kernel is also a Gaussian Process. This property can be used to construct

new covariance functions. For example if u(z) is a GP and h(x,z) is a smoothing kernel,

then the function f (x) given by the convolution of u(z) and h(x,z) is also a GP (Barry

and Jay, 1996; Rasmussen and Williams, 2005),

f (x) =
Z

h(x,z)u(z)dz, (2.34)

and given that cov[u(x),u(x′)] = k(x,x′), the covariance between two data points x and

x′ can be computed from,

cov[ f (x), f (x′)] =
Z

h(x,z)k(z,z′)h(x′,z′)dzdz′. (2.35)

These results were taken a step further, by using convolutions to construct multiple

output covariance functions. Hence, in the Convolutional transfer each function can

be represented as the convolution of a kernel {h j(x,z)}M
j=1 and the latent u(z) (Alvarez
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and Lawrence, 2011),

f j(x) =
Z

h j(x,z)u(z)dz. (2.36)

Similarly to the LMC we can consider a more general form with more than one latent

functions {uq(z)}Q
q=1. Considering the case where q = 1, the covariance between two

outputs fl(x′) and fk(x′) will be given by (Alvarez et al., 2011a),

cov[ fl(x), fk(x′)] =
Z

hl(x,z)
Z

hk(x′,z′)k(z,z′)dzdz′. (2.37)

This covariance defines a prior over the complete set of latent functions p(f)= N (0,Kf),

with the covariance matrix Kf being fully connected between the outputs. As in the In-

trinsic transfer for multi-response problems the resulting matrix is of size MN×MN

with block matrices Klk ∈ RN×N denoting the covariance matrix between the l and k

outputs. The marginal likelihood in this type of setting will be given by p(y|X ,θ) =

N (0,Kf + D⊗ IN) with D ∈ RM×M, D j j = σ2
j and IN is the identity matrix of size N.

Predictions are made using the standard formulas for GP prediction given in equations

2.6 and 2.7, whereas optimization of the hyperparameters is performed by maximiz-

ing the marginal likelihood. Note that the fully connected covariance matrix Kf allows

predictions for a certain task to be influenced by the information in other tasks.

Convolved multi-output GPs were originally proposed in Higdon (2002) and later

on by Boyle and Frean (2005) to the machine learning community. A series of papers

by Álvarez (Alvarez and Lawrence, 2009; Alvarez et al., 2009, 2011a; Alvarez and

Lawrence, 2011) investigate the application of GPs to multi-output models through

the convolutional setting as well. The methods proposed in Alvarez and Lawrence

(2009, 2011); Alvarez et al. (2011a) present methods for reducing the complexity of

the convolutional multi-output GP model that scales as O(M3N3), whereas Alvarez

et al. (2009) propose a method based on GPs and differential equations to describe a

physical system extending the work presented in Lawrence et al. (2007) to more than

one latent functions {uq(z)}Q
q=1.

2.2.2.3 Mixed effect transfer

Other multi-task models in the Gaussian process literature are what we call the Mixed

effect models (Pillonetto et al., 2010; Wang et al., 2010). Under this formulation the

latent function of each task is given by the mixture of two functions; a common func-

tion across all tasks and a task specific function. The function of the jth task will be

written as,

f j(x) = f̄ (x)+ f̃ j(x). (2.38)



Chapter 2. Multi-task Learning with Gaussian Processes for regression 39

The common or global term f̄ (x) is used to describe the similarities between the tasks

and the task specific term f̃ j(x) characterizes the individual differences between the

tasks.

Pillonetto et al. (2010) employ the model in equation 2.38 with the addition of two

parameters λ̄ and λ̃ that weight the functions f̄ and f̃ respectively. Interestingly, the

global function f̄ is evaluated only on the data points from matrix Xu = [x1u, . . . ,xnuu],

that is constructed by the distinct elements (i.e with no repetitions) of the matrix X,

denoted by Xu ∈ Rd×nu where nu < N is the number of distinct elements. In addi-

tion, an online algorithm is developed that is based on the recursive estimation of the

conditional distribution of a new task given the others. Of central importance is the

predictive mean of the jth task at x j∗ given by (Pillonetto et al., 2010),

µ j∗ = λ̄
2

nu

∑
i=1

āik̄(xiu,x j∗)+ λ̃
2

n j

∑
i=1

ã jik̃(x ji,x j∗), (2.39)

where k̄(.) and k̃(.) are the covariance functions of the global and task specific function

respectively, ã depends only on the elements of the jth function f̃ j, and ā depends only

the global function f̄. In this case there are no correlation parameters as in the IMC

but parameters λ̃ and λ̄ quantify the contribution of each function. If λ̄ is zero all tasks

are learned independently, whereas if λ̃ is zero all tasks are the same. Parameters λ̃

and λ̄, and the hyperparameters of each covariance function k̃(.) and k̄(.) can then be

estimated by type II ML. Hence, this method can automatically estimate the mixing

of the tasks, and as a result predictions on a task can be affected by data in other tasks

through the contribution of the global term.

The model introduced in (Wang et al., 2010) extends the work of Pillonetto et al.

(2010) to allow tasks to group into clusters with the addition of an extra parameter.

Equation 2.38 is transformed to,

f j(x) = f̄z j ∗δt j + f̃ j, (2.40)

where ∗ denotes the convolution, z j ∈ {1, . . . ,Q}, Q is the number of clusters, and δt j

is the Dirac δ function with support at t j ∈ [0,T] (x ∈ [0,T]). This formulation allows

to group the tasks into clusters which can be essential for situations where not all tasks

are correlated or there are outlier tasks, and can be seen as a more flexible version of

the model presented in Pillonetto et al. (2010).

We note in passing that an interesting extension of the models proposed in Pil-

lonetto et al. (2010) and Wang et al. (2010) would be the automatic estimation of the
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input points corresponding to the global latent function evaluations by borrowing ideas

from the framework of sparse Gaussian Processes using pseudo-inputs of Snelson and

Ghahramani (2006). This extension would allow this type of formulation to be applied

in problems with continuous inputs, in contrast with the current formulation of Pil-

lonetto et al. (2010) who applies it in a pharmacokinetic problem with discrete inputs.

2.2.3 Interlude

This section presented an overview of the current approaches to MT-GP regression.

These approaches were separated into two major categories, the Parameter transfer

and the Inductive transfer. The main difference of these categories is that in the Pa-

rameter transfer the functions of each task are independent whereas in the Inductive

transfer there is a form of dependency between the functions. As a result of the cor-

relation of the latent functions, predictions on a task are influenced by the information

from other tasks. Additionally, parameter sharing can also be induced in the Inductive

category making it a stronger form of transfer learning than the Parameter category,

since transfer of information occurs both in the training and the prediction phase.

In the Intrinsic and Convolutional transfer the covariance matrix of the latent func-

tion of all tasks is fully connected allowing the tasks to interact, while in the Mixed

effect transfer a global function captures the tasks similarities. A characteristic of the

Mixed effect transfer is that the estimation of the global function is based on the notion

of repeated patterns. This is justified by the fact that these approaches are intended for

time-series problems, where the input data are discrete time points. This feature makes

the method inappropriate for continuous or high dimensional input spaces. In the Con-

volutional transfer, each output/task j is modeled with a smoothing kernel h j(x,z), that

can “be used to capture the degree of smoothness and the length-scale that charac-

terizes each output” Alvarez and Lawrence (2011). In the Intrinsic transfer, the LMC

and IMC can be seen as a weighted sum of independent random processes. This leads

to a separable covariance function, with one covariance matrix modeling the correla-

tions of the tasks, and one that models the correlations of the inputs. Most importantly,

the ICM does not assume a priori that the tasks are correlated but learns the task de-

pendencies from the data. This characteristic makes the method robust against outlier

tasks, whereas it can also be used for the identification of the relatedness of the tasks.

Given the characteristics of each method, it is concluded that the CP based transfer

and the IMC offer the highest degree of transfer between the tasks. Comparing these



Chapter 2. Multi-task Learning with Gaussian Processes for regression 41

two methods, it is obvious that the CP based approach does not accommodate mech-

anisms for the identification of the relatedness of the tasks. In addition, it is unclear

whether the CP approach can efficiently isolate an unrelated task, since each task is a

blurred version of the others.

A closely related area of work, which we will not investigate in this thesis is link

analysis. Multi-task and link analysis are intimately connected techniques that use data

from different tasks either to improve generalisation performance or to model the rela-

tions between different entities. The model proposed in Bonilla et al. (2008) is closely

related to the work of Yu et al. (2007a), which employs two kernel functions through

the tensor product to model the dependencies between different set of entities. The

properties of the model proposed in Bonilla et al. (2008), and Yu et al. (2007a) were

found attractive enough to motivate work in both directions. In multi-task learning the

work in Zhang and Yeung (2010) is inspired by Bonilla et al. (2008), where they em-

ploy a t-noise model for the likelihood. In context of stochastic relational models Zhu

et al. (2009) propose an algorithm based on MCMC able to handle very large data sets.

Moreover, the work for link analysis in Yu and Chu (2008) within the GPs, demon-

strates intimate connections with other transfer learning algorithms. The connections

of the IMC model of Bonilla et al. (2008) with other MT methods for regression and

the setting of link analysis demonstrate its importance and its potentials for application

to other transfer learning scenarios.

2.3 Empirical Evaluation of Multi-task learning

The aim of the current section is to demonstrate the effectiveness of the framework of

multi-task learning for GP regression. The objective is threefold: one is to illustrate the

superiority of multi-task learning upon single-task, secondly to compare the Parameter

and Inductive transfer categories, and last but not least to show the benefits it can bring

on a real world application11. We begin with a short introduction to the application, we

then present in detail the experimental setup, and on the last subsection we conclude

with a discussion on the results.
11This is part of on-going work with collaborators from TU Berlin, Matthias Rupp and Katja Hansen.
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2.3.1 Predicting pKa

The behavior of a compound in solution is influenced by its acidity or basicity which

can be measured by its dissociation constant Ka. Strong acids have high Ka values,

while strong bases have low Ka values. In this work, we consider the problem of

estimating the dissociation constants for weakly acidic or basic groups which are ex-

pressed as the Ka of that group (Lee and Crippen, 2009). It is known, that when a

weak acid dissociates according to the schematic equation HA� A−+ H+, then the

equilibrium constant is given by,

Ka =
a(A−)a(H3O+)
a(HA)a(H2O)

, (2.41)

where a(.) denotes activities. Additionally, it is known that for low concentrations of

(HA < 1mM), the activities can be approximated by concentrations c(.). Then, equa-

tion 2.41 can be conveniently rearranged to give the Henderson-Hassellbach equation

(Rupp et al., 2010),

pKa ≈ pH + log10
c(HA)
c(A−)

, (2.42)

where pKa =− log10 Ka.

The prediction of the pKa value is a very important task, since its value has a dom-

inant role in a plethora of phenomena. For example, in biochemical processes the

permeability of the molecule through a membrane, or the stability of a protein and the

activity of an enzyme can depend upon the pKa of the molecules involved. Moreover,

in pharmacology, drug formulation is based upon the desired value of pKa which con-

trols the solubility of the drug molecule. Finally, assessing the hazard or the toxicity

associated with an acidic or basic substance that is used in whatever process, whether

in a lab or even at home, relates to the pKa of the substance (whether this substance

is an extravagant chemical agent or an everyday cleaning agent). Thus, the ability to

estimate the pKa of a molecule without incorporating experimental approaches that are

time consuming or difficult for certain molecules is of vital importance to a wide vari-

ety of fields. For a more in depth discussion about this subject we refer the interested

reader to Lee and Crippen (2009) and Rupp et al. (2010).

The data set consists of 15 groups of molecular compounds, each one with differ-

ent number of samples given in table 2.1. Each of these groups has a different pKa

range of values, not only because of their certain atomic composition but also because

of the spatial (3D) arrangements of these atoms within the molecule that depend on

the substitutions (table 2.1). The data were made available by Matthias Rupp and
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for preprocessing details we refer to Rupp et al. (2010). The data set contains only

molecules with one ionizable center (monoprotic compounds). Molecules were de-

scribed by the electrophilic superdelocalisability (SE) of the ionizable center atom, its

immediate neighbors (one bond away from the center, binned), and their neighbors

(two bonds away from the center, binned). Thus, each molecule is represented by a

3-vector (see Rupp et al. (2010), in particular model R’ there). The scatter plot of the

three-dimensional input vector extracted from each molecule is shown in figure 2.1.

Table 2.1: Description of the pKa dataset; pKa range is given as min-max values,

IHB and NIHB indicates that the group is capable and not capable of forming internal

hydrogen bonds respectively.

No. Task n pKa range Description

1 Aa 57 5.42 - 10.45 Phenols, meta/para-substituted

2 Ab 26 3.03 - 9.87 Phenols, ortho-substituted, IHB

3 Ac 91 0.38 - 12.23 Phenols, ortho-substituted, NIHB

4 Ad 46 2.82 - 4.85 Benzoic acids, meta/para-substituted

5 Ae 53 0.65 - 5.09 Benzoic acids, ortho-substituted

6 Af 143 0.51 - 6.20 Aliphatic carboxylic acids

7 Ba 55 −5.00 - 5.48 Anilines

8 Bb 23 5.70 - 10.87 Amines, primary

9 Bc 23 8.50 - 11.39 Amines, secondary

10 Bd 31 6.57 - 11.25 Amines, tertiary

11 Be 48 0.67 - 6.47 Pyridines, meta/para-substituted

12 Bf 34 −2.86 - 7.90 Pyridines, ortho-substituted

13 Bg 14 −1.63 - 6.81 Pyrimidines

14 Bh 26 −0.53 - 7.85 Imidazoles and benzimidazoles

15 Bi 28 2.69 - 6.10 Quinolines

Until now, estimation of the acid dissociation constants based on regression mod-

els has been done by training a model for each group separately. Regression models

that have been considered vary from Linear or Ridge regression, to Neural Networks,

tree-based models or Graph kernels and others (Lee and Crippen, 2009; Rupp et al.,

2010). Instead of treating each group separately in this work we will investigate the

simultaneous training of all groups/tasks together.
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2.3.2 Experimental setup

As previously stated, the aim of this section is first to show the benefits of MTL over

STL and second to compare the two categories of MTL within the GP framework.

Therefore, results will be presented on the following model with GPs:

1. single-task learning (STL), that is training a separate model for each task,

2. multi-task learning based on the Hyperparameter transfer category (MTL-IND),

here all the tasks share the same hyperparameters in a similar fashion to MT-IVM

of Lawrence and Platt (2004),

3. multi-task learning based on the Intrinsic transfer category (MTL-IMC-COR),

with task covariance matrix computed as a correlation matrix12 (Rebonato and

Jäckel, 2000),

4. multi-task learning based on the Intrinsic transfer, with task covariance matrix

based on the incomplete Cholesky factorization of rank 2 (MTL-IMC-R2),

5. and finally by training a single model by pooling all data from all tasks together

(Pool).

As shown, we employ two constructions for the task covariance matrix with the

IMC to provide more insights about the learning process of the task correlations, and

the effects each parameterization has. In all of these models STL or MTL, hyperpa-

rameters of the task covariance matrix Kt or the data covariance function kx(x,x′) are

estimated by maximizing the marginal likelihood (type II ML).

Additionally it should be noted that although both parameterizations of the task co-

variance matrix allow negative off-diagonal elements which would result in task being

anti-correlated, in this application this was not permitted. The reason for this particu-

lar choice is more from the practical point of view since preliminary experimentation

has revealed that false negative correlation between two tasks can have a disastrous

effect on the models performance. This observation with the addition of the known

problem of local maxima of type II ML optimization, has compelled us to restrict both

parameterizations not to allow negative correlations. For example, in the Incomplete

Cholesky factorization this was achieved by re-parameterisation, simply by taking the

exponential of the parameters and thus not allowing negative parameter values and

12Details about the parameterization and computation of the correlation matrix are given in Chapter
3.
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consequently negative off diagonal elements in Kt . Also, note that the rank of the In-

complete Cholesky factorization is a model parameter and thus can not be optimized;

instead it can be determined in a principled way by model selection, for example by

using the Bayesian Information Criterion (Bishop, 2006, Ch. 4.4), an approach that

was followed in Chai et al. (2009) for modeling robot inverse dynamics. Here the rank

of the Incomplete Cholesky factorization was chosen such that the number of parame-

ters that needs to be estimated is significantly lower than that of the Correlation matrix

of Rebonato and Jäckel (2000).

Moreover, there is expert knowledge that there are two clusters of tasks with strong

inter-task correlations; the first cluster is comprised by molecules in the “A” class (tasks

1-6), and the second cluster is comprised by molecules on the “B” class (tasks 9-15).

Therefore, we consider two types of experiments. In the first round, we separate the

tasks into two groups which we term as the “A” and the “B” groups, and employ the

multi-task algorithms for each cluster separately. In the second round of experiments

all 15 tasks (AB) are employed together. Figure 2.1 shows the scatter plot of the two

groups of tasks.
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Figure 2.1: Scatter plot of the pKa data set; red crosses indicate data from the “A” group

and blue stars indicate data from the “B” group of tasks, SEc = SE of ionizable center,

SE1 = binned SE of neighbors 1 bond away, and SE2 = binned SE of neighbors 2 bonds

away from center.

As mentioned before, the benefits of multi-task learning are more apparent in sit-

uations where limited annotated data are available. For that reason, training of the

models is performed for eight different data partitions, starting from 10% up to 80% of
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the total number of data points in each task. Situations where the percentage of the data

set was not an integer were dealt by rounding down to the closest integer. Moreover,

for each partitioning experiments are performed 100 times, by randomly selecting the

annotated data.

Output data were standardized to zero mean and unit variance according to y′ =

(y−µy)/σy, where µy is the mean and σy is the standard deviation (std) of the outputs.

The standardization was based on the training data set only, whereas in the prediction

phase test points were transformed to the same scale based on the mean and standard

deviation of the training set. In the cases of multi-task learning and pooling, the mean

and the standard deviation were computed from data from all tasks. Preliminary anal-

ysis revealed that standardizing the data for each task separately was resulting in poor

performance. We report these results in the end of the following subsection. Perfor-

mance of the algorithms is assessed in terms of Root Mean Squared Error (RMSE) on

the unseen data of each task, given by RMSE =
√

1
N ∑

N
i=1 (y∗i− f (x∗i))

2. Another per-

formance measure that could have been used is the negative log probability of the true

output y∗ under the model − log p(y∗|y,X,x∗) (Rasmussen and Williams, 2005, Ch.

2.5), which would effectively make use of the predictive variance. Additionally, notice

that the predictive variance could have also been used to quantify the uncertainty in

our predictions. In order to compare the results of the different methods we used the

t-test.

The covariance function that is chosen is the Linear, k(xi,x j) = θ2
0 +θ2

1 ∑
d
k=1 xikx jk.

The choice of the covariance function was suggested by Matthias Rupp so that the

results can be compared with other baseline methods. Interestingly, preliminary ex-

periments with the Squared exponential (SE) covariance function on the “A” group of

tasks revealed that the Linear covariance function was more robust (smaller error bars)

and had lower RMSE than the SE.

2.3.3 Results

Figures 2.2 (a) and (b) present the results for the “A” and “B” groups separately,

whereas figure 2.3 presents the results for putting all 15 tasks together. For each data

partition the mean and the std are computed by first averaging over the tasks and then

over the repetitions.

Figure 2.2 (a) shows that the performance of the algorithms on the “A” group of

tasks. The results follow a pattern that verifies our classification of multi-task algo-
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Figure 2.2: RMSE for the “A” and “B” groups of tasks separately. Figure (a) presents

the results for the “A” group, and figure (b) presents the results for the “B” group.

rithms. For small data partitions all multi-task algorithms offer a clear advantage over

STL, while both IMC models perform better that the IND. Thus, our intuition that the

Inductive transfer is stronger than the Parameter transfer is verified through empirical

evidence. On the other hand, for small training data sizes (10% and 20 %) the Pool

method performs better that the STL, but its error remains almost constant with larger

error bars as the training data set increases. This highlights the need for methods hav-

ing mechanisms of exploiting information from different tasks, and that simple pooling

does not work.

Comparing the two IMC models we notice that although the R2 construction of the

task covariance matrix produces a higher mean RMSE than the construction based on

the correlation matrix for 60%, 70% and 80% of the training set, the differences are not

statistical significant (t-test) at 0.05 p-value in any of the data partitions; in contrast,

differences in terms of RMSE between the MTL-IMC and the MTL-IND models were

significant for 10%, 20%, 30%, and 70% of the available data. More in depth statisti-

cal analysis revealed that the differences between MTL-IMC and STL were statistical

significant at 0.05 p-value from 10% up to 40% of the available samples, whereas all

differences in RMSE between MTL-IMC and the Pool method were significant except

for 10% of the samples.

Considering the “B” group separately in figure 2.2 (b), it is shown that for 10% of

the training set all MTL and STL perform similarly, while the Pool method exhibits

the best performance. Interestingly, for 20% of the data set the STL performs better

that the MTL-IND, something that in principle should not happen. As before, for
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larger training sizes (>40%) the error for the Pool method is higher than all the other

methods, with an increasing std highlighting its uncertainty in the predictions. Notably,

the IMC-COR method presents a lower mean RMSE over all other methods for training

sets higher than 20%. Additionally, the differences in RMSE between the IMC-COR

and IMC-R2 were statistical significant for all data partitions except for 20% and 30%.

This can be explained, since the rank 2 Incomplete Cholesky factorization can be seen

as a poor approximation of the true underlying structure of the tasks. In the case of

the “B” group the structure of the tasks is a lot more complex which can easily be

inferred from the scatter plot in figure 2.1, where it is shown that data points from

group “B” are a lot more dispersed in the space than the data points from the “A”

group. Continuing, the reported RMSE values between IMC-COR and MTL-IND

were statistical significant at 0.05 p-value for 20%, 30%, 40%, and 70% of the data

partitions, whereas differences between IMC-COR and Pool and STL were significant

for all data partitions above 20%. This result shows that even for large training sets

transfer of information between the task can improve performance.
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Figure 2.3: RMSE for all 15 tasks together on the second set of experiments.

Putting all tasks together we obtain similar results with the two previous cases (fig-

ure 2.3). For 10% of the data set the performance of STL is close to the MTL-IMC

models, while it outperforms the MTL-IND. For 20% of the training set STL continues

to outperform the MTL-IND model, while the IMC-COR model performs better than

all the others. Similarly, to the “B” group the IMC-COR model outperforms the IMC-

R2 for all partitions above 20% (statistically significant at 0.05 p-value) which shows

that this parameterization is more flexible and that it is able to model the task rela-

tionships in a more effective way. It should be noted that parameterizing the task co-
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variance matrix as a correlation matrix based on the work Rebonato and Jäckel (2000)

involves the estimation of (M2−M) parameters, while the incomplete Cholesky fac-

torization involves only (Mr) parameters where r is the rank and M is the number of

tasks. Note also that differences between IMC-COR and MTL-IND were statistically

significant at 0.05 p-value for partitions: 20, 30, 40, 50 of the available data, and

between IMC-COR and STL for all partitions above 10%.
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Figure 2.4: Direct comparison between the different constructions of the task covari-

ance matrix and the two sets of experiments; figure (a) presents the results for the “A”

group, and figure (b) presents the results for the “B” group of tasks.

Direct comparison of the two constructions of the task covariance function is given

in figure 2.4. Additionally, in the same figures we plot the results obtained by consid-

ering the groups separately (first round of experiments given in figure 2.2) and both

groups of tasks together (second round of experiments given in figure 2.3), which we

term as “IMC-...- sep” and “IMC-...-all” respectively. We notice that in the A group

of tasks in figure 2.4(a) for 10% of the training set the “R2-sep” construction performs

better than the COR methods, and that in the B group in figure 2.4(b) the “R2-all”

construction is better than all the other. More in depth comparison between the IMC-

COR-sep and the IMC-R2-sep construction revealed that in the 6A group the COR

construction produced a lower RMSE for sizes larger than 20% but was statistically

significant at 5% p-value only for sizes larger than 40%. In the 9B group the COR

construction produced a lower RMSE for all sizes but was statistically significant for

10% and for larger than 30% of the data set size. The fact that for small training sets

the R2 construction is better than the COR method can be explained, since the model

does not have enough information to produce good estimates of the large number of
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parameters of the COR method. This is also verified by the fact that for 10% of the

training set in both groups “A” and “B”, IMC-COR-sep has lower average error than

the IMC-COR-all which has a larger number of parameter to estimate. Moreover, it

is observed that in most of the cases the COR-sep and COR-all produce similar re-

sults, while concerning the R2 construction the R2-sep performs better than the R2-all

in most of the cases. Last, in figure 2.5 we report results for the “A” group, which
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Figure 2.5: Comparison between different standardization procedures, “Assembly” rep-

resents results produced by standardizing all task together and “Independent” repre-

sents independent standardization.

were obtained by standardizing each task independent of the others (Independent) and

by standardizing all tasks together as in all previous experiments (Assembly), which

shows a clear advantage of the Assembly method.

2.4 Conclusions

This chapter presented an overview of Multi-task algorithms for GP regression. We

discussed the transfer learning mechanisms of each method, which resulted into a weak

and a strong form of transfer within the GP framework. We made connections of the

framework of multi-task learning with the framework of link analysis, and we have

stressed the importance of the IMC model of Bonilla et al. (2008). In the last section,

we provided empirical proof that, multi-task learning can significantly improve upon

single-task learning for small training sets. On top of that, the experimental section

validated empirically our classification of multi-task learning algorithms, showing the

gradual improvement in performance from the Parameter to the Inductive transfer. Last

but not least, we showed on a real data set the benefits the framework of multi-task
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learning has to offer and we believe that it can have a significant impact to the problem

of predicting pKa values since it can act as a decision support system for experimental

evaluation.



Chapter 3

Multi-task Learning with Gaussian

Processes for classification

Having discussed Multi-task GP regression in the previous chapter, we now turn our

attention to multi-task classification problems. Multi-task learning (Caruana, 1997) has

been a subject of intense research in the machine learning community in recent years.

The frequent occurrence of multiple, related learning tasks in real-world problems has

motivated the development of machine learning approaches capable of capturing the

similarity between tasks and hence leverage any information transfer between them

(Bakker and Heskes, 2003; Jebara, 2004; Yu et al., 2005; Bonilla et al., 2007; Argyriou

et al., 2008; Yu et al., 2007b). From a motivational point of view, multi-task learning

can be particularly useful in situations where a limited amount of data is available in

each task, while data from many tasks are readily at hand. For example, predictions

in the biomedical field suffer from a massive sample heterogeneity problem: samples

from many individuals are often available, but the underlying distribution of the data

from each individual may be different, so that simply pooling all data together may be

inappropriate. Intuitively, a multi-task approach should be able to avoid this problem

by retaining the similarities between the different samples while keeping into account

the differences between them. Although it is difficult to specify conditions under which

a multi-task approach guarantees an increase in performance (Baxter, 2000; Ben-David

and Borbely, 2008; Chai, 2009), empirically it has been shown in many examples that

transfer learning does indeed happen, leading to improved results over models trained

on the individual tasks.

From a Bayesian perspective, multi-task learning can be simply implemented in a

hierarchical fashion, whereby different models trained on separate tasks are joined by

52
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placing a common prior distribution over the model parameters (Lawrence and Platt,

2004; Schwaighofer et al., 2005; Yu et al., 2005). While these approaches can effec-

tively capture global similarities between tasks, it limits the influence of the multi-task

setting to determining some common hyperparameters, hence providing a relatively

inflexible model. An attractive alternative is to model directly the correlations between

tasks via a task covariance which can be learned from the data. This approach was

recently proposed by Bonilla et al. (2008) in the framework of Gaussian Process (GP)

regression, where the overall covariance structure of the data was specified as a Kro-

necker product of an input-covariance function and a task correlation matrix.

In this chapter, we extend the results of Bonilla et al. (2008) to the classification

scenario by using a probit noise model as the output likelihood. The introduction of the

non-linear likelihood makes exact inference impossible, leading to the need for approx-

imating techniques. While many of these techniques are by now part of the standard

machine learning repertoire, there are a number of important classification problems

where a multi-task approach could give significant advantages. We first present a fully

Bayesian treatment of the model in the fully observed case, that is equivalent to multi-

label classificaiton. In our experience, this approach however presented convergence

problems in the most typical multi-task scenario when most responses are missing.

We therefore propose two approximate inference approaches obtained by adapting the

popular variational Bayes and expectation propagation frameworks to the multi-task

Gaussian process classification model, where marginalisation over unobserved latent

functions causes no problems. Experiments on a toy data set show that both approaches

provide an excellent approximation to the true posterior distribution.

Although, a thorough introduction to MT GP regression and to the IMC model

of Bonilla et al. (2008) was given in the previous chapter since every chapter is self

contained, in the next section, we briefly review multi-task Gaussian Process regres-

sion and introduce our classification model. We then discuss the three inference ap-

proaches considered: Gibbs sampling, Expectation-Propagation (EP) and Variational

Bayes (VB). We continue by discussing the issue of transfer learning in our model,

i.e. how information can flow from one task to another during the learning process.

Finally in the last section, we present results on three data sets, a synthetic benchmark

problem used previously in multi-task classification by Liu et al. (2009) as well as two

real data sets. Last note that in relation to the classification of Transfer learning algo-

rithms presented in chapter 1 the content of this chapter as of the previous fall into the

Inductive category.
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3.1 Multi-task Gaussian Processes

3.1.1 Multi-task Regression

GPs are a popular non-parametric Bayesian tool for regression and classification; at

the core of GP prediction is the covariance function or kernel, capturing the output

covariance at different pairs of input points. In the regression case, observations are

generally assumed to be noisy corrupted versions of an underlying stochastic process

f depending on the input variable x

y j ∼N
(

f j,σ
2)

f∼N (µ,K)

where µ(x) is the mean function and Ki j = k(xi,x j) is the covariance function, capturing

the input dependence of the target statistics.

In the multi-task setting we are interested in learning M related functions f j for j =

1, . . . ,M, from training data xi j,yi j i = 1, . . . ,n j, with x ∈ Rd , and n1 + . . .+nM = N.

As usual in GP regression, we assume the following noise model

yi j = f j(xi j)+ ε j, with ε j ∼N (0,σ2
j), (3.1)

where yi j (xi j) denotes the ith output (input) of the jth task. Let us consider the vector

y of complete responses obtained by stacking the response in all tasks to each input

point, such that y = vec(Y), where Y ∈ RN×M. Of course, in most applications not

all entries of this vector will be observed; given the probabilistic nature of GPs, it is

straightforward to treat the missing values. Let f be the latent function values corre-

sponding to the complete responses, again stacked in a single vector (f = vec(FT ))

with F ∈RN×M. Unless specified otherwise, bold letters will be used to denote vectors

and plain letters for single variables. Bonilla et al. (2008) encapsulate the multi-task

regression problem by selecting the following form for the GP prior over the latent

functions

p(f|X)∼ GP (0,Kt⊗Kx), (3.2)

where ⊗ is the Kronecker product, and Kt ∈ RM×M and Kx ∈ RN×N are the task

and data covariance matrix respectively. Of central importance is the task covariance

matrix which can either be defined by a task covariance function kt(., .) when task-

descriptor features xt are available (Bonilla et al., 2007), or be a free form covariance

matrix, specifying inter task correlations (Bonilla et al., 2008). Note that expressing
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the covariance function of the prior as a Kronecker product has been known in the

geostatistics community as the “Intrinsic Model of Coregionalization” (IMC) (Cressie,

1993).

The noise model becomes p(y|f) ∼N (f,D⊗ I), with DM×M diagonal with D j j =

σ2
j , and IN×N . Hyperparameters θt and θx appear both in the task and data covariance

functions; they can be estimated within this framework by maximising the evidence or

log marginal likelihood. This can be done either by standard gradient descent or using

an E-M type algorithm exploiting the Kronecker factorisation of the prior (cf Bonilla

et al. (2008), section 2.2).

Figure 3.1: General Multi-task Probit model. Variables y represent the outputs, vari-

ables h and f represent the auxiliary and the latent function variables over the tasks

respectively. Variables Kt , α, θt and θx are used to denote prior distributions of param-

eters of the task and data covariance function (see section 3.1.2 for more details).

3.1.2 Multi-task GP Classification

A key asset of GP regression is the conjugacy of the Gaussian noise model (equation

3.1) with the GP prior (equation 3.2), enabling analytical marginalisation of the la-

tent variables. In the classification setting, the target values are discrete, and no such

conjugacy is available. In the rest of this chapter, we focus on binary classification

employing the probit model (Csató et al., 2000); generalisation to the multi-class pro-

bit model or to other binary noise models is in principle straightforward (Girolami and

Rogers, 2006)1.

1We observe in passing that Bonilla et al. (2008) also addressed a multi-class classification problem
by treating it as a regression problem with Gaussian noise. While this may have been reasonable on the
specific data set considered, its general applicability as a classification method is questionable.
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The graphical model of figure 3.1 illustrates the dependencies between the vari-

ables of a general multi-task probit classification model. In the general case the joint

likelihood factorises as:

p(y,h, f,Kt ,α|θt ,θx) = p(y|h)p(h|f)p(f|Kt ,α)p(α|θx)p(Kt |θt). (3.3)

The relationship between outputs y and the auxiliary variable h is deterministic and

given by p(yi|hi) = θ(yihi) for yi =±1, where θ is one if its argument is positive, zero

otherwise (i.e., the Heaviside function). The auxiliary variable hi is given a normal

distribution with mean given by fi and variance 1,

p(hi| fi) = N ( fi,1) (3.4)

which leads to the probit model (Albert and Chib, 1993). The latent variable f in-

tegrates the information coming from the data and the tasks through a matrix variate

normal distribution with zero mean and covariance given by Kt⊗Kx, as in Bonilla et al.

(2008). The matrix Kt is the task covariance matrix encoding information about the

tasks, while matrix Kx is the data covariance matrix encoding information coming from

the data of each task. Parameters of the prior distribution over the task covariance ma-

trix are denoted by θt . Parameters of the data covariance function Kx(., .) are denoted

by α, with θx being the associated prior hyperparameters. In the rest of the chapter,

we choose a free-form for the task covariance matrix, while the data covariance ma-

trix will be given by an Automatic Relevance Determination (ARD) (Rasmussen and

Williams, 2005), i.e. a squared exponential covariance with diagonal matrix.

3.2 Inference in multi-task GP classification

Coupling the probit likelihood with a GP prior on the latent functions f , results into a

non-Gaussian posterior distribution p(f|y), making exact inference impossible. In this

section, we present three inference approaches to solve this problem. First we present a

solution based on Gibbs sampling; this is asymptotically exact but computationally in-

tensive. We then employ two deterministic methods to approximate the non-Gaussian

posterior: the EP approximation (Opper and Winther, 2000; Minka, 2001; Rasmussen

and Williams, 2005), and a variation of the methods proposed in Csató et al. (2000)

and Girolami and Rogers (2006), based on probit regression with a variational EM

algorithm. The hyperparameters of the task and data covariance function in the EP and

Variational probit regression models were estimated by type II Maximum likelihood
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(point estimates) for computational efficiency. Incorporating hyper-priors in a varia-

tional GP-probit model is possible (Girolami and Rogers, 2006), and extension to the

multi-task setting should be straightforward.

3.2.1 Bayesian Inference: Gibbs Sampling

MCMC sampling methods are often employed in Bayesian models as they provably

sample from the true posterior distribution in the limit of infinite samples. The Gibbs

sampling scheme is a particular type of Markov chain simulation where samples are

drawn iteratively from the posterior of a subset of the variables conditioned on all

others. A brief introduction to Gibbs sampling and the Metropolis-Hastings (MH)

algorithm is provided in appendix A.1, while for a complete treatment on sampling

methods the interested reader is referred to Gelman et al. (2004).

To complete the specification of our model in equation 3.3 we need to define prior

distributions over the parameters of the task and data covariance matrices. The hyper-

parameters α of the ARD data covariance are given a log-normal distribution to ensure

positivity,

p(α|θx) = logN (α|µx,σ
2
x),

where hyper-hyperparameters θx = {µx,σ
2
x} are fixed to yield reasonably uninforma-

tive priors. The covariance matrix over the tasks Kt is given an Inverse Wishart prior

probability distribution to ensure conjugacy

Kt ∼ I W M(β,Λ),

where β is the number of degrees of freedom, and Λ is a M×M positive definite matrix

which is known as the parameter matrix (Gupta and Nagar, 2000).

Due to conjugacy, the conditional posterior distribution of h, f,Kt can be found an-

alytically. In contrast, no conjugate prior distribution is available for the ARD length-

scales αi and individual MH sub-samplers must be employed to draw samples from

their conditional posterior. The update equations of the conditional posteriors are given

in the following section 3.2.1.1. It is worth noticing that the MCMC sampling scheme

could further be accelerated by following recent advances in sampling for latent Gaus-

sian models (Titsias et al., 2009; Murray et al., 2010).
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3.2.1.1 Gibbs Sampler

The posterior of the auxiliary variables h conditioned on all other variables is given by

p(h|f,y) =
N

∏
n=1

(
fn + yn

Nhn( fn,1)
Φ(yn fn)

)
, (3.5)

resulting in a product of truncated univariate Gaussians.

Individual MH sub-samplers are employed to sample from the full conditional dis-

tribution of the hyper-parameters α as

p(α|f,θx) ∝ p(f|α,Kt)p(α|θx)

∝ Nf(0,Kt⊗Kx
α)logN (α|µx,σ

2
x). (3.6)

At each time step a proposed sample α∗ is accepted with probability A(α∗,α), where

A(α∗,α) = min
(

1,
Nf(0,Kt⊗Kx

α∗)logN (α∗|µx,σ
2
x)

Nf(0,Kt⊗Kx
α)logN (α|µx,σ2

x)

)
. (3.7)

Continuing the posterior of the latent variables f follows as

p(f|h,Kt ,α) = N (Σh,Σ), (3.8)

where Σ = (Kt⊗Kx)(I +Kt⊗Kx)−1. The posterior of the task covariance matrix Kt

is given by

p(Kt |f,θt) =
p(f|Kt)p(Kt |θt)

ZKt
, (3.9)

where using that f = vec(F), the prior of the latent function f can be written as:

p(f|Kt) =
exp
{
−1

2 trace
(
(Kt)−1 FT (Kx)−1 F

)}

(2π)
1
2 NM|Kt | 12 N |Kx| 12 M

. (3.10)

Combining the prior over the latent values (equation 3.10) with the prior of the task

covariance matrix given by,

p(Kt |θt = β,Λ) =
2−

1
2 (β−M−1)M|Λ| 12 (β−M−1)

ΓM
[1

2(β−M−1)
]
|Kt | 12 β

etr
{
−1

2
Kt−1

Λ

}
, (3.11)

we get the posterior of the task covariance matrix again as an Inverse Wishart distribu-

tion:

p(Kt |f,θt) =
2−

1
2 (βN−M−1)M |ΛN |

1
2 (βN−M−1)

ΓM
[1

2(βN−M−1)
]
|Kt | 12 (βN)

etr
{
−1

2
(Kt)−1 (ΛN)

}
, (3.12)
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where ΛN = FT (Kx)−1F+Λ, βN = β+N, and ΓM is the multivariate Gamma function

and we have used the shorthand “etr” to denote the exponential of the trace, etr =

exp{trace(.)}. It is worth taking a moment examining the form of the parameter matrix

ΛN of the posterior of the task covariance matrix. ΛN is computed from FT (Kx)−1F+

Λ. This representation assumes that the complete set of responses is available, where

each column of the F or Y matrix represents the latent values or targets for each input

at that task. In most real world applications though, it is desirable to combine data from

different tasks for which outputs of the other tasks are not observed. Latent values for

outputs that are not observed, for which we will refer to as f u, need special treatment

that we discuss in the following section. A possible solution would be to develop an

EM algorithm to estimate the missing values, as was done in Bonilla et al. (2008)

with Gaussian processes or in Yu et al. (2007b) with t-processes. The implications

this situation brings are investigated in the following section, along with a solution

to this problem. More information about the conditional posterior distributions of the

variables h, f, Kt , can be found in appendix A.2.

The predictive distribution for a new point x∗, for task j, will be given by:

p(y∗ j|x∗,X,y,h) = Φ


 ν∗ j√

1+σ2
∗ j


 , (3.13)

where

ν∗ j =
(
kt

j⊗kx
X,x∗
)T (I +Kt⊗Kx)−1 h (3.14)

σ
2
∗ j = kt

j jk
x
x∗x∗−

(
kt

j⊗kx
X,x∗
)T (I +Kt⊗Kx)−1 (kt

j⊗kx
X,x∗
)
, (3.15)

with kt
j to denote the jth column of Kt , kx

X,x∗ to denote the vector of covariances be-

tween the training points X and the test point x∗, and kx
x∗x∗ as the variance of the test

point.

3.2.1.2 Treatment of Missing Values

Consistency is an appealing feature of GPs, which enables latent function evaluations

corresponding to missing values to be marginalised effortlessly. In the multi-task sit-

uation, however, data are more structured, in that the posterior of the task covariance

whose parameter matrix, given by ΛN = FT (Kx)−1F + Λ, requires all latent function

evaluations; those that correspond to the observed and to the unobserved outputs. Con-

sidering the common situation in a multi-task scenario where for each data point the



Chapter 3. Multi-task Learning with Gaussian Processes for classification 60

output of one task is observed we can construct matrix F ∈ RN×M as:

F =




f o
1n1

f u
2n1

. . . . . . f u
Mn1

f u
1n2

f o
2n2

f u
3n2

. . . f u
Mn2

...
... . . . . . . ...

f u
1nM

f u
2nM

. . . . . . f o
MnM



, (3.16)

where for example f o
2n2

is the (n2× 1) vector of latent values associated with the ob-

served outputs of task 2 and inputs X2, while f u
2n1

is the (n1×1) vector of latent values

associated with the unobserved outputs of task 2 for inputs X1; additionally we have

used X j and n j to denote the set and number of inputs from each task and N = ∑
M
j=1 n j.

One way of tackling this problem is to modify the sampling scheme described in the

previous section to draw samples for all latent functions f u
jn j

that correspond to the

unobserved latent functions. In the following we will use fo = [ f o
1n1

; f o
2n2

; . . . ; f o
MnM

]

to denote the vector of all latent function evaluations that correspond to the observed

outputs, and by fu = [ f u
1n2

; . . . f u
1nM

; . . . ; f u
Mn1

; . . . ; f u
MnM−1

] to denote the vector of all la-

tent function evaluations that correspond to the unobserved outputs; the length of the

observed latent functions fo will be equal to N, fo ∈ RN×1, as that of the auxiliary

variables h ∈ RN×1 and of the outputs y ∈ RN×1, while the length of the unobserved

latent functions will be equal to N(M−1), thus fu ∈ RN(M−1)×1. The complete set of

latent functions fo and fu are jointly Gaussian, where by partitioning and reordering

the covariance matrix Kt ⊗Kx ∈ RMN×MN into the rows and columns that correspond

to the observed and unobserved latent functions we can write,
[

fo

fu

]
∼N

([
0

0

]
,

[
Koo Kou

KT
ou Kuu

])
, (3.17)

where Koo ∈ RN×N and Kuu ∈ R(M−1)N×(M−1)N is the covariance matrix between the

observed and the unobserved latents respectively, and Kou ∈ RN×(M−1)N are the cross

correlations between the observed and the unobserved latent functions.

The conditional distributions of fo|fu, and fu|fo will be given by:

p(fo|fu,Kt ,α) = N
(
KouK−1

uu fu,Koo−KT
ouK−1

uu Kou
)

= N (µo
c ,Σ

o
c) , (3.18)

p(fu|fo,Kt ,α) = N
(
KT

ouK−1
oo fo,Kuu−KouK−1

oo KT
ou
)

= N (µu
c ,Σ

u
c) , (3.19)
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where the dependence of fo and fu on Kt and α is hidden in the covariance matrices

Koo, Kuu and Kou; in the following we will drop the dependence on α to keep the nota-

tion light. In that situation the posterior of the observed latent functions fo conditioned

on all other variables will be given by:

p(fo|h, fu,Kt) =
p(h|fo)p(fo, fu|Kt)p(Kt |θt)R

p(h, fo, fu,Kt)dfo ,

=
p(h|fo)p(fo, fu|Kt)p(Kt |θt)R

p(h|fo)p(fo, fu|Kt)p(Kt |θt)dfo ,

=
p(h|fo)p(fo|fu,Kt)p(fu|Kt)R

p(h|fo)p(fo|fu,Kt)p(fu|Kt)dfo ,

∝ p(h|fo)p(fo|fu,Kt),

p(fo|h, fu,Kt) = N (µ f o,Σ f o), (3.20)

where Σ f o = (I +(Σo
c)
−1)−1 and µ f o = Σ f o(h + µo

c). Continuing, the posterior of the

unobserved latent functions fu has no dependence on h, and is simply given by:

p(fu|fo,Kt) = N (µu
c ,Σ

u
c). (3.21)

The posterior distribution of the auxiliary variables h is independent of the fu variables

which similarly to equation 3.5 gives that p(h|fo,y) = ∏
N
n=1

(
f o
n + yn

Nhn( f o
n ,1)

Φ(yn f o
n )

)
. Using

samples from the observed and the unobserved latent functions it is possible to recon-

struct the F matrix and vector f = vec(F) in order to draw samples from the posterior of

the task covariance matrix and for the hyperparameters α in the Metropolis-Hastings

algorithm.

However, the above sampling scheme did not produce satisfactory results in the es-

timation of the posterior of the hyperparameters α, where it was observed that the MH

sampler was not converging. It should be noted that in the Multi-task setting this is

a rather difficult inference problem since it requires the estimation of the posterior of

(M− 1)N latent function evaluations that correspond to unobserved outputs from the

N latent functions of the observed outputs. Due to these problems this setting will not

be tested in any real or simulated data in the experimental part of this chapter.
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3.2.2 Approximate Inference

3.2.2.1 EP approximation

In this section we outline the EP approximation for multi-task GP classification, for

a complete treatment of EP for the conventional GP classifier, see Rasmussen and

Williams (2005). In this case, we will marginalise the auxiliary variable h and work

directly with the likelihood given by p(y| f ) = Φ(y f ) =
R y f
−∞ N (u|0,1)du. Hyperpa-

rameters of the input and task covariance matrix are given point estimates via type II

maximum likelihood, so that nodes Kt and α are treated as parameters and not as ran-

dom variables. To harmonise the notation we will now denote these parameters as θx

and θt .

The posterior over the latent variables, p(f|y), is proportional to a product of

the prior and the factorised non-Gaussian likelihoods. EP approximates these non-

Gaussian likelihoods by a product of un-normalised Gaussians ti( fi),

N

∏
i=1

p(yi| fi)'
N

∏
i=1

ti( fi|Z̃i, µ̃i, σ̃
2
i ) = N (µ̃, Σ̃)

N

∏
i=1

Z̃i (3.22)

where µ̃ is a vector of µ̃i’s, and Σ̃ is diagonal with Σ̃ii = σ̃2
i . Which leads to the approx-

imated distribution of the latent variables q(f|y)

q(f|y) =
1

ZEP
p(f)

n

∏
i=1

ti
(

fi|Z̃i, µ̃i, σ̃
2
i
)

= N (µ,Σ), (3.23)

where µ = ΣΣ̃−1µ̃, Σ =
[
(Kt⊗Kx)−1 + Σ̃−1

]−1
, and ZEP is approximated by EP marginal

likelihood.

EP updates the individual scaled functions ti sequentially by termwise refinement.

At each step the current ti is left out, giving rise to the cavity distribution q−i( fi) which

is then combined with the true likelihood p(yi| fi), to give a non-Gaussian distribu-

tion. A Gaussian approximation is chosen to approximate the non-Gaussian distribu-

tion from the previous step, which is then used to compute the parameters of ti by

moment matching between the two distributions.

Hyperparameters can be estimated by approximate type II maximum likelihood

using the EP log marginal likelihood. The gradients with respect to hyperparameters

θx and θt are given by:

∂logZEP

∂θ j
=

1
2

µ̃T (Kt⊗Kx + Σ̃)−1
Ω(Kt⊗Kx + Σ̃)−1µ̃− 1

2
tr
(
(Kt⊗Kx + Σ̃)−1

Ω
)
,

(3.24)
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and

Ω =





Kt⊗ ∂Kx

∂θ j if θ j = θx

∂Kt

∂θ j ⊗Kx if θ j = θt

(3.25)

The predictive distribution of a new point is computed by equation 3.13 as in sec-

tion 3.2.1.1, but with ν∗ j, σ2
∗ j given by,

ν∗ j =
(
kt

j⊗kx
X,x∗
)T (Kt⊗Kx + Σ̃

)−1 µ̃ (3.26)

σ
2
∗ j = kt

j jk
x
x∗x∗−

(
kt

j⊗kx
x,x∗
)T (Kt⊗Kx + Σ̃

)−1 (kt
j⊗kx

x,x∗
)
, (3.27)

3.2.2.2 Variational Probit Regression

We now employ a variational approximation in the spirit of Girolami and Rogers

(2006). We refer to the model in figure 3.1 where again hyperparameters are estimated

via type II maximum likelihood. A variational treatment of this problem involves ap-

proximating posteriors over latent variables in an ensemble of factored posteriors of

the form

p(Θ|y,X , t,θt ,θx)≈∏
i=1

Q(Θi) = Q(f)Q(h). (3.28)

It can be shown that the lower bound on the log marginal likelihood log p(y|X ,θt ,θx)≥
EQ(Θ{log p(y, f,h|X)} −EQ(Θ{log Q(Θ)} is maximised by distributions of an un-

normalized form

Q(Θi) ∝ exp(EQ(Θ\Θi){log p(y,Θ|X ,θt ,θx)}), (3.29)

where Q(Θ\Θi) denotes the factorised distribution with the ith component removed.

A variational EM algorithm is derived, where in the E-step the expectations of the

variational parameters are computed, while in the M-step the hyperparameters θt ,θx

are optimised given the expectations computed in the previous step. The lower bound

on the log marginal likelihood is given by (see appendix A.3.2 for details),

L(Q) = EQ(Θ)[log p(y,h, f|X ,θt ,θx)]−EQ(Θ)[log Q(h)Q(f)] (3.30)

=
N

∑
i=1

logzi−
1
2

log|I +Kt⊗Kx|− 1
2

f̃T (Kt⊗Kx)−1f̃, (3.31)

where Zi is the normalisation constant of approximating distribution Q(h), given by

Zi = Φ(yi f̃i).
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3.2.2.2.1 E-step : Compute the sufficient statistics for each variational parameter

Q(Θi) given by equation (3.29), based on current θt ,θx .

Q(f) ∝ exp{E{log p(h|f)+ log p(f|X)}}= Nf(f̃,Σ), (3.32)

Q(h) ∝ exp{E{log p(y|h)+ log p(h|f)}}=
N

∏
i=1

Nhi( f̃i,1)
Φ(yi f̃i)

(3.33)

where f̃ = Σh̃, and Σ = Kt⊗Kx(I +Kt⊗Kx)−1.

3.2.2.2.2 M-step : Optimise θt ,θx based on the last E-step.

∂L(Q)
∂θ j =−1

2
trace((I +Kt⊗Kx)−1

Ω)+
1
2

f̃T (Kt⊗Kx)−1
Ω(Kt⊗Kx)−1f̃, (3.34)

where Ω is given in equation (3.25), as in the EP approximation.

The predictive equation for the Variational probit model is the same as for the Gibbs

sampling scheme and is given in equation 3.13. More details about the Variational

probit model of this section can be found in appendix A.3.1.

3.3 Transfer of knowledge & Covariance structure

3.3.1 Task covariance matrix

Learning the covariance structure of the tasks is performed either by drawing sam-

ples as in section 3.2.1 from the posterior of the task covariance matrix or through

optimisation of the hyperparameters as in sections 3.2.2.1,3.2.2.2, and is an important

component of the method proposed here.

The task covariance matrix can either come from a covariance function, when task

descriptor features are available, a case investigated by Bonilla et al. (2007) and Yu

et al. (2007a) in different contexts, or it can have a free form as in Bonilla et al. (2008).

In the case when a free form covariance matrix is used, Kt acts as a correlation matrix

capturing the dependencies between the tasks. Despite the “free form” structure of

Kt , positive definiteness restrictions must be retained. Bonilla et al. (2008) achieved

positive semidefinite guarantees by parameterising the lower triangular matrix L of the

Cholesky decomposition Kt = LLT .

If we want to restrict the task covariance matrix to be a correlation matrix of the

tasks, except from the symmetric and positive definite restrictions, it has to have a unit
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diagonal. This restriction, easy as it may seem, poses certain difficulties and many

attempts have been made to solve this constrained optimisation problem. A solution to

this problem is presented in Rebonato and Jäckel (2000), where the correlation matrix

is still decomposed as Kt = BBT , with B (M×M), and each row vector of B can be

viewed as coordinates lying in the unit hypersphere. If we denote by bi j the elements

of the matrix B, then these M×M coordinates are obtained from M× (M−1) angular

coordinates θt
i j by:

bi j =





cosθi j ∏
j−1
k=1 sinθik for j = 1, . . . ,M−1

∏
j−1
k=1 sinθik for j = M

A possible drawback of this setup would be that the number of correlation parameters

θt that need to be estimated is given by, M2−M, which grows quadratically with the

number of tasks M. It is interesting to note that, if the resulting off-diagonal elements

of Kt are different from zero, then samples from one task will affect predictions of the

other tasks, as the mean of the predictive distribution of the jth task, given by

E
[
p(y j∗|y)

]
= (kt

j⊗kx
X,x∗)

T
Σ
−1y, (3.35)

is computed by weighting observations from task i, where i 6= j, by the ith element of kt
j.

Similar regularisation is performed in the computation of the variance of the predictive

distribution. Therefore, the task covariance matrix acts as a transfer of knowledge

between tasks.

3.3.2 Input covariance function

The choice of the covariance function of the inputs in single task training depends on

the task of interest, and even similar tasks can be trained with different covariance func-

tions. In this specific multi task scenario that we are adopting, the covariance function

hence the hyperparameters are shared amongst the tasks. While this reduces somewhat

the flexibility of the model, performing the optimisation of the hyperparameters using

data from all tasks results in a regularised optimal solution, which can be seen as bias

selection (Baxter, 2000). Furthermore, if the ARD covariance function (Neal, 1996) is

used, then an optimal subset of features is estimated, which is shared across the tasks.

Thus the transfer of knowledge between tasks in this method is the result of two

sources of information. The first is through the task covariance matrix, whose opera-
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tion on the input covariance matrix results in samples from one task affecting predic-

tions of other tasks. The second stems from the optimisation of the shared hyperpa-

rameters of the input covariance function, as a task-regularised optimal solution.

3.4 Experimental Results

Evaluation of the proposed multi-task framework is performed on a synthetic data set

and two real data sets. Throughout all of the experiments, we use the Automatic Rel-

evance Determination (ARD) covariance function (Rasmussen and Williams, 2005)

for the input covariance Kx, and a free form correlation matrix (Rebonato and Jäckel,

2000) for the task covariance matrix Kt . We report results obtained both with a VB

and EP2 approximation to the posterior distribution, except in one of the real data

sets, where the VB algorithm proved very slow due to the size of the data set. Nu-

merical inaccuracies in the EP approximation were corrected by using Rasmussen’s

solve chol.m3 function, which solves linear equations from the Cholesky factorisa-

tion, while Rasmussen’s excellent optimisation routine minimize.m4 was used in some

of the simulations for the optimization of the hyperparameters.

In order to check that there is transfer of knowledge, so that performance is im-

proved when tasks are trained together compared to in isolation, the multi-task GP is

compared with the standard single task GP probit classifier. For the single task GP

classifier we use the EP approximation with an ARD covariance function.

In addition, on all data sets we compare with two alternative multi-task learning ap-

proaches. One is an alternative GP-based approach where the various tasks are coupled

only through sharing the hyperparameters of the data covariance function kx. This will

be termed as IND-MTL since in this form of multi-task learning there are no correla-

tions between the latent functions of each task. This is in some sense a weaker form

of multi-task learning, and is essentially the one used in Lawrence and Platt (2004),

inspired by well established hierarchical Bayesian modelling paradigms. The second

is a state of the art multi-task classifier based on support vector machines5 (SVM) (Je-

bara, 2004), which tackles the problem of multi-task SVM feature and kernel selection,

based on the maximum entropy discrimination framework. This performs non-linear

2Matlab code to allow replication of the experiments available at
http://homepages.inf.ed.ac.uk/gsanguin/software.html.

3Code available at http://www.gaussianprocess.org/gpml/code/matlab/doc/
4Code available at http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/
5Code available at http://www.cs.columbia.edu/ jebara/code/multisparse/
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classification by mapping input data x implicitly into Hilbert space through a feature

map φ. In this case there are still M discriminant functions, one for each task, which

however share a kernel selection vector s, which controls the weight of each base ker-

nel. In all experiments a large number of kernels (10 on the toy data, 18 on the two

real data sets) was inserted into the algorithm, which would then automatically decide

which kernels are more relevant for classification. Throughout all experiments the

regularisation parameters α (kernel selection variable) and C (threshold) (see Jebara

(2004) for details) were determined through cross-validation.

The experimental setup is identical for all data sets, and follows a similar approach

to Liu et al. (2009). It is known that the merits of multi-task compared to single task

learning are more apparent when few data per task are available. For this reason, in

all experiments we show results starting with few data points per task and increasing

up to a number where single-task learning approaches the performance of multi-task.

In order to estimate the dependence of the results on the training set, each experiment

was repeated 100 times on independently sampled training sets of the same size. It is

important to note that in the case of single task learning each data set from each task is

learnt in isolation, which results in more models being trained.

To assess the performance of the various algorithms, we considered the Receiver

Operator Characteristic (ROC) curves, which plot sensitivity versus 1-specificity of

the classifier for varying values of the threshold posterior probabilities (bias in the

SVM case). The performance measure used to assess the different algorithms is the

Area Under the Curve (AUC) (Hanley and Mcneil, 1982), as it provides a measure

that depends on the positive and negative predictive value (PPV and NPV), and not

just the overall accuracy. Assessment of the different algorithms is then performed by

plotting the median of the AUC over the 100 runs of the experiments and the resulting

confidence intervals for varying sizes of the training set. Statistical significance of the

results was assessed with standard t-test.

While the purpose of this chapter is to propose a model, rather than optimise its

running time, it is still important, from the practitioner’s perspective, to assess the rel-

ative speed of the various algorithms proposed. Naturally, single-task learning, as well

as the multi-task induced by hyperparameter sharing, are faster as they consider a sim-

pler covariance structure. Among the approximate inference approaches to multi-task

GP, in our experiments EP was consistently faster than the variational approximation

(this depends on the number of VB iterations of course). As a yardstick, EP took ap-

proximately 1 hour to run on the arrhythmia data set with seven tasks and 50 training
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Figure 3.2: Scatter plot of the two clusters of tasks; figure (a) shows the scatter plot for

tasks 1, 2, 3, and figure (b) shows the scatter plot for tasks 4, 5, 6.

points per task. As a comparison, the SVM-based method took roughly 40 minutes

considering the cross-validation for the determination of the model parameters.

3.4.1 Synthetic data set

The synthetic data set is a 2-dimensional data set previously used in Liu et al. (2009).

It is comprised of six binary classification tasks. Data for the first three tasks are gener-

ated from a mixture of two partially overlapping Gaussian distributions, and similarly

for the remaining three tasks, thus tasks 1-3 and 4-6 are identical and vary only due to

the noise induced.

Data from the first cluster of tasks (tasks 1, 2 and 3) for class “+1” were generated

by a mixture of Gaussian distributions defined by pc=1
f =1(x) = ∑

3
k=1 πkN (x|µk,Σk); the

mixing coefficients are given by π1 = 0.3, π2 = 0.3, π3 = 0.4 , with respective means

and covariances as µ1 = (1,1), µ2 = (3,3) and µ3 = (5,5), and covariances

Σ1 =

(
0.3 0.7

0.7 0.3

)
, Σ2 =

(
3.0 0.0

0.0 0.3

)
, and Σ3 =

(
3.0 −0.5

−0.5 0.3

)
. (3.36)

Data from the second cluster of tasks (tasks 4, 5 and 6) for class “+1 were also gener-

ated again by a mixture of Gaussian distributions, pc=1
f =2(x) = ∑

6
k=4 πkN (x|µk,Σk) with

π4 = 0.3, π5 = 0.3, π3 = 0.4, µ1 = (0.5,0.5), µ2 = (3,2) and µ3 = (5,5), and covari-

ances Σ4 = Σ2, Σ5 = Σ3, and Σ3 = Σ1. Data for class “−1” for both clusters of tasks

are generated by single Gaussians. The generating distribution for the first cluster of
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Figure 3.3: Experimental Results on Toy data set. (a) Mean AUC over the 6 tasks, (b)

Hinton Diagram of the task covariance matrix, averaged over the 100 independent trials

of the results obtained by EP with 50 data points per task.

tasks is given by

pc=2
f =1(x)∼N

((
2.5

1.5

)
,

(
0.5 0

0 0.5

))
, (3.37)

and for the second cluster by

pc=2
f =2(x)∼N

((
2

3

)
,

(
0.5 0

0 0.5

))
. (3.38)

The scatter plot of the toy data set is shown in figure 3.2, which illustrates the over-

lap between the classes of each cluster of tasks as well as the differences of the two

clusters.

Figure 3.3.a shows the mean and the error bars of the AUC over the six tasks for

both approximations for multi task GP classification (EP & VB), multi-task with in-

dependent GPs (IND-MTL), single-task GP learning, and for the SVM-based method.

It is clear that all multi-task learning algorithms significantly outperform single-task

learning, reflecting the fact that indeed in this case there are important correlations

between the tasks. Figure 3.4 highlights the differences between the boundaries pro-

duced from MTL and STL for 10 training points (5 from each class) for tasks 3 and 6.

As shown in the left panel of figure 3.4 the MTL boundaries are a lot more broad than

the STL boundaries in the right panel. In addition, simple inspection reveals that the

MTL classifier gives high probabilities to regions where no training data from that task
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Figure 3.4: Decision boundaries with the EP approximation for MTL and STL for 10

training data points; subfigures (a) and (b) show the decision boundaries for task 3 for

MTL and STL respectively from the first cluster, and subfigures (c) and (d) show the

decision boundaries for task 6 for MTL and STL respectively from the second cluster of

tasks.

are present due to the task similarities shown in the Hinton diagram (Hinton, 1989) in

figure 3.3.b.

It is also worth noticing that all multi-task GP methods improve upon the SVM-

based method (with a statistically significant improvement in 82% of the cases at 5%

p-value). Larger differences in performance are noticed when few data points are used

for training. As expected those differences decay as the number of training points

increases. Comparing the multi-task GP methods we see that VB performs slightly

better than EP and IND in the case when few data points are available, although the

differences are minimal when more than 10 points per task are available. It is worth-

while comparing the results to those reported in Liu et al. (2009), which used a semi-
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supervised multi-task logistic regression model to perform classification. The reported

AUC in that paper (average only) was of approximately 90% when 30 labelled data

points per task were used, roughly 5% less than the performance achieved by our

method. This is probably a result of the greater flexibility of the GP as a classifier,

compared to the logistic regression employed in Liu et al. (2009). Figure 3.3.b shows

the Hinton diagram of the optimised task covariance matrix (larger blocks denote val-

ues closer to 1), showing that the algorithm is able to correctly learn the similarity

between the tasks.

3.4.2 Arrhythmia data set

In this data set, we are provided with seven recordings of ECG signals from seven dif-

ferent patients. Each recording corresponds to a large number of heart beats; the goal

is to classify each heart beat into two classes, either normal or premature ventricular

contraction (PVC) arrhythmic beats. This problem was already considered using sin-

gle task GP classifiers in Skolidis et al. (2008). Data for this set of experiments were

taken from the MIT-BIH Arrhythmia database (Goldberger et al., 2000); each record-

ing was sampled at 360Hz. Annotation provided by the database was used to separate

the beats before any preprocessing. Each beat segment, consisting of 360 data points

(one minute), was transformed into the frequency domain using a Fast Fourier Trans-

form with a Hanning window. Only the first ten harmonics are used as features for

classifying heart beats, as most of the information of the signal is contained in these

harmonics. In this case, each recording/patient is treated as a separate task. A detailed

description of the data set is given in table 3.1.

Table 3.1: Description of the Arrhythmia data set

Task ID 1 2 3 4 5 6 7

Recording ID 106 200 203 217 221 223 233

Total number of data 2021 2567 2970 406 2349 2417 3053

Number of Normal heart beats 1503 1740 2526 244 1954 1955 2224

Number of PVC heart beats 518 827 444 162 395 462 829

The mean AUC over the 100 repetitions is shown in figure 3.5.a for all five methods
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Figure 3.5: Experimental Results on the Arrhythmia data set. (a) Mean AUC over

the 7 tasks, (b) Hinton Diagram of the task covariance matrix, averaged over the 100

independent trials of the results obtained by EP with 50 data points per task

considered. It is noticed that the EP, VB, and the SVM methods significantly outper-

form the IND and the STL method with small error bars. It is interesting to note that

for 20 training data points per task STL performs better than the MTL with indepen-

dent latent functions. Further investigation however reveals that there are two types of

tasks in terms of performance. Some tasks (1,2,3,4,7) appear to be reasonably straight-

forward, achieving more than 95% of AUC for all multi-task and single task learning

methods applied, and for all training set sizes considered. In contrast, tasks 5 and 6 are

harder classification tasks, and in these cases the multi task approaches yield a consid-

erable advantage, both in terms of performance (higher median AUROC) and in terms

of robustness (smaller error bars). These results are given in figure 3.6, (a), and (b)

respectively. As in the synthetic example this difference degrades as the number of

training points per task increases. The Hinton diagram of the task covariance matrix,

in figure 3.5.b, shows the similarity between tasks. Not surprisingly, the results are not

as clear cut as in the toy data set, and no firm conclusions can be made.

3.4.3 Landmine data set

The final set is a landmine detection problem, consisting of 19 tasks where each point

is represented by nine features, previously investigated in Liu et al. (2009), and Xue

et al. (2007). This data set is tested only with the EP approximation and the Indepen-

dent multi-task GP setting, as the large number of tasks made the VB approach slower.
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Figure 3.6: Additional Results on the Arrhythmia data set. (a) AUC for task 5 (Recording

ID: 221), (c) AUC for task 6 (Recording ID: 223)

Also, we consider at least 20 training points per task, given the larger number of pa-

rameters to be estimated in the task covariance matrix. Results6 shown in figure 3.7.a,

demonstrate a significant difference, in terms of performance, between the multi-task

learning algorithms with both GPs and SVMs over the single-task learning with GPs,

while comparing the performance of the multi-task algorithms it is noticed that the

EP approximation outperforms the other two. A more accurate analysis of the results

shows that the GP method significantly (at 5% p-value) outperforms the SVM method

in the overwhelming majority of tasks (table 3.2). Liu et al. (2009) reported a mean

AUC of approximately 78% on this problem (irrespective of the training size, since

their semi-supervised approach benefited from using unlabelled data). Our approach

achieves a slightly better performance when only 20 data points are available, and a

significantly better performance as the size of the training set increases. Figure 3.7.b

shows the Hinton diagram of the task covariance matrix, clearly showing the presence

of two clusters containing the first ten and the remaining nine tasks. This is in good

agreement with previously reported results on this data set (cf Liu et al. (2009), figure

3.c).
6As in the previous two examples the reported median is over the 100 repetitions and not over the

tasks.
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Figure 3.7: Experimental Results on the Landmine data set. (a) Mean AUC over the

19 tasks, (b) Hinton Diagram of the task covariance matrix, averaged over the 100

independent trials of the results obtained by EP with 100 data points per task

Table 3.2: T-test for the Landmine data set. The second column (No. of tasks) shows

the number of tasks with better means, for the method stated in the first column. The

third column (Statistically Significant) shows the number of tasks that were statistically

significant on the 0.05 significance level (p-value).

No. of tasks Statistically significant

Data points per task 20 40 60 80 100 20 40 60 80 100

MTL-EP > STL-EP 19 19 19 19 18 19 19 19 19 18

MTL-EP > MTL-SVM 15 16 15 16 16 15 16 15 16 16

3.5 Conclusions

In this chapter, we presented a Bayesian multi-task classification model based on Gaus-

sian process priors. The work extends the regression model of Bonilla et al. (2008) to

the classification scenario, introducing a number of novel aspects. First of all, we

consider non-Gaussian likelihoods in order to address classification problems. Sec-

ondly, we present a number of inference strategies, including an asymptotically exact

sampling scheme and two efficient deterministic approximations. Finally, we demon-

strated on a number of important real-world tasks the benefits of this approach, both

over single-task learning and competing multi-task approaches.



Chapter 4

Semi-Supervised Multi-task learning

with Gaussian Processes

We present a probabilistic framework for transferring learning across tasks and be-

tween labelled and unlabelled data. The approach is based on Gaussian Process pre-

diction and incorporates both the geometry of the data and the similarity between tasks

within a Gaussian process covariance, allowing Bayesian prediction in a natural way.

We discuss the transfer of learning in a multi-task scenario in the two cases where the

underlying geometry is assumed to be the same across tasks and where different tasks

are assumed to have independent geometric structures, and we discuss the way similar

ideas can be employed in different transfer learning scenarios such as domain adapta-

tion and self-taught learning. We demonstrate the method on a number of real data sets,

indicating that the semi-supervised multi-task approach can result in very significant

improvements in performance when very few labelled training examples are available.

4.1 Introduction

Advances in data gathering technologies have led to what many dub the age of data.

This deluge of data is not matched by a corresponding increase in the quality and

availability of annotation; devising methodologies to improving learning from sparse

and often poor supervision is one of the major challenges for machine learning and

pattern recognition. Besides its obvious importance in applications, the problem also

has a fundamental scientific relevance: unsupervised or weakly supervised learning

has to be one of the fundamental building blocks behind human cognition.

Broadly speaking, two related scenarios are often encountered: unannotated data

75
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for a prediction task is plentiful, but we are interested in prediction based on a rel-

atively small set of labelled data. In this scenario, we are interested in leveraging

information contained in the abundant unlabelled pool to improve the performance of

the supervised predictor. This line of enquiry is typical of Semi-supervised learning

(SSL) methods, and has received much attention within the machine learning commu-

nity in recent years (Chapelle et al., 2006; Seeger, 2001). Alternatively, one may have

data for many related prediction tasks, and may wish to construct a more powerful

predictor by exploiting task relatedness to transfer learning across tasks. Within this

transfer learning scenario, one may distinguish several important subcases (Pan and

Yang, 2010): in this chapter, we will mostly focus on the multi-task learning (MTL)

scenario, whereby each of the tasks we are interested in has at least some labelled data.

Naturally, leveraging extra information comes at the cost of enforcing further mod-

elling assumptions within the learning paradigm. SSL usually relies on assumptions

about the global structure of the data (Chapelle et al., 2006):

• Nearby points in high density regions are assumed to share the same label with

high probability, the “smoothness assumption”.

• Decision boundaries are assumed to lie in low data density regions, the “cluster

assumption”.

• Data are assumed to lie on a low-dimensional manifold, the “manifold assump-

tion”.

Similarly to SSL, MTL assumes correlations between tasks to achieve better predic-

tions by training in parallel across tasks (Pan and Yang, 2010). Naturally, if these

assumptions do not hold, then the inclusion of unlabelled data or the parallel training

across tasks might even degrade performance.

While both SSL and MTL are notable success stories, relatively little work has in-

vestigated the situation where information is transferred both from unlabelled data and

across tasks. The problem is particularly complicated when correlations between tasks

are to be inferred from data, as one needs to solve the non-trivial task of determining

how to use unlabelled data in determining task relatedness. In this chapter, we present

a probabilistic model to transfer learning from unlabelled data across different tasks,

which will be referred to as Semi-supervised Multi-task learning (SS-MTL). We work

within the Gaussian Process (GP) framework, using the “Intrinsic Model of Coregion-

alization” (IMC) (Cressie, 1993; Bonilla et al., 2008), which encodes task correla-

tions in a structured covariance matrix. To enable semi-supervised learning within this
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model, we couple the LCM with the data-dependent prior of Sindhwani et al. (2005,

2007) which allows us to incorporate the global geometric structure of the data within

the learning framework. We demonstrate how this coupled covariance does indeed lead

to significant advantages on real tasks where labelled data is extremely sparse.

The rest of this chapter is organised as follows. In section 4.2 we review the con-

struction of data dependent conditional priors from the frequentist and the Bayesian

point of view. In section 4.3.1 we discuss a weak form of transfer learning for SS-

MTL with GPs that is based on the parameter transfer approach presented in section

2.2.1. In section 4.3.2 we present our method for SS-MTL which falls in the Inductive

transfer GP type of approach. We then propose two different models, one that exploits

the geometry of the unlabelled data of each task independently, and one in which the

geometry of a task influences the prior of all other tasks. Additionally, in section 4.3.3

we present how the graph Laplacian is constructed, and we propose a novel method

for estimating automatically the graph structure. In section 4.4 we present results of

the two SS-MTL methods on one artificially generated data set and three real data sets.

Finally, in section 4.5 we discuss possible extensions of the proposed settings to other

forms of transfer learning. With respect to the classification of Transfer learning (TL)

algorithms presented in chapter 1, the content of this chapter falls primarily into the In-

ductive category of TL. However note that one of the extensions of the models that we

discuss in section 4.5 is intended for Domain Adaptation (DA) which would naturally

fall into the Transductive category of TL.

4.2 Semi-supervised learning with GPs (SSGP)

GPs are a flexible non-parametric model for regression and classification which have

become increasingly popular in recent years (Rasmussen and Williams, 2005). A GP

is a collection of random variables, any finite number of which have a joint Gaussian

distribution; if f is a sample from a GP, we write

f ∼ GP (µ,K), (4.1)

where µ(x) is the mean function and Ki j = k(xi,x j) is the covariance function, captur-

ing the input dependence of the target statistics. By definition, the vector f obtained by

evaluating f at a finite set of input points x1, . . . ,xN is normally distributed with mean µ

given by evaluating the mean function µ at the input points, and covariance Σ obtained

by evaluating the covariance function k at every pair of input points. Given target vari-
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ables y1 . . . ,yN and a noise model connecting the targets with f, standard methods allow

to obtain a posterior process (Rasmussen and Williams, 2005). In addition, GPs are

connected to frequentist kernel methods (Schölkopf et al., 1999) through the covari-

ance function: both a valid covariance function for a GP and the kernel function of a

Reproducing Kernel Hilbert Space (RKHS) must obey the same conditions (Mercer’s

theorem).

4.2.1 Frequentist kernel methods for SS learning

In this section we provide a brief introduction to the ideas the data-dependent norms of

Sindhwani et al. (2005) are based on; for proofs and theoretical issues concerning data

dependent norms on RKHS the interested reader is referred to Sindhwani et al. (2005)

and Belkin et al. (2006).

In a semi-supervised learning setting, the learner is provided with a set of labelled

examples L = {(xl1,y1), . . . ,(xlnl ,ynl)}, and an additional set of unlabelled examples

U = {xu1, . . . ,xunu}, where nl and nu is the number of labelled and unlabelled data re-

spectively. The union of the labelled and unlabelled sets will be denoted by D = L∪U ,

while other samples unseen to the learner will be denoted by T . Moreover, it is usually

assumed that the labelled examples are generated according to a probability distribu-

tion P on X ×R and that unlabelled examples are drawn according to the marginal

distribution PX of P. The concept behind the semi-supervised learning framework is

that information about the marginal distribution PX can help for better function learn-

ing. In order to make use of the marginal distribution certain assumptions have to be

taken into account, as the smoothness assumption stated in the previous section (Belkin

et al., 2006).

A Mercer kernel K : X ×X → R, has a RKHS HK of functions f → R with the

corresponding norm, i.e., ‖ f ‖K=
√
〈 f , f 〉K , where we have used the kernel K to

denote inner products and norms in the corresponding Hilbert space HK , that is 〈., .〉K ,

and ‖ . ‖K instead of 〈., .〉HK
, and ‖ . ‖HK

, respectively (Belkin et al., 2006). In the

standard supervised regularisation framework one wishes to estimate a function from

HK by minimising Rreg[ f ] whose solution f (x) is given by the representer theorem

(Smola and Schölkopf, 2002, Ch. 4.2),

Rreg[ f ] = arg min
f∈H

1
l

l

∑
i=1

V (xi,yi, f )+ γA ‖ f ‖2
K, with f (x) =

L

∑
i=1

αik(xi,x), (4.2)

where V (xi,yi, f ) is an appropriate loss function, as the squared loss (yi− f (xi)))
2
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giving rise to Regularized least squares, or the hinge loss [1− yi f (xi)]+, giving rise

to Support Vector Machines (SVMs), [.]+ denotes the positive part, and ‖ f ‖2
K is the

squared norm in HK and can be thought of as a generalisation to functions of the

nl-dimensional quadratic form fT K−1f (Rasmussen and Williams, 2005, Ch. 6.1).

Belkin et al. (2006) transformed this minimisation problem to account for the un-

labelled data by adding an extra regularisation term as,

f ∗ = arg min
f∈HK

1
l

l

∑
i=1

V (xi,yi, f )+ γA ‖ f ‖2
K +γI ‖ f ‖2

I , (4.3)

where the term ‖ f ‖2
I reflects the intrinsic structure of the marginal PX , and parameters

γA and γI are the regularisation parameters for the ambient and the intrinsic structure

of the data respectively. As an empirical substitute of the structure of the marginal

distribution Belkin et al. (2006) used the graph Laplacian (Belkin and Niyogi, 2003),

γI ‖ f ‖2
I =

γI

(u+ l)2

l+u

∑
i, j=1

(
f (xi)− f (x j)

)2Wi j =
γI

(u+ l)2 fT Lf, (4.4)

where Wi j are the edge weights in a graph, L = D−W is the graph Laplacian, Dii =

∑
l+u
j=1Wi j, and f = [ f (x1), . . . , f (xl+u)].1

In a follow up paper this kernel based SS framework has been reinterpreted in

terms of a family of data-dependent norms on RKHS (Sindhwani, 2007). It can be

shown (Sindhwani et al., 2005), that the new kernel K̃ associated with the new space of

functions H̃ that takes into account the intrinsic geometry of the marginal distribution

PX will be given by,

K̃(x,z) = K(x,z)−Σ
T
D,x(I +LΣD,D)−1LΣD,z (4.5)

where ΣD,D is the kernel matrix between all points in set D, ΣD,x = [k(x1,x), . . . ,k(xl+u,x)]

is the kernel column vector between points in D and x and similarly for ΣD,x. The data-

dependent kernel of Sindhwani et al. (2005) given in the above equation states that the

kernel function evaluated at two points is influenced by all labelled and unlabelled data

through the kernel matrix ΣDD and the graph Laplacian L.

4.2.2 Bayesian Semi-supervised GP learning

In order to extend the GP framework to the semi-supervised case, we will follow Sind-

hwani et al. (2007) and use the manifold approach to semi-supervised learning. This
1We have slightly abused the notation by using D to denote both the union of the labelled and

unlabelled data, and in the construction of the graph Laplacian, but the use of this letter can easily be
inferred from the context.
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leverages the geometric structure implied by the data distribution to inform the pre-

diction process. Explicitly, the prior distribution over the latent function values fD

conditioned on the geometry of the problem, which we refer to as G , is now composed

of two parts:

p(fD|G) ∝ exp(−1
2

fT
DQfD)p(fD), (4.6)

where the first term in the r.h.s. of equation 4.6 contains the dependency of the latent

variables on the geometry of the problem, while p(fD)∼N (0,ΣDD) is a standard GP

prior with zero mean and ΣDD covariance matrix. The matrix Q is a graph regulariser

reflecting the geometric structure of the data; a common choice is the graph Laplacian

or a power thereof. For more information about the construction of data dependent

priors we refer to Sindhwani et al. (2007).

Additionally, as can be seen in equation 4.6, the data-dependent prior creates a

conceptual difficulty in dealing with new data in the set T , as the graph Laplacian

depends on all data (including potentially novel samples in the set T ). To extend the

approach from the transductive to the inductive setting, we assume that the geometry

of the problem (G) is independent of all latent function evaluations at points in set

T . Given that fX = {fD, fT} are jointly Gaussian, the joint prior of fX given G will be

given by: p(fX |G)∝ exp
(
−1

2 fT
X Σ̃
−1
XX fX

)
, where

Σ̃
−1
XX =

[
ΣDD ΣDT

ΣT
DT ΣT T

]−1

+

[
Q 0

0 0

]
.

Using the partitioned inverse formula, we obtain the following proposition (for details

see appendix B.1) (Sindhwani et al., 2007):

Proposition: Given equation 4.6, for any finite collection of data points X , the random

variables fX = { f (x)}x∈X conditioned on G have a multivariate normal distribution

N (0, Σ̃XX). The elements of the covariance matrix Σ̃XX are given by evaluating the

following kernel function K̃ : X ×X 7→ R

K̃(x,z) = K(x,z)−Σ
T
D,x(I +QΣD,D)−1QΣD,z, (4.7)

for x,z ∈ X , where ΣD,x, ΣD,z denote the covariance vectors between points x, z re-

spectively, and all data points in set D. This defines the Semi-Supervised Gaussian

Process (SSGP) as a GP with a modified kernel function given in equation 4.7. It can

be observed that if Q is invertible, i.e positive definite, then (I + QΣD,D)−1Q is equal

to
(
Q−1 +ΣD,D

)−1. If matrix Q is singular, which is the case in the graph Laplacian

since the smallest eigenvalue is equal to zero (Belkin and Niyogi, 2002), then we can
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add a small ridge term to alleviate this problem. Combining the data-dependent norm

in equation 4.7 with the Laplacian matrix Q similarly to the previous section 4.2.1, has

been shown to be an appropriate norm on a function space where the cluster and man-

ifold semi-supervised assumptions hold (Sindhwani et al., 2005). Note also that the

Laplacian matrix of a graph can be seen as empirical substitute of the Laplace-Beltrami

operator and defines a measure of smoothness with respect to a manifold when the un-

derlying space is a Riemannian manifold. More details about the construction of the

graph Laplacian are given in section 4.3.3.

Figure 4.1: Sources of information in Semi-supervised multi-task learning (SS-MTL);

Xl
j and Xu

j denotes the labelled and the unlabelled set of task j, and Y j represents the

responses for data in Xl
j.

4.3 Semi-Supervised Multi-task learning (SS-MTL) with

GPs

In a Semi-Supervised Multi-Task Learning (SS-MTL) scenario we are interested in

learning M related functions f j by leveraging information from labelled and unlabelled

data (figure 4.1). The multi-task machinery enables us to learn together these M func-

tions, while ideas from semi-supervised learning can help to exploit the overall geo-

metric structure of the data in each task.

Let each task j have labelled data L j = {xl
k j,yk j}

nl
j

k=1 of size nl
j for which outputs

are available, and unlabelled data U j = {xu
k j}

nu
j

k=1 of size nu
j for which outputs are not

observed, where xk j ∈ Rd×1 where d is the number of features for each sample. Let
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D j = L j ∪U j of size N j = nl
j +nu

j be the item set of task j, and D = D1∪D2 . . .∪DM

be the total item set of all tasks, with N = ∑
M
j=1 N j. Additionally, we will define the set

of all labelled points from all tasks as L = L1∪ . . .∪LM with Nl = ∑
M
j=1 nl

j. As in the

previous section all other data points unseen to the learner will be denoted by T .

The classification of MTL algorithms that was employed in chapter 2 can be ex-

tended in the Semi-supervised case by making use of the data-dependent priors of

Sindhwani et al. (2007), to give the Parameter and the Inductive SS transfer analogs. In

the Parameter transfer SS-MTL the latent functions f j are learned by using information

from labelled and unlabelled data and are coupled by sharing a common hyper-prior

over some parameters. As in the MTL case this formulation results in latent functions

of different tasks being independent given these parameters and the unlabelled data. In

the Inductive SS transfer the latent functions are also influenced by unlabelled data but

there is some form of correlation between these functions which results in predictions

for a task being affected by the learned functions in other tasks.

4.3.1 Parameter transfer SS-MTL with GPs

Parameter transfer semi-supervised multi-task learning in the context of Gaussian Pro-

cesses has been investigated in Zhang and Yeung (2009). In this work, the transfer of

information between the tasks takes place by inducing a common hyper-prior on the

hyperparameters θx
j of the data covariance function. The prior of the latent function

of each task is defined as f j|D j ∼ N (0, K̃ j j), where f j ∈ Rnl
j×1 is the latent function

evaluated only at the observed locations of the jth task and K̃ j j ∈ Rnl
j×nl

j . Similarly

to SS-GP the covariance matrix K̃ j j is found by evaluating the data-dependent kernel

of Sindhwani et al. (2007) defined in equation 4.7. Thus, the covariance between two

points x, z from task j will given by,

k̃x(x,z) = kx(x,z)−
(

kx
D j,x

)T
(α−1I +Q jKx

D j,D j
)−1Q j

(
kx

D j,z

)
, (4.8)

where kx
D jx and kx

D jz are the covariance vectors between all labelled and unlabelled data

points in D j, Kx
D j,D j

∈ RN j×N j is the covariance matrix between all labelled and unla-

belled points in the jth task which is constructed by evaluating the covariance function

parameterised by θx
j. As in SS-GP the geometry of the tasks is encoded through the

graph Laplacian Q j ∈ RN j×N j between the points in D j, and the parameter α controls

the contribution of the unlabelled data points. Finally, estimating the optimal hyper-

parameters is performed by maximising the log marginal likelihood. Assuming that
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the prior of each set of hyperparameters is given by θx
j ∼ N (mθ,Σθ)2, and that the

tasks are corrupted with a common noise term with variance σ, the log-likelihood is

computed from (Zhang and Yeung, 2009),

log p(y|D) =−1
2

M

∑
j=1

[
yT

j

(
K̃x

L j,L j
+σ

2I
)−1

y j + log
∣∣∣K̃x

L j,L j
+σ

2I
∣∣∣
]

− 1
2

M

∑
j=1

[(
mθ−θ j

)T
Σ
−1
θ

(
mθ−θ j

)
+ log |Σθ|

]
+ constant, (4.9)

where we have used that y j = {y1 j, . . . ,ynl
j j}, with y = vec(Y) and Y = [y1, . . . ,yM].

Computing the gradients for parameters θ j, σ,mθ, and Σθ is straightforward and we

refer to Zhang and Yeung (2009) for details.

Another possible setting for performing SS-MTL similar to Zhang and Yeung

(2009) would be to employ the data dependent norms of Sindhwani et al. (2005) but

to constrain the different GPs to share the same hyperparameters. This is the semi-

supervised analog of the method proposed for MTL in Lawrence and Platt (2004) and

it will be referred to as the SS-MTL IND model or simply SS-IND. The data-dependent

prior of the latent functions will be independent given the hyperparameters,

p(f|D) =
M

∏
j=1

Nf j(0, K̃
x
L j,L j

), (4.10)

where we have used that f = vec(F) with F = [f1, . . . , fM]. Finally, the optimal hyper-

parameters of the covariance function and the graph Laplacian will be estimated type

II ML (see section 4.3.5). This approach will be employed in the experimental part

and will be compared with the semi-supervised methods from the Inductive category.

4.3.2 Inductive transfer SS-MTL with GPs

In the Inductive transfer category we will use the IMC model (Cressie, 1993; Bonilla

et al., 2008) as a framework for MTL; this introduces Nl ×M latent variables F =

[f1, . . . , fM], with f = vec(F), corresponding to the complete set of responses, i.e. the

set of outputs in all tasks corresponding to each input point. The model then induces

correlations between tasks by enforcing the covariance of the joint latent variables to

factorise as the Kronecker product of a task correlation matrix with a standard GP

2Note that the Normal distribution does not ensure positivity, and the covariance function that is em-
ployed is given by k(x,x′) = θ1xT x′+θ2 exp

{
− ||x−x′||2

2θ2
3

}
, and parameters θ1 and θ2 should be positive.

Another possible choice could be the Gamma distribution.
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covariance

p(f|X) = GP (0,Kt⊗Kx).

Naturally, the complete set of responses is rarely available; we can use the consis-

tency property of GPs to marginalise the latent variables corresponding to unobserved

responses.

In the SS-MTL setting we consider two different formulations to use information

from unlabelled data. In the first one, we assume independence between the geometry

of different tasks. This formulation will be termed Static Geometry (SG), since transfer

of geometry can be achieved only through the task covariance matrix. The second

formulation allows a more flexible relationship since the multi-task setting is induced

directly on the geometry of the data. Given that the geometric structure of one task can

affect the prior of other tasks, this formulation will be termed Flexible Geometry (FG).

4.3.2.1 Static Geometry

In the SG scenario, the latent functions evaluations on the labelled and unlabelled

points of each task fs j ∈ RN j×1, are associated with the geometry (Gs j) of that specific

task only. In this case the prior of each of the latent functions fs j conditioned on the

geometry of the task Gs j will be given by:

p(fs j |Gs j) ∝ exp(−1
2

fT
s j

Q jfs j)p(fs j), (4.11)

where Q j is the graph Laplacian of the jth task, and p(fs j) ∼ N (0,Kx
D j,D j

) is the GP

prior for that specific task only, with covariance Kx
D j,D j

∈ RN j×N j evaluated between

all labelled and unlabelled points in task j. If we denote by fS the collection of the

latent functions from all tasks fS = [fT
s1
, . . . , fT

sM
]T , then their joint distribution will be

a zero mean multivariate Gaussian with covariance matrix Kx
D,D ∈ RN×N , with block

matrices Kx
D j,D j

in the diagonal, and Kx
Di,D j

as the covariance matrices between the

different tasks. The prior of fS conditioned on the geometry of all tasks GS will be

given by a zero mean Gaussian distribution with covariance ∆ =
(
(Kx

D,D)−1 +QS

)−1
,

as

p(fS|GS) ∝ exp
(
−1

2
fT
S ∆
−1fS

)
, (4.12)

where QS is block diagonal on Q j’s,

QS =




Q1 0 0

0 . . . 0

0 0 QM


 ,



Chapter 4. Semi-Supervised Multi-task learning with Gaussian Processes 85

which reflects the independence assumption between the geometry of different

tasks.

Finally, conditioning on GS and inducing correlations between the tasks, the prior

over the latent variables associated with the complete set of responses will be given

by:

p(f|D)∼ GP (0,Kt⊗ K̃x), (4.13)

where ⊗ is the Kronecker product, Kt is a positive semi-definite matrix specifying

inter-task correlations, and K̃x ∈ RNl×Nl
is the data dependent covariance function

over the labelled inputs defined in equation 4.7, where ΣD,D and Q are replaced by

Kx
D,D and QS, which are constructed by the labelled and unlabelled data from all tasks.

The last equation completes the semi-supervised multi-task Gaussian process prior,

which as shown in equation 4.13 is completely specified by this special structure in

the covariance function. Notice that the vector of latent variables associated with the

complete set of responses is of size NlM, as is the Kronecker product of the task

correlation matrix (M×M) with the SSGP prior (Nl×Nl).

In the special but common case when only one response is observed per input,

we notice that unlabelled data from each task cannot affect the covariance between

other tasks a priori. The only way in which unlabelled data from one task can affect

predictions on other tasks is through the task covariance matrix if the two tasks are

found to be correlated.

4.3.2.2 Flexible Geometry

In FG, as in the standard IMC, we start by defining the vector of latent function fF =

{f f1, . . . , f fM}, corresponding to the complete set of responses, where f f j ∈ RN×1, and

fF ∈ RMN×1 . We then associate the latent functions fF with the geometry of the data

written as GF = {G f1, . . . ,G fM}. In this setting the multi-task hypothesis is induced

directly on the prior over the latent functions fF as:

p(fF)∼ GP (0,Kt⊗Kx
D,D), (4.14)

while the prior of fF conditioned on GF will be proportional to :

p(fF |GF) ∝ exp(−1
2

fT
F(Kt⊗QD)fF)p(fF). (4.15)

Notice that now the task covariance matrix Kt appears both in the distribution reflecting

the geometry as Kt⊗QD, and in the prior p(fF). In this case the matrix QD is the graph
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Laplacian between data in all tasks, in contrast to SG which is block diagonal on the

tasks. We denote the joint distribution of fF and the latent function fTj of an unseen

data point xTj from task j by fx = {fF , fTj}, whose prior is given by:

 fF

fTj


∼N


0,


 Kt ⊗Kx

D,D kt
j⊗kx

D,Tj(
kt

j⊗kx
D,Tj

)T
kt

j jk
x
Tj,Tj




, (4.16)

where kt
j is the jth column of the task covariance matrix Kt , and kt

j j its j jth element,

kx
D,Tj

is the covariance vector between points in set D and xTj , and kx
TjTj

is the marginal

variance of xTj , and finally we will use QD to denote the graph Laplacian between all

points in set D. As in SSGP, conditioning on GF the prior of fx will be proportional to:

p(fx|GF) ∝ exp
(
−1

2
fT
x Σ̃
−1
xx fx

)
, (4.17)

where

Σ̃
−1
xx =


 Kt ⊗Kx

D,D kt
j⊗kx

D,Tj(
kt

j⊗kx
D,Tj

)T
kt

j jk
x
TjTj



−1

+

[
Kt ⊗QD 0

0 0

]
.

It can be proved that for any finite collection of data points x, the random variables fx =

{ f (x)}x∈x conditioned on GF , have a multivariate normal distribution N (0, K̃x
F), where

K̃x
F is the covariance matrix whose elements are given by evaluating the following

covariance function k̃F : X ×X 7→ R, thus3

k̃F(x,z) = kt
i jk

x(x,z)−
(
kt

i⊗kx
D,x
)T (I +(Kt⊗QD)(Kt⊗Kx

D,D)
)−1 (Kt⊗QD)

(
kt

j⊗kx
Dz
)
.

(4.18)

Here x and z are points from task i and j respectively, kt
i j is the i jth element of Kt , and

kx
D,x & kx

D,z is the covariance vector between points in set D and x & z respectively.

Similarly to the SG formulation, the FG model is completely determined by the special

structure in the covariance function in equation 4.18. The prior of the latent functions f
on the labelled points from all tasks in the flexible geometry formulation will be given

by,

p(f|D)∼ GP (0, K̃F). (4.19)

The main difference between the FG and SG methods is that in FG the multi-

task setting is induced directly on the geometry of the tasks, through the Kronecker

3The derivation of the covariance function follows a similar treatment to the SS-GP and can be found
in appendix B.1.
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factorisation of the task and the graph Laplacian matrix. As a consequence, in FG

unlabelled data contribute to the learning of the task covariance matrix, in contrast to

SG were only labelled data contribute.

4.3.3 Graph Laplacian

Of central importance to all of these semi-supervised settings is the matrix Q, which

encodes the assumptions that the model is based on. The construction of the matrix

Q is based on the fact that a data adjacency matrix can act as an empirical substitute

of the geometry of the data distribution (Belkin and Niyogi, 2003). The usual choice

for Q is the graph Laplacian, Q = Lp which derives from the fact that the Laplace

Beltrami operator can be approximated by a weighted Laplacian of an adjacency graph

(Belkin and Niyogi, 2002). While in this work we focus on the Laplacian matrix, we

observe in passing the possible use of novel graph regularisers as in Chu et al. (2007).

Constructing the adjacency matrix of the graph Laplacian is performed in three steps

(Belkin and Niyogi, 2002).

1. In the first step we construct the adjacency graph, that is determining which

nodes (data points) are connected. This can be done either from a geometric or

nearest neighbour perspective. In the geometric approach, two nodes xi, x j are

connected by an edge if the Euclidean distance of the two points is smaller than

a parameter ε, ||xi− x j||2 < ε. In the nearest neighbour approach, two nodes are

connected if they are among the k nearest neighbours.

2. In the second step the entries of the adjacency matrix are weighted. This can

can be done either with the Heat kernel Wi j = exp
(
− ||xi−x j||2

2σ2
l

)
, or in the simpler

approach where Wi j = 1 if two nodes are connected and zero otherwise.

3. In the third step we compute the graph Laplacian as L = D−W , and Dii = ∑ j Wji.

Another option would be to use the normalised graph Laplacian L̃ computed as L̃ =

D−1/2LD−1/2, which has been shown to present better or competitive results with the

simple Laplacian (see Von Luxburg et al. (2008) for theoretical guarantees of the nor-

malised Laplacian). A drawback of both variations of the first step is that the parameter

ε, and the number of nearest neighbours k have to be tuned by cross-validation and are

not amenable to gradient based optimisation methods. To overcome this problem in

the geometric setting, we first notice that selecting the points within a certain sphere of
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radius ε can be seen as multiplying the Euclidean norm by a step function. We propose

to approximate this step function by a sigmoid edge function c

ci j(ε) =
1

1+ e(−ε+||xi−x j||2)
, (4.20)

making ε> 0 a parameter which can be estimated using gradient optimisation methods.

Thus, including the edge function in the geometric approach of constructing the graph

adjacency matrix we can write the first and the second step as Wi j = ci j exp
(
− ||xi−x j||2

2σ2
l

)

with the Heat kernel or Wi j = ci j in the simple approach. In the experimental part, we

present results for both the nearest neighbour and the geometric approach, selecting

the threshold in the geometric approach by optimising the parameter ε.

4.3.4 Likelihood

While the previous sections described how to incorporate unlabelled data and task

similarity within a unified prior distribution, the choice of the likelihood (noise model)

depends on the specific learning task at hand. In the following, we will focus on regres-

sion and binary classification tasks, although extension to the multi-class scenario is

in principle straightforward (see for example Girolami and Rogers (2006) for a varia-

tional treatment on multi-class GP classification). The prior distribution of each model,

the covariance structure, and the parameterisation employed are summarised in table

4.1.

In regression tasks it is usually assumed that the output are noisy corrupted versions

of the stochastic process, thus the noise model will be p(yi j| fi j) = N ( fi j,σ
2
n j

), where

σ2
n j

is the variance of the noise of the jth task. In the SS-MTL scenario the noise model

becomes p(y|f) = N (f,D⊗ I), where D j j = σ2
n j

is the noise of the jth task, and I is the

identity matrix of appropriate size.

In classification tasks we will use the probit regression noise model, where the like-

lihood is given by the cumulative distribution of a Gaussian (Rasmussen and Williams,

2005)

p(y| f ) =
Z y f

−∞

N (u|0,1)du.

The SS-MTL model applied to probit classification problems is intractable due to the

non-conjugacy of the probit likelihood with the GP prior. This can be handled by em-

ploying stochastic or deterministic approximations to the non-Gaussian posterior (see

chapter 3). In this chapter we employ the EP approximation (Opper and Winther, 2000;
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Table 4.1: Prior distribution and parameterisation for the SS-MTL models.

Model Prior Covariance Laplacian

SS-MTL IND p(f|D) = ∏
M
j=1 Nf j(0,K

i
j j) Ki

j j = 1
γA

K̃x
j j Qi

j = γI
γA

Q j

SS-MTL SG p(f|D) = N (0,Ks) Ks = Kt⊗
(

1
γA

K̃x
)

Qs = γI
γA

QS

SS-MTL FG p(f|D) = N (0,K f ) K f = 1
γA

K̃F Q f = γI
γA

QD

Minka, 2001), as it produces accurate approximations to the posterior with lower com-

putational requirements than stochastic methods such as Markov Chain Monte Carlo.

A detailed description of the EP approximation for binary GP classification which

naturally extends to the SS-MTL paradigm proposed in this work can be found in Ras-

mussen and Williams (2005). Here, we only provide a sketch of the EP algorithm while

for a full description we refer to Rasmussen and Williams (2005). The EP algorithm

approximates the likelihood p(yi| fi) by an un-normalised Gaussian distribution over

the latent variables fi, where the product of these local likelihood approximations is

computed as,

Nl

∏
i=1

p(yi| fi)'
Nl

∏
i=1

ti( fi|Z̃i, µ̃i, σ̃
2
i ) = N (µ̃, Σ̃)

Nl

∏
i=1

Z̃i, (4.21)

where µ̃ is a vector with µi elements and Σ̃ is diagonal with Σ̃ii = σ̃i, and we have

used Nl to emphasise that the latent function is evaluated only at the labelled data

points. The approximated posterior over the latent functions is given by (Rasmussen

and Williams, 2005)

q(f|y) = N (µ,Σ), (4.22)

where µ = ΣΣ̃−1µ̃ and Σ =
(
K−1 + Σ̃−1)−1, and we have used the general K to refer

to all covariance matrices for each scenario we have described in sections 4.3.1 and

4.3.2. EP then proceeds by estimating the individual ti functions sequentially each

time leaving out the current ti and computing the cavity distribution q−i( fi) which

is combined with true likelihood term p(yi| fi) to form a non-Gaussian distribution.

On the last steps this non-Gaussian distribution is approximated by a Gaussian whose

moments are matched with the parameters of ti to have the same marginal distribution

with the product of q−i( fi) and p(yi| fi).
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4.3.5 Hyperparameter estimation

The Inductive transfer SS-MTL GP models, SG and FG, of section 4.3.2 have four

groups of hyper-parameters related to the structure of the covariance function. The

first group of hyper-parameters is the one related to the task covariance matrix, which

is denoted by θt . The second group are the hyper-parameters θx of the data covariance

function Kx(x,z) that depends on the choice of the covariance function. The third group

of hyper-parameters is related to the computation of the graph regulariser matrix Q, and

will be denoted by θl . Moreover, we add two more parameters γI and γA as Q = γI
γA

Lp

and 1
γA

K (see table 4.1) to balance the ambient and intrinsic covariance. This additional

parameterisation has its roots in the kernel based construction on the data-dependent

norms (equation 4.3) and it has also been employed in Sindhwani et al. (2007). We

include γI and γA in a separate group of hyperparameters θg = {γI,γA,} as the fourth

group. Hence, for the geometric construction we will have that θl = {ε,σl}, while

in the NN construction the number k of nearest neighbours will be set by preliminary

analysis, and we will have that θl = {σl}.
The SS-MTL IND GP model from the parameter transfer category of SS-MTL of

section 4.3.1 has only three groups of hyperparameters, since there is no task covari-

ance matrix to be computed. Hence, the SS-MTL IND model will have only θx, θl ,

and θg.

Moreover, we remove the scale redundancy inherent in the Kronecker product by

fixing the task covariance matrix to be a correlation matrix according to Rebonato

and Jäckel (2000)4. In regression problems the variance of the noise σn needs to

be estimated which adds an extra parameter. All four groups of hyper-parameters

θx, θt , θl and θg are estimated by approximate type II maximum likelihood using the

log marginal likelihood (Rasmussen and Williams, 2005). The gradients for each set

of hyperparameters and for each model can be found in appendix B.2.

4.4 Experiments

We test the behaviour of the proposed approach on a toy data set and on three multi-

task classification problems by comparing the performance of the proposed methods

in terms of the Area Under the Curve (AUC) they achieve. To demonstrate the advan-

tages of leveraging both unlabelled data and task relatedness, we report the results that

4For details about the construction and the hyperparameters of the task correlation matrix see Chapter
3.
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Table 4.2: Gaussian Process Learning frameworks

Learning framework
Single task Multi-task
No transfer Parameter transfer Inductive transfer

Supervised STL MTL-IND MTL-IMC

Semi-supervised SS-STL SS-MTL IND SG , FG

were obtained on a number of baselines and competing methods. In detail, we compare

with the SSGP model of Sindhwani et al. (2007)(SS-STL), the supervised IMC model

of Bonilla et al. (2008) adapted for classification (MTL-IMC) (chapter 3), multi-task

GPs with shared hyperparameters of the covariance functions (MTL-IND) similarly to

Lawrence and Platt (2004), and single-task learning with GPs (STL-GP) (Rasmussen

and Williams, 2005). To provide comparisons with another SS-MTL method based

on GPs, we re-implemented and adapted to the classification scenario the method of

Zhang and Yeung (2009) discussed in section 4.3.1. This approach, which was origi-

nally proposed for regression problems, couples different tasks by sharing a common

hyper-prior over the hyperparameters of the covariance function. The only difference

between the algorithm proposed in Zhang and Yeung (2009) and the implementation

in this work is that we couple the different GPs by constraining them to share the same

hyperparameters which we estimate by type II ML, and it will be referred to as the

SS-MTL IND method in general and as SS-IND in the tables of the experiments. Also

note that in order to compare the results of the different methods we used the t-test.

Additionally, in the semi-supervised methods of SS-STL, FG and SG we present

results with the geometric as well as with the nearest neighbour construction of the

Laplacian, which we refer to as ‘G’ and ‘NN’ respectively; for the SS-MTL IND model

we present results only with the geometric construction. See table 6.1 for a summary

of acronyms used for Gaussian Process methods.

The experimental setup is identical for all three classification problems and the toy

data set. In all semi-supervised methods 50 unlabelled points per task were used in the

semi-supervised learning. The number of unlabelled data was determined by prelimi-

nary analysis, which revealed that in most of the cases by inclusion of a higher number

unlabelled data did not result in any significant improvement and due to the large num-

ber of experiments it was fixed to 50. All types of parameters are estimated through

evidence maximisation, except for the number of nearest neighbours (NN), which were
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Figure 4.2: Scatter plot of the Spiral Toy data set: left complete data distribution, center

first task, right second task.

determined by preliminary analysis, and are reported in the last rows of tables 4.3,4.4,

and 4.6. Additionally, in the construction of the graph Laplacian we adopt the simple

approach where Wi j = 1 if two nodes are connected and zero otherwise. For each size

of training (data points per task), the experiments were repeated 25 times. Note that

the mean and standard deviations reported in tables 4.3, 4.4, and 4.6 are computed by

first averaging over the tasks for each data partition and then over the repetitions.

In the spam detection and the sentiment analysis problems as the input covariance

function Kx we employ the linear kernel, which is usually applied in text applications

of high input dimensionality. For both of these text classification applications we use

the bag of words model (Lewis, 1998). This model simply uses as features the fre-

quency of appearance of all words without taking into account the order of the words

or the grammar and the syntax of the document. Additionally, it is known that this

model compared with other more sophisticated methods of the Natural Language pro-

cessing literature produces similar results (Lewis and Jones, 1996), which justifies our

choice. For the toy data set and the letters classification problem we employ the RBF

covariance function. Another distance measure that has been tried in the letters data

set, where each letter is represented by 8×16 binary pixel images, was the Hamming

distance between the two binary vectors; however, the RBF covariance function that

computes the squared Euclidean distance seemed to produce similar or better results.

4.4.1 Spiral Toy data set

To investigate the behaviour of the proposed approach, we first tested it on the toy data

set shown in figure 4.2. The toy data set consists of two tasks, shown in figures 4.2.b

and 4.2.c respectively. To demonstrate the functionality of each method, in figure 4.3
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we show the decision boundaries we obtained by training the MTL, the SS-STL, the

SS-MTL IND and the SS-MTL FG models with 16 labelled data points from each task

and 100 and 68 unlabelled data points from task 1 and 2 respectively. Subfigures 4.3

(a) and (b) show the decision boundaries obtained from the simple MTL classifier: this

does not find task correlations, and since labels are too few it produces a globally poor

classifier. In the following row, subfigures 4.3 (c) and (d) show the decision boundaries

obtained by training the SSGP classifier on each task separately, which accurately

leverages information from unlabelled data but cannot account for information learned

in the other tasks. In the third row, subfigures 4.3 (e) and (f) show the boundaries for

the SS-MTL IND model, which highlights the fact that this form of SS-MTL learning

results in a weaker form of transfer since data from other tasks only affect the parameter

estimation process and not the prediction. Note, that although the SS-MTL IND does

not estimate as effective as the SS-STL model the high density areas of each class, it

does find correctly the boundaries at 0.5 threshold, except in the case of class “-1” for

task 1 where it misses some unlabelled points. In the last row, subfigures 4.3 (g) and

(h) show the decision boundaries created by the FG-G model. The contour plot of the

decision boundaries show that the SS-MTL classifier from the Inductive category takes

into account the geometry of the unlabelled data while detecting that the two tasks are

correlated. Note that both variations SG&FG as well as with the geometric or the

nearest-neighbour construction of the Laplacian produced similar results, for brevity

we present only FG-G. To compare the performance of these models on the spiral

toy data set we generated 300 data points from each task equally separated between

the classes and we trained them with 2, 4, 8, and 10 labelled data.The experiments

were repeated 25 times, each time by randomly selecting the labelled data and 50

unlabelled data. The obtained results for this set of experiments are shown in figure

4.4. Comparing the SS-MTL methods it is noted that the parameter transfer approach

SS-MTL IND produces a lower average AUC of approximately 25− 30% than that

of the Inductive transfer approaches SG and FG. It is observed that the SG method

achieves a higher AUC than the FG model for 2 and 4 labelled data points, whereas

both of these models outperform all the others. For 8 and 10 labelled data all methods

achieve an AUC higher than 90%. Note that the differences between the SG and FG

models were not statistically significant at 0.05 p-value, whereas differences between

the SG and the FG model and all others were statistically significant at 0.05 p-value.

In addition, it is worth noticing that the SS-STL method performs better than MTL-

IMC and most importantly than the SS-IND method for 2 labelled points, which was
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Figure 4.3: Results on the Spiral toy data set. 1st row : MTL; 2nd row : SS-STL;

3rd row : SS-MTL IND only; 4th row : SS-MTL FG results; Notice that SS-MTL FG

is capable of effectively transferring knowledge from the tasks and the unlabelled data.

Left column shows results for Task 1, and right column shows results for Task 2.
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not expected; although note that for 4 labelled points the SS-MTL IND method per-

forms better that the SS-STL method satisfying our expectations.

4.4.2 Spam Detection

The spam detection data set comes from the ECML/PKDD 2006 Discovery Chal-

lenge5. Data are collected from three different users, with 2500 mails available for

each one which are split into 50% spam, and 50% non-spam.

The results of the experiments for this data set are summarised in table 4.3. In

general, for small training sizes the SS-MTL methods SG and FG, both with the geo-

metric (G) or the nearest neighbour (NN) Laplacian, produce a higher mean AUC than

the SS-MTL IND, both MTL, the STL and the SS-STL methods. We note that in 4 out

of 6 training data partitions the best AUC is produced by the SG formulation with the

geometric construction. Note that the differences between the SG-G method and the

SS-IND-G, MTL-IMC, MTL-IND, and all STL semi-supervised or not, were statisti-

cally signicant at 0.05 p-value for 10, 20, 30, and 50 labelled data points. Additionally,

comparing the means between SG and FG we found that they were not statistically

signicant at 0.05 p-value, which indicates that all SS-MTL methods perform equally

well. For few training points per task we observe a very significant improvement of the

SS-MTL algorithms over MTL and SS-STL. As expected, this difference decreases as

the number of labelled samples increases, whereas for 100 labelled data point per task

the best performance is achieved by the MTL method.

Comparing the methods of the parameter transfer approach, the MTL-IND and

5http://www.ecmlpkdd2006.org/challenge.html.
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Table 4.3: AUC of the Spam data set. Double lines separate the learning frameworks,

SS-MTL, MTL, and STL with SS-STL.

METHOD
No. of training data points per task

10 20 30 40 50 100

AUC

SG-G 87.81 ± 5.62 92.64 ± 2.80 94.04 ± 2.14 94.99 ± 1.82 96.28 ± 1.00 96.60 ± 0.47

FG-G 83.60 ± 9.25 92.32 ± 3.18 93.30 ± 3.89 95.18 ± 1.24 94.44 ± 1.40 96.09 ± 0.65

SG-NN 85.42 ± 5.42 91.57 ± 3.36 93.24 ± 1.92 94.61 ± 1.51 95.79 ± 0.82 96.33 ± 1.23

FG-NN 85.56 ± 5.07 91.38 ± 3.09 93.65 ± 2.10 94.39 ± 1.66 95.77 ± 0.93 96.69 ± 0.74

SS-IND-G 81.47 ± 7.74 87.38 ± 3.33 90.71 ± 1.82 92.72 ± 1.17 93.03 ± 1.75 95.43 ± 0.54

MTL 82.21 ± 7.96 90.97 ± 2.13 93.39 ± 1.70 94.14 ± 1.45 95.34 ± 0.75 96.94 ± 0.44
MTL-IND 80.89 ± 10.49 86.63 ± 0.80 91.82 ±1.87 93.02 ± 1.57 94.63 ± 0.91 96.68 ± 0.55

SS-STL-NN 77.01 ± 6.43 85.94 ± 4.53 90.23 ± 2.07 91.75 ± 1.87 93.81 ± 1.02 96.16 ± 0.66

SS-STL-G 76.14 ± 6.36 84.96 ± 3.87 89.67 ± 2.17 91.75 ± 2.07 92.92 ± 1.63 95.02 ± 1.15

STL 64.62 ± 6.17 71.45 ± 8.44 81.94 ± 6.17 85.13 ± 6.69 91.99 ± 4.80 96.36 ± 1.73

NN 3 6 9 12 15 20

its SS analog of SS-MTL IND, we see that for few labelled points (10, and 20) the

SS-MTL IND produces a higher AUC than the MTL-IND, while for labelled points

higher than 20 we notice that although there are high error bars MTL-IND produces a

higher mean. We are not able to find a justified explanation for this type of behaviour,

although comparing the Inductive transfer approaches we notice that there also are

some cases where the MTL method performs better than the SS-MTL methods SG and

FG (e.g. for 30 labelled data where MTL does better than FG-G and SG-NN, for 50

labelled points MTL outperforms FG-G, and for 100 points where MTL produces the

highest average mean).

4.4.3 Sentiment Analysis

The sentiment classification data set6, previously used in Blitzer et al. (2007), is com-

prised of 1000 positive, and 1000 negative product reviews about four types of prod-

ucts, taken from amazon.com. The products/tasks for which reviews are available are:

books, dvds, electronics, and kitchen appliances.

The results obtained for this data set are presented in table 4.4. Semi-supervised

multi-task methods and particularly SG produce the best performance for all training

sizes. Comparing the SS-MTL methods we see that in 5 out of 6 sizes of labelled

training data the SG formulation outperforms the FG and the SS-MTL IND formula-

tions. Further analysis revealed that the differences in performance between the SG-

NN method and all MTL, SS-STL and STL were statistically signicant at 0.05 p-value.

We note that the STL and SS-STL models perform extremely poorly, while all other

6http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/.
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Table 4.4: AUC of the Amazon data set. Double lines separate the learning frameworks,

SS-MTL, MTL, and STL with SS-STL

METHOD
No. of training data points per task

20 30 40 50 60 90

AUC

SG-G 70.45 ± 3.78 73.61 ± 2.08 76.00 ± 1.68 77.58 ± 1.59 78.84 ± 1.42 81.53 ± 1.21

FG-G 69.82 ± 3.86 72.99 ± 2.14 75.82 ± 1.79 77.32 ± 1.57 78.55 ± 1.52 81.32 ± 1.13

SG-NN 70.55 ± 4.14 73.55 ± 2.11 76.03 ± 1.95 78.12 ± 1.55 79.04 ± 1.36 81.83 ± 1.10
FG-NN 68.96 ± 4.68 73.08 ± 2.30 76.19 ± 1.67 76.99 ± 2.71 78.57 ± 2.79 81.77 ± 1.07

SS-IND-G 61.39 ± 4.35 66.55 ± 2.48 69.03 ± 2.07 71.03 ± 1.46 72.69 ± 1.18 75.19 ± 1.30

MTL 61.56 ± 2.85 66.18 ± 3.93 72.13 ± 4.35 75.59 ± 3.68 77.50 ± 2.84 81.33 ±1.24

MTL-IND 61.60 ± 2.98 66.10 ± 3.30 69.44 ± 2.85 71.50 ± 2.51 73.55 ± 1.56 76.20 ± 1.09

SS-STL-NN 63.35 ± 2.29 66.63 ± 2.14 69.71 ± 2.00 71.77 ± 2.23 73.62 ± 1.55 76.34 ± 1.16

SS-STL-G 59.57 ± 2.87 62.84 ± 3.15 66.12 ± 2.68 69.69 ± 3.41 72.32 ± 2.50 75.59 ± 1.76

STL 53.75 ± 1.85 65.93 ± 2.24 68.79 ± 2.08 71.05 ± 2.28 73.18 ± 1.77 76.10 ± 1.18

NN 3 4 5 6 7 10

semi-supervised methods and MTL offer a significant improvement compared to them

for few labelled data points. Comparing the SS-MTL IND with the MTL-IND we

note that the inclusion of unlabelled data points does not lead to any improvements.

On the other hand, comparing the SS-MTL IND with the SS-STL and the MTL-IND

with the STL methods we observe that both the SS-MTL IND and MTL-IND methods

are always better than the SS-STL and STL respectively; this observation satisfies the

assumption of Lawrence and Platt (2004) in the semi-supervised and the standard su-

pervised case that the search for a common across tasks set of hyperparameters can be

beneficial.

4.4.4 Letters Classification

The letters classification problem7 consists of eight binary classification tasks between

different handwritten letters. The number of samples from each letter of every task

are reported in table 4.5. Differently from the spam classification and the sentiment

analysis problems, the letters data set has highly imbalanced classes and there are

tasks that are anti-correlated, for example task g/y with task a/g are anti-correlated

since letter “g” is assigned to different classes. On the other hand, there are tasks that

are highly correlated because the same letter appears in the same class of another task,

for example tasks 3 and 8 due to letter “n”, and tasks 4 and 6 because of letter “a”,

while there are other tasks which by simple inspection we can argue that there is no

reason to assume that are correlated, for example task c/e with f/t.

The performance of the methods on the letter data set is reported in table 4.6. In

7http://multitask.cs.berkeley.edu/
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this data set where correlations between some of the tasks are non-existent or even

antithetic, it is noticed that the best performance in terms of AUC is achieved by MTL-

IND. Note that the differences in performance in terms of AUC between MTL-IND

and all other methods except STL, for 30, 40 and 50 data points, and SS-STL-NN

for 40 data points, were statistically significant at 0.05 p-value. This is one of the

simplest forms of transfer learning within the GP framework and taking into account

that there are substantial differences between the tasks, it is our opinion that MTL-

IND produced the best average AUC because the models from the Inductive category

were not able to learn correctly the task correlations. Another fact that complements

our argument is that among the SS-MTL methods the best performance is achieved

by the FG-G formulation, under which unlabelled data assist in the learning of the

task covariance matrix. It is interesting to note that in terms of accuracy (see table

B.4 in appendix B.2.4 ) the SS-MTL algorithms offer a significant improvement over

the conventional MTL, SSGP and STL algorithms for all training set sizes except for

30 labelled data points per task where STL performs better. In addition, related to

the parameters transfer approach we observe that the inclusion of the unlabelled data

during the training in the SS-MTL IND model in essence hurts its performance, since

for all training sizes the average AUC of SS-MTL IND is lower than that of MTL-

IND by 2− 1%; however it should be noted that as in the two previous data sets the

results for the SS-MTL IND model were obtained by the geometric construction of the

Laplacian and it could be argued that the NN construction could improve these results.

In contrast, in the Inductive transfer type of approach this behaviour is not observed

and the SS analogs SG and FG produce higher AUC than the MTL-IMC for all training

sets.

Table 4.5: Description of the Letters data set; each column is a task showing the two

letters as well as the corresponding number of examples per character (class)

Task 1 2 3 4 5 6 7 8

Letter c g m a i a f h
No. of data 2017 2460 1596 4016 4895 4016 918 858

Letter e y n g j o t n
No. of data 4928 1218 5004 2460 188 3880 2131 5004
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Table 4.6: AUC on the Letters data set. Double lines separate the learning frameworks,

SS-MTL, MTL, and STL with SS-STL

METHOD
NO. OF TRAINING DATA POINTS PER TASK

10 20 30 40 50

AUC

SG-G 82.71 ± 6.12 88.47 ± 1.01 90.98 ± 0.72 91.46 ± 0.81 92.51 ± 0.70

FG-G 84.13 ± 2.10 89.30 ± 1.05 91.61 ± 0.89 92.52 ± 0.62 93.39 ± 0.48

SG-NN 78.04 ± 0.23 86.91 ± 2.22 89.57 ± 6.76 91.15 ± 2.57 92.36 ± 1.89

FG-NN 82.03 ± 4.77 88.28 ± 1.88 90.32 ± 1.35 91.71 ± 1.31 92.73 ± 0.70

SS-IND-G 84.32 ± 1.86 88.36 ± 1.28 90.85 ± 0.91 91.75 ± 0.59 92.75 ± 0.51

MTL 81.33 ± 2.40 85.64 ± 1.89 88.76 ± 1.46 90.46 ± 1.05 91.69 ± 0.90

MTL-IND 86.09 ± 1.92 90.15 ± 0.92 92.15 ± 0.77 92.90 ± 0.56 93.70 ± 0.50

SS-STL-NN 80.26 ± 3.38 86.85 ± 3.27 91.07 ± 2.03 92.48 ± 1.04 92.89 ± 1.52

SS-STL-G 79.93 ± 2.71 87.12 ± 2.29 90.77 ± 1.25 91.99 ± 0.97 93.27 ± 0.74

STL 83.85 ± 2.93 88.70 ± 2.77 91.89 ± 1.40 92.88 ± 0.75 93.77 ± 0.54
NN 3 4 5 6 7

4.5 Extensions in Transfer Learning

We describe here how the FG formulation can be adapted to handle two different sce-

narios that fall inside the general transfer learning framework (Pan and Yang, 2010),

potentially providing a promising unifying framework for transfer learning with GPs.

The first scenario that we consider is Domain Adaptation (DA) (Daumé III and Marcu,

2006), which aims at making predictions on a target task for which no labelled train-

ing data are available by transferring learning from a different task, usually referred to

as the source task, that contains labelled data. In Self-taught Learning (SeTL) (Raina

et al., 2007), the second scenario that we are interested in, unlabelled data from an aux-

iliary task are used to improve predictions on a target task for which limited annotated

data are accessible. Both scenarios involve a task Tl that has labelled and unlabelled

data Ll = {XLl ,YLl} and Ul = {XUl} with Dl = Ll∪Ul , and a task Tu for which only un-

labelled data are available Du =Uu = {XUu}, and A = {XLl ,XUl ,XUu}. Both approaches

involve transfer of learning between tasks and between labelled and unlabelled data,

which bears a close resemblance with the scenario of semi-supervised multi-task learn-

ing that was the main core of this chapter. The difference between SS-MTL and DA,

SeTL is that in DA and SeTL there are no available labels for some tasks and that those

two methods aim at improving performance on one target task and not on all tasks si-

multaneously as in SS-MTL. The main difference between DA and SeTL is that in

DA labels are missing on the target task, whereas in SeTL labels are missing in the

source task. Hence, in DA the labelled task is the source task and the unlabelled task

is the target, while in SeTL is the opposite. In the following, for explanatory reasons

we concentrate on one labelled and one unlabelled task, while extension to multiple
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source or target tasks using the formulation that we propose is straightforward.

In a similar fashion to the FG formulation, the vector of latent functions fA =

{fLl , fLu, fUu}, conditioned on GA = {GLl ,GLu,GUu} will be proportional to p(fA|GA) ∝

exp(−1
2 fT

A(Kt
A⊗QA)fA)p(fA) where Kt

A =

[
kt

ll kt
lu

kt
lu kt

uu

]
, and Kx

A and QA are constructed

using all data points in Dl and Du. The difference with FG is that during the learning

phase the latent function can be evaluated only at the visible locations, that is the input

points of the labelled task Tl . Thus, the data-dependent prior of the labelled task will

be given by a zero-mean Gaussian distribution with covariance matrix given by,

K̃LlLl = kt
llK

x
LlLl
− (kt

l⊗kx
LlA)T (I +(Kt

A⊗QA)(Kt
A⊗Kx

A)
)−1 (Kt

A⊗QA)(kt
l⊗kx

LlA), (4.23)

where Kx
LlLl

is the covariance matrix between the points in XLl , kt
l is task correlation

vector between the labelled and unlabelled task, and kx
LlA

is covariance matrix between

XLl and A. This formulation would allow to first inform the learning process about the

distribution of the unlabelled task through the graph Laplacian and secondly to learn

the level of correlation between the tasks, kt
lu.

Preliminary experimental testing of this approach in the DA scenario for the Spam

classification and the Sentiment analysis problems revealed that our approach was not

performing better than the baseline of training only with labelled data from the source

task and predicting on the target task. Some of the problems that have been identified

so far is that the information contained in the graph Laplacian was not strong enough

to drive the gradients of the task hyperparameters related to the unlabelled task kt
lu and

kt
uu to meaningful results. We believe that further constraints will have to be imposed to

regularise the model in the absence of labels in certain tasks. A possible constraint that

we wish to experiment with in the future is to force the model to use unlabelled data,

rather that estimating the contribution of them through the graph Laplacian, which

would simply mean dropping the dependence of the model to hyperparameters θg.

4.6 Conclusions

We have presented a novel method for transfer learning using GP priors. We have im-

plemented and extensively tested the approach in a MTL scenario. However we also

indicate how the same approach could be used in different transfer learning scenar-

ios such as DA and SeTL, potentially providing a powerful unifying framework for

transfer learning. Within the MTL scenario, the crucial issue is deciding how to incor-

porate unlabelled information in the transfer of learning. Similarly to the multi-task
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scenario, semi-supervised learning can also be separated into two forms of transfer,

the parameter SS-MTL, and the Inductive SS-MTL. In the parameter transfer multiple

independent GPs with data-dependent priors are coupled by sharing the same hyper-

parameters. The Inductive transfer approach that we employ is based on the IMC

approach of Cressie (1993) and Bonilla et al. (2008). We presented two possible ap-

proaches: in the static geometry case, tasks are assumed to have independent geometric

structures, so that transfer of geometry can only happen through the correlations be-

tween tasks. Alternatively, in the flexible geometry case, labelled and unlabelled data

from all tasks are used to determine the geometry.

Thorough experiments provided more in depth understanding about the workings

of the proposed methods, which are summarized into the following observations:

• In situations where tasks are strongly correlated (spam detection and sentiment

analysis), the Inductive transfer SS-MTL and particularly the SG formulation

outperformed the FG, the SS-MTL IND, the MTL-IMC, the MTL-IND, SS-STL

and the STL approaches.

• Weak forms of transfer as the parameter transfer approach are more appropriate

settings for situations where task correlations are weak. This has been observed

in the Letters data set, where in terms of AUC the MTL-IND model outper-

formed all other methods.

• The static geometry proved to be more appropriate for data sets of highly cor-

related tasks, while the flexible approach seems to be more effective when the

task correlations are smaller, as in the letters classification problem. However,

the importance of the FG formulation lies in the ease it can be extended to other

forms transfer learning as DA and SeTL.

• The Nearest Neighbour construction of the Laplacian compared to the Geometric

produced comparable results, nevertheless its value persists in that parameter ε

can be estimated using gradient based optimisation methods.

In general, the complexity of the algorithms within the GP framework rises as data

points are included due to the computation and subsequently the inversion of the co-

variance matrix K. In the semi-supervised learning framework exploiting unlabelled

data adds an additional cost of computing and inverting the graph Laplacian and the

covariance matrix at all labelled and unlabelled data points, as well as the cost of esti-

mating extra hyperparameters related to the SS framework. In the SS parameter trans-
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fer the covariance matrix and the graph Laplacian depends only on data from each

task. On the other side, in the SS Inductive transfer the covariance and the Laplacian

matrix depends on all data from all tasks making it more computationally expensive

and not directly applicable for a large number of tasks, and labelled and unlabelled

data points. However, it is our opinion that the SS-MTL framework that we propose

in this work can easily be combined with other methods that reduce the complexity of

GP prediction (Quinonero-Candela et al., 2007; Alvarez and Lawrence, 2009), which

we intent to pursue in the future .

We would like to bring to your attention that the SG and the FG formulations have

been employed in the Pka data regression data set (section 2.3), but since it did not

offer any improvements compared to the standard MTL-IMC method of Bonilla et al.

(2008) results are omitted. Last, while we believe the theoretical and experimental

results in SS-MTL we present demonstrate the value of our approach, one of the most

interesting features is the ease with which it can be extended to other transfer learning

scenarios.



Chapter 5

Meta-generalisation with Gaussian

Processes

In the three previous chapter we have dealt mostly with the Inductive category of

Transfer Learning (TL) and partially with the Transductive category. We now turn

our attention to the Unsupervised category of TL and propose a novel model for meta-

generalisation, i.e. performing prediction on novel tasks based on information from

multiple different but related tasks. The model is based on two coupled Gaussian pro-

cesses with structured covariance function; one model performs predictions by learn-

ing a constrained covariance function encapsulating the relations between the various

training tasks, while the second model determines the similarity of new tasks to pre-

viously seen tasks. We demonstrate empirically on several real and synthetic data sets

both the strengths of the approach and its limitations due to the distributional assump-

tions underpinning it.

5.1 Introduction

The central problem of supervised learning is generalisation, learning input/ output

relations from training data that, when applied to unseen test data, will give good per-

formance (in terms of an appropriate loss function). A common assumption underlying

many supervised learning algorithms is that the training and testing data distribution

are the same, which allows them to make predictions of future instances of the prob-

lem at hand. On the other hand, in the complex world that we live in we are usually

faced with unseen but similar problems, situations which human intelligence handles

by adaptively taking decisions on the new tasks using knowledge from similar tasks.

103
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In this direction, Transfer learning has emerged as a framework to handle situations

where there are multiple but related problems to be solved. The term TL is used here in

its broader sense, to cover more specific areas of research such as domain adaptation,

co-variate shift, sample selection bias, self-taught learning, and multi-task learning.

The differences between these subfields of TL lies mostly in the availability of outputs

(labels) for input data in the various tasks, no matter if it is a regression or classification

problem (Arnold et al., 2007). For example, the situation where labels are available

for all tasks is tackled by multi-task learning, which synergistically solves the learn-

ing problem in all tasks simultaneously (Caruana, 1997; Bakker and Heskes, 2003;

Ando and Zhang, 2005). Domain adaptation (Daumé III and Marcu, 2006; Daumé,

2007; Crammer et al., 2008; Mansour et al., 2009b; Pan et al., 2009), co-variate shift

(Sugiyama et al., 2007; Storkey and Sugiyama, 2007; Bickel et al., 2009), and sample

selection bias (Huang et al., 2007) are settings appropriate for problems where labels

are only available for a task that is similar to the task that we wish to make predictions

in (target task). Contrary to domain adaptation, and sample selection bias, self-taught

learning (Raina et al., 2007) is a setting where labelled data are available for the target

task, but the learning algorithm wishes to also use unlabelled data from a source task

to improve performance. In its own right, self-taught learning is distinguishable from

semi-supervised learning (Chapelle et al., 2006), where labelled and unlabelled data

are assumed to come from the same task. The purpose of all these TL approaches is

to enhance the generalisation power of a specific algorithm by leveraging related (but

different) knowledge from multiple tasks. In particular, it is generally assumed that at

least the input data for the target task will be available during the learning, so that a

measure of the similarity between the training and target tasks can be estimated.

The question that we wish to raise in this chapter is whether the notion of gen-

eralisation can be extended to the level of tasks as a form of meta-generalisation.

Meta-generalisation is a concept introduced in Baxter (2000), where the author argues

whether a transfer learning algorithm can generalise well on totally unseen tasks after

seeing sufficiently many source (or training) tasks. We emphasise that this is more than

a theoretically interesting question. Our motivating example is a strongly applied one:

we wish to create an automated diagnosis tool that can accommodate variability among

patients, so that, once trained on a sufficient number of patients, it can generalise to

new patients. In his work Baxter derives bounds on the generalisation error of this

problem in terms of a generalised VC-dimension parameter, as well as comments that

the number of source tasks and examples per task required to ensure good performance
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on novel tasks has to be sufficiently large. While Baxter (2000) derives an algorithm

to select a subset of features to perform multi-task learning based on Neural Networks

(NN), his work is more on the theoretical side as no experimental results are presented.

Besides that, the model proposed in this work needs to be retrained in case a new target

task arrives in order to learn a small number of task dependent parameters.

One way to approach meta-generalising is through domain adaptation, by training

a model on the data of the source and the target set of tasks (Ben-David et al., 2007).

This type of approach, as well as the model proposed in Baxter (2000), are essentially

trained in a transductive way, as the algorithm is able to make predictions only on

the test tasks that is trained on, or needs to be retrained in case a new task arrives.

Obviously, the performance and the success of domain adaptation algorithms depends

strongly on certain assumptions, with most important the similarity between the target

and the source distribution. Clearly, if these assumptions are violated then the success

of these algorithms is doubtful (Ben-David et al., 2010).

The problem of sampling the space of tasks to make predictions on totally unseen

tasks in the inductive setting, which is the exact analog of generalising in the level

of tasks, has to the best of our knowledge not been specifically addressed. As we

mentioned before, TL is separated into different sub-categories based on the level of

supervision on the target task. Multi-task learning can be seen as an Inductive TL

learning algorithm since input data and labels are available for all the tasks that we

wish to make predictions. On the other end, settings like to Domain adaptation, Co-

variate shift or Sample selection bias, can be viewed as a form of Transductive TL

since the algorithm can exploit only the input distribution of the target task they want

to make predictions (Arnold et al., 2007). On this basis, meta-generalising can be con-

sidered as a form of Unsupervised TL, since the learning algorithm does not have any

exploitable information about the target tasks during training. Note, that this classifi-

cation of TL algorithms is different from the one employed in Pan and Yang (2010),

where unsupervised TL encapsulates problems like dimensionality reduction, density

estimation, or clustering but in situations where multiple tasks are involved.

In this chapter we investigate the use of coupled Gaussian process (GP) models

to address this problem. The model uses a multi-class Gaussian process for assigning

probabilistically unseen tasks to source tasks (determining task responsibilities), and

then uses a multi-task Gaussian process Bonilla et al. (2008) to perform prediction in

individual tasks. Extensive testing on real and simulated data shows the promise of the

model, as well as giving insight on the underlying assumptions.



Chapter 5. Meta-generalisation with Gaussian Processes 106

The rest of the chapter is organised as follows: in section 5.2 we formally define

the meta-generalizing problem, emphasising the main assumptions and highlighting

the important special case of fully observed tasks. In section 5.3.2 and 5.3.3 we present

our model and the inference methodology used. Our empirical findings are presented

in section 5.4, and we conclude in section 5.5 by discussing the merits of our model in

the context of the wider literature in transfer learning and meta-generalisation.

5.2 Meta-generalising

In this section, we introduce some notations, and we formally state the problem of

meta-generalising. For simplicity, we concentrate on binary classification problems

within each task, while we note that the same formalism applies to regression and

multi-class classification problems.

In a meta-generalising scenario the learner is provided with a set of source tasks

TS = {Ts1, . . . ,TsM} which are used for training the model; testing is then performed

on a set of target tasks TT = {Tt1, . . . ,TtH}. Each of the M source tasks will contain a

training set of input/ output pairs (x,y), while data from any of the H target tasks are

hidden. For later convenience, we will define the whole training set across tasks as a set

of triples T s = {xs,yst ,ysx}, where xs ∈ Rd is the input feature vector, ysx ∈ {−1,+1}
are the class labels, and yst ∈ {1, . . . ,M} is the source task label indicating to which

task the input/output pair pertains. Moreover, we will write X s
j = {xs

i j}
ns

j
i=1 to denote

the total item set of of the jth source task. The total number of training pairs available

will be denoted by Ns = ∑
M
j=1 ns

j, where ns
j is number of data points from the jth source

task.

Each of the H target tasks T t
j will consist of a set X t

j = {xt
i j}

nt
j

i=1 of input points,

where nt
j is number of data points from the jth target task and both types of labels are

missing. Likewise, the total number of points from the target tasks will be denoted by

Nt = ∑
M
j=1 nt

j. For reasons that will become clear later on, it is further assumed that

for each target task data point xt
j there is information that it comes from the jth target

task, but there is no knowledge with which of the source tasks is more similar. Note

that each source task training input xs
i is assigned two types of labels. This implies

supervision in both the levels of the tasks and the data, through yst and ysx respectively;

task labels yst indicate from which of the source task a specific data point comes from,

as a form of meta-level information, and class labels ysx indicate to which class inside

the task the data point belongs to, as a form of inter-task information.
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Meta-generalisation, as all machine learning methods, relies on certain assump-

tions. We concentrate on two basic assumptions; the first one is the similarity of the

distribution of the target task with at least one of the source tasks, while the second

one is the agreement between the labels of the distributions termed as low-error joint

prediction (Ben-David et al., 2010). Differently from (Ben-David et al., 2010), we will

define the low-error joint prediction as the error between the predictive functions fs

and ft of a source and a target task respectively, evaluated at the union of the source

and the target sets X = X s∪X t . Hence, the error λe of the joint prediction between a

source and a target task can be computed from,

λe =
N

∑
i=1
| ft(xi)− fs(xi)|, (5.1)

where N = Ns + Ns, and xi ∈ X . Intuitively, if the error λe is large then there is a

disagreement between the labels of the source and target tasks distribution. Also note

that, in a multi-task scenario where labelled data are available for both the source and

target task the error λe can be computed by training two separate models under the

same learning framework (e.g. NN, GPs, etc). Thus, the predictive functions of the

source and target tasks can be estimated separately and λe can then used to quantify

the relatedness of the two tasks. Conversely, in the scenarios of meta-generalising

and domain adaptation one has to assume that the error λe will be low, since labels

are available only for the source tasks. If one of these assumptions is not valid, then

meta-generalisation can not be expected to guarantee success. We now give a formal

definition of meta-generalising.

Definition 2 Given a set of source tasks TS and a set of target tasks TT , meta-generalising

is an inductive inference method that aims at making predictions on the set of target

tasks by sampling the space of source tasks .

We further define two possible scenarios: in the fully observed tasks case, we as-

sume that the similarity of the distribution assumption is perfectly met, so that the

data generating distribution of the target task is the same as that of one of the source

tasks (but we do not know which one). This assumption is relaxed in the partially

observed tasks scenario, where we still assume similarity of the distribution but we do

not necessarily have identity.

The meta-generalising setting implies that there is hierarchical structure in the

problem. The data of each task are on the base level and the distribution of the tasks is

on the meta level. Hence, it is intuitive that mechanisms are required to
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1. Model the distribution of the data of each task, and the distribution of source

tasks (correlation between tasks).

2. Infer how much correlated a target task is with the source tasks.

The first prerequisite leads us to multi-task learning, as many approaches offer

mechanisms to model both the data and the task distribution (Bakker and Heskes, 2003;

Yu et al., 2005; Ando and Zhang, 2005; Xue et al., 2007; Argyriou et al., 2008; Bonilla

et al., 2008; Daumé III, 2009). Following the multi-task route, informally speaking,

the second prerequisite can be translated as the problem of which of the M outputs of

the multi-task classifier to select to make predictions for the target task. In some cases,

task-descriptor features may be available, giving a direct measure of task similarity. In

this work, we are interested in the general case where no reliable task descriptor fea-

tures are available; we will then learn similarities between tasks through a distribution

matching pursuit.

Another way of approaching the problem of meta-generalisation is through the

framework of mixtures of experts (ME) (Jacobs et al., 1991; Waterhouse, 1997), under

which a bigger learning problem is broken down to smaller subproblems that are han-

dled by individual experts. The underlying assumption of this framework is that the

data are generated by different processes (Waterhouse, 1997, Ch. 2), an assumption

that can also be made in the multi-task setting about the data generating mechanism

of each task. Under the ME framework each expert is used to model the data gener-

ating process of each subproblem. These experts are then combined through a gating

network that models the responsibilities of the experts on each data partition. Hence,

attacking the meta-generalisation problem through the ME framework can be seen as

an unsupervised alternative method to that problem, that does not use the information

about the origins of each task (the source task labels) but instead allows the algorithm

to automatically infer the data partitions and the regions of expertise of each expert.

Therefore the ME approach is in direct connection to multi-task learning and meta-

generalisation in which case the experts are equivalent to the tasks, and this framework

could be used as a rough lower bound on the performance of a multi-task classifier.

Note though that in principle, it would be desirable to be able to automatically infer

the number of experts as in Rasmussen and Ghahramani (2001), instead of presetting

them as in Tresp (2000), which would be a similar mechanism of finding cluster of

tasks.
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5.3 A model for Meta-generalisation

Having identified the nature of the problem, we now propose a model for meta-generalising.

The model builds upon the multi-task learning framework of Bonilla et al. (2008)

which is able to capture the dependencies between the data and the tasks. In addi-

tion, we employ a classifier over the tasks to learn the task labels (from which task

each data point comes from). Both of those two learning mechanisms, multi-task set-

ting and classification of the tasks, are modelled by Gaussian Processes (GPs), which

are coupled by sharing a common hyper-prior. In the rest of this section, we first give

a short introduction to GPs and we review multi-task learning with GPs (Bonilla et al.,

2008), we then present the model for meta-generalising, and finally we describe how

to make predictions on new tasks.

5.3.1 Multi-task learning with Gaussian Processes

Gaussian processes (Rasmussen and Williams, 2005) provide a flexible modelling

framework for supervised learning which has become increasingly popular in recent

years. A Gaussian Process is a probability distribution over functions f , where the

joint distribution of function evaluations over a finite set of inputs is a multivariate

Gaussian distribution. At core of the GP prediction is the covariance function or ker-

nel, that models the output covariance at different pairs of input points, and in essence

acts as a measure of similarity between different input locations. In order for a covari-

ance function to be valid it has to be positive semidefinite, and has to satisfy Mercer’s

theorem.

In this and the following subsection (subsections 5.3.1 and 5.3.2) we will use

x, yt , and yx to refer to xs, yst , and ysx to keep the notation light, since in the learn-

ing phase only source tasks are involved. In a multi-task scenario the interest lies in

learning M related functions f j, j = 1, . . . ,M, from training data xi j, yi j, i = 1, . . . ,n j,

with x ∈ Rd , and n1 + . . .+ nM = N. Data points from task j will be denoted by

X j = [x1 j, . . . ,xn j j] and X = [X1, . . . ,XM] will be used to denote the set of all data points.

Focussing on a regression problem for simplicity, the noise model will be given by

yi j = f j(xi j)+ ε j, with ε j ∼N (0,σ2
j), (5.2)

where yi j (xi j) denotes the ith output (input) of the jth task. We note that each input

point has M function values associated with it (one per task); this complete set of
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responses will rarely be observed in practice, but function values corresponding to

unobserved values can easily be marginalised using the consistency of GPs

The multi-task model of Bonilla et al. (2008), which has been known in the geo-

statistics community as the “Intrinsic Coregionalization Model” (ICM) (Cressie, 1993),

can be elegantly recovered from the theory of matrix variate distributions (Gupta and

Nagar, 2000). Define the vector f by stacking the columns of F = [f1 . . . fM] into a

single vector, f = vec(F), where f j ∈ RN×1 is the column vector of all latent functions

evaluations of task j, and F ∈ RN×M. Then the probability density function of matrix

F will be given by:

(2π)−
1
2 NM|Kt |− 1

2 N |Kx|− 1
2 M exp

{
−1

2
trace

(
(Kt)−1FT (Kx)−1F

)}
, (5.3)

where Kt ∈ RM×M and Kx ∈ RN×N (Gupta and Nagar, 2000). This configuration im-

plies that the matrix Kt models the correlations between the vectors f j, i.e. the tasks

in the multi-task view, and Kx models the correlations between each element of vec-

tors f j. In the GP framework, this correlation between function evaluations at different

input points is captured by the covariance function. Then, by using some matrix alge-

bra involving the vec and Kronecker operator, equation 5.3 can be written in the form

Bonilla et al. (2008) proposed

p(f|X) = GP (0,Kt⊗Kx). (5.4)

Employing this type of prior for the latent functions f the noise model for the regres-

sion problem stated in equation 5.2 becomes, p(y|f) = N (f,D⊗ I), where DM×M is

diagonal with D j j = σ2
j and IN×N is the identity matrix.

The key element of this formulation is the task covariance matrix Kt which re-

flects the task correlations. For example, if Kt was fixed to the identity matrix, then

all tasks would be independent but they would still share the same hyperparameters

of the covariance function. Of course, one of the main goals of multi-task learning

is to learn these task dependencies. Bonilla et al. (2008) approached this problem by

parameterising the task covariance matrix, always retaining positive definite restric-

tions, and treating these parameters as hyperparameters to be learned. Positive definite

guarantees were achieved, by parameterising a lower triangular matrix L to employ

the Cholesky factorisation Kt = LLT . Most importantly, parameters related to the data

covariance function or the task covariance matrix can be learned in the standard GP

formulation, by maximising the marginal likelihood p(y|X) =
R

p(y|f)p(f|X)df.
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Figure 5.1: Coupled Multi-Task Multi-Class (CMTMC) model. Variables f and g are

the two sets of GPs for the multi-task and multi-class classifiers respectively, whereas

variables hx and ht denote the auxiliary variables of the two classifiers; (a) graphical

representation of the training phase, (b) graphical representation of Meta-generalising.

5.3.2 Model

In this section we describe the Coupled Multi-Task Multi-Class (CMTMC) model we

propose for meta-generalisation. The objectives of the model are first to model the

dependencies between the tasks, and second to assign unseen tasks to source tasks

by finding task similarities. The first objective is met through the Multi-task part

of the model, while the second is achieved through the Multi-class classifier. Fig-

ure 5.1 shows the graphical model of the CMTMC classifier. Notation introduced in

section 5.3.1 applies here. Moreover, from section 5.2 we have that yt ∈ {1, . . . ,M}
and yx ∈ {−1,+1} as the task and class labels respectively. Since both class and task

prediction are effectively classification models, we choose the probit and multinomial

probit models as noise models respectively. Following Albert and Chib (1993), we de-

fine two sets of auxiliary variables ht = vec(Ht), and hx = vec(Hx), where Ht ∈RN×M

and Hx ∈ RN×M. As shown later on, the use of these auxiliary variables enables the

multinomial and the binary probit model respectively. For later convenience, we will

be using ht
j and ht

n to denote the jth column and nth row of matrix Ht , and similarly for

matrix G.

Figure 5.1 shows that there are two directed channels of variables. The upper

channel, with variables Ct = {g,ht ,yt}, is responsible for learning the task labels, thus

from which task each data point comes from, while the lower channel, with variables

Cx = {f,hx,yx}, learns to classify the data points inside every task and to find task
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correlations, through the standard multi-task classifier.

Thus, there are two sets of Gaussian Processes. The first set is responsible for

the multi-task classification f|X,θx,θt ∼ GP (0,Kt ⊗Kx), where variables θx and θt

are used to denote the hyperparameters of the data covariance function and task ma-

trix respectively. The second set of GPs is responsible for the classification over the

tasks g|X,θx ∼ GP (0, I ⊗Kx), where g = vec(G), G ∈ RN×M as G = [g1, . . . ,gM],

and g j ∈ RN×1. As in the multi-class case we will have that f = vec(F), where

F = [f1, . . . , fM] and f j ∈ RN×1. In the rest of the chapter we will write Kx to denote

the covariance matrix between all data points X, unless specified otherwise. Moreover,

I and Kt will be M×M, where the identity matrix in the multi-class case implies in-

dependence between the classes, thus g j|X,θx ∼ GP (0,Kx). The key objective is to

learn M functions g j for the multi-class classifier and M related functions f j for the

multi-task classifier.

Note that the data covariance matrix Kx is shared by both sets of processes g and

f. This is graphically illustrated by the fact that the node of hyperparameters θx is con-

nected to both latent functions; thus, the multi-class and the multi-task classifier share

the same hyperparameter space for θx. The multi-class classifier is restricted to have

the same covariance function across the classes in contrast with the standard model

for multi-class classification with GPs, which in principle allows you to use different

covariance functions across classes. In fact, the CMTMC model could be decoupled

into two separate classifiers with different sets of hyperparameters θx between the two

processes f and g. Seemingly, this decoupling would result in a more flexible model,

but preliminary experiments with both models, the CMTMC and the decoupled model,

has shown that this restriction does not affect the performance. In contrast, it reduces

dramatically the computational cost since the hyperparameters of the data covariance

function need to be estimated only once.

The probit model is enabled in both channels by a standardised normal noise model

over the auxiliary variables, ht
i j|gi j ∼N (gi j,1), and hx

i | fi ∼N ( fi,1) (Albert and Chib,

1993; Csató et al., 2000; Girolami and Rogers, 2006). The relationship between out-

puts yt and yx and auxiliary variables ht , and hx is deterministic and will be given by:

yt
i = j if ht

ji = max
1≤k≤M

{ht
ki}, (5.5)

p(yx
i |hx

i ) = θ(yx
i hx

i ) for yx
i =±1, (5.6)
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where θ is one if its argument is positive and zero otherwise, i.e., the Heaviside func-

tion, which completes the specification of the model.

5.3.2.1 Inference

Classification problems imply non-Gaussian noise models, which make inference in-

tractable. To address this intractability, we adopt a variational approximate treatment to

the problem, as it is computationally more efficient than sampling-based methods while

retaining a reasonable accuracy in empirically approximating posterior marginals. For

a comprehensive comparison between these approximations for GP multi-class classi-

fication, and on the multinomial probit model the interested reader in referred to Giro-

lami and Rogers (2006). The dependencies of the random variables Θ = {G,Ht , f,hx}
are depicted graphically in Figure 5.1.a and are summarised in the joint likelihood of

the CMTMC model as:

p(yt ,yx,Θ|θx,θt ,X) = p(yt |Ht)p(Ht |G)p(G|θx,X)p(yx|hx)p(hx|f)p(f|θx,θt ,X).

(5.7)

Variational methods approach this problem by approximating the joint posterior

of the latent variables Θ within a family of tractable distributions; in our case, we

will approximate the joint posterior as a factored distribution p(Θ|yt ,yx,X,θt ,θx) ≈
Q(Θ) = ∏i=1 Q(Θi) = Q(g)Q(ht)Q(f)Q(hx). Minimising the Kullback-Leibler diver-

gence between the approximating and the true distribution is equivalent to maximising

the following lower bound on the marginal likelihood

log p(yt ,yx|X,θx,θt)≥
Z

Q(Θ) log
p(yt ,yx,Θ|X,θx,θt)

Q(Θ)
dΘ, (5.8)

which is found by applying Jensen’s inequality(MacKay, 2003). Standard results show

that the distributions that maximise the lower bound are given by

Q(Θi) =
exp(EQ(Θ\Θi){log p(yt ,yx,Θ|X,θt ,θx)})R

exp(EQ(Θ\Θi){log p(yt ,yx,Θ|X,θt ,θx)})dΘi
(5.9)

where Q(Θ \Θi) denotes the factorized distribution with the ith component removed.

Inference and learning are performed in a variational EM algorithm: the E-step com-

putes the variational posteriors on the variables Θ, and the M-step optimises the hy-

perparameters θt ,θx given the expectations computed in the previous step. At each

(E or M) iteration the variational lower bound provably increases (or at worst remains

unchanged), and these two steps are repeated until convergence. We now briefly sum-

marise the calculations needed to perform the E and M steps. We omit any details and
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emphasise only the occurrence of the special form covariance function we employ;

fuller details can be found in appendices C.1, and C.2 for the approximate posteriors

and the lower bound respectively.

5.3.2.1.1 E-step The approximate posteriors for the multi-class classifier will be

given by,

Q(G) =
M

∏
j=1

Ng j(g̃ j,Σ
g), (5.10)

Q(Ht) =
N

∏
n=1

N yt
n

ht
n
(g̃n, I), (5.11)

where the tilde sign is used to denote the posterior expectation of that variable, for

example g̃(ht) = EQ(ht)[g(ht)], and we have used Σg = Kx (I +Kx)−1, and g̃ j = Σgh̃t
j.

The multivariate Gaussian N yt
n

ht
n
(g̃n, I) is truncated such that if yt

n = i then the ith dimen-

sion has the largest value. A full derivation can be found in appendix C.1. In the lower

channel, the approximate posteriors for the multi-task classifier will be given by,

Q(f) = Nf(f̃,Σ f ), (5.12)

Q(hx) =
N

∏
i=1

f̃i + yx
i
N f̃i(0,1)

Φ(yx
i f̃i)

, (5.13)

where f̃ = Σ f h̃x, and Σ f = Kt⊗Kx(I +Kt⊗Kx)−1;

5.3.2.1.2 M-step The M-step optimises the lower bound with respect to the hy-

perparameters θx and θt . This is performed by gradient descent; computation of the

gradients of the lower bound given in equation 5.8 are somewhat intricate and are given

in appendix C.2.

5.3.3 Prediction on novel tasks

While in the previous section we described how to train the model on training data from

the source tasks, we now describe how to perform predictions on unseen target tasks.

We adopt a mixture of experts type approach; in these networks, multiple outputs

are combined and weighted according to the responsibilities they have on a certain

prediction task. In a similar manner, the multi-task classifier of the CMTMC model

can be seen as a multi-output predictor, and the classifier over the task labels (multi-

class) can be used to infer the responsibilities of the outputs of the multi-task classifier,
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since it produces posterior probabilities of task memberships. Then predictions on

novel tasks are computed according to

p(y f
∗ = +1|xt ,X,yt ,yx) =

M

∑
j=1

p(yx
∗ j = +1|xt ,yt

∗ j,X,y
x)p(yt

∗ j|xt ,X,yt), (5.14)

where p(yx
∗ j = +1|xt ,yt

∗ j,X,y
x) = p(yx

∗ j = +1|xt ,X,yx) is the posterior of the jth task

belonging to class ”+1” from the multi-task classifier, and p(yt
∗ j|xt ,X,yt) is the pos-

terior of xt coming from the jth source task, or the test point task responsibility from

the multi-class classifier. A graphical representation of this process is given in figure

5.1.b, where it is shown that nodes yt
∗, and yx

∗ are combined to give the final predictions

y f
∗ .

However, the meta-generalisation scenario presents some additional challenges

which are not found in classical mixture of experts models. In many cases, a target

task consists of a batch of input points, and the simple fact that they all come from the

same task contains valuable information about the correlations between the associated

outputs. Another closely related issue is that of the correlation between the target task

and the source tasks. In many multi-task problems it is a usual phenomenon to ob-

serve groups of highly correlated tasks (e.g. figure 5.3.b), while other times tasks are

correlated but in a more random fashion (e.g. figure 5.6.b, 5.7.b). As we will see in

the experimental sections, this can have important consequences in terms of predictive

accuracy, and in terms of choosing an appropriate prediction model.

In the following, we present two distinct scenarios for inferring the task responsi-

bilities. Given a target task with nt data points X t = {xt
1,x

t
2, . . . ,x

t
nt}, in the first scenario

we treat each data point from the target task individually to infer its task responsibili-

ties, which we will refer to as Point to Point Gating (P2PGat). This approach neglects

the information that all target points come from the same task, and as we will see in

the experimental section, is more appropriate when inter-task correlations are weaker.

In the second scenario we wish to combine the information from all nt test points from

the target task to infer the overall task responsibilities for the target task, which we will

refer to as Batch predictions.

5.3.3.1 Point to Point Gating

Given a new input point xt which lacks both class and target labels, the CMTMC

model combines the predictions of a multi-task classifier using task responsibilities

obtained from the multi-class classifier channel. Thus, two sets of quantities need to
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be computed. The first set are the posterior probabilities of the M outputs p(yx
∗ j =

+1|xt ,X,yx) of the multi-task classifier, as

p(yx
∗ j = +1|xt ,X,yx) =

Z
p(yx
∗ j = 1|hx

∗)p(hx
∗|xt ,X,yx)dhx

∗

=
Z +∞

0
Nhx
∗ j
(ν∗ j,υ∗ j

2)dhx
∗ = Φ


 ν∗ j√

1+σ2
∗ j




(5.15)

where

ν∗ j = (kt
j⊗kx

X,xt )T (I +Kt⊗Kx)−1 h̃x, (5.16)

σ
2
∗ j = kt

j jk
x
xt ,xt −

(
kt

j⊗kx
X,xt

)T (
I +Kt⊗Kx)−1

(
kt

j⊗kx
X,xt

)
, (5.17)

and we have used kt
j, kt

j j to denote the jth column and the j jth element of Kt respec-

tively, and kx
X,xt and kx

xt ,xt to denote the covariance vector between X and xt , and the

marginal variance of the test point respectively.

The second set of quantities are the task responsibilities which are computed from

(Girolami and Rogers, 2006),

p(yt
∗ = k|xt ,X,yt) =

Z
p(yt
∗ = k|ht

∗)p(ht
∗|xt ,X,yt)dht

∗

=
Z +∞

−∞

Nht
∗k
(µg
∗k,υ

2
∗k) ∏

m 6=k

Z ht
∗k

−∞

Nht∗m(µg
∗m,υ2

∗m) dht
∗m dht

∗k, (5.18)

which can be evaluated using numerical integration as:

p(yt
∗ = k|xt ,X,yt) = Ep(u)

{
∏
j 6=k

Φ

(
1

υ∗ j

[
uυ∗k +µg

∗k−µg
∗ j

])}
, (5.19)

where u∼Nu(0,1), and

µg
∗m = (kx

X,xt )T (I +Kx)−1 h̃t
m, (5.20)

υ
2
∗m = 1+ kx

xt ,xt − (kx
X,xt )T (I +Kx)−1 (kx

X,xt ). (5.21)

In the P2P scenario, the novel input points are not assumed to share a common task

label. Therefore, class prediction is performed straightforwardly on every new input by

inserting the posterior probabilities obtained in equations 5.15, and 5.19 in the gating

network given by equation 5.14. More details about the posterior class probabilities of

the multi-class classifier are given in appendix C.3.
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5.3.3.2 Batch

In a Bayesian way using all test points X t to infer the overall task responsibility is

performed by replacing the univariate distributions from equation 5.18 with the ap-

propriate multivariate. As a result the second integral of equation 5.18 becomes the

multivariate cumulative distribution function
R ht
∗k
−∞ Nht∗m(Mg

∗m,ϒ∗) dht
∗m. Specifically the

mean and the variance of the auxiliary variables ht
∗m on the batch of test points X t will

be given by:

Mg
∗m = E[ht

∗m|X t ] = (Kx
X,X t )T (I +Kx)−1 h̃t

m, (5.22)

ϒ∗ = cov[ht
∗m|X t ] = I +Kx

X t ,X t − (Kx
X,X t )T (I +Kx)−1 (Kx

X,X t ), (5.23)

where Kx
X,X t is the N×nt covariance matrix of all training points X, and all target task

data points X t , and Kx
X t ,X t is the nt × nt full covariance matrix of X t . Equations 5.22

and 5.23, indicate that inferring the tasks responsibilities on a set of points depends

not only on the correlations between the test points and the train points but also on the

correlations between the test points themselves.

On the other hand, truncated multivariate Gaussian distributions are hard to deal

with, and usually approximations are applied (Deak, 1980; Genz, 1992; Gassmann

et al., 2002). The dimensions of the multivariate distribution function in the batch

prediction problem depend on the number of data points nt of the target task, which

can be several thousands depending the application. To the best of our knowledge no

method can tackle very high dimensional c.d.f. , and even approximations can become

extremely computationally intensive when nt is more than a few dozens (these estima-

tions would be carried out within the inner loop of a VBEM algorithm, which would

obviously further aggravate the problem). A solution to this problem is to assume that

data points from the test task are i.i.d. from the unknown data generating distribution,

and approximate it by:

p(yt
∗ = k|X∗,X,yt)≈ ∏

nt

i=1 p(yt
∗i = k|xt

i,X,y
t)

∑
M
m=1 ∏

nt

j=1 p(yt
∗ j = m|xt

j,X,yt)
, (5.24)

where p(yt
∗i = k|x∗i,X,yt) are the task responsibilities computed individually for each

test point. Despite the fact that this approximation assumes that the covariance matrix

between the test points Kx
X t ,X t is diagonal, thus considers each point independently,

effectively task responsibilities are computed by using information from all data from

the target task. We will adopt this approximation in the experimental section; we also

experimented with using a reduced rank approximation for ϒ∗, but this did not appear

to yield any empirical advantages while retaining a computationally feasible rank.
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5.4 Experiments

This section aims at providing insights into the workings of our meta-generalising

model through empirical evidence. Experiments are presented for both the fully ob-

served and partially observed task scenarios described in section 5.2, and in both cases

we investigate both the P2P gating and the Batch mode of predictions on new tasks.

The fully observed tasks case, considered in section 5.4.1, investigates the situation

where data generating distribution of the target task is actually the same as that of one

of the source tasks. In this case all available tasks are used in the training phase, but in

the testing phase the model has no information from which of the source task the target

task comes from. The second set of experiments, described in section 5.4.2, considers

the case of the partially observed tasks. In this case the data generating distribution of

the target task does not match the distribution of one of the source tasks, so that the

set of source tasks is strictly a subset of the set of all tasks. Training is performed on

the source tasks, and testing on the totally unseen target tasks. While both scenarios

are plausible applications of meta-generalising, section 5.4.2 gives more insight into

the connections between the correlation structure of the tasks and the task prediction

mechanism on totally unseen tasks.

Five different data sets are considered in the experiments. The first two data sets

are artificially generated to demonstrate the strengths and the limitations of the method;

the first one satisfies the assumptions of the model, and the second one, which is only

considered in section 5.4.1, is in conflict with them. The third data set is a charac-

ter classification problem between commonly confused handwritten letters. The fourth

data set is an automated diagnosis problem: annotated heartbeats from ECG recordings

are used to discriminate normal from arrhythmic beats, and each patient is considered

as a task. The last data set, which is considered only in the second set of experiments,

is a landmine detection problem. More details are given in each section separately.

We present results for different training set sizes, and for each training size experi-

ments are repeated 25 times by randomly selecting the data points used for training

from each task. Furthermore, in both scenarios three types of outputs are considered

from the CMTMC model; the batch written as “BatchMCAppr”, the P2P gating writ-

ten as “P2PMCGat”, and the “MAP” estimate which simply selects the output of the

multi-task classifier that has the highest posterior, something that is usually considered

in classifier fusion techniques (Kuncheva, 2002). When found necessary the results

of the different methods of making predictions are compared using the t-test. As our
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method essentially relies on the covariance structure between tasks, two types of base-

line comparisons are possible: in the worst case, results should not be worse than

completely ignoring the task structure and pooling together all training data. We refer

to this baseline as Pool. In the best case, our method should not be statistically better

than a method which leverages the same covariance structure and has access to all the

task label information, e.g. a standard multi-task learning approach. We refer to this

best-case scenario as MTL; we compare with this only in the fully observed task sce-

nario, as in the partially observed case the meta-generalising results are generally quite

far from this best case.

All methods are compared in terms of Area Under the Curve (AUC) (Hanley and

Mcneil, 1982), as one of the most appropriate measure of performance for imbalanced

data sets1. In all experiments the task covariance matrix Kt was parameterised as a

correlation matrix (Rebonato and Jäckel, 2000), with unit diagonal, while the data

covariance function Kx is set specifically for each data set depending the application.

5.4.1 Fully observed tasks

In this scenario, the data distribution of the target task is the same as that of (at least)

one of the source tasks. This guarantees that the similarity of distribution assumption

is met, however, as we’ll see in the case of Toy data II, the low joint prediction error

assumption is not automatically satisfied. Obviously, the actual input data will be

different, due to the stochasticity of the data generating process. Intuitively, the success

of the model depends strongly on whether the model will be able to infer correctly from

which of the source tasks the target task actually comes from.

5.4.1.1 Toy data set I

The first toy data set is comprised of six binary classification tasks. This toy problem

was previously used in Liu et al. (2009) in the context of semi-supervised multi-task

learning. Data for the first three tasks are generated from a mixture of two partially

overlapping Gaussian distributions, and similarly for the remaining three tasks. Hence,

the six tasks cluster in two groups; for each task 600 data points were generated, which

were equally divided between the two classes. The scatter plots of the two clusters are

shown in figures 5.2.a and 5.2.b.

1Another measure for imbalanced data sets is known as the Precision-Recall curve, or the average
precision (Davis and Goadrich, 2006; Brodersen et al., 2010).
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Figure 5.2: Toy data set I distribution; (a) scatter plot and density for the first cluster of

tasks (1-3), (b) scatter plot and density for the second cluster of tasks (4-6).
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Figure 5.3: Toy data set I classification Results; (a) Average AUC over the 6 tasks,

(b) Hinton Diagram of the task covariance matrix of the CMTMC model computed by

averaging over the 25 repetitions with 50 data points per task.
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This data set is ideal for demonstrating the concept of the meta-generalising for

three reasons. First of all the assumptions of the model are satisfied. Secondly, the

tasks group in two clusters. The third reason is that the densities of the clusters though

similar are not exactly the same; this is illustrated in figures 5.2.a and 5.2.b, which

shows the contour plot of the densities of the two clusters. We use an Automatic

Relevance Determination (ARD) data covariance function, which employs a different

characteristic length scale for each feature, and is able to identify which features are

more relevant for classification (Rasmussen and Williams, 2005).

Classification results are presented in figure 5.3.a; the Y axis is the AUC, and the

X axis is the number of data points from each task (DPET) used for training.

The results show that, in this toy problem, the Batch mode performs similarly to

the ideal MTL case (differences in terms of AUC were not statistically significant at

0.05 p-value), although it has a high variance for the case of 10 DPET. The P2PGat

and Pooling method perform approximately 10% worse that the Batch, while the MAP

estimate gives roughly 20% less than the Batch. Moreover, figure 5.3.b shown the

Hinton diagram (Hinton, 1989) of the task covariance matrix of the CMTMC model

which accurately recovers the structure of the tasks.

5.4.1.2 Toy data set II

The second toy data set consists of four tasks which group into two clusters. The

scatter plot as well as the density of the two clusters are shown in figures 5.4.a and

5.4.b, for the first and second cluster respectively. The main feature of this data set,

evident visually from Figure 5.4, is the similarity of the data generating distribution

for the two tasks. While the densities are peaked in different locations, without class

labels the tasks are almost identical, meaning that the multi-class classifier cannot learn

to discriminate between the two tasks. As in the previous example, each task consisted

of 600 data points equally divided between the two classes, and we used the ARD

covariance function. Figure 5.5.a shows the results the different methods produced. As

expected, the Batch mode fails to correctly identify the task responsibilities; as a result,

it gives a lower average AUC than the MTL, a difference which does not decrease

with the number of DPET, indicating statistical inconsistency. This is reinforced by

the Hinton diagram of Kt in figure 5.5.b, where it fails to identify the clusters of the

tasks. Even though this difference is small it is significant for this easy problem, where

the MTL algorithm performs close to 100%. Additionally, the P2PGat, the Pooling,

and the MAP estimates perform better that the Batch, but they also fail to reach the
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Figure 5.4: Toy data set II distribution; (a) scatter plot and density for the first cluster of

tasks(1-2), (b) scatter plot and density for the second cluster of tasks (3-4).

performance of MTL. Note that differences P2PGat and Pooling were not statistically

significant at 0.05 p-value, whereas differences between Batch and both P2PGat and

Pooling were statistically significant at 0.05 p-value for 30 and 50 data points.

5.4.1.3 Character Classification

In this data set the task is to learn to classify between commonly confused handwritten

letters, which is included in the ”Transfer learning Toolkit” of Berkeley University

available at http://multitask.cs.berkeley.edu/. This data set is comprised of eight binary

classification tasks. The characters that are used and the number of samples are given

in table 4.5. Each sample is a 16× 8 image, which results into a binary 128 feature

vector. The covariance function that is employed for this data set is the Radial Basis

Function (RBF).

The classification results for this data set are presented in figure 5.6.a. The Batch

method approaches the ideal MTL performance, and outperforms the P2PGat, Pool-

ing, and the MAP methods. Differences in terms of AUC between the MTL and the

Batch methods were statistically significant at 0.05 p-value, whereas more in depth

comparison of the performances of the Pool and P2PGat methods revealed that the

Pool method performed better that the P2PMC at significance level of 0.05 p-value.

Figure 5.6.b shows the Hinton diagram of the task covariance matrix2. This Hinton

2In the Hinton diagram of the Character classification problem (figure 5.6.b) task correlations smaller
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Figure 5.5: Toy data set II classification Results; (a) Average AUC over the 4 tasks, (b)

Hinton Diagram of the task covariance matrix.

10 20 30 40 50 60 70

0.5

0.6

0.7

0.8

0.9

1

DPET

A
ve

ra
g

e
 A

U
C

Character Classification

 

 

MTL
BatchMCAppr
P2PMCGat
MAP
Pool

c/e g/y m/n a/g i/j a/o f/t h/n

c/e

g/y

m/n

a/g

i/j

a/o

f/t

h/n

Task

T
a
sk

Character Classification

(a) (b)

Figure 5.6: Character Classification Results; (a) Average AUC over the 8 tasks, (b)

Hinton Diagram of the task covariance matrix.
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diagram indicates a more random structure between the tasks, but finds that some tasks

are more correlated than others, for example ‘a/g’ with ‘a/o’, and ‘i/j’ with ‘f/t’. It

should be noted though, that in this data set the “low-error joint prediction” assumption

is partially violated since there is label disagreement between tasks ‘a/g’ and ‘g/y’,

where the ‘g’ letter belongs to class “+1” in task ‘a/g’ and to “-1” in task ‘g/y’. As it is

shown in the fully observed case type of experiments, this does not seem to have any

adverse effect on the performance of the model, presumably as the difference between

a and y is sufficient to unambiguously assign the target task to the correct source task.
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Figure 5.7: Arrhythmia Classification Results; (a) Average AUC over the 7 tasks, (b)

Hinton Diagram of the task covariance matrix.

5.4.1.4 Arrhythmia Classification

The arrhythmia data set consists of seven ECG recordings from different patients,

which were acquired from the MIT-BIH Arrhythmia database (Goldberger et al., 2000).

Each recording corresponds to a large number of heart beats, which is summarised in

table 3.1. Each patient is treated as a separate task, and the goal is to classify each heart

beat into two classes, normal or premature ventricular contraction (PVC) arrhythmic

beats. The same problem was considered in Skolidis et al. (2008) using single task

GP classifiers. Each recording was sampled at 360Hz, and annotation provided by the

database was used to separate the beats before any preprocessing. Each beat segment,

consisting of 360 data points (one minute), was transformed into the frequency domain

than 0.05 were set to zero because of problems in producing the figure.
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using a Fast Fourier Transform with a Hanning window. Only the first ten harmonics

are used as features for classifying heart beats, as most of the information of the signal

is contained in these harmonics.

Figure 5.7.a shows the average AUC over the seven tasks. On average, the Batch

method performs better than other approaches. Interestingly, the MAP approach is

consistently worse than other methods, a situation that will be reversed in the partially

observed tasks scenario. Differences between Pool and P2PGat were not statistically

significant at 0.05 p-value at any training data size, while the MTL method outper-

formed the Batch method for all training sizes larger than 20 at a significance level of

0.05 p-value. As in the character classification problem the task covariance matrix Kt ,

shown in figure 5.7.b , demonstrates that there are correlations between the tasks but

in more random way.

5.4.1.5 Observations

This set of experiments has demonstrated the effectiveness of the CMTMC model in

situations were the data distribution of the target task comes from one of the source

tasks. Several observations are made:

1. In the fully observed tasks scenario, the space of tasks has been sampled suffi-

ciently (by definition). In this case the Batch mode should theoretically be the

best method, since all data points are needed to produce an accurate estimate of

the density of the target task. This is empirically confirmed in our investigation,

as Batch closely approaches the MTL results in all cases.

2. If the ”low error joint prediction” assumption is violated, then meta-generalising

becomes a very hard problem, possible unsolvable. The performance on the

second toy example was not particularly bad, since all methods achieved higher

that 90% in terms of AUC, but none of methods reached the performance of the

MTL algorithm. Moreover, the performance did not appreciably improve when

more training data was provided, indicating statistical inconsistency. This effect

could be dramatically increased if for example the classes between the clusters

were anticorrelated, so that similar data generating distributions could be poten-

tially associated with opposite predictions. Note though that if discriminative

task descriptor features are available then this problem can be overcome, be-

cause augmenting the feature space would result in a different mapping of the

latent function f .
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3. If the model assumptions are met, the correlation structure of the tasks does not

have a strong influence on the predictions, since the Batch mode outperformed

the P2P gating and MAP estimate in all experiments. As we will see, this will

be a crucial difference between the fully and partially observed tasks scenario.

5.4.2 Partially observed tasks

We now consider the harder problem of making predictions on completely unseen

tasks. In this case, a priori we have no guarantee that any of the underlying modelling

assumptions (similarity of distribution and low-error joint prediction) may hold. How-

ever, in some situations it is not unrealistic to assume that inter-task correlations will

be structured, for example by the presence of clusters of similar tasks. These clusters

may be evident from the experimental design of the problem (as in the case of the

landmine data set discussed below), or may become evident from the training phase on

the source tasks, if the learned task covariance matrix exhibits a strong block structure.

We are not aware of other methods that has distribution matching mechanism to

perform predictions on totally unseen tasks. Therefore, in this section we will only

compare the different inference mechanisms of the CMTMC model (Batch and P2P)

with a GP model trained by pooling all data together and with the MAP combination

of classifiers.
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Figure 5.8: Average AUC on the unseen tasks of Toy data set I; (a) training on 2 tasks

generalising on 4, (b) training on 4 tasks generalising on 2.
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5.4.2.1 Toy data set I

We consider the toy data set of section 5.4.1.1, that consists of two clusters of tasks;

in this section, training tasks are selected by randomly selecting equal number of tasks

from each cluster. The challenge for the model is to correctly classify the task, given

the similarity of the task distributions between the two clusters (see Figure 5.2). Ex-

perimental results are presented for two and four training tasks in figures 5.8.a and

5.8.b respectively. Naturally, as this data set is designed to match our modelling as-

sumptions, the Batch method outperforms all other methods; it is interesting however

that the method successfully detects from which cluster of tasks the unseen target task

comes from even for relatively small training set sizes. Comparing the performance of

the Toy data set I in the fully and partially observed cases, in figures 5.3 and 5.8 respec-

tively, reveals that the same levels of AUC are achieved in both experimental setups,

indicating that the task classification GP is highly confident of the correct result.

5.4.2.2 Landmine Detection

The landmine detection data set consists of images measured with airborne radar sys-

tems, and the goal is to predict landmines or clutter (Xue et al., 2007). Data are col-

lected from 19 landmine fields, which are considered as subtasks, and each point is

represented by a nine-dimensional feature vector. Tasks 1-10 correspond to regions

that are relatively highly foliated while tasks 11-19 correspond to regions that are bare

earth or desert. The experimental setup suggests the presence of two clusters of tasks

corresponding to the geomorphology of the region the observations come from; this

is confirmed by our preliminary investigation (not shown), as well as results on this

data set by Xue et al. (2007); Liu et al. (2009). Thus, in this data set training tasks

are set by randomly selecting equal number of tasks from the first cluster, tasks 1-10,

and from the second cluster, tasks 11-19. Experiments are presented for two, four, and

eight training tasks. The data covariance function that is used for this data set is the

ARD.

Figures 5.9.a, 5.10.a, and 5.11.a shows the average AUC on the 17, 15, and 11 un-

seen target tasks for each partition respectively. It is noticeable that, despite the slightly

higher mean of the Batch method, there are large overlapping error bars between the

methods. Large error bars give evidence that there might be two levels of performance.

Therefore, for each partition we provide the average AUC for each cluster separately;

subfigures (b) from figures 5.9, 5.10, and 5.11 show the average AUC for the first
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cluster, and subfigures (c) for the second cluster. Measuring the AUC in each cluster

separately gives significantly smaller error bars, and reveals interesting structures in

the problem. Specifically, the performance on the first cluster is always better than on

the second cluster by a considerable margin (of approximately 10 percentage points),

achieving AUCs mostly over 70% in the first cluster (figure 5.9.b).
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Figure 5.9: AUC on the 17 unseen tasks of Landmine data set; training on 2 tasks,

generalising on 17; (a) AUC over all 17 tasks, (b) AUC over 9 tasks of the first cluster,

(c) AUC over 8 tasks of the second cluster.

Moreover, comparing the methods on each cluster separately we see that the Batch

method outperformed the pooling and the P2PGat in most of the cases, particularly

in the first cluster where the advantages become very significant as we increase the

number of tasks/ DPETs. The correlation structure within the second cluster is looser,

implying a weaker applicability of our modelling assumptions. This is reflected in the

experimental results, where lower AUCs are achieved and the differences between the

various methods are not significant.

More in depth statistical analysis revealed that for 2 training tasks the Batch and

the P2PGat method performed equally well with the exception of training with 50 data

points on the first Cluster where the differences were statistically significant at 0.05

p-value; for 4 and 8 training tasks the differences between the Batch and the P2PGat

were statistically significant for 50 and 100 data points on the first Cluster of tasks.

It should be pointed out, however, that this is a substantially harder pattern recog-

nition task compared to the toy data set considered above. For example, Liu et al.

(2009), which investigated semi-supervised MTL on this data set, achieved a best per-

formance of 78% AUC; the CMTMC (which relies on the more flexible GP framework

for MTL) achieves an average AUC close to 76% on totally unseen tasks having trained
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on 8 source tasks with 100 DPET.
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Figure 5.10: Average AUC on the 15 unseen tasks of Landmine data set; training on

4 tasks, generalising on 15; (a) Overall AUC over all 15 tasks, (b) Average AUC over 8

tasks of the first cluster, (c) Average AUC over 7 tasks of the second cluster.
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Figure 5.11: Average AUC on the 11 unseen tasks of Landmine data set; training on

8 tasks, generalising on 11; (a) Overall AUC over all 11 tasks, (b) Average AUC over 6

tasks of the first cluster, (c) Average AUC over 5 tasks of the second cluster.

5.4.2.3 Arrhythmia Classification

As a second real data set, we return to the arrhythmia classification problem intro-

duced in subsection 5.4.1.4. The results from the fully observed tasks scenario indi-

cate an unclear pattern of correlations between the tasks, as summarised in the task

covariance matrix figure 5.7.b, which calls into question the validity of the similarity

of distribution assumption. Fortunately, in this application the classes have a physical
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interpretation. For example normal heart beats between different patients, although not

exactly the same, can be expected to be similar, and a PVC arrhythmic heart beat of

one patient can not have the wave form of a normal heart beat from another patient.

This allows us to assume that the classes between the tasks will not be anti-correlated,

so that at least the low-error joint prediction assumption should approximately hold.
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Figure 5.12: Average AUC on the unseen tasks of Arrhythmia data set on different

number of training tasks; (a) training on 2 tasks, generalising on 5, (b) training on 3

tasks, generalising on 4, (c) training on 4 tasks, generalising on 3, (d) training on 5

tasks, generalising on 2

Since there are no obvious clusters among tasks, in this set of experiments the train-

ing tasks are chosen by randomly selecting some for training and keeping the rest as

test tasks. Figure 5.12 presents the results on the unseen tasks that were obtained by

training the CMCMT model with 2, 3, 4, and 5 tasks. First of all, we observe that the

average AUC in the partially observed case is a lot lower than in the fully observed
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case, something perhaps to be expected since, contrary to the previous two examples,

the model assumptions are not fully met in this data set. Surprisingly, the method that

achieved the best performance was the MAP, and no principled justification can be

given for that. Secondly, we observe that the performance in this set of experiments

exhibits some interesting patterns as the number of training tasks increases. Specif-

ically, for two, three or four training tasks the performance of all methods does not

significantly improve as we increase the number of DPETs, and in some cases it even

deteriorates. This indicates that if the space of tasks has not been sampled sufficiently,

the model can not yield good generalisation performance to new tasks, even if the num-

ber of training data increases. In contrast, for five training tasks the MAP and P2PGat

methods yield a significant improvement of performance as the number of data points

increases (levelling off after 200 DPETs).

Empirically, it would appear that the P2PGat method is preferable to the Batch

method when the model assumptions are violated. Intuitively, one could argue that the

Batch method is less flexible, as the relative contribution of the different single-class

predictors is fixed across all points in the target task. Therefore, if the model assump-

tions are violated, leading to an incorrect task labelling, the propagated error could

have a worse effect in Batch than in P2Gat. This is partly confirmed by the analysis

of Toy data set II in section 5.4.1.2, where the model assumptions were violated and

P2PGat gave significantly higher AUC than the Batch method.

5.4.2.4 Character Classification

For reasons of completeness, we present an analysis of the character classification

problem in the partially observed tasks scenario. Here the validity of the model as-

sumptions is dubious; nevertheless, we believe that interesting lessons can be learned

from model failure. The fully observed tasks analysis of the character classification

problem did not reveal any clusters of tasks. Furthermore, there is no reason to be-

lieve that the low-error joint prediction assumption may hold: some tasks might even

be anticorrelated, as in tasks ‘a/g’ and ‘g/y’, where letter ‘g’ belongs to the negative

class for task ‘a/g’, and to the positive class for task ‘g/y’. Therefore, the character

classification problem is ill-suited for this type of experiments. This is borne out by

experimental evidence: we present results with 4, 5, and 6 training tasks, which are

shown in subfigures a, b, and c of figure 5.13 respectively. As is shown, increasing

the number of tasks and the number of training points per task does not improve the

performance in any of the methods, indicating statistical inconsistency of the model
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assumptions with the data.
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Figure 5.13: Average AUC on the unseen tasks for the Character classification data set;

(a) Training on 4 tasks, (b) Training on 5 tasks, (c) Training on 6 tasks.

5.4.2.5 Observations

Meta-generalising in a partially observed tasks scenario is an extremely hard problem;

nevertheless, we believe there are some interesting points that can be made from the

previous experimental analysis. Below we summarise the most important observations

for this scenario.

1. In situations where there are clusters of tasks, even though the model hasn’t seen

all tasks, the Batch method can still make accurate predictions that reaches the

performance of the fully observed tasks case. Pragmatically, one could consider

whether the training phase of the model has revealed clusters of tasks when de-

ciding which prediction method to apply.

2. In multi-task problems where the correlations between the tasks are less pro-

nounced, but where the low-error joint prediction is satisfied and where a suffi-

cient number of training tasks is available, the method that is most appropriate

is the P2PGat, since it provides a more flexible task assignment mechanism than

the Batch mode. The validity of the low-error joint prediction assumption can

sometimes be assessed from the nature of the problem (as in the arrhythmia

case).

3. Sufficient exploration of the task space is essential for the success of the method.

While we have not tested our model for very large numbers of training tasks,
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the results suggest that often a significant improvement in performance can be

achieved when the number of training tasks crosses a critical number, indicating

a sufficient coverage of the task space.

5.5 Conclusions

In this chapter we presented an investigation on the use of Gaussian Processes for meta-

generalisation, i.e. predicting on unseen learning tasks by leveraging the information

of several, related tasks. Our model attacks the meta-generalisation problem by cou-

pling two GPs, a multi-class classifier that learns task responsibilities, and a multi-task

classifier that learns prediction models on individual tasks as well as learning the global

correlation structure between training tasks. While it should be emphasised that this

is an initial attempt to address what is certainly a very ambitious problem, we believe

the model will prove useful to understand meta-generalisation. First of all, it pro-

vides a constructive approach to meta-generalisation: most previous studies (Baxter,

2000) have been mainly theoretical investigations attempting to establish the necessary

conditions for meta-generalisation to work, or have focused on the domain adaptation

scenario (Ben-David et al., 2007, 2010). Our model is an attempt to translate these

conditions into a model, and to investigate how well such a model may perform on real

meta-generalisation problems.

It is important to remark that our method crucially relies on the ability to learn

the covariance matrix of a GP: the fundamental ingredient in the work is the task cor-

relation matrix which captures the correlations between source tasks. This not only

has a significant impact on the prediction results, but can reveal the presence of clus-

ters of tasks within the data, hence guiding the choice of the appropriate prediction

method (Batch or P2P). Many multi-task learning approaches do not explicitly model

the correlations, but transfer learning solely through some shared prior over parame-

ters (Yu et al., 2005, e.g.). While this could have computational advantages, we would

argue that the implicit modelling of task correlations would make them less suitable

for meta-generalisation.

Other possible ways of modeling the task covariance matrix would be by extracting

task descriptor features from the training and test data sets and using those as inputs for

the task covariance function (Bonilla et al., 2007). In this setting the task covariance

function would act as the gating network in place of the multi-class classifier in the

CMTMC model we proposed in this work.
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While we believe that our results are encouraging and help clarify the importance

of the various assumptions underlying meta-generalisation, it remains undeniable that

in many practical situations it is impossible to assess the validity of these assumptions,

making meta-generalisation an extremely challenging problem. Possible avenues to

extend the applicability of the approach could be to consider task descriptor features, or

to introduce a semi-supervised element in the model in the spirit of domain adaptation

approaches.



Chapter 6

Conclusions and Future Research

Directions

This thesis examined the application of Gaussian Processes to the framework of Trans-

fer Learning (TL). We provided the reader the necessary background information about

the framework of transfer learning, which was divided into three major categories: the

Inductive, the Transductive, and the Unsupervised categories of TL. Until now, re-

search conducted in the TL framework with GPs was mostly oriented towards learning

problems that are classified in the Inductive category of TL, and particularly for Multi-

task learning (MTL) and the closely related setting of Multi-responce learning.

Table 6.1 shows the individual learning settings of each category of TL in relation

to research conducted with GPs in the past years and in this thesis. The first column of

symbols next to each subsetting characterizes research in the literature, and the second

symbol depicts research in this thesis. Symbol 2 stands for settings for which models

have been proposed and properly analyzed, symbol 3 indicates that a model has been

proposed but has not been tested, and symbol× signifies a gap in the literature until

now. As can easily be seen from the first column of symbols, from the eight subsettings

of TL only two, Multi-task/response and SS Multi-task have properly been addressed,

while from the subsetting of Cross-domain transfer only the problem of covariate shift

has been approached in Storkey and Sugiyama (2007); on top of that an approach for

translated learning has been proposed by Chai (2010). Related to research conducted in

this thesis, symbol
√

stands for models proposed and thoroughly examined, symbol

4 indicates that a model has been proposed but has not been tested, and symbol ?
points out future work to be proposed. Note that a more general model that has been

proposed for covariate shift by Storkey and Sugiyama (2007)
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Table 6.1: Transfer Learning and Gaussian Process Research. The first column of

symbols next to each subsetting characterizes research in the literature, and the second

symbol depicts research in this thesis. In the first column, symbol 2 stands for settings

for which models have been proposed and properly analyzed, symbol 3 indicates that

a model has been proposed but has not been tested, and symbol× signifies a gap

in the literature. In the second column, symbol
√

stands for models proposed and

thoroughly examined, symbol4 indicates that a model has been proposed but has

not been tested, and symbol ? points out future work to be proposed

Inductive Transductive Unsupervised
Multi-task

2
√

Tranlated 3 MT Unsupervised × ?
Multi-response

SS Multi-task 2
√

Cross-domain 24 Meta-generelazing × √

Self-taught ×4

6.1 Conclusions

This thesis examined the application of Gaussian Processes to three different forms of

Transfer Learning (TL), by making extensive use of the IMC model of Cressie (1993)

and Bonilla et al. (2008). We placed emphasis on how the Kronecker factorization

of the GP covariance prior of Bonilla et al. (2008) can be exploited to be employed in

various forms of TL with a focus on classification problems. The original contributions

of this thesis are presented in chapters 3, 4, and 5, with the addition of chapter 2

whose contribution is considerable from the application point of view and chapter 1

that provides an overview of the framework of Transfer Learning. Chapters 2 and 3

examine the multi-task scenario and chapter 4 extends the previous two chapters to

the semi-supervised case, where a model is described that is able to tackle Self-taught

and Domain adaptation problems. Hence, chapters 2-4 investigate the Inductive and

the Transductive category of TL, whereas chapter 5 is concerned with the problem of

Meta-generalising from the Unsupervised category of TL.

Chapter 2 provided the reader a detailed and justified classification of existing

multi-task approaches for GP regression which resulted into a weak form of transfer as
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the Parameter Transfer, and a stronger form as the Inductive transfer. In the experimen-

tal part of chapter 2 we applied MT GP regression to the prediction of pKa values for

different molecules, where MTL was found to offer a significant improvement upon

STL for small training sizes. Additionally, although we have not tested all available

methods from each category, empirical evidence from the methods tested supports our

argument that the Parameter transfer is weaker than the IMC model of Bonilla et al.

(2008) from the Inductive transfer, which is also supported by experimental results in

chapters 3 and 4 on classification problems.

In chapter 3 we applied the multi-task model of Bonilla et al. (2008) to classifi-

cation problems; by employing one stochastic and two deterministic approximations

we deal with the non-Gaussian likelihood classification problems impose. In the ap-

proximate approach we employed one algorithm based on the factorized distributions

of Variational inference and one algorithm based on the EP approximation, to approx-

imate the non-Gaussian posterior of the latent function. Experimental results on three

data sets showed that MTL with GPs greatly improves upon STL for few training data

and produces competitive or better results compared to methods from the Parameter

transfer and with other competing methods such as SVMs.

In chapter 4 we address the problem of semi-supervised multi-task learning within

the GP framework. Combining the SS model of Sindhwani et al. (2007) and the MTL

model of Bonilla et al. (2008), we found that the taxonomy of multi-task learning in-

troduced in chapter 2 can also be extended in the SS case, to give the SS analogs of the

Parameter and the Inductive transfer. In the SS Parameter transfer the latent functions

of each task were learned from labeled and unlabeled data but were independent given

the parameters, whereas in the SS Inductive transfer inter-task dependencies were in-

troduced through the IMC model giving rise to two possible formulations to exploit

unlabeled data. In the first model, the Static Geometry (SG), unlabeled data of each

task are treated independently whereas in the second approach, the Flexible Geometry

(FG), the unlabeled data of each task communicate through the task covariance matrix.

Experimental results on one artificial and three real data sets give more insights about

the methods; the Spam classification and the Sentiment analysis problems, manifest

the benefits SS-MTL has to offer for few labeled training data; for the Letters classi-

fication problem whose tasks do not have a high degree of correlation, we observed

that the best performance was achieved by the weakest and simplest form of MTL the

Parameter transfer. It is concluded that the weak form of transfer of the Parameter

category should be preferred when task correlations vary significantly. Additionally,
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we observed that in general the SG performed better than the FG formulation except

in the case of the Letters data set which could be justified as that the FG could learn

better the task correlations. However, the importance of the FG formulation is on that

it can act as the cornerstone for attacking more complex problems as the Self-taught

learning and Domain adaptation. Although until now our preliminary results on DA

and SeTL were not satisfactory compared to other baseline methods, we believe that it

is a promising route to follow.

In chapter 5 we move on to the Unsupervised category of TL and we address the

problem of Meta-generalising with GPs through the setting of multi-task learning. Al-

though this setting has been proposed by Baxter (2000), to our knowledge we are the

first to put it into a formal context, conjecture the assumptions that it should be based

on, develop a model for it and finally thoroughly examine under what circumstances it

can work. We show that Meta-generalising can be applied with performance reaching

that of MTL( MTL is considered the supervised analog of Meta-generalising) in situa-

tions where either we have knowledge that all possible tasks have been sampled (Fully

observed case) or in situations where there are clusters of tasks. In those two situations

we have empirically shown that the optimal way of making predictions is by using

information by all data points from the test target task (Batch). In situations where the

tasks are correlated but in a more random way we observed that Meta-generalising can

achieve better levels of performance than baselines using the mixture of experts way

of predictions (P2P) that was proposed. We believe that these two observations in this

extreme form of Transfer learning highlight the importance the structure of the space

of the tasks has and the need for methods that can efficiently identify it.

6.2 Future Research Directions

This section suggests some possible directions for future work that we believe are

worth examining. Clearly, table 6.1 shows a gap in the literature in the categories of

Transductive and Unsupervised transfer Learning, and partially in the Inductive cate-

gory for Self-taught learning. Although this thesis made a first attempt to solve prob-

lems like Domain adaptation, Self-taught learning and Meta-gereralizing, we believe

that these forms of Transfer learning are extremely challenging and that other methods

based on Gaussian Process models could be developed to solve them.

Semi-supervised multi-task learning compared to multi-task learning is more re-

cent and in general has not received as much attention. As we saw the importance of
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this learning setting goes beyond its main objective being able to leverage information

from different tasks and unlabeled data because of its close relation to the problems

of DA and SeTL. Due to that reason we believe that there should more focus on that

setting from the theoretical and the practical point of view. Although there has been

a considerable amount of work on theoretically characterizing the benefits single SS

learning has reported to deliver (Philippe, 2007; Lafferty and Wasserman, 2008; Singh

et al., 2009), SS-MTL has not received that much attention with the exception of the

work of Daumé et al. (2010). In MT-GPs Chai (2009) has theoretically analyzed the

IMC, whereas this type of analysis (generalisation error bounds for SS-MTL) is miss-

ing and we believe would be of paramount importance. In relation to models proposed

in this thesis for Domain adaptation and Self-taught learning, in the future we intend

to experiment with different constructions of the Laplacian or with variations of the

models proposed in section 4.5 on more data sets to improve performance.

Related to the Unsupervised category, there is very limited work addressing prob-

lems like dimensionality reduction (DR) (Wang et al., 2008; Pan et al., 2009) or clus-

tering (Yang et al., 2009; Dai et al., 2008) for multiple tasks. Dimensionality reduction

with GPs has been approached with the Gaussian Process Latent Variable Model (GP-

LVM) of Lawrence (2004). It is our opinion that the GP-LVM can act as the basis

for constructing a model that will be able to leverage information from multiple tasks

to perform dimensionality reduction, exactly as the SSGP model of Sindhwani et al.

(2007) acted in the Semi-supervised multi-task case. Similarly to the MTL and to the

SS-MTL scenarios the GP-LVM can be modified in such a way to give the Parameter

transfer and the Inductive transfer analogs for dimensionality reduction. In the Pa-

rameter transfer the prior distribution of some parameters can be shared while in the

Inductive transfer we can allow the latent functions of the different task that map the

high dimensional data to a low dimensional manifold to interact through the Kronecker

product factorization of the prior. The successful combination of the GP-LVM with the

IMC model would provide a unifying treatment of Transfer learning with GPs through

the IMC model, excluding the problem of translated learning.

Last but not least we would like to stress that although Meta-generalising is an

extremely hard problem and its applicability to a real situation at first sight might be

questionable, we believe that there are real applications where it can actually be benefi-

cial. In addition to the arrhythmia classification problem, the estimation of pKa values

of different molecules is an ideal problem that can be recast as a Meta-generalisation

problem since the ability to predict the pKa value of a molecule by finding with which
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task is correlated can be used as a decision support system. Therefore, in the future we

intend to adapt the CMTMC model for multi -task regression problems and apply it in

the pKa data set.



Appendix A

Appendix to Chapter 3

This appendix provides additional information for the Gibbs sampling scheme in sec-

tion 3.2.1.1, and the Variational probit model in section 3.2.2.2. A complete and

detailed exposition of the EP approximation that naturally extends to the multi-task

scenario can be found in (Rasmussen and Williams, 2005, Ch. 3.6) and will not be

reproduced here.

A.1 MCMC methods

Markov Chain Monte Carlo (MCMC) is a general family of methods for approximating

the posterior distribution of random variables that cannot be computed in closed form.

This is achieved by drawing samples in a sequential manner such that each sample

depends on its previous value, and thus the samples form a Markov chain.

A.1.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a generalisation of the Metropolis algorithm that

generates samples from a proposal distribution q(Θt |Θt−1) and accepts them based

on an acceptance ratio. The difference between the Metropolis and the Metropolis-

Hastings algorithm is that in the latter the proposal distribution is assymetric q(Θt |Θt−1) 6=
q(Θt−1|Θt). A new sample Θ∗ is accepted with probability,

A(Θ∗,Θt−1) = min
(

1,
p̃(Θ∗)q(Θt−1|Θ∗)
p̃(Θt−1q(Θ∗|Θt−1)

)
(A.1)

where A(α∗,α) is the acceptance ratio, and p̃(Θ∗) is the unnormalised posterior distri-

bution of parameter Θ. The Metropolis-Hastings procedure is to draw a number from
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a uniform distribution on the unit interval and accept the new sample if the number is

smaller or equal to A(Θ∗,Θt−1).

A.1.2 Gibbs Sampling

The Gibbs sampling scheme is a particular type of Markov chain simulation that up-

dates groups of variables sequentially. Consider the case where a model has v groups

of random variables Θ j whose posterior distribution needs to be estimated. The joint

distribution of all v groups of variables Θ = {Θ1, . . . ,Θv} can be written as,

p(Θ) = p(Θ j|Θ− j)p(Θ− j) (A.2)

where p(Θ j|Θ− j) is the distribution of the jth group conditioned on all other groups,

and p(Θ− j) denotes the joint probability distribution of all other groups of variables

except the jth. It is assumed that while p(Θ) is too complex to draw samples from

p(Θ j|Θ− j) is easier to work with (MacKay, 2003). Using Baye’s rule the conditional

distribution of a group of variables can be written as,

p(Θ j|Θ− j) =
p(Θ− j|Θ j)p(Θ j)

ZΘ

, (A.3)

where p(Θ j) is the prior distribution of that group and ZΘ is the normalization constant.

The prior distribution p(Θ j) is usually taken to be conjugate to the likelihood so that

the posterior has the same functional form as the prior, and the normalization term ZΘ

is computed from,

ZΘ =
Z

p(Θ− j|Θ j)p(Θ j)dΘ j. (A.4)

In a nutshell, Gibbs sampling updates each group of variables Θ j at a time condi-

tioned on all the others. This operation is performed in a cyclic manner such that each

parameter Θt
j at iteration t, is updated conditioned on the most recent updated param-

eters Θt
− j. There are two issues with the Gibbs sampling scheme that need attention.

The first is that the initial state is not a good representative of the whole distribution

and the second is that consecutive samples have a high degree of correlation (Barber,

2011). The first issue is resolved by discarding the first 1/3 samples drawn, something

that is usually refereed to as burn-in stage, and the second is tackled by subsampling

the sequence of samples by retaining only one sample every ten produced for the fi-

nal computation. Last note that if not all of the parameters have tractable(conjugate)

posteriors, then Gibbs sampling can be combined with individual Metropolis-Hastings
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(MH) algorithms to draw samples from these posteriors. A complete treatment of the

subject of sampling methods can be found in many textbooks as MacKay (2003); Gel-

man et al. (2004); Bishop (2006); Barber (2011).

A.2 Gibbs sampling for Multi-task GP Classification

It is straightforward to derive the update equations for variables h, and f which were

given in equations 3.5, 3.8. These updates can easily be computed by conditioning on

the variables that they depend and normalizing appropriately. For explanatory reasons

we show in detail how to compute the update equation for the task covariance matrix

given in equation 3.9, which acts as a concrete example that the posterior has the same

functional form as the prior when the prior is conjugate to the likelihood.

A.2.1 Auxiliary Variables

The posterior of the auxiliary variables conditioned on all other variables is given by

Bayes rule as,

p(h|f,y) =
p(f|h)p(y|h)

p(f,y)

=
N

∏
n=1

1
Zn

Nhn( fn,1)δ(hn)

=
N

∏
n=1

(
fn + yn

Nhn( fn,1)
Φ(yn fn)

)
, (A.5)

which is the product of truncated univariate gaussians.

A.2.2 Latent function

The posterior of the latent variables f is found by:

p(f|h,Kt ,α) =
p(h|f)p(f|Kt ,α)

p(h)

= Nf(Σh,Σ), (A.6)

where Σ =
(

I +(Kt⊗Kx)−1
)−1

= (Kt⊗Kx)(I +Kt⊗Kx)−1.
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A.2.3 Task covariance

The posterior of the task covariance matrix Kt is given by,

p(Kt |f,θt) =
p(f|Kt)p(Kt |θt)

ZKt
, (A.7)

This involves the computation of three terms. The first is the distribution of the latent

function f conditioned on Kt , where by exploiting some properties of the Kronecker

and the “vec” operator can be written as,

p(f|Kt) =
exp
{
−1

2 trace
(
(Kt)−1 FT (Kx)−1 F

)}

(2π)
1
2 NM|Kt | 12 N |Kx| 12 M

, (A.8)

where as mentioned previously on Chapter 3, ΓM is the multivariate Gamma function

of M dimensions, and “etr” is used to denote the the exponential of the trace, etr =

exp{trace(.)}. The second is the prior of the task covariance matrix,

p(Kt |θt = β,Λ) =
2−

1
2 (β−M−1)M|Λ| 12 (β−M−1)

ΓM
[1

2(β−M−1)
]
|Kt | 12 β

etr
{
−1

2
Kt−1

Λ

}
, (A.9)

and the third is the normalization constant given by,

ZKt =
Z

p(f|Kt)p(Kt |θt)dKt . (A.10)

The product of the prior of Kt and the distribution of f conditioned on Kt (p(f|Kt)p(Kt |θt)),

which appears also inside the integral of the normalizing constant ZKt is given by,

1

(2π)
1
2 NM|Kx| 12 M

2−
1
2 (β−M−1)M|Λ| 12 (β−M−1)

ΓM
[1

2(β−M−1)
]
|Kt | 12 (N+β)

etr
{
−1

2

((
Kt)−1

(
FT (Kx)−1 F+Λ

))}
,

(A.11)

where by inspection it is noticed that this is an unnormalised I W distribution with

a new scale matrix and degrees of freedom given by ΛN =
(

FT (Kx)−1 F+Λ

)
, and

βN = N + β, respectively. Normalizing appropriately inside the integral of ZKt gives

that,

ZKt =
(2π)−

1
2 NM |Kx|− 1

2 M2−
1
2 (β−M−1)M|Λ| 12 (β−M−1)

ΓM
[1

2(β−M−1)
]

=1︷ ︸︸ ︷Z
I W M(Kt |βN ,ΛN)dKt

=
(2π)−

1
2 NM |Kx|− 1

2 M2−
1
2 (β−M−1)M|Λ| 12 (β−M−1)

ΓM
[1

2(β−M−1)
] (A.12)
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Substituting equations A.12 and A.11 to the equation A.7 gives that the posterior of

the task covariance matrix Kt will be given by,

p(Kt |f,θt) =

2−
1
2 (β−M−1)M |Λ|

1
2 (β−M−1)

(2π)
1
2 NM |Kx|

1
2 M

ΓM[ 1
2 (β−M−1)]|Kt |

1
2 (β+N)

etr
{
−1

2(Kt)−1 (F(Kx)−1FT +Λ
)}

(2π)−
1
2 NM |Kx|−

1
2 M2

1
2 (NM)|Λ|

1
2 (β−M−1)

ΓM[ 1
2 (β+N−M−1)]

ΓM[ 1
2 (β−M−1)]|F(Kx)−1FT +Λ|

1
2 (β+N−M−1)

=
2−

1
2 (βN−M−1)M |ΛN |

1
2 (βN−M−1)

ΓM
[1

2(βN−M−1)
]
|Kt | 12 (βN)

etr
{
−1

2
(Kt)−1 (ΛN)

}
(A.13)

From the last equation A.13, it is shown that the posterior of Kt is an Inverse Wishart

distribution with scale matrix ΛN = F(Kx)−1FT + Λ, and degrees of freedom βN =

β+N.

A.3 Variational probit model for Multi-task classifica-

tion

A.3.1 Approximate Inference

The treatment that follows for Q(f) and Q(h) assumes that the complete set of re-

sponses is not available. This implies that the values of the latent function and the

auxiliary variable have to be computed only at the observed N locations. The case

where for each input the outputs for all M are observed can be handled by substitut-

ing the sums over N with the sum over NM observations. Moreover, we will write

Kx without any subscripts to denote the covariance matrix between all training points

from all tasks X, unless stated otherwise.

A.3.1.1 Q(f)

Q(f) ∝ exp

{
EQ(h)

{
N

∑
n=1

log p(hn| fn)+ log p(f|X)

}}
,

∝ exp
{

EQ(h)

{
−1

2
hT h+ fT h− 1

2
fT f− 1

2
fT (Kt⊗Kx)−1 f+ const.

}}
,

∝ exp
{
−1

2
fT (I +

(
Kt⊗Kx)−1)f+ fT h̃+ const.

}
, (A.14)
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which gives that Q(f) = Nf(f̃,Σ) where f̃ = Σh̃x, and

Σ = (I +(Kt⊗Kx)−1)−1 = Kt⊗Kx(I +Kt⊗Kx)−1. (A.15)

A.3.1.2 Q(h)

Q(h) ∝ exp

{
EQ(f)

{
N

∑
n=1

log p(yn|hn)+ log p(hn| fn)

}}
,

∝ exp

{
log

(
N

∏
n=1

p(yn|hn)

)
+ log

(
N

∏
n=1

Nhn( f̃n,1)

)}
,

∝

N

∏
n=1

Nhn( f̃n,1)δ(hn), (A.16)

which gives that Q(hn) = 1
zn

Nhn( f̃n,1)δ(hn), and we have that

Q(hn) =





1
Zn

R +∞

0 hnNhn( f̃n,1)dhn for yn = +1

1
Zn

R 0
−∞

hnNhn( f̃n,1)dhn for yn =−1




, (A.17)

For yn = +1 we have:Z
∞

0
hnNhn( f̃n,1)dhn =

Z
∞

− fn
(z+ f̃n)Nz(0,1)dz, (where we have used : z = hn− f̃n)

=
Z

∞

− fn
zNz(0,1)dz+ f̃n

Z
∞

− fn
Nz(0,1)dz

=
Z

∞

− fn
zNz(0,1)dz+ f̃nΦ( fn). (A.18)

Continuing,
R

∞

− fn zNz(0,1)dz is computed as

Z
∞

− fn
zNz(0,1)dz =

1

(2π)
1
2

Z
∞

− f̃n
ze−

z2
2 dz, (using t =

z2

2
and dt = zdz)

=
1

(2π)
1
2

Z
∞

f̃n
2

2

e−tdt =− 1

(2π)
1
2

[
e−t]∞

f̃n
2

2
=

1

(2π)
1
2

e−
f̃n

2

2

= N f̃n(0,1) (A.19)

The normalization constant for y = +1 is found by,

Zn =
Z

∞

0
Nhn( f̃n,1)dhn (setting again z = hn− f̃n)

=
Z

∞

− f̃n
Nz(0,1)dhn = 1−Φ(− f̃n) = Φ( f̃n). (A.20)
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Putting together equations A.18, and A.20 gives that

h̃n = f̃n +
N f̃n(0,1)

Φ( f̃n)
(A.21)

A similar treatment follows for yn = −1; here we only show the derivation of the

normalization constant, which is given by ,

Zn =
Z 0

−∞

Nhn( f̃n,1)dhn (z = hn− f̃n)

=
Z − f̃n

−∞

Nz(0,1)dhn

= Φ(− f̃n). (A.22)

Thus, in a compact form for both yn =±1 we will have:

Q(hn) = f̃n + yn
N f̃n(0,1)

Φ(yn f̃n)
. (A.23)

A.3.2 Lower Bound

This section provides a step by step derivation of the lower bound L(Q). In order to

keep the notation light we will be using K to refer to the Kronecker product of the task

covariance matrix Kt with the data covariance matrix Kx, thus K = Kt⊗Kx.

L(Q) = EQ(h)Q(f) {log p(y,h, f|X)}−EQ(h)Q(f) {logQh(h)Qf(f)}
= EQ(h)Q(f) {log p(h|f)} (A.24)

+EQ(f) {log p(f|X)} (A.25)

−EQ(h) {logQ(h)} (A.26)

−EQ(f) {logQ(f)} . (A.27)

To simplify the derivation each term of the lower bound is computed separately. For

term A.24 we will have:

EQ(h)Q(f) {log p(h|f)}= EQ(h)Q(h)

{
−N

2
log2π− 1

2
log I− 1

2
(h− f)T (h− f)

}

=−N
2

log2π− 1
2
< hT h>+< hT >< f>−1

2
< fT f>

=−N
2

log2π− 1
2
< hT h>+h̃T f̃− 1

2
trace(< ffT >)

=−N
2

log2π− 1
2
< hT h>+h̃T f̃− 1

2
trace(Σ+ f̃f̃T )

=−N
2

log2π− 1
2
< hT h>+h̃T f̃− 1

2
trace(Σ)− 1

2
f̃T f̃ (A.28)
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Term A.25 is computed as:

EQ(f) {log p(f|X)}= EQ(f)

{
−N

2
log2π− 1

2
log |K|− 1

2
fT K−1f

}

=−N
2

log2π− 1
2

log |K|− 1
2

trace
(
K−1 < ffT >

)

=−N
2

log2π− 1
2

log |K|− 1
2

trace
(
K−1(Σ+ f̃f̃T )

)

=−N
2

log2π− 1
2

log |K|− 1
2

trace
(
K−1 (K(I +K)−1 + f̃f̃T))

=−N
2

log2π− 1
2

log |K|− 1
2

trace
(
(I +K)−1)− 1

2
f̃T K−1f̃

(A.29)

Term A.26 is computed as:

−EQ(h)Q(f) {logQh(h)}= EQ(h)Q(f

{
−

N

∑
n=1

log
1
Zn

Nhn(f̃n,1)

}

=
N

∑
n=1

logZn +
N
2

log2π+
1
2

E
{
(h− f̃)T (h− f̃)

}

=
N

∑
n=1

logZn +
N
2

log2π+
1
2

E
{

hT h−2hT f̃+ f̃T f̃
}

=
N

∑
n=1

logZn +
N
2

log2π+
1
2
< hT h>−< hT > f̃+

1
2

f̃T f̃

=
N

∑
n=1

logZn +
N
2

log2π+
1
2
< hT h>−h̃T f̃+

1
2

f̃T f̃ (A.30)

The last term A.27 is computed as:

−EQ(f) {logQf(h)}= EQ(f)
{
− logNf(f̃,Σ)

}

=
N
2

log2π+
1
2

log |Σ|+ 1
2

EQ(f)
{
(f− f̃)T

Σ
−1(f− f̃)

}

=
N
2

log2π+
1
2

log |Σ|+ 1
2

EQ(f)
{

fT
Σ
−1h−2fT

Σ
−1f̃+ f̃T

Σ
−1f̃
}

=
N
2

log2π+
1
2

log |Σ|+ 1
2

trace
(
Σ
−1 < ffT >

)
−< fT > Σ

−1f̃+
1
2

f̃T
Σ
−1f̃

=
N
2

log2π+
1
2

log |Σ|+ 1
2

trace
(
Σ
−1 (

Σ+ f̃f̃T))− f̃T
Σ
−1f̃+

1
2

f̃T
Σ
−1f̃

=
N
2

log2π+
1
2

log |Σ|+ 1
2

trace(I)+
1
2

trace
(
Σ
−1f̃f̃T)− f̃T

Σ
−1f̃+

1
2

f̃T
Σ
−1f̃

=
N
2

log2π+
1
2

log |Σ|+ N
2

+
1
2

f̃T
Σ
−1f̃− f̃T

Σ
−1f̃+

1
2

f̃T
Σ
−1f̃

=
N
2

log2π+
1
2

log |Σ|+ N
2

(A.31)



Appendix A. Appendix to Chapter 3 149

Finally, putting together equations A.28, A.29, A.30, and A.31 the lower bound L(Q)

will be given by:

L(Q) =−1
2

trace(Σ)+
N

∑
n=1

logZn−
1
2

log |K|− 1
2

trace
(
(I +K)−1)− 1

2
f̃T K−1f̃

+
1
2

log |Σ|+ N
2

=
N

∑
n=1

logZn−
1
2

f̃T K−1f̃− 1
2

log |(I +K)|

=
N

∑
n=1

logZn−
1
2

f̃T (Kt⊗Kx)−1f̃− 1
2

log |(I +Kt⊗Kx)|. (A.32)

A.3.3 Predictions

Inferring the posterior probability of a test point x∗ from task j, belonging to class

“+1” involves the computation of several integrals given below,

p(y∗ j = +1|x∗,X,y) =
Z

p(y∗ j = 1|h∗ j)p(h∗ j|x∗,X,y)dh∗ j, (A.33)

p(h∗ j|x∗,X,y) =
Z

p(h∗ j| f∗ j)p( f∗ j|x∗,X,y)d f∗ j, (A.34)

p( f∗ j|x∗,X,y) =
Z

p( f∗ j|f)Q(f)df (A.35)

Where Q(F)∼Nf(f̃,Σ) and from standard GP results we know that, the mean and the

variance of p( f∗ j|f) will be given by,

E[ f∗ j|f] = (kt
j⊗kx

X,x∗)
T (Kt⊗Kx)−1f, (A.36)

cov[ f∗ j|f] = kt
j jkx∗,x∗− (kt

j⊗kx
X,x∗)

T (Kt⊗Kx)−1(kt
j⊗kX,x∗). (A.37)

Then the mean and the variance of p( f∗ j|x∗,X,y) = N (µ∗,σ2
∗) are given by:

µ∗ j = (kt
j⊗kX,x∗)

T (I +Kt⊗Kx)−1 h̃, (A.38)

σ
2
∗ j = kt

j jkx∗,x∗− (kt
j⊗kX,x∗)

T (I +Kt⊗Kx)−1 (kt⊗kX,x∗), (A.39)

where kt
j j and kt

j are the jth diagonal element and the jth column of Kt , kX,x∗ is the

covariance vector evaluated between all data points X and the test point x∗, kx∗,x∗ is the

marginal variance of the test point, and we write Kx without any subscripts to denote

the covariance matrix between all training points from all tasks.

Returning to the computation of p(h∗ j|x∗,X,y) in equation(A.34), we will have

that,

p(h j∗|x∗,X,y) =
Z

Nh∗ j( f∗ j,1)N f∗ j(µ∗ j,σ
2
∗ j)d f∗ j. (A.40)
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Marginalizing out f∗ j, the mean ν∗ j and the variance υ2
∗ j of h∗ j|x∗ j will be given by,

ν∗ j = µ∗ j, and υ2
∗ j = 1+σ2

∗ j. Finally, the posterior probability of the test point belong-

ing to the “+1” class in equation A.33 can be computed from,

p(y∗ j = 1|x∗,X,y) =
Z

p(y∗ j = 1|h∗ j)p(h∗ j|x∗,X,y)dh∗ j

=
Z

δ(h∗ j > 0)p(h∗ j|x∗,X,y)dh∗ j =
Z +∞

0
p(h∗ j|x∗,X,y)dh∗ j

=
Z +∞

0

1

(2π)
1
2

1
υ∗ j

exp

{
−1

2
(h∗ j−ν∗ j)2

υ2
∗ j

}
dh∗ j

(by setting t =
h∗ j−ν∗ j

υ∗ j
, and dt =

1
υ∗ j

dh∗ j)

=
Z +∞

− ν∗ j
υ∗ j

1

(2π)
1
2

exp
{
−1

2
t2
}

dt =
Z +∞

− ν∗ j
υ∗ j

Nt(0,1)dt

= Φ

(
ν∗ j

υ∗ j

)
= Φ


 ν∗ j√

1+σ2
∗ j


 (A.41)
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B.1 Data dependent covariance function

This section shows how the data-dependent norm can be recovered by employing two

times the matrix inversion lemma. The prior of fX = {fD, fT} conditioned on the geo-

metric variables G will be given by,

p(fX |G)∝ exp
(
−1

2
fT
X Σ̃
−1
XX fX

)
, where Σ̃

−1
XX =

[
ΣDD ΣDT

ΣT
DT ΣT T

]−1

+

[
Q 0

0 0

]
.

To continue we will rewrite Σ̃
−1
XX as

Σ̃
−1
XX =

[
ΛDD +Q ΛDT

ΛT
DT ΛT T

]
,

where we have used that
[

ΣDD ΣDT

ΣT
DT ΣT T

]−1

=

[
ΛDD ΛDT

ΛT
DT ΛT T

]
. (B.1)

Finally, by employing one more time the matrix inversion lemma we have that,

Σ̃XX =

[
ΦDD ΦDT

ΦT
DT ΦT T

]
.

The quantity that is of interest is ΦT T , where using equation B.41 will be written

as,

ΦT T = Λ
−1
T T +Λ

−1
T T Λ

T
DT ΦDDΛDT Λ

−1
T T , (B.2)

which involves the computation of two sets of quantities. The procedure is listed below

in three steps:

151
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1. First, computing the block matrices of equation B.1, using equations B.37, B.34

and B.35 gives that

ΛT T =
(

ΣT T −Σ
T
DT Σ

−1
DDΣDT

)−1
, (B.3)

ΛDD = Σ
−1
DD +Σ

−1
DDΣDT ΛT T Σ

T
DT Σ

−1
DD, (B.4)

ΛDT =−Σ
−1
DDΣDT ΛT T , (B.5)

2. Second, using equation B.38 we have that,

ΦDD =
(

ΛDD +Q−ΛDT Λ
−1
T T Λ

T
DT

)−1
,

where substituting equations B.4, and B.5 in the previous equation we have that

ΦDD =
(

Σ
−1
DD +Q

)−1
= ΣDD−ΣDD(Q−1−ΣDD)−1

ΣDD. (B.6)

3. Finally, substituting equations B.3, B.5 and B.6 to ΦT T with some simple matrix

manipulations gives that,

ΦT T = ΣT T −Σ
T
DT
(
ΣDD +Q−1)−1

ΣDT , (B.7)

= ΣT T −Σ
T
DT (I +QΣDD)−1 QΣDT (B.8)

This three step procedure completes the derivation of the data-dependent covariance

function given in equations B.7, and B.8.

B.2 Optimizing the Hyperparameters for the SS-MTL mod-

els

This section computes the gradients with respect to the hyperparameters of the SS-

MTL models presented in sections 4.3.1 and 4.3.2. We give again the table showing

the priors and the parameterization of each model in table B.1 to avoid any confusion.

Concerning hyperparameters γA and γI we take the exponential to ensure positivity.

B.2.1 SS-MTL IND

In the SS-MTL IND model both groups of hyperparameters θx and θl appear inside the

covariance matrix K̃i
j j of each task. Initially we will denote both types of hyperparam-

eters by θ and then we will show the derivatives for each group explicitly. Terms of the
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Table B.1: Prior distributions for SS-MTL models.

Model Prior Covariance Laplacian

SS-MTL IND p(f|D) = ∏
M
j=1 Nf j(0,K

i
j j) Ki

j j = 1
γA

K̃x
j j Qi

j = γI
γA

Q j

SS-MTL SG p(f|D) = N (0,Ks) Ks = Kt⊗
(

1
γA

K̃x
)

Qs = γI
γA

QS

SS-MTL FG p(f|D) = N (0,K f ) K f = 1
γA

K̃F Q f = γI
γA

QD

log marginal likelihood that depend on the hyperparameters θ of the data covariance

function and the graph Laplacian for regression problems are,

log p(y|A,θ) =−1
2

M

∑
j=1

[
yT

j
(
K̃i

j j +σnI
)−1 y j + log

∣∣K̃i
j j +σNI

∣∣
]
+ constant. (B.9)

Its derivatives with respect to the hyperparameters will be given by,

∂p(y|A,θ)
∂θ

=
1
2

M

∑
j=1

[
yT

j
(
K̃i

j j +σnI
)−1 ∂K̃i

j j

∂θ

(
K̃i

j j +σnI
)−1 y j− tr

(
(
K̃i

j j +σnI
)−1 ∂K̃i

j j

∂θ

)]
.

(B.10)

For classification problems the log marginal likelihood that we approximate by the

EP algorithm will be given by,

log p(y|A,θ) =−1
2

M

∑
j=1

[
µ̃T

j
(
K̃i

j j + Σ̃ j
)−1

µ̃ j + log
∣∣K̃i

j j + Σ̃ j
∣∣
]
+ constant, (B.11)

where Σ̃ j and µ̃ j are parameters for the jth task estimated by the EP approximation.

Similarly to the regression case the derivatives for classification tasks will be computed

by,

∂p(y|A,θ)
∂θ

=
1
2

M

∑
j=1

[
µ̃T

j
(
K̃i

j j + Σ̃ j
)−1 ∂K̃i

j j

∂θ

(
K̃i

j j + Σ̃ j
)−1

µ̃ j− tr

(
(
K̃i

j j + Σ̃ j
)−1 ∂K̃i

j j

∂θ

)]
.

(B.12)

Inspecting equations B.10 and B.12, it is observed that it is only required to com-

pute the exact derivatives for each group of hyperparameters of the covariance matrix

K̃i
j j of each task. Including all parameters and taking the exponential of γA and γI the

data dependent covariance matrix for the jth task K̃i
j j will be given by,

K̃i
j j =

1
eγA

(
Kx

L j,L j
−
(

Kx
L j,D j

)T
(

I +
eγI

eγA
Q jKx

D j,D j

)−1 eγI

eγA
Q j

(
Kx

L j,D j

))
, (B.13)
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Moreover, we will define as

Ψ j =
(

I +
eγI

eγA
Q jKx

D j,D j

)−1

, (B.14)

B j = Ψ j
eγI

eγA
Q j. (B.15)

The gradients for θx are given by:

∂K̃i
j j

∂θx =
1

eγA


∂Kx

L j,L j

∂θx −2

(
∂Kx

L j,D j

∂θx

)T

B jKx
L j,D j

+
(

Kx
L j,D j

)T
B j

∂Kx
D j,D j

∂θx B j

(
Kx

L j,D j

)

 .

(B.16)

The gradients with respect to θl are computed as,

∂K̃i
j j

∂θI =
1

eγA

(
Kx

L j,D j

)T
Ψ j

(
eγI

eγA

∂Q j

∂θl

)[
Kx

D j,D j
Ψ j

(
eγI

eγA
Q j

)
− I
](

Kx
L j,D j

)
. (B.17)

The gradients with respect to γA and γI are computed as,

∂K̃i
j j

∂γA
=−K̃i

j j−
1

eγA

(
Kx

L j,D j

)T
Ψ j

(
eγI

eγA
Q j

)[
Kx

D j,D j
Ψ j

(
eγI

eγA
Q j

)
− I
]

Kx
L j,D j

,

(B.18)

∂K̃i
j j

∂γI
=

1
eγA

(
Kx

L j,D j

)T
Ψ j

(
eγI

eγA
Q j

)[
Kx

D j,D j
Ψ j

(
eγI

eγA
Q j

)
− I
](

Kx
L j,D j

)
. (B.19)

B.2.2 SS-MTL SG

The marginal likelihood in the SS-MTL SG model is similar to the SS-MTL IND

model by removing the summation over the tasks and substituting the covariance ma-

trix K̃i
j j by Ks = Kt ⊗

(
1
γA

K̃x
)

. Note if we were exploiting the property of the Kro-

necker factorization which gives that αaAa⊗αbAb = αaαb(Aa⊗Ab), it would simply

change the appearance of the gradients.

The derivative of the log marginal likelihood for regression tasks with respect to all

groups of hyperparameters will be given by,

∂p(y|A,θ)
∂θ

=
1
2

[
yT (Ks +σnI)−1 ∂Ks

∂θ
(Ks +σnI)−1 y j− tr

(
(Ks +σnI)−1 ∂Ks

∂θ

)]
.

(B.20)
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The derivative of the approximated log marginal likelihood for classification tasks

will be computed by,

∂p(y|A,θ)
∂θ

=
1
2

[
µ̃T (Ks + Σ̃ j

)−1 ∂Ks

∂θ

(
Ks + Σ̃ j

)−1 µ̃− tr
((

Ks + Σ̃ j
)−1 ∂Ks

∂θ

)]
.

(B.21)

The data-dependent covariance matrix K̃x for the SS-MTL SG model will be given

by,

1
eγA

K̃x =
1

eγA

(
Kx

D,D−
(
Kx

L,D
)T
(

I +
(

eγI

eγA
QS

)
Kx

D,D

)−1( eγI

eγA
QS

)(
Kx

L,D
)
)
. (B.22)

The gradients of Ks with respect to the hyperparameters of the task covariance

matrix θt will be given by,

∂Ks

∂θt =
∂Kt

∂θt ⊗
1

eγA
K̃x. (B.23)

The gradients of Ks with respect to all other hyperparameters except of θt , which

we write as θ−t = {θx,θl,θg} are computed in a similar way to the SS-MTL IND

model,

∂Ks

∂θ−t = Kt⊗ ∂
1

eγA K̃x

∂θ−t . (B.24)

The computation the second term of the Kronecker factorization of the above equation(
∂

1
eγA K̃x

∂θ−t

)
is performed in an identical manner to the one used for the computation of

the gradients in the SS-MTL IND model in the previous section. This is achieved by

replacing the data covariance matrices of each task with the the appropriate matrices

constructed by all tasks, and similarly for the graph Laplacian. Then we will substitute

for Kx
L j,D j

→ Kx
L,D , and Kx

D j,D j
→ Kx

D,D, and Q j→ QS. As in the SS-MTL IND model

we will define the following matrices Ψ =
(

I + eγI
eγA QSKx

D,D

)−1
, and B = Ψ

eγI
eγA Q. For

example, the gradients with respect to θx are computed as,

∂
1

eγA K̃x

∂θx =
1

eγA

(
∂Kx

L,L

∂θx −2
(

∂Kx
L,D

∂θx

)T

B
(
Kx

L,D
)
+
(
Kx

L,D
)T B

∂Kx
D,D

∂θx B
(
Kx

L,D
)
)

(B.25)

B.2.3 SS-MTL FG

The derivative of the log marginal likelihood for the SS-MTL FG model is obtained by

replacing Ks with K f in equations B.20 and B.21, for regression and classification tasks
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respectively. The covariance matrix for the SS-MTL FG model is computed from,

K f =
1

eγA
Kt⊗Kx

L,L

− 1
eγA

(
Kt⊗Kx

L,D
)T
(

I +(Kt⊗ eγI

eγA
QD)(Kt⊗Kx

D,D)
)−1(

Kt⊗ eγI

eγA
QD

)(
Kt⊗Kx

L,D
)
.

(B.26)

Similarly, to the two previous models we will set as,

Ψ f =
(

I +(Kt⊗ eγI

eγA
QD)(Kt⊗Kx

D,D)
)−1

,

B f = Ψ f

(
Kt⊗ eγI

eγA
QD

)

The gradients with respect to the hyperparameters of the task covariance matrix θt

are computed from,

∂K f

∂θt =
1

eγA

(
∂Kt

∂θt ⊗Kx
L,L

)
− 2

eγA

(
∂Kt

∂θt ⊗Kx
L,D

)T

B f
(
Kt⊗Kx

L,D
)

+
1

eγA

(
Kt⊗Kx

L,D
)T

Ψ f

[(
∂Kt

∂θt ⊗
eγI

eγA
QD

)
(Kt⊗Kx

D,D)
]

B f
(
Kt⊗Kx

L,D
)

+
1

eγA

(
Kt⊗Kx

L,D
)T

Ψ f

[(
Kt⊗ eγI

eγA
QD

)(
∂Kt

∂θt ⊗Kx
D,D

)]
B f
(
Kt⊗Kx

L,D
)

− 1
eγA

(
Kt⊗Kx

L,D
)T

Ψ f

(
∂Kt

∂θt ⊗
eγI

eγA
QD

)(
Kt⊗Kx

L,D
)

(B.27)

The gradients with respect to the hyperparameters of the data covariance function

θx are given by,

∂K f

∂θx =
1

eγA

(
Kt⊗

∂Kx
L,L

∂θx

)
− 2

eγA

(
Kt⊗

∂Kx
L,D

∂θx

)

+
1

eγA

(
Kt⊗Kx

L,D
)T B f

(
Kt⊗

∂Kx
D,D

∂θx

)
B f
(
Kt⊗Kx

L,D
)

(B.28)

The gradients with respect to the hyperparameters of the graph Laplacian θl are

computed as,

∂K f

∂θl =
1

eγA

(
Kt⊗Kx

L,D
)T

Ψ f

(
Kt⊗ eγI

eγA

∂Qd

∂θl

)[(
Kt⊗Kx

D,D
)

B f − I
](

Kt⊗Kx
L,D
)
.

(B.29)

The gradients with respect to γA are computed from,

∂K f

∂γA
=−K f − 1

eγA

(
Kt⊗Kx

L,D
)T

Ψ f

(
Kt⊗ eγI

eγA
Qd

)[(
Kt⊗Kx

D,D
)

B f − I
](

Kt⊗Kx
L,D
)
.

(B.30)
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The gradients with respect to γI are computed from,

∂K f

∂γI
=

1
eγA

(
Kt⊗Kx

L,D
)T

Ψ f

(
Kt⊗ eγI

eγA
Qd

)[(
Kt⊗Kx

D,D
)

B f − I
](

Kt⊗Kx
L,D
)
.

(B.31)

B.2.4 Additional experimental results

In this section, we present the accuracy the SS-MTL, MTL, SS-STL and STL meth-

ods achieved on the Spam, Sentiment and Letters classification problem. For ease of

comparison between the performance measures, AUC and Accuracy, we report on the

same the table the AUC and the Accuracy of each problem. The classes of the Spam

and the Sentiment problems are balanced and hence the accuracy of the models follows

the same pattern as for the AUC (see tables B.2 and B.3). In the letters classification

problem, which is highly imbalanced, the AUC and the Accuracy of the models follow

a different pattern, table B.4: in terms of AUC the best performance is achieved by

MTL-IND, whereas in terms of Accuracy the best performance is achieved by FG in 3

out of 5 training sizes and by STL in 2 out of 5.

Table B.2: AUC and Accuracy on the Spam data set.

METHOD
No. of training data points per task

10 20 30 40 50 100

AUC

SG-G 87.81 ± 5.62 92.64 ± 2.80 94.04 ± 2.14 94.99 ± 1.82 96.28 ± 1.00 96.60 ± 0.47

FG-G 83.60 ± 9.25 92.32 ± 3.18 93.30 ± 3.89 95.18 ± 1.24 94.44 ± 1.40 96.09 ± 0.65

SG-NN 85.42 ± 5.42 91.57 ± 3.36 93.24 ± 1.92 94.61 ± 1.51 95.79 ± 0.82 96.33 ± 1.23

FG-NN 85.56 ± 5.07 91.38 ± 3.09 93.65 ± 2.10 94.39 ± 1.66 95.77 ± 0.93 96.69 ± 0.74

SS-IND-G 81.47 ± 7.74 87.38 ± 3.33 90.71 ± 1.82 92.72 ± 1.17 93.03 ± 1.75 95.43 ± 0.54

MTL 82.21 ± 7.96 90.97 ± 2.13 93.39 ± 1.70 94.14 ± 1.45 95.34 ± 0.75 96.94 ± 0.44
MTL-IND 80.89 ± 10.49 86.63 ± 0.80 91.82 ±1.87 93.02 ± 1.57 94.63 ± 0.91 96.68 ± 0.55

SSGP-NN 77.01 ± 6.43 85.94 ± 4.53 90.23 ± 2.07 91.75 ± 1.87 93.81 ± 1.02 96.16 ± 0.66

SSGP-G 76.14 ± 6.36 84.96 ± 3.87 89.67 ± 2.17 91.75 ± 2.07 92.92 ± 1.63 95.02 ± 1.15

STL-GP 64.62 ± 6.17 71.45 ± 8.44 81.94 ± 6.17 85.13 ± 6.69 91.99 ± 4.80 96.36 ± 1.73

ACCURACY

SG-G 78.73 ± 3.95 84.57 ± 3.73 85.92 ± 5.10 87.12 ± 4.35 89.87 ± 1.53 90.06 ± 0.96

FG-G 75.44 ± 8.39 84.45 ± 3.39 85.87 ± 4.45 87.99 ± 1.89 86.08 ± 1.77 88.35 ± 1.09

SG-NN 76.21 ± 4.14 83.00 ± 5.15 85.08 ± 3.11 87.20 ± 2.12 89.18 ± 1.60 90.32 ± 1.67
FG-NN 75.60 ± 3.90 82.35 ± 4.37 86.03 ± 2.68 86.91 ± 2.38 89.20 ± 1.44 90.48 ± 1.05

SS-IND-G 72.71 ± 6.92 77.90 ± 3.87 81.64 ± 2.44 83.71 ± 2.46 84.49 ± 2.73 87.43 ± 0.96

MTL-GP 69.47 ± 13.54 81.75 ± 2.49 84.97 ± 2.68 85.53 ± 2.40 87.80 ± 1.38 90.29 ± 1.05

MTL-IND 71.81 ± 9.72 75.79 ± 11.51 82.78 ± 3.12 83.87 ± 2.77 86.49 ± 1.24 89.87 ± 1.13

SSGP-NN 64.76 ± 5.97 75.61 ± 4.05 80.79 ± 3.20 82.43 ± 2.47 85.62 ± 1.26 89.63 ± 1.06

SSGP-G 65.78 ± 4.52 74.69 ± 4.24 80.24 ± 2.56 82.36 ± 2.68 84.04 ± 1.76 87.58 ± 1.53

STL-GP 51.24 ± 7.45 53.51 ± 8.16 66.21 ± 8.68 71.31 ± 8.16 81.58 ± 7.24 88.44 ± 2.68

NN 3 6 9 12 15 20
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Table B.3: AUC and Accuracy on the Amazon data set.

METHOD
No. of training data points per task

10 20 30 40 50 100

AUC

SG-G 70.45 ± 3.78 73.61 ± 2.08 76.00 ± 1.68 77.58 ± 1.59 78.84 ± 1.42 81.53 ± 1.21

FG-G 69.82 ± 3.86 72.99 ± 2.14 75.82 ± 1.79 77.32 ± 1.57 78.55 ± 1.52 81.32 ± 1.13

SG-NN 70.55 ± 4.14 73.55 ± 2.11 76.03 ± 1.95 78.12 ± 1.55 79.04 ± 1.36 81.83 ± 1.10
FG-NN 68.96 ± 4.68 73.08 ± 2.30 76.19 ± 1.67 76.99 ± 2.71 78.57 ± 2.79 81.77 ± 1.07

SS-IND-G 61.39 ± 4.35 66.55 ± 2.48 69.03 ± 2.07 71.03 ± 1.46 72.69 ± 1.18 75.19 ± 1.30

MTL-GP 61.56 ± 2.85 66.18 ± 3.93 72.13 ± 4.35 75.59 ± 3.68 77.50 ± 2.84 81.33 ±1.24

MTL-IND 61.60 ± 2.98 66.10 ± 3.30 69.44 ± 2.85 71.50 ± 2.51 73.55 ± 1.56 76.20 ± 1.09

SS-STL-NN 63.35 ± 2.29 66.63 ± 2.14 69.71 ± 2.00 71.77 ± 2.23 73.62 ± 1.55 76.34 ± 1.16

SS-STL-G 59.57 ± 2.87 62.84 ± 3.15 66.12 ± 2.68 69.69 ± 3.41 72.32 ± 2.50 75.59 ± 1.76

STL-GP 53.75 ± 1.85 55.13 ± 1.82 55.68 ± 2.27 56.31 ± 2.49 57.59 ± 2.60 57.30 ± 2.11

ACCURACY

SG-G 57.43 ± 2.72 61.79 ± 1.58 64.49 ± 1.13 66.31 ± 1.19 67.69 ± 1.04 70.66 ± 1.08

FG-G 57.05 ± 3.05 60.88 ± 1.94 64.09 ± 1.18 65.92 ± 1.10 67.22 ± 1.13 70.28 ± 0.98

SG-NN 58.73 ± 2.84 62.57 ± 1.95 64.72 ± 2.54 67.11 ± 1.31 68.34 ± 1.14 71.42 ± 1.01
FG-NN 57.49 ± 3.40 62.28 ± 2.10 65.22 ± 1.46 65.37 ± 4.38 68.02 ± 2.29 71.40 ± 0.94

SS-IND-G 50.95 ± 3.59 52.00 ± 3.32 55.89 ± 5.05 59.39 ± 2.92 60.45 ± 2.02 63.29 ± 1.47

MTL-GP 50.82 ± 3.40 52.37 ± 2.10 58.65 ± 1.46 62.42 ± 4.38 63.98 ± 2.29 68.23 ± 0.94

MTL-IND 53.64 ± 3.79 58.78 ± 4.27 62.55 ± 3.31 64.65 ± 2.46 66.52 ± 1.20 68.95 ± 0.90

SS-STL-NN 56.83 ± 4.18 59.54 ± 3.74 62.61 ± 2.28 64.70 ± 2.52 66.27 ± 1.61 69.00 ± 0.93

SS-STL-G 50.37 ± 2.68 56.67 ± 4.63 59.71 ± 3.43 63.00 ± 4.03 65.60 ± 2.73 68.20 ± 2.21

STL-GP 50.01 ± 5.65 53.86 ± 3.35 56.62 ± 2.37 58.38 ± 2.86 60.77 ± 2.82 65.26 ± 1.16

NN 3 4 5 6 7 10

Table B.4: AUC and Accuracy on the Letters data set.

METHOD
NO. OF TRAINING DATA POINTS PER TASK

10 20 30 40 50

AUC

SG-G 82.71 ± 6.12 88.47 ± 1.01 90.98 ± 0.72 91.46 ± 0.81 92.51 ± 0.70

FG-G 84.13 ± 2.10 89.30 ± 1.05 91.61 ± 0.89 92.52 ± 0.62 93.39 ± 0.48

SG-NN 78.04 ± 0.23 86.91 ± 2.22 89.57 ± 6.76 91.15 ± 2.57 92.36 ± 1.89

FG-NN 82.03 ± 4.77 88.28 ± 1.88 90.32 ± 1.35 91.71 ± 1.31 92.73 ± 0.70

SS-IND-G 84.32 ± 1.86 88.36 ± 1.28 90.85 ± 0.91 91.75 ± 0.59 92.75 ± 0.51

MTL-GP 81.33 ± 2.40 85.64 ± 1.89 88.76 ± 1.46 90.46 ± 1.05 91.69 ± 0.90

MTL-IND 86.09 ± 1.92 90.15 ± 0.92 92.15 ± 0.77 92.90 ± 0.56 93.70 ± 0.50

SS-STL-NN 80.26 ± 3.38 86.85 ± 3.27 91.07 ± 2.03 92.48 ± 1.04 92.89 ± 1.52

SS-STL-G 79.93 ± 2.71 87.12 ± 2.29 90.77 ± 1.25 91.99 ± 0.97 93.27 ± 0.74

STL-GP 83.85 ± 2.93 88.70 ± 2.77 91.89 ± 1.40 92.88 ± 0.75 93.77 ± 0.54

ACCURACY

SG-G 71.13 ± 3.90 77.50 ± 1.45 80.71 ± 1.31 81.65 ± 1.42 83.96 ± 0.96

FG-G 74.21 ± 2.87 80.68 ± 1.46 83.55 ± 1.48 85.08 ± 1.16 86.37 ± 0.92

SG-NN 66.16 ± 16.59 77.40 ± 1.97 80.96 ± 2.04 83.08 ± 1.84 84.91 ± 1.22

FG-NN 71.82 ± 6.07 79.52 ± 2.29 81.90 ± 1.90 83.85 ± 1.88 85.27 ± 1.27

SS-IND-G 71.50 ± 2.46 77.48 ± 1.43 80.73 ± 1.36 82.34 ± 1.21 83.97 ± 0.87

MTL-GP 69.01 ± 3.15 75.62 ± 2.8 79.22 ± 2.34 81.75 ± 1.69 83.30 ± 1.61

MTL-IND 64.96 ± 6.29 79.60 ± 1.67 83.02 ± 1.73 84.70 ± 1.21 86.16 ± 1.04

SS-STL-NN 63.40 ± 5.81 76.87 ± 5.01 82.05 ± 2.21 83.34 ± 2.46 85.30 ± 1.94

SS-STL-G 66.53 ± 5.54 77.21 ± 3.23 81.47 ± 2.16 84.14 ± 1.55 85.25 ± 2.39

STL-GP 68.56 ± 4.56 78.36 ± 2.85 82.90 ± 2.48 85.14 ± 1.60 86.76 ± 1.10
NN 3 4 5 6 7
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B.3 Useful Matrix identities

The matrix inversion lemma, which is also known as the Woodbury formula is given

by (Rasmussen and Williams, 2005),

(Z +UWV T )−1 = Z−1−Z−1U(W−1 +V T Z−1U)−1V T Z−1. (B.32)

The inverse of a block matrix is computed as,

A =

(
P Q

R S

)
, A−1 =

(
P̃ Q̃

R̃ S̃

)
, (B.33)

where P̃, Q̃, R̃, S̃ are given either by,

P̃ = P−1 +P−1QS̃RP−1 (B.34)

Q̃ =−P−1QS̃ (B.35)

R̃ =−S̃RP−1 (B.36)

S̃ =
(
S−RP−1Q

)−1
, (B.37)

or by,

P̃ =
(
P−QS−1R

)−1
(B.38)

Q̃ =−P̃QS−1 (B.39)

R̃ =−S−1RP̃ (B.40)

S̃ = S−1 +S−1RP̃QS−1, (B.41)

and the two forms are equivalent.
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Appendix to Chapter 5

C.1 Approximate Inference for CMTMC model

The section provides the approximate posteriors of the random variables for the upper

channel of the CMTMC model θ = {G,Ht}. The approximate posteriors for the lower

channel f, hx are the same used in the variational probit model in chapter 3 and can

be found in appendix A.3.1, where h≡ hx. As in the previous appendix, we will write

Kx without any subscripts to denote the covariance matrix between all training points

from all tasks, unless stated otherwise. Note that, most of the computations for the

multi-class classifier based on the Variational probit model can be found in Girolami

and Rogers (2006); they are only reported here for completeness.

C.1.1 Q(G)

The approximate posterior for Q(G) is computed as (Girolami and Rogers, 2006)

Q(G) ∝ exp

{
EQ(ht)

(
N

∑
i=1

M

∑
j=1

log p(ht
i j|gi j)+ log p(g j|X)

)}

∝ exp

{
EQ(ht)

(
M

∑
j=1

logNht
j
(g j, I)+ logNg j(0,K

x)

)}

∝

M

∏
j=1

Nh̃t
j
(g j, I)Ng j(0,K

x),

which gives that

Q(G) =
M

∏
j=1

Q(g j) =
M

∏
j=1

Ng j(g̃ j,Σ
g), (C.1)

where Σg =
(
I +Kx−1)−1

= Kx (I +Kx)−1, and g̃ j = Σgh̃t
j.
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C.1.2 Q(Ht)

The approximate posterior of Q(Ht) can be computed in a similar manner.

Q(Ht) ∝ exp

{
EQ(G)

(
N

∑
i=1

log p(yt
n|ht

n)+ log p(ht
n|gn)

)}

∝ exp

{
EQ(G)

(
N

∑
i=1

log p(yt
n|ht

n)+ logNht
n
(g̃n, I)

)}

∝

N

∏
n=1

Nht
n
(g̃n, I)δ(ht

n j > ht
nk∀k 6= i)δ(yt = i). (C.2)

The concept behind this exposition is that the auxiliary variable ht
ni is the largest if

yt
n = i, which can also be seen as that each ht

n is distributed according to a truncated

multivariate Gaussian that the ith dimension is the largest, which gives that

Q(Ht) =
N

∏
n=1

Q(ht
n) =

N

∏
n=1

N yt
n

ht
n
(g̃n, IM), (C.3)

where the identity matrix IM ∈ RM×M, and N yt
n

ht
n
(g̃n, IM) denotes a truncated Gaussian

with the largest dimension indicated by yt
n. Taking into account that each component

of Q(Ht) must be normalized appropriately we will have that,

Q(ht
n) =

1
Zn

M

∏
k=1

Nht
nk
(g̃nk,1), (C.4)

where Zn = p(ht
n ∈ C ) and C = {ht

n : ht
n j < ht

ni, j 6= i}. The normalization constant Zn

will be given by,

Zn = p(ht
n ∈ C )

=
Z +∞

−∞

Nht
ni
(g̃ni,1)∏

j 6=i

Z ht
ni

−∞

Nht
n j
(g̃n j,1)dht

n jdht
ni. (C.5)

To continue we write the product of (M-1) integrals as ,

∏
j 6=i

Z ht
ni

−∞

Nht
n j
(g̃n j,1)dht

n jdht
ni = ∏

j 6=i

Z ht
ni

−∞

(2π)−1 exp
{
−1

2
(ht

n j− g̃n j)2
}

dht
n j,

where setting that z j = ht
n j− g̃n j, we will have that

ht
n j =−∞→ z j =−∞,

ht
n j = ht

ni→ z j = ht
ni− g̃n j, and

dz j = dht
n j,
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which gives that

∏
j 6=i

Z ht
ni

−∞

Nht
n j
(g̃n j,1)dht

n jdht
ni = ∏

j 6=i

Z ht
ni−g̃n j

−∞

(2π)−1 exp
{
−1

2
z2

j

}
dz j,

= ∏
j 6=i

Φ(ht
ni− g̃n j),

where Φ is the cumulative distribution. Then,

Zn =
Z +∞

−∞

Nht
ni
(g̃ni,1)∏

j 6=i
Φ(ht

ni− g̃n j),

=
Z +∞

−∞

(2π)−1 exp
{
−1

2
(ht

ni− g̃ni)2
}

∏
j 6=i

Φ(ht
ni− g̃n j)dht

ni,

where setting again u = ht
ni−gni results in ht

ni = u+ g̃ni, which in turn gives that,

Zn =
Z +∞

−∞

(2π)−1 exp
{
−1

2
u2
}

∏
j 6=i

Φ(u+ g̃ni− g̃n j)du,

which can be seen as the expectation of Φ{.} over p(u)∼N (0,1), which finally gives

that

Zn = Ep(u)

{
∏
j 6=i

Φ(u+ g̃ni− g̃n j)

}
. (C.6)

Then we have that the posterior expectation of h̃t
nk for all k 6= i will be computed from,

h̃t
nk = Z−1

n

Z +∞

−∞

ht
nk

M

∏
j=1

Nht
n j
(g̃n j,1)dht

n j,

= Z−1
n

Z +∞

−∞

Z ht
ni

−∞

ht
nkNht

nk
(g̃nk,1) ∏

j 6=i,k
Nht

ni
(g̃ni,1)Φ(ht

ni− g̃n j)dht
nidht

nk

= g̃nk−Z−1
n Ep(u)

{
Nu(g̃nk− g̃ni,1)∏

j 6=i
Φ(u+ g̃ni− g̃n j)

}
. (C.7)

While the posterior expectation for the ith component will be given by,

h̃t
ni = Z−1

n

Z +∞

−∞

ht
niNht

ni
(g̃ni,1)∏

j 6=i
Φ(ht

ni− g̃n j)dht
ni,

= g̃ni−Z−1
n Ep(u)

{
u∏

j 6=i
Φ(u+ g̃ni− g̃n j)

}
,

= g̃ni−Z−1
n ∑

k 6=i
Ep(u)

{
Nu(g̃nk− g̃ni,1)∏

j 6=i
Φ(u+ g̃ni− g̃n j)

}
,

= g̃ni ∑
k 6=i

(g̃nk−ht
nk), (C.8)

where it has been used that for a random variable u∼N (0,1) and for any differentiable

function ζ(u), we have that E[uζ(u)] = E[ζ′(u)].
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C.2 Lower Bound of the CMTMC model

C.2.1 Lower bound on log marginal likelihodd

The lower bound on the log marginal likelihood is computed by,

L(Q) = EQ(Θ)[log p(yt ,yx,G,Ht , f,hx|X ,θt ,θx)]−EQ(Θ)[log Q(G)Q(Ht)Q(f)Q(hx)]

(C.9)

where taking into account the independence assumption of the two channels given

the hyperparameters θx, is decomposed into two set of quantities. The first is due to

the multi-class channel and we will refer to it as Lt(Q) and the second is due to the

multi-task channel which we write as Lt(Q). The quantities that depend on the multi-

task classifier is given in appendix A.3.2. Here, we expand the terms that depend

on the multi-class classifier. The terms of the lower bound that depend on the multi-

class classifier can be found in Girolami and Rogers (2006) and are presented here for

completeness,

Lt(Q) =
M

∑
j=1

N

∑
n=1

EQ(G)Q(Ht)
{

log p(ht
n j|gn j)

}
+

M

∑
j=1

EQ(G)
{

log p(g j|X)
}

−
M

∑
j=1

EQ(g j)
{

logQ(g j)
}
−

N

∑
n=1

EQ(ht
n)
{

log p(ht
n)
}
, (C.10)

where following a similar derivation to the lower bound of the multi-task classifier in

appendix A.3.2 gives that,

Lt(Q) =−NM
2

log(2π)+
N
2

log(2π)+
NM

2
−M

2
trace(Σg)− 1

2 ∑
m

g̃T
m(Kx)−1g̃m

−M
2

trace
(

Kx−1
Σ

g
)M

2
log |Kx|+ M

2
log |Σg|+∑

n
logZt

n. (C.11)

Putting together equations A.32 and C.11, gives the lower bound on the CMTMC

model as,

L(Q) =−NM
2

log(2π)+
N
2

log(2π)+
NM

2
−M

2
trace(Σg)− 1

2 ∑
m

g̃T
mKx−1

g̃m

−M
2

trace
(

Kx−1
Σ

g
)
−M

2
log |Kx|+ M

2
log |Σg|+∑

n
logzt

n

+
N

∑
n=1

logzx
n−

1
2

log|I +Kt⊗Kx|− 1
2

f̃T (Kt⊗Kx)−1f̃, (C.12)

where Zt
n = Ep(u)

{
∏ j 6=i Φ(u+ g̃ni− g̃n j

}
) is given in equation C.6, and Zx

n = Φ(yx
n f̃n)

is given in equations A.20 and A.22.
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Terms that depend on hyperparameters θx and θt are:

L(Q)θx,θt =−M
2

trace(Σg)− 1
2 ∑

m
g̃T

mKx−1
g̃m−

M
2

trace
(

Kx−1
Σ

g
)

−M
2

log |Kx|+ M
2

log |Σg|− 1
2

log|I +Kt⊗Kx|− 1
2

f̃T (Kt⊗Kx)−1f̃ (C.13)

C.2.2 Gradients on lower bound

The gradients with respect to the parameters of the data covariance function Kx are

computed from:

∂

∂θx L(q) =−M
2

trace
{

Ω(I +Kx)−1−Kx(I +Kx)−1
Ω(I +Kx)−1}+

1
2

g̃T
mKx−1

ΩKx−1
g̃m

+
M
2

trace
{
(I +Kx)−1

Ω(I +Kx)−1}−M
2

trace
{

Kx−1
Ω

}

+
M
2

trace
{

(I +Kx−1
)−1Kx−1

ΩKx−1
}

+
1
2

f̃T (Kt⊗Kx)−1 Kt⊗Ω
(
Kt⊗Kx)−1 f̃

− 1
2

trace
((

I +Kt⊗Kx)−1 Kt⊗Ω

)
. (C.14)

While the gradients with respect to the parameters of the task covariance matrix are

computed from:

∂

∂θt L(q) =
1
2

f̃T (Kt⊗Kx)−1
Ξ⊗Kx (Kt⊗Kx)−1 f̃− 1

2
trace

((
I +Kt⊗Kx)−1

Ξ⊗Kx
)
,

(C.15)

where Ω = ∂Kx

∂θx , and Ξ = ∂Kt

∂θt

C.3 Predictions with the CMTMC model

This section presents the computations needed to infer the posterior probability of a

point coming from a target task p(y f
∗ = +1|xt ,X,yt ,yx). This quantity involves the

computation of two separate terms, the posterior probability of the multi-task clas-

sifier p(yx
∗ j = +1|xt ,X,yx), and the posterior probability of the multi-class classifier

p(yt
∗ j|xt ,X,yt). Computations that are needed to infer the posterior of the multi-task

classifier with the Variational probit model are the same used in chapter 3 and we refer

to appendix A.3.3 for details. In the following of this section we first present how to

make predictions with the multi-class classifier for a single point (P2P) and secondly

we discuss the problems encountered when dealing with a batch of test data points

(Batch).
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C.3.1 Point to Point (P2P) predictions

Inferring the task label yt
∗ for a single test point xt , using the multinomial probit model,

involves the computation of several integrals given below:

p(yt
∗ = k|xt ,X,yt) =

Z
p(yt
∗ = k|ht

∗)p(ht
∗|xt ,X,yt)dht

∗ (C.16)

p(ht
∗|xt ,X,yt) =

Z
p(ht
∗|g∗)p(g∗|xt ,X,yt)dg∗, (C.17)

p(g∗|xt ,X,yt) =
Z

p(g∗|g)Q(G)dG

=
M

∏
m=1

Z
p(g∗m|gm)Q(gm)dgm. (C.18)

Where from standard GP results we have that,

p(g∗m|gm)∼Ngm

(
(Kx

X,xt )T (Kx
x,x)
−1gm,kx

xt ,xt − (kx
X,xt )T (Kx

X,X)−1(kx
x,x∗)

)
(C.19)

Then the mean and the variance of p(g∗m|xt ,X,yt) = N (µg
∗m,σ

g
∗m) are given by:

µg
∗m = (kx

X,x∗)
T (I +Kx)−1 h̃t

m, (C.20)

σ
g
∗m = kx

xt ,xt − (kx
X,xt )T (I +Kx)−1 (kx

X,xt ). (C.21)

Then equation C.18 is given by:

p(g∗|xt ,X,y) =
M

∏
m=1

N (µg
∗m,σ

g
∗). (C.22)

Returning to equation C.17, we have that:

p(ht
∗|xt ,X,yt) =

M

∏
m=1

Z
Nht∗m(g∗m,1)Ng∗m(µg

∗m,σ
g
∗m)dg∗m. (C.23)

Marginalizing out g∗m yields that p(ht
∗m|xt ,X,yt) = N (µg

∗m,υ2
∗m) where:

υ
2
∗m = 1+σ

g
∗m (C.24)

Returning to equation C.16 , and using the shorthand p(yt
∗ = k|ht∗) = δ(ht

∗k > ht
∗i ∀ i 6=

k)δ(yt
∗ = k)≡ δ∗k we have that:

p(yt
∗ = k|xt ,X,yt) =

Z
p(yt
∗ = k|ht

∗)p(ht
∗|xt ,X,yt)dht

∗

=
Z

δ∗k
M

∏
m=1

Nht∗m(µg
∗m,υ2

∗m)dht
∗m (C.25)

=
Z +∞

−∞

Nht
∗k
(µg
∗k,υ

2
∗k) ∏

m 6=k

Z ht
∗k

−∞

Nht∗m(µg
∗m,υ2

∗m) dht
∗m dht

∗k, (C.26)
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which integral can efficiently be evaluated using numerical integration as:

p(yt
∗ = k|xt ,X,yt) = Ep(u)

{
∏
j 6=k

Φ

(
1

υ∗ j

[
uυ∗k +µg

∗k−µg
∗ j

])}
, (C.27)

where u∼Nu(0,1).

C.3.2 Batch predictions

The task predictive distribution for a batch of test points p(yt
∗|X t ,X,yt) involves the

computation of the following integrals,

p(yt
∗ = k|X t ,X,yt) =

Z
p(yt
∗ = k|ht∗)p(ht

∗|X t ,X,yt)dht
∗ (C.28)

=
Z

δ
∗
k

M

∏
m=1

Nht∗
m
(Mg∗

m ,ϒ
∗)dht∗

m (C.29)

=
Z +∞

−∞

Nht∗
k
(Mg∗

k ,ϒ
∗) ∏

m 6=k

Z ht∗
k

−∞

Nh∗m(Mg∗
m ,ϒ

∗) dht∗
m dht∗

k . (C.30)

The second part of equation C.30,
R ht∗

k
−∞ Nht∗

m
(Mg∗

m ,ϒ∗) dht∗
m , is the multivariate cu-

mulative distribution function which is decomposed as:Z ht∗
k

−∞

Nht∗
m
(Mg∗

m ,ϒ
∗) dht∗

m =
1

(2π)
n∗
2

1

|ϒ∗| 12Z ht∗
1k

−∞

. . .
Z ht∗

n∗k

−∞

exp
{
−1

2
(
ht∗

m −Mg∗
m
)T

ϒ
∗−1 (

ht∗
m −Mg∗

m
)}

dht∗
m ,

(C.31)

where the last equation implies that ht∗
im−Mg∗

im ≤ ht∗
ik ∀ i. As already discussed in

chapter 5 computing multivariate cumulative distributions is an extremely hard task,

which compelled us to use the approximation presented in equation 5.24.
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Abstract

We propose a novel approach to the automated discrim-

ination of normal and ventricular arrhythmic beats. The

method employs Gaussian Processes, a non-parametric

Bayesian technique which is equivalent to a neural net-

work with infinite hidden nodes. The method is shown to

perform competitively with other approaches on the MIT-

BIH Arrhythmia Database. Furthermore, its probabilistic

nature allows to obtain confidence levels on the predic-

tions, which can be very useful to practitioners.

1. Introduction

Cardiac arrhythmias are one of the major causes of

morbidity and mortality in the Western world. Their

early diagnosis is often reliant on an analysis of electro-

cardiogram (ECG) traces, generally involving time-

consuming manual annotation by expert physicians. Be-

cause of this, several automated methods to detect arrhyth-

mic beats have been proposed, often achieving very good

levels of performance [1–3].

We present a novel approach for the automatic classifi-

cation of arrhythmic versus normal beats from ECG sig-

nals based on recent developments in Machine Learning.

We use the framework of Gaussian Process (GP) classifi-

cation [4], a non-parametric Bayesian technique which has

been shown to be highly accurate on non-linear classifi-

cation tasks while controlling complexity and avoiding the

pitfalls of overfitting. GPs are a natural way to define prob-

ability distributions over spaces of functions; they can be

viewed as a generalization of Neural Networks where the

number of hidden nodes (basis functions) tends to infin-

ity [5]. A key feature of GPs is their probabilistic nature,

which means that predictions are always accompanied by

an estimate of the associated uncertainty. This is a key ad-

vantage over standard non-linear classifiers such as neural

networks which generally can only provide a hard assign-

ment.

The method uses as input the spectral or wavelet trans-

form of segmented individual beats from a recording,

which requires much less manual annotation than meth-

ods based on interval estimation. We use an Automatic

Relevance Determination (ARD) kernel for the classifier to

automatically reduce dimensionality and extract the most

discriminant features by optimising weights.

We test the model on the MIT-BIH arrhythmia data set

on the two class problem of discriminating normal and pre-

mature ventricular contraction beats (PVC). The results we

report show that the method is competitive with the state of

the art, obtaining predictive accuracies on test data which

are frequently above 90%. This can be further increased by

thresholding over posterior probabilities and retaining only

predictions with high confidence; the model consistently

has a higher accuracy for prediction made with higher pos-

terior probability, indicating that the discriminant obtained

from the training data mirrors the structure of the whole

data set.

The rest of the paper is organised as follows: in the first

section, we briefly review Gaussian Process classification.

In the second section, we discuss the beat segmentation

algorithm and the feature selection procedure. We then

present our results on real ECG data, and conclude the pa-

per with a discussion of the strengths and weaknesses of

the method, as well as the possible future extensions.

2. Methods

2.1. Gaussian Processes for classification

In this section we briefly review the statistical founda-

tions of our approach; for a thorough review, the reader

is referred to [4]. A Gaussian Process (GP) is a (finite or

infinite) collection of random variables any finite subset

of which is distributed according to a multivariate normal

distribution. As a random function f(x) can be seen as a

collection of random variables indexed by its input argu-

ment, GPs are a natural way of describing probability dis-

tributions over function spaces. A GP is characterised by

its mean function µ(x) and covariance function k(x,x′),



a symmetric function of two variables which has to satisfy

the Mercer conditions ([4]). In formulae, the definition of

GP can be written as

f ∼ GP (µ,K) ⇔ [f(x1), . . . , f(xN)] (1)

∼ N ([µ (x1) , . . . , µ (xN)] ,K)

for any finite set of inputs x1, . . . ,xN. Here

Kij = k (xi,xj) .

The choice of mean and covariance functions is largely de-

termined by the problem under consideration. In this pa-

per, we will use a zero mean GP with ARD covariance

function, in order to automatically select the most relevant

features from a high dimensional input space [6]

k (xi,xj) = exp

(
−1

2
(xi − xj)

T Λ (xi − xj)
)
, (2)

where Λ is diagonal, with Λii denoting the precision

(inverse characteristic length-scale) of each feature of the

input matrix.

Given some observations y of the function f at certain

input values X , and given a noise model p(y|f ,X), one
can use Bayes’ theorem to obtain a posterior over the func-

tion values at the inputs

p (f |y,X, θ) =
p (y|f ,X, θ) p (f |X, θ)

p (y|X, θ) (3)

where θ denotes the parameters of the GP prior (ARD pa-

rameters). One can then obtain a predictive distribution for

the function value f∗ at a new input point x∗ by averaging
the conditional distribution of p(f∗|f) under the posterior
(3)

p (f∗|y,X,x∗, θ) =
∫
p (f∗|f ,X,x∗, θ) p (f |y,X, θ) df .

If the noise model p(y|f) is Gaussian, then we are deal-
ing with a regression problem and one can obtain an an-

alytical expression for the posterior (3). In classification,

the noise model is non-Gaussian; in this paper, we will take

the noise model to be the logistic function

p (y = 1|f) =
1

1 + exp(−f)
.

In this case, the denominator of equation (3) cannot be

computed analytically and one must seek approximate so-

lutions. In this paper, we use the Laplace approximation

[7]. This computes a second order Taylor expansion of the

un-normalised posterior p (y|f ,X, θ) p (f |X, θ) about its

mode and then approximates the true posterior distribution

with a Gaussian centered at the true mode and with covari-

ance given by the Hessian of the un-normalised posterior.

2.2. Experimental setup

In this study experimental data were taken from the

MIT-BIH Arrhythmia database [8], for training and eval-

uation purposes of the proposed classifier. Specific record-

ings were selected according to the exhibited type of ar-

rhythmia; each recording was sampled at 360Hz, and

had sufficient amount of Normal and premature ventric-

ular contraction (PVC) beats, for training and evaluating

the model. Annotation provided by the database was used

to separate the beats before any preprocessing.

2.3. Data processing

Two different types of transforms were considered in the

analysis of the ECG signal. The first one is based on the

Fourier Transform while the second one on the Wavelet

Transform.

2.3.1. Fast Fourier Transform (FFT)

Each beat segment, consisting of 360 data points (one

minute), was transformed into the frequency domain using

a Fast Fourier Transform with a Hanning window. The

frequency based representation of each beat consisted of

180 frequencies, since it was sampled at 360Hz.

2.3.2. Wavelet Transform (WT)

The second type of features were obtained by the Dis-

crete Wavelet Transform. The Continuous Wavelet Trans-

form (CWT) of a signal x(t) is defined as:

Wax(b) =
1√
a

∫ +∞

−∞
x(t)ψ

(
t− b

a

)
dt, a > 0. (4)

The discrete wavelet transform uses a dyadic scale factor

a = 2k for k ∈ Z+. The wavelet that was used in this

work was from the Daubechie family [9]. It is noted that

the high frequency phenomena of a signal are captured at

the smallest scales, namely 22 and 21,while most of the de-

tails of the signal are contained from the third to the fifth

scale. Consequently, coefficients from these three scales

were selected as input features for the classification, re-

sulting in 900 features.

3. Results

3.1. Feature selection

To determine which frequencies are more relevant for

classification, for the features acquired from FFT, ARD

was used. Using ARD the five most relevant frequencies

were identified and then the characteristic length scale of



Table 1. Classifier Performance in terms of Accuracy (%)(HC:High Confidence)

FFT WT

Recording Accuracy Accuracy Data of Accuracy Accuracy Data of

Thresh. 0.5 (%) Thresh. 0.8 (%) HC(%) Thresh. 0.5 (%) Thresh. 0.8 (%) HC(%)

106 93.2 95.8 89.23 98.61 99.53 95.58

119 100 100 100 99.84 99.89 99.49

200 98.32 99.08 97.61 97.61 98.53 95.97

203 87.9 93.37 80.79 96.9 98.53 95.55

221 96.16 96.7 97.18 96.16 96.92 95.69

223 88.43 96.8 71.43 90.67 96.54 81.59

228 99.8 99.8 99.8 99.11 99.65 98.43

233 97.96 98.78 96.98 96.19 99.35 90.94

each input feature was optimized for each recording. Thor-

ough experimental research indicate that using two fea-

tures (frequencies) achieves better performance, instead of

using a larger number of features.

The features obtained from the Wavelet transform, were

projected into a two-dimensional space, using Principal

Component Analysis (PCA). After PCA, the characteris-

tic length scale of each feature was estimated again using

ARD.

3.2. Performance evaluation

The performance measure that was used for the evalu-

ation of the classifier is simple misclassification error. In

the Gaussian Process framework, the misclassification er-

ror is computed by setting a threshold over the posterior

probabilities, since GPs produce a measure of uncertainty

instead of giving hard assignments to a class. This concept

can be further cultivated, by setting a threshold of 0.8 and

retaining test samples that have been assigned with poste-

rior probabilities higher than 0.8. In this way, a measure of

high confidence is obtained to evaluate the classifier.

For example figure 1 and 2 show the decision bound-

aries along with the data points in the Euclidean space,that

were created by GPs of the wavelet transformed input data

of recording 223. It is clearly observable, that high con-

fidence regions are produced in the input space where the

density, of the training data of each class, is high.

Table 1 shows the performance of the classifier, with op-

timized hyperparameters, in terms of the accuracy the test

data set achieves. The first column of each transform in-

dicates the accuracy the classifier achieves with a thresh-

old of 0.5. The other two columns show the accuracy of

the classifier when a threshold of 0.8 is used and the pro-

portion of data that have been assigned with probabilities

higher than 0.8.

Each recording was trained and tested four times. The

beats in each recording was separated into four disjoint

subsets, preserving the initial prior probabilities of each

class. In each run three data subsets were used for training
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Figure 1. Decision Boundaries of recording 233(contour

plot) - Scatter plot; where x(1), x(2) represent the features

obtained from the wavelet transform after PCA

and one for testing. The accuracy each recording achieves

in table 1 is the mean accuracy of the four trainings.

Figure 3 illustrates the effect the increase of the thresh-

old has on the accuracy (solid line), and the proportion of

the test data set, that has been assigned probabilities higher

than the threshold (dashed line). It is noticed that the accu-

racy remains high but the proportion of the data that have

been assigned with probabilities higher than the value of

the threshold, decreases as the threshold increases.

4. Discussion and conclusions

In this paper we propose the use of Gaussian Processes

for automatically classifying ECG signals into normal and

ventricular beats. Furthermore, Automatic Relevance De-

termination was applied for the identification of the fre-

quencies that were most relevant for classification, and

then for the optimisation of the hyperparameters of the co-

variance function. A different methodology was followed

for the features extracted by the wavelet transform of the

raw ECG signal, where first PCA was applied to reduce

the dimensionality of the inputs, and then ARD was used
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Figure 2. Decision Boundaries of recording 233
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Percent of test data set larger than the threshold

again to optimise the hyperparameters. On both types of

features obtained, results indicate that Gaussian Processes

are shown to perform with high precision, with an aver-

age accuracy above 90%. Moreover, a measure of perfor-

mance exceeding 95% of accuracy is achieved, by consid-

ering only posterior probabilities of high confidence above

a certain threshold.

Future work will emphasize on the use of different fea-

tures for classifying beat hearts with Gaussian Processes,

as well as the investigation of applying different approx-

imation methods to the non-Gaussian likelihood. More-

over, future work will focus on extending the predictions

to different subjects.
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